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ABSTRACT

The scattered field from small (with respect to wavelength) obstacles which

are mounted on an infinite, perfectly conducting plane is determined. The obstacles

considered are a monopole, half-sphere, half-cylinder, half-loop and a slot. Since

the reradiated field due to these obstacles can be identified with the radiation of a

combination of electric and magnetic dipoles, the solution is presented as scattering

dipole moments. These moments are induced in the obstacle by the incident wave

and depend on the direction and polarization of the incident energy.

i.
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I INTRODUCTION

Large scattering bodies often have protrusions or small obstacles mounted

on them. It would be desirable to know the scattering behavior of these obstacles.

For example, conical or spherical objects occasionally have slots cut into their

surface which serve as telbmetry transmitting slots. When such an object is illu-

mizated by a radar, the slots will affect the back scattered signal. in this report,

the effects of obstacles will be calculated by considering their size to be small with

respect to wavelength. This has several advantages as far as the analysis is con-

cerned. First, it permits the simpler methods of Rayleigh scattering. Secondly,

it allows us to use the scattering results qf a small obstacle mounted on an infinite,

perfectly conducting plane, when we are considering scattering by a small obstacle

which is now mounted on a large cone, sphere or some other large "mother" body.

As long as the radius of curvature at the point of such a body where the obstacle is

placed is large with respect to wavelength, the region around the obstacle can be

approximated by an infinite plane and the results for the "obstacle on an infinite

plane" can be used.

The work reported here can be divided essentially into two parts. In the

first part we are primarily interested in deriving the scattering behavior of some

obstacles when these qre placed on an infinite plane. In this respect we would like

to consider a monopole, a half-sphere, a half-cylinder and a half-loop protruding

from a plane, in addition to a slot cut into the plane. The analysis for the sattering

of the slot, since it is of a more difficult nature constitutes the second part.

The method of analysis is as follows. Since we are considering obstacles

whose size is small with respect to wavelength, the scattering from these obstacles

can always be identified with dipole radiation termLA. This is, in general, a small

obstacle will reradiate the energy intercepted from an incident wave. This reradia-

tion can be identified as the field of a combinatfn of radiating electric and magnetic

- .,,,, j.
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dipoles. The radiating electric dipoles are normal to the plane, whereas the radi-

ating magnetic dipoles are fldsh with the plane. The strength of the dipole moments

is related the direction and polarization of the incident wai k. These induced di-

pole moments will be called the scattering dipole moments. Of coyrse once these

moments are determined the solution to the obstacle scattering problem is solved.

In this report we will determine the scattering moments of a monopole, half-sphere,

half-cylinder, half-loop and a slot.

2 -



THE UNIVERSITY OF MICHIGAN
7741-3-T

II
MONOPOLE ABOVE AN INFINITE, PERFECTLY CONDUCTING PLANE

The scattered fie.AI of a monopole in the region above a perfectly conducting

plane can be obtained by using image theory. In Fig. 2-1 a plane wave is incident

at angle 0.. The boundary condition nx E = 0 on the plane can be reproduced (when

the conducting plane is removed)by an image wave coming from below at angle 7r- 0..1

E Eo h

t :0, isIJt

FIG. 2-1

The image wave in the region above the plane is then identified as the reflected wave

The field above the plane can be obtained by placing an image monopole symmetri-

cally below the plane and calculating the field of a dipole of twice the monopole

length in free space, i.e.

S iE (0 Ei(i)R(Oi , 0s + E(?r-O i)R(7r- 0i , 0 ) (2.1)

where R(Oi .0s ) is the bistatic reflection coefficient of a dipole which transforms an

incident field at 0 to a scattered field at 0.

When a cylindrical wire is located along the z-axis and a plane wave is inci-

dent at an arbitrary angle 0i the tangential component of the incident electric field

on the surface of the cylinder is

Ei = E cososinO e- j k z c os 0 +Jwt (2.2)
z 0

3
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where El makes an angle ip with the plane containing the incidence direction and
01

the axis of the wire. Introducing the value of E in the expression for the scatteredZ
field vector potential will yield the usual integro-differential equation. This equatior

can be solved for by variational or iterative procedures. The current distribution

depends on k and 0, but its dependence on 0 is simply that of cos t. In general the

current along a dipole with end points at z = ±h that is used as a transmitting an-

tenna is well approximated by a sinusoidal distribution. However, the same dipole

used as a receiving antenna has .a current distribution that varies with the direction

of the incident wave and is usually different from sinusoidal unless it is of reeanant

length. At oblique incidence the induced current does not have symmetry with re-

spect to the center of the wire. When a plane wave is used to excite a wire there is

a phase sEhift along the antenna as the incident wave passes. Only for broadside in-

cidence where the E vector is parallel to the wire are all points of the wire excited

in equiphase. For broadside incidence the current is symmetric, i.e. I z(d) =I z(-d)
For arbitrary incidence a symmetric as well as an antisymmetric current

I z(d) =-I z(d) is excited in the antenna. Since these induced currents adiate, the

scattered far-zone fields produced by them (King, 1956) are

-j R

s eR S(zw)+l(zl e s dz (2.3)
0 -h

The current must go to zero at the end points: I(t h) = 0. This also implies

that the symmetric or antisymmetric part alone must vanish at the ends of the wire.

For example, on a cylinder with resonant length (h - A/4) the symmetric compo-

nent of the induced current dominates, whereas for cylinders with antiresonant

length (h A 4/2) the antisymmetrical currer~t dominates. The antisymmetric cur-

rent is also characterized by a zero at the center of the wire, whereas the rym-

metric component has a maximum there.

4
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For wires small with respect to wavelength the incident wave cannot produce

enough phase shift as it travels past the wire to excite an antisymmetrical component

of current. Hence for small wires the current induced by a plane wave at arbitrary

angles of incidence is predominantly symmetric. We therefore conclude that for

dipoles not much longer than 2h = X/2 the symmetric current excited by an incident

field from any direction predominates. In general this current is well approximated

by a triangular distribution for short antennas, a sinusoidal distribution for resonant

antennas, and a constant distribution for long antennas. The dependence on the inci-

dent wave is simply F cos 0 sin 0, which has been experimentally verified (King,
U1956; Chen and Liepa, 1964) for receiving and transmitting antennas. Such studies

also indicate that for antennas such as the short dipole and the half-wave dipole the

receiving and transmitting currents of the antennas are nearly identical.

2.1 Resonant and Short Dipoles

Assuming a symmetric sinusoidal current

m sin[k(h- zi z>0
i Lsin[k(h+ z) z<0

is induced in the wire and that the antisymmetric component is zero (we will confine

ourselves to wire length h < 4/4), (2.3) becomes, after integration

j I m  *- [cos(khcos0 ) coskh.I
E= e sins (2.5)

where n = Wk = 1207r (9 for free space. Total E and H at long distances from

the antenna are at right angles to each other and the direction of propagation, in time

phase, and related by n, i.e. E0 = lH .
Assuming a triangular current distribution

(h- z) z >0
I = 1 (2.6)

m k(h+z) Z <0
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we obtain

E0 e-jkr tan0 sec s  -os( cos (2.7)

2irr s S o~hcs0)

In the limit of kh << 1, (2.5) and (2.7) yield

E0 = 4 -jkr (kh)2 sin s . (2.8)

In the last expression one should note that the assumed current is II Ikh(1 - z [h).

If more accurate (but still approximate) solutions to the induced currents are

desired, the methods of Chen and Liepa (1964), King (1956), Tai (1952) Harrison

and Heinz (1963), Harrison (1962), Vainstein (1959) and Uflmtsev (1962) can be used.

Now we must relate the magnitude of the current I to the incident field.
i wm

This will be done by applying the law of conservation of energy as follows. The ,

total energy radiated by the induced currents in the antenna can be computed by in-

tegrating over a closed surface which coincides with the antenna surface or alter-

nately, choosing a surface of a large sphere of radius R. Equating these two ex-

pressions a solution for I is obtained.
m

T':e tangential component of the incident field is given by (2.2). Since the

total tangential field is composed of the incident and the induced field, and since this

field must be zero on the surface of the wire we have

Etotal = Ei+Eind = 0

which gives for the induced field

Sind = -E (2.9)

The energy radiated from the antenna is

6
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W= -!R E li d

h jkz cos 0
-Re5E sin 0 cos 0 e 'I sink(h-Izl)dz
2 0 1 In

201

-3%sine cos0I Cos(kh cos 6.) sin kh- z(.

W=E cosOtI csk o o h(.1
0 In ksinO . 2.1

Recalculating the power radiated by the Poynting method we have

(7r

WP oA E9 HIdA ~JE912 r2snod6 (2.12)

Using (2.5) for E,(2.12) becomes

W yl 7r- d) _.o k] (2.13)

Equating this to (2. 11) we can solve for I I

I 4irE 0cos 0(cos kh cos 0 - cos kh) (.4
1= rcLos(kh cos 0) -cos;khl 2 

.(.4

nk sin 01 0 iod

7 -
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The integration when performed yields

LT1

C ~.5772...+1n2kh-Ci(2kh)+-sin MR4h)-k(2

12

+ cos 2kh L5772 An kh+ Ci(4kh) -2Ci(2kh]) (2.15)

where the sine and cosine integrals

Cx

Si(x) = - COx dx
Jx

are tabulated.

The scattered field is then

cos(kh cos 0)cos kh cos(khcosO )-coskh e-jk (216

0 0os~ sinO 1  sine5  Ckr

2.2 Dipoles Short with Respect to Wavelent

For small kh, (2. 16) becomes

lirn E = j3E 0cosisn iinO s .k (2.17)

It is apparent that this does not give the correct kh dependence in the limit. Tht

trouble arises trom the following: in the emf approach to the power calculation

(2. 10), it was assumed that the induced current is in phase with the forcing incident

1 _ _ _ _ _ _ 8 ___
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field. This is a valid assumption for resonant wire length. However, short dipoles

are capacitive, i. e. the induced current leads the voltage by 900. This can be

easily seen from the near field expression for a Hertzian dipole which is

E=-JrjldtsinO -jkr (.8E 3 e (.8
4irkr

Let us then assume a triangular current which for short dipoles has the form

i ~( -k)) expQ[ (kh)n J (2.19)

where n is an integer yet to be determined. This current has the correct behavior,

namely when kh -+0, 1 = j1 ( z J-I) , i. e. current leads the voltage by 7r /2.

Using this currep. in the emf calculation for power (2. 10) we obtain

W= 1Re ̂ hE sin61 cosot e jkz cos 01 IZI) exp§jL!(kh)niJ dz

-h

-E sin6 1 C00*1cskhoO (h

0 1 01 1)kh coso 0

-- E sinGo0~hk~ (2.20)

The radiated far field from a short wire with an assumed triangular current

distribution as in (2.19) is from (2.8)

________________________________ 9 _ ___________________
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jJkhSliO ni
E0  w I e x pl j(k h)-IkrJ (2.21)

The radiated power using the Poyntlngs method (2.12) is then

~2 2
W 1S % Ir sl~O(2.22)

Equating (2. 22) and (2. 20) we obtain for the current

6irE 0sinG cos '(kh)~
." 0 - (2.23)0 2

0 ~ ik hi

Therefore, the scattered field using (2.21) Is

S ~ ~ ~ ~ ~ ex J3csLsn sn k) kh)-k*j~
E; jE0csb inois s (k)2kr (2.24)

In order to determine n we need another condition. To avoid a length discussion,

let us use an expression for the back scattering cross section for small kh as given

by VanVieck, Bloch andL Hamermesh (1947) and Msrck and Reiffen (1964):

2 6 4 4X (kh) cos 0 sin (225

97 1109 4h/a-71]

This expression is valid for kh < .3 and ka «<1, where a is the radius of the
0 0

wire. It becomes more accurate as the ratio h/a0 gets larger. In any case this

ratio should be chosen such that 2h/a > 100. Using (2.25), n is established as

n =3, and the scattered field as

E i 3 h Icosoi~snO sinG -Jkr -j h) 3

log4h/a- kr2.6

3
The (kh) term in tha phase can be ignored as being small.

10
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That the kh dependence is correct can also be verified from recent results

for the radiating antenna (King and Wu, 1965). For kh << 1 the current is found to

be

ej2rV /
I- - -kh - h, (2.27)

e e
where 00) is a constant and V is the applied voltage E = -V 6(z) at the center of

0 Z 0
the antenna. It Is here again seen that I and V are out of phase by 900. For the

scattering problem, Ve becomes the induced voltage due to the Incident field as
0

given by (2. 2), I.e.

Eco z=Ec (2.28)Ve  E EoSv/sino e dz E EosqsinO 2h. (2.28)
J-h

Using (2.8), the scattered field then becomes

3 3E k h cososin0 sin0 -jkr
s 0 . e._.(2.29)
0 0(0) kr

which agrees with (2.26) above.

2.3 Monopol,3 over Perfectly Conducting Ground

The s,st1tered field of a monopole of length h above a perfectly conducting

plane can then be written using (2. 1) and (2.16) as

a
E~' =2E of (2.16) . (2.30)

0

The total electric field above the infinite plane is then given by the incident field,

the image field and the scattered field. The image field is interpreted as me princi-

pal reflected wave from the plane in the absence of any obstacle. For example,

.. . .. 11 ..
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when the E-vector is In the plane of incidence (0t =0) which is taken as the zx plane,

the total field for a short monopole is given by

jk(xsinO-zo )A
E E (cosO i+sino ) e +E (-cose i+siue k)-

- 0 i 1 0 i
3 3

Jk(xsinO +zcos0) 2E k h sin 0 sin 0 -Jkr
e I s (2.31)

'~ 1 logha~ kr

> I It can also be concluded that antisymmetric currents are not excited in a
monopole above ground. The induced currents are always symmetric, i. e.

:1] 1(z) = I-z). This comes about since the total tangenilfeda h iedet h

incident and image waves is an even function of z, i.e.

Sine tistangential E hed the total forcgfnofore Jsmall dipoles we con-

elude that the Induced currents are symmetric.

12
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MI
SCATTERING FROM A HALF-LOOP

ON AN 1J9-NITE PERFECTLY CONDUCTING PLANE

Scattering from a balf-loop on a conducting plane can be obtained by consi-

dering scattering from a full loop with an incident and an image wave as the forcing

'unctions. Let us therefore first derive expressions for the blatatic scattered field

from a full loop in f, ae space.

3. 1 Scattering from a Loop in Free Space

Weston (1957) has obtained rigorous solutions for the loop in toroidal co-

ordinates. In the far field, when r is large, the scattered field is given by

E= Bcos 0 [1 A() JMlsin9)+JM (Ias0] FM(0. (3.1)
0 M=l A()0l -

where

F M (0, o) = cos 0~ sinot 0Cos Mo LJM+l (ksin0 0)+J M1(kasin0 -

- COS IP sin Mo [JM+l (ksin.0 0-J M-1 (asinO A

and

Fi (kasin)-J l(ka sin0] GM(00, +

+ 0 J-- J(kasinO)J (kasinOa (:3.2)A(O) 11 0

where

G (0 ,) co 00 ski1 i/sin M01J ~(kasin.6O0)+ JM-l(kasin% +

+coso& CO.M M.Jl(kasin6 )-J l(kasin%]
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00= polarization angle measured from normal to plane of incidence,

A(M) = Eka)2-M2IB(M) +C(M)'
,ka

B(M) 2 2[An(8S 0)+0t41/2)-~iPM+ 1/2 ] +2r [E2M2z)+I 2M(2z]) dz,

C(M) = (ka) 2 [F 2M- p2ka) - E 2M+1 (2ka)+ J~qM~j(2ka)- '2M+1 (2k l

E M(z) are the Weber functions (Erdelyl et al, 1953),

JN(z) are the Bessel functions of the first kind,

O(z) is the logarithmic derivative of the gamma function,

S a= a/a 0; a, a 0are the radii of the loop, wire, respectively

Without loss of generality, incidence is confined to the xz plane at an angle 8 with
0

respzst to the z-axils. The geometry Is shown in Fig. 3-1.

ii

FIG. 3-1: A WIRE LOOP IN THE xy PLANE.

14
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These expressions for the scattered field will simplify when s llloops are
considered, i e. when ka, < 1. In the following derivation we wl eanscn

3order terms of ka, and let terms of order (ka) and higher be zero. The above

functions, appropriate for small diameter loops are then

B() + -7ri(ka + rka
BM M+ (3/2 + MrN3/2 - W) +(2M - 1)(2M)! 33

2\ 1- / 2aN2
C(M) a l(ka) 21 + (2ML~ - (1if

L(M -1/4) \ 2 9/4) 2-1~ 2(M
(3.4)

A(M) =M
2 

1 2  2M-1

A()IXM- (2M-- 1)(2M). (ka) [+*M 2  /

M2 -(1/4

+ T3/".+ M)r(3/2 M

(kAsinO)M 1 1 (sine kaf2)2

FM M A+ AM (3.6)
2 (M L) M(M+ 1)

(sinG ka/2 )Ml + (sin 0 ka/2)2

GM IM 1),- _ __ (3.7)
M (M-1~ L M M M(M+ 1) J

+- 2 ka

(sinG ka/2)M- (kasin 0) )

JM+l n0)±M-1k l0 ) (M-1). [ti+ 1

where

15
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XM = 2 8nS + V4112)- O(M+ 1/2j

A n 0o~ntcs~cs&iM

+

aM=cosO sinip sinMo± cost(coM

;01/2) =-1.96351...

Substituting the above results in (3. 1) and (3.2) we obtain for the scattered field

from a small loop

+ -2
A F2 A sl

E BcosO-sn 1 ka'r(a 2 _o i

AB

sinG sin (3.10)

and

+ .2
i~r (d)2 2 2 a Isin 0

X -xl (1 8

+ sinG i (3.11)

where

c0 sios-0

2x,

16-
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These expressions are valid for arbitrary polarizations of the incident field. When

the E vector is in the plane of incidence, 00 = 7r/2, and the incident electric field
J A0

is = i Eo . For polarization perpendic.lar to the plane of incidepce, o = 0 andis

E iE0. The plane of incidence is the plane formed by the incidence direction
~A

and the normal to the loop i
z

The above expressions for the scattered fields are moderately complicated.

The additional accuracy which the (ka)2 terms give is usually not needed when loops

small with respect to'a wavelength are considered. Henceforth we will use terms

only up to ka, whichwill give results of sufficient accuracy when ka << 1. The scat-

tered fields can then be written as

Ilka-]~ (Cos 0 sin V)Cos 0Cos + Cos' 0Cos 0sin0 (3.12)
0X 1 \X/ 0 0 0

E = B 1 - ka kr ) (-Cos 0 sin q/ sin~ + Cos 1PCos )+ 1 oosios

(3.13)

A further examination of the above two results reveals that the scattered field from

a loop is composed of two electric dipole terms and one magnetic dipole term. The

scattered electric field can then be given as the sum of the fields of an x and y

oriented electric dipole plus a z oriented magnetic dipole, i. e.

ed ed mdN Et=E +E +E (3.14)
x y z

where

ed A e k
EA = c (ixi )xi --_i 1 lrx r Rx

= - ~- k cosscos - i0 sin (3.15)

1_17
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C2 ry r rR
y

ikR

( Brx R =sino (3.17)
z 1 X

The factors inside the square brackets; are the pattern factors of the corresponding

dipole and the terms preceding the square brackets are the dipole moment strength.

One can alko observe that the scattering dipole moment depends on the amplitude,

polarization and direction of the incident field as well as the geometry of the loop.

R is clear now that a small loop is not a purely magnetic dipole type of scatterer and

therefore carnot be used for measuring the magnetic field in the same way that a

thin, short, linear wire can be used to measure the electric field (Justice and Rum-

sey, 1955). As a matter of fact, for polarization in the plane of incidence

(qo = 7r/2) the saattered field from a loop always looks like that of an x-oriented

electric dipole. Similarly, for Incidence normal to the plane of the loop, and for

arbitrary polarization, the scaltering loop acts as en electric dipole with orientation

parallel to the incident electric vector. Hence it appears that the scattering loop

behaves more like an electric than a magnetic dipole. At first, such behavior ap-

pears puzzling, expecially when one recalls that the antenna patterns of small loops

are described in terms of equivalent magnetic dipoles. However, the differences

can be explained as follows. For the small radiating loop v e have a uniform current

which is associated with the magnetic dipole. For the scattering loop the currents

induced by the incident field are more complicated and in addition to a uniform cur-

rent have other components which can be identified with electric dipoles.

18
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3.2 Scattering from a Half-Loop

The above results can now be applied to scattering from a half-loop mounted

on a conducting plane as shown in Fig. 3-2. The conducting plane is assumed to be
z

E E (r, 0,

x
FIG. 3-2: GEOMETRY OF THE HALF-LOOP OF RADIUS d.

The Conducting Plane is the zy Plane.

the zy plane. If the incident wave is now confined to the 0 = 0 plane a loss of gen-

erality would result. The expressions for the full loop can be extended to an arbi-

trary plane of incidence 00o simply by replacing every 0 term by 0 - 0. Then,

the solution to the half-loop can be constructed from the solution to the full loop by

the method of images as follows. The boundary condition that the total tangential

electric field be zero on the conducting plane can be obtained by adding an image

wave in the x < 0 space to the incident field such that

iX X 100' 01 00) 0)+Eim(0o 0 0, ) I x=0 = 0 . (3.18)

If the full loop is illuminated by the incident and the image wave, then in the x > 0

space the scattered field that is obtained is the scattered field for a half-loop over

a conducting plane. The conducting plane coincides with the zy plane. The total

scattered field frem the half-loop can then be written as
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E=EW __)E r (0 ?T00,-* )+E 8(0,0;O 8 +E(0_:
A 0 00,0+ .2 00V0 0 00

(3.19)

r imwhere E ,given by E ,is the reflected field from the plane, and the remaining

two 'armns are the scattered fields due to the incident and the image wave, respec-

tively.

If the incident wave is given by

i= i ik-r-lwtI E =E e- (3.20)-0
where the incidence direction is given by

k =-(sinG cosO4 i +sin0 i +Cos 0 i )(3.21)
o0x 0oy 0oz

and the polarization is

Ai A

E =i sinq/ +I cosot

AA

-I sin 0 in (3.22)

where the caps denote unit vectors, the components of the half-loop scattered field

can be written as

E E(0, 0;0 00 ) + E (0.,0;00$ 7r- 0 -0&

-2B ka'r(Cos 0s8 cs cosiP sino )cosocosO (3.23)

and
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=-E2 (~kai) (coso sinP cos -cosIPsio)sino+cosfpsinp.sinj

(3.24)

As in the case of the full loop, the scattered field from a half-loop can be

decomposed into dipole fields. Identifying the respective terms, the scattered field

from a half-loop on a conducting plane can be written as

ed md
E=E + EX (3.25)

x z

where the scattering electric dipole contribution is

E.ed = 2B i7 (c

(3.26)

and the scattering magnetic dipole contribution is given by

md B O
Ed = - cos 0o sin0o iri sin 0]  (3.27)

z Xl

When these expressions are compared to the corresponding ones for the full loop it

is seen that the presence of the conducting plane doubles the magnetic dipole type of

contribution, doubles the electric dipole contribution which is normal to the plane,

and cancels the electric dipole field which is parallel to the plane.

3.3 Conclusion

It was shown that the scattered field from a small loop in free space can be

identified with three dipole contributions. The equivalent scattering dipole moments
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which are induced by the incident field are expressed in terms of the loop geometry,

the orientation and polarization of the incident wave. The scattered field of the loop
s 2 2

shows a wavelength dependence which is E k a2 . Such a dependence is charac-

teristic of Rayleigh scattering.

Scattering for a half-loop, mounted on a conducting plane, is similar to that

for the free space loop. The differences are as follows. The induced magnetic di-

pole moment is doubled. The normal electric dipole contribution is present in al-

tered form, but the electric dipole term which is parallel to the plane vanishes.

These changes, in addition to identifying the image wave with the reflected field

from the plane, account for the presence of the conducting plane and the arbitrary

direction of incidence.

We have treated scattering from a half-loop and the full loop in terms of the

equivalent scattering dipoles. Let us derive explicitly the scattering dipole mo-

ments which the incident field induces in the loop. The radiation field of an x

oriented dipole with moment j, is given by

2 iR
E e.. (3.28)

S27r R

where the square bracket is that of (3.26). If the dipole Is a radiating current ele-

ment U, then we have from the continuity equation that the radiating dipole moment

is p = iIllw, where I is the length of the current element. Equating (3.28) and

(3.26) we can solve for the scattering dipole moment which is

2
P = Ea 3 (1ka- i (cos0osinocos 0-cosbosino). (3.29)

p0 0 0000

The term in the parenthesis can now be identified as the incident wave polarization

component which is normal to the conducting plane, i.e.
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a -a-En (3.30) >
where~ ~ n stenoml-

wher n s th nomalto the plane, in this case n = 1 The remaining scattering

dipoles can be similarly otained.

23
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IVI

PLANE WAVE DIFFRACTION FROM A HALF-SPHERE
ON AN INFINITE CONDUCTING PLANE

Scattering from a half-sphere on a conducting plane can be obtained by con-

sidering scattering from a sphere with an image wave in addition to the incident

wave. Let us therefore first derive general expressions for the bistatic scattered

field from a small sphere in free space.

4.1 Scattering from a Sphere

The Mie series is the well-known solution to the scattering problem of a

sphere. For the special case of the small sphere, i.e. ka << 1, the first term only

is important. If the illuminating field is a plane wave incident from the negative

z-axis:

i i(t-kz)E =E 0 e (4.1)
OX

the solution can be written as (Kerr, 1964)

E -
ik R

-E -  , (ka)3 [cos0(cos9+l) isinO(+-Lcos9] (4.2)

where the caps denote unit vectors. This electric field looks like the field of an

electric aivd magnetic dipole. We can therefore write

x y

l E i xi)Xir-( 0xA (4.3)

where E' = E e (ka) /kR. That is, the scattered field is that of an x oriented
0electric dipole and a y oriented magnetic dipole. The incident wave induces in the

sphere an electric dipole and a. magnetic dipole with moment half that of the elec-

tric dipole.
.. .... 24 . ..
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We would like to express the scattered field from a sphere for an Incident

field that has arbitrary direction and polarization, as for example,

ik • r+iwt
S E a e 0 (4.4)

- 0 0

where the Incidence direction is

A A A

r = I sin0 cos~ +i sine sino+i cos00 x 0 0 y 0 0 z 0

and the polarization vector is given by

A Aao 0 oSino+9 c°S~o
a0 0 sn0 0 0 s0

AA

+ cos 0os)- iz sin0 sin °0

The induced electric dipole will have the same direction as the incident electric

vector, whereas the orientation of the induced magnetic dipole is determined by
AA

r 0 xa0 . This is found by examining (4.2) and (4.3). The scattered field for an

arbitrary incident wave can then be written as
s 1 Ar( A~)

= E' Irxa o)x i r+ a
AE0 1 r+ r )+ 0a

1_lA A A o(1rAE t ro. ( r ) Jr ao[ r (4.5)
2or r o2o r

where the unprimed quantities denote coordinates of the observation point and the

sub-zero coordinates are those of the incident field direction and polarization.

4.2 Scattering from a Half-Sphere

The above results can now be applied to scattering, from a half-sphere

mounted on a conducting plane. The conducting plane is assumed to be the zy
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plane. The solution to the half-sphere can be constructed from the solution to the

full sphere by the method of images. The boundary condition that the total tangen-

tial electric field be zero on the conducting plane can be obtained by adding an image

wave in the x < 0 space to the incident field such that

A 1
ixX[_.E (0oA, oo)+Eim(o1 o = 0. (4.6)

When the sphere is illuminated by the incident and the image wave, then in the

x > 0 space the scattered field that is obtained is the scattered field for a nalf-

sphere on a conducting zy plane. The total scattered field from the half-sphere can

then be written as

i E =El( o , '0,0o)+Er(o, o,o )+ES (, 0; 0o 0J.0 o+ ES(0, 0; 7r - o-0o) (4. 7)

r im

whereE given by E , is the reflected field from the plane, and the remaining

two terms are the scattered fields due to the incident and the image wave, respec-

tively.

Let us examine the scattered part, which is given by the last two terms of

(4.7). Adding these two terms will give us an oxpression which after some algebra

can be decomposed into dipole fields. Identifying the respective terms, the scat-

tered field from a half-sphere on a conducting plane can be written as the field of

three dipoles

Es =Ed +Etd + d (4.8)
x y z

where the contribution of the scattering electric dipole is

A= 2E'(sin~o cosO cos o- coso sin o)[ cosCos - sin ] (4.9)
x
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and the scattering magnetic dipole contributions are

and

^d _E, cos 0o sin 00 sin0 (4.11)

z

The factors inside the square brackets are the pattern factors of an x oriented elec-

, tric dipole, a y and z oriented magnetic dipole, respectively. The teros pre-

, ceding the square brackets are the corresponding scattering dipole moment strength

One can observe that the scattering dipole moment depends on the amplitude, polar-

ization and direction of the incident field as well as the geometry of the 'half- sphere.,

~Comparing these expressions with the corresponding ones for the full sphere

~one can see the effect that the introduction of the perfectly conducting plane has.

For a sphere in free space, an arbitrary incident wave would in general induce threl

I electric dipoles and three magnetic dipoles, oriented along the x, y, and z axis

respectively. The introduction of the condubting plane has then the following effect.

It cancels the scattering electric dipoles which are parallel to the plane and doubles

the strength of the remaining dipole which is normal tv the plane. The magnetic

dipole which is normal to the plane is canceled and the strength of the remaining

two magnetic scattering dipoles which are oriented parallel to the plane is doubled.

These changes, in addition to identifying the image wave with the reflected field

from the plane, account for the presence of the conducting plane.

4.3 Conclusion

It was shown hat the scattered field from, a small half-spthere on a plane

can be decomposed into scattering dipole fields which show the characteristic Ray-

~~ 3 -

leigh scattering dependence, i.e. E a Let us derive explicitly the scattering
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dipole moments which the. incident field induces in the half-sphere. The radiation

field of an x oriented dipole with moment p is given by

2 2 -11cR -

E ( -- 2 R (4.12)4 4)

where the square bracket is that of (4.9). If the dipole is a radiating current ele-

ment It, then the continuity equation gives us the radiating dipole moment as

p =I/Jw, where I is the length of the current element. Equating (4.12) and (4.9)

we can solve for the scattering dipole moment which is

... < ...-.-. . ,. ",-47¢ 3 (M V-oOS 0° Cos I )"A

0 0 0 0 0 0

The term in the parenthsis can now be identified as the incident wave polarization

component which is normal to the conducting plane, i.e.

3AA
p = 4reE a a *n

where n is the normal to the plane, in this case An= The remaining scattering

dipoles can be obtained similarly. These results can now be used to obtain the scat-

tered field from a small half-sphere which is mounted on various large bodies like

cones, cylinders, etc. As long as the radius of curvature at the point of the body

where the half-sphere is placed is large with respect to wavelength, the region

around the half-sphere can be approximated by an infinite plane and the above re--1
sults can then be utilized.

:1
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V
SCATTERING BY A HALF-CYLINDER ON A CONDUCTING PLANE

Reflection of plane electromagnetic waves from a perfectly conducting half-

cylinder mounted on an infinite conducting plane can be obtained from the solution

to the full cylinder and the theorem of images. We will divide this study into two

parts. One for horizontally polarized waves with E vector perpendicular to the

~plane of incidence and the other for vertical polarization or with E vector in the

° plane of incidence.

5.1 Horizontally Polarized Waves

If we have a plane electromagnetic wave with E vector normal to the plane of

i incidence impinging upon a conducting half-cylinder as shown in Fig. 5-1, the sct-

ii
t Ei

H~ (r, 0)

l t Image Plane

E m

FIG. 5-1: Incident and Image Wave for Horizontal Polarization

tered field from it can be obtained by the addition of an image wave. If the total

scattered far field from a full cylinder in the presence of the incident wave is
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E=E+E~=Eikr cos( + 0) -iwt
0

-E ec e I i cosm(0+0)
m=O m m0

(5.1)

and in the presence of the image wave is

E=Eim +E Eeikr cos(o0- 0)
0

2 i(kr+~)L e-in
- E k e 4 ce msn6cos m(6 - 0 (5.2)

then the addition of the above two ±ueli will give the scattered far field from a half-

cylinder on a conducting plane. That is

tkr cos(O 0+0) lkr cos(0- -6)

0 0

2 i(kr + - ) OD-16
+4E 2F 4 e, sn 6  sin me.in m (0. 'flo rkr E In 0

weethe first term is the incident wave, the second term is the reflected wave,

the third is the scattered field, and

J In(ka) -16
ie msin6(5.4)

H~ 1 ~( ~In
m~)(a

I __ _ __ _ __ __ _ __ _ __ __ _ __ 3 _ _ __ __ _ __ _ __ __ __In__ _
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5.2 Vertically Polarized Waves

When the E vector is in the plane of incidence as shown in Fig. 5-2, the

Ei

H6)

- - -- -- Image Plane

im rO 0E 10

H Him

FIG. 5-2: Incident and Image Wave for Vertical Polarization

total scattered far field from a full cylinder in the presence of the incident wave is

E =E i+E= E e ircos(O0 +0)
0

2 e 4  57 Em e min61 cos m( + 00) (5.5)

and in the presence of the image wave is
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i~kr + O -i -- ;

77 HNj -;- e -,ce msn6 o ( - 00 .6)

E ~ ~ E =E(0 e6) o( 0 E k o~ -0
0 0

-i(kr + e-E) 6 ,(56
-2n H T  e 4) e sn cos m9cos )

71=O In In 0

cyher n a1 cmondctn plane i0e.n

E=E I +E 0e msn6 48

HJl (ka) -I6

A somewhat different approach to solving the same problem was considered by Tai

(1948). Extensive scattering patterns for the half-cylinder are also given in this

reference.
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VI
SCATTERING FROM SMALL SLOTS AND DIPOLES ON A CONDUCTING PLANE

The work presented in this section will be divided into two parts. In the first

part we will derive the radiation chg.racteristics of slots in an infinite plane. We

will show that small slots radiate like magnetic or electric dipoles which are mount-

ed on a plane. Equivalence relations between magnetic current elements and electric

loop currents and between electric current elements and magnetic loop currents will

be given. Equivalence relations using duality or Babinet's principle between mag-

netic (electric) current elements and electric (magnetic) current elements will also

be given.

In the second part we will consider the scattering behavior of small slots

which are cut in an infinite, perfectly conducting plane. In this case the incident

wave will induce dipole moments in the slot which will in turn radiate with the same

characteristics as the radiating dipoles of part one. The problem is then to find the

scattering dipole moments which are induced by the incident field.

6.1 Radiation from Dipoles on a Conducting Plane

Radiation from electric and magnetic current elements can be obtained from

the solution to Maxwell's equations which include magnetic charge and current.

Magnetic currents can be used to express discontinuities in the tangential electric

field. For example, the tsngental field in a slot or an aperture can be looked upon

as an equivalent magnetic current sheet, given by M = -axE. A magnetic dipole

which is composed of two oppositely charged magnetic charges separated by an in-

finitesimal distance can be looked upon as the equivalent of an infinitesimal loop of

circulating current, i.e. we will show that Pm = om where the magnetic dipole mo-

ment is p = qml and the magnetic moment of circulating electric curent about an

area A is m IA.
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If we write Maxwell's equations for time-harmonic fields as

VxE J -jwBg
(6.1)

V*D=p

then the solution can be given as

E -j4A- 1V(V*A) -Vx F (6.2)

H =-jw.F - ~V(V -F)+Vx A (6.3)

where for surface currents the vector potentials are

A jJ 4 ds (6.4)

F dS (6.5)

and the equivalent surface current densities are related to the field by

M= -_ixE (6.6)
AK=nxH (6.7)

and Yj =AI

The radiated field from a small current element can now be calculated since

the integrations in (6.4) and (6.5) can be readily done. Let us express with the aid
of the continuity equation the dipole moment p of a current element Ul as

p=I1/1jw. The radiated magnetic field of a current element It is then found to be

_____________________________________________ ____________________________________34______
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.ki~t ki '\xR (6.8)

gimilarly, the dipole moment p of a small magnetic current element I I-I m m
can be expressed with the use of the continuity equation

apm
V.J +-In=o

m 8t

as Pm= I /jw. The radiated electric field of a magnetic current element I I is-m m

then

E=- Jw e-kt + .~ (6.9)
E-- -4 ejR

6.1.1 Image Theory

When an element radiates above a conducting plane, the total field is ob-

tained by forcing the tangential electric field to be zero at the plane. For the

special case of the plane the solution can be obtained much more readily by placing

an image source behind the plane and calculating the field due to the two sources

with the plane removed. Since a correctly oriented image source will combine with

the real source to yield a zero tangential field over a plane which bisects the tvo

sources, the solution so obtained is also the solution to the source above the con-

ducting plane. This is guaranteed by the uniqueness theorem. Figure 6-1 shows

current elements and the correctly oriented image elements to produce zero tan-

gential electric field on the dashed line. If a source composed of dipoles is posi-

tioned on a conducting plane the effect will be as follows: the conducting plane can-

cels the electric dipoles tangential to t.a plane, doubles the electric dipoles normal

to the plane, cancels the magnetic dipoles normal to the plane and doubles the mag-

netic dipoles tangential to the plane.
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In

FIG. 6-1: PAMS OF CURRENT ELEMENTS WICH PRODUCE
ZERO TANGENTIAL ELECTRIC FIELD ALONG
THE DASHED LINE.

6.1.2 Radiation from Electric Dipoles on a Conducting Plane

The radiation characteristics of a small current element Ite j t protruding

normally from a perfectly conducting plane is with the use of (6.8)

H- e (k + pxR (6.10)

A z-directed current element at the origin will produce a magnetic field

H -e J ( -  + sine

with the conducting plane coinciding with the z = 0 plane.

6.1.3 Radiation from Magnetic Dipoles on a Conducting Plane

The electric field of a magnetic current element lying flush on a conducting

plane is from (6.9)

E=- -$ e-IkR (+ >yxR (6.11)

36
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A z-directed element I I at the origin in a conducting plane will produce an elec-m

tric field

I I -jkr

= 27r er ) sine

where the conducting plane is any plane containing the z-axis. The magnetic current

can be related to a voltage by Maxwell's equations (6.1) as

E'dl = - In .(6.12)

6.2 Radiation from Slots in a Conducting Plane

Radiation from an aperture S1 in a conducting plane is given by

1E(r) = -- L Mx V' dS (6.13)
27r5 ~ -R

where R = r -.El and the origin is contained in S If the tangential electric field
A

M =E x n is known in the aperture S1. the above expression gives the exact radiated

field at the observation point r. Differentiating the Green's function with respect to

the source point, we have

e - i\ e - j kR
R = jk + R (6.14)

If we consider fields far from the source in the sense that r >> I (but with no

assumption about the size of r relative to X), we can write

I-rI r-rr' = r-r'coso/ . (6.15)

Here I is a characteristic dimension of the aperture S Substituting we have
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I%

E(r_ ejkrc0sodS (6.16)

- S

where we have retained the approximation (6.15) in the phase, but in the amplitude

we have let R ' r. Expression (6.16) can now be readily applied to apertures which

are small with respect to wavelength; it is also the correct far field expression for

apertures large with respect to wavelength.

6.2.1 Short, Linear Slot

If we have a thin and short slot such that A << I <<)X, where A is the thick-

ness and I is the length of the slot, (6. 16) can be written as

e-jkr (jk A
E - k + ) xM1A (6.17)

27r 2 

If we compare this to (6.11) we find that the short slot behaves like a magnetic di-

pole with the equivalent dipole moment of the slot as jwpm = MIA= VI. Therefore

the equivalent magnetic current is related to the aperture field as

IIn = MA = (Exi)A = Vxn (6.18)

since V = EA. The above expression shows (as did 6.12), that magnetic current is

equal to the slot voltage V across the gap, i.e. I = V. Figure 6-2 shows the
m

notation for a slot

/ /

FIG. 6-2: RELATIONSHIP BETWEEN MAGNETIC CURRENT AND
SLOT FIELD.
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6.2.2 Circular Slot

The integral in (6.16) is now slightly more difficult to evaluate than it was

for the linear slot. If we consider a slot as shown in Fig. 6-3, with the radius

In

FIG. 6-3: CIiCULAR SLOT OF RADIUS a.

a <<)L and a uniform excitation, the integral in (6.16) can be written with the aid of

some vector identities as

M j rdS -jkrx 1 1x~ld (6.19)
1 

1

The last integral can now be defined as the magnetic moment of the magnetic current

distribution M, i.e.

m I= 5iix.idS (6.20)

S1

The magnetic moment is normal to the area of the loop as given by the unit vector .

The electric field of the magnetic ring current in a conducting sheet then becomes

e -jkr ( .. ^E =-jk - + rx(rxm) . (6.21)
r"r
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Since in the far field the electric and magnetic fields are related by

E = -AxH (6.22)

the magnetic field of the ring current can be written as

e-jkrl (ikl AH=j - - +- rxm (6.23)

Therefore at least in the far field the radiation from a circular slot behaves like

radiation from a vertical dipole above a conducting plane. Comparing (6.23) to the

radiated magnetic field of an electric dipole (6.10) we find t-ht the equivalence rela-

tionship is

p=-Cmn (6.24)

If the magnetic current I flows in a closed circuit, whose line element is di,
m

the magnetic moment of this ring current can be written

n I axdf (6.25)

where I = MA and A is the width of the slot assumed here as A < a. Since
1 I

(ax dt) = dAn, where dA is the triangular element of the area inside the ring,
(6.25) gives the total area which is bound by the ring. The magnetic moment then

has the magnitude

m =I A (6.26)
m m

2
where A is the area regardless of the shape of the circuit and is A = 7ra for a

circular loop. The equivalence between a current element mounted at rig.t angles

on a conducting plane and a magnetic ring current (circular slot)in a conducting plane

is
It I - In A (6.27)
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6.3 Radiation from Electric Loop Currents

If a magnetic ring current (ac'.ually an infinitesimally thin washer-shaped

current with average radius a which flows in a strip between a+- and a- -)

could exist in free space, the radiated magnetic field would be, from (6.23)

-jkr
H j -4---r + 2 xm (6.28)

r

It would be only half as strong as the field produced from a magnetic current in a

conducting plane. That this must be so can be inferred from the theory of images,

that is the conducting plane doubles magnetic current elements that are parallel to it.

Therefore it is not necessary to calculate the radiated field from magnetic currents

usb-g the vector pctential (6.4) and then (6.2) since these are equivalent to (6. 13).

This becomes more evident when (6.13) is written as

E=- 2"Vx eMr') dS (6.29)

Radiation from a loop of electric current can be obtained using the vector

potential method. The magnetic field can be expressed with the use of (6.4) and

(6.3) as

HdS (6.30)

Using (6. 14) and (6.15) this can be rewritten for small loop currents as

-jkr A elk r

H(r) 4 r r+ rx5 Ke dS . (6.31)r Sr1

One can again use the vector identity (6.19) to express the above magnetic field as
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jke-jk ( iN+
H(r) 4 + rx(rxm) (6.32)

where m is the magnetic moment of the electric current distribution K, i.e.

M= I dS i r' I(r1)df (6.33)

12JS I

In the far field the electric and magnetic fields are related by (6.22), which can be

re-expressed as L = rxE. This permits us to write the electric field of the loop

current as

_E(r) = j k (Lkm + (6.34)

An examination of the above expression and of (6.9), the electric field of a magnetic

dipole element I I in free space, shows that a magnetic current dipole and electricm

current loop radiate equally if their moments are related by

£m =  M  . (6.35)

A magnetic current element and a current loop, positioned as shown in Fig. 6-4

~I

FIG. 6-4: POSITION OF ELECTRIC LOOP CURRENT AND MAG-
NETIC CURRENT ELEMENT FOR IDENTICAL
RADIATION CHARACTERISTICS.

have identical radiation characteristics if (6.35) is satisfied.
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If the loop current is confined to a plane, the magnetic moment can again be

evaluated with the aid of (6.25) as

m = IAn (6.36)

where A is the normal to the plane of the loop, A is the area of the loop which is

7ra 2 for a circular loop. With this last expression the equivalence relationship

(6.35) can be rewritten as

In J4 u n . (6.37)

The direction of the electric field from a current loop which is given by
A is

rxm is normal to any plane containing the axis In of the loop. This permits us to

introduce a conducting plane along m without disturbing the electric field of the loop

(boundary conditions are automatically satisfied). A half loop mounted on a con-

ducting plane, as shown in Fig. 6-5, therefore radiates like a full loop. Therefore

FIG. 6-5: ORIENTATION FOR A SLOT AND A HALF-LOOP ON A
CONDUCTING PLANE FOR SIMILAR RADIATION.I

comparing the electric fields of a linear slot (6.17) and of a loop (6.34) we find that

the relationship for the radiation to be equal is

21 = jr =jk it (6.38)
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THE UNIVERSITY OF MICHIGAN
7741-3-T

. or

r2(Vx i) jcpi (6.39)

I We should pause now and examine the expressions that we have identified as

gnetic and electric line currents. For example, in the case of the linear and cir-

cular slot of width A, we have identified the magnetic current with

I = MA = (E xn) A. However, when we talked about a magnetic current element in
m

free space (as for example in 6.19) the wire (or strip) current was related to the

surface current density by an integration around the cross section of the wire, i. e.

In M d*, which for a flat strip could be written as I I M2A. This howeverIm m

introduces a factor of 2 when compared with the equivalent slot current. To resolve

this apparent paradox we only have to look at the vector potential solutions to Max-

well's equations to determine whether the I ' M2A interpretation is correct. The
m

vector potentials (6.4) and (6.5) are solutions to the vector potential wave equations

whose inhomogeneous terms are the electric and magnetic currents J and J- -m

which for good conductors are crowded on the surface and becowe the surface cur-

rents K and M respectively. Since these currents flow in a small skin depth layer

inside the conducting body we see that, for example, in the case of a thin wire

M df = I gives the total wire current and should be interpreted as such,

whether the wire is round, flat, square, etc. The question now arises whether the

vector potentials are valid also for points just outside the conducting surface when

the interpretation for K and M must be given as n̂ xH and Exii. This can be

answered in the affirmative. Zinke (1941) has shown by a complicated skin-effect

analysis that the vector potential just outside the surface of a cylindrical wire is

valid and that it is independent of the cross-sectional distribution of the axial cur-

rent. This permits us then to find an equivalent circular cylinder for an arbitrary

cross section. For example (King, 1956, p. 20), the equivalent radius r of a thin

strip of width A is r =A/4.
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The same comments apply when considering electric currents. For this

reasonwehave written § Kd = I in (6.33).

6.4 Summary of Radiating Dipoles Results

A duality exists between the fields produced by electric and magnetic sourcep

This can be seen from the expressions (6.8) and (6.9) which give the field from lin-

ear electric and magnetic current elements, or (6.34) and (6.28) which are the equi-

valent expressions for ring currents. From these we can infer the duality relations.

These relations show us how to interchange symbols in order to obtain the solution

when only electric (magnetic) sources are present from a solution with only mag-

netic (electric) sources present.

Electric sources only Magnetic sources only

E H

H -E

K, I, p, m M, IM, Pmj Mm (6.40)

A F

P,E, R El, jA _1

The above relations give the equivalence between electric and magnetic cur-

rents which have the same physical shape. Another set of equivilence relations can

be obtained which relate the fields of linear electric (magnetic, currents to loop mag-

netic (electric) currents. These are

A 
j' pn m or I I V1= j IAn=jop (.41)

and

p=-Em or I= -jEI An . (6.42)
- m

__ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _. 4



THE UNIVERSITY OF MICHIGAN
7741-3-T

From these we conclude that a linear monopole protruding from a conducting plane

radiates identically to a circular slot in a conducting plane if (6.42) is satisfied and

that a half loop mounted as shown In Fig. 6-5 and a Jlnear slot radiate equally.

Figure 6-6 shows the equivalent radiators.

6.5 Scattering Dipole Moments

Electromagnetic scattering from a small body in free space can be identified

with the radiation fields from a combination of electric and magnetic dipoles which

have a strength and orientation such that their combined radiation field is identical

to that of the scattering body. When a symmetric scattering body is bisected by a

conducting plane, the scattered field ;rom the half-body is altered in the following

way: the conducting plane cancels the electric dipoles tangential to the plane. doubles

the electric dipoles normal to the plane, cancels the magnetic dipoles normal to the

plane and doubles the magnetic dipoles tangential to the plane.

6.5.1 Scattering Dipole Moment of a Monopole

The radiated electric far field of an electric dipole can be obtained from (6.8)

with the aid of the far field relation E = 7H x as

e-Jkr
E=k r- (rx£)-i . (6.43)

The scattered electric field of a z-oriinted monopole of length I was ob-

tained before as (see eq. 2.26)

k 23Ei coso'sin, s-ins e- j kr
E A se / (6.44)

where E 14z = E Cos 0 sin 0i is the tangential component of the incident electric

field along I and a is the wire radius. An arbitrarily oriented electric monopole

twill then scatter an electric field
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ES i.k 2 3  e-Jkr OrXbX (6.45)
- log 4/a-1 r

A

where the orientation of the element is given by I = p. Comparing this expression

to (6.43) we can solve for the induced scattering dipole moment, which is

3 i A
= 4rE E . 6.46)

-log 4 /a- 1

This is the dipole moment of a short piece of wire of length I and cross section

radius a either in free space or mounted normally on a conducting plane. In the lat-
0

Ater case the normal to the plane and the wire direction coincide, i.e. n-=
6.5.2 Scattering Dipole Moments of a Loop and a Half-Loop on a Conducting

Plane

In was shown in a previous section that the scattered field from a loop is

composed of two electric dipole terms and one magnetic dipole term. The two in-

duced electric dipoles lie in the plane of the loop. One is oriented parallel to the

plane of incidence, the other normal to it. Actually, the two electric dipoles were

the two components of a single dipole which the electric field E induces in the loop.

This single dipole lies in the plane of the loop, and has the direction which coincides

with the projection of Ei onto the plane of the loop. The unit vector

A= AXAj A= (mxE )xm (6.47)

gives the direction of the induced electric dipole moment. This dipole radiates an

electric field which is given by

Eed := B k ) fX[ A

-- (l+ka 1 { x )x Q xr (6.48)

where B E 02 a7r e- /r, in is a mit vector along the axis of the loop, and
0 0
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are the direction of incidence and observation point, respectively. Comparing

this expression to (6.43), we find that the induced scattering dipole moment is given

by 2
4r a +kja i (mxE A)xm

X X1  - (6.49)

where = 2 Lln 8S- 2 and S is the ratio of loop radius to wire radius.

The incident field also induces a magnetic dipole which is normal to the plane of the

loop and reradiates a field given by

md_ B A .(XAj)AA
E - m r xE rxm . (6.50)

The induced scattering magnetic moment can be obtained by equating the above ex-

pression to (6.34). The moment is then

2 321r a3
m =- -  in.(r xE)n . (6.51)

Since YH=r'xE for a plane wave, (6.51) can be written also as
0 -

2 3
M (mnHi)n(6.52)
X1

Using (6.41) which relates the magnetic moment to the magnetic dipole moment

(pr = Pm), (6. 52) can also be written as

2- (mH (6.53)
am Xl

"! This last expression can be considered as the dual (Babinet's equivalent) of the eleo-

tric dipole expression (6. 10). The induced magnetic moment of the half loop is the

same as (6.53) for a full loop except that Pm should be multiplied by a factor of 2

____ ____ ___ ____ ____ ___ ____ ___ 49
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if Pm is to be used in (6.43). (The use of the factor 2 can of course be avoided

simply by using (6.53) in conjunction with (6. 11). )

When a half loop is mounted on a conducting plane, the electric dipole tangen-

tial to the plane cancels, whereas the electric dipole normal to the plane has a scat-

tering dipole moment given by (see 3.30)
42a3 1 N A

I? = +ka !) (E n) (6.54)xl \ Xl

A

where n is the normal to the plane. If (6.54) is to be used in (6.43) it should be

multiplied by a factor o" 2. Of course, if (6. 54) is used in the expression for the

radiated field of an electric dipole mounted normally on a plane which is given from

(6.43) and (6.10) as

E= 2 ecr (AxP)x (6.55)

-2lrEr

then the use of the additional factor 2 can be avoided.

6.5.3 Scattering from Slots in a Conducting Plane

In this section we will consider scattering from slots or magnetic currents

on a conducting plane. In a sense we have solved this problem already when the

scattering results for a half loop mounted on a conducting plane were obtained. Let

us recall that scattering from a half loop on a plane was equivalent to scattering front

an electric dipole normal to the plane and a magnetic dipole tangential to the plane.

Since in the radiation problem radiation by a slot and a loop are equivalent, we can

reason that the magnetic dipole contribution of the half loop must be also an equi-

valent slot scattering contribution. However, in the scattering problem, to find the

equivalence between the loop radius and the slot length an additional condition be-

sides (6.38) is needed. This added condition can be obtained from circuit theory.

In the radiation problem it was shown that the equivalerce between a slot and a half

loop is given by (6.38), i.e.
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2VI= jkrlA (6.56)

This is precisely the condition to obtain the electric field radiated by a slot which

is given by (6.17) as

E = jkfV e- r xf (6.57)
- 27r r

from the radiated electric field of a half loop on a plane given by (6.34) as

e-jkr A A

E = -k 7IA- rxm (6.58)

A A

The orientation of the slot and the axis of the loop are parallel, i.e. I = m. In the

scattering problem the half loop reradiates as an electric and magnetic dipole. If

we assume that the magnetic dipole part of the half loop scattered electric field,

which is given by (6.50) as

E kare n .( xEi)rxm (6.59)

-- 1r  o0-
- x1 r

Ni equivalent to the scattering by a slot, an additional condition which will relate the

radius of the loop a to the length of the slot I is needed. Since we are considering

slots and loops which are small with respect to wavelength we can use some concepts

of circuit theory since that is also based on the assumption that the circuit dimen-

sions are small with respect to wavelength. Ignoring losses, a loop which is a

special case of the single turn solenoid is a purely inductive device in which voltage

and current are related by

V = JwLI (6.60)

where L is the inductance of the loop. Inductance is defined as flux linkage divided

by the current that causes the flux, i.e.
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L I _ a (6.61)

The magnetic field at the center of a coil is given by H = I/2a which is a good

approximation to the flux linking the loop. The inductance of a small loop then be-

comes L =--/ra/2, and the relationship (6.60) is

V = jk-0 ?raI/2 (6.62)

This expression in connection with (6.56) permits us now to solve for the relation-

ship between the loop radius a and the slot n g th I which is

a = (6.63)

Therefore scattering from a short slot can be obtained from (6. 59) with the substi-

tution a - 1. The scattered field is then

k 2 k2 3 re-jkr ' xi)x .(64
Xl 1o --

The factor x1 = 2(n 8S 0- 2) can be adopted to a flat strip current since it is known

i that the equivalent radius of a strip of width A is A/4. Therefore S = 4a/A.
0

,i The above expression for the scattered field from a slot of length I and widthA

can then be written as

,44~2 34 -*-jkr

r~k(I e-Hk M H)x (6.65)
E=2(hi 3 21/A -2)r --

where the substitution 'r x E rLH for a plane wave was made. The accuracy of

this expression depends on the accuracy of the derivation for inductance of a loop

}i (6.61). Comparing this expression to the radiated field from a slot (6.17) which

can be written as

E = j e -krp ^p (666
-- 2?rr Pm r~-e(.6
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we obtain for the induced scattering magnetic dipole moment of a slot

H(6.67)
Im (in 32/A -2)

This expression could also have been obtained more directly, once the relationship

(6.63) is known. Substituting a = I into (6.53) which is the scattering magnetic di-

pole moment of a half loop, (6.67) is obtained.

Perhaps a more direct approach to the scattering of a small slot on a con-

ducting plane is to use the scattering results for a short piece of wire and then

apply duality. The induced scattering dipole moment for a thin wire of length I is

given by (6.46). The dual of that, with the use of the duality i ations (6.40) is

47-. pd3 i -I

log41 /a- (6.68)

Since the radiated field for a slot is given by (6.17) as

.ke-jkr A

E 2rr XIm (6.69)

we obtain the scattered field of a slot by substituting (6.68) in (6.69) which is then
^ 2 3 -jkr

E rk= r (H x, (6.70)
l 1ogl61 /A-i r -

where the substitution for the equivalent radius of a strip a = A/4 has been made.o

Now we are in possession oi two expressions for the scattered electric field

from a slot. One was derived from the solution of a small half loop on a conducting

plane by equating the magnetic dipole portion of the total scattered field to that scat-

tered by a slot. After finding the equivalence between loop radius a and slot length

I we were able to obtain the scattered field by a slot which is given by (6. 65). The
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second method to obtain scattering from a slot was the use of duality applied to the

scattering results for a dipole. This yielded (6.70). Hopefully these two expres-

sions will agree. After an examination of these equations we find that they will be

equivalent if

2 _ _ - (6.71)
logl6/A-i 2(.n 321/A- 2)

A quick check for a slot length-to-width ratio of I/A = 10 gives for (6.71) the result

that -414.09 = 3.14/3.77. The source of this small error is probably the equivalence

relation between the loop raidus a and slot length 1, given by a =1. For this deri-

vation the inductance of the loop (6. 61) was obtained under the assumption that the

flux linking the loop is given by the flux at the center of the loop. However, the

agreement is substantial, so as no t to war)aut fuirther refinement.

......_____-__......_____-- - 54



THE UNIVERSITY OF MICHIGAN
7741-3-T

VII
SUMMARY OF SCATTERING DIPOLE MOMENTS FOR VARIOUS SHAPES

Since we have now obtained the scattered fields for various shapes of inter-

est, which are mounted on a perfectly conducting plane, we will now list their elec-

tric and magnetic scattering moments. The normal to the conducting plane is de-

noted by n, the incidence direction by ' , and the observation direction by . The

scattering moments are obtained by comparing the scattered dipole fields of the

shape of interest to the fields of the corresponding radiating dipoles, and then solv-

ing for the induced scattering dipole moments. These scattering dipole moments

can now be applied to obtain the scattering from, let us say, a small half-sphere

mounted for example on a large cone, sphere, cylinder, etc., provided the simpler

problem of radiating dipoles on the large bodies has been solved

For example, if the body on which the dipoles are mounted is an infinite con-

ducting plane, the radiated far field due to the dipoles of electric and magnetic mo-

ment p and pro, respectively, are

kW e -jlk
r ^

- 2rr mx r (7.1)

k2e-j kr
- 2rpr "x m x r) (7.2)

for the fields of a magnetic dipole (which is mounted flush on the conducting plane)

and

k2 c-jkrE- 7r r (xp2) x (7.:3)

q e-jlcr
2-, r r Xp) (7.4)

t - 2ir ~5
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for the fields of an electric dipole (which is mounted normally on the conducting

plane). Kno'Ang the scattering dipole moments for a small object that is mounted

on a plane and substituting in the above equations, the scattered field of that object

is then determined.

7. 1 The Monopole on a Conducting Plane

A monopole of length I mounted normal on a conducting plane has only an

electric dipole moment:

3 1 A
4r ef E 'I AP-log4l/a o- I n .(7.5)

it the monopole is not mounted normally on the plane, the above expression should

be multiplied by the factor (n ), since only the normal compoacnt contributes to

the scattered field.

7.2 The Half-Loop on a Conducting Plane

The half loop has a magnetic and electric dipole moment given by

23
2m ~7r a P 1

In 8a/a0- 2 (m H)m (7.6)

2 3
27r Ea 1+ka-.--- (7

I n~aao_( 8n~a/a 0'2 I7.-27)

where m is the direction of the loop axis, a and a are the radii of the loop ando

wire respectively.

7.3 The Half-Sphere on a Conducting Plane

The half-sphere has both moments

Pm 5 _-21_pa'F3h xHi)_xAn] (7.8)'
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p = 3 (E 1) (7.9)

where a is the radius of the sphere.

7.4 A Small Slot on a Conducting Plane

A slot has only a scattering. magnetic dipole whose moment is given by

3

4=- f3 /A47 A (7.10)

where I is the length and direction of the slot and A is the slot width, such that

A << X.
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APPENDIX

The following six pictures represent radiating dipoles in various basic orienta-

tions and their respective fields. Magnetic dipoles of moment m are shown in the first

three pictures, followed by three electric dipoles of moment p. In all cases the dipole

moments are absorbed in the factor E
0

mE E m(rx E ,IA R

mLm 0 e o .0 co ) e-k
y E=E (rxl)=E (isin -
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xA
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