UNCLASSIFIED

AD815788 ${ }_{\text {bRLMR } 1833}$

MEMORANDUUM REPORT NO. 1833

AEROD YNAMIC CHARACTERISTICS OF

THE 7.62 MM NATO AMMUNITION M-59, M-80, M-6I, M-62 by

Maynard J. Piddington

March 1967

This document is subject to special export controls and each transmittal to foreign govermments or foreign nationals may be made only with prior approval of Commanding officer, U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland

U. S. ARMY MATERIEL COMMAND BALISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position, undess $s 0$ designated by other authorized documentis.

AERODYNAMIC CHARACTERISTICS OF THE 7.62 MM NATO ALMUNITIOA $\mathrm{M}-59, \mathrm{M}-80, \mathrm{M}-61, \mathrm{M}-62$

Maynard J. Piddington
Exterior Ballistics Laboratory

This document is subject to special export controls and each transmittal to foreign governments or foreign nationials fiay be made only with pricr approval of Commanding Officer, U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland

RDT\&E Project No. 1PO14501A.33D

BALLISTIC FESEAKCHEABORATORIES

MEWRANDUA REPORT NO. 1833
diveiadingtunisjun
Aberdeen Proving Grouna, Md. March 1967

ABSTRACT

Tests have been conducted in the Free-Fiight Aerodynamic Fange on
 tracer). This report is the presentation and discussion of the cata obtained in these tests. In general, the projectiles exnioited ajequate Eyroscopic and dynamic stability in the regions of probable use. The non*', jacer members appear to have sufficientiv similar drag properties to be aciequate ballistic matches, while the tracer is not a match beyond about 600 meters.

TABLE Of COMTETTS

Page
ABSTEACT 3
LIST OF SYMBOLS 7
I. improduction 9
II. TEST 9
III. RESULTS 12
A. Drag 1Σ
B. Stability 21
c. Hagnus Homent Derivative 22
D. Normal Force Coefficient and Center of Pressure 22
REFERENCES 23
APPENDIX 25
DISTRIBUTION LIST 39

LIST OF SYMBOLS

$\vec{\sim} \quad$ feximuri bony dianeter of projectile
q
s
M Mach Furiber
$i j$
Earret twist

S
$\pi d^{2} / 4$

V
liissile velocity
$C_{D} \quad \frac{\text { Drag Force }}{(1 / 2)^{2} v^{2}}$
C_{\square}
Static Homent
$(1 / 2) \operatorname{cr}^{2} s z a$
${ }^{*} C_{M_{p a}} \frac{\text { Magnus ifoment }}{(1 / 2) \rho V^{2} S i \frac{q \hat{V}}{V} a}$
${ }^{*} \mathrm{C}_{M_{q}}+C_{M_{\alpha}} \quad \frac{\text { Damping Moment }}{(1 / 2) \rho V^{2} S \ell \frac{q \ell}{V}}$

$$
\mathrm{C}_{\mathrm{N}} \quad \frac{\text { Normel Force }}{}
$$

${ }^{*}$ A negative $C_{A_{q}}+C_{M_{\dot{\alpha}}}$ indicates that the moment opposes the anguiar velooity and a positive $C_{r x}$ indicates that the Magnus moment io trining to rotate the missile's nose about the velocity vector in the direction of spin.

	IIST OF SYMBOLS (Continued)
CP_{N}	Center of pressure of the normal force
I_{x}	Axial moment of inertia
I_{y}	Transverse momer.t of inertia
α	Angle of attack
$\overline{\delta^{2}}$	Mean squared yaw
ℓ	Reference length $(\ell=d=0.308$ inch)
ρ	Air density

I. IMTRODUCTION

The adoption of the 7.62 mia waso infantry weapon series has led to the introduction of a new fariily of small arms projeatijes: the yon
 tracer. In adiation to their use in the infantry rifie, othor applicatione for the armurition vere proposed that involved more severe filgit concitions; for example, the J.S. Air Forse propcoed the seveiorrent of a Gatiing-type gin for use in light aireraft and for fighters of the century class, and the U.S. Army proposed several uses for helicopter armment. Froper eveluation of such uses required rore aesowaric data for the projectiles thar had previcusly been cotained. To fill tiois need, the Air Proving Ground Center at the Egin Air Force Ease, Florida, requected thet the Belli=lic Research raboratories (Bia) urdertake spark range tests with the four tunes of \#mmuntion. Applications of the data obtained have been reported. ${ }^{{ }^{* *}}$ ERL enlarged the lasic program to insure tiat acequate information was ohtained tc evaluate a wide spectrum of uses.
II. TST

The shepes of the four types of projectiles are shown in Figure 1. The shapes depicted are a sjnthesis obtained from consideration of drawings of the projectiles ard fron ghysical measuremerts ${ }^{2}$ of acthal unfired projectiles. *** Typical prasical properties are Ever ir Taía I. The four projectiles have the same ogival nose, and all but the iif-62 tracer have similar boattailed afteroodies (the M-62 has a rounded base). The altemate ball $M-59$ and the AP $\because-61$ appear to be icertical in general exterior contour, while the ball $!-80$ is about one-half caliber shorter

[^0]

Figure 1. Shapes and dimensions of liATU ammunition
than the other two. All types have a knurled groove at about the same distance from the nose tip and the M-61 has a second beveled groove aft of the knuried cne.

The projectiles were all testec in the BRL Aerodynamics kange. ${ }^{3}$ The M-14 rifle was used to launch the rounds at 2850 ft per sec (standard muzze velocity) and at velocities reauced to about 1200 ft per sec. The M-80 firings were extended into the subsonic region. Higher than normal velocities were abtained by using a Mann barrel * but the muzale velocity was limited to less than 3300 ft per sec because of extensive damage to the projectile above this velocity.

All data were computed in the usual manner ${ }^{4}$ and are given in Taule II; plots of these calculations are presented in the Appendix. It is noted that the experimental data for the $M-62$ were obtained in the same manner as for the other three types.

Photographs of each type of projectile are shown in Figures 2 through 6. Figures 5 and 6 are shadowgraph pictures of the inert M-62 and the $M-62$ with tracer respectively. The difference in the nature of the flow in the area of the wake on the two pistures should be noted. This difference in the wake flow accounts for the major decrease in drag when the tracer is burning. A slight but undetermined drag decrease can be attributed to the thrust of the tracer.

III. RESULTS

A. Drag

The drag force coefficient, C_{D}, for each round is obtained by fitting the time-distance data to a cubic equation by a least squares process. (At about Mach one, where the drag is changing quite rapidly,

[^1]Table II. Sumary of herodyname Properties
:1-59

Range Rd.	11	$\begin{gathered} \sqrt{\overline{\delta^{2}}} \\ (\mathrm{deg} .) \end{gathered}$	${ }^{C}$	$C_{L_{1}}$	$C_{11_{\eta}}+C_{11_{\dot{\alpha}}}$	${ }^{C_{i 1}}$	$C_{N_{\alpha}}$	$\begin{gathered} C F_{\text {if }} \\ \text { (inches } \\ \text { from base) } \end{gathered}$	s
6549	2.785	4.5	. 316	2.31	-5.6	. 14	2.8	. 760	2.19
6548	2.776	2.7	. 300	2.36	-5.8	.13	2.5	. 800	2.20
6462	2.410	2.2	. 323	2.48	-6. 1	.16	2.6	. 803	1.52
6463	2.393	3.2	. 322	2.41	-6.0	.17	2.7	. 786	1.47
6490	1.813	6.5	. 425	2.50	-5.3	.10	3.5	. 733	1.30
6884	1.797	3.4	. 372	2.58	-5.0	. 04	2.9	.787	1.32
0881	1.795	5.8	. 416	2.57	-6.3	.15	2.8	. 798	1.34
6903	1.299	9.3	. 536	2.67	-4.3	. 04	2.8	. 799	1.20
6901	1.267	6.9	. 482	2.68	-3.0	-. 04	2.6	. 326	1.18
6910	1.132	11.0	. 596	2.72	-4.0	-. 02	2.7	. 820	1.23
0907	1.131	10.9	. 592	2.72	-2.8	. .06	2.8	. 808	1.18

Table II. Summary Of Aerodynamic Properties (Continued)

					M-80				
Range Rd.	N	$\begin{aligned} & \sqrt{\delta^{2}} \\ & (\text { deg. }) \end{aligned}$	C_{0}	C_{M}	$C_{M q}+C_{M \dot{a}}$	C_{11}	$C_{N_{\alpha}}$	$\begin{gathered} \quad C P_{\mathrm{N}} \\ \text { (inches } \\ \text { from base) } \end{gathered}$	S
6547	2.769	3.2	. 297	1.74	-3.6	-. 08	2.5	. 643	3.33
6546	2.744	4.0	. 309	1.80	-3.6	-. 04	2.6	. 641	3.30
6584	2.516	5.6	.350	1.80	-3.5	. 04	2.7	. 634	2.44
6583	2.464	5.2	.330	1.77	-3.3	. 03	2.8	. 626	2.22
6158	2.448	. 6	. 290	1.81	-2.8	-. 21	2.6	. 647	2.08
6159	2.445	. 6	. 294	i. 79	-4.5	-. 19	2.0	.712	2.14
6464	2.410	7.1	. 390	1.86	-3.6	. 03	3.0	. 626	2.35
6491	1.943	3.5	.370	1.94	-2.8	. .08	2.8	. 648	2.07
6492	1.867	2.3	. 356	1.87	-3.6	-. 006	2.6	.649	2.00
6494	1.695	4.6	. 408	1.95	-4.2	. 08	2.8	. 646	1.96
6493	1.615	3.1	. 400	1.92	-4.9	. 05	2.6	. 658	1.91
6543	1.402	4.1	. 439	1.97	-3.3	. 01	2.7	. 659	1.99
6542	1.378	4.6	. 446	1.98	-2.9	-. 04	2.5	. 673	1.89
6530	1.330	5.7	. 470	2.04	-2.6	-. 03	2.6	. 658	1.93
6529	1.295	3.6	. 445	2.03	-2. 2	-. 10	2.4	. 689	1.88
6528	1.001	5.4	. 476	2.11	-1.5	. .09	2.4	. 705	1.82
6528	.976	5.3	. 394	--	--	--	--	-	-
6528	. 954	4.8	.314	2.44	3.0	. 02	2.5	.737	1.70
6527	. 946	6.7	.310	--	--	--	--	-	--

Table II. Sumary Of Aerodymmio Properties (Continaci)

Table II. Summery of Aerodynamic Properties (Continued)

$$
M-61
$$

Range Rd.	M	$\begin{aligned} & \sqrt{\delta^{2}} \\ & (\mathrm{deg} .) \end{aligned}$	C_{D}	$C_{M_{a}}$	$C_{M_{Q}}+C_{M_{d}}$	$C_{M_{p \alpha}}$	$C_{N_{0}}$	$\begin{gathered} C P_{\mathrm{N}} \\ \text { (inches } \\ \text { from base) } \end{gathered}$	5
6553	2.788	3.3	. 316	2.24	-5.4	. 15	2.8	. 757	2.36
6552	2.753	1.0	. 293	2.24	-4.5	. 09	2.2	. 821	2.26
6460	2.520	7.8	. 380	2.34	-5.3	.14	3.2	. 732	1.50
6461	2.459	4.2	. 340	2.45	-5.8	.14	2.7	. 786	1.42
6899	1.817	8.6	. 483	2.59	-5.4	.09	3.2	. 754	1.27
6882	1.725	4.9	. 412	2.48	-6.1	.16	2.9	.769	1.35
6905	1. 387	10.0	. 553	2.62	-2.1	-. 01	3.1	. 767	1.22
6902	1.309	11.7	. 608	2.53	-4.0	. 03	3.0	. 762	1.30

Sanle It. Sumary Of Aerodynaric Properties (Continued)

$$
4-62
$$

Range Rd.	M	$\begin{aligned} & \sqrt{\overline{\delta^{2}}} \\ & (\mathrm{deg} .) \end{aligned}$	C_{0}	$\mathrm{C}_{\mathrm{M}_{\alpha}}$	$C_{H_{q}}+C_{H_{d}}$	C_{M}	${ }^{C} \\|_{\alpha}$	$\begin{aligned} & \mathrm{CP}_{\mathrm{N}} \\ & \text { (inches } \\ & \text { from base) } \end{aligned}$	5
6551	2.849	1.7	. 246	1.54	-6. 2	. 19	2.7	. 776	3.12
6550	2.823	2.7	. 252	1.52	-6.0	. 24	2.8	. 771	3.25
6458	2.510	4.9	. 340	1.54	-6.0	. 24	3.1	. 755	2.26
6459	2.497	4.3	. 336	1.52	-6.0	. 20	3.0	. 755	2.18
6900	1.854	7.7	. 463	1.68	-6.6	. 14	3.2	. 769	2.11.
6883	1.731	7.1	. 340	1.81	-6. 5	. 14	3.1	. 779	2.00
6906	1.423	5.8	. 486	1.94	-6.7	-. 06	2.8	. 824	1.83
6904	1.368	9.3	. 560	1.90	-4. 5	-. 20	2.9	. 808	1.82
6913	. 917	12.8	. 409	2.06	-4.6	-. 37	2.7	. 844	1.79

Figure 2. $\mathbf{M - 5 9}$ bali ($\mathrm{a}=2.8$)

Figure 3. K-80 Ball ($: 4=2.8$)

Figure 6. $\sqrt{1-62}$ traier (burning) $(\because=2.5)$
it is necessary to divide the time-distance data intc two parts and compute two drags. This was ane on two :l-80 rourds.; \hat{c}_{D} is then reduced to zero yaw by the relationship:

$$
C_{D}=C_{D}+C_{D_{\delta}} \varepsilon^{\varepsilon^{2}}
$$

The yaw drag coefficient, $C_{D_{\delta}}$, is normaily obteined irom a straight line fit of the ${ }^{5} D$ vs $\delta^{\overline{2}}$ data for a constant rads number, mis requires several data coints at the sare fach number with varyirs ariounts of yaw. Very ofter, also, $C_{D_{\delta}}$ is non-linear with $y=N$, due mainly to a separaion of Elow about ine body. Sy using tre sucsonie \because - 0 o ata which had a wide variety of yaws and by close examinetion cf the photograpric piates it was possible to determine at whet yaw level the sion separated. Once the flow separation was established, it was possible to determire
$C_{D_{\delta} 2}$ below and above that value of yaw. $C_{D_{\delta}}$ for the $M-59$ and M-6l above separation was assumed to be the same as that for the M-80. The values at the indicated yow levels are listed below.

Yak Drag Coefficient ($1 / \mathrm{rad}^{2}$)

M-80

M-59 and M-61

$6.0(0$ to 8 deg$)$	$6.0(0$ to 3 deg$)$
$2.7(>8 \mathrm{deg})$	$2.7(>3 \mathrm{deg})$

$C_{D_{0}}$ is plotted in Figures $A-1$ and $A-2$ of the Appendix as a function of Mach number. The curves of the $M-59$ and the $M-80$ projectiles in the supersonic region are, for all practical purposes, identical; the drag of the M-6i projectile is about 10 percent higher. For these three projectiles, the nose and the boattail have identical shapes; therefore, the differences in drag are due either to body shape or to the phenomena of the flow about the projectile. Since the drag of the two ball ammunition is about the same, the drag due to boiy length (the M-59 being about $1 / 2$ caliber longer) is negligible. On the other hand, the $\mathrm{M}-61$, which has the same shape as the M-59, has a 10 percent higher drag. Evidently, this is due to the extra groove in the body which produces a more highly disturbed flow.

The drag of the tracer round is much more complicated. Two curves are shown in Figure A-2. These curves were obtained by close examination of the time-distance data for each round. The data for each round were divided into several increments, each containing only three timing observations. Drag values were then computed for each increment. An example of such a drag computation for a single round is shown in Figure A-3. The curve indicates a large change in drag in a relatively short period of time (about 0.07 seconds). This represents about 200 feet of travel at standard muzzle velocity before the tracer is in full operation. The upper curve is drawn through that portion of data for
each round represented by the igrition phase (non-iurning), Using the data at the end of the range for each round, the bottom curve is a sood approximation of the constent burning phace.

Caution should ve exercised when computing the velocity history of the $M-62$ projectile. A rourd launched at a velocity of about 2850 ft per sec will initially have a drag which follows the upper curve in Figure A-2. When the tracer begins to burn, however, (about 65 feet fror. the gun) the drag drops very rapiday to the bot om aurve where it remains until the tracer has burned out. At this point (about $1-1 / 2$ seconds flight time), the draf jumps back to the upper curve where it will remain throughout the remaining portion of its trajectory.

B. Stability

The overturning moment derivative, C_{N}, and the sum of the damping moment derivatives, $C_{M}+C_{N}$, are plotted versus Mach number in Figures A-4 and A-5, respectively. lothing ur.usual is evident in these curves; as one would expect, they have similar trends. An exception is the possibie dymamic instability of the M-80 in the subsonic region. It is not known whether this occurs for the other projectiles since they were not launched subsonically.

Weak dynamic instability in the subsonic region would not present a serious handicap to the flight characteristics of the $M-80$, or to the other projectiles. By the time slibsunic velocities are reacned, the projectile has already traveled about 800 meters and will have very nearly zero yaw. Consequently, considerabie time (therefore, distance) will be required before the yaw will have a cinance to become large enough to have a degrading influence on the flight behavior.

Values of the gyroscopic stivility factor, s, were obtained for each round and are plotted veisus Mach number in Figure A-6. The high values at about $M=2.8$ were obtained by using a rifle with a 1 in 10 inch twist, These values have been converted to those that could be expected from a rifle with a 1 turn in 12 incines by multiplying by the ratio of the twists squared.

Since the curves do not represent the in-fight stability history of the rounds, an example of such a history for the $M-80$ is shown in Figure A-7. The curve represents a round launched at 2850 ft per sec. The initial stability factor is 2.25 at $70^{\circ} \mathrm{F}$; \leq increases throughout its entire finght, but undergoes a change in its growth as the roumd passes through Mach 1 due to $\&$ sudden drop in the drag. The curve shows that the gyroscopic stability will never be worse than it is immediately after launch.

C. Magnus Moment Derivative

The Magnus moment derivative, $C_{M_{p \alpha}}$, is plotted versus Mach number in Figure A-8. All types behave roughly in the same manner. The shortest round ($M-80$) has almost no moment, while the $M-59$ and $1-61$ (wich differ from the $M-80$ by body length only) have aoout the same values; these values are both larger than those of the $1-80$. The $M-6 ?$ values are still higher; this is probably due to the even longer body. The Magnus moment for all four tifes goes negative at $H=1.5$ or slightiy less:

D. Normel Force Coefficient and Center of Pressure

The normai force coefficient, C_{N}, is plotted versus Mach number in Figure $4-9$ and the center of pressure is given in Figures A-10 and A-11. The curves are well defined. The difference in drag between the $M-50$ and the $M-6 i$ is again in evidence in the difference in $C_{i H}$ and Cr_{N}. Also evident is the fact that the eafect of the tracer burning on these two terms is insignificant.

REPERENCES

1. Kemeth Cobb. "Gun Settings for Side Firing Airerafi - 7.6 Minigun," Aiff $65-24$, July 1965.
2. Walter F. Braun, "The Fre Flight Aerodiynaic Fange," Ballistic Fesearch Laboratories Revort No. 1048 , July 1958.
3. Flizabeth R. Dickinson, "Fhysicel Measurements of Projectiles," Ballistic Research Labcratories Technical Note 874, Februar: 1954.
4. Charles H. Murphy, "Free Flight Motion of Symmetric Missiles," Ballistic Research iaboratories feport INo. 1216, juiy 1963.

APPENDIX

PIOTTED CURVES FOR EXPERIMENTAL, UATA

Figure A-1。Zero yaw drag coefficient vs mach number

Figure A-2. Zero yaw drag coefficient vs mach number
(RD. 6904)
$(M-62)$

Figure $A-4$. Overturning moment derivative vs mach number

Figure A-5. Damping.moment derivatives vs mach number

Figure A-6. Stability factor vs mach number

Figure $A-7$. Stability factor vs range $N_{1}-80(1: 12$ in twist)

Figure A-8. Magnus moment derivative vs mach number

Figure A-9. Normal force coefficient vs mach number

Figure A-10. Center of pressure of the normal force vs mach number

| Securily Clumification |
| :--- | :--- | :--- |

[^0]: *Thie was aone in conpliance with MIPR NR-4-17, Project inr. 5845. ** Supersorigt numbers denote references which maj be foura or page 23. *** A more accurate detexmination of the physical dimensions should be obtained bu measuming the projectiles after launch. mo do this, trie proiectile should be iaunched at standard velocitè and then recovered without domage caused $b y$ the recovery sustem.

[^1]: *The normal twist of :-14 rifles is 1 turn in 12 inches und for the Mann barrel used it is 1 turn in 10 inches. A 1 in 12 inch twist gum may allow a alightly higher velocity before projectile domage is excessive.

