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INTRODUCTION AND SUMMARY 

This report is concerned with phenomena which may limit the transmission 

of a laser beam through the atmosphere. We have considered two salient types of 

limitations and the specific contributing processes.  The first limitation cor- 

responds to a self-defocusing Instability of the laser beam which can result In 

an undesirable decrease In the delivered power density.  The Instability results 

from photon absorption leading to atmospheric heating and consequently to a local 

decrease In the refractive Index; the result Is a lens effect which causes the 

beam to diverge.  The second limitation to beam transmission is imposed by the 

stimulated Raman effect.  This process involves inelastic photon scattering, and 

at sufficiently large power levels results in the amplification of the beam of 

scattered photons in a laser-like fashion.  The amplification of the scattered 

photon beam can produce a serious depletion of the laser beam. 

Chapters 1, 2, and 3 are concerned with the heating mechanisms that lead 

to the self-defocusing instability.  In Chapter 1 the far wings of pressure- 

broadened molecular absorption lines are studied. The motivation is the need 

for a reliable theory to compensate for the absence of experimental data. The 

distance from the line center beyond which the usual pressure-broadening theory 

becomes invalid has been ascertained, and it has been found that beyond this 

point the line profile falls exponentially. This conclusion has particular 

significance with regard to an earlier calculation of the absorption in the 

window at 1.0468 microns, where the assumption of Lorentzian line shapes led 

to the conclusion that the absorption coefficient was just at the threshold 

for the self-defocusing instability.  In the aforementioned calculation it was 

assumed that the absroption Is due only to the molecular resonance lines.  The 

present research indicates that because of the exponential fall-off, the ab- 

sorption due to the molecular resonance lines is actually substantially smaller, 

and consequently may be Ignored with respect to the self-defocusing instability 

at 1.0468 microns.  However, it has been pointed out that atmospheric absorption 

in the spectral neighborhood of 1.0468 microns is -actually dominated, not by 

contributions from the wings of molecular resonance lines, but by a continuous 

absorption band due to the existence of (OoK complexes.  Earlier Inferences 

from experimental data indicated that the absorption coefficient due to (0?)? 
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is about two orders of magnitude above the threshold for the self-defocusing 

effect.  In Chapter 2 we report the results of a detailed study of the photon 

absorption mechanism of the (0„)„ complex itself and the relaxation mechanisms 

by which the absorbed energy is subsequently converted into heat.  It is con- 

cluded that, during a laser pulse of about one millisecond duration, only one- 

sixth of the absorbed photon energy is converted into heat so that the estimate 

of the effective absorption coefficient for (0„)- at 1.0468 microns must be 

reduced by a factor of six. Moreover, the study suggests that the desired ad- 

ditional reduction in the net absorption coefficient can be accomplished by a 

shift to slightly higher frequencies, i.e., somewhere in the region 1.030 to 

1.037 microns. 

Another process which contributes to the residual absorption in what is 

otherwise considered to be a transmission window is collision-induced absorption. 

This is a phenomenon in which absorption takes place by virtue of a transient 

dipole moment which exists only during an intermolecular collision.  It is 

characterized spectrally by broad continuous bands having widths of the order of 

several hundred wave numbers.  These bands are superposed upon internal transition 

lines which may even be 'bidden for the isolated molecule. 

The energy of thi absorbed photon is pattitioned into an internal ex- 

citation of one of the molecules and kinetic energy of the colliding pair.  The 

energy taken up by the translational component corresponds to an instantaneous 

heating, which contributes to the beam instability regardless of the laser pulse 

duration.  The translational band contributes to the magnitude of the absorption 

in a valley between resonance lines, and may dominate over the far wing con- 

tributions of resonance lines. 

In Chapter 3 we consider the photon absorption which occurs during a col- 

lision between two rare gas atoms.  The analysis is somewhat simplified in this 

case because of the absence of rotational and vibrational modes; the absorbed 

energy goes entirely into translational energy of the atoms.  Theoretical work 

in this field has been meager and has been principally confined to the calcu- 

lation of frequency integrated absorption coefficients.  Relatively little has 

been done regarding the frequency dependence of the collision induced absorption 

coefficient and even this work is quite recent.  The studies which have been 

made were not concerned with the far wings and cannot be extrapolated into the 



,., wla8 region, with confidence; the preeent chepter conteine e discussion of 

these calculations. 

We heve performed e „uantum mechenicel analysis of this probie» which is 

capable of yielding the ebsorption coefficient as a function of fluency even 

he far Lgs of the absorption band, .here no eaperimental *«"*'£"^ 

as yet been possible. It is these un»easurable. far .ing absorption, which ex- 

t „d into the at^spheric windows, and provide instantaneous heating  They .„ t 

aetetBined theoretically in order to eveluate the self-defocusing '" "*  " 

ability. The .athe^ical analysis leeding to the eapression for the abs r ion 

coefficient has been completed, and only a nu^er of independent nu^erica  nte- 

grations regain to be performed. Preparations are currently in progress for 

evaluation by digital computer, 

in Chapter 4 laser beam depletion by stimulated Raman scattering is '.n- 

vestigatad hy solving rate e,uations describing this process. The particular 

whil are analyred in great detail are (a, the interaction of compet n 

peman lines, (b, multiple order StoKes wsve generstion. (c) ^ ^"^ 
^ bac^acattered light, and (d, the effect of pressure dependence up on h 

propagation of a beam vertically through the atmosphere. In each of the ab ve 

tbeTtensities of both the Baman radiation and primary laser beam are obtained 

as a function of distance from the laaer. 

U is found that the maximum intensity of laser light which can be trans- 

„ftted vertically through the atmosphere without fluency change due to Kaman 

scattering is critically sensitive to the Isser line width. The max mum in- 

te^ity i! calculated for representative values of the laser line w da 

other pertinent parameters,  »«other conclusion is that the ^ " '** 

scettered besm has a significant deleterious effect if the -^  » * 

baokscettered cross section is greater than ninety-t«, percent of the forward 

M » and the laser pulse duration is greater than 5 x 10  seconds, 
cross section, and the "" ^ theo ^^ back.cattering is 
If either of these conditions fails to prevaxx, 

inconsequential as a loss mechanism. 

An analysis is reported which describes the propagation of a pulse of 

„diation movin. through and antiparallel to the laser beem. The frequ  y o^ 

C        the backward propagating pulse is that which corresponds to the Stokes shifted 
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frequency.  It is found that this pulse may be amplified at ehe expense of the 

laser beam to a peak intensity many timas greater than that of the laser beam 

itself, and that in fact most of the energy in the laser beam can be concentrated 

into this backward moving pulse. 

' 
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Chapter 1. 

FAR WING PRESSURE BROADENING 

( 

( 

- 
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In this chapter, some model-type studies on the far wing pressure broadening 

of molecular vibrational lines will be reported.  The most elementary system of 

interest is that of a diatomic heteropolar molecule in collision with a monatomlc 

perturber. For the sake of definiteness, the optical transition will be assumed 

to connect the vibrational state with the first excited (vibrational) state of 

the diatomic molecule (0 ♦♦ 1). 

The physical picture motivating the treatment derives from earlier work 

by one of the present authors; it may be described briefly as follows. When the 

optical frequency, u, is sufficiently close to the unperturbed transition fre- 

quency, ü) — specifically when (w-u )T < 1, with T an appropriately defined 

collision time, one may expect the Impact theory to be valid; the line shape will 

therefore correspond to the wing of a Lorentz-type line shape ^»-y /(m-ü) ) J.  If, 

on the other hand, the frequency shift (U-UJ ) is so large that (U-üJ ,)T >  1, the 

spectral profile will follow the predictions of the so-called statistical theory. 

In this theory, one focuses attention on the collision-induced perturbation of 

the instantaneous transition frequency.  Two possibilities then arise.  If during 

a collision event, the perturbed transition frequency, w + w , momentarily co- 

incides with the optical frequency, u, the spectral intensity, 1(a)), will be 

proportional to the occurrence probability of the perturbed transition frequency 

— i.e., the probability that w + u lie within a unit differential frequency 

range about the spectral frequency, a).  If, on the other hand, there are no 

collisions which are able to provide a coincidence of oi + u with u, one may 

expect the spectral intensity, 1(a)), to decrease exponentially with increasing 

frequency shift, w-o) . 

The particular problem upon which the present studies are focused is the 

absorption on the violet side of a given vibrational line, at distances of the 
3 -1 

order of 600-1000 cm  from the unperturbed frequency.  (The corresponding 
1A     14  -1 

shift in units of circular frequency is w-w ~ 1.2x10  - 2x10 sec  .)  From 

the above discussion it then becomes clear that the absorption at such extreme 

distances from the unperturbed line will be exponentially small unless (a) the 

collision time is < 10~ sec" — with atomic velocities "-lO cm/sec, such a 
-9 

limitation could be met only with very short range interactions ("10 cm) 

and/or (b) the collision-induced shift in the momentary vibrational 
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freqaency is positive and i 600-1000 cm . Whether or not such extreme conditions 

can be met, one may infer that they will be approached most closely by the standard 

short-range repulsive interatomic interactions generally taken to have the form 

V(r) = Vor
0'r , (1.1) 

rather than the longer range, multipole-type interactions of the form, C/r 

(with n a number varying roughly from 3 -* 6).  It is therefore proposed to consider 

the basic interaction responsible for the far-wing absorption to be a sum of two 

terms, each of the form (1.1) — describing the interaction between the colliding 

atom and each of the two atomic constituents of the absorbing molecule. Moreover, 

in order to avoid complications which — m the opinion of the present authors — 

do not appear to be essential for the physics of the problem, the following 

further "model-type" simplifications are introduced: 

(1) the rotational motion of the molecule is ignored, and 

(2) the collision is assumed to be collinear, 

Conceiuing the first simplification, it may be remarked that, on the scale 

of the above mentioned frequency shift (600 - 1000 cm ), rotational frequencies 

are quite small,  so that (a) there is certainly no question of the existence of 

any rotational component of the line in the far-wing spectral region of interest 

and (b), in considering the partition of the excess energy into translational and 

rotational motion, it would seem quite legitimate to ignore the discrete structure 

of rotational energy levels.  Once this is done, rotation and translation may 

both be considered as comparable types of essentially unquantized motion.  For 

a detailed quantitative calculation, both, of course, must be taken into account. 

For a semiquantitative study which, like the present one, is aimed at a first 

look at the gross features of the fai-wiq.g broadening problem, it is felt that 

a model-type treatment which takes explicit account of energy conversion into 

one type of unquantized motion, namely translation, while ignoring the rotational 

component, is basically adequate. 

The assumption of collinear collisions is introduced because it is sus- 

ceptible to a relatively straight-forward analysis.  It is hoped that the insight 

gained in studying this special case will permit at least semiquantitative ex- 

tensions to the more general case. 



It may finally be stated that both of the above discussed simplifications 

are contained in essentially all treatments of the related problem of collision- 

induced vibrational deactivation of diatomic molecules. 

With these preliminary considerations out of the way, let us proceed to 

the formulation of the model Hamiltonian of the problem.  In the absence of the 

external (optical) electromagnetic field it takes the form 

« ■ S-+ K",,2 x2 + ^+ v(p-x) • <1-2) 
V 

In this expression X s r - r  (with r the internuclear separation and r  its 

equilibrium value) is the vibrational coordinate, Px * 7 ^ the associated 

canonical momentum, y  m ^B the reduced mass tor vibrational motior (letters 

A and B will be used to designate quantities associated with the constituent atoms 

of the diatomic molecule, whereas the letter C will refer to the colliding mon- 

atomic species). R denotes the distance between the center of gravity of the 

molecule and the collidinsatom (O. PR ^ |R is the associated canonical 

amentum (with M 5 %Q*C the reduced mass for the relative motion of atom C 

wUh respect to the cent« of  gravity of the molecule).  The first two terms in 

(1.2) are the kinetic and potential energy for vibrational motion of the molecule 

(U = vibrational frequency). The third term is the kinetic energy for the 

relative motion of the colliding partners.  Finally, V(R,X) is the interaction 

between the colliding atom C and the molecule.  It is here assumed to have the 

form 

V(R,X) -V exp{-a[R-Ar]} - Vo exp{-a[R-A(re+ X)]} , (1-3) 

where 

MA (1.4) 
M.+; 

■"B 

Expression (1.3) follows from (1.1) and the fact that, in a collinear collision, 

the interaction of colliding atom C with onlv one atom of the molecule (say, B) 

/ need be considered (cf numerical estimate of a given in Ref. A and the tables of 

values of r in Herzberg's book ). 
e 



The presence of the optical electromagnetic field gives rise to an ad- 

ditional term In the Hamlltonlan.  It has the form 

H   - -p(X) £ria)t +C-C. (1.5) 
em 

In which £,  is the amplitude of the electromagnetic field of the incident light 

and M(X) is that part of the molecular dipole moment which depends upon the 

vlbrational coordinate, X; as is usual, it will be assumed that this dependence 

is linear, so that the optical selection rule for the change in vlbrational 

quantum number Av ■ 1 1. 

In the absence of the electromagnetic perturbation, represented by- 

there exist stc 

Schroedlnger equation 

(1.3), there exist stationary solutions, iK(X,R) of the time-independent 

H ^(X,^  -  Eii|;i(X,R) , (1.6) 

which are asymptotically (R -♦ <») of the form 

^i(X,R) - ^(X) sin(kiR+6) , (1.7) 

where $ (X) is the ground state Harmonic oscillator wave function and 

k = /2ME./Tl  is the incident wave vector of relative motion.  In what follows, 

iHX,R) will be approximated by a product function 

iMX,R) «* $ (X) -MR) , (1.8) 
i o    o 

where \\i  (R) is that solution of the equation 

(19) 

(1.10) 

Vo(R) - 
'PR 
2M+Voo(R)  VR)' 

Voo<R> . 
(|.2(X)  V(R,X)   dX   , o 

which obeys   (1.7) 9 • 



In the presence of the electromagnetic field, the wave function of the 

system will be augmented by a term, ^1(X,R), which may be computed from first- 

order time-dependent perturbation theory.  The relevant equation is10 

ift — -^ = Hem ^(X,^ exp{ (it/liXE^^/Z)}, (1.11) 

with Hem 8lven ^  (1-5)- The steady-state solutions of (1.11) will consist of 
two terms, ip + and ^(") with time-dependences of the form 

eXp{-(it/fi)(Ei+fia)o/2 +*«)} and Hit/ti) (E^ 1^/2-nu.)} respectively; of these, 

only the former (describing the absorption of a photon of energy -Rü) is of interest). 

The equation determining this term is 

■flu»        , 

Ei + "2^ + flü) ' H] ^    - -U(X)C^1(X,R). (1.12) 

At this point, a considerable simplification can be achieved by resortiftg 

to the (already employed) distorted-wave approximation. This may be do--, as 

follows.  Substituting the expansion 

♦(+) ■ I x<+)vx) . ft.l3) 
m 

r p2 
[where the  4 (X) are the eigenstates of the vibratlonal part. H        - JL+ iy « 2X2 

#111 r        •     y^jj        2y       2  v 0        ' 
with eigenvalues liu^n + ^jj multiplying on the left by ^(X), and integrating 

with respect to X,  one has   [upon using  (1.2)  and  (1.8)] 

( 2 
E1+ Tuo - nRv g - Vnn(R)jxW   (R)  + I v       (^x^^R)    «    ^^W,       (1.14) 

J mfn 

where 

^nm    E    J   ♦nWM(X)*n(X)  dX , (1.15) 

Vmn(R)     S    j *n(X)V(R,X)^m(X) dX . (1.16) 

10 



The distorted-wave approximation consists In Ignoring the sum on the l.h.s. of 

(1.14), (I.e., ten 

In place of (1.14) 

(1.14), (I.e., terms containing the coefficients V , with m^n). One then has, 
nm 

E. + * (ü)-ü) ) 
1      o -l|-vii(R)Jx{ (+) (R) - -^10*o (R) . (1.17) 

since, with \i(X)  assumed to be linear in X, u  differs from zero only for n *= 1. 
no ' 

It is now convenient to write xl  (R) In the form 

x^R) 
ß^io^(R) 

fi(ü)-U) )  + X8C(R)  ; (1.18) 

upon substituting (1.18) into (1.17) and making use of (1.9), one obtains for 

*  (R) the equation 

E.+ ll(ü)-a) ) 
1      o -2|-V11<R>| Xnr

(R) 
sc 

[Vll(R>-Voo(R)] 
h((D-(i) ) 

o 
£P10*O(R). (1.19) 

Before proceeding further, some comments on the physical significance of 

the two terms on the r.h.s. of (1.18) are in order.  Briefly, it Is claimed that 

the second term, x  (R)» represents the amplitude of the process under study here 

— namely, the energy-conserving process whereby a quantum of energy, "ftui, is 

absorbed, with a final translatlonal energy (of relative motion), £-■ E.+ 'Moi-u ) 

(as shown by the form of tht l.h.s. of (1.19)).  By way of contrast, the first 

term on the r.h.s. of (1.18) represents the virtual absorption of a quantum 

(in a 0 -* 1 vlbrational transition); it,  particular, from (1.8) one sees that, 

since the R dependence is contained entirely in the factor tjj (R), the kinetic 

energy associated with this state is the initial E  [rather than E - E + fl(ü)-u) )]. 

The virtual character of the transition described by the first term of (1.18) Is 

thus manifest; it will therefore be discarded without further ado. 

From a "technical" standpoint, it may be remarked that Eq. (1.19) lor 

X  (R) is rather more suitable for scattering studies than the corresponding 
s c 

11 



Eq. (1.17) for x!  (R)•  The reason is, basically, that, in contrast to (1.17), 

the driving term of (1.18) contains the factorlv(R) - Voo(R)J , which differs 

from zero only in the Immediate neighborhood of the collision region (R ^ 

interatomic distance). Outside this region, x  (R) satisfies the homogeneous sc 
wave equation; the usual boundary condition of scattering theory — namely, that 

as R * °°, x  (R) takes the form of an outgoing wave(-)l f ) is then straight- 

forwardly applied, as will now be done. 

One multiplies both sides of (1.19) by that solution, ^.(R), of the homo- 

geneous equation: 

o 

ojv Ef ' 2M ' VnWlM*)  - 0 . (1.20) 

which has the asymptotic form 

^(R) R * "»sinf^R+s] , (1.21) 

and integrates from zero to R. Performing the approximate integrations by parts, 
(2    2 2  2N 
with PR = ^tl 3 /3R ) 

liO. 
■h(a)-u ) o 

*1(R,)[V11(R,) " Voo(R,)] ^o^^'  ■ 2Mk-(R) 
di|i1(R) 

2Mrscv '  dl 

-*iWdrv(R)J 
(1.22) 

For sufficient large R, the upper integration-limit on the l.h.s. of (1.21) may 

be replaced by infinity; at the same time, one may introduce (1.21) and the 

asymptotic expression 

X  W-^^A ilikfR, (1.23) 
sc sc 

12 



( into (1.22). This procedure yields an explicit expression for the scattering 

^(R) [VnOO-V^OoJ^R) dR. a.24) 

c 

>de, A8c, viz: 

ft        _      2M         eh0 
#00 

8C           ^2^    M*-%)   j 
0 

The outgoing particle flux Is given by the relatl on 

W-    Vf|A8c|
2    -    -^|A8c|

2. (125) 

Introducing  (1.24)  Into  (1.25) and dividing by the Incident flux. 

^n    "    V4    "   *V*M  • 

one obtains a quantity 

.  *2 . 2 

J  ^(^^(^^(^^(R^dRl ,   (1.27) 

(1.26) 

P   - ^ 4ML t\l 
10     kl ^S2 ■h2(a,-a, )2 

*      o 

which may be regarded as the probability that, In a collision of the special 

type under consideration - namely, a colllnear collision - a (0 -. 1) vlbratlonal 

transition occurs („1th. of course, simultaneous absorption of a quantum. ^. 

of electromagnetic energy). 

In order to proceed further. It Is desirable to „rite do„n explicit 

presslons for V^R) and V (R).  From (1.3). one has 

V (R)  - V e"oR oo '     ie 

V^OO - V^e'aR 

(1.28a) 

11       f    ' (1.28b) 

13 

I 



I- ■ - 

( 
where 

V    exptoXyJ 
O B 

♦„(x) e        dx   . (1.29a) 

and 11 

V     =   Vj exp(aXYe)   |      ♦J(x)e0,X*dx (1.29b) 

One now inserts   (1.28a) and  (1.28b)  into  (1.19) and  (1.20) respectively, 

obtaining 

2 
d\ 

dR 

' 2      .2    -aRl *      -    0   , (1.30a) 

( 

2 

Li 
dR2 

kt - .2    -aR 
bf e 0   . (1.30b) 

where 

b       =  .2*  v bi.f M2    Vi.f. 
(1.30c) 

These equations are both cf the form 

4   + [k2-b2 e"^" ij»    -    0 , (1.31) 

»rtiich, via the introduction of a new independent variable 

5 B (2b/o) e    . (1.32) 

O 
14 
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c becomes 

dC
2 5« a C 

this equation is to be supplemented by the boundary conditions 

(1.33) 

)   —ä pO , (1.34a) 

±JL± »   sin ^ lo. $ *«) (1.34b) 

The required solution is 

[(2k/on) sinh 2Trk/ol]
1/2 K21k/a (O • (1.35) 

wher-i 

K (C) v 2   sin irv 
(1.36) 

is (in standard notation) the Bessel function of imaginary argument which obeys 

condition (1.34a). To see that (1.34b) is satisfied one notes that, from (1.36) 

and Eq. (2), section 3.7 (p.77) of Watson's treatise on Bessel functions, 

K2ik/a(^ 
LlA 

2i sinh^ 
a 

f"(2/o21k/a   (2/£r
2ik/a1 

lr(i-2ik7öT" r(i+2ik/a) J 

«g,  ,  \  K  9 C7T1        sinhk/a)  ^(2/0+6']  .        (1-37) (2k/a)  sinh 2irk/oJ L J 

the equality following from the standard formula 

|r(l+iy)|       -    ny/sinh iry . 

15 

  



[with «• = arg r(l+ly)]. From (1.37), it is clear that (1.35) satisfies (1. 34b). 

Eq. (1.35) is now utilized to provide explicit expressions for both 

*o(R) and ^(R) in Eq. (1.27); the result is 

10 ■[ 
-.2 

10 
lUu-ü) ) o 

(vf-V 
$-f~  (A/rr2) sinh -j-t sinh -^l^2 '       (1.38) 

where 

o 
K2ikf/a

(z)zK2iki/a
(ßz)dz • (1.39) 

with (cf (1.30c) and Ref.  11) 

b?        V.       l+a2X211/i|)w w 
_i i _ vi V o 

V 2 2 
f      l+3ot X fi/iiu ai 

v o 
(1.40) 

It is indeed fortunate that the integral on the r.h.s. rf (1.39) has been 

explicitly evaluated. Specifically, one has [cf Tables of Integral Tranafnr™. 

Bateman Manuscript Project, Vol. I, p. 334, No. (47)]. 

j Vz)Vß z)zcz 1 
2 ru) '    2 r(^)r(^]r(l=p] 

X2F1 ^+1, ^+l;   2;   1-ß2). (1.41) 

where 2F1(a,b,c;z) is the hypergeometric function which, for |z| < |, is defined 
by the series 

o 
F (a b cxI    m T(c)        V r(a-fn)r(b4n)  n 

2Fi(a,b'c'z)    r(a)r(b) I       r(c4n) nl  z • 
n-o 

(1.42) 
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o It possesses the Integral representation (cf Handbook of Mathematical 

Functions. Applied Mathematics, Series 55, U.S. Department of Commerce, National 

Bureau of Standards, p.SSgj Rq, 15.3.1) 

2¥i^h^z)   - rcbmc-b) 
1 t^^i-t)^-1 

o  (l-tz)a 
dt , (1.43) 

valid when 

Re > Rb > 0 . (1.44) 

In the case at hand 

- ^+ 1 

b  -  -^ 

c - 2 , 

+ 1 . 

iV . 

(1.45a) 

(1.45b) 

(I.45c) 

(lf45d) 

and one notes that [cf (1.39) and (1.41)] with w and v Imaginary, (1.44) Is 

obeyed.  Substituting (1.43) and (1.45) Into (1.41), one then has 

if K (z)K (ßz)zdz - ^ß^1? 

I:N 

i+^i 

2 

■l^1-^) 

dt 

[l-t(l-ß^ 
(y+v)/2 + 1 ' 

which, by virtue of the relationship 

r(l+z)r(l-z) ■ zn/sin irz , 
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( may be written as 

K (z)K (ßz)zdz    - toOlhU       i ßV+1 

f ri^ dt 

[l-t(l-ß2j 
(W+v)/2 + 1' (1.A6) 

It is expedient to transform the r.h.s.  of  (1.46) via the Introduction of 
a pew Integration variable, x - 1/t;  the result Is  [cf  (1.39)] 

l^ÜtoilLZi r dxx^2(x-l^-v)/2 
2 sin ir(lj+v)/2 J ,(»i+v)/2 + 1 * 

x[x-(l-ß2)J 
(1.47) 

( 

where 

|i = 21kf/a , (1.48a) 

and 

v =    21^/a (1.48b) 

G 

The stage has now been reached where the various limiting cases outlined 

In the Introduction may be studied.i Let us first consider the domain of the 

statistical theory.  From the previous work1 (cited In the Introduction) It may 

be Inferred that this domain corresponds to those values of the parameters p, v, 

aad 6 for which (1.47) may be evaluated by the method of steepest descents.  Let 

us therefore carry out such an evaluation; besides yielding concrete results for 

the statistical limit, the treatment will serve to delineate the range of values 

of u, v, and ß, for which this limit constitutes a good approximation. 
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For the purpose of the steepest descent evaluation of (1.47), it is 

convenient to write it in the form 

*/    1 BNH'1(u+v)n/2 
^  ■ I sin it(ii+v)/2 

.        F(x) d x e  
x(x-c) 

where 

c    =    1 - B     , 

(1.49) 

(1.50) 

and 

F(x) Ü*   log x + üf lot (x-1) - ^ log (x-c) 

4*. [log x + Y log (x-1)  - log (x-c)] , 

with 

Y = p+v 

(1.51) 

(1.52) 

Under the conditions 

o 

1^1 » 1. 

i-Vl 
» 1 , 

(1.53a) 

(1.53b) 

the factor eF(x) is a rapidly varying function of x. except in the vicinity of 

the generally complex saddle point, zs,  defined by the relation 

0 - ?'(.,) -  2 z   z -1  z -c 
Iss     s 

(1.54) constitutes a quadratic equation in the unknown saddle point, ZB. 

(1.54) 
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I The two solutioi.s are 

y) 
*H J (l+l/Y)' - C/Y (1.55) 

The task of demonstrating that the original Integration contour of (1.49)(namely, 

along the real axis from 1 to -) nay be deformed Into one whose principal con- 

tributions occur at the saddle points is relegated to a future report.  Preliminary 

studies show that (a) if the saddle points [given by (1.55)] are complex, the 

major contribution to (1.49) occurs along a steepest-descent contour in the im- 

mediate vicinity of that saddle point which is located in the upper half of the 

complex plane, and (b) if the saddle points are real and greater than unity 

(this latter property holding when c < 1. as will hereinafter be assumed to be 

the case), contributions to (1.49) occur in the neighborhoods of both saddle 

prints.  In both cases, the evaluation of these contributions requires computing 

F"(zs).  For algebraic convenience, it is desirable to write (1.54) in the form 

\ F'U8)  - ^gd/«) - 0. (1.56) 

where 

g(y) - 1 + r1- - TV 
1-y  1-cy (1.57) 

One then has (upon using (1.56) and introducing the notation y - 1/z ) 

s      2 'a 
d-y.)' (l-cya)' 

(1.58) 

The solution of (1.56) in terms of y reads 

2 -  • (1.59a) 

c 
where 

W - f2 
(1.59b) 
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Upon Introducing (1.59a). (1.58). and eliminating c by the use of (1.59b). one 

has (after some algebraic manipulation) 

F"(z8) 
ti+V 

2 Ay M (1.60) 

At this point, it may parenthetically be noted that, by similar manipulation, 

the factor z(2_c) , present in the integrand of (1.49), may (for z - z ) be 

brought into the form 8 

VVC) .^JW'-HI^ (1.61) 

The Insertion of (1.60) and (1.61) into the expression for the saddle point 

integrals yield (as will be seen immediately below) numerically equal con- 

tributions when the saddle points are on the real axis, a feature which will 

receive physical Interpretation. 

In the case of real saddle points (A real) FM(z8) [as given by (1.60)] 

is manifestly imaginary (p, and v are imaginary); hence the contour of steepest 

descents la inclined at an ?ngle of Tr/4 or 3ir/4 with respect to the real axis 

[depending on the sign of F"(z)]. The saddle point integrals are then of the 

form [cf.(1.49)]. 

ftf  . 1 BV+1(u-h,W2 exp(^/4) exp(F(z8)) 

8    2 sin(w+v)7r/2    z (z -c) 
S      8 

+• 
exp(|F,,(z8)hV2)  dn 

1 BV+1(,rK,W2    exp(ti./4)  exp(F(za)) 
2 sin(y+v)ir/2 z  (z -c) 

X' 8 

il/2 
2ir 

r^i 
which, with the use of (1.60) and (1.61), may be wrltt en as 

c *. ■ hOCll'n «P«"'/*) «»(«..)) 2-ny 
(u+v)A 

1/2 
(1.62) 
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Bearing In mind that (a), F(z ) is imaginary for real saddle points and 
s 

(b) in an eventual energy integration, the relative phase of F(z ) at the two 
s 

saddle points will undergo many oscillations, let us simply ignore the inter- 

ference term which results from the substitution of 

8-T,2 
(1.63) 

into (1.38). One then has 

r £, 
10 

10 
i2 

fl(u)-ü)  ) • o 

(VVi)2/     2^ 2,Tki 2irkf   TlVI2       IV I2 

—TV      (4/lT^  8lnh    a      8inh    a       [Kl    + ral J   • 
(1.64) 

where, with use of  (1.50),   (1.48a,b),   (1.40), and  (1.59b), one obtains  (after 

some algebraic manipulation) 

2 

!V I2 -   IV I2   -  - M—1     1"+^* /4 x 
^l1 ^1 2  il-ß2)    a^du+vUm    A 

1 
2 

V V Vf 
(V^)' 

i2 1.2 
kf-ki 

KOL 

Tr3/4 

•^2[f<w] 
(1.65) 

where 

K    =  k: - 
kf-ki 

1-V^V, (1.66) 

A brief digression on the physical significance of the quantity, K is now 

in order. From Eqs. (1.30a,b,c) and (1.28a,b), one notes that 

^(R) 
.2 .2 -aR 
ki"bi e 

1/2 
(1.67a) 

G 
and 

'cf(R) = .2 .2 -aR kf-bf e r • (1.67b) 
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are "local" wave vectors for translational motion along the potential curves 

V (R) and V11(R) respectively, (with, of course, total energies Ei and E^ 

respectively). The condition that these two local wave vectors shall coincide 

at some common value, K, i.e., 

^(R) - Kf(R) = <   . (1,f3) 

is readily shown to be equivalent to (1.66).  It is thus seen that the principal 

contributions to (1.65) [i.e., to the matrix element for the transition, as 

given by (1.27)] obey a modified Franck-Condon Principle, in which the instantaneous 

position and velocity of relative translational notion are conserved. 

The above remarks lead to a simple physical interpretation for the occur- 

rence of the factor, <, in the denominator of (1.65). Bearing in mind that 

^in (1.69) K " IT" * 

(where vin is the common instantaneous velocity of relative motion in the initial 

and fina^states), one sees that the 1/K dependence is simply an expression of 

the usual 1/v law for the occurrence-probability distribution. This inter- 

pretation will be developed more explicitly immediately below. 

Proceeding with the calculation one has, upon inserting (1.65) into (1.64), 

and utilizing the conservation-of-energy relation 

M*-*0)   -  *20£ki)/2M ' (1-70) 

together with (1.69) one has 

J'[l-exp(-4Trk1/tt)][l-exp(-4Trkf/aj^ 

a(u)-uo) \ [l-exp(-2ii(kf+k1)/a)]
2     / 

^ y10     2r.   _  .. /il^__X™iL_--J^^i-^ >  .   (1.71) 
10 '   -n2  Vin 
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' In discussing the relationship of (1.71) to the prediction of the sta- 

tistical theory, let us first note that, by virtue of conditions (1.53a,b) 

[which define the domain of validity of (1.71)], ths curly bracketed factor may 

be approximately unity. Then apart from the basic absorption matrix element, 

6j,r) (and Planck's constant), one has 

P     a       - 
10    v. o(ü)-a) ) 

In    o 
(1.72) 

It will now be shown that the r.h.s. of (1.72) Is equal to the time during which 

the collision produces a momentary vlbratlonal frequency perturbation, u , which 

lies within a unit differential range about the spectral shift, u-u) . One notes, 

from (1.16) (and Bohr's frequency condition) that 

k  [V11(R) " Voo(R)] (1.73) 

which, with use of  (1.28a) and  (1.28b), becomes 

"p    "    Cwf-w4)  e 'fV (1.74) 

with 

^f    "    Vl,f/fl   * (1.75) 

A "frequency-coincidence" 

ü) (R) ■ oi-u)  , 
p o 

is achieved at a value of R given by 
12 

c 
1 ,   "f-"! 

R  - — log  

24 

(1.76) 
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The differential range, dR In which « (R) will lie with a differential frequency- 

range, du Is clearly 

dR  - du/a(ü)-ü) )  ; (1.77) 
Üi O 

correspondingly, the time, dt, during which u (R) will be contained within a unit 

frequency-range about üJ-O) IS 

,1..    i dR       i 
it . .1- _Ä -  i  (1.78) 
du    v. du     v. a(u-u ) 

In In    o 

q.e.d. The coincidence of (1.72), and hence (1.71), with the prediction of the 

statistical theory is thus established. 

Further detailed discussion of the statistical theory will be abandoned 

for the time being. The motivation for this decision Is that, as will now be 

shown, it appears that, under most circumstances the frequency perturbations 

required for the far-wing absorption of interest in these studies (600-1000 cm ) 

are simply not attainable. 

The consideration begins by noting that [as given, e.g., by (1.66)], 
2 

K be real, i.e., K > 0. Applying this condition to the r.h.s. of (1.66) one 

readily obtains the Inequality 

V^    kj    1\(u-uo)+Ei 

1    k^ 1 

or, from (1.40) 

«(u-u )+EJ l+3a2X21\2/4u u 

 i2-— <    TT " * (1-79) 
v o 

c 
From (1.79), it is clear that for the determination of the domain of applicability 

of the statistical theory, the value of the parameter 

B zJJ\    t (1#80) 
2y u 
v o 

is of decisive importance. 25 



In order to estimate C, let us consider HC1 as a representative diatomic 

molecule.  For this case, if it is considered that atoms A and B (referred to in 

e.g. (1.4) and following text) are respectively Cl and 11, one may take X s 1. 

Moreover, v may be identical with the mass of the hydrogen atom; thus 
-24 13 

u ■ 1.6x10  2.  For u , Herzberg's tables  yield 
v °       o 

3  -1 
Hi  =  2ITC 3x10 sec 
o 

Finally, for a, let us use, as a representative value, the mean of those 

quoted in Chapter 3, page 71 of this report (a is denoted there by the symbol X/2) 

' / in8 -1 
a = 4x10 cm 

One then obtains 

C -  1/12 . (1.81) 

Introducing this value into (1.79) yields 

h(ü)-u) ) ; (1.82) 
o 

taking E ~ KT -300 cm , it is clear that one obtains for the frequency range 
-1 

of applicability of the statistical theory, a value ~ 30 cm . 

Without proceeding further, it should nevertheless be pointed out that the 

contributions of supertherma] incident energies should not be dismissed out-of- 

hand. Although adversely weighted by the Boltzmann factor, exp^E^/K-f) , they may 

still make a respectable showing in comparison with the other (thermal) con- 

tributions, which fall outside the range of the statistical theory; as shown in 

the following paragraphs, these are also of exponential smallness in the fre- 

quency shift. 

After these remarks let us explore the case in which [referring to 

Eq. (1.44)] there are no saddle points on the real axis (from x»! to x»«.). 

Physically this case corresponds to the situation described at the end of section 

I, in which the collision-induced vibrational-frequency perturbation is too small 

to provide the momentary coincidence with the spectral shift, w-o) , which is 

required by the statistical theory. 
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' For the case of saddle points off the real axis, It can be shown14 that 

the integration contour can be deformed so that the principal contribution to 

the integral occurs in the vicinity of the saddle point in the upper half of the 

complex plain; from Eq. (1.55) this saddle point is given by 

5s " f(1+1/2) + i{c/Y-(c2/4)(l+l/Y)
2] 

1/2 

(1.83) 

The calculation of the saddle-point integral proceeds quite analogously 

to the case of real saddle points. The final result is [compare with (1.62)] 

^ « 1  'ß^Qi+v)^ 

2 c sin|(Tr/2)(M+v)] 

where [cf. (1.51) and (1.83)] 

exp (F(Z8)J 2n X 
|l/2 

A(ii+v) (1.84) 

/^F(z8) - 
2 -(kf+k1)f/a (1.85a) 

and 

f ■ tan ''[^wTrJ"tan"1 [^IT] 
+ y^[tiJU-i] •   u• 85b) 

Ö - [C/Y - (C
2
/4)(1+1/Y)

2
] 
1/2 

(1.85c) 

c 

From (1.50), (1.48a,b), (1.40), and (1.59b) one obtains [by algebraic manipulations 

similar to those which led to (1.65)] 

X *  1   vivf ^    2 rm Tr3/4 
f u2 ,21 kf-k1 

(Vf"Vi)      8inh  (Tr/a)(kf+k1) KO exp[-2(kf+ k1)f/a] , 

(1.86) 
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< 

where 

,2 2 
'Cr'cl    2 

1-V /V " kf 

2M(ü)-(JD ) 

i-vi/vf 
l+E,/«(tü-ü) ) 

1     o 

2M(w-u) ) f .1 
—^—2- !l/c - E./IKo)-^) +j|. (1.87) 

with C being given by (1.80), i.e., 

o X n 
s  ~  2y u ' 

v o 

as pointed out in the text subsequent to Eq. (1.80), its numerical value may 

generally be expected to be small compared to unity. 

Upon substituting (1.86) into (1.38), one has 

( 
10 

T2 

K(ü)-ü) ) 
o 

r2M(u-a) 
IL o 

-1/2 

exp(-[8M(u)-w )/a2fi]  g) , (1.88) 

where the wiggle above the equality sign denotes an approximation .herein a factor 

equal to the curly bracket of (1.71) has (in accordance with the text subsequent 

to that equation) been replaced by unity, 

n s 1/C - E1/ti(a)-u)o) + 1/2, (1.89) 

[with C being given by (1.80) and (1.81)], and 

r 
E./lUui-üi ) 
i     o 

1/2 
i+E^/ROü-ü) ) 

1    o 

1/2 
(1.90) 

C 

It is now of interest to "normalize" the r.h.s. of (1.88) with respect to 

the standard Lorentz-type absorption profile. To this end, let us briefly sketch 

a derivation of the phenomenolcgical impact-theory formula for P Q. 
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One considers the diatomic molecular oscillator (initially in its ground 

state) in the presence of the electromagnetic field of the light wave and subject 

to certain collisional events which have the following two properties: 

1) They are random in time; that is to say, a collision occurs in 

a differential interval, dt, at a time t after the preceding 

collision with the probability 

dWcoll " e"t/Tdt/T ' (1.91) 

2) Their effect is to randomize the phase relationships between 

the ground and excited states of th« .'ibrator. As is known, 

such phase relationships occur as a result of the perturbative 

action of the electromagnetic field; in particular, at a time, 

t, after the electromagnetic field Is "turned on" (i.e., after 

a previous randomizing collision), the coherent part of the 

vibratlonal wave function Is 

c 

A   !   10  f -iut  -iw^tl .  y10  f +lu)t  -luntl 

L   o v '     o *■ ' 
♦i r 

(1.92) 

The significance of property (2) is that, immediately after a collision 

the coefficient of (j) in (1.92) gets multiplied by an arbitrary phase factor. It 

'then follows that the state of the system is specified entirely fef the occupation 

probability of the individual elgenstates, in particular, if the collision occurs 

at time t (subsequent to the previous one), the occupation probability of the 

first vibratlonal level is augmented by an amount equal to the absolute square 

of the coefticient of $., in (1.92). If this quantity be averaged over the time, 

t, between collisions, with a weight factor given by the r.h.s. of- (1.91), one 

obtains the average probability per collision that, as a result of the simul- 

taneous action of collisions and the electromagnetic field, a (0-^1) vibratlonal 

transition occurs.  Carrying out the Indicated operation, one obtains for this 

probability a sum of three contributions, two of which are proportional to the 

absolute squares of the first and second term of the square bracket of (1.92), 
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respectively, the third being the interference tern.  In what follows, let™ 

restrict the discussion to the "resonance" region defined by the condition 

(jj-u)   << u»  • 1  o'    o 
(1.93) 

In this case, the first contribution dominates, thereby permitting us to consider 

the transition as being associated with electromagnetic absorption. In conformance 

with this feature, let m denote it as P^m) (the superscript "(1m)" referring to 

the impact-theory basis of its derivation). 

In carrying out the average over t, let us introduce the further condition 

lu-w I >> 1/T , 
'  o 

(which is appropriate for the discussion of the wings of a Lorentzian line, and 

which, moreover, is quite well obeyed in atmospheric environments for the spectral 

shifts of relevance to the present paper). One then obtains 

s(im) 
10 '|1I(a)-a>0) 

(1.94) 

It is now necessary to recognize that the quantity of ultimate Interest is 

not the absorption probability per collision, but rather the absorptive proba- 

bility £er unit time (which will here be denoted as W10). Generally, the relation 

between the two quantities is of the form 

W 10 P10 Velf , 
0.95) 

o 

where v f is a suitably defined "effective" collision rate.  In the case of the 

phenomenological impact treatment sketched above, V#£f is simply the reciprocal 

of T, so that 

W (im) 
10 

p(im) 
10  ' 

T " [«(«-w ) 
2 
T 

30 

(l.i6) 
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From (1.96), it is now apparent how to rewrite the basic result, (1.88), 

of the present calculation in a form suitable for comparison with the impact 

theory; namely. 

P10 " l-fi(ü)-a,o)J 7 ' ^•97) 

1    _      S pM^) [8M( )/a2K]l/2g i (1> 
t 2a L   Ifn        J        e veff 

where v  ,- is  the effective number of collisions per second. 

In a one-dimensional model of relative translational motion — which,  in 

effect,  has been imposed on us by the collinear collision restriction — v  ,, 
erf 

would be something like the relative velocity of molecule and perturbing atom 

times a suitably defined linear density of perturbing atoms.  In order to go 

behond a phenomenological prescription of this type, it is necessary to generalize 

the treatment to include collisions other than collinear. A crude preliminary 

treatment, which should (in the opinion of the present author) nevertheless yield 

results of semiquantitative significance, will now be given. 

Specifically, it will still be assumed that the trajectory of the colliding 

atom, relative to the center-of-gravity of the diatomic molecule is parallel to 

the diatomic axis — the direction of said axis being taken as fixed. In accordance 

with the neglect of rotational motion (which was introduced ac the beginning of 

the treatment).  However, the distance between the trajectory and the center-of- 

gravity (that is, the classical impact parameter) is now permitted to take on a 

nonvanishing value. 

A simple procedure for the treatment of these "off-center" collisions is 

afforded by an approximation — here designated as the Takayanagi approximation, 

in view of its prior use by that author in a paper on vibrational deactlvation 

— which is nevertheless (in the opinion of the present author) quite suitable 

for obtaining results of semiquantitative accuracy.  In describing the approxi- 

mation, let us first note that, for impact parameters t atomic radii, (—SA), the 

incoming particle finds itself in a spherical potential (centered, of course. 
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around atom B of the molecule).  It is to be noted that the scale of variation of 

the potential is ~l/a«-.25Ä. This dimension is substantially smaller than the 

distance of closest approach, (-*i).  In other words, the radius of curvature of 

the equipotential surfaces is large compared to the distance (-1/a) in which the 

colliding particle experiences its principal interaction with the molecule.  In 

the Takayanagi approximation the curvature of these surfaces is neglected.  Speci- 

fically, the potential is taken as one-dimensional with the equipotential planes 

oriented perpendicular to that radius which intersects the trajectory at its 

distance of closest (classical) approach.  The potential on each plane is taken 

to be that of the (actually) equipotential sphere which is tangent to !%• plane in 

question. With this approximation, one writes the wave function as a product of 

two factors, describing motion parallel and perpendicular to the (fictitiously) 

equipotential planes, respectively. The parallel motion is described by a plane 

wave whose wave vector lies in the "plane of incidence" (i.e., the one containing 

the classical trajectory and the center of atom B) and has a magnitude 

kll  * k 8in e - kP/rc ' (1.99) 

(where 9 is the angle between the trajectory direction and the radius which 

contacts it at the distance of closest approach, rc, and p is the distance from 

the trajectory to the center of atom B). (For the particular collisions under 

consideration, p is also the distance from the trajectory to the molecular center 

of gravity). 

For the perpendicular motion, one is then left with a Schrödinger equation 

which is Identical to (1.31) except that k is to be replaced by its "perpendicular" 

component 

1/2 
k  - k cos 6 l-p2/r2 

c (1.100) 

Equivalently, the incident energy Ei undergoes the replacement
19 

Ei ■*■  E1 cos  9  - E 2 21 1"p /rcJ ' (1.101) 
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From the above results  [in particular,  from (1.01) and pnceding text],  it 
follows that the transition probability at an impact parameter p obeys the 
equation 

P10^Ei>    "    ?lo[0'ha-'2/^] ' (1.102) 

With the aid of (1.102). the approximate first-principles replacement of 
the phenomenological equation (1.98) reads 

T      2a 
[2M(ü"Ü'o) ]    -[8M(u>-a>o)/a2ffjl/2 o 
Un(p)  J    e       0    J   8(p)2Trpdp . 

where Np is the density of perturbing atoms, vi = (2Ei/M)
1/2 is the initial 

relative velocity and where n(o) and g(p) are gotten by using the replacement 
(1.101) in (1.89) and (1.90) respectively. 

A quantitatively accurate evaluation of (1.103) for all cases of interest 

remains to be carried out in the future. Preliminary studies indicate that, if 
(1.103) be expressed in the form 

i - —L-E       o      -[8M(ü)-ü.0)/a2!t]
1/2g  2 T     2a   L -Bn   J    e      0"  i  ■ ffp^t , (ltl04) 

[where n and g are, as before, the values of n(p) and g(p) for p - 0, and where 
popf the "optical" collision radius, is of course to be determined by integrating 
(1.103)], then 

Popt  <    rco * 3^ ' (1.105) 

That is, the upper limit of the optical collision radius is of the order of a 

gas-kinetic value.  It will now be shown that, even with this upper limit, the 

far wing broadening, given by (1.104) is numerically far below the impact-theory 
result. 
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In carrying out the numerical comparison, let us approximate n by its first 

term, which is, cf.(1.81), large compared to unity (the other terms being numer- 

ically 41); in particular, let us fix n at the value suggested by (1.81), i.e., 

^ " 10 • (1.106) 

Then, upon using the estimate 

a - 4 x 10 cm" , (1.107) 

and the relationship 

(fj 
r2Ell/2        r     vl/2 

*i ■ hr)  ~ W    ■ *.* x io5*:1/2. (LIO.) 

M 
(where Ttt  =    and where T has been set equal to 300*^), as well as 

proton 

Np  - 2.7 x 1019^ cm"3 , (1.109) 

(where ^ is the perturbing gas density in atmospheres), one has 

1/2 
i     » 

/■    «■     \ 

Av 

103 
(i.8) x ioVm ^'^noh1'2,8ec-i.        (lilw) 

where Av is the frequency shift, u-u , expressed in wave-numbers, and where 

P^^,. is given in angstroms; in what follows p   Is set equal to three, 
opt opt 

Turning to the evaluation of g, as given by (1.90) and (1.85b), one easily 

verifies that, with the sMantity c - Vi/Vf ■ C set at a fixed value, (1/10), g 

is only a function of the dimensionless parameter, fl(ü)-ü) )/E..  For a repre- 
0   -       -1 

sentative value of this parameter, say 3, (corresponding to Av ■» 900 cm ), a 

numerical calculation gives g - 1.1.  One then has, even for the extreme case of 

M ■ 1 (mass of relative motion ■ hydrogen mass) 

e-AÄl
1/2(Av/103)1/2g m  e-4 

- .018 
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The corresponding value of 1/T IS found to be 

7 - (.9)1/2(1.8) x 109(9)(.018) - 2.8 x lO^ec"1 . 

Expressed in wave-number units, this is 2.8 x 108/2TTC « 1.4 X lO"3^"1, a value 

substantially below the corresponding quantity used in Penner»s article,3 namely, 

4 x 10 cm /atmosphere. 

Another.representative calculation:  for K(w-w )/B - 2(Av • 600 cm"1) 

one has g - .88; exp[-4»l1/2(Av/103)l/2g]  . exp[-4(?6)l/2(.88)] - e"2*72 - .066. 

The corresponding value of 1/T is 

* - (.6)1/2(1.8) x 109(9)(.066) - 8 x lO^ec"1 - 4 x lO^cm"1 

- a factor of ten less than the Penner value.21 
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SUMMARY AND FUTURE PROSPECTS 

In this paper a model-type treatment of the far wing broadening of the 

vibrational lines of a diatomic molecule by a monatomic perturber has been given. 

The model is one in which interatomic forces are assumed to be of the exponential 

type, e  , and in which rotational motion is ignored.  Specific results are 

derived for collinear collisions; these are generalized somewhat by the use of an 

approximation due to Takayanagi. 

It is found that the so-called statistical theory is valid only out to 

distances of the order of 30 cm"1 from the line center.  Beyond this point the line 

profile falls exponentially with increasing frequency shift.  Numerical estimates 

at distances ~600 cm" and 900 cm"1 from the line center indicate that the actual 

absorption falls substantially below the impact-theory estimates of Penner.3 

With regard to future work in this area, the following items may be listed: 

1) First of all, a systematic numerical analysis of the final formulae 

of the present paper is required, in order to present a proper 

picture - in particular the overall frequency variation of the 

line profile, and a comparison with the impact-theory predictions 

of the model (exponential interatomic forces). 

2) The role of attractive forces should be considered; it may be 

possible to do this rather straightforwardly, using Morse-type 
22 

potentials.   Quantitatively, attractive forces, by speeding up 

the particles, increase the effective incident energy; this increase 

is preliminarily expected to lead to an enhancement in the ab- 

sorption probability. 

3) By an extension of the Takayanagi approximation, it appears pos- 

sible to generalize the treatment further, to include collisions 

where trajectories are inclined at an arbitrary angle to the 

molecular axis. 

4) It would, of course, be eminently desirable to take account of 

rotational motion. This, however, promises to be a tricky business. 
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REFERENCES 

1. T. Holstein, Phys. Rev., 79_, 744 (1950)  The present discussion follows 

closely the results of this reference. 

2. A discussion of this last possibility is given in an augmented version 

of Reference (1) unpublished, but available on request. 

3. These magnitudes are suggested in the article of S. Penner, Laser Summer 

Study, (1965), The Institute for Radiation Physics and Aerodynamics, 

Univ. of Calif, at San Diego, in connection with the absorption of 

1 micron due to H^O lines situated in the spectral region. 

A.    It may at this point be mentioned that realistic value for a lie in the 
8  —1 

range 4 - 5 x 10 cm . Such values begin to approach the requirements 

of condition (a). 

5.    cf. e.g. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, 1950), 

pp. 125-127, especially the quoted values of the frequency separations 

of the maxima of the two rotational branches (P and R) for HC1 (124 cm ) 

and CO (55 cm ) at room temperature. These values, of course, 

characterize the rotational states of the molecule before collision; 

after collision, the "effective" rotational temperature will in general 

be augmented by the conversion of the energy K(a)-ai ) into rotational 

plus translational energy. However, since room temperature corresponds 

to ^300 cm , the values quoted here will not be augmented by more than 

a factor of 

a/2 
(tü-ü) ) + kT 

o    
< 2 kT    K 

6.    Alternatively stated, the conversion of an appreciable fraction of the 

energy (w-u ) into energy of rotation would require AJ >> 1. 
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8. 

9. 

10. 

11. 

12. 

13. 

14. 

It -T be „marked here th.t t. 11« „lth thU similarity, th. ther^l 
-ave ength of rotaclo„al _ ^^ are ^ ^ ^ ^ 

varlll"   tran8Utl<'"al •"• '-"°". ^«h la MIalt„da and a„ergy 

cf. N.F. Matt and U.K. Maa.ay. Thaory of Atcalc CoUlalana. 3rd Ed 
(Oxford 1965) pp. 686-690. 

It ^ay paranrtatlcally 6a raMrtad that th. approximation rapraaaat.d 

"y E,.. (1.8 - l.xo) - the ,o-called dlatorted-„ava approxl^tlon - 

should 8lv. good raaults alnoe (a) In practice, by vlrtne of the repulsive 

character of the Interaction. v(R.x) „1U generally be of the order of 
the incident energy E, .  kl « ^ aarger value8 of ^ ^ 

potential being. l„ e.aanca. dynamically Inaccessible). As .111 later 

e «en the Intervlbratlona! matrix elements ^ v«.» are even seller. 

1. the neglect of these matrix alament. which constitute the distorted 
wave approximation. 

Here. It Is necessary to Introduce the full time dependence of th. 
unperturbed wave function. 

1*1 Ta!ly be the ca8e th"the product of th' '«••"'«"'.«. nd the vibration-amplitude scale-factor, m/u^)!/^ ,. small. 0ne '    ' 
then expand the exponential factor. t°>\ in tha lntagralai obtalnln8 

'l ■ "o «P(«Va) [l^2A2H/AuwUo]. Vf - v, axp(aAYe) [l^hh/^]. 

Not -prlslngly. the r.h.s. of (1.76) Is Identical with the R for which 

the above discussed modification of tha Franck-Condon Principle fcf 

«9.. (1.67a.b) and (1.68)) 1. „atlsfled (as may be easily verified by 
the reader). 7 

0. Haraberg, gpaotra of Diatomic Molecules (Van Nostrand). 2nd Ed. (1,50). 
p. 534 

The details will have to be relegated to a future report, 

15.   The initial time dependence e""^/« 
wni .    w      Penaence, e      , occurs ag a cormon 

will hence be discarded. 
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16. It may be remarked in passing that. If this condition Is not fulfilled, 
V 

the randomization recipe of(2) Is not correct. Namely, as shown by 

Van Vleck and Welsskopf [Rev. Mod. Phys. 17, 227 (19A5)], the total 

vlbratlonal state Immediately after collision Is to be considered as an 

Incoherent aggregate, not of the eigenstete of the field-free vibrator, 

but rather of the vlbratlonal elgenstates In the presence of a static 

electric field, equal to the momentary value of the oscillating electro- 

magnetic field at the Impact-time, t. A detailed analysis shows that 

this recipe becomes equivalent to the one used above when (1.93) Is 

fulfilled. 

17. K. Takayanagl, Prog. Theoret. Phys. 8^, 497 (1952). 

18. There Is, of course, a further correction because of the fact that the 

direction of molecular vibration no longer coincides with that of the 

llne-of-centers of the colliding atoms (B and C). This involves alter- 

ations in the formulae of Ref. 11, for the constants V. and V'. These 

alterations turn out to be of secondary importance and will be Ignored 

in this report. 

19. It may here be remarked that Takayanagl's formulation is somewhat 

different than the foregoing. He separates the Schrödinger equation of 

relative motion in spherical coordinates, obtaining a radial equation 

which differs from (1.31) in the presence of the usual centrifugal term, 
2 

Jl(Ä,+l)/r .  Takayanagl's approximation is the replacement of this term by 
2    2 2 

)l(Ä+l)/r m   I ft ,  which, with the introduction of the impact parameter, 

p ■ ■K£/mv, is easily seen to be equivalent to (1.100). 

20. It is Incidentally to be noted that r is itself a function of p, to be 

determined by solution of the equation [cf. (1.31), (1.30c), and (1.1)] 

0 - k2(l-p2/r2) - f2M/fi2)vo e-
arc . 

However, for the case in which p << r  (where r  is the value of r 
' co       co c 

for p = 0), one may clearly approximate r by r  . As will shortly be 

seen below, only this case is treated explicitly in the present paper. 

c 
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< 21. It should be kept In mind that the choice^- 1 yields an extreme upper 

limit for 1/T.  E.g., for HJ), it would seem that even with the rotational 

motion taken into account, a minimum value of #1" 2 would seem to be more 

appropriate. For this choice, the value for 1/T is reduced by a factor 

e-2.72(.41) m  >33>  The reguitfmt „idth is 30 times smaller than the 

Penner value. 

22. Cf. Devonshire, Proc. Roy. Soc. Al58. 269 (1937). 

o 
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Chapter 2. 
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ABSORPTION STUDIES OF THE  (O^ COMPLEX 
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This chapter describes studies of various physical processes Involved in the 

heating of the atmosphere in the vicinity of a high-powered laser pulse. The 

starting point of these studies is to be found in Appendices E and G of the 

Laser Summer Stud^ RgEort (K.A. Brueckner, Institute for Radiation Physics and 

Aerodynamics, UCSD, La Jolla, California, Aug. 9^20, 1965).  The analyses reported 

in the latter assume as an engineering requirercent that the effective1 absorption 

coefficient be less than or of the order of lO'llcm"1 (at pressures of the order 

of one atmosphere).  Specifically, Penner and Olfe (Appendix E, loc. cit.) arrived 

at th® conclusion that in the vicinity of the wavelength 10,468 %  the absorption 

coefficient k(v) is -1.5 x lO-11™"1. With this result the engineering problem 

would appear to have been solved, were it not for the fact that, as pointed out by 

Kolb and Ory (cf. Appendix G, loc. cit.), atmospheric absorption in the spectral 

neighborhood of 10,468 i  is actually dominated by a continuous absorption band, 

due to the existence (momentary or otherwise) of (02)2 complexea. From the data 

of Dianov-Klokov, Kolb and Ory conclude that at 10,468 i  the absorption coef- 

ficient is 1.5 x 10" cm"  (down by a factor of ten from the peak at 10,600 Ä). 

It is clear that, if the energy absorbed from the laser beam is immediately 

converted into heat, one is reduced to the investigation of (a) the possibilities 

of an atmospheric window in the further wings of the (02)2 band (e.g., in the. 

neighborhood of say 10,300 Ä or 10,800 i),  or (b) looking%or a window in an 

entirely different spectral region (such as the 10 micron window mentioned by 

Kolb and Ory). Deferring these approaches for the time being, let us consider 

in some detail the physical processes responsible for the conversion (wholly or 

in part) of the absorbed laser energy into heat. 

To begin with one may note from the results of Badger et al^ (as well as 

from the earlier references quoted therein) that the 10,600 X band is associated 

with the transitions 

[\(o). \m i\m 

V" 
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in which the resulting complex may be regarded as consisting of a pair of loosely 

bound (or momentarily colliding) diatomic oxygen molecules.  One of these molecules 

ends up in the first excited electronic state A , the other in the electronic 
3 ^ 

ground state E ; in addition, one of the molecules acquires a single quantum of 

vibrational excitation. As will be seen shortly, there is good evidence that under 

atmospheric conditions the lifetime of the electronic state is considerably in 

excess of one millisecond; on the other hand, there is equally good evidence that 

(under typical mid-latitude atmospheric conditions) vibrational de-excitation of 

02 takes place in a time substantially less than one millisecond. 

Before getting into the detailed estimation of relaxation times, let us 

briefly note some interesting (and perhaps eventually pertinent) facts concerning 

the structure of the (02)2 dimers. According to Ref. 4 [cf. their Eq. (6)] the 

radiative decay rate of A states is given by the formula 
g 

1 , 
- (sec '1) - 2.6 x 10"4 1 + 3.8 P0 + J.O Pco + .7 P 

■N„ 

where the P's are partial pressures in atmospheres. Of interest here is the term 

proportional to Pn ; it gives the strength of the radiative transition associated 
2 

with the (02)2 complex (either a stabilized dimer, 01 a momentary 0, complex 

formed by two colliding O2 molecules).  Now, the likelihood of an O2 molecule 

Introducing being in the atomic vicinity Rn n ~2 x 10"
8cm is ** 4^ N„ R3 n 

2  2 2   2  2 
the symbol 1/T» to denote an effective radiation rate for the 

4 
we then have 

0, complex. 

(2.6 x 10"4)(3.8) P, 
0, 1/t, ^- N  R3 

3 N02V
02' 

1Q 
With Nn   3 x 10 ' P  , and with the above estimate for Rn . one then has 

2 U2 02"02 

1/Tn ~ 1 sec" , 
U4 

which is extremely small compared to the rate of allowed electric dipole tran- 

sitions. This result suggests an extremely loose coupling of the two 0„ molecules, 
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such that the spins, parities, and/or axial angular momenta of the individual 

diatomic constituents remain good quantum numbers. 

This conclusion is supported by the very low quoted estimates of the dis- 

sociation energies of (02)2 dimer states. According to Bader and Ogryzlo these 

range from 200-600 cal/mole, which is equivalent to .009-.025 ev.  Such small 

dissociation energies are indicative of lo;.g range, extremely weak, attractive 

interactions (probably of van der Waals origin) in which the individual 02 mole- 

cules are kept well apart by the usual shorter range but relatively strong 

repulsive interaction. 

It may be remarked here that Bader and Ogryzlo emphasize that their results 

lead to the conclusion that the radiating complexes are true dimers.  However, in 

' our opinion, the low dimer-dissoelation energies quoted by them strongly suggest 

that such dimer states exist for at most a few collision times "lO sec.  For 

the overwhelming fraction of time, electronic and vibrational excitations reside 

in individual 0- molecules. 

With these preliminary observations out of the way, let us proceed to a 

discussion of the lifetime of the electronic state 1Ag under atmospheric conditions. 

Here, very fortunately, relatively strong experimental evidence for a lifetime far 

in excess of one millisecond is provided by the previously quoted work of Bader 

and Ogryzlo. 'Chese authors, using calorimetric techniques, find (cf. curve (b) of 

Figure 1) that in a fast-flow system in which gas flows from a discharge at a 

drift speed v ~ 200 cm/sec,7 the concentration of excited 02 molecules (which 

they identify as 1A molecules) does not exhibit perceptible diminution in a flow- 

distance of 45 cm; moreover, said persistence of excitation is unaffected by the 

presence of small amounts (-1 percent) of H20, N02, N20 (as well as some non- 

atmospheric constituents).  One may immediately infer that under these experimental 

conditions 

v » -M - 'n 8ec'1- 
A 
g 

c 
Postulating a hypothetical volume-destruction process involving the binary col- 

lision of excited 02 molecules with other atmospheric constituents (02 or N2) 
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one may then infer a lifetime 

Tj  >>  .23(4.4)/760 = 1.3 millisecond. 

Two possible loopholes in the above chain of reasoning may be pointed out 

here. One is the tacit assumption that 0* - N2 collisions will not be more ef- 

fective than 02 - 02 collisions for electronic de-excitation.  In our opinion this 

assumption appears [in the light of preliminary study of Lha theory of such 

quenching reactions, as presented, e.g., in the paper by K. Laidler, J. Cheffi. Phys, 

10, 34 (1942(] to be eminently reasonable.  Similarly, it appears quite reasonable 

to assume that minor atmospheric constituents, such as carbon dioxide, will not be 

more effective than H20 in excitation-quenching. 

The other loophole is the assumption that the volume-destruction process is 

two-body.  If, on the contrary, it were a three-body process, one would have to 

multiply the above estimate of 1.3 milliseconds by another factor of 4.4/760, 

thereby obtaining tj^  » .077 millisecond - a result which tells us essentially 

nothing. However,  g without further experimental or theoretical evidence it 

would be unduly pessimistic to be concerned about this possibility.8 

Proceeding then from the above-deduced conclusion that, under atmospheric 

conditions 

T,   »1.3 millisecond, 
A 
g 

let us discard the electronic excitation energy of A - 0. states as a source of 

atmospheric heating.  The fate of the vibrational excitation remains to be con- 

sidered. Here, the engineering situation is not favorable.  Specifically, as 

will now be shown, it turns out that the presence of water vapor in concentrations 

encountered under typical mid-latitude conditions leads to vibrational de- 

excitation of 02 in times substantially less than one millisecond. 

The required information concerning collisional quenching of vibrational 

excitation in 02 is obtained from experiments on absorption and dispersion of 

ultra-sound in gases. These experiments yield the so-called "Napier" relaxation 
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frequency f.. ■ 1/2 TT T , where T , the "Napier" time, is the time required for 

thermal equilibration between vibrational and translational degrees of freedom of 

a gas; T may be identified as the lifetime of vibrational excitation, and is 

hence of direct interest to us. 

9 
The results of Henderson, Clark, and Llntz will form the basis of the 

present discussion. According to these authors, T., in O^-H.O mixtures is given 

by the expression 

-r^— =  (7 + 183h + 132h2)p 

(with 1/TN in sec~ ), where p is the pressure of the main constituent, 0-, in 
3 

atmospheres, and where h = 10 Nu _/Nn . One notes that when h exceeds unity 
H_U  U» 

(Nu _/Nft > .1%), the term quadratic in the water vapor concentration becomes 
2   9 

dominant. 

Before going on to evaluate the engineering situation, let us digress 

briefly to discuss the mechanism of the quadratic term. The currently believed 
10 

mechanism (first proposed by Tuesday and Boudart ) consists of a two-step process. 

The first step is the transfer of vibrational energy from 0- to lUO in a binary 

collision; this transfer, by virtue of the close energetic proximity of the 

lowest vibrational level of 02(155i6 cm" ) to the lowest bending-mode excitation 

of H-0 (1595 cm ), is quasi-resonant, and hence assumed to be rapid enough to 

establish a common vibrational temperature for the two species, i.e.. 

C 

* 
N    n N    „ H20 H20 

\ s 
A       A 

where N. and N., n denote the concentrations of vibrationally excited molecules 

of 0- ana H90.   The second step consists of the conversion of H-O-vibrational 

excitation into translatory (or rotatory) energy via H-O - H-O collisions.  This 

reaction, although quite rapid compared to other bimolecular vibrational de- 

excitation processes (e.g., 0, with itself) is still taken to be slow compared 
A A 

to the reverse of the first step (i.e., H20 + 02 -► H20 + 02).  It is then readily 

seen that the quadratic term in the above expression for TN is given by the 
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( formula 

T  - NO*" NH20 
<VH20

> %' 

where H_ 0 is the concentration of normal ty) molecules, <vH 0> is some average 

relative velocity of two colliding H20 molecules, and Qa is ?he cross section for 

vibrational quenching of H20* in such a collision.  Inserting into this relation 

the experimental value for 1/T2, namely 2ir(132)h
2 sec-1, and using the formula 

h ' 10    NH20
/N02» 

one flnds NH20 
<VH 0> % " 8-3 x lo8 sec-^atmosphere. 

With NHo0 " 
2-7 x lol9cm-3 at one atmosphere, and with <vu n> ^IOWMC"

1
. one 

has   2 H20 

Qq-S x lodern2, 

which is 1/10 a gas-kinetic cross section. This is perhaos one order of magni- 

tude higher than the usual rate of vibrational deactivntion in reactions involving 
polyatomic molecules. 

It should finally be stated that the basic reason for the credibility of 

the Tuesday-Boudart mechanism (as compared to, e.g., a three-body Interaction 

between one oxygen and two water molecules) is that the quadratic term is unique 

to H20; D20 and HDO give rise only to terms linear in their respective concen- 

trations. Since the vibrational frequencies of these molecules are not close to 

that of 02, the absence of the quadratic term finds a natural explanation in the 
Tuesday-Boudart theory. 

Having discussed the mechanism of the quadratic term (the linear term being 

presumably associated with the reaction 0* + H20->02 + H20 + K.E., let us evalu- 

ate the engineering situation.  For this evaluation it is useful to present a 

table of h as a function of altitude for an average mid-latitude location.13 

Altitude (km) Mixing Ratio(W = ^ 0/Matin) h - W(29/18) x 103 

0 .63 x ID"2 10.2 

2 .38 x 10-2 6#1 

4 .19 x lO"2 3.1 

6 .09 x 10-2 1#45 

R .027 x 10-2 <43 
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With h at sea level equal to 10.2, it is immediately apparent that the quadratic 
2 

term 2ir (132)h is dominant and yields a value 

1 4-1 -*- *»8.5 x 10 sec >>/inverse millisecond 

\ 
* 

for the deactivation rate. Furthermore, the corresponding lifetime T» remains 
2 L lass than a millisecond for altitudes below a value •■•'6.3 km.  It is   thus 

apparent that, for engineering purposes, one must consider the vibrational part 

of the absorbed laser energy as contributing its full quota to atmospheric 

heating. 

The energy bookkeeping now proceeds as follows:  if v = 1/X is the wave- 
-     A 4 -lx number of the laser beam, one observes (with v , = 10/1.26 ■ .794 x 10 cm ) 

14 
that the fraction of energy available for atmospheric heating  is 

v ~ vel _ v-7940 . 
v v 

Taking v equal to the Penrer value (Appendix E of the above-quoted Summer 

Report), 104/1.047 - 9550 cm" , one has 

v - v . 
-^-Si - .17 . 

v 

Hence, for the effective aboorption cross section (i.e., the cross section for 

effective conversion of laser energy into heat), one has 

v - v 
keff(v) -    - el k(v) - .17 k(v) , 

where k(v) is the actual absorption cross section. Using the value mentioned at 

the beginning of this report, one has 

k e-(v) - 2.5 x lO'^cm"1. eff 

It is thus clear that if it is possible to reduce keff(v) by another factor of 

ten, the engineering situation will begin to look optimistic. One possibility 

for such a reduction will now be discussed briefly. 
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c 

Specifically, it appears that apart from the (02)2 absorption, Penner's 

wavelength choice, 10,468 Ä, is not uniquely indicated. Preliminary inspection 

of the Babcock and Moore solar atlas  as well as more recent data  from the 

Naval Research Laboratories, indicates the essential absence of atmospheric 

absorption lines down to about 10,300 Ä. Moreover, Penner's calculation for 

10,468 Ä indicated that the dominant absorption (apart from the (02)2 band i8 

due to the relatively distant, strong H-O lines between 11,103 A and 11,601 A. 

This contribution will certainly not increase with decreasing wavelength.  On 

the other hand, according to Fig. 1 of Ref. 3, :he contribution of (02)2 absorption 

diminishes substantially with decreasing wavelength over the interval 10,468 A ->■ 

10,300 &. The possibility of obtaining the required factor of ten in the wave- 

length region 10,300 - 10,370 Ä appears at the present time to merit further 

investigation. 
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Bader and Ogryzlo's experiment permits one to conclude that wall-destruction 

processes are also extremely inefficient. Namely, for de-excitation proba- 

bilities of the order of one per collision — in fact, even for probabilities 

not much larger than the ratio of mean free path to the tube radius (which 

ratio << 1) — the wall-destruction rate is given by the standard diffusion 

formula ,  „ 
1 ^ iMi2 Vth ^ u v 
T 
W    R 

2     3      D th' 
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( 
where R = 1 cm is the tube radius, Ä,D the "diffusion" mean free path, and 

vth, a typical thermal velocity of 0- molecules. Taking for the diffusion 

tion, Q = l/NX, , a characteristic gas- 

/)l_^(4.4)(3xl0i6)(3xl0"15) = 400 cm"1. 

cross sec 

one has 1/ 

kinetic value of 3xl0~15cm2, 

With v ,<-4x10 cm/sec, one 

( 

then has T '".005 sec, which is very much less than the observed lifetime 

(>> .23 sec).  It is therefore immediately apparent that the quenching 

probability per wall collision C is very much less than unity. However, 

for C <<<< 1, it is known that the diffusion expression for T should be 

replaced by 1/T^V^/R 5 -* (O 4x10^ sec" . It is thus apparent that, with 

1/TW experimentally found to be much less than (1/.23) sec" , 5 << 10. 

Such extremely small quenching probabilities (involving surfaces undoubtedly 

well contaminated with adsorbed layers of 0- and other constituents) con- 

stitute strong evidence for the assumption that the quenching efficiencies 

of ternary, etc., collisions are generally extremely small.  Since the 

relative rate of ternary to binary collisions is gas-kinetically small 

H4TrN/3 (QD/7r)
3'2'^.004 at one atmosphere], values of C « 10"4 would then 

appear to rule out the above discussed possibility of three body collisions 

playing any significant engineering role in quenching *■&    molecules. 

9.  J. Acoust. Soc. Am. 37., 457 (1965). 

10. C.S. Tuesday and M. Boudart, Princeton University Technical Note 7, Contract 

AF33(038)-23976 (Jan. 1955); a detailed account is more conveniently given 

in the book. Absorption and Dispersion of Ultrasonic Waves, by K.F. Herzfeld 

and T.A. Litovitz (Academic Press Inc., New York, 1959, p. 212). 

11. This cross section, although large, can easily be shown to be compatible 

with the basic assumption of the Tuesday-Boudart mechanism; namely, the 
it it 

dominance of the vibrational-equilibration reaction H-O + 0- ^ H_0 + 0_. 

If in fact one assumes that the cross section for HO* + 0_-» HO + 0* is not 

less than gas-kinetic (reasonable in view of the quasi-resonance of vl- 

brational energies), one finds that vibrational transfer from H?0 to 0- is 

some three orders of magnitude more frequent than vibrational deactivation 

in H20 - HjO encounters. 

12. This statement, while applying to D_0 with bending-mode frequency = 
-1 

1178.7 cm , becomes somewhat questionable in the case of HDO, for which 

this frequency is 1403 cm .  Here, it would appear.possible that the 
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discrepancy between this and the 02 vlbrational frequency (1556 cm ), namely 

153 cm"1, is small enough to allow an appreciable transfer between 02 and HDO. 

This detail requires further investigation. 

13. Handbook of Geophysics and Space Environments, Air Force Cambridge Research 

Laboratories, McGraw-Hill, New York (1965), p. 3-37. 

14. The quantity v - v . appearing in the numerator of this expression represents 

that part of the laser energy which appears not only as vibrational, but also 

as rotational and translational energy.  (Note that the signs of the latter 

two may be negative, i.e., the rotational and translational energies of the 

absorbing molecules may be diminished in the act of absorption.) All these 

forms of energy contribute to atmospheric heating. 

15. H.D. Babcock and C.S. Moore, The Solar Spectrum, X6600 to X13495, Carnegie 

Institute of Washington, Publication 579, Washington D.C., 1947. 

16. An Atlas of the Absorption of the Atmosphere From 8512 to 11,600 A, J.A. 

Curcio, R. Eckhardt, C.V. Acton, and T.H. Cosden, NRL Report 635L, U.S. 

Naval Research Laboratory, Washington, D.C. (1965). 
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Chapter 3. 

COLLISION-INDUCED ABSORPTION 

( 
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I.   INTRODUCTION AND BACKGROUND 

One of the processes by which light may be removed from a beam traversing 

the atmosphere, and converted directly to heat, Is collision-Induced absorption. 

During a collision between two molecules a transient dipole moment may be in- 

duced by the overlap of the electron clouds, and, in some cases by a permanent 

quadrupole moment on one of the molecules. Because of the Induced dipole 

moment an absorptive transition can occur which is forbidden for the Isolated 

molecule. The transition may be strictly translational, or it may have both 

a translational and an Internal (rotational, vibrational or electronic) com- 

ponent. Tt.e former case corresponds to an instantaneous transformation of all 

the photon*ä energy into heat. In the latter case, if the photon's energy ex- 

ceeds the energy needed for the internal transition, then the excess goes 

instantaneously into translational motion, and therefore into heat. Conversely, 

if the photon's energy is less than that needed for the internal transition, 

the difference is provided from the translational energy of the molecules; 

this process corresponds to instantaneous cooling. In either event the in- 

ternal energy is, in general, eventually transformed into heat by collisional 

relaxation. 

Collision-induced absorption is not to be confused with ordinary pressure- 

broadened absorption. Ordinary pressure broadening applies to internal 

transitions which are permitted for isolated molecules; the collisions result 

in a modification of the spectral shape of the line, but do not affect the 

magnitude of the frequency-integrated absorption coefficient, which is pro- 

portional only to the density of molecules of the species making the transition. 

The integrated absorption coefficient for collison-induced absorptions, how- 

ever, is proportional to the product of densities of the two molecular species 

involved in the event (or to the square of the density, if only one species is 

involved). At standard pressure ordinary absorption usually dominates strongly 

over collision-induced absorption in the spectral vicinity of a permitted 

transition. However, in the neighborhood of a forbidden transition collision- 

induced absorption becomes the dominant process. 

Collision-induced absorption is characterized spectrally by broad, 

continuous bands having widths (in reciprocal wavelengths) of the orc^.r of 
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-1        -2 
100 cm  (about 10  ev in energy units). These widths may be regarded as 

following from the uncertainty principle because of the transient nature of 

the induced dipole moments, which exist only during the collision period of 
-14 

several times 10   seconds. The bands are centered at, and superposed on 

forbidden rotational bands, rotational-vibrational bands, etc.  In addition 

there are bands corresponding to purely translational transitions, which peak 

at ""lOO cm" . At their peaks the absorption coefficients range in magnitude 
*  _5 _i      _2 -4 -1      -2 

from the order of 10 cm  amagat  to the order of 10 cm  amagat  . 

A number of collision-induced absorption bands have been observed ex- 

perimentally, "  and the corresponding absorption coefficients have been 

measured in the neighborhood of the peaks. The mean free paths are quite long 

at standard pressure, so the measurements must be made at pressures of about 

100 atmospheres and higher. Most measurements are within about 400 cm  of 

the peak.  In the far wings none have yet been achieved. 

Our interest in atmospheric heating via collision-induced absorption 

stems from the possibility of its leading to a self-defocusing of a laser beam 

propagating through the atmosphere.  The defocuslng is brought about by a de- 

crease in the local index of refraction as a result of laser heating; the net 

effect is an undesirable decrease in the transmitted power density. Given an 

upper limit on the acceptable decrease in transmitted power density one can 

determine a corresponding "critical" value of the reciprocal mean free path 

for heating, which will lead to the self-defocusing instability. This critical 

value has been estimated elsewhere for a contemplated choice of laser power, 

frequency, and pulse duration. 

The peak values of reciprocal mean free path for collision-induced 

absorption, which obtain at atmospheric pressure for the more abundant 

constituent gases like N- and 0-, range from ^10 cm  to -'lO cm , and are 

much greater than the particular critical value referred to above.  It is only 

in the far wings of these bands that the absorption decreases to the critical 

value.  Therefore, to determine whether or not a given collision-inductd 

absorption band can cause a defocuslng instability, one must know the fir wing 

behavior of the band. However, the far wings have so far been too difficult to 

An amagat is a partial pressure of one atmosphere. 
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^ study experimentally even at high pressure, so that it is desirable to attempt 

a theoretical prediction of their behavior. 

Whether or not collision-induced absorption presents a potential limi- 

tation to laser beam transmission through the atmosphere depends upon the 

laser power being considered. The maximum absorption coefficient for heating 

which can be tolerated (insofar as beam self-defocusing is concerned) is 

smaller for larger laser power.  For some beams which one might wish to use, 

such as the kilowatt c-w beam in the 10 micron wavelength range, obtainable 

with the C02 laser, collision-induced absorption is probably not a serious 

problem.  For megawatt beams, however, the critical absorption coefficient is 

much less than the peak values of typical collision-induced absorption co- 

efficients; in this case the relative spectral locations of the laser beam and 

the absorption bands are crucial. If for a given laser frequency and intensity 

the critical absorption coefficient proves to be exceeded, then collision- 

induced absorption has associated with it a difficulty not present for most 

other heating nechanisms. In other mechanisms the absorbed light energy is 

temporarily stored in some internal state of the absorbing molecule, and is 

released into heat energy .ver a period of some collisional relaxation time. 

Therefore, by making the laser pulse duration less than the collisional re- 

laxation time one can, at least in principle, overcome the defocusing in- 

stability resulting from most heating mechanisms. However, in the case of 

collision-induced absorption, all or a large part of the photon energy may go 

instantaneously into heat, and the heating problem cannot be surmounted by using 

a short laser pulse. 

The specific list of laser beams (with their powers, frequencies, and 

pulse lengths) for which we wish to evaluate the capability of atmospheric 

transmission has not yet been made final, and in fact cannot be predicted much 

better than the characteristics of lasers that will be developed in the next 

few years can be predicted.  In view of this circumstance and the fact that 

atmospheric collision-induced absorption bands are scattered throughout the 

visible spectrum (they presumably occur everywhere that forbidden transition 

lines occur), we have concluded that, despite the current emphasis on the 

relatively low power C02 laser, collision-induced absorption bands require 

investigation. 
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Two of the atmospheric "windows," which are currently under consideration, 

are located in the wavelength vicinity of one micron and ten microns respec- 

tively.17 The ten micron window (reciprocal wavelength -'lO cm ) appears to 

be threatened by a collision-induced absorption band resulting from a collision 

between two N. molecules.12 This band is superposed on a rotational band of 

N ; its peak, located at ^100 cm" , corresponds to an absorption coefficient 

of ^2.5 x 10~6cm~1 amagat-2. The estimation of the magnitude of this ab- 

sorption coefficient at 103cm"1 has been made a specific goal of our program. 

The ten micron window is also endangered by a vibrational-rotational 

band of 0,, which results from 02 - 02 collisions  (and probably also from 

0    -  N« collisions). This band has a peak absorption coefficient of 3.5 x 

10"6cm"1 amagat"2, with the peak located at 1550 cm"1. It is considerably 

closer to the window than the N2 - N2 bands and therefore at first sight might 

be expected to dominate.* However, the reverse is probably the case because 

of the fact that collision-induced absorption bands characteristically de- 

crease much more rapidly on the low frequency side of their peaks than on the 

high frequency side. Specifically, the frequency dependence of the absorption 

coefficient on both sides differs principally by an extra factor exp[-4i(wo-u)/KT] 

on the low frequency side, where uo is the peak frequency and u is the 

frequency in question.** The explanation of this behavior is straightforward. 

The peak frequency co is essentially the frequency of the internal transition. 

If the photon energy tw is greater thanli^, the absorption is always 

energetically possible, since the excess can go into kinetic energy of the 

colliding molecules. However, if *u < Ifo^, the absorption is not energetically 

* Since the excited vibrational-rotational level (which is located at about 

the same frequency as the peak of the absorption coefficient) is at a higher 

frequency than the window (1000 cm"1) the initial effect is a cooling of the 

atmosphere by the energy equivalent of (1550-1000) cm"1 - 550 cm" . However, if 

the pulse length is greater than the collisional relaxation time of the excited 

level, the entire 1550 cm"1 of energy will b«. deposited in time for the pulse 

to experience a heating by a net energy equivalent of 1000 cm . 

** "This statement and the explanation that follows apply only to transitions 

( involving internal modes, and not to purely translational transitions. 
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y possible unless the kinetic energy E of the molecules is great enough to make 

up the difference, i.e,, unless E ^ Ikj -ikj.  The extra Boltzmann factor on 

the low frequency side, then, is just the probability that the colliding 

molecules have sufficient kinetic energy. 

The far wing behavior ( ~ 10Jcin" ) of the N2 - N rotational band is then 

a prime target of our program.  However, as a first step we have chosen to 

study collision-induced absorption by rare gas molecules (specifically Ne-A, 

He-A, and He-Ne for which considerable data exists*9,12)t  The reason is that 

this process is much simpler; there are no internal states involved and the 

transition is purely translatlonal.  To describe a translational transition 

we need only know the induced dipole moment as a function of intermolecular 

separation.  However, to describe a rotational-translational transition we 

must know, in addition, the dependence of the induced dipole moment on the 

orientations of the individual molecules., Therefore we shall first study the 

simpler absorption by rare gases, then use the rare gas absorption coefficients 

in the far wings to make a first, primitive estimate of the N. - N, absorption 

at 1000 cm , before we go on to attack the latter more directly. 

Considerable theoretical work has been done by Van Kranendonk and others 

on the frequency-integrated collision-induced absorption coefficient.18"24 

Satisfactory agreement with the data appears to be obtained by using a model 

in which the induced dipole moment consists of two terms.  The first is a 

result of the overlap of the electron clouds of the two molecules during the 

collision and of their consequent distortion; it is very short range and has 

an exponential dependence ^e  p on the intermolecular separation R, and is 

directed along the intermolecular axis  The second term describes a dipole 

moment induced on one molecule by a permanent quadrupole moment on the other; 

' 

There is no collision-induced absorption by rare gas molecules of the same 

species, because the spatial symmetry in the center of mass system precludes 

the existence of an asymmetric quantity like the induced dipole moment.  In 

the case of diatomic molecules of the same species, like N- - N2, the freedom 

of orientation of each molecule relative to the intermolecular axis destroys 

the symmetry, so that the dipole moment can be induced. 

58 



< 

-4 
it is longer range than the overlap term and goes as R    Since rare gas 

atoms do not possess permanent quadrupole moments, we shall be concerned only 

with the overlap moment. 

The evidence for an exponential overlap moment also includes a direct 
19 

quantum mechanical calculation by Van Kranendonk and Bird,  who find that 

their numerical results can be well represented by an e    dependence. 

We are aware of only three papers concerned with the frequency dependent 
25-27 

collision-induced absorption coefficient.   "  All three are confined to rare 
25 

gas molecules. Levine and Birnbaum  describe the molecular motion by a 

classical straight line trajectory and take for the induced dipole moment 

ji(R) - u YR e~Y R (R/R).  The factor yR in front is used to simulate the 
o 

behavior of the scattering wave functions: the molecules are actually 

scattered by a potential which has a steep, short range, repulsive part that 

causes the wave functions to decrease rapidly for small R. The exponent is 

chosen quadratic, in R, instead of linear, because the former choice signifi- 

cantly simplifies the analysis and permits a closed form expression for the 

absorption coefficient. The parameter uo appears trivially in the reault as 

a scale factor multiplying it; the spectral shape of the absorption coefficient 

depends only on y By choosing y  appropriately they are able to fit the data 

remarkably well for He-A. For Ne-A the fit is good at low frequencies, but 

their theoretical absorption coefficient begins to decrease more rapidly than 

the measured coefficient at higher frequencies. From their ability to fit the 

data with a classical straight line trajectory they conclude that the absorption 

coefficient is not sensitive to the potential. 

Levine  has done a quantum mechanical calculation, replacing the true 

scattering wave functions by plane waves, and using the same dipole moment as 

above, with the factor yR  again having the purpose of simulating the true be- 

havior of the wave functions at small R. The results are again in closed form 

and differ little from those of the classical model at lower frequencies. At 

higher frequencies the two results begin to diverge, 

27 
Tanimoto has done a strictly quantum mechanical calculation using a 

more realistic model. The scattering wave functions are solutions, albeit 

approximate, to the Schroedinger equation with an exponential repulsive 
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—2R/X 
potential of the form V(R) » V e    .  The induced dipole moment is taken 

to be of the form recommended by the work of Van Kranendonk, etc., namely, 

y(R) " VQ e    (R/R). Tanimoto's results depend on three parameters, V , A, 

and p, in addition to the trivial dependence on \in.    He uses values of V and 

X which have been inferred from scat-.teriag data,28 and chooses p to fit the 

absorption coefficient measurements. Unlike the approaches of Levine and 

Birnbaum, Tanimoto's analysis requires extensive numerical computations. For 

some special values of p, viz., A/p » integer, his expressions simplify and 

there is a radical decrease in the required computations. He considers only 

these cases and chooses the most satisfactory, viz., p « A, 

It is difficult to make a direct comparison between TanJuoto's results and 

those of Levine and Birnbaum for the following reason.  There are two sets of 

measurements of absorption during rare gas collisions.  The earlier measure- 
9 

ments by Kiss and Welsh, are in the near wings, covering the range from 350 
-1        -1 12 

cm  to 700 cm .  The later measurements, by Bosomworth and Gush,  cover the 

peaks of the bands, and run from 50 cm" to 400 cm" .  Tanimoto's analysis was 

made before the results of Bosomworth and Gush were available, and his 

parameters were chosen to fit the data in the wings.  In the vicinity of the 

peaks his absorption coefficients have reasonable shapes, but are incorrect 

quantitatively by as much as a factor of two.  Levine and Birnbaum choose 

their parameters to match the data at the peaks.  They have pointed out that 

the absorption curves measured in the two ranges do not join smoothly; in 

fact there is an overlap region in which they definitely disagree. 

Consequently, we cannot evaluate the accuracy of Tanimoto's results in the 

neighborhood of the peak, or compare them directly with those of Levine and 

Birnbaum, 

The approach we have chosen is very nearly, but not quite identical to 

that of Tanimoto, Although the models used by Levine and Birnbaum are much 

more convenient, and actually describe the experimental observations quite 

-  ,  _ , , . 

There is a puzzling feature of these measurements. Kiss and Welsh find an 

absorption coefficient in the wings for He-Ne which is roughly the same magni- 

tude as those for He-A and Ne-A.  Bosomworth and Gush, however, measure the 

absorption for He-A and Ne-A at their peaks but report finding no absorption 

there for He-Ne. 
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well up to about 400 cm"1, we do not feel confident about extending their use 

to the far wings, i.e., to -.1000 cm"1. First, we must immediately eliminate 

the classical model from consideration, since we are concerned (at reciprocal 

wavelengths of 1000 cm"1) with processes in which the energy of the absorbed 

light quantum is about five times as great as the initial (thermal) kinetic 

energy of the colliding molecules.  Second, although Levine in his quantum 

mechanical model has demonstrated that the use of a presumably incorrect dipole 

moment (^e"^2) has no serious consequence at low frequencies, our goal is 

to extrapolate to higher frequencies, where we do not have observations as a 

check. Therefore, we cannot start with an a priori incorrect model and gamble 

that the predictions will again be insensitive to it. 

Furthermore, we cannot expect the higher frequency behavior to be so in- 

sensitive to the potential. The latter behavior comes from the close 

collisions, and in thes^ the details of the potential are more Important. 

Our analysis has been carried to the point where it is now being prepared 

for the final step: a numeric»! evaluation of integrals by computer. The 

differences between our werk and Xanimoto's lie in the evaluation of the 

integrals. He has used an approximation (it will be discussed in Section VI). 

whose effect it is difficult to assess, so that we feel it should be avoided 

in spite of the additional computations required.  In addition he has con- 

sidered only special values of the scale size p of the dipole moment, so as to 

facilitate the computational procedure. We plan to use a quite accurate 

approximation which will permit us t.o perform the calculation for any value 

of p without seriously affecting the complexity of the numerical program. 
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II.   GENERAL EXPRESSION FOR DIPOLE ABSORPTION 

We begin by deriving a general expression for the rate of photon absorption 

by a dipole.  The absorption and emission rates are given by the following two 

well known expressions, 

Rabs(<ij)  = "J l    Pi|T(f|^e;i)|2ö(Ef-Ei-1i<1,). (2.1) 
i»f 

hmm^    " ^ft  I    PjT^.tjflDl^Ej-rtlw-E^. (2.2) 
i»f 

where T(fju.e;!) is the T-matrix element for a transition between an initial 

state i and a final state f of the colliding atoms accompanied by the absorption 

of a photon of wave vector co/c and polarization z,  and P is the statistical 

weight factor for the initial states of energy E .  By means of a time reversal 

argument it can be shown that R  (CJ) can be expressed in terms of the T-matrix emm 
for absorption and that, as a result, the net absorption rate R((D) = R ^  - R 

-- abs   emm 
may be written in the form 

R(u) - -^  I (P1-Pf)|T(f|w,e;i)|
26(Ef-Ei-1lü)). (2.3) 

to lowest order in the electronic charge the T-matrix element is 

1/2 e. 
T(£|tt,€;i) 2TrtiI 

wc (^f|z ^j1 exp(i^.xj/c)  Pj'cl^)   , (2.4) 

where ^1 and (|/f are the initial and final state scattering wave functions of the 

colliding atom pair, e , m , p , and x are the charge, mass, momentum, and 
th 

position of the j  charged particle (electron or nucleus), and I is the photon 

flux.  In the dipole approximation this expression reduces to 

f2TTfiü)ll1/2 ->■ 
I c J   ^fi T(f|^;i)  - .i\^L]1/2;        t, (2.5) 
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c 

Ufl - U>f\l  ejxj!ij,i) . (2.6) 

and ^ eJXJ is the total dlpole operatot of the system, 
j J J 

We assume that the statistical weight factors P and P are independent of 

direction.  The angular integrations In the sum over final states and the average 

over initial states then have the effect of averaging over directions of the 

polarization vector e.  Bearing this in mind, and substituting the expression 

(2.5) for T(f |u,e;i) into (2.3) for R(u)) we obtain 

3 Uli 

' iTf 
R(ü))  = *1 ÜJi £  (Pi-Pf)|^fi|

26(Ef-Ei-hu)) . (2.7) 

Eq. (2.7) is the starting point for many of the theoretical papers on 

collision induced absorption. We shall be concerned with the absorption co- 

efficient or reciprocal mean free path for photon absorption A(tü), which is 

related to the absorption rate by 

A(ü)) = nn'VRdü)/!, (2.8) 

where n.n' are the number densities of the two species of colliding atoms, and 

V is the quantization volume.  The statistics are described by the Boltzmann 

distribution, 

Pi,f = P(Ei f) = const- x •XP(-E1 f/KT), (2.9) 

and the delta function in (2.7) requires E * E + Hw, so that 

Pf - Pi exp(~fiu)/KT) . (2.10) 
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Thus we find for A(m), 

3 
Ar>\ 4TT    nn'V 

3      c [l - exp(-WKT)]     l    Pj^J^E^-tsu)   .       (2.11) 

For hui « KT the dominant behavior of the purely translational bands is 

provided by the factor cü[l - expC-tiaj/KT)) ■ co2, and, although It is not obvious, 

the remaining factor in A(ü)) approaches i  nonzero value as u -»■ 0. Thus, although 

the purely translational bands may be thought of at, centered about "the line at 

zero frequency," they actually have their peaks at some nonzero frequency because 

of this factor u . The term exp(-Tia)/KT) may be traced back to Eq. (2.2), where 

It is seen to be a reflection of the stimulated emission rate into the photon 

beam; the stimulated emission rate tends to cancel the absorption rate, and in 

fact does so identically at zero frequency. At photon energies much greater 

than KT, such as correspond, for example, to vibrational bands, the effect of 

stimulated emission is evidently negligible. 
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III. PARTIAL WAVE EXPANSION 

In the Bou-Oppenheimer approximation the total wave function iHR.r) is 

written 

♦ (t,r) - x(R) Mir), O.D 

where t  is the intemuclear coordinate and r representd all the 

electronic coordinates, x(^) is assumed to satisfy a Schroedinger equation 

with an intermolecular potential V(^), and t(.t,T)  is assumed to have only a 

slowly varying dependence on t.    The dipole matrix element yfi of (2.6) is 

then given by 

Wfi 
x;(t)y<t)Xi(tt)d

3i . (3.2) 

where 

.* ^i2 ,3 Ut)    - JCyjXj) U(R.r)|ZdJr (3.3) 

is the expectation value of the dipole moment operator for a fixed internuclear 

coordinate t. It is understood here that the electronic state of the system 

(which is the only internal state for rare gas atoms) remains unchanged in the 

transition. 

Since we are concerned only with rare gas atoms, whose properties are 

independent of orientation, we assume the dipole moment v to be dependent only 

on the magnitude of the interatomic distance R, and to be directed along the 

radius vector R ■ R/R, 

Uh   - uOOR • (3-4) 
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We shall use two center-of-mass coordinate systems , one with its polar 

axis along the initial-state wave vector k. of the colliding atoms, and the 

other with its polar axis along the final-state wave vector kf. Assuming that 

X. and xf are scattering states for a spherically symmetric interaction we may 

expand them in Legendre functions in the k. and kf coordinate systems, re- 

spectively 

l i uiil(R) 

1 i Uf4(R) 

(3.5) 
» 

what« V ic Che quantization volume and i^ and 6f^ are the itandard •cattering 

I hi 
29 

phase ahifti.    The coafficianta ^Tv (2U1) il axp(i6Jl/k)_hava bean chosen so 

that the wave functions have the correct asymptotic form, 

X(^ 7T sxP(i^.«) + f (6) SE^E)] , ., R ^ - . (3.6) 

provided Che radial wave functions u.^ and uf£ are normalized so that 

uJl(R) ■*■   sin(kR + iir/2 + 6^), as R -► « . (3.7) 

Inserting the partial wave expansions (3.5) into the expression (3.2) for 

y.., and using (3.4) for w(5), we obtain 

yfi    "    Vk. 
f i    H.t' 

i^-    I     m+ima'+lH-DV exp[i(6lÄ,-6fJl)] Md.l') tCl.t'), 

(3.8) 

* The energy absorbed by the center of mass in thn  transition is 
(TkW/Mc2)(-hu/2) -^lO-li-ttu, which is so small comnarcd to its initial 
energy (-KT) that its motion may be completely ignored. 
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where M(£,£') Is the matrix element 

u*£(R)u(R) u^.OOdR , (3.9) 

and I(£,«,') Is the integral over solid angle 

lU.i') = P^CcosOj) P£,(cos01)R dni . (3.10) 

The evaluation of NK«,,«,') is reserved for the next section, in which we choose 

a specific model for ii(R), and a specific scattering potential (so that the 

radial wave functions may be obtained by solving the Schroedinger equation). 

1(1,1')  may be evaluated straightforwardly using well known properties of Legendre 

functions.  The procedure is outlined in the appendix; the result is 

fa tu,*') - pJ(cosefi)(cos4.flx + sin^f)^!^;^!) - (^t) (2Ä+3) J 

+ P£(cosefl) z |j:2£-l)(2ll+l)   (21+1) (21+3) J '       l-,,XX' 

where 9  , $  are the polar and azimuthal angles of k. in the ^ coordinate 

system, x,y,z are unit vectors in the same coordinate system, with z in the 

ic direction, and 6(1,V)  is  a Kroneker delta. 

Now, in the expression (2.11) for the absorption coefficient A(u) the 

Integration over final states contains an Integration over the solid angle 

variable n, . Therefore, we shall ultimately need the integral  |wfl| ^f^- 

If we use (3.8) for uf ,  insert (3.11) for 1(1,1'),  and utilize,the well 

known orthogonality relations for Legendre functions, we obtain 

»«l2 da44    Ä 44-Ö I {(Ä+l) |M(£+1,0|2+ä|M(ä.1,0|
2
}.    (3.12) 

11   rl  v kfki * 

o/ 
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As the quantization volume is made arbitrarily large the summations over 
states become integrals according to 

o 

I 
f      (2,T>3 

3 
d kf, as V -► » . (3.13) 

Thus the summation over final states in (2.11) becomes 

-»■2 v        mk, r - 
I   |yfi|  6(Ef-Ei-nü.)--— -f ||w£ir d0£1 . (3.14) 

where m is the reduced mass of the atom pair, and comes from the density of 
final states. 

The normalized Boltzmann distribution is 

3 /  2 \3/2 

Pi "   V  (d«j  «P(-»i« • (3.15) 

Combining this expression with (3.14) and (3.12) in Eq. (2.11) for A((ü) we 

finally find, in the limit of infinite quantization volume, 

3     /  2 \3/2 

kM    . iM. HB. ^J ^  exp(^/KT)] 

16) 

£-0 £'-£±1 
£'^0 

where 

E    -   ■h2k2/2m,    E»   -   ■n20c,)2/2n  , (3.17) 

E'  -    E +1iü)  . (3.18) 
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( 

IV.   EVALUATION OF THE DIPOLE MATRIX ELEMENT 

We wish to evaluate the matrix element 

MU,*') u*Jl(R)u(R)uiJl,(R)dR. (3.9) 

To do so we must specify the model to be used.  First, In accordance with the 

discussion of Section I we take the dlpole moment to be 

yd)  - MO exp(-R/p) R , (4.1) 

so that u(R) = v    exp(-R/p).  Second, we take for the potential 

V(R) - V exp(-2R/X) . (4.2) 

Support for this model Is cited by Mason  and by Abrahamson.   More precisely, 

the potential they discuss Is of the form 

R 
V(R) - Vo exp(-2R/X) - Vi 

_1 
R 

(4.3) 

-3 
However, Mason gives as the value of the potential at Its minimum 6.35 x 10 av 

_3 
for Ne-A, and 2.88 x 10 ev for He-A. Since we shall be concerned with a gas 

_2 
having a thermal distribution of energies with an average of ~2.5 x 10 ev, 

we may drop the attractive term and use the form (4.2). Therefore, the radial 

wave functions must satisfy the radial Schroedlngsr equation 

dR2 
+ [k2 - IH&I - A2 exp(-2R/x]  u^    -    0  , (4.4) 

where k2 - 2mE/h2,  and A2 = 2mV /ft2. 
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Now, thi8 equation cannot be solved In closed form, but the equation 

du 
 2 + [q "A exp(-2R/A)]u£ = 0 (4<5) 

can be. We shall adopt the following approximation, which is used by Tanlmoto,27 

and appears to be due originally to Takayanagi.32 We substitute Eq. (4.5) for 
Eq. (4.4) with q taken to be 

q2 - k
2. ami q R2   ' (4.6) 

o 

where Ro is the classical turning point, defined as the solution to 

k - -^ - A2 exp(-2Ro/X) - 0 . (4.7) 
o 

The idea of the approximation is as follows.  We wish to evaluate the integral 

for M(M') given by (3.9). The integrand decreases rapidly for large R because 

of the exponential decrease of p(R), so that it is not important that the ap- 

proximations to uf£ and u1Ä be accurate at large R. Both the real and approximate 

wave functions are sinusoidal for large R (recall Eq. (3.7)), but the details 

of the oscillatory behavior do not have much effect on the integral (3.9). The 

integrand decreases rapidly for small R. because the wave functions must turn 

down sharply inside the classically forbidden region (i.e., for R < R ). in 

this region (R < Ro), as well, the details of the wave functions are not too 

important, provided the approximations turn down sharply, as do the real wave 

functions. The principal contribution to the integral then comes from the 

vicinity of the larger of the two turning points, since the integrand is washed 

out by the corresponding wave function for smaller R, and by w(R) for larger R. 

Thus it is important that the wave functions turn down at the right place, 

i.e., that the turning points be correct.  To this extent the approximation is 

accurate, since the turning points Ro of (4.4) and (4.5) have been arranged to 

( be identical.  It is, however, subject to the criticism that the true and ap- 

proximate wave functions cannot be guaranteed to turn down at similar rates 
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( 
for R < Ro; since IJ(R) rises rapidly as R decreases, it is conceivable that a 

wave function which decreases too slowly will lead to an appreciable over- 

estimate of the integral, and vice versa. 

By making the substitution z = AXe 
33 

-R/A 
one may convert (4.5) into the 

canonical form of Bessel's equation.   The solution, having the required 

boundary condition u (0) ■ 0, is 

u£(R) W 
I^CAAe-*/*) 

.V^» 
UoX^'^ 
^iqX^ 

(4.8) 

where ^ (z) represents the Bessel function of imaginary argument (and imaginary 

index ip), and N' is a normalization constant.  From the asymptotic form of the 
34 

Bessel function. 

ln^ 
(2TTZ) 

1/2 1 + l+4u 
8z 

(4.9) 

and the values of AX and qX it may be seen that 

\x^ I.lqX(AX) , (4.10) 

so that we may write 

u^R) N[liqX(AXe-R/ 
~R/X) ■ ^iqX^6"^ (4.11) 

Specifically, from Mason's conclusions  (V - 1.07 x 10 erg,  X - 4.86 x 10~9cm 
-9 0   -9 

for Ne-A, and Vo = 2.09 x 10 erg, X - 5.28 x 10 cm for He-A) it follows that 

for Ne-A: AX - 3.16 x 103 and (recall Eq. (4.6)) qX ^ kX - 7.6 (at thermal 

energy); and for He-A: AX - 7.95 x 10 and qX ^ kX - 4.3 (at thermal energy). 

Therefore, the first term of the asymptotic expansion (4.9) is sufficient, and 

(4.11) follows. 
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33 
From the series expansions of the Bessel functions  It can easily be seen 

that u (R) has the asymptotic form 

u^R) - -21N 
slnhirgX 

U/2 

I ifqX j 
sin(qR-qXln(AX/2) + MqX)] , as R -► » ,    (4.12) 

where (\>  Is the phase of the gamma function of complex argument, 

r(l+ly) -  lr(l+lp)le l*(u) (A.13) 

By comparison with the required asymptotic form (3.7) It may then be seen that 

the normalization constant N must be chosen to be 

i 
2 

irqX 

slnhrrqX 
(4.14) 

Finally, noting that the modified Bessel function of imaginary argument (and 
35 

Imaginary index) is defined by 

VZ> ■ 21 iiÄ [vz)" ^H • (4.15) 

we may write u in the form 
Xi 

u£(R)    - i(TTqX slnhTrqX)1/2 K.   x(AXe"R/A)   . (4.16) 

Inserting wave functions of the form (4.16) into the Integral (3.9) for 
-R/X 

M(£,£l), and making the substitution z ■ AXe   , we now obtain 

Ma,^) - - -"kirq'X sinh irq'X)1^  (irqX sinh trqX)1^  r-r- F(AX), 
T2                                                                                   (AX)X/P 

(4.17) 

o 
F(AX)    - 

AX                                          . ,    - 
Klq'X(z)   KlqX(z)   Z              dZ   ' 

o 

(4.18) 
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c 

where we have now modified the notation so that the unprimed variables refer to 

the Initial state 1 and the primed variables refer to the final state f. For 
36 

large argument the modified Bessel functions go as 

K.v(z) ~ 0T/2Z)
1/2

 e"z , (4.19) 

3 
so that, since AX - 10 , we may extend the limits of the Integral(4.18) to 

Infinity with negligible error. The resulting Integral can be evaluated In 

closed form, 

2^/P-3 2 ? 
F(-)  - f^y |rtX/2 +l(q'+q)X/2]|  |r[X/2p+l(q,-q)X/2] |  .    (4.20) 
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( V.   FINAL EXPRESSION FOR THE ABSORPTION COEFFICIENT 

We now collect the results of the previous sections and write the final 

expression for the absorption coefficient A(a)). It is given «i the following 

integral over the thermal energy distribution of the colliding molecules, and 

summation over their initial and final angular momenta, 

A(u) - EwU-e 
-WKT 

i'>, o 

|r[X/2p+i(q,-Hl)X/2] |4   |r[X/2p+i(q,-q)X/2] l' 

x exp(-h2k2/2inKT)  sinh Ttq'X sinh irqX Sal 
k' 

dk, (5.1) 

where the constant B is given by 

2,7 , U X nn'm 
2TT 

yo 
B  '   3   *2c 2TTmKTX 

3/2    , X/p 

ImV X 2    „2, r(x/p) 
(5.2) 

the final state wave number k' is a function of the initial state wave number k, 

k' 
■( 

k + 2ma)/-h 
1/2 

(5.3) 

the initial and final state turning points Ro and R; must be determined for all 

values of the pairs (M) and (kV). respectively, as the solutions to 

( 

k^ - —^ exp(-2R /X) -  N 2 * 

* Ro 
>    > 

9   2mVn 
-2 - -f   exp(-2R;/X) ■     2 

_ilii^ll „ 0 

(5.4) 
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( so that R and R' are ultimately functions of the integration variable k and 

the summation variables £ and jt* and finally q and q* are defined as functions 

of k, I,   V  by 

( 

•k2    ia+i) 

,2 VW+l) 
„.2 

Tl/2 

>  » 

1/2 

(5.5) 
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VI.  REMARKS ON THE EVALUATION OF THE INTEGRAL 

Eq. (5.1) for the absorption coefficient A(u)) is equivalent to Tanimoto's 

expression.27 The differences lie in approxiipations used in numerically evalu- 

ating the integral.  Tanimoto has done machine computations for reciprocal 

wavelengths up to U/ZTTC - 500 cm"1, and has developed an analytical approximation 

which he asserts duplicates the machine results quite closely above 300 cm . 

Since we plan to do an independent computer evaluation of A(ü)), which is likely 

to be nontrivial, we feel an obligation to indicate why we do not instead simply 

use Tanimoto's results to predict the absorption by rare gases. 

In addition to the mathematical reasons, it would be desirable to re-do 
12 

the calculations and choose the parameters to fit the more recent data  at the 

(presumably) more easily measurable peaks of the absorption coefficients; 

Tanimoto's parameters were chosen to fit the older data in the near wlngo. 

Now let us return to the mathematics. For certain special cases the gamma 

functions of complex argument reduce to more elementary functions. In particular 

.   38 
we have 

ir(l/2 + ly)!' ir/cosh iry. (6.1) 

|r(l + ly)|  " *y/8inh iry. 
(6.2) 

By combining these with the general relation for gamma functions 

r(z + 1) - zr(z) (6.3) 

one may significantly simplify the Integrals in Eq. (5.1) provided X/p has any 

Integral value.  For this reason Tanimoto has chosen to consider only Integral 

c 

This statement contains the implicit assumption that the more recent data is 
also the more reliable (recall that, as mentioned in Section I, the two sets 
of measurements are not strictly consistent with one another), which in turn 
is based only on the assumption that the larger the absorption coefficient 
the more easily it can be measured. Unfortunately, we are aware of no solid 

basis for choosing either set. 
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values of A/p and has found X/p » 1 to provide the best fit. One might consider 

going a step further and calculating A(ü)) only for integral values of A/p, but 

interpolating to obtain A(u)) for nonintegral values. However, one is still left 

with no satisfactory evaluation of A((jj) for the range A/p < 1. 

We have chosen the following alternative.  Stirling's asymptotic formula 
38 for the gamma function. 

r(z) - /S? zz"1/2 e"z(i + T^r + ... ) , 

is very accurate for |z| 5 2.  Therefore, by using (6.3) we may write 

r(.) - $$■ . (6.5) 

and then use Stirling's formula in (6.5) for r(z+2). The result is (z - x+iy) 

x+3/2  r 
 _       1  +    x + 2 

(x2+y2) [(x+1)2 + y^  _   6[(x+2)2 + y2] 
|r(2)|2 ^ l^to^xA 

. -2(x + 2 4- y arctan^-j  , x exp -2 x + 2 ■»■ y arctan -Jr   , (6.6) 

which is quite accurate for x > 0. Thus we can evaluate A(ai) for all positive 

values (and therefore all physical values) of A/p. 

The other approximation to be considered has to do with the turning points 

R a.id R , which are defined as the solutions of Eq. (5.4) and therefore are o     o •%     \       f 

functions of k, Z, £,'. Tanimoto has chosen to ignore the k, £, £.' dependence 

and use one fixed value of R (and the same value for R ), namely the turning 

point for thermal energy and zero angular momentum, i.e., the solution to 

k thermal " "/ exp(-2Ro/A). (6.7) 

( If we assume that the principal contribution to the integral in (5.1) does in 

fact come at the thermal value of k, there appears to still be a serious 

77 



problem from ignoring the angular momentum dependence of R , and R'. The turning 

point in the absence of the repulsive angular momentum potential is necessarily 

smaller than in its presence, so that when the smaller values of R and R1 are 
o     o 

used in (5.5) the repulsive effect of the angular momentum terms is magnified 

and the effective wave numbers q and q' are diminished. As a result the wave 

function does not penetrate as far in and does not "see" as much of the dipole 

moment. Thus it would appear that this approximation systematically under- 

estimates the dipole matrix element M(£,)l') of (3.9), and therefore underestimaties 

A(ü)).  It is true that for small values of I  the angular momentum potential is 

negligible at the turning point compared to the exponential potential. However, 

we have made some numerical estimates of the terms contributing to the summation 

over I  in (5.1) for the special case in which the Boltzmann distribution over 

energy is replaced by a delta function peaked at thermal energy; we found that 

the maximum contribution occurred for £ *- 30, and significant contributions still 

occurred for Jl — 60. 

Thus we feel that the approximation of a constant turning point is un- 

satisfactory.  The remainder of our program includes a solution of (5.4) to obtain 

Ro and R^ as functions of k, i,  and I'. 
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APPENDIX 

C 

In this appendix we outline the procedure for evaluating the integral 

1(4.A') PJl(co8ef) P^CcosO^ R d^ (Al) 

First,  in the coordinate system with polar aitls along kif  R may be written 

R    -    sine    cosij^ x + sir)e± sin*^^ y + cose^^ z  . (A2) 

Next. P (cosej may be written in terms of the variables of this same coordinate 
'I f   ' 39 

system by using the addition theorem for Legendre polynomials, 

PÄ(cosef)   -   pJl(cosefi) PÄ(cosei) 

+ 2   I   aS)t pr(c08efi) p£I,,(co8fli) C08 "^i^fi^     (A3) 
m-.l 

where 9.. and *,. are the coordinates of kf in the k^, system. Using the addition 

theorem in (Al) we obtain 

y^'j ■ icffey p£1(co8efi) co8^i 
T    l 2 
P^Ccose)  P^.^osO) sin 6 de. 

(A4) 

V1»^   •  I(Si) 'i 
fl 2 

Pfl
1(coaefi)  8in0fi   |  P^  (cos9)  P^,(cosO) sin 6 de, 

' o 
(A5) 

Iz()l,£')    =    2TI P£(C0«e£i) 
'o 

p^cose) p ,(cose) cose sine de   .        (At») 
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1 The integrals in (A4, 5, 6) may now be evaluated using the identities 
40 

( 

(20+1) (l-z2)172 Pn
,n(z) Pn+l

(z) " Pn-l(z) ' 

m. 
(2n+l) z P "(z) 

n 
(n-m+1) P°+1(z) + (n-hn) P°_1(z) , 

(A7) 

(A8) 

and the orthogonality relation for Legendre functions, 
40 

'-1 

„ m/ * „m / v.     2   (&■*• m 
P^ (z) PJl.(z)dz - ^ W* II 

)'. 
r 6(4.ü') . (A9) 

where öU,«,') is a Kroneker delta. The result is 

P^cosO) P^^cose) sin2ede - (^-IHL-H) 
ö
<*-

1
'*'

) 

(2il+3)(2M-l) ö^+i»Jl >   ' 

PJl(cose) P^^cose) cose sinSde -  (2Ä-i)(2£+l) 
&(-i'1*i  ) 

o 

I   2(«,-fl)  fi/o+i oM 
+ (2(1+3) (2)1+1) 6^+1»» ' ' 

(A10) 

(All) 

When these are substituted into (A4, 5, 6) we obtain Eq. (3.11) of the text. 
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Chapter 4. 

STIMULATED RAMAN EFFECT 

c 
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( 

I.     INTRODUCTION 

In this chapter we shall investigate the effects of Raman scattering on 

the propagation of high intensity laser light through the atmosphere. The 

general problem of laser light propagation is an extremely complex one which 

involves many different physical processes.  In order to make any headway in 

understanding the effects of Raman scattering we shall consider a situation in 

which the effects of self-focusing, etc., have produced a stable beam (or fila- 

mentary "hot spot" within a beam) of uniform intensity and cross-section. Ex- 

tending the work of Helwarth,1'2 it is possible to derive a set of rate equations 

which relate the intensities of the various orders of forward amd back amplified 

Stokes waves to the laser-light intensity. This set of coupled, nonlinear, 

partial differential equations with varying coefficients appears, at first glance, 

to be quite intractable. However, by first examining a highly simplified version 

of these equations and then treating, in turn, each of the various complications 

of the simplified equations which comprise the original equations, it is possible 

to obtain a coherent description of the physical phenomena involved. 

The rate of creation of Raman-scattered photons in a laser beam is com- 

posed of a term proportional to the laser beam intensity (spontaneous emission) 

and a term proportional to the product of the laser beam intensity and the in- 

tensity of the Raman photons already present (stimulated emission). If the rate 

of creation of Raman-scattered photons parallel to the beam (i.e., either forward 

or backscattered) is much larger than the rate of destruction of these photons 

due to Rayleigh scattering, then the intensity of these Raman photons will be 

amplified at the expense of the primary laser photons until the primary beam is 

totally depleted.  The specific manner in which the primary beam is extinguished 

will be the subject of sections II through V.  Section VI will relate the current 

status of the author's researches into certain transient phenomena. 
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( 
II.   NEGLIGIBLE BACKSCATTER 

Let us couslder the propagation of a beam of laser light through a gas in 

which the amplification of the backscattered Stokes waves may be neglected (the 

criteria for the existence of such a gas will be discussed in section V.). 

Assuming, to begin with, that only the first Stokes wave is of any consequence, 

the densities of the laaer photons p^x.t)  and amplified forward scattered Raman 

photons pr (x,t) in the beam are related by the rate equations 

3t T c 3x - pACapr+e0) - YP£ , (1) 

'3  .   3 I 
.3T+C^JPr + pJl(apr+ß) YP. (2) 

where 

a ■ 
r. 
2  cpTa(0), ßo 

2v Av 
CPT 0Ram. • Y CpT aRay. 

The quantities o^ and o^^ are the Rayleigh and Raman total scattering cross- 

sections respectively, pT is the density of tne gas, Av is the line width of the 

amplified wave, and o(0) is the Raman forward scattering cross-section. The 

quantity ß is given by 

cpT a(0) ^ (3) 

where ^ is the effective cone angle for Ranan amplification - « ' will be dis- 

cussed in greater detail later in this section. The boundary value conditions 

for Eqs. (1) and (2)  are 

Pt(0,t) P0(t) . P0(t) 0 for t < 0, and p (0,t) (A) 
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( We now make the substitutions: 

x 9,3 
3y 

in Eqs. (1) and (?).  Equation (1) may now be rewritten as 

3y -PÄ(otpr+ß) - (Y+ßc-0) t>t (5) 

For nitrogen" 

OBM  « 10"28cm2 and oB    « 10"27cm2s Ram. Ray. 

and hence y »  0o-ß, and we can neglect 3 -ß with respect to Y in Eq. (5) and 

make only a minimal error.  The solution of Eqs. (1) and (2) with thia approxi- 

mation is 

P^Cx.t) 
-r(x) 

Mo(a)  1+J(x)     ' 

Pr(x,t)    -    p0(s)  e*r(x) - 

where r(x)    -   - 
X 

dx' y(x') and 
Jo 

J(x)    - 

X 

*--   ts(x')  exp ]y^ ) + p0(8)a(x") e 

(6) 

-rCx-m (7) 

The x-dependance of a, ß, and y  is due to the altitude dependence of p- and Av 

for a laser beam which is aimed nonhorizontally in the atmosphere.... From Eq. (2) 

we may note that no amplification of p can occur unless a p > y.    For N» at 

atmospheric pressure this is equivalent to having the laser Intensity at 
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x - o (I ) satisfy the inequality 
o 

I > 60 watts/cm''. 
o 

We shall therefore assume the above inequality to be valid for the remainder of 

this work. 

Consider first a horizontally aimed laser beam. For distances of a few 

tens of kilometers r(x) is completely negligible. Assuming that po(t) - P0 

is a constant for t > o and defining the dimensionless quantities 

V    -   T   Po'Z    m   lA'?i    '   tpe'Fr " f Pr- 

Equation (6)  may now be rewritten as 

udi+D > 
y + e 

e(y+l)z      . 

(8) 

These solutions indicate that for y » 1 the laser light will penetrate the gas 

to a depth of the order of zc  - U-1ta(w) in such a manner as to be essentially 

««diminished in intensity (i.e.. F^ * y for z ^ zc). Beyond this depth the 

laser light intensity will rapidly decrease to zero and the intensity of the 

first Stokes wave will rapidly rise to the level of the original laser beam. 

The effective cone angle for Raman amplification C^) is a vaguely defined 

quantity as it represents an attempt to solve a basically three-dimensional 

problem by geometrically correcting one of the coefficients in the solution of 

the corresponding one-dimensional problem. However, since ^ as we shall 
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demonstrate below - the laser Intensity drops from I = p hvc to zero Is a 

very small distance, and the Initial intensity I which will cause the intensity 
3      C 

to drop to zero at a distance fc - 8 x 10 km (the scale height of the atmosphere) 

is extremely insensitive to our choice of 0 , the results we obtain with the aid 
o 

of this correction factor should be quite good. 

For a beam diameter D and a z corresponding to i,  Q    is given by 

Q o 
1- Ur,2\  .   at 
t2    I4      j        H' 

For N2 at one atmosphere Av is the pressure broadened line width given by 

^   -    .09 cm"1 

c 

Using a(o) - (4TT)" a_ , v - 5 x 10  sec" and taking D - 10 cm we may 

define a quantity I which is that value of Ifl(o) = I for which 1.(11) is one 

half of I ; i, •., 

1,(0)  E Io - lc and IÄ(£) - ^ Ic . (9) 

This quantity may be obtained from 

i 2 
€  »yz-op— or  I  «3.90 5 kilowatts/cm , 
C      C     0 c c          c 

"here £ is the solution of the equation 

e c    1      1 /l \   , ,  in13                   ..«v 
~— " . ■  T-T I—1 " 6.4 x 10    .                 (i2) Cc    *    £pTa(o) |noj 

ÖÖ 
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< 

o 

The solution of this equation is C - 35.4 and hence 

I  - 1A0 kw/cm 
c 

From Eq. (12) we obtain that 

1 6 no 
5            I 35 () c              c 0 

verifying our assertion that I Is Insensitive to our choice of no. Examining 

Eq. (8) we find that for I - I , I. drops from (.75)1 to (.25)1 In a distance 
OCX« c >• 

Ax given by 

—   - .062   or   Ax - 500 meters, 

and hence the transition region Is quite narrow and n may be defined In a 

reasonably unambiguous manner. In fact, ^0/^0  * 2 Ax/4 and hence the ambiguity 

in n results In a fractional error o 

^L a -i 2Ax . A x 10-3 
I     35  A c 

A plot of the fractional transmission to a depth i  versus the Initial 

Intensity, or 

1. .   i + y 

versus y for fixed z, would result In a curve much like that for Ij,(x) vs. x. 
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That Is, I ~ I (Ä) would be roughly constant ar.d equal to one for 0 < I < I , 

equal to 1/2 for J ■ I , and drop sharply to zero for 1 * !-• A plot of the 

total transmission (I.) versus 1 would therefore yield a curve which would 
x.        o 

show a roughly linear rise from zero to some maximum value 1 ■ I , and then 
m   c 

fall rapidly to zero.  The maximum transmission to a depth I  is readily obtained 

from Sq. (8) by setting the derivative of F. with respect to y equal to zero. 

The result is 

I 2 

I  -  2 r , I  - 3.90 E kw/cin , (13) 
1 + a -2)-1 

m 

where £ is the solution of 
m 

(1 - -^Oe m - * . (14) 

m 

For the parameters of interest here 

I  - 120 kw/cm2 and I  - 124 kw/cm2 . 
m o 

o 
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"■:,"".«...-...-••—■--'■'•■"'- 
with 

PT(x) PT(o)
e -x/t 

(15) 

^«. the maximum Intensity which can 
.1M. « .re Minly cone.™.. ^ ^^ X ^ ...- ^ th. — 

Una U virtually uiichmg«! througnour 

r». *. u- -«-" "•• *mpii£ied," 
Av Av  (o) 

p [+•■wt] and   n    ■ ■SNTTOT 
p 

(16) 

wldth of'th. original laaar b«.. ™   \ ln „.. („ „d (7) wa 

rod Y .. a funcrl=n o«. »;;;'«      8;;tt.tlng) l. nagll^U.    A goo. 

kilometer.    The result is 

J(y) 

uzof(y) 
— e 
V 

(17) 

O 

where zo - 6*/c and 

f(y) - in 

I„.artlng E,.  d« 1" «*•  <6> "' °bt*ln 

ftW 
y + e 

ur.of(y) 

(18) 

(19) 
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Choosing (Avfl/c) - 1.2 x 10'
3 cm"1 (which Is typical for the line width for a 

5 
Ruby Giant Pulse Laser ) we find that 

1 n " 75 

For y « y - - «, An n - 35 km, It follows that zof * zoy/£ - z, and Eq. (19) 

agrees with Eq. (8) to within the approximations made here. 

A calculation of the maximum transmission of laser light to an altitude 

y may be made in a manner similar to that used for the analogous quantity in 

the preceding section. The result is 

I 5. 2 
I.- T7t^   ■ l° ' 3-90^ln'/CB  ' (20) 

m 

where C is solution of 
m 

M l+J*   -   *   . IM . (21) 
(1 5m

)e   zf(y) 

The last equality is valid since for y > y0 the effective cone angle for Raman 

amplification (tl ) is proportional to yj. For y » 35 km (i.e., for above the 

atmosphere), the maximum User intensity which can be transmitted, and the 

laser Intensity necessary «t the source to achieve that maximum are 

2 2 
1-27 kw/cm  , Io - 28 kw/cm  • 

It is of interest to note that the atmosphere will act as an amplifier 

for Raman waves up to an altitude of approximately yo (about four scale heights). 

This fact is most easily understood if we note that the gain is proportional 

to p /Av. It then becomes clear that the amplification of Raman waves up to 

y occurs because although the density of N- decreases with altitude, the width 
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of the pressure broadened Raman line decreases in a proportionate manner. The 

net effect is to produce a constant gain for y < yo (i.e., as long as Av is 

dominated by Av ) and a consequent decrease in the maximum transmittable power. 

In order to minimize this effect the laser line should be made as broad as 

possible. If the laser line is significantly broader than the pressure broadened 

Raman line» then a(x) is proportional to the local density and the solution of 

Eqs. (1) and (2) may be obtained from Eqs. (8) by making the substitution 

Z + T - z(l-e   ) ^Lt-) 

o 

where T is the optical depth. Consequently, the intensity of laser light trans- 

mitted vertically to a point far above the atmosphere will be the same as that 

transmitted a distance of one scale height through air held at the constant 

pressure of one atmosphere throughout the beam. 

Of further Interest is the fact that Rayleigh scattering is virtually 

always inconsequential for the Intensities of interest here. Its major effect 

is to provide us with a good reason for changing ßo to ß in Eq. (1). 
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IV. MULTIPLE STOKES LINES 

o 

Let us now consider a case In which the laser beam Intensity is much 

larger than that necessary to induce its conversion to the first Stokes wave 

within a certain prescribed distance. This first Stoke» wave will then propa- 

gate a certain distance until it is converted into the second Stokes wave, etc. 

Assuming that the pressure is constant along the beam path and that the effects 

of back scattering may be neglected, there will, in general be N Stokes waves 

(of frequency v. - v , v - 2v   v. - Nv , for a laser frequency v and 

a Raman frequency shift v ) which will attain a Jlgnlflcant Intensity within 

a given depth in the gas.  In the dimenslonless units of Section II the photon 

densities of these Stokes waves are coupled by the set of equations: 

dz I 

JLF 
dz 1 

dz fN-l 

- FJl(F1 + 1) 

FJl(F1 + 1) - F1(F2 + 1) 

FN-2 (FN-1 + l) FN-1(FN + l) 

d?FN " FN-1(FN+1) 

(23) 

These equations have been solved exactly for the case of N - 2.  The solution 

is too complicated mathematically for the reader to obtain much use from its 

display here. Basically, it describes a situation in which the laser beam 

penetrates the gas to a depth z. - y  In y in such a manner as to be essentially 

undlminlshed in intensity. Beyond this depth the laser light intensity will 

rapidly decrease to zero and the first Stokes wave will rapidly rise to the 

level of the original laser beam. Between z.. and z» ■ 2JJ 
-1 

In  it, ¥y  is roughly 
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( equal to the constant y. At z,, the first Stokes wave suddenly falls to zero 

and the second Stokes wave (F2) rises to u. A close examination of Eq. (22). 

taking due note of the fact that 

N 
Fj(z) + Z  F (z)  - u 
*      i m m-l 

(obtained by adding Eq. (23) and integrating the result), indicates that this 

process will continue for a very large number of orders if v  » N.  »ence if 

we wish to transmit energy in a beam vertically through the atmosphere. It 

would be advisable to choose v^ as the highest frequency of a window in the 

atmospheric transmissivity.  If the width of the window is Nvr. and if the 

Intensity of the laser beam is the maximum permissible, then I  light beam 

of frequency v^ - Nvr will emerge from the top of the atmosphere.  On the 

basis of Eq, (22) we may estimate this maximum intensity to be the critical 

intensity for a distance Ä/N. That is 

lm   '    3*90 t^J  kw/cm2 
(24) 

where 

e_ 1 
Nz 

For a transmission window of 100 X and a Raman wavelength shift6 of 12 X 

have N ■ 8 and 
we 

m 1.0 megawatt/cm 

if Av0 5 Av (o) 
*      D 
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V.    THE EFFECTS OF BACKSCATTERING 

For the case of comparable Raman forward and back scattering cross 

sections In an infinite gas of uniform density along tue ray path let us assume 

that only the first Stokes wave is of any consequence (this is true up to the 

second critical depth which is beyond the distances of interest in this section). 

The rate equations relating p^ to the forward (pf) and back scattered (p.) 

photon densities are 

^+c"Ä|pi - P, [Vf + Vb + ßf + ßb 1 (25) 

,ät + cÄ P^Vf + V (26) 

H"c^|pb   ■   pÄ<Vb + V (27) 

The transient response of the above equations is extremely complex. Let us 

reserve our discussion of this response for Section VI and consider only the 

steady state solutions (i.e., where the time derivatives in the above equations 

vanish) here. 

Adding Eqs. (25), (26), and (27), and integrating the result we obtain 

pft(x) + Pf(x) - Pb(x)  - constant 

Po " pb^ " pf^ (28) 
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( 
or, 

Pb(o) + pf(L) - p0  . (29) 

In the above we have taken L to be a point just before the second Stokes wave 

becomes Important. Dividing Eq. (26) by Eq. (27) we readily obtain 

f+ ^7 »f<■"] f * J »b*1"] 
af/ob 

- constant 

of r   ^     "iaf/ab 

- 1 + ß7pfa) ■[1 + ^pb(0)J (30) 

or, 

af r  %    Tf/ab 
l+f-PfiL)    -    |I+^PK(0)| (31) " [1 + ^(0)] 

The substitution of Eq. (31) into Eq. (29) yields 

|0f/ab      a 

[i+ipH + i7pb(o) ■ 1 + s7po- (32) 

If Avf - Avb, then (af/ßf) - (o^/ß^ , (Of/o^) - o(o)/a(Tr) and we may define 

a quantity M such that 

M - 1 + | Pb(o)  . 

M satisfies the equation 

Ma(o)/o(7r) + M _ 2 + ]^ (33) 
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If a(o) = a(Tr) then 

Pb(o)  - pf(L) - fpo 

and the energy in the original laser beam is shared equally between the forward 
2 

and back scattered waves. However, for I = 100 kw/cm the solution of Eq. (33) 

indicates that for 

o, (o) - .05 p and p-d) - .95 p ,, 

a(o) 
.08 

That is, forward scattering will dominate back scattering as a mechanism for 

extinguishing the laser beam if the asymmetry in the cross-section is as small 

as 8%. Conversely, the back scattering will dominate the forward scattering 

if the cross section of the former exceeds that of the latter by as little as 

8%. This second case is particularly distressing since the atmosphere will 

then essentially act as a mirror - reflecting all the energy back at the 

source - if the source intensity exceeds some critical value for a given path 

length. 

If a(o) 

results are 

cr(Tr) then Eqs. (25), (26) and (27) are easily solved. 

w(m-4)2w 

The 

[2(li+2)W-u][4W+u] 

2y 

© 

W-l 
4W+u 

MinHtL 
2(y+2)W-y 

(3A) 
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c 
2 

where    W ■ e 

2 
The critical Intensity defined by Eq. (9)  Is 130 kw/cm which Is virtually 

2 
unchanged from the case of pur« forward scattering where I = 140 kw/cm . 

However, the shape of the 1.(30 vs. x and lAl)  vs. I curves are somewhat 

different for the two cases: The distance In which I (x) drops from .75 I 

to .25 1 Is Ax « 850 meters versus 500 meters for the case of no back scatter. 

Similarly, for I - I : l^l)  - 65 kw/cm2, and If(£) - Ib()l) - 2 x lO
-3 W/cm2; 

whereas for the case of negligible back scatter if I * I then 

Ij(£) - If()0 - 70 kw/cm .  Consequently, the effect of backscatter is to soften 

the abrupt transitions in intensity which were characteristic of the I. curves. 

It is of Interest to note that if o(o) - a (it)   then the maximum achievable 

intensity at a depth i,  and the source intensity to achieve this intensity are 

I - 118 kw/cm2 for I - 243 kw/cm2 mo 

2 
versus 120 and 124 kw/cm for the case of negligible back scatter. Hence, I is m 

> 

C 

essentially insensitive to the asymmetry in the cross section but, since 

(.5)1 is reflected back into the source for o(o) - aOO, I must be roughly 
o o 

twice as large to achieve the same I in the symmetric case. 
m 
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VI.   TIME DEPENDANCE OF BACKSCATTERED WAVES 

We were able to obtain p^ and pf - Pr a8 a function of space and time 

for the case of inconsequential backscatter [see Eqs. (6) and (7)1.  Unfortunately, 

we are unable to repeat this feat by solving Eqs. (25), (26), and (27).  It is 

possible, however, to solve these equations for the case of inconsequential 

forward scattering and draw some Inferences about the general case as well as 

obtain some results which are net directly related to the problem of atmospheric 

propagating but are nonetheless of physical interest. 

Neglecting i.  in Eqs. (26) and (27), we find that pf - o. The change 

of variable 

t-f . -.*» • 

VS,T) " p^*'^   » V8»T) ' pb(x,t) 

enables us to write Eqs. (25) and (27) as 

2 lr - - VaRb+ ^  • (35) 

2 lr - VaRb+ e> • (36) 

The general solution of these equations is given by 

1 G(T) - | F(s) 

^ "^  a G(T) - # F(s) 
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( 
where F and G are arbitrary functions and F and G are the derivatives of these 

functions with respect to their arguments. 

Let us now consider the solution of Eqs. (35) ani  (36) subject to the 

boundary value conditions 

( 

P.(o,t) - P0(t)  , pÄ - pb - o for t < o (39) 

Equation (36) indicates that R. is a continuous function of s and hence, since 

p. - o for t < 0 we have 
D 

^(O.T) (40) 

c 

Using Eqs. (39) and (40) in Eqs. (37) and (38) we obtain 

, ,  x      / * e - M(S.T) 
VS.T)  "   Po(8)   1 -M(S.T) 

V8'T)       0.   1 - M(8,T)   * 

(41) 

(42) 

where   2x - C(T-S)  and 

l 

M(S,T) - f i dC P0(C) exp/| (C-T) - f dV  P0(5
,) (43) 

If p (t) - constant - p then for s > o 
'o o 

1 - e 
-gs 

h    '    Po  [(u+l)e
z - y] + ue"«8 

(44) 
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c 

1 + e 8B 

R.    •    p     LJI-Z  (45) 
[(li+l)e    - u] +    e 8 

where 2g = ß + op   .    Equation (45)  indicates that 

R^o,  2 ^ )    -    p^x.ct)    -    po e"Z (46) 

and hence, since z << 1 for any distance of interest, the wave front propagates 

is such a manner as to be essentially unattenuated with distance. This is 

in contrast to the case where forward scattering dominates and p drops sharply 

to zero for x > x . The reason for this difference is that:  a spontaneously 

emitted photon which is created near the wave front and travels in the forward 

direction will maintain a constant distance with respect to the front and hence 

upon being amplified - will exhaust the laser photon intensity at that point 

relative to the wave front; whereas, a similarly emitted photon which travels 

in the backward direction will rapidly leave the region of the wave front and 

hence cannot deplete the front by stimulating emission. Defining a quantity 

t - - ln(-) ' — Än(^-)  , (47) 
0 g   z        op    ßx  ' v 

we find that for a time s - the time elapsed subsequent to the wave front 

passing a given point x - for s > t 
o 

P P 

1 (y+l)e
Z -v 

1+V* 

That is, t is the time required for R to come to a steady state. 

Using x = H and taking I to be the maximum intensity which can be 

transmitted through the atmosphere under the assumption of negligible back- 

scatter and n * 1 (i.e., I ■ 124 kw/cm ), we find that for s > t o 
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( 

I (t) -»■ 4 kw/cm2 

For this same choice of parameters 

t  - 5 x 10" sec 
o 

Hence, the steady state solutions of the preceding section are achieved In a 

time of the order of t - 5 x 10~ sec.  If we wish to circumvent the various 
o 

limitations and difficulties Imposed on us by backscatter, we must restrict 

ourselves to the transmission of pulses of laser light with durations less 

than 5 x 10  sec. 

It Is of Interest to examine the Interaction of a laser beam with a 

wave packet of photons at the first Stokes frequency which is traveling in 

thü beam but antiparallel to It. For this problem It Is most convenient to 

solve the initial value problem 

p^x.o) - L(x)  ,  Pb(x,o)  - B(x) . (49) 

Using Eq.   (49)  In Eqs.   (37)   and  (38), we readily obtain 

^(S.T) liz£Sl  -   , (50) 

1 + - "'dC   [B(cO  +£]era'-8) 

-s 

VsT)    -    -f + ——^S- 
1 -•2- 
■L      2 

'   « L(cO.-r<''»      • 
-S 

(51) 
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( 
where 

r(x,y)    -    | (x-y) +|    j  dC[L(cO  + B(cO] 

Let us examine the results of a wave packet of Stokes waves of spatial 

width W and photon density p1  colliding with a laser beam of photon density 

Po at t - o. That is, let 

L(x) 

B(x) 

p   for   x <_ 0 

0   for   x > 0 

p.  for   o < x < W 

0   Otherwise 

> • (52) 

The 1^ - wave which is generated by B(x) lies in the domain o < T < W in the 

s - T plane. The region T < o is completely unaffected by B(x). If we define 

the gain and initial value parameters 

7 (ß + ap.)   ,   p. 
ß ^i 

the photon densities for T < o are 

1 + ^o 
P0(x,t)  - p 

o 2g t 
e    + v 

(53) 

2g.t 

"b^  ' po e2g t ' ' 
e    + \i 

(54) 
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Therefore, in the absence of an initiating pulse: the back scattered wave is 

monotonically increasing in time and pb approaches the value po as t -^ ». The 

laser beam intensity is monotonically decreasing and eventually decays to zero. 

The pulse shape is described by 

P>,+l)+Poe   jl-e   I (55) 

C 

"„ + ! - "o e ^-^- 

The wave front of the pulse is given by T - o. At a time which is long compared 

to (2g )~1 in  u the pulse height approaches 

y-.o) - P^+D  + P0 - Po(yl+1) + Pl ' 
(56) 

The laser beam is therefore capable of amplifying the photon density to a level 

which is far in excess of po. This amplification however, is limited by the 

spontaneous depletion of the laser beam dictated by Eq. (53). If we wish to 

amplify a pulse by passing it through a cell of Raman-active material of 

length d we will generally find that for a reasonable set of assumptions about 

the parameters available in the laboratory 

d -ap — 
0 C (57) 

ye      > > 1   , 
o 

and hence, the maximum pulse height is limited by the length of the cell rather 

than the spontaneous creation rate 3. In that case, the height of the emerging 

pulse is given by 
d 

ap — 

d   .       . 0 C (58) 
V27'o) * pie 

105 

J 
■* 



0 
The half width of this pulse is given by 

d 
-ap — 

7        O C 
T  - -2- e (59) 
o    ap. 

which will generally be an extremely short time. The ratio of the emerging 

pulse energy to the energy stored in that part of the beam which is present 

in the cell at t - o is approximately 

W 
-ap. — 

Pi    17 O ^^  C 

Ü . 2 + !i W   -ifi- ,        . (60) 
Po d   apod 

On the basis of Eqs. (58), (59), and (60), it would seem to  be feasible to 

concentrate virtually the entire energy in a laser beam into a pulse with an 
15       2 ~12 

intensity of the order of 10  watts/cm and width of the order of 10   sec. 

Experiments have been performed in which the Initiating pulse appeared to 

be generated by Townes Self Focusing at the end of the cell. The emerging 

pulse had U * 1/5 and TO « 3 x 10'
11 sec. 

( 
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VII.  CONCLUSIONS 

We have found that Raman backscatterlng is inconsequential as a loss 

mechanism in the propagation of a beam of laser light vertically through the 

atmosphere if the laser light is composed of pulses of duration no greater than 

5 x ID'5 sec, or if 0(0) exceeds a (IT) by eight percent or more. If neither 

of these requirements are met then the source intensity necessary to transmit 

the maximum amount of energy through the atmosphere would be increased by a 

factor of two. In that case, the intensity of the back scattered wave at the 

source will be one-half the source intensity and considerable damage to the 

source and its environs may result. It is therefore recommended that experi- 

ments to determine the asymmetry of the Raman cross section be performed if 

pulse durations in excess of 5 x 10" sec are desired. 

The maximum intensity of laser light which can be transmitted vertically 

through the atmosphere without frequency change due to Raman scattering is 

critically sensitive to the laser line width (Av^/c). If (Av^/c) - 

1.2 x 10"3 cm'1, and if back scatter is inconsequential then for a beam with a 

10 cm diameter, this maximum intensity is 27 kw/cm2, whereas, if Av^/c is 

of the order of the pressure broadened line width (9 x 10" cm" ) the maximum 

intensity is 120 kw/cm2. It was suggested that intensities far in excess of 

this figure may be transmitted in the form of a higher order Stokes wave. If 

we wish to transmit energy through a window in the atmospheric transmissivity 

of width Nv (v being the frequency shift due to Raman scattering), then the 

maximum emergent N-th order Stokes wave will be approximately N times the 

figure cited above. However, this suggestion did not take the probably deleterious 

effects of defocusing on each successively higher order Stokes wave into account. 

A theoretical investigation of this three-dimensional effect as well as a more 

precise evaluation of the parameter fio should be performed. 

Finally, the technique for producing high intensity pulses of extremely 

short duration discussed at the end of Section VI, appears to be potentially 

quite promising.  Further investigations along these lines may prove to be 

rather fruitful. 

C 
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