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ABSTRACT 

Tliis report describes some interpretations and uses of 
eigenvalues and eigenvectors of spectral and sample spectral 
density matrices of multiple stationary time series. 

The spectral density matrix of a zero-mean multiple 
stationary time series is defined.  Eigenvalues and eigenvectors 
of the spectral density matrix are discussed and principal com- 
ponent theory is presented.  Statistical distribution theory and 
related results are used to investigate the eigenvalues of a 
sample spectral density matrix.  This investigation gives methods 
for obtaining simultaneous confidence bounds on the elements of 
the true spectral density matrix and its inverse, and also methods 
for obtaining confidence bounds on the eigenvalues of the true 
spectral density matrix. 
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EIGENVALUES AND EIGENVECTORS OF 

SPECTRAL DENSITY MATRICES 

The present report describes some interpretations and uses of 

eigenvalues and eigenvectors of spectral and sample spectral density 

matrices of multiple stationary time series 

1      SPECTRAL REPRESENTATION OF A ZERO-MEAN 
MULTIPLE STATIONARY TIME SERIES 

A zero-mean multiple stationary time series  X(t) has the spectral 

representation 

X(t) = 

XjCt) 

x2(t) 

X (t) 
L  P   . 

■/. 

CD 

GO 

iwt 

dZjM 

dZ2M 

dZ M 
P 

(I) 

One has 

dZjM 

dZ M 
_      P     _ 

IdZ^w) dZ  MJ 

£ (u) du (2) 



where the  p x p Hermitian nonnegative definite matrix   £(b))   is the 

spectral density matrix at frequency UJ of X(*). 

2.    EIGENVALUES AND EIGENVECTORS OF A 
SPECTRAL DENSITY MATRIX 

There exists a p x p unitary matrix P(w),  i. e. 

?(W) ßM = I = pM P'M (3) 

such that 

ß'(w) EM pM m 

KjM 

X2(a.) 

X  (w) 
P 

=AM (4) 

where the K.(w),  (j = 1 p), are the eigenvalues (real and nonnegative) 

of Z(u>) and 

\Au) > KM > ...  > K (fc>) >  0 (5) 



Consider 

dW^w) 

=  P'M 

dW  M J 

dZ^w) 

dZ   (a.) 
P 

(6) 

one has 

dWjM 
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dW M 
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[dWjM.  ...  .  dW (w) 

= E p'M 

dZ^w) 

dZ (w) 
P 

dZjM. .  dZp(w)j 

PM 

(7) 

p'M E(w) PM dw ■ 

XjM 

L 
dw -j\.M dw 



From (7) om observes that the complex random variables   dW^w). .... dWpM 

are uncorrelated,  and th»t 

Var (dW.M)= E |dW.Ml2 = X.M dw.  (j = I P) (8) 

Let   P.M.  (j = 1 P).  d«m>ie the  jth column vector of the unitary 

matrix p(w).    Since p(u») is unitary 

P'.M P-.M = 
0 if H j' 

1 if j = j'      •       0 = l P) 

(9) 

Equation (9) expresses that the column vectors p^w) of pM are ortho- 

rmal.  i. e.. they are orthogonal and of unit norm.    From (4) one ha» no 

SM PM = PM AM (10) 

i.e. 

SM PM = M«) P.M    .     (j = i.    ■  . P> (11) 

■o that the column vectora p.M of PM »re the (normaliaed) eigeavector« 

of the spectral density matrix EM. 



From (6), 

dW.(w) ■ ß'.M 

dZ j (u)) 

dZ  M 
L    P   J 

(12) 

(j = I.  ...  P) 

so that dW.M  Is a linear combination of dZjM dZpM with co- 

efficients equal to the complex conjugate of the components of the column 

vector p.{w).  (j = 1.   • •• .  P) • 

3.    PRINCIPAL COMPONENTS 

The dW  M.   ....  dW (w) are called principal components.    With the 

eigenvalues     XjM VpM  in the order indicated by (5).   dWjM  is 

called the first princip-1 component.  dW2M the second principal component. 

etc. 
Consider the problem of determining ^(w).  c^M Cpi^ 

satisfying 

P    \ U (13) 

auch that the linear combination g c.,l«-) dZ^u.) 9 dWjiu.) has maximum 

variance    i. e. ,  such that 



p _ 
Var (dW  M) ? Var    ^] c    M dZ (w) 

The general solution to that problem is 

E 
P   _ 

i=» 
c.. (u) dZ.(fa)) - maximum 

(14) 

fcllM.  c2lM.   ...  cplMl   rUjMpJM (15) 

where u (w)  denotes an arbitrary complex number of unit modulus and 

ß (u) is the eigenvector of £(w) corresponding to the eigenvalue Kj(w) 

described previously.    Thus, the variance of dW^w) is a maximum if 

and only if 

dW.M = UjM dWjM (16) 

Furthermore, that maximum variance is 

E I dW^cJ 2 = E dW^w) 2 = E pjM 

dZjM 

dZ  M 
P     . 

IdZjM dZ  ( w)| 

ßjM 

(17) 

p^w) E(w) PjM dw = P'jM XjM pjM dw = KjM <k. 



Next,  consider the problem of determining Cj2(w).  cH^ Cp2^ 

•etiefylng 

(18) 

P   . 
■uch that the linear combination >J c.,(w) dZ.M = dW (w) it uncorrelated 

with HW (w) and hae maximum variance, i.e.. such that 

E dW2(«) dW^w) = 0 (19) 

and 

V»r (dW2M) * E|dW2(w)|2 ■ maximum (20) 

The general eolutlon to the problem la 

[C2l(wK C22M Cp2MJ mH(MHH (21) 

where u2(w) denote« an arbitrary complex number of unit modulus and 

P,(w) ia the eigenvector of E(w) corresponding to the eigenvector K-fc) 

described previously.    Thus, the variance of dW-fw) is a maximum if 

and only if 



dW2(w) = u2M dW2(w) (22) 

Thar maximum variance is 

E|dW2M|2 = E|dW2M|2 = K2(W) du (23) 

Similarly,  the c13(w).  c23(w),  ....  c  3(w)  satisfying 

tM*'1 
(24) 

such that 
P   _ 

dW3(w) iTJ c    (w) dZ («) is uncorrelated with dW (w) and dW.(«) 

and has maximum variance is 

cn(w). c23(«).  ....  cp3(w) I = u3(w) p^v) (25) 

the dW3(w) possessing maximum variance is 

dW3(w) = a3(w) dW3(w) (26) 



»nd that maximum variance it 

EldW3M|2 = K3(W)du) (27) 

Proceeding inductively in the manner illustrated above it i« «een that 

d^r+l
M " Vl(w) dWr+l

M 
(28) 

ie the eolution to the following problem 

P 
Find the   dW^M^Fj ^MdZjM  posie.iing maximum variance 

•ubject to the conetratnt that   £j je|f HiH1 * '   '^   ^^\M  * **' 

correlated with    dWjM. dW2M dW^).    Furthermore, that 

maximum variance it 

|dWr+1M|2 « F-l dWr+1(W)|2 - Vr+1(e») dW (29) 

From the foregoing diecueeion it is seen that the transformation (6) 

of the [dZjW   .... dZpM] tothe^WjM <»WpM]. 1^. the 

ttanefcrmation to principal components, is a transformation to uncorre- 

lated random variables possessing the special variance properties de- 

scribed above.   In some studies the principal components with large 



variance may be of tpecial interest.    When the principal components with 

large variance "account for moat of the variability, " i. e. ,  when the total 

variance of the other principal components is comparatively small,   re- 

stricting attention (in exploratory investigations) to the principal com- 

ponents with large variance may constitute an effective way of reducing 

the "dimensionality" of a problem. 

4.    STATISTICAL ESTIMATION OF EIGENVALUES AND EIGENVECTORS 
OF A SPECTRAL DENSITY MATRIX 

Let   E(u) denote a sample Hermitian nonnegative defü 'te spectral 

density matrix constituting an estimator of the true spectral density 

matrix E(w).    The eigenvalues  X.M,   (j = 1,  ....  p).  of EM in descend- 

ing order are,  respectively,  estimators for the eigenvalues  K (w), 

(j = 1,   ...,  p), of £(w).    Similarly,  the corresponding (ncrmalised) 

eigenve  rors   P.(ui),  (j = 1,  ....  p),  of  E(u) are.   respectively,  estimators 

for the normaliaed eigenvectors  ß.M,  (j = 1.  .••,  p).  of EM.    Under 

suitable hypotheses (i. e.,  hypotheses that make EM • maximum likeli- 

hood estimator for EM), the K.M, ß.M.  (j = 1 p).  are,  respectively, 

maximum likelihood estimators for X.M. P.M.  (j s 1 p) • 

10 



■■■■ 

STATISTICAL DISTRIBUTION THEORY AND RELATED RESULTS 
PERTAINING TO THE RANDOM EIGENVALUES OF A 

SAMPLE SPECTRAL DENSITY MATRIX 

To simplify notation the dependence on the frequency u will not be 

indicated here.    For example,  EM will simply be denoted by E.  the 

frequency dependence being understood.    That is,  it is understood that 

E  is a spectral density estimator pertaining to a small frequency band 

centered at frequency w- 

The distributional theory and related results described here are 

predicated on 

Ä    1 E^A 
n 

(30) 

where A is complex Wishart distributed with n degrees of freedom. 

The complex Wishar' distribution with parameters  n,  p,  E will be denoted 

by W (E;n. p). 
c 

Thm.   1.     If A has the distribution W (I; n, p) with n >p. then tl." random 
>\       ^ 

eigenvalues  K.  > K    > . . .  > K   > 0   of A have the joint probability density 
I   —        i  — "        P  "" ' 

function 

pdCj.  K2. K ) = C(p, n) n 
P j=i 

in-p j=l     J 

j.k=l 

K. 
) KY 

(31) 
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where the "constant" C(p. n)  ia given by 

C(p. n) = n r (n   p + j) r (j) (32) 

The probability density function (31) is defined over the doma 
/N >N 

in 

K   >K- > ...  >K   > 0 

Since the eigenvalues  \.  of Z are related to the eigenvalues  K. 
>\      1 ^ ' 

of A by K   = - K .  (j = 1 p),  one may regard (31) ai Kiving the 

probability density function of the \.t  (j = 1 p) 

y\     s\ 
Thm    2•     If K,. K2I  . .. ,  Kp are random variables distributed with the 

probability density function (31).  then for any constants  a.  b   suchthat 
0 <a <b 

ProbFa^Kp K2. ^ <b| C(p, n) 

V0    h 

Yl      Y2 

Y«   . V 

rp-» 

p-1 Tp     '      ^2p.2 

(33) 

where 

'i+j.2 = J%   ** 
p+i+j-2   -v . 

«      dv     ,       (i. j= I,  2,  ..   , p) 

(34) 
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Equation (33) gives a closed form expreBsion. for the probability 

that all the eigenvalues of a random Hcrmitian inatnx  A  distributed 

W  (I;n, p) with  n >p will be between prescribed limit»  a  and b. 

Equivalently.  one may regard (33) as giving the probability that all the 

random eigenvalues of a sample spectral density matrix  2:  will be be- 

tween prescribed limits for the cAse when the true spectral density matrix 

£ = I.    Confidence band results pertaimr^ to general spectral density 

matrices are derivable from Thm-   2.  so that the condition that L = I is 

not as restrictive as might appear at first glance. 

Let A* denote a random üermitian matrix distributed W  (I; n, p) 
c 

where n > p.    Let ch    .  (A*) denote the minimum eigenvalue of A* and ~* min 0 

ch        (A*) denote the maximum eigenvalue of A*.    Let £  denote a aen- max o 

eral nonsingular  (p x p) spectral dei sity matrix.    From Thm.   2 for a 

chosen 0 < « < 1  one may obtain constants I* and u* such that 

Prob I1*- ch    ,   (A*),  ch        (A*) < u* 
mm max —       j (35) 

The probability statement (35) is equivalent to 

1 ~ • = Prob [I* <^^ <u*.  for all nonzero complex (p x 1) vectors 

(36) 

•1 
Now, there exist* a nonsingular (p x p) matrix M such that 

M' M = £ (37) 

13 



Let 

a ~ Mb 
(38) 

and 

A = M' A*M 
(39) 

The Hermiti.„ po.itlve definite matrix A i. di.tributed W (Z; n p, 
Upon .ubetuu^ m in ^ .„, u-ing ^ ^ ^ ^ ^ ' 

* - « = Prob 
L        b'Zb " u*   .    for ^11 non.ero complex (p x I) vector, b 

(40) 
•] 

U»ing (30) one may .täte (40) in the form 

1 - « = Prob 
for all non.ero complex (p x 1) vector, b] 

(41) 

From (41) one obtain, the .imultaneou, -^ ,..„ „^ 

I 

1 - « = Probj ^T b' £b < b» Zb < -^ b' Zb ,    »^«»Itaneou.ly 
L " for *" complex (p x 1 ) vector, b 

(42) 
J 
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■ ' 

The vectors b may be freely ctioaen in (42) with all bounds on the result- 

ing linear combinations of the elements of £ holding simultaneously with 

probability  1 - s .    From simultaneous confidence bounds on suitably 

chosen linear combinations of the elements of £ one may obtain,  for 

example,  simultaneous confidence bounds on all the spectra,  co-spectra, 

and quadrature-spectra of Z .    One may also view (42) as giving simultane- 

ous confidence bands for values of an Hermitian quadratic form where Z 

is the matrix of the quadratic form.    Equation (42) a'v.o yields 

I - « ■ Prob k Chmin(2:) ^ V  ' K,. ^ < -^r ch      (£) 2      1 — 1*       max '] (43) 

where ch
mi_(S) denotes the minimum eigenvalue of the sample spectral 

density matrix £ and ch        (£) denotes the maximum eioenvalue.    Equa max ^ 
tion (43) is a confidence bound for all the eigenvalues of the true spectral 

density matrix £. 

From (35) one also obtains 

1 - c = Prob -,    -1 u* - £-1 c' £      c < — c' £     c — n 
simultaneously for all 
complex (p x 1) vectors 

(44) 

•] 
The simultaneous confidence band statement (44) yields confidence bound 

results pertaining to £      directly analogous to those for £ described above 

Viewing (44) as giving simultaneous confidence   bands for values of an 

Hermitian quadratic form where £~     im the matrix of the quadratic form 

may be especially important.    Such quadratic forms occur in quadratic 

signal detection methods. 

15 



In conclusion it U noted that both (42) «nd (44) »re derived from (35) 

and hold simultaneoualy. i. e. 

1 - « = Prob 

* •• A.      j-,_-       n r, J5. simultaneouely for all 
^b'Zbib'Ebijjb'Eb   .    complex (pxl) betöre b 

I*— A.i       —     _i        u* — ä_I gimultaneauely for all 
— c' E   c < c z   c < — c r   c  .   complex (p x i, vector. 
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amr, khr augg.atad loagti i« from ISO to 32S woid'> 

14.   KEY SOROS:   lay worda are technically maaalngAil taiaa 
or abort phraaea that charectariae a report and m« ba oaed aa 
Indai eatrtaa tar catat^giog UM report    Kay worda mat ha 
aalactad eo diet no eecurlty claaalflcetlon lo required    Idantl- 
flare, auch ae equipment model dealmtatlea, trade noma, mllltery 
'■^fL00-*..?*■•• ••»faPWe toeatfoa, may be uead aa key 
worda bat will be followed by aa tadleaU1« of techalcal con- 
tax.   The aaalgaowat of llaka  relea, and wallte la opUoaal 
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