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ABSTRACT 

The present work has been concerned with the numerical evaluation 

of the exact analytical expressions obtained in Part I   for the scattering 

from radially inhorr. >geneous plasma spheres of different electron density 

profiles.    Several computer programs were developed for this purpose. 

These programs are capable of handling a wide range of values of the 

physical parameters, and are of potential value to many research programs 

concerned with the scattering of electromagnetic waves from plasma spheres. 

Numerical data were calculated for a number of representative cases 

characteristic of high-altitude plasma clouds.    Configurations of both 

radially increasing and decreasing electron density profiles were evaluated. 

The pla3ma spheres considered generally had radii of 100-200 m, with 

18    - 3 
electron densities of the order   10    m      .    Radar cross sections for 

these spheres were computed for the entire range of frequencies.    For 

purposes of greater physical understanding of the numerical results 

obtained,  analytical approximations to the exact expressions were developed 

for the Rayleigh region.    Finally, the existence of the anomalous back- 

scatter region in the cross section profile of overdense plasmas was 

confirmed. 

li 
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I.        INTRODUCTION 

The ultimate aim of our overall research program on the radar 

cross sections of inhomogeneous spherical plasma clouds is to provide 

a theoretical understanding of all aspects of the radar signatures of such 

clouds.    As a first step in this direction, our initial efforts have been 

devoted primarily to the question whether ground-based radar cross 

section measurements can be considered a practicable and useful 

diagnostic tool for determining the electron density profiles of plasma 

clouds.    We are thus in effect dealing with the so-called "inverse scat- 

tering problem", i.e. , with th.3 question whether the precise electron 

density distribution can be unambiguously inferred from the measured 

radar cross section profile as a function of frequency.    As is well-known, 

the inverse scattering problem is of formidable complexity.    Although 

some limited progress has been achieved for the case of scalar scattering, 

no significant progress whatever has been reported for the much more 

complex case of vector scattering with which we are concerned.    In fact, 

not even the problem of uniqueness, i.e., the question whether two 

plasma spheres of different radii and/or different electron distributions 

must necessarily give rise to different radar cross section profiles, 

has been resolved.to date. 

As indicated above, the inverse scattering problem for vector 

waves is not amenable to a direct approach.   Accordingly, in our present 

investigation we have chosen to follow an indirect approach,' i.e., instead 

1 
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of attempting to infer the electron distribution of a plasma from a given 

radar cross section profile, we have calculated the radar cross section 

profiles of several specified characteristic electron distributions, in the 

hope that some meaningful correlations may be observed between these 

two quantities. 

It is clear that, apart from possibly the very grossest of features, 

different characteristic electron distributions will reveal themselves pri- 

marily in the so-called "resonance region" of the radar spectrum.    Un- 

fortunately,  this circumstance complicates the analytical problem con- 

siderably, in that it precludes the use of various well-known approximate 

techniques and necessitates exact solutions of the scattering problem. 

Toward this end, we have obtained exact analytical solutions for the radar 

cross sections of various spherically symmetric plasma spheres.1    These 

include:   The homogeneous sphere; the "spherical shell",  consisting 

generally of a central core and an annular region of differing (complex) 

refractive indices; a plasma whose refractive index decreases according 

to the law   n = A/r; and a plasma whose refractive index increases 

according to   n = Ar     .    For all of these cases we were able to obtain 

analytical solutions for all the scattering quantities of interest.    These 

were reported in Part I of the present research effort.1 

The present report is concerned with the numerical evaluation of 

these analytical expressions.    This required the development of several 

very complex computer programs.    The fundamental reason for the com- 

plexity of these programs and the difficulties encountered in developing 

2 
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them is that the particular cases of the most interest to us, i.e., high- 

altitude plasma clouds, involve ranges of the relevant physical parameters 

which are particularly inconvenient from a mathematical point of view, 

particularly in the resonance range.    Nevertheless, we were successful 

in developing computer programs capable of handling all cases of interest. 

These were applied to the numerical calculation of radar cross sections 

for a number of typical test cases.    The particular representative cases 

computed to date were designed primarily for the purpose of testing the 

validity of the computer programs over a wide range of frequency rather 

than to provide a basis for a systematic analysis of the diagnostic value 

of radar cross section profiles.    Considerably more data, corresponding 

to much wider ranges of the physical parameters, must be obtained be- 

fore meaningful conclusions concerning the diagnostic possibilities of 

ground-based radar can be drawn. 

Section II of the present report is devoted to deriving approximations 

to the exact analytical expressions, which are valid in the Rayleigh region 

(ka « 1).   Although our primary interest lies in the resonance region, 

because of their analytical simplicity such approximations are useful for 

the physical interpretation of the exact cross section dats.    In Section III 

we describe the particular test cases for which exact numerical computa- 

tions of the cross sections were carried out, and discuss their physical 

significance.    The methods of numerical evaluation, together with some 

of their attendant difficulties, are discussed briefly in Section IV.    The 

actual numerical results obtained are contained in Section V.   Finally, 
3 



Section VI is devoted to such tentative conclusions as may be drawn from 

the preliminary data obtained so far, as well as indications of future work. 



II.       APPROXIMATE EXPRESSIONS 

Although we have obtained exact numerical results for all cases, it 

nevertheless remains of interest to consider approximate expressions in 

regions where such may be obtained.    Inasmuch as such approximate ex- 

pressions generally exhibit the explicit analytical dependence of the 

scattering quantities on the physical parameters, they are capable of 

yielding additional physical insight, and are thus useful for the physical 

interpretation of the exact numerical data. 

For our present purposes, our approach to obtaining such approximate 

expressions will consist of finding the suitable mathematical approximations 

to the exact analytical solutions obtained earlier in Part I.    (The alternate 

approach would be to find a suitable approximate method to solve the 

physical problem from the very beginning). 

The two regions where the exact mathematical expressions may be 

simplified are those where the value of   y = ka   is either very small or 

very large.    Of these two,  only the former,  corresponding to the so- 

called Rayleigh region, yields useful results for the cases of interest to 

us. 

Accordingly, we shall first consider the case when   y = ka «1 . 

In what follows, the notation will be the same as that of Part I.    For very 

small values of the argument, the leading terms of the relevant Bessel 

functions are well known and are given by 
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Jv(p)~~ 2 T(v+ 1) 
(1) 

H (1) 
Ul/2 (P.-^-Ä? 

*    -(Ul/2) 

2-(U1/2)n-* + l/2) 
(2) 

where   T(x)   denotes the gamma function.    From these, we easily obtain 

the following first-order expressions: 

j(l),  x     -i(2t- D! • 
G (P)=   li.n   '  P 
* 2(*    '(*- 1)! 

VP> 
(24, - 1)!! 

P 

(3) 

where   (24- 1)!! = (2-t - l)(2-t - 3)-• • 3. 1 . 

From these in turn we may calculate: 

***•**? 
W-- 

E*<»> = 7 

(4) 
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The following relationships, which may be obtained from the above results, 

will be found to be useful: 

IrV 

r^p) - -D    (p)   } (5) 

r^(p)= -E^(p) 

We shall now use the above approximations in order to simplify the 

expression for the radar cross section for the case of a spherical shell. 

(Interior radius   a,y = ka , interior refractive index   n ; outer radius 

b,x = kb , annular refractive index   n    . )   The scattering coefficients for 

this case are given by expressions (53) and (54) of the next section. 

To begin with, we note that in order to obtain a first order result 

for the cross section, we need to retain only the first-order coefficients 

e m B,    and      B1  .    Thus, the infinite series for the cross section reduces 

to a single term.    If we desired to improve the result by including the 

e m 
second-order coefficients     B     and      B    , we would for the sake of 

consistency also have to include higher-order terms in the Bessel functions 

e m 
entering into     B.   and      B.   (i.e., the approximations (1) - (5) would be 

inadequate for calculating     B.   and   mß    ). 

Thus,  restricting our attention to the first-order results, the various 

quantities entering into expressions (53) and (54) are found to be given by 
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r 1V"2J 

C,    (x) = — 
1 X 

*    £ n y "1    2 n x 

DlW.f  ,   DjW-i       Dl(n2x)=^   ,   Dl(„3y)=-2 

E
, (n,y) =    .    E, (n.x) =  1    2'       n2y r  2 n x 

r.<x) = -- 
I x 

(6) 

where we have assumed that   y   and   x   are sufficiently small such that 

all arguments occurring above are small in absolute magnitude. 

e 
Substituting these expressions into Eq.  (53) for     B.  , we obtain 

B. 
IX 

3 ft) 
(7) 

where 

3y      L  x    " n xJU,y     n yj       3x     [ x       noxJLn,y     n7VJ 

B v rn2, jj\\2J± _ vi. v_r^ _ j_ir!!2. fvi 
3y   U    n

?
xJLn,y   n

2yJ    3x  L«    n xj[n3y   n2yJ 
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We shall now consider the special case   x = 2y   (corresponding to the 

examples listed under Case II of Section III below).   After substituting 

x - 2/ , and simplifying, we finally obtain the following first-order ex- 

pression for     B.  : 

e„        16 .   ; 
Bi=Tly 

^-l)(2n2
2-4)-i(^-l)(4-4)] 

We now turn to the corresponding expression for       B.  ,  given by 

Eq.  (54).    It is easily seen that the first-order expression for      B1 

vanishes, inasmuch as 

[DJ(X) - n2Dl(n2x)]  = 0   ,    [r^D^y) - ^D^y)] = 0 

to first order.    Accordingly, in order to obtain the first non-vanishing 

term of      B.  , we must consider the next order term in our approximation 

for   D. .    This may be obtained from the second term in the power series 

expansion of the Bessel function,  and we find 

D.(p)~7-f (11) 
1 p     b 

Substituting this approximation into (54), we find after some computation 

3 
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where 

C = 
V2 [2   x      /_2_   V\|i   VLf  /L.   V\      /2_   V\li 
3y    [x      5      "Z^x"    5   /J y       3x    p^y "    5   / " "2^"    5   )J x 

D V     /3\/l\     V    /2 
3y      \x/\y/       3x      \x 3\n y        5   /        2\n y        5   / 

(13) 

(14) 

If we now again consider the case   x = 2y ,  and keep only consistent 

orders,  we finally obtain the following expression for the first non-vanishing 

term of      B,   : 

m. 
B, 

32 .   5 
45 *y I z    A ,   l ( z     2\1 (n„ - 1) + TT (n- - n, ■ V 2       J      32 V 2        3/J (15) 

We note that this is of higher order in   y   than the corresponding 

e 
expression for the first non-vanishing term of     B.  . 

We now turn briefly to the other extreme where   y = ka » 1 .    For 

the range of physical parameters of most practical interest, the arguments of 

the Bessel functions will generally be very large compared to their order. 

Although approximate asymptotic expressions for the Bessel functions are 

well known for this case, they do not lead to a useful approximation to the 

radar cross section.    The reason for this is that we must keep a very large 

10 
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number of terms in the infinite series for the cross section; accordingly, 

we do not obtain any single or easily surveyable analytic expression in 

this region, which might aid us in interpreting the data physically.    On 

the other hand, this region corresponds to the so-called region of geometrical 

optics, whose principles may be applied in this case.    Thus, for instance, 

we may recall the familiar result that the radar cross section of non- 

absorbing plasma spheres approaches the geometrical cross section for 

ka » 1 .    Accordingly, beyond the overall radius of the plasma sphere, 

the radar cross section in this region provides no information about the 

magnitude or spatial distribution of the electron density. 

11 
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III.      DESCRIPTION OF CASES CONSIDERED 

A.        GENERAL 

Exact numerical values for the radar cross section profiles 

of plasma spheres as a function of frequency have been computed for 

several typical test cases,  corresponding to the various refractive index 

functions for which analytical solutions were obtained in Part I of this 

work.    These include the following major configurations: 

1. Homogeneous sphere;    r = a, 

refractive index   n(r) = const. 

2. Spherical Shell; 

n(r) 

n    - const. ,    o<r<a 

n    = const. ,    a<r<b 

3. Decreasing Refractive Index; 

n(r) 

n    = const. ,    o<r<a 

fA/r ,    a<r<b 

4. Increasing Refractive Index; 

3 - const. ,    >,- f  a 
n(r)     ' 

' Br r   i. 

Wherever possible,  both real and complex values for   n(r)   were con- 

sidered.    (The latter corresponds to the presence of absorption.) 

In all cases,  the refractive index   n   is related to the physical 

parameters describing the plasma by means of the well-known expression 

12 
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e = 1 - 
nee (1 - ivc/u,) 

2 2 
me  (u)   + v     ) 

o c 
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(15) 

n = e 
1/2 

(16) 

Here   n     is the electron density,    e   is the electronic charge,    m   the 

electronic mass,    e     is the permittivity of the vacuum,    v     is the 
o ' c 

collision frequency,  and   io   is the angular frequency of the incident 

wave.    We should also note that Eq.  (15) employs MKS units through- 

out, and that the sign of the square root in Eq.  (16) should be taken 

such that   Im(n)>o.    Finally,  the electron density   n     is generally 

a function of position   r. 

It is convergent to rewrite Eqs.  (15) and (16) in terms of the 

dimensionless parameter   y = ka   (k = 2TT/X, where   \   is the wave- 

length of the incident wave).    Thus,  noting that   U) = kc,  Eq.  (15) can 

be rewritten in the form 

e -- 1 Y 6 Y 
(17) 

where we have introduced the dimensionless parameters 

"■ v a 
2 2 

n e a 
e 

me c 
o 

_        6 = J1 
2    ' c (18) 

13 
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Accordingly,  Eq.  (16) becomes 

1/2 
n=['-W^] U9) 

We note that for constant   a,    Y   is directly proportional to the electron 

density   n  .    Furthermore,  in the frequently occurring case when 
e 

>1,  we obtain the approximate proportionality 

e 

y(y+ift) 

n «    nr (20) 

Finally,   the total number of electrons contained within the plasma 

sphere is given by 

R 

N■ = 4rr   / n (r)r2dr 

where   R   is the outer radius of the plasma sphere. 

At this time we shouJd take note of the following important point. 

The quantity which enters directly into the original differential equa- 

tions is not the electron density   n  , but the refractive index   n.    As 
e 

we have seen in Part I, analytic solutions of these differential equa- 

tions can be obtained only for a few specific variations of  n(r)   as a 

function of   r.    These particular functions   n(r)   may or may not 

correspond to physically meaningful electron densities.    Whether or 

not they do depends both on the particular function, as well as on the 

relative magnitudes of the physical parameters involved.   (Thus, for 

14 
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certain functions   n(r)   and certain ranges of the physical parameters, 

the corresponding electron densities would be complex or frequency- 

dependent, neither of which represents a physically meaningful situa- 

tion).    This question must be investigated individually for each of the 

cases considered. 

In what follows, we list the relevant parameters for all of the 

cases for which radar cross sections have been computed to date.    We 

should like to emphasize that the calculations performed to date do 

not constitute a systematic or exhaustive study which spans the entire 

range of the physical parameters of interest.    They merely represent 

certain representative cases,  designed primarily to demonstrate the 

versatility of the numerical program.    The physical parameters chosen 

for these test cases involve sphere radii of the order of 100 - 200 m, 

18      3 
electron densities of the order of   10     /m   , and collision frequencies 

of the order of 10     /sec.    The frequency was varied over the entire 

range of interest. 

B.       CASE I - HOMOGENEOUS SPHERE 

Several sub-cases were considered.    These are described 

by the following parameters: 

Subcase (a) 

18      3 
n   =10    /m    ; a = 100 m , v    =0 

e c 

n   defined by    y= 3.54164 x10    ,  5 = 0     ) (22) 

N = 4.189 x 1024 

15 



Subcase (b) 

,„18,    3 1Ä/1 ,„10. 
n    = 10     /m    ;   a = 100 m,    v    = 10     /sec 

e c 

n defined by:    Y = 3. 54164 x 108,  6 = 3. 33564 x 103 

N = 4.189 x 10 
24 

)   (23) 

Subcase (c) 

17      3 
n    = 1.25 x 10     /m    ;   a = 200 m,  v    = 0 

e c 

n defined by:    Y = 4.42705 x 10    ,6 = 0 

N = 4.189 x 10 
24 

>   (24) 

The electron density profiles of the above three cases are shown 

in Figures I and 2. 

All three of the above cases represent plasma spheres with an 

equal total number of electrons,  Cases 1(a) and 1(b) are identical except 

for the fact that Case 1(b)   represents an absorbing sphere, while 1(a) 

is a non-absorbing sphere.    Similarly, Case 1(c) differs from 1(a) in 

that the same total number of electrons is spread out over a sphere of 

twice the radius. 

In addition, we also considered the special case: 

Subcase (d) 

a - 1.5 m . v = 2n,|i a 1.27236 x 10  /sec 

.10 
v    - 10    /sec (ka - 40) 

16 
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In this case the variable parameter is the electron density (and 

hence   y). 

C.       CASE II - SPHERICAL SHELL 

For all of the spherical shell cases considered, we have 

chosen 

(26) 

x      b 
- - — = 2 ; with   a = 100 m , b = 200 m 
y     a 

The various cases differ in their interiov and annular electron densi- 

ties, as well as generally in the total rumber of electrons.   If  n 
e3 

and   n       represent the interior and an lular electron densities,  re- 
e2 

spectively,   the total number of electrons is given by 

4     3, _ 
N = TiTa (n      + 7       ) 

3 e,        n 
3 e2 

In order to describe the subcases considered most compactly, we 

define a particular reference refractive index  n.   by means of: 

nx defined by     y   = 3. 54164 x 108,  6    = 3. 33564 x 103 (2?) 

This corresponds to the physical parameters of Case 1(b).    If   n     and 

n     denote the interior and annular refractive indices,  respectively, 

the various subcases considered are then as follows: 

17 
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Subcase (a) 

n. 
1 24 

n3 = Hj ; n   =-r-   ;    N = 7.45 x 10 (28) 

Subcase (b) 

n. 

n3 = T ''   n2 = nl :   N ~ 2'98 * 1()25 (29) 

Note that Case 11(b) differs from Case 11(a) in that the inter-or 

and annular refractive indices have been interchanged. 

Subcase (c) 

n    = 2.64575 nt ,  n    = 0.125988n    ;   N = 2. 98 x 1025 (30) 

Subcase (c) was designed to have the same total number of 

electrons as 11(b); however, all of the electrons which were in the 

interior region of 11(b) are in the annular region of 11(c), and vice 

versa. 

Subcase (d) 

n3 = 0.881917 nx , n2 = 0.3779645 nt ;   N=7.45xl024 (31) 

Case 11(d) bears the same physical relation to 11(a) as Case 11(c) 

bears to 11(b). 

Subcase (e) 

Let   it' be defined by:   Yl = 3. 54164 x 108 ,    6! = 0 

18 
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x-mtmim "m^mm^m^^^^mi^^M^^iemsi^^^SäSi^S^tPM I 

Subcase (e) is then defined by: 

n    = 0.5477226nJ,  n    = 0. 3l62278nJ;     N = 4. 189 x 1024 (33) 

This represents a spherical shell case which has the same total of 

electrons as Case 1(a).    In addition,  the interior electron density is 

three times the annular electron density.    Moreover,  there is no 

absorption,  so that this case is most directly comparable with Case 1(a), 

from which it differs only in the electron distribution. 

Subcase (f) 

n    = 0.2132007 nj ,  n    = 0.369274nl;   N = 4. 189 x 1024 (34) 

where   n'   is again given by (32).      This case is similar to Case 11(e), 

except that here the annular electron density is three times the interior 

density. 

The actual electron density profiles for Cases 11(a) - (b) are 

illustrated in Figures 3-8. 

D.        CASE III - DECREASING REFRACTIVE INDEX 

Here we consider the case where the refractive index is 

given by 

n       ,     0<r<a 

n(r) =     1 (35) 

-:—    ,     a<r<b kr 

19 



.-"<^*p  . '3i&fM>%"Vi30ti.i'esm>* 

i. e. ,  in effect a spherical shell whose interior region has a uniform 

refractive index, while the refractive index of the annular region de- 

creases. 

For the sake of continuity at r = a, we must take 

A = n3y , (y - ka) (36) 

To begin with,  we must investigate whether the above function cor- 

responds to a physically meaningful electron density.    We recall 

that   Y   is proportional to the electron density.    From Eq.  (19),   to- 

gether with (35) and (36),  we then obtain 

ft} 1 — (37) 
y(y+i6) K"} 

2 
On the other hand   n        itself is generally defined by 

2      , Y3 
n,    = 1  -    ,   ...   . (38) 

3 y(y+i5,) 

Substituting (38) into (37),  we obtain 

^ (l  -       ^       )   =1 -       Y (39) 
2  \        y(y+i6.)/ y(y+i6) {"' 

From (39) we can immediately see that we will not obtain a real value 

for   y(°r   n  ) f°r any relative magnitude of the physical parameters, 

unless   6, a 5 = o.    Thus,   Eq.  (35) corresponds to a real electron 

20 
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density only for the case of no absorption.    With this,  Eq.  (39) becomes 

4M)- (40) 

We are still faced wjith the problem that   Y   will in general depend on 

the frequency   (y = ka), which is again not physically meaningful for 

our problem.    However,  we note that if both 

'3 Y 
~r » 1   and    -^-» 1 
y y 

(41) 

i.e.,   the plasmas are effectively "overdense",   then Eq.  (40) reduces 

to the physically meaningful equation 

Y = 
V 

(42) 

which is equivalent to 

n    a 
e3 

n    = 
e (42') 

as long as both   y   and   y     were calculated with the same value of   a 

(Cf.  Eq.  (18)).    In the cases of interest to us, both   y   and   v     are 
g 

of the order of magnitude   10     while   y   ranges from   0 to 100. 

Accordingly,  the conditions (41) are well satisfied, and the results 

obtained correspond to a physically meaningful electron density. 

21 



_t—.,-^«*y.'i * - ■■»Wf.'s* 

As can be seen from Eq.  (42),   the electron density   n     in the 

_2 
annular region decreases as    r     ,  corresponding to the refractive 

index (35). 

Finally,  it is a simple matter to show that for this case the total 

number of electrons is given by 

N = |na3„      [l + 3(| - 1)] (43) 

As typical test cases for purposes of comparison,  we have calculated 

two subcases: 

Subcase (a) 

— = 2 ; a = 100m , b = 200m 
a 

n, defined by:   y, = 3.54164x10   ,  6, = 0 
3 3 3 

N = 1.68 x 10 
25 

> (44) 

Subcase (b) 

— = 20; a = 10m , b = 200m 
a 

n   defined by:   y   = 6.106276 x 10    ,  6    = 0 \       (45) 

N = 4.189 x 10 
24 

This subcase corresponds to the same total number of electrons as 

Case 1(a), and several of the subcases of Case II. 
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The actual electron density profiles of Cases 11(a),  (b) are shown 

in Figures 9-10. 

E.        CASE IV - INCREASING REFRACTIVE INDEX 

This case corresponds to a refractive index given by 

n3 »  0<r<a 
n(r) =   | (46) 

E(kr) , a<r<b 

Again we take   B = n   /y   for continuity.    Here we have a homogeneous 

central core, and an annular region in which the refractive index is 

increasing. 

As in the preceding case, we must investigate the question whether 

the above refractive index leads to a physically meaningful electron 

density.    The analysis is similar to that carried out for Case II.    With- 

out going into detail,  we find that we do indeed obtain a physically 

,  2 
meaningful density, provided that   6 = 6- = o   and   y   /y   »1.    Both of 

these conditions are fulfilled for all cases of interest to us.    The 

electron density in the annular region as a function of radius is given 

by 

2 
(47) 

»      i'i        I! 
n    = n      ( - ) 

e       e   \a/ 

where   n       is the electron density in the interior core.    Similarly, 
e3 

the total number of electrons is 
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The following subcases were computed: 

Subcases (a) 

(48) 

b/a = 2 ; a = 100m ,  b = 200m 

n    defined by:    y, = 3. 54164 x 10    ,6=0 

N = 8.22 x 10 
25 

> (49) 

This case corresponds to the interior density being the same as that 

of the homogeneous sphere 1(a). 

Subcase (b) 

b/a = 2 ; a = 100 m ,  b - 200 m 

n. defined by:   y   = 8.8541 x 10    ,  6. = 0 

N = 2.055 x 1025 

In this case the electron density at the outer edge   (r = b) is the 

same as that of the homogeneous sphere 1(a). 

(50) 
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Subcase (c) 

b/a = 20 ; a = 10m , b = 200m 

n3 defined by:    Y3 = 7.227836 x 10    ,   &3 = 0 )      (51) 

N= 1*64 xlO 
29 

Subcase (d) 

b/a = 20 ; a = 10m , b = 200 m 

n    defined by:    y    = 1.844604 x 10    ,6=0 

N= 4.189 x 10 
24 

>      (52) 

This case corresponds to the same total number of electrons as Case 1(a) 

and several other cases considered above. 

The actual electron density profiles corresponding to the above 

subcases of Case IV are illustrated in Figures 11 - 14. 

25 



««^«■waiwBSSSsw^ 

IV.      METHODS OF CALCULATION 

In Part I of the present work we developed exact analytical expres- 

e rn 
sions for the scattering coefficients      B.    and       B     for all of the cases de- 

c 
tailed in the preceding section.    Thus, the expressions for     B,    and 

B     for Case I are given by Eqs. I- 123 and 1-124.    (Equation I-x means 

Eq.  (x) of Part I).    The corresponding expressions for Cases III and IV 

are given by Eqs. 1-197,   198 and Eqs. 1-155,  156 (together with 1-206-211), 

respectively.    The spherical shells considered in Part I had an interior 

core whose refractive index was unity.    Thus,  expressions 1-172,  173 

for     B     and       b    , developed in Part I, are not sufficiently general for 

the examples of Case II considered here, for which the interior index 

differs from unity.    However,  Eqs. 1-172,   173 are easily generalized; 

the result is: 
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All of the cases listed in the preceding section were programmed 

for numerical evaluation on an IBM-7094 Computer.    Unfortunately, this 

turned out to be a far from trivial task; a number of fundamental and un- 

expectedly very time-consuming difficulties were encountered.    To begin with, 

the exact expressions are exceedingly cumbersome and involve the rather 

complicated Ricatti-Bessel functions.    Secondly,  the particular cases of 

interest to us,  corresponding to high-altitude plasma clouds, involve a 

range of the relevant physical parameters which is especially incon- 

venient to handle numerically.    Furthermore, the expressions become 

mathematically "pathological" in the resonance region, which is the 

region of the greatest significance for our purpose.    This latter fact is 

of course not accidental.    Inasmuch as the resonance region by virtue 

of its very nature involves large oscillations in the values of the cross 

section, it is only to be expected that in this region the mathematical 

functions do not behave "smoothly", but change rapidly even for small 

changes in the wavelength. 

It was originally contemplated that all of the four cases to be treated 

would be handled by a single program.    To begin with, this required writing 

a new Bessel function subroutine more general than those existing in program 

libraries,  such as SHARE.    The wide range in the orders and arguments of 

the Bessel functions alone required that the Bessel function subroutine treat 

four distinct cases.    This necessitated some sort of uniform scaling, inas- 

much as for arguments with large imaginary parts the magnitude of the 

Bessel function exceeded the range of the computer registers.    Secondly, 
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the program, when written, was too large to be loaded into the machine 

memory.    Accordingly, it was decided to treat each of the four cases by 

a separate program. 

Cases I,  II,  III required only Bessel functions of half-integral order; 

these could be generated by means of simple recursion techniques.    Apart 

from minor difficulties,  Cases I and III presented no additional special 

problems. 

The case of the spherical shell (Case II) required further analysis, 

however.    For the particular range of parameters considered, the analytical 

e m 
expressions for     B     and       B     became indeterminate (0/0) to within the 

accuracy of the computer.    This problem arose whenever the index of re- 

fraction had a large imaginary part (Im (n y)>10, for example).    It was first 

thought that multiple precision arithmetic could be used to circumvent this 

difficulty, but a trial calculation showed that even this would be inadequate. 

The problem was finally overcome by expressing the Ricatti Bessel functions 

in terms of sines and cosines, which made it possible to analytically subtract 

the large parts in differences such as   ?.(z,)X    (z,) - *   (z-)X.(z,).    The re- 
■GlmZmZtl 

mainder could then be generated by appropriate recursion methods.    Even 

with this approach, the range of values of the functions generated approaches 

the limits of the capacity of the IBM-7094 Computer. 

Case IV likewise required special attention.    Here w; must evaluate 

Bessel functions of generally non-rational order, for very large complex 

values of the argument.   A general Bessel function routine, using an extra 

29 
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location in storage, was written to calculate these values.    This subroutine 

worked well, but required excessive computation time.   After considerable 

further modification, the computation time could be reduced to a reasonable 

level. 

After considerable effort, all of the aforementioned difficulties were 

finally surmounted, and successful programs were obtained for all four 

cases considered.    Wherever possible, the results obtained were checked 

either by laborious hand calculation or by comparison with known results. 

The successful development of computer programs capable of handling all 

four cases, at least for the range of physical, parameters hitherto considered, 

represents one of the primary accomplishments of this stage of our general 

research program. 
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V.       NUMERICAL RESULTS FOR CROSS SECTIONS 

Numerical results for the radar - (and in most cases extinction -) 

cross sections as a function of frequency have been obtained for all of the 

cases described in Section III.    The values of   y = ka   for which the cross 

sections were calculated ranged from   y = 0   to   y = 140,  although for 

reasons of simplicity the curves presented extend only up to values of   y 

at which the cross sections attain their asymptotic values.    The results 

obtained are presented in the present section.    Inasmuch as the particular 

cases considered represent only representative test cases characteristic 

of the range of physical parameters of the greatest interest,   rather than 

any effort toward a comprehensive analysis, we shall for the most part 

simply present the results without detailed discussion or interpretation. 

A.       CASE I 

The radar cross sections as a function of   y   for cases I-A 

and I-C are presented in Figures 15 and 16,   respectively.    These 

two cases represent homogeneous spheres containing the same 

number of electrons; however,  the sphere of Case I-C has twice 

the radius (and hence 1/8 of the electron density) of that of Case I-A. 

As can be seen from Figures 15 and 16, the normalized radar cross 

sections are for all practical purposes identical,  even in the resonance 

region.    Thus, for homogeneous spheres of the order of magnitude of 

radius and electron density considered here, the actual measured 

radar cross section is primarily indicative only of the radius of the 
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plasma sphere. 

In addition to the above cases, we also obtained numerical 

values for the normalized radar cross section for Case I-D.    This 

differs from the preceding cases in that we are dealing with a small 

sphere (radius = 1.5 m) and keeping   y = ka fixed while varying the 

electron density.    The particular case considered is identical to that 

calculated by Wyatt2.    The purpose for considering it here was to 

ascertain whether our program confirmed the anomalous behaviour 

found by Wyatt.    Indeed, the results obtained were identical to 

*hose reported by Wyatt.    For the particular values of the radii 

and electron densities of interest to us, however, this anomalous 

4 
region corresponds to values of   y   of the order of  y —10    , which 

are outside the range of our present considerations. 

B.        CASE II 

These cases correspond to spherical shells.    It is of particular 

interest to compare the results for Cases II-A and B, which are pre- 

sented in Figures 17 and 18,   respectively.    In Case II-B, the refractive 

indices of the interior and exterior portions of Case II-A have been 

interchanged.    We may observe that v. ..Me there do exist differences 

in the radar cross sections for these two cases, these differences are 

not very pronounced, and are in fact overshadowed by the similarities. 

The main difference is that the radar cross section of II-B is somewhat 

32 
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less than that of II-A (particularly for large   y ), which can be attributed 

to the increased absorption present in Case II-B. 

In order to try to understand why the results for these two cases 

should be so similar, despite the fact that the refractive indices (and 

hence the internal electron density distributions) of the two cases are 

quite different, it is useful to consider the approximations developed in 

Section II for the Rayleigh region   (y « 1) .   Accordingly, we shall 

e m 
calculate the approximate values of     B.   and      B,   for both Cases II-A 

Q 
and II-B.    To obtain     B,   for Case II-A, we thus substitute   n    = N , 

1 3 

n    = 3N   into Eq.  (10).    This yields: 

TT   »      e„        16.   3 (135N2 - 16) 
II-A:       B    = —xy   J L (56) 

(135N    + 32) 

Similarly, for Case II-B, we substitute   n    = 3N , n    = N   into Eq.  (10), 

which leads to 

TT o      e0        16 ,   3 (5N2 - 6) II-B:      B    = —ly   i—r *- (57) 
(5N    + 12) 

In our case    |N   | » 1   (particularly for small  y ); thus,  although the 

2 
analytical forms of (56) and (57) are different, for    |N   | 5«> 1   they lead 

to the same value of     B.   and hence for the cross section) for both Cases 

II-A and II-B.   Accordingly, the similarity in the cross sections for these 

two cases can be attributed to the fact that for the particular spheres we 

2 
are considering the values of  N     are very large.     The corresponding 
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Rayleigh expressions  for       B     for these two cases are found to be 

TT   A     m„ 32 .   5 /37    2      \ 

TT T,    
mv, 32 .  5 /3 ..2     A II-B:       B^.-xy   ^-N    - lj 

(58) 

(59) 

Although these expressions do differ,  even for    |N   | » 1 ,      B     is of 

higher order in   y   than     B1  .    Furthermore,  in the expression for the 

cross section this difference may be diminished by the corresponding 

e 
higher-order terms of     B    , which must be kept for consistency. 

If we further compare Case II-B with the homogeneous sphere Case I-A, 

we may observe that the resonance peaks and their locations coincide 

rather closely for both cases.    On the other hand, while the absolute 

radar cross section values of Case II-B are higher than those of I-A, 

the normalized cross sections are considerably smaller.    Again, this 

may be attributed to the absorption present in Case II-B. 

The results for Cases II-C,  D,  E,  F are presented in Figures 19- 

22,   respectively.    Without going into detail, we find that all of these 

cases are very similar, as far as the location,   separation, and magnitude 

of their resonance peaks is concerned.    We should note, however, that 

this similarity exists only if we consistently plot the cross section as a 

function of the dimensionless wavelength ratio corresponding to 
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the outer radius (x = kb in some cases,   y = ka in others).    While 

small differences are found to exist in the detailed radar cross section 

profiles (e.g. , between II-C and II-D),  these are not of sufficient 

significance to be of practical diagnostic value. 

C.       CASE in 

The results obtained for Cases III-A and B are presented in 

Figures 23 and 24,   respectively.    The cross section profiles of the 

2 
two cases differ by a factor of 10    , but are otherwise similar in 

2 
their behaviour.    It is clear that the factor 10    arises from the 

HI)-®' ratio/ —1     = {—I    , which differs by a factor of 10     for the two 

cases.    Comparison with Case I-A shows that the location of the 

resonance peaks is the same in both cases,  although their magnitude 

differs. 

D.       CASE IV 

The cross sections calculated for Cases IV-A, B,  C,  D   are 

presented in Figures 25 and 26.    Here we find the remarkable result 

that Cases A and B yield almost identical cross sections; the same 

is true of Cases C and D.   On the other hand, Cases (A, B) differ 

2 from (C, D) by a factor of 10    .    This difference is easily accounted 

for by the difference in the scale factor    I —J      =1 — Jz   (Q/^  aiso 

the discussion of Case III).    Thus, the cross section appears to be 

characteristic of the radius of the interior core rather than the outer 

radius of the plasma sphere.    The results for Case IV are of particular 
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interest inasmuch as they demonstrate that the inverse scattering 

problem does not in all cases have a unique solution (at least as 

far as backscatter cross sections are concerned).    Thus, for 

example, although Cases IV-C and IV-D are physically quite 

different,  they lead to identical radar cross section profiles as 

a function of frequency. 

36 
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VI.      CONCLUSIONS 

During this stage of our overall research program, devoted to the 

radar signatures of inhomogeneous plasma spheres, we accomplished the 

following: 

(a) Analytical approximations for the exact expressions derived 

in Part I were developed for the Rayleigh region.    These are of 

value in the physical interpretation of the exact cross section data. 

(b) Computer programs for the numerical evaluation of the exact 

analytical expressions obtained earlier were successfully developed 

for all cases of interest.    Considerable difficulties were encountered, 

because of the particular ranges of the physical parameters involved 

in the cases of most practical interest.    The development of these 

computer programs, capable of handling the entire range of the 

various parameters of interest,  represents a major portion of the 

effort during this stage of our research program. 

(c) The cross section profiles as a function of frequency were 

computed for a number of representative cases,  characteristic of 

high-altitude plasma spheres.    The calculations were performed for 

the entire frequency spectrum,   ranging from the Rayleigh region, 

through the resonance region, to the geometrical optics limit. 

The plasma spheres considered had radii of 100-200 m, the electron 

18    -3 
densities in most cases were of the order of 10    m    , and a number of 

different electron density distributions were considered.   A total of 15 
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different cases were computed; these are described in Section III. 

Both absorbing and non-absorbing plasma spheres were represented. 

The results obtained represent cross sectional data for plasma spheres 

of radii and electron density distributions,  for which no previous 

theoretical data have been available. 

(d)       The existence of the anomalous backscatter region in the cross 

section profile of overdense plasmas,   reported by Wyatt2,  was con- 

firmed. 

As a result of our efforts to date, we have succeeded in developing 

computer programs which enable us to calculate the radar cross sections 

of plasma spheres for a wide range of the relevant physical parameters. 

These computer programs are of potential value in a wide variety of re- 

search programs concerned with the radar signatures of plasma spheres. 

The actual examples for which numerical calculations were carried out 

have been chosen primarily as representative cases which demonstrate 

the accuracy and versatility of the computer programs developed.    The 

actual numerical data computed to date are as yet insufficient to warrant 

drawing any meaningful conclusions concerning the question of whether 

radar cross section measurements can be considered as a useful tool in 

diagnosing the electromagnetic structure of plasma spheres.    Such con- 

clusions must be deferred until a more systematic study, involving con- 

siderably more data and a greater variation of the relevant physical 

parameters, is completed.    The present study has provided us with the 
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calculational means by which such a comprehensive research program may be 

prosecuted.    Future work should be concerned with obtaining considerably 

more data; in particular,  as a function of the other parameters,  such as the 

plasma sphere radius (or ratio of outer to inner radii for shell configura- 

tions), electron density, collision frequency,  etc.    It is hoped that a sys- 

tematic study of such data will provide a more definite answer to the question 

of whether radar cross section measurements are of potential diagnostic 

value.    Further,  such questions as the diagnostic possibilities of bistatic 

radar, or the existence of scaling laws need to be investigated.    Finally, 

more detailed attention should be paid to other aspects of the general back- 

scatter problem,  such as the anomalous scattering region which was re- 

ported by Wyatt2 and confirmed by us. 
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