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1~ F'OREWORb

'The, work in this report. was initiated under Contract DA-01l-1
AMC-11l536(Z) for exploratory development of ptopellants for mis'sies-
and rockets,, andcompleted- under Contract DAAHOI1-r67-Ca-09471 for

exploratory development of solid, propulsion technology. Rothiii ont
tracts were under the 'technical cognizance- Of' Army Propulsion
Laboratory and Center, Reseatrch-and IDevelopmenti Directorate,,

4.U.. Si Army Missile Comhmand. 1

The application of finite-element methods to heat-conduction
problems is-an important way station to-the. successful e~pplication, of
thes e methods 'tomore complex time-6dependent situations-. specf
ically, to viscoelastic problems of s~olid propellants Atid solid-
propellant rocket motors.

ltThe work described :here has immediate ap~licatioui to pkopel-
latgrains and rocket nozzles'. But this method has gqheral applica-

tion beyond solid- propulsion technology. 'Accordingly, -with the View
that broader distribution will ultimately be authoriiod, the body of
the report contains no allusion to propellants or rockets.
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,A4STRAQT - .

A new numerical methoe for the solution of heat conducclon
problems in thermally anisotropic, nonhomogeneous bodies of complex
geometry was devised which is based On a discretization €onicept de-
velopedin the matrix analysis of structures. This discretization
method, commonly referredto:as -the finite, element method, reduces,

the probliem formulation to the 'solution of a natrix equation fdo-the
nodal point temperatures of the assembly of finite eiements. 'The
resulting matrix equation is stable for any time step. The method
is extremely flexible and easy to apply. The method was appiediby
writing- a computer program for the solution of heat conduction
problems in piane, thermally anisotropic, nonhomogeneous bpdies.
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Section 1o INTRODUCTION

The approximate analysis of heat conduction and' other dif-
fusion phenomena in bodies of complex geometry has generally
been accomplished by using various finit- difference techniques,
e. g., [ 1]. These methods suffer from a number of limitations
or restrictions which depend on the type of formulation. Explicit
finite difference methods, for example, have stability criteria that.
often make the time incremenm - -quire-nents excessively small,
which in turn make computation time excessively large. Regalar
grid arrays, which yield simple finite difference operators are
difficult to adapt to complex boundaries, This problem is Com-
pounded when multi-material bodies are considered, since each
material interface must be treated as a boundary.

Other types of solution are becoming more common, espe-
cially those approximate methods based on variational principles
L 2]. This faot, coupled with experience and ideas developed in
applying variational methods to the matrix analysis of structures,
has led to the present development. From this previous experi-
ence it was expected that the use of finite element methods would
make multi-material bodies and bodies of complex gezmetry More
amenable to solution, as well as providing a compatible nodal point
system for coupled usage with numerical stress analysis proce-
dures based on similar concepts.

The present work applies a variational method, along with
a discretization concept developed in the matrix analysis of struc-
tures, to numerical analysis of heat conduction in thermally aniso-
tropic, nonhomogeneous bodies.' This discretization method,
commonly referred to as the finLte element %nethod, reduces the
problem forn.ulation to the solution of a matrix equation for the
nodal-point temperatures of the assembly of finite elements.

First, a functional of the temperature field and of its first
time derivative is introduced. Then it is shown that when the
functional is an extremum, it satisfies the heat conduction equation
throughout the body and satisfies general flux boundary conditions
over the part of the boundary where the temperature is not speci-
fied. Under the assumption of a piecewise linear temperature dis-
tribution in a small quadrilateral element which is made up of
four triangular elements with linear temperature distributions, thq

j 'Alter the initiation of this work, a similar approach zo this
problem was published by Nickell and Wilson [3].

:fj



variational principle is used to establisha, matrix equation for the
eleren in terms of its corner, or nodal-point, temperkaturea and
its boundary Conditions. Since this is done in a matrix formula-
tion, the resulting equations for the assemblage offinite elewents
constituting 'the'body -of interest are easily assembled by methbds
of matrix algebra.

The resulting matrix equation is stable for any time step,
thus offering potential advantages over the explicit finite difference
miethods in computer running time. Each quadrilateral element
in the assemblage may have distinct and anisotropic thermal pro-
perties. Complex geometries can be, approximated as closely as
desired with a piecewise linear boundary.

Although the development is done in general terms, the com-
puter program written to demonstrate the method io limited, to a
plane, nonhomrgeneous body whose axes of anisotropy rpust be. in
the same Cartesian frame over the body. 'Internal heat generation
is neglected,but adiabatic, constant flux, convective, and tempera-
ture boundary conditions may be applied. Extension of the program
to general anisotropy, internal heat generation, and axially sym,
metrih- bodies can be easily accomplished. Extension to three-
dimenkional geometries is straightforward in, concept but will in-
volve extension of present programming concepts.

4
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Section 11. FORMULATION OF THE VARITIONAL PRINCIPLra

Let II, a functional of the temperature field U(x, y, z) and
!the first time derivative of the temperature field U(x, y, z)., be

defined by ('I).

S11(u,)= j U , + pcUU - Q dV

S S- ,- dS .(l)

where I

, V = volume of the region,

S = boundary of the region,,

k. k .(x, y, z) = thermal-conductivity tensor,
13

c c(x, y, z) ='specific heat,

p p(x,y,z) = density,
Q =internal heat-source density,
q = heat flux vector across a boundary, and

n. = unit normal vector.

A comma denotes differentiation with respect to the following sub.?
4scrip , and repeated subscripts imply summation. The quantities

k, c- and p are ausumed to be temperature and time independent.
Q and q are specified functions of time, and S and V, characteri-
zing the region, do not change.

The variation of 11(U, U) with respect to U (with U held con-
stant) is given by

811 ( x

1'44where C is a small parameter and X is any one of a family of,
functions that is 0 on the portions of S on v,liich temperature, is
specified and arbitrary elsewhere. An extremum of the function
I1 is kought, which implies that 611(U, 0) must be zero, i.e.,

2A similar variational principle for isotropic inaterials
is given in[4].

3
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o4 Starting with

+ PC W, +EX)fT - Q(U +UX) dv I -

- I ,( + dSA

there results

PH (f a,(U + CX).k.,4 -k( ',X1 'j ki 3 (U+ 3.

+ p -0 dV . X dS (3)

The volume integral

v(U, l x) i
dV

can be transformed ir+ - d surface integral

.Ui k..,X),j dV = 'nik,.U,..X dS

which gives, when (3) is evaluated at E = 0,

8UE =0 (-k..U,..+pcTT-Q)X dV

+ Snik..U'JX dS - njd X (4)

SS

The vanishing of 611 requires then, that in V'

I ij 'ji P-

and on S

¢4
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j Eq. (5) is the Fourier hcat Cqua.tica. a'nd (6) dofiin0 tho h~at flu=
Iq at tho'surf-co- of the body. Thaoflaw a Matn 11 U hic4 CiVOOa 4

Oxtromum of the .Imctioval deflned ty (1) vtieftoo both thd flid
tqqation and bpondary equa~tions df transibut hcmt codcti21i afll~

wagttre'bi.



Section IIo DICflETIZATION OW T1, 102IOZ M

In the.pracodng dzvolopmont, 110, D) la a iufn . 0 '0 t~y
P funcdons U -and 0 which, will catisfy tho bomtr.y con-cend C 9

However, if the choice of U and I Is restricted such'that their oenly
A arbitrariness is in certain constants in thoir fo~rnmu qt*, tho Cusc.r

stants a~e the vectot of nodal-point valuo os u , f '
and U, II becomes (lRl(a4). Finding an oktrordurn of this rcal-
valued function in equivalent to satisfying tho following.

- 0 (7)
Bn1

In the following, the body will be considotid to be divided In-
to a number of tetrahedral or plano triangular olememnts. Those are,
in some sense, small with respect to the temperature gradient anA
boundary contours such that the temperature distribution aid bounCary
can be represented by a piecewise linear approximation. Tha nodal
points for the numerical anAlysis will be the vertices of the elements.

fLet the temperature field in an element be given by

U(x, y, z St) = (X, yo 4) #Mj(t) )I and the time rate of temperature change in the element be given by

(xy,z, t) = (xy,z) B C(t) , (9)

where t and are vectors which specify the spatial dependence of U

and 0 and 2 and A are the vectors of nodal point values. 4 The natrices
of constants, # and ], are defined by the above relationships.

The temperature gradient U, in the element can be ecpressed
in terms of the nodal-point temperatiret by

A= S4 U,= Au .(0

3The notation 4 indicates the matrix A, and , the vector u.
!It should be noted that throughout this development, the fildo

U and 0J have been taken to be independent. In the computer program,
however, and , and therefore A and l, were takentobe the same,

,~ 6
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Writing n in terms of nodal point quantities,

uT Au

T TT T++ 4pcuA A' 4 ,"

Taking the first variation with respect tov i e., and setting
it equal to zero, there results /

Where

t V AT.Tkg' AdV (13)

5 ,~ QA d (5

AA

i i Boundary conditions of four types will now be considered:

'4 (1) Specified temperature, ui = constant (boundary segment

++ +iI'i(z) Specified flux, q = i (boundary segment'Sz.,

+(3) Convective, q = h(u.-uo , where h is a film c oeffcient
()and u0 is the environenta1 temperatur e (boundary seg-

~ment 5S), andi
(4) Adiabatic, q = 0 (boundary segment Sc).

V The boundary integral (1 6) now becomes

. *= + - ,, (1?'

, 7

P C,.... .

QAlt dV++ ++_ (

an TT



- - 0

where

and T

H = h A - A d 
(O), -

- hu A! T  dS.
S3

The integral over S is zero since the variation of the functionl was
- specified as zero over that portion of the boundary, and thi intogral

over $4 is zero since there is no heat flow acroes the boundary.

To assure the extremum of the functional JI, it is necosacry
then to find the nodal-point temperatUres A which satisfy the fouvftg

f { matrix equation.

~(IC- 1) U + C - Q,* c + t,,-o .0

'

' I
01 
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S taion v. SOLUTION OF THE GOVaNXNG MATRIX BUATON

I. Solution Method

To solve (21), note that X& and a function of time andt Q*
g* and h* are given functions of time. Let the time variaite be re-
stricted-to the following set of variatbles.

t. = iAt , i= 0, 1,3,..

Subscripts "i" in the subsequent development indicate that
the subscripted quantities are evaluated at t

Let (21) be written as

c(22)

where
K= K-H

and
Q* + h

If fi is assumed constant for t. : t _ , then 6-

,~~~ hl,+ t t ui + Zt --IZ ]/ At tand from Taylor' s expansion-a outt

u. + Atu. + [ -
'-1+1+1

Su. + ( i .+ 6 (23)
Eqs. (z:) and.( ) now re sufficient to. determi ne u and

in terms of u. and Solving (23) for uif. elds

Substituting this value into (ZZ)gives

- (K + C- +l -j+ L

9.

11 , Il W N -10-1- --Ip ps !1
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Also from (22),

a =0 1  -C'~Ku *(26)
5~ .5 CISA

,o Substituting (26) into (25), results in

A simpler computation results by rewriting (27) as

K +~ f)~ m(+ ) j~ ~ 4 (28)

At 

0

t for

= + (29)
tu 1 At5

where u. is found from the auxiliary calculation.

2 ui+1+ Bi) - (30)

For tho solution of the heat flow in a multi-element body, it is nec-
essary to assemble the elumant matrix equations (29) into a single
matrix equation. This assembly is a complex task which can be
performed in an efficient manner by a computer. The general method
of assembly for matrix equations is given in [ 5], Section 7. 2.

2. Stability of Solution Technique

To study the stability of the solution technique defined abovQ
by (27), i.e., the effect on the numerical solution of an error intro.
duced at some step, consider the vector 2, which satisfies exactly
the relation

SAlso note that if At is very large (29) reduces to K u. = f
the steady-state rorm. Thus the steady-state solution canbe btaUned
in one iteration from the computer program simply by making the sin-
gle time increment'very large.

1 ~10
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Suppose that, at some step (i+l) in the calculation of )j, an error

) (say round-off error) is introduced in the calculation (31), which
can be rewritten in terms of the incorrect valuo u* as

at ~t 1 Fj t M i

Then subtracting (31) from (32) results in a recursive relation (33)
for the error in u at step N. (N> iW). Let NE uNM - ;then

!i ~ ~~ N f )NI- o ,:- l,.i+,, (33)

Solving (33) for e results in

-~fN At " --

It follows inductively that

neN= L ' n N - (i+l)

where e is the error introduced at n = 0. Let X* be the absolute valu
of the largest element of the rnim matrix .. Then

N N: (mx*)N e a:A e

:} Consider solutions of the form

e =( *e e n -(i) (34)

, where ;k is a positive constant. The error so defined is greater
than or eqnal to the true error. Substituting (34) into (33),

~ C) I +.$ -- e=0

or, rearranging things slightly,

:! (x+ e)- l- = 0 (35)

S7' H Defining_______

M

; -*'---I1---



'(35) can be written,"-" 
:

If C is a positive definite matrix, then acdording toM Mlline on E 6, p.
3e the eigenvalues w are all positive. This, in turn, requib that

A I1 < 1. It follow& from (34) that the error will decrease as N in--[
creaes. inceI NJ < I for ain value ofAt > -Q, the a' uidnshm ' i

crae. ic -
olu n scem

is unconditionally stable if C is positive dfinite. This propetyof-C

is dependent on the as sumedorms for 0, which, as iniae inScto

ind(atedin Sc1 ...

V. 1, gilve a positive definite C for the forms assurnod'in the pre~ont

development. 
"

122
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'Section V. FORMULATIPON OF ELEMENT CONDUGTIVITY, SPECIFIC
HEATt AND OTHER MATtICES

1. Tianuar Element Matriccs

In the sequel, specializationl %oa piane Cartsuian ,yetom vill
be made in which case th field relations elprossed by (8 and (9)
reduce to

f U(x, yjt) t(xf y) A u t)
and

4U

In the absence of other motivations, it is conveientto jet

A I (X Y) 4 I(X'(4 0)

and
A B

Using the nomenclature of Fig. 1,

o I y y

Sak

bkbk  4

I -I-~-a. b.
-x

FIG. 1. PLANE AIANMUIAR ELEMENT

iJi

J o3
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the, matrix , ro. its definition in (37) and (39), can be fot, d to be

A b.-bk b j t

ab b -al)k
,A a bk oJdl , i,

j k k j
a -a a

ki k

Eqs. (37)-(41) are sufficient to define a linear, spatial, temperature
field and a linear, spatial, temperature-rate field in terms of the
nodal point values of the temperature and temperaturerate, respec-
tively.

Since A and ' are constant over the element, (13)-(16) naay'be
written a

K AL , T (2).7
C A' k1A A

c PC A T dAu A (43)

4 14

Q* O T t dA(44)
A

andT T1T~ A I njdS (45)
S

if K, PC; and Q are also taken as constant in an element.

These integrals are easily evaluated iu terr-s of the fir-st and
second moments of area.

The boundary integrals in (18)-(ZO) also siiplify to

*. T ~T dS ,(46)

Sa

H4 H h ATFC. dd 4l (47),

and

h*= hu6 A~5 dS. (48)

S3

14



The coefficient matrices appearing in (29) may now be writton .

K~T ,T AT STdJ

4(9

TrOT

C pc AIJt~dAj

I and

Te TI T TQAT dA + A dS-
I AS, S3

AT[QdA+ y ndS hu 'ObdS I .51)
jin te A S a u ie
thedevelopmet of the computer program anwas taken in the linear

form

and -<

In this case; for a triangular element, (50) becomes

011

which is positive definite as required for stabilityin Section .Z.

p __ _ __ _ _

42. Quadrilateral flement Matrices

It 'As convenient in terms of programming logic to work with a
quadrilateral element. For this purpose a quadrilateral element com-
posed of four triangular elements, as shown in Fig. Z, was us id in
the present computer program6 The four triangles are determined
by defining the coordinafes of the common point to be the average of
the coordinates of the ot~her four points. The common poant is elinii
nated from explicit representation by the following procedure.

MMMMM ;w1m



.< 1 ... ........

4~F

2

1 1The rnatrixv equation for this quadtilateral element can be
expressed by assembling the matrix equations for each triangular
element by addition of terms at each nodal point in the mannerif used in the direct stiffaess, method of structural analysis.a Eq.
(22) for a quadrilateral element takes the form

'Ka KgaKnK 14 KI U1  C 11 G C12C1 0 CSS a

K 2 1 K 3  KAK.- U?. C 2 1 CZ 0 CZ4CZ3  az

1(31 KUa K33 K34 K3 U.3 + C31 0 C33 C34 C3 S A3I ~K 4 - A43 SK? 4 5 U-1 0 C4 3 C43 C" C45  fi

-~ f?

f4

6!fSe [5], Section 7.2 for a description of this assembly method.

16



Rewriting- this, there reduths

L%] L ~ C..L . .

where [K. .1 and [c% represunt he 4X 4 submatrices ofthe aom-
plete znatAces in (54; and [Ci, a ri[N axe- cohurm and -row ve-

dOrs. The subscripts, i,,j now representnodal points, instdact of
time- increments. Eq. ,(53) can then be written as two equations,

[Incu; +(K]- + L[C .]bi + [G.-Ii (54

and

[K5.liu. 55 Kus + [C5j1{fx.].+C 5 ~j.(

xj I .I-+0..

The interiot nodal point quantities u5, and ti -cangot be elilii-
nated fr6m (54) by use of (55) as it. stands. However, if thb specific
heat rpatrix C (5 x. 5) is approximated by lumping the heat capac'tis

at the four efternal nodal points, C becomes a diagonal matrixt with
-~ 'j- s CS = 0 and (54).can be written': i"

.[K u] + [K. ]US+ [C 1 .]. ( Q,
3 is

I andn [KLs11u +K 5 5 ui'= 'f , (57)

in which [C..] is now the (4 X 4) submatrix of the diagonal,.lumped
specific hea matrix.

Solving (57) for us and substituting into (56), there resulto

[K].[u.] + [Ki]K " 1 {f5 - [Ks] u.]} + [Cijl][- ] 58)

or

{[K j - [Kis] Kw [sj]} [u I + [ji [hI =[ff- [K];,X (59)

.. .Ms form of the spec .ilc, heat matrix is also positive
A defiuite.

17
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"* Section VI.- COM PUTER PROGRAMS,

1. Description

The organization and coding of the present computer pra-
grams rely heavily on coincepts developed previously in finite
element structural analysis programs, particularly those describea

'in , 5]. Two programs are described below. AMG042 is the heat-
conduction programand AMG042P is an ass o!iate4.plot program
which may be used to aid- in reducing 'the output data -tographi.al

form.

Program AMG042, Which has been Written to effect the soiu-
tion of the matrix equations formulated in, Section V, is someWhat
more restricted than that development. Although the steps necessary
to generalize the program are obvious, theseare not necessarily
trivial. Presently the directions canisotrOpy of conductivity of each
element must all lie in the same Cartesian frame. Likewise there
is no provision for internal heat generation. However the material
properties may vary from element to element.

The development has, in general, been applicabie to bodies
"-' of fairly arbitrary shape. However, the necessity of employing a for-

mal solution method consistent wCh minimum effort in data input121 [ has resulted in some restraints. in the computer program,~ The net.-
work of quadrilaterals needed for solution was regularized with a
two-dimensional nodal-point identification array.. which then pro-

• vided a systematic framework for solution of the matrix equation.
This grid method was first developed for stress- analysis purposes',
and, although it is described in some detail in Section VI. 2, a more

I comprehensive treatment is given in [ 6]'. Aside from the require-
ments on grid network, some further restrictions are imposed by
the boundary condition subroutines which are described below.

I !: In. setting up the program logic, it became obvious that in-
cluding c ompletely general time-dependent boundary-condition op-
tions for arbitrary geometry would be extremely difficult. There-
fore, it was decided to handle the boundary conditions by separate
short routines to be prepared for each class of problems. The
boundary condition subroutines included in this report are written
to apply only to a rectangular nodal-point identification array. This
does not imply that the program in its present form is limited to a
rectangular region.

I,19

- . - ' - -Il - l -- [ .. ... . t I - -. . . . - - ---.- I I-. I i



I The sequence of operations of AMG042 is given by the flow
4- chart shown in Fig. 3. The coefficients of the complete matrix

equation are assembled from the coefficients of each quadrilateral
in a manner analogous to the direct stiffness method oflstru.ctural

" analysis. See [ 6],, p. 8, for a more detailed description of the
assembly process. Modifications for boundary conditions are made
in a similar manner.

2. Mesh Layout and Generation.

The requirement of closely approximating the contours of
complex regions, together with the desirability of a fine mesh size3 and itii attendant high accuracy, makes the use of a, large number of
nodal points desirable. The programn allows the aser to employ a
maximum of 496. quadrilateral nodal points. Obviously the layout and
specification for the program of the locations of such a number of
points is a tedious and time-consuming job -in which the probability
of human error is high. To minimize this effort and to preserve as,

1° much general utility as possible, a scheme for the internal (to the,
program) generation of much of the required data has been incorpo-
rated in the program. This same scheme has been used previously
in stress analysis, programs [ 6] .. Certain restrictions are imposed
on the layout of the.nodal points, but the -reduction in the effort re-
quired to effect the solution of a given problem adequately compen-I sates for thes, restrictions.

To lay out a nodal-point system for the body to be analyzed,
the region of the x-y plane constituting the body is covered (insofar

k" as any curved boundaries will permit) with an array of convex quadri-
laterals.0 Each vertex of a quadrilateral is called a nodal point or
node. Each nodal point is identified by an ordered pair of positiveSintegers, denoted by (, J). The nodes may thus be thought of as a

Isubset of the lattice points in the I-J plane. 'Nodes wtth common
second member J are said to lie in the same row, although this
implies nothing about their location in the x-y plane.

The scheme for mesh generation may be thought of as
representing a one-to-one mapping from the 1-3 plane into the x-y

F °plane. Fig. 4 illustrates this mapping. The points in the I-J plane

1 R e use of a quadrilateral element with a vertex angle
greater than 180* may result in erroneous calculktions for that

Ielement. A vertex angle of 1800, which is acceptable, gives the
quadrilateral the appearance of a triangle.
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are shown in Fig. 4a and their image points in the X.y pjane oreshown-
in Fig. 4b. It can be seen that the i.nverse images of the qa4drilat-,

erals in the x-y plane are Squares in the I-J plane, Each quadilattra!
(or continuum element)is identified by the 3,J coordinates of the node
whose inverse image lies at the lower left-hand vertex of-the inverse
image of tru quadilateral. Thus the nodes which ae vertices of
element (T, J) are the nodes (,") (I+I,J), (I,J-+l), and 'I+1, $+-1).lv It may be noted that not every boundary node need have an element
associated with it. In Fig. 4, circles represent nodes associated
with elements and squares- those which are not assobiated with any

! p element. The unfilled, circles represent nodes whose coordinates
Were generated by the program.

I An important restriction, which is due tothe bookkeeping
#~ J procedure used in the program toassembie the blemint stiffnes into
I the stiffness for the entire structure, may be phrased thus: if, in
, ~.any given row, IMIN and IMAX are respectively the least and greatest

value of I for which there is a node, then there must be a node in,
that row for each I such that IMIN _5 1 IMAX. For the present
program IMAX S 16 and JMAX 5 31. The limiting values of IMAmc

' and JMAX may be va..ied by changing the appropriate diimensions in
the COMMON statements so as to stay within the capacity of the corn-

r puter.. All nodal points that define the boundary must have their
coordinates specifiedand any other nodal points may either be
specified or calculated by the internal generation scheme.

The mesh generation is accomplished in the following manor.
A data card containing the values of I, J and the x, y coordinates is
input to the computer for each node whose coordinates are to be
specified. Such nodes must include at least all nodes on the bound-
ary of the region of interest, as well as on any interfaces between
regions of different materials. As many other nodes as the uer

[0 may desire may have their coordinates specified, but no others are
necesetary. As the data cards are read, a list is cor-piled of the
minimum and maximum values of I for each 3, and each node for
which coordinates haire been input is identified and the coordinates

*/ are stored.

An option is included to permit the input of straight-line
!. segments, corresponding to, I = constant or J = constant, which

are to be divided into equal increments'. The I, J corresponding to
-the smallest I (or smallest ,J) is input in the first position on the

card, with the I, J corresponding to the largest I (or largest J) being
input in the second position. Corresponding x, y coordinates are in-
put into the first and second coordinate positions. The line segmeut

23
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ia intexia~ly divides and assigned cqually spaced noda pointo. No"e
that TYPE, BC -UGO,~ andIJCOPr. (dotribedIn Appondi:Al.c)
-must ,be the same, for alnod4al pointso If oly a vInle code is to be
input, the secdordl and J positionb and the second coovcInate p0ition.
ate left blank. A polar-coordinate input option is also provided.

After all the desired nodal point cards have 'been input, the

coordinates for all unspecifiednodes which have I inthe interval
Iv N < I < IMAX for -the proper J, are- calculated for all J. The
calculation, or mapping, of the coordinates ip ac hieyed by -osling
twice the iinite.difference' Analogue of Laplace'. s equation on the '
lattice points in the ,14 plane. First, the x coordinates of the, bound-
ary points are used as boundary values of the unknown harmOnic
function, ahd the functional values obtained on the interior points are
taken-as the-x-coordinates of the corresponding inage points inthe
x-y plane A similar procedure 'yields the y.coordinates of'the un-
specified nodes.. It. should;be noted that, in general, this method tends
to yield nodal points with uniform spacing. Ifthis is not deemed
desirable, some nodal points interior to the regioni may have their
coordinates specified to control the distribution of the remaining
points,

24
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I Section VlI., ILLUSTRATIVE ,PR(tBLEMS

Several problems to lustra'te the utility and accuracy of
the program have been solved and,' when possible, corapared with
formal solutions. Since these are of the form of illustrationa, theb. 1problems are posed in dimensionless form wherein any consistent
set of units maybe inferred. Unless otherwise stated, K, p, and

c were taken to be unity.

1. Specified Boundary Tempratures

To demonstrate the accuracy of *the solution technique, thq "
problem of an isotropic, homogeneous ZX 2 square initiaily at a uni-
form temperature of 1 with boundaries held at 0 was solved. For
a one-quarter symmetric section of t e square, a 14X, 14 -grid was
used. The resulting temperature distributions alOng three constant
coordinate lines are shown in Fig. 5 and compared with theoretical
results from Carslaw and Jaeger [7]. Agreement is quitq good.

2. C onvective-B oundary Condition

The problem of a hollow, circular cylinder with convective
boundary conditions was run. Because of the assumed symmetry
it was only necessary to run a sector-shape geometry with adiabatic
boundary conditions on the straight sides and convective conditions
on the inner and outer boundaries. A 45* sector was- used, with aninner radius of 0. 25 and outer radius of 1. The convective boundary
conditions h (T-Td used were 35.0 on the inner b, mdary and 70.0

on the outer boundary. Initial temperatuzre was zero, and the enviro-
ment temperature was 1.

Fig. 6 illustrates the comparison with the results from a
finite-difference program [a]. As can be.seen, agreement is
essentially perfect. For this particular run, the time incrementI for the finite element solution was taken as 0.001 while the time

P increment was 0.000125 for the finite difference solution. When
the time increment for the finite element solution was taken 10 times
larger, 0.01, the oscillations shown in Fig. 7 occurred. Note that
the boundary temperature, as indicated from results with smaller
time increments, should have reached over 90% of its total tempera-

- ture change during the first time increment of 0. 01. Despite this
crudeness and the resulting oscillations near the boundary, the
solution near the center of the slab is fairly accurate for all times

and the solution near the boundaries becomes more accurate for
increasing time as the oscillation dies away. This is illustrated

25
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to
in Fig. 8 in which the temperattre at r S. S, r = 0 60, and
r = 1. 0 ae plotted vexsus, time.

3. FJ.uBounda Condition-

The behavior of constant-ffux bound&ry cond#iions were in.
vestigated for a rectangular slab with.a constant flu ddulpb tatWo
opposite faces while the other two faces were adiabatic. The slab
was initially at a temperature of zero. The results are illustrated
in Fig. 9. Only one-half of the slab is illustrated. The center is
on the left Of the figure. The lines are fromi the series; solation of

A Carsl~w and Jaeger [7).

4. Nonhomogeneous Properties'

An axdsymmetrir- cylinder with conductivity and -specific
heat which vary inversely with. radius was studied. Ioitial tempera-
ture of the cylinder was given &s zer4.and the internal, and-external
boundary were subjected to a temperature of l at time t = 0. The
results are compared in Fig. L0 with the formal solution.

If K = and pc = bZL , then, for an axisyrnmetric cylinder

the heat-conduction equation becomes

1 d (K du~ du
r dt

which reduces to

K0 dzu du.- K O - =  uo0 t

drz

which is the equation for a homogeneous slab. This solution was
obtained from [ 7, p. 101] to plot in Fig. 10. KO was taken to be
unity and the product p0co was taken td be 5. Agreement with the
formal solution is very good despite the crude mesh of nine radial
increments.

) 5. Aniisotro ic Conductivity

The quadrilateral shown in Fig. 11, with the conductivity in
the x-direction equal to 4 times the conductivity in the y-direction,
was used to check the anisotropic featuros of the program. This
can be checked with an isotropic body by the following analogy.
Let k , k y x, and y represent the conductivity, and coordinates

29
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of the qeudriaten1 7k whpr U ite, "Y
positive Zaa ~h

k + -

can be rewritien an

Ln q + PC O

If we deftae a uw coordnate -lx, the equation mray be written as

Thus, the solution of an isotropic problem in X^, y coordinates with
isotropic conductivity k. gives a temperature field sirmlar to an
anisotropic problem with k = nzk and x = nx.x y i

For the present problem, the quadrilateral is, in fact, a
square with the x coordinate doubled, and with kx = 4 ky. For initial
conditions of T = 0 with the boundaries held atT = 1, the transient-
cu.uduction problem was worked for both.the isotropic square and the
anisotropic quadrilateral. The temperature calculated in the two
problems agreed to five significant figures. Temperature contours
for the quadrilateral are shown in Fig. 11 for time t = 0.05, kx = 4,
kT = 1. 0, pc = 0. 16. A mesh of 16 x31 was used.

6. C omplex Geometry

As an example of the utility of the program, an example is
given in Figs. 12 through 15 which demonstrates its use on a one-
sixth symmetric section of a cylinder with a star-shaped perfora-
tion subjected to severe convective cooling conditions. The geometry
with the internally generated finite element grid is shown in Fig.
12. The initial temperature of the body was Ti and the environment
temperature T0 . Results are presented in nensionless quantities.
Isotherms are demonstrated in Fig. 13, and in Figs. 14 and 15,
temperature profiles are compared with those of Willoughby [ 9].
Wllnoughby' s solution is shown in solid linos. Willoughby used a
combination of conformal mapping and fiuite differences to obtain
his solution.
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VT =TEMPERATURE t = TkiME*
Ti =INITIAL R w OUTER RADIUS
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APPENDIX

PROGRAM OPERATING INSTRUCTIONS

*1. Finite Element Heat C onduction Program AMG042

a. Input Data

Ifrtial temperatures mest be specified at every
point by an appropriateiy coded subroutini., The present subroutine

is only usable for a uniform initial temperature in the body.

od t Constant temperature, constant flux, convection,
or adiabatic conditions miay be specifted at any of the boundary
points. Subroutines BCTEMP (constant temperature), BCCOND
(constant flux), BCCONV (convection) for applying a boundary condi-
tion on any of four sides -1 a rectangular nodal point array are lated
in this report. The adiabatic condition is imposed by the absence
of other boundary conditions.

In the present program, as many as twenty sets of

material properties may be specified and assigned to arbitrary
elements.

An element is identified by the smallestl and smallest
J associated with the nodal points which are its vertices and is said
to be associated with the node which is also identified by this I and J.
The kind of element associated with a nodal point is specified by a
three-digit symboilc wo-,rd TYPE (see Table 1). The last two digits
specify the set of thermal properties for the Glenent. The first

digit indicates whether or not the coordinates of the nodal point are
specified and iA an element is associated with that nodal point.

Two additional codes are used for each nodal point
to & pertinent information -elating to each element. BCCODE
(see .-. ,.e II) branches the program to the correct boundary-
conditiov aubroutine. IJCODE (sed Table 1I) indicates the nodal.
point line oagfrnent to whicki the boundary condition applies. Only
one segment pey nodal poi -nay b- specified. The words TYPE,
BCCODE, and IJCODE are tombined interzally into a single word,
CODE, to conserve storagt locations. cOT2 is output, for checking
purposes, with the coordinates of that node. The first three digits
of CODE are TYPE, the fourth digit is BCCODL and the fifth digit is
13 ODE.

41



Table I Value and Meaning of Symbolic W'ord TYPE

Value MeanI

XO1, xz ... ,X2O Identifies the particular set of nmatoIrl
properties to be associated with the elo-
ment. Type XOO is equivalent to XO1,

O= Coordinates of nodal points are not spet-
fied.

1XX Coordinates of nodal points are specified.

2XX No element is associated with the co"4
responding nodal point.

Table II Value and Meaning of Symbolic Word BCCODE

value Meaning

0 Adiabatic (or no boundary condition
specified)

1 Temperature specified

2 Flux specified

3 Convection specified

Table III Value and Meaning of Symbolic Word IJC ODE

Value Meaning

1 Boundary condition is applied on segment

2 (xa,J) ( + ,3)"

0 .
(I-,__ __I,__ ___ ( 1+ 1-i
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- The input data dck is show.n, in Fig. 16, and ho

card format is given below.

Ca-Vd I TITLE (2A6 )

Col 1;-72 Any apbnumeric statement

' [Card 2 Initial- T efpe rature Card (FIO. 5)

C ol 1-10 Initial Temperature

Card 3 Bounmary-Temperature Card ,(4F 0. 5)

c ol 1-10 Temperature for Side I = IMIN Input for speci-
fled temperature

11-20 Temperature for Side I = IMAX

21-30 Temperature for Side J = 1 tion. Zero

31-40 Temperature iot Side J = J otherwise°

Card 4 Boundary-Flux Card (4F0. 5)

Col 1-10 Flux for Side I = IMiN Input for spei-

11-Z0 Flux for Side I = IMAX fled boundary
( flux.: Zero

21-30 Flux for Side J = I otherwise.

31-40 Flux for Side J = JMAX

Card 5 Boundary-Convection Card (8FI0. 5)

Col 1-10 Film coefficient Side I=IIN Input for
11-20 | tvec

11-20 Environment temperatureJ

21-30 Film coefficient boundary
Side I=IMAX condition.

31-40 Environment temperature Zero

41-50 Film coefficient Sid 3=1 other-

51-60 Environment temperaturc) wise,

61-70 Film coefficient ) Sid J

k 71-80 Environment temperature)
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CLA%, 20

EtoD CA rD

rCODAL-POINT CARDS

SLAWK CARD

FLEt2NT-P7"ORTY CAMDS

-OUNDY-CONVECTION CARD

BOUNDARY-FLUX CARD

BOUWDARY-TEMPERATURE CARD

INITIAL- TEM2PERATURE CARD

TITLE CARD

FIG. 16. DATA DECK FOR AMG042
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Card& 6 EMoment Prope ty Car& (SX, IS, 3F 10. 5)

Col 1-5 B znk

0 to O. 0 is interpred I1ter -as .,

I 1-Z0 C ondLctivity in x direction,

Z 1-30 Conductivity in y direction,

31-40 Product of density and specific heat.

Card 7 Blank Card

Cards 8 Nodal-Point Cards (AS, 12, 13, 12, 13, 4FI.0. 5, 315)
Col 1,5 Word - POLAR for polar coordinates, blank

otherwise.

6-7 Il
8-10 J1 3lowest I (or J) for line segment.

1l 1largest I (or J) for line segment,

13-15 J2 Zero if only 4 point is input.

" 16-25 Xl (or R1) coordinates for lowest I (or 3).

26-33 Yl (or 01)

36-4 5 X2 (or R2) coordinates for largest I (or J).

46-55 YZ (or 0)

56 60 TYPE (see Table I).

61-65 BCCODE (see Table II).

65-70 IICODE (see Table III).

Card 9 End Card (15)

Col 1-3 END

Cards 10 Time Cards (FIO.3, F5.0, F5.0)

Col 1-10 TMAX.

10 45 Number of time steps from T to TMA2X.

i5-ZO TOUT (Prins temperatures of T a TOUT).

Card 11 Blank Card.
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b. t

Program, AGCZ outputs* in printed form?u Cor
dinatQa of each nodal point, the wordCODE. for each. no&1 polat,
the value of the boundary con.-tion and nodal point$ for each typo of
boundary condition, elenxent property data, and the t M. peatuxe at
each nodal point for each time requested. Tape Unit 6 prepares a -

tape which can be used as input to Program AMGO42P. ., -,

A.• 6
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S. -Plot Program AMG042P

To assist in interpreting the output from program AMG042,
a subsidiary program AMG042P was devised. This plot program
used a magnetic tape prepared ,'y AMG042, along with conventional
card data input, to perform the following functions.

(1) The array of nodal point temperatures is scanned,
4 and the coordinates of points on selected temperature contours

are determined by linear inverse interpolation. The coordinates
are printed and also put on tape for use with the plotter.

(2) The values of temperature along any specified coor-
dinate line are calculated and printed and also put on a tape for use
with the plotter.

The user has the option of obtaining all of the above information
in printed form and/or having these plotted by the Electronic
Associates, Inc., 3440 Dataplotter. The title is written at.the bottom
of the plot sheet (30-in. x 30-in.) beginning four letter heights from
the bottom. Allowance must be made for this in specifying the board
and data offsets on the plotter control card (Card 2). Each plot re-
quires a separate sheet.

There are some items on the plotter control card (Card 2),
such as board offset and data offset, which are difficult to explain
briefly. Those who use this plotter will find sufficient explanation
in the plotter litexature. Those who have another plotter avaiable
can adapt this program to their particular needs. If no plotter is
available, the tape-writing instructions should be removed from the
program and the printed output can be used for manual plotting.
Only IPRINT need be specified on Card 2 if a plotter is unavailable.

a. Input Data

The following input data must be included along with
the tape created by logical unit 6 in the temperature-calculation
program AMG042. AMG04ZP uses logical unit 11 to read the input
tape and writes an output tape on logical unit 12.

The input data deck setup is shown in Fig. 17 and
the card format is given below.
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Card I TITLE (lZA6)

Col 11-72 Any alphameric statement

Card 2 Plotter Control Card (4F5.2, 3FI0.5, 15)

Col 1.5 SCLX Size factor in x direction.

6- 10 SCLY Size factor in y direction.

e 11.15 BOFFX Board offset in x direction.

16.20 BOFFY Board offset in y direction.

ol-30 DOFFX Data offset in x direction.

31-40 DOFFY Data offset in y direction.

41.50 SL Letter height in inches (0 if no letter.
ing is desired).

4 51.55 IPRNT Print control. 0 = print. 1 = no
print.

Card 3 Time Control Card (IA5, 9E8. 1)

Col 1.5 WI "TIME="

6. 13 TIME(l) Time values. Only TIME(1) may be
zero. A large positive value of

1421 TIME(2) time will skip to the next problem.IA negative value of TIME(l) will end
70-77 TIME(9) the program and rewind tapes.

Card 4 Temperature Contour and Coordinate Card (IAS, 9E8. 1)

Col 1.5 WZ

6.13 TEMP(1) or GOORDINATE(1) TEMP=, X=, Y=,
R=, Z=, or T=.SCOORDINATE() (TEMP= for tem.-

perature contours.
70-77 TEMP(9) or COORDINATE(9) X=, Y=, R=, Z=, or0T= for temperature

on constant coor.
dinate.) Must have
a Card 5 if coordi.
nate is given.

,0

0

.0



Card 5 Coordinate Scale Card (21. 10. 5)
(Use this card only when W2 is X=, Y=, R=, Z=, or

o ! ,T=.)

So 1. 10 TNORM Normalizlng value for temperatures
(Height of temperature scale in inches) =

10 x (SIZE T) X (.a.. temp-)
0 . (TNORM)

COORDINATE SCALE CARD

E TEMPERATURE CONTOUR AND
COORDINATE CARD

TIME CONTROL CARD

PLOTTER CONTROL CARD

TITLE CARD

0

FIG. 17. DATA DECK FOR AMG04ZP
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