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ABSTRACT

This survey reveiws the analytical literature pertinent to contained
rotating flows. A related survey of the experimental Titerature is re-
ported in TM 67-2. The main emphasis in this report is placed upon possible
applications to the study of the fluid mechanics in rotating rocket motors.
Since this area is only now receiving analytical attention 1t was necessary
to draw heavily upon the classical analytical studies of vortex tubes and
swirling flows in cylinders and converging nozzles. A great deal of the
classical fluid mechanics in this area is incompressible in nature, there-
fore, must be considered qualitative in relation to actual rocket motors.
Conditions existing in the nozzle and chamber are reviewed. In addition
other topics such as, end wall interactions and boundary layers are re-
ported upon. The analytical models for the determination of the effects
of acceleration on the burning rate of solid propellants which have been

reported in two recent papers are reveiwed.



1.0 INTRODUCTION

The material presented in this literature survey will consist of
analytical attempts to describe the difficult problem of contained
rotating flows. The main emphasis is placed upon the theory of vortex
flows in rocket motors. As yet, there is not a great deal of analytical
work specifically oriented towards vortex flows in rocket motors. How-
ever, there has been a great deal of interest in vortex flows in general
over the years. Therefore, many of the articles reviewed must be con-
sidered supplementary in nature, yet most of the fundamental points
pertinent to rocket vortices are covered.

The discovery of the Ranque-Hilsch vortex tube stimulated a renewal
of interest in vortex flow theory. Many of the theories developed to
understand this device have applicability to the conditions existing in
the chamBer of rotating solid propellant rocket motors.

The study of rotating disks provides an insight into the problem of
the interaction of the end walls with chamber flow field. The long familiar
bathtub vortex 1n which a vortex is generated and flows toward a sink
prompted early interest in vortex flow in nozzles. Much of the early work
was for an incompressible perfect fluid. It was noted that the flow rate
in such a nozzle was less than that for a non-rotating nozzle. Later,
the addition of compressibility effects made it necessary to consider a
void region near the axis, since the potential vortex possess the tendency

toward infinite centerline velocities. The addition of viscous effects



further complicated the theory in that a solid body type vortex is
necessarily established at the center line so that the free boundary
conditions at the axis are satisfied.

Recently, the possibility of the existence of regions of reversed
axial flow has been introduced to explain some apparently anomolous ex-
perimental results. Flow reversal has been attributed to both viscous
effects such as end wall boundary layer interactions with the primary
flow field, and, dynamic effects wherein finite transitions occur between
two conjugate flows. The latter of these is referred to as vortex break-
down and is usually associated with a stagnation region on the axis with
locally reversed flow.

The literature survey also includes two published theories of burning
rate augmentation in spinning rocket motqrs‘ The fact that the propellant
is burning differently from the non-rotating case is important in establish-
ing the initial conditions for any detailed study of the flow.

Finally, two articles are presented in which the entire rocket motor,
the chamber, the end walls, and the nozzle are considered to determine

the ability of the vortex to effect the overall performance of the motor.



2.0 COMPRESSIBLE VORTEX FLOWS IN NOZZLES

2.1 Introduction

The flow of a vortex in a nozzle has been studied for a great many
years. Historically the first theories were presented for the inviscid,
irrotational flow of 1iquids. It was apparent from these calculations
that the mass flow rate in a nozzle in which the fluid was rotating was
not as great as the flow rate in a non-rotating case with similar chamber
conditions. The formation of an air core along the axis of the liquid
also served to reduce the mass flow rate. Later when compressible flow
theory for gases was used an analogous situation developed in which the
mass flux at the throat was reduced due to the rotating component.

Similiar to the incompressible case a void region near the axis was pre-
dicted since the irrotational vortex predicts infinite tangential velocities
at the center line. However, conservation of energy dictates that when

the tangential velocity reaches the maximum isentropic speed further ex-
pansion is impossible since the pressure is zero.

Recently, in connection with end-burning rocket motors, the flow
of a rotational vortex has been studied. These studies indicate a similiar

decrease in the expected mass flow rate for given chamber conditions.



2.2 Irrotational Vortices

2.2.1 Theory of Binnie and Hooker

In a paper in 1937, Binnie and Hooker (1) discuss the radial and
spiral flow of a compressible fluid in which a velocity potential is

assumed to be definable.

¢=A, +B f(r) ' (2.1)

Since a velocity potential is assumed, the flow field must be
considered to be irrotational and homentropic. Therefore, the proper
expressions for the tangential velocity and radial velocity are given by,

= gii' :31
V=c/r 25 u= = (2.2)

It was shown that for radial flow of a swirling gas, the radial
velocity must be less than in the case of no swirl. In addition, the
radial velocity does not reach the sonic condition until the minimum
cross sectional area is reached where the combined velocity of the gas’
is greater than the sonic velocity. The minimum area corresponds to the

point where the area must begin increasing if the velocities are to con-

tinue increasing.

2.2.2 Theory of Binnie

In 1949, Binnie (2) again reported on the inviscid, adiabatic flow
in an axisymmetric nozzle. In addition to other choking phenomena, the

flow of a spiraling gas in a nozzle was discussed. As in previous work,



the tangential velocity was assumed to be given by,
V=c/r (2.3)

so that the flow was irrotational. It was also assumed that the radial
velocity was everywhere small so that it could be neglected.

Employing the Euler equations for axisymmetric, inviscid flow and
neglecting radial velocities, Binnie derived the equation for mass flow

in the nozzle.

r

oy 2., 2,2
e [ Mo 11 - 51 (e o1 gy (2.4)
a
0 0

where r the radius of the inner void region

the radius of the nozzle wall

-
{]

21
[}

the stagnation accoustic speed

For analytical convenience, Binnie chose vy = 2.0 to study the character
of the equations at the throat condition. Although not stated, it was
assumed that the axial velocity was a constant at every cross section in
the nozzle. Therefore, he was able to integrate the expression for mass
flow rate. Then by differentiating that result with respect to the axial
dimension and setting the result equal to zero, the conditions at the

"throat" were found. It was shown that when ¢ = o, the equation for the
axial velocity reduces to the local speed of sound as in the case for one-
dimensional flow. Binnie further illustrated that when ¢ # o, the axial
velocity must be some value less than the local speed of sound. This

value of axial velocity was related to the value of the parameter, which



is the angular momentum of a streamline.
Binnie presents figures for the reduced axial velocity in the throat
as a function of the ratio of the nozzle to void region radii and the
angular momentum of a streamline. The figures were presented for y = 2 and
y = 1.4,
In conclusion, this analysis was presented for an inviscid, irrotational,
adfabatic flow in which radial velocities were neglected and axial velocities

were assumed uniform over each cross section.

2.2.3 Theory of Mager

In 1961, Mager (3) made further contributions to the fheory of swirling
flow 1in a nozzle. As in the earlier work by Binnie, Mager assumed an {r-
rotational, inviscid, adiabatic flow in which radial velocities are neglected
and the axial velocity is assumed uniform in the radial direction. A
schematic of the physical model is presented in Figure (1).

In his work, Mager assumed a velocity potential function of the follow-

ing form:
o = [R(Z) W(z)]e + j w(Z)dZ (2,4)
so that

(2.5)

n
$|—
<

-

u=¢.=0; W= (Rw)ze + w; v
and the total velocity is then given by

o = (cZr? + wh) . (2.6)



The mass flow rate through the nozzle is specified in the same manner
as that determined by Binnie

(2.7)

r
m = J WP, [1 - 1:% (cz/r2 + wz)]V‘Y'1 2nrdr = K,
2a

"o

since,
V=c/r,. (2.3)

It can be seen that as r approaches zero, the tangential velocity tends
to infinity. However, the velocity of the gas is physically limited to
the maximum isentropic velocity corresponding to zero temperature. Thus,

an expression can be derived for the radius of the void region

-1 .2 |

= . 2.8)
0 2 -1 2 (
3% - If_ W

The equation for mass flow can then be integrated for the selected values

of y which can be expressed in the following form.

ol
Y = n-1 (2-9)

Expressions for mass flow rate and specific impulse were then derived

as a function of the parameter

a = (C/Ra ) ¥ yé_'l . (2.10)
0

Charts were presented illustrating the effect of the value of o

at the "throat" upon the mass flow and thrust as compared to one-dimensional
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flow. It was shown that the greater the contraction ratio of the nozzle,

the greater the reduction of the mass flow and specific impulse (Ffgure 1).

2.3 Rotational Vortices

2,3.1 Theory of Crocco and Vaszonyi

It was shown by Crocco and Vaszonyi (4,5,6), that when gradients exist
fn ejther the stagnation temperature or the stagnation pressure, the flow
of the fluid is in general rotational. The generalized unsteady Crocco-

Vaszonyi equation states

a q = ag
TS+ qxvxq VHy + 3% (2.11)

and, for steady state,

gXVYXQq=qXuw-= VH, - TvS (2.12)
There are three conditions under which g x @ = 0 . First,
q = 0 which is a trivial case. (2.13)

Second,
Qxq=uw=0which is the case of an irrotational flow.
Third,

q || @ - which 1s a special case of rotational vortex motion in
which the vortex 1ines are everywhere parallel to the streamlines. This
type of motion is called Beltrami Helical motion and can be derived from

2 uniformly translated, two-dimensional vortex in a constant area section.



Thus, in general, for the flow of a gas which has gradients in the

stagnation properties,

To

-1
P L=

vs = ¢cp Vv In (2.14)

Thus, the entropy is not constant in the direction normal to the stream-
lines, and the flow is rotational. Substituting eqn. 2.14 into eqn. 2.12
gives the following result,

T
gxa=cpvT -Tvin (P P40, (2.15)

L
0 v

except when, T0 and P0 are constants. Therefore if gradients exist in
either TD, or P the flow field must be considered rotational.

A further consequence of variations of stagnation properties is that
the well known law of Kelvin in which the circulation for a barotropic
fluid 1s constant for all time, is no longer applicable. A barotropic
flow exists when there is a unique relationship between the pressure and
density. The two most important exampies are incompressible flow and
isentropic flow. In a flow which has variations in the stagnation pro-
perties, there no longer exists a unique relationship between the pressure
and density normal to the streamlines. However, along a streamline, the
flow may still be isentropic.

Thus, the circulation r, which is given by the expression
r= § Ve d (2.16)

is no longer a constant‘in each plane.



1

2.3.2 Theory of Bastress

The first study of the flow of a rotational vortex in a nozzle was
presented by Bastress (7) in 1965. This analysis was followed by several
others which are essentially similar. However, each exhibits certain re-
finements. Since the stagnation properties are in general not constant
normal to the streamlines, numerical calculations associated with these
analyses rely upon average properties within stream shells. A stream
shell is defined as an annulus through which a given amount of mass,
energy and momentum are flowing and across which the stagnation properties
are averaged, as 1llustrated in Fig. 2.

The following set of assumptions is common to all the analyses pre-
sented in this section.

1. Steady flow

2, Inviscid flow

3. Adiabatic flow

4. Perfect gases

5. Negligible radial velocities

It assumed either directly or by implication that a solid body vortex
persists at every cross section of the nozzle. In addition, all analyses
are basically one-dimensional in that only radial variations of the pro-
perties of the flow are allowed. However, both tangentfal and axial
velocities are considered. A schematic of the physical model is given in

Fig. 2.
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In the work by Bastress, the following equations are considered.

State P = pRt (2.17)
E T =ct+ W + v (2.18)
nergy Ty = Gt + 75— .
Angular momentum ”oroz =V.r (2.19)
Entropy Vs = 0 (2.20)

In addition to the general assumptions listed above, Bastress also
assumes,

1. There exists uniform contraction ratios for the stream lines.

2. The flow is hometropic.

3. The radial pressure gradient is zero.

The first assumption implies solid body rotation at each plane. This
can be shown by considering the conservation of angular momentum for two

streamlines within the flow.

On the jth streamline, conservation of angular momentum gives,
worojz = wjrjz : (2.21)

On the j + lth streamline, conservation of angular momentum gives,

2 _ 2

Thus,

2 (2.23)
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Since the contraction ratios of each streamline are assumed constant,

2 2
r r.
= . o = o Ll tant with radius (2.28)

The second assumption leads to the conclusion that the stagnation
temperatures and pressures should be considered constant normal to the
streamlines. However, this violates the Crocco-Vaszonyi equation dis-
cussed earlier. This contradiction arises because a solid body vortex
is in general rotational even when the gradient of the vorticity vector
is zero, as is found in a Beltrami Helical motion.

The third assumption leads to the conclusion that centrifugal forces
are negligible and that the thermodynamic variables may not vary with
radius. An additional consequence of the second and third assumption is
that the total velocity must be a constant in each plane normal to the
axis.

Based upon these assumptions and the listed equations, Bastress
developed an equation for the change in effective throat area with

angular momentum of the flow. The axial velocity at the throat is given

by,
w* = (a,2 - ¢*2r2)]/2 (2.25)
where,
¢ = (v - ugr)
a* = the accoustic speed at the throat
w, = the initial spin rate



)

=

@l

15

A D*/2 2 2
eff _ 1 J 2or(1 - £ 5)ar = 22 11 - (1-0)¥2) (2.26)
0 Ay
where,

o = ¢* D¥/2a% = ( D¥/2a%) [(Do/D*)2 -1].

The properties of Eqn. (2.26) are such that as the spin rate, wys 90Es
to zero the ratio of the areas approach unity. AThe parameter & has a
maximum value of unity. At this point, the effective area reduction is
two-thirds. When & approaches unity, the axial velocity at the wall approaches
zero. Thus, there is a 1imitation to the analysis in that the initial spin
rate cannot exceed a certain value because of the initial assumption of uniform
contraction ratios.

Bastress then relates the change in effective throat area to a change
in chamber pressure using conventional internal ballistic relations. Thus,
it 1s concluded that rotation can reduce the effective throat area, and
thereby increase the chamber pressure and burning rate of the propellant as

f1lustrated in Fig. 3.

2.3.4 Theory of Manda

An additional study related to the flow in a nozzle generated by an
end-burning rocket motor is presented by Manda (8). In this work, certain
improvements are made upon the theory of Bastress by including the radial
momentum equation, thereby eliminating the necessity for the assumption of
constant total velocity and the implied assumption of uniform thermodynamic

properties across a plane. The assumption of uniform contraction ratio,
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however, is retained.

The pertinent equations of this study are given below.

State P = pRt (2.27)
W2 42
Energy cpTo = cpt + _h"?_!_.= const. on streamlines (2.28)
Angular Momentum Vr = T = const. on streamlines (2.28a)
Radial momentum 1P !E- (2.29)
e T .
Entropy Vs =0

It might be pointed out that the lack of a continuity equation is
replaced by the assumption of uniform contraction ratios which implies
that all the flow in the chamber is conserved in the stream shells. There-
fore, the location of the streamlines may be determined from the contraction
of the nozzle wall.

By combiﬁing the equations for energy and angular momentum in a
stream shell, along with an isentropic expansion from the chamber conditions

(To, PO), Manda obtains the following expression.

29yRT r
1t (= 0 e T e 1710 = 0 (2.31)

Since the axial velocities eminating from the propellant surface are
small, the axial velocity w°2 is subsequently neglected. Therefore, an
expression for the axial velocity can be obtained.

2 _ 29RyT°

W =

R R
(-3 - u (@ L2 -1 e (2.32)
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w here,
RO/R = rO/r

Manda next employs the radial momentum equation which is integrated

assuming isentropic relations between the thermmodynamic variables.

2

3P _ YV
. (2.29)

1P
p 8r

Although not stated, this integration then implies the existence
of a homentropic flow field. However, as in Bastress' analysis, this is
a contradiction to the fact that a solid body vortex is rotational.

Thus, the following expression is obtained at the nozzle throat,

R
we= a2 - (R/R) [2 (22 - 1] ¢ (2.33)
where R* = radius of the geometrical throat
Ro = chamber radius
W, = the initial motor spin rate.

Substituting this expression into the equation for the axial velocity

evaluated at the throat gives,

-1

R
Y - (Ty=_2 . _y1 , 0,4 2

Manda then applies the result to an equation for the mass flow rate
at the throat so that the effect of the initial angular momentum upon

the mass flow rate can be determined.
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R R
wel = al - w02 (ﬁ%ﬁz [2 (ﬁ%ﬁz - 1] r? (2.35)

In conclusion, Manda finds that the mass flow rate can be significantly
reduced for large values of initial angular momentum. However, the effect
is reduced for a high flame temperatures of the propellant gases. Manda's

results are presented in Fig. 4.

Summary

Recentiy, King (9) has published a discussion of the two analyses of
end burning motors presented by Bastress and Manda. In this review, some
of the contradictory statements and results of these analyses are discussed.
King concludes that the basic error in the two analyses is the assumption
of uniform contraction ratio. This assumption leads to an overspecification
of the problem. This can easily be seen by summarizing the equations

employed by each author,

Bastress

Equations Unknowns

1. State Py py t, u, v = f(r)

Energy

EP,?

= (o] o
o o o

Angular Momentum

5. Entropy, ¥s = 0
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Manda
Equations Unknowns
1. State py py t, Uy, VvV = F(r)
2. Energy
3. Radial Momentum
4, Angular Momentum
5. Entropy, s = 0

In addition to the equations listed, each analysis employs the
assumption of uniform contraction ratios. As stated earlier, this
assumption is equivalent to solid body rotation at every plane. Mathe-
matically, this means that the dependent unknowns are reduced to four.
Thus, it can be seen that there exists one too many equations for the
number of dependent unknowns. Thus, each analysis is over-specified.

Further evidence of over specification is that each analysis employs
a different set of governing equations. A consistent set of equations

are given below.

1. State

2. Energy

3. Anguiar Momentum
4. Radial Momentum
5. Mass flow

6. Entropy
Thus, it can be seen that there are six equations and six unknowns
which are a function of radius. Therefore, no assumptions are necessary

regarding the nature of the tangential velocity (68).
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In addition to the problem of overspecification, there is a contra-
diction in the treatment of the entropy of the flow. Each of the authors
assumes a homentropic flow field either by implication or direct statement,
However, it was shown in an earlier section that a solid body vortex is
rotational in nature. Hence, a variation in the entropy normal to the
streamlines is necessary. An additional consequence of the rotatjonal
nature of the flow is that the stagnation properties must vary normal to
the streamlines.

Thus a complete approach to the problem must include entropy gradients
and the existance of stagnation property variations normal to the stream-

Tines.
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3. VORTEX FLOWS IN ROCKET MOTOR CHAMBERS

3.1 Introduction

The properties of the flow in a rocket motor chamber are very important
to the overall study of vortices in rotating rocket motors, since these
properties serve as initial conditions for the flow in the nozzle. In addition,
the flow field in the chamber provides information as to the effects of the
vortex on propellant burning.

In general the vortex flow in an end-burning motor is easily described,
since in that case the flow is generated with a solid body vortex. Under
ideal conditions this solid body vortex would travel down the chamber and
enter the nozzle without deformation. The action of viscosi§y would not
necessarily disrupt the solid body vortex since, when the walls are rotating,
there is no tangential velocity boundary layer at the walls. Although the
solid body vortex is considered to be an equilibrium flow, i1t is not necessarily
stable to disturbances {53). Recently, Hall (10) presented indications that
instabilities may deveiop if gradients in the axial velocity are present.

In the case of an internal-burning cylindrically perforated core, the
theory is considerably more complicated. In the ideal, inviscid case, a free
vortex pattern would be established since every particle of gass is generated
at the same radial location and thus has the same angular momentun. When the
gases flow radially inward, the tangential velocity must increase to conserve
angular momentum. This leads to the formation of a void core of zero temper-

ature and pressure which is a necessary consequence if the tangential velocity
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reaches the maximum {sentropic speed.

The more complex grains such as the star, the wagon wheel and the
dendrite add considerable difficulty. The mass generated at various radf{i
from the axis would not possess a unique value of angular momentum. Also,
there could exist variations in the burning rate due to stagnation of the
faster moving gases on the fingers of the grain and pressure variation in
the radial direction balancing the acceleration forces.

When viscous forces are considered, the ideal vortex is upset. This
occurs because the tangential shear stress increases as radius decreases.
At the centerline, which is a free boundary, there can be no shear moment.
Therefore, a solid body vortex is established close to the axis which ex-

tends out some distance into the chamber and merges with the free vortex.

3.1.1 Theory of Burgers

In 1940 and 1948, Burgers (11, 12) discussed an exact solution to the
Navier-Stokes equations for the three-dimensional vortex flow of an incom-
pressible, viscous fluid.

The basis for this solution rests upon the assumption that the axial

velocity varies with axial distance only.
W=a-2 (3.1)

Then, employing the continuity equation,

aw . 1 aru _
E+?FHO (3a2)

the radial velocity becomes,
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us=-ar+K/r (3.3)

where K is a constant of integration which may be a function of z only.
K is then eliminated on the grounds of the finiteness of the radial

velocity at the centerline.

u=-ar (3.4)

The radial and axial momentum equations are satisfied by the above
expressions. The tangential momentum equations for axisymmetric time

independent flow 1is,

2
aV = (34 . 13u _wu
- Ar - AV “(;;f Yo rz) ’ (3.5)

where v = kinematic viscosity.
ﬁo/L
A= Trea <5 - const.

m/L

mass per unit length
The following solution was obtained for Eq. (3.5).

2
v T (-I _ e-A r /2")

n

2nr
(3.6)
T=27V.er
where T is the circulation about the axis.
The vorticity is given by
_ AT _Ar%2y
w=5—2=8 (3-7)

2mv
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The total dissipation per unit length of Z is given by

¢=pvJodr‘2m"T2=p%g—2 (3.8)
It can be seen that the dissipation is independent of viscosity and pro-
portional to the third power of the tangential velocities.

Burgers thus obtained an exact solution for a three-dimensional
vortex flow. The results are completely analytical and are therefore
quite useful. An actual flow whose axial velocity varies linearly with
ax1al position while the tangential and radial velocities vary only with
radial position may not be physically realizable. However, it may
approximate a psuedo one-dimensional flow with rotating boundaries through
which mass is injected.

Rott (13, 14) has considered Burger's solution in more detail by
allowing the velocity profiles to vary with time. He also has calculated

the resultant pressure and temperature distributions.

3.1.2 Theory of Einstein and Li

In 1951, Einstein and Li (15) studied the flow in an emptying con-
tainer filled with a 1iquid. The model for the analysis was essentially
that of an incompressible, viscous, steady, axisymmetric flow. It was
assumed that the average axial velocity u was small while the variations
in the axial velocity could be significant. The flow field was divided
into two portions. A core having the same radius as the drain opening

was assumed in which the volummetric flow rate was given by

S0 w22
Q=10 r/r, (3.9)
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where,

r

0 drain radfus

Q

o The total volumetric discharge rate.

In the remainder of the flow field, from the drain radius to the

outer walls,

Q= Qo = const.

(3.10)
R = The cylinder radius
In addition, it was assumed that,
u-= u(r) u2 << v2
v=v(r) w2 << v2
w=0: r> o
Einstein and Li found that i{n the core regijon,
2
VYoo (1 - eA/2(r/ro) )
vV = r -A/2 (3:1.')
(1-e™7)
where,
A = (Q /2ryv)
Vo = The tangential velocity of the cylinder

<
]

The kinematic viscosity

In the outer region the tangential velocity is given by,
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v R A/2(r/ro)?)
V= OO) (A-Z)('I-e , A#2
(— Al - M2, (EQA_Z) C 201 - e MY
(3.12)
-(A-2
ve (LoBy| A-zu-e"Vz)u-(%)( )) As o
r A('l - e'A/Z R‘: (A'Z)) . 2(1 - e'A/Z)

In addition to these laminar flow cases, Einstein and L1 also set up
the equations for the turbulent motion of the vortex. They concluded that

a solution equilivant to the laminar case could be obtained {f the con-

stant A is redefined to be,

Ay = Q/2ne(E + v) (3.13)
where,
€p %F (v/r) = = (u'v') (3.14)

3.1.3 Theory of Donaldson

In a Ph.D. thesis (16) and other reports (17, 18), Donaldson presents
a rather complete review of the solutions for the Navier-Stokes equations
for viscous, incompressible, driven vorticies which have been accumulated
over the years. He also presents a great deal of the theory and equations
for such motions in general form.

His contribution to the theory of viscous vortex motion is the study
of the Navier-Stokes equations for a three-dimensional vortex whose
tangential velocity component is a function of the radial coordinate only.

Under the above catagory, two families of solutions were studied.

They are,
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k « f(r) (3.15)

z
"

N
x
I8

k «z -+ f(r) (3.16)

The following physical interpretation of the above families of solutions
were given. The first family is a Timited one since any mass added at
the boundaries must be absorbed by a sink at the centerline. However,

the second family where
w=k -z - f(r) (3.17)

may be interpreted as a pseudo, two-dimensional problem where mass is
added through a rotating container and is uniformly distributed in the
flow field.

When the axial velocity is of the form
W=kyozo f1(r) *+ ky fz(r) (3.18)

Donaldson shows that the only consistent forms of the tangential and

radial velocities are,

u=u(r)=wg (x)
(3.19)
v =v(r) = Vo, h (x)
where,
Vo = The tangential velocity at the wall
g(x) = An arbitrary function of radius for the radial velocity
h(x) = An arbitrary function of radius for the tangential velocity
R = The radius of the rotating cylinder
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Choosing only the first portion of the general expression for the
axial velocity,
wZ
T f(x) (3.20)
and substituting the above expression into the continuity equation gives,

4 (xq)=-f. (3.21)

x|—

The general expression for the velocities may then be substituted

into the axial momentum equation,

2 :
B G -gf - 2+ B (r e 27 (3.22)
Integrating,
P=1/2pu’ B[ of - 2 u g (74 D14 40 (3.23)

where,
i(x) = a constant of partial integration
Nw = WR/v .
Substituting the general velocity equations into the radial momentum
equations shows that

3P

3 = function of x alone . (3.24)
Therefore,
2,1 pen  fNy =
- gf' - 74 o (' - ) = const. = ¢ . (3.25)

In which case, \
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P oo+ 2%§51»= function of x alone . (3.26)

The function g(x) may be eliminated from Eq. (3.25) by substituting the
continuity relationship, Eq. (3.21)

Frem (f" _ f'/X)[f" _ Nw(f2 - C)] - Nw f(f')2 =0 (3.27)

Donaldson sets up a general solution for the differential equations
given in Eq. (3.27). For the case of an infinite, rotating, porous

cylinder, the boundary conditions are,
f(o) = 1, f'(o) = 0, f(1) =0 (3.28)
1n which case,
C=- (R/2) « (R/pu?) + (BB .
The constant C may be determined from the boundary conditions as follows.
C = f2(0) - 5 [F(0) + 110 (Hladyy (3.29)

By examining the limiting process in Eq. (3.29),

tig (fifl—) = f'(o0) . (3.30)
the following result was obtained.
C=1-2/Nw f"(0) . (3.31)

Now the Eq. (3.27) can be written,

flf" - (f" - fl/x)[fu - Zf"(O)] + NW(fz - ])(f" - fl/x)
- Nw f(F)2 = 0 (3.32)
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Donaldson investigated a number of 1imiting solutions.

1 Nw = {
2 Nw =4 = 2a, Blowing at the walls
3. Nw = - > 3a. Suction at the walls

£8Y - (FY - £ /x)[F - 2£(0)] (3.33)

It was found that there are an infinite number of solutions.

f(x)=1- x2m

m=1,2, 3 .... (3.34)
However, the only physically possible solutions is,

f(x) =1 - x° (3.35)

2. Hhean=iM,v 0

(F2 - 1)(F" - £/x) - f(FD) = 0 (3.36)

In this case, the number of boundary conditions must be reduced,

since the second order derivatives were eliminated,
flo) =1 f'lo) =0 (3.37)
The general form of the solution in this case is

£(x) = cos(ax?) (3.38)

Since the viscosity has been eliminated, the axial velocity may have any

desired value at the bounding walls, except when blowing occurs, in which
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case the axfal velocity is zero. The simplest of all solutions is that

when a = 1. Then, f = 1 for both suction and blowing.

2a. Blowing at the Walls Nw = -cw, vy=0

Since in blowing, the flow is aware of the presence of a boundary,
the constant, a, must be chosen so that the axial velocity is zero at the
wall despite the vanishingly small viscosity. Thus, there may be patterns

of alternating forward and reverse flow for the axial velocity.
w= W E cos[(B4L) ny?] (3.39)

2b. Suction at the Walls Nw = -w,y=10

f = cos(axz) (3.40)

In this case the constant, a, may be chosen to have any value desired.
In general, however, the form of the solution is the same as for the blowing
at the wall case except that the requirement for the axial velocity to
vanish at the wall may be removed. One additional point arises, however,
because when the magnitude of the suction is large, the pressure gradient
may be adverse to the net mass flow so that any number of inward and out-
ward flow cells may be present. Some of the results of these studies are

presented in Fig. 5.

3.1.4 Theory of Lay

A paper was published by Lay (19, 20) in 1959 for the flow in a tube

with superpositibn of the free vortex onto a uniform axial flow. The
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analysis is strictly applicable for inviscid, irrotational, flows since
velocity potentials are employed. However, compressibility effects are
tncluded.

The familiar axisymmetric velocity potential and stream function
equations are derived for the case of tangential and radial velocities

only. These two sets of equations are then combined under the hodograph

transformation.
y = Sai
v = q CoSe X
(3.41)
= =ai
U=49g sino 3y
The equations are then, in terms of the unknowns,
v = ¥(q,6) (3.42)
where,
q = the velocity
8 = angle of the velocity vector

The superposition of the axial flow is achieved by assuming a sink flow
in two dimensions combined with a uniform axial velocity which does not
alter the sink fiow pattern. It was possible to arrive at the sink flow
vortex fiow fieid from the velocity potential and the stream function
equations when transformed by the hodograph transformation. This sink
flow vortex was then uni{formly translated by superposition of a constant
axial velocity.

In conclusion, the direction of the streamlines were determined for

the superposition of a sink flow vortex under uniform translation. The
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position of the radius of maximum isentropic speed was also calculated.

3.1.5 Theory of Pengelly

Pengelly (21) in 1957 presented an analysis of a two-dimensional,
compressible, viscous vortex. The radial velocity was assumed to be small
compared to the tangential velocity and heat transfer was neglected.

The model for the flow consists of a rotating, porous container. The
gases leave the cylinder wall with a combined radial and tangential velocity.
A schematic of the physical model for this theory is presented in Fig. 6.
The gases then spiral inward to a radius where the viscous stresses are
zero, at which point the radial flow is converted to an axial flow and
exhausted out of the chamber. Another possibility lies in the removal
of the incoming mass by slots at the end wall. Thus, the flow field can
be treated as a truly two-dimensional flow. Therefore, the mass flow rate

is given by,

m = pul2nr (3.43)
where

L = the length of the chamber.

A1l gradients with respect to z and 6 are zero. Therefore, the

following form of the Navier-Stokes equations can be written.

o(du/dr + v/r) + rd2v/dr2 + (dv/dr - v/r) (3.44)
dP/dr = (ovi/r) {1 + (WEv3)(1 + 9%;—"31) (3.45)

where
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In addition, the energy equation is given by

dT 2 2
1 P
T abE -k - ARE UL RS B AR (3.46)
r
where,
¢ = the dissapation function
= (N2 rpdv/dr 12 . uy2 [,du/dry2  du/dr | .
o = u(D)® [{AEE - 112 + (? ((dypdny? - dwdr 4 gy (3.47)
TS = the stagnation temperature.

The above equations are exact under the listed assumptions for the
case of a two-dimensional vortex. Equation (3.44) can be integrated
without approximation for the case of o equal to a constant to give the

following results.

A-B/r92 442

lar |
1]

r = A2 - 82 Inr o =2

r/2nr .

<
n

The remaining conservation equations can be integrated provided that

ul << v2’

so that,
= (Vy2 pdv/dr 2
¢ = u() {—;é;— - 1} (3.48)

The results of a numerical example show that, under certain conditions,

the action of the viscous forces can decrease the stagnation temperature
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near the centerline as is found in the Ranque-Hilsch vortex tube. It should
be emphasized that the theory is applicable only to a two-dimensional vortex
with laminar flow. The mass input is exhausted out of the cylinder either
through slots in the end walls, or axially through some small hole on the
centerline.

Pengelly also discusses the possibility of applying the above analysis
to the turbulent case. He concluded that it may be possible if some effective
turbulent viscosity can be determined which can be employed in the radial

Reynolds number.

3.1.6 Theory of Deissler and Perlimuter

In 1958, Deissler and Perlmuter (22) presented an analysis of the flow
in a vortex tube. The model chosen for study was incompressible, steady,
viscous, three-dimensional flow. It was assumed that the tangential and
radfal velocities were functions of radius only. Then it was shown that
only a linear variation of axial velocity with axial position is consistent
with these assumptions. (See Fig. 6).

The variation in axial velocity was assumed to be uniform in both a
core region and an outer region. However, a step variation in the velocities
was allowed between these regions.

Based upon this model, the authors were able to determine the form of
the tangential velocity as a function of radius and several other parameters.

The complete tangential momentum equation is given by,

uv Vy L8 r, oV _V
=57 (pg) tar v GGp- P

+ oYy (3.49)
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Under the assumption that V = v(r) and u = constant, Eq. (3.49) can be

written as,

d2

dr

3y
ar

uv
r

<

dv _
dr

pu +p +'% ) . (3.50)

1’\L<

= (

ro

Therefore, since the product pu is a function of radius only, the general
solution fis,

o pu
1 —

Where C2 = 0 for finiteness of velocity at r = 0. The particular solutions
for the core region and the outer region are then determined by numerical
integration.

In addition to the above kinematic study, the energy equation was
also solved assuming that the temperature is a function of radius only.
The solution for tangential velocity and temperature are given as a function

of radius in terms of the following parameters.

rO/r1 = the ratio of the assumed core radius to the cylinder radius
wC/w = the ratio of the core mass fiow to the total mass flow
Re = the radial Reynolds number

The results indicate that with high Reynolds numbers the flow becomes
increasingly in the nature of a free vortex. However, there always remains
a small region near the centerline of solid-body vortex motion which grows
as the Reynolds number decreases. The effect of wC/w is not great when
the Reynolds number is large. When wC/w is small and the Reynolds number

is small, the flow tends to be more free vortex in nature.
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The temperature distributions show that there is very little energy
separation except at the lowest Reynolds numbers. This suggests that the
observed energy separation in the Ranque-Hilsch tube experiments must be
attributed to turbulence effects which would essentially increase the
apparent viscosity of the flow. Therefore, a turbulent model was proposed
based upon the additional assumption of a constant eddy viscosity. This
made no change in the velocity distribution for a given Reynolds number.
For the calculation of the turbulent temperature distribution, it was

necessary to make the following assumptions.

U= pe
Kk =p cp ey
e = ey

An additional term was then added to account for the effect of the radial
pressure gradient upon the turbulent heat transfer.

In conclus{ion, the turbulent temperature analysis was shown to agree
with experimental vortex tube data when the proper choice of the eddy vis-
cosity was made. Essentially, the effects of the increased viscosity and
the radfal pressure gradient upon the turbulent heat transfer allowed a

greater energy separation, thus, a better correlation with experimental

measurements.

3.1.7 Theory of Suliivan

In 1959, Sullivan (23} reported upon an analog to Burger's solution

(ref. 11, 12} which is characterized by the existance of two cells. In
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this model, the flow does not spiral toward the axis then out along it,

but has a central region of reverse flow. This solution came about during
the course of an investigation of the complete family of solutions based
upon velocity profiles of the following form in an incompressible, viscous,

steady, axisymmetric flow field.

u=u(r)
v = v(r) (3.52)
w=kezow(r),

The particular solution in this report is for the case of an infinite
rotating porous container through which 1iquid is flowing. The radial
and tangential velocities and their derivatives are required to vanish
at the centerline. At the container walls the velocity of the boundary
and the tangential velocity are the same.

The two cell solution solution arises from the case where the radial
Reynolds number approaches minus infinity. Physically, this means that
large inward radial velocities exist at the container walls so that the
inertial forces are much larger than the viscous forces. The following

solution was obtained.

R R CLYL 0 (3.53)
w22z [1 - 3 e(ar'/2v) (3.54)
v = 1/2nr [H(ar/2v)/H(=)] (3.55)
H(x) = Jox exp {- 5+ 3 J: 1122:11 dr}dt (3.56)
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Sullivan compares this solution to that of Burger and finds that,
although the velocity expressions are different, the axial pressure

gradients and dissipation are the same. Thus,

aP/ar = - 4 az pZ

» (3.57)

_pAT
¢ 44

The radial pressure function is, in general, quite different,
2
P = P, = /2 {4 a2z? + alpl + 36(v2/r2)[1 - e /2“]2} +

+p jr (v2/v¥%)dr (3.58)
0

whereas Burgers and Rott (11, 12, 13, 14) found,

r
P=P - (o/2)[4 a2z + 2?1 + 5 J (u/r)? dr . (3.59)
0

3.1.8 Theory of Sibulkin

In a series of three articles (24, 25, 26), Sibulkin presents a method
of analyzing certain vortex flows. The basis of the method is to establish
the unsteady equations of tangential and radial momentum for viscous flow

and the energy equation allowing radial transfer of energy only.

Radial Momentum

orel = 3P/3r (3.60)

Tangential Momentum

du - v 2 2y (3.61)
,
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Energy
aT (2
o} =c ﬂ ? =
p t p 3t at
=13 v 3 aw 3 at
= ;J-E_Z ;a_[ ] + — pr 3F (r ar) (3.62)

The restrictions on these equations are:

1. M <<

2, u=0

3. Only radial energy transfer is allowed
4., Laminar flow

5. Axial and radial shear forces neglected.

Thevin1t1a1 conditions for the problem are that of given initial property
profiles determined from experiment.

The analytical approximation to these initial conditions are a
quiescent core of zero temperature, pressure, and velocity, with a free
vortex distribution around it. These initial conditions are gradually
smoothed out as the integration in time proceeds. The boundary conditions

in time and radius are:

at
duw = i =

BTt (3.63)
w (Ryt) = 0 e (R,t) =0

Ty T the total temperature.

These boundary conditions are for a stationary tube which extends

to infinity. The axial position then is some function of time. These
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equations were solved simultaneously by finite difference methods. The
results indicate that the tangential velocity decays in time while the
pressure gradient of the jmposed inlet profile is gradually smoothed.
The total temperature peak, however, indicated a gradual tendency to
move inward. The initial conditions and some results are presented in

Fig. 7.

3.1.9 Theory of Lewellen

In 1962 and 1964, Lewellen (27, 28) investigated the properties of
real vortices contained in cylinders with small axial flow. The type
of flow considered is one with strong circulation wherein the radial
velocities are small compared to the tangential velocity as illustrated
in Fig. 8. These solutions are compared to those of Donaldson (16),
Sullivan (23), Burgers (12), and Rott (13). The above authors investigated
exact solution to the Navier-Stokes equations when the following conditions

hold,

W(r,z) = Ky =z« f(r) + K, fo(r) (3.64)
where,
u=u(r)
v=uy(r).

These analyses may be contrasted to those of Einstein and Lt (15), and
Deissler and Perimutter (22), where approximate techniques were employed.
The assumptions leading to solutions of the three-dimensional flow

in the analyses 1isted above are that,
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FIGURE 8 A DRIVEN VORTEX IN A CYLINDRICAL CONTAINER
(Taken from reference (28) , Lewellen)
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(3.65)
u(r)

=
i

vir) .

<
]

These approximations are justified when the axial velocity of the flow
is small and the circulation is large. In the present paper, Lewellen
attempted to bridge the gap of these two methods of attack and to point
out the consequences of each approach. He took the complete Navier-
Stokes equations for axisymmetric, viscous, laminar, incompressible,
steady flow in cylindrical coordinates and employs the concept of the
stream function to eliminate the continuity equation. The remaining

equations were then written in terms of,

-1
1]

vr = I'(r,z)
(3.66)
y{v,z) = The stream function

<=
i

where pressure is eliminated by cross differentiation of the axial and
radial momentum equations. Lewellen then derived the equations pertinent
to the analyses of Donaldson and Sullivan {16, 23). He showed that the
solutions given by Donaldson and Sullivan are not applicable to the
analysis of the radial sink flow to a small opening in a cylindrical
tank. However, by assuming pertibations in the Donaldson and Sullivan
analysis to include small changes of y with axial position, Lewellen
showed that when the circulation is large, there can be large changes in

the stream function v.
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To investigate this case, Lewellen expanded the expressions for

the circulation and the stream function in the following manner.

r=7 r, (n,z)e" where n = (r/ro)2
n=o
(3.67
v=71 v, (ne)e g = 2/1
n=o

The solutions thus obtained are valid for variations of the radial
pressure gradient and axial velocities and therefore are not necessarily
specified a priori. However, the solutions are quite dependent upon the
boundary conditions of the stream function which in physical cases, must
be related to the boundary layer phenomenon associated with the end section
of the container. It is noted that in most real cases, the boundary 1aye;
must be solved to give proper initial conditions for the calculations, and
some consideration should be given to the recirculation induced by the

exhaust.

3.1.10 Lewellen 1965

In this paper, as in eariier papers, Lewellen (29) investigated the
flow associated with uniform tangential injection with strong circulation
and a sink on the axis with a radius smaller than that of the container.
The theory is developed by considering a linearized solution about weak
circulation and another about strong circulation.

A particular example is discussed in which the swirling flow is
generated by a rotating porous container. The linearized theory for
strong circulation with weak axial flow is used. It is also assumed that

the Reynolds number associated with rotation is so large that the principal
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variation of the axial velocity occurs in the end wall of the boundary
layer, while the radial varfation occurs in the cylinder wall boundary
layer. Lewellen showed the large swirl forces of the fiow to be essentially
two-dimensional except in a region near the boundary layers where the

principle variation in the velocities occur.



50

4. VISCOUS BOUNDARY LAYERS IN VORTEX FLOWS

4.1 Introduction

In the previous section, theories were presented which may be
applicable to the flow inside the chamber of an internal-burning rocket
motor. Even though viscous effects were in general included, the
interaction of the primary flow with the end wall of the container were
not considered. The purpose of this section is to present some of the
considerations pertinent to viscous boundary layers around rotating
disks and in nozzles. The bulk of this theory is applicable for incom-
pressible, laminar flow only. However, some considerations are given

to turbulent effects.

4.2 Boundary Layers in Nozzles

The analyses presented in this section are characterized by an
irrotational core of an incompressible fluid which is surrounded by a
boundary layer formed at the stationary walls of a conical nozzie. In
1940, Taylor (30) presented an analysis of the swirl atomizer. This
device had been studied previously by many authors. However, Taylor
introduced the concept of an irrotational core surrounded by a viscous
layer attached to the stationary nozzle walls. Based upon measurements
of the discharge coefficients of swirling nozzle flows, he concluded
that the boundary layer could occupy a significant portion of the nozzle

fiow area. Thus he concluded that the treatment of the swirl atomixer
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by perfect fluid theory was not accurate. A schematic of the swirl
atomizer and the model for the analysis of the boundary layer in nozzles

with swirling flow 1s presented in Fig. 9.

4.2.1 Theory of Taylor

Later in 1945, Taylor (31) presented a more complete analysis of
the boundary layer phenonema in the nozzle of a swirl atomizer. The
following 1ist of assumptions are common to this analysis and succeeding

analyses.

1. The boundary layer is thin.
2. The pressure variation normal to the boundary layer is small,
3. There is an irrotational core which imposes its pressure on
the boundary layer.
4, Terms involving radial velocity squared are neglected with respect

to tangential velocity squared.

The problem Taylor chose to solve was that where the axial velocity
of the core could be considered negligible. Taylor used the following

velocity profiles.

W f(n) 5 f(n) = (n- 2n% + ) (4.1)
Ve eln) 5 eln) = (20 - n0) (4.2)
n = R a6-9 (4.3)

6§ = The boundary layer thickness
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The cone half angle

[=]
1]

@
n

The flow angle.

Taylor derived the equations -for incompressible, viscous flow in the
spherical polar coordinate system subject to the general assumptions 1isted
above. The equations were placed in integral form. The following boundary

conditions were satisfied in the intergal formulations.
f.| o =0 ; n=20: f=0,¢=1,n=1 (4.4)

Taylor was then able to determine the growth of the boundary layer
and the direction of the flow at the nozzle surface. In conclusion, two
examples were presented for a cone half-angle of 45°. When the injection
velocity was 45 meters per second and the chamber pressure was ten atmospheres,
the boundary layer thickness was 11 per cent of the total radius of the throat.
When the chamber pressure was one atmosphere, the boundary layer was fully
developed and occupies the entire flow area. A plot of the variation of the
boundary layer thickness with respect to the reduced nozzle radius, R/RO.

is presented in Fig. 10.

4.2.2 Theory of Binnie and Harris

In 1950, Binnie and Harris (32) published an analysis of the swirl
atomizer. In this paper, some of the general theory of irrotational, in-
compressible vortices was discussed. They also presented an analysis of
the boundary layer growth in the nozzle. The assumptions employed were
essentially those used by Taylor except that the axial velocity in the

core was not necessarily considered to be neglegibly small.
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By assuming the following velocity profiles, an estimate was obtained

for the boundary layer thickness, 6, as a function of the distance in the

nozzle.
W= G(R) ¢(n) 6= 2 -0’ (4.5)
V= ﬁ_%Tﬁg ¢(n) n=R :;e (4.6)
6 = The boundary layer thickness (4.7)
a = The cone half angle
6 = The flow angle

In conclusion, Binnie and Harris found two simultaneous differential
equations involving the pressure and velocity profiles. These equations
were integrated using a forward marching numerical method and assuming con-
tant coefficients over small steps. The results of their calculations were
compared to Taylor's analysis (31) which was based upon zero actual velocity
in the core. Binnie and Harris found that the result for the boundary layer
thickness is of the order of one-third to one-fifth of Taylors' boundary

layer thickness as shown in Fig. 10.

4.2.3 Theory of Cooke

In 1951, Cooke (33) published an article concerning the boundary layer
buildup of Taylor's problem (31) wherein the axial velocity of the core was
assumed to be negligible. The main purpose of this article was to Show
that the boundary layer thickness associated with the axial velocity was

not necessarily the same as the boundary layer thinkness associated with
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the swirling component. In other words, he postulated that two boundary

layer thicknesses are required.

w/wo = 995 -~ defines the location of &
(4.8)
V/Vo = 995 - defines the location of a

Cooke incorporated the boundary layer conditions used by Taylor,

allowing an additional set of boundary conditions for a.

W=20 V=20
BZN
= = r/v R sina at 6 = a (4.9)
28
2
2V
=0

202
W=0, suws =0 at 8 = a - &/R

=Snnu’ %=0 at 8 = a - 4/R

The solution for the boundary layer thicknesses then preceeded in the
manner of Pohlhausen by assuming polynomials for the velocity profiles
through the boundary layer. Cooke found that the boundary layer thickness
determined in this manner was approximately one-half that of Taylor's
problem, and therefore, between the analyses of Taylor (31) and Binnie and

Harris (32), as shown in Fig. 10.

4.2.4 Theory of Weber

vIn 1956, Weber (34) presented an analysis of the boundary layer in a

conical nozzle. Once again, the boundary conditions of Taylor's problem
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were assumed. However, in this paper, the Pohlhausen intergal technique
was used for both laminar and turbulent flows. For the laminar case, the
results are identical to Taylor's results because the same velocity pro-
files and boundary conditions were assumed.

In the turbulent case, the one-seventh power law for the turbulent

boundary layer was used for the tangential velocity distribution.
AL (4.10)
Then, due to a lack of data, Weber assumed the axial velocity to be
W=W, E (a7 - ) (4.11)

so that the boundary conditions of zero velocities could be satisfied at

the wall. The assumption of this type of velocity profile makes it impossible
to determine the wall stresses since the gradients become infinite at the
wall. Therefore an experimentally obtained correlation was used for the

wall shear stress.
= 0.0225 0 V! (v7y) /4 (4.12)

The stress components at the wall were determined next and substituted
together with the assumed velocity profiles into the momentum integral
equations. The resulting boundary layer thickness was found to be approxi-

mately one-fourth that of Taylor's laminar case, as shown in Fig. 10.

4.2.5 Conclusions

In conclusion, it appears that the theory for the development of the

boundary layer in a simple conical nozzle for incompressible flow is not
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well understocod. However, the boundary layer does seem to occupy a portion
of the nozzle which can be large when the chamber pressures are small and
the axial velocities are small. In a rotating rocket motor, the walls of
the motor would be rotating in direct proportion to their radial position.
The effect of moving walls would be to reduce the velocity difference be-

tween the core and the walis, thereby reducing the boundary layer buildup.

4.3 Boundary Layers Near Rotating Disks

This section deals with a class of problems associated with the flow
of a viscous fluid bounded by rotating disks. T. Von Karman (35) first
attacked this problem in 1921. He obtained a solution for a steady, viscous
flow in a semi-infinite region bounded by a rotating place. The solution
was exact in that no assumed velocity profiles were required. However,

the resuiting differential equations required numerical solution.

4.3.1 Theory of Batchelor

In 1950, Batchelor (36) extended Von Karman's analysis to include a
flow bounded by two infinite rotating disks. 1In general, two classes of
problems were studied: one, in which the plates rotated in the same direction,
and the second, in which the plates rotated in the opposite sense. Batchelor
worked out these solutions quaiitatively to illustrate the pertinent features
of the flow.

Batchelor began with the equations of steady, viscous, incompressible,
axisymmetric fiow. The only restriction placed upon the equations was the
assumption that the velocity aof the fluid flowing normal to the disk was a

function of axial position only.
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W= W(z) (4.13)

The boundary conditions are those of zero velocities relative to the

rotating plates

w=u=20; V= wr at z=20
(4.14)
w=u=20; VETr at z=d
where
w = angular velocity of the first disk
y = angular velocity of the second disk
or, Y= angular velocity of the fluid far from the first disk

Solutions were obtained for one and two disk systems as a function

of y]/ww The results of these studies are presented in Fig. 11,

4.3.2 Theory of Rodgers and Lance

In 1949, Rodgers and Lance (37) presented additional studies of a
rotationally symmetric flow of a viscous fluid in the presence of an in-
finite rotating disk. In their analysis, Rodgers and Lance treated the
following cases employing similarity profiles.

1. The fluid and the disk rotating in the same sense
2. The fluid and the disk rotating in the opposite sense
3. The fluid rotating as a solid body at infinity.

The particular property profile functions employed are given below.
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u=ra F(g)

v=ra6(zg)

w= (va) /2 H(z) (4.15)
P/c = va Py(z) + 1/2 kkn rl

© = The angular velocity of the disk

These equations were then 1ntroducéd into the Navier-Stokes equations
yielding a set of four ordinary differential equations.

Physicélly acceptable solutions to these equations were found for
all values of the ratio of fluid angular velocity at infinity to the
disk angular velocity for case 1 described above. In each instance,
the boundary layer was attached to the disk and the motion approached
solid body rotation in the fluid far from the disk,

In case 2, where the fluid is rotating in the opposite sense as the
disk, there existed regions of unsteady solutions only. The only correction
for such cases was the application of suction to prevent the boundary layer
leaving the disk. It was concluded that when the flow along the disk was
radially inward, the similiarity solution employed may not be valid, espe-

cially if separation is l1ikely to occur.

4.3.3 Theory of Mack

In a serfes of reports by Mach (38, 39), the problem of the interaction
of a primary vortex field with a stationary disk was studied. It had been

shown previously by experiment that the presence of the end walls cause a
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radial in-flow due to the imbalanced radial pressure gradient in the boundary
layer. It was the purpose of Mack's reports to investigate methods of an-
alytically predicting the amount of in-flow and its effect upon the primary
stream in the chamber.

Varfous techniques were employed to obtain solutions for the incompress-
ible, boundary layer equations on a disk, The method of Yon Karmin was em-
ployed initially, however, Taylors' (31) and Cooke's (33) methods were also
applied. Stewartson velocity profiles were used in these integral techniques
and these results were compared to‘a set of eleven pairs of ve]ocjty profiles.
The Stewartson profiles are very useful in this respect since they allow
exact solutions of the boundary layer equations at the edge of the disk.

To complete the study primary flow field tangential velocities of the

following form were assumed.

Va 1/rn

-1<n <1

These were employed to obtain certain boundary conditions for the boundany
layer. In the case of n=+ 1, or a free vortex, the radial mass flow
increase monotomically with decreasing radius. For n # 1, the radial mass
flow reaches a maximum at some radius less than the centerline. When n = -1,
a solid body vortex, the radial mass flow is only 30% of the free vortex

case and its maximum value occurs at r/ro = ,74.

4,3.4 Theory of King and Lewellen

King and Lewellen (40, 41, 42) have prepared a number of reports on

the action of the viscous boundary layer assotiated with the end walls of
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a vessel containing a vortex flow. These studies were made because it had
been found experimentally that these end-wall boundary layers significantly
affect the flow in the chamber. Previous studies of vortices in chambers

are strickly applicable for infinite cylinders only since boundary layers

on the end walls were neglected. It should be noted that these solutions

are limited to stationary end walls.

The calculations were performed numerically employing several varfations

of the classical Karman- Pohlhausen integral technique for incompressible

flows. The tangential velocity of the main stream was varied by assuming,

Varn

where,

-1<n<+]

The value of the exponent n was varied parametrically. It was found
that the most drastic effects upon the main stream occurred when n = -1,
Since the end wall was a stationary boundary, the tangential velocity of
the free stream is retarded as it approaches the wall, thus losing cen-
trifugal force. When n = - 1, the primary stream was a free vortex, and
the pressure gradient associated with a free vortex is imposed upon the
wall. The result was an unbalanced pressure gradient at the wall. Thus,
an inward flowing radial flow was generated, associated with the unbalanced
radial pressure gradient. Continuity required the presence of an axial
velocity in the presence of the induced radial velocity. Thus, secondary
flows are set up in the main chamber. In addition, the boundary layer was

able to control a great deal of the total mass flow rate.
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The resuits of the studies performed are compared to the theories of
Cooke (33), Taylor (31), Weber (34), and Mack (38). It is found that when
n#-1, the results of all the analyses were approximately the same. How-
ever, when n = - 1, considerable discrepancies in the values of the radial

inflow were found.

4.3.5 Theory of Rosenweig, Lewellen, and Ross

In a paper published in late 1964, Rosenweig, Lewellen, and Ross (43)
presented an analysis of a contained vortex in which fluid is injected
tangentially through porous, rotating walls. This paper differs from those
published previously by Lewellen (27, 28) in that the flow field is divided
into three fundamental regions. A schematic of the physical model is pre-
sented in Fig. 12.

Regfon I consists of the primary flow region which is free from edge
effects and boundary layer interaction. It occupies a volume defined by
the tank walls, the end-wall boundary layer, and the drain opening. Region
II consists of the boundary layer assocfated with the end walls. Region
{11 is bounded by an imagfinary cylinder extending up from the drain opening.
Each of these regions is considered to be viscous in nature. However, {n
Region Ii, axial gradients predominate, whereas in Region I and III, the
radial gradients predominate.

Approximate solutions are employed in each of these regions. A
complete flow field {s built up by prescribing suitable matching conditions
between these regions. The solution is based upon the assumption of large

circulation and smalil axial velocities.
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The approximate boundary layer solution of Rott (44) 1s used along
the end-walls and is matched to the solution of the primary flow field.
The authors specify the stream function distribution in the central core,
. regfon III. A provision is made, however, to allow for the injection of
- fluid from the end-wall boundary layer into the drain opening. The equations
apply to an incompressible, laminar flow field where appropriate boundary
layer assumptions are made in Regions II and III. The solutions are

parameterized in terms of

Rer = the radial Reynolds number

re/r° the ratio of drafn opening to the cylinder radius

| "F = the dimensionless axial coordinate

A - ‘-26 FO r.0
(R 1/5 P°1

= the end-wall boundary layer interaction temm.
et)
where,

r, = the cylinder radfus

- w2
I"0 ro W

% = the length of the cylinder

u

Q_ = the volume flow rate

e
I

et = the tangential Reynolds number

Solutions are presented in terms of the ratio, F/Po. the ratio of the
point circulation to the wall circulation, as a function of the reduced
radfal coordinate, r/rou The solutions are computed for constant values

of the above parameters. However, only re/r0 = 1/6 is used. It is found



66

e m e FLOW TN e
CORE i S —— > CORE
«__ - )
___——-"-'—'_’———}-_ ——————— —_——— -
b

|
i
W I W
!
o J T
' |
' |
v | v
)
CORE T CORE | r

FIGURE 13 SOME RESULTS OF THE THEORY OF BURGERS (53) AND WESKE (52) .
(Taken from reference (52) , Weske)



67

that when A < 1, the boundary layer interaction is not large. The above is
also true when Rer is small, regardless of the magnitude of A. The axial
variation of‘rﬂb with £ is small in these cases. However, when A and, or,
Rer are large, the boundary layer interaction is felt throughout the entire
flow field. Also, the effects of mass ejection from the boundary layer tends
to 1ncrease until reverse flow and recirculation are necessary to keep the

boundary layer supplied with fluid.

4.3.6 Theory of Rott and Lewellen

A comprehensive review of the phenomena of boundary layer interaction
with a vortex flow field is presented by Rott and Lewellen (45). In this
work, the theories for both rotating and stationary disks are discussed.
In addition to the review of past research, Rott and Lewellen propose an
analytic method for predicting the thickness of the boundary layer and the
role of mass ejection for the case of a turbulent boundary layer and a
laminar flow field.

The theory is developed by assumming universal, turbulent, boundary
layer velocity profiles. The simplicity of the method makes it useful
for rapid estimates of boundary layer effects on the end-walls of a rotating
container. As in other previous works in the field, the velocity of the

mafn flow field is assumed to vary in the following manner.
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The results of this theory are presented in Fig. 12. It may be noted
that when a free vortex exists, the radial inflow can be quite large, whereas
when n # - 1, a maximum exists. These results are in agreement with Mack
(38, 39), King and Lewellen (40, 41, 42). However, these results differ
from the results of Cooke (33). This is attributed to the use of a two

parameter boundary layer by Cooke.



69

5. BACKFLOWS AND VORTEX BREAKDOWN

5.1 Introduction

The phenomenon of backflow or reversed axial flow in a vortex has
been a topic of interest for some years. A classical example of backflow
is found in the Ranque-Hilsch vortex tube. In this case, gases are in-
jected tangentially into an open-ended tube. A hot gas, rotating in one
direction, is found at one end, while a cold gas, rotating in the opposite
sense, is found at the other end. This effect has been noted in a number
of experiments and is analytically predicted with the models of Sullivan
(22) and Donaldson and Sullivan (16, 17, 18).

Aside from straight tube flows, backflows have been noted in diverging
and converging sections for both initially solid and free vortices. As
yet, the analytical description of the process {s incomplete and considerable
controversy exists as to the role of viscosity in setting up and maintaining
the reverse flow. In many cases, such as the vortex tube, it seems that the
reverse flow is predominantly a viscous effect. There are indications, how-
ever, that the concept of vortex breakdown in which a small stagnation
region of locally reversed flow near the axis exists, is primarily due to
dynamic instability. This action is triggered by some small change in the
boundary conditions so that the flow must readjust.

In this section, the concepts of vortex breakdown and backflows will

be discussed. There are numerous references to this phenomena. However,
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only a few of these will be presented. Lord Rayleigh (46, 47, 48) and Lord
K21vin (49) wrote about the conditions of stability of fluids in a vortex
flow in the later parts of the 19th century. The primary conclusion of
these studies is, that to posses dynamic stability in the presence of in-
finitesimal disturbances, the flow must have a circulation which constantly
increases with radius. In addition, the circulation should posses the

same sign along a radius. When this is not the case, instabilities will

be developed, as in the well known case of rotating coencentric cylinders.
This concept has recently been expanded by Ludweig (50) who considers the
stability of an inviscid, spiralling flow in a narrow cylindrical amnulus.
This study is a direct extension of Rayleigh's work which allows radial
gradients to exist in the axial velocity. By employing small disturbance
theory, the stability boundary is deduced. It {s shown that very small
radial gradients can cause a flow which satisfies Rayleigh's criterion to
go unstable. The work of Ludwieg has been extended by Kiess1ing (51) to
include viscous effects for a flow between rotating cylinders of small

separation.

5.2 Theory of Burgers and Weske

In two articles prepared at the University of Maryland, Weske (52)
and Burgers (53) investigated the existence of backflow as derived from
"stretching" a rotational vortex core in converging or diverging passages
as shown in Fig. 13. The analyses presented are for a solid-body vortex
core surrounded by an irrotational vortex which flows from a section of
uniform radius to another section of a different radius. The equations

for the flow are derived from an incompressible, inviscid, vortex flow in
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a cylindrical coordinate system.

Weske first investigated the problem in general terms. However,
Burgers expanded the analysis and presented particular solutions. Burgers
found that it was possible to achieve exact solutions for the case of a
core with solid-body rotation and initially uniform axial velocity pro-
files surrounded by an irrotational vortex. The solution was derived from
classical incompressible fluid mechanics by considering the following set

of equations.

LAMB'S EQUATION
V(P/o + 1/2q%) = G x & (5.1)

where,
= Vxq The vorticity vector (5.2)

w

CONTINUITY EQUATION

I =13
W—mg% U-——a—;‘i- (5.3)

INITIAL CONDITIONS

w==W, VETrue (5.4)

By conserving angular momentum along streamlines which flow from one
section of zero radial velocity to another, the following equation was

derived.

2

2,1
—L+ 5 L+ =2 (w, - W) (5.5)
dr22 r2 drs W 2

This equatfon has a Bessel function solution,
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2w, r
Wy = W1 - ad, (——2) ) (5.6)
where,
; W = the axial velocity at the inlet
wy = the angular velocity at the inlet
ro = the radial coordinate at the second straight section

The constant, a, is an undetermined coefficient which can be evaluated

from conservation of mass considerations.

Wr 2u r
2n I Wor,dr, = n(rz2 + a ;;g Jy ( ﬁ 2) ) (5.7)
2uR*
aW 2y _ (R* 2
1+ NR*Z ‘]'l ( W ) - (R*Z) (5a8)

where,

R* = the inlet radius of the rotational core

R*2 final radius of the core

For the case where the rotational core extends throughout the flow field,

the results are particulariy simple.

2
. 1=n no
2T 7T (na) (5.9)
2w r
. (1-n7) na o2
W W(1 + nz (2 J1 (na)) Jo ( W ) (5.10)
where,
n= R2/R

Q
it
N
£
o
<
=
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Thus, it can be seen that negative axial velocities can occur under

a number of conditions.

2. J_ <0, \J.| >0 (5.11)

For the case of converging flows, n is less than one. However, Jo and J]
may be negative depending upon their arguments. For diverging flows, n > 1.
Backflow can be expected provided the Bessel functions remain positive.

In addition, it 1s pertinent to add that no negative velocities actually
occur unless the above criteria cause negative terms which are larger than
the initial axial velocity, W. It is also interesting to note that multiple
regfons of back flow can be obtained by proper choice of the arguments of
the Bessel functions. However, these become successively smaller and
finally become smaller than the initial axial velocity temm.

The more general case of the rotational core surrounded by the
irrotational vortex is also treated in some detail by looking at limiting
cases. One of the more interesting cases occurs for continuous flow with
no radius change. In this case, the Bessel function solution is appropriate
for radial equilibrium, however, not necessarily stable equilibrium. The
question of instability {s studied by perturbing the Euler equations. It

1s found that the perturbed equations allow undamped oscillations to occur.
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5.3 Theories of Squire, Brooke, Benjamin and Lambourne

In 1960, Squire (54) proposed a mechanism for the vortex breakdown
phenomenon. It was postulated that when the flow could sustain infinitesimal
standing waves, a characteristic bubble would form along the axis, the idea
being that waves generated downstream, or at the exit, would collect at the
critical point. However, it was later pointed out by Benjamin (55) that
the group velocity of such waves would allow only upstream disturbances to
be felt at the critical point.

In 1962, Benjamin (55) published his theory of the vortex breakdown
phenomena which was closely related to the experimental work of Harvey (56).
Harvey had described the formation of stagnation regions of locally reversed
flow on the center line of a vortex tube. The theory of Benjamin closely
parallels the concept of the hydraulic jump problem where a flow in a channel
can exist in two conjugate pairs, namely supercritical and subcritical. The
definition of the critical condition is that condition when the velocity of
the long waves of water is the same as the axial velocity of the flow (Froude
number = 1.0). Benjamin hypothesized that an analogous condition exists in
swirling flow such that there can be a sudden transition from the super-
critical to the subcritical condition.

The theory is postulated employing the calculus of variations to

establish the concept of conjugate flows based upon a deficiency of the

"force flow", S.

ro2
S = j (ow® + p)dA
(o]
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Assocfated with the conjugate pair of flows is a gain of force flow
when the transition from superctitical to subcritical occurs. Benjamin
further investigated the conditions for the onset of transition which
occurs when the ratio of axial to tangential velocity is of the order
of 1.

A subsequent publication by Benjamin (57) was presented in 1964. In
this paper, the essential {deas of conjugate flows in an incompressible
swirling flow are reaffirmed. In 1965, Lambourne (58) published an analysis
of vortex breakdown phenomena. The theory of this work closely parallels
those of Weske (52), Burgers (53), and Benjamin (55), In this paper’éon-
ditions for the critical conditions are derived in a somewhat differént
fashion. However, the resuit is the same as that found by Squire (54) and
Benjamin (55). The analysis proceeds upon the basis of the Bessel function
solution of Burgers (53). In this study, various changes were made in the
external flow and regions of no apparent solution were found, thus suggesting

a finite transition or vortex breakdown.

5.4 Theory of Gore and Ranz

In 1964, Gore and Ranz (59) presented a paper illustrating backflow
occurring in divergent sections of a flow generated by a rotating porous
plate. A theory was developed employing successive approximations to a
set of simplified Navier-Stokes equations. Once again the condition of
back-filow occurred when the ratio of the axial velocity to the tangential
velocity at the wall was of the order of one. Regions of back-flow were

predicted, which were preceeded by a stagnation point. This phenomenon
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has direct application to the flame pattern of a swirling flow combustor.

5.5 Conclusions

In conclusion, the existence of backflow due to vortex breakdown has
been analytically and experimentally verified. The theory, however, is
sti11 qualitative since the phenomenon is related to the stability of the
flow. The characteristic axisymmetric bubble of reverse flow occurs most
frequently in the diverging section of a supercritical flow. The analytical
and experimental work of Burgers (53) and Weske (52) indicate that the

phenomenon may also occur in a converging section.
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6. BURNING RATE AUGMENTATION IN AN ACCELERATION ENVIRONMENT

6.1 Introduction

The rotation imparted to a solid propellant rocket motor not only
changes the flow of the gases, but also affects the burning rate of the
propellant. The variations in burning rate have been studied most ex-
tensively by experimental methods and are reported upon in Ref. 69.
However, recently a few analytical investigations in this field have

been attempted with varying success.

6.2 Theory of Glick

Glick (60) advanced a theory to account for the effect of acceleration
forces on the burning mechanism of solid propellants. This was accomplished
by extending the grannular diffusion model of Summerfield (61) for the
burning of composite solid propellants at high pressures. Since Summerfield's
analysis is quaiitative and empirical in nature, the extension to account
for acceleration effects should also be viewed in the same manner.

Two basic effects are considered with respect to acceleration fields.

1. Pressure gradients across the gas phase reaction zone.
2. Differential forces acting upon particles of different density.

The first possible effect was eliminated by an order of magnitude
analysis. It was shown for an acceleration field of 50,000 g's and a mean
chamber pressure of 600 psia, that the pressure gradient across the reaction

zone was less than .01%. Therefore, only the effect of the acceleration
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field acting upon the density inhomogenities was incorporated into the
analysis. There can be two main sources of density inhomogenities.
1. The heterogeneous nature of the reaction zone.
2. The mean temperature gradient through the reaction zone.
The effect of these density inhomogenities due to the acceleration
forces acting normal and parallel to the propellant surface were investigated.
It was concluded, by considering the theory of free convection flow for
the case of normal accelerations and boundary layer flow for the case of
parallel accelerations, that the mean temperature gradient has only secondary
effect.
Thus, the effect of acceleration forces is primarily concerned with the
density inhomogenities produced by the pockets of fuel vapor imbedded in a
homogeneous oxidizer vapor. In the high pressure 1imit, the granular diffusion

model is primar{ly concerned with thickness of the gas phase reaction zone,

8 = Vey Toy (6.1)

where

Qr
hl

thickness of the gas phase reaction zone

-
it

fy normal velocity of the fuel vapor

= lifetime of the fuel vapor pocket.

—i
-
[

Since the burning rate is assumed to be inversely proportional to the thick-
ness of the gas phase reaction zone, the effects of acceleration on burning
should be explainable 1n terms of accelerations effects upon va and va,
since any relative motion between the fuel pocket and the oxidizer vapor

will increase the interdiffusion rate. 1In addition, the flow of the oxidizer
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vapors can be reduced if the acceleration is into the propellant. Thus,
two effects can be postulated: a scalar effect causing an increase in
tnterdiffusion which is independent of the direction of the acceleration
field, and a vector effect which can increase or decrease the thickness
of the gas phase reaction zone.

Based upon these considerations, Glick proposed a model allowing for
both a vector contribution and a scalar contribution to the burning rate.
The final burning rate equation was written in terms of the Reynolds
number, the Grashof number, the Schmidt number, and the diameter of the
fuel vapor pocket.

It was concluded that some of the characteristics noted in experimental
observations could be predicted. However, the analysis failed at high
accelerations, since the model predicts that burning rate increased with-
out bound with increasing acceleration whereas experimental results in-

dicated a maximum burning rate with g level.

6.2.2 Conclusions from Glick‘s Theory

1. "The effects of acceleration induced pressure difference across
the mean flow of the gas phase reaction zone on the burning rate
of nonmetaliized composite propeliants are negligible."

2. "The major effect of accelerations on the burning rate of a
nonmetaliized composite soi1id propellant is derived from the
effect of acceleration on the heterogeneous nature of the gas

phase reaction zone."
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"The granular diffusion flame model correctly predicts the
trends for the variation of the burning rate of a nonmetallized
composite propellant with respect to the direction of the
acceleration vector relative to the burning surface."
"The granular diffusion flame model correctly lead to an upper
bound on burning rate changes when the acceleration vector is
normal to and into the burning surface."
"The ratio of the burning rate of a nonmetallized composite
propellant in an acceleration field to its static value is not
dependent upon either catalyst content or initial temperature
when the acceleration vector is parallel to the burning surface."
“"The ratio of the burning rate of a nonmetallized composite
propellant in an acceleration field to its static value is
generally reduced by the following:"

a. Addition of burning rate catalysts.

b. Reduction of the mean diameter of the oxidizer particles.

c. Increasing the initial temperature of the propellant.
"The burning rate of a nonmetallized composite propellant in an
acceleration field when the thickness of the gas phase reaction

zone is much greater than the diameter of a pocket of fuel vapor

is given by
1/2 2
G cos® G_, cos“s
r _ c] rd + [ c12 rd 5 + %n_ ]]/2 (6.2)
Cd 1/2 Reo Cd Reo 0

Sh = the Sherwood number - ho dfv/Dg
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[op]
§

= a - Ap dfv3/ug2 = The Groshoff number

Re

the Reynolds number = p p o dfv/ug "
C],2 = constants to be determined from experiment
0 = zero acceleration
a = acceleration
CD = the drag coefficient for the particle -

e = the angle of the acceleration vector to the propellant surface.

6.3 Theory of Crowe et al

In a final report for a contract related to the study of spin stabilized
rocket motors, Crowe et al. (62) discussed various models for burning rate
augmentation due to motor rotation. These are:

1. Effect of a centribugal force field on the gas flow from a solid
propellant burning surface.
2. Contribution of particle combustion zone to surface heating.

3. Retention of metal oxide particles on the burning surface.

6.3.1 The Effect of a Centrifugal Force Field on
the Gas Flow from a Solid Propellant
When the pressure gradient was small, the momentum and energy equations
for the gas flow at the propellant surface in an acceleration field are

given by,

o
Sle

= - a = centrifugal acceleration temm (6.3)
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TESNOR - Sh
where,
h0 = stagnation enthalpy
h = static enthalpy
k = thermal conductivity
Cp = gpecific heat at constant pressure.

(6.4)

By examining the following ratios, some estimate of the effect of acceleration

can be obtained.

g,_-i
u?
ad
where
6 = flame stand off distance
Tf = flame temperature
Ts = surface temperature
a = acceieration g's
when
6§ < 1 mn
% = 0(a - 107Y)

aé =8
= 0{a - 10°) .

(6.5)

(6.6)

(6.7)

(6.8)
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Thus, no significant effects of rotation should be felt until the acceleration
approaches 1000 g's. Therefore, it was concluded that the acceleration field
does not drastically affect the velocity and temperature fields at the pro-

pellant surface.

6.3.2 The Contribution of Particle Combustion Zone
to Surface Heating

While the acceleration field does not greatly influence the velocity
and thermal fields of the gases, the solid particles in the flow may be
significantly affected by acceleration. When the acceleration was directed
into the burning surface, the metal particles were retarded, thus enhauncing
heat transfer back to the propellant surface.

The distance from the propellant surface to any particle in the flow,

assuming Stokes flow, is given by,

S=(t-n1- te't/T)(u - at) (6.9)

where,

ot
[]]
(a4
—to
3
m

gas viscosity

=
i

m

the particles will remain at the surface. Thus a critical particle size

can be deduced for retaining the particle at the propellant surface.
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pe Fu (1-w)
r, = [ -2 ;p g ] (6.11)
where
w = aluminum loading
r = burning rate
Pg = density of the propellant

In order to determine the heat transfer at the surface, the combustion

Zone was broken into four regions.

1. Region 1 - No heat addition to the gas; Q=0 .
. m

2. Region 2 - Combustion of the gas; Q= 6:

3. Region 3 - Particle ignition; Q=0 ]

4. Region 4 - Particle combustion; § =-7§?1
where,

ﬁRg = heat of reaction for the gas

éRp = heat of reaction for the particles

An energy equation is then postulated assuming the kinetic energy to

be small compared to the thermal energy.

2 mC
d°T - dr _ 1 dT
““f+%'—k'£'c§'f— (6.12)

This equation has the following general solution,
T=ce/te LY 4 (6.13)

where Cl and C2 are constants of integration.
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The above equation can be used for regions 2 and 4. Combining these
solutions and employing the proper boundary conditions for each region,
the temperature at any point can be determined as a function of position.
It was concluded that, unless the solid particles are in the order of one
micron or less above the surface, no appreciable additional heat transfer

will occur as a result of particle combustion zone displacement.

6.3.3 The Retention of Metal Particles on the
Burning Surface
Based upon the previous analyses, the effects of the acceleration
field must be primarily in the retention of solid particles on the surface,
since only negligibie effects are found for the displacement of the gas
and particle combustion zones.
The expression for a critical particle size as derived earlier can

be written,

C Re p u
R Rl L (6.14)

For Stokes flow, where ug = the gas velocity at the surface,

9 “”5)1/2

"pe (2 eh (6.15)

Particies larger than this size will be burned at the surface unti]l
they reach a diameter lTess than the critical diameter whereupon they will
move into the gas stream. The increase in burning rate was a function of
the additional heat released to the propellant surface as the particle

burns.
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The actual burning rate law was postulated as a ratio of the burning

rate under rotation to that under no rotation.

"
o n 1
: WL r
=0 1 - — HEEE, o, ) (6.16)
r pm pm
where,
H = a function to be determined
hr = the heat of vaporization of the particles

W, = the propellant metal loading weight fraction
L = the heat transfered per unit mass of particle burned
r = mass median particle diameter
t = particle burning time of a mass median particle
o = the standard deviation of the particle size distribution.

This equation is used as a tool for extrapolating existing data,

since the constants required and the function H are not generally known.

6.3.4 Conclusions from Crowe's Theory

In conclusion, the main point of this analysis was that the major
effect of the acceleration field was to move particles larger than the
critical size to the propeilant surface. The particles at the surface
burn and release their energy at the propellant surface. The resfdence
time of the particle at the surface was a function of the heat release
rate, the particie size and the acceleration level. Further, it was

predicted that when the mass median particle diameter was lower than the
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critical diameter, the effects of acceleration will be small. In addition,
if there are no metal oxide particles, there will be no effect regardless

of acceleration level.

6.4 Conclusions

The two theories reviewed here are attempts to get at the most important
factors influencing the burning rate augmentation in an acceleration en-
vironment. Glick's theory is primarily for nonalumized propellants and
consists of a scalor and a vector effect. The scalar contribution was due
to the increased relative motion between the fuel rockets and oxidizer vapor.
The vector effect was associated with the compression or expansion of the
gas phase reaction zone. The theory of Crowe et al. was based entirely
upon metalized propellants and the effect of retaining larger metal particles
upon the propellant surface. A further description of the validity of these
theories in comparison to experimental results is given in a theses by
Anderson (63) and Northam (64) which are reviewed with many other in reference

(69).
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7. SURVEY ARTICLES

7.1 Swithenbank and Sotter

In 1964 Swithenbank and Sotter (65, 66) presented an analysis of the
effect of vorticies generated by combustion pressure oscillations on the
performance of solid propellant rocket motors. The authors investigated
the theories of vortex flow to determine their applicability in the chamber
of a rocket motor, and they also investigated Mager's (3) analysis for
rotating nozzle flows.

Applying incompressible viscous flow theory in the chamber, an estimate
was made of the viscous effects upon the vortex distribution. For a typical
six inch diameter rocket motor, the turbulent Reynolds numbers for the radial
and tangential velocities were estimated. Based upon the turbulent velocity

correlation of Keyes (67), these Reynold's number were estimated to be

=2x10° R =8.0 (7.1)

Re.t e,r

Thus, it was concluded that the vortex motion will not appreciably
be affected by viscous forces except possibly near the centerline. Employing
the incompressibie flow theory of Einstefn and Li (15), it was found that
the flow will be predominately free vortex in character except near the
centerline where a solid body vortex should exist.

For the nozzle flow, viscous incompressible flow theory was discarded

in favor of the inviscid compressible flow analysis of Mager (3). That
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theory predicted a decrease in the mass flow and thrust producing capabilities
of a nozzle due to the following factors:

1. A vacuum core, region on the centerline, and

2. A reduction in the mass flux at the throat.

For the measurements of the vorticies generated in their experimental
studies, Swithenbank and Sotter found the mass flow to be reduced 70% when
Mager's theory is applied. In addition to predicting the reduction of
effective throat area, Mager's theory was used to predict observed irregular
burning caused by vortex flow. A decrease in effective throat area can be

related to the chamber pressure in the following manner.

AT pp = Ap** Pe v (7.2)
where,
Av = area of the burning surface
r= P" = the burning rate
Pp = density of the propellant
A ** = the effective throat area
Pc = the chamber pressure

v = characteristic velocity of the gases.

The following conclusions regarding the affects of rotation were made:
1. The decrease in effective throat area increased the chamber
pressure.
2. The burning rate was increased due to increased chamber pressure.

3. Erosive effects of the vortex further increased the burning rate.
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7.2 Crowe

A final report by Crowe (62) released in 1966 presents an excellent
study of the many thesries dizczussed in this l1iterature survey. In addition,
an fnvestigation was made of the dynamics of particle flow in vorticies.

The experimental portion of this research program is reviewed in Refs. 69.
Therefore, only the analytical investigation will be discussed here.

The analysis of the flow in a rocket motor was divided into the following

sections:
1. Soiution for the viscous vortex motion in the rocket chamber.
2. Distribution of the metal oxide particles in the rocket chamber.

3. Effect of rotation upon nozzie performance.

7.2.7 Solution for the Viscous Vortex Motion
in the Rocket Chamber
The analysis of the viscous vortex in the chamber was prefeced by a
sojution for the fnviscid, compressibie flow case. The inviscid compressible
flow case was used as a comparison to estimate the effects of compressibiiity.
The Euler equations are presented and soived in general terms under the con-
ditions of conservation of argular momentwr, assuming that all gas particles

possess the same angular momentum since they originate at the same radial

position.
afvre) o alve) L d -
u Bk e w Sk s o (v} = 0 (7.3)
V. T
= (W
y o= —)

Y = tangential velocity at the propellants surface
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ry = radius of the propellant surface

Since the motion of the vortex is irrotational and the flow is inviscid
and adiabadic, the flow properties are governed by an isentropic expansion

from the initial conditions.

The maximum velocity occurs when the static temperature becomes zero. -
qmax = Y/(__E.I)YRIO (7-5) -
Y-

When the flow is viscous in nature, the shear stress will alter the

free vortex solution. The shear stresses in the tangential direction are

given by

TEw e - zu (7.6)
Thus as the radius decreases, the shear stresses increase.
ta (1/r)? . ' | (7.7)
The viscous torque per unit Tength parallel to the flow becomes

M=+ (zer)r = r =~ 4wy v, Ty - (7.8)

Thus, the potential vortex gives a constant torque distribution. Because
there existed a free boundary near the centerline, the torque at that point
must vanish. Therefore, a soiid body vortex should have existed near the
centerline.

The approach to the viscous flow solution was that given by Burgers (11).

In that case, the axial velocity was of the form

W= =2 u,, z/rw (7.9)
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From the continuity equation
u = (r/rw) u, - (7.10)

This procedure represents the stagnation vortex approach. Following the
method of Burgers (11) and Rott (13, 14), which is a special case of the
Donaldson and Sullivan solutions (16, 17, 18, 22), the tangent{fal velocity

was given by

2
LY e'f:/j; ) (7.11)
w N 1.-e "€
where
n=r/ry
u, 2 1y

)

Re

Pressure variations for the incompressible, viscous, vortex flow field
in the chamber are obtained by employing Rott's analysis (13, 14), which is

an extension to Burger's solution (13, 14).

2 1.2
P=Pc+pu—2‘i[1~n2-4(}—)2]—j = dn (7.12)
W
where

PC = pressure at the wall and head end of the grain.

The term on the right hand side involving the integral may be evaluated

employing the expression derived earlier for the tangential velocity.
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2 2
= 2 2 V R /R
P = PC +p _?UW [] -n =4 (;w) ] (‘I":Je;‘_R':M )2 (""ae) f( 'z'e" » n)

-Re/4 -Re/4 -y 2
e (2-"~7 . -e Y 1.l _ 4
f(.Y) Re/3 y2 [2 - 8. ] + yz Re (7u]3) N

+ et (%) < B (T - [E1 (2%%) - Bt (Re/2)]

where :

fitx) = [ Gt oy, (7.14)

In conclusion, the tangential velocity and the pressure functions were
plotted for various vaTuesrof Reynolds numbers from 1 to 106. )
The higher the Reynons number, the more the flow approaches a free
vortex. For Reynoids numbers of the order of one, the entire flow field
becomes forced vortex in character. Typical values of Reynolds number =
were postulated to be from 104 to 106. thus predicting that the tangential
velocity was primariiy free vortex {in character, whi]e the pressure gradfent
no longer increases with Reynolds number, as {llustrated in Figures 14 and
15,
It should be noted that the Reynolds number was based upon the radfal
velocity at the propellant surface. The radial velocity was usually in
the order of a few feet per second. 1In addition, the effects of turbulence
are to increase the effective viscosity so that values of the radial Reynolds
number are in the order of 10 (65, 67). Thus in an actual flow, the solid

body core may be a considerabie portion of the total flow. -
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INTERNAL BURNING MOTORS (62).
{Taken from reference {62) , Crowe et al.)
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7.2.2 Distribution of the Metal Oxide Particle
in the Rocket Chamber

The treatment of the metal oxide particles in the chamber was based
upon the following assumptions:

1. The gas properties are independent of the particle pro-
perties and are those determined from a viscous, incompressible
flow analysis.

2. The particles are in angular momentum equilibrium with the
gasses,

3. The particles do not penetrate the viscous portion of the
flow.

4. Stokes flow is assumed for the particles.

The following equations of motion for the particles were derived.

du u _ 1
gt~ e T 7 (ugen - W) (7.15)
AR ICLUERN (7.16)
g-“;’ = - -1- [2 ugw (F-) + w] . (7.17)

W

Solutions for these equations were obtained analytically, and the distri-
bution of the metal oxide particles was found. The results were plotted
for typical particle diameters.

A critical radius, Nes Was found below which the solid particles can-
not penetrate due to the centrifugal forces. The critical radius was pro-

portional to the particle size and the square root of the motor spin rate.
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For particles of the order of one micron, the maldistribution of particle
mass. flux was small for a spin rate of 1000 rpm or less, but could become

appreciable for speeds greater than 10,000 rpm.

7.2.3 Effects of Rotation on Nozzle Performance

The analysis of the nozzle flow condition was based primarily upon
Mager's analysis (3) of irrotational vorticies in rocket nozzles. There-
fore, the rotational core predicted for viscous incompressible flow was
neglected by assuming that it has a small area. Since the particles in
the flow do not pass into the viscous region, the particle distribution
can be found.

Since the particle distribution was determined at the nozzle inlet,
it was only necessary to apply the radial momentum equation for the particles
to determine their redistribution in the nozzle. The change in radial posi-
tion 1s due to change in the centrifugal forces acting upon the particles,

under the assumption of angular momentum equilibrium. Thus

2
dv. Vv C, Re
ke aLARE L SN (7.18)
r °p ¥p

where, the first termm on the right hand side is a centrifugal force term

and the last term is the Stokes flow viscous term of the particle velocity
lag in the radial direction.

In conclusion it was found that when,

Rt = 1.0 inches
Pc = 1000 psia
d =1 micron
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the effect of a rotating flow in a nozzle upon the particle flow is not
large for spin rates below 6500 rpm. When the spin rate was larger, the
effect on the particles increases. In addition, when the particle diameter
was above 1 micron, the effect was accentuated so that an appreciable

fraction of the particles are located at or near the wall.
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8.0 SUMMARY

The field of contained rotating flows is rapidly growing and quite
diverse. In this report only some of the possible areas of study have
been examined. The primary emphasis has been placed upon the problem
areas which would be found in rotating rocket motors. It is evident
from the number and variety of the articles listed that a complete des-
cription of the flow in the nozzle and chamber of a rotating rocket
motor is not yet possible. It should be noted that the analytical con-
veniences of infinite cylinders and rotating plates do not touch upon
the interaction of the nozzle and the chamber flow fields.

In general the effect of rotation is to reduce the mass flux at
the throat. This effect is accentuated by increasing the motor spin
rate and by increasing the nozzle contraction ratio. However, a signifi-
cant portfon of this decrease may be negated by a transfer of angular
momentum to the nozzle walls thrcugh viscous shear.

It appears possible that recirculating viscous flow patterns can be
established from the action of the fore and aft end sections of the motor.
Also, the boundary layer can transport significant portions of the mass
from one area of the flow field to another. There is also a case for
back flow patterns due to dynamic effects in the nozzle. These patterns,
as predicted analytically, can be quite complex if the ratio of tangential
to axial velocity becomes much greater than unity. Portions of these

patterns tend, however, to be unstable to distrubances.
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The effect of the reduction in mass flow rate at the throat is felt
by the chamber as an effective decrease in throat area. This can cause
increases in chamber pressure over the non-rotating condition. This in-
crease in chamber pressure can be quite severe if the sensitivity of the
propellant to pressure 15 large. The effect of backflow and recirculatory
patterns_is to produce variations in the local burning rates where these
hot éombﬁstion gases tend to impinge upon the propellant.

In the chamber the effect of rotating flow is to set up pressure
gradients which may alter the local burning rates. In addition, the
acceleration forces accompanying the pressure gradients can cause retention
of solid phases at the propellant surfaces or otherwise affect the com-

bustion zone of the propellant.



101

NOMENCLATURE
English Symbois
a = accoustic speed
a, = stagnation accoustic speed
C =V o r - angular momentum
cp = specific heat at constant pressure
D = diameter
H = enthalpy
m = mass flow rate
n = burning rate index; tangential velocity exponent v = k/rn°
P = pressure
Q = vyolume flow rate
q = the total velocity
R = gas constant
Rw = radius of the wall
Re = Reynolds number
r = radial space coordinate
S = entropy
T = temperature
u = radial velocity
v = tangential velocity
W = ax{al velocity

F3 = the axial space coordinate
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Greek Symbols

r = angular momentum

Y = gpecific heat ratio

§,4 = boundary layer thicknesses

£ = eddy visrosity

4 = 2/t reduced axfal coordinate
n = (r/ro)z reduced radfal coordinate
8 = the tangential coordinate; flow angle
u = absolute viscosity

v = w/o, kinematic viscosity

n = 3,14159

p = density

0 = flow ratio - u r o/u

T = shear stress

¢ = yelocity potential function
] = stream function

w = angular velocity

w = yorticity vector

Subscripts

1 = initial comaition

0 = gtagnation condition; total
p = particie

T = tangential; total

W = wall

eff = effective

* =

- reduced condition, throat condition
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