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INTRODUCTION AND SUMMARY

This report is concerned with phenomena which may limit the transmission
of a laser beam through the atmosphere. We have considered two salient types of
limitations and the specific contributing processes. The first limitation cor-
responds to a self-defocusing instability of the laser beam which can resulﬁ in
an undesirahle decrease in the delivered power density. The instabiliity results
from photon absorption leading to atmospheric heating and consequently to a local
decrease in the refractive index; the result is a lens effect which causes the
beam to diverge. The second limitation to beam transmission is imposed by the
stimulated Raman effect. This process involves inelastic photon scattering, and
at sufficiently large power levels results in the amplification of the beam of -
scattered photons in a laser-like fashion. The amplification of the scattered

photon beam can produce a serious depletion of the laser beam,

Chapters 1, 2, and 3 are concerned with the heating mechanisms that lead
to the self-defocusing instability. In Chapter 1 the far wings of pressure-
broadened molecular absorption lines are studied. The motivation is the need
for a reliable theory to compensate for the absence of experimental data. The
distance from the line center beyond which the usual pressure-broadening theory
becomes invalid has been ascertained, and it has been found that beyond this
point the line profile falls exponentially. This conclusion has particular
significance with regard to an earlier calculation of the absorption in the
window at 1.0468 microns, where the assvmption of Lorentzian iine shapes ied
to the conclusion that the absorption coefficient was just at the threshold
for the self-defocusing instability. In the aforementioned calculation it was
assumed that the absroption !s due only to the molecular resonance lines. The
present research indicates that because of the exponential féll-off, the ab-
sorption due to the molecular resonance lines is actually substantially smaller,
and consequently may be ignored with respect to the self-defocusing instability
at 1.0468 microns. However, it has been pointed out that atmospheric absorption
in the spectral neighborhood of 1.0468 microns is .actually dominated, not by
contributions from the wings of molecular resonance lines, but by a continuous
absorption band due to the existence of (02)2 complexes, Earlier inferences

from experimental data indicated that the absorption coefficient due to (02)2
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is about two orders of magnitude above the threshold for the self-defocusing
effect. In Chapter 2 we report the results of a detailed study of the photon
absorption mechanism of the (02)2 complex itself and the relaxation mechanisms
by which the absorbed energy is sub'sequently converted into heat. It is con-
cluded that, during a laser pulse of about one millisecond duration, only one-
sixth of the absorbed photon energy is converted into heat so that the estimate

of the effective absorption coefficient for (0 at 1.0468 microns must be

)
272
reduced by a factor of six. Moreover, the study suggests that the desired ad-
ditional reduction in the net absorption coefficient can be accomplished by a
shift to slightly higher frequencies, i.e., somewhere in the region 1.030 to

1.027 microns.

Another process which contributes to the residual absorption in what is
otherwise considered to be a transmission window is collision-induced absorption.
This is a phenomenon in which absorption takes place by virtue of a transient
dipole moment which exists only during an intermclecular collision. It is
characterized spectrally by broad continuous bands having widths of the order of
several hundred wave numbe;s. These bands are superposed upon internal transition

lines which may even be f-:bidden for the isolated molecule.

The energy of tH« absorbed photon is partitioned into an internal ex-
citation of one of the molecules and kinetic energy of the colliding pair. The
energy taken up by the translational component corresponds to an instantaneous
heating, which contributes to the beam instability regardless of the laser pulse
duration. The translational band contributes to the magnitude of the absorption
in a valley between resonarnce lines, and may dominate over the far wing con-

tributions of resonance lines.

In Chapter 3 we consider the photon absorption which occurs during a col-
lision between two rare gas atoms. The analysis is somewhat simplified in this
case because of the absence of rotational and vibrational modes; the absorbed
energy goes entirely into translational energy of the atoms. Theoretical work
in this field has been meager and has been principally confined to the calcu-
lation of frequency integrated absorption coefficients. Relatively little has
been done regarding the frequency dependence of the collision induced absorption
coefficient and even this work is quite recent. The studies which have been

made were not concerned with the far wings and cannot be extrapolated into the

2



far wing regions with confidence; the present chapter contains a discussion of

these calculations.

We have performed a quantum mechanical analysis of this problem which is
capable of yielding the absorption coefficient as a function of frequency &ven
in the far wings of the absorption band, where no experimental determination has
as yet been possible. It is these unmeasurable, far wing absorptions which ex-
tend into the atmospheric windows, and provide instantaneous heating. They must

be determined theoretically in order to evaluate the gself-defocusing heating in-

stability. The mathematical analysis leading to the expression for the absorption

coefficient has been completed, and only a number of independent numerical inte-
grations remain to be performed. Preparations are currently in progress for

evaluation by digital computer.

In Chapter 4 laser beam depletion by stimulated Raman scattering is In-
vestigated by solving rate equations describing this process. The particular
effects which are analyzed in great detail are (a) the interaction of competing
Raman lines, (b) multiple order Stokes wave generatiom, (c) the amplification of
Raman backscattered light, and (d) the effect of pressure dependence upon thé
propagation of a beam vertically through the atmosphere. In each of the above
the intensities of both the Raman radiation and primary laser beam are obtained

as a function of distance from the laser.

It is found that the maximum intensity of laser light which can be trans-
mitted vertically through the atmosphere without frequency change due to Raman
gcattering is critically gensitive to the laser line width. The maximum in-
tensity is calculated for representative values of the laser line width and
other pertinent parameters. Another conclusion is that the amplified back-
scattered beam has a significant deleterious effect if the magnitude of the
backscattered cross section is greater than ninety-two percent of the forward
cross section, and the laser pulse duration is greater thén 5 x 10-5 seconds.
1f either of these conditioms fails to prevail, then Raman backscattering is

inconsequential as a loss mechanism.

An analysis is reported which describes the propagation of a pulse of
radiation moving through and antiparallel to the laser beam. The frequency of

the backward propagating pulse is that which corresponds to the Stokes shifted



frequency. It is found that this pulse may be amplified at che expense of the
laser beam to a peak intensity many tincs greater than that of the laser beam
itself, and that in fact most of the energy in the laser beam can be concentrated

into this backward moving pulse.

1}




Chapter 1.

FAR WING PRESSURE BROADENING




~ In this chapter, some model-type studies on the far wing pressure broadening
of molecular vibrational lines will be reported. The most elementary system of
interest is that.of a diatomic heteropolar molecule in collision with a monatomic
perturber. For the sake of definiteness, the optical transition will be assumed
to connect the vibrational state with the first excited (vibrational) state of
the diatomic molecule (0 &> 1),

The physical picture motivating the treatment derives from earlier workl
by one of the present authors; it may be described briefly as follows. When the
optical frequency, w, is sufficiently clbse to the unperturbed transition fre-
quency, w_ —-- gpecifically when (w—wo)rc< 1, with T. an appropriately defined
collision time, one may expect the impact theory to be valid; the line shape will
therefore correspond to the wing of a Lorentz-type line shape 6—ypﬂm_w°)z), If,
on the other hand, the frequency shift (w—wo) is so0 large that (w—w°)1c> 1, the
spectral profile will follow the predictions of the so-called statistical theory.
In this theory, one focuses attention or the collision-induced perturbation of
the instantaneous transition frequency. Two possibiiities then arise. If during
a collision event, the perturbed transition frequency, w°+ wp, momentarily co-
incides with the optical frequency, w, the spectral intensity, I(w), will be
proportional to the occurrence probability of the perturbed transition frequency
— i.e., the probability that w°+ wp lie within a unit differential frequency
range about the spectral frequency, w. If, on the other hand, there are no
¢ollisions which are able to provide a coincidence of w°+ wp w;th w, one may
expect the spectral intensity, I(w), to decrease exponentially” with increasing

frequency shift, w=w_ .

The particular problem upon which the present studies are focused is the
absorption on the violet side of a given vibrational line, at distances of the
order of3 600-1000 cm_1 from the unperturbed frequency. (The corresponding
shift in units of circular frequency is w-w_~ 1.2x1014 -2x10148ec-1.) From
the above discussion it then becomes clear that the absorption at such extreme
distances from the unperturbed line will be exponentially small unless (a) the
collision time is < 10-']"4sec-'1 -- with atomic velocities "loscm/sec, such =
limitation could be met only with very short range interactions (~10—9cm)

and/or (b) the collision-induced shift in the momentary vibrational




frequency is positive and 2 600-1000 cm-l. Whether or not such extreme conditions
can be met, one may infer that they will be apprnached most closely by the standard

short-range repulsive interatomic interactions generally taken to have the forma

V(r) = voz"‘", (1.1)

rather than the longer range, multipole-type interactions of the form, c/r?

(with n a number varying roughly from 3 + 6). It is therefore proposed to consider
the basic interaction responsible for the far-wing absorption to be a sum of two
terms, each of the form (1.1) — describing the interaction between the colliding
atom and each of the two atomic constituents of tLe absorbing molecule. Moreover,
in order to avoid complications which — in the opinion of the present authors —

do not appear to be essential for the physics of the proublem, the following

further "model-type'" simplificaticns are introduced:

(1) the rotational motion of the molecule is iznored, and

(2) the collision is assumed to be collinear.

Concerning the first simplification, it may be remarked that, on the scale
of the above mentioned frequency shift (600 - 1000 cm-l), rotational frequencies
are quite small,5 so that (a) there is certainly no question of the existence of
any rotational component of the line in the far-wing spectral region of interest
and (b), in considering the partition of the excess energy into translational and

rotational motion, it would seem quite legitimate to ignore the discrete structure

of rotational energy levels,.6 Once this is done, rotation and translation may
both be considered as comparable types of essentially unquantized motion.7 For

a detailed quantitative calc-ilation, both, of course, must be taken into account.
For a semiquantitative study which, like the present one, is aimed at a first
look at the gross features of the far-wing broadening problem, it is felt that

a model-type treatment which takes explicit account of energy conversion into

one type of unquantized motion, namely translation, while ignoring the rotational

component, is basically adequate.

The assumption of collinear collisions is introduced because it is sus-
ceptible to a relatively straight-forward analysis. It is hoped that the insight
gained in studying this special case will permit at least semiquantitative ex-

tensions to the more general case.



It may finally be stated that both of the above discussed simplifications
are contained in essentially all treatments of the related problem of collision-

induced vibrational deactivation of diatomic molecules.

With these preliminary considerations out of the way, let us proceed to
the formulation of the model Hamiltonian of the problem. In the absence of the

external (optical) electromagnetic field it takes the form

2 P2
2 2 R
H = 5&--{-5“(9 X +§-M_-+V(R,X) . (1.2)

In this expression X = r - r, (with r the internuclear separation and r 1its
equilibrium value) is the vibratioral cooxrdinate, Px a‘%'%i the associa:ed
canonical momentum, #v B Mlﬁxr the reduced mass for vibrational motior (letters
A and B will be used to designate quantities associated with the constituent atoms
of the diatomic molecule, whereas the letter C will refer to the colliding mon-
atomic species), R denotes the distance between the center of gravity of the

molecule and the co lidin atom «©), P ilh'a— is the associated canonical

i 9R
A C the reduced mass for the relative motion of atom C
The first two terms in

momentum (with M =
C

with respect to the center of gravity of the molecule).

(1.2) are the kinetic and potential energy for vibrational motion of the molecule

(wo = vibrational frequency). The third term 1s the kinetic energy for the

relative motion of the colliding partners. Finally, V(R,X) is the interaction

between the colliding atom C and the molecule. It is here assumed to have the

form

V(R,X) v, exp{-a[R-Ar]} = V exp{-a[R-A(r *+ )1} » (1.3)

where
My

Myt

(1.4)

Expression (1.3) follows from (1.1) and the fact that, in & collinear collision,
the interaction of colliding atom C with onlv one atom of the molecule (say, B)

need be considered (cf numerical estimate of « given in Ref. 4 and the tables of

values of r, in Herzberg's books).



The presence of the optical 2lectromagnetic field gives rise to an ad-

ditional term in the Hamiltonian. It has the form

-iwt i
Hy = -u(X) &y 4+ CC>s (1.5)

in which € is the amplitude of the electromagnetic field of the incident light
and u(X) is that part of the molecular dipole moment which depends upon the
vibrational coordinate, X; as is usual, it will be assumed that this dependence
is linear, so that the optical selection rule for the cliange in vibrational

quantum number Av = : 1,

In the absence of the electromagnetic perturbation, represented by
(1.5), there exist stationary solutions, wi(X,R) of the time-independent

Schroedinger equation

Hy (X,R) = E¥ (XR), (1.6)
which are asymptotically (R + =) of the form
wi(X,R) ad ¢°(X) sin(kiR+6), ' (1.7)

where ¢°(X) is the ground state Harmonic oscillator wave function and
ki S /ZMEilﬂz is the incident wave vector of relative motion, In what follows,

v(X,R) will be approximated by a product function
v (X,R) me o (X) y (R), (1.8)

where wo(R) is that solution of the equation

2
P
R
Eiwo(R) = 'E§-+ voo(R) wo(R). (1.9)
s 2
Voo(R) £ j ¢°(X) V(R,X) dX » (1.10)

o

which obeys (1.7).




In the presence of the electromagnetic field, the wave function of the
system will be augmented by a term, wl(X,R), which may be computed from first-

order time-dependent perturbation theory. The relevant equaticn islo

1 .
i ggl - Hy, = H_ ¥ (X,R) exp{«(it/ﬂ)(Ei+‘hw°/2);, (1.11)

with Hem given by (1.5). The steady-state solutions of (1.11) will consist of
) gna 4O

two terms,
exp{-(it/ﬂ)(Ei+ﬂﬁw°/2 +1w)} and {—(it/ﬁ)(Ei+-ﬁw°/245w)} respectively; of these,
only the former (describing the absorption of a photon of energy fiw is of interest)

with time-dependences of the form

The equation determining this term is

Hw :

%hmeqw”-wm%mu (1.12)

At this point, a considerable simplification can be achieved by resortiag
to the (already employed) distorted-wave approximation. This may be do-< as
follows. Substituting the expansion

(+)

¥ = Lxg o (X, (1.13)
m

B L o2 2
khere the ¢n(X) are the eigenstates of the vibrational part, Hvib = 5:-+ §l¢% X-,
with eigenvalues ﬂwo(n +-%1j multiplying on the left by ¢n(X), and integrating

with respect to X, one has [upon using (1.2) and (1.8)]

2
[Ei+ fiw - nfiw - %% - Vnn(R)]x§+) (R) +@§nv“m (R)x;+)(R) = -£hnowo(R). (1.14)
wh;re
Mom = J ¢n(x)u(x)¢n(x) dx , (1.15)
nm(R) z J ¢n(X)V(R,X)¢m(X) dx . (1.16)

10




The distorted-wave approximation consists in ignoring the sum on the 1l.h.s. of
(1.14), (i.e., terms containing the coefficients Vnm’ with m¢n). One then has,
in place of (1.14)

Py )
B, +fumu) = 5 = V), R ®) = "“10"’0 (R) » (1.17)

since, with u(X) assumed to be linear in X, Moo differs from zero only for n = 1.

(+

1 )(R) in the form

It is now convenient to write y
Euov, (R

(+) 1070 ° :
Xl (R) = = ﬂ(m-mo) + XSC(R) ’

(1.18)

upon substitutirg (1.18) into (1.17) and making use of (1.9), one obtains for
wsc(R) the equation

: [ ®-v,®)] |
P V.. (R)-V__(R)
Bt fmu) - 3 - VR x (®) = AH—00 L€ 4y ®. (1.19)

h(m-mo)

Before proceeding further, some comments on the physical significance of
the two terms on the r.h.s. of (1.18) are in order. Briefly, it is claimed that
the second term, Xsc(R)’ represents the amplitude of the process under study here
= namely, the energy-conserving process whereby a quantum of energy, fw, is
absorbed, with a final translational energv (of relative motion}, Ef- Ei+'h(m-m°)
(as shown by the form of the 1l.h.s. of (1.19)). By way of contrast, the first
term on the r.h.s. of (1.18) represents the virtual absorption of a quantum
(in a 0 + 1 vibrational transition); ir. particular, from (1.8) one sees that,
since the R dependence is contained entirely in the factor wo(R), the kinetic
energy associated with this state is the initial Ei [rather than Ef
The virtual character of the transition described by the first term of (1.18) is

thus manifest; it will therefore be discarded without further ado.

From a "technical" standpoint, it may be remarked that Eq. (1.19) for

Xsc(R) is rather more suitable for scattering studies than the corresponding

11 ‘

= Ei+ ﬂ(m-wo)].
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’
Eq. (1.17) for xi+)(R). The reason is, basically, that, in contrast to (1.17),
the driving term of (1.18) contains the factor[VII(R) - voo(R)]’ which differs
from zero only in the immediate neighborhood of the collision region (R ~
interatomic distance). Outside this region, xsc(R) satisfies the homogeneous
wave equation; the usual btoundary condition of scattering theory — namely, that
as R + o, xsc(R) takes the form of an outgoing wave(inkfR) is then straight-

forwarcdly applied, as will now be done.

One multiplies both sides of (1.19) by that solution, wl(R), of the homo-

geneous equation:

P2

R
Ef i Vll(R) wl(R) = 0, (1.20)

which has the asymptotic form

lP]_ (R) —ul’sin[kfR+6] , (1.21)

and integrates from zero to R. Performing the approximate integrations by parts,
and using (1.20), one readily obtains (with Pi = anzaz/anz)

& R 2 dy, (R)
e [V ' "y _ ' ' ' o b 1 -
ﬂ(w-wo) Jowl(R )[Vll(R ) voo(R )] ""o(R )dR 2M xsc(R) dl

d
= ¥ R) g Xg (R

(1.22)

For sufficient large R, the upper integration-limit on the 1l.h.s. of (1.21) may
be replaced by infinity; at the same time, one may introduce (1.21) and the

asymptotic expression

x (R) R2=g, ,ikeR (1.23)
8C 8C

12




into (1.22). This procedure ylelds an explicit expression for the scattering
amplitude, Asc’ viz:

2 6“10 2
sC ﬁzkf ‘h(w-wo)

by (R) [v11 ®-V__ (R)] ¥, (R) dR. (1.24)
[o]

The outgoing particle flux is given by the relation

2 £
Tt = Vela |° = . (1.25)

Introducing (1.24) into (1.25) and dividing by the incident flux,

Iin = vi/lo - ‘hki/loM R (1.26)

one obtains a quantity

2 2
ke 4q2 Euyg
4

P - ——
2 2 2
£ ] (w-wo)

o 2
10 K j wl(R)Wo(R) [Vu(R)-Voo(R)] dR' ’ (1.27)
i1 A’k o
which may be regarded as the probability that, in a collision of the special
type under consideration — namely, a collinear collision — a (0 + 1) vibrational
transition occurs (with, of course, simultaneous absorption of a quantum, fw,

of electromagnetic energy).

In order to proceed further, it is desirable to write down explicit ex-
pressions for Vn(R) and Voo(R). From (1.3), one has

-aR
Voo (R) = Vie ] (1.28a)

-aR
Vu (R) = er . (1.28b)

13




where

M
1 Vo exp(ukye) J ¢o(x) eukx dx » (1.29a)

<
[ ]

andll

= g
0y (x) & dx - (1.29b)

<l
111

¢ = Vo exp(akye) J

One now inserts (1.28a) and (1.28b) into (1.19) and (1.20) respectively,

obtaining
2
dy
—2 s [k -p2 e’y - 0, (1.30a)
dRz i 1 o
2
d
_._“l+ K2-b2e Ry = 0, (1.30b)
" £ f 1
where
. 2M
T e S W2 (1480¢€)

C U [kz-bz e""R]w - 0, (1.31)
which, via the introduction of a new independent variable

(2b/a) e"“R/2 ’ (1.32)

o
m

14




becomes

2 2 :
d—*’-+l$'-‘1’-+[ﬂ’£—-1w = 0 (1.33)
R A WP )

this equation is to be supplemented by the boundary conditions

v =50, (1.34a)
v 5225 sin[y& log ZF + 6] ; (1.34b)

The required solution is

p = [(Zk/mr) sinh 21rk/a]1/2 KZik/a(E) ’ 1,35)
wher:
I (E)-I (&)
. X T=v v
K, (&) = 3 sin mv ' (1.36)

is (in standard notation) the Bessel function of imaginary argument which obeys
condition (1.34a). To see that (1.34b) is satisfied one notes that, from (1.36)
and Eq. (2), section 3.7 (p.77) of Watson's treatise on Bessel functionms,

K (€) £E-+>0 T (2/5)213/0 ) ;2!9-211&/&
2ik/a 21 sinh2iE T(-2ik/a) = T(1+2ik/a)
‘ a
- 1/2
[(Zk/a) sinh 21rk/a] sin [(Zk/a) log(2/£)+6'] , (.37

the equality following from the standard formula

Il"(1+:l.y)|2 = ny/sinh 7y

15




[with 6' = arg I'(1+iy)]. From (1.37), 1t is clear that (1.35) satisfies (1.34b).

Eq. (1.35) is now utilized to prowvide explicit expressions for both
wo(R) and \bl(R) in Eq. (1.27); the result is

6“10 2 (vf-vi)2 ) 2nk 2k, "
P10 = m —.‘TV—-(A/N ) sinh : sinh = | | ’ (1.38)
o fi
where
X = g8 J KZ:I.k /a(z)ZKZik /a(Bz)dz R (1.39)
o f i
with (cf (1.30c) and Ref. 11)
3 bf v, 1+l /e
_ v o
B = -—2— = —v— = 2 zﬁ 4 (1'40)
bf £ 1+3a"2 /Wuvwo

It is indeed fortunate that the integral on the r.h.s. of {1.39) has been
explicitly evaluated. Specifically, one has [cf Tables of Integral Transforms,
Bateman Manuscript Project, Vol. I, p. 334, No. (47)].

5 : 1|8 (24ubv) (2muty) - (24u=v) - (2=p-v
o [T @nue = 3 [orC]efamn) ) (e e

jTha') y-p . 9. 1-g2
x2F1[2+1, > +1,z,1e],. (1.41)

where 2F']_(a,b,c;z) 1s the hypergeometric function which, for |z| < |, 1s defined
by the series

. " I'(c v L(a#n)r(b+n n
oF; (@,b,c52) ?(T)(F%B-)-ngo '%‘E%n—)('?;?)' 2" | (1.42)
16




.

It possesses the

integral representation (cf Handbook of Mathematical

Functions, Applied Mathematics, Series 55, U.S, Department of Commerce, National

Bureau of Standards, p.558; Eq. 15.3.1)

oF; (a,b,¢e52) r(b§§§2-b> Il tb:if:;:zc-b-l dt , (1.43)
valid when
Re > Rb > O . (1.44)
In the case at hand
a = 2%2 +1, (1.45a)
b o= 4, (1.45b)
e = 2, | (1.45¢) .
: = 187, (1.45d)

and one notes that [cf (1.39) and (1.41)] with u and v imaginary, (1.44) is
obeyed. Substituting (1.43) and (1.45) into (1.41), one then has

sj K, (2)K (Bz)zdz = %-B“+1r[1+ ggqu[l- Hi!)

2

1l V=
-t dt
x I [1-: 2 (TDYFR
[1-:(1—82g

which, by virtue of the relationship

T(l4z)r(l-z) =

zn/sin mz ,

17




may be written as

+v)n/2 1 vl
8 J Ku(z)Kv(Bz)zdz sin (u+v)n/2 2 8
x e 2'3'1 dt 1.4
I-t 7z +1° (1.46)
o [1-:;(1-823

It 1s expedient to transform the r.h.s. of (1.46) via the introduction of

a new integration variable, x = 1/t; the result is [cf (1.39)]

) 4

where

and

%ﬁi(ﬁv_).nﬂ ) Mﬁ;ﬁ’i ; (1.47)
sin m(u+v)/2 1 . (u+)/z + 1
x[x-(l-Bz)]

Zikf/a ’ (1.48a)

Ziki/a . (1.48b)

The stage has now been reached where the various limiting cases outlined

in the introduction may be studied. Let us first consider the domain of the

statistical theory. From the previous work1 (cited in the introduction) it may

be inferred that this domain corresponds to those values of the parameters Uy V,

aad 8 for which (1.47) may be evaluated by the method of steepest descents. Let

us therefore carry out such an evaluation; besides yielding concrete results for

the statistical 1imit, the treatment will serve to delineate the range of values

of u, v, and B, for which this limit constitutes a good approximation,

18




For the purpose of the steepest descent evaluation of (.47), it is

convenient to write it in the form

Y - 1 R CTOLIE) r d x eF ) (1.49)
2 sin n(u+v)/2 1 x(x-c) ’

where

c = 1-8%, _ : (1.50)
and
F(x) = £§¥ log x +»E§2 log (x-1) - 2%2 log (x-c)

S }H-Tv_ [log x + vy log (x-1) - log (x-c)] ) (1.51)

with
y = ﬁ;—’- . (1.;2)

Under the conditions

B2 > 1, (1.53a)
B2 » 1, (1.53b)

the factor eF(x) is a rapidly varying function of x, except in the vicinity of
the generally complex saddle point, Z» defined by the relation

- F' L oaplde X ook
0 F (zs) 2 z, + zs_l = ’ (1.54)

(1.54) constitutes a quadratic equation in the unknown saddle point, z .
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The two soluticis are

2
{1 + -Y:L] + /% (1+1/y)2 -cy . (1.55)

N
"
NN

The task of demonstrating that the original integration contour of (1.49) (namely,
along the real axis from 1 to =) may be deformed into one whose principal con-
tributions occur at the saddla points is relegated to a future report. Preliminary
studies show that (a) if the saddle points [given by (1.55)] are complex, the
major contribution to (1.49) occurs along a steepest-descent contour in the im-
mediate vicinity of that saddle point which is located in the upper half of the
complex plane, and (b) if the saddle points are real and greater than unity

(this latter property holding when ¢ < 1, as will hereinafter be assumed to be

the case), contributions to (1.49) occur in the neighborhoods of both saddle
points. In both cases, the evaluation of these contributions requires computing

F"(zs). For algebraic convenience, it is desirable to write (1.54) in the form

F'(z,) = -‘5—:—"3(1/zs) - 0, (1.56)
8
where
g(y) = 1+T};-lfcy ; 1.57)

‘One then has (upon using (1.56) and introducing the notation Vi = llzs)

F'(z) = 8 30y = _ ¢ . (1.58)
8 2 8 (l_ys)z (l_cys)z

The solution of (1.56) in terms of Yd reads

y, = l.;:ri A, (1.59a)
where
2 1/2
A = [[—1-}1] -JCL] ] (1.59b)
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Upon introducing (1.59a), (1.58), and eliminating c¢ by the use of (1.53b), one

has (after some algebraic manipulation)

2
" - + |ETV
F'(z)) ¥ [ 7 ] 25y lﬁl o (1.60)

At this point, it may parenthetically be noted that, by similar manipulation,
the factor _?;-ET » Present in the integrand of (1.49), may (for z = 2 ) be
brought into the form

itA M,A )
L . _+x. o . O (1.61)
zs(zs c) 1=y 3 Al ¢
2

The insertion of (1.60) and (1.61) into the expression for the saddle point
integrals yield (as will be seen immediately below) numerically equal con-
tributions when the saddle points are on the real axis, a feature which will

receive physical interpretation.

In the case of real saddle points (A real) F"(z ) [as given by (1.60)]
1s manifestly imaginary (u, and v are imaginary); hence the contour of stcepest
descents is inclined at an 2ngle of /4 or 3n/4 with respect to the real axis
[depending on the sign of F"(2)]. The saddle point integrals are then of the
form [cf.(1.49)].

po0
1 gVt +)7/2 exp(tin/4) exp(F(zs)) . 2
,(s "2 sin(u+v)n/2 zs(zs-c) -wexp(lF (zs)ln /2) dn
[ 1/2
18" ()ny2 eXP(N/4) exp(E(z,))
"2 sin(utv)n/2 zx(zs-c) |F"(zs)| ’
which, with the use of (1.60) and (1.61), may be written as

v+l
K, = g EZUNR o aina) exp(rz,) '-ﬁl‘ (1.62)

1/2
) 2 ¢ sin(u+v)n/2 (u+V)A'
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Bearing in mind that (a), F(zs) is imaginary for real saddle points and
(b) in an eventual energy integration, the relative phase of F(zs) at the two
saddle points will undergo many oscillations, let us simply ignore the inter-

ference term which results from the substitution of

X - BZ_’ZZS : (1.63)

into (1.38). One then has

€ 12 (v
Py ™ [ﬁ——ui] .(_V__Vl (4/'"2) sinh 2y L ginh zzkf [le|2 + RIZIZ]

(w-wo) f i

(1.64)

where, with use of (1.50), (1.48a,b), (1.40), and (1.59b), one obtains (after
some algebraic manipulation)

2 3
k |2 - le [ 1 _lu+vladza h'd
1 2 1-8 2} sinh2(|u+v|'n/2) A
2_2
L Ve ke 23 (.55)
2 Ka 2f 7 d *
(vf-vi) sinh [a(kf+kiﬂ
where
2oz Kl kg- i (1.66)
= Pt 1=V /V, ’ )

A brief digression on the physical significance of the quantity, k is now
in order. From Eqs. (1.30a,b,c) and (1.28a,b), one notes that

[k2 b2 -ak (1.67a)

1/2
ri(R) ]

and

(1.67b)

rf(R)

22 oR) M
£7f
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are "local" wave vectors for translational motion along the potential curves
voo(R) and V (R) respectively, (with, of course, total energies Ei and Ef
respectively). The condition that these two local wave vectors shall coincide

at some common value, x, i.e.,

Kl(R) = Kf(R) (1,63)

n
A

-

is readily shown to be equivalent to (1.66). It is thus seen that the principal
contributions to (1.65) [i.e., to the matrix element for the transition, as
given by (1.27)] obey a modified Franck-Condon Principle, in which the instantaneous

position and velocity of relative translational motion are conserved.

The above remarks lead to a simple physical interpretation for the occur-

rence of the factor, k, in the denominator of (1.65). Bearing in mind that

A g A (1.69)

(where Vin is the common instantaneous velocity of relative motion in the initial
and final states), one sees that the 1/c dependence is simply an expression of
the usual 1/v law for the occurrence-probability distribution. This inter-

pretation will be developed more explicitly immediately below.
Proceeding with the calculation one has, upon inserting (1.65) into (1.64),
and utilizing the conservation-of-energy relation
2742 .2
fww) = N (kg-x7)/2m (1.70)

together with (1.69) one has

{E ”10 21 [l-exp(-knki/@q[l-exp(-Aﬂkf/aj
P10 " T2 ¥, aww) ) E 2 ] =D
‘ﬁ in o [l-exp (-2n (kf+k1) /a)]
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In discussing the relationship of (1.71) to the prediction of the sta-
tistical thecry, let us first note that, by virtue of conditions (1.53a,b)
[which define the domain of validity of (1.71)], thz curly bracketed factor may
be approximately unity. Then apart from the basic absorption matrix element,

€u.. (and Planck's constant), one has
10

1

& e e——— (1.72)
10 vina(w wo)

P

It will now be shown that the r.h.s. of (1.72) 1is equal to the time during which
the collision produces a momentary vibrational frequency perturbation, wp, which
lies within a unit differential range about the spectral shift, w=w . One notes,
from (1.16) (and Bohr's frequency condition) that

1 .
w = ¥ [Vu(R) E Voo‘R)] ; 1.73)

which, with use of (1.28a) and (1.28b), becomes

w, = (wgmw,) e ok . (1.74)

with

w o = V1 f/h » (1.75)

A "frequency-coincidence"
wp(R) = wmw o,

is achieved at a value of R given by12

Wo~w

p S §

w=w < (1. 76)
o

1
Rw -5 log
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The differential range, de in which wp(R) will lie with a differential frequency-

range, dw is clearly

de = dw/a(w-wo) . 1.77)

correspondingly, the time, dt, during which wp(R) will be contained within a unit

frequency-range about W= is

IS U S 1.78)
dw Vin dw vina(w-wo)

q.e.d. The coincidence of (1.72), and hence (1.71), with the prediction of the
statistical theory is thus established.

Further detailed discussion of the statistical theory will be abandoned
for the time being. The motivation for this decision is that, as will now be
shown, it appears that, under most circumstances the frequency perturbations
required for the far-wing absorption of interest in these studies (600-1000 cm-l)

are simply not attainable.

The consideration begins by noting that [as given, e.g., by (1.66)],
k be real, i.e., x2 > 0. Applying this condition to the r.h.s. of (1.66) one
readily obtains the inequality

2
Vf X kf ) ‘!-'l(m-m':’)+E:l
v 2 E i
i ki i

or, from (1.40)

fi(w-w )+E 1+3a2A2ﬁ2/4u w

(o] i v o

. < > . (1.79)
i 14+ ;h/louvwo

From (1.79), it is clear that for the determination of the domain of applicability

of the statistical theory, the value of the parameter

2.2
a At | (1.80)

2uvw°

is of decisive importance. 25
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In order to estimate £, let us consider HCl as a representative diatomic
molecule. For this case, if it is considered that atoms A and B (referred to in
e.g. (1.4) and following text) are respectively Cl and I, one may take X = 1.
Moreover, u, may be identical with the mass of the hydrogen atom; thus ‘

, = 1.6x10-243. For w s Herzberg's tables13 yield

2n1c 3x1035ec-1 o

€
"n

Finally, for a, let us use, as a representative value, the mean of those

quoted in Chapter 3, page 71 of this report (a is denoted there by the symbol 2/2)

J -
a = 4x108cm 1 .

One then obtains

g ~ 1/12 . (1.81)
Introducing this value into (1.79) yields

h(w-wo) s | (1.82)

taking Ei- kT ~ 300 cm-l, it is clear that one obtains for the frequency range
1

of a»plicability of the statistical theory, a value < 30 cm .

Without proceeding further, it should nevertheless be pointed out that the
contributions of superthermal incident energies should not be dismissed out-of-
hand. Although adversely weighted by the Boltzmann factor, exp(—Ei/rT), they may
still make a respectable showing in comparison with the other (thermal) con-
tributions, which fall outside the range of the statistical theory; as shown in
the following paragraphs, these are also of exponential smallness in the fve-

quency shift.

After these remarks let us explore the case in which [referring to
Eq. (1.44)] there are no saddle points on the real axis (from x=1 to x= ),
Physically this case corresponds to the situation described at the end of section
I, in which the collision-induced vibrational-frequency perturbation is too small
to provide the momentary coincidence with the spectral shift, w=w s which is

required by the statistical theory.
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For the case of saddle points off the real axis, it can be shownla that
the integration contour can be deformed so that the principal contribution to
the integral occurs in the vicinity of the saddle point in the upper half of the
complex plain; from Eq. (1.55) this saddle point is given by

1/2
23 = SO/ + e/ Pmanm? . (1.83)

The calculation of the saddle-point integral proceeds quite analogously
to the case of real saddle points. The final result is [compare with (1.62)]

: PRV 5 | 1/2
- 1 B T(utv)n/2 o 2r
i = p(F(z)) = (1.84)
k 2 ¢ sin [("/2) (u+\))] ( 8 ) A(u"‘\))
where [cf. (1.51) and (1.83)]
/f?p(zs) - -,H§¥| £ = -(kg+k)E/a (1.85a)

-1 28 -1 28 _ =1 28
f = tan [E?i:i7;3]- tan [E?i7;:TT]+-ytan [E?T:T?;T:E] s (1.85b)

and

1/2
6 = [ery - Pranmy . (1.85¢)

From (1.50), (1.48a,b), (1.40), and (1.59b) one obtains [by algebraic manipulations
similar to those which led to (1.65)]

2.2
V.V 3 K-k
oLl _1f - = (4 [ £ 1] exp[-2(k+ k )E/a] ,
(Vf-Vi) sinh (n/a)(kf+ki)
(1.86)
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where

2 .2 -
k' =k 2M(w-w )i
2 f i 2 o 1
lc|® = -k = - [1+E A (w-w )]
l—Vi/Vf f 4} L}-vi/vf i o
M (w-w )
= -——;;—Jl— ‘;/g - Ei/ﬁ(w-mo) +'%], (1.87)

with £ being given by (1.80), i.e.,

azkzﬁ

2
Hv¥

E =

as pointed out in the text subsequent to Eq. (1.80), its numerical value may

generally be expected to be small compared to unity.

Upon substituting (1.86) into (1.38), one has

Eu 2 2M(w-w )"1/2
& 0 T o 2,,1/2
Flo © [rT] E [T— exp (- [BM(u-ug) /oI " g3, (1.88)

where the wiggle above the equality sign denotes an approximation vherein a factor

equal to the curly bracket of (1.71) has (in accordance with the text subsequent
to that equation) been replaced by unity,

n = 1/¢ - Eifh(w-wo) +1/2, (1.89)

[with £ being given by (1.80) and (1.81)], and

[ 1/2
[Ei/ﬁ(w-wo)] + [1+Ei/ﬁ(w—wo)

gEl

1/2
] f . (1.90)

It is now of interest to 'nmormalize'" the r.h.s. of (1.88) with respect to

the standard Lorentz-type absorption profile. To this end, let us briefly sketch

a derivation of the phenomenological impact-theory formula for PlO'
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One considers the diatomic molecular oscillator (initially in its ground
state) in the presence of the electromagnetic field of the light wave and subject

to certain collisional events which have the following two properties:

1) They are random in time; that is to say, a collision occurs in
a differential interval, dt, at a time t after the preceding
collision with the probability

- o-t/T
dwcoll e de/t . (1.91)

2) Their effect 1s to randomize the phase relationships between
the ground and excited states of tie ‘sibrator. As is known,
such phase relaticnships occur as a result of the perturbative
action of the electromagnetic field; in particular, ac a time,
t, after the electromagnetic field is "turned on" (i.e., after
a previous randomizing collision), the coherent part of the

vibrational wave function 1315

¢ W
10 -iwt ~-iw_ t 10 +iwt ~1w t
A P T (w-w)) [e e ]+‘H(w+m°) [e e O] R

(1.92)

The significance of property (2) is that, immediately after a collision
the coefficient of ¢ in (1.92) gets multiplied by an arbitrary phase factor. It

‘then follows that the state of the system is specified entirely hy the occupation

probability of the individual eigenstates, in particular, if the collision occurs
at time t (subsequent to the previous one), the occupation probability of the
first vibrational level is augmented by an amount equal to the absolute square

of the coefficient of ¢1 in (1.92). If this quantity be averaged over the time,
t, between collisions, with a weight factor given by the r.h.s. of (1.91), one
obtains the average probability per collision that, as a result of the simul-
taneous action of collisions and the electromagnetic field, a (0 # 1) vibrational
transition occurs. Carrying out the indicated opera:tion, one obtains for this
probability a sum of three contributions, two of which are proportional to the

absolute squares of the first and second term of the square bracket of (1.92),
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respectively, the third being the interference te)m. In what follows, let us

restrict the discussion to the "resonance" region defined by the condit:ionl6

Im-mol << wo . (1093)

In this case, the first contribution dominates, thereby permitting us to consider
the transition as being associated with electromagnetic absorption. In conformance
{3m) (the superscript "(im)" referring to
the impact-theory basis of its derivation).

with this feature, let u= denote it as P

In carrying out the average over t, let us introduce the further condition
Iw-wol >> 1/t ,
(which is appropriate for the discussion of the wings of a Lorentzian line, and

which, moreover, is quite well obeyed in atmospheric environments for the spectral

shifts of relevance to the present paper). One then obtains

Eu 2
(im) 10
P10 2[1T(m-mo)] ' (1:9“)

D

It is now necessary to recognize that the quantity of ultimate interest is
not the absorption probability per collision, but rather the absorptive proba-
bility per unit time (which will here be denoted as Wlo). Generally, the relation

between the two quantities is of the form i -

Yio = FPio Vetf,

(3.95)
where v _c. is a suitably defined "effective" collision rate. 1In the case of the
phenomenological impact treatment sketched above, Vegf is simply the reciprocal

of 1, so that

g o plm,. o 0 ]2'2' (1.56)
10 10 " o)) T "
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From (1.96), it is now apparent how to rewrite the basic result, (1.88),
of the present calculation in a form suitable for comparison with the impact

theory; namely,

Eu 4
10 2
PlO = [W] T (1.97)
i/2
1,1 2“““_“’0’] TRV I S (1.98)
T 20 #n eff

where Veff is the effective number of collisions per second.

In a one-dimensional model of relative translational motion — which, in
effect, has been imposed on us by the collinear collision restriction ~ Veff
would be something like the relative velocity of molecule and perturbing atom
times a suitably defined linear density of perturbing atoms. In order to go
behond a phenomenological prescription of this type, it is necessary to generalize
the treatment to include collisions other than collinear. A crude preliminary
treatment, which should (in the opinion of the present author) nevertheless yield

results of semiquantitative significance, will now be given.

Specifically, it will still be assumed that the trajectory of the colliding
atom, relative to the center-of-gravity of the diatomic molecule is parallel to
the diatomic axis — the direction of said axis being taken as fixed, in accordance
with the neglect of rotational motion (which was introduced at the beginning of
the treatment). However, the distance between the trajectory and the center-of-
gravity (that is, the classical impact parameter) is now pe}mitted to take on a

nonvanishing value.

A simple procedure for the treatment of these '"off-center' collisions is
afforded by an approximation — here designated as the Takayanagi approximation,
in view of its prior use by that author in'a paper on vibrational deactivationl7
= which is nevertheless (in the opinion of the present author) quite suitable
for obtaining results of semiquantitative accuracy. In describing the approxi-
mation, let us first note that, for impact parameters ¢ atomic radii, G~32), the

incoming particle finds itself in a spherical potential (centered, of course,
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around atom B of the molecule). It is to be noted that the scale of variation of
the potential is ~1/a==,254. This dimension is substantially smaller than the
distance of closest approach, (~GX). In other words, the radius of curvature of
the equipotential surfaces is large compared to the distance (~1/a) in which the
colliding particle experiences its principal interaction with the molecule. In
the Takayanagi approximation the curvature of these surfaces is neglected. Speci-
fically, the potential is taken as one-dimensional with the equipotential planes
oriented perpendicular to that radius which intersects the trajectory at its
distance of closest (classical) approach. The potential on each plane is taken

to be that of the (actually) equipotential sphere which is tangent to t%e plane in
question. With this approximation, one writes the wave function as a product of
two factors, describing motion parallel and perpendicular to the (fictitiously)
equipotential planes, respectively. The parallélAmotion is described by a plane
wave whose wave vector lies in the "plane of incidence" (i.e., the one containing

the classical trajectory and the center of atom B) and has a magnitude

k = kgin g = kp/rc ’ (1.99)

(where 6 is the angle between the trajectory direction and the radius which
contacts it at the distance of closest approach, L and p is the distance from
the trajectory to the center of atom B). (For the particular collisions under
consideration, p is also the distance from the trajectory to the molecular center

of gravity).

For the perpendicular motion, one is then left with a Schr8dinger equation
which is identical to (1.31) except that k is to be replaced by its "perpendicular"

18

component
2, 2 1/2
kL = k cos O = k[l-p /rc] (1.100)
19
Equivalently, the incident energy Ei undergoes the replacement
2 2,2
Ei -+ Ei cos" 8 = Ei[l-p /rc] . (1.101)
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From the above results [in particular, from (1.01) and pr2ceding text], it
follows that the transition probability at an impact parameter p obeys the

equation20

P o(E) = Plo[o,Ei(l-pZ/rE_)]- (1.102)

With the aid of (1.102), the approximate first-principles replacement of
the phenomenological equation (1.98) reads

i g
T

o 1/2
N nv M (w=-w ) ~[8M(w- 2¢,1/2
-1 L[ ° ] ¢ By ) /a ) 8() 3npdp (1.103)

20 Hin(p)

where Np is the density of perturbing atoms, v, g (2!:‘.1/M)1/2 is the initial
relative velocity and where n(o) and g(p) are gotten by using the replacement
(1.101) in (1.89) and (1.90) respectively.

A quantitatively accurate evaluation of (1.103) for all cases of interest
remains to be carried out in the future. Preliminary studies indicate that, if
(1.103) be expressed in the form

1/2
mvyNo [ZM(m-wo)] e-[SM(w-wo)/azﬂ]l/zg o2

1
T T2q 4in opt

N (1.104)

[where n and g are, as before, the values of n(p) and g(p) for p = 0, and where

popt’ the "optical" collision radius, is of course to be determined by integrating
(1.103)], then

Popt % Teo ™ ] . (1.105)

That is, the upper limit of the optical collision radius is of the order of a
gas-kinetic value. It will now be shown that, even with this upper limit, the

far wing broadening, given by (1.104) is numerically far below the impact~theory
result,
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In carrying out the numerical comparison, let us approximate n by its first
term, which is, cf.(1.81), large compared to unity (the other terms being numer-
ically £1); in particular, let us fix n at the value suggested by (1.81), i.e.,

n = 10 . (1.106)

Then, upon using the estimate

a = 4x 1081, (1.107)

and the relationship
2E 1/2 1/2 1/2
i 2kT L P
v, = [M Iod [T] = 2.2 x 10777 ’ (1.108)
(where M = : and where T has been set equal to 300°K), as well as

proton

Noo= 2.7 x 1027 a3, (1.109)

(where % 1s the perturbing gas density in atmospheres), one has

1/2
A _ 1/2 - 31/2
%' b AXS' (1.8) x 10902 &4 (8v/10%) g sec™t ; (1.110)
10 opt

where Av 1is the frequency shift, w=w expressed in wave-numbers, and where

popt is given in angstroms; in what follows popt is set equal to three.

Turning to the evaluation of g, as given by (1.90) and (1.85b), one easily
verifies that, with the ¢uwantity ¢ = V /V = £ get at a fixed value, (1/10), 3
is only a function of the dimensionless parameter, ﬁ(m-m )/E For a repre-
sentative value of this parameter, say 3, (corresponding to Av ® 900 cm ), a
numerical calculation gives g = 1.1. One then has, even for the extreme case of

M = 1 (mass of relative motion = hydrogen mass)

1/2 /2
-am T (av/109) " g L -4 o5
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The corresponding value of 1/t is found to be

% = 9Y21.8) x 10%09).018) = 2.8 x 10%sec! |

Expressed in wave-number units, this is 2.8 x 108/21rc T 1.4 x 10-3cm-1, a value
substantially below the corresponding quantity used in Penner's article,3 namely,

4 x 10 2cm /atmosphere.

Another ,representative calculation: for H(m—w )/E = 2(Av % 600 cm )
one has g = ,88; exp[-4n1/2(A3/103)1/zg] = exp[ =4(, 6)1/2( 88)] - o272 .066.

The corresponding value of 1/t is

%- = 6)Y2(1.8) x 10°(9)(.066) = 8 x 10%sec™] = 4 x 10 3™t

— a factor of ten less than the Penner value.21
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SUMMARY AND FUTURE PROSPECTS

In this paper a model-type treatment of the far wing broadening of the

vibrational lines of a diatomic molecule by a monatomic perturber has been given.

The model is one in which interatomic forces are assumed to be of the exponential

type, e-ar’ and in which rotational motion is ignored. Specific results are

derived for collinear collisions; these are generalized somewhat by the use of an

approximation due to Takayanagi.

It is found that the so-called statistical theory is valid only out to

distances of the order of 30 cm_1 from the line center. Beyond this point the line

profile falls exponentially with increasing frequency shift. Numerical estimates

at distances ~600 cm-1 and 900 cm_l from the line center indicate that the actual

absorption falls substantially below the impact-theory estimates of Penner.3

With regard to future work in this area, the followinglitems may be listed:

1)

2)

3)

4)

First of all, a systematic numerical analysis of the final formulae
of the present paper is required, in order to present a proper
picture — in particular the overall frequency variation of the

line profile, and a comparison with the impact-theory predictions

of the model (exponential interatomic forces).

The role of attractive forces sliould be considered; it may be
possible to do this rather straightforwardly, using Morse-type
potentials.22 Quantitatively, attractive forces, by speeding up

the particles, increase the effective incident energy; this increase
is preliminarily expected to lead to an enhancement in the ab-

sorption probability,

By an extension of the Takayanagi approximation, it appears pos-
sible to generalize the treatment further, to include collisions
where trajectories are inclined at an arbitrary angle to the

molecular axis.

It would, of course, be eminently desirable to take account of

rotational motion. This, however, promises to be a tricky business.
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closely the results of this reference.

A discussion of this last possibility is given in an augmented version

of Reference (1) unpublished, but available on request.

These magnitudes are suggested in the article of S. Penner, Laser Summer
Study, (1965), The Institute for Radiation Physics and Aerodynamics,
Univ. of Calif. at San Diego, in connection with the absorption of

1 micron due to H20 lines situated in the spectral region.

It may at this point be mentioned that realistic value for o lie in the
range 4 - 5 x 108 cm_l. Such values begin to approach the requirements

of condition (a).

cf. e.g. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, 1950),

pPp. 125-127, especially the quoted values of the frequency separations

of the maxima of the two rotational branches (P and R) for HCl (124 cm—l)

and CO (55 cm—l) at room temperature. These values, of course,
characterize the rotational states of the molecule before collision;
after collision, the "effective'" rotational temperature will in general
be augmented by the conversion of the energy ﬁ(w-wo) into rotational
plus translational energy. However, since room temperature corresponds
to ~300 cm_l, the values quoted here will not be augmented by more than

a factor of

(w-wo) + kT fu2

KT 2.

Alternatively stated, the conversion of an appreciable fraction of the

energy (w-wo) into energy of rotation would require AJ >> 1.
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10.

11,

12,

13.

14.

15,

It may be remarked here that in iine with this similarity, the thermal
wavelengths of rotational wave functions are easily shown to be comparable
to those of translational wave functions, both in magnitude and energy

variation.

cf. N.F. Mott and H.W. Massey, Theory of Atomic Collisions, 3rd E4.
(Oxford 1965) pp. 686-690.

It may parenthetically be remarked that the approximation represented

by Eqs. (1.8 - 1.10) - the so-called distorted-wave approximation -

should give good results since (a) in Practice, by virtue of the repulsive
character of the interaction, V(R,X) will generally be of the order of

the incident energy Ei v kT << Hwo (larger values of the repulsive
potential being, in essence, dynamically inaccessible). As will later

be seen, the intervibrational matrix elements of V(R,X) are even smaller.
It is the neglect of these matrix elements which constitute the distorted

wave approximation.
Here, it is necessary to introduce the full time dependence of the

unperturbed wave function,

It will generally be the case that the product of the range parameter, a,
and the vibration-amplitude scale-factor,(ﬂ/uvwo)l/z, is small. One may
then expand the exponential factor, ZaAA, in the integrals, obtaining

2.2 2.2
Vi - V° exp(axye)[1+u A H/4uvw°], Vf - V° exp(axye)[1+3a A H/4uvw°],

Not surprisingly, the r.h.s. of (1.76) 1s identical with the R for which
the above discussed modification of the Franck-Condon Principle [cf.
Eqs. (1.67a,b) and (1.68)) 1s satisfied (as may be easily verified by

the reader).

G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand), 2nd Ed. (1950),
p. 534,

The details will have to be relegated to a future report.

The initial time dependence, e-iEit/ﬁ, Occurs as a common factor, and
will hence be discarded.

38



16'

17.

18.

19'

20.

It may be remarked in passing that, if this condition is not fulfilled,
the randomization recipe of (2) is not correct. Namely, as shown by

Van Vlieck and Weisskopf [Rev. Mod. Phys. 17, 227 (1945)], the total
vibrational state immediately after collision is to be considered as an
incoherent aggregate, not of the eigenstste of the field-free vibrator,
but rather of the vibrational eigenstates in the presence of a static
electric field, equal to the momentary value of the oscillating electro-
magnetic fieid at the impact-time, t. A detailed analysis shows that
this recipe becomes equivalent to the one used above when (1.93) is
fulfilled.

K. Takayanagi, Prog. Theoret. Phys. 8, 497 (1952).

There is, of course, a further correctiun because of the fact that the
direction of molecular vibration no longer coincides with that of the

line-of-centers of the colliding atoms (B and C). This involves alter-
ations in the formulae of Ref. 11, for the constants Vi and Vf. These
alterations turn out to be of secondary importance and will be ignored

in this report.

It may here be remarked that Takayanagi's formulation is somewhat
different than the foregoing. He separates the Schr8dinger equation of
relative motion in spherical coordinates, obtaining a radial equation
which differs from (1.31) in the presence of the usual centrifugal term,
£(£+1)/r2. Takayanagi's approximation is the replacement of this term by
2(2+1)/r§ p nzlri, which, with the introduction of the impact parameter,
p =4Hi/mv, is easily seen to be equivalent to (1.100).

It is incidentally to be noted that'rc is itself a function of p, to be
determined by solution of the equation [cf. (1.31), (1.30c), and (1.1)]

0 = kz(l-pzlrf_) e (ZM/‘HZ)VO & Fe

However, for the case in which p << rco (where tco is the value of r,
for p = 0), one may clearly approximate r, by L As will shortly be

seen below, only this case is treated explicitly in the present paper.
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It should be kept in mind that the choice| = 1 yields an extreme upper
limit for 1/t. E.g., for H20, it would seem that even with the rotational
motion taken into account, a minimum value of M = 2 would seem to be more
appropriate. For this choice, the value for 1/t is reduced by a factor
e—2’72('41) = .33. The resultant 'vidth is 30 times smaller than the

Penner value.

Cf. Devonshire, Proc. Roy. Soc. Al58, 269 (1937).
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Chapter 2.
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ABSORPTION STUDIES OF THE (02)2 COMPLEX
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This chapter deé&ribes studies of various physical processes involved in tne
heating of the atmosphere in the vicinity of a high-powered laser pulse. The
starting point of these studies is to be found in Appendices E and G of the
Laser Summer Study Report (K.A. Brueckner, Institute for Radiation Physics and
Aerodynamics, UCSD, La Jolla, California, Aug. 9-20, 1965). The analyses reported

in the latter assume as an engineering requirement that the effective1 absorption
coefficient be less than or of the order of 10 1lem L (at pressures of the order
of one atmosphere). Specifically, Penner and Olfe (Appendix E, loc. cit.,) arrived
at the conclusion that in the vicinity of the wavelength 10,468 R the absorption
coefficient2 k(v) is ~ 1.5 x 10-llcm_1. With this result the engineering problem
would appear to have been solved, were it not for the fact that, as pointed out by
Kolb and Ory (cf. Appendix G, loc. cit.), atmospheric absorption in the spectral
neighborhood of 10,468 R is actually dominated by a continuous absorption band,
due to the existence (momentary or otherwise) of (02)2 complexea. From the data
of Dianov-l(lokov,3 Kolb and Ory conclude that at 10,468 R the absorption coef-

ficient is 1.5 x 10-9cm-1 (down by a factor of ten from the peak at 10,600 R).

It is clear that, if the energy absorbed from the laser beam is imhediately
converted into heat, one is reduced to the investigation of (a) the possibilities
of an atmospheric window in the further wings of the (02)2 band (e.g., in the
neighborhood of say 10,300 & or 10,800 R), or (b) looking for a window in an
entirely different spectral region (such as the 10 micron window mentioned by
Kolb and Ory). Deferring these approaches for the time being, let us consider
in some detail the phyéical processes responsible for the conversion (wholly or

in part) of the absorbed laser energy into heat,

4
To begin with one may note from the results of Badger et al” (as well as
from the earlier references quoted therein) that the 10,600 R band is associated
with the transitions

3 3 3 1 X
[ 2, (0), zg<o>] [ 2,(0), Ag(n]
3 1
[ L (1), Ag<o>] .
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in vhich the resulting complex may be regarded as consisting of a pair of loosely
bound (or momentarily colliding) diatomic oxygen molecules. One of these molecules
ends up in the first excited electronic state lAg, the other in the electronic

ground state 3

Zg; in addition, one of the molecules acquires a single quantum of
vibrational excitation. As will be seen shortly, there is good evidence that under
atmospheric conditions the lifetime of the electronic state is considerably in
excess of one millisecond; on the other hand, there is equally good evidence that
(under typical mid-latitude atmospheric conditions) vibrational de-excitation of

02 takes place in a time substantially less than one millisecond.

Before getting into the detailed estimation of relaxation times, let us
briefly note some interesting (and perhaps eventually pertinent) facts concerning

the structure of the (0 dimers. According to Ref. 4 [cf. their Eq. (6)] the

)
272
radiative decay rate of Ag states is given by the formula

4

Py -1y . - ,
= (sec™) 2.6 x 10771 + 3.8 B +3.0P, +.72 |,

2 2 2

where the P's are partial pressures in atmospheres. Of interest here is the term
proportional to P0 ; it gives the strength of the radiative transition associated
«w3ith the (02)2 com%lex (either a stabilized dimer, or a momentary 04 complex
formed by two colliding 02 molecules). Now, the likelihood of an 02 molecule

-8 4m 3
being in the atomic vicinity R0 ~2 x 10 "cm is T N0 Ry —0.° Introducing

-0
2
the symbol 1/-r0 to denote an e%fective radiation rate for the 04 complex,

we then have

(2.6 x 107(3.8) By = |1/7y | L) &
2 4 2 "2 72
With N 3 x 1019 P. , and with the above estimate for R one then has
0, ) 05-0,
-1
1/'r0 ~ 1 sec ,
4

which is extremely small compared to the rate of allowed electric dipole tran-

sitions. This resuit suggests an extremely loose coupling of the two 02 molecules,
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such that the spins, parities, and/or axial angular momenta of the individual

diatomic constituents remain good quantum numbers.

This conclusion is supported by the very low quoted estimates of the dis-
sociation energies of (02)2 dimer states. According to Bader and Ogryzlo6 these
range from 200-600 cal/mole, which is equivalent to .009-.025 ev. Such small
dissociation energies are indicative of loi.g range, extremely weak, attractive
interactions (probably of van der Waals origin) in which the individual 02 mole-
cules are kept well apart by the usual shorter range but relatively strong

repulsive interaction.

It may be remarked here that Bader and Ogryzlo emphasize that their results
lead to the conclusion that the radiating complexes are true dimers. However, in
our opinion, the low dimer-dissociation energies quoted by them strongly suggest
that such dimer states exist for at most a few collision times "10_9sec. For
the overwhelming fraction of time, electronic and vibrational excitations reside

in individual 02 molecules.

With these preliminary observations out of the way, let us proceed to a
discussion of the lifetime of the electronic state 1Ag under atmospheric conditions.
Here, very fortunately, relatively strong experimental evidence for a lifetime far
in excess of one millisecond is provided by the previously quoted6 work of Bader
and Ogryzlo. ‘''hese authors, using calorimetric techniques, find (cf. curve (b) of
Figure 1) thac in a fast-flow system in which gas flows from a discharge at a
drift speed vy 200 cm/é‘s.ec,7 the concentration of excited 02 molecules (which
they identify as 1A molecules) does not exhibit perceptible diminution in a flow-
distance of 45 cm; goreover, said persistence of excitation is unaffected by the
presence of small amcunts (~1 percent) of H20, N02, N20 (as well as some non-

atmospheric constituents). One may immediately infer that under these experimental

conditions
45 -1
TlA >> 200 - .23 sec .
g

Postulating a hypothetical volume-destruction process involving the binary col-

lision of excited 02 molecules with other atmospheric constituents (02 or N2)
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one may then infer a lifetime

T >>  ,23(4.4)/760 = 1.3 millisecond.

Two possible loopholes in the above chain of reasoning may be pointed out
here. - One is the tacit assumption that 0; - N2 collisions will not be more ef-
fective than 0; - 02 collisions for electronic de-excitation. In our opinion this
assumption appears [in the light of preliminary study of the theory of such
quenching reactions, as presented, e.g., in the paper by K. Laidler, J. Cheu. Phys.
10, 34 (1942(] to be eminently reasonable. Similarly, it appears quite reasonable
to assume that minor atmospheric constituents, such as carbon dioxide, will not be

more effective than H20 in excitation-quenching.

The other loophole is the assumption that the volume-destruction process is
two-body. If, an the contrary, it were a three-body process, one would have to
multiply the above estimate of 1.3 milliseconds by another factor of 4.4/760,
thereby obtaining Ty >> .077 millisecond — a result which tells us essentially
nothing. However, AS without further experimental or theoretical evidence it
would be unduly pessimistic to be concerned about this possibility.8

Proceeding then from the above-deduced conclusion that, under atmospheric

conditions

T >> 1.3 millisecond,
A

B8

let us discard the electronic excitation energy of lAg- 02 states as a source of
atmospheric heating. The fate of the vibrational excitation remains to be con-
sidered. Here, the engineering situation is not favorable. Specifically, as

will now be shown, it turns out that the presence of water vapor in concentrations
encountered under typical mid-latitude conditions leads to vibrational de-

excitation of 02 in times substantially less than one millisecond.

The required information concerning collisional quenching of vibrational
excitation in 02 is obtained from experiments on absorption and dispersion of

ultra-sound in gases. These experiments yield the so-called "Napier" relaxation
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frequency f = 1/2 « Ty» ¥Where T, the "Napier" time, is the time required for
thermal equilibration between vibrational and translational degrees of freedom of

a gas; 1, may be identified as the lifetime of vibrational excitation, and is

N
hence of direct interest to us.

The results of Henderson, Clark, and Lint29 will form the basis of the

present discussion. According to these authors, ™ in 02-H20 mixtures is given

by the expression

1

2nTN

= (7 + 183 + 1320%)p

(with 1/t in sec ), where p is the pressure of the main constituent, 02, in
atmospheres, and where h = 10 N /N . One notes that when h exceeds unity

(N N, > .1%), the term quadratic %n the water vapor concentration becomes

H 0/ 0
dom nant.
Before going on to evaluate the engineering situation, let us digress

briefly to discuss the mechanism of the quadratic term. The currently believed
mechanism (first proposed by Tuesday and Boudartlo) consists of a two-step process.
The first step is the transfer of vibrational energy from 02 to H20 in a binary
collision; this transfer, by virtue of the close energetic proximity of the

lowest vibrational level of 0 (1556 cm ) to the lowest bending-mode excitation

of H2

establish a common vibrational temperature for the two species, i.e.,

0 (1595 cm ), is quasi-resonant and hence assumed to be rapid enough to

*
N N
H20 H20
* = ’
N N
0, 0,
* *
where N0 and NH 0 denote the concentrations of vibrationally excited molecules
of 02 ang HZO. The second step consists of the conversion of H20-vibrational

excitation into tramslatory (or rotatory) energy via H20 - H20 collisions. This
reaction, although quite rapid compared to other bimolecular vibrational de-
excitation processes (e.g., 02 with itself)*is still taken*to be slow compared

to the reverse of the first step (i.e., H20 + 0, » H20 + 02). It is then readily

2
seen that the quadratic term in the above expression for ™ is given by the
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formula

H,0
1 2
—— Comee—— N <v Q
T Noz HZO H20

where NH 0 is the concentration of normal HZO molecules, “Vu.0> is some average
relative“velocity of two colliding H20 molecules, and Q is the cross section for
vibrational quenching of HZO in such a collision. Inserting into this relation
the experimental value for 1/12, namely 2u(l32)h -l, and using the formula

h = 103 Ny O/N , one finds NHZO Vy o> Q = 8,3 x 108 sec l/atmosphere.

With N 20 = 2,7 x 10193 at one at%osphere, and with Yy o> ~'105cm/sec 1, one

has _-— 2

Qq ~3x 10-16cm2,

which is 1/10 a gas-kinetic cross section. This is perhans one order of magni-
tude higher than the usual rate of vibrational deactivation in reactions involving
polyatomic molecules.ll

It should finally be stated that the basic reason for the credibility of
the Tuesday-Boudart mechanism (as compared to, e.g., a three-body interaction
between one oxygen and two water molecules) is that the quadratic term is unique
to HZO; D20 and HDO give rise only to terms linear in their respective concen-
trations. Since the vibrational frequencies of these molecules are not close to
that of 02, the absence of the quadratic term finds a natural explanation in the

Tuesday-Boudart theory.12

Having discussed the mechanism of the quadratic term (the linear term being
presumably associated with the reaction 02 + H20-->02 + Hy0 + K.E., let us evalu-
ate the engineering situation. For this evaluation it is useful to present a

table of h as a function of altitude for an average mid-latitude location.13

Altitude (km) Mixing Ratio(W = My o/Me;) h = W(29/18) x 103

0 .63 x 10-2 10.2
2 .38 x 10-2 6.1
4 .19 x 1072 3.1
6 .09 x 10-2 - 1.45
8 .027 x 10~2 43
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With h at sea level equal to 10.2, it is immediately apparent that the quadratic
term 27 (132)h2 is dominant and yields a value

8.5 x 104 sec_1>>/inverse millisecond

=

(=28 2

T
2

for the deactivation rate. Furthermore, the corresponding lifetime 132 remains
less than a millisecond for altitudes below a value ~6.3 km. It is thus
apparent that, for engineering purposes, one must consider the vibrational part
of the absorbed laser energy as contributing its full quota to atmospheric

heating.

The energy bookkeeping now proceeds as follows: 1if v = 1/x is the wave-

= b =
number of the laser beam, one observes (with Vay '™ 10 /1,26 = ,794 x 104cm 1)

that the fraction of energy available for atmospheric heatingl4 is

V" Y1 _ 3-7940 .

A" \Y

Taking v equal to the Penrer value (Appendix E of the above-quoted Summer
Report), 104/1.047 = 9550 cm™ !, one has
vV=-v
'—'-=--E'l = ,17 .
v
Hence, for the effective absorption cross section (i.e., the cross section for
effective conversion of laser energy into heat), one has
-3
ko) = —=—=Lk@) = .17 k)
eff Vv * &
where k(v) is the actual absorption cross section. Using the value mentioned at

the beginning of this report, one has

-10

ke = 2.5% 10 en~L,

It is thus clear that if it is possible to reduce keff(v) by another factor of
ten, the engineering situation will begin to look optimistic. One possibility

for such a reduction will now be discussed briefly.
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Specifically, it appears that apart from the (02)2 absorption, Penner's
wavelength choice, 10,468 R, is not uniquely indicated. Preliminary inspection
of the Babcock and Moore solar atlas15 as well as more recent data16 from the
Naval Research Laboratories, indicates the essential absence of atmospheric
absorption lines down to about 10,300 R. Moreover, Penner's calculation for
10,468 R indicated that the dominant absorption (apart from the (02)2 band is
due to the relatively distant, strong H20 lines between 11,103 X and 11,601 i.
This contribution will certainly not Increase with decreasing wavelength. On
the other hand, according to Fig. 1 of Ref. 3, :he contribution of (02)2 absorption
diminishes substantially with decreasing wavelength over the interval 10,468 )
10,300 R. The possibility of obtaining the required factor of ten in the wave-
length region 10,300 - 10,370 )} appears at the present time to merit further

investigation.
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where R = 1 cm is the tube radius, %, the "diffusion" mean free path, and

D
Vepe @ typical thermal velocity of 02 molecules. Taking for the diffusion
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one has 1/1,~ (4.4) (3x10®) (3x1071°
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th

(>> .23 sec). It is therefore immediately apparent that the quenching
probability per wall collision £ is very much less than unity. However,

for £ <<<< 1, it is known that the diffusion expression for Ty should be
replaced by lltw-'vth/R E ~ (E) 4x104 sec-l. It is thus apparent that, with
l/tw experimentally found to be much less than (1/.23) sec_l, £ << 10-4.
Such extremely small quenching probabilities (involving surfaces undoubtedly
well contaminated with adsorbed layers of 02 and other constituents) con-
stitute strong evidence for the assumption that the quenching efficiencies
of ternary, etc., collisions are generally extremely small. Since the
relative rate of ternary to binary collisions is gas-kinetically small
[~4nN/3 (QD/n)3/2".004 at one atmosphere], values of £ << 10-4 would then
appear to rule out the above discussed possibility of three body collisions

playing any significant engineering role in quenching lAg molecules.,
J. Acoust. Soc. Am. 37, 457 (1965).

C.S. Tuesday and M. Boudart, Princeton University Technical Note 7, Contract
AF33(038)-23976 (Jan. 1955); a detailed account is more conveniently given
in the book, Absorption and Dispersion of Ultrasonic Waves, by K.F. Herzfeld
and T.A. Litovitz (Academic Press Inc., New York, 1959, p. 212).

This cross section, although large, can easily be shown to be compatible
with the basic assumption of the Tuesday-Boudart mechanism; namely, the
dominance of the vibrational-equilibration reaction H20 + 0; [ HZO*:+ 02.

If in fact one assumes that the cross section for HZO* + 02* H20 + 0; is not
less than gas-kinetic (reasonable in view of the quasi-resonance of vi- -
brational energies), one finds that vibrational transfer from H20 to 02 is
some three orders of magnitude more frequent than vibrational deactivation

in H20 - H20 encounters.

This statement, while applying to D20 with bending-mode frequency =
1178.7 cm_l, becomes somewhat questionable in the case of HDO, for which

this frequency is 1403 cm-l. Here, it would appear_posgible that the

51



AR

13.

14,

15.

16.

discrepancy between this and the 02 vibrational frequency (1556 cm-l), namely
153 cm-l, is small enough to allow an appreciable transfer between 02 and HDO.

This detail requires further investigation.

Handbook of Geophysics and Space Environments, Air Force Cambridge Research
Laboratories, McGraw-Hill, New York (1965), p. 3-37.

The quantity vV - v_, appearing in the numerator of this expression represents

that part of the lzier energy which appears not only as vibrational, but also
as rotational and translational energy. (Note that the signs of the latter
two may be negative, i.e., the rotational and translational energies of the
absorbing molecules may be diminished in the act of absorption.) All these

forms of energy contribute to atmospheric heating.

H.D. Babcock and C.S. Moore, The Solar Spectrum, 26600 to A13495, Carnegie
Institute of Washington, Publication 579, Washington D.C., 1947.

An Atlas of the Absorption of the Atmosphere From 8512 to 11,600 R, J.A,
Curcio, R. Eckhardt, C.V. Acton, and T.H. Cosden, NRL Report 635L, U.S.
Naval Research Laboratory, Washington, D.C. (1965).

52



Chapter 3.

COLLISION~INDUCED ABSORPTION
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I. INTRODUCTION AND BACKGROUND

One of the prccesses by'which light may be removed from a beam traversing
the atmosphere, and converted directly to heat, is collision-induced absorptionm.
During a collision between two molecules a transient dipole moment may be in-
duced by the overlap of the electron clouds, and, in some cases by a permanent
quadrupole moment on one of the molecules. Because of the induced dipole
moment an absorptive transition can occur which is forbidden for the isolated
molecule. The transition may be strictly translational, or it may have both
a translatiogal and an internal (rotational, vibrational or electronic) com-
ponent. The former case corresponds to an instantaneous transformation of all
the photon's energy into heat. In the latter case, if the photon's energy ex-
ceeds the energy needed for the internal tranmsition, then the excess goes
1nsiantaneously into translational motion, and therefore into heat. Conversely,
if the photon's energy is less than that needed for the internal transitionm,
the difference is provided from the translational energy of the molecules;
this process corresponds to instantaneous cooling. In either event the in-
ternal energy is, in general, eventually transformed into heat by collisional

relaxation.

B

Collision-induced absorption is not to be confused with ordinary pressure-
broadened absorption. Ordinary pressure broadening applies to internal
transitions which are permitted for isolated molecules; the collisions result
in a modification of the spectral shape of the line, but do not affect the
magnitude of the frequency-integrated absorption coefficient, which is pro-
portional only to the density of molecules of the species making the transition.
The integrated absorption coefficient for collison-induced absorptions, how-
ever, is proportional to the product of densities of the two molecular speciles
involved in the event (or to the square of the density, if only one species is
involved). At standard pressure ordinary absorption usually dominates strougly
over collision-induced absorption in the spectral vicinity of a permitted
transition. However, in the neighborhood of a forbidden transition collision-

induced absorption becomes the dominant process.

Collision-induced absorption is characterized spectrally by broad,

continuous bands having widths (in reciprocal wavelengths) of the orcar of
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100 cm-1 (about 10--2 ev in energy unite). These widths may be regarded as
following from the uncertainty pr..nciple because of the transient nature of
the induced dipole moments, which exist only during the collision period of
several times 10_14 seconds. The bands are centered at, and superposed on
forbidden rotational bands, rotational-vibrational bands, etc. In addition
there are bands corresponding to purely translational transitions, which peak

at ~100 cm-l. At their peaks the absorption coefficients range in magnitude

1

* -6 - -2 =4 -1 -2
from the order of 10 cm = amagat =~ to the order of 10 cm ~ amagat .

A number of collision-induced absorption bands have been observed ex-
per:lmentally,l_15 and the corresponding abéo;ption coefficients have been
measured in the neighborhood of the peaks. The mean free paths are quite long
at standard pressure, so the measurements must be made at pressures of about
100 atmospheres and higher. Most measurements are within about 400 cm_l of

the peak. In the far wings none have yet been achieved.

Our interest in atmospheric heating via collision-induced absorption
stems from the possibility of its leading to a self-defocusing of a laser beam
propagating through the atmosphere; The. defocusing is brought about by a de-
crease in the local index of refraction as a result of laser heating; the net
effect is an undesirable decrease in the transmitted power density. Given an
upper limit on the acceptable decrease in transmitted power density one can
determine a corresponding 'critical' value of the reciprocal mean free path
for heating. which will lead to the self-defocusing instability. This critical
value has been estimated elsewhere for a contemplated choice of laser power,
frequency, and pulse duration.l6

The peak values of reciprocal mean free path for collision-induced
absorption, which obtain at atmospheric pressure for the more abundant

=L to 'vlo-acm_l, and are

constituent gases like N2 and 02, range from —VI0-6cm
much greater than the particular critical value referred to above. It is only
in the far wings of these bands that the absorption decreases to the critical
value. Therefore, to determine whether or not a given collision-induced
absorption band can cause a defocusing.instability, one must know the fér wing

behavior of the band. However, the far wings have so far been too difficult to

*
An amagat is a partial pressure of one atmosphere.
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study experimentally even at high pressure, so that it is desirable to attempt

a theoretical prediction of their behavior.

Whether or not collision-induced absorption presents a potential limi-
tation to laser beam transmission through the atmosphere depends upon the
laser power being considered. The maximum absorption coefficient for heating
which can be tolerated (insofar as beam self-defocusing is concerned) is
smaller for larger laser power. For some beams which one might wish to use,
such as the kilowatt c-w beam in the 10 micron wavelength range, obtainable
with the C02 laser, collision-induced absorption is probably not a serious
problem. For megawatt beams, however, the critical absorption coefficient is
much less than the peak values of typical collision-induced absorption co-
efficients; in this case the relative spectral locations of the laser beam and
the absorption bands are crucial. If for a given laser frequency and intensity
the critical absorption coefficient proves to be exceeded, then collision-
induced absorpticn has associated with it a difficulty not present for most
other heating nechanisms. In other mechanisms the absorbed ligat emergy is
temporarily stored in some jnternal state of the absorbing molecule, and is
released into heat energy :ver a period of some collisional relaxation time.
Therefore, by making the laser pulse duration less than the collisional re-
laxation time one can, at least in principle, overcome the defocusing in-
stability resulting from most heating mechanisms. However, in the case of
collision-induced absorption, all or a large part of the photon energy may go
instantaneously into heat, and the heating problem cannot be surmounted by using

a short laser pulse.

The specific list of laser beams (with their powers, frequencies, and
pulse lengths) for which we wish to evaluate the capability of atmospheric
transmission has not yet been made final, and in fact cannot be predicted much
better than the characteristics of lasers that will be developed in the next
few years can be predicted. In view of this circumstance and the fact that
atmospheric collision-induced absorption bands are scattered throughout the
visible spectrum (they presumably occur everywhere that forbidden transition
lines occur), we have concluded that, despite the current emphasis on the
relatively low power C02 laser, collision-induced absorption bands require

investigation.
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Two of the atmospheric "windows,” which are currently under consideration,
are located in the wavelength vicinity of one micron and ten microns respec-
tively.17 The ten micron window (reciprocal wavelength f~103cm-1) appearg to
be threatened by a collision-induced absorption band resulting from a collision
between two NZ molecules.12 This band is superposed on a rotational band of
Nz; its peak,_éoc:;ed at ~100 cm-l, corresponds to an absorption coefficient
of ~2.5x 10 "cm

sorption coefficient at 103cm-1 has been made a specific goal of our program.

amagat-z. The estimation of the magnitude of this ab-

The ten micron window is also endangered by a vibrational-rotational
band of 02, which results from 02 - 02 coll:l.s:l.ons12 (and probably also from
02 - Nz collisions). This band has a peak absorption coefficient of 3.5 x
10"%cn 1 amagat-z. with the peak located at 1550 em ¥, It is considerably

closer to the window tha: the N2 - Nz bands and therefore at first sight might
be expected to dominate. However, the reverse is probably the case because

of the fact that collision-induced absorption bands characteristically de-
crease much more rapidly on the low frequency side of their peaks than on the
high frequency side. Specifically, the frequency dependence of the absorption
coefficient on both sides differs principally by an extra factor exp[dﬁ(wo-w)/KT]
on the low frequency a:ge, where W, is the peak frequency and w is the

frequency in question. The explanation of this behavior is straightforward.
The peak frequency Wy is essentially the frequency of the internal transition.

If the photon energy fhw is greater than‘ﬁwo, the absorption is always
energetically possible, since the excess can go into kinetic energy of the

colliding molecules. However, if fw <'ﬁw°, the absorption is not energetically

* Since the excited vibrational-rotational level (which is located at about

the same {requency as the peak of the absorption coefficient) is at a higher
frequency than the window (1000 cm-l) the initial effect is a cooling of the
atmosphere by the energy equivalent of (1550-1000) cm-l = 550 cm-l. However, if
the pulse length is greater than the collisional relaxation time of the excited
level, the entire 1550 cm-1 of energy will ba deposited in time for the pulse

to experience a heating by a net energy equivalent of 1000 cm-l.

**This statement and the explanation that follows apply only to transitions

involving internal modes, and not to purely translational transitions.
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possible unless the kinetic energy E of the molecules is great enough to make
up the difference, i.e., unless E a‘ﬁmodﬁw. The extra Boltzmann factor on
the low frequency side, then, is Just the probability that the colliding
molecules have sufficient kinetic energy.

The far wing behavior ( ~r103cm_l) of the N2 - N2 rotational band is then
a prime target of our program. However, as a first step we have chosen to
study collision-induced absorption by rare gas molecules (specifically Ne-A,
He-A, and He-Ne for which considerable data exists*g’lz)c The reason is that
this process is much simpler; there are no internal states involved and the
transition is purely translational. To describe a translational transition
we need only know the induced dipole moment as a function of intermolecular
separation. However, to describe a rotational-translational transition we
must know, in addition, the dependence of the induced dipole moment on the
orientations of the individual molecules. Therefore we shall first study the
simpler absorption by rare gases, then use the rare gas absorption coefficients
in the far wings to make a first, primitive estimate of the N2 - N2 absorption

at 1000 cm-l, before we go on to attack the latter more directly.

Considerable theoretical work has been done by Van Kranendonk and others
on the frequency-integrated collision-induced absorption coefficient.ls-z4
Satisfactory agreement with the data appears to be obtained by using a model
in which the induced dipole moment consists of two terms. The first is a
result of the overlap of the electron clouds of the two molecules during the
collision and of their consequent distortion; it is very short range and has
an exponential dependence nve-R/p on the intermolecular separation R, and is
directed along the intermolecular axis. The second term describes a dipole

moment induced on one molecule by a permaneni quadrupole moment on the other;

*There is no collision-induced absorption by rare gas molecules of the same
species, because the spatial symmetry in the center of mass system precludes
the existence of an asymmetric quantity like the induced dipole moment. In
the case of diatomic molecules of the same species, like N2 - NZ’ the freedom
of orientation of each molecule relative to the intermolecular axis destroys

the symmetry, so that the dipole moment can be induced.
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it is longer range than the overlap term and goes as R-ae Since rare gas
atoms do not possess permanent quadrupole moments, we shall be concerned only

with the overlap moment.

The evidence for an exponential overlap moment also includes a direct
quantum mechanical calzulation by Van Kranendonk and Bird,19 who find that

their numerical results can be well represented by an e-R/p dependence.

We are aware of only three papers concerned with the frequency dependent
collision-induced absorption coefficient.25_27 All three are confined to rare
gas molecules. Levine and Birnbaum25 describe the molecular motion by a
classical straight line trajectory and take for the induced dipole moment
W) = uyR e RZ (#/R). The factor yR in front is used to simulate the
behavior of the scattering wave functions: the molecules are actually
scattered by a potential which has a steep, short range, repulsive part that
causes the wave functions to decrease rapidly for small R. The exponent is
chosen quadratic in R, instead of linear, because the former choice signifi-
cantly simplifies the analysis and permits a closed form expression for the
absorption coefficient. The parameter b, appears trivially in the result as
a scale factor multiplying it; the spectral shape of the absorption coefficient
depends only on y. By choosing y appropriately they are able to fit the data
remarkably well fcr He-A. For Ne-A the fit is good at low frequencies, but
their theoretical absorption coefficient begins to decrease more rapidly than
the measured coefficient at higher frequencies. From their ability to fit the
data with a classical straight line trajectory they conclude that the absorption

coefficient is not sensitive to the poteatial.

Levine26 has done a quantum mechanical calculationm, replacing the true
scattering wave functions by plane waves, and using the same dipole moment as
above, with the factor yR again having the purpose of simulating the true be-
havior of the wave functions at small R. The results are again in closed form
and differ little from those of the classical model at lower frequencies. At

higher frequencies the two results begin to diverge.

Tanimot027 bas done a strictly quantum mechanical calculation using a
more realistic model. The scattering wave functions are solutions, albeit

approximate, to the Schroedinger equation with an exponential repulsive
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_ZR/A. The induced dipole moment is taken

potential of the form V(R) = V° e
to be of the form recommended by the work of Van Kranendonk, etc., namely,
:(ﬁ) =y e-R/p (ﬁ/R). Tanimoto's results depend on three parameters, Vo’ A,
and p, in addition to the trivial dependence on Mo+ He uses values of Vo and
A which have been inferred from scattering data,28 and chooses p to fit the
absorption coefficient measurements. Unlike the approaches of Levine and
Birnbaum, Tanimoto's analysis requires extensive numerical computations. For
some special values of p, viz., A/p = integer, his expressions simplify and
there is a radical decrease in the required computations. He considers only

these cases and chooses the most satisfactory, viz., p = A,

It is difficult to make a direct comparison between Tanimoto's results and
those of Levine and Birnbaum for the following reason. There are two sets of
measurements of absorption during rare gas collisions. The earlier measure-
ments by Kiss and Welsh,9 are in the near wings, covering the range from 350
cm.1 to 700 cm-l. The later measurements, by Bosomworth and Gush,12 cover the
peaks of the bands, and run from 50 cm.1 to 400 cm-l. Tanimoto's analysis was
made before the results of Bosomworth and Gush were available, and his
parameters were chosen to fit the data in the wings. In the vicinity of the
peaks his absorption coefficients have reasonable shapes, but are incorrect
quantitatively by as much as a factor of two. Levine and Birnbaum choose
their parameters to match the data at the peaks. They have pointed out that
the absorption curves measured in the two ranges do not join smoothly; in
fact there is an overlap region in which they definitely disagree.*
Consequently, we cannot evaluate the accuracy of Tanimoto's results in the

neighborhood of the peak, or compare them directly with those of Levine and

Birnbaum.

The approach we have chosen is very nearly, but not quite identical to
that of Tanimoto. Although the models used by Levine and Birnbaum are much

more convenient, and actually describe the experimental observations quite

*There is a puzzling feature of these measurements. Kiss and Welsh find an
absorption coefficient in the wings for He-Ne which is roughly the same magni-
tude as those for He-A and Ne-A. Bosomworth and Gush, however, measure the
absorption for He-A and Ne-A at their peaks but report finding no absorption

there for He-Ne. -
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well up to about 400 cm_l, we do not feel confident about extending their use
to the far wings, i.e., to ~1000 cm_l. First, we must immediately eliminate
the classical model from consideration, since we are concerned (at reciprocal
wavelengths of 1000 cm_l) with processes in which the energy of the absorbed
light quantum is about five times as great as the initial (thermal) kinetic
energy of the colliding molecules. Seéond, although Levine in his quantum
mechanical model has demonstrated that the use of a presumably incorrect dipole
moment (»ae_Ysz) has no serious consequence at low frequencies, our goal is
to extrapolate to higher frequencies, where we do not have observations as a
check. Therefore, we cannot start with an a priori incorrect model and gamble

that the predictions will again be insensitive to it.

Furthermore, we cannct expect the higher frequency behavior to be so in-
sensitive to the potential. The latter behavior comes from the close

collisions, and in thes# the details of the potential are more important.

Our analysis has been carried to the point where it is now being prepared
for the final step: a numericsl evaluation of integrals by computer. The
differences between our werk and Tanimoto's lie in the evaluation of the
integrals. He has used an approximation (it will be discussed in Section VI).
whose effect it is difficult to assess, so that we feel it should be avoided
in spite of the additional computations required. In addition he has con-
sidered only special values of the scale size p of the dipole moment, so as to
facilitate the computational procedure. We plan to use a quite accurate
approximation which will permit us to perform the calculation for amy value

of p without seriously affecting the complexity of the numerical program.
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II. GENERAL EXPRESSION FOR DIPOLE ABSORPTION

We begin Ly deriving a general expression for the rate of photon absorption
by a dipole. The absorption and emission rates are given by the following two

well known expressions,

2T > > 2
Rpe(® = =% 1Zf PiIT(f|w,e,1)| 8(E;-E,-fu), (2.1)
R, () = -2%1 1zf P1|T(3,Z;f|i)|26(Ef+ﬁw-Ei), (2.2)

where T(f|;,z;i) is the T-matrix element for a transition between an initial
state i and a final state f of the colliding atoms accompanied by the absorption
of a photon of wave vector ;/c and polarization Z, and Pi is the statistical
weight factor for the initial states of energy Ei' By means of a time reversal
argument it can be shown that Remm(w) can be expressed in terms of the T-matrix
for absorption and that, as a result, the net abso;gg}on rate R(w) = Ra - R

bs emm
may be written in the form

27

> > 2
Rw) = =& ) (B;-P.) |T(£|u,e31) | 8(E.-E -hw). (2.3)

i,f

Yo lowest order in the electronic charge the T-matrix element is

1/2 e
> o fanh1 b | > >
T(f|w,e,1) [ e ] (wfli mj exp (1u xJ/c) pJ Llwi) 5 (2.4)

where wi and wf are the initial and final state scattering wave functions of the

colliding atom pair, e,, m,, pj, and x, are the charge, mass, momentum, and

b R ]
position of the jth charged particle (electron or nucleus), and I is the photon

flux. 1In the dipole approximation this expression reduces to

1/2
2mhiwl > >

T(f|w,e;4) = -1[
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where

> -»>
and I ej;3 is the total dipole operator of the system.
3
We zssume that the statistical weight factors P, and P_ are independent of

i f

direction. The angular integrations in the sum over final states and the average

over initial states then have the effect of averaging over directions of the
polarization vector ;. Bearing this in mind, and substituting the expression
(2.5) for T(f|$,g;i) into (2.3) for R(w) we obtain

3
4T Wl e > 2 y
Rw) = 3 = iLf (pi-pf)|ufi| § (E-E,hw) . (2.7)

Eq. (2.7) is the starting point for many of the theoretical papers on
collision induced absorption. We shall be concerned with the absorption co-
efficient or reciprocal mean free path for photon absorption A(w), which is

related to the absorption rate by
A(w) = mn'VRW)/I, (2.8)

where n,n' are the rumber densities of the two species of colliding atoms, and
V is the quantization volume. The statistics are described by the Boltzmann
distribution,

Pi,f = P(Ei,f)- = const. x exp(-Ei’f/KT). (2.9)

and the delta function in (2.7) requires Ef = Ei + fiw, so that

Pf = Pi exp (-fiw/KT) . (2.10)
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Thus we find for A(w),

3

L
Aw) = ﬁg nn'V

[

oft - exp(-ho/kD)] | p1|3ﬁ|26(zf-r.~:1-m) . (2.11)
i, f

For hw << KT the dominant behavior of the purely translational bands is
provided by the factor w[l - exp(éhw/KT)] « wz, and, although it is not obvious,
the remaining factor in A(w) approaches & nonzero value as w -+ 0. Thus, although
the purely translational bands may be thought of as centered about "the line at
zero frequency," they actually have their peaks at some nonzero frequency because
of this factor w2. The term exp(-fiw/KT) may be traced back to Eq. (2.2), where
it is seen to be a reflection of the stimulated emission rate into the photon
beam; the stimulated emission rate tends to cancel the absorption rate, and in
fact does so identically at zero frequency. At photon energies much greater
than KT, such as correspond, for example, to vibrational bands, the effect of

stimulated emission is evidently negligible.
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M oanny

IIT1. PARTIAL WAVE EXPANSION

In the Bor:-Oppenheimer approximation the total wave function w(ﬁ,;) is

written
V&,D = x@® ¢@®R,D), (3.1)

where R is the internuclear coordinate and T represents all the

electronic coordinates. x(ﬁ) is assumed to satisfy a Schroedinger equation
with an intermolecular potential V(ﬁ), and ¢(§,;) is assumed to have only a
slowly varying dependence on K. Tue dipole matrix element Efi of (2.6) is
then given by

Ve = Jx;@)ﬁf)xi(i)d:*k, @)

where

) - j@ﬁ;j) lo @, 5|2 a3 ' (3.3)

is the expectation value of the dipole moment operator for a fixed internuclear

coordinate R. It is understood here that the electronic state of the system
(which is the only internal state for rare gas atoms) remains unchanged in the

transition.

Since we are concerned only with rare gas atoms, whnse properties are
independent of orientation, we assume the dipole moment : to be dependent only

on the magnitude of the interatomic distance R, and to be directed along the

radius vector R = K/R,

@) = u®R. (3.4)
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We shall use two center-of-mass coordinate systems*, one with 1its polar
axis along the initial-state wave vector ﬁi of the colliding atoms, and the
other with its polar axis along the final-state wave vector ﬁf. Assuming that
X4 and Xg are scattering states for a spherically symmetric interaction we may

expand them in Legendre functions in the ki and kf coordinate systems, re-

spectively

= L 21y 1* expds )-1451-1 P (cos®,)

X4 T exP{1%4¢ KR 2 1/

(3.5)
(R) '
1 L i d)

Xe = ==L (2241) 1" exp(i8_,)=—==— P (cosf.)

£ N £2 kR L £

where V is the quantization volume and 612 nnd Gfl are the standard scattering
phase shifts. The coefficients /I7V (20+1) 1 exp (18, /k) have been chosen so

that the wave functions have the correct asymptotic form,29
x(®) = -/VE exp(1E-R) + £(8) ﬂﬁé‘-‘@], sR+e, (3.6)

provided the radial wave functions Y and ug, are normalized so that

u,(R) =+ sin(kR + in/2 +8), as R+ 3.7)

Inserting the partial wave expansions (3.5) into the expression (3.2) for
:fi’ and using (3.4) for ;(i), we obtain

T = e 1 eubaura ottt exp[166,,,-8.)] mer,2) T2,

£1 ¢
(3.8)

* The energy absorbed by the center of mass in the transition is
(Aw/Mc2) (hw/2) ~ 10-11 #iw, which is so small comnared to its initial
energy (~KT) that its motion may be completely ignored.
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where M(£,2%') is the matrix element

M(L,8') = Ju:Q(R)u(R) uu,(R)dR . (3.9)

and f(z,z') is the integral over solid angle

T(e,2') = JPz(cosef) Pz,(cosei)ﬁ aa, . (3.10)

The evaluation of M(£,2') is reserved for the next section, in which we choose

a specific model for u(R), and a specific scattering potential (so that the

radial wave functions may be obtained by solving the Schroedinger equation).
f(z,z') may be evaluated straightforwardly using well known properties of Legendre

functions. The procedure is outlined in the appendix; the result is

1 S | > af_8(e=1,8") __8(aHl,0')
a7 100,27 = Pylcosty) (costyyx + sindy: )[(22-1)(2z+1) (29,+1)(2z+3)]

+ Py(cosby,) zI:(2;a-1)(2n+1)+ w2y | 0 G

where efi’ ¢fi are the polar and azimuthal angles of Ef in the E coordinate

i
system, x,y,z are unit vectors in the same coordinate system, with z in the

Ei direct’on, and 6(%,4') is a Kroneker delta.

Now, in the expression (2.11) for the absorption coefficient A(w) the
integration over final states contains an integration over the solid angle
variable nfi' Therefore, we shall ultimately need the integral Jlﬁfilz dei
If we use (3.8) for :fi’ insert (3.11) for T(Z,Z'), and utilize the well

known orthogonality relations for Legendre functions, we obtain

3

s 2 (4n) 2 2

Jluﬁl da., = Vz’;zkz % {(z+1) | MCe4+1,2) |7+ 2|M(2=1,2) | } (3.12)
£°1

[}
~
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As the quantization volume is made arbitrarily large the summations over

states become integrals according to

> — J d3kf, as v+, (3.13)

(Zﬂ)3

Thus the summation over final states in (2.11) becomes

k
+> 2 . \' s 3 LY
I lugl 6(Ef_Ei-tnm)+—(2")3 =z Jlufil da,, , (3.14)
£

where m is the reduced mass of the atom pair, and comes from the density of
final states.

The normalized Boltzmann distribution is

3/ .2 V2
p, = £2n) ( b ) exp(-E /KT) . (3.15)

\' 2nmKT

oY

Combini:ug this expression with (3.14) and (3.12) in Eq. (2.11) for A(uw) we
finally find, in the limit of infinite quantization volume,

3, 2\3/2
Aw) = !4;) n: <2n2KI) m[l- exp(-ﬁm/KTﬂ
242 '+1 2 k2
x e JlM(k',2)| exp (-E/KT) | = ) dk (3.16)
2=0 £'=g¢]
2'20
where
E = #%%/2m, g = 22&")%/m , (3.17)
E'= E+4%w . (3.18)
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. EVALUATION OF THE DIPOLE MATRIX ELEMENT

We wish to evaluate the matrix element

M(L,8') = JuZQ(R)u(R)uu,(R)dR. (3.9)

To do so we must specify the model to be used. First, in accordance with the

discussion of Section I we take the dipole moment to be
- -
T®) = u, exp(-R/p) R, (4.1)

so that u(R) = o exp(-R/p). Second, we take for the potential

VR) = V exp(-2R/7) . (4.2)

e

Support for this model is cited by Mason30 and by A.brahamson.31 More precisely,
the potential they discuss is of the form

R)6
V(R) = V_ exp(-2R/}) - vi[—] : 4.3)

However, Mason gives as the value of the potential at its minimum 6.35 x 10-3ev
for Ne-A, and 2.88 x 10-3ev for He-A. Since we shall be concerned with a gas
having a thermal distribution of energies with an average of ~ 2.5 x 10-2ev,

we may drop the attractive term and use the form (4.2). Therefore, the radial

wave functions must satisfy the radial Schroedinger equation

2
d“u
-15& + [k2 -2 2;1 - A2 exp(-2R/A] u, = 0, (4.4)
dR R

where k2 = 2mE/h2, aud A2 = 2mV°/h2.
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Now, this equation cannot be solved in closed form, but the equation

d2u

3+ " - A% exp(-2R/))Ju, = 0 4.5)
dR

can be. We shall adopt the following approximation, which is used by Tan'lmoto,z7
and appears to be due originally to Takayanagi.32 We substitute Eq. (4.5) for
Eq. (4.4) with q2 taken to be

2 2 +
q° = k-l (4.6)

R2
o

where Ro is the classical turning point, defined as the solution to

K- MM 2 exp(-2R /1) = 0 . 4.7)
Ro

The idea of the approximation is as follows. We wish to evaluate the integral

for M(2,%') given by (3.9). The integrand decreases rapidly for large R because

of the expbénential decrease of u(R), so that it is not important that the ap-

proximations to Ueo and Wy be accurate at large R. Both the real and approximate

wave functions are sinusoidal for large R (recall Eq. (3.7)), but the details

of the oscillatory behavior do not have much effect on the integral (3.9). The

integrand decreases rapidly for small R, because the wave functions must turn

down sharply inside the classically forbidden region (i.e., for R < R ) In

this region (R < R ), as well, the details of the wave functions are not too

important, provided the approximations turn down sharply, as do the real wave

functions. The principal contribution to the integral then comes from the

vicinity of the larger of the two turning points, since the integrand is washed '

out by the corresponding wave function for smaller R, and by u(R) for larger R.

Thus it is important that the wave functions turn down at the right place,
i.e., that the turning points be correct. To this extent the approximation is
accurate, since the turning points R.o of (4.4) and (4.5) have been arranged to
be identical. It is, however, subject to the criticism that the true and ap-

proximate wave functions cannot be guaranteed to turn down at similar rates
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for R < Ro; since u(R) rises rapidly as R decreases, it is conceivable that a
wave function which decreases too slowly will lead to an appreciable over-

estimate of the integral, and vice versa.

R/

By making the substitution z = Ale one may convert (4.5) into the
canonical form of Bessel's equation.33 The solution, having the required

boundary condition uz(O) =0, is

-R/x)

-R/A
_ N’[&iql(Ale I_iaAe )

| T1q2 (AY) - i (D) ! (4.8)

uz(R)

where Iiu(z) represeuts the Bessel function of imaginary argument (and imaginary

index iy), and N' is a normalization constant. From the asymptotic form of the

Bessel function?4

2 ' 2
(z) ~ YT [1+1+“u + ] , (4.9)

I
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and the values of A) and qA it may be seen that

L@ & 1, .4y, (4.10)

so that we may write

u(R) = N[qu)‘(A)\e-R/)‘) -1 (A)\e-R/)‘)] . (4.11)

-iqx

Specifically, from Mason's conclusions30 (Vo =1,07 x 10—8erg, A =4,86 x 10_9cm
for Ne-A, and V_ = 2.09 x 10'9erg, A = 5.28 x 10" cm for He-A) it follows that
for Ne-A: A\ = 3.16 x 10° and (recall Eq. (4.6)) qA s kA = 7.6 (at thermal
energy); and for He-A: Al = 7.95 x 102 and qX € kA = 4,3 (at thermal energy).
Therefore, the first term of the asymptotic expansion (4.9) is sufficient, and
(4.11) follows.
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From the series expansions of the Bessel funct:l.ons33 it can easily be seen

that uz(R) has the asymptotic form

1/2 -
uz(R) 2 _ZiN[sinhngA)

e sin[qR—qun(AA/Z) " ¢(qx)], as R+,  (4.12)

where ¢ is the phase of the gamma function of complex argument,
P(+ip) = |rQiy) ™), (4.13)

By comparison with the required asymptotic form (3.7) it may then be seen that

the normalization constant N must be chosen to be

- 4| _TarA
N o= 4 [sinh"qk] : (4.14)

Finally, noting that the modified Bessel function of imaginary argument (and

imaginary index) is defined by35

-7
Kiu(z) = -Z_i-—sinhﬂu [Iiu(z) - I_iu(z)] . (4.15)

we may write u, in the form

4, ®) = (g2 sinhig)) /2 &, _are Yy | (4.16)

iqA

Inserting wave functions of the form (4.16) into the integral (3.9) for

M(%,2'), and making the substitution z = Ake_R/A, we now obtain

u
M(L,2') = -%(nq'k sinh 1rq'>‘)1/2 (mqA sinh wqx)llz -——377r F(A)), (4.17)
m an*'?
AX
F(A\) = I IRENOR NG FE g (4.18)
o]
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where we have now modified the notation so that the unprimed variables refer to
the initial state i and the primed variables refer to the final state f. For
large argument the modified Bessel functions go as36

K@) ~ S (4.19)

so that, since A)\ ~ 103, we may extend the limits of the integral(4.18) to

infinity with negligible error. The resulting integral can be evaluated in
closed form,37

2A/p-3 2 2
F(o) = mlrwz +1(q'+q)A/2]|" |T[r/2041(q"-q)r/2]|° . (4.20)
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V. FINAL EXPRESSION FOR THE ABSORPTION COEFFICIENT

We now collect the resulis of the previous sections and write the final

expression for the absorption coefficient A(w). It is given 23 the following

integral over the thermal energy distribution of the colliding molecules, and

summation over their initial and final angular momenta,

=0 Qo'=o%]
L'> 0

x JIF[A/Zp+i(q'+q)>\/2]|4 Irn/29+1(q'-q)x/21|“

% exp(mhzkz/ZmKT) sinh 7q'X sinh nqu%bJ dk,

where the constant B is given by

u§A7nn'm ( hZ ]3/2 { Zh2 ]X/p 1

nZe  pmxn? (v a2 rfove)

2m
B = 3

(5.1)

(5.2)

the final state wave number k' is a function of the initial state wave number k,

2 1/2
k' = [k + 2mm/h]

(5.3)

the initial and final state turning points Ro and R; must be determined for all

values of the pairs (k,%) and (k',%'), respectively, as the solutions to

2mV
kz - 9 exp(-2R /1) - AQ24) = 0 W
2 o 2
h R
o
> ’
2mV v/
0?2200 gen(eri/yy - AL L 0
2 o v2
h Ro J
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so that Ro and Ré are ultimatel, functions of the integration variable k and
the summation variables ¢ and ¢' and finally q and q' are defined as functions -
of k, %, %' by

- 1/2
i 'a kz_zgz;-l)]
R
Y y ’ (5.5)

[ V(g 1/2
¢ = [ 2 +12] |

L R'2
(o]
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VI. REMARKS ON THE EVALUATION OF THE INTEGRAL

Eq. (5.1) for the absorption coefficient A(w) is equivalent to Tanimoto's
expression.27 The differences lie in appfoximations used in numerically evalu-
ating the integral. Tanimoto has done machine computations for reciprocal
wavelengths up to w/2mc = 500 cufl, and has developed an analytical approximation
which he asserts duplicates the machine results quite closely above 300 cm-l.
Since we plan to do an independent computer evaluation of A(w), which is likely
to be nontrivial, we feel an obligation to indicate why we do not instead simply

use Tenimoto's results to predict the absorption by rare gases.

In addition to the mathematical reasons, it would be desirable to re-do
the calculations and choose the parameters to fit the more recent data12 at the
(presumably) more easily measurable peaks of the absorption coefficients;

*
Tanimoto's parameters were chosen to fit the older data in the near wingn?

Now let us return to the mathematics. For certain special cases the gamma
functions of complex argument reduce to more elementary functions. In particular

we have38
iT(L/2 + iy)!2 = 1/cosh my, (6.1)
r@ + iy)l2 = ny/sinh 7y, (6.2)

By combining these with the general relat:on for gamma functions
r(z+1) = 2zr(z) (6.3)

one may significantly simplify the integrals in Eq. (5.1) provided A/p has any

integral value. For this reason Tanimoto has chosen to consider only integral

* This statement contains the implicit assumption that the more recent data is
also the more reliable (recall that, as mentioned in Section I, the two sets
of measurements are not strictly consistent with cne another), which in turn
is based only on the assumption that the larger the absorption coefficient
the more easily it can be measured. Unfortunately, we are aware of no solid
basis for choosing either set.

76




values of Afp and has found A/p = 1 to provide the best fit. One might consider
going a step further and calculating A(w) orly for integral values of A/p, but
interpolating to obtain A(w) for nonintegral values. However, one is still left

with no satisfactory evaluation of A(w) for the range A/p < 1.

We have chosen the following alternative. Stirling's asymptotic formula

for the gamma function,38

N(z) ~ /37 22712 2(q et ), (6.4)

is very accurate for |z| 5 2. Therefore, by using (6.3) we may write

r(z) = &2 (6.5)

z(z+1l) °*

and then use Stirling's formula in (6.5) for [(z+2). The result is (z = x+iy)
x+3/2
2 2
|1"(=)|2 2 21r!;(x;2) -_l-llz 1+ x+22 >
(x"+) kx+l) + fa 6[(x+2)“ +v ]

x exp[-z [x + 2 + y arctan -LJ] , (6.6)

x+2

which is quite accurate for x > 0. Thus we can evaluate A(w) for all positive

values (and therefore all physical values) of A/p.

The other approximation to be considered has to do with the turning points
Ro aud R;, which are defined as the solutions of Eq. (5.4) and therefore are
functions of k, £, &'. Tanimoto has chosen to ignore the k, &, %' dependence
and use one fixed value of R° (and the same value for R;), namely the turning

point for thermal energy and zero angular momentum, i.e., the solution to

2 2mV

0
k thermal 2

exp(-2R_/1). (6.7)
A 0

If we assume that the principal contribution to the integral in (5.1) does in

fact come at the thermal value of k, there appears to still be a serious
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problem from ignoring the angular momentum dependence of Ro’ and Rs. The turning
point in the absence of the repulsive angular momentum potential is necessarily
smaller than in its presence, so that when the smaller values of Ro and Rs are
used in (5.5) the repulsive effect of the angular momentum terms is magnified

and the effective wave numbers q and q' are diminished. As a result the wave
function does not penetrate as far in and does not "see" as much of the dipole
moment. Thus it would appear that this approximation systematically under- A
estimates the dipole matrix element M(%,%') of (3.9), and therefore underestimates
A(w). It is true that for small values of % the angular wmomentum potential is
negligible at the turning point compared to the exponential potential. However,
we have made some numerical estimates of the terms contributing to the summation
over £ in (5.1) for the special case in which the Boltzmann distribution over
energy is replaced by a delta function peaked at thermal energy; we found that
the maximum contribution occurred for % ~ 30, and significant contributions still

occurred for 2 ~ 60.

Thus we feel that the approximation of a constant turning point is un-
satisfactory. The remainder of our program includes a solution of (5.4) to obtain

R, and R; as functions of k, £, and 2'.
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APPENDIX

In this appendix we outline the procedure for evaluating the integral

> i ~
I(e,") IPz(cosef) Pz,(cosei) R in 5 (A1)
> o
First, in the coordinate system with polar axis along ki, R may be written

R = sinei cos¢i X + sinei sin¢i y + cosei z . (A2)

Next, Pz(cosef) may be written in terms of the variables of this same coordinate

system by using the addition theorem for Legendre polynomials,39

Pz(cosef) = Pz(cosefi) Pz(cosei)

: (2-m) !

+2 ;
ey (Sm)!

sz(cosefi) sz(cosﬂi) cos m(¢i-¢f1), (A3)

> ->
where efi and ¢fi are the coordinates of kf in the ki system. Using the addition

theorem in (Al) we obtain

n
Woo 21 o1 1 2

Ix(z,z ) 2L Pz (cosefi) cosd e, J Pz (coe8) Pz,(eose) sin"6 deo,
° (A4)

I (2,8') = —22—p L(cose,,) sino [“P 1(cose) P, (cos) sin26 da

y L(e+1) 8 £1 £1) ¢ L' p
(A5)

m

Iz(l,l') = 27 Pz(cosefi) Jon(cose) Pz,(cose) cosf siné d6 . (A6)
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The integrals in (A4, 5, 6) may now be evaluated using the identitie340

m) a-2H P - e - @, (A7)
(20+1) z P "(2) = (n-mH) P, (2) + (nhm) B (2) (A8)

4
and the orthogonality relation for Legendre fur.ctions,'0

1
m m 2 (f,‘.’ m ! ]
J_lpl (Z) P!l' (Z)dz = 20+1 (2_ n )l. 6(94!' ) ’ (Ag)

where 6(%2,%') is a Kroneker delta. The result is

T 2 25 (3+1) ,
JOPR (cosp) PR,(coae) sin“6de = (20-1) (2241) §(2-1,2")
(A10)
20(2+1 :
- Gd) 2oy SHLED
"b (cos8) P, (cos8) cosé sineds = 2L §(2-1,2")
. , (cos g1 (cos8) cosé sin (3-D) (21D R 1
(Al1)

2(841)

t 2243) (2491)

§(41,2") .

When these are substituted intc (A4, 5, 6) we obtain Eq. (3.11) of the text.

R
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Chapter 4.

STIMULATED RAMAN EFFECT
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I. INTRODUCTION

In this chapter we shall investigate the effects of Raman scattering on
the propagation of high intensity laser light through the atmosphere. The
general problem of laser light propagation is an extremely complex one which
involves many different physical processes. In order to make any headway in
understanding the effects of Raman scattering we shall consider a situation in
which the effects of self-focusing, etc., have produced a stable beam (or fila-
mentary "hot spot" within a beam) of uniform intensity and cross-section. Ex-
tending the work of Helwarth,l’2 it is possible to derive a set of rate equations
which relate the intensities of the various orders of forward amd back amplified
Stokes waves to the laser-light intensity. This set of coupled, nonlinear,
partial differential equations with varying coefficients appears, at first glance,
to be quite intractable. However, by first examining a highly simplified version
of these equations and then treating, in turn, each of the various complications
of the simplified equations which comprise the original equatioms, it is possible

to obtain a coherent description of the physical phenomena involved.

The rate of creation of Raman-scattered photons in a laser beam is com-
posed of a term proportional to the laser beam intensity (spontaneous emission)
and a term proportionai to the product of the laser beam intensity and the in-
tensity of the Raman photons already present (stimulated emission). If the rate
of creation of Raman—scgttered photons parallel to the beam (i.e., either forward
or backscattered) is much larger than the rate of destruction of these photons
due to Rayleigh scattering, then the intensity of these Raman photons will be
amplified at the expense of the primary laser photons until the primary beam is
totally depleted. The specific manner in which the primary beam is extinguished
will be the subject of sections II through V. Section VI will relate the current

status of the author's researches into certain transient phenomena.
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II. NEGLIGIBLE BACKSCATTER

Let us cousider the propagation of a beam of laser light through a gas in
which the amplification of the backscattered Stokes waves may be neglected (the
criteria for the existence of such a gas will be discussed in section v.).
Assuming, to begin with, that only the first Stokes wave is of any consequence,
the densities of the laser photons pz(x,t) and amplified forward scattered Raman

photons L (x,t) in the beam are related by the rate equations

) ) :

[at tec 3x)pz = meglap #8) - vo, , (1)
_a_+c_a_p = +p,(ap_+8) - vp (2)
ot x| r L r RS B

where
3
- i (0), B, = cp, 0 Y= ¢cpp O
@ 22 Copo i, B, °1 %Ram. °* T “Ray. *
v Av

The quantities oRay and ORam. 2T the Rayleigh and Raman total scattering cross-
sections respectively, fr i1s the density of tne gas, Av is the line width of the
amplified wave, and 0(0) is the Raman forward scattering cross-section. The

quantity 8 is given by
Qo
B = cop a(0) o~ : (3)

where f% is the effective cone angle for Raman amplification -'dewill be dis-
cussed in greater detail later in this section. The boundary value conditions
for Eqs. (1) and (2) are .

P (0st) = p (t), p(t) = O for t <0, and P (0,8) = 0. (4
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We now make the substitutions:

X ) 9 )
s t e ¥ X , ot +c o c 3y

in Eqs. (1) and (?). Equation (1) may now be rewritten as
cT— = -op_(apr+8) - (y+8 _-B) oy (5)

For nitrogen3

~ -28 2 -
ORam. 10 ""em™ and o 1
and hence y >> BO-B, and we can neglect BO-B with respect to y in Eq. (5) and

make only a minimal error. The solution of Eqs. (1) and (2) with this approxi-

mation is
e—P(x)
polx,t) = oo(s)m ,
(6)
-I(x)
pp(X,t) = p,(s8) e = p,(x,t)
i X
where T(x) = E-J dx' y(x') and
0o
X X m
Jx) = f L (x") exp f & Es(x") + po(8)a(x") e‘r""] (M
) x' -

The x-dependance of a, B, and y is due to the altitude dependance of Pr and Av
for a laser beam which is aimed nonhorizontally in the atmosphere.. From Eq. (2)
we may note that no amplification of p, can occur unless a Py > Y- For N2 at

atmospheric pressure this is equivalent to having the laser intensity at
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X =0 (Io) satisfy the inequality
2
Io > 60 watts/cm .

We shall therefore assume the above inequality to be valid for the remainder of

this work.

Coneider first a horizontally aimed laser beam. For distances of a few
tens of kilometers I'(x) is completely negligible. Assuming that po(t) =0,

is a constant for t > o and defining the dimensionless quantities

Equation (6) may now be rewritten as

F - L
[} o+ e(u+1)z ’
(8)
e(u+1)z -1
Fr M (u+l) z d
u+e

These solutions indicate that for u >> 1 the laser light will penetrate the gas
to a depth of the order of z, - u-lln(u) in such a manner as to be essentially
undiminished in intensity (i.e., F2 & y for z ? zc). Beyond this depth the
laser light intensity will rapidly decrease to zero and the intensity of the
first Stokes wave will rapidly rise to the level of the original laser beam.

The effective cone angle for Raman amplification (Qo) is a végﬁely defined
quaniity as it represents an attempt to solve a basically three-dimensional
problem by geometrically correcting one of the coefficients in the solution of

the corresponding one-dimensional problem. However, since.- as we ghall
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demonstrate below - the laser intensity drops from I = Py hve to zero is a
very small distance, and the initial intensity Ic which will cause the intensity

3 km (the scale height of the atmosphere)

to drnp to zero at a distance £ = 8 x 10
is extremely insensitive to our choice of ﬂo, the results we obtain with the aid

of this correction factor should be quite good.

For a beam diameter D and a z, corresponding to %, ﬂo is given by

2
90 - -—1—2— % Dz\ - ﬂ—
L ’ 442

For Nz it one atmosphere Av 1s the pressure broadened line width given by4

Av -1
~ 8 .09 cm E
-1 14 -1
Using o(o) = (4m) Oam’ ¥ " 5 x 107" sec ~ and taking D = 10 cm we may

define a quantity I which is that value of Iz(o) = I for which Iz(l) is one
half of Io; i, e.,

Iz(o) = I =I and Iz(l) - %Ic . (9)

This quantity may be obtained from

or Ic = 3,90 Ec kilowatts/cm2 F

0=

E = M2z = 0p

c 0

vthere Ec is the solution of the equation

[

Im

Cc
P S | 1\ . 6.4x10® . : (12)
z foga(0) | Q,

(aal
0
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The solution of this equation is Ec = 35.4 and hence

Ic = 140 kw/cm2 p

From Eq. (12) we obtain that

S L 1 sme
£ 1 35 2
(o4 (o4 [o]

verifying our assertion that Ic is insensitive to our choice of no. Examining
Eq. (8) we find that for I, = Ic. 1, drops from (.75)1c to (.25)1c in a distance

)
Ax given by
%F. = 062 or Ax = 500 meters,

and hence the transition region is quite narrow and no may be defined in a
reasonably unambiguous manner. In fact, 690/90 & 2 Ax/% and hence the ambiguity

in ﬂo results in a fractional error

51
—< 2 L 2x 5 4,903
I, %%

A plot of the fractional transmission to a depth ¢ versus the initial

intensity, or

F o= —Lltu_

L "+ e(u+1)z

= |

versus u for fixed z, would result in a curve much like that for Iz(x) V8. X.
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That is, Io-llz(l) would be roughly constant and equal to one for 0 < Io < Ic,

equal to 1/2 for !o = Ic, and drop sharply to zero for Io > Ic.' A plot of the
total transmission (IL) versus Io would therefore yield a curve which would
show a rcughly linear rise froem zero to some maximum value Im & Ic, and then
fall rapidly to zero. The maximum transmission to a depth & is readily obtained
from Eq. (8) by setting the derivative of F, with respect to u equal to zero.
The result is

I
2
I = £ , I = 3,90 £ kw/cm® , (13)

where Em is the solution of

3
<1-Ei)e“‘ -1 (14)
m

For the parameters of interest here

I = 120 lw/cm® and 1, = 12 e
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111. ALTITUDE DEPENDENCE

Let us now consider a vertically aimed beam in an exponential atmosphere

with
pp(® = oT(o)e-X/z b (15)

Since we are mainly concerned with computing the maximum {intensity which can
be transmitted through the top of the atmosphere we may assume that the Faman
line 1is virtually uachanged throughout almost the entire beam. We may therefore

assume the line width of the amplified wave to be

Av
Av = Avp(o) E\-l-e-"“‘] and N = K;T% ’ (16)

vhere Avp(o) is the pressure broadened Raman 1ine width and Av, is the line
width of the original laser beam. Using Eqe. (15) and (16) to obtain a, B,
and Y as 8 function of x and inserting the results in Eqs. (6) and (7) we
£ind that TI'(x) (the effects of Rayleigh scattering) is negligible. A good
approximation to J(y) may then be obtained for altitudes greater than one

kilometer. The result is

uz _£(y)
i) = %'e e , an

where z_ = ge/c and

-y/ &
() = - AR5 : (18)
Inserting Eq. (18) in Eq. (6) we obtain
2
- et——— 19
Fl(y) uzof(y) ) 9
ute
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Choosing (AVR/C) = 1.2 x 10-3 cm-1 (which is typical for the line width for a
Ruby Giant Pulse Lasers) we find that

For y <<y = -4 ¢n n = 35 km, it follows that zof = zoy/R = z, and Eq. (19)
agrees with Eq. (8) to within the approximations made here.

A calculation of the maximum transmiasion of laser light to an altitude
y may be made in a manner similar to that used for the analogous quantity in

the preceding section. The result is

I

I = ) - . . S 2 2
= % (2 _2)_1 . I° 3.90 () kw/cm™ (20)
m
where Em is solution of
(1 = L)‘Em ™ ——1—— - m . (21)
3 z£(y) z,

The last equality is valid since for y > Yo the effective cone angle for Raman
amplification (no) is proportional to yi. For y >> 35 km (i.e., for above the
atmosphere), the maximum leser intensity which can be transmitted, and the

laser intensity necessary at the source to achieve thut maximum are
2 2
Im = 27 kw/cm~ Io = 28 kw/em™ -

It is of interest to note that the atmosphere will act as an amplifier
for Raman waves up to an altitude of approximately Yo (about four scale heights).
This fact is most easily understood if we note that the gain is proportional
to pT/Av. It then becomes clear that the amplification of Raman waves up to
Yo occurs because although the density of N2 decreases with altitude, the width
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of the pressure broadened Raman line decreases in a proportionate manner. The
net effect is to produce a constant gain for y < Yo (i.e., as long as Av 1is
dominated by Avp) and a consequent decrease in the maximum transmittable power.
In order to minimize this effect the laser line should be made as broad as
possible. If the laser line is significantly broader than the pressure broadened
Raman line, then a(x) is proportional to the local density and the solution of
Eqs. (1) and (2) may be obtained from Eqs. (8) by making the substituticn

z+ 1T = zo(l - e-x/z) (22)

where 1 is the optical depth. Consequently, the intensity of laser light trans-
mitted vertically to a point far above the atmosphere will be the same as that
transmitted a distance of one scale height through air held at the constant

pressure of one atmosphere throughout the beam.

Of further interest is the fact that Rayleigh scattering is virtually
always inconsequential for the intensities of interest here. 1Its major effect

18 to provide us with a good reason for changing Bo to B in Eq. (1).
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1v. MULTIPLE STOKES LINES

Let usnow consider a case in which the laser beam intensity is much
larger than that necessary to induce its conversion to the first Stokes wave
within a certain prescribed distance. This first Stokes wave will then propa-
gate a certain distance until it is converted into the second Stokes wave, etc.
Assuming that the pressure is constant along the beam path and that the effects
of back scattering may be neglected, there will, in general be N Stokes waves
(of frequency Vg = Vs V

- 2vr, ceey V, = er, for a laser frequency v, and

) ) L
a Raman frequency shift vr) which will attain a asignificant intensity within
a given depth in the gas. In the dimensionless units of Section II the photon

densities of these Stokes waves are coupled by the set of equations:

F, = - Fy(F +1) T

F, = FQ(Fl +1) - Fl(Fz + 1)

' [
} (23)

1]
]

4 F . (F .+1) -F. .(F +1)

dz IN-1 N-2 Fya1 n-1'Fy

Lr a B (F+1)

dz N N-1‘"N /

These equations have been solved exactly for the case of N = 2, The solution
is too complicated mathematically for the reader to obtain much use from its

display here. Basically, it describes a situation in which the laser beam

penetrates the gas to a depth z) = u-l 2n y in such a manner as to be essentially

undiminished in intensity. Beyond this depth the laser light intensity will
rapidly decrease to zero and the first Stokes wave will rapidly rise to the
level of the original laser beam. Between z, and z, = 2u_1 ¢n u, Fl is roughly
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equal to the constant u. At z, the first Stokes wave suddenly falls to zero
and the second Stokes wave (F2) rises to p. A close examination of Eq. (22),

taking due note of the fact that

N
Fz(z) + I Fm(z) =
m=]1

(obtained by adding Eq. (23) and integrating the result), indicates that this
process will continue for a very large number of orders 1if U >> N. Hence, if
we wish to transmit energy in a beam vertically through the atmosphere, it
would be advisable to choose v, as the highest frequency of a window in the
atmospheric transmissivity. If the width of the window is er, and 1f the
intensity of the laser beam is the maximum permissible, then a light beam

of frequency V= er will emerge from the top of the atmosphere. On the
basis of Eq. (22) we may estimate this maximum intensity to be the critical
intensity for a distance %/N. That is

L, = 3.9 (N) k/cn’ (24)

where

Nz

3
e _ 1
EC (o]

For a transmission window of 100 & and a Raman wavelength shift6 of 12 % we
have N = 8 and

Im = 1.0 megawat:t:/cm2 ,

if Av2 s Avp(o).

95




V. THE EFFECTS OF BACKSCATTERING

For the case of comparable Raman forward and back scattering cross
sections in an infinite gas of uniform density along iie ray path let us assume
that only the first Stokes wave is of any consequence (this is true up to the
second critical depth which is beyond the distances of interest in this section).
The rate equations relating P, to the forward (pf) and back scattered (pb)

photon densities are

3 )
st tCeoc]Py = — 9y E"f"f*"‘b"b"ef*eb] ’ (25)
32-+ c 3%- Pg pl(afpf + Bf) . (26)
d 3
Eraiaie el °1(°b°b + Bb) g @7

The transient response of the above equations is extremely complex. Let us
reserve our discussion of this response for Section VI and consider only the
steady state solutions (i.e., where the time derivatives in the above equations

vanish) here.

Adding Eqs. (25), (26), and (27), and integrating the result we obtain

Dz(x) + pf(x) - pb(x) = constant

= Py ob(O) - of(L) (28)
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or,

pb(o) +of(L) = 0y (29)

In the above we have taken L to be 2 point just before the second Stokes wave

becomes important. Dividing Eq. (26) by Eq. (27) we readily obtain

a ag/oy |
[1 + é pf(x)] [1 + :b—l; pb(x)] = constant

a Qlf/mb
= 1+ é pf(L) - [1 + gi- pb(o):] (30)
or,
a /a.b
ae u.b f
1+¥pf(L) - [1 +Qpb(o)] , (31)

The substitution of Eq. (31) into Eq. (29) yields

ay Qlf/mb ae ac
[l+qpb(o)] +¥pb(o) = ] +qp° 0 (32)

If Avg = Av, , then (af/Bf) = (ab/Bb), (af/u.b) = 0(0)/o(m) and we may define

a quantity M such that
a
M = 1+ 2 pb(o)
M satisfies the equation

MU(O)/U'("T) +M = 2+ . (33)
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If g(p) = o(n) then
1
pb(o) - pf(L) = 3,

and the energy in the original laser beam is shared equally between the forward
and back scattered waves. However, for Io = 100 kw/cm2 the solution of Eq. (33)

indicates that for

pb(o) = .05 o and pf(L) = .95 Py

gfo) ~ o(m) _ 08
o(o) i

That is, forward scattering will dominate back scattering as a mechanism for
extinguishing the laser beam if the asymmetry in the cross-section is as small
as 87. Conversely, the back scattering will dominate the forward scattering

)

if the crose section of the former exceeds that of the latter by as little as
8%. This second case is particularly distressing since the atmosphere will )
“then essentially act as a mirror - reflecting all the energy back at the

source - if the source intensity exceeds some critical value for a given path

length.

If o(o) = o(m) then Eqs. (25), (26) and (27) are easily solved. The

results are
\

P e —uGed
L [2(u+2)W=p] [4W+u] ~ °

w-1
F = 2u rrrei } (34)

F o 1 +4
b 2/2(u+2)W-u ?
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uth
2 z
where W=g¢e

The critical intensity defined by Eq. (9) 1s 130 kw/cm2 which 1s virtually
unchanged from the case of pure forward scattering where Ic = 140 kw/cmz.
However, the shape of the Iz(x) vs. x and IL(Q) vs. I curves are somewhat
different for the two cases: The distance in which I (x) drops from .75 I,

to .25 I is Ax = 850 meters versus 500 meters for the case of no back scatter.
Similarly, for I = I R (2) = 65 kw/cm , and I () = I (L) = 2 x 107 W/cm :
whereas for the case of negligible back scatter if I = Ic then

1 (L) = I (2) = 70 kw/cm . Consequently, the effect of backscatter is to soften

the abrupt transitions in intensity which were characteristic of the I2 curves.

1t is of interest to note that if 0(o) = o(m) then the maximum achievable
intensity at a depth %, and the source intensity to achieve this intensity are

Im = 118 kw/cm2 for Io = 243 kw/cm2

versus 120 and 124 kw/cm2 for the case of negligible back scatter. Hence, Im is
essentially insensitive to the asymmetry in the cross section but, since
(.S)I° is reflected back into the source for g(o) = o(m), Io must be roughly

twice as large to achieve the same Im in the symmetric case.
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VI. TIME DEPENDANCE OF BACKSCATTEKED WAVES

We were able to obtain Py and Pg =P a8 a function of space and time
for the case of inconsequential backscatter [see Eqs. (6) and (7)]. Unfortunately,
we are unabie to repeat this feat by solving Egs. (25), (26), and (27). It is
possible, however, to solve these equations for the case of inconsequential
forward scattering and draw some inferences about the general case as well as
obtain some results which are nct directly related to the problem of atmospheric

propagating but are nonetheless of physical interest.

Neglecting Bf in Eqs. (26) and (27), we find that pg = O. The change

of variable

X
g =t - X , T=t+= ,
c c

RE(S’T) - pz(‘x)t) ’ R-b(S)T) - pb(xit)

enables us to write Eqs. (25) and (27) as

3R, | ‘
257 = - E(R +8) , (35)

b’

55 = Ry(oR, +B8) . (36)

The general solution of these equations is given by

Rm(s-T) = E(s) > a3n

G(r) - 3 F(s)

B . 2 G(1)
(8,7) = -=+<= R (38)
% @ & o) - % F(s)

100




7

4
: i {
( where F and G are arbitrary functions and F and G are the derivatives of these
functions with respect to their arguments.
Let us now consider the solution of Egs. (35) ani (36) subject to the
boundary value conditions
pyo,t) = p (6) , py=py,=ofortco . (39)
Equation (36) indicates that Rb is a continuous function of s and hence, since
pb-ofort < 0 we have
Ry(0,7) = o . (40)
Using Eqs. (39) and (40) in Eqs. (37) and (38) we obtain
-8 ¥ (
R, (s,1) P8 “ T (s, 1) (41)
. 8 M(s, 1)
R, (s,7) a 1~ M(s,7) ° (42)
where 2x = c(t~-8) and 1
8 8 i
M(s,) = & | dgo (8) exp{E (&-1) -2 | dg' o (6" (43) *
g 2 o *P\?2 2 0 ‘
0 3 :
If po(t) = constant = p_ then for 8 > o
- o 88
I R, = ¢, lz = g8 , (44)
¥ [(utl)e” - u] + ue
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B o= l+ e (45)

. ° [(w#1)e® - u] + 788

where 2g = 8 + ap . Equationm (45) indicates that
x -z
Rz(o, 2 3 ) = pz(x,ct) = o, e (46)

and hence, since z << 1 for any distance of interest, the wave front propagates
is such a manner as to be essentially unattenuated with distance. This is

in contrast to the case where forward scattering dominates and Py drops sharply
to zero for x > X, The reason for this difference is that: a spontaneously
emitted photon which 18 created near the wave front and travels in the forward
direction will maintain a constant distance with respect to the front and hence -
upon being amplified - will exhaust the laser photon intensity at that point
relative to the wave front; whereas, a similarly emitted photon which travels

in the backward direction will rapidly leave the region of the wave front and
hence cannot deplete the front by stimulating emission. Defining a quantity

1,4 -2, (&
t, ~ En(z) 30, R.n(Bx . (47)

we find that for a time s ~ the time elapsed subsequent to the wave front

passing a given point x - for s > to

Do Do (48)
R e — = .
L (u+1)ez - 1l + uz

That is, to is the time required for R, to come to a steady state.

£

Using x = 2 and taking Io to be the maximum intensity which can be
transmitted through the atmosphere under the assumption of negligible back-
scatter and n & 1 (1i.e., Io = 124 kw/cmz), we find that for s > t,




4.

1,(8) 4 ku/em’

For this same choice of parameters
t = 5x 10-5 sec .
o

Hence, the steady state solutions of the preceding section are achieved in a
time of the order of t, " 5 x 10-5 sec. If we wish to circumvent the various
limitarions and difficulties imposed on us by backscatter, we must restrict
ourselves to the transmission of pulses of laser light with durations less

than 5 x 10"5 sec.

It is of interest to examine the interaction of a laser beam with a
wave packet of photons at the first Stokes frequency which is traveling in
the beam but antiparallel to it. For this problem it is most convenient to

solve the initial value problem 1

P (x,0) = L(x) , py(x,0) = B(x) . (49)

Using Eq. (49) in Eqs. (37) and (38), we readily obtain

R (s,7) = - L(-cs) - (50)
1+ % J ae (B(ce) + £yl 6179
-8
8
e + &

8
R.b(sr) = -;+ (51)

T )
1-2 f dE L(cg)e T (T28)
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where

y
r(x,y) = g'(x-y) + %‘ I dE[L(cE) + B(cE))
X

Let us examine the results of a wave packet of Stokes waves of spatial
width W and photon density ChY colliding with a laser beam of photon density
o at t = o. That is, let

p for x <0 A
5 &
L(x) =
0 for x>0
? : (52)
°1 for 0o <x <W
B(x) =
0 Otherwise

e

The Rb - wave which 1s generated by B(x) lies in the domain o < t < W in the
8 - T plane. The region v < o is completely unaffected by B(x). If we define

the gain and initial value parameters
1
g = 2 Bray) » w =g,

the photon densities for t < o are

1+ uo
pz(x,t) = 0 2got (53)
e + uo
Zgot C
e -1
pb(xlt) = po 28 t . (54)
e e + uo

104




A SR ——— e 9

Therefore, in the absence of an initiating pulse: the back scattered wave is
monotonically increasing in time and Py approaches the value e, a8 t + =, The

leser beam intensity is monotonically decreasing and eventually decays to zero.

The pulse shape is described by

-8, 7 -g 8
P pl(u°+1) + L 1 (}—e . )
R (s,7) = —

1 o
uo +1- uo e (} - e 8) -

The wave front of the pulse is given by T = o. At a time which is long compared

5 (55)

to (Zgo)_1 fn u the pulse height approaches
R (=50) = py(utl) + o = P (Hy¥l) + 0y . (56)

The laser beam is therefore capable of amplifying the photon density to a level
which is far in excess of Py This amplification however, is limited by the
spontaneous depletion of the laser beam dictated by Eq. (53). If we wish to
amplify a pulse by passing it through a cell of Raman-active material of
length d we will generally find that for a reasonable set of assumptions about
the parameters available in the laboratory

oo &

oc

M, © 22l 5 (57)

and hence, the maximum pulse height is limited by the length of the cell rather
than the spontaneous creation rate 8. In that case, the height of the emerging

pulse is given by

ey [-"

ap

Rb(Z %‘, o) & p, e . (58)
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The half width of this pulse is given by

d
%o ¢

2
L @y e (59)

which will generally be an extremely short time. The ratio of the emerging
pulse energy to the energy stored in that part of the beam which is present
in the cell at t = o is approximately
P lec

1 W 2¢ (60)

On the basis of Eqs. (58), (59), and (60), it would seem to be feasible to

concentrate virtually the entire energy in a laser beam into a pulse with an

3 wattu/cm2 and width of the order of 10712 gec.

intensity of the order of 101
Experiments have been performed7 in which the initiating pulse appeared to
be generated by Townes Self Focusing at the end of the cell. The emerging

pulse had U & 1/5 and T_ & 3 x 1071 gec.
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VII. CONCLUSIONS

We have found that Raman backscattering is inconsequential as a loss
mechanism in the propagation of a beam of laser light vertically through the
atmosphere if the laser light is composed of pulses of duration no greater than
5 x 10-S sec, or 1f o(o) exceeds o(m) by eight percent or more. I1f neither
of these requirements are met then the source intensity necessary to transmit
the maximum amount of energy through the atmosphere would be increased by a
factor of two. In that case, the intensity of the back scattered wave at the
source will be one-half the source intensity and considerable damage to the
source and its environs may result. It is therefore recommended that experi-
ments to determine the asymmetry of the Raman cross section be performed if

pulse durations in excess of 5 x 10_S sec are desired.

The maximum intensity of laser light which can be transmitted vertically
through the atmosphere without frequency change due to Raman scattering is
critically sensitive to the laser line width (sz/c). If (sz/c) =
1.2 x 10_3 cm-l, and if back scatter is inconsequential then for a beam with a

10 cm diameter, this maximum intensity is 27 kd/cmz, whereas, if sz/c is
=2

of the order of the pressure broadened line width (9 x 10" em ) the maximum

intensity 1s 120 kw/cmz. It was suggested that intensities far in excess of

this figure may be transmitted in the form of a higher order Stokes wave. If

we wish to transmit energy through a window in the atmospheric transmissivity

of width Nv (v being the frequency shift due to Raman scattering), then the
maximum emergent N-th order Stokes wave will be approximately N times the

figure cited above. However, this suggestion did not take the probably deleterious
effects of defocusing on each successively higher order Stokes wave into account.
A theoretical investigation of this three-dimensional effect as well as a more

precise evaluation of the parameter Qo should be performed.

Finally, the technique for producing high intensity pulses of extremely
short duration discussed at the end of Section VI, appears to be potentially
quite promising. Further investigations along these lines may prove to be

rather fruitful.

107

R e -1 T ——— e —————




{ REFERENCES

1

1. R. W. Helwarth, Phys. Rev., 130, 1850 (1963)

2. R. W. Helwarth, Applied Optics, 2, 847 (1963)

3. H. A. Ory and H. T. Yura, Rand Corp. Memorandum RM-4664-ARPA,
August 1965

4. Y. A. Lazarev, Academy of Science USSR Optics & Spectroscopy,
13, 373 (1962)

5. Maiman, et al., Phys. Rev., 123, 1151 (1961)

6. D. R. Bosonworth and H. P. Gush, Canadian Journsl of Physics, 43,
751 (1965)

7. M. Maier, W. Kaiser and J. Glordmaine, Phys. Rev. Letters, 17,

1275 (1966)

108




Unclassified Page 109

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security ciaaeilication of titia, body of abetract and indexing annotation must be eniered when the overeii report ie ciessilied)

1. ORIGINATING ACTIVITY (Corporate euthor) ia. REPORT SECURITY C LASSIFICATION
Office of Naval Research (ONR) Unclassified
Department of the Navy 256 amour
Washington, D.C. 20360

3. REPORT TITLE

HIGH INTENSITY LASER PROPAGATION IN THE ATMOSPHERE

4. DESCRIPTIVE NOTES (Type of report and inciusive dates)

Final Report, 1 November 1965 - 28 February 1967

S. AUTHOR(S) (Laet name, firat name, initiai)

b PROJECT NO.

d.

Altshuler, Saul Frantz, Lee M.
Arnush, Donald Holstein, Theodore D.
8. REPORT DATE 7a. TOTAL NO. OF PA.GEI 7b. NO. OF REFS
28 March 1967 111 59
82 CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBER(S)

N00014-66-C0022 05691-6003-R000

ARPA Order 306

9b. gTHtR REPORT NO(S) (Any othar numbere that may be aveignad
ie nporJ

10. AVAILABILITY/LIMITATION NOTICES

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

ARPA, the Office of Naval Research
and the Department of Defense

13. ABSTRACT

The phenomena which constitute ultimate limitations to the transmission of in-
tense laser radiation through the atmosphere are investigated, namely, self-
defocusing due to atmospheric heating and the stimulated Raman effect. The
heating studies are concerned with processes contributing to residual absorption
in atmospheric transmission windows. A quantum mechanical study of the far-wing
pressure broadening of molecular vibrational lines is carried out. The spectral
distance beyond which the Lorentz-type behavior fails is found as a function of
temperature and range of the interaction potential, It is shown that far wing
fall-off is exponeniial. A study of the diffuse band of the (03)7 complex span-
ning the window at 1.0468 microns indicates that it contributes about one order
of magnitude less heating than anticipated originally by other workers. An
analysis is made of collision induced absorption with emphasis on the far-wing
behavior. A calculation is performed specifically for absorption during col-
lisions between rare gas atoms; a numerical computation phase remains. Laser
beam depletion by stimulated Raman scattering is investigated using a rate equatio
description. The particular effects are the interaction of competing Raman lines,
multiple order Stokes wave generation, the amplification of Raman backscattered
light, and the effect of pressure dependence on the propagation of a beam verti-
cally through the atmosphere. The maximum intensity which can be transmitted
through the atmosphere without frequency change due to Raman scattering is
calculated.

DD J?ﬂ. 1473 0101-807-6800 Unclassified

Security Classification

-




Unclassified

Security Classification Page 110
ra. LINK A LINK 8 LINK C
KEV'wOROS ROLE wT NOLE wT ROLE wT

Atmospheric heating by laser radiation
Intense laser beams

High intensity propagation effects
Laser beam defocusing

Las:r beam stability

Ccllision-induced absorption bands
Absorption by oxygen dimers

Stimulated Raman scettering

Far-wing pressure broadening

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fanse activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security claassification of the report, Indicate whether
‘“Restrictad Data’’ is included. Marking ia to be in accord
ance with appropriate secutity regulationa,

2b. GROUP: Automatic downgrading ia specified in DoD Di-
rectiva 5200, 10 and Armed Forcea Industrial Manual. Enter
the group number. Alao, when applicable, show that optional
markings have been used for Group 3 and Greoup 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all

capital letters, Titles in all cases ahould ba unclaasasified,
If a meaningful titla cannot be selectad without classifice-

tion, show title clasaification in all capitals in parentheaia
immediately following the title,

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progreas, summary, annual, or final.
Give the inclusive datea when a specific reporting period ia
covered.

S. AUTHOR(S): Enter the name(s) of author(s) aa shown on
or in the report. Enter [aat name, firat name, middla initial.

If military, show rank and branch of aervice. The name of
tha principal aythor is an ahaolute minimum requirament.

6. REPORT DATE: Enter the Zate of the report as day,
month, year; or month, yesr. 1f minre than one date appears
on the report, uae date of publicaticn.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal psgination procedures, i.e., enter the
number of pages containing information.

7b. NUMHBER OF REFERENCES: Entar the total number of
referencea cited in the report,

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report waa written,

8b, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military departmant identification, auch aa project number,
subproject number, aystem numbers, taak number, etc,

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. Thia number muat
be unique to thia report.

9b. OTHER REPORT NUMBER(S): If the report haa baen
asaigned any other report numbers (either by the originator
or by the sponaor), also entar thia number(a).

10, AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than thoae)

imposed by security classification, using atandard statements
auch as:

(1) *Qualified requeaters vy obtain copiea of this
report from DDC.”’

(2) 'Foreign announcement and dissemination of thia
report by DDC i3 not authorized.’

(3) *U. S. Governr.ant agenciea may obtain copiea of
this report directly from DDC. Other qualified DDC
uaera ahall requeast through

(4) ““U. S. military agencias may obtain copiea of this
report diractly from DDC. Other qualtfied uaers
shall raquast through

(5) “*All distribution of this report is controlled Qual-
ified DDC usera shall request through

If the report haa baan furniahed to tha Office of Tachnical
Servicas, Departmant of Commerce, for asle to the public, indi-
cate thia fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional axplane-
tory notas.

12. SPONSORING MILITARY ACTIVITY: Enter the rame of
the departmantal project office or laboratory sponaoring (pay-
ing for) the rasearch and davelopment. Include addreas.

13. ABSTRACT: Enter an abatract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional apace is required, a continuation sheet ahall
be attached.

It is highly desirable that the abatract of classified reporta
be unclasaified. Each paragraph of the abstract shall end with
an indication of the military security classification of the n-
formation in the paragraph, repreaented aa (TS). (S). (C). or (U).

There is no limitation on the length of the abstract. How-
ever, the auggeated length ia from 150 to 225 worda.

14. KEY WORDS: Key words are technically meaningfu! terms
or short phrasea that characteriza a report and may be used aa
indax entriaa for cataloging the report. Kay worda must be
selacted ao that no security classification ia required. Identi-
fiera, auch as equipment model deaignation, trade name, military
project code name, geographic location, may be usad as key
worda but will be followed by an indication of technical cdh-
text. The asaignment of linka, relea, and weighta ia optional.

Unclassified
Security Classification




SUPPLEMENTARY

INFORMATION

i
.
1
;
]



TRW inc.

SN 5691.000
18 July 1967
3221.1-261

BMDR

Room W B 263

The Pentagon
Washington, D.C. 20301

P2 — 5 /¢ Y7

Attention: Major Glenn Sherwood

Subject: Notification of Change in Distribution Statement

The contracting agency (ONR) has requested us to change the
distribution statement on our recent report, "High Intensity
Laser Propagation in the Atmosphere," Final Report on Contract
N00014-66-C0022, 1 November 1965 - 28 February 1967, ARPA Order
306, TRW Report Number 05691-6003-R000.

The distribution stateﬁent appears on the outside cover page
and the inside cover page. This distribution statement
presently reads:

"Distribution of this document is unlimited."
It is to be replaced by the following distribution statement:

"This document is subject to special export

controls and each transmittal to foreign govern-
ments or foreign nationals may be made only with
prior approval of the Office of Naval Research."

Sincerely,

S Wtihecter.

Saul Altshuler
Manager,
SA:rb Theoretical Physics Department

cc: Distribution per
” NAVEXOS 3703(4-60) (NR 015-328)

%.W. Hartley
- ontracting Officer (ONR)

DCASR Resident Office
Attn: Roy A. Meyers

mmm * ONE GPACE PARK * AROONOD BRACH * CALIFORNIA, 80878 * AC 213-a78-8711



