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FOREWORD

This report was prepared by the Radiation Laboratory of the Department of
Electrical Engineering of The University of Michigan under the direction of Dr.
Raymond F. Goodrich, Principal Investigator and Burton A, Harrison, Contract
Manager. The work was performed under Contract AF 04(694)-834, "Investigation
of Re-entry Vehicle Surface Fields (SURF)". The work was administered under the
direction of the Air Force Ballistic Systems Division, Norton Air Force Base,
California 92409, by Lieutenant J. Wheatley, BSYDF and was monitored by
Mr. H.J.Katzman of the Aerospace Corporation,

The publication of this report does not constitute Air Force approval of the
report's findings or conclusions. It is published only for the exchange and stimula~

tion of ideas.

BSD Approving Authority

William J. Schlerf BSYDR
Contracting Officer
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ABSTRACT

The scattered field from small {(with respect to wavelength) obstacles which
are mounted on an infinite, perfectly conducting plane is determined. The obstacles
considered are a monopole, half-sphere, haif-cylinder, half-loop and a slot. Since
the reradiated field due to these obstacles can be identified with the radiation of a
combination of electric and magnetic dipoles, the solution is preéented as scattering
dipole moments. These moments are induced in the obstacle by the incident wave

and depend on the direction and polarization of the incident energy.
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i
INTRODUCTION
Large scattering bodies often have protrusions or small obstacles mounted
on them. It would be desirable to know the scattering behavior of these obstacles.

For example, conical or spherical objects occasionally have slots cut into their

surface which serve as telemetry transmitting slots. When such an object is illu-
I mizated by a radar, the slots will affect the back scattered signal. In this report,
the effects of obstacles will be calculaied by considering their size to be small with
respect to wavelength. This has several advantages as far as the analysis is con-
cerned. First, it permits the simpler methods of Rayleigh scattering. Secondly,
it allows us to use the scattering results of a small obstacle mounted on an infinite,

~ perfectly conducting plane, when we are considering scattering by a small obstacle

which is‘ now mounted on a large cone, sphere or some other large "mother' body.
As long as the radius of curvature at the point of siuich a body where the obstacle is
placed is large with respect to wavelength, the region around the obstacle czan be
approximated by an infinite plane and thie results for the "obstacle on an infinite
plane' can be used,

The work reported here can be divided essentially into two parts. In the
first part we are primarily interested in deriving the scattering behavior of some
obstacles when these are placed on an infinite plane. In this respect we would like
to consider a monopole, a half-sphere, a half-cylinder and a half-loop protruding
from a plane, in addition to a slot cut into the plane. The analysis for the s~attering
of the slot, since ii i8 of a more difficult nature constitutes the second part.

The method of analysis is as follcws. Since we are considering obstacles
whose size is small with respect to wavelength, the scattering from these obstacles
can always be identified with dipole radiation termi. This is, in general, a small
obstacle will reradiate the energy intercepted from an incident wave. This reradia-
tion can be identified as the field of a combinatiun of raciating electric and magnetic
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g dipoles. The radiating electric dipoles are normal to the plane, whereas the radi-
ating magnetic dipoles are flush with the plane. The strength of tke dipole moments
is reiated {, the direction and polarization of the incident wav«<. These induced di-
pole moments will be called the scattering dipole moments. Of conrse once these

moments are determined the solution to the obstacle scattering problem is solved.

1 In this report we wiil determine the scattering moments of a monopole, half-sphere,
half-cylinder, half-loop and a slot.

N
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I
MONOPOLE ABOVE AN INFINITE, PERFECTLY CONDUCTING PLANE
The scatterer fieid of a monopole in the region above a perfectly conducting
plane can be obtained by using image theory. In Fig. 2-1 a plane wave is incident
at angle Oi. The boundary condition ixE =0 on the plane can be reproduced (when

the conducting plane is removed)by an image wave coming from below at angle 7- Oi.

FIG. 2-1

The image wave in the region above the plane is then identified as the reflected wa{'e‘
The field above the plene can be obtained by placing an image monopole symmetri-
cally below the plane and calculating the field of a dipole of twice the monopole
length in free space, i.e.

s _ i
E (Gs) = Ei(ei)R(ei‘ OS) +E (7r-9i)R(7r-6i, Os) (2.1)

where R(ei, Os) is the bistatic reflection ccefficient of a dipole which transforms an
incident field at Oi to z scattered field at 95.

When a cylindrical wire is located along the z-axis and a plane wave is inci-
dent at an arbitrary angle 6 i the tangential component of the incident electric field

on the surface of the cylinder is

-j +
Ei = Eocoswsine e jkz cos 6+t
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that the symmetric or antisymmetric part alone must vanish at the ends of the wire.
‘For example, on a cylinder with resonant length (h=2 A/4) the symmetric compo-
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where E makes an angle ¥ with the plane containing the incidenca direction and
the axis of the wire. Introducing the vaiue of E in the expression for the scattered
field vector potentiul will yield the usual mtegro—dxfferential equation. This equation
can be solved for by variational or iterative procedures. The current distribution
depends on k and 6, but its dependence or ¥ is simply that of cosy. In general the
current along a dipole with erd points at z=*th that is used as a transmitting an-
tenna is well appreximated by a sinusoidal distribution. However, the same dipole
used as a receiving antenna has a currert distribution that varies with the direction
of the incident wave and is usually different from sinusoidal vnless it is of resounant
length, At oblique incidence the induced current does not have symmetry with re-
spect to the center of the wire. When a plane wave is used to excite a wire there is
a phase chift along the antenna as the incident wave passes. Only for broadside in- 1
cidence where the E vector is parallel to the wire are all points of the wire excited
in equiphase. For broadside incidence the current is symmetric, i.e. Iz(d) —'-‘Iz(—d)‘
For arbitrary incidence a symmetric as well as an antisymmetric current

Iz(d) =-Iz(d) is excited in the antenna. Since these induced currents : adiate, the
scatiered far-zone fields produced by them (King, 1956) are

ou e-JBR o [P & jBa cos 6
= ——— 1 .
Ey= =2 sin_ oy ]:1(z)+ (z] dz 2.3)
h

The current must go to zero at the end points: I(T h) = 0. This also implies

nent of the induced current dominates, whereas for cylinders with antiresonant
length (h 2 A/2) the antisymmetrical current dominates. The antisymmetric cur-
rent is also characterized by a zero at the center of the wire, whereas the rym-

metric component has 2 maximum there.

by
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For wires small with respect to wavelength the incident wave cannot produce
enough phase shiit as it travels past the wire to excite an antisymmetrical componen
of current. Hence for small wirss the current induced by a plane wave at arbitrary
angles of incidence is predominantly symmetric. We therefore conclude that for
dipoles not much longer than 2h=)\/2 the symmetric current excited by an incident
field from any direction predominates. In general this current is well approximated
by a triangular distribution for short antennas, a sinusoidal distribution for resonant
antennas, and a constant ‘distribution for long antennas. The dependence on the inci-
dent wave is simply Ei cos{'sin@, which has been experimentally verified (King,
1956; Chen and Liepa, 1964) for receiving and transmitting antennas. Suck studies
also indicate that for antennas such as the short dipole aad the half-wave dipole the

receiving and transmitting currents of the antennas are nearly identical.

2.1 Resonant and Short Dipoles

Assuming a symmetric sinusoidal current
sin E{(h- zzl z>0
I=1 (2.4
sin(k(htz)]  z<0

is induced in the wire and that the antisymmetric component is zero (we will confine

ourselves to wire length h <A/4), (2.3) becomes, after integration

. JnIm e-jkr cos(khcoses)-coskh 0.5
6 2mr sings 2.

where n = Jufe =1207 Q for free space. Total E and H at long distances from
the antenna are at right angles to each other and the direction of propagation,in time
phase, and related by n, i.e. E 0 = nH¢.

Assuming a triangular current distribution

h-2z) z>0
=1 {“ 2.6
m k(h+2) z2<0
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- -jkr _
EG =2z © tanesseces[l cos(khcoses)__] . 2.7

In the limit of kh <<1, (2.5) and (2.7) yield

E = —D2 e-jkr(kh)zsines ) (2.8)

In the last expression one should note that the assumed current is I= Imkh(l - |z|'b).

If more accurate (bui still approximate) solutions to the induced currents are
desired, the methods of Chen and Liepa (1964), King (1956), Tai (1952) Harrison
and Heinz (1963), Harrison (1962), Vainstein (1959) and Ufimtsev (1962) can be used,|

Now we must relate the magnitude of the current Im to the incident field.
This will be done by applying the law of conservation of energy as follows. The
total energy radiated by the induced currents in the antenna can be computed by in-
tegrating over a closed surface which coincides with the antenna surface or alter-
nately, choosing a surface of a large sphere of radius R. Equating these two ex-
pressions a solution for Im is obtained.

T':e tangential component of the incident field is given by (2.2). Since the
total tangential field is composed of the incident and the induced field, and since this

field must be zero on the surface of the wire we have

B+E =0

Eiotal = ind

which gives for the induced field
E 4= F (2.9

The energy radiated from the antenna is
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, ¢
W= EReB E-Tdz
-h
1 h jkzcos(?i
=-5Re| E sin6 cosve Imsink(h-lzl)dz
-h

1
= -3 E_sin6 cosyl \ coslkz cosGi)sink(h-|z|)dz

for a sinusoidal antenna current. Performing the integration we obtain

cos(khcos Gi) -cos kh

W = E0 cos;//Im

Using (2.5) for EO’ (2.12) becomes

ksinei

Recalculating the power radiated by the Poynting method we have

s
w =%§ B edA= %%]EA |H¢|dA = -1’;’ I, 2251000 .
0

nlin ! [c;gs(khcose)--cosklﬂ2
W= @ .

0

Equating this to (2.11) we can solve for Im

4r sinf

4r Eo cosy(cos khcos 91- cos kh)
I =
m 7 4 2
nksind [cos(kh cos 8) - cos kh ]~ a0
i 0 sinf

MICHIGAN ey

52. 10)

(2.11)

(2.12)

(2.13)

(2.14)

3 ans v
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The integration when performed yields

v ]
C= \ ... = .5772...+m2kh- Ci(2kh)+ 7 sin2kh[Si(akh) - 28i(2kh)] +

+ % cos 2kh [ 5772+ takh+ Ci{4kh) - 2Ci{2Kh)] (2.15)

where the sine and cosine integrals

X
Si(x) = R SI0X o
X
J0
[e0)
Ci(x) = -\ 28X 4
X
X

are tabulated.
The scattered field is then

5 cos(khcos 6 i) coskh cos(khcos GS) - coskh e-jkr
E, = j2E°cosw e ei . sines Chr (2.16)

2.2 Dipoles Short with Respect to Wavelength
For small kh, (2.16) becomes

-jkr
= J3E_cosysin@, sinf_ °2kr i (2.17)

lim Eg
kh->0
It is appareut that this does not give the correct kh dependence in the limit., The
trouble arises from the following: in the emf approach to the power calculation
(2.10), it was assumed that the induced current is in phase with the forcing incident




SN R S AR a2

THE UNIVERSITY OF MICHIGAN
7741-3-T

field. This is a valid assumption for resonant wire length. However, short dipoles
are capacitive, i.e. the induced current leads the voltage by 90°, This can be
easily seen from the near field expression for a Hertzian dipole which is

g, = “nldisind ik (2.18)

6 47 kr3

Let us then assume a triangular current which for short dipoles has the form

1=1 <-|Z|> {_j[z (kh)]} (2.19)

where n is an integer yet to be determined. This current has the correct behavior,

pamely when kh—>0, I=jI_ ( - Lﬁ-!) , i.e. current leads the voltage by 7 /2.

Using this curren. in the emf calculation for power (2.10) we obtain

jkz cos @
W= -%Re X Eosineicosc// e i I: (1- Ltzl—l) exp {-jg -(kh)nj}dz

h
cos yI cos(kz cos 6 i) (1 - %I> (kh)ndz
-h

1
= 2E sinOi

= E_sinf, cosyl” [l-cos(khcosezl—-(—k-]ﬁ—
o] i o id, 2 2

k hcos Gi

—

-E sinO com//I h(kh) . (2.20)

N

The radiated far field from a short wire with an assumed triangular current
distribution as in (2.19} is from (2. 8)
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jnkhsineB ” n
EO =~ I exp{_'p[‘z'-(kh) -h]} . (2.21)

The radiated power using the Poyntings method (2.12) is then

T .
2.2 -
_x 22 _ nk“h® .
W= . |E9| r"sing_do_ = 1’———127, 1L (2.22)
o

Equating (2.22) and (2. 20) we obtain for the current

67 Eo sin 0i cos (b(kh)n

p— ,‘-I = (2.23)
° nk%h

Therefore, the scattered field using (2.21) is
. a exp&[%' - (k)" - lﬂ-}
EO = j3Eocoswsin0i sines(kh) "~ okr (2.24)

In order to determine n we need another condition. To avoid a length discussion,

let us use an expression for the back scattering cross section for small kh as given
by VanVleck, Bloch and Hamermesh (1947) and Msack and Reiffen (1964):

_ )Lz(khls cos%g[/ sin40
7 -
or [log 4h/ ao-l]
This expression is valid for kh<.3 and kao« 1, where a, is the radius of the
wire. It becomes more accurate as the ratio h/ao gets larger. In any case this

ratio should be chosen such that 211/a0 >100. Using (2.25), n is established as
n=3, and the scattered field as

o (2.25)

E k3h3cos¢sin9 8in@ --jkr-j(kh)3
g = .2 i 8 €
0 1og4hfao-1 kr

(2.26)

The (kh)3 term in the phase can be ignored as being small,

10
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That the kh dependence is correct can also be verified from recent results

for the radiating antenna (King and Wu, 1965). For kh << 1 the current is found to
be

j2rve
_ [} iz}
1= 10) kh(l- h) (2.27)

where {{0) is a constant and Vg is the applied voltage Ez = -V:6(z) at the center of
the antenna. It is here again seen that I and V are out of phase by 90°. For the

scattering problem, V: becomes the induced voltage due to the incident field as
given by (2.2), i.e.

e h ~jkz cos Oi
Vo = E()cosx//sinei e dz = EocoswsinaiZh . (2.28)
-h

Using (2.8), the scattered field then becomes

E k3h3 cosysin@,sinf_  -jkr
0 i 8 e

Ee == 70 - (2.29)

which agrees with (2,26) above.

2.3 Monopol: over Perfectly Conducting Ground

The sa'tered field of a monopole of length h above a perfectly conducting
plane can then be written using (2.1) and (2.16) as

_ 8
Ee = 2E9 of (2.16) . (2.30)

The total electric field above the infinite plane is then given by the incident field,
the image field and the scattered field. The image field is interpreted as tne princi-
pel reflected wave from the plane in the absence of any obstacle. For example,

11
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when the E-vector is in the plane of incidence (Y =0) which is taken as the zx plane,
the total field for a short monopole is given by

jk(x8in6 -z cos6,)

_ A i A A )
E= Eo(cos Oii+sinoiﬁ) e +Eo( cos Oii-i-sinaik)
jk(xsin6 +zcos8,) 2E k3h381n0 sin®  -jkr
i i 4] i 8 e )

‘e Togth/a 1 — . (2.31)

It can also be concluded that antisymmetric currents are not excited in a
monopole above ground. The induced currents are always symmetric, i.e.
I(z) = I(-z). This comes about since the total tangential field at the wire due to the
incident and image waves is an even function of z, i.e.

i im . jkxsinei
(E"+E )ﬁ = f(ZEosinOicos(kzcosei)e . (2.32)

Since this tangential E field i the total forcing function for small dipoles we con-
clude that tke induced currents are symmetric.
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SCATTERING FROM A HALF-LOOP
ON AN INFINITE PERFECTLY CONDUCTING PLANE
Scattering from a half-loop on a conducting plane can be obtained by consi-
dering scattering from a full loop with an incident and an image wave as the forcing
functions. Let us therefore first derive expressions for the bistatic scattered field

from a full loop in f: 2e space.

3.1 Scattering from a Loop in Free Space
Weston (1957) has obtained rigorous solutions for the loop in toroidal co-
ordinates. In the far field, when r is large, the scattered field is given hy

®
M
E; = Bcos MZ= L EIM+1(kasin6)+JM_1(kasineﬂ FM(OO. # (3.1)

7 AM)
vhere
F((6 , #) = cos 0 siny cosMp EIM +1(kasin00)+JM_l(kasin90Z| -
- cosy_sinM§ JM+1(kasin60)-JM_1(kasineo-)]
and
(0.0)
E; =B{M ‘A?fm [4. gy (Kasing) -3 l(kasine):l Gy, (6, )+
cosw
*2 35 = J,(kasin6) J, (kasind )} (3.2)
where

Gy (0, #) = cos0_siny sin M¢[_JM+1(kasmeo)+JM_1(kasmeoﬂ +

+ cos wo cos Mg [JM+, (kasineo) - JM—l(kasmeo-)] .
13
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ikr

B= E\\(ka)aw =,

wo = polarization angle measured from normal to plane of incidence,
A0D = [tka)”- M| B+ o)
ka

B(M) = 2[m(ss°)+¢(1/2)-¢(M+ 1/2] +2n E§2M(2z)+iJZM(22) dz ,
0

C(M) = 7(ka)? [F (2ka)- E

—_ (@l Ty (2ha)- Ty (2ka)]

2M+1
EzM(z) are the Weber functions (Erdelyi et al, 1953),
J N(z) are the Bessel functions of the first kind,

YAz) is the logarithmic derivative of the gamma function,

) = a/ao; 2,2 are the radii of the loop, wire, respectively

Without loss of generality, incidence is confined to the xz plane at an angle 60 with

respzot to the z-axis., The geometry is shown in Fig. 3-1.

*x,0,9)

T

"
— ey w e o = e

X
P
P .

FIG. 3-1: A WIRE LOOP IN THE xy PLANE.
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i

Theee expressions for the scattered field will simplify when small loops are
considered, i.e. when ka <1, In the following derivations we will retain second
order terms of ka, and let terms of order (ka)3 and higher be zero. The above
functions, appropriate for small diameter loops are then

i21r(ka)2M-1
(2M-1)(2M)!

-7(- 1) (ka)
XM* FE[2+ MY (3/2- M)

2M 1
2 1 3(ka)
r(M2- 1/4) MZ_ 9/4 (2M 31! 2M(2M+1

(3.4)

+

B(M) = (3.3)

M2 i2r (ka)ZM_1

A = M2 XM~ M- T ) [XM+ M- 1/4 !

Mo (-)M
+ il (3.5)

N3/2+ MIr(3/2-
kasing_ (sin6,_ ka/2)2 )
< (M 3Y |} * D A (3.6)
(stnf_ka/2)" ™" . (sing ka/2)? '
CyM =~ o1 Byt oy M(M+ 1) 3.7
(2ka) = ——= .1- ()’ | (3.8)
Fonit1 r(1/2T ™) (1/2 +M)3/2 T M) ’
(sineolm/Z)M-1 + (kasin9°)2
) +1(kasin9°) + JM_I(kaBinOO) = -1 [.1+ m
(3.9)
where
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=2 [msso+ U1/2)- UM+ 1/251

+
- - . + .
AM cos Oosm://o cos Mp T cos «//0 sin Mf}

N .
ay, = cosd siny_sin MpP * cos ¥, cos M

¥ ©1/2) = -1.96351. ..

Substituting the above results in (3.1) and (3.2) we obtain for the scattered field

from a small loop
2

2 2 A sin‘0
Ep = Bcose—- +(ka) {— (—"—)+8i’g"+ 1 —2
L. x1 8A1

A+

- 24 sin smaj (3.10)
16A

and
S rx al sin’0
Eg =B '-l{-%-lﬂka) +(kd) [1+< ) 5‘“9 L _ o,
x1 2 1 8a1

8%
+ - sineosian] (3.11)
16 Xo3y

whare
cosy einfsi~0
0 0

2)(IL
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These expressions are valid for arbitrary polarizations of the incident field. When ; ;iyf *
the _1;3 vector i3 in the plane of incidence, l//0= T / 2, and the incident electric field A
is __lii1 = ?OEO' For polarization perpendicular to the plane of incidence, wo =0 and ’ ,
Ei = ?¢Eo' The plane of incidence is the plane formed by the incidence direction ‘

and the normal to the loop ’i\z.

The above expressions for the scattered fields are moderately complicated. i
The additional accuracy which the (ka)2 terms give is usually not needed when loops
small with respect to a wavelength are considered. Henceforth we will use terms
only up to ka, whichwill give results of sufficient accuracy when ka <<1. The scat-

tered fields can then be written as

B2 = 2 (1) (cost siny cos@cosf + cosy_cosfsinf) (3.12)
0] xl )(1 0 o 0

»

5 _ B ir B
= — - — - i + + —
E¢ X, Q ka X1>( coseosmwosin¢ cosxpocosm 2%, cosy_sinf sinf

(3.13)
A further examination of the above two results reveais that the scattered field from
a loop is composed of two electric dipole terms and one magnetic dipole term. The
scattered electric field can then be given as the sum of the fields of an x and y

oriented electric dipole plus a z oriented magnetic dipole, i.e.

_ed, _ed 6 _md
E =Ef +E¢ +Eq (3.14)
y ¥4
where
i ikR
ed _ A
E‘i = cl(irxi )xir R
. X
=2 (1-1a ™) cos6 siny Ei cosp-1i sin¢:| (3.15) -
X X o ‘oL@ # '
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ed A AL A e
Eq" = cz(i xi )xi ==
= ry r
y

= ;]Z- (l-kailp coswoﬁecosesin¢+'i‘¢cos¢] (3.16)
B o (3 xl) S = B oy inGEf ine] (3.17)
__Z-c3 CXL) =g —lecosos olp® .

The factors inside the square brackets are the pattern factors of the corresponding
dipole and the terms preceding the square brackets are the dipole moment strength.
One can alco observe that the scattering dipole moment depends on the amplitude,
polarization and direction of the incident field as well as the geometry of the loop.

It is ciear now that a small loop is not a purely magnetic dipole type of scatterer and
therefore cannot be used for measuring the magnetic field in the same way that a
thin, short, linear wire can be used to measure the electric field (Justice and Rum-
sey, 1955). As a matter of fact, for polarization in the plane of incidence

(wo = 7 [2) the scattered field from a loop always looks like that of an x-oriented
electric dipole. Similarly, for incidence normal to the plane of the loop, and for
arbitrary polavization, the scattering loop acis as 2n electric dipole with orientation
parallel to the incident electric vector. Hence it appears that the scattering loop
behaves more like an electric than a magnetic dipole. At fixst, such behavior ap-
pears puzzling, expecially when cne recalls that the antenna patterns of small loops
are described in terms of equivalent magnetic dipoles. However, the differences
can be explained as follows. For the small radiating ioop we have a uniform current
which is associated with the magnetic dipole. For the scattering loop the currents
induced by the incident field are more complicated and in addition to a uniform cur-
rent have other components which can be identified with electric dipcles.

18
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3.2 Scattering from a Half-Loop
The above results can now be applied to scattering frcm a half-loop mounted

on a conducting plane as shown in Fig. 3-2. The conducting plane is assumed to be
z

—E— _E_s(r: 9’ ¢)

P S

X
FIG, 3-2: GEOMETRY OF THE HALF-LCGP OF RADIUS d.
The Conducting Plane is the zy Flune.

the zy plane. If the incident wave is now confined to the § == 0 plane a loss of gen-
erality would result, The expressions for the full loop can be extended to an arbi-
trary plane of incidence ¢o, simply by replacing every § term by §- ¢o' Then,
the solution to the half-loop can be constructed from the solution to the full loop by
the method of images as follows. The boundary condition that the total tangential
electric field be zero on the conducting piane can be obtained by adding an image
wave in the x <0 space to the incident field such that

'i\xx l;gi(eo’ ¢o' '//o) +Eim(eo’ m- o’ ﬂbﬂ (3.18)

=0 .
x=0

If the full loop is illuminated by the incident and the image wave, then in the x >0
space the scattered field that is obtained is the scattered field for a half-loop over
a conducting plane. The conducting plane coincides with the zy plane. The total
scattered field from the half-loop can then be written as

THE UNIVERSITY OF MICHIGAN ——
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| r 80 4. Bip 4o .
_E- -E (eo’ ¢0,¢0)+§ (60’ 7r-¢°0 -¢°)+,_E_ (6: ¢:6°: ¢09¢°)+_E_ (0, P. 60’ a- ¢°: -wo)

(3.19)

where E_r, given by Eim, is the reflected field from the plane, and the remaining
two “2rms are the scattered fields due to the incident and the image wave, respec-
tively.

If the incident wave is given by

E =E e- = (3.20)

wherethe incidence direction is given by

A A A A

k = -(sin® cosfp i +sin® i +cos® i) (3.21)
o ox oy 0z

and the polarization is

ﬁi
0

A T
1e sinwo+ 1¢ cos wo

A A
4 - + -
1 (cos 6 cos ¢0 siny/ - sin ¢o cosy ) iy(cos 6 sin ¢o siny/ + cos ¢o cosy )
A
-4 .
. sin 90 sinwo (3.22)§

where the caps denote unit vectors, the components of the half-lcop scattered field

can be written as
£X0,8:6 .8 ,u )+ EX6.$;0 ,7-p ,-v) =
0’700’ "0 6 """’ o "o

_ 28

X

ir
1-ka X, > (cos 60 siru,bo cos ¢° - cos wo sin ¢o)cos fcosd®  (3.23)

and
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8 . 8 . - - P
E¢(e: ¢: 909 ¢0’ !l/o) + E¢(0: ¢: 00’ n po: wo)

= ;(]?1. [_2 Q -ka ;—:) (cos Oosinwocos ¢o- cos wosin ﬁo)sin $+cos wosin eosinE'
(3.24)

As in the case of the full loop, the scattered field from a half-loop can be
decomposed into dipole fields. Identifying the respective terms, the scattered field

from a half-loop on a conducting plane can be written as

_ ed, md
E-= _Ejiax +§_rixz (3.25)

where the scattering electric dipole contribution is

ed 2B (j_,.ir ) : 1,0if]
Q{\x = X, Q ka X1> (cos 6 siny_cos ¢o cosy_sin ¢°) EG cos@cosf i¢ sinf
(3.26)
and the scattering magnetic dipole contribution is given by
E_]«nd =3 cosy sinf [-? sine:l (3.27)
i, X o ol

When these expressions are compared to the corresponding ones for the full loop it

is seen that the presence of the conducting plane doubles the magnetic dipole type of |-

contribution, doubles the electric dipole contribution which is normal to the plane,
and cancels the electric dipole field which is parallel to the plane.

3.3 Conclusion
It was shown that the scattered field from a small loop in free space can be

identified with three dipole contributions. The equivalent scattering dipole moments

21
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which are induced by the incident field are expressed in terms of the loop geometry,
the orientation and polarization of the incident wave. The scattered field of the loop
shows a wavelength dependence which is Es ~ kzaz. Such a dependence is charac-
teristic of Rayleigh scattering.

Scattering for a half-loop, mounted on a conducting plane, is similar to that
for the free space loop. The differences are as follows. The induced magnetic di-
pole moment is dovbled. The normal electric dipole contribution is present in al-
tered form, but the electric dipole term which is parallel to the plane vanishes.
These changes, in addition to identifying the image wave with the reflected field
from the plane, account for the presence of the conducting plane and the arbitrary
direction of incidence.

We have treated scattering from a half-loop and the full loop in terms of the
equivalent scattering dipoles. Let us derive explicitly the scattering dipole mo-
ments which the incident field induces in the loop. The radiation field of an x

oriented dipole with moment . is given by

Kp
E= 27¢ R [ :] (3.28)

where the square bracket is that of (3.26). If the dipole is a radiating current ele-
ment I, then we have from the continuity equation that the radiating dipole moment
is p = ilt/w, where 2 is the length of the current element. Equating (3.28) and
(3.26) we can solve for the scattering dipole moment which is

4ﬂ2€ i3

- i ; - :
p= X an <1 kax1> (coseosmwocosjbo cosqbosmwo). (3.29)

The term in the parenthesis can now be identified as the incident wave polarization

component which is normal to the conducting plane, i.e.
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. The remaining scattering
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PLANE WAVE DIFFRACTION FROM A HALF-SPHERE
ON AN INFINITE CONDUCTING PLANE
Scattering from a half-sphere on a conducting plane can be obtained by con-
sidering scattering from a sphere with an image wave in addition to the incident
wave. Let us therefore first derive general expressions for the bistatic scattered

field from a small sphere in free space.

4.1 Scattering from a Sphere
The Mie series is the well-known solution to the scattering problem of a

sphere. For the special case of the small sphere, i.e. ka <<1, the first term only
is important. If the illuminating field is a plane wave incident from the negative

z-axis:

pog i ei(wt-kz) (4.1)
= 0'x
the solution can be written as (Kerr, 1964)
E e—ikR

ES = okR (ka)3 [ie cos ¢(cose+%) - 'i\¢ sin¢(1+% 00898 (4.2)

where the caps denote unit vectors. This electric field looks like the field of an

electric and magnetic dipole. We can therefore write

8 ed , .md

E-Bg tEY
R DY I _l A A
=E Eirxix)xir z(irxiy;J (4.3)

where E' = Eo e-ﬂm(ka)?’/ kR. That is, the scattered field is that of an x oriented
electric dipole and 2 ' oriented magnetic dipole. The incident wave induces in the
sphere an electric dipole and a magnetic dipole with moment half that of the elec-

tric dipole.
24
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field that has arbitrary direction and polarization, as for example,

kT r+iwt
i A o~

where the incidence direction is
A A, AT . A
r =i sin@ cosf +i sind sinp +i cosd
o X o o vy o 0 z o

and the polarization vector is given by

It

A
a

6 siny +§
sin CcoS
(o] (o] ([/O [o 28 lz/O

[}

A N
g - +4 . ind) +
ix(cos 6, cos ¢o siny qin¢o cos we) 1y(cos 6 sin ¢o sing_

[ )

+cos¢ocos¢°)- ,Siné _siny .

The induced electric dipole will have the same direction as the incident electric
vector, whereas the orientation of the induced magnetic dipole is determined by

?‘oxﬁo. This is found by examining (4.2) and (4.3). The scattered field for an
arbitrary incident wave can then be written as

where the unprimed quantities denote coordinates of the observation point and the
sub-zero coordinates are those of the incident field direction and polarization.

4.2 Scattering from a Half-Sphere

The above results can now be applied to scatterin from a half-sphere

mounted on a conducting plane. The conducting plane is assumed to be the zy

25
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We would like to express the scattered field from a sphere for an incident

E'=Eae (4.4)

8 _ oy nola oA A]
E E' (i xa )x1r+2irx(roxao)
=E'[£i(1-li~‘ .4 )+'i‘-£(l§-’i‘)] (4.5)
o 270 r r o020 r )
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plane. The solution to the half-sphere can be constructed from the solution to the
full sphere by the method of images. The boundary condition that the total tangen-
tial electric field be zero on the conducting plane can be obtained by adding an image
wave in the x <0 space to the incident field such that

4 i im
fx[Ete, 00, m- )] |

=0. (4.6)
=0
When the sphere is illuminated by the incident and the image wave, then in the
x >0 space the scattered field that is obtained is the scattered field for a nalf-
sphere on a cunducting zy plane. The total scattered field from the half-sphere can
then be written as

i T s 8
E=E (90: ¢0: Y )+E (6, 7r-¢0, - )+E(0, #; 6, ¢o, v )+E O, ¢;7r-¢o, W) (4.7

where _Ef, given by _l_!:_im, is the reflected field from the plane, aﬁd the remaining
two terms are the scattered fields due to the incident and the image wave, respec-
tively.

Let us examine the scattzred part, which is given by the last two terms of
(4.7). Adding these two terms will give us an expression which after some algebra
can be decomposed into dipole fields. Identifying the respective terms, the scat-
tered field from a half-sphere on a conducting plane can be written as the field of
three dipoles

8 __ed, md,  md ,
E°=Eq +Ey +Eg {4.8)
X y z

where the contribution of the scattering electric dipole is

ed _ A A
g_zi\x = 2E'(siny_cosf_cos ¢° - cosy_sin ¢°) [ie cos6 cosf - i¢ sin ¢] (4.9)
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and the scattering magnetic dipole contributions are

Ex d_ g v(sinvpo cos ¢° -cosy cosf sin ¢o) [?¢ cosfsinf - '1’6 cos ¢] (4.10)

i
y
and
md _ ., . ['.\ . ] |
E_fz E'cosy sinf 1¢sm0 (4.11)

The factors inside the square brackets are the pattern factors of an x oriented elec-
tric dipole, a y and z oriented magnetic dipole, respectively, The terms pre-
ceding the square brackets are the corresponding scattering dipole moment strength
One can observe that the scattering dipole moment depends on the amplitude, polar-
ization and direction of the incident field as well as the geometry of the ‘half-sphere.
Comparing these expressions with the corresponding ones for the full sphere
one can see the effect that the introduction of the perfectly conducting plane has.
For a sphere in free space, an arbitrary incident wave would in general induce threg
electric dipoles and three magnetic dipoles, oriented along the x, y, and z axis
respectively. The introduction of the condutting plane has then the following effect.
It cancels the scattering electric dipoles which are parallel to the plane and doubles
the strength of the remaining dipole which is normal to the plane. The magnetic
dipole which is normal to the plane is canceled and the strength of the remaining
two magnetic scattering dipoles which are oriented parallel to the plane is doubled.
These changes, in addition to identifying the image wave with the reflected field

from the plane, account for the presence of the conducting plane.

4.3 Conclusion
It was shown Jhat the scattered field from a small half-sphere on a plane
can be decomposed into scattering dipole fields which show the characteristic Ray-

leigh scattering dependence, i.e. E ~ k2a3. Let us derive oxplicitly the scattering
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dipole moments which the incident field induces in the half-sphere. The radiation
field of an x oriented dipole with moment p is given by

E=27re R [ ] (4.12)

where the square bracket is that of (4.9). If the dipole is a radiating current ele-
ment If, then the continuity equation gives us the radiating dipole moment as

p = /i, where ! is the length of the current element. Equating (4.12) and (4.9)

aria et St o &

we can solve for the scattering dipole moment which is

3 [ " - .
L = N reT AT e IR B O .:'l .\ - - ¥ i . ,
- o= dwe an (STﬁk?/o cos 90 cos ¢° cosy sm"ﬂo) ‘ (4.13)
.. The term in the parenthsis can now be identified as the incident wave polarization

component which is normal to the conducting plane, i.e.

p = 47€ an3 £o~'ﬁ
where #I is the normal to the plane, in this case i = 'i\x. The remaining scattering
dipoles can be obtained similarly. These results can now be used to obtain the scat-
tered field from a small half-sphere which is mounted on various large bodies like
cones, cylinders, etc. As long as the radius of curvature at the point of the body
where the half-sphere is placed is large with respect to wavelength, the region
around the hali-sphere can be approximated by an infinite plane and the above re-
sults can then be utilized.

[
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SCATTERING BY A HALF-CYLI;I’DER ON A CONDUCTING PLANE

Reflection of plane electromagnetic waves from a perfectly conducting half-
cylinder ;nounted on an infinite conducting plane can be obtained from the solution
to the full cylinder and the theorem of images. We will divide this study into two
parts. One for horizontally polarized waves with E vector perpendicular to the
plane of incidence and the other for vertical polarization or with E vector in the

plane of incidence.

5.1 Horizontally Polarized Waves

If we have a plane electromagnetic wave with E vector normal to the plane of

incidence impinging upon a conducting half-cylinder as shown in Fig. 5-1, the scat-

. p
' |

Image Plane

FIG. 5-1: Incident and Image Wave for Horizontal Polarization

tered field from it can be obtained by the addition of an image wave. If the total

scattered far field from a full cylinder in the presence of the incident wave is
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ikr cos(¢o+ 0) - iwt

E=E4+E® = E e -

> i(kr+§) i -5
-E |- e € e smamcosm(9+¢o)

m=0
(5.1)
and in the presence of the image wave is
. ikr cos(f -0)
E=ET+E°= -E_e ° .
= ilkr+ %) i -i6
- e t—— 3 - ©

E Vo © L €@ sing  cos m(6 ¢O) (5.2)

then the addition of the above two wcids will give the scattered far field from a half-

cylinder on a conducting plane. That is

tkr cos(¢0+ 6) ikr cos(¢0- )]

E=E e -E e +
o o
= Hkr+g) & -i5_
+ 4E \/—-—- e E :e 8in6_ sinm@ sin mg {5.3)
oY mkr “ m 0

where the first term is the incident wave, the second term is the reflected wave,
the third is the scattered field, and
Jm(ka) -i6

—n— = le siné (5.4)
m
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5.2 Vertically Polarized Waves

When the E vector is in the plane of incidence as shown in Fig. 5-2, the

*y
|
I
!
|
i

Image Plane
\ /
¢ \ // /
im "o \\/ /
¢
pim

FIG. 5-2: Incident and Image Wave for Vertical Polarization

total scattered far field from a full cylinder in the presence of the incident wave is

ikr cos(§ +0)
E=E+E® = E e ° .

s lkr+3) & -i6
- —— 1
nHO" o © € e siné' cos m(9+¢o) (5.5)

m=0

and in the presence of the image wave is
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. ikr cos(@ -6)
E=EDT+g® = E e °o .

Q0

5 e+ 3) Z -i6!_
- "-—— ' -
nH\[——e €.€ sinamcosm(e ¢O) (5.6)

m=0

the solution of the above two fields will give the scattered far field from a half-

cylinder on a conducting plane, i.e.

ikr cos(¢o+9) ikr cos(f -6)
E= Eoe + Eoe ° .

ikr+ ) <> -i5!
2 4 m .
“2nH [——e €_e sins' cos mé cos mf
o m m 0

7kr 555
(5.7
where €m=1 (m=0), =2(m >0) and
J‘]'m(ka) -i5!
T ie siné;n (4.8)
H (ka)

A somewhat different approach to solving the same problem was considered by Tai
(1948). Extensive scattering patterns for the half-cylinder are also given in this

reference.

32




THE UNIVERSITY OF MICHIGAN
7741-3-T

SCATTERING FROM SMALL SLOTS ANV]I) DIPOLES ON A CONDUCTING PLANE

The work presented in this section will be divided into two parts. In the first
part we will derive the radiation chahcteristics of slots in an infinite plane. We
will show that small slots radiate like magnetic or electric dipoles which are mount-
ed on a plane. Equivalence relations between magnetic current elements and electric
loop currents and between electric current elements and magnetic loop currents will
be given. Equivalence relations using duality or Babinet's principle between mag-
netic (electric). current elements and electric (magnetic) current elements will also
be given.

In the second part we will consider the scattering behavior of small slots
which are cut in an infinite, perfectly conducting plane. In this case the incident
wave will induce dipole moments in the slot which wiil in turn radiate with the same
characteristics as the radiating dipoles of part one. The problem is then to find the
scattering dipole moments which are induced by the incident field.

6.1 Radiation from Dipoles on a Conducting Plane

Radiation from electric and magnetic current elements can be obtained from
the solution to Maxwell's equations which include magnetic charge and current.
Magnetic currents can be used to express discontinuities in the tangential electric
field. For example, the tangential field in a slot or an aperture can be looked upon
as an equivalent magnetic current sheet, given by M = -AixE. A magnetic dipole
which is composed of two oppositely charged magnetic charges separated by an in-
finitesimal distance can be looked upon as the equivalent of an infinitesimal loop of
circulating current, i.e. we will show that p, = Hm where the magnetic dipole mo-
ment is pm = qml and the magnetic moment of circulating electric current about an
area A is m=IA,
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If we write Maxwell's equations for time-harmonic fields as

VxH = J+jD

VxE = J_-juB
o (6.1)

p

o
[

\%
v

I
"

Pm

then the solution can be given as

E= —jwé-ij(V‘A)-Vx_E (6.2)
H= -jweg--l'{j; V- F)+VxA (6.3)

where for surface currents the vector potentials are

K ¢~ JKR
A= yrrai (6.4)
-jkR
Me j
F= o O (6.5)

and the equivalent surface current densities are related to the fieid by
K =8xH (6.7

and n = {ufe .

The radiated field from a small current element can now be calculated since
the integrations in (6.4) and (6.5) can be readily done. Let us express with the aid
of the continuity equation the dipole moment p of a current element It as
p=1L / jw. The radiated magnetic field of a current element I¢ is then found to be

34
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o Ju jlet-kR)jk 1) 2
H=4"e gt ) pxR (6.8)

Similarly, the dipole moment P, of a small magnetic current element Iml
can be expressed with the use of the continuity equation

apm
. 4 oom———— =
v Jm pn 0

as Bm = _[ml [iw. The radiated electric field of a magnetic current element Iml is

. then

= Jw -ikR(jk 1 R
E=-4"e <R+R2 pme (6.9)

6.1.1 Image Theory
When an element radiates above a conducting plane, the total field is ob~

tained by forcing the tangential electric field to be zero at the plane. For the
special case of the plane the solution can be obtained much more readily by placing

an image source behina the plane and calculating the field due to the two sources

with the plane removed. Since a correctly oriented image source will combine with {

the real source to yield a zero tangential field over a plane which bisects the t'vo
sources, the solution so obtained is also the solution to the source above the con~
ducting piane. This is guaranteed by the uniqueness theorem. Figure 6-1 shows
current elements and the correctly oriented image elements to produce zero tan-
gential electric field on the dashed line. If a source composed of dipoles is posi-
tioned on a conducting plane the effect will be as follows: the conducting plane can-
cels the electric dipoles tangential to ti.c plane, doubles the electric dipoles normal
to the plane, cancels the magnetic dipoles normal to the plane and doubles the mag-
netic dipoles tangential fo the plane.
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FIG. 6-1: PAIRS OF CURRENT ELEMENTS WHICH PRODUCE
ZERO TANGENTIAL ELECTRIC FIELD ALONG
THE DASHED LINE.

6.1.2 Radiation from Electric Dipoles on a Conducting Plane
jwt

The radiation characteristics of a small current element Il{e” protruding )
normally from a perfectly conducting plane is with the use of (6, 8)
_du kR, 1Y o4
H=5"¢ RT3 )BxR . (6.10)

R
K A z-directed current element at the origin will produce a magnetic field

_ U -jkrfjk 1
H¢- 2We <r+r2 sin€

with the conducting plane coinciding with the z =0 plane.
6.1.3 Radiation from Magnetic Dipoles on a Conducting Plane

The electric field of a magnetic current element lying flush on a conducting
plane is from (6.9)

__Jw -kR(jk 1 B :
E or © B + Rz‘ p_xR (6.11)
- ' ” 36
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A z-directed element Iml at the origin in a conducting plane will produce an elec-
tric ficld

124 g
E =---l-‘;-e-']kr k1) gino
¢ 27 r 2

where the conducting plane is any plane containing the z-axis, The magnetic current
can be related to a voltage by Maxwell's equations (6.1) as

E-dl=-I . (6.12)

6.2 Radiation from Slots in a Conducting Plane
Radiation from an aperture S

1 in a conducting plane is given by
-jkR
L Mx V! e
2T -

5

E(r) =- ds (6.13)

where R = | r- _1_"| and the origin is contained in S_. If the tangential electric field

1

M =_}_':)_xf1 is known in the aperture S., the above expression gives the exact radiated

1,
field at the observation point r. Differentiating the Green's function with respect to

the source point, we have

v o IR =ik (14 Pl R (6.14)
R %R/ R : .

If we consider fields far from the source in the sense that r >> £ (but with no

assumption about the size of r relative to A), we can write

14

|£-_g'| r-%.x' = r-r'cosy . (6.15)

Here £ is a characteristic dimension of the aperture S,. Substituting we have

1
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jkr /- .
- & ik, 1\a jkr'cosy
EKrx)= =5 (r + 2) TX Me ds (6.16)
r s
1

where we have retained the approximation (6.15) in the phase, but in the amplitude

we have let R=r., Expression (6.16) can now be readily applied to apertures which

are small with respect to wavelength; it is also the correct far field expression for
apertures large with respect to wavelength.

6.2.1 Short, Linear Slot
If we have a thin and short slot such that A << f <<, where A is the thick-

ness and { is the length of the slot, (6.16) can be written as
-jkr /.
- e- (i, _1)a
E="5 <r + r2> rxMIA . (6.17)

If we compare this to (6.11) we find that the short slot behaves like a magnetic di-
pole with the eguivalent dipole moment of the slot as j(,.)pm = MLA=VL, Therefore

the equivalent magnetic current is related to the aperture field as

I =MA=(ExnA=vxi (6.18)
-m - -

éince V = EA. The above expression shows (as did 6.12), that magnetic current is
equal to the slot voltage V across the gap, i.e. Im =YV. Figure 6-2 shows the

//Y/
L
/

notation for a slot

/l///.
7
7/

Lo\ e
Y4
FIG. 6-2: RELATIONSHIP BETWEEN MAGNETIC CURRENT AND
SLOT FIELD. '
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6.2.2 Circular Slot
The integral in (6. 16) is now slightly more difficult to evaluate than it was
for the linear slot. If we consider a slot as shown in Fig, 6-3, with the radius

f

AN

FIG, 6-3: CIRCULAR SLOT OF RADIUS a.

a <<\ and a uniform excitation, the integral in (6.16) can be written with the aid of

some vector identities as

Y. |
as = -jidx3 \| & xM(1')] ds (6.19)
S 5,

The last integral can now be defined as the magnetic moment of the magnetic current
distribution M, i.e.

=1 '
mo=5\\[z xM] a8 (6.20)
sl
The magnetic moment is normal to the area of the loop as given by the unit vector f.

The electric field of the magnetic ring current in a conducting sheet then becomes

-jkr
I Sl £S5 | P
E =-jk o= <r+r2>rx(rx§lm) . (6.21)
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Since in the far field the electric and magnetic fields are related by

E =-nTxH (6.22)

the magnetic field of the ring current can be written as
-jkr /.
Ce o (k1)
H = jwue =5 <r + r2> rxm (6.23)

Therefore at least in the far field the radiation from a circular slot behaves like
radiation from a vertical dipole above a conducting plane. Comparing (6.23) to the
radiated magnetic field of an electric dipole (6.10) we find that the equivalence rela-
tionship is

p=-em . (6.24)

If the magaetic current Im flows in a closed circuit, whose line element is df,

the magnetic moment of this ring current can be written

m =

I
A
-m 2

axdd (6.25)
where Im = MA and A is the width of the slot assumed here as A<<a. Since
-;' (axat) = dAfi, where dA is the triangular element of the area inside the ring,
(6.25) gives the total area which is bound by the ring. The magnetic moment then
has the magnitude

m_ =IA (6.26)

where A is the area regardless of the shape of the circuit and is A = 7ra2 for a
circular loop. The equivalence between a current element mounted at right angles
on a conducting plane and a magnetic ring current (circular slot)in a conducting plane

is
U =-juel A ., (6.27)
m
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6.3 Radiation from Electric Loop Currents

If a magnetic ring current (aciually an infinitesimally thin washer-shaped
current with average radius a which flows in a strip between a+% and a- % )
could exist in free space, the radiated magnetic field would be, from (6.23)

e Jkr jk 1\a
o 3 = —— +
H = jwe e \ 5 r2 rxm . (6.28)

It would be only half as strong as the field produced from a magnetic current in a
conducting plane. That this must be so can be inferred from the theory of images,
that is the conducting plane doubles magnetic current elements that are parallel to it.
Therefore it is not necessary to calculate the radiated field from magnetic currents
using the vector pctential (6.4) and then (6. 2) since these are equivalent to (6.13).
This becomes more evident when (6. 13) is written as
. -JkR
E=- —2i7;- Vx M(r) <
S1

as . (6.29)

Radiation from a loop of electric current can be obtained using the vector
potential method. The magnetic field can be expressed with the use of (6.4) and
(6.3) as

kR

H=Vx m—'— ds . (6.30)

Using (6.14) and (6. 15) this can be rewritten for small loop currents as

-jkr 45 A
RN | S S B jkr - x!
H(r) i (r +r2> rx Ke ds . (6.31)
Sl

One can again use the vector identity (6.19) to express the above magnetic field as
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. -jkr /.
H(r) = E&— (-';k- +-1§> *x(Fxm) (6.32)
r

where m is the magnetic moment of the electric current distribution K, i.e.

E=’% @xg_(_ﬁ_]ds:-;- rxlrd . (6.33)

51

In the far field the electric and magnetic fields are related by (6.22), which can be
re-expressed as nH = rxE. This permits us to write the electric field of the loop

current as

E(r) = jw e—JkI‘ jl{--*-—l- Txm (6.34)
==t 4y r r2 - : )

An examination of the above expression and of (6.9), the electric field of a magnetic
dipole element Iml in free space, shows that a magnetic current dipole and electric

current loop radiate equaily if their moments are related by

P, =Hm . (6.35)

A magnetic current element and a current loop, positioned as shown in Fig. 6-4

=Sy

FIG. 6-4: POSITION OF ELECTRIC LOOP CURRENT AND MAG-
NETIC CURRENT ELEMENT FOR IDENTICAL
RADIATION CHARACTERISTICS.

have identical radiation characteristics if (6.35) is satisfied.
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If the loop current is confined to a plane, the magnetic moment can again be
evaluated with the aid of (6.25) as

m =IAR (6.36)

where @i is the normal to the plane of the loop, A is the area of the loop which is
1ra2 for a circular loop. With this last expression the equivalence relationship

(6.35) can be rewritten as

_ A
_I_ml = juulAn . (6.37)

The direction of the electric field from a current loop which is given by
rxm is normal to any plane containing the axis m of the loop. This permits us to
introduce a conducting plane along m without disturbing the electric field of the loop
(boundary conditions are automatically satisfied). A half loop mounted on a con-

ducting plane, as shown in Fig. 6-5, therefore radiates like a full loop. Therefore

FIG, 6-5: ORIENTATION FOR A SLOT AND A HALF-LOOP ON A
CONDUCTING PLANE FOR SIMILAR RADIATION.

comparing the electric fields of a linear slot (6.17) and of a loop (6. 34) we find that
the relationship for the radiation to be equal is

1 = s —_ » ’
21m jwum = jknIAn (6.38)




———— THE UNIVERSITY OF MICHIGAN

741-3-T
20(Vx1) = juulAh (6.39)

We should pause now and examine the expressions that we have identified as

g «gnetic and electric line currents. For example, in the case of the linear and cir-
cular slot of width A, we have identified the magnetic current with
Im = MA = (Exn)A, However, when we talked about 2 magnetic current element in
free space (as for example in 6.19) the wire (or strip) current was related to the
surface current density by an integration around the cross section of the wire, i.e.
Im = Mdl, which for a flat strip could be written as Im = M2A. This however
introduces a factor of 2 when compared with the equivalent slot current. To resolve|
this apparent paradox we only have to look at the vector potential solutions to Max-
well's equations to determine whether the Img M2A interpretation is correct. The
vector potentials (6.4) and (6.5) are solutions to the vector potential wave equations ¢
whose inhomogeneous terms are the electric and magnetic currents J and “Im
which for good conductors are crowded on the surface and beconie the surface cur-
rents K z;nd M respectively. Since these currents flow in a small skin depth layer
ingide the conducting body we see that, for example, in the case of a thin wire

Mdl = Im gives the total wire current and should be interpreted as such,
whether the wire is round, flat, square, etc. The question now avises whether the
vector potentials are valid also for points just outside the conducting surface when
the interpretation for K and M must be given as nxH and Exn. This can be
answered in the affirmative. Zinke (1941) has shown by a complicated skin-effect

analysis that the vector potential just outside the surface of a cylindrical wire is

valid and that it is independent of the cross-sectional distribution of the axial cur-
rent, This permits us then to find an equivalent circular cylinder for an arbitrary

cross section. For example (King, 1956, p.20), the equivalent radius r of a thin

strip of width A is r=A/4.
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The same comments apply whenr considering electric currents. For this

reason we have written Kdf =1 in (6.33).

6.4 Summary of Radiating Dipoles Results

A duality exists between the fields produced by electric and magnetic sources,
This can be seen from the expressions (6.8) and {6.9) which give the field from lin-
ear electric and magnetic current elements, or (6.34) and (6.28) which are the equi-
valent expressions for ring currents. From these we can infer the duality relations,
These relations show us how to interchange symbols in order to obtain the solution
when only electric (magnetic) sources are present from a solution with only mag-

netic (electric) sources present.

Electric sources only Magnetic sources only
E H
H -E
5’ I’ p’ m Ma Im; pm: mm (6. 40)
A F

we. e & Jelu

The above relations give the equivalence between electric and magnetic cur-
rents which have the same physical shape. Another set of equivaience relations can
be obtained which relate the fields of linear electric (magnetic; currents to loop mag-

netic (electric) currents. These are

p =#m or I I=Vi= jwuIAD = jup (6.41)
and
p=-em ~ or II= -jweImAﬁ . (6.42)
+ 45
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From these we conclude that a linear monopole protruding from a conducting plane
radiates identically to a circular slot in a conducting plane if (6. 42) is satisfied and
that a half loop mounted as shown in Fig. 6-5 and a iinear slot radiate equalily.
Figure t-6 shows the equivalent radiators.

6.5 Scattering Dipole Moments

Electromagnetic scattering from a small body in free space can be identified
with the radiation fields from a combination of electric and magl.letic dipoles which
have a strength and orientation such that their combined radiation field is identical
{0 that of the scattering body. When a symmetric scattering body is bisected by a
conducting plane, the scattered field ;rom the half-body is altered in the following
way: the conducting plane cancels the electric dipoles tangential to the plane. doubles
the electric dipoles normal to the plane, cancels the magnetic dipoles normal to the
plane and doubles the magnetic dipoles tangential to the plane.

6.5.1 Scattering Dipole Moment of a Monopole

The radiated eleciric far field of an electric dipole can be ohtained from (6. 8)}
with the aid of the far field relation E = nHxT as

-jkr
E = k2 e

- 4rer

(Fxpxt . (6.43)

The scattered electric field of a z~ori:nted monopole of length £ was ob-
tained befcre as (see eq. 2.26)

3.1

kzl E cosysinf,8inf_  -jkr
ES = o] NS | 8 e (6.44)
6 log 44/ a- \ r :
where _I_B_i -'i; = Ei cosysin (9i is the tangential component of the incident electric

Held along £ and a is the wire radius. An arbitrarily oriented electric mornopole
will then scatter an electric field
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ih.23 -jkr
s __ E Lk (<] A_A
E ——logu/ao-—l p (Txp)x? (6.45)

where the orientation of the element is given by 1= 'f) Comparing this expression

to (6.43) we can solve for the induced scattering dipole moment, which is

4re IBE_I 2 A

= e —— (6.46
B log41/a0—11 (6.46)

This is the dipole moment of a short piece of wire of length £ and cross section
radius ao either in free space or mounted normally on a conducting plane. In the lat-
ter case the normal to the plane and the wire direction coincide, i.e. A= 2.

6.5.2 Scattering Dipole Moments of a Loop and a Half-Loop on a Conducting
Plane

In was shown in a previous section that the scattered field from a loop is

composed of two electric dipole terms and one magnetic dipole term. The two in-
duced electric dipoles lie in the plane of the loop. One is oriented parallel to the
plane of incidence, the other normal to it. Actually, the two electric dipoles were
the two components of a single dipole which the electric field _}gi induces in the loop.
This single dipole lies in the plane of the loop, and has the direction which coincides

with the projection of E_l onto the plane of the loop. The unit vector

p=(RxEYxh (6.47)

gives the direction of the induced electric dipole moment. This dipole radiates an

electric field which is given by

Eed=-}i 1+kam>(§x[(ﬁlxﬁl)xﬁg}x? (6.48)
- Xl Xl w

where B = E:)kzaBW e-Jkr/ r, {0 is 2 unit vector along the axis of the loop, '1\'0 and
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4 are the direction of incidence and observation point, respectively. Comparing
this expression to (6.43), we find that the induced scattering dipole moment is given
by I . .
p=—"—2 Q+ka‘ur->(ﬁ1x_l§1)xﬁ1
X X (6.49)
where xl = 2[:111 880-2] and S0 is the ratio of loop radius to wire radius.
The incident field also induces a magnetic dipole which is normal to the plane of the

loop and reradiates a field given by

gPd_ B oA x8hixh . (6.50)

H>

The induced scattering magnetic moment can be obtained by equating the above ex-

pression to (6.34). The moment is then

2n 2::13

X

A ,n Al
m-{(r xE

E)m . (6.51)
(o]

m=-

Since nH= f‘\ox E for a plane wave, (6.51) can be written also as

1

(m-H)m . (6.52)
Using (6.41) which relates the magnetic moment to the magnetic dipole moment

(pm = pm), (6.52) can also be written as

27r2a3 i
B, =- Tt @R

(6.53)
X

This last expression can be considered as the dual (Babinet's equivalent) of the elec~
tric dipole expression (6.43). The induced magnetic moment of the half loop is the

same as (6.53) for a full loop except that P should be multiplied by a factor of 2

49




m T Sy

=~ THE UNIVERSITY OF MICHIGAN

T741-3-T

if P is 10 be used in (6.43). (The use of the factor 2 can of course be ayoided
simply by using (6.53) in conjunction with (6.11).)

When a half loop is mounted on a conducting plane, the electric dipole tangen-
tial to the plane cancels, whereas the electric dipole normal to the plane has a scat-

tering dipole moment given by (see 3. 30)

2 3 . .
p= MG*-kaE) €& -8)f (6.54)
X %

where 1 is the normal to the plane. If (6.54) is to be used in (6.43) it should be
multiplied by a factor o° 2. Of course, if (6.54) is used in the expression for the

radiated field of an electric dipole mounted normally on a plane which is given from

(6.43) and (6.10) as

k2 e—Jkr

2mer

E= (txpx?t (6.55)

then the use of the additional factor 2 can be avoided.

6.5.3 Scattering from Slots in a Conducting Plane

In this section we will consider scattering from slots or magnetic currents
on a conducting plane. In a sense we have solved this problem already when the
scattering results for a half loop mounted on a conducting plane were obtained. Let
us recall that scattering from a half loop on a plane was equivalent to scattering fron!
an electric dipole normal to the plane and a magnetic dipcle tangential to the plane,
Since in the radiation problem radiation by a slot and a loop are equivalent, we can
reascn that the magnetic dipole contribution of the half loop must be also an equi-
valent slot scattering contribution. However, in the scattering problem, to find the
equivalence between the loop radius and the slot length an additional condition be-
sides (6.38) is needed. This added condition can be obtained from circuit theory.
In the radiation problem it was shown that the equivalerce between a slot and a half

loop is given by (6.38), i.e.

50
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2VL = jknlA (6.56)

This is precisely the condition to obtain the electric field radiated by a slot which
is given by (6.17) as

$xi (6.57)

oo KV e
- 2

from the radiated electric field of a half loop on a plane given by (6.34) as

-jkr
_ .2 e
E=-knlA 4rr

fxih (6.58)

The orientation of the slot and the axis of the loop are parallel, i.e. 2 =m. Inthe
scattering problem the half loop reradiates as an electric and magnetic dipole. If
we assume that the magnetic dipole part of the half loop scattered electric field,
which is given by (6.50) as

m-(roxg)rxﬁn (6.59)

is equivalent to the scattering by a slot, an additional condition which will relate the
radius of the loop a to the length of the slot £ is needed. Since we are considering
slots and loops which are small with respect to wavelength we can use some concepts
of circuit theory since that is 2lso based on the assumption that the circuit dimen-
sions are small with respect to wavelength. Ignoring losses, a loop whichis a
special case of the single turn solenoid is a purely inductive device in which voltage
and current are related by

V = jwLI (6. 60)

where L is the inductance of the loop. Inductance is defined as flux linkage divided

by the current that causes the flux, i.e.
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BA H1ra2
L=‘I\=I—=“—-I—— . (6.61)

The magnetic field at the center of a coil is given by H = I/2a which is a good
approximation to the flux linking the loop. The inductance of a small loop then be-
comes L = ura/2, and the relationship (6.60) is

V = jknwal/2 (6.62)
This expression in connection with (6.56) permits us now to solve for the relation-
ship between the loop radius a and the slot 1-ngth £ which is
a={ . (6.63)

Therefore scattering from a short slot can be obtained from (6.59) with the substi-

tution a = £. The scattered field is then

k2£3We—jkr ;
="=— 7(F xE )'f'xf . (6.64)
xlr o =

E:

The factor X, = 2(4n 8S0— 2) can be adopted to a flat strip current since it is known
that the equivalent radius of a strip of width A is A/4. Therefore S0 = 4a/A.
The above expression for the scattered field from a slot of length £ and width A
can then be written as

nk2237r I
2(m32¢/A-2)r

A

@-mhex? (6.65)

_E_:_::

where the substitution ?o xp__l = nl_{l for a plane wave was made. The accuracy of
this expression depends on the accuracy of the derivation for inductance of a loop

(6.61). Comparing this expression to the radiated field from a slot (6. 17) which

can be writtea as

=k ko ass
E=-97¢ PoTXP, (6. 66)
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we obtain for the induced scattering magnetic dipole moment of a slot

7r2£3££ A qa
R =- (in32(]5-2) (£-H)L . (6.67)

This expression could also have bzen obtained more directly, once the relationship
(6.63) is known, Substituting a = £ into (6.53) which is the scattering magnetic di-
pole moment of a half loop, (6.67) is obtained.

Perhaps a more direct approach to the scattering of a small slot on a con-
ducting plane is to use the scattering results for a short piece of wire and then
apply duality. The induced scattering dipole moment for a thin wire of length £ is

given by (6.46). The dual of that, with the use of the duality 1clations (6. 40) is

3.4 4
- _ A4mplH oL 4
2 10g4£/a0-1 ! ) (6.68)

Since the radiated field for a slot is given by (6.17) as

wke KT X
T rXxp (6.69)

E =-
- m

we obtain the scattered field of a slot by substituting (6.68) in (6.69) which is then
23 ~jkr
e

- 2nk £ isne n
E= gtetfact v Wit (6.70)

where the subgtitution for the equivalent radius of a strip a = Af4 has been made.
Now we are in possession ot two expressions for the scatiered electric field
from a slot. One was derived from the solution of a small half loop on a conducting
plane by cquating the magnetic dipole portion of the total scattered field to that scat-
tered by a slot, After finding the equivalence between loop radius a and slot length

£ we were able to obtain the scattered field by a slot which is given by (6.65). The
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second method to obtain scattering from a slot was the use of duality applied to the
scattering results for a dipole. This yielded (6.70). Hopefully these two expres-
sions will agree. After an examination of these equations we find that they will be
equivalent if

2 _ 7
log16¢/A-1 "~ 2(n322[n-2) (6.71)

A quick check for a slot length-to-width ratio of £/A = 10 gives for (6.71) the result
that 474,09 = 3.14/3.77. The source of this small error is probably the equivalence
relation between the loop raidus a and slot length £, given by a={. For this deri-
vation the inductance of the loop (6. 61) was obtained under the assumption that the
flux linking the loop is given by the flux at the center of the loop. However, the

agreement is substantiad, so as not to warrant further refinement.
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SUMMARY OF SCATTERING DIPO‘LII; MOMENTS FOR VARIOUS SHAPES

Yince we have now oblained the scattered fields for various shapes of inter-
est, which are mounted on 2 perfectly conducting plane, we will now list their elec-
tric and magnetic scattering moments. The normal to the conducting plane is de-
noted by 3, the incidence direction by ?o’ and the observation direction by f. The
scattering moments are obtained by comparing the scattered dipole fields of the
shape of interest to the fields of the corresponding radiating dipoles, and then solv-
ing for the induced scattering dipole moments. These scattering dipole moments
can now be applied to obtain the scattering from, let us say, a small half-sphere
mounted for example on a large cone, sphere, cylinder, etc., provided the simpler
problem of radiating dipoles on the large bodies has been solved

For example, if the body on which the dipoles are mounted is an infinite con-
ducting plane, the radiated far field due to the dipoles of electric and magnetic mo-

ment p and pm, respectively, are

kwe—jkr A
B= M 7.0
2 -jkr
— ke o A A
H= Snar rx(p xr) (7.2)

for the fields of a magnetic dipole (which is mounted flush on the conducting plane)

and
2 ~jkr
— k [ /s ~ I3
E= (rxp)xr (7.3)
kwe-—jkr R
H= —z-;r—'—(rxp) (7.4)
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for the fields of an electric dipole (which is mounted normally on the conducting
plane). Knowing the scattering dipole moments for a small object that is mounted
on a plane and substituting in the above equations, the scattered field of that object

is then determined.
7.1 The Monopole on a Conducting Plane

A monopole of length £ mounted normal on a conducting plane has only an

electric dipole moment.
_ anelES A 1.5
log 44/ ar- 1 .

1t the monopole is not mounted normally on the plane, the above expression should

be multiplied by the factor (5-1), since only the normal compoucnt contributes to
the scattered field.
7.2 The Half-Loop on a Conducting Plane

The half loop has a magnetic and electric dipole moment given by

23 .
._.”_af"__.(l’r‘l,ﬂl)

N
! Py In8a/ao-2 =m (7.8
27r2€a3 jm i
— Bl SR ¢ A
2= £n8a/ao-2 (1+kaln8a/ao—2> (En)n (7.7

where i is the direction of the loop axis, a and a_ are the radii of the loop and

wire respectively.

7.3 The Half-Sphere on a Conducting Plane

The half-sphere has both moments

B = -27rua3 Bﬁxgi)xﬁ] (7.8)

56

A R L v . T




ek

P e S ]

THE UNIVERSITY CF MICHIGAN
7741-3-T

p= 47r€a3(§i-ﬁ)ﬁ (7.9)

where a is the radius of the sphere.

7.4 A Small Slot on 2 Conducting Plane

A slot has only a scattering magnetic dipole whose moment is given by

4n 3 i-f ?

R T T ogi6l/a-1 (7.10)
where £ is the length and direction of the slot and A is the slot width, such that
A K LI<KA,
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APPENDIX
The following six pictures represent radiating dipoies in various basic orienta-
tions and their respective fields. Magnetic dipoles of moment m are shown in the first

three pictures, foilowed by three electric dipoles ¢f moment p. In all cases the dipole
moments are absorbed in the factor Eo.

z A
m=m i
°r =E (fx]) =E smol O
y 2T Bl =B, 80N TR
x
Vol
m=m i
oy =E (x1) = E (I smnp+i,cor0 ¢)5ij
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