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ABSTRACT

Multipke coherence gives a quantitative measure versus
frequency of how well a linear combination of n input channels
can match the (n + 1)st channel in a seismic array. If the
inputs can match the output exactly, then the multiple coherence
is unity and only n channels are necessary to describe the noise
field. This report shows multiple coherence verstus frequency
with 2 to 9 input cnannels for long period, vertical component
noise fields at LASA.

Over the 7 to 20 seconds period range the multiple coherences
on the samples tested were greater than .65 showing that 65% or
more of the noise at a center channel is predictable by other
seismometer outputs in the array. This level of multiple coher-
ence requires 8 to 9 input channels. Multiple coherence with
fewer inputs and ordinary coherence between pairs of channels
are much lower. |

From the samples tested, which all produce multiple coher-
ences quite similar to each other, we conclude that at least 9
input channels are necessary to adequately describe the long

period noise at LASA.
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1. INTRODUCTION

Most basic data processing techniques for signal énhancement
or identification depend upon the structure of the ncise within
the seismic array. If some of the coherent noise is due to site
characteristics such as consistently coherent noises from par-
ticular directions, then techniques using multiple coherence
will help to isolate these consistent linear relations. Many
optimum filters for estimating the signal take account of these
linear relations implicitly by weighting with the inverse of
the spectral noise matrix. However, one cannot tell whether the
coherent noise involved is due to noise generating events which
cannot be predicted or cor:::rolled° Thus, the filter€ must be
recalculated over a period of noise recording immediately prior
to the arrival of each single signal. Part of the coherent noise
generated within the array may be due to various causal factors
for a particular array. If so, we can learn something about
these factors by examining the linear relations between the
various array elements. A potential benefit here is that a
consistent linear model relating the different sub-elements
would eliminate the need for computing a different set of fil-
ter coe?%icients for each event.

The multiple coherence funciion can indicate how many seis-
mometer outputs in an array are necessary to properly determine
the seismic noise field. If there are n independent seismic
noise components, then the multiple coherence function would be

unity when (n + 1)st seismometers are placed in an array to

measure seismic noise records. If part of the background is




composed of incoherent noise, then the multiple coherence function
would indicate the percentage of coherent noise pPresent and the
number of seismometers necessary to define this coherent noise.
The filter relations determined by the multiple coherence com-
putations can then be used in array summation to bring the noise
into destructive interference.*

This analysis does not guarantee that such optimum processing
is possible. For example, if the noise and signal propagation
characteristics across the array are identical, no velocity fil-
tering scheme can be expected to separate the two even though
the multiple coherence might be unity.

The multiple coherence function is the frequency domain equi-
valent of the prediction error filter in time. If n input seismic
traces predict the (n + 1l)st trace in an array completely, then
the multiple coherence will be unity and a prediction error filter
could be used to exactly predict this (n + 1)st output. In fact,
linear filter relations derived by the multiple coherence program
produce an estimate of the (n + 1) st trace which, when subtracted
from the actual (n + 1)st trace, given a prediction error trace.
Thus the combination of the filter derived in the multiple coher-
ence program and the subtraction operation produces a predictiona

error filter as shown in the following diagram.

*For the mathematical description of the nmultiple coherence
computation, see Appendix I.
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The first objective of this study is to use the muitiple
coherence function to estimate the degree of predictability of
the long period noise field at LASA. The result in turn should
tell us how much the noise power should be reduced"by optimum
filtering (e.g., maximum likelihood or Wiener filters) if the
filters were theoretically ideal.

The second objective is to determine from multiple coherences
the number of independent components comprising a given noise
field and the percentage of incoherent noise which cannrot be
cancelled by any kind of multichannel filtering.

The third objective is to determine the stationarity proper-
ties of the noise field. We accomplish this- by applying the
multiple coherency program to three different time samples from

the same array. 'Then the multiple coherency filters derived




from the first time sample are applied to the other two time
samples. If the filters derived in the first tiwe sample have
done a good job of predicting the noise field in all three
samples, then the Jata are said to be stationa;y. On the other
hand, if the filters from the first time sample do a progress-
ively poorer job of predicting the noise in the other samples
relative to the filters associated with those samples, then the
noise is non-stationary to some degree. This deterioration in
predictability of the multiple coherence can quantitively measure

the non-stationarity of the data*+*,

*%*For a theoretical discussion of the stationarity computation,
see Appendix II. ‘




2. DESCRIPTION OF DATA

We computed the multiple coherence of long period LASA data
for the vertical components only. These seismometers are
located at the center of each subarray. Consequently, all com-
putations are intersubarray coherences with a maximum of 21
channels available.

The sampling rate for the data is one sample per second.

The number of points in the sample varied between 1200 and 4800,
from 20 minutes to 80 minutes of data. One frequency range com-
puted varied from zero to .25 cps with a frequency interval of
-0125 cps. A second frequency raﬁge varied from zero to .20 cps
with a freguency interval of .008 cps.

The nultiple coherence prcigram has a capacity of 9 input
and one output channels. We varied the number of input channels
from 2 to 9 wherever possible. In some cases, spikes, dead
traces, and instrument malfunctions prevented our obtainring more
than 6 or 7 useable input channels. The ordering of the input
channels was from the outermost subarrays toward the inner sub-
arrays in every case.

We examined three noise samples. The first was from 9 Sept-
ember 196¢ and contained 4759 points. The second from 11 December
1966 contained 1200 points and the third from 5 January 1967
contained 3957 points. We used the 9 September 1966 sample to
test variations in the sample lengths and number of lags:)§We
uced this sample for the stationarity test also by breaking it

into three equal lengths.
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3. RESULTS

Multiple Coherences

Figures 1 and 2 show the multiple coherences versus
frequency for the three time samples tested. Figure 1 shows
the mvltiple coherence for the 9 September 1966 sample with
2 to 7 inputs and for the 11 December 1966 sample with 2 to 6
inputs. The figure shows a diagram of the array elements
chosen. The output in both cases is channel AQ0. The September
sample is for 3957 points and 120 lags and the December sample
is for 1200 points and 80 lags. Figure 2 shows the multiple
coherences for the 5 January 1967 sample computed with two
different lags; the first at 200 lags and the second at 120 lage.

All of the multiple ccherences versus frequency are
similar. The multiple coherence for all samples increases sig-
nificantly with the increase in number of input channels. The
sample for 5 January 1967 shows multipie coherences, with 8 or 9
irput channels, of .65 and above for frequencies from .05 to
.14 cps (from 7 to 20 seconds period).

The multiple coherences for 7 or fewer channels for the
5 January sample agree fairly well with the multiple coherences
of December and September samples. This similarity indicates
that the September and December samples would also show high
multiple coherences over the same frequency range if 8 or 9 re-
liable input channels were available.

The multiple coherences for the January sample for 120
and 200 lags agree with each other. Even 120 lags at one sample

per second is sufficient to uncover correlations between the
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outermost subarrays and the output A0 provided the noise propa-
gations are at velocities of 1 km per second or higher. S8Since

we expect all noise propagation to have velocities greater than
this limit, we would expect that the 120 and 200 lag cases should

give essentially the same results.

Power Spectra

The spectra for the multiple coherence examples on
Figure 1 and 2 are presented on Figures 3 to 7. Figure 3 shows
the power spectra for the 9 September 1965 sample for all 4759
seconds. Figures 4 and 5 show the power spectra from the first
and second third of this same sample. All three spectra are
essentially the same. The vertical scale for all spectra plots
are in relative power. At the time these record’ .gs were made,
long period calibrations at LASA were rot availal.e.

Figure 6 and 7 shiow similar power spectra plots for the

11 December 1966 znd 5 January 1967 samples respectively.

Stationarity Tests

The multiple coherence program derives a set of n filters
for the ' input seismograms which together prcvide the best linear
estimate for the (n + 1)st seismic trace. The difference between
the observed (n + 1)st trace and the best estimate is the error
trace. If the multiple coherence is unity, the prediction is per-
fect and the error trace will be zero:. If we rorm the ratio of
the =2rror spectra over the observed spectra, we <an get a measure

of the reduction in noise power possible from the theoretical




optimum filters. Thus the db improvement as a function of

frequency can be expressed as

db = 10 log (error/observed).

The prediction error filters will do the best job in
eliminating the noise background when they are applied to the
noise sample from which they are derived. However, if the
noise is stationary, the same filter could be expected to do
nearly as well when applied to later time samples from the
same array, Figure 8 shows the expected noise reduction in @b
when the prediction error filters that were derived from the
first time sample are applied to the fir.t 1586 secor.d sample.
Zn addition these same filters are applied to the =second and
third 1586 second samples.

The expected noise reduction from prediction error
filters in the fitting interval is as much as 9 db at .064 cps
(16 second period). Over the 7 tc 20 second period range of
high multiple coherence the average noise reduction in the
fitting interval is about 4 db. This result is obtained with
only 7 input channels. Due to the significant increase in mul-
tiple coherence with 8 or 9 inputs aé shown for the 5 January
sample, we would expect that the db improvement in the fitting
interval would be somewhat better with more channels. Over the
same 7 to 20 second period range, an average of approximately
1l db improvement is obtained outside the fitting interval. The
noise reduction outside the fitting interval at .064 cps (16

seconds) is from 3 to 4 db.




Figure 9 shows the same computations as Figure 8 but
with 150 lags computed in the correlation functions instead
of 50 lags. The results of Figure 9 essentially agree with
those of Figure 8 but show much higher variability. For
multiple channel cases, 10% lags led to too much statistical

variability to make the results reliable.

Statistical Variability
The examples in this section show the increase in the
statistical variability of the computations with the decrease
in the degrees of freedom. The (real) degrees of freedom are
defined in terms of the number of sample points, the number of
lags, and the number of input channels as follows:

degrees of freedom = 2 x (no. of points - no. of input channels)
ne. of lags

Thus we see that the degrees of freedom will decrease as we de-
crease the number of points in the sample or increase the number
of lags or number of input channels. We note that the effect of
decreasing the degrees of freedom is to increase the estimate of
the multiple coherences.

Figure 10 shows an increase in multiple coherence with
only two inputs when the degrees of freedom are decreased from
44 to 2 in several steps. In this case the 1200 points in the
sample was held fixed and the degrees of freedom changed by in-

creasing the number of lags.
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Figure 11, a similar plot, is shown for the same data
sample with 7 input channels. 1In this case the number of degrees
of freedom is decreased from 34 tc 2 in several steps. The actual
computations for Figures 10 and 11 are shown in Table 1 where the

“mUltiple coherence is tabulated against frequency and number of
lags. When the number of degrees of freedom become too small,
the instability in the computations can cause the computations for
the multiple coherence to lie outside the range from 0-100%.

The effect of too few degrees of freedom can be seen in
another way. Figure 12 shows the multiple coherence versus fre-
quency computed with 100 lags when the number of points in the
sample was varied from 4759 down to 759, in several steps. Here
again the multipie coherence increases as the degrees of freedom
decrease until instabilities yield coherences outside the range
from 0-100%.

When the degrees of freedom are 20 or higher, the com-
putations are generally quite close to each other. For the
results shown in Figures 1 and 2 we maintained the degrees of

freedom in excess of 20.

-10-
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4. CONCLUSIONS

1. Multiple coherences for all long period samples increase
significantly with an increase in the number of input channels.

2. From mid-range of the long period pass band toward the
microseismic frequencies (7-20 seconds period) the multiple
coherences are greater than .65 with 8 or 9 input channels.

3. The expected noise reduction from a prediction error
filter in the fitting interval is as much as 9 db at 16 seconds
period. The noise reduction outside the fitting interval at
16 seconds period is from 3-4 db.

4. Over the 7-20 second period range, the expected noise
reduction from a prediction error filter in the fitting interval
is about 4 db. Over the same 7-20 second period range an average
of 1 db is obtained outside the fitting interval.

5. The db improvement figures given above were computed
when only 7 input channels were available. We estimate that the
db improvement both within and outside the fitting interval would
be increased with more input channels.

6. Over the 7-20 second period range the multiple coherences
for all samples tested are quite similar to each ottrer up to 6 or 7
input channels. Since the 9 channels available for one sample
showed a significant increase in the multiple coherence over the
6 and 7 channel examples, we conclude that at least 9 input channels

are necessary to adequately model the long period noise at LASA.

-11-
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FIGURES

Multiple Coherence vs. Frequency for two LP-%Z Samples
from LASA.

Multiple Coherence vs. Frequency for O..e LP-Z Sample
from LASA Computed with Two Different Number of Lags.

LASA Long Period Spectra for a 9 September 1966 Sample.
The Figure shows the output spectrum and the range of
all input spectra.

LASA long period spectra for the first third of the 9
September 1966 sample shown on Figure 3.

LASA Long period spectra for the second third of the 9
September 1966, sample shown on Figure 3.

LASA long period spectra for a 11 December 1966 sample.
The figure shows the output spectrum and the range of
all input spectra.

LASA Long period spectra for a 5 January 1967 sample.
The figure shows the output spectrum and the range of
all input spectra.'

The expected noise reduction from a prediction error
filter computer from the first time sample and applied
to the first, second, and third time samples.

-The expected noise reduction from a prediction error

filter for the same data shown in Figure 8. Here the
computations were for more lags and therefore fewer
degrees of freedom.

‘Multiple coherence vs. Frequency with 2 inputs when the

degrees of freedom are decreased from 44 to 2 in several
steps by increazing the number of lags.

Multiple coherence vs. frequency with 7 inputs when the
degrees of freedom are decreased from 34 to 2 in several
steps by increasing the number of lags.

Multiple coherence vs. frequency with 7 inputs when the

degrees of freedom are decreased by decreasing the number

of points in the sample.
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Figure 8. The expecteé noise reduction from a prediction error filter :
computer from the first time sample and applied to the first, second,
and third time samples.
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Figure 12.

Multiple coherence vs. frequency with 7 inpu% s when the degrees
of freedom are decreased by decreasing the number of points in the
sample.
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APPENDIX I

*Multiple Coherence Functions

Consider a collection of q clearly defined inputs xi(t);
i=1,2,...,q9, and one output y(t), as pictured in Figure 5.12.

Let Gi (f) = Gii(f) be the

(1) > Hy(f)

alt) » Hy(f) o)
:-------.-.-_.:_-.-_-_-.----._‘i"

%q(0) > Hy(f) |

Figure 5.12 Multiple-input linear system.

power spectral density function for xi(t), and Gij(f) be the
crcss-spectral density function between xi(t) and xj(t). De-

fine the N x N spectral matrix by

rGu(f) Gu(f) *+- Gu(f)—
Gu(f) Gu(/) G (/)

. (1)

__Ghd(f) G%I(f) (Zn(,)_;

*This explanation of multiple coherence functionz was taken from
"Measurement and Analysis of Random Data", Bendut, J. S., and
Piersol, A. G., John Wiley and Sons, 1966. For more detailed thec-

retical developments and discussions of multiple, partial and mar-
ginal coherence functions, see this text.

A Nl




The ordinary coherence function between xi(f) angd xj(t) is

defined by

v o 1GNP
W=D s

The multiple coherence function between xi(t) and all other

inguts xl(t), xz(t),...,excluding xi(t), is defined by

a'(f) = 1 = [GLf) (NI (3)

where Gi(g) denotes the ith diagonal element of the inveree
matrix G (f) ““associatad with Eq. (1). The ordinary and
multiple coherence functions are both real-valued quantities

which are bounded by zero and unity. That is,

0< YL

(4)

The multiple coherence function is a measure of the linear
relationship between the time history at one point, and the time
hictories at the collection of other points. That is, the mul-
tiple coherence function indicates whether or not the data at

all of the other points lisearly produce the results at a given

point.

- Jaid




APPENDIX 2

-Theoretical Development of The Stationarity Relations

Y A. Noise Reduction Within The Fitting Interval
A number of useful statistical measures such as ordinary

and multiple coherence can be used as tools to indicate the amount
of noise reduction feasible in a multiply coherent array. The
basic linear model which determines the db reduction possible in
the noise field by multiple coherence filtering relates a refer-
ence element (trace) y(t) of an array to the other elements, say

xl(t), xz(t), JEERT xp(t) in the array through the linear model

P,
' yo) = 5 h(6) x_ (t-0) da (1)
k=] -~

Generally we determine hk(t) as the time invariant linear filter
that makes the mean square error between y(t) ami its predicted

value a minimum, i. e.

p [ -]
E | y(t) - Z j hk (a) xk(t-a) dal2 = min (2)
k=] -o '

which, by the usual orthogonality principle (see Papoulis 1),
| yields the condition
P
Ey(t) xL(t+T) = E‘ J hk(a) E % (t-a) x, (t+T) de

k=1
1 = 1,2, L) p,-.<'r<. (3)




5

or ;
R_ (1) = (a) R (t+a) da (4)
) kgl I " *K*y
which by taking Fourier transforms implies that
p
lwd *
syx&(w) = ) H (v s"k"l(w) (5)
k=1 ’

Now, the mean square error can be written

P A
Ely(t) - Z I h, (@) 1».‘k(t--r1)da|2 = E (y(t) - Z J' hk(a)xk(t-a.)da) y(t)
k=1 k=] -o
p
= », (0) -2 I nta Ry g (@) 0
k=1
, P
- [ fsgy - 2 @ g
k=1
’_I( syy - Sxx —xy> (®) —5-
“J<1-a(w)>s w—-——-w (6)

where o (w) is the nultiple coherence and (1 - az(w) ) measures
the reduction in power possible at the frequency w. With az(m) = ]
the mean square error is zero and with a.z(w) = 0 the mean square

error is just

Sw(m)

" 2
R, (0)=E ly (&)} (7)

8%——8




which is the original power in the proceas y(t). Now the quantity
(1-a2(w) ) Syy(w) represents the residual power at each frequency
after the best linear estimate of the form (1) has been subtracted
out. Hence the db reduction in power at each frequency is just
the ratio of the output power of the residual (se2e equation (2) )
to the input power in y(t) or

see ((ﬂ)

IH((D) = 10 log W— = 10 log (1 - G.a ) ) (8)

where nz(w) is the multiple coherence un: see(w) is the power

spectrum of the error process

p [
e(t) =y(t) - ) [n (@) x(t-a da (9)
k=] -

B. Noise Reduction Outside The Fitting Intexrval

We would also like to determine the noise reduction in dh
which would result from using a set of filters gk(t), k=1, ...,p
which have been derived either from another fitting interval or
from theoreticil considerations. To accoiplish this let hk(t)'
be the optimal filters for the time undex investigation and let
gk(t) be any other set of filters whose mean square error is to
be compared with hk(t)’ The mean square error of the g filters

can be written using the orthogonality principle as

P,
Elve)- ) [g(a)x (t-n) a0 |2 =
k=]l -

3 2=F =

e e i




p %® p -
Elyte) - ) [ naxtt-man+ 5 [ (h (a) -9, (0) ) x, (t-n)dal?
k=l - k=1 -=
P, P4
=elyte) - ) [ n(mx e-man]? + gl ¥ [ (ytmr-g, i) )
k=l o k=] -
x, (t=n}da|?
7 2 , dw 7 * ! :
= _i (Q-a”(w) ) 5 (w) 92 4 LB, -0 ) —
H-6)'s, (H-g) (0
: H-g H-g) (v -
= J[ Q- P )+ — i Sy () - (10)
-0 yy\

Hence, if we call the new error 1'ft) we have
p
, _ T op 4
1'(t) = y(t) - % gk(a) xk(t-a) a
k=1

with power spectrum S!,!,(w), the new value for the improvement

in the Sk(t) filters would be

*
(H-G6)s_ (B-g) (w)
S_(®) J
vy

SL'!_n(w)

IG(w) = 10 log 5 (9
YY

- =10 .ogs(} - ) +

(12)
Equation (12) shows that the improvement in tpe gk(t) filters is
expressed in terms of the improvement in the hk(t) fiiters and a

correction term which is zero XMen‘E = G.

w §=4 =
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The ixﬁprwcmnt values IH(W) and IG(W) in oquatidnl (8) and .'(I'I_I‘). |

are those shown in the main body of the report. k -. &
Reference \

1. Papoulis, a., Probability, Random Variables, and Stochastic
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