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FOREWORD

This paper deals with the determination of the equilibrium
concentration of multiphase-reacting chemical systems. This
type of problem is of paramount interest in many contemporary
technologies and in recent years has attracted the attentionof the
mathematical community. The reason this particular problem is
of interest is that it can be formulated as a mathematical non-
linear programming problem. In keeping with RAC’s research
interest in nonlinear programming, in particular the sequential
unconstrained minimization technique (SUMT), it is felt that it is
of great importance to illustrate the power of SUMT in obtaining
the solution of moderate-sized problems. Inasmuch as many
groups are concerned with developing special algorithms for solv-
ing the chemical equilibrium problem, the application of the gen-
eral SUMT to this problem is presented here.

It is felt that it is necessary todocument the practical appli-
cation of SUMT as well as the theoretical developments, and this
problam is of a size that again demonstrates the power of the
technique.

Nicholes M. Smith
Head, Advanced Research Department
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The Chemical Equilibrium Problem:

an Application of SUMT




ABSTRACT

The equilibrium composition of homogeneous chemical
reactions is a very important problem in studies of complex
chemical systems that arise in the study of certain physio-
logical systems, rocket-propulsion systems, reentry prob-
lems, etc. The aim of this report is to show that the sequen-
tial unconstrained minimization technique (SUMT) as exploited
by Fiacco and McCormick is capable of solving this problem
and indeed offers distinct advantages over the heretofore best
available computational techniques such as those presented
by White et al! and DeHaven and Deland.? The power of this
method for solving moderate-sized problems is illustrated
by the choice of a 45-variable problem with 16 linear equality
constraints.
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1. INTRODUCTION

The problem of determining the equilibrium composition of homogeneous
chemical reactions can be shown, in a great number of cases, to be equivalent
to finding that composition vector that results in minimizing the Gibbs-Helm-
holtz free energy of a chemical system and simultaneously satisfying the re-
quirements of mass balance. This observat.on replaces a chemical problem
with a mathematical problem: find a vector that minimizes a certain function
subject to the satisfaction of a system of linear equations that are the formal
expression of the mass-balance law.

The ..atent of this report is to show that SUMT as exploited by Fiacco and
McCormick®™® is a method that offers distinct advantages over preexisting
methods that were developed for this particular problem.’ Until recently,®
all these methods depended for their solution on the availability of positive
estimates of the solution. Advantage has also been taken of the special structure
of this problem to greatly enhance the rate of convergence of the minimization
technique utilized in SUMT.

2. THE SUMT ALGORITHM

A brief discussion of SUMT for nonlinrear programming is presentec in
this section. No pretense is made of being very detailed, and the reader is
referred to the basic works on the subject as given in Fiacco and McCormick.>®
Consider now the solution of the general nonlinear programming problem:

Minimize
fix)

subject to (A)



where x € E", i.e.,

The SUMT algorithm for the solution of this problem is as follows;
(a) Form the function
P(x,ry) = fx)+ 1y £ 1/g (1) + 1" 2 h} ()

(b) Find the unconstrained minimum of the P function in the region
{x|gi(x)>0,i=1,...,m} for each fixed r,, where {ry} is a decreasing se-
quence of positive numbers such that li':n n, = 0.

It will follow that, under certain reasonable restrictions, the sequence of
values of the P function {P{x;r, )]}, respectively minimized by {x(r,)} over the
strictly monotone sequence {r, ], converges to the optimum value of f.

At this point it would not be amiss to point out that the method SUMT
uses to find the unconstrained minimum of P(x;r) is a modified Newton’s
method. That is to say, starting with an initial estimate, for fixed r, one de-

termines the next move as follows:
Yo o 91VEp ) VPG ).

The parameter 6 is a scale parameter whose determination may vary lending
rise to different types of algorithms for minimization, This point is not dis-
cussed in this paper. The essential thing to ohserve here is the difficulty that
could arise in the determination of the inverse of the matrix v?P(x;r). Note
ulso that if the function f is convex and the functions g; are concave and if the
hi’s are linear then the resultant P function is convex, and hence when the
feasible region has a nonempty interior the problem before us is to find the
unconstrained minimum of a convex function.

If it should turn out that the matrix v>P(x;r) can be put in the form A +
uovT, where A is an n x n matrix, ¥ is an n x p matrix, ¢ is a p X p matrix,
and vTis a p xn matrix, then the following formula may be used for computing

[ A+uovT] ™

(A+uovTIl = A-Vo A lyfom T 4 pT A1) 1 T AL (1)



If the matrices A and o are easily invertible then it is obvious that this method
(“rank annihilation”) is extremely powerful.

It is also the intent of this paper to show that by using this method of
matrix inversion the SUMT can be brought to bear to solve some medium-sized
mathematical programming problems, collectively called the “chemical equi-
librium problem,” that arise in various scientific and technological areas. The
main advantages of this method of matrix inversion when applicable is that it
greatly enhances the rate of convergence of the SUMT algorithm.

3. THE CHEMICAL EQUILIBRIUM PROBLEM

The chemical equilibrium problem is the determination of the composition
of the chemical species that minimizes the (Gibbs) free energy of a chemical
system and must also satisfy the mass conservation law in the form of the

mass balance equations. Mathematically speaking, the problem is as follows:

Minimize
F(x),
where
E R M }
F(x) = 2 {le Xjp [c,.k +n (x“l/‘él Ilk)]
subject to
Hy = bandx >0
where

b= (by,...0)7, x= ("ll'x“"”':"p'P)T'

In this description a chemical system (mixture) is considered to be a
system composed of a number of different molecules of various species exist-
ing in p various phases, e.g., physical compartments, conceptual compartments,
or a gas, liquid, or solid. It is to be emphasized that the same molecule in a
different phase is to be considered a different molecular species. Assume that
all the different species occurring in the system are composed of some finite
set of basic ingredients, which may be molecules, atoms (both charged and
uncharged), ax;d possibly pure charge. The only requirement is that all the

reaction products be combinations of these basic ingredients, or this basic




“alphabet.” The determination of what is a possible reaction product is of
course left in the hands of the chemist who might be applying this method.
Presumably he can determine a priori what the possible nontrace amounts of
the reaction products will be. For instance, ir there are b]- atomic weights of
basic unit j orisinally in the system and M different units in the basic alphabet,
then at the end of reaction, i.e., at equilibrium, the total amount of basic unit j
will be b,-. The linear system Hrx = b just represents the fact that mass is
conserved in the system. The matrix H is a matrix whose (i,j )th entry gives
the number of basic “letter” | in molecular species i. In the mathematical
formulation it is assumed that there are q elements (letters) in the basic
alphabet so that the matrix H is ¢ x N and of course the “state” vector (“com-
position” vector) is 1 x N, where there are n, chemical species in the pth
phase and N =n; +n, ...+ n,. The constants ¢jx occurring in the expression
for F(x) are called “free-energy constants” and are obtainable from tables.
The (i,j ,th component of the state vector, namely, x;; , represents the number
of moles of species j in compartment (phase) i. For more detail on the phys-
ical problem, applications, and extensions see Refs 1, 2, and 7 to 12.

Now observe the special form of the matrix of second partial derivatives

of the function F(x):

g
q ; T
sz(X) = diag(l XGB) + igl ll. (—l /YE] Iei) ll o

where ais 1,2,. . .,ng, Bis1,...,p, and |; is an N x 1 vector with I’s in the
positions associated with (x, x3;, . . .%;;) a8 it appears in the vector x and

zeros elsewhere. The matrix of second partial derivatives of P is thus given by

Vip(x;r) = diag(l/xcﬁ+21/xgﬁ)+ ,f hy(2r/(hTx )3 WY

+§lg<1/zx)[ @

where kT is the ita row of H, and of course a= 1,2, .. .,ng;8=1, .. .,p.
If A=clliag(1/xaﬂ+21/xgﬁ), wp=hi, v =l,di= 21/(th b )°, and o) =
n
(— 1/ z "ie> , Eq 2 can be put in the form
i=1

9 . P
VZP(x;r) = A+ izl ul.a']ul.T + 2§| veagv[.

©)



Since Ais a diagonal matrix and {c}}, {0} ) are scalars, it may be seen im-
mediately that Eq 3 is of the desired form, and to invert v°P(x;r), merely apply
Eq 1l p +q times. This is not prohibitive bccause of the simple form of the

matrices involved.
The method used in DeHaven and Deland® as presented by White et al and

Clasen'’’ is mentioned briefly. This method is in essence to seek an approx-
imate positive solution y = (yi1,ya1, . . ,ynpp)T to the system Hx = b. Then the
free-energy function F is expanded in a Taylor series about y. This can be
done because y is positive. All but the second-order terms are discarded,
leaving a quadratic approximation Q(x} to F(x). This quadratic Q(x) is then
minimized using a simple gradient descent method to give a “better” approx-
imation to the minimum of F. The cycle is then repeated on Q using this new
value for the approximate minimum. It is to be noted that the better the initial
estimate the more effective the algorithm, but convergence cannot be guaran-
teed. However, by applying SUMT with the knowledge that the problem is a

convex problem, convergence is guaranteed.

4. EXAMPLE

As a numerical example of moderate size consider the Lung Level Res-
piration Model presented by DeHaven and Deland.? The data are repeated in
Fig. 1 with the exception that, as indicated in Table 1, an initial vector x =
O, . ..,0) is used. In this problem, p=17, ¢= 16, and N = 45. Note that in
DeHaven and Deland 11 of the 56 variabies are kept at zero and hence do not
enter into the computations.

The solution, shown in Table 1, was obtained on an IBM 7044, 32-K,
IBSYS version 9.9 computer in 3.58 min. This is to be compared with the
solution given by DeHaven and Deland, where the initial vector is somewhat
“close” to the optimal vector and where the method presented in White et al’
was utilized. No computing times were given by DeHaven and Deland, and
hence a time comparison of the methods cannot be made. It is to be noted,
also, that there are differences in the solution vectors for the small com-

ponents. The reason for this will be invertigated in the future. Note also that



TABLE 1
Comparison of DeHaven and Deland Solution with SUMT Solution

DeHaven and Deland? SUMT
Initial point Solution Initial point Solution
6.0000000E-01 6.4400600E-01 0.00E-00 6.4399658E-01
2.0000000E-01 2.5895000E-01 0.00E-00 2.5896960E-01
3.0000000E-01 3.7048000E£-00 0.00E-00 3.7048090E-00
3.0000000E.-01 2.9966000F.-01 0.00E-00 2.9966666E-01
6.7500000E-05 6.7477199E-05 0.00E-00 5.6165829E-05
7.0000000E-04 6.9966500F.-04 0.00E-00 6.8800160E-04
2.1700000E-04 2.7131800E-04 0.00E-00 2.0617855E-04
2.1000000F-08 5.3669300E-07 0.00E-00 1.1005665E-06
3.0500000E-07 8.9100400E-07 0.00E-00 2.4329989E-06
5.8500G00E-02 5.7593800E-02 0.00E-00 5.7145151E-02
8.0500000E-02 7.9857600E-02 0.00E-00 7.9380462E-02
4.0000000E-03 3.3371600E-03 0.00E-00 3.2310024E-03
2.8950000E-01 2.8821100E-01 0.00E-00 2.8387379E-01
1.3500000E-02 1.4007900E-02 0.00E-00 1.3878336E-02
9.9200000E-07 1.4247100E-06 0.00E-00 3.2831591E-06
1.8500000E-05 1.9695800E-05 0.00E-00 1.7377889E-05
8.8000000E-03 1.1553100E-02 0.00E-00 1.1551705E-02
6.8700000K-05 6.8360400E-05 0.00E-00 5.9559742E-05
4.3400000E-04 4.2427300E-04 0.00E-00 4.4194828E-04
2.2200000F.-04 2.2238900E-04 0.00E-00 2.2045284E-04
2.0900000E-08 5.5183199E-07 0.00E-00 1.0947029E-06
1.1800000E-07 6.8250600E.-07 0.00E-00 1.8516727E-06
2.2900000E.-02 2.2458600E-02 0.00E-00 2.2906192E-02
4.6000000E-03 8.2744299EF.-03 0.00E-00 8.7509019E-03
5.0000000k-02 4.4955000E-02 0.00E-00 4.5060355E-02
1.7950000E-01 1.7888700E-01 0.00E-00 1.8322359E-01
6.1300000E-03 6.2844200E-03 0.00E-00 6.3957550E-03
6.1700000E-07 1.0429000E.-06 0.00E-00 2.8552963E-06
5.2800000k-06 5.6044400E-06 0.00E-00 7.8058135E.-06
1.8700000F-02 2.1130006E-02 0.00E-00 2.1129053E.-02
1.2000000E-08 7.9731300E-06 0.00E-00 7.4288879E-06
1.0000000E.-07 3.3106700E-05 0.00E-00 3.0172473E-05
5.8000000k-06 5.5210300E-05 0.00E-00 5.0560606E.-05
6.4000000E-05 5.5219900E-05 0.00E-00 4.8710919E-05
2.2300000E-03 2.1269900E.-03 0.00E-00 2.1419671E-03
4.7000000E-05 1.5800400E-06 0.00E-00 2.3368505E-06
2.6000000F-03 1.9890400E-04 0.00E-00 1.8211882E-04
3.6000500F-03 9.6515400E-05 0.00E-00 8.5833585E-05
2.000)000E-03 2.8187800E-05 0.00E-00 2.3550387E-05
4.,5000000E-03 1 2435600K-03 0.00E-00 1.2505876E-03
2.5000000E-03 1.5461100E-03 0.00E-00 7.5730099E-03
1.0000000E-02 3.4066600E-04 0.00E-00 3.0376393E-04
1.0000000E-02 4.5441200E-05 0.00E-00 3.9017552E-05
7.7000000E-01 2.8689100E-02 0.00E-00 2.8793103E-02
1.0000000E-01 1.4953700E-03 0.00E-00 1.4986067E-03
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Fig. 1—Data for Lung Level Respiration Model?

A% refers to an unoxygenated 1/4 hemoglobin molecule.

B refers to on oxygenated 1/4 hemoglobin molecule.

C~ refers to an omphanion equivalent with vaspect to CO3.

D™ refers to an oxyheme omphanion equivalent with respect to CO2.
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the values of the free-energy function at those minima yield essentially the
same minimum. Neither solution satisfies the constraints exactly. The point
to be made is that SUMT requires no delicate analysis to obtain an initial
starting vector. Also note again that SUMT in conjunction with the rank
annihilation of matrix inversion is extremely efficient in solving moderate-

sized nonlinear programming problems.
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