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ABSTRACT 

Multiple coherence gives a quantitative measure versus 

frequency of how well a linear combination of n input channels 

can match the (n + 1)st channel in a seismic array.  If the 

inputs can match the output exactly, then the multiple coherence 

is unity and only n channels are necessary to describe the noise 

field.  This report shows multiple coherence versus frequency 

with 2 to 9 input channels for long period, vertical component 

noise fields at LASA. 

Over the "h  to 20 seconds period range the multiple coherences 

on the samples tested were greater than .65 showing that 65% or 

more of the noise at a center channel is predictable by other 

seismometer outputs in the array.  This level of multiple coher- 

ence requires 8 to 9 input channels.  Multiple coherence with 

fewer inputs and ordinary coherence between pairs of channels 

are much lower. 

From the samples tested, which all produce multiple coher- 

ences quite similar to each other, we conclude that at least 9 

input channels are necessary to adequately describe the long 

period noise at LASA. 



1.  INTRODUCTION 

Moat basic data processing techniques for signal enhancement 

or identification depend upon the structure of the noise within 

a the seismic array.  If some of the coherent noise is due to site 

characteristics such as consistently coherent noises from par- 

ticular directions, then techniques using multiple coherence 

will help to isolate these consistent linear relations.  Many 

optimum filters for estimating the signal take account of these 

linear relations implicitly by weighting with the inverse of 

the spectral noise matrix.  However, one cannot tell whether the 

coherent noise involved is due to noise generating events which 

cannot be predicted or controlled.  Thus, the filter/ must be 

recalculated over a period of noise recording immediately prior 

to the arrival of each single signal.  Part of the coherent noise 

generated within the array may be due to various causal factors 

for a particular array.  If so, we can learn something about 

these factors by examining the linear relations between the 

various array elements.  A potential benefit here is that a 

consistent linear model relating the different sub-elements 

would eliminate the need for computing a different set of fil- 

ter coefficients for each event. 

The multiple coherence function can indicate how many seis- 

mometer outputs in an array are necessary to properly determine 

the seismic noise field.  If there are n independent seismic 

noise components," then the multiple coherence function would be 

unity when (n + 1)st seismometers are placed in an array to 

measure seismic noise records.  If part of the background is 

-1- 



composed of incoherent noise, then the multiple coherence function 

would indicate the percentage of coherent noise present and the 

number of seismometers necessary to define this coherent noise. 

The filter relations determined by the multiple coherence com- 

putations can then be used in array summation to bring the noise 

into destructive interference„* 

This analysis does not guarantee that such optimum processing 

is possible.  For example, if the noise and signal propagation 

characteristics across the array are identical, no velocity fil- 

tering scheme can be expected to separate the two even though 

the multiple coherence might be unity. 

The multiple coherence function is the frequency domain equi- 

valent of the prediction error filter in time.  If n input seismic 

traces predict the (n + 1)st trace in an array completely, then 

the multiple coherence will be unity and a prediction error filter 

could be used to exactly predict this (n + I)st output.  In fact, 

linear filter relations derived by the multiple coherence program 

produce an estimate of the (n + 1)st trace which, when subtracted 

from the actual (n + 1)st trace, given a prediction error trace. 

Thus the combination of the filter derived in th^ multiple coher- 

ence program and the suotraction operation produces a prediction 

error filter as shown in the following diagram. 

*For the mathematical description of the multiple coherence 
computation, see Appendix I. 
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The first objective of this study is to use the niuitiple 

coherence function to estimate the degree of predictability of 

the long period noise field at LASA.  The result in turn should 

tell us how much the noise power should be reduced by optimum 

filtering (e.g., maximum likelihood or Wiener filters) if the 

filters were theoretically ideal. 

The second objective is to determine from multiple coherences 

the number of independent components comprising a given noise 

field and the percentage of incoherent noise which cannot be 

cancelled by any kind of multichannel filtering. 

The third objective is to determine the stationarity proper- 

ties of the noise field. We accomplish this- by applying tha 

multiple coherency program to three different time samples from 

the same array.  Then the multiple coherency filters derived 
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from the first time sample are applied to the other two time 

samples.  If the filters derived in the first tiwe sample have 

done a good job of predicting the noise field in all three 

samples, then the Cata are said to be stationary. On the other 

hand, if the filters from the first time sample do a progress- 

ively poorer job of predicting the noise in the other samples 

relative to the filters associated with those samples, then the 

noise is non-stationary to some degree.  This deterioration in 

predictability of the multiple coherence can guantitively measure 

the non-stationarity of the data**. 

**JE,or a theoretical discussion of the stationarity computation, 
see Appendix II. 
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2.  DESCRIPTION OF DATA 

We computed the multiple coherence of long period LASA data 

foir the vertical components only.  These seismometers are 

located at the center of each subarray.  Consequently, all com- 

putations are intersubarray coherences with a maximum of 21 

channels available. 

The sampling rate for the data is one sample per second. 

The number of points in the sample varied between 1200 and 4800, 

from 20 minutes to 80 minutes of data.  One frequency range com- 

puted varied from zero to .25 cps with a frequency interval of 

.0125 cps.  A second frequency range varied from zero to .20 cps 

with a frequency interval of .008 cps. 

The multiple coherence program has a capacity of 9 input 

and one output channels.  We varied the number of input channels 

from 2 to 9 wherever possible.  In some cases, spikes, dead 

traces, and instrument malfunctions prevented our obtaining more 

than 6 or 7 useable input channels.  The ordering of the input 

channels was from the outermost subarrays toward the inner sub- 

arrays in every case. 

We examinad three noise samples.  The first was from 9 Sept- 

ember 1960 and contained 4759 points.  The second from 11 December 

1966 contained 1200 points and the third from 5 January 1967 

contained 3957 points.  We used the 9 September 1966 sample to 

test variations in the sample lengths and number of lags.^We 

used this sample for the stationarity test also by breaking it 

into three equal lengths. 
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3.  RESULTS 

Multiple Coherences 

Figures 1 and 2 show the multiple coherences versus 

frequency for the three time samples tested«  Figure 1 shows 

the multiple coherence for the 9 September 1966 sample with 

2 to 7 inputs and for the 11 December 1966 sample with 2 to 6 

Inputs. The figure shows a diagram of the array elements 

chosen.  The output in both cases is channel AO.  The September 

sample is for 3957 points and 120 lags and the December sample 

is for 1200 points and 80 lags»  Figure 2 shows the multiple 

coherences for the 5 January 1967 sample computed with two 

different lags? the first at 200  lags and the second at 120 lagp. 

All of the multiple coherences versus frequency are 

similar.  The multiple coherence for all samples increases sig- 

nificantly with the increase in number of input channels.  The 

sample for 5 January 1967 shows multiple coherences, with 8 or 9 

input channels, of .65 and above for frequencies from .05 to 

.14 cps (from 7 to 20 seconds period). 

The multiple coherences for 7 or fewer channels for the 

5 January sample agree fairly well with the multiple coherences 

of December and September samples.  This similarity indicates 

that the September and December samples would also show high 

multiple coherences over the same frequency range if 8 or 9 re- 

liable input channels were available. 

The multiple coherences for the January sample for 120 

and 200 lags agree with each other.  Even 120 lags at one sample 

per second is sufficient to uncover correlations between the 
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outermost sutoarrays and the output AO provided the noise propa- 

gations are at velocities of 1 km per second or higher.  Since 

we expect all noise propagation to have velocities greater than 

this limit, we would expect that the 120 and 200 lag cases should 

give essentially the same results. 

Power Spfcctra 

The spectra for the multiple coherence examples on 

Figure 1 and 2 are presented on Figures 3 to 7.  Figure 3 shows 

the power spectra for the 9 September 1966 sample for all 4759 

seconds.  Figures 4 and 5 show the power spectra from the first 

and second third of this same sample.  All three spectra are 

essentially the same.  The vertical scale for all spectra plots 

are in relative power.  At the time these record':gs were made, 

long period calibrations at LASA were not availabxe. 

Figure 6 and 7 show similar power spectra plots for the 

11 December 1966 and 5 January 1967 samples respectively. 

Stationarity Tests 

The multiple coherence program derives a set of n filters 

for the \-input seismograms which together provide the best linear 

estimate for the (n + 1)st seismic trace.  The difference between 

the observed (n + l)st trace and the best estimate is the error 

trace.  if the multiple coherence is unity, the prediction is per- 

fect and the error trace will be zero.  If we form the ratio of 

the error spectra over the observed spectra, we can get a measure 

of the reduction in noise power possible from the theoretical 
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optimum filters.  Thus the db improvement as a function of 

frequency can be expressed as 

db ■ 10 log (error/observed). 

The prediction error filters will do the best job in 

eliminating the noise background when they are applied to the 

noise sample from which they are derived.  However, if the 

noise is stationary, the same filter could be expected to do 

nearly as well when applied to later time samples from the 

same array,  Figute 8 shows the expected noise reduction in db 

when the prediction error filters that were derived from the 

first time sample are applied to the fir^t 1586 second sample, 

'n addition these same filters are applied to the second and 

third 1586 second samples. 

The expected noise reduction from prediction error 

filters in the fitting interval is as much as 9 db at .064 cps 

(16 second period).  Over the 7 to 20 second period range of 

high multiple coherence the average noise reduction in the 

fitting interval is about 4 db.  This result is obtained with 

only 7 input channels.  Due to the significant increase in mul- 

tiple coherence with 8 or 9 inputs as shown for the 5 January 

sample, we would expect that the db improvement in the fitting 

interval would be somewhat better with more channels.  Over the 

same 7 to 20 second period range, an average of approximately 

1 db improvement is obtained outside the fitting interval.  The 

noise reduction outside the fitting interval at .064 cps (16 

seconds) is from 3 to 4 db. 
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Figure 9 shows the same computations as Figure 8 but 

wi :h 150 lags computed in the correlation functions instead 

of 50 lags.  The results of Figure 9 essentially agree with 

those of Figure 8 but show much higher variability.  For 

multiple channel cases, 10% lags led to too much statistical 

variability to make the results reliable. 

Statistical Variability 

The examples in this section show the increase in the 

statistical variability of the computations with the decrease 

in the degrees of freedom.  The (real) degrees of freedom are 

defined in terms of the number of sample points, the number of 

lags, and the number of input channels as follows: 

degrees of freedom = 2 x (no. of points - no. of input channels) 
no. of lags 

Thus we see that the degrees of freedom will decrease as we de- 

crease the number of points in the sample or increase the number 

of lags or number of input channels.  We note that the effect of 

decreasing the degrees of freedom is to increase the estimate of 

the multiple coherences. 

Figure 10 shows an increase in multiple coherence with 

only two inputs when the degrees of freedom are decreased from 

44 to 2 in several steps.  In this case the 1200 points in the 

sample was held fixed and the degrees of freedom changed by in- 

creasing the number of lags. 
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Figure 11, a similar plot, is shown for the same data 

sample with 7 input channels.  In this case the number of degrees 

of freedom is decreased from 34 to 2 in several steps.  The actual 

computations for Figures 10 and 11 are shown in Table 1 where the 

"multiple coherence is tabulated against frequency and number of 

lags.  When the number of degrees of freedom become too small, 

the instability in the computations can cause the computations for 

the multiple coherence to lie outside the range from 0-100%. 

The effect of too few degrees of freedom can be seen in 

another way. Figure 12 shows the multiple coherence versus fre- 

quency computed with 100 lags when the number of points in the 

sample was varied from 4759 down to 759, in several steps. Here 

again the multiple coherence increases as the degrees of freedom 

decrease until instabilities yield coherences outside the range 

from 0-100%. 

When the degrees of freedom are 20 or higher, the com- 

putations are generally quite close to each other.  For the 

results shown in Figures 1 and 2 we maintained the degrees of 

freedom in excess of 20. 
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4.  CONCLUSIONS 

1. Multiple coherences for all long period samples increase 

significantly with an increase in the number of input channels. 

2. Prom mid-range of the long period pass band toward the 

microseismic frequencies (7-20 seconds period) the multiple 

coherences are greater than .65 with 8 or 9 input channels. 

3. The expected noise reduction from a prediction error 

filter in the fitting interval is as much ac 9 db at 16 seconds 

period.  The noise reduction outside the fitting interval at 

16 seconds period is from 3-4 db. 

4. Over the 7-20 second period range, the expected noise 

reduction from a prediction error filter in the fitting interval 

is about 4 db.  Over the same 7-20 second period range an average 

of 1 db is obtained outside the fitting interval. 

5. The db improvement figures given above were computed 

when only 7 input channels were available.  We estimate that the 

db improvement both within and outside the fitting interval would 

be increased with more input channels. 

6. Over the 7-20 second period range the multiple coherences 

for all samples tested are quite similar to each other up to 6 or 7 

input channels.  Since the 9 channels available for one sample 

showed a significant increase in the multiple coherence over the 

6 and 7 channel examples, we conclude that at least 9 input channels 

are necessary to adequately model the long period noise at LASA. 
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FIGURES 

8 
I 

1. Multiple Coherence vs. Frequency for two LP-Z Samples 
from LASA, 

2. Multiple Coherence vs. Frequency for a.e LP-Z Sample 
from LASA Computed with Two Different Number of Lags. 

3. LASA Long Period Spectra for a 9 September 1966 Sample. 
The Figure shows the output spectrum and the range of 
all input spectra. 

4. LASA long period spectra for the first third of the 9 
September 1966 sample shown on Figure 3. 

5. LASA Long period spectra for the second third of the 9 
September 1966, sample shown on Figure 3. 

6. LASA long period spectra for a 11 December 1966 sample. 
The figure shows the output spectrum and the range of 
all input spectra. 

7. LASA Long period spectra for a 5 January 1967 sample. 
The figure shows the output spectrum and the range of 
all input spectra»' 

The expected noise reduction from a prediction error 
filter computer from the first time sample and applied 
to the first, second, and third time samples. 

9. The expected noise reduction from a prediction error 
filter for the same data shown in Figure 8.  Here the 
computations were for more lags and therefore fewer 
degrees of freedom. 

10. Multiple coherence vs.  Frequency with 2 inputs when the 
degrees of freedom are decreased from 44 to 2 in several 
steps by increasing the number of lags. 

11. Multiple coherence vs., frequency with 7 inputs when the 
degrees of freedom are decreased from 34 to 2 in several 
steps by increasing the number of lags. 

12. Multiple coherence vs. frequency with 7 inputs when the 
degrees of freedom are decreased by decreasing the number 
of points in the sample. 
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Figure 1.  Multiple Coherence vs. Frequency for two LP-Z Samples from LASA. 
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Figure 2. Multiple Coherence vs. Frequency for One LP-Z Sample from 
LASA Computed with Two Different Numbers of Lags. 
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sample shown on Figure 3. 
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APPENDIX I 

♦Multiple Coherence Functions 

Consider a collection of q clearly defined inputs x (t); 

i - 1,2,,.. #q, and one output y(t), as pictured in Pigure 5.12, 

Let G. (f) - Gii{f) be the 

*d*) 

»• 

*M) 

mm 

*\n*n 

H,(f) 

-*-&) 

Figure 5.12 Multiple-input linear system, 

power spoctral density function for x^t), and G (f) be the 

cross-spectral density function between x.(t) and x (t). De- 

fine the N x N spectral matrix by 

<W) 
Gnif)    Gn(f) 

I G*<J)    G«{f) 

GuV)~\ 
G*{f) 

<^(/)J 

(i) 

Jhis explanation of multiple coherence functipne was taken from 
Measurement and Analysis of Random Data", Bendj\t, J. S.f and 
Piersol, A. G., John Wiley and Sons, 1966. For more detailed thee- 

- i-i - 



The ordinary coherence function between «.(f) «„d x.(t) i. 

defined by 

The multiple coherence function between x^t) and all other 

inputs x^t), x2(t) excluding x^t), is defined by 

*."(/)-1 - toco c'c/r» 
where G^g) denotes the ith diagonal element of the inverse 

matrix Gxx(f)  ^associat^d with Eq. (l). The ordinary and 

multiple coherence functions are both reaWalued quantities 

which are bounded by zero and unity. That. is. 

o ^ rtJf) z i ^ 

The multiple coherence function is a measure of the linear 

relationship between the time history at one point, and the time 

histories at the collection of other points. That is, the mul- 

tiple coherence function indicates whether or not the data at 

all of the other points linearly produce the results at a given 

point. 
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APPENDIX 2 

Theoretical Development of The Stationaritv Relations 

A*   Noise Reduction Within The Fitting Interval 

A number of useful statistical measures such as ordinary 

and multiple coherence can be used as tools to indicate the amount 

of noise reduction feasible in a multiply coherent array. The 

basic linear model vAich determines the db reduction possible in 

the noise field by multiple coherence, filtering relates a refer- 

ence element (trace) y(t) of an array to the other elements, say 

x1(t), x2(t), ..., x (t> in the array through the linear model 

y(t) 

P 
r 
L 
k-l -- 

J V") x^ (t-flr.) da (1) 

Generally we determine h^t) as the time invariant linear filter 

that makes the mean square error between y(t) ari its predicted 

value a minimum, i. e. 

E ' ^^ " Z   J ^ ^ V*"«0 da'2 " min <2) 
k-l -» 

Which, by the usual orthogonality principle (see Papoulis 1), 

yields the condition 

P 

Ey(t) x^(t+T) - 2 J hk(a) E ^ (t"a, xt (t+T) ** 
k»l 

/ ■ 1,2, ..., P,-«<T<OD     (3) 
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or p 

V(T) "^ ^{a) V, {r*a) da 
*     k-1 ^ * 

v«iieh by taking Fourier transforms implies that 

(4) 

P 

Syx-t(U,) " £ \{w)  Svx/U') (5) 

k»l * * 

Now, the mean square error can be written 

P r P  " 
E|y(t) -   Y   I \la)  ^k(t-«)<Sa|

2 - E (y(t) - J  J hk(a)xk(t-o)da) y(t) 
k-1 k-1 -• 

P 
- Ryy(0) " ^ J" hk(a) Vy(a) ^ 

k-1 

k-1        K 

r c s - s s-1 s ^ (w) J ^ yy  ^yx xx ^xv / 
dm 

yy  -^yx "xx -^xy S  '""  2TT 

J (l - a2 (») ) 8 (•> da) 
yy   2TT (6) 

2 2 
vAiere a ((D) is the multiple coherence and (1 - a (ui) ) measures 

the reduction in power possible at the frequency m.    Kith a2{m)  ■ 1 
2 

the mean square error is zero and with a (tu) - 0 the mean square 
error is just 

I Syy(,B, "I? Ryy (0) " E ly (t),2 (7, 
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which  is the original power in the process y(t) . Now the quantity 

(1-a (UJ) ) Syy(u)) represents the residual power at each frequency 

after the best linear estimate of the form (1) has been subtracted 

out.  Hence the db reduction in power at each frequency is just 

the ratio of the output power of the residual (see equation (2) ) 

to the input power in y(t) or 

See (u,) 

V«)"10 lo9 -s—nsr""10 log (1 -a w > 
yy 

2 
where n  (u)) is the multiple coherence &P/' S  (M) is the power 

spectrum of the error process 

P  - 

e(t) - y(t) - ][  J ^(a) ^(t - a) da (9) 

k-1 -» 

B-   Noise Reduction Outside The Fitting Interval 

We would also like to determine the noise reduction in db 

which would result from using a set of filters gv(t), k-1, ....p 

which have been derived either from another fitting interval or 

from theoreticil considerations. To accocylish this let lu (t) 

be the optimal filters for the time under investigation and let 

gk(t) be any other set of filters whose mean square error is to 

be compared with ^^(t). The mean square error of the g filters 

can be written using the orthogonality principle as 

P 
E I y(t) - £   J g^(a)  ^ (t.a) da |2 . 

k-1 -• 
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P      00 

t       t Hly(t)       j hk(a)xk(t-a)dn *  ^  J (yy,,, .^(a)   N Xk(t.a)da,; 

P 

ify(t) - I      J ^(^x^t-^d.M + E| Y  J(va).v'a) ) 
^i  -* k-l  -o. 

Xv(t-or)clfl[| 
v^«|2 

00 

■ J (1-. (.) ) SnW   -|5. +  / ,H - G)*Svv(H -. S) m 
XX 

d!» 

2Tr 

T T r-.    2, v N   (5 - G) S   (H - G) (») 
S  ((ju) 
yy 

(10) 

Hence, if we call the new error /'(t) we have 

P 

/'(t) = y(t) - ^ j g (a) x (t-a) da 

k=l 

with power spectrum Sr/,(«»). the new value for the improvement 

in the Sk(t) filters would be 

T    tm\         mi            Sl'l'{m) SO & ~ ^S (H   -   G)    (<JJ) In(u.)   -  10 log -g-_ IQ Jog£  _  a2(U))   +    * 
yy S  (UJ) 

yy 

\ 
^ 

Equation (12) shows that the improvement in tb* ^{t)   filters i 

expressed in terms of the improvement in the hk(t) filters and 

correction term which is zero when H = G. 

(12) 
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The improvement values i^a.) «nd iG(a.) in equations (8) and (12) 

are those shown in the main body of the report. 

Reference 
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