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FOREWORD i

This is the second of two volumes prepared by Stanford Research
Institute under subcontract to the Avco Corporation as part of the
Radiation Damage Study (RADS) Program, Contract AF04(694)-824, sponsored
by the Air Force Ballistic Systems Division. The two volumes contributed
by SRI are designated Volumes XII and XIII of the RADS Final Report.
Volume XI1 is classified and treats structural vcsponse of reentry ve-
hicles to pulse loads. This volume (XIIl) treats the response of bars, i
plates, and cylindrical shells, the basic clements found in reentry .

vehicles.

This program wes administered under the direction of the Air Force

Ballistic Systems Division, with Capt. John Rec as project officer.

Messrs. T. S, Trybul and John Koehler of Aerospace Corporation served

as principal technical monitors, j

rd

The complete RADS Final Report consists of the following volumes:

VOLUME TITLE i

1 Program Manasger's Summary i
I1 Survey of X-Ray Phenom=nology Prediction Techniques
111 Radiation Transport and Deposition
1V One-Dimensional Material Response: The XIP Code
\' Materials Data Handbook
vVl Vehicle Responase
Vi1 Vehicle Hardening
VIIX The OSCAR Code
IX Simulation Test Techniques
X Special Instrumentation Requirements
X1 Equation of State and One-Dimensional Characteristic
Code Studies
iii

o




VOLUMF,
XII

X111

X1v
Xv

XvI

TITLE

Special Problems in Structu

Dynamic Responsc of Beams,
Loads

Pre~Test Analysis of Chaff
UMBER Experiments

Nosetip Experiments

ral ﬁosponse of Reentry Vehicles

Piates, and Shells to Pulse

This technical report has been reviewed and approved for publica-

tion.

Approval Authority:

iv

J. R. Rec, Capt., BSYDV
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PREFACE

The purpose of this volume is to present in an easily assimilated
form the results of researcﬂ on dynamic structural response which has
been in progress at Stanford Research Institute since about 1959. Much
of this information is available in published papers and reports, but
some of these are not generally avajilahle and some contain a good deal
of overlap, Also, the individual papers lack the averall viewpoint that
can be developed only after many aspects of the problem have been ex-

amined.

Two areas of response are treated, dynamic plastic bending and
dynamic pulse buckling. These are preceded b§ a general discussion in
Chapter 1 of structural response from pulse loads and identification of
peak pressure and impulse as the most significant load parameters affect-
ing structural resﬁénse. In Chapter 2 the fundamental theory of dynamic
plastic bending is developed, using simply supported and clamped beams

as examples. Pulse loads treated range from ideal (zero time) impulses

to step loads with exponential, triangulsar, and rectangular time profiles.

In Chapter 3 this theory is extended to circular plates., Since many
problems are treated in Chapters 2 and 3, a certain amount of repetition
has been allowed to enable the reader to start anywhere without excessive
foraging. In Chapter 4 a development of the basic theory of dynamic
elastic and plastic pulse buckling is given, again using & simple bar as
an example to give the concepts in their simplest form. In Chapter 5

the analytical techniques are applied to cylindrical shells under lateral

pressure pulses.

el ket o e s rent vt
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SUMMARY

S.1 Introduction

In this summary section the status of existing analyses is
briefly given and areas for most fruitfu) future development are
suggested., Buckling theories are discussed first because they bear
more directly on the design of the external shell of operational
structures, This is followed by a summary of theories for dynamic
plastic bending of auxilliary beam and plate structures which are used
in aft covers, stiffening, and in internal components. 1In the main

text the order is reversed because bending theories are more familiar.
5.2 Pulse Buckling

S.2.1 Experimental Evidence of Buckling i
H

One of the first modes of structural damage répeatedly
abserved to occur in structures under explosively induced load§ is
dynamic buckling. It is observad in simple metal shells and ih the
metal subshells ¢f composite shells with a brittle outer layer (such as
Micarta). Alsc, when the total thickness of the composite is small,
both shells buckle as a unit and the brittle outer shell cracks into
longitudinal strips of widths corresponding to the half—waveléngth of
the buckle pattern., In the HARTS* program, it was found that:pulse
buckling is a significant damage mode cver the entire range o& external
pressure pulses from ideal (zero time) impulses to long durataon blast
lcads. ;

i

5.2,2 Scope of Buckling Theories '

These observations led to a basic investigation of
pulse buckling, and three basic types of buckling have been identified:

elastic, plastic flow, and visco-plastic. Elastic buckling occurs in

*
Hardening Technology Studies, sponsored by the Air Force Ballistic
Systems Division, Ref. 9, Ch. 5.

 odmidad . o
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very long or thin structures in which the duration oi compressive mem-
brane stresses can be sufficiently long to allow significant buckling
during elastic wotion. 1In thicker structures the duration of{ possible
elastic motion, before wave reflections or membrane stress reversal

occurs, is so small compared to the buckling time that significant buck-

R S

ling motion occurs only if the stresses are large enough to induce mem-
brane plastic flow. This is called plastic-flow buckling and the
flexural stiffness is governed by the strain hardening modulus. In many
engineering metals this modulus is about 1/100 the elastic modulus so

resjistance to buckling is greatly reduced. In some materials (e.g.,

I A

mild steel) the strazin hardening modulus is so small that the resistance
to buckling must come from the increase in stress with strain rate. This

is called visco-plastic buckling.

Theories of elastic and plastic-flow buckling have been
worked out for bars, plates, rings, and cylindrical shells, and a visco-
plastic theory has been worked out for rings and cylindrical shells,

The scope of these theories and supporting experiments is summarized in
Table S.1. The first three columns give the structures and loading con~-
ditions investigated, and the fourth and fifth columns indicate the
available theoretical and experimental results. Equation numbers of
buckling formulas derived in the present volume are given in the next
column; if no number is given, the references, in the last column, must
be consulted.

S.2.3 Sensitivity of Solutions to Structural Imperfections
and Material Properties

The basic observation of both the experiments and the
theory is that pulse buckling consists of rapid exponential growth of
imperfections in structural shape, leading to large flexural deformations,
permanent strains, and cracking. A convenient and useful theoretical
buckling threshold is the load necessary to amplify the imperfections by,
say, 1000, Where comparisons are available, this value gives theoretical
loads which are within 30% of experimentally determined loads to produce

first measurable permanent buckling deformation in aluminum shells.

st VAR s w s
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Calculated buckling threshold loads arc¢ velatively
insensitive to changes in the magnitude of this amplification criterion.
For example, increasing the amplification from 100 to 1000 f{or a cylindri-
cal shell under radial impulse requires an increase in impulse of only
15%. Errors in estimating the magnitude of imperfections in shell shape
are reflected in changes in the amplification to produce cbservable
threshold buckling. Thus, in the above example, a decrease in imperfection
amplitude by a factor of 10 would result in only a 15% increase in impulse.
This indicates that, although little is known about the megnitude of im-
perfections, better specification will have a small effect on theoretical

buckling loads.

The effect of material properties on buckling thresholds
can be illustrated by the same exampie. The radial impulse I to pro-

duce threshold buckling in a simple metal shell is given by

(s 1/4 172 a(2)3/2
- (K P9 a

where

K = average slope beyond yield of ¢/{(dg/de) vs. ¢
¢ = compressive hoop stress, ¢ = strain

p = density
cy = yield stress

a = radius

h = wall thickness

Since impulse increases as the square root of the yield stress, a 20%
error in this material property gives an error in impulse of only 10%.
Impulse is even 1eés sensitive to changes in the strain-hardening

parameter K. An increase in K of approximately 40% is regquired to

give a 10% increase in impulse.
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s.3 Bending of Beams and Plates

The principal beam and plate problems of interest that are

solvable by elementary analytical methods are presented in Table S.2.

‘he first four columns describe the problems which have been investi-
gated, Blest loading refers to pulses having an instantaneous rise to

a peak pressure followed by a decay to zero pressure in a rectangular,
triangular, or exponential shape; pulse durations are arbitrary. In

some of the problems the available solutions are limited to the rectangu-
lar pulse, and others are limit<d still further to ideal {zero time)

impulses. These are so noted.

Column five (analyses) refers to the types of analyses which
have either provided solutions or will readily lead to solutions. These
are classified according to the idealized material properties used:
linear-elastic (E), rigid-plastic (RP), and visco—-plastic (VP). Linear-
elastic theory is suitable for obtaining threshold lcads to reach yield
stresses in ductile materials or to reach fracture stresses :n brittle
materials, Rigid=plastic theory is suitable where the plastic work done
during deformation considerably exceeds the elastic strain energy capa-
city. Visco-plastic theory is necessary for strain-rate sensitive
materials, 1In the present report we utilize only the rigid-plastic
theory, in its simplest form, i.e., neglecting elastic strain energy and
vibrations, strair. hardening, strain-rate sensitivity, and geometry
changes, For impulsive loading these assumptions mean that the kinetic
energy input is equal to the plastic work done. Comparable problems

solved by the other theories are given in the references.

For impulsive loading, formulas giving the permanent central
deflection Grp predicted by the simple rigid-plastic theory ere listed
and compared with corresponding experimental deilectionus 6ex in the
column labeled éex/érp' A similar comparison is not possible for blast

loads because of the lack of data.

The next column indicates the range of applicability of the rigid-
plastic theory. A lower limit is set by the ratio R of the kineticg

energy input to strain energy capacity. For plates, an upper limit is

{stam—
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given by the deflection-to-radius ratio ¢ p/a at which membrane forces
T

become significant.
-

Advantages of the simple rigid-plastic ttzory are that

; 1. Analyses and results are often simple.
' 2. Agreement with experimental results are zdeguate ior
many engineering applications (see § /6‘ values in
Table $.2). ex rp
3. Simple approximate extensions to include properties

such as strain hg}dening is sometimes pocsible.
S.4 Future Work

Future development of the analytical approach to the response
of veentry vehicle-type structures should consist of extending and im-
pifoving the theories for damage mechanisms already examined, and devising

new analytical models to explain other observed damage mechaanisms.

Extension and improvement of existing theories should include:

1. A theory for laminar buckling of a metal subshell in
the presence of a constraining (but not buckling) heat
. shield;
2, Buckling theories for more complex structures, for

> example foam and honeycomb sandwich shells and rib-
stiffened shelis;

- 3. dore extensive experiments to compare predicted and
. observed damage thresholds;
? 4, Experiments and extended theories to compare respouse
; from symmetric {(nose-on) and asymmetric (side-cn) loads;
; and
5. Comparison of elastic bending theories to experimentally

observed thresholds of permanent deformation and cracking.
New damage mechani sms which at present have no analytical ex-—

planation include:

P NPT

5 1. Circumferential cdelaminaticn of tape-wound heat shields
H voth at hard points and throughout the span between end
i sypports,;

§ 2. Longitudinal heat shield cracking under the peak of a

side-on impulsive loas:

3. Resporse of structures to thermal loads; and
4, Response nf heated stiuctures to impulsive loads,
. ) 7
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VOL. XIII DYNAMIC RESPONSE OF BEAMS, PLATES, AND SHELLS TO PULSE LOADS

CHAPTER 1

AMPLITUDE-IMPULSE CHARACTERIZATION OF CRITICAL
PULSE LOADS IN STRUCTURAL DYNAMICS

by

G. R. Abrahamson and H. E. Lindberg

1.1 Introduction

The determination of critical loads is a central problem in

structural dynamics. The method of characterizing critical loads is

~important because it can simplify or complicate analysis, and can

facilitate or hinder the interpretation of theoretical results and com-
parison with experiments. The amplitude-impulse characterization of
critical pulse loads is particularly significant because it is simple
and useful and applies to all structures, including complex structfures
such as reentry vehicles. We begin with a discussion of critical pulse
loads for a linear oscillator to demonstrate the ideas involved and then
show that critical pulse loads for complex structures can be character-
ized in the same way., To facilitate the discussion, we henceforth refer
to the amplitude~impulse (P,I) characterization as the 1 characteriza-

tion.

1.2 m Characterization for a Linear Oscillator

The displacement of a linear oscillator having natur=l {requency
* .

w 1is given in conventional notation by

;X
Xx = (x, + A) cos gt + \—i+B) sin wt (1.1)
i w

q

*
References eare given at the end of each chapter.




where the subscript i denotes initiasl values and A and B are the

P
&f p(t’) sin wt’at’

(1.2)

f p(t’) cos wt’dt’

i p(t’) being of unit amplitude, P the force amplitude per unit mass,

integrals

>
i
]

|

elv

and t time. To simplify the equations, we rewrite (1.1) as

x = 25 f _ (1.3)
W
where
mz ) xi
3 f = = |(x, +A) cos wt + (—— + B)sin wt ] (1.4)
P i w J

For a static load the displacement is given by

p
(1.5}

]
]
€mlo

where Po is the static load (per unit mass). Taking the maximum of

{(1.3) and dividing by (1.5) yields

P
= 3; fmax (1.6)

o*1s*

To characterize critical loads in terms of amplitude and impulse

we put xm/xo = 1 in (1.6) and obtain

P _
F; = fmax (1.7)

for the ratio of dynamic and static loads which produce the same maximum

displacement. Impulse is given by the ares under the force=time curve

10
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and can be written

I = Pg (1.8)

where

Q= fp(t)dt (1.9)

T being the load duration. For an ideal impulse (i.e., delivered in

zero time), the maximum displacement is given by
I = ux (1.10)

Identifying X with Xy of (1.5) yields

P
1 = -2 (1.11)
o w
and from (1.11) and (1.8) we obtain
1 P
= o wa (1.12)

]
o

Equations (1.7) and (1,12) give the amplitude-impulse combinations which

produce the same me .imum displacement of a linear oscillator.

A plot of P/Po and I/I0 from (1.7) and (1.12) is given in
Fig. 1.1 for loads with a step rise and linear decay. Since this is a
log~log plot, along lines of unit slope load duration is constant, and
here is given in terms of the period 1. For loads of short duration
(t2/7 2'2/3ﬂ = 0.21), the curve approaches the vertical asymptote I/Io= 1.
In this region the response is insensitive to load amplitude and depends
mainly on impulse, For loads of long duration (tz/T > Bﬁq = 1.9), the
curve approaches the horizontal asymptote P/P0 = 0.5. 1In this region
the response is insensitive to impulse and depends meinly on amplitude.
In the intermediate region, the response depends on both amplitude and

impulse.

11
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1.3 Comparison of the 11

Characterization with Response

Spectrum”

For a linear oscillat

or, the 1 characterization is related to

the response spectrum. The latter is defined as the maximum response

of a linear oscillator to a given load, stated as a [unction of oscil-

lator frequency,

R
Io

GA-5733-34

FIG. 1.1 = DIAGRAM FOR A LINEAR

OSCILLATOR FOR LOADS
WITH A STEP RISE AND
LINEAR DECAY

short duration correspond to

For a single degree=-o
between the 11 characterizat
mm characterization prominent
response spectrum does not.
the two concepts represent ba
response, The response spect

pulse--nothing need be said o

*
Also called shock spectrum,
factor, etc,

To obtain the response spectrum R,

we put P/Po =1 in (1.6) and get
=1 (1.13)

Hence, as can be seen from (1.7), R

and P/Po are reciprocals. A plot of
R from (1.13) is given in Fig. 1.2 for
loads with a step rise and linear decay.
For long durations or high frequencies,
R approaches 2, as is well known, For
short durations or low frequencies, R
approaches zero; hence, direct represen-
tation of impulsive loads is lost at the
origin., In contrast, as shown in Fig.1.1,
for the m characterization, loads of

I/Io = 1, which is useful information,

f-freedom system, the essential difference
ion and the response spectrum is that the

ly displays impulsive response while the

For multi-degree-of-freedom systems, however,
sically different approaches to dynamic

rum is fundamentally a description of the

f the structure The 1 characterization

amplification spectrum, dynamic load

12
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is undamentally a description ol
N the strength (or susceptibility)

of a given structurc {or pulse

R i h loads.
A
\& The response spectrum is used
as an analytical tool to build up
00 i 2 3 3 5 the response of a complex (lineav)
;g=§§g structure by superposition of the

e response of its normal modesz., A
FiG. 1.2 RESPONSE SPECTRUM FOR LOADS
WITH A STEP RISE AND
LINEAR DECAY

key in this process is the super-
position scheme. This usually
involves some subjective decision

on which modes to add algebraically and which to add arithmetically.

The w diagram is used as a sysiematic means for gathering and

displaying theoretical and experimencal response information, separating
loads that cause damage from loads that do not. Since =superposition is
not required, the approach is valid for any type of response, including
plastic deformations and buckling. Therein lies the advantage of the
n diagram; these problems are beyond the scope of conventional shock
and vibration theories, Further useful features of the 11 diagram

are given later, after comnsideration of the effects of pulse shape and

rise time for single-degree-of-freedom systems.

1.4 Effects of Pulse Shape and RNise Time

1.4.1 Effects of Pulse Shape

1w diagram for a linear oscil-

The

Figure 1.3 gives the
lator under step-rise pulse loads with various types of decay,
ordinate is taken as half that of Fig. 1.1 to facilitate comparison
below with corresponding curves for the rigid-plastic model. Except for
the scale change, the curve for the triangular loads is the same as that

of Fig. 1.1.

The curve for rectangular loads is below that for
triangular loads and the curve for exponential loads is above it. The

relative positions of the curves are related to the duration required

13
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! R RE to impart a given impulse ior a given

- amplitude., This is the least for rec-

. tangular loads and the greatest for

RECTANGULAR LOAD [T1 - exponential loads,

TRIANGULAR LOAD N

The curves heve the same asymptotes
EXPONENTIAL

LOAD B and differ most in the knee region,

Along the line of unit slope in Fig. 1.3,

the values of P/IJo and I/Io for the

rectangular and exponential loads differ

L
I by about 40%, and for the triangular and

A 2720 %

exponential loads they differ by about
FIG. 1.3 COMPARISON OF LOADS

REQUIRED TO PRODUCE 20%.

THE SAME MAXIMUM . .
DISPLACEMENT OF A Figure 1.4 gives the 1w diagram
LINEAR OSCILLATOR. for a one-degree-of-freedom, rigid-

P_ is half the stotic load
required to produce the given
displacement and I is the in shape to those of Fig. 1,3, but are
ideal impulse required to
produce the given displacement.

plastic system. The curves are similar

shifted outward from the origin. The
relative positions of the curves for
the different pulse shapes are unchanged. As for the linear oscillator,
the curves have the same asymptotes and differ most in the knee region,
Along the line of unit slope the values of P/P° and I/Io for the
rectangular and exponential loads differ by about 30%, and for the
triangular and exponential loads they differ by about 20%.

1.4.2 Effects of Rise Time

The effects of rise time on critical load curves for
a linear oscillator can be illustrated using a load with a linear rise
and linear decay. The critical load curves for such loads are given
in Fig. 1.5. The heavy curve tr/'r =0 1s for loads with a step rise

and is the same as that of Fig. 1.1. The curve tr = td is for loads

with a linear rise and step decay, Siuce tr S td' the curves for

tr/q— = constant terminate at tr =t Curves for tr/'r = 0,1 to 0.5

d
extend below the step-rise curve, indicating a resonance effect. Curves
for tr/-r z 0.6 lie above the step~-rise curve, For tr/‘r =1, 2, 3, etc.,

the critical load curves lie on the horizontal line P'/Po = 1.

14
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I T 17 T7TTT7TTE Beyond the termination point of

- the critical load curve for tr/T =1

(on tr = td), the numbers along the

RECTANGULAR LOAC [l — curve tr = td indicate the termina-

TRIANGULAR 1L.OAD I~ tion points of the corresponding

EXPONENTIAL

LOAD critical load curves. The correspond-

ing critical load curves are similar

in shape to those shown for tr/T =

1 2 5 10 1.2 ana 1.4.
L
Io ox am oa The curves of Fig. 1.5 for tr/T
up to €.5 are within about 20% of the
FIG. 1.4 COMPARISON OF LOADS . P

REQUIRED TO PRODUCE step-rise curve t /1 = 0. If such
THE SAME MAXIMUM an error is acceptable, the curves
DEFORMATION OF A ,_
ONE-DEGREE-OF-FREEDOM for O < tr/T < 0.5 can be represented
RIGID PLASTIC SYSTEM. by the step-rise curve, If instead a

P_ is the static yield load and

n
L, is the ideal impulse required

to produce the given displaceinent. error would be only 10%.

central reference curve is used, the

1.5 Application of the 1 Characterization to Complex Structures

The recal value of the 1 characterization of critical pulse
loads is in its utility for complex structures. As a starting point
for the discussion, we consider a structure with a load of a given space-
time variation, for example a reentry vehicle with a load of cosine

distribution on one side having a sharp rise and a linear decay.

For a given structure and type of load, we undertake a series

of imaginary tests to determine the loads at which the structure fails.,

We first do a series of tests using long duration loads of increasing
amplitude to determine the critical amplitude Po at which failure
occurs. This is indicated by the vertical column of points in Fig. 1.6.
Next we do a series of tests using short duration loads of increasing
impulse to determine the critical impulse Io at which failure occurs.
This is indicated by the horizontal row of points. For the given load
distribution, Po and I0 completely specify the critical loads of long

and short duration.

15
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Gb-3733-67

FIG. .5 » DIAGRAM FOR A LINEAR OSCILLATOR
SHOWING EFFECTS OF RISE TIME

For loads of intermediate duration we consider a series of tests
for constant load duration, corresponding, for example, to the line tl
in Fig. 1.6. Since the load acts for a shorter time, we would expect
the failure amplitudg to be greater than Po, as indicated, If the load
duration is further reduced, say corresponding to the line t2, we would
expect that a further increase in amplitude would be required to produce
failure. If the process of decreasing load duration were continued until
the duration became short compared to response time, all combinations of
amplitude and impulse which just produce failure would be established,

For the particular structure and load space~time variation, the locus of

such points completely describes the critical loads.

16
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It is not necessary that the
i - failure mode remzin the same
i throughout the critical curve. In
g \ general, the fuilurc mode will be
’ \ different for different load dura-

) £
\ tions. Thus, ac skown in Fig. 3.7,

\ the critical load curve obtained

log AMPLITUDE
/

"')
N\ ///‘ from the series ot tests envisaged

N\

Y t

O //- above would really be the envelope

)52: ~ of the critical lcad curves for all
S t

A S =~ the significant modes.
’ In principle, a dirferent

I critical load curve is required
(o}

ou

ioq IMPULSE . for each space~time load variation,
A~-S5733- 114

However, experfence* shows that for

FIG. 1.6 EXPERIMENTAL DETERMINATION
OF CRITICAL LOAD CURVE

FOR A COMPLEX STRUCTYRE distribution (such as a cosine load

a wide range of loads of smooth

over one side of a cylindrical shell)
and with a decay similar to a linear or exponential decay, a single criti-

cal load curve is adegquate for many applications.

A significant feature of the 1 characterization is that the
damage gradient across the critical load curves is sieep. For example,
for cylindrical shells the maximum no-damage curve and the minimum
severe-dzmage cque are always within a factor of two and often much less.
This means that, for many applications, crude failure criteria are ade-

quate. This is discussed more fully in Chapter S of Volume XII,

To build up critical load curves for a complex structure, we
consider the possible failure modes and attempt to generate the corres-

ponding critical load curves. Structural failure modes usually involve

*
See Fig. 5.13, Chapter 5, this volume.

e re— 0




structural elementis such as heams, plates, and shells. Critical load

curves for these e¢lements are given in the following chapters of this

1}
report.
w
o
o}
}.
]
a
=
- 4
g
&
tog (MPULSE o
GA-5733-i15 .
FiG. 1.7 = DIAGRAM SHOWING CRITICAL
LOAD CURVE FOR A COMPLEX
STRUCTURE AS THE ENVELOPE
CF CRITICAL LOAD CURVES
FOR SEYERAL MODES
- »
//
P
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CHAPTER 2
RIGID-PLASTIC BEAMS

by

A, L. Florerce

2.1 Introduction

The response of a beam to a suddenly applied load which is large
enough to cause plastic deformation is not easy to find even when the
deflections are small enough to allow .ffects of geometry change to be
neglected. This is primarily due to the nonlinearity of the stress-
strain relationship., Further nonlinearity is introduced if the stress-
strain relationship is sensitive to the rate of loading, but we shall

not be concerned here with such a property.

To achieve some simplification, Lee and Symonds1 introduced an

idea to the dynamics of heams which has long been in use for finding

.collapse loads and mechanisms under static loading.z They idealized the

properties of appropriate materials (e.g., aluminum alloys and steels)

by neglecting elastic deformation and strain hardening; the resulting
idealized material is called & rigid-perfectly plastic material (or, for
brevity, vigid~plastic). Thus a beam under dynagic loading will remain
rigid until the critical bending moment is reached at a sufficient num-
ber of sections where ''plastic hinges' appear so that the beam moves as
a mechanism, Depending on the problem, these plastic hinges either move
along a beam with the critical moment or they are stationary as in static
collapse. The above idealization of the material properties and the
plastic hinge concept are described in Section 2.2, and the application

to static collapse problems is outlined in Section 2,3,

Section 2.4 is devoted to a developrent of the dynamical theory
of rigid-plastic beams. The treatment is similar to that given by Lee

and qymonds,1 but, to be closexr to the objective of this report, the

21
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example of a clamped beam subjected to a uniformly distributed blast

pulse is used to develop the theory.

Section 2.5 points out the similarity between the responses of
simply supported and clamped beams. By using the results of Section 2.4
for general blast pulses, relationships among permanent central deflection,
peak pressure, anrd impulse (area under pressure-time curve) are found in
Sections 2,6 through 2,9 for exponential, triangular, and rectangular

pulses.3

In Section 2,10 a theorem is proved concerning the effect of
pulse shape on the deflection of a specified class of rigid-plastic
structures, It states that among all pulses of equal peak pressure and
impulse the rectangular pulse produces the maximum displacement, Al-
though clamped and pinned beams subjected to uniformly distributed blast
pulses do not fall into the specified class of structures when the peak
pressures exceed three times the static collapse pressure, the theorem '3

is extended to include these cases,

Section 2.11 discusses the "pressure-impulse’ diagram and its
usefulness in presenting the relationship between deflection, peak

pressure, and impulse.

Finally, Section 2,12 presents the description and results of
experiments on pinned and clamped beams subjected to uniformly distri-
buted ideal impulses.4 The final deformations are in close enough agree-
ment with theoretical predictions to support use of the rigid-nlastic

theory for engineering applications,

Because of the lack of space, many important problems are not
discussed such as those involving cantilevers and beams with axial con-

straints, but treatments can be found in Refs. 5 through 9,

2.2 Bendiqgrof Beams--Plastic Hinge

We are concerned here with beams subjected to transverse loading

and with support constraints which give rise to a resistive bending

22
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momnent and a shear force at each cross section (but nc axial force).
Specifically, we wish to find the distribution of normal stress over a
beum cross section giving the resultant bending moment and then to use
this distribution to find the moment-curvature relation for different
basic types of material behavior. For simplicity of exposition, a beam

of rectangular cross section is chosen,

Figure 2.1 shows a beam element of breadth b and depth h
located a distance x along the beam from the origin. In Fig. 2.1la the
element is in its original unstressed state. In Fig. 2.1b it is deformed
by stresses having M and Q as resultant moment and shear force (the
shear deformation is neglected); the neutral surface, denoted by NS ,
is given a radius of curvature R , and the end sections of the element,
assumed to remain plane, subtend an angle df . The fiber coordinate is

z measured from the neutral surface or neutral axis (NA in Fig. 2.1lc).

2:-h/2

ot i s F o e o

2:h/2
{a) {b) {c)

GA-5733-22

FIG. 21 BEAM ELEMENT, (a) Side view when unsiressed,
(b) Side view when stressed, (c¢) Cross section

Because of the bending action, the normal stresses acting on
the element are compressive above and tensile below the neutiral surface.
New fiber lengths are given by (R + z)d§ with that at the neutral sur-

face remaining unchanged as dx = RdA ., Thus at depth =z a fiber has

23
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the strain

¢ = LR + 2)d§ - RAG]/RAG = 2/R = nz (2.1)

where 4 3s the curvature of the neutral surface.

Denoting the normal stress by ¢ , the bending moment M is

found by integrating over the cross section:

. n/2
; M=b f zodz (2.2)
-h/2

I{ the stress is now given as a function of strain and the result ¢ = ¥z
from (2.1) is utilized, the integration of (2.2) provides the required

moment~curvature relationship.

For an clastic material obeying Hooke's law with Young's modulus

E, we have

C = Ee = Exz (2.3)
and hence (2.2) becomes

M= EIyx (2.4)

where I = bh3/12 is the second moment of area of the beam cross section.

The linear stress distribution is shown in Fig. 2.2a., At the

outermost fibers, 2z = + h/2, the maximum stress magnitudes %

When oy = O (the yield stress), the maximum elastic bending moment

Me is being sustained by the beam cross section. From formulas (2.3)

oceur,

and (2.4), Me and the corresponding curvature e are

2 —-—
M, = o bh"/6 and y_ = 20 /Eh (2.5)

The strese distribution is that of Fig. 2.2b,

24
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(a) (b) {c) (6}
GA-3$733-23

FIG. 2.2 DISTRIBUTIONS OF NORMAL STRESS ON BEAM
CROSS SECTION, (a) Elastic, (b) Elastic at yielding,
(¢) Elastic=plastic, (d} Fully plastic.

An elastic-perfectly plastic material has tue stress-strain
relationship of Fig. 2.3a, in which the material behaves elastically
until the yield stress S, at yield strain €e is reached. During
further straining the stress remains constant at Oo' For a beam of
this material, bending beyond the maximum elastic moment Me produces
the stress distribution of Fig. 2.2¢c. At the two sections 2z = x z the

e

strain in the fibers is the yield strain. In the central region, ~z2 <

z <z, the state is elastic with o = O‘o(z/ze); outside this region it

is plastic with a uniform normal stress S This stress distribution

T o }

c-o - 0‘0
1
i
'
|
%

o] € 0 €
(a) {b)

GA-5T733-24

FIG, 2.3 STRESS~STRAIN RELATIONSHIPS,
(a) Elasticeplostic, (b) Rigid=plastic,

25
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substituted into the integral (2.2) gives for the bending moment

2 2
M= gb(h/4-2/3) (2.6) i
[o] e '
!
!
In the central region, -ze <z < ze, formula (2.3) applies so that ze 2
is determined by z, = cb/Eu which, when substituted in (2.6), gives ;

the required moment-curvature relationship
2
M= o nZ/al1 - sw?s] W, (2.7 i

As the bending moment increases the curvature increases and the
coordinate z, decreases, tending toward the limiting values M = Mo’

g = , and z, = 0 where
M = bh2/4 (2.8)
o= % .

The stress distribution tends toward that of Fig. 2.2d. Mo is called
the fully plastic moment. Formula (2,8) allows (2.7) to be written in

the form -~
M= [1- /0Pl 2 (2.9)
o Ko " *e -

This moment-curvature relationship is shown in Fig, 2.4 for the case of

a 6061-T6 aluminum beam having a l-inch-square cross section. The stress-
strain curve was approximated by two straight lines representing an
elastic-perfectly plastic behavior with g, = 40,000 1b/in2 and E =

107 1b/1n>,

A rigid-perfectly plastic material has the stress-strain relation-
ship of Fig. 2.3b. Strain is possible only when the stress is the yield
stress O+ Figure 2.3b can be looked upon as the limiting case of the
elastic-plastic behavior of Fig. 2,.,3a by letting the elastic modulus E
tend to infinity. During this limiting process He from (2.5) tends
to zero and for y > e formula (2.9) shows that M tends to Mo, the %

fully plastic moment. Thus for rigid-perfectly plastic materials we are

26 »
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led to the nmoment-curvature relationship M = Mo(u > 0) as shown in

Fig. 2.4. A consequence of this relationship is that curvature of a
beam element is possible only when the bending moment there is the fully
plastic moment. Furthermore, the curvature can become unhbounded, pro-

viding & plastic hinge.

1 RIGID-PLASTIC
M/
10,000
8000
ELASTIC-PLASTIC

£ 6000
o
|
X 4000

2000

x,z0.008
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x—in’’ GA-8733-25

FIG. 24 MOMENT-CURVATURE RELATIONSHIPS FOR A BEAM
OF 6061~T6 ALUMINUM WITH 1" x 1" CROSS
SECTION (Elostic=plastic approximation uses
o, = 40,000 Ib/in.? ond E = 107 1b/in.%; rigid-plostic
opproximation uses o = 40,000 tb /in.?)

2.3 Collapse of Beams Under Static loading

This discussion on the collapse of beams under static loading
applies to beams of rigid-perfectly plastic material, the material of
prime interest throughout this chapter. For brevity, it will be called

a rigid-plastic material,

During gradual loading a rigid-plastic beam undergoes no de-~
flection until a collapse mechanism forms consisting of rigid links
between a sufficient number of hinges occurring both naturally (e.g.,
simple supports) and as plastic hinges each carrying the fully plastic
moment and allowing large rotations, The load at which the mechanism

appears is the static collapse load.
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If the static collapse load is exceeded, the problem becomes
dynamjcal with inertial forces coming into play. The static collapse
mechanism is then used to describe the motion until the dynamic loading
is ivrrge enough to cause violation of the yield condition, M = Mo’
whereupon other mechanisms must be deduced. For loads slightly in excess
of the statiec collapse load, it is reasonable to use the static collapse

mechanism, because the inertial forces are still small.

Many structural problems are complicated enough to regquire the
use of the theorems of limit ana1y5132 to establish static collapse loads
(or upper and lower bounds for these loads) and mechanisms. However, in
this chapter each of the beam problems involving blast loads has a cor-
responding static problem with a simple exact solution. The beams are
either clamped or simply supported with loatding uniformly distributed
over the entire length. In each of these symmetrical cases the static

collapse mechanism has a hinge at each support and a hinge at midspan.

Before proceeding to these problems, let us consider a more
general load distribution. Suppose we wish to find the dynamic response
of a clamped rigid-plastic beam subjected tc blast loading uniformly
distributed from one support to midspan. We can first obtain the collapse
pressure and mechanism for the corresponding static problem shown in
Fig. 2.5a. Only the hinge locations at the supports are immediately
obvious (from a qualitative knowledge of the elastic bending moment dis-
tribution for small enough values of the load p per unit length acting
on an elastic beam). The third hinge required to form a mechanism is

given the location x = x, as yet unknown. Each hinge supports a fully

plastic moment of magnitude Mo' For distributed loading the shear force

is continuous and for the present problem is
3pL/8 - px 0 £x sL/2

3pL/8 - pL/2 /2 sx <L
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FIG, 25 STATIC COLLAPSE PROBLEM.

(o) Cenfiguration, {b) Forces and moments,

Since dM/dx = Q, the moment M 1is also continuous. Thus to have a

maximum M = M0 at x = xh requires Q = 0 there. To have it other-
wise would violate the yield condition in the neighborhood of x = Xy
With the aid of Fig. 2.5b we are now able to write the equiy}h{}um
equations for each link of our mechanism, By taking moments abéut each

support, these equations are
ZMO = px:/z and 2M° = p(L/2 - xh)[L/Z + (L/2 + xh)/2]
which provide the hinge location and static collapse pressure
x, /L = (+/7 - 1)/4 p = 4M /x2
h o h
These results would allow us to start the dyvaiamic analysis by

adopting the mechanism for pressures a little in excess of the static

collapse pressure and taking into account the inertia forces,
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2.4 Dynamic Response of Clamped Beams to Blast foads

To presernt the method of finding the dyvnamic response of a rigid-
plastic beam to blast loading, we shall treat fully the case oi a clamped
beam subjected to blast loading unifarmly along its entire length (see
Fig. 2.6a). A blast load is taken here {o mean a pressure-time curve
with an instantaneocus rise to the peak pressure P foiiowed by a mono-
tonic decay as shown in Fig. 2.7. 1In later sections specific pressure-

i time curves are employed, including the rectangular pulse (constant

pressure applied for a short time).

pit)
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FIG. 26 CLAMPED BEAM IN MECHANISM 1
{p, <p, <3p.). (a) Configuration, (b) Dynamics
of half<beom, ?c) Beam element — notation
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2.4.1 Mechanism 1

The static collapse mechanism has a plastic hinge at

ecach support and at the beam center, Referring to Fig. 2.6b, which

shows one-half of the beam with its attend-

P | ant forees and moments, the sum of moments
o about the supports equated to zero gives
the static collapse pressure
p_ = am /L2 (2.10)
s o
o] Al

SA-3733-28 For peak pressures slightly in excess

FIG. 27 TYPICAL BLAST Loap ©°f ps the inertia forces are small, so
it is reasonable to use the static collapse
mechanism to describe the motion. We shall
call this mechanism 1., Let the velcecity of the beam center be V(t),

where t represents time. The angular velocity w of each half-bean is
then

w= V/L (2.11)
The equation of angular motion about the support is
3. 2
mL w/3 = pL™/2 - ZMO (2,12)

where m 1is the beam mass per unit length and the dot denotes differen-

tiation with respect to time.

From (2.12), (2.11), and (2.10) the acceleration of

the beam center is

vV =3(p - p.)/2m (2.13)
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With the beam initially at rest, integration of (2,.13) gives
vV = 3(I - pst)/2m (2.14)

where 1 1is the impulse per unit leagth that has been applied at time

t and is defined by

T
I(t) = fp('r)dT (2.15)
o
The time t2 at which motion ceases is found by setting
V =0 in (2.14) which, with 12 = I(tz) defined by (2.15), gives
12 = pst2 (2.16)

Interpreted geometricalily, the result (2.16) requires the shaded areas
in Fig. 2.8 to be equal. The angular mouwentum of & half-beam about a
support is mLaay’B = msz/B = (I - pst)L2/2, so the growth of the upper
area shows how the angular momentum increases and the growth of the lower
area shows how the angular momeni{um decreases until the beam comes to

rest. At the intersection p(t) = P the angular velocity is a maximum.

™
\\

0 1

t

A-B8733-2%

FIG. 28 GEOMETRICAL CONSTRUCTION
FOR DURATION OF MOTICN
{The two shaded areas are equal)

32




by

Khowing tie duration of motion t_, the final central deflection is cal-

culated from

t, , t, )
y(L,t2) = f vdt = o f 1dt - P to/2 (2.17)

[s] [

To obtain the range cf pressures for vhich mechanism 1
holds, it is necessary to establish the pressure at which the yield con-

ditior X\ = Mo i3 violated, This pressure will now be found,

With the notation of Fig. 2.6c, the equations of motion

of a bheam element are
p+ Q. - my =0 (2.18)
C-MmMm =C (2.19)

vhere subscripts x and t denote partial differentiation. The rotary
inerti~ of the beam element is neglected. Waeon Yer = GX/L, with V

from (2.13), is suiustituted in (2,i8), we find that
Qx/ps =3k - 1) €/2 - i (2.20)

in which the convenient dimensionless qualities & = x/L and X = p/pS
have been introduced. Expression (2.20) is linear iy £ and full lines
corresponding to the vaiues A =1, 2, and 3 are shown in Fig. 2.9a; s
dashed line for ) > 3 1is also shown (drawn for )\ = 5). From (2.19),
Qx = Mxx’ so (2.20) tells us that Mxx <0 for 1 < )\ < 3, which means
that the curvature of the bending moment diagram does not change sign as
M increeses from -M_ &t £ =0 to M at £ =1. Formula (2.20)
also tells us that Qx = Mxx =0 at €=1 when ) =3 and that

Qx = Mxx > 0 i the neighborhood of £

- [ = - < = =
x> 3, Mxx does change sign (Mxx/ps L<0 at € =0, Mxx/ps

[}

1 when ) > 3. Hence, when

(A = 3),2>0 at £ =1).
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FiG. 29 DIAGRAMS FOR Mx R Mx, AND M ASSOCIATED
WITH MECHANISM 1. (o) Q_ or M_, diagram, -
(b) Sheor force diagram (Q = M ), (¢} Bending

moment diagram,

By integrating (2.20) we obtain for the shear force the

expression
e/ L = (1= 9lx+3-300 - Delsa ~ (2.21)
fhear force curves are shown in Fig. Z.9b. Note thet Q = Mx 20 for
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< )% < 3 (equality at ¢ = 1) but in the neighborhood ol £ = 1,

it

1
Q

=1, so M> Mo in the neighborhood of 7 =1 for ) > 3. Thus the

Mx <0 for \ >3. Now M= Mo’ its maximum permissible value, at

yield condition is violated when the pressure is grzater chau three times
the static collapse pressure and mechanism 1 becomes invalid, For blast
pulses as described by Fig. 2.7, the maximum or peak pressure p, occurs

immediately, so that if P, < P < 3ps the entire deiformation takes place

by mechanism 1.

By integrating (2.21) we obtain for the bending moment

the expression
wM =1--8)212- 0 -1l (2.22)
7 £ - O g .

Moment curves are shown in Fig. 2.8c. Note how the yield conditiom is
violated for X\ > 3. If x =3 + §), where §)\ 1is small and positive,
and if € =1 - 6E, where §Z is likewise small and positive, the value
of 5 giving Q = 0 (excepting &€ = 0) is, from (2.21), 5F = 26A/3

(2 + $)\). Using this result in (2.22), the maximum moment is approxi-
mately M = Mo[l NGV S M

2.4,2 Mechanism 2

The manuner in which the yield moment is exceeded near
the beam center when pressures are over three times the static collapse
pressure suggests a new mechanism, 'mechanism 2," consisting of a central
part of variable length undergoing translatory motion connected at each
end by a moving hinge to a part which rotates as a rigid body about a
support (Fig. 2.10a). For the half-beam shown in Fig. 2.10b, it is
assumed that each section between the hinge at x = xh(t) and the center
is subjected to the fully plastic moment, but changes of curvature occur

only at the hinge.
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P, > 3ps). (a) Mechunism 2, (b} Motion
of half«beam, (c) Velocity distribution,
{d) Acceleration distribution.

The displacement is continuous and is expressible as

xh(t)
y(L,t) - f 8(x",t)ax’ 0sx s x,
y(x,t) = x (2.23)
y(Lpt) xh £x L

in whica 8§ 1s the slope or rotation of a beam element and for
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sufticiently small displacements 0 = dy/dx., As the plastic hinge travels
along the beam [rom xh(O) to L, each section it passes is rotated an

wdt while Xy moves a distance ihdt. The hinge

ljeaves behind it a deformed beam with a continuous slope ¢ and a cur-

infinitesimal angle

vature egual to w/kh.

Differentiation of (2.23) for the transverse velocity

of the beam gives

yt&x,t) = .Vt(xh.t) - (x - ®)w - e(:vch,t)xh 0 sx $%
(2.24)
N
yt(x,t) = yt(xh.t) =V x, <% <L
(2.25)

where x; and x; signify points just to the left and right of xh.
By definition of the mechanism, the slope at the moving hinge is zero,
that is, Q(xh,t) = 0. Hence (2.24) and (2.25) give the same velocity
at x; and x; , proving that the velocity is continuous across the

hinge at x = x_, and consequently it is continuous along the whole

beam, We thus have

yt(x,t) =y =~ (xh - xJw 0% <%
(2.26)
yt(x,t) =V X, =X <L

(2.27)

Differentiation of (2.26) and (2.27) for the accelera-

tion gives

ytt(x't) =V - (Xh - x)@ - ihw 0 sx < X,
(2.28)
y“’x,t)=\" x, $%x SL
(2.29)
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Hence at x = X the acceleration has a discontinuity of magnitude

khx. Examples of velocity and acceleration distributions are shown in

Figs. 2.10c and d.

One advantage of the theory of rigid-plastic beams is
that the motion of a mechanism is governed by the equations of elementary
rigid body dynamics. However, unlike mechanism 1, this mechanism has
links which vary in length and thus it is not obvious that assuming
fixed lengths at each instant is correct. The angular momentum about
the support of the rigid portion between x =0 and x = x (Fig. 2,10)

h
vlus the element between x = xh and x = xh + xhét at time t is

_ .3 :
H = mxhu/3 + mxhét Vxh

after neglecting powers of the increments higher than the first., Simi-

larly, at time t + &t the angular momentum is

- 3 :
H + BH = mx, (w + Bw)/3 + mxhét up c X

gl"i“g the momentum Change

But the velocity is continuous at x = L that is, uxy

H= mxzm/B holds whether the hinge is moving or stationary.

=V, so

Before writing the equations of motion for each portion
of the beam, we note that the shear force Q 1is zero at the traveling
ninge. Integration of (2.18) with respect to x shows that Q, and
hence, by (2.19), Mx’ is continuous along the beam. Thus for M = M

o

to be a maximum at x = X we have Mx =Q =0 at X = X

h h’
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P The equations of motion for the two portions of the
half-beam are (see Fig. 2.11)
: m o= P x <x <L (2.30)
‘ mx333/3 = pxo/2 - oM 0<x <x (2.31)
f h Py o - h :
: and continuity of velocity requires
H = 2.
! v wx, (2.32)
b
plt)
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L] 31
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c FIG. 2.11 HALF~BEAM IN MECHANISM 2
é Equation (2.30) integrates immediately to give the
% velocity of the central portion of the beam as
{
: V=1/m (2.33)
E Thus from (2.32) = I/mx, and when @ is eliminated {2.31) is ex-
E pressible in the form (ng)' = 12MO giving for the hinge location
: x_ = 128 t/1 (2.34)
i h [o]
:
; and for the hinge velocity
] = 6M (I - pt)/sz (2,35)
*n o h

.
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For a blast pulse with an instantaneous rise to its
peak pressure P (see Fig. 2.7 or 2.8), the starting position of the
plastic hinge is found by using in (2.34) the result: Lim (1/t) = Ppe
t *+ 0. This limiting process gives xi(O) = 12Mo/pm or, in terms of
X = pm/pS {whenever 1} > 3), xi(O)/L2 = 3/X. Again for a blast pulse
we have 1 » pt, so that (2.35) predicts & positive hinge velocity. The
monotonic decay of the blast pulse is more than enough to ensure that the
hinge proceeds steadily toward the beam center, (Note that for a rec-
tangular pulse we have I = pt while the pulse is acting. Consequently

X, = 0 and a stationary hinge exists at X, = 12Mo/pm.) Equation (2,34)

also provides the time t = tl when tne hinge arrives at the beam center

as the solution to

2
I, = 12M ¢ /L = 3p_t

1 (2.36)

1
Equation (2.36) may be given a geometrical interpretation similar to that
given for (2.16) which determines the duration of motion when it occurs

entirely by mechanism 1. The horizontally shaded areas in Fig. 2.12 are

equal.

Pm

3p

t
0 t, t2

SA-3733-37

FIG. 212 GEOMETRICAL CONSTRUCTION FOR DURATION
OF MOTION AND DURATION OF MECHANISM 2

{Areas shaded alike are equal)
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At time t =t the velocity of the beam center, from

1
(2.33), is
= 7/
V1 I1 m (2.37)
and the central deflection is
t1
y(L,t. ) = i 1dt (2.38)
' m -t
o

Motion now continues by mechanism 1 accoerding to
Eq. (2.12) or in terms of V instead of , according to Eq. (2.13).
With the initial velocity condition (2.37), integration leads to

V= 3(I - pst)/2m (2.39)

which is the same equation as (2.14). The total duration of motion t2

is found by setting V(tz) =0 in (2.39). Hence

I.= pt (2.40)

Interpreted geometrically, this result states that the two vertically
shaded areas in Fig. 2.12 are equal. The angular momentum of the half-
beam about the support during deformation by mecheunism 2 is m(L2 - xz)/2
+ mxiuMB = IL2/2 - Ixi/ﬁ = (1 - pst)Lz/z which is the same as that dur-
ing deformation by mechanism 1. Thus the growth of the upper shaded area
shows how the angular momentum increases and the growth of the lower

shaded area shows how the angular momentum decreases uatil tﬁe beam comes

to rest,

By integrating (2.39) the central deflection which

occurs during deformation by mechanism 1 is
(L,t,) -~ y(L,t.) = 2 Idt - BE (tz - t2) (2.41)
CARAS T A b R ™™ z \'2 " 11 '

where y(L,tl) is given by (2.38).
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To find the final shape of the half-beam, we consider
it in the two regions 0 s x s xh(O) and xh(O) < x £ L, where xh(O)
is the initial position of the traveling hinge. The portion of the beam

in the former region experiences only rigid-body rotation about the sup-

: port so that

t
2
yi{x,t,) = uxdt 0 sx < x (0) (2.42)
2 h
o

e R

Now since g = I/mxh when 0 <t < tl and @ = V/L = 3(I - pt)/2mL

: vhen t, <t <t

1 2! formula (2.42) becomes

t

ty
X I 3x
== — At + == - p t)d
y(x,t,) mtht 2m.Lf(I ps)t
o ty

0<x < xh(O) (2.43)

The tinmes t1 and t2 are given by Egs. (2.36) and (2.40). In the
latter region xh(O) < x s L the traveling hinge passes through each
beam section. Let t = 7 be the time when the hinge arrives at

section x. Then we have

T(x) t
y(x,t,) = f vdt + adt
° T(x)

xh(O) sx sL (2.44)

which, upon substituting V = I/m and the above formulas for y,

becomes
é T(x) tl t2
: _ 1 X 3x
3(x,t2) =4 f Iat + = f _}:_ dt + Sk f(x - pst)dt
; o T(x) "h t
Z 1
H
; xh(O) £x <L (2.45)
§ From (2.34), T(x) 1is the solution of the equation x2 = 12M°T/I(T) or
g of (x/L)? = 3p_1/1(1).
i
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Turning now to the shear force and bending moment dia-
grams associated with meciianism 2, we first note that we have M = Mo

and hence Q = 0 in the region xh < X <L, We have already shown that

B’ the location of the hinge, we have M = Mo and Q = 0. It

remains to describe M and Q in the region 0 < x <« xh.

at X = X

From (2.18), the equation of motion of a beam element,

.

the acceleration ytt can be eliminated by using the relation = X

y
tt
with W given by (2.31), the equation of motion about the support of

the rigid portion of the half-beam. In this way we find that

Qx = —{(I - pt)x/xh + 2pt(1 - x/xh)]

0 £x < xh (2.46)

which, since I > pt, is always negative no matter how large the
pressure may be. Thus we also have Mxx < 0, which means that the
curvature of the moment diagram is always negative, Note that at

x = x we have Qx = (I - pt)/2t, thereby giving the discontinuity

there corresponding to the discontinuity ihm of the acceleration.

By integrating (2.46) we obtain for the shear force

Q=x0 - x/xh)h - PEX + /%) + 2pt(l - x/xh)]/4'c

0 sx < x (2.47)

which shows that Q, and hence Mx, is always positive,

One further integration provides the following ex-

pression for the bending roment:

2
WM =1- (- x/x) [a-ptye+ x/x,) + 2pt (1 ~ x/x )11

0 €£x th (2.48)
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and because Q = Mx is always positive, M increases monotonically
from -MO at v =0 to Mo at x = xh. It is concluded therefore
that no further mechanis:. need be sought.

The above observations are illustrated by Fig. 2.13
which shows the distributions along a half-beam of Qx' Q, and M for
i i = 4 = = =
a triangular blast pulse with Km pm,ps 5, A p/ps 2, and

% /1 = 6rnY2,

2,4.3 Conservation of Energy

For a rigid-plastic beam initially at rest, the work
done by the pressure equals the sum of the work done by plastic hending
and the kinetic energy. Results follow which give the rate of work and

rate of chang~ of kinetic energy during deformation by mechanisms 1
and 2.

The rate of work done ny the applied pressure is

L
WF = fpytdx =
o]

and the rate of plastic work done in bending is

pV(L ~ xh/2) mechanism 2

pvVL/2 mechanism 1

ZMOV/Xh mechanism 2
ZMOV/L mechanism 1
while the rate of cliange of kinetic energy is
[mxgmzfﬁ + m{(l - xh)V2/21'=pV(L - xh/2) - 2M0V/xh mechanism 2

[mLSuF/G]' = pVL/2 -~ ZMOV/L mechanism 1 Y
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WITH MECHANISM 3. (o] Q, or M_, dicgram,
{b) Shear force diagram (Q = M W (c) Bendmg

moment diagram.

45

M_, AND M ASSOCIATED

e e




It is readily seen that the results satisfy the consecrvation equation

In the rather simple de*ivations, we use the relation
x = V/'xh {mechanism 2) or w = V/L (mechanism 1) to eliminate uj,
and the relations (2,.34) and (2.35) for mechanism 2 to eliminate ih
and t. Making such an energy balance is often a useful check on the

solution of the equations of motion.

2.5 Dynamic Response of Simply Supported Beams to Blast Loads

Since the dynmaic response of a simply supported beam to a uni-
formly distributed blast load is so similar to that of a clamped beam,
we shall restrict ourselves to showing how the results of interest can
be readily deduced from those in Section 2.4, Instead of a moment N
M= -M0 due to a stationary plastic hinge at each support, we have the
boundary condition M = 0 representing a pinned support. Consequently,
the static ccliapse pressure is halved, and in the equations of angular -
motion of the rigid portion of a half-beam about its support, that is,
in Egs. (2.12) and (2.31) of mechanisms 1 and 2, the restoring moment
is Mo from the traveling hinge instead of 2M° from the traveling

hinge plus the stationary hinge at the clamped support.
2.5.1 Mechanism 1

The static collapse mechanism is the same &s that for
the clamped beam, a hinge at each support and at the center, Since the
only restoring moment acting on a half-beam is M = Mo from the plastic
hinge at the center, the equation of equilibrium gives a static collapse

pressure of

P, = 2MO/L2 (2.49)

which is half of that required to cause collapse of a clamped beam,

b, ot e 2 ane B
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For motion by wechanism 1 the governing equation,

corresponding to (2.12), is
atdy/3 = pLz/Z - M,

where g = V/L, Equations {2,13) to (2.21) hold provided that the value
of ps is given by (2.49) wherever it occurs, Because of the support

condition M = 0, the bending moment expressicn (2.22) is replaced by
2
WM = 1-a-8l2-0- el

where £ = x/L and ) = p/ps, with ps again given by Eq. (2.49).
Since Egs. (2.20) and (2.21) still hold, the peak pressure of the blast
pulsé is restricted to the range P < P, < 3ps (i.e., 1 <) < 3) in

order not to violate the yield condition,
2.5.2 Mechanism 2

Whenever the peak pressure is greater than 3ps, the
mechanism of deformation consists of a variable central length of beam
undergoing translatory motion connected at each end by moving plastic
hinges or interfaces to an outer portion of beam rotating as a rigid
body about its support. 1In the central portion of beam the moment is
M= Mo’ but changes of curvature occur only at the ends, This mechanism
is the same as that for clamped beams and is suggested by the trend of
the shear force and bending moment distributions for mechanism 1 as
pressures increase through 3p5. Aithough the miminum peak pressure
activating mechanism 2 corresponds to ) = pm/ps = 3 as in the cease of
clamped beams, the actual minimum peak pressure is half of that for

clamped beams because P, is halved.
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The cquations of motion for mechanism 2 corresponding

to (2.30) and (2.31) are
my = P X < x <L
mx3®/3 = x2/‘ - M 0<sx<x
h PE= = Y h

where g = V/xh. The solution giving the hinge location is found by

using Mo instead of 2M0 in Eq. (2.34), so that

2 2
_ = 2,
Xy GMOt/I or (xh/L) 3pst/1 (2,50)

with Py from Eq. (2.49). From Eq. (2.50) the initial position of the

traveling hinge is given by
x2(0) = &M /p_ = 3/)
h ‘o' Pm

and the hinge velocity is

. 2
X, = M (I - pt}/1°x,

Provided we use formulas (2.49) and (2.50) for P,
and Xy whenever they occur, Egs. (2.36) to (2.47) hold. Because of
the support condition M = 0, the bending moment expression (2,48) is

replaced by

WM =1-(1- x/xh)z[(l - PEX(2 + x/x) + 2pt(L - x/x,)1/21

2.6 Clamped Beam Subjected to an Exponential Blast Load

We shall now find the relationship among the peak pressure,
impulse, and final central deflection for a clamped rigid-plastic beam
subjected to an exponential blast pulse uniformly distributed over its

entire length, By an exponential blast pulse we mean a pulse with &n !

instantaneous rise tc its peak pressure P, followed by an exponentially
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decaying pressure, It is represented by the pressure function
P= pe (2.51)

where the constant k = pm/IO. The impulse Io is the total area under
the pressure-time curve. Corresponding to (2,.,51), we have the impulse
function

= - o Kt :
I=1Q-¢e"") (2.52)

The results we require are obtained by substituting
Eq. (2.52) in the appropriate results of Section 2.4 for general blast
pulses. It is convenient to express our results in terms of the dimen-

sionless gquantities
A = p/ T=kt =p t/I_ end v=6/(I%L%/mt) (2.53)
Py'Pg ) Pn %o a v = ) o :

where, for brevity, 6§ = y(L,t) 1is the central deflection.
2.6.1  Mechanism 1

For the peak pressure range P, < 1 < 3ps, where
P = 4M°/L2 is the static collapse pressure, deformation starts by
mechanism 1 (one plastic hinge at each support and one at midspan).
The final central deflection is given by Eq. (2.17) in which tz, the
time when motion ceases, is the solution of Eq. (2.16). Ipserting the
impulse function (2.52) in (2.16) and converting to the dimensionless

variables (2,53) yields for 1, = kt

2 2 the equation

1 -e = TZ/X 1<2<3 (2.54)

Similarly from Eq. (2.17) the dimensionless final central deflection

. ; R = = h) i
42 (value of y at time t t2 or when T 72, is
2
vy = 3200 - 1) - 1 le/160" 1< <3 (2.55)
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2.6,2 Mechanism 2

Whenever pm > 3ps, deformation start< by mechanism 2,
which 1is described i. Section 2.4.2. The central deflection at time
tl, when mechanism 2 charges to mechanism 1, is given by Eq. {(2.38),
tl being the solution of Eq. (2.36). With the impulse function (2,52)

and the variables (2.53), these equations become

-1,
1 -e = 371/x A>3 (2.56)

2

v, = (- 3)11/4k L >3 (2.57)
Motion continues by mechanism 1 until it ends at

time t2, the solution of (2.40), and the additional central deflection

acquired is given by (2.41). With the impulse function (2.52), these

equations become

~Tg
1 ~-e = Tz/k A>3 (2.58)
= _ _ _ 2 _ 2 2
v, = vy = 8l200 - D7, - 200 - 31 - (1 - 1p]/18)
A>3 (2.59)
2.6.3 Peak Pressure, Impulse, and Deflection Relationship

Equaiions (2.54) through (2.59) represent the required
relationship among the peak pressure, impulse, and permanent ceatral
deflection. Note that for the exponential pulse the values of 71 and
Ty are solutions of transcendental equations and have to be found nu-
merically for each value of JA. The relationship is therefore best pre-
sented graphically as shown by the curve in Fig. 2.14. For a constant
impulse Io the curve shows that the central deflection increases with
increasing peak pressure and tends asymptotically to a value correspond-
ing to v = 1/6 for the ideal impulse. This can be seen by the follow-

ing limiting process., As p and hence ) tend tc infinity, the

m
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constant k = pm/lo tends to infinity when lo is held constant.
Since the left-hand sides of Eqs, (2.56) and (2.58) are bounded

(0 <1 ~ e ' < 1), the right-hand sides indicate that L0 and *2

also tend to infinity with ). This behavior allows the apgroximations
- -

e 1 ~ 0 and € 2.0 so that, for large enough ), L5} and ™

can be given the values Tl = %\/3 and T? = X. Substituting these
values in (2.57) and (2,59) lezds to vy = 1/12 and vy = 1/6, the
latter being the value at the vertical asymptote in Fig. 2.14.
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FIG, 2,14 PEAK PRESSURE, iMPUL;SE, CENTRAL DEFLECTION
RELATIONSHIP FOR A CLAMPED BEAM
SUBJECTED TO AN EXPONENTIAL PULSE

51




£

<

2.7 Clamped Beam Subjected to a Triangular Blast Load

We shall row find the relationship among the peak pressure,
impulse, and permanent central deflection for a clamped rigid-plastic
beam subjected to & triangular blast pulsc uniformly distributed along
its entire length. By & triangular blast pulse we mean a pulse with an
instantareous rise to its peak pressure P followed by a3 iinearly de-

caying pressure., With tc as the duration, the pulse is represented

by the pressure function

p {1 - t/t ) 0 <st/t <1
] [+ O
p = (2.60)
0 t/t 21
[#]

The impulse I0 = pmto/Z is the total area under the pressure-time
curve, Corresponding to the pressure function (2.60) is the impulse

function

Io(t/to) 2 - t/to) 0 < 1:/1;o <1 l
I-= (2.61)
1 t/t =21
o

We shall follow the procedure of Section 2.6 for the exponential
load by using the impulse function (2.61) in conjunction with the ap-
propriate formulas derived in Section 2.4 for the general blast load.
Yowever, since the triangular pulse is of finite duration, attention
has to be paid to the relationship of the time to’ when the pulse ends,
to the times tl and tz, when mechanisms 2 and 1 end. As will be
seen, this slight cemplication amounts to considering peak pressure
valuyes within four ranges instead of two as in the case of exponential
pulses. On the other hand, the central deflection forrulas turn out to
be entirely explicit, unlike the exponential case which involves tne

solution of transcendental equations for the tiwmes t and t,. \ %
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Again it is convenient to express our results in terms of

dimensionless quantities as follows:
2.2
L=p /p T =t/t and v=8/(I"L"/mM ) (2.62)
m s o o o

where, for brevity, & = y{(L,t} 1is used to denote the central deflection,
2.7.1 Mechanism 1

For the peak pressure range pS < Py < 3ps, where
pS = 4MO/L2 is the static collapse pressure, deformation starts by
mechanism 1 (described in Section 2.4,1). Assuming that deformation is
still in progress at time to when the pulse ends, Eq. (2.14) predicts

a velocity at midspan of
V(to) = 3!0(1 - 2/))/2n (2.63)

But (2.62) shows that V(to) is positive only when ) 1lies in the
range 2 < ) £ 3. 1In other words, the beam is still moving at the
termination of all pulses with peak pressures such that 2 < ) < 3,
whereas motion ceases before the termination of pulses with peak pres-
sures such that 1 <} < 2. These two cases are now considered separ-
ately.

Case 1: 2 < ) < 3. Motion ceases at a time t2 2 to
given by pmt°/2 =p.t, which is (2.16) with I, = I(tz) = I0 = pmt°/2.
Hence, in terms of ) and 7, we have Ty = A/2. With this value of

1., &nd the impulse function (2.61), Eq. (2.17) leads to the final dimen-

2
sionless central deflection

vg = (31 - 4)/16) 2 <) 53 (2.64) '_
{

2

given by (2.16) with 1, = 1012(2 - 72). Solving for Ty in terms of ;

Case 2: 1 <) £ 2. Motion ceases at 8 time t_ < 1:o
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\. we find that =2 - 2/7. With this value of and the impulse

To 2 .

function (2.61), Eq. (2.17) leads to

vy = (b - 3t 1€y <2 (2.65) ;

2.7.2 Mechanism 2 :

Whenever pm > 3ps, deformation starts by mechanism 2
(described in Section 2.4.2). Three possibilities arise: either the
pulse ends during mechanism 2 motion or during mechanism 1 motion, or

the pulse is still acting when motion ceases., We shall now show that

the first two possibilities exist but the last does not. Assuming the -
pulse ends in mechanism 2, that is to < tl or T > 1, Egq. (2.36) >
=

¥ i F

(I1 = SpStl) becomes Ty = /6 because 11 =i, Hence T > 1 is g

possible if X > 6. Assuming the pulse ends in mechanism 1, that is §
to >t or T. <1, Eq. (2.36) becomes Tl =2 - 6/\ because

1 1 £

I1 = 1071(2 - Tl). Hence Ty <1 4is possible if 3 < A < 6, and thus 4
the whole range of A > 3 is accounted for, A pulse with & duration :
exceeding the duration of motion t2 has to satisfy Eq. (2.40) (12 = pst) §
. _ - - - &
which becomes 72 = 2(1 1/)) because I2 1012(2 72). Hence for g

.
i

no A <3 is 72

duration. The two possible cases will now be treated separately.

< 1, and s0 the pulse duration cannot exceed the motion

g it

Case 1: 3 < A < 6., Equation (2.36) with Il =
1071(2 - Tl) gives the dimensionless time when mechanism 2 ends as
Ty = 2 - 6)\. With this value of T
substitgted in the central deflection Eq. (2.38), we have

and the impulse function (2,61)

v = 20, - »%0 + syt 3s) <6 (2.66)
The pressure is still being applied during part of the A

remaining mechanism 1 motion. After the pulse ends, the velocity is ‘

that of (2.39) with I = Io’ and thus (2.40), giving the time when motion

ceases, becomes Io =pt

st2 which, in terms of 7, and 1}, is 12 = )/2,
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Substituting 7 T and 1 in (2.41), we obtain for the central de-

1’ 2’
flection occurring during motion by mechanism 1

vy = vy = (- 018 - G- 2o it

which, upon substituting vl from (2.66), becomes

4
vy = (3 - 9)/16) = (1 - DY/; 3<) %6 (2.67)
Case 2: A > 6. We have shown that wnenever ) > 6
the pulse ends during motion by mechanism 2. Hence in (2,36) we can

set 1 = I0 to give Ty = A/6. Wwith this value of T, and the impulse i

1 1
function (2.61) substituted in (2.38), we find that the dimensionless i

central deflection at the end of mechanism 2 is

v T G- 2)/12) (2.68)

No pressure is being applied during mechanism 1 motion. Setting I2 = Io

in (2.40) yields Ty = W2 for determining the time when motion ceases

and the newly found formulas for T and Tz’ along with the impulse ’
I = Io’ substituted in (2.41) give

v, = v T 112 (2.69) f

for determining the central deflection acquired during motion by

mechanism 1. By using (2.68) to remove v, from (2.69), we obtein

1

v, = (. - L)/86) Lz6 (2.70)

2.7.3 Peak Pressure, Impulse, ar ! Deflection Relationship

Equations (2.64), (2.65), (2.67), and (2.70) represent
explicitly the required relationship among peak pressure, impulse, and
permanent central deflection for all values of A. In Fig. 2.15 the

curve shows how the final dimensionless central deflection v varies
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with A, For a constant impulse Io the central deflection § increases
monotonically with peak pressure and tends to a finite limiting value as

Y #® This limiting value corresponds to an ideal impulse and is repre-
sented by the asymptote in Fig. 2.15. The value of y at the asymptote,

found by letting )\ * « in (2.70), is v = 1/6, the same as that found

in Section 2.6.3 for the limiting case of the exvonential pulse, as

expected.
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FIG. 2.15 PEAK PRESSURE, IMPULSE, CENTRAL DEFLECTION
RELATIONSHIP FOR A CLAMPED BEAM
SUBJECTED TO A TRIANGULAR PULSE
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g 2.8 Clamped Beam Subjected to a Rectangular Blast Load

We shall now find the relationship among the pressure, impulse,
and final central deflection for a clamped rigid-plastic beam subjected
to a rectangular pulse uniformly distributed along its entire length,
By a rectangular pulse we mean a pulse with an instantaneous rise to a
pressure P which is then held constant until a time to when the
pressure instantaneously falls to zero. The pressure and impulse

functions meeting this description are

% p 0t <t
. m o
D = (2.71)
0 t > to
pt = 1 (t/t) 0stst
m o [} o
“ 1= (2.72)
= 2
pmto Io t to

Again the results we require are found by substituting the im-
pulse function (2.72) into the appropriate results of Section 2.4 for
general blast pulses. A unique property of a rectangular pulse with
PL > BpS is that the two hinges which appear within the span to form
mechanism 2 remain stationary during the entire time the pulse is acting.
This property ensures that the pulse is always over before mechanism 2
ends. Whenever Py < pm < 3ps’ motion is entirely by mechanism 1 with
the velocity increasing while the constant pressure is being applied
s0 again the pulse is always over before mechanism 1 ends, Thus the
whole of a rectangular pulse is used to cause deformation which, of
course, is never the case with an exponential pulse and is not the case

with a triangular pulse whenever Py < Py < 2ps.
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Again it is convenient to express our results in terms of the

dimensionless variables
A =op/ T = t/t and = /01202 /mm ) (2.73)
Pm Ds T = ° v = o o .

where, for brevity, & = y(L,t) is the central deflection.
2,8.1 Mechanism 1

For the peak pressure range P < pm < 3ps, where
2
P, = 4M°/L is the static collapse pressure, motion starts by mechanism 1
(see Section 2,4.1)., At time to Eq. (2.14) predicts a midspan velocity

of
1t°) = 310(1 - 1/)\)/2m

which is positive f.* A in the whole range 1 < ) € 3 under considera-

tion. Motion thus ends at some time t2 such that t2 > to or 72 > 1.

In terms of Ty and ), this time, from (2.16) with I2 = Io’ is
T = 1/)%. In terms of vy and X, from (2.17) with the impulse function
(2.72) and with Ty = 1/)\, the central deflection is
Vg = 3(1 - 1/3)/16 1 s\ <3 (2.74)
2,8,2 Mechanism 2

Whenever P > 3p_, motion starts by mechanism 2 (see
Section 2.4.2)., Equation (2.34), which 1is xi = 12Mot/1, becomes
xz = 12Mo/pm when the pulse is acting, showing that the hi;ge is sta-
tionary. After the pulse has ended the equation becomes X = 12M°t/10,
and hence the time t1 when mechanism 2 ends is given by (2,.36) with
I1 = Io. Thus Ty = 3/3, and from (2.38) with the impulse function (2.72),
we obtain

v, = 1/12 - 1/8)
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Motion is completed by mechanism 1 at a time t2 determined by
1

with 12

Elimination of v

=1.
o

2,8.3

= ) and (2.41) with

Thus =1 gives
o

2

-V < 1/12

1 then yields the required central deflection

vy T 1/6 - 1/8) L= 3

(2.40)

formula

(2.75)

Peak Pressure, Impulse, and Deflection Relationship

The required relationship among peak pressure,

impulse,

and permanent central deflection is represented explicitly by (2,74) and

(2.75).

drawn.

From

For a

the equations the curve of )\ versus v in Fig,.

constant impulse Io the centrel deflection §

20

0 | 1 | | I N B i
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en/n212
v=3/lloL/mMo) 0A-8733-41

FIG. 2.16 PRESSURE, IMPULSE, CENTRAL DEFLECTION
RELATIONSHIP FOR A CLAMPED BEAM
SUBJECTED TO A RECTANGULAR PULSE
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monotonically with peak pressure and tends to a finite limiting value as
A *®, This limiting value corresponds to an ideal impulse and is repre-
sented by the asymptote in Fig., 2.16. The value of vy at the asymptote,
found by letting X = in (2.75), is v = 1/6, the same as that found
in Sections 2.6.3 and 2.7,.3 for the limiting cases of exponential and

triangular pulses, as it should be.

2.9 Simply Supported Beams Subjected to Specific Blast Ioads

In this section we shall present formulas representiﬁg the
relationship among peak pressure, impulse, and permanent central de-
flection for a simply supported rigid-plastic beam subjected to a spe-
cific blast load uniformly distributed along its entire length. The
specifiec pulses which concern us here have exponential, triangular, and
rectangular pressure-time curves, and we can write the formulas simply
by doubling the right-hand sides of those for clamped beams in Sections
2.6, 2.7, and 2.8. The reason for this simple doubling process is
basically that the restoring moment acting on the rigid portion oif a
beam 2s it rotates about a simple support is half of that acting when
the support is clamped., It was shown in Section 2.5 that, with thke
exception of the bending moment distribution, the results of Section 2.4
for clamped beams under general blast loading are applicable to si:aply
supported beams provided the appropriate static collapse load is taken,
that is, Py = 2M°/L2 instead of p, = 4M0/L2. When the deflection
formulas are being converted into the dimensionless form vy = WwWi),

where
»=p/ = 5/1%L%/m ) (2.76)
= PPy v o o ' :
a factor l/ps appears on the right-hand side, thereby accounting for
the doubling process., In (2.76) Pp denotes peak pressure, I° the

total area under the pressure-time curve, and § denotes permanent mid-

span deflection.
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The results are given below in terms of the dimensionless
- variables )\ and y of (2,.76) and the )\ versus v relationship for
each pulse shape is shown in Fig. 2.17.
. Exponential Pulse:
2
slza - 1) - 1] /8 1s) <3
v —4
2 2 2
[60n - 1) 1, - 200 = 3) 1, - 3r; - TDI/AY
A =3
where
B! g
(r-3 ") = Sfl/k and (1 -e 7) = Tz/X
Triangular Pulse:
200 - 13n? 1ss2
(3% ~ 4)/8) 2 <) <3
v =4
3 - a8 - 200 - Yt 3s1<6
(. - 1)/3) A Z6
Rectangular Pulse:
3(h - 1)/8) 1<)\ 53
v -
(4x - 3)/12) A23
Ideal Impuise:
3 v =1/3 A=®
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FiG. 217 PEAK PRESSURE, IMPULSE, CENTRAL
DEFLECTION RELATIONSHIP
FOR SIMPLY SUPPORTED BEAMS

An interesting feature of Fig. 2.17 is the spacing between the
curves, which shows how the central deflection & from pulses of equal
peak pressure pm and equal impulse Io depends on the pulse shape.
Any horizontal line () > 1) intersects the curves to give three de-
flection values. The greatest of these is from the rectangular pulse
and the smallest is from the exponential pulse. At low peak pressures
the deflection values are significantly different from each other. As
the peak pressure tends to infinity, the differences tend to zero,
because each pulse tends to an ideal impulse. Figure 2,18 also illus~-
trates these observations by showing the variation with A of the
ratjos 6B/5C and 5A/éc of the central deflections from triangular
and expornential pulses to those from rectangular pulses, all pulses
having the same impulse Io. The dependence of central deflection upon

pulse shape is discussed more fully in the next section,
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FIG, 218 VARIATION OF CENTRAL DEFLECTION RATIOS
WITH PEAK PRESSURE FOR PINNED AND !

CLAMPED BEAMS (5, 8y, 5 ore central deflections i
caused by exponential, triangular, and rectangular pulses)

2.10 Pulse Shape which gives Maximum Deflection

Our main purpose is to prove that the permanent central de~
flection of a simply supported or clamped rigid-plastic beam due to a
uniformly distributed blast pulse of given peak pressure and impulse
is greatest when the pulse is rectangular. This result is also true

for more general structures as will be shown by examplés.

2.10.1 Simplest Rigid-Plastic System

We shall find the dependence on pulse shape of the

meximum displacement of the simple system shown in Fig., 2.19. A pres-

pit) m Py
—_—.D+—
|
—--x
oA 4940-94

FIG. 219 SIMPLEST RIGID-
PLASTIC SYSTEM

sure p(t) =acts on a mass m per unit area
having a constant resisting pressure ps.
Whenever p(t) becomes larger than P, the
mass is set in motion according to the
equation

p(t) - p_ = mx (2.77)

where x 1s the displacement from the initial

at-rest position, With the initial conditions

63




x(0) = x(0) = 0, succeszive integrations of (2.77) give

where I(t)},

time t, and A(t)

the impulse,

I{t) - pt = mx (2.78)
2

A(t) - pst /2 = mx (2.79)

is the area undur the precsure-time curve at

is the area under the impulse-time curve at time t.

For convenience, bit without loss of generality, we shall consider

pulses with an initial pressure greater than Ps i.e., n(0) > P,

this rezult for ¢t

in which A2

Let the mass come to rest at time t = t_. Then (2.78)

with i(tz) =0 pgives t

2

= Alt,).

2

%y

2
. - T S o $ i
Iz/pS where 12 ‘(tz)‘ ubstituting

in (2.79) gives for the final displacement

= A2 - 12t2/2 (2. 80)

By means of expression (2.80), the deflections %,

due to pulses of equal pesk pressure pm and impulse Io are compared

with the deflection due to a rectangular pulse of pressure P and
I
o

impulse Io.

curve, whereas 1 is the area at time t = t

Note that

2

depending on whether IO

I

is the total area under the pressure-time

2° Thus two cases arise,
or Io > 12; in the former case the whole

pulse is used in moving the mass, while in the latter it is not,.

then t <t
o

2

Case 1:

and, since

the same for all pulses.

IO

t

=1 I1f the pulse ends at time t =1t ,

2° o
= szps = Io/ps, the duration of motion is

Also, (2.80) becomes

mx

and, since the term I°t2/2

2

= A2 - I°t2/2 (2.81)

2
Ia/ps is the same for all pulses, it re-

mains to study the function A2.
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Among 81l pulses of equal impulse Io and maximum

pressure P, the minimum of the duration times to is possessed by a

rectangular pulse, Let this minimum durstion time be té. Then when

'3

2

. 7 I .

= s sa d < h ualit
t to the pulses satisfy 1 < pmto and A pmto /2 with eq y
only for the rectangular pulse. When t =t (t2 2t > t;),

2
7
to t2 12
-— - F
A2 = J/- I{7)dr + “/. I(7)T S pmto /2 + Io(tz to) (2.82)
o I
o

again with equality only for the rectangular pulse, so that A2 and

hence x from (2.81), are maximum when the pulse is rectangular.

2)

This result can be illustrated ia the impulse-time
plane of Fig. 2.20, For a rectangular pulse, A2 is the area under

00 ‘F, whereas for more general pulses

A2 is the area under the curved line

I OO_F. The triangular area under GOF
o' 0,

1
is 12t2/2. Thus, according to (2.80),

the fineal displacement x, is 1/m

times the difference between the two

F
{
!
|
1
|
!
|

areas A2 and 12t2/2. For 8 rectan-

I R gular pulse this difference is the
1 1,
* sa.asse-sss  triangular area 00 ‘F and, for other

o -

i
(]

pulses, it is the shaded area. The
FIG. 220 IMPULSE-TIME DIAGRAM

maXximm slope of the curve 001 is that

of the line 00’ and is the maximum
pressure P therefore the curve lies wholly in triangle 00‘F. Note
that the slope of the line OF is Py and if the curve intersects OF

the mass comes to rest because, according to (2.78), I = pst' reguires

x = 0. This, however, is case 2.

Case 2: < Io. In this case pressure is still being

I
2
applied when motion ceases, Again let t; be the duration of a rectan-
gular pulse of peak pressure pm and impulse Io and let the duration

' '
9" The time t2

equals the common duration of motion of cese 1. 1In case 2, however,

of motion when this rectangular pulse is applied be ¢t
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t2 exceeds the duration of metion because tz Io,ps > Iz.pS t2

Since 12 < Io’ we have for A2, instead of (2.82), the inequality

2
< ’ - i
Ay, <pt. /2 + Io(t2 to)

Thus (2.80) for the maximum displacement becomes

< ! -t’) - /
mx2 Ioto/Z + Io(t2 to) 12t2 2 (2.83)
In order to compare the displacement with that caused

by a rectangular pulse, we add to the right-hand side of (2.83) the

; . 7 _ _ 7 _ . s s
positive quantity Io(t2 t2) (Iot2 Iztz)/2. That it is pgs1t1ve
follows from an algebraic proof that it equals Ioté(l - tz/té) /2. 1In
this way we obtain the inequality

F Fa is 7
mx,, < xoto/z + Io(t2 to) Iot2/2 (2.84)

which states that whenever 12 < Io the pulses cause displacements
which are always less than that caused by a rectangular pulse with the

same peak pressure and total impulse.

An illustration of this result can be seen in the
impulse-time diagram of Fig. 2.21, Since Iz/t2 = Pg» the point G lies
on the line OF which is the same as OF in_Fig. 2.20, The ares under the
curve 0G is A2 and the triangular
area under OG is 12t2/2. Their dif-

14 o' F
Lo b-~—,7"'_—-_'_‘;7| ference, shown shaded, is 1/m times
I, —7# 57 : the displacement x,, while the trian-
// : : gular area O0'F is 1/m times the dis-
// : : placement due to a rectangular pulse.
! ! - The inequality (2.84) states that the
© tz shaded area is less than the area of

SX-4948-984A
) triangle OO ‘F.
FIG. 221 IMPULSE~TIME DIAGRAM
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From the above, the following theorem can be stated.

Theorem: Among all pulses of equal peak pressure and impulse, the rec-

tangular pulse causes the maximum permanent dcformation of a rigid-
plastic structure that is representable by a mass with a constant re-

sisting force.

2.10.2 Applications of the Theorem

¥We shall now give a few examples of simple rigid-plastic
structures which are representable hy a mass and a constant resisting

force during deformatinn caused by blast loads.

{a) Beams: A simply supported or clamped rigid-
plastic beam subjected to a blast pulse uniformly distributed along its
entire length undergoes deformation by a three-hinged mechanism (one at

each support and at midspan as described by mechanism 1 in Sections 2.4

and 2.5) whenever tihe peak pressure Py lies Iin the range P < pm < 3ps

2
where P, = 2M0/L and P, = 4M0/L2 are, respectively, the static
collapse pressures for the simply supported and clamped beams. For both

types of support the equation of motion is
P ty - p = 2m/3 s P p. < 3P
$2 & ( / )6 s < m s

where & 1s the central deflection. Thus these structures are repre-
sentable by means of a mass 2m/3 with a constent resisting force P

and the theorem applies,

(b) Rings: Assuming thaf no buckling occurs, a
rigid-plastic ring subjected to a blast pulse applied uniformly around

the cutside moves inward according to the equation

o(t) - coh/a = mw

where O, i3 the yield stress, m the mass per unit length of circum-

ference, h the thickness, a the radius, and w the inward displace-

ment., Since the static coilapse pressure is p = cbh/a, we have the

s
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required representation for the theorem

p(t) - p = mw (2.85)

(c) Spherical Shell: The spherical shell problem

analogous to the ring problem results in Eq. (2.85) with Py = 20°h/a.

{d) Circular Plate: It can be shown (see Section 3.7.1)

that whenever the peak pressure Py lies in the range P < pm < 2ps a
simply supported circular rigid-plastic plate subjected to a blast pulse
uniformly distributed over the entire ares is set in motion according to

the equation
- = (m/ 5 < 3
p(t) ps (m/2)5 ps < pm ps

where § 1is the central deflection, m the mass per unit area, and
P, = GMO/a2 is the static collapse pressure, Mo being the fully

plastic moment per unit arc length and a the plate radius,

2,10.3 Clamped and Simpiy Supported Beams

It will now be proved that the permanent central de-
flection of a clamped or simply supported rigid-plastic beam caused by a
uniformly distributed blast pulse of any peak pressure 1 and impulse

I0 is greatest when the pulse is rectangular.

We have already proved this for peak pressures in the
range 1 < P, < 3ps by showing that the beam is representable by a mass
and a constant resisting force and applying the theorem of Section 2.10.1.
Whenever P > 3ps, deformation starts by mechanism 2, which, as described
in Sections 2,4.2 and 2.35.2, has two plastic hinges traveling toward each
other while the central shortening portion of beam betweea the hinges

undergoes translatory motion according to the equation m$ = p. After the

hinges meet at time t = tl, deformation continues by mechanism 1 as

described in Sections 2.4.1 and 2.5.1 until) motion ceases at time t = t2'
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During this second phase of deformation the equation of motion is
ad = 3(p - ps)/2. Although the representation for the theorem is met in
each of the two phases, they differ from each other and the theorem can-

not be applied directly.
We shall use (2.36) and (2.40) for the times t1 and
t2 and (2.38) and (2.41) for the central deflections (see Section 2,4,2),

With the central deflectioms, impulses, and areas under the impulse-time

curves at times t1 and t2 denoted by 51, 62, 11, 12, Al, and A2
these equeations give
(3a, - Al)/z - (31 t, - Iotl)/4 0<t <t
méz = (3A2 - Al)/2 - (3101:2 - Iltl)/4 t1 < to < t2 (2.86)
(34, - A,)/2 - (31,t, - Iltl)/4 t, <t

where to is the pulse duration., In the first two expressions of (2.86)
we have 3t1 = t2 = Io/pS and in the last we have 3t1 = Il/ps and

t2 = Iz/ps. Whenever the pulse ends during motion by mechanism 1, i.e,,
o < to < tl' the central displacement and velocity according to (2.38)
and (2.39) are 61 = Al/m and 81 = Io/m. Since A1 is a maximum for

a8 rectangular pulse (see proof of theorem in Section 2.10.1), the beam

commences mechanism 1 with a maximum displacement for this pulse and with

the same velocity as all other pulses having to < tl. Thus the rectan-
gular pulse produces the maximum final central deflection whenever
to < tl.

Expressions (2.86) are compared with the expression
for a rectangular pulse, which is embedded in the first of (2.86), by
means of areas in the impulse~time planes of Fig. 2.22. For this purpose

it is convenient to rearrange (2.86) into the form
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(A, - 1_t,/2) + [(A2 - 1,t,/2) - (A - I°t1/2)]/2 o<t <t

mo, ={ (A, = 1_t,/2) + [(A2 - 1,t,/2) - (A - 11t1/2)]/2 b, <t <t

(A, - 1,t,/2) + [(A2 - 1,t,/2) - (A - 11t1/2)]/2 t, <t

i

{c) f2<'°

GA-4946-934
FIG. 2,22 IMPULSE-TIME DIAGRAMS FOR

BEAMS (p_ >3p). (@0 <1t <t,
B) t, <t <1y (6) 1, <1,
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In each of the three diagrams the straight lines OR, OP,
and OF are the same, having slopes P 3ps, and L Line OR is the
path taken by a rectangular pulse, and the curve OM is the path taken by
any other pulse with the same peak pressure pm and impulse Io. Each
diagram corresponds to one case of (2,87). Since we are concerned with
blast pulses only, the peak pressures all occur at t = 0, so that at the
origin in each diagram the curve OM is tangential to OR. Apart from the
case of a rectangular pulse, the curves OM all lie to the right of OR,

By algebraically adding the areas represented by the
individual terms in each of (2,87) it can be seen that the sum is bounded
by the triangle ORF plus one-half of trisngle OPF, which corresponds to
a rectangular pulse, Thus the rectangular pulse causes the greatest

central deflection,.

2.11 The Pressure-~Impulse Diagram

A useful method of descriting the behavior of structures subjected
to blast pulses is to comnstruct a pressure-~impulse diagram, For all
pulses of the same basic shape it shows how the peak pressure and impulse
must be varied in order to maintain a prescribed permanent deflection.

The ordinate of the diagram is the ratio A = pm/ps of the peak pressure
to the static collapse pressure and the abscissa is the ratic IO/I1 of
the impulse (total area under pressure-time curve) to the ideal impulse

(zero duration) required to produce the same permanent deflecticn,

Such a diagram, applicable to both simply supported and clamped
beams subjected to uniformly distributed blast pulses, is shown in
Fig. 2.23., Each curve corresponds to a fixed pulse shape and gives the
relationship between the peak pressure and impulse required to keep the
central deflection at some prescribed value. The curves are obtained as
follows: The central deflection due to & blast pulse is 50 = (I§L2/mM°)
v(1), where v()) is a known function of )\, and the central deflection
due to an ideal impulse is 61 = (IiLz/mHo)v(w). Since I1 is to be the

ideal impulse producing the same deflection as each pulse, we equate §

and 51 to give the required rélationship, 10/11 = [v(m)/v(k)ll/z.
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GA-5733-57

FIG. 223 PRESSURE-IMPULSE DIAGRAM
FOR PINNED AND CLAMPED BEAMS

i'or a clamped beam subjected to a rectangular pulse we have

3(\ - 1)/16) 1 <2s=3
w(l) =
(4)\ - 3)/24) A =3
and
w(®) = 1/6
so tnat
18/9(\ - 1) 1s)As3
2
(Io/Il)‘ =
4)/(4x - 3) L z23

Each curve has the asymptotes Io/ll =1 and X =1 correspond-
ing to an ideal impulse and a static collapse load. Keeping the deflec-

tion constant, small changes in Io cause large changes in A near the
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asymptote IO/I1 = 1, and small changes in ) cause large changes in

Io near the asymptote )\ = 1.

It is interesting that a rectangular pulse with a pressure
greater than eight times the static collapse pressure () > 8) requires
less than a 5% increase in impulse over an ideal impulse to provide the
same permanent central deflection; when X < B the impulse increments
required increase rapidly as )\ decreases. The triangular and exponen-

tial pulses exhibit a similar behavior.

To produce the same deflection, the ratio of peak pressures of

exponential and rectangular pulses with the same impulses is less than

2 whenever IO/I1 > 1,2; for pulses with the same peak pressure i1lie ratio
of impulses is less than 1.25 whenever ) > 3.5. Comparing exporential
and triengular pulses giving the same deflection, the ratio of p=ak
pressures is less than 1,5 whenever IO/I1 > 1.2; the ratio of impulses
is less than 1.2 whenever ) > 3.5. This suggests that in certain ranges
of peak pressure and impulse, pulse shape has a secondary effect () > 3.5,

IO/I1 > 1.2).

2.12 Response of Beams to Uniformly Distributed Impulses: Comparison
of Theory and Experiment

We have seen that the use of rigid-plastic theory allows a simple
solution to the problem of finding the response of a clamped or simply
supported beam to blast loading. Conseguently the solution could possibly
be useful and convenient for engineering applications. Unfortunately
there are no experimental results with which to compare theoretical pre-
dictions except for & few in which beams are subjected to extremely short
pulses with large peak pressures. Hence our attempts to establish the
usefulness of the rigid-plastic theory are necessarily confined to ideal

impul ses,

The rigid-plastic theory can be expected to provide reasonable
predictions only if the plastic work done is sufficiently greater than
the elastic strain energy involved. To give some measure of this we

introduce R, the ratio of kinetic energy input to elastic bending strain
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energy capacity. A conseqﬁence of the assumptions of rigid-plastic theory
is that the kinetic energy input equals the plastic work done when the
applied impulse is ideal, If I and m are the impulse and mass per
unit length, the kinetic energy input is 12/2m. I1f the maximum elastic
bending moment that can be sustained by the beam cross section is Me,

the bending strain energy capacity per unit length is M§/2D, where D

2 2
is the flexural rigidity. Hence R =1 D/nMe.

The descriptions and results of the experiments which follow are
for pinned and clamped beams, each of which is subjected to an impulse

uniformly distributed over its entire span, By comparing experimental

- and theoretical permanent central deflections, we shall see that the

rigid-plastic theory gives reasonable predictions whenever R 1is greater
than about 2. An experiment for testing the assumed mechanisms of defor-
mation is described and discussed. Becauce the theory for an ideal im-

pulse is much simpler than the theory in Sections 2.4 and 2.5 for general

‘blast pulses, it is given here in full before discussing the experiments.

2,12.1 Theory for Pinned Beams

The deformation is assumed to occur in two phases. In
the first, a plastic hinge originates at each support and travels toward
midspan, The two traveling hinges divide the beam into three parts which
behave as rigid bodies, the decreasing center part undergoing translatory
motion at jits initial velocity until the hinges meet at midspan. while each
outer part rotates abeut its support. In the second phase, » stationary
plastic hinge cccupies the midspan section and each half-beam rotates

about its support as a rigid body until motion cesases.

The mechanisms of deformation are those called mechanisms
2 and 1 in Section 2.5 for the treatment of the response of pinned beams
to uniformly distributed blast loading. There it was shown that pulses
with peak pressures Py greater than three times the static collapse
pressure P started the motion byzmechagism 2 with the initial position
of each traveling hinge given by xh(O)/L = 3/\X where ) = pm/ps,
L. is the halfspan, and xh(O), the initial position, is measured from
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the nearer support, In the limiting process, pm +® or X+, we
approach an ideal impulse and we have xh(O) -+ 0 so that our assumption
of a traveling hinge originating at each support is consistent with the

ideal impulse considered as the limiting case of a blast pulse.

We shall now derive the required deformation formulas.

We refer to Fig. 2.24 for nomenclature and an illustration of mechanism 2.

I
Aiiiii&iisﬁ’

m 2L m
(o) SIMPLY~ SUPPORTED BEAM

A x x,
| ¢
- j
v &£ H of

Y (b) MECHANISM 2

=

{c) MOMENTS

GA-35670-19B

FiG. 2.24 SIMPLY SUPPORTED BEAMS UNDER
A UNIFORMLY DISTRIBUTED IMPULSE
{a} Simply supported beam, (b) Mechanism 2,
(¢} Moments

The equation of motion of the rigid portion of length xh rotating about
the support with an angular velocity w 1is

3.
mx w3 = M (2.88)
where Mo is the fully plastic moment. Note that in order not to violate

the yield condition (M| = Mo) there is no shear force (dM/dx = 0) at the
moving hinge (see Section 2.4).
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The portion between moving hinges is undergoing trans-
latory motion at a velocity V = 1/m. At the hinge, continuity of

velocity requires

wx, = V=1/m (2.89)

Eliminating ¢ from (2.88) and (2.89) leads to the

following simple differential equation for the hinge location:
(%) = eM /1 (2.90)
h o ‘
which, with the initial condition xh(O) = 0, integrates readily to give
2
xh = GMot/I (2,91)

Phase 1 erds when X, = L which, aceording to (2.91),

occurs at tl = IL2/6M°. Each element of the half-beam at time tl has

undergone a rotation

t1 1 L dxh
5x,t) = f wit = = f——— (2.92)
T X h'h

where T 1is the time when the hinge arrives at section x (the second
integral indicates how the evaluation may readily be performed). The use

of (2,.90) in the second integral of (2.92) gives
2
B(X,tl) = (I /3mMo)(L - x) (2.93)

With the approximation § = dy/dx the shape of the beam at time t1 is

yx,t,) = (Iz/enwo)(ZL - x) x (2.94)

Motion is now completed by mechanism 1 (Fig. 2.25)
according to the equation

ALY w3 = -M (2.95)
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At time t1 the angular velocity

has the value m(tl) =V/L. = I/mL
o and if ¢t is the time when

_______ — 2

| motion ceases, w(t2) = 0. Hence,

l by integrating (2.93), we find
| = 2/ =
OZ)MO that t2 = 1L ,ZMO 3t1. During

GA- 3570-208 this phase of the motion all ele-

ments of each half-beam undergo

FIG. 2225 MECHANISM 1
the same rotation

t 1/mL
2 mL3 2
B(x,t,) - 6(x,t)) = f wdt = o j wdw = 11/6m
tl o (2.96)

By combining (2.93) and (2.96), we obtein rfor the final rotations
e(x,tz) = (12/6nuo)(3L - 2x) (2.97)

and by introducing the approximation dy/dx = § and integrating, we
obtain for the final shape of the half-beam

yx,6,) = (I7/6aM )L - x) x . (2.98)

Thus, the final shape c¢f the entire beam consists of two parabolic arcs
intersecting at a finite slope at the center x = L. From (2.87) and
(2.98) the slope 8§ = e(o,tz) at the support and the central deflection

8 = y(L,tz) are

D
H

IZL/QmM0 (2.99)

o
"

121‘2/3"“0 : . (2.100)

Formulas (2.98), (2.99), and (2.100) will be used for comparison with

experimental results,
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2,12,2 Theory foc Clamped Beams

The results for clamped beams can be written directly
from (2.98), (2.99), anc (2,.100) merely by replacing Mo by 2MO. This
is because clamping ith= supports introduces there fully plastic moments,
which double the resisti.ig moments acting on the rotating parts of the
beam. Thus the plastic hinge location in phase 1, the final beam shape,

the slope at the support, and the deflection at the center are given by

x, = IZMOt/I (2.101)

yOx,t,) = (12/121::.10)(31. - %) x (2.102)
2

g8 =1 L/4dMo {2,103)

& = I2L2/6mM° (2.104)

2,12.3 Description of Experiments

The experiments were performed with beams of 2024-T4
aluminum, 6061-T6 aluminum, 1018 cold-rolled steel, and annealed 1018
steel. They were rominally l-inch wide and 1/4-inch deep with spans of
18 inches, Figure 2.26 shows the experime»*tal arrangement for pinned
beams. It shows in particular two different ways of providing ninned
ends. For the steel beams 1/4~-inch-diameter steel pins were required
to withstand the shearing forces; the pins were supported Ly steel
bearing blocks to reduce the contact pressure on the sliding surface.
For the aluminum beams 1/8-inch~diameter steel pins through the ends of
the beams were strong enough. The span of the pinned beams decreased
during initial deformation. End conditions for clamped beams were pro-
vided by placing each end in a close-fitting tunnel so that during defor-
mation the material flowed into the span which was maintained constant

while end rotation was prevented.
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FIG. 2.26 EXPERIMENTAL ARRANGEMENT

The impulse was generated by sheet explosive in the
form of a 1/2-inch-wide strip placed centirally over a l-inch-wide by
1/8-inch-thick solid neoprene attenuator laid on the beam as shown in
Fig. 2.26. The attenuator is a convenient minimum required to prevent
spalling of the beams. A five-grain mild detonating fuze was used to
detonate the explosive at the center of the beam. Central initiation
is preferred to end initiation, because the initial transverse velocity
distribution imparied to the beam is more uniform and the delivery time
of the impulse is halved.lo For a halfspan of 9 inches, the total deto-
nation time is chout 32 Hsec. That the imparted velocity is uniformly
distributed along the beam is primarily due to the detonation velocity
of the explosive (0.28 inch/ilsec) being sufficiently supersonic relative

to the maximum wave velocity (0.2 inch/Hsec).

For the explosive-attenuator-target configuration just
described, the initial velocities of four aluminum and four steel beams

were obtained by means of a rotating mirror streak camera trained on the
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center of each beam. From these experiments it was found that for ecach

beam material the impulse imparted to the beam was proportional to the -
explosive thickness in the range of interest. A common parameter fcr

describing the calibration of sheet explosive for sn explosive-attenuator-

target configuration is the impulse Io per unit volume (dyne-sec/cms)

of explosive, Io is often a constant over a wide range of explosive

thickness as it was found to be in the above calibration experiments.

Once Io is known, the impulse I per unit length of beam is simply

calculated from the product of Io’ the explosive thickness, and the

explosive width. Two values of IO are listed in Table 2.1, one value

for the aluminum beams and the other for the steel beans.

Table 2.3
BEAM PROPERTIES
Material E <, ® b d L 1, ,
(psi) (1b/in.) (1b sec /in. ) {inch) {inch)} (inches) {dyne~sec/ca” )
* (3 5
Al 2024-T4 X 10 x 106 52,000 0.000258 1.0 D.251 9.0 2.9 x 105
Al 6061-T6 ’ 10 x 106 40,000 0. 000253 1.0 0,245 3.0 2.9 x 10
CR 101B steel 30 x 106 84, 000 0.0006732 1.0 0.248 9.0 3.25 x 19,
Annealed 1018 steel 30 x 10 43,000 0.000732 1.0 0.248 2.0 3.25 x 10

A high-impulse test (experiment CA2) was performed to
see if longitudinal extension occurred and so to assess the effects of
unavoidable frictional forces at the supports. The beam was suitably
scribed on its side, and measurements before and after deformation were
compared. No permanent extension of the neutral surface was observed.
This technique was also used to find the strain of the outer fibers at

midspan and resulted in a value of 4%.

Several of the experiments were photographed with a
Beckman and Whitley (Model 189) framing camera to provide a qualitative
Justification of the mechanisms assumed in the rigid-plastic theory,
Figure 2.27 is a photograph of experiment with frames at 83.3 Hsec
intervals (only alternate frames are shown). The observed deformation
follows tﬁé assumed mechanisms; the plastic hinge velocity obtained
from these photographs is later compared with the velocity predicted by
the rigid-plastic theory.
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FIG. 2,27 FRAMING CAMERA RECORD FOR EXPERIMENT CA3
Almost all of the observations are terminal and consist

of the central deflection, the maximum slope, and, in some cases, the

entire deformed shape of the beam,
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2,12.4 Experimental Results and Observations

Table 2.1 shows the beam materials and properties
along with the impulse constants I0 obtained from the calibration
experiments. The yield stress Ty is the average from tensile tests.
Instead of the conventional yield stress, we use here the stress at the
point of intersection of a bilinear fit of that part of a stress-strain
curve up to 4% strain. Tables 2.2 and 2.3 give the experimental and
theorrtical results for pinned and clamped beams.

Tehble 2.2

EXPERIMENTAL AND THEORETICAL RESULTS FOR PINNED BEAMS

T
Experiment - . ~ n 5 N
No. (1b,%ec,1n l) R “ex/L “ex bth/l' “tn 6&!’ “th qex/ “th
PA 1 "0.124 4.639 0.564 C.766 0.865 1.298 0.652 0.580
2 0.098 2.896 0.350 | 0.500 0. 540 0.810 0.648 0.617
3 0.095 2.739 | 0.349 | 0.477 | 0.511 {0.766 | 0.683 | 0.623
1 0.090 2.473 0.321 0.404 0,451 0.692 0.606 0.584
5 0,088 2.325 0.302 0,383 0,434 0.650 0.697 0.604
& 0,087 2,301 0,302 0,387 0,429 0.843 0.705 0.60)
7 0,087 2.288 ©¢.300 0,387 0.427 0.640 0.703 0.805
8 0.086 2,230 0.252 0,333 0.416 0.824 0.607 0.534
9 0.086 2,218 0.25¢ 0.334 0.414 0.621 0.619 0.538
10 0.084 2,140 0.289 0.370 0.399 0.598 0,724 0.618
1n 0.066 1.337 0.116 0.149 0.249 0.374 0.463 0.398
12 0,085 1.299 o.117 a.152 0,242 0.363 Q.682 6.418
13 9.064 1.239 0.108 0,137 0.233 D.347 0.457 0.385
14 0. 062 1,162 0.081 a.110 0.217 0.325 0.378 0.33%
15 0, 060 1.108 0.083 0.107 0.207 0.3:0 0. 402 0.345
PB 1 0,081 4,485 0.413 0.548 0.660 0,891 Qa.825 0.553
2 0.076 3,142 0.282 0,375 0.462 0.683 0.612 a, 542
3 0,075 3. 069 0,259 0.326 0.451 0.676 0.574 0.482
4 0,060 2,007 0,124 0.165 0.295 0.442 0.419 0.373
5 0.059 1.916 0.134 0.187 0.281 0.422 0.475 0.396
6 0.047 1,208 0.055 0.103 0.178 0,266 C.312 0.379
7 0,045 1.087 0.046 0.057 0.160 | 0.240 0,288 0.238
Ps 1 0.191 4.57 0,314 0.415 | 0.464 0.697 0.677 0.3596
2 0,180 4.524 0.333 0.443 | 0.460 | O.689 0.725 0.643
3 0,188 4,463 0,317 0.398 | 0.453 | 0.680 0.698 0.587
4 0.161 3,254 0.231 | 0.207 | 0.331 §0.486 0.659 0.599
3 0,180 3,225 0.232 0.302 0.328 0,482 0.708 0.614
6 0.180 3.225 0,226 0.293 0.328 0.492 0.638 0, 588
7 0.147 2.704 0.193 0.237 0,275 0.412 0.704 0.575
8 0.144 2.811 0.214 0,268 0.265 ©.388 0,808 0.674
[} 0,139 2.425 0.141 0.188 0.246 0.370 0.573 g.508
10 0,137 2,374 0.144 | 0.183 | 0.241 0.362 0, 598 0,506
11 0.134 2.2%) 0,178 0.227 0.229 0.343 0.717 0.682
12 0.131 2.160 0.148 0,190 | 0.219 0.329 0.673 0.577 .
13 0.129 2,103 0.133 0,172 0.214 0.321 0.824 0,537
14 0,127 2.029 0.141 0,178 0,208 0.309 0.684 0.87%
13 0.125 1.968 0.151 Q0,197 0.200 | 0.300 0.756 0.857
16 0.102 1.308 0.067 { 0.083 | 0.133 | 0.199 Q2,502 0.416
17 0.102 1.288 0,058 0.075 a.132 0.198 0.438 0.379
18 6.101 1.2886 0.062 0.078 0.132 0.198 0.473 0.365
19 0.064 0.511 0.015 0.028 0.052 G.078 0.283 0.321
20 0,044 0.239 0.003 0.008 0.024 0.036 0.137 0.165
Psa 1 0.124 7.473 0.312 0.403 0.389 0.583 0. 803 0.681
2 0.124 7.379 0.206 0.368 0.384 0.576 0.770 0.639
3 0.082 4.081 0.162 0.308 0.212 0.318 0.764 0.853
4 0,082 2,055 0,171 | 0.208 | 0.211 0.318 0.811 0.661
5 0,081 3,968 0.144 0,192 0.2086 0.308 0.700 0.820
PA = pinned 2024-T4 sluminum PS5 = pinned colderolled 1018 steel
PB = pinned 8061-Té aluminum PSA = pinned snnealed 1018 steel
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Table 2.3

EXPERIMENTAL AND THEORETICAL RESULTS FOR CLAMPED BEAMS

I
Experiment _ R R 7 . 5 5 . 5 & a
No. (1b.sec.in. ‘) Bex't ‘ex Yo’ ‘th “ex” “th | “ex tn
CA 1 0.146 6.469 0.453 0.567 0.603 0.805 0.752 0,827
2 0.146 6.437 0.433 0,510 0.600 0.%00 0,722 C.567
3 0.146 6.412 0. 466 0.530 0.598 0,897 0.7178 0.59)1
4 0.144 6.236 0,409 0.490 0.581 0.872 0.703 0.562
5 0.143 6.191 0. 462 0.509 0.577 0.866 C.801 G.588
5 0,141 6.018 0.433 0.529 0.561 0,842 0.772 G.629
7 6,129 5.002 0,280 0.3343 0.466 0.693 G.600 0.478
8 0.128 4.884 0.304 6,362 0.463 0,694 0.658 0.522
: ] 0,101 3.060 0.204 0,247 0.285 0.428 0.7117 0.877
10 0.101 3.057 | 0.183 0.221 0,285 0.427 0.643 0.517
11 0,100 3.004 0.176 0.217 0.280 | 0.420 0,627 0.517
12 0.089 2.388 0.161 0.184 0.223 0.334 0.724 0.581
13 ¢, 074 1.666 ©. 087 0.112 0,155 0,233 0.558 0.481
14 0.072 1.572 0.080 0.093 0.147 6.220 0,546 0.423
15 0,058 1.014 | 0.049 | 0.057 | 0.095 | 0.142 0.517 0,402
cs 1 0,221 6,216 0.231 0.271 0.317 . 476 0.72¢ 0.570
2 ©.220 6.154 0.230 0.27¢ 0.314 0.471 0.733 0.573
3 0.198 4.997 G.178 0,208 0.255 0,382 0.697 0.539
4 0,196 4.885 0,187 0.226 0.250 | 0.375 0.748 0.603
£ 0,166 a.518 0.124 0.146 0.180 | 0.269 G.693 0,542
6 0.165 3.461 0.130 0.152 0.177 | 0.265 0.736 0.574
7 0.115 1.685 | 0,080 0.058 0.086 0.130 0.578 0,455
8 0.1314 1,663 0.051 0.080 0.08% 0,127 0.602 0.472
L] 0.071 0,638 0.7 0.01R 0.033 0,049 0.512 0.368
CA = clamped 2024-T4 eluminum
€8 = clamped cold-rolled 1018 steel

13 "

The subscripts 'ex' and "th" stand for experimental and theoretical
respectively. Symbols § and § represent permanent centiral deflec-
tions and slopes at or near the supports. For the pinned beams in
Table 2,2, the theoretical values are obtained from formulas (2.99) and
(2.100); those for the clamped beams in Table 2.3 are obtained from
formylas (2,103) and (2.104). Table 2.4 contains the averages of the
deflection ratios 6ex/5th and the slope ratios eex/eth for all ;ase;
of the series PA, PS, PSA, CA, and CS in which R > 2, where R =1 D/Me
is the ratio of the kinetic energy input to the elastic strain energy

capacity.

The central deflection results in Tables 2.2 and 2.3
are plotted in Figs, 2.28 and 2,29, Several of the beams were measured
along their entire lengths, and the resul;ing prc "*les are shown in
Figs. 2,30 through 2.33 along with the theoretical shapes as predicted

by either (2.98) or (2,102). ’
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Table 2.4

AVERAGE DEFLECTIGN AND

SLOPE RATIOS (R > 2)

Experiment
No, é¢=.->(;/5th 8ex/etch
PA 1-10 0.673 0.59.
PS 1-15 0.693 0.593
PSA 1-5 0.770 0.653
CA 1-1Z 0.7186 0.563
cS 1-6 0.723 0.567
0.6
T I
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0.4 e ]
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From the results in Tables 2.2 and 2,3 (and Figs. 2.28
and 2.29), it is clear that the central deflection or support slope
predictions are good for engineering applications. In the present series
of experiments no significant improvement of correlation occurs as R
is increased beyond 2. Table 2.4 shows that for the PA, PS, PSA, CA,
and CS series the average deflection ratios lie between 0.87 and 0,77

and the average slope ratios are between 0.56 and 0.66. .

From the deformed shapes shown in Figs. 2.30 through

2.33 we make the following observations.

1. Except in the central region, the experimental
curvature appears toc be smaller than the theoretical curveature, especially
for the pinned steel (PS) beams in Fig. 2.31. This indicates that the
traveling hinge model of mechanism 2 overestimates curvature; this could
be attributed to elastic effects and, in the case of ccld-rolled steel,
to strain-rate effects, At the center, the deformation by mechanism 1
predicts a slope discontinuity because of the ideal nature of a stationary
plastic hinge; a continuous clope at the center would be provided by in-
cluding elastic effects, the knee of the stress-strain curve in the case

of the aluminum, and strain-rate or strain-hardening effects.
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2, The theoretically predicted curvature of the clamped
beams is x = Yex = IZ/GnMQ, which is a constart, whereas the shapes
in Fig. 2.32 and 2.33 exhibit reverse curvatures adjacent to the support.
This criticism of the theory is not entirely valid, because experimental
design difficulties prevent a true comparison; keeping the span constant
requires that beam material be fed into the span region, thereby spread-
ing the stationary hinge at the support over & finite length of beam,
(An experiment providing clamping against rotation but allowing the span
to shorten as in the case of the pinned beam experiments introduces

longitudinal inertial forces,)

We have already mentioned that Fig. 2.27 provides a
gualitative justification of the mechanisms assumed in the rigid-plastic
theory. However, it does illustrate that elastic modes of vibration
can interfer with the smooth action of the mechanisms. This effect can
be seen by constructing from the framing camera record of Fig. 2.27 an
x-t plot of the traveling hinge. This is shown in Fig. 2.34. A smooth
curve could be obtained for 5 inches of the 9-inch half-span due to the
interaction with the elastic mode. The effect was to arrest the progress
of the hinge for about 100 Ksec after which the mechanisms continued to
operate. The half amplitude of the vibration was comparable to the beam

depth.

Returning to Fig. 2.34, the theoretical x-t plot from
Xy = (12!«501:/11)1/2 is shown for comparison with the experimental x-t
plot. Except during initial motion, when the theory exhibits the singu-

-1/2

lar behavior x_~t , the actual hinge velocity is greater than

h
predicted. However, the trends are similar and, except for the inter-
action mentioned above, do give confidence in the use of the rigid-

plastic model and its mechanisms,
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CHAPTER 3

RIGID-PLASTIC CIRCULAR 2 ATES ;

by
A. L. Florence

3.1 Introduction

In the introduction to Chapter 2 we stated that it is difficult
to find the response of a beam to a suddenly apnlied load which is large
enough to cause plastic deformation even when geometry changes are neg-
lected. This is true a fortiori for circular plates even under axisym-
metric conditions. Not only is the stress~strain state nonlinear, it is

also biaxial.

In order to render plate problems tractable to analysis, an
idealization of the stress-strain relationship similar to that in beam
analysis was introduced by Hopkins and Prager.1 For appropriate materials
(e.g., aluminum alloys and steels) it is assumed that thc material re-
mains rigid until a yield condition is satisfied, &nd only when it is
csatisfied is plastic deformation possible; such a material is called a
vigid-perfectly plastic material. Wwith this idealization Hopkins and
Pragerl found the static collapse loads of circular plates. Later2
they developed the dynamical theory of rigid-perfectl: plastic circular
rlates and found the response of a simply supported circular piste to a

uniformly distributed rectangular load pulse,

Throughout this chapter the treatment is restricted to circular
plates of material insensitive to strain rate. Membrane forces are
neglected, and the yield conditftion which is expressed in terms of bending
moments is that of Tresca. Problems related to those treated in this

chapter can be found in Refs, 3 through 8,

Section 3.2 discusses the Tresca yield condition and associated
flow law. A development of the dynamical theory of rigid-plastic plates

is contalned in Sections 3.3 and 3.4 covesing such topics as plastic
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regimes, ninge circles, continuity requirements at regime boundaries,
equilibrium equations, and the analytical approach. i

Sections 3.5 and 3.6 are devoted to finding the static collapse -

0
pressures of simply supported and clamped plates.g'1

In Section 3.7 the relationship among central deflection,
pressure, and impulse (area under pressure-time curve) is found for
uniformly distributed rectangular pulses acting on simply sﬁpported
circular plates.1 Fipally, a similar relationship is found ir Section 3.8

for clamped circular plates.11

3.2 Tresca Yield Condition and Flow Rule

We are now concerned with circular plates under axisymmetric

loads, so the stress components Gr, o} and oz in the radie}, cir-

S!
cumferential, and axial directions in the cylindrical coordinate system
{r, 8, z) are the principal stresses. The plate is assumed to be thin
enough to allow the usual assumption that the stress normal to the

middle plane is negligible. Accordingly, we shall assume Gz = 0,

In a simple uniaxial tensile test on an elastic-perfectly
plastic material,plastic deformation can occur only when the yield
stress co is reached. Similarly, in a biaxial state of stress,
plastic deformation is possible only if a certain yield condition is
fulfilled. The two most common yield conditions are those of von Mises

£
and Tresca which, ir terms of Oy and §,, can be written as

8
2 2 2
o, - Grge + ce =g, (3.1)
and
max (]Uri R ’oel .] o. - 09|) = q, {(3.2)

wherc again Ty is the yield stress obtained from a uniaxial tensile i

E
E test. The yield stress go is regarded throughout as a positive quantity,
:
;

3
See Ref. 9 for a more complete discussion of these yield conditions. i
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The conditions (3.1) and (3.2) can be looked upon as equations of an

ellipse and a hexagon when plotted in two-dimensional stress space as

shown in Fig. 3.1.

GA~-B733-70

FIG. 3.1 von MISES YIELD ELLIPSE
AND TRESCA YIELD HEXAGON

From this point on we shall confine our attenti&n to rigid~
perfectly plastic materials (which, for brevity, we shall c¢all rigid-
plastic) obeying the Tresca yield condition. For stress states within
the hexagon of Fig. 3.1 the material is rigid,; plastic deformation is
possible only when the stress state lies on the hexagon. Stress states
outside the hexagon do not exist. Note that since we have restricted
ourselves to rigid~plastic materials the yield hexagon retains its size,

shape, and position throughout deformation.

The flow rule states that the strain-rate vector (ér, ée) is an
outward normal to the yield hexagon when drawn in a strain-rate space
superposed on the stress space of o, and g_. (ér and ¢

8 8

posed in the same sense on the cr and ce axes, respectively.) The

axes super-

vector is drawn from the point on the yield hexagon describing the ex-

isting stress state. By way of illustration, we see that along the sides
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FA, AB, and BC, the strain-rate vectors are (ér. o), (o, éa)’ and

(ér, ée), and (ér, éG)' with -ér = ée in the last. At a éorner, the
strain-rate vector can take on any direction between the outward normals
of the two sides forming the corner. Note that the flow rule is con-
cerned only with the ratio of ér and ée and alone says nothing about
magnitudes.

Figure 3.2 shows a plate element and serves to establish the
sign convention adopted for the
bending moments Mr and M6 and

l for the shear force Q. Positive
deflections w(r, t) are taken
T in the direction of the positive
z axis (downward) so that positive
”T Mg moments cause tension below the mid-
plane and compression above the mid-

plane. Thus the moments per unit

EN

arc length of a plate of thickness

h are

SA-BTII-TI

h/2 h/2
FIG. 3.2 PLATE ELEMENT — NOTATION 4 = j'c‘ oz " =j' o zdz
r r ] 3]
-h/2 «h/2
(3.3)

1t will now be shown that whenever plastic bending is possible these
moments take on particularly simple forms which allow the Tresca yield
hexagon in stress space to be transformed into a hexagon in moment
space. Also, the flow rule stating the normality of the strain-rate
vector (ér, ée) to the stress hexagon transforms to the flow rule
stating the normality of the curvature-rate vector (kr, ke) to the

moment hexagon.

We shall now make use of 2 second assumption of plate theory,;
plate elements normal to the midsurface remain normal during deformation.
The kinematic consequence of this assumption is that ér = zkr and

& = Zy & /e = w [/« in terms of the tran
eQ zxe, and hence er/ee ur/xe, where, in ms of t t sverse
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velocity v = gw/3t, the principal curvature rates are

x = - QEX W= - 1av
Q
r arz a r ar

Since the ratio ér/éa is independent of z, the strain-rate vector has
the same slope for each level =z in the element, but the direction of
the vector above the midsurface is opposite that below the midsurface.
For a von Mises yield ellipse the slope and direction of the strain-
rate vector as an outward normal uniquely determines the stress distri-
bution on the sides oI the plate element. For a Tresca yield hexagon

a unique stress distribution can be justified if we regard each straight
side of the hexagon as the 1imit of a curve. Figure 3.3 shows a stress

distribution for a stress state on side AB of the hexagon in Fig. 3.1.

il m,

3
B

| B

e =

sa-3733-12
FIG. 3.3 STRESS DiISTRIBUTION ON PLATE ELEMENT

(Shown for stress point on AB of Fig, 3,1 ~
nete that ¢ = 0)

We have shown then that O, and 09, acting on the sides of the upper
half of a plate element, are constant (independent of =z}, and similarly,

they are constant on the lower half but opposite in sign. This simple
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stress distribution substituted into (3.3) for the bending moments

gives
M_ = o.n’/a M_ = gnisa (3.4) T
r or 2] g °
Thus, in terms of the moments, the Tresca yield condition
"becomes
max ([Mrt , [Me[ s M- Me]) =M
where Mo = °6h2/4 is the fully plastic moment per unit length.
Furthermore, with ér/ép= kr/ke the flow law states that the curvature-
rate vector (ir, ie) is normal to the moment hexagon when the kr’ ke §
plane is superposed on the Mr’ Me plane. The integrated or plate form :
of the Tresca yield condition and associated flow law shown in Fig. 3.4
is the form we shall use in solving rigid-plastic plate problems.
| M .
1 I("' %)
<g
B | A -
M,
— (419)
C M, AMr
M, F K
_M'
D E
SA-§7B88-73
FIG. 3.4 TRESCA YIELD HEXAGON FOR A PLATE
x
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3.3 Plastic Regimes, Hinge Circles, and Continuity Requirements

3.3.1 Plastic Regimes

By a plastic regime we mean the plastic bending moments

Mr and Me together with the curvature rates kr and k: associated
with @ corner or a side of the Tresca yield hexagon (Fig. 3.4). During
plastic deformation due to axisymmetric loading, a circular plate is
generally divided into a central region and one or more annular regions,
each with a certain plastic regime. In dynamics problems the circles
separating the regimes can have radii which are functions of time, and

even the numer of regimes can vary. Let us first lonk at the regimes

in Fig. 3.4 to see what can readily be deduced to assist in the solution

of plate problems.

It is sufficient to consider the regimes FA, A, AB, B,
BC, and C forming one~half of the perimeter of the hexagon in Fig. 3.4.
From the Tresca yield condition, the flow rule, and the curvature-rate
formulas

2
K—'z L
r

<
i f

QX
ar

oV}

the results of Table 3,1 are readily deduced. For brevity, a subscript
r 1is attached to the velocity v to denote partial differentiation.
The quantities a and b signify functions of time. It can be seen
that for the regimes FA, AB, and BC the r-dependency of the velocity

fields has been obtained.

Table 3.1

TRESCA PLASTIC REGIMES

(;;:x;f“ Bending Moments Curvature Rates Velocity Fields
FA H’_=N° 0<ue<HD irzo ,'..5:0 v=a
A ur=ue=0 n,rzo ;'\_;_30 v"_so vrs()
AB 0<Ir<ll la=llu kr=0 ,(920 v =nar+b
B .r=° \la=llCI - a s,‘lrso OSV”_s-vr/r
BC la'kr=lln Osis=-i‘_ v=alinre+bdb as0
[+ lrg—lu Mg=0 -xeﬂi‘rso Osvﬂls-vr/r
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3.3.2 Hinge Circles

If during deformation of a circular plate there is a
circle C across which the curvature rate kr and hence gv/ar is -
discontinuwous, C is called a "hinge circle;" it corresponds to a plastic
hinge in ¢ rigid-plastic beam and, like a plastic hinge, need not be
stationary. Like the plastic hinge, the hinge circle may be regarded as
the limiting case of bending as an elastic-plastic material tends to a i
rigid-plastic material (see Section 2.2). At the hinge circle the 3
curvature rate ir is infinite in the limit and, if the hinge circle is H
stationary, the curvature ®o. is also infinite in the limit (and the
curvature and slope are discontinuous across (). Referring to Fig. 3.4
or Table 3.1, the plastic regimes at hinge circles can be FA, A, and C
on the half of the hexagon under consideration, because an infinite ratio

ﬁr/ke is possible in these regimes.

3.3.3 Continuity Requirements

In order to discuss the continuity requirements at a
hinge circle, we shall treat a specific case which arises when a simply
supported circular plate is subjected to a blast pulse with a sufficiently
high peak pressure, or to an impulse uniformly distributed over the whole -
plate area. This should assist the physical interpretation of the results,

2
A more general treatment is given by Hopkins and Prager.

Consider then Fig., 3.5, which shows a plate radius at
an instant early in a plastic deformation process according to the
assumed plastic regimes indicated (see Fig. 3.4 for the plastic regimes
of the Tresca hexagon). A moving plastic hinge circle with a regime A
exists at a radius r = rh(t) wkich is assumed to be decreasing. The
situation is similar to the corresponding clamped beam mechanism 2
treated in Section 2.4.2. The central circular area 0 <r s rh(t) is
undergoing translatory motion at a velocity V(t) while the elemental
section in rh(t) < r Sa i1is undergoing rotatory motion about the
support at an angular velocity w(t). The deformed portion of the radius
outside the hinge circle does not deform further because the plastic

regime AB requires ir = 0.
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DEFORMATION AND PLASTIC g
REGIMES

The displacement is continuous and is given by

t

det 0 <r s rh(t)
o

wir, t) = { ¢

r
Ith - fe(r, t)dr rh(t) <£r €a

a rh(t)

(3.5)

in which g(r, t) = dw/3dr is the slope or rotation of an element of

the radius at time t.

By time differentiation of expressions (3.5), the

velocity distribution is

v 0 sr <1 (1)

AW _ h

i ‘ (3.8)
V - g(r - rh) + e(rh,t)rh rh(t) <r <a

As the radius of the plastic hinge circle decreases, esach element of
radius which it passes is rotated an infinitesimal angle. This angle
is wdt as the hinge circle radius changes by ihdt; thus the hinge

circle leaves behind it a deformed radius with a continuous slone ¢
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and a curvature "o = w/ih. In our example, Q(rh, t) of (3.6) is

infinitesimal and in the limit &(r , t) = 0, so that

h
\' 0<r <r (t)
3w _ h
3 (3.7)
V - afr - rh) rh(t) < T <a

and the velocity is continuous at r = rh(t). Note that if tae hinge
circle were stationary, a case which arises with a rectangular pulse of
sufficiently high peak pressure, e(rh, t) would be finite but ih = 0.
Hence (3.7) again applies.

By time differentiation of (3.7), the acceleration

distribution is

v 0<sr<r (t)
3 W _ h
-3 = (3.8)

V - g{r - rh) + rh(t) <rs<a

h

and we see that a discontinuity of acceieration equal to wih exists
at the hinge circle. Across a stationary hinge circle, the acceleration

is continuous (ih = 0).

From (3.5) the slopes are

( 0 0 sr sr (t)
aw B
i {(3.9)
- 8(r, t) rh(t) <r<a

and, since e(rh, t) = 0 when the hinge circle is moving, the slope
is continuous across the hinge circle., For a stationary hinge circle
e(rh, t) # 0 and the slope is discontinuous. Since 19 = =-3w/rar,
there results show that the circumferential co:nponent of curvature is
continuous across a moving hinge circle and discontinuous across a

stationary one.
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- The radial component of curvaturc . = —nzw/arz is
discontinuous across the moving hinge cirele. On the inside Ky = 0,
and on the outside, as we have shown, the hinge circle leaves behind it

. a curvature Ho. == m/ih. Across a stationary hingce circle o can bhe
either continuous or discontinuous. In our example with a rectangular
pulse of sufficiently high pressure, Uy = 0 on cither side of the

hinge circle and is therefore continuous.

Difterentiation of (3.7) with respect to r or (3.9)

with respect to t gives

aaw ‘ 0 0O<sr«< rh(t)
5 (3.10)
ote r - & rh(t) <r sa
. . 3 2
which shows that the curvature rate Kr = <3 w/3tar is discontinuous

across a stationary of nonstationary hinge circle unlcss the angular

velocity w is constant.

Finally, we shall find the continuity conditions at a

hinge circle which apply to the bending moments and shear force.

< Figure 3.6 shows two plate elements, one on either side of a hinge circle
Qr,+dr)d8
. Mgdr l
Medf
//
-~ - "
- Mydr
4 - - // — » 8
/a —:,/// — Madf
Pl o —
i 4o
k:<> Q'tr,-d11d8 7, +dr

|
0 GA-8735-78

FIG. 3.6 PLATE ELEMENTS NEXT TO HINGE CIRCLE
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or regime boundary of radius r =r With thce forces and moments

h’
shown, vertical equilibrium requires

Q"(rh + dr) - Q'(rh -dr) + (p’’ - mwé;)rh dr + (p’ - mwét)rh dr = 0

where wtt is the acceleration, Letting dr become zero ledves
Q' = Q’’ so that the shear force is continuous. Moment equilibrium
about r = rh requires

X4 ’ ¢ e 4 X -
Mr (rh + dr) Mr(rh dr) Q" +Q )rh dr (Mq + Me Ydr = 0

and, by again letting dr become zero, we have M; = M;' s0 that the
radial bending moment is continuous. Since the circumferential moments
M’ and M’'’ are independently in equilibrium, they need not be related

S| 8
to each other and may have a discontinuity across r = .

3.4 Analytical Abproach: Equilibrium Equations

The motion of a rigid-plastic beam takes place by means of
mechanisms consisting of finite rigid portions of beam joined by natural
or plastic hinges; the motion can be conveniently analyzed by using the
equations of rigid body dynamics. The motion of a plate, on the other
hand, involves yielding, not just at the hinge circle but throughout
finite regions of the plate. Nevertheless, by regarding an elemental
section as a tapered beam with moments Me distributed along its sides,
a mechanism approach is possible. However, in view of the complicated
"beam" shape (being triangular or trapezoidal in plan) and its loading,
one is forced to start from the equilibrium equations of a plate element
bounded by the polar coordinate lines. The concept of a mechanism ap-
plied to an elemental sector ot plate is still useful for an understanding

of the deformation process.
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With the aid of Fig. 3.7 the equations of equilibrium or motion

of a plate element are readily found to be
2
3 N 3w
+ - ————— =
FY (Qr; (p m 2)1' 0

(Mrr) - M9 -Qr =0

oflcu
ct

where p and m arec the applied pressure and mass per unit area of
plate. Since the shear force is zero at the plate center, these

eguations can be written in the form

. r

2]

d -M =or = - o ¥
3 (Mrr) MG Qr = f p-m atz)r dr (3.12)

To find the initial motion, a distribution of plastic regimes
is chosen corsistent with the center and support conditions. At the
plate center Mr = MG = Mo' so that the regime there is A in Fig. 3.4.
At a simple support Mr = 0, giving regime B; at a clamped support

Mr = —Mo, suggesting regime C. Regime boundaries must provide continuous

radial moments Mr' The flow rule of these regimes suggest velocity fields.

a2
(p- m -a-'—‘;-) rd8dr
Qrd8+ —-a‘: (Qr)drd@

h

Mgd'

M, rd8 + .da—r (M,r) drd8

—
_
P S e
P
Lz orde
. (/L/ dr
r e
//.

!
i
[’ GA-8733-T8

F1G. 3.7 PLATE ELEMENT — FORCES AND MOMENTS
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They have to be consis 'nt with the boundary conditions and give a
velocity distribution ntinuous in r. The velocity fields and moments
are then substituted n (3.12). These procedures will be applied to
dvnamic problems, bu tirst we shall devote the next two sections to

establishing static ccllapse pressures and mechanisms for simply sup-

ported and clamped circular plates.

3.5 Static Collapse Pressure of a Simply Supported Plate

The uniformly distributed pressure which just causes collapse
of a rigid-plastic simply supported circular plate will now he found,
Setting the inertia term equal to zero in (3.12) and treating the

pressure as a constant gives

o
1

-pr/2

(3.13)

H

2y - M —pr2/2

Jr 8

We shall assume that at collapse the entire plate is plastic
so that at each element & plastic regime exists. Then, at the center
M =M =M, and at the support M_ = 0. Now M must vary contin-

T g o r r

uousiy from Mr = 0 at the support to Mr =M at the center, Conse-

N
o
quently, the plastic regimes governing the plate deformation are A, AB,
and B in Fig. 3.8, with A at the center and B at the support. This means
that throughout the plate MS = Mo and (3.13) can be integrated to give

Mr = M° - pr2/6. Using the boundary condition Mr(a} = U, where a is

th2 plate radius, gives a stétic collapse pressure
= 6M /az (3.14)
Py o .

Before (3.14) can be said to be the actual ceollapse and not i
merely a lower bound,g’10 we must prove that the velocity field stemming ;
from the flow law is adnissible. Along AB of Fig. 3.8, & = -a2y/ar? = o, §
so that the velocity fields are of the form v = gr + B, where g and i

B are constants. Now the boundary condition v(a) = 0 demands that
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P i ]

G

PR  R  -er

2 = -ag and the velocity [ield

f)

Mg
;9 becomes
B i A
Mo v =y (1-1/a) (3.15)

where v0 is the indeterminate

M, M, velocity of the plate center at

Kr  collapse. The plate therefore
collapses into a cone with a
concentrated hinge circle at the

center, where the plastic regime

B, being a corner of the yield

hexagon, allows a discontinuity
6A-BT733-77

of slope. The velocity distri-

F1G. 3.8 TRESCA YIELD HEXAGON — REGIMES . - .
FOR SIMPLY SUPPORTED PLATE bution (3.15) gives the mechanism
applicable to an elemental plate

sector, Each radius remains straight and rotates as a ''rigid body" about
the support. Since the velocity field satisfies all conditions, (3.14)

gives the static collapse pressure.

3.6 Static Collapse Pressure of a Clamped Plate

We shalli now find the uniform pressure which just causes
collepse of a rigid-plastic clamped circular plate. By setting the
inertia term equal to zero and by treating the pressure as a constant,

~equaticns (3.12) become

o
I

-pr/2
(3.16)

-pr2/2

Il

3
=M 1) - M
r

ar a

At collapse, the entire plate is assumed to e plastic sc that
£t each plate element a plastic regime exists. Then, as for simply
supported plates, we have Mr =»M9 = Mo in plastic regime A at the
center (see Fig. 3.9). At a clamped support either the slope dw/dr = O

(which gives kg = ~dv/rdr = 0) or a hinge circle exiets there. To find
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which condition actually occurs

MG at the support, 1let us work out-

*

Kg ’ . ward from the center ol the .
8 plate, determining plastic re-

M,

gimes as we proceed, For con-
tinuity of Mr’ the regime for

the area of plate'surrounding

P the center is either A, AF, or

AB. 1t cannot be A(Mr = M% =

M )or AF(M =M, O <M < M)
o r o a o)

because Mr = Mo substituted

2
in (3.16) gives M, = M0 + pr /2,

<

which is incompatible with

SGA-8733-7R M, =M for A and:f O< M <M
8 o ] o

FIG. 3.9 TRESCA YIELD HEXAGON — REGIMES ©F AF+ Thus, in the vicinity
FOR CLAMPED PLATE of the center, the: regime is AB
(Me = Mo, 0 < M, < Mo), which -
is compatible with (3.16). The corresponding velocity field, from the
flow law kr = -dzv/dr2 = 0, is of the form v = gr + 8. For this regime
to extend to the support at radius a, we have v = -g{a -~ r). Thus e
zero slope is not possible at the support and, since the alternative is
a plastic hinge circle with Mr = —Mo, the plastic regime AB does not
reach the support. We therefore let B be the regime at an interior
circle of radius r = rb; outside this circle the regime is BC, since
Mr mist be continuous throughout the plate. Regime BC has the yield
condition Mg - Mr = Mo and the flow law iﬁ + ir = 0, the latter de-
manding velocity fields of the form v = v {nr + §, where vy and §
are constants. With the support condition v(a) = 0, the velocity be-
comes v = -y {n(a/r) giving at the support ie = —Y/az, which is not
zero., Hence the support is a hinge circle with plastic regime C, and i
we have Mr = -Mo. We now proceed to find the collapse pressure using E
the deduced distribution of plastic regimes, A at »r =0, ABin 0 <r <

Eat r =1r BCin r <r <a, and C at r = a.

Ty b’ b
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In the region 0 <r < Ty with plastic regime AB, we have
M, = Mo so that (3.16) gives for Mr the expression Mr = Mo - pr2/6.
the as yet unknown radius r = Ty the plastic regime is B with

Mr = 0 so that the static collapse pressure is
= 6M /r2 (3.17)
Py o b )

provided the velocity field satisfies all its requirements., To find ry

we first note that the region rb <r <a 1is governed by regime BC with

the yield condition Me = My + Mr which when substituted in (3.16) gives
3 -

M= MawLn(r/rb) - p(r -~ ri)/4. Then with the suppcrt condition

Mr(a) = -Mo we have the equation for (rb/a)2
2 2
5 + Ln(a/rb) = 3(a/rb)

with the solution rb/a = 0.730. Thus the static collapse lcad of (3.17)

becomes
P .

This value must be regarded as a lower bound until it is established

that the velocity field satisfies all requirements.

The velocity distribution from the flow rule of regimes AB and
BC is

nr + 8 g<r<r
v = (3.19)
yinr + & r <r <a
Eliminating from (3.19) the constants Yy and § by ensuring continuity
of v and dv/dr (no hinge circle with regime B) at r = r_  and

b
eliminating B by satisfying the support condition v(a) = 0 1leads to
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By, TNt oy Ln(l/ob) 0 <gp = o

v =v (3.20)
o
) 1 < <1
Py 0(1/0) by ~ 0
where v, = -ga, 5 = r/a, and pb = rb/a. The portion of the plate with-
in r = Ty becomes a cone with a concentrated hinge circle at the center

where the plastic regime is A. At r =71 where the plastic regime is

b’
B, continuity of velocity and slope is assured. At the support where the
plastic regime is C, the velocity is zero and a hinge circle exists, All
requirements are met by the velocity field, and (3.18) is the static

collapse load,

3.7 Simply Supported Plare Subjected to a Rectangular Pulse

We shall now find the relationship among the peak pressure,
impulse, and final central deflection for a simply supported circular
rigid-plastic plate subjected to a rectangular pulse uniformly distributed
over its entire area. As shown in Fig. 3.10, the pulse has an instan-
taneous rise to a pressure P which remains constant until a time to
when it instantaneously falls to zero, The pressure and impulse functioans

meeting this description are

0 < i

pm St < t°
p:

V] t > to

pmt = Io(t/to) 0t < to
1 =

pmto = Io t 2 t0

It will be convenient to express our results ir terms of the

dimensionless Variables
) p /p 8nd - 6/(1 a /mM ) ( - 21)
A v 3

where P is the static collapse pressure, § the central deflection,
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p a the plate radius, m the mass of
E-LLLL.LL.L.LL.LL.LLL*.A plate per unit area, and Mo the fully
LLD e plastic mcment per unit length of polar

coordinate line. Instead of the sym-

bols Mr and M_, for the radial and
3

4 |
° { circumferential bending moments, we
-
shall use M and N. This will permit
L the consistent use of subscripts r
L and t to denote partial differentia-
° et .
GA-5733-79 tion.
FIG. 3.10 CIRCULAR PLATE PROBLEM We recall that in Section 3.5

the static collapse pressure and the

associatet velocity field were found to be

6M°/a2 (3.22)

k2]
I

and

V(1 - r/a) (3.23)

€
i

When a rectangular pulse is applied with a pressure slightly in excess

of the static collapse pressure, the inertia forces are small so that

it is reasoneble to assume the velocity distribution (3.23) with

VY = V(t). From the point of view of the motion of a radius or diameter
and the analogcus motion of & sinply supported beam, the velocity distri-

bution (3.22) will give rise to 2 mechspnism which we shall call mechanism 1.

3.7.1 Mechanism 1, Phase 1 (0 st < to)

The velocity distribution (3.23) implies that the whole
plate is plastic and governed by regime AB of Fig. 3.1le, with A at the
center and B at the support, as shown In Fig. 2.11la. Consequently we

have

(3.24)

=

O sMsHM N =i
[¢]
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Introducing now the equation of motion (see Section 3.4)

(Mr)r - N

substituting N from (3.24),

with respect to r leads to

M=M - pmr2/2 + mVri(2 - r/a)/12

tt

T

-f(p - mwtt)r dr

o
from (3.23), and integrating twice

(3.25)

0 st< to (3.26)

At the support M(a,t) = 0 so that, with the use of (3.22), expression

Pb——— A

A AB B
{a) MECHANISM |

—d [£9
Q
m——
A A A AB B

(b)] MECHANISM 2

N

gl 1 a

M,

‘

{c) TRESCA YIELD HEXAGON

GA~-8733-30

FIG. 3.11 MECHANISMS AND PLASTIC
REGIMES. (a) Mechanism 1,
{b) Mechanism 2, (c) Trescc
yield hexagon

(3.26) gives the central acceleration

as

Vv = 2(pm - ps)/m (3.27)

With the initial conditions w(0O,r) = -
w({0,r) = 0, and hence V(0) = 0, suc-

cessive time integrations of (3.27)

give the central velocity and deflection -

as

<
]

2(pm - ps)t/m

6= (p_ = p )t/ (3.28)
This phase of the motion ends at
the same time as the pulse, at time
to' At this time the deflection ex-
pression, in terms of the dimensionless
variables X and v of (3.21), becomes

v, = (1 - 1/20)/6) (3.29)
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Before considering the next phase of motion the
expression (3.26) must be examined to see il any restrictions have to be
imposed in order that the moment M satisfies the yield condition (3.24).
As we shall presently see, a restriction is indeed necessary and takes the
form of a bound on the pressure pm, as ianimilar beam problems., This
is to be expected because we assumed inertia forces small enough not to
change the static collapse mechanism and, if the pressure is high enough,

this assumption can no longer be reasonable.

By substituting the central acceleration expression (3.27)

in (3.26), we find that moment can be represented in the form

WM, = 1= he® + (0= Dp(2 = p) (3.30)
where, for brevity, we have let p = r/a. The derivative of (3.30) with
respect to o is p[(x - 1)(4 - 3p) - 2)], which is zero at p =0 and
less than zero for all p in 0<p <1 1if 1 <) <2, Hence if ) 1is
in the range 1 < ) < 2, the moment decreases monotonically from M = Mo
at the center to M = 0 at the support and thereby satisfies the yield
condition (3.24). As )\ 1s increased through ) = 2, the sign of the
second derivative with respect to p changes from negative to positive
at p =0, so that M changes from 2 meximum to a minimum, Thus, when-
ever ) > 2, the yield condition is violated in the neighborhood of the
plate center. This suggests that a central area of plate undergoes

translatory motion when X > 2. This will be taken up under mechanism 2

below.

3.7.2  Mechanism 1, Phase 2 (b, <t <t,)

During the remaining motion no pressure is being

applied. The radial bending moment and central acceleration, from (3.28)
and (3.27) with P, = 0, are
M=M + mvr? (2 - r/8)/12 (3.31)

V= ~2p /m (3.32)
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Noting that V(to) = 2(pm - ps)/to/m. integrating (3.32) gives for the

central velocity

Vo= 2(pt - pt) (3.33)

The time t2 when motion ceases, obtained by setting V(t2) =0 in

(3.33), is t2 = (pm/ps)t0 = xto. By integrating (3.33) from t = to

to t = t2 the central deflection acquired during this phase of motion,

in terms of )\ and v of (3,21), is found to be

~ 2
Vg TV, = (1 - 1/0) /6 (3.34)

Thus with Vo determined by (3.29) the total central deflection is
vz = (1 - 1/)0)/6 1< i< 2 (3.35)

Again, to ensure that the radial bending moment satisfies
the yield condition (3.24), we substitute {3.32) into (3.31). Then we

have
2
M/Mo =1=p(2-~-0p)

which shows that the moment monotonically decreases from M =M at

o
p=0 to M=90 at [ =1.

3.7.3 Mechanism 2, Phase 1 (0 £t < to

I. Section 3.7.1 it was found plausible (whenever
A > 2) to consider a mechanism in which a finite central portion of
plate undergoes translatory motion; the tendency of the bending moment
diagram to flatten out near the center as )\ 4+ 2 from below suggests
this mechanism., The plastic regimes are A in the central region bounded
by a hinge circle of some radius r = rh with regime A, AB in the outer
annulus, and B at the support. Figure 3.11b shows mechanism 2 and the

distribution of plastic regimes.
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From the flow law, continuity of velecity ut r = T
and the support condition wt(a, t) = 0, the velocity field of mechanism 2

is

v 0O «<r =<r
v o= (3.36)

t a~-r
e Y r <r <a
. (a rh) h

An assumption of the mechanism is that the hinge circle is stationary

while a rectangular pulse is being applied. Notc that

w
tr
-V/(a - rh) rY < r sa

is discontinuous at r = rh, which is consistent with the definition of

a hinge circle.

For the central region O < r < r the equation of

h!
motion is simply

(3.37)

n
-

my = P or mv
If we substitute p = P, wtt from (3.36), and N = Mo’ in the equation
of motion (3.25), carry out the first integration on the right-hand side,

integrate the resulting equation from r to r in the range rh <r<a

h
using the continuity condition M = Mo at r = rh, and simplify the
algebra we are led to the result
MM =1-)(r -r )3(r +r )/2a2r(a -r) r <r <a (3.38)
o h h h h

Now making use of the support condition M(a, t) = 0, (3.38) yields

A= 2a3/(a - rh)z(a + rh) A> 2 (3.39)
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which, when substituted back into (3.38), gives

_ - _ 3 _ 3
M/Mo =1 - a(r rh) (r + rh)/r(a rh) (a + rh) r, ST sa .

(3.40)

From (3.39), as ) -+ o, rh -+ a which says that when an
ideal impulse (infinite pressure, zero duration) is applied the hinge
circle is at the suppert, In the next phase, which describes the ;
motion after the pressure has been removed, we shall see that the hinge .
circle diminishes to a point at the plate center, sc for an ideal im-
pulse the initial location is the support circle and it immediately

starts to decrease. For a given value of ) , (3.39) gives the

following cubic equation for ph = rh/a:
3 2 L, s (a~2/0)=0 A> 2 (3.41)
Dh ph ch A - .

The guestion now arises as to whether a restriction
on )\ 1is necessary to ensure that the radial moment expressed by

(3.40) obeys the yield condition 0 s M < Mo of the plastic regime AB,

It is readily shown by differentiating (3.40) that Mr s € for all -
values of r in the range Th <£r $a, with Mr =0 only at r = rh.
Consequently, M decreases monotonically from M =M at r =r to

[ h
M=0 at r =a for all )} > 2, and no restriction on X is required.

Ti1s phase ends with the pulse at time t = to. From
{3.37), the central deflection at this time, in terms of the variable
X and v of (3.21), is

Vo = 1/12) (3.42)

3.7.4 Mechanism 2, Phase 2 (to <t < tl)

With the removal of the pressure the central portion of
the plate moves at 2 constant velocity Vo = Io/m. 1f the plastic
hinge were to remain stationary, the platé would retain its kinetic

energy with no dissipation by plastic work. Clearly this is not
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possible, so the plastic hinge cirvele is assumed to diminish and cventu-

ally become a point at the plate center. Thus we are led to the velocity

field
VO 0O vr = rh(t)
Yo T .k | (3.43)
‘a—_—;ﬁ . Vo rh(t) L r sa

Substituting p = O, wtt from (3.43), and N = Mo into
the equation of motion {(3.25), carrying out the first integration on
the right-hand side, integrating the resulting equation from rh to r

in the range rh <r <a using the continuity condition M = MO at

r =r and simplifying the algebra leads to the equation

hl
2 2 . 2r 2
2(M/Mo - 1l)a"r(a - rh) + xtorh(r - rh) [r“ - 2r(a - rh) - rh(4a - 3rh)] =0

(3.44)

Use of the support condition M(a,t) = 0 in (3.44) gives

. - 3 _
r, = 2a /Xto(aA rh)(a + 3rh) (3.45)

Noting that Xto = Io/ps, we see from (3.45) that for an
ideal impulse the initial velocity of the hinge circle is¢ intinite
(as )\ - o, ry -+ a).

The lccation of the plastic hinge can be found by inte-
grating (3.45) and using (3.41) to give the initial location. This
procedure results in the following cubic for Py = rh/a:

3 2 -
P~ Py " Pt (1 - 2t/kto) =0 A> 2 (3.46)

Substituting the hinge velocity ih from {(3.45) back into

(3.44) gives for the bending moment distribution the expression

2r 2, _ 1 N
M/MO =1+ a(r - rh) [r - 2r(a -~ rh) - rh(4a 3rh)1/r(a rh) (a + 3rh)

r <r <a
h
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We can show that M monotonically decreases from M = Mo at r = rh
toc M=0 at r =a for all X > 2, so that no restricticns are

required.

This phase of motion ends at a time t1 when the hinge

circle reaches the plate center. Hence by substituting = 0 into

Ph

(3.46), we have t1 = \to/2. From t = t0 to t = t1 the velocity of .

the plate center is Vo' a constant. Thus the central deflection
acquired during this phase is Io(t1 - to)/m which, in terms of )
and v, is

VTV, T (1 - 2/))/12 A > 2

and since vy = 1/12% by (3.42), we have

vy = (1 - 1/)\)/12 L> 2 (3.47)

The remaining motion takes place by mechanism 1.

3.7.5 Mechanism 1, Phase 3 (t1 <t < tz)

After the hinge circle becomes a point at the plate center,
the whole plate is in plastic regime AB, as it was throughout motion

when the pressures were in the range P < P < 2ps.

I

The acceleration V of the center is determined by (3.32)
and, after integration with V(tl) = Io/m and t1 = IO/ZpS, the velocity

of the center is found to be
vV = 2(1o - pst)/m (3.48)

»-.7~
Motion ceases at a time t2 = Io/pS = 2t1, determined by (3.48) with

V(tz) = 0, The increase in central deflection, found by integrating

(3.48) from t. to t,, is (in terms of V)

1 2

Vo TV = 1/24 AL>2
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and hence with vl Lgiven by (3.47)

= (3/2 - 1/\)/12 ;v 2 (3.19)

Vo

As ) #+ o with I° held constant, an idenl jmpulse is

approached which, according to (3.49), produces a central d<flection of

Vy = 1/8 A= (3.50)

3.7.6 Relationship among Pressure, Impulse, and Central
Deflection

Figure 3.12 shows the relationship among pressure, im-
pulse, and central detlection in the form of a graph of ) versus v
obtained from formulas (3.35) and (3.49). For convenience, these
formulas are written on Fig., 3.12. The graph bears a strong resemblance
to the corresponding curves for clamped and simply supported beams, as
can be seen from Figs. 2.16 and 2.17 (curve C). For a fixed impulse,
the ceutral deflection § increases monotonically with the pressure,
tending to an asyvmptote at v = 1/8 representing the ideal impulse
case., At low pressures the deflection is extremecly sensitive to a
change in pressure. For example, increasing the valiue of ; from 1.1
to 2.0 increases by 5~1/2 times the value of §. At high pressures the
deflection is insensitive to a change of pressure. [n fact at )\ = 8.
about 92% of the deflection due to an ideal impulse of magritude Io
is attained.

Figure 3.13 is a pressure-impulse diagram and is con-
structed as follows.' For a rectangular pulse we have § = (Izaz/mMo)v(l).
where v()A) 1is (3.35) or (3.49), and for an ideal impulse 11 we have
61 = (I?ez/mmo)vl, where v, = 1/8 by (3.50). Let the two deflections
be equal. Then we have (Io/ll)2 = vl/v(k) so that

1 N4, - 1) 1 <) s2
(Yg)z = (3.51)
1 3N/ (3\ - 2) 2 <)\
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FIG. 3.12 PRESSURE-IMPULSE-CENTRAL DEFLECTION
RELATIONSHIP FOR SIMPLY SUPPORTED PLATE

The curve in Fig. 3.13, obtained from (3.51), shows how
the pressure and impulse of a rectangular pulse have to be varied to
maintain a given central deflection §. The curve is similar in form to
that for simply supported and clamped beams, as can be seen from Fig. 2,23
(curve C). The asymptotes 1’_',’11 =1 and ) =1 represent the limiting
cases of ideal impulsive and static loading. It is interesting to
observe that whenever ) > 6 the impulse giving the same deflection as

an ideal impulse is less than 6% larger than the ideal impulse.
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FIG. 3.13 PRESSURE~IMPULSE DIAGRAM FOR 5IMPLY SUPPORTED
PLATE

3.8 Clamped Circular Plate 3ubjected to a Rectangular Pulcse

Finding the response of a clamped circular rigid-plastic plate to
a rectangular pulse uniformly distributed over its entire area is far
more difficult than finding the response when the plate is simply
supported. Closed form solutions giving the variation of central de-
flection with pressure and impulse are not obtained as they wers in
Section 3.7, because the velocity fields are far more complicated. We
recall from Section 3.6 that even finding the static collapse pressure
requires the solution of a transcendental eguation, To obtain the

solutio.. therefore, numerieczl analysis is employed.
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As shown in Fig. 3.14, the pulse has an instantancous rise to
a pressure pm which remains constant until a time to when it instan-
tancously falls to zero. The pressure and impulse functions meeting

this description are

pm 0 st < to
p -
G t > to
pmt = Io(t/to) G <t < to
I =
\ pmto = Io t e to
pit)
7
Avvbidivtibiitdelp
4 R pZ
P ‘}
P i
° 1, e
GA-5733-83
FiG. 3.14 CIRCULAR PLATE PROBLEM
3.8.1 Mechanisms of Deformation

In Section 3.6 it is established that the static

collapse pressure is

p = 6M /r> (3.52)
s o 5
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where rq/a = 0.73 is the solution of the equation
2 2
5 + Ln(a/rs) =.3(a/rq)

a being the plate radius. The associated velocity field (2.20) can be

expressed in the form

vV(l - ¢ p/ps) 0 <p = P
w = (3.53)
vV g {in(1/p) o, Sp <1

where = r/a, =r /a, and 1/0 = 4n(1/p ) + 1. V 1is the indeter-
p Og s Ds

minate velocity of the plate center,

When the pressure is slightly greater than the static
collapse pressure Pgr it is reasonable to assume that the dynamic mode
of collapse has & velocity field similar to (3.53) because inertia forces
are still small. The only difference in the velocity fields is that,
instead of the dimensionless radius Dy we shall require a new radius
pl(t), which depends on the pressure and time. However, in the first
phase of motion covering the period during which the constant pressure

is being applied, we shall assume that is constant at a value which

p
1
depends on the pressure. In the second phase, which covers the remain-
ing motion,’ Y will be taken as a function of time having as its

initial value the constant value in phase 1. Thus we have the following

velocity field:

V(1 - ¢ p/pl) 0<ps pl(t)
vy = (3.54)
V o tn(1/p) pl(t) <p sl
where
/o = 4n(1/p)) + 1 (3.55)
o
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and ¢
1

is understood to remain canstant while the pressure is acting.,

The motion of a radius or disameter in accordance with (3.54) and (3.55)

will resemble a mechanism,

We shall call it mechanism 1.

The distri-

bution of plastic regimes associated with this mechanism is shown in

Fig. 3.15.

As in section 3.7, M and N are the radial and circumferential

bending moments; they are positive when they cause tension on the under-

side of the plate,

r it -
W ~ ]

/
A LB B 8C [
{a) MECHANISM 1

¢ r,,(ﬂ -.|(t) Q

e

A A A a8 B BC C
{b} MECHANISM 2

N

Mo

(c) TRESCA YIiELD HEXAGON

QA-5733-84

TiG. 3,15 MECHANISMS AND PLASTIC
REGIMES, (a) Mechanism 1,
(b} Mechonism 2, (c) Tresca
yield hexagon

t
V 0 gn(l/p)

A
w, = s v - cls - po)/cl]

The assumption of small inertia
forces makes it predictable at the out-
set that the velocity field (3.54) will
not be applicable for all pressures.

We shall see that the upper bound for
the pressure causing deformation by
mechanism 1 is P~ 2ps. At this

pressure, an inflection point in the

bending moment diagram occurs at the

plate center; slightly higher pressures

bring about a2 change from a maximum

moment to a minimum, thereby causing

the yield condition to be violated inm -
the neighborhood of the plate center.
As in the case of beams and simply
supported circular;plates, this be-
havior suggests that whenever P, >
2pS a finite central portion of plate
acquires a uniformly distributed
velocity. This mechanism, called
mechanism 2, has the distr.bution of
plastic regimes shown in Fig., 3.15

with the following velocity field:

C £p = po(t)
(3.56)

A

QO(I) s s pl(t)
pl(t)spsl *
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where
1/0 = 4n(1/p) + (1 - po/pl) (3.57)

The plastic regime A now occupies a ({inite circular
area, the circumference of which forms a plastic hinge circle of radius
po(t). While the constant pressure (pm > 2ps) is acting, both Po and
Py are assumed to remain at a constant value which depends on the
pressure. Upon removal of the pressure they are no longer constant.
The hinge circle reduces to a central point and thereafter deformation

concludes by mechanism 1.

Starting from the equation of motion (Section 3.4)

r
(Mr)r -N= - f(p - me)rdr (3.58)
o

we shall now derive the equations governing motion by mechanisms 1 and
2. The resulting equations are applicable to general blast pulses but

will be solved only for the special case of a rectangular pulse.
*

3.8.2 Governing Equations for Mechanism 2

Wheri the peak pressure of a blast pulse is large enough
to cause deformation .by mechanism 2, the acceleration to be substituted
in (3.58) is obtained by differentiating (3.56) and (3.57) with respect
to time. The circumferential component is eliminated by using the yleld
condition of Fig. 3.15 in conjunction with the distribution of plastic
regimes. Due to the three prope ties M = MO in 0 sr < ro, M(rl,t) = 0,
and M(a,t) = -Mo, integration of (3.58) leads to the following three
equations:

2gs
v/ =)e “/2 (3.59)
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vz + mn (2603 - 3n v )+ (6 = 8n + 3r)) - ve'rElEe - 8n v 30P)

+ n(1 - (4 - 3] -vn'rPl28(3 - 2n) + n(4 - 30] (3.60)

2(E_-8)
= e ° (3 - 3n+ nz) -1 ezg(ﬁ + n)z

viE + i35 - 3 - 263 - 3+ 312 - 1)) - ve'l3e?E - 3 - 2¢

}3 - n?(l -~ (3 - 2n)= - 252(3 - 6n + enz - zna)]
' (3.61)

- vn'[3¢®® = 3 - 2603 - 31 + 21°) - 662(1 - m°]
2(8_-8) . .
=lae ® (.12 -+ 01?8 (g4 2

The new dimensionless variables that have heen intro-

duced in the derivation of (3.59), (3.60), and (3.61) are defined by

£ = Ln(l/pl) n=1- po/pl A= p/?S g, = Ln(l/ﬁs)
(3.62) -

The primes denote differentiation with respect to the variable 7’

where
v/ = 12M°t/ma2

For a rectangular pulse of pressure pm. we have ) = pm/ps.

3.8.3 Governing Equations for Mechanism 1

Whenever the peak pressure is low enough to cause de-
formation by mechanism 1, the acceleration to be substituted in (3.58)
is obtained by differentiating (3.54) and (3.55) with respect to t.
N is eliminated by means of the yield condition used in conjunction
with the distribution of plastic regimes. Then, after integration
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of (3.58), satisfying the conditions M(rl,t) =0 and M(a,t) =0
gives the following two equations:

/ : 2(5,-8) 2¢ 2
V/(E + 1)(28 + 1) - VE'E = [)e - 1]e“3(g + 1) (3.63)

V/(E + 1)(3e°° - 3) - 48) - ve'(3e25 - 3 - 62 - 26%)
(3.64)

2(88-5)

= [3re 25 - 12 -+ g)]e2§(g + 12

Alternatively, (3.63) and (3.64) are obtainable from (3.60) and (3.61),
which govern mechanism 2, by setting n = l(po = 0, r, = 0) and n'>= 0.

3.8.4 Rectangular Pulse--Mechanism 2, Phase 1 (0 < t < to)

Specializing to a rectangular pulse, a solution of
(3.59), (3.60), and (3.61), is obtainable if we assume that £ and n

are constants while the load is applied., Thus we set g' = n' =0 in

(3.60) and (3.61), and substitute V’ from (3.59). Note that ) = pm/ps
is a constant for a rectangular pulse. Equations (3.60) and (3.61) now

become

2(55-5) 3
2(E + n) = e mie-nmn (3.65)

2(g_-£)
208+ M+ 8 =de ° [325 -1+
(3.66)

+ E(3 - 6n + 6112 - 2'q3) + 3(1 - n)]

The lower bound of ) causing deformation by mechanism 2 can be found
by substituting n =1 (po = 0) 1in (3.65) and (3.66). In this way, we

obtain

2¢
xe 5= 2(f + 1)e25 (3.67)

where £ 1is determined by the equation

3ze?® = 3 (3.68)
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From (3.67) and (3.68), X ~2 and £ = 0.216 (p, = 0.805), '

For a given value of ) > 2, (3.67) and (3.68) fix the

initial values of £ and 1, and hence of N and Py -

The pulse ends at a time t = t, (7' = To') and, if
the velocity of the plate center at this time is Vo, integration of

(3.59) gives

ZES
- 4 =
Vo = 1/2 )e o Io/m

Now V = pmt/m; therefore, by integration, the central deflection 60

at time t is
o
2¢ 2
v, = 1/12 xe ® = o /12) (3.69)
where we have introduced the dimensionless deflection

_ 2 2
v = 8/(1 a /mMo)

3.8.5 Rectangular Pulse--Mechanism 2, Phase 2 (to <t«< t1

When t > to no pressure is acting, so that A = 0
and hence, from (3.59), V' = 0. Thus the central region of the plate,
0 =sr < ro(t), moves at a constant velocity V0 = Io/m. It is evident
from (3.60) and (3.61) that € and 7 can no longer he treated as

constants. Introducing now 2 new dimensionless time,

2 2
T = 12M (¢ -t )/maV_ = 12M (t - t )/I a
(3.60) and (3.61) become

ele(6 - 8n + 312) + n(1 - (4 - 3] + 1’283 - 27

(3.70)
+ n(4 - 3n)] = e‘g(g + n)z/rF
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2F 2
i’[Se -3 - 2§=3 - 2n (1 - (3 - 27]); - 2%2(3 - 6n + an - Zna)]

+ n'[3e2g - 3 - 28(3 ~ 3n2 + 2r3) -~ 652(1 - n)z] = 625(9 + ﬂ)z(i + 1)

(3.71)

where the primes denote differentiation with respect to 7.

The numerical technique is described in detail in
Refs. 5 and 11 but, briefly, it consists of putting (3.70) and (3.71)
in the form dg/dn = -P(g,n)/Q(€,n) and, starting from the initial
values of § and 1 obtained from (3.65) and (3.56), computing the
trajectory in the (g,n) plane (method of isoclines) until mn = 1. The
duration of phase 2 is found by summing the increments Ag/g’ along

‘the trajectory. If phase 2 ends at time t_, the central deflection

1
occurring in phase 2 is '61 - 60 = Vo(t1 - to). In terms of v and

T, we have

Vp TV, T 71/12 (3.72)

with Vo given by (3.69).

3.8.6 Rectangular Pulse--Mechanism 1, Phase 3 (t1 <t < tz)

The equations governing the final phase of motion,
obtained by setting m =1, i’ =0, and A-= 0, in (3.60) and (3.61),

are
C'(E + 1)(2E + 1) = CE'E = - (£ + 1)2e2g (3.73)
C/(E + 1)(3e25 = 3 = 4E) - (E'(3e25 = 3 - 6 - 26°) = ~(E + 1)%e20
(3.74)

where ( = V/vo and primes denote differentiation with respect to 1.

From (3.73) and (3.74), we find that

. g
- £+ 1 ) { _ (1 - E)dE ]
¢ ( g v 1) ./f 4+ 7€ + 28° ~ 3¢5
: S y (3.75)

I
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where ﬁl is the valuc of ¢ and the end of phase 2,

Motion ceases when V = 0 or ( = 0 and this occurs
when F = £ ~ 0,478, which is the solution of 4 + 77 + 2¢° - 3¢°0 =

Let 7 be the value of T when motion ceases. Then

!

(3¢2% - 4e - 68 - 3)¢ a7
33 2o (3.76)
(E + 1)(4 + 7E + 285 - 3e” ')

2

nlm

=
\,.

Finally, let the central deflection by 6 when 17 = Toe Then
Ty
62-61_12M fvd'r
"
and hence
. 2 2€ 2 2
_ 1 (3e”° - 48" - 6E - 3)(C dE
Vo TV T T3 ZE 3 5% (3.77)
z e 2(F + 1)(4 + 7€ + 2 - 3e )
"1
where 2 is given by (3.72) and ( by (3.75).

3.8.7 Rectangular Pulse--Mechanism 1, Phace 1 (0 < t < t

When the pressure lies between pS and 2ps, the

equations governihg the motion during phase 1 are

2(E_-¢
vi(2€ + 1) =] 2e s -1 ezg(a + 1) (3.78)

: 2(g-8)
v’(3e29 - 3 - 4€) = | 3)e s (eZE -1)/2 - (£+ 1) ezg(g + 1)

(3.79)
where the primes denote differentiation with respect to t/. These

equations can be obtained by setting n = 1, n' = 0, and g’ =0 in
(3.60) and (3.61).
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Eliminating V' between (3.78) and (3.79) gives

2(z -~%)
s

3)e (e

N

2g

-1/2 -2+ D (26 + 1)
(3.80)

i}
o~
1
|
—
~
o
1]

which determines £, and hence py» for each ). Substituting this

value of & into (3.78) and integrating gives the velocity

2(8 -€)
v=|ae ° -1 ] %8 (£ + 1)7'/(28 + 1) (3.81)

A further integration gives the centrsl ceflection at time to as
4

To
ma2
- 7 !
60 = Tam ‘/p V(T )dT
o
o
which leads to the result
2(&5-5) 2(§s—§)
v =l 1-1/e (& + 1)/6)e (2€ + 1) (3.82)

3.8.8 Rectangular Pulse--Mechanism 1, Phase 2

This phase of motion is essentially the same as the
phase 3 motion described in Section 3.8.6. According to (3.81), the
central velocity when the pressure is removed is

2(g_-8)
v =21 |1~ 1)k (€ + 1)/m(2€ + 1)

o
Let ( = V/Vo, as was done earlier, and let motign
-3
= = Ss
Ta- 2 1 - To 2/xe )
are again represented by (3.75) and (3.76) and, in place of (3.77),we

cease when 1T = Then ( and 7, - Tl (where T

have
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2(8_-%) : 25 2 .2
5”5 5aq= p7=3)r%a"
v =|1-1/me S (£+1)2/302841)2 f e =2 A
° e (2i1)(4+77+27°-3e" ™)

U

1 (3.83)

where Vo is given by (3.82), 5y < 0.478, and 51 is the snlution of
(3.80).

3.8.9 Relationship among Central Deflection, Pressure,
and Impulse

Figure 3.16 gives a curve of )\ versus v which shows
the relationship among the finali central deflection §, the pressure pm,

and the impulse per unit area Io for a clamped plate. Whenever X > 2
the curve is obtainable from (3.69), (3.72), and (3.77): whenever

1 <X <2 is is obtainable from (3.82) and (3.83). Also shown in

Fig. 3.16, for comparison,is the ) versus v curve for a simply

15
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FIG. 3.16 PRESSURE~IMPULSE-CENTRAL
DEFLECTION RELATIONSHIP
FOR CLAMPED AND SIMPLY
SUPPORTED PLATES
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supported plate (taken from Fig. 3.12). 1In using Fig. 3.16 it should
2 2

be noted that p_= GMo/rS for clamped plates and P, = GMO/a for

simply supperted plates. The former is 1.875 times the latter,

Figure 3.17 is a pressure-impulse diagram which shows
how the pressure and impulse must be varied to provide the same central
deflection of a clamped.plate. In other words, points on the curve
define a famjily of rectangular pulses, each member of which produces
the same central deflection of a clamped plate. (The corresponding
curve for a simply supported plate, shown in Fig., 3.13, lies almost on
top of the curve in Fig, 3.17.) The coordinates have been rendered
dimensionless by using ) = pm/pS and 10/11, where I is the ideal
impulse producing the same central deflect{ion as each member of the

family of rectangular pulses. The formula giving the central deflection

22
due to an ideal impulse is that given in Ref. 4, namely 51 = 0,07 Ila /mMo

or v, = 0,07,

1
|
15 1 —
p
i
0, t
_Eﬂlo e —
X—ps
5 I ]
\ - r*"**‘—l“ ———————
0 N
10 1.5 2.0 25
t I

GA-6946- 498

FIG. 3.17 PRESSURE=-IMPULSE DIAGRAM
FOR CLAMPED PLATES
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From Figs. 3.16 and 3,17, the following conclusions

are drawn:

1. For a given impulse, the central deflection §
increases monotonically with the pressure P>
becoming a maximum equal to §&3 ahove when
the pressure is infinite (ideal impulse),

2. Again, for a given impulse wvalue, rectangular
pulses with p_ > 6p,, (A > 6), produce deflections
of simply supported and clamped plates which are
respectively over 85 and 90% of the deflection
caused by zn ideal impulse (see Fig. 3.16).

3. For a given central deflection, Fig. 3.17 shows
that as the pressure is decreased from infinity
to a value corresponding to ) = 6, the increase
in impulse necessary to maintain that deflection
is less than 7%. Larger increases are necessary
as A decreases further, especially in the
range 1 < } < 2.

3.9 Circular Plates under Uniformly Distributed Impulses:
Comparison of Theory and Experiment

In this section we shall describe experiments, present results,
and compare them with the corresponding predictions of the bending
theory of rigid-plastic plates with a view to establishing the useful-
ness of the theory. In the experiments, each simply supported and each
clamped\circular plate is subjected to an impulse (pulses of extremely
short duration) uniformly distributed over the envire area. The per-
manent central deflections and, for a few of the simply supported plates,
the shape are compared with the results of the rigid-plastic theory
using an ideal impulsive loading (zero duration)., The theoretical

results are extracted from Refs. 4 and 5.

In Section 2,12 a similar correlation for beams pointed out that
the rigid-plastic theory was sufficiently accurate for many engineering
applications. Fibe series of beam experiments were performed and for
each series the avefage ratio of experimental to theoretical central
deflection was found (see Table 2;4). These five averages fell between
0.67 and 0.77. However, to ensure a minor role for elastic effects, it
was necesgsary that the ratio R of kinetic energy input to elastic

strain energy capacity be greater than 2 to 3. We shall also see that for
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plates,correlation of the final central deflection ratios is satisfactory,
but now large deflections cause a limitation. Deterioration of agree-
ment becomes pronounced when the ratio of predicted deflection to plate
radius exceeds values around i1/3. The deterioration is due to membrane
forces unaccounted for by the theory. 1If the de.lectious are small
enough, the elastic energy becomes significant, but the limited experi-
mental data available do not establish a lower bound o0 R fer good
agreement. However, in one of the three series of experiments reported

here R was as small as 4 and correlation was still satisfactory.

3.9.1 Theoretical Results

After being subjected to a uniformly distributed im-
pulse, the final axisymmetric shape of a simply supported circular plate
of rigid-plastic material obeying the Tresca yield condition and agsoci-

ated flow law is4
w = 1282(1 -r/a)l3 v 2r/u + (r/a)z]/24mM0 {3.84)
which gives, for the central deflection, the formula
6 = 1%a°/8mi_ (3.85)

In (3.84) and (3.85), I and m are the impulse and mass per unit area,
a is the plate radius, and Mo is the fully plastic moment per unit

arc length.
When the plate is clamped zgainst rotation the central
deflection is

§ = 0.56 Izaz/SmMo (3.86)

Before turning to the experiments, the expression wiil
be derived for the ratio R Dbetween the kinetic energy input, which
equals the plasiic work done, and the elastic strain energy capacity of
the plate. Let the maximum elastic bending moment per unit length by

Me. Then Me = cbdz/e, where o, is the yield stress and d 1is the
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plate thickness, If this moment is applied unitormly arnund the cir-
cumference of the plate, a state of pure bending exists, This is the
state of maximum bending strain energy which, per unit area, is

Mz/(l + v)D, where v is Poisson's ratio and D = Ed3/12(1 - vz) is
the flexural rigidity, E being Young's modulus. The kinetic energy

2 2
delivered per unit area is 1 /2m, so the encrgyv tatio is R = 31 E/
2

2
20°d (1 - v), where o = m/d 1is thc mass density.

3.9.2 Duscription of Experiments

The simply supported plate experiments vere performed
with plates of 6061-~T6 aluminum and 1018 cold-rolled steel, all nominally
1,4-inch thick and 8-1/2 inches in diameter, They were simply supported
on a heavy steel annulus at a diameter of B inches. Figures 3.18 and
3.19 show the experimental arrangement. The impulse was generated by
sheet explosive rolled to a uniform thickness and cut out to form a disk
8 inches ir diameter. This wag placed over a similar disk cf solid neo-
prene attenuator nominally 1/8-inch thick which in turn was layed cen-

trally over the plate. The neoprene was used to reduce the high peak

FASTENING BOLT-
4 PLACES (@

SECURING RING (B

SHEET EXPLOSIVE @

NEOPRENE
ATTENUATOR (®

4 THICK PLATE ®
SPACER
ALIGNMENT PIN
STEEL BASE D

SECTION 4-4

GA-5733-85

FIG. 3.18 EXPERIMENTAL SET~UP (arranged for simply
supported plotes)
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FIG. 3.19 EXPERIMENTAL ARRANGEMENT

pressure in the shock wave from the explosive in order to eliminate
plastic waves in the plate, possible changes in material properties,

and spalling, A five-grain mild fuse was used to detonate the explosive.
The detonation velocity (0.28 in/Msec) is supersonic relative to the
maximum plate velocity (0.21 in/Msec), and the initiation point is at
the center of the plate, so it is assumed, by analogy with beam results,
that simulation of an ideal impulse simultaneously applied over the whole
plate is satisfactory. As can be seen in Figs. 3.18 a2nd 3.19, a steel
annulus was placed over the supporting annulus to control the plate as
it rebounded. Sufficient clearance was provided between the twc annuli
by means of spacers to prevent the edge of the plate striking the upper

annulus as it deforms plastically.
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The clamped plate experiments were performed with

plates of 6061-T6 aluminum, all nominally 1/4-inch thick and $-3,4

inches in diameter., Using the two steel annuli shown in Figs. 3.18& and
3.19, with inner diameters of B8 inches, the plates were clamped to pre-
vent rotation but not radial displacements, Arocund the rim of each
plate at 3/4-inch spacing, 5/8-inch-long slots were cut so that during
deformation circumferential membrane forces in the annular portion of
plate outside the B-inch-diameter circle were suppressed. The slots can
be seen in Fig. 3,20, which shows fwo plates after impulsive loading

(one sectioned a2long a aiameter).

FIG. 3,20 CLAMPED PLATES AFTER IMPULSIVE LOADING

For the explosive-attenuator-plate configuration
described above, the impulse imparted was obtained by firing free plates
in front of a double-flash X-ray unit. The rigid-body displacement in
the predetermined time between radiographs gives the plate velocity.

It was found that for each plate material the velocity imparted was
proportional to the thickness of explosive over a range from 15 to 60
mils, the range of interest in the plate deformation experiments, This
procedure thus provided a simple linear calibration curve of impulse
versus explosive thickness. The coanstant slope of this curve is ex-
pressible as impulse per unit volume of explosive with units dyne sec/
cmz/mil or dyne sec/cm3 and is given the symbol Io' Values of I0

for the aluminum and steel plates are listed in Table 3.2.
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Tuble 4.2

PROPERTIES

Modylus \s"".‘f ! l’llt\rfst ::lx\t;- I;la:h‘ l‘mru‘l:.u-
Materinl (i in?) -tr(s,:’ ensity cpth Radius Copstant |
E {(1b/in") (b sec™/in ) {inch) (inches) {dyne sec/em’ )
; a n d a 1
)
G 5
Al, 606i~T6 1 x 10 42, 000 0, 000253 0,251 1 2,0 % l“J
© R, steel 1018 130 x lllh -9, 000 0.0030732 0.211 4 2,7 » 1(15

The plate materials were chosen because of the small
strain-hardening moduli and because they are belicved tc be insensitive

to strain rate (e¢specially the 6061-T6 aluminum alloy).

To determine the yield stress, an average value was
taken of static tensile tests with specimens cut with and across the
grain, Each stress-strain curve was replaced by two straigbt lines,
the slope of the strain-hardening portion being obtained by curve
fitting to about 3% strain. The ordinate of their point of inter-

section was taken as the yield stress.

In addition to permarent central deflections, changes
in thickness at the center and near the support was measured., In a
few cases deflections along a radius were measured to give a plate
profile. The deflection measurements will be compared with the pre-

dictions of formulas (3.84), (3.85), and (3.86).

3.9.3 Experimental Results and Observations

Table 3.2 contains the materials, properties, and the
impulse constants I0 mentioned above. Tables 3.3 and 3.4 contain
the results of experiments with simply supported and clamped plates,
respectively. The symbol éex stands for the experimental central
deflection and 6th stands for the theoretical central deflection
according to (2.85) or (3.86). The right-hand column of Tables 3.3
and 3.4 show the central deflection ratios éex/ath whicli are used as
a measure of the accuracy of the rigid-plastic theury. Figures 3.21
and 3.22, showing the veriation of the central deflections with impulse,

assist the comparison of theoretical and experimental values.
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Figures 3.23 and 3.24 provide a comparison of thcoretical and experi-
mental shapes for a {ew simply supported plates. Figure 3.25 shows the
profiles of several clamped plates; the theoretical profile is not

explicitly available in the literature.

Table 3.3

EXPERIMENTAL RESULTS MOR SIMPLY SUPPORTED PLATES

Impulsc
. . 1 Energ,
Material Experimont ~ Ratwo® | o4 sa fu sa | sn
No. 2 2 " X th en’ th |.
(th nee/in’) {dyns sec/em’ )

Al. 60G1-T6 1 0,417 21,900 0,121 1.195 4,352
2 0,289 19,9040 0.2 0,999 0.314
K} 0,244 19, 900 0344 | 0,989 0.348
1 0,283 19, 500 0,333 | 0,956 0,348
14 0.211 16, BOO $.25% 0,708 1,358
6 0,240 16,600 41.1 0,268 | 0,688 0.349
7 . 240 16,600 44.1 n.261 | 0.688 0.380
H 0,240 16,600 43,8 0,264 0,644 0,387
9 0,221 15,200 7.1 0.253 | 0.579 0,437

10 0,219 15,100 36.7 0,243 0,573 0,425
11 0,192 13,200 2K.1 0,198 0.438 0.455
12 0.191 13,200 27.7 0,222 0,433 0.514
13 0,184 12,700 25.4 0,188 | 0,403 0. 467
14 a.149 10,300 16.¢ Nn.155 0.264 0,588
15 0.144 9,900 15.48 0,152 | 0,247 0.615
16 0.142 9, 400 15.3 0,127 0,239 0.533
17 0.141 9,700 15,1 0.147 | 0.235 0.625
18 0.139 9,800 14.6 0,134 | 0,228 0,588
19 0.136 9,40 14.1 0,122 0,221 0,551
20 0.123 H, 500 11.6 0,098 0.181 0,541
21 0.118 4,100 10.6 0,116 0,165 0.700
22 0.108 7,400 4.9 0,098 0.139 0,715

C.R. stecl 1018 1 0.505 34, 8OO 61.7 0.261 | 0.629 0.414
2 0,501 34,600 60,8 0.251 | 0,620 0.410
3 0,450 31,000 49.0 0,224 | 0.300 0,448
4 0.438 30,100 46.1 0.215 0,471 0.456
5 0,414 28,600 41.4 n.211 § 0.423 0.498
6 0.358 24,800 1.3 0.191 0,319 0.603
7 0,348 24,100 29.5 0.175 0.301 .0,582
8 0.344 23,700 28,7 0.167 0,202 0,571
9 0,331 22,800 26.6 0.152 0,271 0. 563

10 0,314 21,600 23.9 0.135 0,243 a,553
11 0,312 2,500 23.6 0.143 0,241 0.595
12 0.272 18,800 17.9 n,114 0.183 0.623
13 0,258 17,800 16.1 0,097 0.164 0. 590
14 0,215 14,800 11.2 0,077 0,214 0,874
15 n.157 10,800 6.0 0,032 0,061 0,519
16 0.1% 10,800 5.9 0,031 0,060 U, 307
17 0.1% 10,800 5.9 0,038 0,0e0 0.595
18 0.153 10,600 8.6 0, 045 0,058 0.786
19 0.123 B, 500 3.7 0,021 0.038 0.825
20 0.121 8,300 3.8 0,025 0,036 0.676
i

‘Value of Poisson's ratio 18 taken to be v = 0.3,
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Table 4.4

FGR CLAMPLD LATES

Inpulse
. 1 Encrgy | R . 5
Mat 2rial E‘p“:;’"n! Ratio o’ R ex' th
(314 sec/mz) <dyne sec/ﬂrz') R
Al. 5061-T6 1 0.268 1%, 500 35.0 0.264 0,451 U.838
2 0.238 16,400 12.8 0,236 | D.389 0,392
3 0.238 16, 400 43.6 0.229 1.389 0,589
4 0,228 15,700 39 9 0.221 €.357 n.R18
5 0,228 15,7CC ue .6 0.21¢ 4.35. 0,610
3 0.7 14,600 34.4 #7207 0.307 0.674
¥ n.232 14,000 31.4 D.1d3 G.2R1 .658
8 0,198 13.300 29.4 0 181 0,263 G.688
9 0.180 12,490 24.7 0.154 0.220 0,700
10 0,170 11,700 22.2 0.144 0.198 0.727
12 0,162 11,200 26.1 0.134 0.180 0.744
12 0,144 10,000 1.9 0.112 3.143 0.783
13 2,144 9,900 15.8 Q.108 0.143 0.766
T
i IR
e _|

& Go

O AL, 606!l-TE

4 C.R 1018 STEEL -
IS 7. X N N A N A N R S AU B
o} 0.2 0.4 o6 .8 1.0 1.2
Izo/BmMo
GA-573C-87

FiG. 3.21 CENTRAL DEFLECTION-IMPULSE RELATIONSHIP
FOR SIMPLY SUPPORTED PLATES
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Measurements of the plate thicknecss indicate thinning
at the centers and thickening at the supports. In the series of simply
supported aluminum plates, the extent of thinning increased gradually
with increasing impulse to 8% at the maximum impulse. Thickening in-
creased similarly to 6%. In the series of simply supported steel plates,
the corresponding maximum values were 4% and 4%. 1In the series of
clamped aluminum plates, the maximum values were 9% and less than 1%.
The thickness changes are indications of membrane forces increasing with

central deflection.

The main observation to be made is that within certain
limits to be described, the rigid-plastic theory does serve as a reason-
able first-order theory. The lower limit of the useful range is deter-
mined by the energy ratio R, which gives & measure of elastic effects.
In the present series of experiments, minimum values of R are 9 and 4
for the simply supported aluminum and steel plates, and R = 16 for the
zlamped aluminum plates. At these values correlation is at its best,
although for steel a leveling off of correlation is detectahle between
R = 1 and R = 4 (unfortunately the scatter is worst in this region).

A reasonable guide for the lower limit of the range of applicability of
the theory may be taken as R = 4. For the upper limit a suitable
criterio:.. is a maximum value for the ratio of the theoretical central
deflectios to the plate radius (a measure of the ''cone angle"), suggested
here as éth/a ~ 1/3. Whenever 6th < 1/3 Tables 3,3 and 3.4 show that
6ex/6th > 0.5,
- it is interesting to compare Figs. 3.21 and 3.22 with
Figs. 2.28 and 2.29 for beams. The main difference is that when the
central deflections become large (say, 5th/a > 1/3) correlation deterio-
rates rapidly for plates but remains satisfactory for beams. This is
due to the increasing significance with deflection of the plate membrane

forces.

Figures 3.23 and 3.24 indicate a satisfactory prediction
of the deflected shape of a simply supported plate except at the center
where a discontinuity of slope is predicted. Although no theoretical
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shape is readily available for clamped plates,
a discontinuity of slope at the support due to the actio: of a staticunary

plastic hinge circle. The experimental evidence of a "discontinuity’ of

the thcory5 does predict

slope at the support (that is, a very rapid change of slope) is given

by Figs. 3.23 and 3.24.
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CHAPTER 4

DYNAMIC ELASTIC AND PLASTIC PULSE BUCKLING OF BARS
by
H. E. Lindberg

4.1 Introduction

For about a century it has been recognized that structures,
particularly those made from high-strength alloys, must be designed
to resist static buckling from high compressive stresses. However,
buckling from dynamic loads has received serious attention only since
World War 11, and only within the last 10 years has a basic understanding
of buckling under explosive loads been developed, This development
followed closely the introduction of high~speed electronic and photo-
graphic instrumentation to observe such buckling, which can occur in a
small fraction of a millisecond. The present chapter gives the funda-
mentals of dynamic buckling using a simple pinned bar to give the theory
in its simplest possible form. 1In Chapter 5 this theory is applied to

cylindrical shells under radial pressure pulses,

Physical evidence of dynamic buckling can take on very different
aspects, depending upon the nature of the applied load. This is illus-
‘trated in Fig. 4.1, which shows two identical simple columns subjected -:
to axial loads with differing time histories. In the column on the left
the peak load is less than the static buckling load, but it oscillates
at a critical Irequency that induces large growth of lateral vibrations.
The critical relation between the load frequency (] and the natural
frequency  of the bar is (1 = 2y . In the column on the right, the
load is much greater than the static buckling load but it is applied
for only a short time. Under such a load the bar deforms monontonically
into a very high order pattern with no oscillations. The critical con-
dition in this case is a duration of load application sufficiently long

to produce plastic bending strains or excessively large displacements.
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FiG. 4.1 VIBRATION BUCKLING AND PULSE BUCKLING

In the mathematical Tormulation of both of these problems, the
underlying feature is the appearance of a parameter involving the load

that multiplies the lateral displacement. Thus, dynamic buckliqg can

be defined as dynamic response of structural systems induced by time-

varying parametric loading. Both problems in Fig. 4.1 fall within this

definition. However, problems involving parametric oscillations, as in
the bar on the left, have a somewhat longer historical background than
problems involving monotonic parametric growth, as in the bar on the
right. Cohsequently, the terms dynamic buckling and dynamic stability
were first associated with oscillation problems, This association was
accentuated by the appearance in 1956 of a book by V. V. Bolotinl in
which he defined "the theory of the dynamic stability of elastic systems
as the study of vibrations induced by pulsating parametric loading."
However, as more work is done on buckling from single pulses, the term

dynamic buckling is taking on the more general definition adopted here.

Nevertheless, it is still useful to divide dynamic buckling
problems into two groups, corresponding to the two examples in Fig. 4.1,

because to a large extent occillation problems are associated with
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conventional vibration analysis, while single pulse praoblems are asso-
clated with impact and explosive loads. Thess two types of buckling can

therefore he appropriately called vibration buckling and pulse buckling.

Chapters 4 and 5 are concerned almost entirely with pulse buckling., A

detailed accouat of vibration buckling is given in the book by Bolotin.

Since pulse buckling is so very different from static buckling,
before the detailed theory is given it is illustrative to examine the
forms of buckling to be considered. Several structural elements buckled
from pulse 1loads are shown in Pig, 4.2. A common feature in all these
examples is that the buckling is in very high order modes. This is a
consequence of the extremely high membrane stresses induced by intense
pulse loads. The first three examples (Figs, 4.2a, b, c¢) are of very
thin structures in which plastic bending has taken place in a pattern
established by initial dynamic elastic buckling motion, The thin strip
in Fig. 4.2a was buckled from a 40,000-psi elastic stress wave eminating
from & jaw gripping the left end. The thin cylinder (radius-to-thickness
ratio a/h = 480) in Fig. 4,2b was rolled from sheet metal of the samec
thickness as the strip in Fig, 4.2a and was subjected to an impulsive
radiglnpressure which produced a hoop stress approximately equal to the
compressive stress applied to the thin strip. The wavelengths of the
buckles are about the same as in the buckled strip. These lengths
correspond to harmonics having from 50 to 100 waves around the circum-
ference. Figure 4.2c‘shows a similar thin cylinder (a/h = 550) photo-
graphed while buckling from an elastic impact at the lower end which
gave an axial stress 1.5 times the classical static buckling stiress.

The axial wavelengths of the buckles are an order of magnitude smaller
than those in large deflection static bueckling, and the circumferential-
to-axial aspect ratio of the buckles near the impacted end averages

about 3:1 compared to about 1:1 in static buckling,

The other three examples of buckling in Fig. 4.2 show the forms
which result when the compressive stress is beyond the yield stress and
buckling takes place during piastic flow. The solid acluminum »od in
Fig. 4.2d was impacted at its left end at a velocity of about 5C0 ft/sec.
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FIG. 4.2 EXAMPLES OF DYNAMIC PULSE BUCKLING

148




L RN A s

The buckles here are much shorier in comparison to ihe :at:ral dimension

of the bar than thcse in tne elastically buckled sirip in Fig. 4.2a.

This is bezause drring ,lastic flow resistance to flexure is governed by
the tangent modulus. wnich is of the orcer of 100 tines smaller than

the elastic modulus. Figuie 4.2e shows a relatively trick (a/h =~ 5)
cylindricai sheil buckled in an axisymmetric pattern. again during
dynamic axial plastic flow. The hemispherical shell in Fig. 4.2f was
subjected to an intens: impulsive external pressure causing dynamic
plastic flow in two dimensions. Ov~<r the top of the hemisphere the
shell is buckled into a dimpled pattern from the combined flcw. Around
the edges, where the flow is similar tc that in a cylindrical shell,

under radial impulse, a one-dimensional wave pattern again appears.

These examples demonstrate that dynamic forms of buckling can
be very different from static forms. The corresponding theories must
therefore reveal the mode of buckling in addition to predicting the
pulse amplitude and impulse that produce buckling. The theoriec de-
veloped in the following pages are mctivated by experimental observa-
tions and are comparsd to experimental results. Simply supported bars
are treated firet in order to give the esssntial concepts in their
simplest form, To relate the dynamic and static problems, stutic elastic
and plastic theories are summarized before the dynamic theory is given.

In Chapter 5 the dynamic co.icepts are applied to cylindricail shells under

radial pressure pulses.

4.2 Equations ot Motion

The simplest problem in elastic tuckling is that oi a simply
suppcrted uuiform ber under axial conpression, as in Fig, 4.3, The

bar is of length L and supports an axial compressive force P. 1ts

eross secticn is uniform with uxial distance x , measured from one end,
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‘Deflection y is taken positive downward, and is measured from an un-

stressed initial deflection yo(x) An element of length dx between
two cross cections taken normal to the original (undeflected) axis of
the beam is shown in Fig., 4.3b. The sheuring force V and bending

moment M acting on The sides of the element are taken positive in

the directions spowr. The inertia force acting on the element is
‘gA(azy/atz)dx, where o 1is denzity of the bar, A 1is the area of the

cross section, end t is time.

L 2

4&(” l 3

L X

] i d X

(a)

2
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( b ) GA-5733-3

FIG. 4.0 BAR NOMENCLATURE AND ELEMENT OF LENGTH
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The basic equations for the analysis of bar buckling are derived
from dynamic equilibrium of the element in Fig. 4.3b and the moment-

curvature relation for the bar. Summing forces in the y direction

gives
32
-V -pa=Ldx+ (v+av) =0
ot
or
3% d
pA-—%=-a¥ (4.1)
ot

Taeking moments about point n and negiecting rotary inertia of the

element results in

2
M-pA-a-lde-’5+(V+dv)dx-(M+dM)+p-§—(y+y)dx=0
atz 2 . ox o

Terms of second order are neglected, reducing this equation to

w3
Vv = 3% P = (y + yo) (4.2)

If the effects of shear deformations and shortening of the beam
axis are neglected, the curvature of the bar axis is related to the

bending moment by

2. -u (4.3)
in which E is Young's modulus and I is the moment of inertia of the
bar section, assumed symmetric about the xy plane (otherwise the bar

would twist in addition to bending). The differential equation for the
deflection of the beam axis is found by differentiating (4.2) and then
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eliminating V by means of (4.1) and M by means of (4,3) twice

differentiated. The result is

a3 a2 22
EISL +PpE - (y+y)+0aXd= o0 (4.4)
4 2 o 2
ax ox at
4.3 Static Elastic Buckling of a Bar

For static buckling, the inertia term is neglected and (4.4)

becomes
d4 d2 d2y
El =%+ p—L=-p—2
dx dx dx
. 2
or, substituting k = P/EI,
2
4 2 a‘y
9—% + K d—% = -2 5> (4.5)
dx dx dx

If we consider first a bar with no initial deflection, we need only the
general solution to the homogeneous equation (with yo(x) = 0). This .

solution is
y = A sin kx + Bcos kx + Cx + D {4.6)

For a simply supported bar the deflection and bending moment are zero at
the ends and the boundary conditions are
2

y = ﬂ_% =0 at x=0 and x
dx

]
[

(4.7)

Applying these to (4.6) gives

B=C=D=0 , sin kI, = 0

and therefore

kiL = £ nm
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where n is an integer, Using the definition of k , this becomes an

equation for P ,

P = +n (4.8)

Thus, with no initial deflection, only discrete values of P give a

nontrivial solution, and the magnitude A of the deflection is undeter-

- mined.

Before discussing these solutions further, let us treat the bar
having an initial shape yo(x) . The solution for the perfectly straight

bar suggests that yo(x) should be expressed by the Fourier sine series
-]
yo(x) = nz=:1 a sin T (4.9)

The coefficients in this series are found from
L
_ 2 nmx
8 =7 fyo(x) sin == dx (4.10)
o
Substituting (4.9) into (4.5) gives the following differential equation

for the imperfect bar,

4 2 22
4y, 295,200 | g4 (4.11)
4 2 2 n L
dx dx L

To find a particular solution, we take
-
_ nmx
Vp = n;l A, sin == (4.12)

When this is substituted into (4.11), the coefficients An are fouad
to be

=k an - Pan
A = = (4.13)
n K2 - nzﬂz/Lz P Pn
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The complete solution is then

x Pa
- : . n . nT~
y = A sin kx + B cos kx + Cx + D - ég% 5—:—3; sin —— (4.14)

Since P , and hence Xk , is arbitrary, application of the boundary con-

ditions (4.7) gives A =B =C = D =0 and the general solution is

simply
=) Pa
= - — T g A
y = ; 55 sin o (4.15)
n=1 n

From this solution we see that the deflection becomes arbitrarily
large as P approaches the critical loads Pn given by (4.8). How-
ever, the dynamic solution given in subsequent sections shows that the
motion is unstable for any load greater than the lowest critical lcad
P1 , which, from (4.8), is g.ven by

P, = — (4.18)

In the neighborhood of P = Pl the first term dominates the deflection.

Neglecting the higher terms, the midspan deflection for P < Pl is given
approximately by
- Pa1
5 = y(L/2) =5 =P (4.17)

1

Figure 4.4# gives a plot of deflection & from (4,17) versus end load

P . On the basis of this formula, Southwell2 suggested that the critical
load Pl could be extracted from test data by plotting &/P versus & .
In this form, (4.17) becomes

6 - L
P Pl (5 + B.l) (4.18)

which gives the straight line in Fig. 4.4b. The inverse of the slope
gives the critical load P and the § intercept gives the coefficient

1

al as shown,
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FIG. 4.4 FORCE-DFFLECTION CURVE AND SOUTHWELL PLOT
FOR SMALL DEFLECTION ELASTIC BUCKLING

If the bar is treated as initially perfectly straight but sub-
jected to an eccentrically placed load, the Southwell procedure can
still be used to determine the critical load. Consider, for example,
that the load is displaced from the centroidal axis by an amount ¢ ,
equal at both ends. This can be treated as a bar having an initial dis-

placement given by

X#U,L

#
4}

yo(X)
{4.19)
= 0 x=01L

Substituting this displacement into (4,10), the coefficient of the first

term in its Fourier expansion is

(4.20)

Thus, for P in the neighborhood of P the Southwell plot is sas

1
described previously, and the & intercept is now 4¢/mm . If the bar




P

is considered to have both an initial shape and some eccentricity, (4.18)

becomes

% = %; [6 + (gl + %g)] (4.21)
For real columns, in which borch al and ¢ are small and
difficult to measure, there is therefore no wax of telling in a South-
well plot how much of the deflection is caused v load eccentricity and
how such is caused by an initial deflection. I evperiments run near
the turn of the century, -5 it was found that the c¢xperimental buckling
deflections could be calculated,* on the aversge, uring values of equi-

valent eccentricity given by
' 2
€ = 0.068 r/c (4.22)

where r2/c is the core radius of the cross section, r being the
radius of gyration and c¢ being the distance from th: elastic axis to
the outermost fiber, For a rectangular bar of depth h , this gives

¢ = 0,01 h, In long columns, it is reasonable to assume thzt initial
imperfections in shape become more important and these can be expected
to depend on the length of the column. On this basis, Salmon6 found
that, although equivalent imperfections from a large collection of
experimental rzsults scattered by an order of magnitude at any given
length, both the average amplitude of the imperfections and the range
of amplitudes increased in proportion to the length of the bars. For

the longer columns, almost 211 imperfections were in the band

a
0.0001 <El < 0.001 (4.23)

Several authors have proposed that imperfections depending on

both the core radius and the column lengt® can be expected to bhe present.

*
For short columns, these calculaticns take into account plastic defor-
mation, discussed in the next section,
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They suggest that a conservative estimate for an equivalent deflection

including both types of imperfections can be taken as

_ 2 L
a; = 0.1,r%e + 750 (4.24)

In the dynamic problems in subsequent sections, we will see that the
range of normalized imperfections found in static buckling give reason-

ably good agreement with values observed in dynamic buckling.

4,4 Static Plastic Buckling of Bars

If we consider a sequence of simply supported bars of fixed
cross section but with decreasing length, the maximum load each bar can

sustain before elastic buckling, from (4.16), increases as P, =

1
anI/Lz. The corresponding stress is
P
_ 1. 2 (r\z
cb = 7 1 E(L) (4.25)

where the slenderness ratio L/r is the ratio between the bar length
and the radius of gyration of the cross section. As this ratio becomes
smaller, the compressive buckling stress from (4.25) increases and
eventually approaches the yield stress c& of the bar material., Thus

we would expect plastic effects to become important at slenderness ratios

smailer than about

L E \1/2 _ T
z - "(T:') =~ (1.26)
y (ey,

where ey is the yield strain. For example, 6061-76 alumigum has a
yield stress near cy = 40,000 psi which, with ¥ = 10 x 10 psi, gives
a yield strain of 0.004, From 4.26), plastic behavior would be ex-
pected to become important in this material for slenderness ratios
smaller than L’r = 50, For structural steel, cy = 45,000 psi,

E =30x 106 psi, and therefore ey = 0.0015, and so plastic effects
must be considered for slendermess ratios as large as L/r = 80,

Generally speaking. bars or columns with L/r » 100 are called slender
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columns and buckling is predicted quite well by the e¢lastic theory.
Columns with L/r < 50 are called short columns, and plastic clfects

mist generally be considered.

In addition to reducing the load that the bar could otherwise
carry, plastic deformations change the basic character of the load-
deflection curve. This is illustrated in Fig. 4.5, which gives load-

defliection curves (in terms of

average siress across the bar)

a4 NERRRRREE _
a3 e:0 A calculated for a simply supported
a2 e:0.00ih | steel column having s;veral values
e :0.002h of load eccentricity. In contrast
4 to the monotonic increase in load
“g 40 with deflection typical of elastic
? 39 buckling {Fig. 4.4), the plastic
g’ 38 buckling curves exhibit a maximum
37 value of load., A further increase
16 in deflection is accompanied by a
15 decrease in load. Thus, there is
34 1NN a range of loads below the maximum

0 002 004 006 CO8 0.0 which have two equilibrium deflec-

3
h aA-5TSS-S tions, the smaller one being stable

and the larger one unstable. Near
FIG. 4.5 COMPRESSIVE STRESS—DEFLECTION

CURVES FOR PLASTIC BUCKLING  the maximum, it is possible for
small disturbances to cause the

deflection to move from the stable
to the unstable branch and hence to still larger displacements. Such
sudden jumps in displacement are actually observed in plastbb!buckling
experiments and account for the wide scatter in observed plastic buckling
loads compared to those in elastic buckling. Figure 4.5 shows that small
changes in imperfections, represented here by load eccentricity, can

cause significant changes in the critical load.

To develop a theory for plastic buckling, we must return to the
relationship between bending moment and curvature and examine the in-

fluence of axial force and plastic strains on this relationship. As in

158

L m gk




By e e PO e

PRI € G TN DYy P i ] R PP 0 SN Y N 2 et s

elastic buckling, plane cross sections are assumed to remain plane as
the bar bends so that axial strains vary linearly across the bar. An
element of bar under this assumption with its neutral axis bent to a
radius of curvature ¢ is shown in Fig. 4.6. In the absence of com-
pressive forces, the strain at a
fiber located a distance z from

the neutral axis is
e = 2 (4.27)
p

l"b"i If, in addition to the bending

moment M which produces this

-
hl

N -—f curvature, the section also sus-
h?

tains an axial compressive force

P , each fiber is additionally

SA-85733-3)
compressed so that the total
FIG. 4.6 ELEMENT OF FLEXED BAR strain is
z
€= 3 + €, (4.28)

The rezulting stress distribution across the section is given in
Fig. 4.7, in which it is assumed that the stress-strain curve is the

same as in a simple tension~compression test.

In the following, let us consider a simple rectangular bar of
depth h and width b . To find the relation between the strain quan-
tities ec and A = h/p and the loads P and M , the stress distri-
bution across the section must be integrated. The compressive load P

is

P= -bDb fodz (4.29)
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FIG. 4.7 STRESS DISTRIBUTION UNDER PLASTIC THRUST
AND FLEXURE A
Since ¢ is known as a function of strain ¢, it is convenient to change -
the variable of integration in (4.29), using (4.28) in the form !
== ple -—e) , dz= pde (4.30) ;
- i
In terms of strain, (4.29) is then
€2 bh -2
P= - bp f ode = - 2 ode (4.31)
“1 €1
This integral represents the net area under the shaded portion of the
stress-strain curve in Fig. 4.7, multiplied by an appropriate quantity
to give total force, positive when compressive,
r
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The hending moment about the ce: nidal axis is

M= b f ayay (4.32)

which, using {(4.3C) und A = h/p and I = bh3/12, becomes

) €2
2 121
M = bsg f (z - eo)Ode =3 (e - eo)Ode (4.33)
€ e e
1 1

This integral is the first moment of the shaded area of the stress-strain
diagram (Fig. 4.7) about the vertical dotted axis. Equation (4.33) can

be represented in the form

m= E L. 1-:”1“—-‘% (4.34)
P dx
where
12 p?
B = =3 f (e - e )ode (4.35)
A
1

if the material is elastic, them o = E¢ and (4.35) gives E'‘ =E s0
that the moment-curvature relation (4,34) reduces to the elastic form

given in (4.3).

Load deflection curves such as thoge in Fig. 4.5 are generated
using the load-strain relationes just developad. This must be done
numerically, because even for the simplest nonlinear stress-strain law
no analytical expressions can be written to allow direct calculaticn of
deflection for a given load. Instead, the bar is broken up into a rum-
ber of longitudinal segments of length Ax. Values for €q and €, at
the center of the bar are chosen and frowm these P, M, and the radius of
curvature p are calculated, Since P and M are known, the sum 50
of the central deflection plus ecceztricity is calculated from 60 s
§ + ¢ = M/P, Then, assuming the element Ax 1is a circular arc of radius

p , the displacement and moment at the next element toward the support
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are calculated, These are used, with a curve of M vs, h/z at constant
P (genereted using (4.31) and (4.33)), to calculate 5 for the next
element, Proceeding in this wav to the pinned support, the total de-
flection 4§ Dbetween the center of the bar and the support is calculated,
Finally, the eccentricity corresponding tec the originally assumed =

1

and €, at the center of the bar is ¢ = 50 - 5. This proccdure is re-
peated for many values of € and <« until curves can be drawn of P

vs. & for various ¢ as in Fig. 4.5.

Bounds for the maximum possible buckling load for a perfectly
straight bar having no load eccentricity (corresponding to point A in
Fig. 4.5) can be obtained very simply. To find these bounds we need be
concerned only with small perturbations in displacement of the perfectly
straight bar under thrust. It is assumed that up to the point of buck-
ling the increasing stress is uniform throughout the section. The upper
bound is found by assuming the load is constant as the influence of a
flexural perturbation is examined. The lower bound is found by assuming
that the load continuously increases as the flexural perturbation is
applied. Arguments that these procedures yield upper and lower bounds

have been given by Shanley.8

If we treat the load as constant as the perturbation in flexure
is allowed, the small bending stresses, superimposed on the direct
stresses from the compressive load, are distrihuted through the cross
section as depicted in Fig. 4.8b, At the fiber on the concave side of
the bar the compressive strain increases and moves out along the loading
curve from point A to point B in Fig. 4.8a. For small strain increments,
this increase in compressive stress can be associated with the tangent
modulus EL' In the fiber on the convex side of the bar, the strain in-
crement is tensile and is accompanied by unloading, from point A to
point C in Fig. 4.8a, along the elastic modulus E. Since the compres-
sive load is assumed constant, the net force from the flexural stress

distribution in Fig. 4.8b must be zero. For the rectangular cross sec-

tion being considered here, this condition gives
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h? = Eh 4.36
Et 2 ( )

In terms of the total depth h = h, + hz, we then obtain

nfE _ n e,

B RV SR

Taking the first moment of the area in Fig. 4.8b, the bending moment M

(4.37)

for the rectangular cross section of width b is

Eh_h 3 4F E
. 1 12 _ bh t

(V= =)

This equation is analogous to Eq. (4,3) for elastic bending (noting that
Vp =~ dzy/dxz) with the elastic modulus E Dbeing replaced by a reduced

modulus Er given by

E = L (4.39)

[» 2
4
En s
P
e L _ 1
LU LT D=
r hy hz-4
h
¢
B
(a ) (b ) GA-97183-7

FIG. 4.8 MOMENT-PRODUCING STRESSES FOR FLEXURE UNDER
CONSTANT THRUST
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Thus, in place of (4.3), the moment curvature relation is now

E I d2
M= __l' = -E I ‘—X (4'40)
n r 2
dx

The remaining equations are the same as in elastic buckling, so that for
a simply supported bar the critical load is given by (4.16) with E

replaced by Er:

(4.41)

This theorv is called the von Karman reduced modulus theory. From the

derivation of Er it can be seen that the reduced modulus depends not
only on the material properties but a2lso on the shape of the cross
section. For example, in an idealized I beam, in which it is assumed
that one-half of the cross section is concentrated in each flange, the
reduced modulus is

2E Et
E = o—— (4.42)

r E + Et

If, instead of taking the load to be constant as the bar flexes,
it is assumed that the load is steadily increased as in a testing machine,
a lower effective modulus is obtained., In the initial stages of buckling
the increase in load produces a strain which overrides the decrease in
strain on the convex side of the column. Thus all points throughout the
cross section lie on the loading stress-strain curve, as depicted in
Fig. 4.9a. The state at the centroidal axis is at point A, and points B
and C, corresponding to the outer fibers on the concave and convex sides
of the colum, lead and lag point A because of the flexure. All three
points move out along the stress-strain curve as the motion proceeds.
In this case the effective modulus is simply Et and the buckling load

for a simply supported column of any cross section is

(4.43)
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FiG. 4.9 MOMENT~PRODUCING STRESSES FOR FLEXURE UNDER
INCREASING THRUST

This theory is called the Shanley tangent modulus theory. Since Et
is always smaller than Er’ Shanley proposed that it be used as a con-
servative estimate for plastic buckling. Critical loads calculated

using E agree well with data from experiments run on circular and

t
9

rectangular aluminum. bars +10 with L/r ranging from 20 to 100, Since

for many engineering metals both Er and Et decrease rapidly with

very little increase in stress, the difference in critical loads from

the two theories is usually small.

4.8 Dynamic Elastic Buckling of a Simply Supported Bar

The static buckling considered in the preceding sections was
concerned with the steady lcad that can be safely carried by a colum
or bar, 1f, instead, a load is suddenly applied and then removed, as
in striking a nail, the meximum load can far exceed the static buckling
load without inducing objectionably large strains or deflections. On
the other hand, oscillatory forces such as from reciprocating or un-
bzlanced machinery, even while producing loads smaller than the static
buckling load, can nevertheless produce objectionably large deflections
if the frequency of oscillation bears & critical relation to the natural

frequency of the column, Both of these problems involve dynamic buckling,
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As discussed in the introduction, the impact of a nail is a pulse
buckling problem, whereas a column under an oscillatory load is a

vibration huckling problem. In the remainder of this chapter we will

examine several examples of elastic and plastic pulse buckling of bars.

In the pulse problem loads can be applied with no appreciable
buckling right up to and beyond the elastic 1limit, provided only that
they are applied for a short enough time. Because of this feature in
the dynamic problem, rather than asking for the maximum load that can
be carried, we specify a load and ask for the response, Knowing how
the buckling grows with time, the maximum duration for which the given
load can safely be applied is then determined. In Chapter 5 this pro=-
cedure will be applied to more general problems in which the load varies

continuously with time.

Consider first a simply supported bar under a compressive load
P, uniform throughout its length as shown in Fig. 4.3. The force P

may be much larger than the critical Euler load P but, for the present,

the average compressive stress is assumed to be wiihin the elastic limit.
To keep the bar from buckling during application of the load P, imagine
that it is supported all along its length by lateral constraining blocks.*
Then, at time t = 0, the blocks are suddenly removed and buckling motion

begins. The motion is governed by Eq. (4.4), repeated here.

a? a2 a2

EY °F + P~ (y+y ) + pA £y - 0 (4.44)
4 2 o 2
ox ax ot

After dividing through by EI, it is convenient to introduce the param-

eters

- = 1 - E
k = , ro= e c = 5 (4.45)

x*

In practice, the load is suddenly communicated to the bar by an axial
stress wave (or waves)., Effects of these waves are small as will be
seen in Section 4,38,
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The first two parameters have already appeared in the static problem.

The new parameter, appearing because of the dynamic inertia term, is

the wave speed of longitudinal stress waves in the bar.l1 Using these
quantities, the equation of motion (4.44) becomes
2
4 2 2 3y
—la4+k2—232+;'2—132=~k2 5~ (4.46)
9x dx re at dx

As in the static problem, the boundary conditions of zero mo-

ment and displacement at the ends of the bhar give
a2
y=—-§=0at x=0 and x =1L (4.47)

The solution to (4.46) subject to boundary conditions (4.47), as in the
static problem, can be expressed by a Fourier sine series in x, Thus,

we assume a product solution

y(x,t) = ¥, a (r)sin % (4.48)
n=1

The initial displacement yo(x)' is also expressed in series form by

s, ]
- nmx
v, (0t) = 2 A sin = (4.49)
n=1
where the coefficients can be found from
L
2 nmx
= = ; == 4,50
A i -/P )o(x)sin L dx (4.50)
o

Equations (4.48) and (4,49) are now substituted into (4.46) to give the

following equation of motion for the Fourier coefficients qn(t):

(n4ﬁ§ 2 n2n2 1 .. 2 n2n2
— - q + q = kK =—— A (4’51)
L4 L2 n r2c2 n L2 n
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which, rearranging tc the more standard form, becomes

q.* A (4.52)
2 2
n L L n

‘. rzcznzw2 n2n2 - k2)q 222 n2ﬁ2
n

One of the principal points of the theory of dynamic buckling to
be discussed in this volume appears here. The nature of the solutions
to Eq. (4.52) depends upon the sign of the coefficient of qn. 1f
nr/L < k, this coefficient is negative and the solutions are hyperbolic;
if nvL > k, this coefficient is positive and the solutions are trigo-
nometric. Thus, if the mode numbers n are sufficiently large,

n > KL/7, the displacements are trigonometric and therefore bounded.
However, over the lower range of mode numbers, n < kL/7, the hyperbolic
solutions grow exponentially with time and have the potential of greatly
amplifying small initial imperfections., These modes are therefore
called the "buckling modes.”

The mode number n = kL/n, separating the trigonometric and
hyperbolic solutions, gives a wavelength corresponding to the wavelength
of static buckling under the given load P; no matter how long the
duration of load application, if n > KL/,r the motion remains bounded,
while for any n < kL/7 the motion diverges. To see more clearly this
relation to a static problem, recall first that from Eq. (4.48) the
deflection curve of the bar is a sine wave with n half-waves, For
n = KL/ this curve is given by sin kx. One half-wave of this deflec-
tion curve, corresponding to the buckle shape of a simple pinned Euler

column, therefore occupies a distance from the left support given by

kxst =
o1
x . = wk (4.53)
st
1468
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Using the definition k2 = P/EI, this relation gives

P= - (4.54)

This is identical to Eq. (4.16) for the static buckling of an Euler

column of length xst under the load P.

The dynamic equation also demonsirates the statement made in

Section 4.3 that loads greater than P1 = n'2EI/L2 give unstable motion.

This follows from the observation already made that the motion is un-

stable if the coefficient of a, in (4.52) is negative, that is, if

2 2
n

2
L

- k2 <0 (4.55)

Since k2 = P/EI is positive, this quantity is most negative for n =1,
Using n =1 in Eq. (4.55), the left-hand side is negative for all
B> n'zEI/L2 and the motion is unstable as previously stated,

For the dynamic problems of bresent interest here, P > > anI/Lz
and many modes are unstable. Thus the mode numbers of the buckling modes
are very high and the wavelengths of the buckling are so short that the
total length of the bar becomes relatively unimportant, In fact, in ex-
periments to be described later, dynamic buckling is produced by impact
at one end of the bar and, because of the finite speed of axial wave
propagation, buckling occurs before any signal is received from the op-
posite end., In this problem the total length of the bar has no signifi-
crnce at all., We should therefore seek a characteristic length other
than the length of the bar. Because the nature of the motion changes at
the static Euler wavelength Xy T wk, it is quite natural to use 1/k
as the characteristic length in the x~direction, along the bar, Similarly,
it is natural to normalize lateral deflections with respect to the radius
gyration  r of the cross section. The ratio between these lengths is a
significant parameter and will be denoted by s:

P
Bl AE - € (4.56)
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Thus the wavelength of the buckling varies inversely with the square root

of the strain ¢ due to the compressive load P. This will be discussed

more fully later,

To incorporate these lengths into the equation of motion, we

introduce the nondimensional variables

2
y - . _ SX . _ S ct
w= 2 , Z = kx—r . ; - (4.57)
Using these, Eq. (4.44) becomes
wllll+wll+‘“"=wOft (4.58)

where primes indicate differentiation with respect to § and dots

differentiation with respect to ¢ . Boundary conditions (4.47) become
sL,
w=w =0 at g€ =0 and §=L=-r— (4.59)

and the product form of solution is now expressed by

o
£
w(g,7) = 3, g (1) sin =5 (4.60)
n 1
n=1
Similarly, the initial displacements are
o n -
= ang
wo(g) z a, sin T (4.61)
n=1
where L
2 nng
= ~— in —= g
a, 7 f w (g) sin T dg (4.62)
o
A wave number v, is introduced by
nn
= - 4,63

and finally (4.60) and (4.61) are substituted into (4.58) to give the
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equations of motion for the Fourier coefficients gn(T):
- 2 2 _ 2
« g, + N (n - l)gn =ne (4.64)

This equation corresponds tc (4.52); in the new notation the transition

from hyperbolic to trigonometric solutions occurs at n = 1.

The general solution to (4.64) is

8
n
gn(T) = Cn cosh PT * Dn sinh P,T 5 for n<l
1-m
(4.65)
Y
gn(T) = Cn cos p T+ Dn sin p 7 - 3 for ns1
1-n
where 12

P, = M ‘(1 - nz)‘

Substituting these into (4.60), the generai solution for the lateral dis-

placement is

N an n
w(g, T) = nzl (Cn cosh p 7 + D sinh p T - ;—-_-—n-z- sin _EL

(4.66)

o a

n nre
i R : S hrt
+3, C, cos p T+ D sinp 7 3 ) sin =
n=N+1 1-n

where N 1is the largest integer for which 3 < 1.

The bar is assumed to be initially at rest. Also, recall that
w 1s measured from the initial displacement Y so that the initial

conditions are

(4.87)

[
=]

w(E,0) = w(g,0) =
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Applying these to (4.66) yields Dn = 0 and Cn = ar/(l - *2). The

final solution is then

o a
w(g, 7} = Z —I pT-1] sin— (4.68)
- 2
n=l 1« n cos
in which the hyperbolic form is taken for m < 1 and the trigonometric

form for + > 1.

Equation (4.68) shows quantitatively the exponential growth of
the buckling terms, The ratio between the Fourier comefficlients an ot
the initial displacement and the coefficients gn(T) in the buckling

bar will be called the amplification function and in this problem is

given by

gn(T) cosh
G (7) = = p.7T-1 (4.69)
n a
n 1-n|cos

A plot of this function, treating mn as a continuous variable, is given
in Fig. 4.10 for several values of nondimensional time 1, It is apparent

that as time increases, a narrow band of wavelengths is amplified having

b
wave numbers centered at somewhat less than 7, = 1. To find the wave :
numbevr of the most amplified mode for late times, we differentiate (4.69) '
for n<1. :

BT 71T 1T T T T 1 1 ;
20
- 15
] i
& s
© 10 :
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'r; H
- GA-3370-2224 .
FIG. 4.10 AMPLIFICATION FUNCTION . 1
§
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dcl' 2
——g ;1 ~ 2ﬂ2)2 P T sinh b, T * 573 (cosh P,T - 1)
dr. 21 (1 - 1) (1 -1 (4.70)

Setting this to zero yieldz

cosh DrT -1
- (4.71)

1
1 - o F e ——— e
27 n sinh pnr

For times sufficiently large that significant amplification has occurred,

cosh PT - 1 ~ sinh P 7 and (4.71) is approximated by
(4.72)

To a lessor approximation, for large 7 such that pnT > > 1, the wave

rumber of the most amplified mode is therefore

np = —L = 0,707 (4.73)
h ‘]2'
Using this to obtain an estimate for =n (1 - T? )1/2 1/2, a
£ n Per er cr il
better estimate for Foap? from (4.72) i3
1
i (4.74)

T\cr”ﬁ'\T-z

bl al

For example, at 7 = 6, Eq. (4.74) gives Top = 0.866, which is about

22% lerger than the value in (4.73). At 71 = 10, the estimate in (4.73)

is only about 12% low. Thus, for practical purposes, the wavenumber of

the most amplified mode can be taken as Tb = 1/’J15? This will be called ;
the "'preferred” mode of buckling. The corresponding wavelength is found I

from H

n g = 2n , or gp = )\p = ZﬁJ 2 (4.75)

In dimensional units, from (4.57), thie length is

2r\r§

. r
X = - = -
s

PooE T
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r = 8,8 r/Jc (4.7¢}
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A graph of thre aximum amplification plotted against T is
given in Fig. 4.11. vyond T = 4, grcwth is very rapid; at 7 = 12
initial imperfecticns are amplified by more than 400, These results
suggest that a bar under very high compression will buckle into wave-
lengths near 8.88 r/Jf¢' at nondimensional times between 4 and 12,
Better estimatec for critical buckling times are given in sveceeding

sectians,

400 T

350 —

300 —

150

100 —

50 —

]
0 2 4 6 8 10 i2

NORMALIZED TIME, T
GA.5733-9

FIG. 4.11 MAXIMUM AMPLIFICATION vs. TIME

4.6 Dynamic Elastic Buckling under Eccentric Load

As an example. consider a bar eccentrically loaded as in

Fig. 4.12., For this problem, the initial deflection is taken as

wc(g) 5/r g # 0,1

4.77)

n
]

wo(g) £ =0,¢4
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Expanding into the Fourier sine series

-]
= nﬂ:
wo(g) 2 e sin -—311 (4.78)
n=1
the coefficients are found using formula (4.62), which yields
a = 2§— n odd
n nmr
(4.79)
a = 0 n even
n
From (4.68), the buckled shape is given by
= - cosh
w(E,T) = J, :Lm_'—l-—-é p,T - 1 sinig-g
=1,3 1 -n cos (4.80}
To evaluate this sum, recall that
n = %T-T; and for n odd, An = %‘ (4.81)
Then
4% 48 48 1 21 26
— T s 2 e P et e B e—— 4. 82
nr mr  rn 2n 1 e &7 (4.82)

and (4.80) can be written

® cosh
2 .
w(g, 1) = 2 —— p,T - 1 |sin n€ an

n=1,3... n(l - 1) |cos

(4.83)
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If we assume that the bar is very long compared to the wavelengths of
the buckling, An + dn and + can be treated as a continuous variable.

3
The sum (4.83) can then be replaced by the integral

- h
cos
- 2 1
W(:.T)=—éf p.7 =~ 11 sin S dn
w 2 n : :
° ~1 ~ r) Lcos
(4.84)
A plot of the function
1 cosh
fln, 1) = p,T - 1 (4.85)

n(l - 1;2) cos

in the integrand is given in Fig. 4.13 for T = 6. To obtain an approxi-
mate analytical expression for the integral in (4.84), we replace this

curve by the triangle of height A in Fig. 4.13, where A(f7) = f(l/J 2, 7).

30

A
20—

fi{n,6)

10—

o] ! ]

(o] 05 i 1o . L5 2.0

vz
17 GB-5733-h

FIG. 4.13 FOURIER COEFFICIENTS (transform) OF BUCKLED SHAPE

Then 1 1
w(E, 1) m2—6‘ f A(T)n sin ngdn = 284(r) [sin ng - mf cos ng]
mr 2 0
0 g
(4.86)
Eéﬁi%l (sin £ - € cos §)
g

*This is merely & plausible argument, but the result is correct, as can
be confirmed by using a TFourier integral representation from the start.
Converting from & sum to an integral here can be done because the
function multiplying sin nf in the integrand dies off for large 1 such
that there is no difficulty with sin nZ oscillating in the interval
An = 21/4. For a more rigorous discussion see Ref. 12.
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where

ACT) = — 1 T [cosh /2 - 1] (4.87)
=3
The function
w(g) = 15 (sin £ - g cos £) (4.88)
g

which gives the approximate shape of the buckling bar, is plotted in
Fig. 4.14. The wavelengths between peaks are slightly greater than 2n

near the support and approach 2n away from the support.

W({)- (unf cosé)

04 B
a2

- t v v
-Q2

CP-4733-12

FIG. 4.14 APPROXIMATE BUCKLED SHAPE OF BAR UNDER
- SUDDENLY APPLIED ECCENTRIC LOAD

This discussion gives an estimate for the buckled shape of a bar
under idealized eccentric thrust, and also shows how the amplitude of the
buckled form grows with time, Specification of a criterion for failure
by dynamic buckling, however, depends on the particular structural pro-
blem at hand. For example, if the bar is a push »od used to measure
rapid displacements, large deflections within the elastic limit could
constitute failure. On the other hand, in a rod used as a hammer, large
displacements are probably not objectionable so long as the motion re-

mains elastic and the rod returns to iis initiasl shape,.

To give a concrete example, let us calculete the duration of
load application required to produce a combined bending-compressive

stress equal to the yield stress. The maximum bending stress occurs at
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point B in Fig. 4.14 where the curvature W ‘= 0.235 and is a maximum,

In general, the compressive bending stress in the inner fiber, for a

rectangular bar of height h, is

h
M = N 2 2
fo3 :——2: ﬂ—alzgllirw":,’:; Eszwl' (4.89)
b 1 2 2 2
i ox r
f Using (4.86) with W'’ = - 0.235 and the time variation from (4.87), the
g bending stress at B is
!
i D .2 28A(R - - kol Iy -
f O = 3 Es p— (- .235) = 0.732 = T [}osh (2) 1]
(4.90)

where cc is the compressive impact stress.

The threshold of buckling is defined by the total stress

Sy b from (4.90), this

condition gives the following relation between the compressive stress

+ oc reaching the yield stress oy, Using O

g, and the time Tor at which first yield occurs:

C'c ~1 K & Tcr B
(——) =1+ 0.732 2 [cosh (==5) - 1_} (4.91)
cv b o 2

A graph of Tor VvETsus 0é/0y from (4.91) is given in
Fig. 4.15 for several values of eccentricity &, with § expressad
in terms of depth h of a rectargular bar for later comparison teo
eyxperiment, The values chosen range over an order cf magnitude, from
8§ =0,00316 h to & = 0.0316 h. The mid value § = 0.01 h is a repre-
sentative value found from static experiments, as giver by Eq. (4.22).
We shall see that the dvnamic buckling experiments in Section 4.8 suggest
that the static data do indeed give equivalent imperfections in the

appropriate range for the dyunamic problem.

Also giveun ig a curve of the amplification Gp (from (4.69)
with n = 1/,}2 Yrequired to produce first yieid for an eccentricity

TR, .

§ = 0,01 h. S8Similar curves for & = 0,00316 h and & = (.0316 h are

omitted for clarity. This curve shows that for small values of impact
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FIG. 4.15 CRITICAL BUCKLING TIMES TO FIRST YIELD
FOR BAR UHDER ECCENTRIC LOAD
stress the amplification must be very large to prnQuce yield. This
results because the bending contribution must be larger and also be~
; cause the wavelength of the buckling is longer. Under these conditions,
% depending oun the practical application, large buckling deformaticns may

constitute buckling before thie yield stress is reached, thus placing an |
» upper limit on Ter' Howzver, with the yield definition of buckling
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here, Ter approaches infinity (as does the length of the bar) as P
approaches zero. At the other end of the curves, as the impact stress
approaches the yield stress, the amplification required to produce first
yvield is quite small (less than 10 for oc/cy = 0.9). Also, in a real
material the yield stress is not sharply defined and, more important,
the tangent modulus begins to fall rapidly as the material yields so
that the elastic modulus in the present buckling formulation is in-
appropriate. Thus application of the curves in Fig. 4.15 has little
meaning for real materials beyond about oe/cy = 0.9. Buckling in this

range of loads is considered in Section 4.9.

To obtain a physical interpretation of the curves, we observe
that in physical units nondimensional time T corresponds to the im~
pulse of the applied load. Thus, from the definition of T in
Eq. (4.57), this impulse is

Pt = AEY T (4.92)
1= ABX (4.93)

g
P= Ac = Ag -—°—) (4.94)
C y "Jy

Thus the curves in Fig. 4.15 can be interpreted as giving the combinations

of load amplitude P and load impulse 1 that produce threshold buck-
ling. 1oad points above the curves give more severe buckling, while
load points below the curves give no permanent buckling deformations,

We shall see in Chapter 5 that amplitude-impulse curves of this type can
be applied to more complex stiructures, such as & cylindrical shell under

lateral pressure.
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4.7 Dvnamic Elastic Buckling with Random Imperfections

Another form of imperfection, more uniquely concerned with the
dynamic problem, is suggested by experiments to be described later in
which rubber strips were buckled over a wide range of dynamic thrusts.
1t was found that the strips buckled into wavelengths which varied ran-
domly at each thrust, with a mean and standard deviation both inversely
proportional to the square root of the thrust as suggested by Eq. (4.76).
These results are consistent with the assumption that random imperfections
in the strips are amplified by the buckling motion so that the resulting
buckled form, although still random, has statistics determined by the
buckling amplification function given by Eq. (4.69) and in Fig. 4.10,

Several methods of representing a random function have bheen
described by Ricel3 in the study of filtering electrical noise, 1In the
electrical problem, the function represents the variation of current with
time, I = I(t). 1In the bdbuckling problem here, the random function re-
presents the variation of lateral displacement with distance along the
bar, w = w(£). Thus there is an analogy between the two problems, with

el=ctrical current being associated with mechanical displacement, and

time in the electrical problem being associated with axia]l position in

the mechanical problem. In the electrical problem, 8 noise signal Io(t),
having Fourier components an(wn), is fed into a filter having an atten-
uetion characteristic F(wn). The output signal is I{t), having Fourier
components An(wn) = F(wh)an(mn). In the mechanical problem, the "input”
is the initial displacement wo(g), having Fourier components an(q),

and the "output' is the buckled form w(E), having Fourier components
gn(n) = G(n ,f)an(n). The mechanical problem contains one added variable,
time T , so that the amplification characteristic also depends on time
as indicated by GD(T) in Eq. (4.69), which is denoted here by G{(n ,t).
However, at each instant the analogy is quite close. The only difference
is that in the electrical problem the process is stationmary, that is,

the currents continue indefinitely in time and the statistics are taken

to be independent of time, In the buckling problem, the boundary con-

ditions at the ends of the bar must be met so that the statistics depend
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also on the position I , the variable analogous to time. If the buckle
wavelengths are very short compared to the length of the bar, however,

one would expect that some distance from the end of the bar its effect

y
diminishes and the assumption of white noise would be acceptable, With !
this assumption the two problems are completely analogous and all the \
theory available for the electrical problem can be used here. :

It is not necessary to assume that the random imperfections are ,
stationary; this assumption merely makes the mathematics simpler. Before z
this is done, consider a random form of imperfection which does satisfy %
the boundary conditions of simple supports at £ =0 and € = {. These ;

%
imperfections are given by ;
§
» i
w (£) = z: s sin ng (4.95)
n=1 ;
where
nwe
= 5
n L P
and N will be specified later, The coefficients au are random
normal, having mean value zero and standard deviation d(n). The normal .
or Gaussian probability distribution is shown in Fig. 4.16. It is fur- |
ther assumed that o 1is constant over all wavenumbers of interest, then
plag)
A
©=STA "ARD DEVIATION /
{ | L i l J E
-4 -3¢ =20 -c (¢} o 2o 3o 4o i
% |
GB-3733-18 x
: H
FIG. 4.16 ASSUMED NORMAL DISTRIBUTION OF FOURIER |
COEFFICIENTS OF INITIAL IMPERFECTIONS e :
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Fq. (4.95) is called (nonstationary) white noise. 1In order that wo(g)
remain bounded, ¢ must ultimately die off for large r, . Since our
central concern is in the buckled shape w(f) after the Fourier co-
efficients have been amplified by G(n,7),and Fig. 4.10 siows that for
w‘; 2 the amplification is very small, harmonics with n > 2 can safely
be neglected. Thus, in the initial deflections given by (4,85) we merely
specify that o(y) dies off in some unspecified manner for =+ > 2 and
is constant for 0 < n_E 2., This is the usual assumption justifying the

use of white noise as a filter input.

Since the concept of white noise can be applied only when
associated with a piucess passing a finite band of wavenumbers, we must
defer any examples of random functions until after the amplification
function with its inherent cut~-off has been applied to give the buckled

shapes. This function, repeated from Eq. (4.69),is

cosh
G(n ,T) = 3 p(m)t - 1 (4.96)
1-n jcos
where
1/2
p(n) = |n (1l - n)

and the hyperbolic form is taken for 1< 1. The buckled form i3 given
by

N
w(E, 1) = z: anG(n ,T) sin rg (4.97)
n=1

where N 1is the largest value of n for which n < 2,

With a cutoff characteristic now applied, examples can be given
of the functions characteristic of puckling from random imperfections,.
Figure 4.17 gives two examples of buckled forms calculated from Eq.(4.96)
using a length £ = 5017 , which is 25 complete Euler lengths and very
long compared to the highly amplified wavelength A = 2n-f§1 corres-
ponding to n = 1/ sz. With this choice for £, g = 100, The pro-

cedure was to select 100 random numbers from a population having a
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FIG. 4.17 TWO EXAMPLES OF BUCKLED FORMS
FROM RANDOM IMPERFECTIONS

Gaussian distribution as in Fig. 4.16, with ¢ = 1. These were then

used as the coefsicients an in Eq. (4.96) and the summation was taken
over 100 modes, corresponding to O < +; £ 2, Higher harmonics would
have had a negligible effect as already mentioned because of the rapid

decrease of G(n ,7) with =n for n > 2.

In each example in Fig. 4.17 (i.e., for each set of 100 random
coefficients) the buckled shape is plotted at 7 =4 ard < =6. 1In
both examples, there are rore crests (waves) at 7.= 4 than at 1 = 6§,
This is a consequence of the shift in the peak of the amplification
function in Fig. 4.10 from n~1 at 71 =<¢ to m=a0.8 at 171 =86,

At still latexr times little further change in the number of crests would
be expected because, as discussed in 3ection 4.5, the point of maximum

amplification cannot shift below n = l/J 2~ 0,707,
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Another featurce exhibited in these examples is tymical of buckled
forms from white noise: although they consist of a randen assemblage of
harmonics, they exhibit a surprisingly regulsar nartern of waves., The
average wavelength of this pattern depends, of course, on the region of
amplification defined by the amplification function. In fact, an am-
plification function which is squezre in shape, constant for = <2 and
zero tor n > 2, would give a wave pattern similar to those shown in
Fig., 4.17. This is exactly the waveform of the imperfection wo(ﬁ)
corresponding to the computational procedure used in generating the
curves in Fig. 4.17, but it is not the waveform of the "actual” imper-
fection, whose Fourier components do not cut off abruptly at n = 2,
This is the reason that numerical examples had to be deferred to the
discussion of buckled shapes; any specification of a cut-off wavenumber

already implies filtered noise.

The only wey of quantitatively describing buckled shapes such as
in Fig. 4.17 is to give statistics of the features of interest. The most
easily measured quantity in experiments is the buckled wavelengths, so
statistics of wavelengths will be calculated for later comparison to
experiment. Direct calculation of these stat.stics is beyond the means
of currently available analysis except for a special case to be given
later. Instead, the statistics are calculated by the Monte Carlo method;
a large sample of random buckled forms is generated numerically by the
procedure just described and the resulting data are plotted directly in
the form of a probability distribution (histogram) for the feature of
interest, To determine the distribution of wavelengths, 65 random
buckled shapes as in Fig. 4.17 were calculated, each with a different
set of 100 random values for 8- Wavelengths in each buckled shape
were then measured for 7T = 6 and the histogram in Fig. 4.18a was pre-
pared. The wavelengths were measured between alternate zero crossings
for the first three waves from the support & = 0, not counting the
support as a crossing. Separate listograms were alsc prepared for the
first, second, and third waves individually and no significant differences

were found, indicating that the end support does not seriously affect the
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FiG. 4,18 THEORETICAL AND EXPERIMENTAL HISTOGRAMS
OF BUCKLED WAVELENGTHS

wavelengths even a small distance from the support. Many more computa-
tions would have to be added before this would approximate the proba-
bility distribution, but the main features of the distribution are
apparent, The mean wavelength is Xm = 7.4, which lies between the
Euler wavelength ) = 27 = 6.28 and the "preferred” wavelength

Xp = 2nJ??= 8.88, as shown. The standard deviation of the wavelength
is g, = 1.7 and the ratio of standard deviation to mean wavelength is

A
g /x = 0,23,
Aom

Figure 4.18b gives a histogram prepared from experiments on
about 50 aluminum strips buckled under axial impact as described in
Section 4,8, The mean value of the buckled wavelengths is somewhat
larger than in the theoretical histogram (Am = 9.5 compared to Xm =
7.4 in Fig. 4.18a) and the spread in wavelengths is somewhat smaller.
The narrower spread possibly results because part of the initial imper-
fection was in the form of an eccentric impact, which tends to produce

a fixed wavelength as described in Section 4.6. However, the general
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fentures of the observed distributiion are adequately represented by the
white noise theory. More extensive experimental examples are given in

Section 4.8,

An analytical expression for the mean wavelength directly in
terms of the amplification function G(r, ,7) can be given if it is
assumed that the buckling displacements are stationary, i.e., if the end
conditions are neglected as discussed earlier, With this assumption the

initial imperfections can be represented by stationary white noise as

follows:

N
w (8 = 2: a_ sin (nf + gh) (4.98)
n=1
This form is similar to Eq. (4.95) except that here the Fourier compo~
nents are added in random phase, with the phase angles O, uniformly
distributed (with equal probability) in the interval O < B < 21 . The
buckled displacements are then
N
w (8) = 3. a G(n ,T)sin(rg + @) (4.99)
n=1
With the standard deviation of an constant, it is reasonably simple to
demonstrate13 that the mean wavelength between alternate zero crossings

in the buckled form is

-

® sz

sz('n , T)dn

]
=)

f-nsz('n , T)An
L o

No analytical expression has yet been found for the standard deviation

)‘m(T) = 2n (4.100)

4
of wavelengths, even with the stationary process assumption (Slepian1
discusses the current status of this perennial problem in information

theory).
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For the complicated G(- ,-) in Eq. (4.96), no closed form ex-—
pressions for the integrals in Eq. (4.100) were found. Instead, the
integrals were evaluated numerically over the region 0 < r = 2 of sig-
nificant amplification for several values of +r. The resuliting mean
wavelengths are plotted against 7T 1in Fig. 4.19. The mean wavelength
increases monotcenically with <+, but in the region 7 ; 6 of significant
amplification (see Fig. 4.11) the increase is very small. At 11 = 6,
Fig. 4,19 gives xm = 7.4 which is the same result found in Fig, 4.18
for buckles satisfying the pinned end conditions, Also plottec is the
wavelength corresponding tc the most amplified mode, given approximately
by Eq. (4.74) for large 1. The mean and most amplified wavelengths are
very close together and have very nearly the same variation with 7.

For large 1, both approach the preferred wavelength Lp = 2nJ 2.

10
I T T ! |
PREFERRED WAVELENGTH Ap-2my/Z

MEAN WAVELENGTH

r 6 —
[
(L3
2
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>
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FIG. 4.19 MEAN AND MOST AMPLIFIED WAVELENGTHS vs. TIME
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These results suggest that, if it is rcasonable to assume that
random imperfections are present in a bar as described, then the bar
will buckle over the entire compressed length and the wavelength of the
buckles will be reasonably well characterized by the preferred wavelength
lp = Zﬂ'JE\. To calculate a threshold of buckling, one can make the
simplifying assumption that the motion consists of response in only the

preferred wavelength, with an assumed single equivalent imperfection at

this wavelength. This will now be done,

As in static buckling, imperfections can be divided into two
tvpes, one type having amplitudes proportional to the thickness of the
bar and the other having amplitudes proportional to the wavelength of
the buckling. In the following, both types will be considered and it
will be shown that the resulting critical times Ter for buckling do not

depend strongly upon which type is assumed.

We treat first imperfections having amplitudes proportional to
the buckle wavelength Xp and denote the coefficient of this Fourier

component by Ap, in physical units, Thns we assume

A = 8L (4.101)
P p

where Lp is the preferred half-~wavelength (the buckled shape of an

Euler column) under the applied load b, corresponding to a half-wavelength

xp/2 in nondimensional units. In dimensionless form these quantities,

using (4.57), are expressed by

S W
R e S 2 f2° (4.162)

a = (4.103)

P
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The criterion for buckling is taken as in Section 4.6 on cccentric im-
pact; a critical time Tcr is determined such that the bending stress

plus the direct stress due to P reaches the yield stress.

The bending stress, from Eq. (4.89), is
g = Js EsZu’’ (4.104)

The idealized tuckled shape is simply a sine wave, given fror Egs. (4.396)
and (4.97) as
£,7) = —L— [cosh p(n 01 - 1lsin e (4.109)

2
1-n

with n}) = 1/,/2 . Differentiating (4.105) and substituting the result

into (4,104) gives the peal bending stress, at sin T\p £=1, as

,,—12, it
Op = 3 Es ap {}osh > 1] (4.106)

which, using ap from (4.103), becomes

oy = nJ?s Es [cosh% - 1] (4.107)

2
Finally, we use s = Oc/E and the buckling criterion o, * O, = Gy to

obtain

1 - o /3
- l}:osh =r . 1] (4.108)
y

,/ o, /0

This equation is the counterpart of Eq. (4.91) for buckling from eccentric
impact. An essential difference is that here the eritical curves for
buckling depend not only cn the imperfection amplitude 3 but also on
the yield strain ¢ . This results from taking the imperfections pro-

portional to the buckle wavelengths,

Curves of Ter versus gc/oy from Eq, (4,108) are given in

Fig. 4.20 for ey = 0,005, a representative value for engineering metals.
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FiG. 4.20 CRITICAL TIMES TO FIRST YIELD
FOR BUCKLING IN *‘PREFERRED" MODE

Values of B are takon from 0,0001 to 0.001, corresponding to the range
of imperfection amplitudes observed in static buckling as given in
Eq. (4.23). The curves are gquite similar to those in Fig, 4.15 for
eccentric impact except that the critical times 7 change more slowly

cr
with cc/c:ty (i.e., the curves are more nearly horizortal for intermediate
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values of Cc/oy). Also, Tcr does not shoot up to very large values
until cc/cy is very small. These observations can be made by comparing 1
the solid curves (imperfections proportional to wavelength) to the dashed :

curve (which has the same functional form as in the curves for eccentric

impact).

Critical buckling times for imperfections proportional to the
deptir ¢f the bar are found in essentially the same way. The eyuivalent

imperfection amplitude in the preferred mode is then given by
A =vyr (4.109)

Using this in place of Eq. (4.101) and applying the same procedure as
for imperfections proportional to wavelength, the expression for Tcr
becomes

-1
o T
e _ , Y cr _
(-&— ) = 1+ 3y [cosh - 1] (4.110) .

¥

This is exactly the same functional form as found for eccentric impact,

i .7 r replaced b 3 = 3 . Agai
with the constant 0,732 §/ D v J Y J Ap/r gain, 7T L 4
depends only on oc/cy and not on the magnitude of the yield strain ey’

As for imperfections proportional to wavelength, we take as
estimatas for v the values found appropriate in static buckling. For
a rectangular bar of depth h , the static empirical formula (4.24) gives
the conservatively large value vy = 0.1 r/(h/2) = 0.058., In Fig. 4.20
the dashed curve is a plot of Eq. (4.10) for a somewhat smaller value
(v = 0.0346, corresponding to Ap/h = 0.01) to give an intermediate
value for comparison to the solid curves. 'This comparison shows that
the values of Ter calculated for either type of imperfections (with
representative values for hoth taken from static buckling) give very
nearly the same result. More important, we shall see inAthe next section
that these curves compare favorably wiith observed threshcids of dynamic

buckling.
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4.8 Experiments on Dynamic Elastic Buckling of Bars

In practice, the most directly applicable physicel problem for
the preceding theory is the impact of a long bar against a massive target.
We consider that the bar is originally stress free and moving toward the
wall with velocity V as shown in Fig. 4.21u. Since to a good approxi-
mation the target can be considered to be a rigid wall, on impact the left
end of the bar immediately comes to rest, Adjacent particles to ihe right
subsequently come to rest as a stress wave of magnitude © propagates to
the right at the bar sound velocity ¢ . When the stress wave has passed
a distance xG into the btar, the impulse applied by the end load at the
rigid wall must be equal to the initial momentum of the length x0

brought to rest by the stress wave. This condition is expressed by

- xc
A= pAx_tV
or
G = peV ) (4.111)
y
e e

BREESREENERERERREEREREREEN{Y
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X
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FIG. 4.21 AXIAL STRESS WAVE IN A BAR IMPACTING
A RIGID WALL

193




This situetion is convefiiently produced experimentally by using
a tensile testing xrua.cl'xine.]5 The initial velocity V 1is produced by
first pulling the bar to a tensile stress < . Prior to applying the

tension & notch is filed in the L.r near the upper jaw with its depth ad-
Justed so that fracture occurs at the notch when the stress in the remain-
der of the bar is near the desired stress o, After fracture, a {(com-
pressive) relief wave travels down the bar at velocity ¢ , leaving the
bar stress-free behind the wave and traveling at velocity V = o/ze by
the same argument just made for axial impact. When the wave arrives at
the lower jaw it reflects, sgain as a compressive wave, Since the rod is
completely stress-free and traveling at velocity V at the instant of
this reflection, formula-{(4,111) can again be used, giving a compressive
stress equal to the initial tensile stress ¢ . 1In actual act the stress
rises to this value in a finite time comparable to the time for stress
waves to cross the bar and communicate the notch fracture to the full

cross section.

4.8.1 Framing Camera Observations

An example16 of a strip buckled by this procedure is
given in Fig. 4.22. The strip is made of 6063i~T6 alumin.m with a

TOTAL LENGTH

3°‘°£ OF STRIP - 0.0125" THICK BY 0.5" WiDE

' i 1 H t ' H 3 B 4 i H 5 B i

25 {
m—i:

1.5 —

INCHES

H B ¥

ost ki B TN
18 F BRE ‘W, \ \ CLAMPED
N . i'} { . ‘ ‘ ‘ BOUNDARY
18 24 30 36 42 48 54 60 66 T2 78 84 90 96 102 108 4

TIME — psec 6P 3722

FIG. 4.22 ALUMINUM STRIP BUCKLING WITHIN A 40,000-psi AXIAL
STRESS WAVE (time measured from compressive reflection at lower jow)

194

-

Lrg g

% . P




e

0,3 x 0.0125~inch cross =cciion and a length of 20 inches between notch
and lower jaw. The photographs show only a few inches of the strip just
above the lower jaw, The magnitude of the compressive wave was approxi-
mately 40,000 psi, between 10 and 20 percent below the yield stress., It
was photographed by an ultrahigh-speed framing camera at a framing rate
giving 6 microseconds between frames. In the figure, at 18 Hsec after
the arrivel of the compressive wave the strip appears straight, but care-
ful meacurements show that it is slightly buckled even at this early time,
At 24 Bsec the deflection is perceptible in the printed reproduction here
and at later times the developing buckles are clearly visible., All the
buckles remain nearly fixed in position and merely grow in amplitude, just
as in the idealized eccentric impact example. The lowermost buckle con-
tinues to grow throughout the time shown, but the upper buckles oscillate
beyond 70 Hsec because the very large deflection of the lower buckles
reduces the {thrust by allowing tne remainder of the bar to move toward
the jaw. The rapidity of the buckling is demonstrated by the lateral
velocity of the crest of the lowermost wave, calculated to be 75 fps.

The wavelength of the lower buckle 1is about 0.47 inch, very ¢lose to the
value of 0.50 inch calculated for the preferred wavelength Xp from the

theory.

4.8.2 Streak Camera Observations--Effects of the Moving
Stress Wave

The theory, of course, is not strictly applicable to
the impact problem because it assumes that the thrust is uniform through-
out the length of the bar. In impact, the thrust is applied by the mov-
ing axial stress wave and at each instant only the distance enveloped by
the wave is under compression. To observe possible effects of this mov-
ing wave, and also to observe early exponential buckling growth as pre-
dicted by the theory, another experimentsl arrangement17 was used to
amplify the tiny early motion. Instead of observing the buckling directly
in an edge-on view as in Fig. 4.22, the strip was polished on one side
and the reflected image of a series of light sources was viewed with a

streak camera as shown in Fig. 4.23, The shift in position of the light
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source is proportional to the product of tlhe small change in slope of

the strip at the point in which the image forms and the distance between

the light scurce and the strip.

With this method, deflections of the

order of 50 millionths of an inch were easily resolved and the exponen-

tial growth was observed.

"10‘.— Y 2B
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FIG. 423 OPTICAL LEVER METHOD OF OBSERVING
BUCKLING SLOPE
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L A plot of peak displacement versus time (assuming the

buckle was a simple sine wave at the observed 0.65-inch wavelength) is

R shown in Fig. 4.24 for one such experiment, The magnitude of the stress

' wave in this experiment was approximately 30,000 psi and the cross section
of the aluminum strip was 0.50 x 0,0116 inch. The experimental points
are peak displacements A(t) measured from the initial (unmeasured) dis-
placement Ao. The lower smooth curve passing through these points is a

theoretical curve calculated under the assumption that the growth is

_ T
o) f 2 3 4 5
Lo T I T ] _
— (DEFLECTION PLUS ] ;
= IMPERFECTION} -
B INITWITYNE) -
£ .
+ r e
£
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TIME FROM PASSAGE OF AXIAL WAVE —~— usec
GA-5733-18

FIG. 4.24 EXPERIMENTAL (points, for deflaction only) AND THEORETICAL
{curves) BUCKLE AMPLITUDE vs. TIME (matched at 22 usec)
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adequately represented by the preferred mode, Taking np = 1// 2 in
Eq. (1.69), the amplitude of this mode is

ACT) = 2A [cosh (1/2) - 1] (4.112)

0.20 in/Msec, and r = 0.0116/ /12 inch in

0.18 t, with t in Msec. The Fourier coefficient
5

]

Using ¢ = 0,003, c

Eq. (4.57) gives 17
Ao of the equivalent initial imperfection was adjusted to 9.1 x 10~

inch to fit the experimental data as shown. The upper curve is the cal-

culated total amplitude Ao + A(T).

This experiment demonstrates that the observed buckling
consists of exponential growth which can be calculated quite adequately
by the simple theory., The simple uniform thrust theory is adequate,
even though the thrust is applied by a moving stress wave, because the
stress wave has moved a large distance along the bar before significant
buckling displacements appear. For example, in Fig. 4.24, the peak am-
plitude of the buckling is only about 0.001 inch (giving a bending stress
of 4600 psi, well within the elastic 1limit) at 30 WMsec after passage of
the axial stress wave, At 30 Msec the stress wave has propagated about

6 inches along the bar, about 10 times the observed wavelength of 0,65

inch.

However, the high magnification of the optical lever
did reveal that the axial impact produced very high frequency bending
vibrations superimposed on the buckling motion. On the original streak
camera record an oscillation was observed* having a period of 3.1 Hsec
(320 ke/s) and a peak-to-peak amplitude of about 5 x 10-6 inch. The
oscillations appeared to be a wave train propagating along the bar from
the impact at the lower jaw at.a phase velocity of 0,075 inch/Hsec,
giving a wavelength of (0.075) (3.1) = 0.23 inch., These oscillations
had little effect on the buckling, apparently because of this short wave-

length and because their period was so short compared to the buckling

%k
These were observed on all three experiments performed.
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motion (3.1 Msec corresponds to AT = 0.55). Thus we can conclude that
effects dependent upon the moving axial stress front had a negligible

effect on the buckling.

The argument concerning the distance the axial stress
wave has traveled during the buckling motion can be stated analytically,
From the theory, we have seen that whether we assume the imperfections
are loecal in nature, as in eccentric impact, or consist of a general ran-
dom form of imperfections, the wavelength of the buckles is always quite
close to the wavelength lp = 2112 of the preferred mode. Also, the
magnification of the buckling motion depends only on 1 , all other
essential parameters having been included in its definicion, It seems
reasonable to assume that effects of the axial stres3 wave will be small
as long as significant magnification takes place oaly after the axial
wave has passed several buckle wavelengths along the bar, Without speci~
fying a numerical value, we assume that the buckled form is unalterably’
determined (e.g., the buckled deformations are much larger than the initial
imperfections) at a critical time Top Using the definition ¢ in
Eq. (4.57) gives for the correspoanding real time

t = I . (4.113)

Real time t can be expressed in terms of the number N of preferred

wavelengths Lp through which trke axial stress wave passes at velocity c,

giving
LN / !
t= £ = 2nv2r N (4.114)
c cs

Putting this into expressinn (4.113) for critical time and using the
definition of s in Eq, (4.57) gives

Tc 1
N = ¢ — (4.115)

r
cr 2".1/—21 /€_|

This suggests that neglect of axial wave effects depends only on the com-

pressive strain of the axial thrust. In metals this strain is very small
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within the elastic limit and, as we have observed, elastic buckling is

adequately rerresented by the consiant thrust theory.

4,8.3 Experiments on Rubber Strips--Statistical Observations

Since formula (4.115) suggests that axial wave front
effects, if any, would be more pronounced at large compressive strains,
confidence in the theory would be enhanced for metals if it could be
demonstrated experimentally that the theory is acceptable in a material
which can withstand large elastic compressive strains. Pure gum rubber
is such a material and experiments have been performed using this ma-
terial to strains up to about 15%.17

The apparatus for these experiments, in Fig. 4.25, is
very simple and can be used for classroom demonstrations. A strip of
pure gum rubber 0.0375 x 0.50 inch in section and about 1 foot long was
looped over one end of a rigid support bar and secured by means of masking
tape as shown, with extra layers of tape wound above and below the rubber
strip so that its end was separated from the support and cover bar. The
cover bar is shown above this assembly in the phctograph. A strip of

emery cloth has been glued to it and saturated with chalk dust.

6373309

FIG. 4.25 APPARATUS AND TYPICAL RECORD FOR BUCKLING
RUBBER STRIPS
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To perform an experiment, the free end of the strip was
held between thumb and forefinger, the cover bar placed over the strip,
chalked side down and not touching the strip, and then the strip was
stretched to a specified strain and released. The wrinkled strip im-
pacted the chalk bar with sufficient velocity that a well-defined line
was left on the sirip at the crest of each wave, as shown. The positions

of these lines were easily measured to an accuracy of 0.01 inch.

To examine the applicability of the random ncise assump-
tion for imperfections, in addition to the applicability of the constant
thrust theory, many experiments were performed so that statistical distri-~
butions could be prepared. Figure 4.26 gives histograms of the measured
wavelengths for several values of initial tensile elongation, These data
were taken from tests on 18 strips, each tested at all the strains, from
smallest to largest strain in order to minimize any perturbations caused
by the wrinkling of a previous test. Buckling at a strain greater than
25% is rather violent and leaves the strip with a definite bias toward
the corresponding wavelength. The number of waves observed in each test
varied from 2 to 3 at 3% strain up to 12 at 16% strain, The same strip
tested repeatedly at tge same strain gave an almost identical wave pattern
each time, consisctent with our mathematical model in which the imper-
fections are assumed random but fixed for any given bar. Data from only
the first test at cach strain were used for the histograms. Each histo-~

gram has a total of 65 observations so they can be compared directly.

It is significant that the general shape of all histo~
grams is the same and that the ratio between the standard deviation and
mean value is nearly constant over the entire range of strains, as shown
in Fig, 4.26. This demonstratgs that the statistics are inherent in the
buckling process and are not the result of errors in measurement. It
also indicates that the strips had no preferred wavelength characteristic
of a manufacturing process, If these distributions are compared with
the distribution in Fig. 4.18, calculated essuming that initial imper-
fections can be represented by white noise, we see that the white noise

assumption gives a very good description of the observed buckling.
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To compare the observed wavelengths with the uniform
thrust tueory, the large strains involved must be taken into account,
Only the final compressive strain resulting from the initial tensile
strain is needad, so the corrections can be obtained without reference
to the details of large strain-wave propagation., It is sufficient to
assume that the rubber behaves elastically so that the potential energy
stored in compression squals the initial potential energy in tension.
Tensile stress-strain tests were performed on sample strips which showed
that true stress was linear with elongation out to at least 100% with a
Young's modulus of 285 psi. Thus the initial tensile force F i1 the

strip is given by

A
o

1+ ¢

F = Eg (4.118)
where Ao is the unstressed cross-sectional area of the strip and

e =L - Lo)/Lo is the elongation, The initial stored energy at uni-
form tensile elongation €p is equal to the work done by the end force

F{z),

L -1 €
(=] T ede
UT = f F(z)dz = EAoLof T+ e = EAOLO 1oge(1 + sT) (4.117)
o [

where =z is in the position of tHe moving end of the strip., Similarly,

the compressive energy stored in the strip is

Uc = = EAOLO loge(l - ec) (4,118)

expressed so that the compressive strain ec is a positive quantity.
Equating these energies, the compressive strain is simply

I |
e—

. E_Z—E; (4.119)

Further, the increased thickness h from the unstressed thickness ho.
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assuming the cubber is incompressible, is

hO
h = (4.120)

1/2
(1 - ec)

The last currection to be made accounts for the wrinkles being formed at
axial strain €a but measured when the strip has returned to zero strain.
The ratio of the observed wavelength {r to tne wavelength while under

corpression is, by the defiuition of ec R
Lr
T = — (4.121)
c

The wavelength of the "most amplified” mode in dimen-
sionless coordinate £ is )\p = 2\]2 n . Using this with Eqs. (4.57)
and r = h/,112 , the wavelength of the most amplified mode while the

strip is under compression is

1/2
2 h .
ch = 1 (3 ) 175 (4.122)

€e

After the strip has relaxed, this preferred length would be elongated
according to (4.121). Using (4.122) in (4.121) with (4.119) and (4.120)
the elongated length is given by

S\ /2 (re)?
L .= n (.5) —1 ho (4.123)
p €

In Fig. 4.27 the observed wavelengths of Fig. 4.2€ are
plotted against this preferred length, the c¢ircled points giving the
mean vsalues and the bars exten@ing one standard deviation above and below
the circles. The mean values fall very close to a straight line through
the origin, and the ends of the standard deviation bars are also closely
bounded bv straight lines. These observations suggest taat Eq. (4.123)
gives the proper form of variation with strain. However, the ratio be-~
tween observed and preferred wavelengths (the slope of the line through
the circles) is 1.70 here as compared to only 1.07 for the aluminum
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experiments given in Fig. 4.18. This difference is attributed to strain-
rate effects in the rubber. 1If, for example, these effects are lumped
into an effective dynamic compressive modulus k times the static tensile

modulus, the preceding theory gives a slope of 1.00 for k = 2,
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FIG. 4.27 MEASURED vs. THEORETICAL WAVELENGTHS
{bars extend one standard deviation gbove and below
mean valye)
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Although the foregoing interpretation of the discrepancy
between the aluminum and rubber experiments is somewhat speculative, the
smooth variation of measured wavelength with strain strongly supports the
conclusion that lateral motion immediately behind the axial-stress front
has a negligible effect on the wrinkle formation and that a constant-
thrust theory can be used with ronfidence, The main effect of the travel-
ing thrust is that the duration of the thrust decreases as one moves away
from the struck end, and this could easily be accounted for by simply
assigning a different duration to each wrinkle. This conclusion should
also be applicable to more complicated structures, such as cylindrical
shells under axial impact. For large deflections, it might prove neces-
sary also to compute a new thrust for each wave, reduced owing to lateral

deflections in preceding waves.

4.8.4 Buckling Thresholds in Aluminum Strips

To obtain estimates of equivalent imperfections to be
used in estimating thresholds of pulse buckling, experiments were run
on thin 6061-T6 aluminum strips using a tensile testing machire as
described previously. Tests were run on strips 1/2 and 1/4 inch wide
and 0.0124 and 0.025 inch thick.* The initial tensile stress (and
reflected compressive stress) was nominally adjusted to 0.4 ani 0.7
times the yield stress of 42,000 psi by appropriately sized fracture
notches in the strips. Duration of the thrust at the lower jaw was
varied by varying the length L between the notch and lower jaw, the
duration teing 2L/c. For each combination of strip width, thickness,
and compressive stress, tests were run at increasing lengths until plastic
buckles appeared. These were observed by sighting down the shiny
finisk of the strips, a simple procedure with high resolution. The

dimensionless time 1t , from its definition in Fg, (4.57), is

2¢ L
e ¢ €c

(4.124)
T c r

“rwo widths were tested at each thickness to examine the effect of frac-
ture time on buckling. It was found that possible eifects were masked
by changes in ecritical locads caused by random variations in imperfectionms,
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Figure 4.28 gives a plot from tests at many combinations
of axial stress and duration, with open points representing tests in which
N no buckling was observed and solid points tests in whizh buckling was ob-

servad. The upper points (longer duration, buckling? are all solid and
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the lower points (shorter duration, no buckling) are nearly all open, as
would be expected, At intermediate durations buckling and no-buckling
points are intermingled as a result of the random nature of the imper-
fections. Also given on the same graph are theoretical curves similar to
the dotted curve in Fig. 4.20 for assumed imperfections in the preferred
mode proportional to strip thickness. The experimental transition band
of intermingled points between no buckling and buckling follows the trend
of the theoretical curves, with equivalent imperfections in the experi-

ments ranging from about 0.01 to 0.03 times the thickness of the bar.

The most severe buckles generally appeared at the jaw
or one plastic hinge from the jaw, as would be expected because of the
longer duration of thrust near the jaw and the possibility of eccentric
loading (see Fig. 4.14). As often as not, however, 3 or 4 plastic hinges
were cbserved, suggesting that random imperfections throughout the bar
were at least as important as eccentric loading. Buckling a few wave-~
lengths away from the jaw, of course, had to take place in a somewhat
shorter time, thus increasing the equivalent imperfections above those
implied in Fig. 4.28. However, this effect is small because the wave=-
length of the buckling is small comparad to 2L, as discussed in relation
to Eq. (4.115). Thus we can conclude that random imperfections in these
tests were equivalent to single imperfections in the preferred mode of

from 1 to 3% of the strip thickness.

4.9 Dynamic Plastic-Flow Buckling

In all the preceding theory the axial stress was much greater
than the static Euler buckling stress, but was nevertheless assumed to
be within the elastic range., Even if the stress exceeds the yield stiress,
however, the mathematics of thé elastic theory can still be used. For
this treatment it is assumed that the axial stress increases as buckling
takes place, as in the Shanley hypothesis in Fig. 4.9. Thus, buckling

flexure is accompanied by moments proportional to the tangent modulus Et
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and the equation of motion is the same as Eq. (4.4) in elastic buckling

with E replaced by Et'

54 82 a2

E1 S, p==(y+y )+ pA 2Y = ¢ (4.125)
t 4 2 o 2
9x ax at

Similarly, if dimensionless variables w, £, and T are introduced using

Eq. (4.57), with the following modifications,

52c t 2 Et 2 (o]
T = -—_B.- N C = — N S = —L='-x (4.126)
r p P AE E
t t
the equation of motion (4.125) becomes
w e w v w=—w (4.127)

which is identical to Eq. (4.58). In Eq. (4,126) it has been assumed
that the small increase in p beyond yield can be neglected and that

Et is constant,

The mathematics for the plastic problem is therefore identical
to that in the elastic problem, yielding a 'preferred’ mode with wave-
length gp = 2ﬁ4r51, end resulting in large growth for 5 < 1 <10, 1In
physical units, of course, these quantities are much different in the
plastic problem. Using the definition g = sx/r from Eq. (4.57), we
see from Eq. (4.126) that the ratio of preferred wavelengths in the

plastic and elastic problems is

Xglastic - (EL,EL 172 (4.128)
kelastic o& E

For many engineering metals the elastic modulus is about 100 times the
tangent modulus, so that buckles formed during plastic flow have wave-
lengths at least an order of magnitude smaller than in elastic bu&kling.
The buckling times are also an order of magnitude smaller, as 1s seen by

comparing the definitions of 1T in Eq. (4.57) and (4.126), giving

t E 1/2
tglastic - %_ (_E_t) (4.129)
elastic y
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As in elastic buckling, the most directly applicable physical
problem for the plastic-flow buckling theory is axial impact of a bar
against a massive target. From Eq. (4.111), impact velocities that re-

sult in plastic flow are greater than

v = f.‘d:ce (4.130)
pe y

where €y is yield strain and ¢ is elastic wave velocity. For alumi-
num, magnesium, and steel, ¢ is near 16,000 fi/sec and a typical yield
strain is 0.005. 1In these metals plastic flow buckling therefore occurs
for velocities greater than about 80 ft/sec; at smaller velocities the
initial buckling is elastic. Since Et does not decrease abruptly at
yield, there is a small transition in velocity over which buckle wave-
lengths and times decrease by an order of maghitude. The transition zone

is narrow, however, because

ec
E 1/2
v=f p—" de (4.131)
/ .

8
(the generalization of Eq., (4.130) to a continuously changing modulus1 )
increases slowly beyond yield. Inclusion of a continuously changing
modulus in the buckliing theory is given in the next chapter for cylindri-

cal shells subjected to radial impulse,
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CHAPTER 5

DYNAMIC PULSE BUCKLING OF CYLINDRICAL SHELLS
UNDER TRANSIENT LATERAL PRESSURES

by
H. E. Lindberg

5.1 Introduction

Cylindrical shells subjected to transient lateral pressures
(produced, for example, by blast waves) often fail by dynamic pulse
buckling. Three examples of dynamically buckled shells are given in
Fig. 5.1, the only difference between them being the peak pressure and
duration of the applied load. The shell on the left was subjected to
an impulsive pressure (duration short compared to the shell response
time) and has buckled into a very high order wave pattern with n = 15
waves around the circumference. The shell in the center was subjected

to a gquasi-impulsive pressure (duration comparable to the shell response

time) and has several buckles around the circumference, corresponding to
n =13 The shell on the right was subjected to a quasi-static pressure
(duration long compared tc the shell response time) and has buckled into

n = 7, very close to the static pattern for this shell. This chapter

9P- 2228121

(a) IMPULSIVE LOAD (b) QUASI-IMPULSIVE LOAD {c¢) QUASI-STATIC LOAD :
n~45 ne~i3 nex 7 i

FIG. 5.1 IDENTICAL SHELLS BUCKLED FROM PULSE LOADS OF VARIOUS DURATIONS
(6061-T6 aluminum, a/h =100, L/D=1)
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is concerned with buckling over the entire range of load durations, from
ideal impulses to durations so long that the buckling is essentially

static.

At each extreme of pulse duration tne analysis becomes relatively
simple, and theories for the extremes have been given in the literature.
For very short durations the load is characterized entirely by the im-
pulse, and the wavelength of the buckling is so short that the length of
the shell is unimportant, Thus two parameters, load duration and shell
length, are eliminated from the problem and the solutions become parti-
cularly simple. These are given by Abrahamson and Goodier1 for relatively

2
thick shells and by Lindberg for very thin shells,

For very long durations the load is characterized entirely by
peak pressure and, although the length of the shell must be considered,
it is shown here that inertia forces can b:c neglected and the solution
is again relatively simple. This is a classical static buckling problem ¢
ard is given in several standard texts, for example Ref, 3, Between )
these extremes, pressure, duration, shell length, and inertia forces
must all be considered. No previous investigations of this problem s
are known to the authors. The present analysis treats this problem and

contains the simple theories as special cases,

The problem taken is that of a simply-supported cylindrical
shell subjected to external surface pressures uniform around the cir-
cumference.* The time variations of pressure considered are triangular
and exponential in shape, as shown in Fig. 5.2. However, it is postu-
lated that the most significant load characteristics are peak pressure and

impulse. Therefore, in the theory to follow, loads that cause buckling

*
Applicability of the solution to asymmetric loads is discussed later,

Abrahamson4 has shown that the response of a wide variety of structures
to blast-type loads is most conveniently summarized in terms of the
peak pressure and impulse of the load.
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FIG. 52 PULSE SHAPES

are characterized by these quantities, and for each type of shell a
"eritical curve” for buckling is generated in the pressure-impulse
plane as shown in Fig. 5.3. Impulse (per unit surface area) for the
triangular pulse is ] = PT/2, where T is pulse duration, and for the
exponential pulse is I = PT, where T 1is the pulse time constant as

shown in Fig, 5,2. |

IMPUL SIVE :

QUASI - IMPULSIVE

QUASI-STATIC

GA.5228-120

FiG. 5.3 PULSE REGIONS AND SCHEMATIC
CRITICAL CURVE FOR BLCKLING
IN THE PRESSURE-IMPULSE
PLANE
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5.2 1dealized Models

Loads that produce the types of buckling in the three shells in
Fig. 5.1 fall into three corresponding load regions indicated in Fig. 5.3.
Since the response of the shell differs widely from one region to another,
the analysis is based on three corresponding models--a "tangent modulus”
model for impulsive loads, an "elastic’" model for quasi-static loads, and
a "strain-reversal’ model for a narrow range of quasi-impulsive loads for

which neither of the other models is applicable.

Under impulsive loads it has been found that,except in very thin
shells, buckling occurs only when the load is sufficiently intense to
produce membrane plastic flow. In the early motion buckling takes place
with no strain reversal and is therefore governed by the tangent modulus,
hence the name for this model. Fortunately, as shown in Fig. 5.1a, the
buckling is in high order modes; thus the effects of the ends are unim-
portant beyond a few wavelengths from the ends and, in the tangent modulus
model, the shell will he treated as infinitely long. The analysis will

follow that given in Ref, 5 except that finite pulse durations will be

considered.

Under quasi-static loads buckling occurs in lower order modes,
directly dependent on the length of the shell as shown in Fig. 5.1lc., How-
ever, for most metal shells of precent interest, this buckling takes
place at pressures sufficiently low that the early buckling growth is
elastic, hence the name for this model. Static elastic theory is simply

extended to the dynamic problem by includirg radial inertia terms,

Under quasi-impulsive lcoads the membrane stress can be plastic
as under impulsive loads, but significarnt buckling deformation takes
: place only after several oscillations in the hoop mode. To treat this
% buckling a strain reversal model is used wiich considers nonlinear
stress variations scross the section, influenced by both the membrane
and flexural motion., This requires that the cross section be divided
into laminates, and the resulting theory becomes more complex. Since

it serves mainly to support the general character of the critical curves
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derived by the simpler theories, only the results from this analysis are

presented here.

5.3 Equations of Motion

5.3.1 Tangent Modulus Model

The notation adopted is shown in Fig. 5.4, With time
denocted by t and angular position on the cylinder denoted by § , we
are concerned in this model with
radial displacements w(§,t), measured
positive inward from an initial un-
stressed deformation wi(e), in an
infini‘ely long shell. The equatjons
of motion for this problem are derived
by Abrehamson and Goodieral Under
impulsive or nearly impulsive radial
pressure, the shell elements initially
move inward nearly uniformly to a

smaller radius, inducing plastic cir-

cunferential membrane strains. The
FIG. 5.4 COORDINATES AND SHELL fundamental assumption is that during
NOMENCLATURE the early buckling motion the circum-
ferential strain across the section is
dominated by this membrane plastic flow, and therefore flexural motion
is accompanied by bending moments proportional to the instantaneous tan-
gent modulus; the strains in both the inner and cutexr fibers continue to
move along the plastic stress-strain curve, but one lags behind the other
because of the flexure, In the present problem we wish to treat a con-

tinuously varying tangent modulus E s0 the notstion in Ref, 5 is

t r
used. Constant shell and material parameters are defined by

= E
a = 2 b c = p (5.1)

where a 1is the shell radius, h its wall thickness as shown it Fig. 5.4,
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E 1is Young's (elastic) modulus, and p is mass density. Dimensionless

forms of the displacement and time variables are defined by

w
_ W - i _ ¢t .
w=s 2 0 W= T 0 T= = (5.2)

*
and a dimensionless form of the external pressurs p , inclwling small

nonsymmetric perturbations, is given by
a *
p(8,7T) = g P (8,7) (5.3)

With this nomenclature, the equation of motion, from Ref, 5, is

2 2 2
a E, -4 o E (o 2 U o o u
U+ g £ 2 1| E =+ Eﬂ é_g * Eﬂ (1 +uw=p- Eg (ui - 21)
30 98 af

in which dots indicate differentiation with respect to T and 06 is

- the circumferential membrane stress,

For simplicity, we will treat only the cos n} terms
in the initial shape and pressure imperfections so that thc¢ displace

ments and pressure can be expanded in the series

ui(e) = 6n cos ng (5.5)
n=1
u(g,7) = UO(T)'F 2: un(T) cos nf (H.6)
n=1
p(8,7) = p (1) + P p,(T) cos n@ (h.7)
n=1

Substituting these into (5.1) and equating the coefficients of each term

in the series gives

%
5 + B (1 + uo) =P, (5.8)
a?E o o
. 2 t 2 _ % _ 78,2 (5.9)
u, + (n” - 1)[ TN T ]un =P, * % (n 1)6n

A,




The shell is taken at rest in the initial unstressed condition, giving

initial conditions
u (0) =u (0) =0 , n=20,1, 2, ... (5.10)
n n

The normal’zed amplitude U, of the hoop mode is the
membrane strain €o so that uo is small and omitted compared to unity
in Eq. (5.8), giving a linear equation. Simple analytic solutions for
uo for -he triangular and exponential pulses in Fig. 5.2 were obtained
by replacing the actual stress-strain curve by two straight 1lines, one
at the elastic slope E and the other at an average strain-hardening
modulus Eh . For the flexural motion, however, E appears as & co-

efficient in Eq. (5.9) and a continuous variation o; Et was used,
With UO(T) = eo(T) known, Ge aid Et were taken as functions of
time from the stress-strain curve, inserted into Eq. (5.9), and the
motion of the flexural modes were found by numerical integration. The

material properties used are given in Appendix A,
5.3.2 Elastic Model

The governing equations of motion for the elastic
model are obtained using Donnell's equations6 with the addition of
inertia terms, As in the static buckling analysis of cylindrical shells,
the uniform radial deformation is assumed to be independent of the length
and end conditions, but it is required tuat the superimposed flexural de-
formations satisfy the end constraints, This assumption allows the
equation of motion to be separated into individual uncoupled equations

for each mode.

*As in Ref, 5, for convenience we neglect the Poisson effect (1 - vz)
and take ¢ and E in both the elastic and plastic range directly
from availaéle simple tension experiments rather than from circum-
ferential compression tests ander appropriate axial constraint.
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The equation of equilibrium in the radial direction

is
2 2N 2 N 2 )
4 b5} xj O 9 3
DYy w+ N — (w + w )+ — (W W, )+~ —— (W o+ W, )
x axz i a  dxad i a2 5%2 i
- (5.11)
N 2
+ ;ﬂ + oh é—% - p* =0
ot

X6 N9 are the membrane forces with the sign convention

chosen so that compression is considered positive, D is the flexural

where N , N
b4

rigidity of the shell wali, and VZ the Laplacian operator:

3 2 2
D= —ih = v2 =9—§ . 2 5 (5.12)
12(1 - V) ox a 38

The force Ne is taken as the sum of two parts, one

caused by the uniform radial deformation and the other caused by flexural

deformations; thus 4
w 2
N = _Eh _ 5 .;9. + _—512‘" (5.13)
1 -V ox '

where F 1is a stress function for the membrane forces produced by
flexural deformations and vy is the uniform radial deformation, The
membrane forces Nx and Nxe,'ipe assumed to be independent of the uni-
form radial motion, and for the flexural motion are given in the usual

manner in terms of F :

2 2
2°F 3F .
N = , N = o ——— (5.14}
x 32562 %0 agpox

The compatibility condition between the midsurface

etrains then requires that

2
vip - En 2w (5.15)
a 2
ox
3
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The use of a stress function in the manner shown satisfies static equi-
librium in the x and y directions but neglects the small in-plane

inertia forces.,

It is convenient to introduce the nondimensional

quantities
w
=X =¥ = =L ;= St
g=g5 » w=7 o, uw =g v L=g . T=3 (5.16)
and express u, ui, and p* in the serlies forms
o0 TTG
u(g,8,1) = u (1) + 2: u (7) cos nf sin —= (5.17)
[+] n 4
n=1
= —_—
u, (&,0) P § cos ng sin 7 (5.18)
n=1
*
P (E,8,1) = —n [p (1) + T p (1) cos ng sin 15](5.19)
a(l - v2) [ n Fa

Representing the radial deformation by Eq. (5.17)
assumes simple support conditions for the flexural motion, as well as
restricting the deformation to a half-wave in the axial direction, The
latter assumption is based on experience with static buckling and experi-
mental results of dynamic buckling. Although the assumption of simple
supports is not representative of the actual test conditions in the
present program, results from the simple support theory aéree reasonably
well with the experiments. To comply with the assumed'form of the dis-
placement, the initial shape imperfections and pressure perturbations
are also taken to vary sinusoidally in the axial direction, as given in

Eqs. (5.18) and (5.19).

Using Eqs. (5.16) and (5.17) in (5.15) yields

2 2 © 2
}zé_i+.a._2.'zp=-5}2—lz -112-un4::os4neSin-E-g
a n=1 1
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from which it can be concluded that, for simple supports, F 1is of the

form

i

=0
L. T
= 2: R .20
F Z Gnun cas n§5 sin 7 (5 )

where g are constants.
n

Using Egs. (5,13 - 5.19), taking F in the form of
Eq. (5.20), and dropping all second-order terms in un , the equilibrium

equation (5.15) can be separated to give

u +u =p (5.21)

and

2 m\4
. 2z A -V .
u + g + =} + -nu |u
n 2 2. [ n
I3 (2 n)z
n +—-§
' (5.22)
= + nz s} n=1,2,3
= pn uo a 1 2,3...

The shell is taken initially at rest with zero displacement as in

Eq. (5.10).

Equation (5.21) is solved analytically, and the
resulting expression for u, is substituted into Eq, (5.22) but, as
for the tangent modulus model, the resulting equations for the flexural
modes must be integrated numerically, since nc analytical solution is

apparent.

For a static pressure the derivatives with respect to
time vanish ard Eq. (5.21) gives u0 = p° . Substituting this into

Eq. (5.22), the coefficient of u vanishes at a critical pressure for

each mode number given by
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The smallest of these critical pressures is the static collapse pressure

which, for v = 0.3, is given approximately by

2)5/2

Po = 0.92E (%) (a

(5.24)
This is the result nresented in Ref, 6 and is valid for
~ ~ a2
100 <z < 10(]—1)

2.1/2 _2
V) / L

in which Z = (1 - /ah.

5.4 Amplification Functions and Critical Curves for Buckling

The governing equations of motion for both the tangent modulus
and elastic models exhibit the same general features, a single equation
to determine the motion of the uniform hoop mode, and for each flexural
mode an equation that contains the hoop membrane force as a coefficient,

The equations can be put in the form

N
. 2
u, * Eg (1 -v)= P, (5.25)
and
. 2 _
u + (mn - BnNe)un =P, + BnNgbn (5.26)

where Wy are the (no-load) bending frequencies and Bn are constants.,

The major feature of the solutions is that for a sufficiently
large value of Ne the coefficient of u, in Eq. (5.26) becomes
negative over a range of n and the solution becomes hyperbolic in
character rather than oscillatory; these are the buckling modes, and
the hyperbolic growth can lead eventually to permanent flexural defor-
mations. The general problem is to determine the pressure-impulse
levels that cause a particular flexural mode or group -~ flexural modes
to grow to magnitudes sufficiently large to exceed a specific buckling

criterion,
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To deronstrate the tvpe of growth that occurs in each of the
lcad regions in Fig. 5.3, consider an example of a sh¢ll subjected to
triangular pressure pulses. The shell is made of 6U61-T6 aluminum vith
a/h = 100 and L/D = 1. The general procedure was to integrate the
equations of motion as 3escribed, which yields an amplification un(t)/f)n
for each flexural mode, These were then plotted against n , giving an
amplification function for each combination of peak pressure and impulse

(load point). Example curves are given in Fig. 5.5.

For impulsive loads high amplification does not cccur until the
hoop strains are in the plastic range, giving high values of cq/Et
These high values make the coefficient of u in Eq. (5.9) negative for
a wide range of n , and most negative (at each instant) for n =
(OB/ZG?Et)l/z. This is reflected in Fig. 5.5a by a broad amplification
function, extendirg to mode numbers as high as n = 150 and having a
maximum at n = 85 . Thus, unde:r impulsive loads the shell has a strung
tendency to buckle into a high order patcurn and, &s postulated, shell {

length has little effect.T

To calculate loads at a threshold of bueckling it has been ]

shown7 that it is reasonable to assume that random imperfections are

present at all wavelengths., Thus, the dominant modes of buckling arz

selected by the amplification function, and buckling can be said to be

eminent when the peak amplitude reaches a critical value. In this

chapter, buckling thresholds are calculated on the basis of an amplifi-

cation of 1000, Although this value was selected rather arbitrarily,

it will be shown that the change in load over a range of amplifications

from 100 to 10,000 is small for most practical applications.

L3

Only perturbations bn in shape are treated here. 1In Appendix B it is
demonstrated that these are likely to dominate over perturbations in -
pressure.

A more extensive discussion of this type of burkling is given by
Abrahamson and Goodier! under the simplifying assumption that g, and
E, are constant. i
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Using this criterion, a critical curve for buckling was calcu-

lated in the impulsive range using the tangent modulus theory. This

4
is the upper curve jin Fig. 5.6. The curve is hyperbolic in shape, o
approaching a critical impu:se for high pressures and a critical pressure
for large impulses, The mode number of maximum amplification increzses
i with peak pressure as shown by the nuubers on the curve. Approximate
: formulas for such curves are given later
i 1 — 1aps
E 0% 104 1a®
{ 10,000 = T T T N I 0 1) B M
1o
Ola)  TANGENT MODULUS
;  |se THEORY
E
; 1000 A =
: — \ 85 -
: 3 — N6 -3 3
e — ~ e 7O -~
! (b) n=25 =07 -
] ; /0'8 r
a —iein= 10 | ELasTic = ‘
REVERSAL
100 ETHEORY 6 o
4 — g 5
— (d) -~ ¢
P N N 1 S R T B W WA
10 100 1000 10,000
1 — psi-msec
GB-5733-43
FIG. 5.6 CRITICAL CURVE FOR BUCKLING OF SHELL IN FIG. 5.5

; At the other extreme, under a quasi-static load having a low
pressure and long duration, results from the elastic model, given in
Fig. 5.5d, show that very large amplification is confined to n = 6,
the static buckling mode for this shell. As the duration of the load
is increased still further, the minimum peak pressure that gives large
amplification approaches the static pressure as given by Eq. (5.24)

even though the pressure pulse rises instantaneously to its peak value.

e g TR T S
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The sudden rise causes overshoot and oscillation in the hoop mode, but
any energy transferred from this oscillation to the buckling mode must
be made through a series of many oscillations in the buckling mode.

This type of Mathieu instability8 cannot cause large plastic deforma-
tions of the type observed in the experiments because the kinetic energy
in the membrane oscillation is finite and, if the flexural osc¢illations
are sufficiently large to cause plastic strains, the energy would be ex-
tracted in small amounts at each oscillation. Instead, the dominant
buckling growth is caused by the psuedo-static component u, = po(T) of
the membrane motion about which the hoop mode oscillates. ExpeTriments
show that buckling takes place with little or no oscillation and is es~
sentially a single growth to large deformations. Because of the obser-
vations, throughout the present analysis only modes exhibiting hyperbolic-
type growth are considered to be significant for buckling.

A critical curve for buckling (amplification = 1000) under
quasi-static loads was calculeted using the elastic model and appears
as the lower hyperboli-shaped curve in Fig. 5.7. As in the tangent
modulus curve, the mode number of the most amplifide mode increases
with increasing peak pressure. Pressures greater than about half the
static yield pressure result in lioop strains beyond the elastic limit,
but the dotted curve is extended to higher pressures assuming that the
material remains elastic. This extension meets the curve fvom the tan-
gent modulus theory in a cusp-like intersection and there is a sudden
Jump in the mode number of the most amplified mode in going from the
elastic branch to the tangent modulus branch. Although the theory is
not strictly applicable near this cusp, application of the strain-
reversal theory shows that a cusp still persists and that there is a

jump in mode number.

Amplification functions from the strain reversal theory applied
near the cusp (as shown by the points in Fig. 5.6) are given in Figs.
5.5b and ¢. These show the re=ascn for the jump in mode number., Because
load points in this region have high enough peak pressures to induce
plastic flow in the hoop mode, sud also have durations long enough to
allow growth of the low order "elastic” modes, large growth taokes
place in both high and low order modes. Thus two maxima appear in the
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FiG. 5.7 CRITICAL CURVES FOR BUCKLING AMPLIFICATIONS r
OF 100, 1000, AND 10,000 (Exponential pulses,
same shell as Fig. 5.5)

£

amplification function and a small change in load point changes the
absolute maximum from a high order to a low order mode, or vice-versa.
This is illustrated by the large shift in relative amplification in
going from a peak pressure of 360 psi and impulse of 60 psi-msec

(Fig. 5.5b) to a slightly smaller peak pressure of 300 psi and larger
impulse of 70 psi-msec (Fig. 5.5¢). The amplifications of intermediate
modes fluctuate because in this range of loads buckling takes place
during a few oscillations of the hoop mode and small changes in phase
between the hoop and flexural modes significantly affect the amplifica-

tion, although the overall growth is exponential in nature,

Since the general behavior of the complete critical curve for
buckling in Fig. 5.6 is adequately described by using only the simpler
tangent modulus and elastic theories, no detailed discussion of the
strain reversal model is given in this report. Development of a more

complete elastic-plastic theory is still in progress. ’
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To examine the influence of the magnitude of the amplificatior
buckling criterion, critical curves were calculated as described above
for amplifications of 100, 1000, and 10,000, These are given in
Fig. 5.7, which shows that over most of the load range the curves differ
by less than £15%., The maximum differemce, in the quasi-impulsive range,
is a factor of 1.6 between tke 100 and 1000 amplification curves. Thus,
although buckling from pulse loads cannot be described with the accuraey
of an eigenvalue problem in static buckling, the hyperbolic growth maxes

exact specifications of a critical amplification of secondary importance.

5.8 Effects of Parameter Variations on Critical Curves

Before giving approximate formulas for determining critical
buckling curves, the pumerical integration procedure is used to generate
example curves which demonstrate the effects of variations in pulse

shape, radius-to-thickness ratio, and length-to-diameter ratio,
5.5.1 Pulse Shape

Figure 5.8 gives a comparison between critical curves
calculated for exponential and triangular pulse shapes. The maximum

difference between the curves (measured along a line at 450) ig 35% and

cccurs in the knee of each branch. This difference is not significant
in many applications and we cap conclude that changes in pulse shape

are of secondary importance.

5.5.2 Radius-to-Thickness Ratio

ire 5.9 gives critical curves for L/D =1 with
a/h ruogine iom 24 o 250; each curve is normalized to I = &nd P
fer the g.ven a/h. The major effect of increasing a/h is an upward
rovemen: of the intersection between the tangent modulus and elastic
branches, resulting in a broader range of quasi-impulsive response for
the thir-er (higher a/h) shells, These same curves are repeated in
¥ig. 5.10 without the normalization to show the broad range of pressures

and irpulses involved.
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FIG. 5.10 EFFECT OF o/h ON CRITICAL CURVES FOR BUCKLING
(Same as Fig. 5.9, but without normalization for D = § inches)

5.5.3 Length-tc~Diameter Ratio

Variations in L/D affect only the elastic branch, as
shown in Fig, 5.11. Thus the main effect of increasing L/D is to lower
the quasi~static pressure asymptote Po , giving a broader range of
quasi-impulsive loads as for thin cylinders. The impulse ' asymptote'
of the elastic branch does not change significantly becsuse the mode
numbers in this region are sufficiently high that end effects are

secondary,
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FIG. 5.1 EFFECT OF L/D ON CRITICAL CURVES
FOR BUCKLING (exponential pulses,
6061-T6 aluminum, D =6 inches, o/h = 100)

5.6 Approximate Formulas for Critical Curves

The general form of the critical buckling curves in the pre-
ceding examples is given in Fig. 5.12 and can be described by a few
approximate formulas based on the results of the numerical integration.
The curves consist of two branches, one from each model, each of which
can be approximated to an accuracy of about 20% by simple hyperbolas of

the form
(P— - 1)(1— - 1) =1 (5.27)

where PA and IA are the asymptotic values of the hyperbcla, For the
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FIG. 5.12 CHARACTERIZATION OF CRITICAL CURVES
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*
tangent modulus branch these asymptotes are given by

P, =% oy{;‘ (5.28)
9611/4 1/2 h
IT =(E-) a(po’y) (;)3/2 (5.29)

where K is the slope beyond yield of a plot of 0/1’:2t versus com-
pressive hoop strain for the shell ms.te::'ial.T For the elastic branch,
from Egq. (5.24) and observation of the numerical results, the asymp-

totes are given by

*J
1}

0.926 (%) ({‘;)5/2 (5.30)

P i

1, = 5 pea(2)? (5.31)

*
The formula for P is an empirical observation of the numerical inte-
gration; a derivat}’on of IT is given in Appendix C.

See Appendix A.
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The lines at 45 degrees in the log-log plot of Fig. 5.12 define
a characteristic time IA/PA for each branch which can be compared
directly, for example, with the characteristic time T = I/P for an
exponential pulse. From Eqs. (5.28) and (5.29), the characteristic time

for the tangent modulus branch is

T, =(9§"1/4;—2 gy-1/2(§)1/2 (5.32)

However, in the numerical examples it was found that variations in K

moved the horizontal pressure asymptote slightly from the value given in
Eq. (5.28) in such a way as to compensate for the small variation of TT
with K given in Eq. (5.32). Thus, a better expression of 'I‘T with K
in the range 10 <X < 60, typical of many engineering metals, is simply

-1/2 (B )1/2
a

T =22 (5.33)
c

T ey
Similarly, from Eqs. (5.30) and (5.31), the characteristic time for the

elastic branch is

TE=5.5-::-'('E-)1/2 (5.34)

From Fig. 5.12 we see that if the time constant T of the
applied pulse is much shorter than TT , the load appears impulsive to

the shell, and if T is much larger than T the load appears quasi-

E ]

static, Loads with durations near or between T and TE are quasi-

impulsive, and both pressure and impulse are impzrtant to the response,
As shells become longer and thinner, TT and TE become more widely
separated (see Figs. 5.9 - 5.11) and the range of quasi-impulsive loads
increases. Conversely, for short, thick shells, the tangent modulus
and elastic curves move closer together and only a small range is quasi-

impulsive.
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5.7 Buckling from Asymmetric loads

In all the experiments in the present investigation, and in
many practical applications, the load is applied by a blast wave passing
laterally across the shell. For moderately short duration blast waves
(in the quasi-impulsive and somewhat into the quasi-static range in
Fig. 5.3), the load is dominated by the diffraction phase and can be

approximated by9

= - 2 - i

p(6,t) = (pr Pi) cos H + P, 5 < g < 5
(5.35)

- ji 3

=p; 5 S0 s5

where pr and pi are reflected and incident pressures, both assumed

*
to have the same exponential decay with time.

A rigorous treatment of shell buckling under asymmetric loads
would be very difficult, particularly since both elastic and plastic-
flow buckling must be considered, as we have seen for symmetric loads.
However, experiments show that critical pressure~-impulse curves from the
symmetric load theory give reasonable estimates for buckling under
smoothly varying asymmetric loads such as in Eq. (5,35), taking pressure
and impulse at the peak load. This is demonstrated for impulsive plastic-
flow buckling in Fig. 5.13, which shows two shells, one buckled from a
cosine impulse over one side and the other buckled from a uniform impulse
of the same peak intensity. Both exhibit the same plastic deformation
and buckling in the area of the peak load. Similar examples are given

in Ref., 9 for shells subjected to quasi-static loads,

*The small transit time of the shock across the cylinder is neglected,
and the pressure on the back surface (away from the oncoming blast)
rises slowly instead of sharply as does the front surface pressure in
Fig. 5.2, Neither effect has 2 serious influence on the shell buckling,
however, because the buckling is dominated by the front surface pres-
sure.
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FIG. 5.13 PLASTIC-FLOW BUCKLING FROM
ASYMMETRIC (left) AND SYMMETRIC
(right) IMPULSIVE LOADS (6061-T6
aluminum, D = 3 inches, L/D =1, a/h= 24,
peak impulse 15G psi-msec for both shells)
The type of response likely to differ most widely under sym-
metric and asymmetric loads is elastic buckling from impulsive loads, s
which occurs in very thin shells.2 Payton'slo membrane solution for a
cosine impulse over one side shows that the peak membrane stress
4

(occurring under the peak impulse 1) is about 70% of that in a shell

under a uniform impulse I, and the duration of the first positive swing
(during which buckling takes place) is also about 70% of the half perijod
of the symmetric (hoop) mode, Thus, since the buckling is in very high
order modes and grows in proportion to the product of the peak stress

and duration (see Ref. 7), buckling under an asymmetric load requires a
peak impulse about twice the impulse under a symmetric load. In moder-
ately thick shells (a/h < 100), however, buckling takes place during

plastic flcw and the results in Fig. 5.13 suggest that for these shells
asymmetric and symmetric buckling impulses will differ by less than the

factor of 2 estimated above the impulsive elastic buckling.

Under quasi~static (long) loads, asymmetric and symmetric

buckling loads are quite close because the buckling is dominated by the
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psuedo-static membrane stress, which is proportional to peak pressure,
Thus, the essential requirement for similarity in peak buckling load is
only that the pressure does not vary significantly over a buckle wave-
length. This is true for the smoothly varying pressures and relatively
high order buckling modes here, To a better approximation, Almroth's 1
results for static asymmetric buckling show that an average pressure

over a buckle wavelength could be used.

5.8 Comparison of Theory and Experiment

Extensive experiments were run on aluminum and magnesium shells
with L/D = 1 and radius-to-thickness ratios from 24 to 250. These are
described in detail in Ref. 9 and only a few results are given here for
demonstration. The shells were made from extruded tubing or rolled
sheet stock and were clamped rigidly at each end to heavy plugs. They
were subjected to lateral blast loads from explosive spheres and from
an explosive shock tube. Pulse shapes and pressure distributions from
these loads were measured on rigid models. The measured pulses were
very nearly exponential in shape as shown in Fig. 5.2b, and peak pressure
varied around the shell approximately as the c0529 distribution given in

Eq. (5.35).

Figure 5.14 gives theoretical and experimental buckling curves
for shells with a/h = 100 and a/h = 61. The lower experimental curves
give the maximum loads at which no permanent deformation of any type
was observed, and the upper experimental curves give loads at which the
peak permanent buckling deformation was about 10% of the shell radius,
It was a general observation that for quasi-static loads the two experi-
mental curves approached each other very closely; the shells were either
undamaged or severely buckled with deformations as large as 50% of the
radius. The impulsgsive end of the no-damage and 10%-buckling curves
differed by as much as a factor of 2. Increases in load of about 50%
above the buckling curves generally resulted in very severe buckling and

tearing.
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The theoretical buckling curves in Fig, 5.14 lie within about
30% of the experimental buckling curves over the entire range of
pressure and impulse. There was a hint of a cusp-like shape in the
experimental curves, but the curves are drawn with a smocoth hyperbolic
shape because very extensive experiments would be required to justify
an inflection. Mode numbers of buckling on the elastic model branch
agreed well with observed buckling in this load range, Mode numbers
on the tangent modulus branch were sometimes as large as twice the
experimental values, partly because of poor material property data and
partly because strain reversal was neglected; the strain reversal model
gave mode numbers in closer agreement with experiment. These favorable
comparisons between theory and experiment demonsirate that the assump-
tions made in the analysis are reasonable and the theory will be useful

in predicting pulse buckling of cylindricsl shells.
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APPENDIX A

LN MATERIAL PROPERTIES USED IN THE CALCULATIONS

In the tangent modulus model the numerical calculations were
made using stress-strain datz taken from tension tests on longitudinal
samples cut from the shell materials, The most important material
properties are Young's modulus, yield stress, and the variation of U/Et

with strain, Figure A.l gives plots of O/Et for several metals and

606!1-T6 ALUMINUM SHEET

21~ 00125 AND 00250 .
606i-T6 ALUMINUM

0.25" THICK < €' diam EXTRUDEL TUBE——n\
0.12" THICK x 6" diom EXTRUDED TUBE

- 101" 2024-18 ALUMINUM
0.28" THICK x 6" EXTRUDED TUBE
osh

(e g o

0.6

oS

03

AZ3i5 MAGNESIUM
-0.36" THICK a 6" diam
EXTRUDED TUBE |

o] | 2 3 q 5

€ o Y

Q.1

6A-2228.1244

FiG. A.1 MATERIAL TANGENT MODULUS PROPERTIES

{from longitudinal 1ensile specimens)
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shows that for many of them O/Et increascs approximately linearly with

strain beyond vield. Therefore, to the accuracy uf the stress-strain

data, the calculations were nade using the formula

c}/Et 2 S/E = g &

-

/B =X{e - )+ e e
13 y y

-~

=

.

Yy

[
y

where K is the slope tuken from Fig. A.l. Values of X

(A1)

and other

pertinent properties arc given in Table A.l for the threc metals used.

Table A.1

MATERIAL PROPERTIES
{Tensile Test Data)

Material E cy EH/E v X b 3
(usi) (psi) ’ (1b/in")
6061-T6 Al, 10 x 102 45,000 0.006 0.3 30 0.098
2024-T8 Al. 11 x 106 66, 600 0.033 0.3 35 0.100
AZ31B Mag. € x 10 24,000 0,05 0.3 ‘ 10 0.064
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APPENDIX B

RELATIVE IMXORTANCE OF SHELL AND LOAD PERTURBATIONS

To eaamine the relative impcrtance of shell and lo:d peirturbations
in triggering buckling, w2 consider buckling under an ideal impulse Io
and obtain analytic results using ihe simplified =quaticns studied by
Abrahamson and Goodier.l* For ur ideml impulse the pressure term in
Eg. (5.9} is droppad and the initial ccnditions in Eg. (5.10) are re-

placed with

31
n o

nch

u (0 =0 , u (0) = (B.1)
n n
. th .
where Bﬁlo is the parturkation of Io in the n mode. Treating
OC and Ef as constants, as in Ref. 1, the solution to Eg. (5.9) with

initizl conditions (B.l) is

2
s 6n . B i
un = 5 3 tcosh qnf - 1] + EEE-E— sinh th n<eg
s -n n
(B.2)
where o azE
2
s = —y— and qnz = —F (n2 - 1)(52 - nz)
a ke (B.3)

For large a7 the maximum displacement due to either shell imper-
fections On or load imperfections Bn occurs approximately =t the

maxirmum value of qn , given by

o E 1\

o oy (xhz B

“z:‘l ~ g\ T) Q (B.4)
max v

x .

I'oc simple solutions are appareat for quasi-impuisive loads and, for
quasi-gtatic loads,the effect of imperfecticn amplitudes is unimportant
in the present problem (see Fig. 5.7).
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and n 1is the integer n  -est s/J 2. Using Eqs. (B.1 - B.4) and

n = s/ J2 >> 1, the 1i1tio can be formed between the maximum displace-

ment due to shell impe: :»ctions and that due to load imperfections,

resulting in

On

Yshell _ °n i . cosh Qy - 1

u N ayo(pEt)l/z sinh Q

(B.5)

where V0 = Io/gh is the initial inward velocity of the shell wall.
Finally, we recall from the definition of én in Egs. (5.2) and (5.5)
that the shell imperfections in dimensional units are Win T aén. Since
inpulse buckling is at very short wavelengths, it is more reasonable to
take the imperfections proportional to the wall thickness h . Denoting
shell imperfections by w._

in
cosh Q7 - 1 =~ sinh QT , Egq. (B.5) becomes

= hYn and observing that for large growth

u v, ViZo s,
shell . _n 8 (B.6) s

1/2
n Vo(pEt)

w

uload

Equation (B.6) can be interpreted directly in terms of the circum-
ferential stress-strain curve for the shell material as shown in Fig, B.1l
The initial kinetic energy of the shell wall is equated to the plastic
work in membrane strain, neglecting the elastic and strain hardening

contributions, giving

(B.7)

where ¢, 1s the increment in stress due to strain hardening as shown

h

in Fig. B.1. Using Eq. (B.7) in Eq. (B.6) with ae = oy as already

assumed, we obtain

u 60
_Shell _ (__X)llz . (R.8)

uload ¢

uﬂ 2
< | ]

h
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The strain-hardening increment oy is much smaller than the yield

stress for many engineering materials; thus Eq. (B.8) shows that for

¢ these materials shell imperfections are likelyxfo dominate over load
imperfections if we can assume that shell imperfections in terms of per-
cent wall thickness are comparable to percent imperfections in lcad.
For example, a 6061-T6 aluminum shell with a/h = 30 buckles at about
1.5% strain with Et ~ 100,000 psi, giving Gh = 1500 psi. Using this
in Eq. (B.8) with C’y ~ 50,000 psi gives (emy/sh)l’/2 = 14, Thus, if
we assume shell imperfeections of 1% of the wall thickness (a reasonable
value, from observations of bar buckling7), the impulse imperfection
would have to be 14% of the peak impulse in order to give comparable
buckling displacements. Such large load imperfections are very unlikely. E
- 50 E,-consr.-\' I — ’
—T , i
40 - !
; - 6038i-T6 %
© 30 ALUMINUM a '
5 . ;
l 20 - i
b
1o -
ot —
€ —yo QA-RT3D-47

FiG. B.1 STRESS-STRAIN CURVE
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APPENDIX C

CRITICAL IMPULSE FOR PLASTIC-FLOW BUCKLING

The simplified solution in Appendix B is also used to give the
approximate formula (5.28) for impulsive buckling. The magnitude of
u in Eq. (B,2) depends mainly on the argument Qt of the hyperbolic
term, since we are concerned with large amplifications in which exponen-
tial growth dominates, Thus, it is reasonable to assume that the buck-
ling criterion of an amplification of 1000 corresponds closely to Qr

reaching 8 critical value, i.e.,

QT = B (C.l)

where B 1is a constant to be determined and T, is the nondimensionsal

duration of the inward membrane plastic flow, In real time, this dura-

tion is given by

1

]

o
[
[o
=

s 5 (C.2)
y

in which the material has been assumed to be rigid-plastic. Using the
definition T = ct/a and combining Eqs. (B.4), (C.1l), and (C.2),

results in the following expression for the critical impulse Io:

E
_ /2 | "¢11/2
1, = 2ah ( poy) (-——O ) B (C.3)

y

For a material in which Et is nearly constant Eq. (C.3) suffices.
However, for most materials Et decreases significantly with increasing
strain as discussed in Appendix A. In the numerical integration this
increase was described by Eq. (A.1), treating o/Et as a function of
- and hence of time 7 . Since most of the awplification of u takes
place near the end of the hoop motion (wvecause c/Et is increasing) a
reasonable approximation to ths flexural motior can be found by assuming
o/Et to be constant at its final value, With this assumption, O/Et
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from Eq. (A.1) can be used in Eq. (C.3) to find Io' To eliminate ¢
from the tfinal expression for Io’ the relation between Io and final
=train es must also be found. This is most easily done by equating
the kinetic energy imparted by Io to the strain energy absorbed in
plastic work, which gives

e
8

Iz= 29112/ aledde (C.4)
o

Taking the material to be elastic, perfectly plastic gives
€
2 2
= 2 - X .
Io ph Gy(es 3 ) (C.5)

To simplify the final exnression for Io we further assume that the
final strain es is large enough that we can take es - ey/2 e I
With this approximation, Egs. (A.1l), (C.3), and (C.5) yield the desired

expression for critical impulse:

)1/2 ( )3/2

3_)1/4 82 a (g0 .6

h
K y a

|

(4]

The results of the numerical integration are matched by taking B = 12
which yields Eq. (5.32). Impulses from this formula a, ee with the

numerical integration within 5% for the materials in Tab e A.,1 and

20 < a/h < 200.
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