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ABSTRACT AND INTRODUCTION

Problems involving corpuatation of the probability of damage, or the expected
fraction of the target damaged, occur frequently in military operations research.
These problems have been worked on by many people over a long period of time.
This study is intended, to summarize some of the more important results and to
indicate sources of information on other problems. No attempt has been made to
include an extensive bibliography or to track down the first man who derived any
particular zesult.

Although many of the results were known long ago - some of them during the
19th century or earlier - it was not until World War H that systematic efforts were
made to obtain answers for a wide variety of situations. Recenly several reviews
have been made of this material. One of these is reference (a) which does not
include some of the results given here. On the other hand, reference (a) gives
results on the inverse problem, that of determining the probable location of the
aiming point from the locations of the burst points or from the damage produced.
The inverse problem is of lesg interest than the direct problem; the results are
of little usefulness in most damage problems.

SINGLE-SHOT PROBABILITIES

In this section we will consider the problem of computing the probability of
killing the target, or of inflicting a stated degree of damage, by a single weapon
(projectile, bomb. etc.). Because of its frequent occurrence the two-dimensional
case will be used throughout for the illustration of methods and statements of
results. In most cases the manner :n which the results would be adapted to one
dimension or to more than two dimensions should be evident. The derivation must
be examined, however, in every instance in which only the results are given.

We will consider both point and area targets, a point target being one whose
dimensions are small compared with the "damage radius" of the weapon relative
to the target. We will also consider two types of "conditional damage function",
that is, the function that describes the probability of damaging the target if the
weapon detonates at a given point relative to the target. These two functions are
usually referred to as the cookie-cutter function and the Gaussian function. In
the former case the probabilit of danmage is I within some area about the point
of detonation and is zero outside this area. I. the latter the probability of damage
varies gradually from a value of 1 at the point of detonation, decreasing toward
zero as the distance from the point of detonation increases.

These are some of the principal results:

* SINGLE POINT TARGET

Consider the target at the origin of a rectangular coordinate system in a
suitable plane. This plane might be the horizontal plane or a plane normal to the
trajectory of a weapon which would pass through the target. Let the conditional
probability of damage to the target, if the weapon is fired or released on a trajectory
through the point (x, y), be pd(x, y). Let the joint probability density function of

x and y be f(x, y). The joint density function f(x, y) describes the density of shots
or bomb-drops in the target plane. It is non-negative and is so chosen that the

I
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integral uf it over any area is the probability that the weapon will fall in this arca.
Then the probability of damage to the target from a single weapon chosen at random
is

P=3 Pd(X, y) f(-, y) dxdy
"00

Some cases are giVen below:

* Circular Cookie-Cutter Damage Function:

Sif 2x2 + y R2

Pd~"' Y) = 0 otherwise

For this function the probability of damaoe is

P = S f(x, y)dx dy,
circle

where the integral is to be taken over the circle of radius R with center at the origin.

W Probability of damaging single point target with a single shot when the con-
ditional damage function is the circular cookie-cutter function and when the
distribution of shots is circular normal and centered on the target:

More precisely, we assume that x and y are independent variables havingnormal
distributions with means zero and common standard derivation, o . Then f(x, y)
has the form

f 2 2 2exp V(x + y2)/2 or
2, r

By elementary integration we find that

P = I - exp(-R2/2 )

* Probability of damaging single point target with a single shot when the con-
ditional damage function is the circular cookie-cutter function and when the
distribution of shots is elliptie" normal and centered on the target:

This case is the same as the one preceding, except that the two standard
deviations are unequal. This slight change makes the integration difficult. If we
change to polar coordinates (r, 3) and integrate with respect to 0 we obtain the
following result:
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1 2C f29 22 221
P= r~7U co /2 a x sirk 0/2 a rdrdG

R 2  21r 2

22
1e - ar  r d, jos r d ,( = 29)

2 x  y 0 0

R e - ar 1o(br 2) rdr
0102 S

0
R 
2

01 $ aau Io(bu) du
12 0

Here 01 is the smaller of a a and q2 is the larger of these. Also,
y 2y

1 + 1 1 1 1
a=4 0= -~2- ~ 4=- IF- -

121 02

and 1o(x) is the modified Bessel function of zero order. If we replace the Bessel

function by its series expansion and integrate term by term, we get the following
result:

(R2/2 a2)k+l k k2

-a 2 (k+1)!~( 1 2
k=0 i=0

For nases in which R is small compared with O1 this series converges rapidly,

The integral of the elliptical normal distribution over a circle, as derived
above, is equal to the integral of the circular normal distribution with unit standard
deviation over the ellipse that has semi-axes R/O x and R/a .y•

The probability of damage in the case of unequal standard deviations can be
approximated by

P = 1- exp (-R 2 /2 G 2 )

where a is an appropriate function of aI and a2" Functions frequently used are

the geometric mean a the arithmetic mean 0 a' and the root-mean-square 4s.
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These are defined as follows:

or- a. + 02)/2g °12
a

0 2 or + 'a 2 )12

Itisevidentthat a lies betweea and 47;infAct 2 iszemean of 2

fta g s - a g
and et P P. nd P bethe probabilities of damage given by

P = I-exp (-R /2 ) )when o has :he values rg, 0a" and a respectively. Of

these 3 upproximarions the best seems to be:

P when0 S R2 < 0.5 a2
g a

P when0.50r2 R2 _s2.602
aa a

P when2.6 0 2 < R2

a

More accurate approximations can be obtained by using linear combinations of these
probabilities. For example, use P = (P + P )/2 in the interval (0, 0. 9) for

2 2 g a
R 2/ a2 P = P in the interval (0.9, 1.9 P = (P + P )/2 in the interval (1.9,3.4).

a a a s
and P = P in the interval (3.4, c). This approximation is accurate to aboutr

s

2/100 a, for 0.2 - 2 01/2 - 1.0.

For smaller values of o/ 2 the approximation obtained by assuming o = 0 is

more accurate; that is, P is approximated by the one-dimensional radial dis-
tribution of standard deviation 02:

R

P 1/2 /r' ) exp (-x 2 /2.0 2
2 ) dx

-R

= (2 exp (-t 2/2) dt

0

2 2 (R/ a2)-1
4



where * is the normal er-or integral:
X

#Ix)- I e-t 2dV2 z

a ProbabiliE. ofd - sir e point rax with a sbne shot w be c=-ditonai damage faco is te circular ,coke-cu~er fu nh
ditibton Of shots i-Se lftptk-l normal and x and y are corzelated:

We assume that the means are zero but x and y are not f ."eendem Let the
caancebe eXY. This isequalto theexpecedvale*ofxyandisequalta

P rwhere p.- is the cor.rlatiou ccefflieot. T he prababiit of damage xmo1 y2 7
this case can be ebained from the above resuIts by replacing Or arjd 2by I

and x respectivelyo -Were )and are the roots of the equariam

wite 11 -S X2. "Ie roots of this equation ae often called the eige_-values cf the

covaziauce matrix. The equation is otained by equating to zero the dewremnt
in which the elements are the corresponding elements of the co'-arame ma--ix
with the elements of the main diagonal reduced by X.

Tis result can be obtained easily from the joint densiy A omfu . which is-

fx y) = (1/2ro u 1-P 2

xy
-e.x-_(o x2 - 2p~ O x~ ~ 0 2 )12G 2 0 " 2 (I!-2)}

where a -p or a. We now rotate the axes through one of the angles tint
xy X y

elifninates the cross-product term in the quadratic form. The transformation is
linear with determinant equal to 1. If u and v are the rew rectangular coordLwms,
the function f(x, y) reduces to

(1/2 i exp (- u2/2 v2 /2 X2)

where X1 and X2 are the roots of the equation given above. Since me transformation

dees not aie the crpdiional damage function, the results can be oLtazed from the
2 9previous case by repl==m 471 a fud 62 yXqz t

• Because the means are zero. More penerLaly, the covaria.c : g- ial to the
expected value of (x-i) (y -j), where x and y are the means of x ady respectivey.
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0090* ! huM e sa Or in L-mar ma vsuere fm~ teargcta e

As= *e 2adlga 2S b4OM n a SMT24II--rd u r Loy sepraing it into
a pcd_-= I xONWa~s kv tL se!2n~im of variables. 7te nnokabtlity is

r V4362 .2 6.) (a 2 +2 # 2

A~pum pbew~i caa be c ted readiy by the separatiou of varia~es.

2)2 _2~ 2 02

z-ad ~ saw ezpress= ;s obcvaed for the case iw which the distribution is the
d~rbn~zsub desxu fwtioe

21 +f2  b L4* 2 2 2 1 (h V x2+Y/0,2)

g tbb-a cd~~m pit !!Mt with a single, shot when the con-

fmcmi he--ua Giussian function and when i&e is-

.4sszit = ide ceztert-I the dist-ibution is at (h, h ). Again the integral

cmb sepa3l. d inc the _ obility of damage is

I~ '2u 2) (a +2v

~-h 2 /(a 2 +2 2 ) _h 2 -a 2 21
exL X ,, rYj

*Eilipfcal Gaussian D~age Function:

pd (z.y) = exp (x~a -_yla y2)

br ths cawe the integral of the conditional damage function over the entire plane
is I a Xa ,the area ca an ellipse with semi-axes a xand a y. We can determine

the pr-f&abdities in this cdsew ftain die corresponding probabilities for the circular
Gaussiz2 damage function by making the following substitutions:
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V2

Replace a2 in the numerator by ax ay

Replace in the denominators:
2 2 2 2

a +2v x  by a. + 2e x

a2 +2 y2 by a 2 + 2ay2
y y y

a2 +2v 2 by Yax 2 +20 2) (a y2 +20 2

0 Other Conditional Damage Functions:

For some weapons and weapons effects the conditional damage function appears
to lie somewhere between the circular cookie-cutter function and the circular
Gaussian function. In appendix A, a sequence of functions of this type is proposed.
The first member of this sequence is the Gaussian functior, and the limiting
member is the cookie-cutter function. These functions have the property that the
probability integrals for the usual cases can be computed in finite form in terms
of known functions. The second member of the sequence yields probabilities that
are approximately halfway between the corresponding probabilities for the Gaussian
and , ,okie-cutter functions. This property could be used as a means of approxi-
mating the difficult cases for the cookie-cutter function. However, since the
second member of the sequence probably is closer to the true conditional damage
function than is the cookie-cutter function, it is more reasonable to use the prob-
abilities given by this second member of the sequence.

SEVERAL POINT TARGETS

When several point targets exist, there is generally a need to answer questions
of the following type: What is the probability of damaging all the targets, or at
least a specified number of them, with a single weapon? (The case of several
weapons will be discussed later.) To answer, we must first compute the desired
probability under the condition that the weapon detonates at a particular point
(x, y). This quantity is then treated as the conditional probability in the previous
work and we must average this function over the shot distribution.

For the cookie-cutter damage function the integrals involved are invariably
difficult. The integrals are fairly easy to compute, however, in the case of the
Gaussian damage function. We give one example below.

Assume that the distribution of shots is circular normal of standard devijtiorw
a and is centered at a point midway between two targets. Assume that the targets
are located at the points (-h, 0) and (h, 0). If the weapon detonates at the point
(x, y) the probability of damaging both targets is

Pd(x, y) = expI- [(x -h) 2 + y 2 + (x +h) 2 + 2] /a 2

exp[12(x 2 + y2 + .2)/a2

9



To obtain the desired probability we must now multiply by the density function and
integrate over the entire plane. The result:

P (both) = [a2/(a2 + 4v2) ] exp (-2h2/a 2 )

, AREA TARGET

In this case we assume that the target is spread over a large area. the maximum
dimension of this area being at least as large as the damage radius of the weapon.
It is assumed that, for a large fraction of the detonations, some parts of the target
would be damaged critically while other parts would be left undamaged. In this
case it makes little sense to talk about probability of damage. Instead we must
consider the problem of determining the expected fraction of the target that will
be damaged, or the probability of damaging at least a given fraction of the target.

Assume that the burst occurs at the point (x, y). Then if (X, Y) is any point of
the target, the conditional probability of inflicting damage to this point is

pd(x-X Y- Y)
Then the conditional fraction p(x, y) damaged if thk burst occurs at (x, y) is

p(x. )=(I/A) S$Pd (x- X y- Y)dXdY

where the integral is taken over the target of area A. The expected fraction of tLe
target damaged is

Go

F = SS pWx,y) f (x.y) dxdy

where, as before, f(x, y) is the joint density function.

Let S be the s-t of points0

S : Points (x, y) such that p (x, y) Z F

Tren the probability of damaging at least the fraction F is equal to

P(2F) = fx,y) dxdy
S

where the integral is taken over the set S0 . Sandia Corporation literature describes

an analogue computer which was designed to obtain this function for a wide variety of
target complexes and density functions.
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We illustrate these ideas with one example. Let the target be a circle of radius
T and let the conditional damage function be the circular Caussian functior. of equivalent
radius a. Assume that the distribution is circular nor. ! of standard deviation 0

and centered at the center of rhe target. Then the condxim:.nal fraction of the target
damaged is2r'I j r ? 1

pt ) (1/T2) ei (r cos 0 -x+ (r sin 0 - y)2j /a2 rdrd

0 0 T2 /a 2

= i e ( 2 2 i 2j u - (2 u( 2 + y2Wa)du
(a r? exp +ayd

J

The expected fracE-n of the targe: damaged is

F=(l2.a 2 ) ss p(Z.Y, ziLTP (X2  o,21
(12ra- + V 2)20 dz dy

To otain the proba ity of damaging at least the fraction F we would have to

solethe eqZie obtaifed by equating p(K. y) to F. This will be a circle whooe

radius could be otaied by trial am error. Let te radius of this circle be R .
0

Then ;e probabky ot eamaging zt least this fraction woild he equal to

if we replace he circle targat by an equivalen Gaussian Vof dasity

exp ~~X2y2,VT2

at the poiM (X Y), the form s become simpler. Ibus we 'nmd

p, F 2 2+.,j) 2 r 2 2 r2

F~ZIa 2 T 2 2L 2

F-a2/(A2 + 1 + 26:o2



F1  F(a2+r2)/a2] (a2+T2)/2°2~ 2
(a +,?/ a 2o 0 -<F° - a2/(a2 + T- )

P(- F) L
0F 0 ,2/(a2 + 2 )

SALVOS
So far we have cnsidereI the probability of damage with a single weapon only.

If several weapons are drer.eJ separately in such a way da the pro-abilivies are
iadependent, we can comb-Le the singie-sbot probabilities by well known methods.
An example of partial correlation is that of a salvo of weapons, that is, a group of
weapons released simultaneously ox nearly simultaneously. In this case the weapons
in the salvo have a particular distribution which is ow the same ia all -especzs as
the distribution that would be c-brained on another saivo. A chiazcteristic of the
distribution that might vary from salvo to salvo is the point abowt which the indivklual
veapons ic the salvo are grouped, such as the mean point of impact (!). The
weapons ol a particular salvo will have a paricular IPI but this Mf may vary from
salvo to salvo. In focusing atzenion on the MPI we do nor intend to imply Lhat this
is the only characteri5tic of -be ditribution ol waapods iz a salvo .hat might vary
from salvo to salvc. z the formlarion beio-. ho-ever. -o -hall coasid-er only tbhe
MP.

Let f(x, y I ;, v) be the join density fumctioc of the poin (x, y) *f detoao of
a eapon in a salvo that has its MPI at the powit (u, ). By the methods disc=ssed
previcsaly we can find the single-sbot pro sbiry, g hat he MA .s (q, ).
L.etthis be P =?(u. v) aW letg(u, Y) be tbajoia dniy ~IN of uand v- L..--

f [P] be any functional of ? of intwresz. Vie= the average vrbie of W~is qu7tFy --s

I ; u v) g (u, v) ck; -
L

For i-asu-e we mrogt wam to fred the proLha.Wit o sc.-rg aek2 da a g .
ha~ Wth z salvo. If -O) pr b sof danage tr veapoas =c a sal~ are =6qe -r
except for the commace MML azkd a -aapoms are Mwe i a- a s-Aiv, d~ Z-
af interesz is

iple~ ~ ~ =1C -i (2

From ds we can readily fd the pr-bii a sof rm s at leaa oa dz.--,a" h.
Iy ;Meg=ai the pre~1 c4 this ftwoo of r and v amd S(,- v) omer die (. ir)
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We will treat in full one particular exampie, perhaps the simplest example
possibae. Assume that the conditional damage function is circular Gaussian with
equivalent radius a. A.s.sume that the distribution of shocs in a salvo is circular
normal of standard deviation s and is centered at (, v). Also, as -ume that the
distribution of the MPI is circular normal with stand.rd deviation a and is centered
at the target. Tben from the solutio t the problem co--cerning the crcular normai
distribution of shots ceter-ed at a point h units from the target, we have

r2 2 21 2 2 2P(u. ) = A exp -(u + v a A=a (a +2s)
J

Also

i ?(u, ,g(u, vw)de dA .4/( + i/B. , -( a2 -2s2 )/2 W2

ahe Li 1 reselit Ls ctwed by st ag~ormard imtepatios Fmally. the pr*b-
abilir of scarzCg leat ow damael bit cam be wroes as

i.4

abere

A 2' (a 2  2 Ba a2  231 Y2 &

I~ ef~lx c i t I das~m hat a zts caw as su~ a b

assiumag tha P :s sosma!l Chu w -am esimno th probabiry ot a mu I
damg g , e'a rbtMIi s (w, v) by

F(,) l- e-V (-aft P = PI . v)

U-siag dis n we am epress the er ae a toe fwrm

I -)P-,(ju ) S -r 2/ 2 -_ eup r 2 A& r -

L~ t g t ,A elp (-. 2 A 2 ) we oat

-A k) '.,- 3.a-1 aA ,'-ii

1.3



where P(B + 1) is the comp4lete gamma, fmtion and P (u. p) is the incomplete
ganmm function takxilaed tn reference (b).

The above example iwi~cates the general proce~ture wn problemrs of this kmd.
71w reader way wish to compa~re the probabdliy obtained =n the abve example
with that obtained by frsz f!inding the over-all dIsrhutm at weapons. then deter-
mining the probability of damage with a sinqoe weapon. and from !h" deriving the
probabilvy of at least ame damaging ha with a weavos which are considered
uxleperxk-w. Ite probabirv of scoring at leabi on damagirW hit by the lamter
inetwI~ sixmld he greater than the probabiry fouaxi by the former (.at~d correct)
naxdet6. Weapons fired =n savwns cocsminze oe of the simplest examples off
correLatioe

SEQ~JE:CE OF ShOTS

b =,any prubL^=ts two or =or we qw" are fred Mn a esinC r= or evem ire
sach 4 waw thu Eb v=dra-4:.al pbabdh:Des are noc uakpeseut a35 there are m Y

ci~acew~soc th disz.=tr &.=uh cbamge froa sbXc to shoc EzaM~k:S art-
s~ie- o'-aira.~airraf f.e hr gs rockets and Sz~dd =mstles; anr-t-2-air

e-acteis 'wah racievs, a~d Msss SM-k bo~m a=d =ftr'a~ot.

r Crft. tc ztc. =Os at the e.,_LStC SJOCSC'~

tk= ar wad= L-aa e :!- 'hM 71s iz~rz'li the~ -NXr16 aen-

=Aie $cts ir icsa tf-. SIzt a z a~ tWO fr~'oa~~te e

pe :,C c-ftl= stt (tdw is A& isf ~rtd e-2 zb izy 3
(r)~ ~ ~ ~~O~_ andt if). Mh~ese~: e eax *a"d T'rp ,~ ±ec~i

-. :~ ~~~~~1 wi_* fth r&i~ el r~s~~

_)" ~rJMJ

Wz- 4artgZ&-Pe
L= ta4 4FC

-i;: dW 1eprkT

14r- s_=!x= nc
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APPENDIX A

A SEQUENCE OF CONDITIONAL-DAMAGE FUNCTIONS

The conditional damage function is a function which gives the probability that
a target which is located at a particular point and bearing from the burst point will
suffer at least the stated degree of damage. This probability is a function of dis-
tance r of the center of the target from ground zero, height (depth) of burst,
bearing of ground zero relative to the target.heading, damage category, target vul-
nerability, and weapon yield.

It is evident that a function which accurately describes the effects of all these.
variables will be complicated. First, let the last three variables -- damage category,
target vulnerability, and weapon yield -- have assigned values. Then the conditionai
damage probability is a function of the three coordinate variables -- horizontal
distance r, height (depth) and bearing. First average over the distribution of
these variables for a select%:d aiming point (sometimes called the intended ground
zero, IGZ) and intended height of burst.

The most important coordinate variable is horizontal distance r. For sim-
plicity the conditional probability will be written explicitly as a function of this
variable only. It is understood that i' particular height, based on weapon yield,
effect desired, dud probabilities, etc., has been set in the fuze. It is assumed
that errors in height produce a negligible effect on the probability of damage, or
that an iverage- over the corresponding error distribution will be taken. Such an
average can be taken at this point if the height error is independent of errors in the
horizontal plane, which is true for most delivery and fuzing systems in use. How-
ever, for air-burst fuzes it is found to be convenient to defer this average until
later.

It is assumed that changes in bearing produce negligible changes in damage
probability. For some targets, notably ships and aircraft, this is not true. How-
ever, in taking the average over the distribution of weapons, these changes with
bearig can usually be ignored with negligible error.

When the conditional damage probability is written as a function of r, it will
be assumed that the effects of changes in damage category, target vulnerability,
and weapon yield can be described adequately by changes in parameters in this
function, without changing the form of the function.

Let p (r) be the average probability of damage at horizontal d:stance r for d
given damage category, target type, and weapon yield. Several functions which have
been used are the following.

(a) Definite-range or cookie-cutter function:

I if r :sR
po(r) = (A-l)

where R., the damage radius, is a parameter which depends upon
damage category, target type, and weapon yield.
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(b) Gaussian fActirm

P (r) = exp (- r /a1 )

wher -aI " also is a parameter which depends a the da aaw

variables. A facto: of 2 is somiemne used ia the dsomiator of th
exponent to simplify later fornmls; this S&o4d be kex m mmd
when comparing values of parameters.

The definite-range fulction appears to be reasocabe if all the va.iabies excet
r have Lxed values. This -equixes that the danma egory be defu prec sely.
a particular target of kIown vul wrabiiry be coasidered, the weapom yield be kMra
exactly, and the height and bearing of the burst posiioabe fixed. As exiplaid
above, p(r) should be an average over somr of these ariaes -- iv
variations in damage which would be included in a giver d-ma te ca wr.. varunow
in target Viulerabili!y among targets of a given type. and -ar"ms, in be*zgL a
burst unless the average over the height dis--iboa is to be takes !a.Ltr.

For any conditional damage fuection p(r). let g(R) he the =*r uwf Oetsay
function of !he damage i-adius R. Witej rofr) ia the form p_(r. 9) tod &lyythe

role of R. Then

p(r) = po(r. R) g (R) M3 g(!) dR A -

or

=Prob tR- r 1

is the distribution funcrivu of the damtage radius. Heae e epro- oft radiaz
the probability function pr) is equivalent to that of flading toe 0--ttributic fui
of the damage radius R.

For p(r) equal to the Gaussian functioa pI(r) the correspning deasuy fm=vw
of R is

gl(R) = - p'(Rt) 2- exp(-R 2/a2

aY

An objection to ibib densiry function is that tt gives too much weig& zo ,ery
small and very large values of R. As will be shovai la.er, only 65 perceet of the
distribution lies between 0. 5 aud i. 5R, where R is the average damage radius.

To get a higher concentration about the average we can multiply the expooe--
factor by a power of R greater than oue. For example, if

g2(R) = 8R 3  2 2

A2
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Heace, the variance from th. mean is e. R The standard deviation from
the mean is 0. 52R, 0. 36R, and 0. 29R for P1 (r), P2 (r), and p3 (r) respectively.

If we know R and the standard deviation of R from R. the appropriate
function can be chosen from the sequence of functions. If only R is known, how
sensitive is the probability of damage to the choice of conditional damage funcrien?

Let (x, y) be the rectangular coordinates of ground zero relative to the center
of the target. Assume that x and y are independent and normally distributed with
the same standard deviation a and means hx and h respectively. (Unequal

standard deviations make the formulas more complicated but do not increase the Idifficulties of integration.) The density function of x and y is

1 . (X x-hx)2 + (y-hy) ]
f(XIy) - e

27 6

Then the average probability of damage for the n th function is
0

P. =SY pn (x, y) f(x, y) dxdy

_-00

where p (x, y) is the function given in equation (A-3) when r2 is replaced by
2 2u1(X + y).

Expanding the powers of (x2 + y 2) and completng the squares in the exponent,
it is evident that the integral in Pn can be computed for any n. We omit details

and give the result after the integration is completed. At this stage we have
-n

pn e ' (1 - a)S (A-4)

where

n-i n-i a

k=o j=k 2. •J Sjk (A-5)

a 2  =+ 2 2n-1 )]2  ()2(A-6)
S2n0 Cr [1 •3 ... (2n-I)]
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Finally, the expressgm f"% becom"

-H a U-
Pe R(jga 5 LP (a' H 1

k~o (k: -' )

with a and h aas in (A-6) (A-7). Ilke tirsz few at these are

P1 = e-H1(I- a 1)

P2 eH (= 2) [ (1 + 2 (-a 2 H2
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FIG. A-3: CON2STA&NT PROBABILITY CURVES FOR P2
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