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ABSTRACT

This report describes some interpretations and uses of
eigenvalues and eigenvectors of spectral and sample spectral
density matrices of multiple stationary time series.

The spectral density matrix of a zero-mean multiple
stationary time series is def_.ned. Eigenvalues and eigenvectors
of the spectral density matrix are discussed and principal com-
ponent theory is presented. Statistical distribution theory and
related results are used *o investigate the eigenvalues of a
sample spectral density matrix. This investigation gives methods
for obtaining simultaneous confidence bounds on the elements of
the true spectral densi‘y matrix and its inverse, and also methods
for obtaining confidence bounds on the eigenvalues of the true
spectral density matrix.
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‘ EIGENVALUES AND EIGENVECTORS OF
SPECTRAL DENSITY MATRICES

- The present report describes some interpretations and uses of
eigenvalues and eigenvectors of spectral and sample spectral density

matrices of multiple stationary time series.

1. SPECTRAL REPRESENTATION OF A ZERO-MEAN
MULTIPLE STATIONARY TIME SERIES

B

A zero-mean multiple stationary time series ?(t) has the spectral

representation
- - - 4
X, (t) dZ  (w)
X,(t) ¥ = dZ ,(w)
XM= . |= f e . (1)
-
= X (t) dZ _(w)
B - P AR
'-‘i One has bt
1 P . n
= 4z () [Fz_l(u). oy de(w)] fh‘
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x E . z T (w) d (2)
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where the p x p Hermitian nonnegative definite matrix ZX(w) is the

spectral density matrix at frequency w of f(t).

2. EIGENVALUES AND EIGENVECTORS OF A
SPECTRAL DENSITY MATRIX

ThLere exists a p x p unitary matrix B(w), i.e.

Blw) Blw) = I = Blw) B'(w) (3)

such that

iy [ %, () al é

ﬁ; A, (w)

E}J B'(w) T(w) Plw) = : A (4)

g 0
iy g Ao |
R
‘.‘,‘..:‘;:{
__:.I where the kj(u), (j=1, ..., p), are the eigenvalues (real and nonnegative)
*‘" | of £(w) and
i M@ 2 W 2 2 A ) 2 0 (5)




Consider

one has

= b
aw \ {w)

de(u)

[a’w’l(u),

] dwl(w)1

dW (w)
P

= B'(w) Z{w) Plw) & =

.ﬁﬁm]

y le(w)‘1

de(u)

= E p'(w)

)‘l (w)

Xp(u)
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From (7) on: observes that the complex random variables dwl(u), B dwp(w)

are uncorrelated, and that

Var (dwj(m))-:- E |dwj(w) 2. )\’.(w) dw, (j=1.....p (8)

Let pj(u). (G=1, .... P, denote the jth column vector of the unitary

matrix P(w). Since P{w) is unitary

_ 0ifj#j
B (w) B.,(w) = (9)
) ) 1if j s j' ’ (j = lt LI P)

Equation (9) expresses that the column vectors p’.(w) of p(w) are ortho-

normal, i.e., they are orthogonal and of unit norm. From (4) one has

Z(w) Blo) = plw) N (10)

Z(w) ﬂj(w) = lj(w) Pj(w) , BElis-w B (11)

so that the column vectors pj(u) of P(w) are the (normalized) eigeavectors

of the spectral density matrix Jw).




From (6),

i dzl(wﬂ
4w (o) = E'j(u) . (12)
dZ (w) . G=1, ....p)
| p
so that dW, (w) iz a linear combination of dZ (w) ., dZ (u) with co-

efficients equal to the complex conjugate of the componentn of the column

vector pj(w). G=1 .... P

3. PRINCIPAL COMPONENTS

The dWl(u). ve., OW (u) are called priacipal components. With the
eigenvalues M\ (w), o2 el IN (u) in the order indicated by (5), dW (u) is
called the first prmcnp..l component. dwz(u) the second prmclpal component,
etc.

Consider the problem of determining cu(u), czl(u). wushiTy cpl(u)

satisfying
2
Ic.l(u)| =1 (13)
=1 1)

P
such that the linear combination Z (u) dz (u) = dW \u) has maximum

variance, i.e., such that




| P _ P _
Var (dwl(u)) s Var (Z cjl(w) dZ)(w)) TE z cjl(w) de(u) 2 = maximum
j:l j'-‘l
(14)
The general solution to that problem is
[c“(u). €y (@) - s cPl(u)] = u,(w p;(u) (15)

where ul(w) denotes an arbitrary complex number of unit modulus and
pl(u) is the eigenvector of Z(w) corresponding to the eigenvalue xl(w)
described previously. Thus, the variance of dWl(u) is a maximum if

and only if
~/
dW  (w) = ul(u) dWl(u) 116)

Furthermore, that maximum variance is

=

le(u)T [d-z-l—(u)o s e 0y dz—p(w)]

ot 2 e r
s|aw,(u)| =E|awl(m)' =EfW] . X®

de(w)

d =

(17)

= B (w) Z(w) B, (0] do = B () X (0) B, (0) do = X, (w) dw
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Next, consider the problem of determining clz(u). cu(u). T cpz(w)

satisfying

cjz(u)lz %1 (18)

:

- A

such that the linear combination ﬁ c jz(m) dz j(m) - sz(u) is uncorrelated
j=1

with dWl(u) and has maximum variance, i.e., such that

E d'\‘v'z(uy dV-l-;(w) =0 (19)

and

Var (dwz(u)) ] zlai‘v’z(u)lz = maximum (20)
The general solution to the problem is

[CZI(“)O czz‘u)! CuOB0 () cpz(u)] ] “z(“) p'z(w) (zl)

where uz(u) denctes an arbitrary compley number of unit modulus and
'z““’ is the eigenvector of I(w) corresponding to the eigenvecior ).z(u)
described previously. Thue, the variance of dwz(..) is a maximum if

and only if
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dv'?z(u) = u,lw) AW, (w)
That maxirnum variance is
~ 2 2
Elsz(u)l : EI dWZ(u)I = 4, (0) du (23)

Similarly, the cn(u). cz3(u). Ol cp3(w) satisfying

c (u) =1 (24)

p
2,
=1

such that dw3(u) !# :js(u) de(u) is uncorrelated with dwl(u) and sz(u)
=z}
and has maximuin variance is

[cls(u). cm(u). 2 cp3(0)] = u3(w) P'3(w) (25)

the di}lu) possessing maximum variance is

4W3(u) = ay(w) AW (w) (26)




and that maximum variance is

Eldw3(u)|" z ks(u) dw (27)

Proceeding inductively in the manner illustruted above it is seen that

dwﬂl(u) = ur‘”(u) dwﬂl(u) (28)
is the solution to the following problem:

P
L d
- By -
Find the dWr“(u) = jz,‘l cj. r“(q..a) de(u) possessing maximum variance

2
=1 and dwr“(u) is un-

subject to the constraint that ﬁ | < r*i(")
= . i

correlated with d\'ll(u). sz(u). A h dWr(w). Furthermore, that

maximum variance is
elav li=rlaw  @|?=1r @ aw (29)
r+l y r+l r+l

From the foregoing discussion it is seen that the transformation (6)
of the [dzl\'-.-:‘. Ty dzp(u)] to the [dwl(u). ‘en dwp(u)] , L.e., the
teansfcrmation to principal components, is a transformation to uncorre-

lated random variables possessing the special variance properties de-

scribed above. In some studies the principal components with large

L




variance may be of special interest. When the principal components with
large variance "account for most of the variability, ' i. e., when the total
variancc of the other principal components is comparatively small, re-
stricting attention (in exploratory investigations) to tke principal com-
ponents with large variance may constitute an cffective way of reducing

the '"dimensionality' of a problem.

4. STATISTICAL ESTIMATION OF EIGENVALUES AND EIGENVECTORS
OF A SPECTRAL DENSITY MATRIX

Let s(u) denote a sample Hermitian nonnegative defi. ‘te spectral
density matrix constituting an estimator of the true spectral deneity
matrix Z{(w). The eigenvalues '):j(w). =1, ..., p) of s(w) in descend-
ing order are, respectively, estimators for the eigenvalues kj(u).
(j=1, ..., p), of Z{w). Similarly, the corresponding (normalized)
eigenve ‘ors 3.(‘»). {i=1 ..., @), of s(w) are, respectively, estimators
for the normalized eigenvectors p (w, (=1, ..., p), of Z(w). Under
suitable hypothelea (i.e., hypothelen that make E(u) a maximum likeli-
hood estimator for Z(w)), the X (w). p (W), (=1, ..., p), are, respectively,

maximum likelihood estimators for kJ(w), ﬁj(u). 5= Y oces

10




5. STATISTICAL DISTRIBUTION THEORY AND RELATED RESULTS
PERTAINING TO THE RANDOM EIGENVALUES OF A |
SAMPLE SPECTRAL DENSITY MATRIX |

To simplify notation the dependence on the frequency w will not be
indicated here. For example, S(u) will simply be denoted by :‘.‘:. the
frequency dependence being understood. That 1s, it is understood that
S is a spectral density estimator pertaining to a small frequency band
centered at frequency w.

The distributional theory and related results described here are

predicated on

(30)

™
]

3 |
>

where A is complex Wishart distributed with n degrees of freedom.
The complex Wishart distribution with parameters n, p, L will be denoted

by WC(I:; n, p). i

Thm. 1. If A hn the diltributmn w (I n, p) with n > p, then tl.~ random

eigenvalues Kl > l(z >...2 Kp > 0 of A have the joint probability density
£

function

K, K
) p(Kl. PURERE

(31)




where the ''constant” C(p, n) is given by

P -1
Cp.n) = O L (n-p+j)L(j) (32)
j=1

The probability density function (31) is defined over the domain
A A

K, > ;(\ >2...2K >0.
VoS O .kl A A ~
Since the eigenvalues Xj of T are related to the eigenvalues Kj

N
of A by 'ij z %Kj. (i=1, ..., p), one may regard (31) as giving the
probability density function of the ?j' =l ... ).

”~ ”~ ”~
Thm. 2. If Kl' KZ’ o Kp are random variables distributed with the
pProbability density function (31), then for any constants a, b such that

0_<_;5b

P A A A * z
rob ast. ""KZ’KI-(-b =C(p,n)| . . : (33)

m’ i 3"__ e

n
]

= o i

ngdd

g

vt




o LT L

Equation (33) gives a closed form expression for the probability

that all the eigenvalues of a random Hernntian mnatrix A distributed

Wc(l; n, p) with n > p will be between prescribed limits a and b.
Equivalently, one may regard (33) as giving the probability that all the
random eigenvalues of a sample spectral density matrix 2 will be be-
tween prescribed limits for the case when the true spectral density matrix
Z =1. Confidence band results pertaining to gcneral spectral density
matrices are derivable from Thm. 2, so that the condition that £ =1 is
not as restrictive as might appear at first glance.

Let A* denote a random :'ermitian matrix distributed Wc(l; n, p)
where n>p. Let chmin(A*) denole the minimum eigenvalue of A* and
chmw(A*) denote the maximum eigenvalue of A*, Let ¥ denote a gen-
eral nonsingular (p x p) spectral der sity matrix. From Thm. 2 for a

chosen 0 < e <1 one may obtain constants £* and u* such that

1 - e =Prob [!*5 chmin(A*). Chmnx(A*) < “"‘] (35)

The probability statement (35) is equivalent to

T
1 -.e¢=Prob|L* 5.—:‘—2 < u¥, for all nonzero complex (p x 1) vectors a

Now, there exists a nonsingular (p x p) matrix M such that

M M=% (37)

13
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A=M A*M

(39)
The Hermitian Positive definite matrix A is distributed WC(Z; n, p).
Upon -ub-tituting (38) in (36) and using (37) and (39) one obtaine E
_l
l -e=Prob 1*53 bs u* ., for all nonzero complex (p x 1) vectors b :
b'Zb

. (40)

i Using (30) one may state (40) in the form E
&
¥

-, h;'.I:‘
* ' o b
l -a=Probp 42 <m <= » for all nonzero complex (p x 1) vectors b
"TpEpT 0

(41)

From (41) one obtains the

limultgneou- confidence bgnd result:

1 e = Prgb -l.b" gb < ;l zb <_£ F' ’z\b ] limu.ltlneoully
o s i for all complex (p x 1) vectors b

o (e2)



The vectors b may be freely cunosen in (42) with all bounds on the result-

ing linear combinations of thc elements of £ holding simultaneously with
probability 1 - e. From simultaneous confidence bounds on suitably
chosen linear combinations of the elements of £ one may obtain, for
example, simultaneous confidence bounds on all the spectra, co-sp~ctra,
and quadrature-spectra of £. One may also view (42) as giving simultane-
ous confidence bands for values of an Hermitian quadratic form where

is the matrix of the quad-atic form. Equation (42) a'«o yields

n 'l n ~
1 -e=Prob o chmin(}.:) < kp. | )‘2' kl < 7% Chmax(z) (43)

where Chmin(s)ﬁd.nm“ the n’\\inimum eigenvalue of the sample spectral
density matrix £ and Chmax(z) denotes the maximum eigenvalue. Equa-
tion (43) is a confidence bound for all the eigenvalues of the true spectral
density matrix X.

From (35) one also obtains

*

sy

P ) fid 3 5:' z—l c < - g—l g simultanzously for all

|

2|5

(44)

The simultaneous confidence band statement (44) yields confidence bound
rzsults pertaining to E-l directly analogous to those for £ described above.
Viewing (44) as giving simultaneous confidence bands for values of an
Hermitian quadratic form where }3-1 is the matrix of the quadratic form

may be especially important. Such quadratic forms occur in guadratic

signal detection muthods.

complex (p x 1) vectors ¢

s i




In conclusion it is noted that both (42) and (44) are derived from (35)

and hold simultaneously, i.e.

-..2. B b <b' DA simultaneously for all
u* RES Zbgl*b b complex (p x 1) vectors b

2% = 2.1 e == = &l simultaneounly for all
'L cgc'E c< et €0 omplex (p x 1) vectors ¢
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