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ABSTRACT AND INTRUDUCTION

Problems involving compatating of the probability of damage, or the expected
fraction of the target damaged, occur frequently in military operations research.
These problems have beez worked or by many people over a long period of time.
This study is intended to summarize some cf the more important results and to
indicate sources of information on other problems. No attempt has been made to
include av extensive bibliography or to track down the first man who derived aay
particular cesult.

~n

Although many of the results were known long ago - some of them during the
19th century or earlier - it was not until World War II that systematic efforts were
made to obtain answers for a wide variety of situations. Recenrly several reviews
have been made of this material. Oune of these is reference {(a), which does not
include some of the results given tiere. Ou the other hand, refereace (a) gives
results on the inverse problem, that of determining the probable location of the
aiming point from the locations of the burst points or from the damage produced.
The inverse problem is of les¢ interest than the direct problem; the results are
of little usefulness in most damage probiems.

SINGLE-SHOT PROBABILITIES

In this section we will consider the problem of computing the probabiiity of
illing the target, or of inflicting a stated degree of damage, Dy a singie weapon
(projectile, bomb, etc.). Because cf its frequent occurrence the two-dimensional
case will be used throughout for the illustration of methods and statemeants of
results, In most cases the manner in which the results would be adapted to one
dimension or to more than two dimeusions should be evident. The derivation must
be examined, however, ip every instance in which only the results are given.

We will consider both point and area targets, a point target being one whese
dimeneions are small compared with the "damage radius" of the weapon relative
to the target., We will also consider two types of "conditional damage function",
that is, the function that describes the probability of damaging the target if the
weapou detonates at a given point relative to the target. These two functions are
usually referred to as the cockie-cutter function and the Gaussian function. In
the former case the probability of damage is 1 within some area about the point
of detonation and is zero outside this area. It the latter the probability of damage
varies gradually from a value of 1 at the point of detonation, decreasing toward
zero as the distance from the poiat of detonation increases.

These are some of the principal results:
% SINGLE POINT TARGET

Consider the target at the origin of a rectangular coordinate system in a
suitable plane. This plane might be the horizontal piane or a plane normal to the
trajectory of a weapon which would pass through the target. Let the conditional

probability of damage to the target, if the weapon is fired or released on a trajectory

through the point (x, y), be p d(x, y). Let the joint probability density function of

x and y be f(x, y). The joint density function f{(x, y) describes the density of shots
or bomb-drops in the target plane, It is non-negative and is so chosen that the
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integral of it over any area is the probebility that the weapon will fall in this arca.
Then the probability of damage to the target from a single weapon chosen at random

is
P=S@ Pyt y) £(x, y)dx dy .
“e0
Some cases are given below:
@ Circular Cookie-Cutter Damage Function:

2, 2 2
1ifx™ + =
Pyx y) = { Ty R .
0 otherwise

For this function the probability of dama_e is
p= XS f(x, y)dx dy. -
circle
where the integral is to be taken over the circle of radius R with center at the origin.

® Probability of damaging single point target with a single shot when the con-
ditional damage fuaction is the circular cookie-cutter function and when the
distribution of shots is circular normal and centered on the target:

More precisely, we assume that x and y are independent variables havingnormal
distributions with means zero and common standard derivation, o . Then f(x, y)
has the form

2,2 2
f(x.y)=———1——7- exp [-(x ty'y2o ] .
270
By elementary integration we find that
P=1-exn(-R%/2 0% )

W Probability of damaging single point target with a single shot when the cou-
ditional damage function is the circular cookie-cutter function and when the
distribution of shots is elliptiey! normal .and centered cn the target:

This case is the same as the one preceding, except that the two standard
deviations are unequal, This slight change makes the integration difficult. If we

chauge to polar coordinates (r, 8) and integrate with respect to @ we obtain the
following result:

v
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P= 2’0 a gS [ T cos 9/20 2-rzsiuzB/Zayz] rdrd8
2z
S . cos ¢
2:0 o e g e dé, (¢ =28)
Y o 0
R
r 2
S e Io(nr) r dr
%2 9
R2
SR S S e | (bu) du
T 206.0 o
172
0
Here 01 is the smaller of ax’ GY aad 02 is the larger of these. Also,
_ 1 1 1 _1 1 1
Sl S r v S D B Sl S o S s R

and Io(x) is the modified Bessel function of zero crder. If we replace the Bessel

function by its series expansion and integrate term by term, we get the following
result;

2,k+l
d R /20 ) k
=«a—1 2 (0 —y: Y ua'éh a-claly
k=0 i=0

For rases in which R is small compared with 01 this series converges rapidly,

The integral of the elliptical normal distribution over a circle, as derived
above, is equal to the integral of the circular normal distribution with unit standard
deviation over the ellipse that has semi-axesR/ a. and R/ oy

The probability of damage in the case of unequal standard deviations can be
approximated by

P=1-exp (-R2/2 02)

where ¢ is an appropriate function of ¢, and © 92 Functions frequently used are

1
the geometric mean ¢ o the arithmetic mean aa’ and the root-mean-square GS.
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These are defined as follows:
2_
o'g = 01 02

o, =(9, ¥ dz)lz
2 .2,

2
It is evident that 0ali&cbemeen agand cs;lnfact. dazisthemeanof Gg"
and O’S", LetPg, . anﬂPsbethepmbabilitiesofdamgegivenby
P=1-exp (—Rzlz Gz)when o has che values ag, c and as respectively. Of
these 3 2pproximatious the best seems te be:

< p2 = g2
PgwbenO—R < 0.5 O’a

Pa when 0.5 aaz = Rz =< 2.5 632

- 2 2
Pswhenz.6 6a < R

More accurate approximatioas car be obtained by using linear combinations of these
probabilities. For example, use P = (Pg + Pa)/z in the interval (@, 0.9) for

R% 0%, P=p_ inthe interval (0.9, 1.9), P= (P, +P_)/2 inthe inzerval (1.9,3.4)

and P = Ps in the interval (3.4, «). This approximation is accurate to about
02/100 01 for 0.2 = 0’1/0'2 = 1.0.

For smaller values of 01/ g, the approximation obtained by assuming ¢ =0 is

more accurate; that is, P is approximated by the one-dimensional radial dis-
tribution of standard deviation o,

2
R
P ::( 1/9,V 2% ) S exp (-:Icz/z_azz)dx
R
R/a2
(2/ V2 w) 5 exp (-t5/2) dt

0

29 (R/oz)-l




HhlEhatinias s 0 Slcaadd abiv s bt sl

where @ is the normal erzor integral:

x
2
1 -t /2
#(x) = S e T a& .
V2ax il

® Probability of damuging single point taxget with a single shot whex the con-
ditional damage function :s the circulat coskie-cutter function 20d whea toe
distributior: of shots is ellipticzl aormal and x and y are correlateq:

We assume that the means are zero but x and y are not independert, Let the
covarizuce be axy’ This is equal to the expected valze * of xy and is =gzal @2
?xy T, oywberepylsdxeoor—elananocaﬁicmm. ’mepmbzbilxsyo;damgem
thisasemheabtamed&umtheaboveresnhsbytephmgo ar.d o;bf\

amil\2 respectively, woere xlaadxzare&erwmoftheequzma.

(o, -“)(c 2. - 0xy2 =8

"?)1 A,- The rocts of this eguation z2re often cailed the eigen-values of the

covatizace matrix. The equation is opeained by equating 1o zero the deermizant
in %hich tbe elemesnts are the correspondirg elements of the covariance mairix
with the elements of the mair diagonal reduced by A.

This result can be obtained easily from the joint deasity firnctios, which is:
ifxy) = /2« L cy yl—pz) .

y y

where ny"p o, ay. We now rotate the axes thxough one of tire zngles thar

eiiminates the cross-product tenr in the quadrstic form. The wrzasformztioa ic

exp[-(vzxz-zpaaxy+6 ?)126 o (lpz)l

inear with determinant equai to 1. If v and v are the new rectangular coordinazes,

the function f{x, y) reduces to
a2z VX %) e (o2 -v¥/22)

where ).1 and ).2 are the roots of the equatior given above. Sirce the transformation
does pot alter the conditional damage function, the results can be oixained from the

. . 2 N
previous case by repiacizy :312 acd ) by N a2nd 12.

* Because the meaas are zero. More generally, the covariance {s 2gusl to the

expected value of (x-Xx) {y-y), where X and y axe the means of x a'zdy respectiveiy.
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Agant the moegral caa be compated readiiy by the separation of variables.
The grledeiTy os givex OF

£ 2 K 3
¥ ;z‘[@.zs 2‘1) E ap [-bzf(a2§202)J .
5

Exacsly the sazer expressive 3 obtaiasd for the case in which the distribution is the
Carieme ot witk deaswy foactioe

qx3) : a/230D) e E-(xze»yzwzyuz} 10(1-. V<2442 02) .

8 Podebiixy of &msgg point target with a single shot when the coa-
&tonal damage Faactios is .:iraim%;mssian fusction and when the dis-
rrdution of is elliptical mormai cot centered on the iarget:

Assnane thas the cemet of the distvibuwtion isat('b{ h)). Again the integral
<xx be sepanate<d zad the p-odability of damage is
'y e = —— e e ~
_i.2, b,.2 2 .2 2
?-Ez/ ;'(z :‘26‘) (2 720’_ H Ji .
V. 2,,.2 2 2.,
exp IL b/ 20 ) b

#® Eilipcical Gaussian Damage Function:

2+202)]
y

2, 2_ 2, 2
pgey) =expxija - -y/a) .

Iz this case the integral of the conditional damage function over the euntire plane
is = 3 a), the arva 6 aa ellipse with semi-axes a, and ay. We can determine

the protasilities in this case from the corresnonding probabilities for the circular
Gaussiaz damage function by making the following substitutions:




Replace az in the numerator by a ay

Replace in the denominators;
2 2 2 2
a +2¢7x by a_ + 2¢vx
2 2 2 2
a +20 bya + 20
y 7% y
1202 by V4209 (ay2+202) :

e Other Conditional Damage Functions:

For some weapons and weapons effects the conditional damage function appears
to lie somewhere between the circular cookie-cutter function and the circular
Gaussian function. In appendix A, a sequence of functiouns of this type is proposed.
The first member of this sequence is the Gaussian functior, and the limiting
member is the cookie-cutter function. These functions have the property that the
probability integrals for the usual cases can be computed in finite form in terms
of known functions. The second member of the sequence yields probabilities that
are approximately halfway between the corresponding probabilities for the Gaussian
and ~~okie-cutter functions. This property could be used as a means of approxi-
mating the difficult cases for the cookie-cutter function. However, since the
second member of the sequence probably is closer to the true conditional damage
function than is the cookie-cutter function, it is more reasonable to use the prob-
abilities given by this second member of the sequence.

% SEVERAL POINT TARGETS

When several point targets exist, there is generally a need to answer questions
of the following type: What is the probakility of damaging all the targets, or at
least a specified number of them, with a single weapon? (The case of several
weapons will be discussed later.) To answer, we must first compute the desired
probability under the condition that the weapon detonates at a particular point
(x, y). This quantity is then treated as the conditional probability in the previous
work and we must average this function over the shot distribution.

For the cookie-cutter damage function the integrais involved are invariably
difficult, The integrals are fairly easy to compute, however, in the case of the
Gaussian damage function. We give one example below.

Assume that the distribution of shots is circular normal of standard Jdeviction
o and is centered at a point midway between two targets. Assume that the targets
are located at the points (-h, 0) and (h, 0). If the weapon detonates at the point
(x, y) the probability of damaging both targets is

P, ¥) = exp{-[(x-h)2 +y2 v e’ y2] /az}

exp [—2 (x2 + y2 + hz)/az] .




To obtaia the desired probability we must now multiply by the deansity function and
integrate over the entire plane. The reesult:

P (both) = [az/(az + 402 ] exp (-2h%/a%)
% AREA TARGET

Ir this case we assume that the target is spread over a large area, the maximum
dimension of this area being at least as large as the damage radius of the weapoa.
It is assumed that, for a large fraction of the detonaticas, some parts of the target
would be damaged critically while other parts would be left undamaged. In this
case it makes little sense to talk about probability of damage. Instead we must
consider the problem of determining the expected fraction of the target that will
be damaged, or the probability of damaging at least a2 given fraction of the target.

Assume that the burst occurs at the point {x, y). Then if (X, Y) is any point of
the target, the conditional prodability of inflicting damage to this poiuat is

pd x-Xy-Y
Then the conditional fraction p(x, y) damaged if the burst occurs at {(x, y} is

p(x, 7) = (1/A) Sf Py (x- X, y- Y)dXdY

where the iategral is taken over the target of area A. The expected fraction of te
target damaged is

2 o]
F = Sg px, y) [ {x, y) dxdy
-
where, as before, f(x, y) is the joint density function.
Let So be the sat of points

So: Points (x, y) such that p(x, y) = Fo

Tter the probability of damaging at least the fraction FQ is equal o

P(ZF) = SS £ix, y) dx dy
S
0

where the integral is taken over the set So' Sandia Corporation literature describes
an analogue computer which vas designed to obtain this function for a wide variety of

target complexes and density functions.

10




We 1llustrate these ideas with one example. Let the target be a circle of radius
T and let the conditional damage function be the circular Caussian functiot of equivalent
radius a. Assume that the distributior is circular nore.2! of standard deviation
ai] centered at the center of the target. Then the cenditional fraction of the target ;
damaged is

f-( 7
p(x.v)—(l/t‘[‘z)‘s‘ -j(rem sG-x)zé(rsinO-y)ZJ/az}rdrde ‘
i J ;
o o . Tf/a -
=(az/1‘2)exp[-('~"+y2)/az ! f) 1 e} ouats yz)/a)du .
4 %

The expected fracticu of the targe: damaged is

A(\ -
F=arzze |y pex ) o ‘L-(,%yz,;za?]d,dy
g 4

:(az,’1'2){l-exp§-1'2/(az+202) .!} .
(s =

Tc Jxain the probability of damaging at las(thefractimi-‘o we wouid have to
soive the equaiioe oltained by equating p(x, ¥) to Fa' This will be a circie whoge
radius could be obraised by trial and error. l..e(ﬁaendinsofthiscirclebexo.
Then the probability of camaging 2t least this fraition »ouid be equal 20

PERF )= (1-emp(-R /26D 0gF ¢ ?rl-upl'rz/az)l

(9 LF > n‘z)g 'exp(T‘/a‘)j
If we replace (he circle target by an equivalent Gaussiap iarget of deasity

exp [o(xzirYZY‘lle

at the point (X. Y). lbe fsrmuias become simpler. Thas we {ind

r
PEx )= [42/(:271'2) pew | -a? 5 YW ”z)

1

F= a/(‘ 1‘1'24»‘0)

i1




.0 <F_= a%/@% + T

Lo . F > az/(a2 + '1'2)

SALVOS

So far we have considered the probebility of damage with a singie weapon oaly.
If several weapons are dreroed separately in such a way thar the probabilities are
independent, we can combize the singie-shot probabitities by weil knowe methods.
An example of partial correlation is that of a salvo of weapous, that is, a group of
weapons released simultancously o1 nearly simultaceously. In tois case the weapoas
i the salvo have a particular distribution which is ot the same in all respects as
the distribution that would be cbtained oa another saive. A chardcleristic of the
distributiea that might vary from salvo to saivo is the point about waich the individual
weapons it the saivo are grouped, such ss the measn poiat of impact (MP1). The
weapons 0: a particular salvo will have a particular MPi but this MPI may vary from
salve to salve. o focusing atzention oa the MP] »e do ot intead to imply that this
is the only characteristic of the distribution of weapods = ¢ s2lvo that might vary
from salvo to salvo. Iz the formulation beiow, bowever, we shall coasider ozly the
MPpr1.

lat f(x, y { ®2, ¥) be the joim deasity functioe of the poi (x, 7) of detcaation of
2 weapoa is a salvo that bas its MPY at the point (u, ¥). By the methods discessed
previously we cac find the single-shot probadility, given that the M is (=, ¥).
zet this be P = Ku, v)and let g(u, v) be th> jeint density fmcticz of v and v. L2z
¥ {P] be any fuactional of P of interest. Taea the average voine of this guantity 5

<
reor S
\3 FE?(B,V)Eg(u,v)dsdr .
et i)

For iastance we mght wane » find the probadelsy of sooring & kkast coe damaging
ox wnk 2 salvo. K the protabidxies of damage by weapoas = 2 selvo 2re mdegexdeTy,
except for the commee MPL ind = weaposs are zsed it 2 s2ivo, fhew the gzemmy

of imterest is

Sermed

1-a-p° = et O Fea

[t |

F

[4]
[

.
"

1

From this we can readily find the procbabiiity of scorzg &z least o2 damagizg b
By integrating the product of s foactisz of o= 2ad v 3 (= v) over e (& ¥)

12




We will treat in full one particuiar exampie, perhaps the simplest example
possilde. Assume thar the conditivnal damage function is circular Gaussian with
equivilent radius a. Assume that the distributioz of shois in a szlve is circular
normal of standard deviation s and is centered at (&, ¥v). Also, assume that the
distribution of the MPI is circular norma! with standard deviation J and is centered
at the target. Then from the solutist W the problem coscerning the circular normai
distribution of shots centered a2 a poiat h units from the target, we have

P, v) = & [ (u +vw21. A=32,:(az+2sz) .
Also

E -

33 Pi(at. ) gl v)dudrz,&i/(u»i/m. B:(azé bzyzcz

- 4

Toe latter teselt is chtaised by straightforsard istegratioe. Fiaally, the prob-
ability of scoriag at least one damaging hit caz be writies 3s

G
@2 1) Z 11(3) A.'O’V.BI

»here
2 b
aza2@ts2Y, 8=@l+25°W20° i
Tue prodabiixy cf & least 1 darmagag bt 1 this Case 15 apeTONI=ated Dy
assum:ag that P is sc smail that we can estimste the prodabilRy of a2 least 1
darmagieg it when the MM s (x, v) by
FHI=1 - exp (-3} P=Pc.n. L

Using thes 3pproxiafics we Cas express the sverage vaie 13 e form

=
Giz i)=l-(1icz) 5 &xp -tzfzvz - A a;(—rzuaz): rdr .
> - -
: . 2, .2
lethagt = zA exp -2 A/a ) me obesls
zA
- i i —_— .
F(z iy=~1 - qza)' B g Ty (n.a.)s'i G RV YV g ¢ B¥




vbereP(B«l»l)istheconpleaepmmtmaionand (a, p) is the incomplets
Zamma functioa tabulated in reference (b).

The above example indicates the general procedure in problems of this kiad.
The reader may wisk to compare the probability obtained in the above exampie
with.ttmo:ninedbyﬁ:szﬁndingdzmr-mdimﬂumdmpom. then deter-
minmg_d)cpmbabilityofdnngewithasinglempon. and from this deriving the
probability of at least one damaging bt with a weapcas which are cousidered
1depercieak. The probadility of scoring at least one damagicg hit ty the latter
method: shouid be greater thar the probability found by the former (and correct)
W.'Wmmammmm“dmsinpkam@kso{
correlatio=.

SEQUENCE OF SHOTS

lzmzzy;m&emsnoormmwmznfmﬁezsizﬁemotemin
m:nymuwwmmamumzﬁ&nuemy
characiertstics of the distributicn that clamge from shoe o shot. Examples are:
serface-to-2ir anSiaircraf fire by gums, rociets aad gended mrestles; 2w-tr-anw
cogage meals with gUTS, rockets, aad messubess STk bocbag axd wmeervalometer
bombezg by amreraf o, I3 ot most of the nenlustic smEiecs izvodvizg moTe
ez ome weapos 2re of s oype.  Uissaliy the cormelatmon esielns, hotdh auco-oor-
refasres 1o Lexuzz. are ton large o be oored.  Nummeriss TS Bave beex

Tade o selve probiens of thrs sort. Most of e sckfoes rrgrrre B2l e prucess
5 statomEry. &mmmnswmﬂym:sazm'?mab:;m&asemmm

Amrdmm%mzsmwmupwamm
spe. Wk 2 sufnrenel, sng chaes thes cuethod is adeqQeats 1> IR e SLo-COT -
relaama efeczs. The orodbess of the Markolf chax: achuferg the limeng krw of
somall pembers (e rmaogme of the Pessoc dostriautne) b Ireated oz redersanes
{c) g £5). Thers sewnss ot Do @ cxST o0eod of 1reacry Loamr offacts. sxornt
b;aingézuemzmmé:&:m{c:mmmmm_
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APPENDIX A
A SEQUENCE OF CONDITIONAL-DAMAGE FUNCTIONS

The conditional damage function is a functiou which gives the probability that
a target which is located at a particular point and bearing from the burst point wiil
suffer at least the stated degree of damage. This probability is a function of dis-
tance r of the center of the target from ground zero, height (depth) of burst,
bearing of ground zers relative to the target heading, damage category, target vul-
nerability, and weapon yield.

It is evidecnt that a function which accurately describes the effects of all these
variables will be complicated. First, let the last three variables -- damage category,
target vulnerability, and weapon yield -- have assigned values. Then the conditionai
damage probability is a function of the three coordinate variables -- horizontal
distance r, height (depth), and bearing. First average over the disiribution of
these variables for a selected aiming point (sometimes called the intended ground
zero, IGZ) and interded height of burst.

The most important coordinate variable is horizontal distance r. For sim-
piicity the conditional probability will be written explicitly as a function of tkis
variable only. It is understood that » particular height, based on weapon yield,
effect desired, dud probabiiities, etc., has been set ir the fuze. It is assumed
that errors in height produce a negligible effect on the probability of damage, or
thar an iverage over the corresponding error distribution wili be taker. Suca an
average can be taken at this point if the height error is independent of errors in the
horizontal plane, which is true for most delivery and fuzing systems in use. How-
ever, for air-burst fuzes it is found to be convenient to defer this average uutil
later.

It is ascumed that changes in bearing produce negligible changes in damage
probability. For some targets, notably ships and aircraft, this is not true. How-
ever, in taking the average over the distribution of weapons, these changes with
bearirg can usually be ignored with negligible error.

When the couditional damage probability is written as a function of r, it will
be assumed that the effects of changes in damage category, target vuloerability,
2nd weapon yield can be described adequately by changes in parameters in this
function, without changing the form of the function.

Let p (r) be the average probability of damage at horizontal distance r ifor «
givesi damage categery, target type, and weapon yield. Several functions which have
been used are the following:

(a) Definite-range or cookie-cutter function:
1 if r =R
p(r) = (a-1)
 #f r >R

where R, the damage radius, is a parameter which depends upon
damage category, target type, and weapoa yield.
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(b) Gaussian fusction:
_ 2,2
pl(r)- exp(-r/a )

where "al“alsoisaparamrwbichdq:adsm&em

variables. A factor of 2 is sometimes used is the desomiaxor of the
exponent to simplify later formalas; this skould be kept iz miad
when comparing values of parameters.

The definite-rasge fenction appezrs ts be reasocakle if 3l the variaties except
r have {xed values. This requires that the damage category be defined precisely.
a particular target of knowan vul )erability be coasidered, the weapoz yield be tavaa
exactly, and the beight aad bearing of the burs: positioa be fixed. As explainad
above, p(r) should be an average over some of these variables -- particslasly
variations in damage which wouid be included in a giver damage category. varstoes
in target vulverabili‘y among targets of a givea type, aad variaticzs ia beight of
burst ucless the average over tae beight distributioa is to be takea later.

For acy conditicnal damage fuection p{r). iet g(R) be the correspoadinsg deasey
functiot of the damage radius R. Write ;:o!,r) ia the form p_(r. R) 1o &Espliy the

role of R. Then

o x
p(r) = S p,(r.R) g R) R =S g®)dR {A-23
(o] r

Prob 1 R=r;
2

is the distribution functivn of the duinzge radivs. Heace. the srobiom of findieg

the probability functioa p/r) is equivzient to that of finding the F:stnbatioe fsactioo

of the damage radius R.

For p{rj equal to the Gaussian functioa pi(r) the correscoading deasuty foacrtoo
of R is

P a2,
gl - pl. (R) = —;'2— exp (-R /al)
1

An objecrion to tiis density function is thar it gives tov much weight o very
small and very large values of R. As will be showa later, only 63 perceat of the
distribution lies between 0.5R aud i.3KR, where R is the average damage radivs.

To get a higher concentration about the 2verage we can meltiply the sxpopesiiz:
factor by a power of R greater than une. For example, if
3
8K 2,2
gz(R) = -3 P (-2R /32) ,
)
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Heace, the variance from the mean is B.: - ﬁz. The standard deviation from

the mean is 0.52R, 0.36R, aad 0.29R for p; (), p, (r), and p, {r} respectively.

If we know R and the standard deviation of R from R, the appropriate
function can ke chosen from the sequence of functions. If only R is known, bow
seusitive is the probability of damage to the choice of conditional daraage functicn?

Let (x, y) be the rectangular coordinates of ground zero relative tc the center
of the target. Assume that x and y are independent and normally distributed with
the same standard deviaticn ¢ and means hx and hy respectively. {Ucequal

standard deviaticos make the formulas more complicated but do not increase the
difficulties of integration.) The density fuuction of x and y is

1 2 2
T — x-h ) + -b
-1 20 [( * vy ]
foy)= —— e
23 0

Then the average probability of damage for the u—ﬂE function is

o0
P = 55 p (% y) f(x y)dxdy
~co

where Py (%, y) is the functiou given in equation (A-3) wben 1:2 is replaced by
2
£ +y).

Expanding the powers of (x2 + yz) and completing the squares in the exponent,
it is evident that the integral in Pn can be computed for any u. We omit details
and give the result after the integration is completed. At this stage we have

-H

= 1 - a -

P =e a 2 Sy (A-4)
where
n-1 n-1 j

“n s, BYX (A-5)

S = ) -

" ko jk de.j: J&'m
1 atz1 22n--1 [ (a-1)" ] 2 " 2
2 14— =1+ L : 5 (—&-) (A-6)
a 2u0 7 [1+3...(20-1)]
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The factor S_  reduces o

-
sﬁ={-§- & 2
Puerirg this 13¢o (A-5) we have thag
=1 ] N
i 3 Bk
s‘= 2:::0 J.z:;‘ (t)'= *E.Z"
a-1 k
(0. 8 g
= U
L Tanro e

shere u(:’ (a) isthes™ derivative of

| 4
-H n-l G-a )k
- a S L3N U(k) k
i 0te) & i UL g W,

with au and}in as in (A-6) (A-7). The firs: few of these are
P =etha-a )

H

hi
Py=e S -2 [(1+a2)+(1-a2) “2j




The exoeee Pxemfiess o s wegwend: 2oy Btaiwd wiZt 1 ¢ D (Gessane) sut
T méSefnne-Tamgri The vadws P P xz?.xr:;meu:mtduut?'

A% e nuehe 8. CicuammT mims XY £ e v f T 3 gremmer Am
x!?ia&ie&ma':rizfaryw:ff.c . T 23 ¢

xRttt e g si. S L L . ik il axdewl ! b
We -2 mece.

Tkmmm?!m?'auwuxmcm:w

Way ¢ se K'Y OUe-SOr? T e et Ram Boe. £ 3 ImDeTme 3
Soerrrne She poTwcze shaye f " TGOS faTge Jieve.

Rowever. the waiee f P, seik e afeTs Som edfies eMreme 3§ muce Rl
ifpercem. Theedce P, o 2 gond wale D 192 1t Thame I2Se W WAl IEhe

3 et suk B shiags ~f Be TiTwe Lk AEE L 33 Wf &3 iU 33 The
G gt SISWR AC XS AKRK a3 T Aefimir- TERgR Krede-CreReT) See

TABLE A-©
CREPARSON OF MOBANLITIES

Geroee?
4
P H
r 3 : i 2 :
: e > 3 >}
;:” T I T
: .3 14 (3 12'° ;W & MW W N
1 1.5 » P» P» B B r 1 1t Wi
2 5.5 W 63 B 48 @& N 2% 24 ni
S 7YY & & 73 a4 o o
D3 5 N2 9. T % % 62 6 79I
K $1 ¥ 1008 3 10 ;7 85 !

A-9

R e



74P~

A ratt r-

- r—

Frr Sm iy yereandarw e W
nTEr v el e e

v ey ¢
s wem vymmwesrw—x-{ me ke

o 16 20 30 40 50 60 170 80

FIG. A-3: CONSTANT PROBABILITY CURVES FCR PZ

A-10




