UNCLASSIFIED

AD NUMBER

AD816029

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JUN 1967. Other requests shall be referred to Air Force Technical Applications Center, Washington, DC. This document contains exportcontrolled technical data.

AUTHORITY

usaf ltr, 25 jan 1972

THIS PAGE IS UNCLASSIFIED

AD816029

MULTIPLE COHERENCE OF LONG PERIOD NOISE AT LASA

23 June 1967

Prepared For

AIR FORCE TECHNICAL APPLICATIONS CENTER Washington, D. C.

By

E. F. Chiburis W. C. Dean

TELEDYNE, INC.

Under

Project VELA UNIFORM

Sponsored By

ADVANCED RESEARCH PROJECTS AGENCY Nuclear Test Detection Office ARPA Order No. 624

MULTIPLE COHERENCE OF LONG PERIOD NOISE AT LASA

SEISMIC DATA LABORATORY REPORT NO. 189

AFTAC Project No.: Project Title: ARPA Order No.: ARPA Program Code No.:

à

VELA T/6702 Seismic Data Laboratory 624 5810

Name of Contractor:

Contract No.: Date of Contract: Amount of Contract: Contract Expiration Date: Project Manager TELEDYNE, INC.

	F 33657-67-C-1313
	2 March 1967
**	\$ 1,736,617
	1 March 1968
	William C. Dean
	(703) 836-7644

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

This document is subject to special export controls and each transmittal to foreign governments or foreign national may be ξ made only with prior approval of Chief, AFTAC.

This research was supported by the Advanced Research Projects Agency, Nucle: - Test Detection Office, under Project VELA-UNIFORM and accomplished under the technical direction of the Air Force Technical Applications Center under Contract F 33657-67-C-1313.

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsibile for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

TABLE OF CONTENTS

٦

Page Mo.

	ABSTRACT	
1.	INTRODUCTION	1
2.	DESCRIPTION OF DATA	5
3.	RESULTS	6
	Multiple Coherences	б
	Power Spectra	7
	Stationarity Tests	7
	Statistical Variability	9
4.	CONCLUSIONS	11
	FIGURES	
	TABLE I	
	APPENDIX 1	1-1
	Multiple Coherence Functions	
	APPENDIX 2	2-1
	Theoretical Development of The Stationarity Relations	
	A. Noise Reduction Within The Fitting Interval	2-1
	B. Noise Reduction Outside The Fitting Interval	2-3
	REFERENCES	2-5

ABSTRACT

Multiple coherence gives a quantitative measure versus frequency of how well a linear combination of n input channels can match the (n + 1)st channel in a seismic array. If the inputs can match the output exactly, then the multiple coherence is unity and only n channels are necessary to describe the noise field. This report shows multiple coherence versus frequency with 2 to 9 input channels for long period, vertical component noise fields at LASA.

Over the 7 to 20 seconds period range the multiple coherences on the samples tested were greater than .65 showing that 65% or more of the noise at a center channel is predictable by other seismometer outputs in the array. This level of multiple coherence requires 8 to 9 input channels. Multiple coherence with fewer inputs and ordinary coherence between pairs of channels are much lower.

From the samples tested, which all produce multiple coherences quite similar to each other, we conclude that at least 9 input channels are necessary to adequately describe the long period noise at LASA.

1. INTRODUCTION

Most basic data processing techniques for signal enhancement or identification depend upon the structure of the noise within the seismic array. If some of the coherent noise is due to site characteristics such as consistently coherent noises from particular directions, then techniques using multiple coherence will help to isolate these consistent linear relations. Many optimum filters for estimating the signal take account of these linear relations implicitly by weighting with the inverse of the spectral noise matrix. However, one cannot tell whether the coherent noise involved is due to noise generating events which cannot be predicted or controlled. Thus, the filters must be recalculated over a period of noise recording immediately prior to the arrival of each single signal. Part of the coherent noise generated within the array may be due to various causal factors for a particular array. If so, we can learn something about these factors by examining the linear relations between the various array elements. A potential benefit here is that a consistent linear model relating the different sub-elements would eliminate the need for computing a different set of filter coefficients for each event.

The multiple coherence function can indicate how many seismometer outputs in an array are necessary to properly determine the seismic noise field. If there are n independent seismic noise components, then the multiple coherence function would be unity when (n + 1)st seismometers are placed in an array to measure seismic noise records. If part of the background is

-1-

composed of incoherent noise, then the multiple coherence function would indicate the percentage of coherent noise present and the number of seismometers necessary to define this coherent noise. The filter relations determined by the multiple coherence computations can then be used in array summation to bring the noise into destructive interference.*

This analysis does not guarantee that such optimum processing is possible. For example, if the noise and signal propagation characteristics across the array are identical, no velocity filtering scheme can be expected to separate the two even though the multiple coherence might be unity.

The multiple coherence function is the frequency domain equivalent of the prediction error filter in time. If n input seismic traces predict the (n + 1)st trace in an array completely, then the multiple coherence will be unity and a prediction error filter could be used to exactly predict this (n + 1)st output. In fact, linear filter relations derived by the multiple coherence program produce an estimate of the (n + 1)st trace which, when subtracted from the actual (n + 1)st trace, given a prediction error trace. Thus the combination of the filter derived in the multiple coherence program and the subtraction operation produces a prediction error filter as shown in the following diagram.

*For the mathematical description of the multiple coherence computation, see Appendix I.

-2-

Prediction Error Filter

The first objective of this study is to use the multiple coherence function to estimate the degree of predictability of the long period noise field at LASA. The result in turn should tell us how much the noise power should be reduced by optimum filtering (e.g., maximum likelihood or Wiener filters) if the filters were theoretically ideal.

The second objective is to determine from multiple coherences the number of independent components comprising a given noise field and the percentage of incoherent noise which cannot be cancelled by any kind of multichannel filtering.

The third objective is to determine the stationarity properties of the noise field. We accomplish this by applying the multiple coherency program to three different time samples from the same array. Then the multiple coherency filters derived

-3-

from the first time sample are applied to the other two time samples. If the filters derived in the first time sample have done a good job of predicting the noise field in all three samples, then the Jata are said to be stationary. On the other hand, if the filters from the first time sample do a progressively poorer job of predicting the noise in the other samples relative to the filters associated with those samples, then the noise is non-stationary to some degree. This deterioration in predictability of the multiple coherence can quantitively measure the non-stationarity of the data**.

**For a theoretical discussion of the stationarity computation, see Appendix II.

2. <u>DESCRIPTION OF DATA</u>

5

We computed the multiple coherence of long period LASA data for the vertical components only. These seismometers are located at the center of each subarray. Consequently, all computations are intersubarray coherences with a maximum of 21 channels available.

The sampling rate for the data is one sample per second. The number of points in the sample varied between 1200 and 4800, from 20 minutes to 80 minutes of data. One frequency range computed varied from zero to .25 cps with a frequency interval of .0125 cps. A second frequency range varied from zero to .20 cps with a frequency interval of .008 cps.

The multiple coherence program has a capacity of 9 input and one output channels. We varied the number of input channels from 2 to 9 wherever possible. In some cases, spikes, dead traces, and instrument malfunctions prevented our obtaining more than 6 or 7 useable input channels. The ordering of the input channels was from the outermost subarrays toward the inner subarrays in every case.

We examined three noise samples. The first was from 9 September 1966 and contained 4759 points. The second from 11 December 1966 contained 1200 points and the third from 5 January 1967 contained 3957 points. We used the 9 September 1966 sample to test variations in the sample lengths and number of lags. We used this sample for the stationarity test also by breaking it into three equal lengths.

-5-

3. RESULTS

Multiple Coherences

Figures 1 and 2 show the multiple coherences versus frequency for the three time samples tested. Figure 1 shows the multiple coherence for the 9 September 1966 sample with 2 to 7 inputs and for the 11 December 1966 sample with 2 to 6 inputs. The figure shows a diagram of the array elements chosen. The output in both cases is channel AO. The September sample is for 3957 points and 120 lags and the December sample is for 1200 points and 80 lags. Figure 2 shows the multiple coherences for the 5 January 1967 sample computed with two different lags; the first at 200 lags and the second at 120 lags.

All of the multiple coherences versus frequency are similar. The multiple coherence for all samples increases significantly with the increase in number of input channels. The sample for 5 January 1967 shows multiple coherences, with 8 or 9 input channels, of .65 and above for frequencies from .05 to .14 cps (from 7 to 20 seconds period).

The multiple coherences for 7 or fewer channels for the 5 January sample agree fairly well with the multiple coherences of December and September samples. This similarity indicates that the September and December samples would also show high multiple coherences over the same frequency range if 8 or 9 reliable input channels were available.

The multiple coherences for the January sample for 120 and 200 lags agree with each other. Even 120 lags at one sample per second is sufficient to uncover correlations between the

-6-

outermost subarrays and the output A0 provided the noise propagations are at velocities of 1 km per second or higher. Since we expect all noise propagation to have velocities greater than this limit, we would expect that the 120 and 200 lag cases should give essentially the same results.

Power Spectra

The spectra for the multiple coherence examples on Figure 1 and 2 are presented on Figures 3 to 7. Figure 3 shows the power spectra for the 9 September 1966 sample for all 4759 seconds. Figures 4 and 5 show the power spectra from the first and second third of this same sample. All three spectra are essentially the same. The vertical scale for all spectra plots are in relative power. At the time these recordings were made, long period calibrations at LASA were not available.

Figure 6 and 7 show similar power spectra plots for the 11 December 1966 and 5 January 1967 samples respectively.

Stationarity Tests

The multiple coherence program derives a set of n filters for the minput seismograms which together provide the best linear estimate for the (n + 1)st seismic trace. The difference between the observed (n + 1)st trace and the best estimate is the error trace. If the multiple coherence is unity, the prediction is perfect and the error trace will be zero. If we form the ratio of the error spectra over the observed spectra, we can get a measure of the reduction in noise power possible from the theoretical

-7-

optimum filters. Thus the db improvement as a function of frequency can be expressed as

db = 10 log (error/observed).

The prediction error filters will do the best job in eliminating the noise background when they are applied to the noise sample from which they are derived. However, if the noise is stationary, the same filter could be expected to do nearly as well when applied to later time samples from the same array. Figure 8 shows the expected noise reduction in db when the prediction error filters that were derived from the first time sample are applied to the first 1586 second sample. In addition these same filters are applied to the second and third 1586 second samples.

The expected noise reduction from prediction error filters in the fitting interval is as much as 9 db at .064 cps (16 second period). Over the 7 to 20 second period range of high multiple coherence the average noise reduction in the fitting interval is about 4 db. This result is obtained with only 7 input channels. Due to the significant increase in multiple coherence with 8 or 9 inputs as shown for the 5 January sample, we would expect that the db improvement in the fitting interval would be somewhat better with more channels. Over the same 7 to 20 second period range, an average of approximately 1 db improvement is obtained outside the fitting interval. The noise reduction outside the fitting interval at .064 cps (16 seconds) is from 3 to 4 db.

-8-

Figure 9 shows the same computations as Figure 8 but with 150 lags computed in the correlation functions instead of 50 lags. The results of Figure 9 essentially agree with those of Figure 8 but show much higher variability. For multiple channel cases, 10% lags led to too much statistical variability to make the results reliable.

Statistical Variability

The examples in this section show the increase in the statistical variability of the computations with the decrease in the degrees of freedom. The (real) degrees of freedom are defined in terms of the number of sample points, the number of lags, and the number of input channels as follows:

degrees of freedom = 2 x (<u>no. of points</u> - no. of input channels) no. of lags

Thus we see that the degrees of freedom will decrease as we decrease the number of points in the sample or increase the number of lags or number of input channels. We note that the effect of decreasing the degrees of freedom is to increase the estimate of the multiple coherences.

Figure 10 shows an increase in multiple coherence with only two inputs when the degrees of freedom are decreased from 44 to 2 in several steps. In this case the 1200 points in the sample was held fixed and the degrees of freedom changed by increasing the number of lags.

-9-

Figure 11, a similar plot, is shown for the same data sample with 7 input channels. In this case the number of degrees of freedom is decreased from 34 to 2 in several steps. The actual computations for Figures 10 and 11 are shown in Table 1 where the "multiple coherence is tabulated against frequency and number of lags. When the number of degrees of freedom become too small, the instability in the computations can cause the computations for the multiple coherence to lie outside the range from 0-100%.

The effect of too few degrees of freedom can be seen in another way. Figure 12 shows the multiple coherence versus frequency computed with 100 lags when the number of points in the sample was varied from 4759 down to 759, in several steps. Here again the multiple coherence increases as the degrees of freedom decrease until instabilities yield coherences outside the range from 0-100%.

When the degrees of freedom are 20 or higher, the computations are generally quite close to each other. For the results shown in Figures 1 and 2 we maintained the degrees of freedom in excess of 20.

4. CONCLUSIONS

1. Multiple coherences for all long period samples increase significantly with an increase in the number of input channels.

2. From mid-range of the long period pass band toward the microseismic frequencies (7-20 seconds period) the multiple coherences are greater than .65 with 8 or 9 input channels.

3. The expected noise reduction from a prediction error filter in the fitting interval is as much as 9 db at 16 seconds period. The noise reduction outside the fitting interval at 16 seconds period is from 3-4 db.

4. Over the 7-20 second period range, the expected noise reduction from a prediction error filter in the fitting interval is about 4 db. Over the same 7-20 second period range an average of 1 db is obtained outside the fitting interval.

5. The db improvement figures given above were computed when only 7 input channels were available. We estimate that the db improvement both within and outside the fitting interval would be increased with more input channels.

6. Over the 7-20 second period range the multiple coherences for all samples tested are quite similar to each other up to 6 or 7 input channels. Since the 9 channels available for one sample showed a significant increase in the multiple coherence over the 6 and 7 channel examples, we conclude that at least 9 input channels are necessary to adequately model the long period noise at LASA.

-11-

FIGURES

- Multiple Coherence vs. Frequency for two LP-Z Samples from LASA.
- Multiple Coherence vs. Frequency for One LP-Z Sample from LASA Computed with Two Different Number of Lags.
- 3. LASA Long Period Spectra for a 9 September 1966 Sample. The Figure shows the output spectrum and the range of all input spectra.
- 4. LASA long period spectra for the first third of the 9 September 1966 sample shown on Figure 3.
- 5. LASA Long period spectra for the second third of the 9 September 1966, sample shown on Figure 3.
- 6. LASA long period spectra for a 11 December 1966 sample. The figure shows the output spectrum and the range of all input spectra.
- 7. LASA Long period spectra for a 5 January 1967 sample. The figure shows the output spectrum and the range of all input spectra.'
- 8. The expected noise reduction from a prediction error filter computer from the first time sample and applied to the first, second, and third time samples.
- 9. The expected noise reduction from a prediction error filter for the same data shown in Figure 8. Here the computations were for more lags and therefore fewer degrees of freedom.
- 10. Multiple coherence vs. Frequency with 2 inputs when the degrees of freedom are decreased from 44 to 2 in several steps by increasing the number of lags.
- Multiple coherence vs. frequency with 7 inputs when the degrees of freedom are decreased from 34 to 2 in several steps by increasing the number of lags.
- 12. Multiple coherence vs. frequency with 7 inputs when the degrees of freedom are decreased by decreasing the number of points in the sample.

Figure 2. Multiple Coherence vs. Frequency for One LP-Z Sample from LASA Computed with Two Different Numbers of Lags.

Figure 4. LASA long period spectra for the first third of the 9 Sept. 1966 sample shown on Figure 3.

Figure 5. LASA long period spectra for the second third of the 9 Sept. 1966 sample shown on Figure 3.

Figure 6. LASA long period spectra for a 11 Dec. 1966 sample. The figure shows the output spectrum and the range of all input spectra.

Figure 7. LASA long period spectra for a 5 Jan. 1967 sample. The figure shows the output spectrum and the range of all input spectra.

Figure 8. The expected noise reduction from a prediction error filter computer from the first time sample and applied to the first, second, and third time samples.

Figure 9. The expected noise reduction from a prediction error filter for the same data shown in Figure 8. Here the computations were for more lags and therefore fewer degrees of freedom.

Figure 10. Multiple coherence vs. frequency with 2 inputs when the degrees of freedom are decreased from 44 to 2 in several steps by increasing the number of lags.

Figure 11. Multiple coherence vs. frequency with 7 inputs when the degrees of freedom are decreased from 34 to 2 in several steps by increasing the number of lags.

Figure 12. Multiple coherence vs. frequency with 7 inputs when the degrees of freedom are decreased by decreasing the number of points in the sample.

SEISMOGRAM # = 10563

9 September 1966 19:39:42.32

X Coherency

1200 Points 1 pps

50 100 150 200 300 400 55.7 144.3 57.7 106.1 120.3 223.7 0 400 30.6 71.6 30.6 30.6 30.6 30.6 30.6 30.6				Lage		ſ		L		ľ			
51 14.3 57.7 106.1 200 400 50 400 50 400 77.6 65.7 75.7 106.1 120.3 123.3 71.5 32.3 105.7 106.	ľ	001 0	1 160	200	1000					A	854		
0.0.0 14.1 7.0.1 106.1 120.3 223.3 0 5.1 27.5 106.7 140.3 4.1 6.55.7 75.7 93.6 140.9 100.1 100.3 233.3 105.5 111.9 100.3 311.2 31.6 31.5 103.3 100.5 111.9 100.3 31.1 41.3 31.6 31.5 11.3 90.6 90.6 91.6 91.7 90.7 91.7 90.6 91.6 91.6 91.6 91.7 91.3 91.7 <th></th> <th></th> <th></th> <th>201</th> <th>202</th> <th>400</th> <th></th> <th>20</th> <th>100</th> <th>150</th> <th>200</th> <th>300</th> <th>400</th>				201	202	400		20	100	150	200	300	400
77.6 65.7 75.7 93.6 146.1 100.7 53.3 13.6 13.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 71.6 96.6 96.7 71.6 96.6 71.6 96.6 96.7 96.7 96.6 96.7 96.6 96.7 96.6 96.7 96.6 96.7 96.6 96.7 96.6 96.7 96.6 96.7 96.6 96.7 <	Ŕ	1 114.3	57.7	106.1	120.3	223.7	0	5.7	22.3	27.5	32.5	106.7	149.0
44.1 63.4 72.5 106.5 111.1 100.5 53.1 101.2 50.9 41.2 65.5 71.6 96.6 30.1 61.3 70.5 96.3 100.7 59.3 100.7 59.3 100.2 59.3 100.2 59.3 100.2 59.3 100.2 59.3 66.3 57.2 67.7 67.3 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.4 59.3 59.3	37.	6 65.7	75.7	93.6	148.9	104.1	.008	18.7	4.5	3.6	5.5	13 9	0.15
36.1 61.3 79.5 96.3 100.7 59.3 103.3 100.7 59.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 107.6 103.3 103.3 103.3	i	1 63.4	72.5	108.5	1.111	109.5	.016	28.2	44.8	55.3	63.6	71.6	9.86
36.0 54.7 71.3 86.0 111.9 103.3 032 10.9 5.1 1.9 9.6 5.0 3.0.3 44.3 71.8 81.4 32.1 107.9 104.0 060 9.4 34.7 54.6 61.4 69.5 60.4 90.7 91.4 90.7 101.5 066 5.0 20.6 90.6 7.1.9 69.3 106.6 90.7 91.4 90.7 101.5 066 5.0 20.6 30.6 39.4 43.9 90.7 91.4 90.7 101.5 100.1 119.4 066 21.7 91.6 57.1 91.6 9	8	1 61.3	79.5	96.3	100.7	59.3	.024	11.3	30.9	41.2	46.2	57.2	67.7
44.3 71.8 81.4 92.1 107.9 104.0 .040 9.4 34.7 54.8 61.4 62.5 64.8 52.6 42.9 64.3 52.3 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.4 52.5 54.6 52.5 54.6 52.5 54.6 52.5 54.6 52.5 54.6 52.5 54.6 52.5 54.6 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.6 54.7 54.7 54.6 54.7 54.7 54.7 54.7 <t< td=""><td>38.</td><td>9 54.7</td><td>71.3</td><td>86.0</td><td>6.111</td><td>103.3</td><td>.032</td><td>10.9</td><td>5.1</td><td>1.9</td><td>9.8</td><td>20.0</td><td>33 3</td></t<>	38.	9 54.7	71.3	86.0	6.111	103.3	.032	10.9	5.1	1.9	9.8	20.0	33 3
61.5 C.2.3 89.6 96.5 103.3 107.6 .048 6.1 9.0 17.8 26.4 42.9 80.0 92.4 99.0 97.7 101.5 .056 5.0 20.6 30.6 39.6 5.3 56.4 80.7 93.4 101.7 104.4 99.7 101.6 .064 8.4 31.6 61.1 71.3 89.3 106.8 80.7 90.6 91.4 99.7 101.6 .064 8.4 31.6 61.1 71.3 89.3 106.8 70.3 87.1 84.8 134.7 83.1 144.1 .066 11.3 37.0 19.3 40.6 77.3 87.9 90.5 113.4 206.5 111.5 37.0 10.2 19.6 37.0 77.3 75.0 119.4 206.5 111.5 36.0 36.0 37.0 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3<		3 71.8	81.4	92.1	107.9	104.0	.040	4.6	34.7	54.8	¥ 19		
00.9 92.8 96.4 99.0 97.7 101.5 101.6 97.1 101.5 101.6 97.1 101.5 101.7 106.4 96.7 101.6 97.6 91.4 39.3 101.7 106.4 96.7 101.6 97.6 91.4 39.1 144.1 .072 25.9 40.4 35.3 44.5 47.0 37.6 70.3 87.1 84.8 134.7 83.1 144.1 .000 23.0 12.9 40.4 35.3 44.5 47.0 37.6 70.3 87.1 84.8 22.7 -89.4 202.5 116.6 7.3 35.4 35.7 10.3 47.0 37.6 70.3 87.1 84.8 22.7 -89.4 202.5 112.6 74.3 35.4 47.0 37.6 75.3 86.8 112.4 206.5 111.5 35.4 35.7 45.0 45.0 46.7 75.3 86.9 90.5 111.5 35.4	65.	5 C2.3	89.6	96.5	103.3	107.6	.048	6.1	0.9	17.8	26.4	0.04	
90.7 93.4 101.7 104.4 90.7 101.6 9.4 33.5 6.1.1 71.3 89.3 106.6 90.6 91.4 93.4 104.1 119.4 .072 25.9 40.4 35.3 44.5 67.0 37.6 70.3 87.1 84.8 134.7 83.1 144.1 .080 23.0 12.9 18.6 64.1 10.3 70.3 87.1 84.8 23.7 90.3 65.3 116.6 74.3 24.1 10.3 71.9 75.3 84.8 22.7 90.6 119.2 16.6 24.1 24.3 46.7 37.6 71.9 75.3 84.8 22.7 90.6 119.2 136.1 112.8 35.1 49.7 34.0 71.7 86.8 111.2 136.1 112.1 8.0 41.7 43.5 45.0 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45	80.	9 92.8	96.4	0.69	1.10	101.5	.056	5.0	20.6	30.6	39.6	5	
86.2 90.6 91.4 90.4 106.1 119.4 .072 25.9 40.4 35.3 44.5 77.0 37.6 70.3 87.1 84.8 134.7 83.1 144.1 .080 23.0 120.9 90.3 65.3 116.6 74.0 27.6 24.1 10.3 70.3 87.1 84.8 134.7 83.1 144.1 .080 23.5 10.2 18.6 74.0 37.6 70.3 86.8 129.9 90.3 65.3 116.6 73.1 56.0 11.5 35.4 10.2 18.6 70.0 34.0 71.3 23.6 90.6 119.4 206.5 88.3 11.6 6.9 96.9 96.9 97.0 73.6 74.0 73.6 74.0 73.6 74.0 73.6 74.0 73.6 74.0 74.3 64.9 96.9 94.7 10.3 10.4 10.2 10.2 10.3 10.3 11.2 97.0	68	93.4	101.7	104.4	98.7	101.6	.064	8.4	33.6	61.1	71.3	68	a 901
	96	90.6	91.4	93.4	104.1	4.011	.072	25.9	40.4	35.3	44.5	47.0	37.6
61.9 88.8 129.9 90.3 65.3 116.6 4.3 9.7 10.2 18.6 49.9 49.7 72.9 75.3 84.8 22.77 -89.4 282.2 -89.4 282.2 16.6 11.5 35.4 31.7 147.4 206.5 110.4 34.0 55.0 73.1 25.0 73.1 25.0 73.1 55.0 73.1 25.0 73.1 25.0 67.1 26.7 45.3 55.1 66.9 45.0 67.1 21.7 60.8 90.6 119.2 136.1 136.1 136.1 136.1 136.3 136.9 45.0 67.1 136.9 45.0 67.1 136.9 45.0 67.1 136.9 45.0 67.1 136.9 45.0 67.1 136.9 45.0 67.1 136.9 32.0 136.9 32.0 146.9 45.0 67.1 136.9 32.0 136.9 32.0 136.9 45.0 67.1 136.9 32.0	70.	3 87.1	84.8	134.7	83.1	144.1	.080	23.0	12.9	18.0	22.6	24.1	
72.9 75.3 84.8 22.7 -99.4 282.2 0.06 11.5 35.4 33.4 33.4 34.0 77.3 55.0 73.1 -53.0 119.4 200.5 136.1 104 9.2 20.1 26.7 40.5 55.1 66.9 51.7 55.0 73.1 -53.0 119.4 340.6 113.1 8.0 41.7 43.2 45.0 67.1 51.7 56.0 90.6 119.2 135.4 136.1 -120 24.7 45.2 67.1 66.9 51.7 60.8 90.6 119.2 135.4 136.1 126 127.7 147.8 55.1 66.9 57.1 55.1 <	61.9	88.8	129.9	90.3	65.3	116.6	880. K	4.3	9.7	10.2	18.6	6.9.9	48.7
47.3 23.6 90.5 127.7 147.4 206.5 41.7 26.7 45.0 55.1 66.9 25.7 55.0 73.1 -52.0 119.4 340.6 71.12 8.0 41.7 43.2 55.1 66.9 51.7 60.8 90.6 119.2 135.4 136.1 .112 8.0 41.7 43.2 65.9 67.1 52.7 60.8 90.6 119.2 135.4 136.1 .120 24.0 30.4 45.0 67.1 52.8 61.8 81.2 104.6 105.0 88.3 111.2 126.7 157.7 18.3 27.0 73.6 133.8 52.8 61.8 81.2 104.3 111.2 .112.6 31.1 111.2 111.2 134.8 56.3 56.9 32.3 53.3 53.3 49.8 64.1 91.6 112.4 351.9 111.2 111.2 114.3 56.3 56.9 32.7 58.4 49.9 64.1 41.3 116.2 116.2 116.9 116.9	72.5	75.3	84.8	22.7	-89.4	282.2	90. 0.	11.5	35.4	33.7	32.9	8.61	
25.7 55.0 73.1 -52.0 119.4 340.6 57.1 57.0 73.1 57.0 67.1 51.7 60.8 90.6 119.2 135.4 136.1 .120 24.0 30.4 47.3 65.0 85.5 112.8 51.7 60.8 90.6 119.2 135.4 136.1 .120 24.0 30.4 47.3 65.0 85.5 112.8 52.8 61.3 73.5 45.4 62.1 .136.1 113.6 32.3 53.3 53.3 52.8 61.3 73.5 45.4 62.1 .136.1 114.6 65.9 77.0 73.6 134.8 52.8 61.3 111.2 .144 65.9 27.3 55.3 58.3 53.3 53.3 54.9 103.8 111.8 34.9 104.3 111.2 .144 6.9 27.3 55.3 58.3 53.3 58.4 97.6 138.7 35.1 10.5 <	47.5	3 23.6	90.5	127.7	147.4	208.5	.10t	9.2	20.1	26.7	40.5	25.1	
517 608 906 1192 1354 1361 120 240 304 423 620 855 1128 439 648 812 1046 1050 883 128 127 163 270 736 1348 528 513 735 45.4 944 621 .136 973 553 553 553 533 408 643 1118 349 1063 1112 .136 973 553 553 553 533 533 549 1038 1187 3563 1063 736 736 736 736 1349 549 1038 1113 349 1063 1113 357 756 736 736 736 549 661 1111 461 413 .1065 273 563 563 563 563 563<	25.7	55.0	73.1	-52.0	119.4	340.6	112	8.0	41.7	43.2	43.5	45.0	
43.9 64.8 81.2 104.6 105.0 88.3 128 12.7 15.7 18.3 27.0 73.6 134.8 52.8 61.3 73.5 45.4 94.4 62.1 .136 45.0 11.0 11.5 16.9 32.3 53.3 49.8 64.3 111.8 34.9 106.3 111.2 .136 45.0 73.6 134.8 49.8 64.3 111.8 34.9 106.3 111.2 .114 6.9 27.3 56.3 60.8 78.8 82.9 54.9 103.8 118.7 36.4 99.6 124.5 .152 3.7 10.5 27.4 25.7 35.7 56.4 43.7 66.1 111.1 46.1 41.3 .166 27.3 56.7 35.7 56.4 28.4 43.9 66.01 111.1 46.1 41.3 .166 27.3 56.4 41.6 74.3 36.4 43.9 66.1 <td>51.7</td> <td>60.8</td> <td>90.6</td> <td>119.2</td> <td>135.4</td> <td>136.1</td> <td>.120</td> <td>24.0</td> <td>30.4</td> <td>42.3</td> <td>62.0</td> <td>85.5</td> <td>112 0</td>	51.7	60.8	90.6	119.2	135.4	136.1	.120	24.0	30.4	42.3	62.0	85.5	112 0
52.8 61.3 73.5 45.4 94.4 62.1 .136 9.3 11.0 13.5 16.9 32.3 53.3 49.8 64.3 111.8 34.9 104.3 111.2 .144 6.9 27.3 56.3 60.8 78.8 82.9 54.9 103.8 118.7 36.4 99.6 124.5 .1152 3.7 10.5 22.4 25.7 35.7 56.4 54.9 103.8 17.7 331.9 .1152 3.7 10.5 22.4 25.7 35.7 56.4 82.9 54.4 43.9 60.1 111.1 46.1 41.3 .160 27.8 25.7 35.7 35.7 56.4 35.8 52.7 76.2 169.6 2000.4 145.6 .176 45.3 16.1 47.3 16.1 35.9 51.6 76.2 169.6 200.3 92.6 61.1 9.7 14.3 11.1 35.9 51.6 <td>43.9</td> <td>64.8</td> <td>81.2</td> <td>104.6</td> <td>105.0</td> <td>88.3</td> <td>128</td> <td>12.0</td> <td>15.7</td> <td>18.3</td> <td>27.0</td> <td>73.6</td> <td>a 121</td>	43.9	64.8	81.2	104.6	105.0	88.3	128	12.0	15.7	18.3	27.0	73.6	a 121
49.8 64.3 111.8 34.9 104.3 111.2 .144 6.9 27.3 56.3 60.8 78.8 82.9 54.9 103.8 118.7 36.4 99.6 124.5 .152 3.7 10.5 22.4 25.7 35.7 58.4 54.9 103.8 118.7 36.4 99.6 124.5 .152 3.7 10.5 22.4 25.7 35.7 58.4 58.4 97.6 436.3 17.7 331.9 .160 2.9 6.1 9.7 10.5 22.4 25.7 38.4 28.4 43.9 60.1 111.1 46.1 41.3 .166 2.7 5.6 4.1 4.3 74.3 35.8 52.7 76.2 169.6 -2008.4 145.6 .176 4.5 2.7 5.6 4.1 4.3 11.1 35.9 51.6 60.3 90.3 92.0 184 3.9 27.5 4.3 11.1 11.1 36.9 51.6 60.3 74.3 24.6 4.5 2.7<	52.8	61.3	73.5	45.4	4.4	62.1	.136	C.2	11.0	13.5	16.9	32.3	53.3
56.9 103.6 118.7 36.4 99.6 124.5 .152 3.7 10.5 22.4 25.7 35.7 58.4 43.7 86.4 97.6 436.3 17.7 351.9 .160 2.9 6.1 9.7 74.7 24.6 82.9 28.4 43.9 60.1 111.1 46.1 41.3 .160 2.9 6.1 9.7 74.7 24.6 82.9 28.4 43.9 60.1 111.1 46.1 41.3 .166 2.9 6.1 9.7 74.7 24.6 82.9 35.8 52.7 76.2 169.6 -2006.4 145.6 .176 4.5 2.7 5.6 4.1 4.3 11.1 29.9 51.6 76.0 142.7 90.3 92.0 184 3.9 22.5 44.9 76.8 116.7 136.1 36.9 51.6 76.0 143.0 69.7 245.9 .176 32.5 34.9 74.3 36.9 51.6 76.5 1184 3.9 22.5 44.	49.8	64.3	111.8	34.9	104.3	111.2	.144	6.9	27.3	56.3	60.8	78.8	82.9
43.7 86.4 97.6 436.3 17.7 351.9 .160 2.9 6.1 9.7 14.7 24.6 82.9 28.4 43.9 60.1 111.1 46.1 41.3 .168 0.7 6.0 17.8 34.2 68.2 74.3 28.4 43.9 60.1 111.1 46.1 41.3 .168 0.7 6.0 17.8 34.2 68.2 74.3 35.8 52.7 76.2 169.6 -2008.4 145.6 .176 4.5 2.7 5.6 4.1 4.3 11.1 29.9 51.6 76.0 142.7 90.3 92.0 184 3.9 22.5 44.9 76.8 116.7 136.1 36.9 51.6 80.3 143.0 69.7 245.9 .192 2.9 3.0 19.2 36.3 41.6 36.3 78.5 112.1 115.9 110.2 .200 5.1 23.3 47.9 36.3 41.6 36.3 78.5 110.2 .200 5.1 23.3 47	5.12	103.8	118.7	36.4	9.66	124.5	.152	3.7	10.5	22.4	25.7	35.7	1
28.4 43.9 60.1 111.1 46.1 41.3 .168 0.7 6.0 17.8 34.2 69.2 74.3 35.8 52.7 76.2 169.6 -2008.4 145.6 .176 4.5 2.7 5.6 4.1 4.3 11.1 29.9 51.6 76.0 142.7 90.3 92.0 184 3.9 22.5 44.9 76.8 116.7 136.1 36.9 51.6 76.0 142.7 90.3 92.0 184 3.9 22.5 44.9 76.8 116.7 136.1 36.9 51.6 80.3 143.0 89.7 245.9 .192 2.9 3.0 19.2 74.3 116.7 136.1 36.3 78.5 112.1 115.9 110.2 .200 5.1 23.3 47.9 59.1 73.8 36.2 63.3 78.5 110.2 .200 5.1 23.3 47.9 59.1 73.8	43.7	86.4	97.6	436.3	17.7	351.9	.160	3.9	6.1	5.7	7.4.7	24.6	82.0
35.8 52.7 76.2 169.6 -2006.4 145.6 .176 4.5 2.7 5.6 4.1 4.3 11.1 29.9 51.6 76.0 142.7 90.3 92.0 184 3.9 22.5 44.9 76.8 116.7 136.1 36.9 51.6 80.3 143.0 69.7 245.9 .192 2.9 3.0 19.2 34.9 76.8 116.7 136.1 36.3 51.1 115.0 110.2 .200 5.1 23.3 47.9 36.3 41.6 36.2 63.3 78.5 112.1 115.9 110.2 .200 5.1 23.3 47.9 59.1 73.8	28.4	43.9	60.1	1.111	46.1	41.3	.168	0.7	6.0	17.8	34.2	68.2	
36.9 51.6 76.0 142.7 90.3 92.0 184 3.9 22.5 44.9 76.8 116.7 136.1 36.9 51.6 80.3 143.0 69.7 245.9 .192 2.9 3.0 19.2 37.0 38.3 41.6 38.2 63.3 78.5 112.1 115.9 110.2 .200 5.1 23.3 47.9 59.1 73.8	35.8	52.7	76.2	169.6	2009.4	145.6	.176	4.5	2.7	5.6	4.1	-	
36.9 51.6 80.3 143.0 89.7 245.9 .192 2.9 3.0 19.2 37.0 38.3 41.6 36.2 63.3 78.5 112.1 115.9 110.2 .200 5.1 23.3 47.9 57.3 59.1 73.8		9.16	76.0	142.7	90.3	92.0	184	3.9	22.5	44.9	76.8	116.7	136.1
38.2 63.3 78.5 112.1 115.9 110.2 .200 5.1 23.3 47.9 57.3 59.1 73.8	30.9	21.6	80.3	143.0	69.7	245.9	.192	2.9	3.0	19.2	37.0		41.6
	38.2	63.3	78.5	1.211	115.9	110.2	.200	5.1	23.3	47.9	57.3	1.65	73.8

TABLE I

North Control of

Inputs = 24, 23, 21, C4, C1, C2, C1 = 7

Output = AO Inputs = <u>E4.83</u> = 2

APPENDIX I *Multiple Coherence Functions

Consider a collection of q clearly defined inputs $x_i(t)$; i = 1,2,...,q, and one output y(t), as pictured in Figure 5.12. Let $G_i(f) = G_{ii}(f)$ be the

Figure 5.12 Multiple-input linear system.

power spectral density function for $x_i(t)$, and $G_{ij}(f)$ be the cross-spectral density function between $x_i(t)$ and $x_j(t)$. Define the N x N spectral matrix by

$$G_{ext}(f) = \begin{bmatrix} G_{11}(f) & G_{12}(f) & \cdots & G_{1q}(f) \\ G_{21}(f) & G_{22}(f) & & G_{2q}(f) \\ \vdots & & & & \\ \vdots & & & & \\ G_{q1}(f) & G_{q2}(f) & & G_{qq}(f) \end{bmatrix}$$

(1)

*This explanation of multiple coherence functions was taken from "Measurement and Analysis of Random Data", Bendat, J. S., and Piersol, A. G., John Wiley and Sons, 1966. For more detailed thecretical developments and discussions of multiple, partial and marginal coherence functions, see this text. The ordinary coherence function between $x_i(f)$ and $x_j(t)$ is defined by

$$\gamma_{ij}^{*}(f) = \frac{|G_{ij}(f)|^{*}}{G_{i}(f) G_{j}(f)}$$
(2)

The multiple coherence function between $x_i(t)$ and all other inputs $x_1(t)$, $x_2(t)$,...,excluding $x_i(t)$, is defined by

$$\gamma_{i,a}^{*}(f) = 1 - [G_i(f) G^i(f)]^{-1}$$
(3)

where $G^{i}(g)$ denotes the ith diagonal element of the inverse matrix $G_{xx}(f)^{-1}$ associated with Eq. (1). The ordinary and multiple coherence functions are both real-valued quantities which are bounded by zero and unity. That is,

$$0 \le \gamma_{ij}^2(f) \le 1$$

$$0 \le \gamma_{i,x}^2(f) \le 1$$
(4)

The multiple coherence function is a measure of the linear relationship between the time history at one point, and the time histories at the collection of other points. That is, the multiple coherence function indicates whether or not the data at all of the other points linearly produce the results at a given point.

APPENDIX 2

Theoretical Development of The Stationarity Relations

A.

A number of useful statistical measures such as ordinary and multiple coherence can be used as tools to indicate the amount of noise reduction feasible in a multiply coherent array. The basic linear model which determines the db reduction possible in the noise field by multiple coherence filtering relates a reference element (trace) y(t) of an array to the other elements, say $x_1(t), x_2(t), \ldots, x_p(t)$ in the array through the linear model

$$y(t) = \sum_{k=1}^{p} \int_{-\infty}^{\infty} h_{k}(\alpha) x_{k}(t-\alpha) d\alpha \qquad (1)$$

Generally we determine $h_k(t)$ as the time invariant linear filter that makes the mean square error between y(t) and its predicted value a minimum, i. e.

$$E | y(t) - \sum_{k=1}^{p} \int_{-\infty}^{\infty} h_{k}(\alpha) x_{k}(t-\alpha) d\alpha|^{2} = \min \qquad (2)$$

which, by the usual orthogonality principle (see Papoulis 1), yields the condition

$$Ey(t) x_{\ell}(t+\tau) = \sum_{k=1}^{p} \int h_{k}(\alpha) E x_{k}(t-\alpha) x_{\ell}(t+\tau) d\alpha$$

$$k=1$$

$$\ell = 1, 2, \dots, p, -\infty < \tau < \infty$$
(3)

or
$$p$$

 $R_{yx_{\ell}}(\tau) = \sum_{k=1}^{p} \int h_{k}(\alpha) R_{x_{k}x_{\ell}}(\tau+\alpha) d\alpha$ (4)

which by taking Fourier transforms implies that

$$\mathbf{S}_{\mathbf{y}\mathbf{x}\boldsymbol{\ell}}(\boldsymbol{\omega}) = \sum_{k=1}^{\mathbf{p}} \mathbf{H}_{\mathbf{k}}^{\star}(\boldsymbol{\omega}) \mathbf{S}_{\mathbf{x}_{\mathbf{k}}\mathbf{x}_{\mathbf{\ell}}}(\boldsymbol{\omega})$$
(5)

Now, the mean square error can be written

$$E[y(t) - \sum_{k=1}^{p} \int h_{k}(\alpha) x_{k}(t-\alpha) d\alpha|^{2} = E\left(y(t) - \sum_{k=1}^{p} \int h_{k}(\alpha) x_{k}(t-\alpha) d\alpha\right) y(t)$$

$$= R_{yy}(0) - \sum_{k=1}^{F} \int h_k(\alpha) R_{x_ky}(\alpha) d\alpha$$

....

$$= \int_{-\infty}^{\infty} \left[s_{yy}(w) - \sum_{k=1}^{p} \pi_{k}^{*}(w) s_{x_{k}y}(w) \right] \frac{dw}{2\pi}$$
$$= \int_{-\infty}^{\infty} \left(s_{yy} - \underline{s}_{yx} s_{xx}^{-1} \underline{s}_{xy} \right) (w) \frac{dw}{2\pi}$$

$$= \int_{\infty} \left(1 - \alpha^2 (w) \right) S_{yy}(w) \frac{dw}{2\pi}$$
(6)

where $\alpha^2(w)$ is the multiple coherence and $(1 - \alpha^2(w))$ measures the reduction in power possible at the frequency w. With $\alpha^2(w) = 1$ the mean square error is zero and with $\alpha^2(w) = 0$ the mean square error is just

$$\int_{\infty}^{\infty} S_{yy}(w) \frac{dw}{2\pi} = R_{yy}(0) = E |y(t)|^2$$
(7)

which is the original power in the process y(t). Now the quantity $(1-\alpha^2(w)) S_{yy}(w)$ represents the residual power at each frequency after the best linear estimate of the form (1) has been subtracted out. Hence the db reduction in power at each frequency is just the ratio of the output power of the residual (see equation (2)) to the input power in y(t) or

$$I_{H}(w) = 10 \log \frac{S_{ee}(w)}{S_{yy}(w)} = 10 \log (1 - \alpha^{2}(w))$$
(8)

where $a^2(w)$ is the multiple coherence and $S_{ee}(w)$ is the power spectrum of the error process

$$e(t) = y(t) - \sum_{k=1}^{p} \int_{-\infty}^{\infty} h_{k}(\alpha) x_{k}(t - \alpha) d\alpha \qquad (9)$$

B. <u>Noise Reduction Outside The Fitting Interval</u>

We would also like to determine the noise reduction in db which would result from using a set of filters $g_k(t)$, $k=1, \ldots, p$ which have been derived either from another fitting interval or from theoretical considerations. To accomplish this let $h_k(t)$ be the optimal filters for the time under investigation and let $g_k(t)$ be any other set of filters whose mean square error is to be compared with $h_k(t)$. The mean square error of the g filters can be written using the orthogonality principle as

$$E \mid y(t) - \sum_{k=1}^{p} \int_{-\infty}^{\infty} g_{k}(\alpha) x_{k}(t-\alpha) d\alpha \mid^{2} =$$

- 2-3 -

$$E|y(t) - \sum_{k=1}^{p} \int_{-\infty}^{\infty} h_{k}(\alpha) x_{k}(t-\alpha) d\alpha + \sum_{k=1}^{p} \int_{-\infty}^{\infty} (h_{k}(\alpha) - g_{k}(\alpha)) x_{k}(t-\alpha) d\alpha|^{2}$$

$$= E|y(t) - \sum_{k=1}^{p} \int_{-\infty}^{\infty} h_{k}(\alpha) x_{k}(t-\alpha) d\alpha|^{2} + E| \sum_{k=1}^{p} \int_{-\infty}^{\infty} (h_{k}(\alpha) - g_{k}(\alpha)) x_{k}(t-\alpha) d\alpha|^{2}$$

$$= E|y(t) - \sum_{k=1}^{p} \int_{-\infty}^{\infty} h_{k}(\alpha) x_{k}(t-\alpha) d\alpha|^{2} + E| \sum_{k=1}^{p} \int_{-\infty}^{\infty} (h_{k}(\alpha) - g_{k}(\alpha)) x_{k}(t-\alpha) d\alpha|^{2}$$

$$= \int_{-\infty}^{\infty} (1-\alpha^{2}(w)) \operatorname{s}_{yy}(w) \frac{\mathrm{d}w}{2\pi} + \int_{-\infty}^{\infty} (\underline{H} - \underline{G})^{*} \operatorname{s}_{xx}(\underline{H} - \underline{G}) (w) \frac{\mathrm{d}w}{2\pi}$$

$$= \int_{-\infty}^{\infty} \left[\left(1 - \alpha^{2}(\omega) \right) + \frac{\left(\underline{H} - \underline{G}\right)^{*} S_{xx} \left(\underline{H} - \underline{G}\right) (\omega)}{S_{yy}(\omega)} \right] S_{yy}(\omega) \frac{d\omega}{2\pi}$$
(10)

Hence, if we call the new error $\ell'(t)$ we have

$$\ell'(t) = y(t) - \sum_{k=1}^{p} \int g_{k}(\alpha) x_{k}(t-\alpha) d\alpha$$

with power spectrum $S_{\ell'\ell'}(w)$, the new value for the improvement in the $S_k(t)$ filters would be

$$I_{G}(\omega) = 10 \log \frac{S_{\ell'\ell'}(\omega)}{S_{YY}(\omega)} = 10 \log_{S} \left(1 - \alpha^{2}(\omega) + \frac{(\underline{H} - \underline{G})^{*}S_{XX}(\underline{H} - \underline{G})}{S_{YY}(\omega)}\right)$$

(12)

Equation (12) shows that the improvement in the $g_k(t)$ filters is expressed in terms of the improvement in the hk(t) filters and a correction term which is zero when $\underline{H} = \underline{G}$.

The improvement values $I_H(w)$ and $I_G(w)$ in equations (8) and (12) are those shown in the main body of the report.

Reference

1. Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw Hill, 1965.

(WWWITE) CINERIECOLON OF HELE BOOD AF shales at and in	CONTROL DATA -	R&D	
1. ORIGINATING ACTIVITY (Corporate author)	idaxing annotation must b	a entered who	in the overall report is a lassified)
TELEDYNE, INC.		IInc	TARALELANTY CLASSIFICATION
ALEXANDRTA, VIRGINIA		one.	lassified
		20. GRC	
3. REPORT TITLE			
MULTIPLE COHERENCE OF LONG P	ERIOD NOISE A	T LASA	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates))		
Scientific			
8. AUTHOR(S) (Leet name, first name, initial)			
E. F. Chiburis and W. C. Dear	ı		
REPORT DATE	78. TOTAL NO. OF	PAGES	78. 80. 07 8555
June 23, 1967	31		1
IS. CONTRACT OR GRANT NO.	Se. ORIGINATORI	REPORT M	
F 33657-67-C-1313	180		
A PROJECT NO.	109		
VELA T/6702			
ARPA Order No. 624	Sb. OTHER REPOR	T NO(3) (An	y other numbers that may be senting
d APPA Program Code Ma Foto			
AVALLARITY/ MITATION MARKA	#==		
This document is aubient to	and all		
mittel to for t	eclal export	contro	is and each trans-
mittal to foreign governments	or foreign na	ational	may be made only
with prior approval of Chief,	AFTAC		1
1. SUPPLEMENTARY NOTES	12. SPONSORING M	LITARY ACT	IVITY
	ADVANCED	RESEARC	H PROJECTS AGENCY
	NUCLEAR TI	EST DET	ECTION OFFICE
	WASHINGTON	I, D. C	
ABSTRACT			
Multine 1			
Multiple coherence gives	a quantitati	Lve mea	sure versus fre-
Multiple coherence gives quency of how well a linear co	a quantitation of	lve mea E n inp	sure versus fre- ut channels can
Multiple coherence gives quency of how well a linear co match the $(n + 1)$ st channel is	a quantitati ombination of in a seismic	lve mea E n inp arrav	sure versus fre- ut channels can
Multiple coherence gives quency of how well a linear co match the $(n + 1)$ st channel : match the output exactly, the	a quantitation of a seismic of the multiple	tve mea f n inp array.	sure versus fre- ut channels can If the inputs ca
Multiple coherence gives quency of how well a linear commatch the $(n + 1)$ st channel : match the output exactly, ther only n channels are necessary	a quantitation of ombination of in a seismic n the multip	tve mea f n inp array. le cohe:	sure versus fre- ut channels can If the inputs ca rence is unity and
Multiple coherence gives quency of how well a linear commatch the $(n + 1)$ st channel : match the output exactly, ther only n channels are necessary	a quantitation of ombination of in a seismic n the multip to describe	tve mea f n inp array. le cohe the no	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r
Multiple coherence gives quency of how well a linear commatch the $(n + 1)$ st channel : match the output exactly, ther only n channels are necessary port shows multiple coherence	a quantitation of ombination of in a seismic n the multipl to describe versus frequ	f n inp array. Le cohe: the no iency w	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This re ith 2 to 9 input
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert	a quantitation of ombination of in a seismic n the multip to describe versus frequence tical component	f n inp array. le cohe: the no nency we ent noi:	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This re ith 2 to 9 input se fields at LASA.
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert	a quantitation of ombination of in a seismic n the multip to describe versus frequ tical compone	the noisency w	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA.
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds	a quantitation ombination of in a seismic n the multipl to describe versus frequ tical compone period range	the mea f n inp array. le cohe: the no ency we ent noi: the mu	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. ultiple coherence of
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated	a quantitation ombination of in a seismic n the multipl to describe versus frequ tical compone period range er than .65 s	the mea f n inp array. Le cohe: the no ency we ent nois the mu chowing	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. ultiple coherence that 65% or more
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel	a quantitation ombination of in a seismic a the multipl to describe versus freque tical compone period range er than .65 s is predictab	the mea f n inp array. Le cohe: the no ency we ent nois the mu bhowing ble by o	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. ultiple coherence that 65% or more other seismometer
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This le	a quantitation ombination of in a seismic a the multipl to describe versus freque tical compone period range er than .65 s is predictable evel of multiplication is predictable	the mea array. Le cohe: the no ency we ent nois the mu bhowing ple by co	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. ultiple coherence that 65% or more other seismometer
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple	a quantitation ombination of in a seismic a the multipl to describe versus freque tical compone period range er than .65 s is predictable evel of multi	the mea array. Le cohe: the no ency we ent noi: the mu bhowing ble by o ple coh	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. ultiple coherence that 65% or more of other seismometer merence require 8
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between prime	a quantitation ombination of in a seismic a the multipl to describe versus freque tical compone period range er than .65 s is predictable evel of multi coherence w	the mea array. Le cohe: the no nency we ent nois the me bhowing ble by o ple coh ith fer	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This re ith 2 to 9 input se fields at LASA. altiple coherence that 65% or more of ther seismometer merence requires 8 wer inputs & ordi-
Multiple coherence gives quency of how well a linear of match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of	a quantitation ombination of in a seismic a the multipl to describe versus frequentical compone period range er than .65 s is predictable evel of multi coherence w of channels a	the mea array. le cohe: the no ency we ent noi: the mu bhowing ple by o ple col rith few re much	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This re ith 2 to 9 input se fields at LASA. altiple coherence of that 65% or more of other seismometer herence requires 8 wer inputs & ordi- a lower.
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of From the samples tested a	a quantitation ombination of in a seismic a the multipl to describe versus frequ tical compone period range er than .65 s is predictable evel of multi coherence w of channels a	the mea f n inp array. le cohe: the no ency we ent noi: the mo howing le by o ple col tith few re much	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. ultiple coherence that 65% or more of ther seismometer herence requires 8 wer inputs & ordi- h lower.
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of From the samples tested we guite similar to each other	a quantitation ombination of in a seismic a the multipl to describe versus frequ tical compone period range er than .65 s is predictable evel of multi coherence w of channels a which all pro	the mea f n inp array. le cohe: the no ency we ent noi: the mo howing le by o ple col ith few re much duce mu	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. altiple coherence that 65% or more other seismometer herence requires 8 wer inputs & ordi- n lower.
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel is match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of From the samples tested we quite similar to each other, we	a quantitation ombination of in a seismic to the multip to describe versus frequ tical compone period range er than .65 s is predictable evel of multi coherence w of channels a which all pro	the mea f n inp array. le cohe: the no ency we ent noi: the mo howing le by o ple col duce mu hat at	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. altiple coherence that 65% or more other seismometer herence requires 8 wer inputs & ordi- h lower. altiple coherences least 9 input
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of From the samples tested we quite similar to each other, we channels are necessary to adeq	a quantitation ombination of in a seismic in the multiple to describe versus freque tical compone period range er than .65 s is predictable vel of multiple coherence w of channels a which all pro- ve conclude t guately descr	the mea f n inp array. le cohe: the no ency we ent noi: the mo bound the by o ple col duce mu hat at ibe the	sure versus fre- ut channels can If the inputs can rence is unity and ise field. This re ith 2 to 9 input se fields at LASA. Altiple coherence of that 65% or more of that 65% or more of ther seismometer merence requires 8 wer inputs & ordi- n lower. Altiple coherences least 9 input a long period
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel is match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of From the samples tested we quite similar to each other, we channels are necessary to adeq noise at LASA.	a quantitation ombination of in a seismic to the multiply to describe versus frequ tical compone period range er than .65 s is predictable evel of multi coherence w of channels a which all prove conclude t guately descr	the mea f n inp array. le cohe: the no ency we ent noi: the mo howing ele by o ple col duce mu hat at ibe the	sure versus fre- ut channels can If the inputs can rence is unity and ise field. This re ith 2 to 9 input se fields at LASA. altiple coherence of that 65% or more of that 65% or more of ther seismometer merence requires 8 wer inputs & ordi- n lower. altiple coherences least 9 input a long period
Multiple coherence gives quency of how well a linear co- match the (n + 1) st channel is match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of From the samples tested we quite similar to each other, we channels are necessary to adeq noise at LASA.	a quantitation ombination of in a seismic in the multip to describe versus frequ tical compone period range er than .65 s is predictable vel of multi coherence w of channels a which all pro ve conclude t guately descr	the mea f n inp array. le cohes the no ency we ent nois the mo howing ole by o ple col duce mu hat at ibe the	sure versus fre- ut channels can If the inputs can rence is unity and ise field. This re ith 2 to 9 input se fields at LASA. altiple coherence of that 65% or more of that 65% or more of ther seismometer merence requires 8 wer inputs & ordi- n lower. altiple coherences least 9 input a long period
Multiple coherence gives quency of how well a linear or match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of From the samples tested we quite similar to each other, we channels are necessary to adeq noise at LASA.	a quantitation ombination of in a seismic in the multipl to describe versus frequencies period range er than .65 s is predictable evel of multi coherence w of channels a which all prove conclude t guately describe	the mea f n inp array. le cohe the no ency we ent nois the mo howing ple by o ple coh tith few re much duce mu hat at ibe the	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. altiple coherence that 65% or more other seismometer herence requires 8 wer inputs & ordi- n lower. altiple coherences least 9 input e long period
Multiple coherence gives quency of how well a linear co match the (n + 1) st channel : match the output exactly, then only n channels are necessary port shows multiple coherence channels for long period, vert Over the 7 to 20 seconds the samples tested were greated the noise at a center channel outputs in the array. This let to 9 input channels. Multiple nary coherence between pairs of From the samples tested we quite similar to each other, we channels are necessary to adeq noise at LASA.	a quantitation ombination of in a seismic in the multiply to describe versus frequentical compone period range er than .65 s is predictable evel of multiple coherence w of channels a which all prove conclude t quately describe	the mea f n inp array. le cohe: the no ency w ent nois the mu howing ole by o ple col vith few re much duce mu hat at ibe the	sure versus fre- ut channels can If the inputs ca rence is unity and ise field. This r ith 2 to 9 input se fields at LASA. altiple coherence of that 65% or more of other seismometer merence requires 8 wer inputs & ordi- n lower. altiple coherences least 9 input a long period

ž.

No of

Unclassified Security Clussification

KEY WORDS		LIN	K A WT	I.A	• Pj W.T	LIN	KC
LASA Large Aperture Seismic Ar	ray					HULE	- W :
Multiple Coherence							
Prediction Error						100.00	-1
Multi-channel Filtering						i ol	
Noise Spectra							
Seismic Arrays							
Stationarity							
					14		
INSTR	UCTIONS						
 REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whather "Restricted Date" is included. Marking is to be in occordance with appropriate security regulations. GROUP: Automatic downgrading is specified in Dof Directive 5200. I0 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional marking a hava been used for Group 3 and Group 4 as authorized. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the titla. DESCRIPTIVE NOTES: If appropriate, anter the type of report, e.g., interim, progress, summary, snnual, or final. Give the inclusive datas when a specific reporting period is covered. AUTHOR(S): Enter the name(s) of suthor(a) as shown on or in the report. Enter last name, first name, middle initial. I military, show rank and branch of service. The name of he principal author is an sbeciute minimum inquirement. REPORT LATE: Enter the date of the report sa day, nonth, yrsr; or month, yesr. If more than one date appears on the report. BATELENCES Enter the total number of efferences cited in the report. NUMBER OF REFERENCES Enter the total number of efferences cited in the report. CONTRACT OR GRANT NUMBER: If approprist/a, enter the splicable number of the convexci or grant under which he report number , system number, itsk number, etc. ORIGINATOR'S REPORT NUMBER: Enter the spropriste aliter department identification, such as project zounder, ubproject number, system numbers, itsk number, etc. ORIGINATOR'S REPORT NUMBER: Enter the spropriste aliter department identification, such as project zounder, ubproject number, system numbers, itsk number, etc. ORIGINATOR'S REPORT NUMBER(S)	(2) " (3) " (4) " (4) " (4) " (5) " (6) " (7) " (6) " (7) " (7)" (7) " (7) " (port from Foreign ar port by DI U. S. Gove is report of the shall U. S. milit port direct scii reques Ali distrib lad DDC u aport has bepartment act and ent LEMENTA CORING Minental proj research the docum appear ei ditionsi sp Gord the m the docum appear ei ditionsi sp GORDS: Ke ases that s for cats that no as en signment	DDC." mouncem DC is not request is irrectly fire request ti sry sgend ly from I t through ution of t tsers shal been furn of Comm er the pr RY NOTI LITARY act office and devel ter sn sb ient indic sevhare i sce is re sble that h paragra- tistry sur- raph, rep stion cn ingth is f ry words of links, of links,	ent and d authorize gencies m om DDC, brough ties may d DC. Oth his report ice, is may erce, for ice, if kn ES: Use ACTIVIT or isbor lopment. stract gives stract gives stract gives the sbath ph of the iceurity ci resented the lengti rom ISO ti sre techn ize a report. ssificat i designs: iocstion, n indicas rules, an	issemins ad " Other q obtsin co er qualifi- is contr through the Offica sale te t own for sdditi 'Y: Ente story spo Include ving s bri the report yo of the solities to cl abstract assificst ss (TS), of the so o 225 wo incline more solities in req ion, trad may be to ion of te ad weight	tion of the n copies of ualified I pies of the led users olied Qu e of Tech he public construction should explore the public construction should explore the name nasoring (sddress. ef sven the technics is tion shee satified is shall en ison of the (S), (C), batract. ison shall en and, is te name, is used so the construct.	is of DDC
PO R36-551			Uncla	ssifi	ed	ation	