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FOREWORD 

This paper deals with the determination of the equilibrium 
concentration of multiphase-reacting chemical systems. This 
type of problem is of paramount interest in many contemporary 
technologies and in recent years has attracted the attention of the 
mathematical community. The reason this particular problem is 
of interest is that it can be formulated as a mathematical non- 
linear programming problem. In keeping with RAC's research 
interest in nonlinear programming, in particular the sequential 
unconstrained minimization technique (SUMT), it is felt that it is 
of great importance to illustrate the power of SUMT in obtaining 
the solution of moderate-sized problems. Inasmuch as many 
groups are concerned with developing special algorithms for solv- 
ing the chemical equilibrium problem, the application of the gen- 
eral SUMT to this problem is presented here. 

It is felt that it is necessary to document the practical appli- 
cation of SUMT as well as the theoretical developments, and this 
problem in of a size that again demonstrates the power of the 
technique. 

Nicholos M. Smith 
Head, Advanced Research Department 
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ABSTRACT I 
The equilibrium composition of homogeneous chemical 

reactions is a very important problem in studies of complex 
chemical systems that arise In the study of certain physio- 
logical systemSj rocket-propulsion systems, reentry prob- 
lems, etc. The aim of this report is to show that the sequen- 
tial unconstrained minimization technique (SUMT) as exploited 
by Fiacco and McCormick is capable of solving this problem 
and indeed offers distinct advantages over the heretofore best 
available computational techniques such as those presented 
by White et al1 and DeHaven and Deland.2 The power of this 
method for solving moderate-sized problems is illustrated 
by the choice of a 45-variable problem with 16 linear equality 
constraints. 



1. INTRODUCTION 

The problem of determining the equilibrium composition of homogeneous 

chemical reactions can be shown, in a great number of cases, to be equivalent 

to finding that composition vector that results in minimizing the Gibbs-Helm- 

holtz free energy of a chemical system and simultaneously satisfying the re- 

quirements of mass balance.  This observation replaces a chemical problem 

with a mathematical problem:  find a vector that minimizes a certain function 

subject to the satisfaction of a system of linear equations that are the formal 

expression of the mass-balance law. 

The ..itent of this report is to show that SUMT as exploited by Fiacco and 

McCormick3'6 is a method that offers distinct advantages over preexisting 

methods that were developed for this particular problem.1'7 Until recently,8 

all these methods depended for their solution on the availability of positive 

estimates of the solution.  Advantage has also been taken of the special structure 

of this problem to greatly enhance the rate of convergence of the minimization 

technique utilized in SUMT. 

2. THE SUMT ALGORITHM 

A brief discussion of SUMT for nonlinear programming is presentee in 

this section. No pretense is made of being very detailed, and the reader is 

referred to the basic works on the subject as given in Fiacco and McCormick.3""' 

Consider now the solution of the general nonlinear programming problem: 

Minimize 
f(*) 

subject to (A) 
hj W = 0,       j =  1 p 

8((x)   > 0,       i =  1 BI, 



where x 6 E", i.e., 

The SÜMT algorithm for the solution of this problem is as follows: 

(a) Form the function 

P(x, rk) S  fix) + r,, 1 1/8| (i) + r^ S hf (x). 

(b) Find the unconstrained minimum of the P function in the region 

{x Ifli (*) > 0, i = 1, • • • >m} for each fixed rfc, where {rfe ] is a decreasing se- 

quence of positive numbers such that lim rj, = 0. 
k 

It will follow that, under certain reasonable restrictions, the sequence of 

values of the P function {P(x ;rfe )}, respectively minimized by [x (rh)} over the 

strictly monotone sequence {rfe), converges to the optimum value of f. 

At this point it would not be amiss to point out that the method SUMT 

uses to find the unconstrained minimum of P(i;r) is a modified Newton's 

method.   That is to say, starting with an initial estimate, for fixed r, one de- 

termines the next move as follows: 

The parameter 8 is a scale parameter whose determination may vary lending 

rise to different types of algorithms for minimization.  This point is not dis- 

cussed in this paper.   The essential thing to observe here is the difficulty that 

could arise in the determination of the inverse of the matrix v2P(i;r).  Note 

also that if the function f is convex and the functions 8i are concave and if the 

hi's are linear then the resultant P function is convex, and hence when the 

feasible region has a nonempty interior the problem before us is to find the 

unconstrained minimum of a convex function. 

If it should turn out that the matrix vzP(i;r) can be put in the form   A f 

«aw1, where A is an n x n matrix, u is an n x p matrix, CT is a p x p matrix, 

and vT is a p x n matrix, then the following formula may be used for computing 

CA+IKTI/
1
']
-1

. 

A"' - A-lu[a~l + i/rA-'u)-1 yTA-1. [A + uov Tl-1 
(1) 
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K the matrices A and cr are easily invertible then it is obvious that this method 

("rank annihilation") is extremely powerful. 

It is also the intent of this paper to show that by using this method of 

matrix inversion the SUMT can be brought to bear to solve some medium-sized 

mathematical programming problems, collectively called the "chemical equi- 

librium problem," that arise in various scientific and technological areas.  The 

main advantages of this method of matrix inversion when applicable is that it 

greatly enhances the rate of convergence of the SUMT algorithm. 

3.   THE CHEMICAL EQUILIBRIUM PROBLEM 

The chemical equilibrium problem is the determination of the composition 

of the chemical species that minimizes the (Gibbs) free energy of a chemical 

system and must also satisfy the mass conservation law in the form of the 

mass balance equations.  Mathematically speaking, the problem is as follows: 

Minimize 
F(x), 

where 

subject to 

where 

^ ^Mi^UMv.v*)]} 

Hx  =   b and x > 0 

» = fl>i •>/■     * = i*n'*2i -'n„,p)T- 

In this description a chemical system (mixture) is considered to be a 

system composed of a number of different molecules of various species exist- 

ing in p various phases, e.g., physical compartments, conceptual compartments, 

or a gas, liquid, or solid.  It is to be emphasized that the same molecule in a 

different phase is to be considered a different molecular species. Assume that 

all the different species occurring in the system are composed of some finite 

set of basic ingredients, which may be molecules, atoms (both charged and 

uncharged), aud possibly pure charge.   The only requirement is that all the 

reaction products be combinations of these basic ingredients, or this basic 
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"alphabet."  The determination of what is a possible reaction product is of 

course left in the hands of the chemist who might be applying this method. 

Presumably he can determine a priori what the possible nontrace amounts of 

the reaction products will be.   For instance, ir" there are b; atomic weights of 

basic unit j originally in the system and M different units in the basic alphabet, 

then at the end of reaction, i.e., at equilibrium, the total amount of basic unit j 

will be bj.   The linear system Hi = b just represents the fact that mass is 

conserved in the system.   The matrix H is a matrix whose (i ,j )th entry gives 

the number of basic "letter" j in molecular species i.  In the mathematical 

formulation it is assumed that there are q elements (letters) in the basic 

alphabet so that the matrix H is q x N and of course the "state' vector ("com- 

position" vector) is 1 x N, where there are np chemical species in the pth 

phase and N = rii + n. + iir.  The constants cik occurring in the expression l)k 

for F(i) are called "free-energy constants" and are obtainable from tables. 

The (»,i \M\ component of the state vector, namely, Xj, , represents the number 

of moles of species j in compartment (phase) i.   For more detail on the phys- 

ical problem, applications, and extensions see Refs 1, 2, and 7 to 12. 

Now observe the special form of the matrix of second partial derivatives 

of the function F(i): 

where a is 1,2,. . . ,(i^, ß is 1, . . . ,p, and Ij is an N x 1 vector with I's in the 

positions associated with (iu, i2j, • • -^nji) as it appears in the vector x and 

zeros elsewhere.   The matrix of second partial derivatives of P is thus given by 

V2P(x;r) =  diag(l/icj3 + 2r/x^)+ji  hi[2r/(h1
Tx-bi)

3lhT 

+el1
,^(-1/

i!I^),^ (2) 

where hTis the ith row of H, and of course a = 1,2, . . . ,^0 = 1, . . . ,p. 

If A = diag(l/iaß + 2r/x* ), u, = h,, i* = ^ , CT{ = 2r/(h?'x-b( )3, and a£
2 = 

(- 1/ E ijJ , Eq 2 can be put in the form 

V2P(i;r) = A+   i uic
i,iJ+   1 VfJ0vJ. 

i = l   '' '     e=i   r2 f 
(3) 



Since A is a diagonal matrix and {CT'J), {CTJ ] are scalars, it may be seen im- 

mediately that Eq 3 is of the desired form, and to invert v2P(i;r), merely apply 

Eq 1 p + q times.   This is not prohibitive because of the simple form of the 

matrices involved. 
The method used in DeHaven and Deland2 as presented by White et al and 

Clasen1'7 is mentioned briefly.   This method is in essence to seek an approx- 

imate positive solution y = (yn,y8i, . .   ,yM J
7 to the system Hi = b.   Then the 

free-energy function F is expanded in a Taylor series about y.   This can be 

done because y is positive.  All but the second-order terms are discarded, 

leaving a quadratic approximation Q(x) to F(i).   This quadratic  Q(x) is then 

minimized using a simple gradient descent method to give a "better" approx- 

imation to the minimum of F.   The cycle is then repeated on Q using this new 

value for the approximate minimum.  It is to be noted that the better the initial 

estimate the more effective the algorithm, taut convergence cannot tae guaran- 

teed.   However, by applying SUMT with the knowledge that the problem is a 

convex problem, convergence is guaranteed. 

4.   EXAMPLE 

As a numerical example of moderate size consider the Lung Level Res- 

piration Model presented by DeHaven and Deland.2  The data are repeated in 

Fig. 1 with the exception that, as indicated in Table 1, an initial vector i = 

(0, . . , ,0) is used.   In this problem, p = 7, (} = 16, and N = 45.   Note that in 

DeHaven and Deland 11 of the 56 variables are kept at zero and hence do not 

enter into the computations. 

The solution, shown in Table 1, was obtained on an IBM 7044, 32-K, 

IBSYS version 9.9 computer in 3.58 min.   This is to be compared with the 

solution given by DeHaven and Deland, where the initial vector is somewhat 

"close" to the optimal vector and where the method presented in White et al1 

was utilized.   No computing times were given by DeHaven and Deland, and 

hence a time comparison of the methods cannot be made.  It is to be noted, 

also, that there are differences in the solution vectors for the small com- 

ponents.   The reason for this will be invertigated in the future.  Note also that 



TABLE 1 

Comparison of DeHaven and Deland Solution with SUMT Solution 

DeHaven and Deland SUMT 

Initial  point Solution Initial point Solution 

6.0000000E-01 
2.0000000E-01 
3.0000000E-01 
3.0000000F,-01 
6.7500OO0E-05 
7.0000000E-04 
2.1700OO0E-04 
2.1000000E-08 
3.050OOO0E-O7 
S.8500000E-02 
8.O50OOOOE-O2 
4.0000OO0E-O3 
2.8950000E-01 
1.350OO00E-O2 
9.9200000E-07 
1.8500000E-05 
8.8000000E-03 
6.8700000E-05 
4.3400000E-04 
2.2200OOOE-04 
2.0900000E-08 
1.1800000E-07 
2.29O0OO0E-O2 
4.6000000E-03 
5.0000000E-02 
1.7950000E-01 
6.1300OO0E-O3 
6.170OO00E-O7 
5.28000O0E-06 
1.8700O00E-O2 
1.20OOOO0E-O8 
1.00OO000E-O7 
5.8000000E-06 
6.4000000E-05 
2.2300000E-03 
4.70OOO0OE-O5 
2.6000000E-03 
3.60OO0O0E-03 
2.00&JOOOE-03 
4.50OO000E-03 
2.5000000E-03 
1.0000000E-02 
1.0000000E-02 
7.700O000E-01 
1.0000000E-01 

6.4400600E-01 
2.5895000E-01 
3.7048000E-00 
2.9966000E-01 
6.7477199E-05 
6.9966500E-04 
2.713i800E-04 
5.3669300E-07 
8.9100400E-07 
5.7593800E-02 
7.9857600E-02 
3.3371600E-03 
2.882H00E-01 
1.4007900E-02 
1.4247100E-06 
1.9695800E-05 
1.1553100E-02 
6.8360400E-05 
4.342730OE-O4 
2.2238900E-04 
5.5183199E-07 
6.8250600E-07 
2.2458600E-02 
8.2744299E-03 
4.4955000E-02 
1.7888700E-01 
6.2844200E-03 
1.0429000E-06 
5.6044400E-06 
2.11300OOE-02 
7.9731300E-06 
3.3106700E-0,t; 
5.52103OOE-O5 
5.52199OOE-05 
2.12699OOE-03 
1.5800400E-06 
1.9890400E-04 
9.6515400E-05 
2.8187800E-05 
1 2435600E-03 
;.5461100E-03 
3.4066600E-04 
4.5441200E-05 
2.8689100E-02 
1.4953700E-03 

0.00E-00 
0.00E-00 
0.00E-00 
0.00E-00 
0.00E-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
0.00E-00 
O.OOE-OO 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-OO 
O.OOE-00 
O.OOE-00 
O.OOE-OO 
O.OOE-00 
O.OOE-00 
O.OOE-00 
O.OOE-OO 
O.OOE-00 
O.OOE-00 
O.OOE-OO 
O.OOE-00 
O.OOE-00 
O.OOE-OO 
O.OOE-00 
O.OOE-OO 
O.OOE-00 
O.OOE-OO 
O.OOE-00 
O.OOE-OO 

6.4399658E-01 
2.5896960E-01 
3.7048090E-00 
2.9966666E-01 
5.6165829E-05 
6.880Ü160E-04 
2.0617855E-04 
1.1005665E-06 
2.4329989E-06 
5.7145151E-02 
7.9380462E-02 
3.2310024E-03 
2.8387379E-01 
1.3878336E-02 
3.2831591E-06 
1.7377889E-05 
1.1551705E-02 
5.9559742E-05 
4.4194828E-04 
2.2045284E-04 
1.0947029E-06 
1.8516727E-06 
2.2906192E-02 
8.7509019E-03 
4.5060355E-02 
1 .a322359E-01 
6.3957550E-03 
2.8552963E-06 
7.8058135E-06 
2.1129053E-02 
7.4288879E-06 
3.0172473E-05 
5.0560606E-05 
4.8710919E-05 
2.1419671E-03 
2.3368505E-06 
1.8211882E-04 
8.5833585E-05 
2.3550387E-05 
1.2505876E-03 
7.5730099E-03 
3.0376393E-04 
3.9017552E-05 
2.8793103E-02 
1.4986067E-03 
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Fig. 1—Data (or Lung Level Respiration Model2 

A" refers to an unoxyganateci 1/4 hemoglobin molecule. 
B~ refers to an oxygenated 1/4 hemoglobin molecule. 
C~ refers to an amphanion equivalent with   aspect to COj. 
D'  refers to an oxyheme amphanion equivalent with respect to CO2. 

Free- 
energy 

constants 

v~ 
0.0 

-7.69 
-11.52 
-36.60 
-10.94 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
2.5966 

-39.39 
-21.35 
-32.84 

6.26 
0.0 

10.45 
0.0 

-0.50 
0.0 
0.0 
0.0 
2.2435 
0.0 

-39.39 
-21.49 
-32.84 

6.12 
0.0 
0.0 

-1.9028 
-2.8889 
-3.3622 
-7.4854 

-15.639 
0.0 

21 81 
-It.79 

0.Ü 
18.9779 
0.0 

11.959 
0.0 

12.899 

/ 



the values of the free-energy function at those minima yield essentially the 

same minimum.  Neither solution satisfies the constraints exactly.  The point 

to be nutde is that SUMT requires no delicate analysis to obtain an initial 

starting vector.  Also note again that SUMT in conjunction with the rank 

annihilation of matrix inversion is extremely efficient in solving moderate- 

sized nonlinear programming problems. 

10 
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