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ABSTRACT

(Distribution Limitation Statement No. 2)

Techniques are described for simulating blast-type transient surface loads of
nearly exponential pulse shape having characteristic times (impulse/peak pressure)
ringing from 10 to 1000 usec (the quasi-impulsive range for cylindrical shells
.o.oOUt 1 foot in diameter). Pressure-time histories are measured at various
positions around and along cylindrical models 3.5, 6, and 12 inches in diameter.
A basic set of loads is obtained consisting of two limiting pressure distributions,
an asymmetric distribution typical of side exposure to a normally incident blast
wave, and a symmetric distribution typical of nose-on exposure. All of the loads
are obtained using sheet explosive charges of various forms, from flat to semi-
cylindrical to completely cylindrical surrounding the model and flat charges
suspended at various standoffs in a shock tube. In support of the experiments,
the self-similar solutions for blast waves from intense explosions are used to

calculate the range of sheet charges needed to produce loads of interest and
to show that the corresponding spherical charges become much too small and much
too large for practical application near the extremes in load duration. Approx-
imate formulas are also derived (the Korobeinikov theory) for the variation of
peak pressure with distance from plane, cylindrical, and spherical charges. The
range of validity of the formulas extends from high pressures, where the self-
similar solutions are valid, to acoustic shock pressures. Experimental measure-
ments from the present program and from compiled blast data show excellent
agreement with the theory over the entire range.
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SECTION I

INTRODUCTION

This report is concerned with economical methods for simulating

transient surface pressure loads, similar to those produced by blast

waves, on cylindrically shaped objects. The subject has wide appli-

cation because these loads are produced by a variety of weapon effects

and cylindrical shapes appear in a variety of structures (e.g., aircraft,

missiles, satellites, and reentry vehicles).

The work is a direct extension of the study of response of reentry

vehicle-type shells to blast loads under the HARTS program. There,

long duration loads were produced by shock tubes, and a limited range

of moderately short duration loads, intermediate between shock tube

and impulsive loads, was produced by explosive spheres. However,

methods were not available for producing the entire range of inter-

mediate duration loads with a minimum of explosive (less than 100 pounds).

- This report describes techniques developed to cover this intermediate

range.

1. Features of Weapon Effect Loads

Surface loads from a variety of weapon effects2 have three common

features that make simulation with blast waves possible: the prrssure

is applied by a gas, it varies smoothly around the surface, and the

pulse shape (time history) consists of a sudden rise in pressure followed

by a decay to zero pressure. These are the essential features of the

diffracted pressures experienced on the leading surface of a vehicle or

model enveloped by a blast wave. A complete description of the pressure-

time history at every point on the model is quite involved, but to in-

vestigate structural response it is usually sufficient to characterize

the load by the product of a pressure distribution and a pulse shape,

i.e., the pressure distribution can be treated as the same at every

A1
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instant with the pressure varyin simultaneously around the model at a

single time history. Actual loads differ from this idealization; for

example, a blast wave takes a finite time to sweep over the model and,

also, the low pressure on the far side of the model rises slowly rather

than suddenly. However, these complicating features are generally secon-

dary, either because time differeinces are small compared to structural

response times, or because the area in which the pressure is not proper-
1

ly represented by a product form is at a relatively low pressure.

The pressure distribution for a particular weapon effect depends on

the orientation of the model relative to the on-coming load source. For

example, radiation induced surface loads on a cylinder illuminated from

one side produces a cos e distribution over the illuminated side, and
7 no pressure on the shaded side. Side exposure to intense blast waves

2prodces an approximately cos 8 distribution over the exposed side

superimposed on a relatively low pressure that can be treated as uniform

around the circumference. End-on exposure results in pressures sym-
K 3 metric around the circumference, while intermediate incidence angles

u .
). j result in varying degrees of asymmetry. Two representative distribu-

tions are sketched in Fig. 1. There is no end to the number of distri-

butions that can be imagined, but it is reasonable to expect that the

distinguishing feature of a load distribution is its degree of symmetry,

and it is common practice to divide weapon encounters into two basic

types, side-on (asymmetric) and nose-on (symmetric). Asymmetric loads

are the most probable and generally result in more severe structural

damage and have tberefore received the most attention.

Separation of surface loads into asymmetric and symmetric types

is a logical division for struztural response. The primary response of

a cylinder or cone to symmetric loads is the development of hoop mom-

brane stresses- and possibly buckling. For asymmetric loads, a net side

load must also be sustained; this gives rise to beam bending and shear
forces and also to large end resction forces at points of attachment,
possibly causing cracks or local yielding. Accelerations of internal

components are also generally more severe for asymmetric loads. These

2
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observations suggest that the extremes of structural response can be

examined by testing with normally incident side-on exposure and with

nose-on exposuare. Tests on cylindrical shellsI demonstrate that the

exact pressure distribution of % side-on load is secondary and, in fact,

for shell buckling, critical pulses for damage from asymmetric loeds can

be nearly the same as from symmetric loads.
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The essential features of the pulse shape are exhibited by the

exponLu tial pulse

0 t<O
p = -t/t

Pe 0 t>O

where P is the peak pressure, t is time, and t is a characteri-tc
0

time related to the total impulse under the pressure-time curve by

to = I/P. A sketch of this pulse is shown in Fig. 1. The sensible dura-

tion of the pulse is about 5to . Actual pulses differ from this exponen-

-i&1 shape, but the value of 5 is a representative ratio between

sensible duration and an artificial characteristic time defined by I/P.

For either the idealized exponential or the actuR.± pulse, selection of

a sensible duration is quite subjective; to avoid this difficulty we

shall use instead the artificial characteristic time t = I/P for any

pulse. If the pulses do not differ widely from a single pulse shape,

they can be characterized by two parameters, for example peak pressure

and impulse, or peak pressure and characteristic time. Surface loads

from weapon effects of intere it here have pressures ranging from many

kilobars to a few bars, and characteristic times ranging from a fraction

of a microsecond to many milliseconds.

2. Basis for Simulation and Structural Response Investigations

To determine structural response to each weapon effect separately

would be both expensive and time-consuming. If the problem is inverted,

however, and structural response is first determined for a range of

loads significant to the structure, it will then be relatively easy to

determine structura. response for a particular weapon effect. To fully

exploit this approach,it is essential that structural response be under-

stood over the entire range of loads; only then can the influence of

load characteristics on structuyal response be discussed in terms of thae

structure rather than in terms of a specific weapon effect.

4
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From the preceding discussion, and arguments given in Reference 1,

we take the essential surface load parameters to be peak pressure,

impulse, and, to a lesser extent, the symmetry of the pressure distri-

bution. An adequate description of the strength of a given structure

for weapon effects work can then be obtained by tests using two pressure

distributions, one symmetric and the other asymmetric, and pressure

pulses ranging in peak pressure and impulse over the range of signifi-

cance to the structure. All of the remaining details of the actual
loads are expected to be of secondary importance. These include effects

of pulse shape (e.g., triangular vs. exponential decay), detailed pres-

sure distribution (e.g., cos 0 vs. cos2 0 load on one side, or the

effect of small pressures on the unloaded side) and time phasing (e.g.,

inexact simulation of the time for a blast wave to sweep over the model).

Since this simplification is merely a reasonable assumption and not an

a priori conclusion, the approach is to examine the effect on structural

response of changing these details within the capabilities of simple

tests. If the resulting effects are indeed small, then the main bulk

of experiments can be run using more standard tests with fewer parameters.

This results in a systematic method for determining structural vulner-

ability and avoids the excessive expense of attempting "exact" simulation,

which can never be attained.

Peak pressure and impulse are chosen as the two parameters to

characterize the pulse because these are the significant parameters at

each extreme of pulse duration; for very short durations response depends

only on impulse and for very long du. 'tions response depends only on peak

pressure. For intermediate values the response depends on both pressure

and impulse. Critical curves for a given extent of damuge often have

a hyperbolic shape in the pressure-impulse plane; for example, Fig. 2

(taken from Reference 1) shows curves for simple cylindr:Ical shells of

aluminum subjected to asymmetric loads. In this plane, lines of constant

characteristic time to are rays through the origin or, in the log-log

plot of Fig. 2, parallel lines at unit slope. To experimentally deter-

mine critical damage curves, methods must be available to provide pulses

throughout the entire region of interest in the pressure-impulse plane

for both asynmetric and symmetric loads.

5
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three curves at approximately 450 on the right are for side exposure to

blast waves from explosively driven shock tubes
1 ,5 , 10, 30, and 100

feet long. The parameter varied on these curves is the weight of ex-

plosive in the shock tube.

The object of the present investigation is to provide better load-

ing methods in the intermediate region between rontact loads and shock

tube loads. Characteristic times in this region range over 0.01 < to <

1 msec, a factor of 100. Since the characteristic time for a given

pressure varies in direct proportion to the charge radius and hence as the

cube root of spherical charge weight, spherical charges ranging in
weight by a ratio of more than 106 would be required to cover this region.

For example, at surface pressures near 2000 psi, from Fig. 2 a one-pound

sphere gives t = 0.03 msec. To obtain t = 1 msec would require a
0 0

charge weighing more than (1/0.0t)3 = 37,000 pounds, much too large for

economical use. At the other extreme, to obtain a pressure pulse at

1000 psi and the lower limit of interest, t = 0.01 msec, would require

a charge of 0.01 pound, much too small for structural testing. Further-

more, the rapid variation of peak pressure with standoff from a spherical
charge makes accurate adjustment of pressure difficult.

All of these shortcomings--excessively large charges and charges so

small that they do not provide coverage of the model, and extreme accuracy

requirements on standoff distance-can be overcome by using sheet charges.

In their simplest form these con ai3t of a flat sheet of explosive suspended

in air as for spherical charges. Unlike the sphere, however, at distances

from the sheet small compared to its lateral dimensions the blast wave

expands in only one dimension rather than in three. -hus for a fixed aea,

charge weight varies with the first power of the characteristic time rather

This simple geometric scaling applies to the pressure pulse incident

upon the model. For very large charges the impulse experienced on the
model would be smaller than given by thiF rule because of flow around
the model, thus requiring a. still larger range of charge weights.

IThe term sheet charge is used to designate any charge in the form of a
two-dimensional surface, whether- it is flat, curved, or in the form of

a complete cylinder. It may or may not be made of sheet explosi;e, a
name reserved here for plasticized PETH 1r.-plo3ve, made by Du Pont under
the registered trade names Detashcet C ar.d Detasheet D.

7



than the third, thereby reducing the required weight ratio from 106 to

10 2 . Blast loads of interest can be obtained with average explosive

sheet thicknesses ranging fror a few mils to something less than an

inch. To maintain the lateral dimensions of the charge large compared

to the standoff requires excessively large charge areas for distances

greater than a few feet. At these larger distances the charge can be

placed in a shock tube to maintain one-dimensional flow. At very small

distances the charge must be curved partly around the rodel to obtain

an appropriate pressure distribution and loading simultaneity; in the

limit it becomes a contact charge. Thus sheet charges continuously span

the load region of interest and at each extreme merge continuously with

contact charge and shock tube techniques.

A pressure-impulse diagram similar to Fig. 2 can also be drawn for

symmetric loads. In this case the sheet charges (both contact and

standoff) take the form of cylinders completely surrounding the model,

and in the shock tube the model is pointed nose-on down the tube (with

a suitable nose-tip, if not already part of the model). For either sym-

metric or asymetric loads on models about one foot in diameter, the char-

acteristic times which (somewhat arbitrarily) divide contact charges, sheet j
blast charges, and shock tube techniques are 20 lsec and 1 millisecond. A

schematic diagram of the corresponding load regions is shown ij Fig. 3.

Contact techniques are limited on the left by minimum practical sheet

or gaseous explosive thicknetses, and shock tube techniques are limited

on the right by the economics of making very long shock tubes.

I!
I
I

I
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SECTION II

SUWMdRY

1. Theory

Using the self-similar theory of intense explosions, It is shown

in Section III that blast waves from flat sheet charges have free-field

pressure-time histories very similar to those from spherical charges.

Thus, at these high overpressures, sheet charges give a good simulation

of spherical blast waves. The theory is also used to make a quantita-

tive comparison between the explosive required in the two geometries.

At lower pressures, further from the explosion, the self-similar

theory underestimates the pressure beceuse the energy of the ambient gas

enveloped by the blast wave is neglected. Using an approximation sug-

gested by Korobeinikov, it is shown that the deeay of peak pressure with

distance from the charge, taking into account the initial pressure p1

of the ambient gas, can be expressed by very siple formulas for all

three geometries. Peak incident shock overpressure is given by

p 2  2 + + A2)1/2

P1  Y +  1

where y is the specific heat ratio of the ambient (ideal) gas and A

1 is given by the following formulas in each geometry:

Plane Waves A-2  97YR all R

£ ~~-2 la 2 R%
Cylindrical Waves A 1 1 6 Y  2 "" (2

-2 C-yR3  R a 2 "

2 5- yR 3/2 R(22
rI WeA-L\ 2 /

L _ _|

50,0.fR2 R 2

| -.

-' - -

=l 2 L  10

A. .+7L ,



In each case R is a dimensionless radius defined in terms of the actual

radius (standoff) x by

R r x(3 ° )I/

r r= / (3)

where v = 1, 2, or 3 in plane, cylindrical, or spherical geometry, re-

spectivvly, and E is the energy deposited in the bl 3t wave by the

explctive, given approximately by the yield energy of the explosive per

;-nit area, per unit length, or total energy, for v = 1, 2, or 3. The

parameter a in Eq. (2) is a function of y in each geometry; for air,

y = 1.4 and a = 1.075, L.CO, and 0.85 for v = 1, 2, 3. Taking

E = 1430 cal/gm for 50/50 pentolite, * Eq. (2) gives pressures within0

5 percent of compiled experimental data for spherical charges to pressures

as low as (p2/Pl) - 1 = 0.03. Good agreement is also fou..d for the

plane blast waves measured here, but measvced pressures extend only as

low as (p2/pl) -1 t 2.

2. Simulation of Asymmetric Loads

The desired range of quasi-impulsive loads was obtained with

(1) flat sheet charges placed on the ground, with the model suspended

above them, and (2) flat sheet charges placed in a 2-foot-diameter shock

tube with the model at the open end of the tube. Standoff distances

were varied from a few inches to 20 feet, and the sheet charge thick-

ness was varied from a few mils to a few tenths of an inch. Pressure-

impulse curves for these techniques are given in Fig. 4. The three

uppermost curves are for charges on the ground at standoffs of 0.5, 1,

and 2 feet, and the four Lower curves are for charges in the shock tube

at standoffs of 2.5, 5, 10, and 20 feet. The parameter varied along

each curve is the density (or equivalent thickness) of the charge in

pounds per square foot and in mils.

A mixture of PETN and TNT.
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FIG. 4 PRESSURE-IMPULSE CURVES FOR ASYMMETRIC LOADING TECHINIQUES
(6-inclt-dion.eter model)

Loads were also determined for larger standoffs from charges on the

ground, but the same loads can be obtained with less explosive by using the

shock tube. Similarly, standoff L somewhat smaller than 2.5 feet can be

used in the shock tube, but greater complications axise in initiatingI
the charge at many points to obtain a nearly plane blast wave. (This

difficulty is avoided for charges on~ the ground by using a running

detonation, which is acceptable becioie there are no tube walls from

which the-resulting oblique shock can reflect to give undesirable second-

ary shocks on the model.) The crossover standoff of about 2 feet between

the two techniques is satisfactorily within these limitations for the

12



,-inch-diameter model and 2-foot-diameter shock tube used here, Impulses

at the same stv'ndoff are about 40 percent higher in the shock tube be-

cause there is no loss from lateral expansion.

Comparison of the measured peak pressures with the self-similar

theory shows that ove e the entire range of loads the peak pressure is

the reflected pressure that would be experienced on a flat, rigid wall.

Pulse shape is approximately exponential as in Fig. 1. At the larger

standoffs, however, an exponential fit to the main body of the pulse

gives a peak pressure of only about 70 percent of the measured initial

pressure, possibly because the duration of diffraction flow is short

compared to the tota pulse duration. The distribution of peak pressure

around the front half of the model, facing the blast, was found to be

given within -lO percent by

p - P Pi Cos2 + Pi -90° < ( < 9 0 °  (4)

where Pr and Pt are the reflected and incident overpressures. Few

measurements were made on the back half of the model because the pres-

sures were very low compared to the front face pressure and mechanical

gage vibrations made accurate measurement difficult. These pressures

were always less than Pi and , since r > > Pi for loads of interest,

were considered to be of little importance for structural response.

3. Simulation of Symmetric Loads

Figure 5 gives pressure-impulse curves for symmetric loads obtained

using (1) unconfined cylindrical charges and (2) flat charges in the

shock tube with the model facing axially down the tube and backed by a

plate so that the model experiences the reflected pressure propagating

from the back plate. The data are less extensive than for asymmetric

loads because these techniques were previously untried and the experi-

menti were mainly explo"atory. The upper two curves show that cylindri-

cal charges 2 feet and 4 feet in diameter give loads having characteris-

tic times near to = 50 and 100 .sec. The lowermost curve shows that

the shock t-ube gives loads having t 0 1500 I'sec when the charge is

placed at the base of the tube (standoff x = 18.5 feet).

13
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~by placing the charge at x = 5 feet in the shock tube, but still smaller
stan~doff s could give objectionable shock decay along the length of the

model and durations of the incident pressure pulse comparable to that

'. : ' of the reflected pulse from the model back plate1  This lower limit of

. pulses obtainable in the capped shock tube technique is indicated by the

• .-- i ashed curve in Fig. 5. Pulse times from to = 100 to 500 I sec would

.. require cylindrical charge diameters larger than 4 feet, which may give

I difficulty in maintaining the stability of the imploding shock. Even

at the 4-foot-diameter, sigrilficant variations in peak pressure around

140

°I _

100 1 1_ 1- 1. .



the model were observed in the highest charge density shot. A continuing

experimental and theoretical study would be required to give a range of

symmetric loads comparable to the range of asymmetric loads demonstrated

in Fig. 4.

4. Variations in Load Distribution and Pulse Shape

A series of experiments were also performed to explore possible

methods for varying load distribution and pulse shape. To vary load

j distribution, the technique of varying charge density around the model,

which had already been demonstrated to provide variations in impulse

distribution for contact charges, was applied to sheet charges at stand-

offs of a few feet. It was found that charge density variations in a

flat charge had little effect on pressure distribution. Density varia-

tions in a curved charge, however, had a strong effect on pressure dis-

tribution. In fact, changes in curvature (from flat to semi-cylindrical

around the model) at a constant charge density also gave significant

changes in pressure distribution. Using both flat and curved charges

pressure distributions from cos 2e to uniform over the loaded side were

obtained.

Changes in pulse shape were studied for shock tube loads using

volume charges of various lengths and density distributions. Flat

charges (as used for Fig. 4) were found to give the most satisfactory

simulation of expected high altitude pressure pulses. Charges having a

stepwise variable density, most dense near the model, gave pulse shapes

approaching that of the flat charge but had undesirable pressure jumps,

probably caused by the discontinuities in charge density. Such charges

should be used only if the stresses in the shock tube from the localized,

more intense flat-charge explosions would cause tube damage.

15
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Section III

SIMUIATION OF ASYJMTRIC LOADS

Asymmetric loads are more probable and tend to be more damaging

than symmetric loads and are therefore trvated first and more extensively.

The theoretical feasibility of using sheet charges is demonstrated and

then extensiv measurements .of pressure, impulse, and pressure distribu-

tion around cylindrical models are given for free exp nsion from flat

charges and for flat charges suspended in a twc-foot-dianeter shock

tube.

1. Theoretical Pressure Pulses

Before describing the experimental results it is helpful to make a

theoretical estimate of sheet charges .required for the desired pressure

pulses and compare them with the corresponding spherical charges. This

can be done using the theory of blast waves from intense explosions

given in Section VI. Near the explosion the self-similar theory gives

the following expressions for peak incident pressur-e pi and time scale

8R V

l (IV (2 + v) (y +)

'~ )1/2 v4-2
tfV sv sR 2 (6)

where p1 and p, are the pressure and density of the undisturbed

ambient gats ahead of the shock, y is the specific heat ratio, V is

an index having values v = 1, 2, and 3 in plane, cylindrical, and

spherical blast waves, and is the corresponding constant. The

distance from the center of the charge to the shock front is denoted

here by x and in Eqs. (5) and (6) appears in the dimensionless form

V
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R , normalized to a characteristic length in each geometry according to

x E
- = (7)

V S V
V

In each geometry E is the effective release energy of the charge,V

having units of energy per unit area in plane geometry, energy per unit

length in cylindrical geometry, and total energy of the charge in spheri-

cal geometry.

a. Comparison of Spherical and Plane Blast Waves

We fir'st compare the incident pressure pulse shapes from plane

and spherical charges. These are shown in Fig. 6, taken from Fig. 52a

with the time scale for the plane wave compressed by a factor of 2 to

give close agreement at early times. With this modification,the two

pulses are nearly identical until p/p falls below 0.2. At later

times the pressure decays more slowly for the plane wave, but the dif-

ference is not great and effects not treated in the self-similar theory

would tend to make the pulses more nearly the same. Similar comparisons

of the density, particle velocity, and dynamic pressure behind the shock

can also be made; these again show some differences between the two

waves but the similarity is close enough that plane blast waves give a

good simulation of spherical blast waves.

Knowing that the pulse shapes are similar, we can now compare

the charge weights and standoff distances x for plane and sphericalI V
blast waves that give the same peak pressure and duration. Equating

peak pressures from Eq. (5) gives

25% 3 3
R 1 9a 332.16 R (8)

in which a1 = 1.075 and a3= 0.85 have been taken for y = 1.4 as

The notation here is slightly changed from that in Section VI because
wayes of different geometries are being compared; a subscript v is
used heTe and r 0I replaced by s to avoid confusion.

0 V

17
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FIG. 6 INCIDENT PREZSSURE PROFILES FROM SF.LF-SIMILAR THEORYj

discussed in Section V1. From Fig. 6 the durations are made comparable

by taking 2t~ =t f3  Usin~g this in Eq. (6) results in

1/2 3/2 1/2 5/2(9
2CLI a SR3 9i 1 p 03 33

Combining this with Eq. (8) yieldsJ

1 27 8 R -2 0.137.6210
(r 215; 3 3 2 3-

3X

F~en the def~nition of s in Eq. (7), s., A~a proportional1 to the
thickness of the sheet charge (weight per unit area) and s83 is pro-

portional to the radius of the spherical chairge (s83 is proportional to

18 F
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the total charge weight). In these terns Eq. (10) becomes

= 0. 137 W or W 81xw (11)
2 3' 3 1
x3

where w1  is v'eight per unit area of the sheet charge and W is total

weight ot the spherical charge. Combining Eqs. (8) and (10) with the

definition of R from Eq. (7) gives

x= (12)

Equations (11) and (12) are the desired relations between

charge sizes and model-to-charge distances and are applicable for

pressure pulses in the range of approximate validity of the self-similar
Sapproxization. This range is rather narrow (5 Z p i/Pl 1 1 Z 50), but

the correspondinL range in reflected pressure with p1 - 14.7 psi is
i 300 Z pr Z 5000 psi, which happens to be the range in which many struc-

tural models of interest are damaged. Also, since Eqs. (11) and (12)i are comparative, their range of validity is probably somewhat larger

'than the range of absolute accuracy of the self-similar theory. From

Eq. (12) 7e see directly that the space required for a sheet charge

experiment is inherently less than that required for a spherical charge,

the standoff distance being only 30 percent of that for a spherical
charge. From Eq. (11) we see, as expected, that at large distances

(long aurations) a great savings in weight can be achieved by using one-

dimensional blast waves.

b. Estimates of Sheet Thickness and Standoffs

As discussed in Section 1, the model pulse characteristic times

for which sheet charges appear attractive are in the range 10- 5 < t <

10- sec. Using the self-similar theory, the range of sheet charge

thicknesses and standoff distances required to give these characteristic

times for the incident pressure pulses can be estimated. The theory will

also prove valuable later in interpreting peak pressure measurements in

the experiments.

19



As the experiments will show, the peak pressure experienced on

the model is the reflected pressure p corresponding to the Incident

*pressure p. Figure 7 gives a plot (taken from Section VI) of p~ and

versus R for flat charges, using the self-:.imilar theory for small
R and an asymptotic theory for large R. To obtain a model overpressure

ratio of 200 (giving a preassure of about 3000 psi at sea level) Fig. 7

requires that R 0.012. The explosive thic.kness to produce this3.
pressure at various incident-pressure durations cri be calculated from

Eq. (6). We first use definition (7) to obtain

s, h h (13)

100I

REFLECTED (JYEPPRESS. ,,

0.0 O 0

FIG. 7 INCIDEN4T AND REFLECTED OVERPRESSURES
FROM SHEET BLAST WAVES
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where h is the ex'losive thickness and Y is its effective release

energy per unit volume. PETN hat an energy release of about 1600 cal/gs
3 111

which, at a 1.4 gm/cm density, gives Y w 10 ergs/cm. Substituting

Eq. (13) into Eq. %5) gives for the explosive thickness

h = - t (14)

I Comparison of Figs. 1 and 6 shcTrs that to a reasonable approximation

tfl for vlane blast waves can be used as the equivalent exponential

characteristic -ime t . Thus we can substitute 10 <t 10

directly into Eq. (14) wii:h P 1 = 106 dyne/cm2  p = 1.293 x - 3

gm/cm3 , Y = 1011 ergs/cm3 , and R, 0.012 to obtain the range for

h at this pressure:

0.0020 < h < 0.20 cm (15)

To obtain the corresponding standoff distances, we use Eqs. (7) and (13)

to get

1 hl

which, with Eq. (15), yields

2.4 < x < 240 ca (16)

Since the characteristic times of the diffracted pressures

measured on cylindrical models axre scmewhat less than the incident

times (about half, and decreasing with increasing standoff, as we shall

see) Eqs. (15) and (16) give lower bounds on the required values.

Doubling bese values we obtain standoff distances from about 2 inches

to 20 feet and explosive thiuknesses from about 2 mils to 0.2 inch.

These ranges can be reasonably obtained experimentally. The lower lixi~t

of 2 mils for explosive thickness cannot be obtained in a continuous

sheet, but thin extrded rods of explosive can be used to give an average

21



thickness of 2 mils at a spacing small compared to the 2-inch standoff.

At pressares appreciably below the 3000 psi example here, however,

gaseous explosives would have to be used to maintain durations as short

1 2,3
as 10 fLsec. The upper limit of x = 20 ft requires a shock tube to

maintair one-dimensional flow, as already observed in Section I.

By comparison, the spherical charges corresponding to the

rauge of flat charges in.Eq. (15) and (16) become impractical at each

extreme. Using Eqs. (11) and (12) and an explosive density of 
1.4 gm/cm

3

the range of spherical charge weights and standoffs are

* 6
1.30< W <l1.3 xl gm

- 3
(17)

8<x 3 < 800 cm

2. Experimental Arrangements

a. Model Support and Charge Layout

The general arrangement typical of mst of the field experi-

ment3 Is shown in Fig. 8. The icharges are layed on a one-Inch-thick

* steel plate resting on a bed of sand. Considering the plate as a r.gid

wall, this doubles the effective yield of the eislosive as compared to

expansion from a charge freely suspended in air. The model is held in

a stand large enough to be used over charges 12 feet square. Standoff

is adJusted by raising or lowering the entire cross frame. Coarse ad-

justment is made by sliding the frame over the four pipe legs; fine

adjustment is made by telescoping screw jacks at the base of each leg.

The charges in Fig. 8 are all made of Primacord, which consists

of PMTN parked in a polyethylene sheath and textile braid. Primacord

was used for most of the shots because it is relatively inexpensive

(about $3 per pound of core loading) and is readily available from local

suppliers in sizes from 25 to 400 grains of PET" per foot. Detasheet

-explosive is conceptually more desirable thin Primacord because it comes

I" In sheet form and can be rolled to any desired thickness greater than

15 mils, the limit for relishle detonation. However. Detaseet is

Primacord is a registered trademark of the Ensign Bickford Company.
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(0) WOVEN PRIMACORD

()PARALLEL STRANDS

FIG.8 EXPERIMENTAL ARRANGEMENT FOR FLAT CHARGE
FIELD EXPERIMENTS

23



()I-FOOT STANDOFF

Md 4-FOOT STANDOFF

FIG. 8 (Concluded)
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is relatively expensive (about $10 per pound for Detasheet C and $25 per

pound for Detasheet D) and must be ordered several months in advance.

Detasheet was therefore used only for equivalent sheet thicknesses and

standoffs too small to be obtained with Primacord. The very lightest

charges were made using Detasheet D extruded into 0.028-inch-diameter

rods weighing about 4 grains/ft.

The majority of the charges were made of parallel strands of

Primacord as in Fig. 8b with a single cross strand (at the left in the

figure) for detonation. Early in the program a few charges were made

by weaving Primacord as in Fig. 8a to increase detonation reliability.

These are time consuming to make and the single strand method of detona-

tion proved just as reliable so woven charges were discontinued. in the

parallel strand configuration, the charge weight per unit area is

w (psf) 12 in./ft g(grains/ft) (18)
7000 grains/lb S(in.)

where g is the Primacord size and S is the strand spacing. For a

given charge density w, the Primacord size and strand spacing can

generally be chosen small enoigh that the charge appears as a continuous

sheet at the model standoff. No detailnd investigation of the maximum

allowable strand spacing was made. Instead, a spacing rule was adopted

that allowed reasonable shot assembly and then a few shots were fired

at coarser spacing for comparison.

The spacing rule is

= 16
S

where x is the standoff distance between the charge and the closest

point on the model. This rule insures that the strength of the cylin-

drical shocks from individual strands at radius S/2 where they first

intersect (see Fig. 9), is large compared to the overall "plane" shock

arriving at standoff x. From Eq. (43) for v = 2, the cylindrical shock

pressure at S/2 within the self-similar approximation is

8 2 8 -G
X (4)2 ( + 1) (S/2)2  y + 1 4S
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FIG. 9 SHOCK RADII FROM INDIVIDUAL
STRANDS AND FROM CHARGE
AS A CONTINUOUS SHEET

where G is the energy release per unit length of Primacord explosive.

Similarly, the plane shock pressure at x is

a E 8 G
___________ 1 ., ~(20)PX =  (3) 2(y l X(2T)

a13 Y+ 1) x y aS

in which we have used E = G/S. The pressure ratio is

Ps 
= 

Y 
9a 

x

Ls " y = 2.42- (21)

Px 4a S

For x/S =16,'p /px = 39.

Another interpretation of fixing x/S at a large value is that

it makes the pressure p2  arriving at x from each strand, if it were

to act individually, small compared to the effective overall plane shock.

Within the telf-similar appronimation, P2  is found by replacing S/2

in Eq. (19) by x:

S * G
P2 y+1 2

16%x
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Then

P2  - 9c1S
Px 16a2x = 0.61 x (22)1 7 For x/S =6, p2Px =0.038, This result is changed only slightly if

the more accurate expressions in Eq. (60), taking into accouat the
ambient pressure PI, are used to calculate P2and Px" Many txperi-

ments were also run wJth x/S = 8, and smoothly decaying model pressure

pulses were recorded. It was concluded that x/S = 16 is a conserva-
tive spacing rule and that spacings at least as coarse as x/S = 8 can
also be used where the minimum available explosive size does not allow

x/S = 16.

Figure 10 gives a loading chart for x/S = 16 and currentl7

available Primacord sizes. The points indicate configurations for

which experiments were run in the current program. Since 50 and 25

grain/ft sizes have only recsntly become available, load points for

these sizes were run using 40 grain/ft Primacord at x/S = 20 and

x/S = 10. Charge densities used ranged in multiples of 2 from 0.0143 psf

to 0.456 psf. Corresponding Detasheet thicknesses for the same amount

of PETN can be calculated using a PETN density of 1.12 gm/cm , which is

80 percent of the total 1.4 gm/cm3 Detasheet density. The resulting

Detasheet thicknesses range from 2.5 to 78 mils. It is probable that

the coarser strand spacing rule x/S = 8 could also be used, extending

the lower limit of available charge densities by shifting the curves

down by a factor of 2.

b. Charge Size

In the foregoing theory, it has been assumed that the flat

charge is infinite in extent. To estimate the effect of finite charge

size on peak pressure and impulse, a series of experiments were run using

rectangular charges as in FLg. 8 with sides of lengths b in the ratio

b/x = 1, 2, and 3 relative to the standoff. Three series were run, one

with x = 2 feet and w = 0.114 psf, one with x = 2 feet and w = 0.456

psf, and one with x = 4 feet and w = 0.114 psf. The averages of the
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FIG. 10 PRIMACORD LOADING CHfART FOR z/S =16 (points
ore shots firedJ in pres',t program)

data from all thtee Bets of experiments are plotted in Fig. 11, with

pressure and impulse (at B = 0° , facing the blast) normalized to their

values for b/x = 2. The data show that the increase in pressure and

impulse in gotig from b/x = 2 to b/x = 3 is sm~ll, and suggest that
even at b/x = 2 the pressure is within about 10 percent of its infinite

i t  sheet value and impulse is within about 30 percent. Both decrease

rapidly as b/x falls below 2. In the remainder of the experiments1i 28
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FIG. 11 PRESSURE AND IMPULSE VERSUS
CHARGE SIZE/STANDOFF

b/x was therefore fixed at 2. Comparison of the absolute magnitudes of

the pressures and impulses with the infinite sheet theory is deferred un-

til later.

c. Shock Path and Model Orientation

In addition to the charges being of finite size, they also

differed from the simple one-dimensional theory becaase they were not

jdetonated simultaneously over their entire area. Instead, a single

detonator was placed in one corner (see Fig. 8) and detonation took

. place along a d 4gonal line sweeping over the charge.t At some distance

from the charge the shock angle is sufficiently shallow that the one-

dimensional theory is adequate. Figure 12 shows the apparent shock paths,

At x = 1 with large charge densities, a diagonally detonating charge
gave pressures lower than predicted and also a humped pressure profile
because of the diamond shape of the charge. Data from these charges
were therefore deleted in favor of the sheet explosive charges to be
described next.

t Detonation proceeds at 7 mmALsuc along each Primacord strand, parallel
to the side af the charge. Since each successive strand is initiated
at a slightly later time by the edge strand running at right angles,
thb effective detonation front moves parallel to a diagonal at velocity
7 cos 45a =5 /Ileec.
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FIG. 12 SHOCK TRANSIT TIMES AND APPARENT SHOCK PATHS FOR DIAGONALLY
DETONATING PRIMACORD CHARGES

obtained from accumulated data on shock transit time to the model from

the time the detonation passes the center of the charge. These are not

strictly the shock paths beceuse in each shot the measurement was made

after the entire charge had detonated--we do not have a steady detonation,

so time and distance cannot be interchanged. However, since Fig. 11 indi-

cates that the peak pressure is near the infinite sheet pressure, the

curves in Fig. 12 give a good indication of the shock paths. Shock angles

at the model range from about 25 degrees at small distances from heavy

charges to about 10 degrees at large distances from light charges.

Two orientations of the model relative to the shock path were

studied, transverse and longitudinal, as sketched in Fig. 13. Each

method has advantages. In the transverse placement the shock arrives

simultaneously along the length of the model at normal incidence to an

Sangle eo: giving the maximum possible peak pressure and minimizing end
F jeffects. In the longitudinal orientation the shock arrives at angle e

relative to the model axis, giving lower peak prcssure and aggravating

?0
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FIG. 13 SH1OCK IMPINGEMENT FOR TRANSVERSE AND LONGITUDINAL MODEL
ORIENTATIONS (both drr.-. for x= 2 feet and w= .14PSf)

possible longitudinal variation of pressure because of end effects.

These disadvantages were found to be minor and the advantage of knowingj that the pressure distribution is symmetric about 9 = 0, ithout prior

knowledge of 0 , was considered to be more important in the present

program. The majority of the experiments woze therefore run in the

longitudinal orientation to avoid having to adjust the presfsure gage

orientation~ to 8 ~ (the slopes 00of the curvos in Fig. 12 were

I not known at the outset of the prograik). Longitudinal detonation also
gives a continuous transttion to the contact techniques, which also use

a detonation sweeping along the model axis. In studying methods for

modifying pressure distribution, longritudinal detonation is almost im-

perative to insure syimetric pressure distributions.

d. Sheet Explosive Charges

K Charges made from Petasheet were used only at small standoffs,

at which the range of equivalent sheet thickne~sses available from Prima-

cord is limited (see Fig. 10). To reduce the shock angle as much as

p,ssible at these stando-!fs, Detasheet charges were oriented writh their

sides parallel to the model axis as in Fig. 14 so that the detonation
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FIG. 14 DETASHEET CHARGE

wave swept along the charge at the full det6nation velocity of 7.3 mmV

'.%sec. Also, at small standoffs,the size of the aodel, rather than the

magnitude of the standoff, dominates charge size and b/x must be made

larger than 2. For 0.5 foot and 1-foot standoffs, the charges were

made with b/ix = 3.

Figure 15 is the loading chart used for sheet explosive. For

sheet thicknesses greater than 30 mils, solid sheets of Detasheet C can

be used. At smaller thicknesses Detasheet D must be used because Deta-

sheet C does not detonate well below 30 mils. For the same reason,

below 15 ails Detasheet D was cut into strips and spaced apart with a

spacing rule of x/S = 12 where possible, and with x/S = 6 for smaller

average thicknesses. For still lower loads, 38-mil-diameter extruded

rods were used; the lowest loads were obtained using 28-il-diameter rods,

the smallest cross section that will detonate. At a standoff of 3 inches

r I the smallest obtainable average thickness is about one nl.

Pressure and impulse data from the 3-iach standoff shots are not
reported because they were not extensive enough to allow comprehensive
treatment.
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e. Other Charge Configurations

To investigate methods for modifying the pressure distributions

froQ those obtained with the flat charges described above, curved charges

and charges of nonutiform density were also used. These are described

in Sections IV and V.

1 3. Surface Loads from Flat Primacord Chrges

In this section we will examine the pulse shape, pressure distri-

bution, peak pressures, and impulses from Primacord charges at x = 1,

2, and 4 feet. In the majority of the experiments the model cylinder

was steel, 6 inches in diameter and 15 inches long with a 1-inch wall

thickness. Pressure was measured with Kistler model 601H and 603H

gages. To neasure circumferential pressure distributions, gages were

mounted at the center of the model at 22.5 degree intervals over one-

half of the circumference and at 45 degree intervals over the other

half. Possible axial variations in pressure were measured with Mges

mounted 3 inches in from each end, giving 3 gages in all at e = 0

(facing the blast). These are denoted by 01, 0aid, and 02, in the

order in which the blast sweepF over the model as seen in Fig. 13b.

In Section 111.6 data are given from 3.5- and 12-inch-diameter mdels

Sinst-uiented in a si ilar manner. Further details of the nodels and

I p.rerre instrtmentation are given in Reference 1.

a. Pulse Shape

'I As in the pressure pO.ses mea=-red from explosive spheres,

I aurface pressure pulses trom sheet charges are very nearly exponential

in shape. Example pulses are given in Fig. 16 for x = 4 feet with w

ranging from 0.0275 to 0.228 psf, and in Fig. 17 far x 2 feet and

I foot at the extremes in w. In Fig. 18 a pressare record typical of

those in Figs. 16 aud 17 is plotted oa semi-log paper to show the close-

ness to an exponential decay. The measured pressure in this record does

not differ from an exponential until it has decayed to about 1/6 of its

Initial value.
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(a) w 0.0275 psf, SHO7 FP-69 (b) w :0.055 psf, SHOT FP-68
SWEEP RATE:, 2OOitsec/cr SWEEP RATE: I0O/Lsec/cm

00tops

c) w= 0.114 psf, SHOT FP-70 (d) w: O.'228psf, SHOT FP-71
SWEEP RATE. 1O0zsec/cm SWEEP RATE:UPPER IOOpsec/cmn

LOWER 200jLsec/cmn

FIG. 16 PRESSURE PULSES AT 0 = 
0rid FROM FLAT PRIMACORD CHARGES

AT x = 4 FEET (upper traces pressoire, filtered at 120 kc; lower traces
integrals, unfiltered)

Beczaur'e of this exponential behavior, semi-log pressure plots

were used to extrapolate bac.k to the "true" peak pressure P (3000 psi.

in the exam~ple) from the highest pressure the gage w:as able to record

within the frequency band limitation of the gage and signal filter.

Direct and extrapolated pressures were generally within 15 percent of

;ru~~ otber, Impulse was -peasured by electronically integrating the

pressure signal. These stre the lower traces in Figs. 16 and 17.
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1 0tops

(i) w0.055 psf, SHOT FP-61 (b w~ 0.228 psf, SHOT FP-119
PC!_:'SURC: UNFILTERED

I-FOOT STANDOFF (SWEEP RATE 5Ojusec/cm)

(c) w: 0.0275 psi, SHOT FP -65 (d! w 0.456 psf, SHOT FP-74

2-FO,,T STANDOFF (SWEEP RATE 10Ogsec/cm)

FIG. 17 PRESSURE PULSES tT q = Omid FROM FLAT PRIMACORD CHARGES
AT x = 1 FOOT AND 2 FEET

b. Pressure Distribution

Figure 19 gives pressure pulses measured at various angles

around the front face of tne model for x = 4 feet and w = 0.114 psf.

The pulse shape is about the same at each gage, and peak pressure falls

,2o

off approximately as cos 28. The reeordr, from gages near L 90P have

a different appedrance, largely because the pressure is much lower and

the signal-'to-noise ratio is therefore much lower. Pressures on the back

sideof he mdel(not shown) do not rise suddenly with the shock, but

tepressures are so low that this difference in pulse shape in unimpor-

taut.
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5000

EXTRAPOLATED PEAK, P=3OOO psi AT t=O

RECORD PEAK, 2600 psl

~p. =p07t/to

CL 000 I
-

to 69sec

500 -*
aI

SHOT FP-71, 1 Oald

w--0.228 psf AT 4ft

100 I I I I I
0 50 100 150 200 250 300

TIME, t- ,/sec O-6$5-100

FIG. 18 SEMI-LOG PLOT OF PRESSURE PULSE

A plot of peak pressure at each gage location versus charge

density is given in Fig. 20 for x = 4 feet. Data from the smooth curve

fits in Fig. 20 are plotted in Fig. 21 as a function of angle, and V:e

raw data points are repeated. The dashed curve in Fig. 21 is from the

formuls

p= (P -Pi ) cose2 + P1 -900 < 9 < Ioo
(23)

P = t 900 < 0 < 2700

whtre P is th.e observed peak overpressure at 9 = 0°  and P isr i
the i"tident overpressure to give P as a reflected overpressurer

(using, for example, Fig. 7). As the example curve shows, pressures

from this empirical fcrmula coincide with the experimental curves out
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~I

(a) &:0, (bI) 8 O. LOWER TRACE Inisec/cm
BY MISTAKE)

lop
-208 0 ps

(d) 22.50 (e) 9 450 (UPPER) AND 3150 (LOWER)

(f) 9 67.50 (q) 9 :4O (UPPER) AND 2700 (LOWER)

FIG. 19 PRESSURE PULSES ALONG AND AROUND MODEL (Shot FP-70, x = 4 feet,
w =0. 114 p sf, ri gnal s f ilItered at1 120 k c and recorded a t 103 itcsed/cm excep t a s noted)
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3000 I

o *

I icco

II
040W

4A

Lu

1 100

30 .-

0.0 0.03 0.1 0.3
CHARGE DENSITY - psf

FIG. 20 FRONT FACE PEAK PRESSURES VERSUS
CHARGE DENSITY FOR x :. 4 FEET

to about 8=80. Measured pressures further around the model are

lower than given by Eq. (23), but in either case are too low to have

a significant effect on structural response. Pressure distributions

measured for x = 1 foot and x = 2 feet are also represented by

Eq. (23) within the experimental error of about *10 percent.

I3
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5000 1 1

w-O.2281sf

2000

O.114psfIo0
-. O.057pdf

1000

50

U O .028pf 

20 1 03 05 07 09
50 I

DASNED CURVE EXAMPLE:

T. P-I--Q15)McS28+ 0.5

20 1 I 1 1 l, I l -1

0 20 30 40 50 60 70 80 90

FIG. 21 MEASURED PRESSURE DISTRIBUTIONS OYER
FRONT FACE OF MODEL FOR x = 4 FEETtI

C. Peak Pressure and Impulse

Plots of peak pressures and impulses at " = 0 are given in

Fig. 22. Although peak pressure depends directly on both charge density

and standoff, impulse over this small range of standoffs appears to

depend almost entirely on charge density. One would expect the impulse

for a fixed charge density to be smailer for a larger standoff, but the

measuremebts show that any difference is hidden in the small scatter

in the data of Fig. 22; therefore a single iopulse curve is drawn for

* all three standoffs.
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- SOLID POINTS ARE-

500 EXPONENTIAL EXTRAPOLATIONS-

*0

000 ARSUES~Q0

500 -50,000

100 10,000

0-It
A-2tt5000

2000

0.1 0.02 0.05 0.10 0.20 0.50 IJD
CHREDENSITY -psf O53-O

FIG. 22 PEAK PRESSURE AND IMPULSE VERSUS CHARGE DENSITY
(for running detonation of Primccord charges)
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The pressures in Fig. 22 can be compared with the theory of

plane expansion from an .itense explosion given iu Section VI. To make

this comparison the explosive yield of Primacord is assvaed to be

1570 calories/gm. This is at the lower extreme given for PETN (from
7-1570 to 2000 cal/gm) by Kinney and is chosen because the PETN here is

packed at a relatively low density and, furtherrore, the Primacord

plastic and braid sheath tend to reduce the effective yield by absorbingJmore chemical energy than they release. Aasuming this yield, the energy

release in ergs/cm 2 is*

4.19 x 10rfpf 454g ft2  4.rx0 7 511
ef LS lb (30.5 cm) 2Cal

} (24)

E1 2 3.21 x w00  (psf)2 Wef f

cm

where Wff is the effective charge density. For the charges here

eff = 2w because they are on the ground and expansion is confined to

one direction. From Eq. (7) the characteristic length is

3.21 x 10  w 2 4E Ieff cm24
= -= cm = 3.16x10 cm

s Il 1.013 x 106 dyues eff
2

cm

or, dividing by 30.5 cm/ft

s (ft) =1040 Weff (psi) (25)

Using s frox Eq. (25), the pressures in Fig. 22 are renlotted

against R = x/s in Fig. 23. Data from all three standoffs fall on a

It is unfortunate that cgs units could not be used throughout, but feet,

inches, and pounds were firmly entrenched in the shot mak'iup and hard-
ware.

Several shots were fired at x = 2 feet from charges freely suspended in
air to confirm that the effective charge weight is doubled for confined
charges.
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- .

1000 II! -

500 %.. TH OWf

SHOCK TUBE
("SIMULTANEOUS" DETONATION)

200 -FIELD SHOTS
(RUNNING 

DETONATION) 
\T

50-

20

Q001 0.002 0.005 0.01 0.02 0.05 0.1
R-x/s,

GA-5S55S-i0O

FIG. 23 COMPARISON OF THEORETICAL AND EXPERIMENTAL
PEAK PR ESSURES

single curve, demonstrating that the normalization to sI is appro-

priate. The curve is therefore sir-ply labeled "running detonation" to

emphasize that this is the most significant departure from a truly one-

dimensional wave. At the low pressure end of the data (overpressure

ratio about 20, or about 300 psi), the measrred pressures are only a

few percent smaller than the theoretical curve. Furthermore, the

theoretical and experimental curves ha..te the same slope. At higher

pressures (above about 1500 psi) the measured pressures begin to fall

aw~y from the theoretical curve untl at R = 0.003 the measured pressure

is less than half the theoretical prv.sure. This difference is caused

partly by the neglect of real as atnd explosive behavior in the seli-
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similar thoy n atybcueteshock angle caused by the running

detonation (see Fig. 13) Increases with decreasing R, thereby giving a

lcrger difference from the normelly reflected shock assumed in the theory.iii Pressures from shoc~k tube experizents (to be described later), in which
the shock was always normally incident upon the model, are in closer
agreement with the theory.

The data from Fig. 22 are replotted in the peak pressure-

I Impulse plane in Zng. 24. The curves for each standoff are roughly
jparallel to the constant time lines, giving t 0 ;t40 Lsec at x = 1 oot

to t szt160 Rsec at x = 4 teet. These curves are discussed more fully

at the end of Section 111.5.

I~0 20 050

10.2050
5000 10
50000.10 0.20

5mI

-a 2000-

a 06 0W 1
0.02 pf - a-

1 20

Wf

lowLE-ap

FIG 2 PESUR-iMULE URESFO RU~tG 0TN05O
OF FLATCHAR0E

O*M44
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4. Surface Loads from Flat Potasheet Charges

Pressure pulses were measured for sheet explosive charges at

x = 0.5 and 1.0 feet. Typical records are shown in Fig. 25 for x =

0.5 foot. As at the larger standoffs usihg Primacord, these pulses are

exponential in shape. Pressure distributions differ from those given

by Eq. (23) because the standoff is now so small that it is comparable

to the model diameter. However, the significant decrease in pressure

caused by the increase in shock travel distance with increasing 8 can

be taken into account by adjusting at each 0 the reflected pressure

Pr in Eq. (24), using the curves established for P versus x.

Pressures calculated by this procedure agree with meabured pressures

within the precision of measurement.

1=

(a) h=44mils

44000t s

(b) h=8.8mils

FIG. 25 PRESSURE PULSE- AT 0 = 0 FOR SHEET EXPLOSIVE CHARGES
AT x = 0.5 FEET (sweep -.ate 20 psec/rm)
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Peak pressures and impulses are plotted against average explosive

thickness in Fig. 26. Again, to the accuracy of the data, impulse

depends only on explosive thickness. To compare the peak pressures

Yith theory, s1 is calculnted using 1570 cal/gm of PETN content

(about 80 percent by weight) in the Detasheet. This is the same yield

used for Primacord and should give comparable results, because the

20-percnt nonexplosive binder ingredients in etasheet reduce the yield

in the same way as the sheath in the Primacord. The release energy per

-o00 10P

T I

I 5000 50000

W

2000 20.00
PRESSURES

t00m 7 IMPLJSE 10.00 W

n--

/ 1 5000

0 -- O.5Oft

I ;-I 0-I.OOf 2000

.0 2.0 5D 10 20 50 10-0'
SHEET THICKNESS, h -milt s-s).-,-.

FIG. 26 PEAK PRESSURE AND IMPULSE VERSUS AVERAGE THICKNESS
OF SfIEET EvPLOSIVE CHARGES
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unit area for an effective thickness her f  is then

EI eros\I= h ff Ir 0.8 p gf! II 1570 ca-l 1 9 x 07 erge1
ok2 ) JL cm jL 7L lOl cal

10 (m
= 7.37 x 10 heff (cm)

where p = 1.4 gm/cm3  is the overall density of the explosive and

0.8 p is the PETN content. The characteristic length is

10 1 ergs

1 7.37 x hf --2 4
s (cm) =- = = 7.26 x 10 h (cm)1P 1.013 x 106 dynesff

2
cm

For s1 in inches and her f  in mils

s1 (in.) = 72.6 he f (mils) (26)

Using hef = 2h, the pressure curve3 in Fig. 26 give a normalized

curve very nearly coinciding with the normalized curve in Fig. 23 for

.running detonation of Primacord. Thus in Fig. 23 no distinction is

made between Primacord and Detashert. Similarly, the pressure-impulse

curves for Detasheet are merely an extension of the curves in Fig. 24

for Primacord, extending pulse times down to t 0 -25 Psec.

5. Surface Loads from Flat Charges Confined in a Shock Tube

At standoffs greater than a few feet. it is impractical to maintain

one-dimensional flow by keeping the charge dimensions large compared 'o

the.standoff. A better arrangement is to place the charge in a shock

tube as in Fig. 27 so that the walls of the tube maintain one-dimensional

flow. Some icss occurs because of friction along the sides of the tube,

bu-t the comparison to theory given later suggests that this effect is nct

oerious for X/D Z'5 and causes a decrease in pressure of at most 40 per-

cent at x/D 10 (D is tube diameter). It becomes impractical to use
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241n. OD SHOCK TUBE

I Iii. STEEL WALL

! 20 ft
• TOTAL

LENGTH STANDOFF, xTO
CLOSED

END
STYROFOAM

HEAVY CHARGE
w s j.26 psf ______

400 groins/f?,
doutb grid

7-POINT INITIATION
TONATOR WITH 40 groint/ft

PRIMACORD

GP- S3S*II0

FIG. 27 ARRANGEMENT OF FLAT CHARGES IN SHOCK TUBE

the shock tube at standoffs less than a few feet because detonation of

the charge must be nearly simt.'taneous to initiate one-dimensional flow,

At large standnffs, multipoint symmetric initiation is satisfactory, but

at small standoffs it is more convenient to use single point initiation

of a running detonation, which is the scheme already described in the

preceding sec.".ons. Running detonation cannot be used in a shook tube

because it results in an oblique shock (Fig. 13) which would reverberate

against the tube walls.

Charge arrangement and method of detoaation in the shock tube are

shown in Fig. 27. The charges were made of Primacord grids and were

simultane.usly initated at 7 points by a lead-in spider of 40 grain/ft

Primacord. The model was placed at the open end of the shock tube and

the zharges were placed at standoffs of 1, 2.S, 5, 10, and the total

20-foot length to the closed end of the shock tube. At the 20-foot

standoff, expanaion from the charge was confined by the bottom of the

tube to one direction, as in the field charges on the ground. At

smallez standoffs, however, the charges were suspended on low density
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(about 2 lb/ft 3 ) styrofoam pads so the blast was free to expand in both

directions from the charge. At these intermediate standoffs the reflec-

ted shock from the bottom of the tube arrived at the model much later

than the direct shock and was always at a much smaller pressure. In the

worst case, at the 10-foot standoff, the model pressure from the re-

flected shock was less than 15 percent of the direct shock model pres-

sure (see Fig. 28d), which can safely be neglected in structural testing.

a. Pulse Shape and Pressure Distribution

Typical pressure pulses at each standoff are given in Fig. 28,

Pulses at various chargc densities for a 10-foot standoff are given in

Fig. 29. The main body in all the pulses is exponential in shape,

followed by a low pressure tail which decays at a lower rate. In some

cases the exponential is preceded by an initially more rapid decay. In

all cases, except at the 1-foot standoff, the entire decay in pressure
~is quite smooth as seen by the integrated pressures (the lower traces).

At the 1-foot standoff the method of charge initiation does not give a

sufficiently plane shock wave and shocks reflect from the tube walls.

Also, at one foot the pressure measured at the center of the model was

as much as twice the pressure measured at either end gage. However,

at x > 2.5 feet, pressures from all three gages along the model length

were generally within a few percent of each other and showed no tendency

for the pressure at the center of the model to be larger. Variatiou in

pressure a:ound the model was again reasonably well approximated by

Eq. (23).

b. Peak Pressures and Impulses

Figure 30 gives peak preasures and impulses plotted against

charge density. Each data point is an average from the three 0 = 0

gages along the shell. Data for x 1 foot are omitted for the reasons

just discussed. The pressures at x = 2.5, 5, and 10 feet scale very

closely to the one-dimensional blast theory in Fig, 23, i.e., the curves

are merely shifted along the w-axis by factors of 2. The dotted curve

for- x = 10 feet is the curve for x = 5 feet shifted by 2 and falls very

close to the solid curve, dravn through the 10-foot data. One would
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(a) xsI t, SWEEP RATE= 50psec/cm (b) x=2.5ft, SWEEP RATE 2OOy-sec/cm

(c 11x ~5 ft, SWEEP RATE =5OOpsec/cm (d) x=10ft, SWEEP RATE= 500pisec/cm

(e) x =20Oft, weff =O.52psf x 2,
SWEEP RATE z I msec /cm

FIG. 28 SHOCK TUBE PRESSURE PULSES AT STANDOFFS FROM I FOOT
TO 20 FEET aloIat w - 0.316 psf except w - 0.52 psf .2 in (e'1
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(a) w O.158psf, SHOT STIO-94 (b) w O.316psf, SHOT STIO-90

3I psi

(C) w 0.630psf, SHOT STIO-95 id) w 1.26psf, SHOT STIO-92

FIG. 29 SHOCK TUBE PRESSURE PULSES AT 10-FOOT STANDOFF

expect the 10-foot curve to fall below the theory because of friction

losses along the tube wall. The upper dat point for x = 2.5 feet is

slightly below its curve, but this is attr.l uted to poor records on

this sbot. The pressure curve for x = 20 leet should fall on the

x = 10-foot curve if the one-dimensional theory were still applicable,

because the charge is at the bottom of the tube and the effective charge

weight is doubled. Instead, the curve lies a factor of about 1.6 to the

right of the solid 10-foot curve and 1.7 to the right of the dotted

curve. This wide divergence from theory is probably caused partly by

still further wall friction losses at this large standoff and, perhaps

more important, because the charge was actually a few inches above the

bottom of the tube, thereby spreading out the initial front of the shock.

The magnitudes of the pressures in Fig. 30 were compared with the

intense explosion theory using Eq. (25) and Fig. 23 as for the field shots.
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FIG. 30 PEAK SHOCK TUBE PRESSURES AND IMPULSES VERSUS CHARGE DENSITY
(charges f, ely suspended except at x = 20 feet, charge against bottom of tube)
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Data for x 2.5 feet, 5 feet, and the dotted curve in Fig. 30 for

x = 10 feet all fall on a single curve in Fig. 23. This curve coincides

with the running detot-atlon curve at the iow tUressure end, and at higher

pressures lies closer to t.e theoretical curve than the running detona-

tion curve, as one would expect, because here we have normal shock inci-

dence,

Impulses for x = 2.5 feet and x = 5.0 feet are given by a

single curve in Fig. 30 to the accuracy of measurement. The impulse

curve for x = 10 feet lies about 15 percent below the 5-foot curve,

and the 2&-foot curve (after it is shifted to the right by a factor of

2 to account for effective charge doubling) lies about 25 percent below

the 10-foot curve. Thus, as in the field shots, impulse depends mainly

on charge density, but here the standoff is becoming large enough that

impulse per unit charge density is decreasing meusurably with standoff.

A pressure-impulse plot of the data in Fig. 30 appears in

Fie. 31 along with data from the running detonation field shots. The

= -foot curve for the field shots is omitted for clarity and because

in practice it Is more convenient to prepare shock tube charges than

the large 8 x 8-foot charges required in the field at x = 4 feet. The

P,I curves for the field and shock tube data fall nicely together into

a set of nearly parallel curves, but it is apparent that at a given stand-

off, impulse is higher in the shock tube. Imagining an interpolated

cUrve drawn for x = 2.5 feet for the field shots, the corresponding

x - 2.5-foot shock tube curve gives pressures from 30 to 50 percent

larger. This difference is attributed to pressure decay in the field

shots caused by the finite size of the charges (see Fig. 11).

Also drown in Fig. 31 are critical. curves for damage of a weak

shell and a strong shell, both taken from Reference 1. The weak shell

ib a simple unsupported 6061-T6 aluminum shell with radius-to-thickness

ratio a/h = 100 and lergth-to-diameter ratio LID = 1. The strong

shell has a/h = 24 and is covered by a Micarta *shell with a/h = 12. The

sheet charge pressure-impulse curves span the region between 4hese two

shells and between the t = 10 11sec and t = 1000 11sec lines, as desired.
0 0

i *
Micarta is g registered tradename of Westinghouse Electric Corporation.
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the ratio is t/tf = 0.71. These comparisons show that t is a

crude but useful estimate for towith t being about alf of t

for high pressures and decreasing to about one-fourth x tfl for '-he

lower pressures and larger standoffs here. A better estimate for mzael

impulse I and time t could be obtained by calculating the reflected

impulse I from a flat, rigid wall and taking t = I /P . This wouldr r r r

require extensive computer calculations of tho type in References 8 and

9, but the usefulness of the results would certainly justify the effort.

All of the curves in Fig, 31 extend easily to loads greater tha.

the strong shell damage curve, and all but the x = 0.5-foot eurve can

be extended below the weak shell curv.-. At small standoffs the explorive

spacing rule S/x > 6 and minimum explocive rod size discuszed in

Section 111.2 allows impul.ses only as small as abouL, 1000 taps at x

0.5 foot. However, impulsE.- as low as 100 taps can be obtained with

gaseous explosives. 
2,5

6. Effects of Model Size

The pressure-impulse curves in Fig. 31 are applicable only to 6-inch-

diameter zodels because pressure decay, and therefore Impulse, depends

upon model size. In the limit of an extremely large model (or small

standoff) the impulse is maxirmm, equal to the reflected iupulse from a

flat, rigid wall. As the model becom.es smal!ler and smaller (or %he

standoff becomes larger .and larger) quasi-steady flow is established

around the model in a time short compa~ed to the total blast -durat.ton.

The pressure quickly drops from the reflected pressure to P decaying

drag pressure and the impulse is determined by drag flow rather than

by diffraction flow. For very long pulses th, diffraction I1ow is so

short compared to the drag flow that the peak pressure is more appro-

priat,-ly associated with the stagnation pressure. Then pressure and

impulse intensity no longer depend on model size.

The 6-inch-model size was selected for most of the experiments

described in this report, because it is a corvenient size for structval

models. However, smaller and larger structural models ar- often used

and, to give some indication of the change in impulse with diameter, a
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of shots at x = 2 feet are given in Fig. 33 along with impulse data

from he previous shots on the 6-inch model. rhe difference in impulse

on the models is largest at the smallest charge density, with impulse on

the ]2-inch-diametor model being about 1.4 times that on the 3.5-inch-

dianeter model at w = 0.03 -psf. At the other extreme, w = 0.45 psf,

the impulse ratio is only about 1.1. In a shot at w = 0.114 psf and

x = 4 feet, the impulse ratio was 1.3. These differences in impulse

are not much larger than possible errors of 10 to 20 percent in reading

the impulse, caused by inaccuracies in gage sensitivity and, more im-

portant, in low pressure drif'. due to gage heating and other effects.

Nevertheless, the smallness of the change in Impulse with model size

observed here shows that the prssure-impulse curves in Fig. 31 can be

used as estimates fnr larger and smaller models; more accurate estimates

can be made over a limited range by cQrrecting with the cid of the ratios

above.

50,000 1 I I I I II

20,000 

Y --

o 0 0

W 12-inch diam.4
_ 6-inch diary%C5000 - 3.5,inch diari

2000 -

ooo _ I I I I I, __ _ _ .._ _0.01 0.02 0.05 0.10 0.20 050

CHARGE DENSITY - psf

FIG. 33 IMPULSES ON 3.5-, 6-, AND 12-INCH-DIAMETER MCDELS
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SECTION IV

SXMUIATION OF SYbMTRIC LOADS

The methods described here for simulating symmetric loads are

logical extensions of the methods just described for asymmetric loads.

To obtain quasi-impulsive loads, the flat charges on the ground were

replaced by cylindrical charges completely surrounding the model, again

at standoffs of a few feet. To obtain longer duration loads, the shock

tube was used as it was for asymumetric loads, but the model was pointed

down the tube with its axis in line with the axis of the shock tube.

The experiments reported here are not as extensive as those described

for asymmetric loads bfcause emphasis was on feasibility of the tech-

niques rather than extensive calibzation. Considerable further work,

both theoretical and experimental, is necessary to exploit the tech-

niques described here.

1. Suiface Loads from Cylindrical Charges

Cylindricr charges 2 feet and 4 feet in dtameter were made by

stringing Primacord strands between cartwheel end frames as shown in

Fig. 34. The rigid model was 6 Inches in diameter, giving corresponding

standoff distances of 0.75 and 1.75 feet. For both diameters the dis-

tance between end frames was 3 feet and the charges were initiated by a

cone of Primacord strands at one end, resulting in a nearly circular

detonation front sweeping axially along the model.

Pulse shape was generally exponential, as it was for asymmetric

loads. Pressure pulses at the lightest and heaviest charge densities

used at each diameter are given in Fig. 35. As Fig. 36 shows, the

distribution of peak pressure around the model was satisfactorily uni-

form in all but one shot, Tn all of the 2-foot-diameter shots peak

pressure was uniform within *10 percent. At 4 fe-t the spread was

slightly larger, but still acceptable, except at the heaviest charge

density, for which peak pressure varied froyd 4500 to 9000 psi. Impulse

was always very nearly uniform around the model, even in this shot.

i -8
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(a) 2-FOOT DIAMETER CHARGE, w 0.0915 psf
40-groin PRiMACORD ON 0.75-inch CENTERS,
SHOT C-88

(bI 4-FOOT DIAMETER CHARGE, w 0.023 psf
40-grain FRIMACORD ON .3-inch CENTERS,
SHOT C-i20

FIG. 34 CY(LiNDRICAL CHARGES FOR SYMMETRIC
QUASI-IMPULSIVE LOADS
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7 .0 0 to7 0 i

(a) w O023psf (SHOT C-42) (b) w O.092psf (SHOT C-88)

2-FOOT DIAMETER CHARGES ( =0.75ft)

2100ps15 46opsop

(C) w .029psf (SHOT C-86) (d) w O.II5psf (SHOT C-B7)

4-FOOT DIAMETER CHARGES (xzl.75ft)

FIG. 35 PRESSURE PULSES FROM CYLINDRICAL CHARGES [filtered at 120 1c,
50 jIsecicm sweep in (a) and (b), 1OOsec/cm in (c) anA (d)J

Thus the pressure pulse at 9000 psi decayed more rapidly than the pulses

at 4500 psi. One would expect the pressure to fluctuate more for tne

larger diameter charge ause of imperfect covergence and instability

of the imploding shock, but it is not evident whether the largest pres-

sure fluctuations occurred at the highest charge density by ch-nce, or

because of inherent.y poorer convergence as charge density increases.

Unsymmet ic convergence also caused some changes in the initial shape

of the pressure pulse, reducing the peak pressure and giving it a flat

or rounded top. These changes were not serious and were observed in

only a few of the -pre than 50 pressure records.
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W w0.092 PSI!

C11 50000.046 psf

U)
U)W

W 0.023ptf

X

D=2ft (x=O.775ft)

10001

II

2 000I< e -0d-9rss

0 0 ISO 270 360

FIG. 36 VARIATION IN MEASURED PRESSURES AROUND THE CIRCUMFERENCE

Peak pressure and Impulse versus charge density at each radius are

Igiven in Fig. 37. As expected, pressures are lower and impulses higher

I Iat the larger radius, so that in the pressure-impulse plane (Fig. 38)

tho characteristic time t is larger for the larger charge radius,
0

about 90 Lsec at 4 feet compared to about 40 IJLsec at 2 feet. The curves

I in Fig. 38 converge toward each other at larger pressures, giving a

smaller d-ifference in t
1 0
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10,000 I I i-1rI T i I I I I I

500- PRESSURE
i5000 -

W

01 ,
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I: /I

ioo /
1000 F J 100,000

- 50,000

.0p.

20,000

50000

II

0.01 0.02 0.05 0.10 0.20 0.50 1.0
CHARGE DENSITY, w - psi

FIG. 37 PEAK PRESSURE AND IMPULSE VERSUS CYLINDRICAL CHARGE DENSITY

No theoretical celculations have been carried out to compare with

these measured pressures, but it is apparent that such calculations are

even more necessary here than for the plane shocks in the preceding

section because model size has a strong effect on both pressure and im-

£ pulse. For example, the asymmetric pressure-impulse curves in Fig. 31

can be used to estimate loads for model sizes from, say, about 3 inches
to 12 inches in diameter with only a small error in impulse (see

Section 111.6) and no error in peak pressure. By contrast, the data in

Fig. 38 apply only to a 6-inch-diameter model. Without a theory, loads
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... . 0 . / CYLINDRICAL 0.O ps

500.0

W 0.5 -C)
a500 -_0do v

41 00

100
1000 2000 5000 IOpO0 20,000 Wo0OO I0000 30C000

IMPULSE - tops

FIG. 38 PRESSURE-IMPULSE CURVES FOR SYMMETRIC LOADING TECHNIQUES
(6-inch-diameter model ,)

on other model sizes cannot be estimated; it would be difficult to cali-

brate the cylindrical charge techn Aque for a range of model sizes with-

out a theory as a guide. Since the present experiments demonstrate that

useful quasi-impulsive loads can be obtained using cylindrical chargeso

a theoretical program should also be pursued.

2. Symmetric Loads in a Capped Shock Tube

Longer duration loads were obtained using flat charges in the 2-foot-

diameter shock tube with the model pointing down the tube as shown in

Fig. 39. For moderately low pressures the model can be placed on a stingj with a minimum of cross bracing so that the incident blast wave can flow
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(a) 3.5-inch DIAMETER MODEL

(b) TUBE CAPPED, 3/8-inch ABOVE
TUBE FOR VENTING

FIG. 39 EXPERIMENTAL ARRANGEMENT FOR SYMMETRIC
LOADS IN CAPPED SHOCK TUBE
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past the model. Peak pressure is then near the incident pressure. At

high pressures, however, the necessary charge weights using the incident

pressure become objectionably large. For example, to obtain an incident

overpressure ratio of 200 (--3000 psi), Fig. 53 shows that the normalized

standoff must be less than R = x/s = 0.001. At a standoff x = 10 feet,

Eq. (25) gives a corresponding charge density of w = x/1040 R ; 10 psf.

For tle 2-foot-dlameter shock tube this gives a total charge weight of

30 pounds. The actual charge weight needed is probably about twice this

because at these high pressures the self-similar theory overestimates

the pressure. It is very likely that a 60-pound disk of explosive would

rupture the I-inch-thick steel wall of the shock tube. Sandia Corporation

has obtained incident pressures of 3000 psi using plywood shock tubes
10

which are destroyed with each shot.

To circumvent tnese problems, symmetric loads were obtained here

by using the reflected pressure rather than the incident pressure. This

is done by placing the model against a rigid back plate as in Fig. 39a.

The incident blast reflects from this plate so that the model is exposed

-to the reflected pressure, Pressure records from this configuration with

x = 18.5 feet are given in Fig. 40. The model is exposed to a short part

of the incident pressure as well as the reflected pressure, but the inci-

dent pressure is much lower (about one-fourth that of the reflected

pulses in Fig. 40) and the- duration is quite short (the time for the

shock to traverse the model and return from the back plate). At the

pressure gage location, 5.2 inches from the back plate, this ti'me is

0.5 msec compared to a total pulse duration of about 3 msec. The impulse

under the incident pressure toe is negligible, as is seen in the inte-

grated pressure traces in Fig. 40.

Peak pressures and impulses from these pulses are plotted in

Figs. 41 and 38. Figure 3?3 shows that a peak pressure of 2000 psi can

be obtained with a charge density of only 2 psf. The lowest pressure

obtained here was about 300 psi, but pressure3 as low as 50 psi, the ex-

*= "treme of current interest, can easily be obtained with znsller charges.

K Therefore no apparatus was built and no tests were run with the model

-] supported on a sting.
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(a) w 0. 133 pf (SHOT CT-I11)

84K taps

(b ) w - 053 Psf (SHOT CT-Il1)

150 ts

(C ) w 1.O6psf (SHOT CT-I31)

FIG. 40 INCIDENT AND REFLECTED
PRESSURE PULSES IN CAPPED
SHOCK TUBE (sweep rote msec. cm)
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FIG. 41 PRESSURE AND IMPULSE VERSUS FLAT CHARGE
DENSITY IN CAPPED SHOCK TUBE

Peak pressures are lower here thQn the lateral load pressures in

Fit. 30 because the ini tial spik~e occurs only at the back plate and is
lost by the time the reflected shock has traversed back to the gage

location. The impulses here are about 1.5 times the lateral load im-

puls s in ?ig. 30 (again suggesting that calculation of reflected pres-

sure pulses will give a good estimate of peak lateral loads). Figure 38
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shows that the characteristic times of the capped 18.5-foot shock tube

pdlses are near 1.5 msec.

3. Recommendations for Future Work

Figure 33 also shows that there is a wide gap in pulse times from

t 0 0.1 msec for 4-foot--diameter cylindrical charges to t = 1.5 msec

for the 18.5-fort shock tube. The most convenient method for obtaining

inte-mediate durations would be to use the shock tube at smaller stand- 9

offs as was done Lor asymmetric lods. The minimum standoff for a 9-

inch-long model is probably about 5 feet because of difficulties in o -

taining a plane detonation and because at smaller standoffs the incident

pressure pulse and shock decay along the length of the model becone

significant. Assuming that pressure in the reflected shock drops off in

proportion to the total distance traveled, for a 0.75-foot-long struc--

tural rdel and a 5-foot standoff the pressure will drop about 33 percent

along the length of the model. This drop is well within the overall

accuracy of vulnerability analyses. Probably more important, at small

standoffs the duration of the incident press-ji toe (see Fig. 40) will

become a sizable fraction of the overall pulse duration. Measuiemets

of pressure pulses at various stations along the model should be made

at smaller standoffs to investigate these effects.

Assuming that acceptable pulses can be obtained at a 5-foot stand-

off, a line has been drawn in Fig. 38 shifted to the left by a factor

of 4 from the 18.5-foot shock tube line. A sizable gap stil r-emainC"

between this line and the pressure-impulse curve for 4-foot-diameter

cylindrical charges. One possibility for providing pulsas 1. this re-

mining region would be to make larger cylindrical charges with r iid

plates at earh end to reduce the amount of explosive needed. Once aga n,

there Is a need for a theoretical investigation of the diameters and

charge weighto needed for various diameter models., and of the Gabili ty.

of .cck conver.gence for larger diameters. I
i" *Shoc-k tube length a decreased from 20 to 18.5 feurt because it was

necessary to pour in a block of concrete to sea! tbh base of the tube -

against water leakage.



SECTION V

LOADS OF OTHER DISTRIBUTIONS AND PULSE SHAPES

As discussed in the introduction, the basic approach proposed for

determining structural ieesponse and vulnerability to transient surface

loads is to test structures with pressure distributions and pulse shapes

that simulate the principle feature. but not all of the detail, of

actual loads. Indeed,the actual loads are often not known and the

number of possible loads at various target orientations is too large

to contemplate examining each in detail. Instead, response is examined

under a basic set of asymmetric and symmetric loads and then uinder

loads perturbed from these basic loads. If Gignificant differences in

response to the perturbed loads are obsezved, then re know that response

to a more extensive set of basic loas must be examined. If response

to the perturbed loads does not differ significantly from the basic

load response, then we are more confident that the basic loads chosen

contain the significant features that influence response.

In this section we examine a few methods for changing pressure

distribution and pulse shape. The experiment art- merely exploratory

because an extensive study of load variations should be closely coupled

with the study of structural response. This is the subject of continuing

research.

1. Changes in Load Distribution

For impulsive loads from contact charges it has been common practice

since the inception of these techniques to obtain smoothly varying dis-

tributions of interest by varying the explosive thickness, or equivalent

thickness, around the test object. A logical question is whether similar

methods can be used to very the distributibn in quasi-inpulsive loads.

Since quasi-impulsive loads are obtained here with sheet charges some

distance from the model, the shape, is well as the thickness (density)

in ,he charge, can be varied. Here we will deccribe a few experiments

to examine the influence of charge shape and density variation on load

distribution.
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Two sets of quasi-impulsive load distrioution experiments were per-

Zormed. In the first, sheet charges of constant density were applied at

trariotts curvatures, and in the second, both curvature and density were

varied. In both sets the general layout of the experiments was as

ilusraedin Fi.42 for the constant density charges. These were

(a) (b)

6 in. diam CYLINDER '

MID-SECTION GAGFS

0 f

- - 6ft :
1,ARC LENGTH OF ALL CHARGES)

FIG. 42 EXPERIMENTAL ARRANGEMENT FOR CURVED CHARGES
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made at w = 0.0143 psf nsing 25 grain/ft Primacord on 3-inch centers.

The charges were all made 6 feet square at a standoff of 1.75 feet (the

standoff of the 4-foot-diameter cylindrical charges). Four curvatures

were used, from flat to a semi-cylindrical form, with the distance a

in Fig. 42c constant between charges. The charges were initiated from

a central detonator at the top in Figs. 42a and b.

Pressure distributions from the constant density charges are plotted

in Fig. 43. The curve for the flat charge is of the same family of

curves discussed in Section III and is described approximately by the

cos2e distribution in Eq. (23) (the pressure in Fig. 43 is about 20

0
percent higher at 8 = 45 than given by Eq. (23)). As the curvature

is increased the pressures toward either side of the model are increased

as desired, but the converging shock at 0 = 00 causes this pressure to

increase also. The net effect is a more gradual pressure distribution

than for the ilat charge but still, even for the 2.7-foot radius charge,

the pressure at 0 = 67.50 is 300 psi, only 65 percent of the pressure

at 9 = 00. However, if this distribution is compared with the distri-

bution from the flat charge that gives the same peak pressure (the

dashed curve in Fig. 43), the flat charge distribution is much steeper

(as also seen by the increase in the ratio of P /P in Eq. (23)).

The flat charge pressure at 8 = 67.5 is 137 psi, only 31 percent of

the 8 = 00 pressure, compared to 65 percent for the curved charge.

From these results it is concluded that significant variations in

pressure distribution can be obtained using variations in curvature alone.

"tZven broader variations can be obtained by varying both charge density

and curvature. Figure 44 gives a diagram of the variable density charges

used to demonstrate this possibility. The density distribution is ap-

proximately linear from zero density at the center to a maximum density

at the edge. Two shots were fired with this distribution, one flat and

the other somicf.rcular, both at a standoff of 1.75 feet as in Fig. 42.

Pressure records from the semi-cylindrical charge at constant density
0.0143 psf were lost because of difficulty in estimating proper oscil-
loscope settings.
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The resulting pressure distributions are giver. in Fig. 45. The distri-

bution from the flat charge is very -nearly the same as the distribution

from a uniform flat charge at the same average density, 0.057 psf, The

distribution from the curved charge is markedly different from any of

the other distributions, wiith a maximum pressure near e=*800, at a
value about 40 percent higher than the pressure at e In another

shot, using a line charge (i.e., a purely cylindrical blast wave ex-

panding from the charge), which represents the opposite extreme in

charge density distribution, the pressure distribution was essentially

the same as from the flat variable or flat uniform charges.

000
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The similarity in distribution from line charges and from uniform

flat charges is to be expected because the shock radius at initial

contact (1.75 feet) is large compared to the model radius (0.25 foot).

The similarity to the distribution from the nonuniform flat charge is

more surprising and apparently occurs because the standoff, although

smaller than the half.-width of the charge, is sufficiently large to

allow the stronger shocks from the outer region of the charge to over-

take and coalesce with the weaker shocks from the center of the charge.

These results demonstrate that even at standoffs as small as 1.75 feet

from a 6-inch-diameter mdel, charge curvature is more important than

charge density distribution in determining load distribution.

Nevertheless, if the variable density charge is curved, the

variation of charge density then has a significant effect on pressure

distribution because coalescence into a single, nearly plane shock no

longer occurs. It is apparent from Figs. 43 and 45 that with appropri-

ate adjustment of curvature and density, pressure distributions can be

2
obtained ranging from cos 2 over one side (from a uniform plane shock)

to a uniform pressure on one side and a rapid pressure decay over the

back side. Application of these distributions, along with the uniform

distribution, should be sufficient to establish the sensitivity of

structural damage to pressure distribution in quasi-impulsive loads.

For quasi-static loads, completely different loading schemes

rst be used to vary distribution, since the only variables open in

the flat charge technique here are charge density and standoff. These

affect mainly peak pressure and impulse and have already been used af

the variables for producing the basic set of loads. One loading scheme,

- which conceptually allows any desired pressure distribution,is a set

of vteced chambers surrounding the model, with radial and axial vanes

to Wl, w separate adjustment of the pressure in each chamber. Develop-

ment of this scheme v ould be relatively complicated and should await

the results of the impulsive znd quasi-impulsive load distribution tests

to see how vigorously it should be pursued.
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2. Changes in Pulse Shape

Pulse shapes were examined for shock tube loads to compare the

pulses obtained from three methods of charge makeup in current use.

These are (1) flat charges; (2) uniform charges of finite length, giving

a reservoir of gas at a "constant" high pressure, as in conventional

shock tubes; and (3) charges of finite length, but having a variable

density to give a decaying shock.

The effect of the length of a uniform charge was studied first,

using the charges shown in Fig. 46, placed at the base of the 20-foot

shock tube. Charge length varies from zero (flat) to 6 feet, with

total charge weight held constant. Pressure pulses from these charges,

at d = 0 on the 6-inch-diameter model, are shown in Fig. 47. Peak

pressure decreases from 2100 psi for flat charge to 830 psi for the

6-foot charge, but impulse remains essentially constant at 100 ktaps.

For the 6-foot charge the "steady" drag pressure of about 160 psi is
clearly seen, extending from t = 1 to t = 4 msec after the initial

shock. Also, at t = 2.1 msec a jump in pressure occurs. For the

3-foot charge a "steady" drag phase is apparent, but it lasts for only

about 1 msec and is indistinct. The second jump in pressure occurs

earlier, at about t = 0.8 msec. For the 1.5-foot charge there is no

ste&,y flow and the pressure jump occurs at about t = 0.25 msec.

Finally, for the flat charge there is neither steady flow nor a second

Jump in pressure; the pressure merely decays smoothly from 2100 psi,

with four small pips probably caused by lateral reverberations in the

tube.

These experiments demonstrate that pressure pulses from finite

length charges differ considerably from the smooth pulses expected from

most weapon effects. The source of the second preosure jump is not

known but it obviously depends on charge length. For these charges,

The quantity ( given in Fig. 47 is called "charge ratio" and is a
measure of the local (shock tube) volume density of the charge in
multiples of the density of air in the tube.
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a)L=Oft, STACKED FLAT

(b) L= 15ft, 32 STRANDS (c) L=3ft, 16 STRANDS

F!G. 46 SHOCK TUBE CHARGES OF VARIOUS LENGTHS (c!l mode
of 400 qrcin/ft Primacord, total weight 2.74 lb for each)
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"" J " ,.J" -ps

UCK taps

(C) L=3fta:4.0 (SHOT 103) (d) L=6ft, a=2.0 (SHOT !O0)

FIG. 47 SHOCK TUBE PRESSURE PULSES F-c" VARIOUS LENGTH CHARGES
OF SAME TOTAL W.EIGHT (.-weep rote 1 msec/cm)

total impulse appears to depend only on the total amount of gas that

flows paf:t the model, independent of how it is generated.

Variable density charges have been proposed for producing decaying

rather than' steady flow in shock tubes. Schematic diagrams of three

such charges are given in Fig. 48 along with the corresponding pressure

pulses. In each case the charge is made most dense near the model, at

(X = 2, with succeeding charge sections at I = 1 and C, 0.5. In each

case the pressure Is roughly exponential as desired, but the pulses are

not smooth, probably because of the sudden changes in charge density.

This is most apparent in Fig. 48c in which the front of the charge was

only 8 feet from th2 model, allowing little time for discontinuities to

smooth out. In no case is the pulse as smooth as from simple flat

charges. It is concluded that while variable density charges produce

useful loads, flat charges are superior and should be used if the shock

tube can sustain the high local pressure near the charge.
~77 It
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R3.5 ANDS 1.601b, ! 2

2.401b TOTAL

(0) TWO CHARCE SECTIONS, TOTAL.. LENGTH 7ff i

3' 8 STRANDS 1.371b, u-2

V 3 0.341b, a 0.5

j 2.40b TOTAL

(bl THREE CHARGE SECTIONS, TOTAL LENGTH 9ft43 8 STRASJ 1.837lb, ~~

"! 4 0 .9 11b, c lI

41 0.41h, ax~C.5

L?

3.40lb 
TOTAL

(C) THREE CHARGE SECTIONS, TOTAL LENGTH f,

FIG. 4? PRESSURE PULSES FROM VAR!AE LE DENSITY SHOCK 
TUBE CARGES

(sweep rote I msec/cm)
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SECTION VI

THEORY OF BLAST WAVES FROM INTENSE EXPLOSIONS IN A PERFECT GAS

1. Introduction

Calculation of the diffracted pressures around the cylindrical

models discussed in the preceding chapters is beyond the practical means

of even the most advanced computer methods. Examples of the shock waves

and vortices around the cylinder hkve been examined experimentally by
* 11

Bleakney and give a graphic demopstration of the complexity involved.

However, the peak pressure and impulse at the leading edge of the cylin-

der can be estimated if the free-field blast wave is known. For blast

waves of moderate duration, in which the flow around the cylinder is

dominated by the diffraction phase, the peak pressure is the reflectsd

pressure of the incident wave and the impulse is a significant frzction

(of the order of 1/2 in many of -he experiments reported here) of the

reflected impulse from a flat, rigid wall. Both of these quantities are

relatively easy to calculate. For blast waves of long duration the

initial peak pressure is still the reflected pressure, b'it it decays in

such a short time relative to the total blast duration that for struc-

tural response it is of secondary interest. For these blast waves it

is useful to .ssume that at each instant the flow can be treated as

quasi-steady at the instantaneous pressure, particle velocity, and den-

sity of the incident wave. The peak pressure to which the reflected

pressure decays is then the drag pressure and the impulse can be esti-

mated from a quasi-steady integration using wind tunnel data on steady

flow past cylinders.
1 2

Perhaps more important than enabling one to estimate the absolute

magnitude of surface pressure pulses, these simple calculations give a

means for establishing the trends to be expected from diffraction pulse

measurements auch as those given in the preceding sections. They can

show. for example, the manner in which peak pressure and impulse will

vary with charge size and distance-to-charge, and the gain to be expected
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in going from spherical to flat cl-arges. Such calculations are givet in

Section III. For symmetrical implosion from a zy1indrical sheet of ex-,

plosive a relatively si'pie one space variable theory can give the com-

plete pressure pulse. I
The present section treats blast wave theory In an ideal gas with

these ends in mind. Section VI.2 summarizes the existing self-simnilar
solutions for explosions in s pherical, cylindrical, and plane geometries.

Section YI.3 gives an approximate theory for the nonself- similar motion

of the shock wave, taking into account the initial pressure in front of

the shock. Section VI.4 givs suggestions for fruitful extensions of

this effort.

2. Surmary of Self-Similar Theory

The theory of blast waves from intense explosions in a perfect gas

can be Tound in advanced texts on fluid mechanics, but it is so

fundamental to the interpretstion of the present blast load experiments

that we give it here in brief farm. To alid In the calculation of blast

wave paramters, pertinent numeri:al results for spherical and plane

blast waves a-e also given.

a. Characteristic Length a2nd Self-Similarity

The explosion is visualized as a sudden release of a finite

energy E in a small (spherical) volume of gas, giving in the limit

an infinite energy density at the matheatical point of the explosion.

As the gas expands away from the point of energy release it drives an

intense spherical shock into the surrounding undisturbed gas. The
i ,average energy per unit volume .vithin the expanding sphere de'r'reases,

eventually becoming comparable to the energy density in the undisturbed

ambient gas, initially at pressure p1  and density p V For example,

Most of the gas and energy are contained in a thin layer imediately
behind the shock, but the average energy decrease with increasing
volume still gives a measure of the local energy density decrease. Also,
the apparent release energy E 3  is relnted to the chemical energy
release through a complex process not treated here, rode 9 showed that
peak pressures from the self-similar theory are matched (in its range of
validity) to numerical calculations for spherical explosions fr')m TNT
by" taking E3 equal to the explosive release energy. The me result

was found by Goodmlan 1 5 using compiled data from experiments! pressure
measurements.
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in a perfect gas with specific heat ratio y, the ambient gas has an

internal energy (per unit volume) of

p1
e (27)(y - 1) (7

The release energy per unit volume of the blast sphere at radius r is

eb = 3-- (28)

These energy densities are equal at radius

rg 3(y - 1)E 11/3
e p (29a)

Similarly, for a cylindrical explosion from a release energy E 2 per

unit length along the axis, eb = E2/T'r and the energy densities are

equal at

r e = 2(29b)
e L P

Fcx a plane explosion from a release energy E per unit area, eb

E 1/2r and the energy densities are equal at

(y - I)E1
r = (29c)
e 2p1

Thus, in each geometry a characteristic length r can be defined by
I

r E) (30)

where v = 1, 2, and 3 for a plane, cylindrical, and spherical explo-

sions, and it is understood that the release energy E has appropriate

units in each case. From the above examples we see that r is the
0

blast radius (within a multiplicative constant) at which the release

energy becomes comparable to the initial energy of the ambient gas en-

veloped by the blast. For a one-pound pentolite sphere in a standard

atmosphere, r = 10.0 feet,
0



If we confine our attention to the early motion (r < < ro)

the energy density within the blast is so large compared to the ambient

energy density p1/(y - 1) that the ambient energy can be neglected,

Stated another way, near the explosion the shock pressure is so much

greater than p1 that p1 can be neglected. Under these conditions

the ambient gas is described by p1  alone and there is no characteristic

length. Consequently, with no length as a basis of comparison, the blast

wave at any instant is identical to the blast wave at any other instant,

except for scale changes as the sphere expands--the wave is self-similar.

This similarity greatly simplifies the mathematical treatment because

the flow can be described In terms of a single parameter § which is

an appropriate combination of r and time t, rather than in terms of
both r and t independently. At later times, as r approaches ro 0

this simplification is no longer appropriate and the pressure p1  ahead
of the shock must be considered. This will be done later. Also, the

self-similar theory gives an infinite pressure as r 4 0 and is there-

fore inapplicable at small distances from a real explosion. For small

r the mechanism of energy -elease and the properties of real gases must

be considered. These effects have been treated by several authors, for
example by Brode. 8,9

In the remainder of this subsection we consider that the ambient

gas can be characterized by its density p1  alone so that the blast is

self-similar. In all, there are five fundamental parameters* in the self-

similar problem:

Eo, 1 , y, r, and t

There are three fundamental units: force, distance, and time. The

fundamental parameters can therefore be reduced to two dimensionless

combinations. These are taken as

y and r(i ) P12 %f- (31)

(E0t

Any other parameter can be expressed in terms of these.
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The specific heat ratio y is a constant for any given problem so that

g is the single independent variable, demonstrating the self-similar

nature of the problem. The dependent variables of primary interest are

the pressure p, density p, and particle velocity v.

b. Motion of the Shock Front

Before attempting to describe the complete flow within the

blast siohere, let us examine the motion of the shock front and the

values of p, p, and v just behind the shock. At each (and every)

instant the pressure wave appears as shown in Fig. 49, in which both

p and r have been normalized to their values p2 and r2 at the

shock front. Since § is the only independent variable, each relative

position behind the shock corresponds to a value of and, in particu-

lar, the position of the shock itself corresponds to a unique value

1.0

y 1.4 PLANE
CYLINDRICAL

SPHERICAL

01
0.5 1.0
r

FIG. 49 PRESSURE DISTRIBUTION
IN SELF-SIMILAR BLAST WAVES
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From Eq. (31) the position of the shock is then

2

r2 = o( v- ) (32)

and the velocity of the shock is v2

dr2 r2 1/2 vu dr =  - = + ( r 2  (33)

The variables at the shock front can then be calculated directly from

the strong shock relations

2U ___ (34)1Uv2 = - P2 1/2 +

For example, the pressure behind the shock is

8E o v2 1
020 -- (35)

2 (v + 2)2 (y + 1) r1

Thus, using only dimensional analysis, all of the quantities at the

shock can be determined within an unknown constant which can be deter-

I mined by a single experiment. The dimensional analysis also shows that

if all of the flow variables are measured as a function of time at a

single radius from any single explosion, these data can be used to calcu-

late the complete flow for any other combination of charge and radius, so

long as the self-similar approximation is valid.

In the next section it will be convenient to use nondimensional

dependent variables v , p , and p", defined using Eqs. (33) and (34) such

that they are unity at the shock front.

This normalization and the subsequent self-similar solution follow that
given by Landau and Lifshitz,

14 based on the original work by Sedov.
1 3

The self-similar problem was also solved independently by Taylor,1 6 and

by von Neumann.17
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V4 r
v (2 + v)(y + 1) v

=  Pl (36)

01 r2-l,

(2 + v)2 (Y + 1) t2

c. Flow Behind the Shock

The equations for gas flow behind the shock- are

L+ )v + 0=
a r P ar

+ j~+ IO 0(37)
at0 a r=°

The first results from Newton's second law, the second from mass con-

tinuity, and the third from assuming the flow is isentropic in a perfect

gas. The solution to these equations is simplified by observing that

the first equation can be replaced by an energy integral which can be

found immediately for the self-similar problem. This follows from the

observation alrcady made that in the self-similar problem the energy in

the undisturbed gas can be neglected compared to the energy E released

by the explosion; the total energy within the blast therefore remains

constant. Furthermore, since we have a similarity flow, the energy of

the gas inside any sphere of a smaller radius, which increases in such

a way that = any constant (not only o must remain constant; the

radial velocity of this sphere, from Eq. (31), is v = 2r/5t for V = 3.
n

To .express this in terms of the flow variables, consider an incremental
expansion as shown in Fig. 50. Particles that leave the sphere with
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EXPANDING SPHERE

+ r d I

II ~dt

NEW MASS
ADDED TO SPHERE

FIG. 50 INCREMENTAL EXPANSION OF AN ARBITRARY SPHERE
WITHIN THE BLAST WAVE

velocity v bring with them an energy 4Tr 20 v dt (w + v 2/2), where

the enthalpy w is the internal energy plus the flow work per unit

mass:

w= + = P- P PY 0S)
w e(Y ) + =(3$)~ ~ -l p p(y-l1)

If the total energy within the sphere is to remain constant, this must

be equal to the energy in the incremental volume swept out by the ex-
2 2panding sphere: 41Tr2 u ndt (e + v /2). Equating these energies gives

w +M = un (+ M-(39)

This same equation results in all three geometries, since the area

factor (4r here) divides out. Using un = 2r/(v - 2)t from Eq. (33)

and the dimensionless variables in Eq. (36), this energy balance gives

p' (y + I - 2v')v'
2

, = (40)

P 2yv' - y -1
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in all three geometries. Converting the last two equations in (37) to

the primed dependent variables, and independent variables g and, say

t' = t (in order to properly differentiate r/t in Eq. (36))yields

dv' y'.xz + lgp
d log ( 2 / d log -v

(41)

d o( p') (v + 2 )(-y + 1) - 4v'

d log /, 2v' - (Y+ )

Thus the three partial differential equp.tions (37) have been reduced to

an algebraic equation (40) plus two ordinary differential equations (41).

To solve these equations it is converient to treat v' as the

independent variable rather than § because derivatives of § and p

can be expressed as functions of v' alone. These can be integrated by

quadrature. After laboi.i-s manipulation thiE procedure gives explicit

solutions for § and p' in terms of v'? which, together with p"

from Eq. (40), completes the solution of the problem. The resulting

equations are elementary but lengthy; they are given in Ref. 14, p. 395,

for spherical geometry and in Ref. 13, p. 219, for all three geometries.

The parameter 9o(y. is. determined such that the total energy

in the gas is equal to the energy E 0of the explosion. (The relation

between E and the explosive yield, however, remains unknown without
a study of the explosive gas flow.

E°  + A dr (42)

0

where A = 4nr2  for spherical waves, A = 21r for cylindrical waves,
13

and A = 2 for plane waves. Sedov, instead of finding §o from

Eq. (42), defines an artificial energy E = E /I to be used in Eq. (32)

such that = 1 at the shock front and is found from Eq. (32). TheI - (V4-2)
-two .parameters are related by L= o (  . In this notation X is

§
used in place of ~.Figure 51 gives Sedcv's curves for a versus y
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FIG. 51 THE RATIO E/E = a '(v+2)
AS A FUNCTION OF y

for all three geometries. For air (y 1.4), ai = 1.075, 1.00, and 0.35

for plane, cylindrical, and spherical geometries, respectively.

d. Incident Pressure Pulses from Self-Similar Solution

Sedov also gives P/p 2' P/P2' nd v/v , as functions of

X = r/r2 behind the shock in all three geometries. For use in blast

load calculations we need to find p, p, and v as functions of time

at a fixed radius. rf. Here we find the incident pressure pulse p(t),

the quantity of most interest for estimating diffracted pulses from

available data. From Eqs. (35) and (32) the peak pressure is

SE 1
Pf 2 (43)

c(V + 2) (y + 1) r f

at time /2 vi2K( )182tf= r (44) :.
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At a later time t the shock front r2 has continued past r = rf and

the pressure at rf has decayed because both Pf/P 2  (see Fig. 49) and

P2 decrease with time. We define a normalized pulse time T after the

shock has passed according to

Vi.2
t - t r r 2

(T)t2 1 (45)

in which Eq. (32) has again been used. The pressure at T is

P(T) (rf)vf

P( ) P2  Pf P (46)

Equations (45) and (46) are parametric equations for p and T with

r /r as a parameter. We can now replace rf by r without confusion
f2

so that these equations become

2

T -1 OP o.) (47)
Sf V

where P () i s P/P2 vs. = r/r2  as tabulated by Sedov, 13pp. 222-

223, and given here in Fig. 49.

Curves of P(T)/Pf are given in Fig. 52 for v = 1, 2, and 3.

The general shapes of the curves do not differ appreciably for small T,

but for large T the pressure decays more slowly in cylindrical and

plane geometry than in spherical geometry. The difference is particularly

evident for plane geometry. (See also Fig. 6 for a comparison with the

time scRle for the plane wave compressed to give close agreement at early

times.) For T > > 1 the limiting forms of Eqs. (47), along with the

observation that P (), = 0) are constants, yield

P() - p (0) T (48)

Pf

-2/3 -1
Thus, for large times the incident pressure decays as t -  

, t -
, and

t- 6/ 5  in plane, cylindrical, and spherical geometries.
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3. Shock Front Motion into an Initial Pressare

Ili the remainder of this section we will treat blasz waves taking

into account the initial pressure (and energy) of the ambient gas ahead

of the shock front. As in the self-similar theory, determination of the

motion of the shock front is relatively simple and will be undertaken

before the complete flow behind the shock is studied. Since we include

now the energy entering the blt sphere as it envelopes the surrounding

gas, the shock will decay less rapidly than in the self-similar theory,

in which the total energy was taken to be constant.

A method for finding a first (and second) approximation to the
18

modified shock front motion was suggested by Korobeinikov. 8He com-

pared the dependence on r2 of the particle velocity v2 just behind

the shock front as given by the self-similar theory (valid for small

r2 ) and by the asymptotic theory of Landau 4(pp. 375-377, valid for

large r2 ) and observed that there was little change in this dependence.

This is demonstrated in Table I. On the basis of this observation, he

suggested that for intermediate values of r2  the particle velocity can

be taken from the self-si milar theory and then the shock velocity U can

be calculated from the particle velocity jump condition across the shock.

Using this modified expression for U the pressure p 2  and density p2

can then be determined from the other two jump conditions.

Table I

DEPENDENCE OF PARTICLE VELOCITY v2 ON SHOCK RADIUS r2

Geometry
Theory v1 =2 v3

plane cylindrical spherical

Self-similar r-1/ 2  r2-1 r2-3/2

Acoustic shock r1/ r r- lc (r2

2 2 r 2  (r

L ---- A-1



Conservation of mass, momentum, and energy across the shock give
the following jump conditions for a perfect gas:

v2 
2c 1 , + 1 "!

(4i)

--- (M2  l)(49)

P] Y+ II

P1 2 + (y - 1W"

expressed in terms of shock Mach number M, d fined by

ii cI  ' c! __7 1(50)

I
where c1  is the sound speed in the ambient gas ahead of the shock.
Using Eqs. (33) and (34), the particle velocity frcm the self-similar

solution is

V2 ( = ~) 1/2r. 2  (51)v2 = (v + 2)(y + 1) rp(1

in which we b eo-('.ea2) Since we ncw take account of
} it is convenient to express r2  in terms of the characteristic
length r = (Eo/P l)/V, giving a dimensionless shock radiuz R.

r2I= (52)
r

Using this definition and c I from Eq. (50), the particle velocity is

expressed by

v2  4R-/
c I  153)

C (V + 2 )(y + !)(ay)11 2
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Combining 'q. (53) with the first of Eqs. (49) gives the desired ex-

pression for shock ve'.ocity:

M = A + (54)

where

2 = R-19
A= 2(55)

cLy(v + 2)2

8Lt3titting Eq. (54) into the second of Eqs. (49) gives the decay of the

shock overpressure with distance.

S_ I = (+A-2) 1/2 (56)Pl Y + 1 1 + 1+(6

The limiting form for small radius R (large A) is

P2 1 A 2 8R-V
P- - 1= 8Y A2 = - 2 (57)
P1  y + 1 ( + 2)2 (Y + 1)

After multiplying by p1 and taking p1 4 0, this is seen to coincide

with the self-similar formula (35). The density P2 can be similarly

found.

For large R the self-similar particle velocity (51) becomes a

poor approximation for cylindrical and spherical waves (see Table I).

In this range the small disturbance expressions - " .ble I can be used,

matching the large and small R expressions at some intermediate value,

For example, in the spherical case Korobeinikov matches them at R 2
to obtain

. 4R-3/2

5(y + 1)(ay)
1/ 2  R<2

-- = (58)

4R-[yog(R/2) + )- 1/ 2 25(y + I)(2(17)1/ 2  2
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Similarly, for cylindrical blast waves we take

R~-1

.2 ( 59 )

Cl R - 3 / 4
R 2

2 (y + 1)(cLy)

Using these exnressions, the incident overpressure throughout the entire

range of R is given by Eq. (56) with the following expressions for A-2

,1 Plane waves -2

(c=1.075 for y = 1.4) A = OCyR all R

16LyR2  R <2

v 2 Cylindricai waves 
-2

(a 1.00 for y = 1.4) 16 2-LyR31 2  
R 2

25ryR3  R < 2
V = 3 Spherical waves A-2

(a O.5 for y = 1.4) 50YR2 [tn(R/2) + 11 R 2 2

(60)

The reflected overpressure ratio is given by

p~l (211 + 1)p" /p+l (61)r ° g 21 1 2 (61)
p1  [ ILp /p 1 + p

where P - (y - l)i(y + 1).

Figures 53 and 54 give curves of incident and reflected overpressure

ratios from these equations. Also shown are (dashed) curves from com-

15piled data on spherical pentolite explosions, taken from Goodman. The

approximate theory matches identically with the experimental data for
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R > 0.2 if E°0 is calculated on the basis of 1430 cal/gmn (pressures

were measured only out to R = 7). At smaller radii real gas and ex-

plosive properties become important and the measured pressures are

smaller than predicted by the self-similar theory. At larger radii

other mechanisms of wave damping, such as iscosity, become important.

However, the range of validity of the approximate theory is quite broad,

giving reliable reflected overpressure ratios from about 0.1 to 100 a

useful range for quasi-impulsive structural response. This excellen'c

agreement for spherical explosions gives some confidence in using the

approximate solutions for cylindri.al and plane blast waves, for which

few experimental data are available.
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4. Future Theoretical Program

In order to determine the pressure-time history behind the shock,

the complete flow must be calculated. Although extensive calculations

have been made for spherical blast waves, 8 9,13 the authors know of no

published results for plane waves other than the self-similar curves of

Sedov13 which were used here in Section VI.2. The uscfulness of plane

blast waves in structural testing, as demonstrated in the preceding

sections, gives sufficient motivation for making plane wave calculations.

The calculations should include a complete description of both the flow

behind the shock as it moves out from the explosion and the reflected
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wave from a flat, rigid wall at a sequence of values of R. The reflected

pressure-time histories would give a first estimate of the diffracted

pressure-time history on structural models and an upper bound on the im-

pulse.

These calculations could be made using the self-similar solution as

initial conditions at a radius small enough that the ambient pressure
8

can be neglected, as was done in the spherical problem. Similarly, the

self-similar theory could be used to start the calculations for the im-

plosion-explosion problem from cylindrical sheet charges. In this case

the reflected pressure pulse at the rigid cylindrical boundary (model)

would be the true model pressure within the accuracy of the theory. Such

calculations would allow relatively inexpensive determlination of peak

pressure and impulse as functions of charge diameter and thickness for

various model sizes. They should be accompanied by an investigation of

the stability of he implosion process, which defines the allowable pa-

rameters for acceptably mall pressure luctuations.
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