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FOREWORD

This is the second of two volumes prepared by Stanford Research

Institute under subcontract to the Avco Corporation as part of the

Radiation Damage Study (RADS) Program, Contract AF04(694)-824, sponsored

by the Air Force Ballistic Systems Division. The two volumes contributed

by SRI are designated Volumes XII and XIII of the RADS Final Report.

Volume XI1 is classified and treats structural rcsponse of reentry ve-

hicles to pulse loads. This volume (XIII) treats the response of bars,

plates, and cylindrical shells, the basic elements found in reentry

vehicles.

This program wes administered under the direction of the Air Force

Ballistic Systems Division, with Capt. John Rec as project officer.

Messrs. T. S. Trybul and John Koehler of Aerospace Corporation served

as principal technical monitors.

The complete RADS Final Report consists of the following volumes:

VOLUME TITLE

I Program Manager's Summary

I! Survey of X-Ray Phenomgnology Prediction Techniques

III Radiation Transport and Deposition

IV One-Dimensional Material Response: The XIP Code

V Materials Data Handbook

VI Vehicle Response

VII Vehicle Hardening

VIII The OSCAR Code

IX Simulation Test Techniques

X Special Instrumentation Requirements

XI Equation of State and One-Dimensional Characteristic

Code Studies
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VOLUMW TITLE

XII Special Problems in Structural Response of Reentry Vehicles

XIII Dynamic Response of Beams, Plates, and Shells to Pulse
Loads

XIV Pre-Test Analysis of Chaff

XV IBER Experiments

XVI Nosetip Experiments

This technical report has been reviewed and approved for publica-

tion.

Approval Authority: J. R. Rbc, Capt., BSYDV
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PREFACE

The purpose of this volume is to present in an easily assimilated

form the results of research on dynamic structural response which has

been in progress at Stanford Research Institute since about 1959. Much

of this information is available in published papers and reports, but

some of these are not generally available and some contain a good deal

of overlap. Also, the individual papers lack the overall viewpoint that

can be developed only after many aspects of the problem have been ex-

amined.

Two areas of response are treated, dynamic plastic bending and

dynamic pulse buckling. These are preceded by a general discussion in

Chapter 1 of structural response from pulse loads and identification of

peak pressure and impulse as the most significant load parameters affect-

ing structural response. In Chapter 2 the fundamental theory of dynamic

plastic bending is developed, using simply supported and clamped beams

as examples. Pulse loads treated range from ideal (zero time) impulses

to step loads with exponential, triangular, and rectangular time profiles.

In Chapter 3 this theory is extended to circular plates. Since many

problems are treated in Chapters 2 and 3, a certain amount of repetition

has been allowed to enable the reader to start anywhere without excessive

foraging. In Chapter 4 a development of the basic theory of dynamic

elastic and plastic pulse buckling is given, again using a simple bar as

an example to give the concepts in their simplest form. In Chapter 5

the analytical techniques are applied to cylindrical zhells under lateral

pressure pulses.
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SUMMARY

S.1 Introduction

In this summary section the status of existing analyses is

briefly given and areas for most fruitfu) future development are

suggested. Buckling theories are discussed first because they bear

more directly on the design of the external shell of operational

structures. This is followed by a summary of theories for dynamic

plastic bending of auxilliary beam and plate structures which are used

in aft covers, stiffening, and in internal components. In the main

text the order is reversed because bending theories are more familiar.

S.2 Pulse Buckling

S.2.1 Experimental Evidence of Buckling

One of the first modes of structural damage repeatedly

observed to occur in structures under explosively induced loadO is

dynamic buckling. It is observed in simple metal shells and ih the

metal subshells of composite shells with a brittle outer layer (such as

Micarta). Also, when the total thickness of the composite is small,

both shells buckle as a unit and the brittle outer shell cracks into

longitudinal strips of widths corresponding to the half-wavelength of

the buckle pattern. In the HARTS program, it was found thatipulse

buckling is a significant damage mode over the entire range of external

pressure pulses from ideal (zero time) impulses to long duration blast

loads.

S.2.2 Scope of Buckling Theories

These observations led to a basic investigation of

pulse buckling, and three basic types of buckling have been identified:

elastic, plastic flow, and visco-plastic. Elastic buckling occurs in

Hardening Technology Studies, sponsored by the Air Force Ballistic

Systems Division, Ref. 9, Ch. 5.

I I --



very long or thin structures in which the duration oi compressive mem-

brane stresses can be sufficiently long to allow significant buckling

during elastic motion. In thicker structures the duration of possible

elastic motion, before wave reflections or membrane stress reversal

occurs, is so small compared to the buckling time that significant buck-

ling motion occurs only if the stresses are large enough to induce mem-

brane plastic flow. This is called plastic-flow buckling and the

flexural stiffness is governed by the strain hardening modulus. In many

engineering metals this modulus is about 1/100 the elastic modulus so

resistance to buckling is greatly reduced. In some materials (e.g.,

mild steel) the strain hardening modulus is so small that the resistance

to buckling must come from the increase in stress with strain rate. This

is called visco-plastic buckling.

Theories of elastic and plastic-flow buckling have been

worked out for bars, plates, rings, and cylindrical shells, and a visco-

plastic theory has been worked out for rings and cylindrical shells.

The scope of these theories and supporting experiments is summarized in

Table S.1. The first three columns give the structures and loading con-

ditions investigated, and the fourth and fifth columns indicate the

available theoretical and experimental results. Equation numbers of

buckling formulas derived in the present volume are given in the next

column; if no number is given, the references, in the last column, must

be consulted.

S.2.3 Sensitivity of Solutions to Structural Imperfections
and Material Properties

The basic observation of both the experiments and the

theory is that pulse buckling consists of rapid exponential growth of

imperfections in structural shape, leading to large flexural deformations,

permanent strains, and cracking. A convenient and useful theoretical

buckling threshold is the load necessary to amplify the imperfections by,

say, 1000. Where comparisons are available, this value gives theoretical

loads which are within 30% of experimentally determined loads to produce

first measurable permanent buckling deformation in aluminum shells.

2
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Calculated buckling threshold loads are relatively

insensitive to changes in the magnktude of this amplification criterion.

For example, increasing the amplification from 100 to 1000 for a cylindri-

cal shell under radial impulse requires an increase in impulse of only

15%. Errors in estimating the magnitude of imperfections in shell shape

are reflected in changes in the amplification to produce observable

threshold buckling. Thus, in the above example, a decrease in imperfection

amplitude by a factor of 10 would result in only a 15% increase in impulse.

This indicates that, although little is known about the magnitude of im-

perfections, better specification will have a small effect on theoretical

buckling loads.

The effect of material properties on buckling thresholds

can be illustrated by the same example. The radial impulse I to pro-

duce threshold buckling in a simple metal shell is given by

= (_) 1/4 (a)1/2 a(h) 3/2

where

K = average slope beyond yield of a/(da/de) vs. e

0 = compressive hoop stress, e = strain

o = density

C = yield stress
y

a = radius

h = wall thickness

Since impulse increases as the square root of the yield stress, a 20%

error in this material property gives an error in impulse of only 10%.

Impulse is even less sensitive to changes in the strain-hardening

parameter K. An increase in X of approximately 40% is required to

give a 10% increase in impulse.

4



S.3 Bending of Beams and Plates

The principal beam and platu problems of interest that are

solvable by elementary analytical methods are presented in Table S.2.

"he first four columns describe the probleas which have bcen investi-

gated. Blast loading refers to pulses having an instantaneous rise to

a peak pressure followed by a decay to zero pressure in a rectangular,

triangular, or exponential shape; pulse durations are arbitrary. In

some of the problems the available solutions are limited to the rectangu-

lar pulse, and others are limite'd still further to ideal (zero time)

impulses. These are so noted.

Column five (analyses) refers to the types of analyses which

have either provided solutions or will readily lead to solutions. These

are classified according to the idealized material properties used:

linear-elastic (E), rigid-plastic (RP), and visco-plastic (VP). Linear-

elastic theory is suitable for obtaining threshold loads to reach yield

stresses in ductile materials or to reach fracture stresses in brittle

materials. Rigid-plastic theory is suitable where the plastic work done

during deformation considerably exceeds the elastic strain energy cana-

~city. Visco-plastic theory is necessary for strain-rate sensitive

materials. In the present report we utilize only the rigid-plastic

theory, in its simplest form, i.e., neglecting elastic strain energy and

vibrations, strait, hardening, strain-rate sensitivity, and geometry

changes. For impulsive loading these assumptions mean that the kinetic

energy input is equal to the plastic work done. Comparable problems

solved by the other theories are given in the references.

For impulsive loading, formulas giving the permanent central

deflection 6rp predicted by the simple rigid-plastic theory are listed

and compared with corresponding experimental del1ections 6 in theex

column labeled 6 ex/6 rp. A similar comparison is not possible for blast

loads because of the lack of data.

The next column indicates the rangc of applicability of the rigid-

plastic theory. A lower limit is set by the ratio R of the kinetic

energy input to strain energy capacity. For plates, an tipper limit Is

.9
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given by the deflection-to-radiu ratio "a at which membrane forces
rp

become significant.

Advantages of the simple rigid-plastic tt2ory are that

1. Anplyses and results are often simpie.

2. Agreement with experimental results are adequate ior

many engineering app.lications (see , /e values in

Table S.2). ex rp

3. Simplt approximate extensions to include properties
such as strain hardening is sometimes possible.

S.4 Future Work

Future development of the analytical approach to the response

of reentry vehicle-type structures should consist of extending and im-

proving the theories for damage mechanisms already examined, .and devising

new analytical models to explain other observed damage mechanisms.

Extension and improvement of existing theories should include:

1. A theory for laminar buckling of a metal subshell in
the presence of a constraining (but not buckling) heat
shield;

2. Buckling theories for more complex structures, for
example foam and honeycomb sandwich shells and rib-
stiffened shells;

3. More extensive experiments to compare predicted and
observed damage thresholds;

4. Experiments and extended theories to compare response
from symmetric (nose-on) and asymmetric (side-Gn) loads;
and

5. Comparison of elastic bending theories to experimentally
observed thresholds of permanent deformation and cracking.

New damage mechanisms which at present have no analytical ex-

planation include:

1. Circumferential delaminaticn of tape-wound heat shields
both at hard points and throughout the span between end
supports;

2. Longitudinal heat shield cracking under the peak of a
side-on impulsive load-

3. Response of structures to thermal loads; and

4. Response of heated stiuctures to impulsive loads.

.7



VOL. XIII DYNAMIC RESPONSE OF B3EAMS, PLATES, AND SlELLS TO PIULSE IWAJ)S

CHAPTER 1

AMPLITUDE-IMPULSE CHARACTERIZATION OF CRITICAL
PULSE LOADS IN STRUCTURAL DYNAMICS

by

G. R. Abrahamson and H. E. Lindberg

1.1 Introduction

The determination of critical loads is a central problem in

structural dynamics. The method of characterizing critical loads is

important because it can simplify or complicate analysis, and can

facilitate or hinder the interpretation of theoretical results and com-

parison with experiments. The amplitude-impulse characterization of

critical pulse loads is particularly significant because it is simple

and useful and applies to all structures, including complex structures

such as reentry vehicles. We begin with a discussion of critical pulse

loads for a linear oscillator to demonstrate the ideas involved and then

show that critical pulse loads for complex structures can be character-

ized in the same way. To facilitate the discussion, we henceforth refer

to the amplitude-impulse (P,I) characterization as the -T characteriza-

tion.

1.2 Tr Characterization for a Linear Oscillator

The displacement of a linear oscillator having naturR! frequency
1*

is given in conventional notation by

x = (X + A) cos wt + i
+ ) sin Ut (i.I)

References are given at the end of each chapter.

i 9I _ _ _ _ _ _ _ _ _ _ __ _ _ _ _



1

where the subscript i denotes initial values and A and 13 are the

integrals

A p(t sin wt'dt'

(1.2)

B f p(t cos ,Lt 'dt

p(t"') being of unit amplitude, P the force amplitude per unit mass,

and t time. To simplify the equations, we rewrite (1.1) as

x - f (1.3)

where

f = +- (x +A) cos wt + + ) sin wt (1.4)

For a static load the displacement is given by

p
x - (1.5)o 2

where P is the static load (per unit mass). Taking the maximum of

(1.3) and dividing by (1.5) yields

m P-P f (1.6)
X p max0 0

To characterize critical loads in terms of amplitud, and impulse

we put x /x = 1 in (1.6) and obtainmao

P = f-1 (1.7)
P max

for the ratio of dynamic and static loads which produce the same maximum

displacement. Impulse is given by the area under the force-time curve

10



aad can be written

I = Pq (1.8)

where

q = fp(t)dt (1.9)

T being the load duration. For an ideal impulse (i.e., delivered in

zero time), the maximum displacement is given by

1<I =w (1.10)
m

Identifying x mwith x 0of (1.5) yields

P. 2 (1.i1)

and from (1.11) and (1.8) we obtain

I P
-= -

(1.12)
0 0

Equations (1.7) and (1.12) give the amplitude-impulse combinations which

produce the same mL imum displacement of a linear oscillator.

A plot of P/P and I/I from (1.7) and (1.12) is given in

0 0

Fig. 1.1 for loads with a step rise and linear decay. Since this is a

log-log plot, along lines of unit slope load duration is constant, and

here is given in terms of the period T. For loads of short duration

(t /T < 2/3n = 0.21), the curve approaches the vertical asymptote I/Io= 1.
2

In this region the response is insensitive to load amplitude and depends

mainly on impulse. For loads of long duration (t2 /T > 6/q = 1.9), the

curve approaches the horizontal asymptote P/P = 0.5. In this region

the response is insensitive to impulse and depends mainly on amplitude.

In the intermediate region, the response depends on both amplitude and

impulse.

4.4 1i
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1.3 Comparison oi the TT Characterization with Response

Spect rum-

For a linear oscillator, the rr characterization is related to

the response spectrum. The latter is defined as the maximum response

of a linear oscillator to a given load, stated as a functijn of oscil-

lator frequency.

To obtain the response spectrum R,

I we put P/P = 1 in (1.6) and get

t
d 2 x

R= - = f (1.13)
_[ x0  max

P 2 A \ t 0P d

P A Hence, as can be seen from (1.7), R

and P/P are reciprocals. A plot of

T B= - R from (1.13) is given in Fig. 1.2 for

C" loads with a step rise and linear decay.
05

2 5 10 For long durations or high frequencies,

-A 5735 34 R approaches 2, as is well known. For

short durations or low frequencies, R

FIG. 1.1 i DIAGRAM FOR A LINEAR approaches zero; hence, direct represen-
OSCILLATOR FOR LOADS
WITH A STEP RISE AND tation of impulsive loads is lost at the

LINEAR DECAY origin. In contrast, as shown in Fig.l.l,

for the n characterization, loads of

short duration correspond to I/I = 1, which is useful information.
0

For a single degree-of-freedom system, the essential difference

between the TT characterization and the response spectrum is that the

7 characterization prominently displays impulsive response while the

response spectrum does not. For multi-degree-of-freedom systems, however,

the two concepts represent basically different approaches to dynamic

response. The response spectrum is fundamentally a description of the

pulse--nothing need be said of the structurt The Tr characterization

*
Also called shock spectrum, amplification spectrum, dynamic load
factor, etc.

12



2 is undamentally a description of

the strength (or susreptibility)

of a given structure Ior pulse
R I loads.

The response spectrum is used

as an analytical tool to build up

0 2 3 4 5 the response of a complex (linea-)

d WI 8  structure by superposition of the

response of its normal modes. A

FIG. 1.2 RESPONSE SPECTRUM FOR LOADS key in this process is the super-

WITH A STEP RISE AND
LINEAR DECAY position scheme. This usually

involves some subjective decision

on which modes to add algebraically and which to add arithmetically.

The TT diagram is used as a systematic mean6 for gathering and

displaying theoretical and experimen*tal response information, separating

loads that cause damage from loads that do not. Since ouperposition is

not required, the approach is valid for any type of response, including

plastic deformations and buckling. Therein lies the advantage of the

1 diagram; these problems are beyond the scope of conventional shock

and vibration theories. Further useful features of the n diagram

are given later, after consideration of the effects of pulse shape and

rise time for single-degree-of-freedom systems.

1.4 Effects of Pulse Shape and Rise Time

1.4.1 Effects of Pulse Shape

Figure 1.3 gives the r diagram for a linear oscil-

lator under step-rise pulse loads with various types of decay. The

ordinate is taken as half that of Fig. 1.1 to facilitate comparison

below with corresponding curves for the rigid-plastic model. Except for

the scale change, the curve for the triangular loads is the same as that

of Fig. 1.1.

The curve for rectangular loads is below that for

triangular loads and the curve for exponential loads is above it. The

relative positions of the curves are related to the duration required

13



10 I TTT to impart a given impulse for a given

-- amplitude. This is the least for rec-

5 tangular loads and the greatest for

RECTANGULAR LOAD r- exponential loads.
P

p--0 TRIANGULAR LOAD -L -

TEXPONENTIAL | The curves h.ve the same asymptotes

2LOAD and differ most in the knee region.

Along the line of unit slope in Fig. 1.3,

the values of P/P and I/I for the
I0 0

1 2 5 10 rectangular and exponential loads differ

S, by about 40%, and for the triangular and

exponential loads they differ by about
FIG. 1.3 COMPARISON OF LOADS

REQUIRED TO PRODUCE 20%.

THE SAME MAXIMUM
DISPLACEMENT OF A Figure 1.4 gives the n diagram

LINEAR OSCILLATOR. for a one-degree-of-freedom, rigid-

P. is half the static load
required to produce the given plastic system. The curves are similar
displacement and T. is the in shape to those of Fig. 1.3, but are
ideal impulse required o
produce the given displacement, shifted outward from the origin. The

relative positions of the curves for

the different pulse shapes are unchanged. As for the linear oscillator,

the curves have the same asymptotes and differ most in the knee region.

Along the line of unit slope the values of P/P and I/I for the0 0

rectangular and exponential loads differ by about 30%, and for the

triangular and exponential loads they differ by about 20%.

1.4.2 Effects of Rise Time

The effects of rise time on critical joad curves for

a linear oscillator can be illustrated using a load with a linear rise

and linear decay. The critical load curves for such loads are given

in Fig. 1.5. The heavy curve t /T = 0 is for loads with a step rise
r

and is the same as that of Fig. 1.1. The curve tr = td is for loads

with a linear rise and step decay. Since tr r t , the curves for

t /T = constant terminate at t = t d . Curves for tr/T = 0.1 to 0.5

extend below the step-rise curve, indicating a resonance effect. Curves

for t /T 2 0.6 lie above the step-rise curve. For t /T = 1, 2, 3, etc.,r r

the critical load curves lie on the horizontal line P/P = 1.
1

14



10 - -T- T- Beyond the termination point of

-- the critical load curve for t /1 = 1
r

5 (on t = t d), the numbers along the*r d

RECTANGULAR LOAD = - curve t = td  indicate the termina-p r d
TRIANGULAR LOADJN - tion points of the corresponding

P0

EXOAL _ critical load curves. The correspond-

ing critical load curves are similar

in shape to those shown for t / =r
1 2 O1 1.2 and 1.4.

I

Io 6A-4,48 The curves of Fig. 1.5 for t r/-

up to 0.5 are within about 20% of the

FIG. 1.4 COMPARISON OF LOADS
REQUIRED TO PRODUCE step-rise curve t /r = 0. If such
THE SAME MAXIMUM an error is acceptable, the curves

DEFORMATION OF A
ONE-DEGREE-OF-FREEDOM for 0 t /T 0.5 can be represented

RIGID PLASTIC SYSTEM. by the step-rise curve. If instead a

P, is the static yield load and
"t is the ideal impulse required central reference curve is used, the
to produce the given displacement. error would be only 10%.

1.5 Application of the 17 Characterization to Complex Structures

The real value of the ri characterization of critical pulse

loads is in its utility for complex structures. As a starting point

for the discussion, we consider a structure with a load of a given space-

time variation, for example a reentry vehicle with a load of cosine

distribution on one side having a sharp rise and a linear decay.

For a given structure and type of load, we undertake a series

of imaginary tests to determine the loads at which the structure fails.

We first do a series of tests using long duration loads of increasing

amplitude to determine the critical amplitude P at which failureo

occurs. This is indicated by the vertical colurn of points in Fig. 1.6.

Next we do a series of tests using short duration loads of increasing

impulse to determine the critical impulse I at which failure occurs.

This is indicated by the horizontal row of points. For the given load

distribution, P and I completely !pecify the critical loads of long
0 0

and short duration.

15
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FIG. 1.5 i DIAGRAM FOR A LINEAR OSCILLATOR

SHOWING EFFECTS OF RISE TIME

For loads of intermediate duration we consider a series of tests

for constant load duration, corresponding, for example, to the line t

in Fig. 1.6. Since the load acts for a shorter time, we would expect

the failure amplitude to be greater than Po, as indicated. If the load

duration is further reduced, say corresponding to the line t2 , we would

expect that a further increase in amplitude would be required to produce

failure. If the process of decreasing load duration were continued until

the duration became short compared to response time, all combinations of

amplitude and impulse which just produce failure would be established.

For the particular structure and load space-time variation, the locus of

such points completely describes the critical loads.

16 
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It is not necessary that the-

~failure mode remein the same

throughout the critical curve. In

general, the failure mode will be

different for different load dura-

tions. Thus, as shown in Fig. 3.7,

the critical load curve obtained

from the series of tests envisaged

above would really be the envelope

of the critical lead curves for all

PO thesignificant modes.

In principle, a different

critical load curve is required

Iog IMPULSE for each space-time load variation.~GA- 57 3 - 1

However, experience shows that for

a FIG. 1.6 EXPERIMENTAL DETERMINATION a wide range of loads of smooth
OF CRITICAL LOAD CURVE
FOR A COMPLEX STRUCTURE distribution (such as a cosine load

over one side of a cylindrical shell)

and with a decay similar to a linear or exponential decay, a single criti-

cal load curve is adequate for many applications.

A significant feature of the n characterization is that the

damage gradient across the critical load curves is steep. For example,

for cylindrical shells the maximum no-damage curve and the minimum

severe-damage curve are always within a factor of two and often much less.

This means that, for many applications, crude failure criteria are ade-

quate. This is discussed more fully in Chapter 5 of Volume XII.

To build up critical load curves for a complex structure, we

consider the possible failure modes and attempt to generate the corres-

ponding critical load curves. Structural failure modes usually involve

See Fig. 5.13, Chapter 5, this volume.
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structural elements such as heams, plates, and shells. Critical load

curves for these elements are given in the following chapters of this

report.
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CHAPTER 2

RIGID-PLASTIC BEAMS

by

A. L. Florence

2.1 Introduction

The response of a beam to a suddenly applied load which is large

enough to cause plastic deformation is not easy to find even when the

deflections are small enough to allow effects of geometry change to be

neglected. This is primarily due to the nonlinearity of the stress-

strain relationship. Further nonlinearity is introduced if the stress-

strain relationship is sensitive to the rate of loading, but we shall

not be concerned here with such a property.

To achieve some simplification, Lee and Symonds 1 introduced an

idea to the dynamics of beams which has long been in use for finding
2

collapse loads and mechanisms under static loading. They idealized the

properties of appropriate materials (e.g., aluminum alloys and steels)

by neglecting elastic deformation and strain hardening; the resulting

idealized material is called a rigid-perfectly plastic material (or, for

brevity, rigid-plastic). Thus a beam under dynagic loading will remain

rigid until the critical bending moment is reached at a sufficient num-

ber of sections where "plastic hinges" appear so that the beam moves as

a mechanism. Depending on the problem, these plastic hinges either move

along a beam with the critical moment or they are stationary as in static

collapse. The above idealization of the material properties and the

plastic hinge concept are described in Section 2.2, and the application

to static collapse problems is outlined in Section 2.3.

Section 2.4 is devoted to a development of the dynamical theory

of rigid-plastic beanis. The treatment is similar to that given by Lee
1and Qymonds, but, to be closer to the objective of this report, the

21



example of a clamped beam subjected to a uniformly distributed blast

pulse is used to develop the theory.

Section 2.5 points out the similarity between the responses of

simply supported and clamped beams. By using the results of Section 2.4

for general blast pulses, relationships among permanent central deflection,

peak pressure, and impulse (area under pressure-time curve) are found in

Sections 2.6 through 2.9 for exponential, triangular, and rectangular

pulses.3

In Section 2.10 a theorem is proved concerning the effect of

pulse shape on the deflection of a specified class of rigid-plastic

structures. It states that among all pulses of equal peak pressure and

impulse the rectangular pulse produces the maximum displacement. Al-

though clamped and pinned beams subjected to uniformly distributed blast

pulses do not fall into the specified class of structures when the peak

pressures exceed three times the static collapse pressure, the theorem

is extended to include these cases.

Section 2.11 discusses the "pressure-impulse" diagram and its

usefulness in presenting the relationship between deflection, peak

pressure, and impulse.

Finally, Section 2.12 presents the description and results of

experiments on pinned and clamped beams subjected to uniformly distri-

buted ideal impulses.4 The final deformations are in close enough agree-

ment with theoretical predictions to support use of the rigid-9lastic

theory for engineering applications.

Because of the lack of space, many important problems are not

discussed such as those involving cantilevers and beams with axial con-

straints, but treatments can be found in Refs. 5 through 9.

2.2 Bending of Beams--Plastic Hinge

We are concerned here with beams subjected to transverse loading

and with support constraitits which give rise to a resistive bending

22



moment and a shear force at each cross section (but no axial force).

*Specifically, we wish to find the distribution of normal stress over a

beam cross section giving the resultant bending moment and then to use

this distribution to find the moment-curvature relation for different

basic types of material behavior. For simplicity of exposition, a beam

of rectangular cross section is chosen.

Figure 2.1 shows a beam element of breadth b and depth h

located a distance x along the beam from the origin. In Fig. 2.1a the

element is in its original unstressed state. In Fig. 2.1b it is deformed

by stresses having M and Q as resultant moment and shear force (the

shear deformation is neglected); the neutral surface, denoted by NS

is given a radius of curvature R , and the end sections of the element,

assumed to remain plane, subtend an angle dO . The fiber coordinate is

z measured from the neutral surface or neutral axis (NA in Fig. 2.1c).

4!

x x+dx

dx i 2-Z zt-h/-

NS NA

0"dO ___

K dz

Z h/2

(a) (b) (c) G-732

GA-5753-22

FIG. 2.1 BEAM ELEMENT. (a) Side view when unstressed,
(6) Side view when stressed, (c) Cross section

Because of the bending action, the normal stresses acting on

the element are compressive above and tensile below the neutral surface,

New fiber lengths are given by (R + z)d9 with that at the neutral sur-

face remaining unchanged as dx = Rd9 . Thus at depth z a fiber has

23



tho strain

[(R + z)de - RdG]/Rdo z/R =z (2.1)

where K is the curvature of the neutral surface.

Denoting the normal stress by a , the bending moment M is

found by integrating over the cross section:

h/2

M b fzCdZ (2.2)

-h/2

If the stress is now given as a function of strain and the result e = nz

from (2.1) is utilized, the integration of (2.2) provides the required

moment-curvature relationship.

For an elastic material obeying Hooke's law with Young's modulus

E, we have

Cy E = Ez (2.3)

and hence (2.2) becomes

M = EIK (2.4)

where I = bh /12 is the second moment of area of the beam cross section.

The linear stress distribution is shown in Fig. 2.2a. At the

outermost fibers, z = ± h/2, the maximum stress magnitudes 7b occur.

When ab = a (the yield stress), the maximum elastic bending moment

M is being sustained by the beam cross section. From formulas (2.3)
e

and (2.4), Me and the corresponding curvature X aree

Me  obh2/6 and Ke = 2%/Eh (2.5)

The stress distribution is that of Fig. 2.2b.
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FFi .

h/2

-, -% -%i- -i .-
00 CI al

(a) (b) (c) (d)

FIG. 2.2 DISTRIBUTIONS OF NORMAL STRESS ON BEAM
CROSS SECTION. (a) Elastic, (6) Elastic at yielding,
(c) Elastic-plastic, (d) Fully plastic.

An elastic-perfectly plastic material has thle stress-strain

relationship of Fig. 2.3a, in which the material behaves elastically

until the yield stress % at yield strain ce is reached. During

further straining the stress remains constant at c . For a beam of

this material, bending beyond the maximum elastic moment hle produces

the stress distribution of Fig. 2.2c. At the two sections z = ze the

* strain in the fibers is the yield strain. In the central region, -z2 <

z < z , the state is elastic with a = o(z/z e); outside this region it
e

is plastic with a uniform normal stress 7. This stress distribution

° o0

0 0
GA-5733-24

FIG. 2.3 STRESS-,STRAIN RELATIONSHIPS.
(a) Elastic-plastic, (b) Rigid-plastic.
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substituted into the integral (2.2) gives for the bending moment

M =  0b(h2/4 - z2/3) (2.6)0 e

In the central region, -z < z < ze, formula (2.3) applies so that z
ee e

is determined by z = a /Ex which, when substituted in (2.6), gives
e o

the required moment-curvature relationship

M = (bh 2/4)[1 - (e/)2/3] K e (2.7)
0e K )e

As the bending moment increases the curvature increases and the

coordinate z decreases, tending toward the limiting values M = Mo,e
S , and z =0 where

e

2
?1= abh2/4 (2.8)

The stress distribution tends toward that of Fig. 2.2d. M is called0

the fully plastic moment. Formula (2.8) allows (2.7) to be written in

the form

M = M [ - (K e/)2/3I K e (2.9)

This moment-curvature relationship is shown in Fig. 2.4 for the case of

a 6061-T6 aluminum beam having a 1-inch-square cross section. The stress-

strain curve was approximated by two straight lines representing an

elastic-perfectly plastic behavior with o = 40,000 lb/in2  and E =

7 2
1C lb/in

A rigid-perfectly plastic material has the stress-strain relation-

ship of Fig. 2.3b. Strain is possible only when the stress is the yield

stress a0 . Figure 2.3b can be looked upon as the limiting case of the

elastic-plastic behavior of Fig. 2.3a by letting the elastic modulus E

tend to infinity. During this limiting process Ke from (2.5) tends

to zero and for > e formula'(2.9) shows that M tends to Mo , the

fully plastic moment. Thus for rigid-perfectly plastic materials we are
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l.eai to the moment-curvature relationship M M (x > o) as shown in
0

Fig. 2.4. A consequence of this relationship is that curvature of a

beam element is possible only when the bending moment there is the fully

plastic moment. Furthermore, the curvature can become unbounded, pro-

viding a plastic hinge.

M, /RIGID-PLASTIC

8000 -
ELASTIC-PLASTIC

6000

' 4000

2000
K 0.008rz K
' 0 .0

0 8

0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

K tin. GA-533-2 5

FIG. 2.4 MOMENT-CURVATURE RELATIONSHIPS FOR A BEAM
OF 6061-T6 ALUMINUM WITH V x 1V CROSS
SECT ION (Elastic-plastic approximation uses
g, = 40,000 lb/in. 2 and E = 107 lb.in. 2; rigid-plastic
approximation uses a. - 40,000 1b/in. 2)

2.3 Collapse of Beams Under Static Loading

This discussion on the collapse of beams under static loading

applies to beams of rigid-perfectly plastic material, the material of

prime interest throughout this chapter. For brevity, it will be called

a rigid-plastic material.

During gradual loading a rigid-plastic beam undergoes no de-

flection until a collapse mechanism forms consisting of rigid links

between a sufficient number of hinges occurring both naturally (e.g.,

simple supports) and as plastic hinges each carrying the fully plastic

moment and allowing large rotations. The load at which the mechanism

appears is the static collapse load.
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If the static collapse load is exceeded, the problem becomes

dynamical with inertial forces coming into play. The static collapse

mechanism is then used to describe the motion until the dynamic loading

is irge enough to cause violation of the yield condition, M = Mo ,

whereupon other mechanisms must be deduced. For loads slightly in excess

of the static collapse load, it is reasonable to use the static collapse

mechanism, because the inertial forces are still small.

Many structural problems are complicated enough to require the

2use of the theorems of limit analysis to establish static collapse loads

(or upper and lower bounds for these loads) and mechanisms. However, in

this chapter each of the beam problems involving blast loads has a cor-

responding static problem with a simple exact solution. The beams are

either clamped or simply supported with loading uniformly distributed

over the entire length. In each of these symmetrical cases the static

collapse mechanism has a hinge at each support and a hinge at midspan.

Before proceeding to these problems, let us consider a more

general load distribution. Suppose we wish to find the dynamic response

of a clamped rigid-plastic beam subjected to blast loading uniformly

distributed from one support to midspan. We can first obtain the collapse

pressure and mechanism for the corresponding static problem shown in

Fig. 2.5a. Only the hinge locations at the supports are immediately

obvious (from a qualitative knowledge of the elastic bending moment dis-

tribution for small enough values of the load p per unit length acting

on an elastic beam). The third hinge required to form a mechanism is

given the location x = Xh as yet unknown. Each hinge supports a fully

plastic moment of magnitude M . For distributed loading the shear force
0

is continuous and for the present problem is

3pL/8 - px 0 - x - L/2

Q
{3p/
3pL/8 - pL/2 L/2 x L
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p I

Xh L/2
PL/8

(b)

FIG. 2.5 STATIC COLLAPSE PROBLEM.
(a) Configuration, (b) Forces and moments.

Since dM/dx = Q, the moment M is also continuous. Thus to have a

maximum M = M0 at x = xh requires Q = 0 there. To have it other-

wise would violate the yield condition in the neighborhood of x = xh.

With the aid of Fig. 2.5b we are now able to write the equiN um

equations for each link of our mechanism. By taking moments about each

support, these equations are

2 )[/2)/21
2M O =px /2 and 2Mo p(L/2 -Xh)[L/2 + (L/2 + ]h

which prvide the hinge location and static collapse pressure

2xh/L (%/T- 1)/4 p = 4Moh/x

These results would allow us to start the dy'aamic analysis by

adopting the mechanism for pressures a little in excess of the static

collapse pressure and taking into account the inertia forces.

I
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2.4 Dynamie Respon!'e of Clamped Beams to Blast Loadn

To presen.t the method of finding the dynamic respnnse of a rigid-

plastic beam to blast loading, we shall treat fully the case oi a clamped

beam subjected to blas* loading uiniformly along its entire length (see

Fig. 2.6a). A blast load is taken here to mean a pressure-time curve

with an instantaneous rise to the peak pressure p followed by a mono-

tonic decay as shown in Fig. 2.7. In later sections specific pressure-

time curves are employed, including the rectangular pulse (constant

pressure applied for a short time).

p~t)

pt!

(a)
I L2

R

(b)

pdx

Q+dQ

mdx • y,

(C)

FIG. 2.6 CLAMPED BEAM IN MECHANISM 1
(Pr < Pm < 3p ). (a) Configuration, (b) Dynamics
of half-beam, ?c) Beam element - notation
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2.4.1 Mechanism 1

* The static collapse mechanism has a plastic hinge at

each support and at the beam center. Referring to Fig. 2-6b, which

shows one-half of the beam with its attend-

p ant forces and moments, the sum of moments

about the supports equated to zero gives

the static collapse pressure

/L2

ps = VL (2.10)

0
SA-5733-24 For peak pressures slightly in excess

FIG. 2.7 TYPICAL BLAST LOAD of P the inertia forces are small, so

it is reasonable to use the static collapse

mechanism to describe the motion. We shall

call this mechanism 1. Let the velocity of the beam center be V(t),
A

where t represents time. The anglular velocity W of each half-beam is

then

= V/L (2.11)

The equation of angular motion about the support is

3. 2
MIL/3 =pL/2 - 2M (2.12)

where m is the beam mass per unit length and the dot denotes differen-

tiation with respect to time.

From (2.12), (2.11), and (2.10) the acceleration of

the bear center is

V= 3(p - p )/2m (2.13)

31
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With the beam initially at rest, integration of (2.13) gives

V = 3(0 - pst)/2m (2.14)

where I is the impulse per unit length that has been applied at time

t and is defined by

t
I(t) f p(-r)d T (2.15)

0

The time t2 at which motion ceases is found by setting

V = 0 in (2.14) which, with 12 = 1(t2 ) defined by (2.15), gives

12 -s t2 (2.16)

Interpreted geometrically, the result (2.16) requires the shaded areas

in Fig. 2.8 to be equal. The angular momentum of a half-beam about a

support is nLb3 'n 3 = mL2 V/3 = (I - pat)L 2/2, so the growth of the upper

area shows how the angular momentum increases and the growth of the lower

area shows how the angular momentum decreases until the beam comes to

rest. At the intersection p(t) = ps the angular velocity is a maximum.

p

p.
P

0 t2

FIG. 2.8 GEOMETRICAL CONSTRUCTION
FOR DURATION OF MOTION
(The two shaded oreas are equal)
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Erowihg t.e duration of motion t the final central deflection is cal-

ctlated from

y(L,t2 ) J 1dt 1 - Pst2 /2 (2,17)

o 0

To obtain the zange ef pressures for which mechanism I

holds, it is necessary to establish the pressure at which the yield con-

ditior M = M is violated. This pressure will now be found.
0

With the notation of Fig. 2.6c, the equations of motion

of a heam element are

p + Q mytt '0 (2.18)

M C (2.19)x

.here suoscripts x and t denote partial differentiation. The rotary

inertic% of the beam element is neglected. Whan ytt Vx/L, with

from (2.13), is substituted in (2.18), we find that

Q /p = 3(0 - 1) F/2 - (2.20)

in which the convenient dimensionless qualities = x/L and X = p/ps

have been introduced. Expression (2.20) is linear iD, F and full lines

corresponding to the values X = 1, 2, and 3 are shown in Fig. 2.9a; a

dashed line for ) > 3 is also shown (drawn for X = 5). From (2.19),

x = M , so (2.20) tells us that M < 0 for 1 < ) < 3, which means

that the curvature of the bending moment diagram does not change sign as

M increases from -M at 0 to M at 1. Formula (2.20)

also tells us that Q. = M = 0 at r = 1 when X 3 and that

Qx M > 0 i1. the neighborhood of = 1 when X > 3. Hence, when

\ > 3, Mxx does cha.-.ge sign (Mx/P = -, < 0 at F = 0, M xx/ps =

3)/2 > 0 at = 1).
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FIG. 2.9 DIAGRAMS FOR MX , M., AND M ASSOCIATED
WITH MECHANISM t (a) Q or Mx diagram,
(b) Shear force diagram (Q = M.), (c) Bending
moment diagram.

By integrating (2.20) we obtain for the shear force the

expression

n/9 s L = (1- )[X + 3 - 3(k - 1)gI/4 (2.21)

Shear force curves are shown in Fig. 2.9b. Note that Q = M 0 for
x
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1 - < 3 (equality at 1) but in the neighborhood o[f' 1,

SQ = M x < 0 for N > 3. Now M = Mot its maximum permissible value, at

S1, so M > M in the neighborhood of =1 for X > 3. Thus the

yield condition is violated when the pressure is greater chatt three times

the static collapse pressure and mechanism 1 becomes invalid. For blast

pulses as described by Fig. 2.7, the maximum or peak pressure pm occurs

immediately, so that if p < p < 3p the entire deformation takes place

by mechanism 1.

By integrating (2.21) we obtain for the bending moment

the expression

M/M °  1 - (1 - )2 [2 - (. - 1) ] (2.22)

Moment curves are shown in Fig. 2.9c. Note how the yield condition is

violated for X > 3. If X = 3 + 6X, where 6X is small and positive,

and if E = 1 - 6F, where 6E is likewise small and positive, the value

of 6 giving Q = 0 (excepting 6 = 0) is, from (2.21), 68 = 26X/3

(2 + 5X). Using this result in (2.22), the maximum moment is approxi-

mately M = M [1 + (6%/3)3 ] > M.
.0 0

2.4.2 Mechanism 2

The manner in which the yield moment is exceeded near

the beam center when pressures are over three times the static collapse

pressure suggests a new mechanism, "mechanism 2," consisting of a central

part of variable length undergoing translatory motion connected at each

end by a moving hinge to a part which rotates as a rigid body aboLt a

support (Fig. 2.10a). For the half-beam shown in Fig. 2.10b, it is

assumed that each section between the hinge at x = x (t) and the center

is subjected to the fully plastic moment, but changes of curvature occur

only at the hinge.
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FIG. 2.10 CLAMPED BEAM IN MECHANISM 2
(p,, > 3 p5). (a) Mechunism 2, (b) Motion
of half-beam, (c) Velocity distribution,
(d) Acceleration distribution.

The displacement is continuous and is expressible as
x h(t)

y(L~t) - f 8(x',t)dx' 0 ? x e xh

y(x,t) x (2.23)

y(L,t) xh - x e L

in whic% 8 is the slope or rotation of a beam element and for
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sujlicintly -mall displacfments . dy/dx. As the pIas-tic hinge travel."

along the beam from x h(0) to L, each section it passes is rotated an

infinitesimal angle o dt while xh moves a distance hdt. The hinge

leaves behind it a deformed beam with a continuous slope c) and a cur-

vature equal to VJixh -

Differentiation of (2.23) for the transverse velocity

of the beam gives

Ytx,t) y ) - (xh X)w - e(xh t)xh x xh

(2.24)

+ ~x~t Xh <X <L
Y(X,t) = (Xh~t) V V

(2.25)

where xh and xh  signify points just to the left and right of x h.5

By definition of the mechanism, the slope at the 
moving hinge is zero,

that is, f (xht) = 0. Hence (2.24) and (2.25) give the same velocity

at x and x, proving that the velocity is continuous across the

hinge at x = x and consequently it is continuous along the whole

beam. We thus have

yt(xt) = V -(x h - x)w 0 ! x

(2.26)

yt(xt) V 
Xh S x L

(2.27)

Differentiation of (2.26) and (2.27) for the 
accelera-

tion gives

Ytt(x,t) = V - (xh - ')w - hW 0% X i h

(2.28)

Ytt(x,t )  V x h  x L

(2.29)
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Hence at x = xh the acceleration has a discontinuity of magnitude

Xhx . Examples of velocity and acceleration distributions are shown in

Figs. 2.10c and d.

One advantage of the theory of rigid-plastic beams is

that the motion of a mechanism is governed by the equations of elementary

rigid body dynamics. However, unlike mechanism 1. this mechanism has

links which vary in length and thus it is not obvious that assuming

fixed lengths at each instant is correct. The angular momentum about

the support of the rigid portion between x = 0 and x = xh (Fig. 2.10)

nlus the element betwee' x = xh  and x = xh + xh6 t at time t is

3H = mx hu 3 + mx h6t Vx h

after neglecting powers of the increments higher than the first. Simi-

larly, at time t + 8t the angular momentum is

H + 6H =mx (w + 5w)/3 +m"t
h M'h' WK'b xh

giving the momentum change

3
6H = mxh bu 13+ mxh &txh(wxh V)

But the velocity is continuous at x = xh# that is, wjxh V, so

mxj,/3 holds whether the hinge is moving or stationary.

Before writing the equations of motion for each portion

of the beam, we note that the shear force Q is zero at the traveling

hinge. Integration of (2.18) with respect to x shows that Q, and

hence, by (2.19), Mx, is continuous along the beam. Thus for M M 0O0

to be a maximum at x =xh we have M = Q =0 at x xh -
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The equations of motion for the two portions of the

halr-beam are (see Fig. 2.11)

mV P x < x ! L (2.30)

3. 2 0 x < x (2.31)
mxhJJ/3 = PX0 2 

- 2M0

and continuity of velocity requires

V WXh (2.32)

pO)0 o
M.~X1 I t

iR, p(t)

XS V *A-StS3I-SE

FIG. 2.11 HALF-BEAM IN MECHANISM 2

Equation (2.30) integrates immediately to give the

velocity of the central portion of the beam as

V I/M (2.33)

Thus from (2.32) W = I/mxh and when w is eliminated (2.31) is ex-

pressible in the form (Ix ) = 12M giving for the hinge location
h0

2x= 12M t/I (2.34)
h  0

and for the hinge velocity

xh  6Mo(I - pt)/ 2 Xh (2.35)

{ 39

I_________



For a blast pulse with an instantaneous rise to its

peak pressure p (see Fig. 2.7 or 2.8), the starting position of the

plastic hinge is found by using in (2.34) the result: Lim (1/t) = pm,

2t 0. This limiting process gives x (0) = 12M /P or, in terms of
h o m

k P /P (whenever X > 3), xh(0)/L 2 = 3/X. Again for a blast pulseS h
we have I > pt, so that (2.35) predicts a positive hinge velocity. The

monotonic decay of the blast pulse is more than enough to ensure that the

hinge proceeds steadily toward the beam center. (Note that for a rec-

tangular pulse we have I = pt while the pulse is acting. Consequently

xh= 0 and a stationary hinge exists at = 12M /P..) Equation (2.34)
h  0

also provides the time t = t when tne hinge arrives at the beam center
1

as the solution to

11 12M0tl/L 2 = 3pt 1  (2.36)

Equation (2.36) may be given a geometrical interpretation similar to that

given for (2.16) which determines the duration of motion when it occurs

entirely by mechanism 1. The horizontally shaded areas in Fig. 2.12 are

equal.

PI

Pa

3p,

0 tt 2

SA-673$-37

FIG. Z12 GEOMETRICAL CONSTRUCTION FOR DURATION
OF MOTION AND DURATION OF MECHANISM 2
(Areas shaded alike are equal)
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At time t = t the velocity of the beam center, from

(2.33), is

V1 = I/m (2.37)

and the central deflection is

ti

y(L,tl) = idt (2.38)

0

Motion now continues by mechanism 1 according to

Eq. (2.12) or in terms of V instead of w, according to Eq. (2.13).

With the initial velocity condition (2.37), integration leads to

V = 3(0 - pst)/2m (2.39)

which is the same equation as (2.14). The total duration of motion t2

is found by setting V(t2 ) = 0 in (2.39). Hence

12 = pst2  (2.40)

Interpreted geometrically, this result states that the two vertically

shaded areas in Fig. 2.12 are equal. The angular momentum of the half-
m(2 2

beam about the support during deformation by mechanism 2 is m(L - x )/2
3 2 - 26 2 ("h )L

+ mxhw/3 = IL /2 - Ix/6 = (I - pst)L/2 which is the sane as that dur-

ing deformation by mechanism 1. Thus the growth of the upper shaded area

shows how the angular momentum increases and the growth of the lower

shaded area shows how the angular momentum decreases until the beam comes

to rest.

By integrating (2.39) the central deflection which

occurs during deformation by mechanism 1 is

t2
! Y(L't 2) -('t) 2m Idt 2 (-t 2 tI0 (2.41)

where y(L,tI) is given by (2.38).
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To find the final shape of the half-beam, we consider

it in the two regions 0 s x & x h(0) and x h(0) ! x , L, where x h(0)

is the initial position of the traveling hingde. The portion of the beam

in the former region experiences only rigid-body rotation about the sup-

port so that
t
2

y(x,t2 ) f ~wxdt 0 ! x 5 Xh(O) (2.42)

0

Now since W = I/mxh when 0 ' t 5 t, and u; V/L - 3(1 - pt)/2mL

when tI  t t2, formula (2.42) becomes

t t2

y(x,t2 ) = t(I - pst)dt

0 t1

0 X S Xh(O) (2.43)

The times tI and t2  are given by Eqs. (2.36) and (2.40). In the

latter region xh(0) x : L the traveling hinge passes through each

beam section. Let t = T be the time when the hinge arrives at

section x. Then we have

T(x) t

y(x,t2 ) = f Vdt + f rndt

o (x)
xh(O) x ! L (2.44)

which, upon substituting V I/m and the above formulas for w,

becomes

T(x) t1  t

-fI dt+- (fI
y(x,t2 1 Idt + -p t)dt

2 m j fin f s
o (X) Xh t1

xh(O) x L (2.45)

2
From (2.34), T(x) is the solution of the equation x = 12M 0/I(T) or~0
of (x/L)2 3PsT/I(T).

42
Ii



Turning now to the shear force and bending moment dia-

grams fsociated with mechanism 2, we first note that we have M = M
0

and hence Q = 0 in the region xh < x L. We have already shown that

at x = Xh, the location of the hinge, we have M M ° and Q = 0. It

remains to describe M and Q in the region 0 x < xh '

From (2.18), the equation of motion of a beam element,

the acceleration y can be eliminated by using the relation ytt x

with 1 given by (2.31), the equation of motion about the support of

the rigid portion of the half-beam. In this way we find that

Qx - pt)x/xh + 2pt(1 - x/xh)]

0 5 x < (2.46)

which, since I > pt, is always negative no matter how large the

pressure may be. Thus we also have M < 0, which means that thex

curvature of the moment diagram is always negative. Note that at

x = xh we have Q. = -(I - pt)/2t, thereby giving the discontinuity

there corresponding to the discontinuity W of the acceleration.

By integrating (2.46) we obtain for the shear force

Q X h (1 - x/X h)[I - pt)(l + x/x h ) + 2pt(l - x/xh)1/4t

0 .X 5 x (2.47)

which shows that Q, and hence MX, is always positive.

One further integration provides the following ex-

pression for the bending Loment:

i 1 - (1 - x/xh) 2 [(I - pt)(2 + x/xh ) + 2pt (1- x/xh)]/1

0 x < h  (2.48)
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and because Q M is always positive, M increases monotonically
x

from -M at x = 0 to M at x = xh. It is concluded therefore
0 h'

that no further mechanis:; need be sought.

The above observations are illustrated by Fig. 2.13

which shows the distributions along a half-beam of Qx, Q, and M for

a triangular blast pulse with Xm = pm/ps = 5, X = p/ps = 2, and

xh/L = (6/7Y

2.4.3 Conservation of Energy

For a rigid-plastic beam initially at rest, the work

done by the pressure equals the sum of the work done by plastic bending

and the kinetic energy. Results follow which give the rate of work and

rate of chang,. of kinetic energy during deformation by mechanisms 1

and 2.

The rate of work done by the applied pressure is

L pV(L - xh/2) mechanism 2

WF f PYtdx =

0 (pVL/2 mechanism 1

and the rate of plastic work done in bending is

2M 1 V/xh mechanism 2

W 2M =
P0

2M V/L mechanism 1~0

while the rate of change of kinetic energy is

{+xhW / m - h)V 2/2]'=pV(L - xh/2) -2MV/x h  mechanism 2

[mL3Lu/6] '  =pVL/2 - 2M V/L mechanism I
0
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It is readily seen that the results satisfy the cons(rvation equation

F P !{

In the rather simple de.,ivations, we use the relation

V/x h  (mechanism 2) or uj, V/L (mechanism 1) to eliminate w,

and the relations (2.34) and (2.35) for mechanism 2 to eliminate Xh

and t. Making such an energy balance is often a useful check on the

solution of the equations of motion.

2.5 Dynamic Response of Simply Supported Beams to Blast Loads

Since the dynmaic response of a simply supported beam to a uni-

formly distributed blast load is so similar to that of a clamped beam,

we shall restrict ourselves to showing how the results of interest can

be readily deduced from those in Section 2.4. Instead of a moment

N = -M due to a stationary plastic hinge at each support, we have the
0

boundary condition M = 0 representing a pinned support. Consequently,

the static collapse pressure is halved, and in the equations of angular

motion of the rigid portion of a half-beam about its support, that is,

in Eqs. (2.12) and (2.31) of mechanisms 1 and 2, the restoring moment

is M from the traveling hinge instead of 2M from the traveling
0 0

hinge plus the stationary hinge at the clamped support.

2.5.1 Mechanism 1

The static collapse mechanism is the same as that for

the clamped beam, a hinge at each support and at the center. Since the

only restoring moment acting on a half-beam is M = M from the plastic0

hinge at the center, the equation of equilibrium gives a static collapse

pressure of

ps 2M /L 2  (2.49)
0

which is half of that required to cause collapse of a clamped beam.
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For motion by wechanism I the governing equation,

corresponding to (2.12), is

mL3j/3 = pL2/2 - M

where ; = V/L. Equations (2.13) to (2.21) hold provided that the value

of Ps is given by (2.49) wherever it occurs. Because of the support

condition M = 0, the bending moment expression (2.22) is replaced by

IM ° = 1 - (1 - )2[2 - (X - )]/2

where x/L and X p/p., with p again given by Eq. (2.49).

Since Eqs. (2.20) and (2.21) still hold, the peak pressure of the blast

pulse is restricted to the range p < P < 3p (i.e., 1 < ) < 3) in.

order not to violate the yield condition.

2.5.2 Mechanism 2

Whenever the peak pressure is greater than 3p., the

mechanism of deformation consists of a variable central length of beam

undergoing translatory motion connected at each end by moving plastic

hinges or interfaces to an outer portion of beam rotating as a rigid

body about its support. In the central portion of beam the moment is

M = Mo, but changes of curvature occur only at the ends. This mechanism

is the same as that for clamped beams and is suggested by the trend of

the shear force and bending moment distributions for mechanism 1 as

pressures increase through 3ps. Although the miminum peak pressure

activating mechanism 2 corresponds to p = 3 as in the case of

clamped beams, the actual minimum peak pressure is half of that for

clamped beams because p is halved.
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The equations of motion for mechanism 2 corresponding

to (2.30) and (2.31) are

MV = P xh < x s L

mxu/3 px M-M 0 Sx < x
h h h

where x = V/x . The solution giving the hinge location is found by

using M instead of 2M in Eq. (2.34), so that0 0

2 2
xh = 6M t/I or (x /L) = 3p t/I (2.50)

with PS from Eq. (2.49). From Eq. (2.50) the initial position of the

traveling hinge is given by

x (0) = 6M /Pm = 3/X
hom

and the hinge velocity is

Xh 
=  3Mo(I - pt)/I2xh

Provided we use formulas (2.49) and (2.50) for PS

and xh  whenever they occur, Eqs. (2.36) to (2.47) hold. Because of

the support condition M = 0, the bending moment expression (2.48) is

replaced by

M/M = 1 - (I - x/xh)2 [(I - pt)(2 + x/xh) + 2pt(1 - X/Xh)]/21

2.6 Clamped Beam Subjected to an Exponential Blast Load

We shall now find the relationship among the peak pressure,

impulse, and final central deflection for a clamped rigid-plastic beam

subjected to an exponential blast pulse uniformly distributed over its

entire length. By an exponential blast pulse we mean a pulse with an

instantaneous rise to its peak pressure pm followed by an exponentially
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decaying pressure. It is represented by the pressure function

-kt
p peme  (2.51)

where the constant k = p /I . The impulse I is the total area under
0 0

the pressure-time curve. Corresponding to (2.51), we have the impulse

function

-kt
I I (1 - e ) (2.52)

0

The results we require are obtained by substituting

Eq. (2.52) in the appropriate results of Section 2.4 for general blast

pulses. It is convenient to express our results in terms of the dimen-

sionless quantities

=p/p T = kt = Pmt/Io ana V = 6/(I0 L2/mMo) (2.53)

where, for brevity, 6 = y(L,t) is the central deflection.

2.6.1 Mechanism 1

For the peak pressure range ps < p < 3p., where

PS = 4Mo/L is the static collapse pressure, deformation starts by

mechanism 1 (one plastic hinge at each support and one at midspan).

The final central deflection is given by Eq. (2.17) in which t2, the

time when motion ceases, is the solution of Eq. (2.16). Inserting the

impulse function (2.52) in (2.16) and converting to the dimensionless

variables (2.53) yields for T = kt2 the equation

-72 2
1-e T 1 < ) < 3 (2.54)

Similarly from Eq. (2.17) the dimensionless final central deflection

2 vale of - at time t =t 2 or when T = 2  is

312() - 1) - T2 -r2/16X 2  1 < X < 3 (2.55)
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2.6.2 Mechanism 2

Whenever pm > 3p., deformation starts by mechanism 2,

hich is desciibed i.- Section 2.4.2. The central deflection at time

ti, when mechanism 2 changes to mechanism 1, is given by Eq. (?.38),

t being the solution of Eq. (2.36). With the impulse function (2.52)

and the variables (2.53), these equations become

1 - e = 31/ A > 3 (2.56)

2
V= ( - 3)T /4 2  ). > 3 (2.57)

1 1

Motion continues by mechanism 1 until it ends at

time t2, the solution of (2.40), and the additional central deflection

acquired is given by (2.41). With the impulse function (2.52), these

equations become

-2
1-e T 2/ A > 3 (2,58)

v 2  - v 1  3[2(X (k- 2(X- (r 2  -
2 )J/16X2

12 1 2 1

X > 3 (2.59)

2.6.3 Peak Pressure, Impulse, and Deflection Relationship

EquaLions (2.54) through (2.59) represent the required

relationship among the peak pressure, impulse, and permanent central

deflection. Note that for the exponential pulse the values of TI  and

T2  are solutions of transcendental equations and have to be found nu-

merically for each value of %. The relationship is therefore best pre-

sented graphically as shown by the curve in Fig. 2.14. For a constant

impulse I the curve shows that the central deflection increases with0

increasing peak pressure and tends asymptotically to a value .orrespond-

ing to v = 1/6 for the ideal impulse. This can be seen by the follow-

ing limiting process. As pm and hence X tend to infinity, the
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constant k = pm/1 tends to infinity when I is held constant.

Since the left-hand sides of Eqs. (2.56) and (2.58) are bounded

(0 <'1 - e-' < 1), the rigIt-hand sides indicate that T"I and "2

also tend to infinity with ,. This behavior allows the approximations

e 1 0 and c T 0 so that, for large enough ), I  and -2

can be given the values T, 
= X/3 and T2 = ). Substituting these

values in (2.57) and (2.59) leE.ds to V1 = 1/12 and v2 = 1/6, the

latter being the value at the vertical asymptote in Fig. 2.14.

20 1

15

0

Pm

P, 10

1 1I I I I 1
0 0.02 0.04 0.06 0.08 0-10 G.12 0-14 0.16 0.18

= a/ZL2/mM; GA- 51-M

FIG, 2.14 PEAK PRESSURE, IMPULSE, CENTRAL DEFLECTION
RELATIONSHIP FOR A CLAMPED BEAM
SUBJECTED TO AN EXPONENTIAL PULSE
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2.7 Clamped Beam Subjected to a Triangular Blast Load

We shall now find the relationship among the peak pressure,

impulse, and permanent central deflection for a clamped rigid-plastic

beam subjected to a triangular blast pulse uniformly distributed along

its entire length. By a triangular blast pulse we mean a pulse with an

instantaneous rise to its peak pressure p followed by a linearly de-

caving p-essure. With t as the duration, the pulse is represented

by the pressure function

P Gl - tit) 0 !9 t/to 2 1
0 0

p p= (2.60)

t/t a 1
0

The impulse I° = p mt /2 is the total area under the pressure-time

curve. Corresponding to the pressure function (2.60) is the impulse

function

1 0(t/t o0 ) (2 -t/t o )  0 :g t/t °0T

I = (2.61)

I t/t a 1
0 0

We shall follow the procedure of Section 2.6 for the exponential

load by using the impulse function (2.61) in conjunction with the ap-

propriate formulas derived in Section 2.4 for the general blast load.

Tiowever, since the triangular pulse is of finite duration, attention

has to be paid to the relationship of the time to, when the pulse ends,

to the times t and t , when mechanisms 2 and 1 end. As will be

seen, this slight conplication amounts to considering peak pressure

values within four ranges instead of two as in the case of exponential

pulses. On the other hand, the central deflection formulas turn out to

be entirely explicit, unlike the exponential case which involves the

solution of transcendental equations for the tines t and t

1 2
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Again it is convenient to express our results in terms of

dimensionless quantities as follows:

/= Pm/Ps = t/t and \j = 6/(I L2/n ) (2.62)

where, for brevity, = y(L,t) is used to denote the central deflection.

2.7.1 Mechanism 1

For the peak pressure range ps < pm < 3p., where

Ps = 4M /L is the static collapse pressure, deformation starts by

mechanism 1 (described in Section 2.4.1). Assuming that deformation is

still in progress at time t when the pulse ends, Eq. (2.14) predicts
0

a velocity at midspan of

V(to ) 31 ( - 2/k)/2m (2.63)
0 0

But (2.63) shows that V(to ) is positive only when X lies in the

range 2 < X < 3. In other words, the beam is still moving at the

termination of all pulses with peak pressures such that 2 < X a 3,

whereas motion ceases before the termination of pulses with peak pres-

sures such that 1 < X < 2. These two cases are now considered separ-

ately.

Case 1: 2 <3. Motion ceases at a time t2 > t
2 0

given by pinto/ 2 = pst 2 , which is (2.16) with 12 = I(t 2 ) = I = pn t /2.

Hence, in terms of X and T, we have T2 = X/2. With this value of

T2 and the impulse function (2.61), Eq. (2.17) leads to the final dimen-

sionless central deflection

v 2 = (3% - 4)/16% 2 5 X T 3 (2.64)

Case 2: 1 < X _ 2. Motion ceases at a time t ! t
2 0

given by (2.16) with 12 = Io 2(2 - T2 ). Solving for T2 in terms of
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\we find that T2= 2 - 2/7. With this value of 7 2 and the impulse

function (2.61), Eq. (2.17) leads to

3 4
= 0.- 1 /X1 Xs2 (2.65)

2.7.2 Mechanism 2

Whenever p m> 3p , deformation starts by mechanism 2

(described in Section 2.4.2). Three possibilities arise: either tile

pulse ends during mechanism 2 motion or during mechanism 1 motion, or

the pulse is still acting when motion ceases. We shall now show that

the first two possibilities exist but the last does not. Assuming the

pulse ends in mechanism 2, that is t 0< t 1or Tr > 1, Eq. (2.36)

(I, = 3p t )becomes Tr V6 because I = Hence T > 1 is1 si 1 1 = O- 1
possible if X > 6. Assuming the pulse ends in mechanism 1, that is

t 0> t 1or TI< 1, Eq. (2.36) becomes T, = 2 - 6/X because

10T1(2 T 1r ). Hence T I < 1 is possible if 3 < X. < 6, and thus

the whole range of ~.>3 is accounted for. A pulse with a duration

which becomes T 2 =2(l - 1/) because 1 2 o T (2 - T2 ). Hence for

no X < 3 is T2 < 1, and so the pulse duration cannot exceed the motion

duration. The two possible cases will now be treated separately.

Case 1: 3 < X. < 6. Equation (2.36) with 1l

I o (2 - TI)gives the dimensionless time when mechanism 2 ends as

=2 - 6%. With this value Of T 1 and the impulse function (2.61)

substituted in the central deflection Eq. (2.38), we have

=2(% - 0.)() + 6)/3X 4 3 !- X !s 6 (2.66)

The pressure is still being applied during part of the

remaining mechanism 1 motion. After the pulse ends, the velocity is

that of (2.39) with I = I01 and thus (2.40), giving the time when motion

ceases, becomes I0 = p t which, in terms Of Tr, and X, is T2 = X,/2.
s 22
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Substituting T1, Tr2 , and I in (2.41), we obtain for the central de-

flection occurring during motion by mechanism 1

- V1 = (3X - 4)/16X - (X - 3)2(X + 3)/)
4

which, upon substituting N) from (2.66), becomes

3 4
(3 - 4)/16X - (X - 3) /3X 4  3 X ! 6 (2.67)

Case 2: X > 6. We have shown that whenever X > 6

the pulse ends during motion by mechanism 2. Hence in (2.36) we can

set I, = I to give T1 = V6. Vith this value of T1 and the impulse
10

function (2.61) substituted in (2.38), we find that the dimensionless

central deflection at the end of mechanism 2 is

X= ( - 2)/12X (2.68)

No pressure is being applied during mechanism 1 motion. Setting 12 = I

in (2.40) yields T2 = )L/2 for determining the time when motion ceases

and the newly found formulas for T and T2 , along with the impulse

I = I, substituted in (2.41) give

2 - 1/12 (2.69)

for determining the central deflection acquired during motion by

mechanism 1. By using (2.68) to remove v1  from (2.69), we obtain

v2 = (X - 1)/6X 2 6 (2.70)

2.7.3 Peak Pressure, Impulse, ai- Deflection Relationship

Equations (2.64), (2.65), (2.67), and (2.70) represent

explicitly the required relationship among peak pressure, impulse, and

permanent central deflection for all values of X. In Fig. 2.15 the

curve shows how the final dimensionless central deflection V varies
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with X. For a constant impulse I the central deflection 6 increases0

monotonically with peak pressure and tends to a finite limiting value as

.\ -' . This limiting value corresponds to an ideal impulse and is repre-

sented by the asymptote in Fig. 2.15. The value of v at the asymptote,

found by letting X 4 - in (2.70), is v = 1/6, the same as that found

in Section 2.6.3 for the limiting case of the exponential pulse, as

expected.

20 .

1510 t'
P-'

10

5

0 I -I I I Ii
0 0.02 004 0.06 0.08 0.10 0.12 0.14 0.16 0.18

2 2
GA-5735-40

FIG. 2.15 PEAK PRESSURE, IMPULSE, CENTRAL DEFLECTION
RELATIONSHIP FOR A CLAMPED BEAM
SUBJECTED TO A TRIANGULAR PULSE
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2.8 Clamped Beam Subjected to a Rectangular Blast Load

We shall now find the relationship among the pressure, impulse,

and final central deflection for a clamped rigid-plastic beam subjected

to a rectangular pulse uniformly distributed along its entire length.

By a rectangular pulse we mean a pulse with an instantaneous rise to a

pressure p which is then held constant until a time t when the
m 0

pressure instantaneously falls to zero. The pressure and impulse

functions meeting this description are

Pm 0 t < t
m 0

p (2.71)

t>t

p t =I (t/t) 0 t <_ t
m 0 0 0

I = (2.72)
= I t t

Again the results we require are found by substituting the im-

pulse function (2.72) into the appropriate results of Section 2.4 for

general blast pulses. A unique property of a rectangular pulse with

P > 3p is that the two hinges which appear within the span to form

mechanism 2 remain stationary during the entire time the pulse is acting.

This property ensures that the pulse is always over before mechanism 2

ends. Whenever p < p < 3p., motion is entirely by mechanism 1 with

the velocity increasing while the constant pressure is being applied

so again the pulse is always over before mechanism I ends. Thus the

whole of a rectangular pulse is used to cause deformation which, of

course, is never the case with an exponential pulse and is not the case

with a triangular pulse whenever Ps < pm < 2Ps"
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Again it is convenient to express our results in terms of the

dimensionless variables

X = pm/Ps t/t and v = 6/(I2L2/n /m) (2.73)

where, for brevity, 5 = y(L,t) is the central deflection.

2.8.1 Mechanism 1

For the peak pressure range Ps < pm < 3P., where

ps = 4Mo/L is the static collapse pressure, motion starts by mechanism 1
0

(see Section 2.4.1). At time to Eq. (2.14) predicts a midspan velocity

of

..t) 310(1 - I/X)/2m

which is positive f., k in the whole range 1 < X ! 3 under considera-

tion. Motion thus ends at some time t2  such that t2 > t or T2 > 1.

In terms of T 2 and X, this time, from (2.16) with 12 = Io, is

T2 = i/k. In terms of v2 and X, from (2.17) with the impulse function

(2.72) and with T2 = 1/k, the central deflection is

v 2 = 3(1 - 1/%)/16 1 : 5 & 3 (2.74)

2.8.2 Mechanism 2

Whenever P > 3p., motion starts by mechanism 2 (see
2E

Section 2.4.2). Equation (2.34), which is xh = 12M t/I, becomes
2 0
xh = 12M /p when the pulse is acting, showing that the hinge is sta-

tionary. After the pulse has ended the equation becomes 2= 12t/I,

and hence the time t when mechanism 2 ends is given by (2.36) with

I1 = I.. Thus T \ X/3, and from (2.38) with the impulse function (2.72),

we obtain

= 1/12 - 1/8k
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Motion is completed by mechanism 1 at a time t2 determined by (2.40)

with 12 1 0o . Thus 2 = ). and (2.41) with I I0 gives

2 - 'l = 1/12

Elimination of V 1 then yields the required central deflection formula

v 2 = 1/6 - 1/8) ) 3 (2.75)

2.8.3 Peak Pressure, Impulse, and Deflection Relationship

The required relationship among peak pressure, impulse,

and permanent central deflection is represented explicitly by (2.74) and

(2.75). From the equations the curve of X versus v in Fig. 2.16 was

drawn. For a constant impulse I the central deflection 6 increases

15-

200

S0 to  .!

P,

5
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0i

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

&A-5733-41

FIG. 2.16 PRESSURE, IMPULSE, CENTRAL DEFLECTION
RELATIONSHIP FOR A CLAMPED BEAM

SUBJECTED TO A RECTANGULAR PULSE
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monotonically with peak pressure and tends to a finite limiting value as

X co . This limiting value corresponds to an ideal impulse and is repre-

sented by the asymptote in Fig. 2.16. The value of V at the asymptote,

found by letting X - in (2.75), is v = 1/6, the same as that found

in Sections 2.6.3 and 2.7.3 for the limiting cases of exponential and

triangular pulses, as it should be.

2.9 Simply Supported Beams Subjected to Specific Blast Loads

In this section we shall present formulas representing the

relationship among peak pressure, impulse, and permanent central de-

flection for a simply supported rigid-plastic beam subjected to a spe-

cific blast load uniformly distributed along its entire length. The

specific pulses which concern us here have exponential, triangular, and

rectangular pressure-time curves, and we can write the formulas simply

by doubling the right-hand sides of those for clamped beams in Sections

2.6, 2.7, and 2.8. The reason for this simple doubling process is

basically that the restoring moment acting on the rigid portion o. a

beam as it rotates about a simple support is half of that acting when

the support is clamped. It was shown in Section 2.5 that, with the

exception of the bending moment distribution, the results of Section 2.4

for clamped beams under general blast load&ng are applicable to s4nply

supported beams provided the appropriate static collapse load is taken,
2 2

that is, ps = 2M /L instead of ps = 4M /L . When the deflection
0 0

formulas are being converted into the dimensionless form )

where

= Pms V = 6/(0 L 2/mM) (2.76)

a factor 1/p appears on the right-hand side, thereby accounting for
s

the doubling process. In (2.76) p denotes peak pressure, I the
m0

total area under the pressure-time curve, and 6 denotes permanent mid-

span deflection.
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The results are given below in terms of the dimensionless

variables X and v of (2.76) and the X versus v relationship for

each pulse shape is shown in Fig. 2.17.

Exponential Pulse:

$312(. - 1) - T 2 /Sk 2  1 3

V

6 -(k 1) T-2(X-3) - 3(T2- T 2)I/8X
2

where - -T2
(1 -3 31/ and (2 e T /)

Triangular Pulse:

1) 4

(3X - 4)/8 2 2 '3
OX 2 5 .

(3). - 4)/8. - 20. - 3)3/3) 4 3 ,

t3(.- 1)/) 1 £3

(4k 3)/12) X z 3

Ideal Impulse:

v =1/3 X = O

t6

K'-.
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FIG. 2.17 PEAK PRESSURE, IMPULSE, CENTRAL
DEFLECTION RELATIONSHIP
FOR SIMPLY SUPPORTED BEAMS

An interesting feature of Fig. 2.17 is the spacing between the

curves, which shows how the central deflection 6 from pulses of equal

peak pressure p and equal impulse I depends on the pulse shape.
0

Any horizontal line (X > 1) intersects the curves to give three de-

flection values. The greatest of these is from the rectangular pulse

and the smallest is from the exponential pulse. At low peak pressures

the deflection values are significantly different from each other. As

the peak pressure tends to infinity, the differences tend to zero,

because each pulse tends to an ideal impulse. Figure 2.18 also illus-

trates these observations by showing the variation with X of the

ratios 6 /6 and 6 A/ of the central deflections from triangular
B C A C

and exponential pulses to those from rectangular pulses, all pulses

having the same impulse I . The dependence of central deflection upon

pulse shape is discussed more fully in the next section.
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FIG. 2.18 VARIATION OF CENTRAL DEFLECTION RATIOS
WITH PEAK PRESSURE FOR PINNED AND
CLAMPED BEAMS (SA, 1B' 5C are central deflections
caused by exponential, triangular, and rectangular pulses)

2.10 Pulse Shape which gives Maximum Deflection

Our main purpose is to prove that the permanent central de-

flection of a simply supported or clamped rigid-plastic beam due to a

uniformly distributed blast pulse of given peak pressure and impulse

is greatest when the pulse is rectangular. This result is also true

for more general structures as will be shown by examples.

2.10.1 Simplest Rigid-Plastic System

We shall find the dependence on pulse shape of the

miximum displacement of the simple system shown in Fig. 2.19. A pres-

sure p(t) acts on a mass m per unit area

ptt) m P, having a constant resisting pressure p."

0 Whenever p(t) becomes larger than ps the

- mass is set in motion according to the
$A- 40W 94

equation
FIG. 2.19 SIMPLEST RIGID-

PLAS1 IC SYSTEM
p(t) - x(2.77)

where x is the displacement from the initial

at-rest position. With the initial conditions
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x(O) x(0) = 0, successive integrations of (2.77) give

I(t) - pt = mx (2.78)

2
A(t) - Pt /2 = mx (2.79)

where 1(t), the impulse, is the area undvr the preEsure-time curve at

time t, and A(t) is the area under the impulse-time curve at time t.

For convenience, b-t without loss of generality, we shall consider

pulses with an initial pressure greater than p' i.e., p(O) > ps"

Let the mass come to rest at time t = t2 . Then (2.78)

with i(t) = 0 gives t = I2/p where I = !(t ). Eubstituting
2 2 2 s 2 2

this result for t in (2.79) gives for the final displacement
2

mx2 = A2 - 1 2t2/2 (2.80)

in which A2 = A(t2 ).

By means of expression (2.80), the deflections x2
due to pulses of equal pesk pressure p and impulse I are compared

with the deflection due to a rectangular pulse of pressure pm and

impulse 1 . Note that I is the total area under the pressure-time

curve, whereas 12 is the area at time t = t . Thus two cases arise,

depending on whether I° = 12 or I > I2 -; in the former case the whole

pulse is used in moving the mass, while in the latter it is not.

Case 1: IO  1 2. If the pulse ends at time t = top

then t S t and, since t= 12/p = Io/ps, the duration of motion is
o 22 0

the same for all pulses. Also, (2.80) becomes

mx2 = A2  Iot2/2 (2.81)

and, since the term I t /2 = 2 /p is the same for all pulses, it re-
o 2 0 B

mains to study the function A2 .

64



Among all pulses of equal impulse I°  and maximum

pressure pm, the minimum of the duration times t is possessed by a

rectangular pulse. Let this minimum duration time be t'. Then when

t = t' the pulses satisfy I - p t' and A 9 p t' /2 with equality
0 m oo

only for the rectangular pulse. When t = t2 (t 2  _ t > to),

t 't

A, f ()d2 +I(t - t') (2.82)
2~V 0 o~ 2~rd pt0

0
0

again with equality only for the rectangular pulse, so that A and
2

hence x 2 , from (2.81), are maximum when the pulse is rectangular.

This result can be illustrated in the impulse-time

plane of Fig. 2.20. For a rectangular pulse, A2  is the area under

00 'F, whereas for more general pulses

A2  is the area under the curved line

I0 00 F. The triangular area under OF
S 01 0O

Is is I 2 t2 /2. Thus, according to (2.80),

/, the final displacement x2  is 1/m

times the difference between the two

areas A2  and I2 t 2/2. For a rectan-

t gular pulse this difference is the
0tt t

64-4"6-25 triangular area 00 F and, for other

FIG. 2.20 IMPULSE-TIME DIAGRAM pulses, it is the shaded area. The

maximum slope of the curve 001 is that

of the line 00' and is the maximum

pressure p m; therefore the curve lies wholly in triangle 001F. Note

that the slope of the line OF is ps and if the curve intersects OF

the mass comes to rest because, according to (2.78), I = pst requires

x 0. This, however, is case 2.

Case 2: 12 < Io . In this case pressure is still being

applied when motion ceases. Again let t' be the duration of a rectan-

gular pulse of peak pressure p and impulse I and let the duration
m 0

of motion when this rectangular pulse is applied be t2 . The time t'
2 2

equals the common duration of motion of case 1. In case 2, however,
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t' exceeds the duration of motion because t' /rs > 12/Ps t2 .

Since 12 < 10, we have for A2, instead of (2.82), the inequality

A 2 < Pt /2 + I(t - t)man o 2 0

Thus (2.80) for the maximum displacement becomes

nx2 < Iot'/2 + I (t - t') - I t /2 (2.83)

2 0 0 o 2 o 2 2

In order to compare the displacement with that caused

by a rectangular pulse, we add to the right-hand side of (2.83) the

positive quantity I (t' - t2 ) - (I t' - I t )/2. That it is positive
0 2 2 o 2 2 2 ,2

follows from an algebraic proof that it equals I t2(l - t /t ) /2. In
0o2 2 2

this way we obtain the inequality

mX < Iot/2 + I (t' - t') - I t'/2 (2.84)

0 0 0 a 2 o o02

which states that whenever 12 < I° the pulses cause displacements

which are always less than that caused by a rectangular pulse with the

same peak pressure and total impulse.

An illustration of this result can be seen in the

impulse-time diagram of Fig. 2.21. Since I 2/t2 = Ps , the point G lies

on the line OF which is the same as OF in Fig. 2.20. The area under the

curve OG is A2 and the triangular

1 F area under OG is 1 2t2/2. Their dif-
Io .... -71 ference, shown shaded, is I/m times

12 the displacement x2, while the trian-
// I I

/ I gular area OO'F is 1/m times the dis-

/ Iplacement due to a rectangular pulse.

I IThe inequality (2.84) states that the

O t2 shaded area is less than the area of
GA- 414G - GSA

triangle OO 'F.

FIG. 2.21 IMPULSE-TIME DIAGRAM
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From the above, the following theorem can be stated.

Theorem: Among all pulses of equal peak pressure and impulse, the rec-

tangular pulse causes the maximum permanent dcformation of a rigid-

plastic structure that is representable by a mass with a constant re-

sisting force.

2.10.2 Applications of the Theorem

We shall now give a few examples of simple rigid-plastic

structures which are representable by a mass and a constant resisting

force during deformation caused by blast loads.

(a) Beams; A simply supported or clamped rigid-

plastic beam subjected to a blast pulse uniformly distributed along its

entire length undergoes deformation by a three-hinged mechanism (one at

Each support and at midspan as described by mechanism 1 in Sections 2.4

and 2.5) whenever the peak pressure pm lies in the range ps < pm < 3ps

where ps = 2Mo/L2 and p LM L2 are, respectively, the static
0 0

collapse pressures for the simply supported and clamped beams. For both

types of support the equation of motion is

p(t) - p, (2m/3)6 p5 < P < 3p

where i is the central deflection. Thus these structures are repre-

sentable by means of a mass 2m/3 with a constant resisting force ps

and the theorem applies.

(b) Ring.,: Assum.Lng that no buckling occurs, a

rigid-plastic ring subjected to a blast pulse applied uniformly around

the cutside moves inward according to the equation

P(t) - C h/a = mw

00

where ay is the yield stress, m the mass per unit length of circum-

ference, h the thickness, a the radius, and w the Inward displace-

ment. Since the static collapse pressu7e is ps = oh/a, we have the
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required representation for the theorem

p(t) - Ps = mw (2.85)

(c) Spherical Shell: The spherical shell problem

analogous to the ring problem results in Eq. (2.85) with ps = 2aoh/a.

(d) Circular Plate: It can be shown (see Section 3.7.1)

that whenever the peak pressure pm lies in the range ps < pm < 2ps a

simply supported circular rigid-plastic plate subjected to a blast pulse

uniformly distributed over the entire area is set in motion according to

the equation

p(t) -P = (m/2) PS < Pm < 3ps

where 8 is the central deflection, m the mass per unit area, and

ps = 6M /a2 is the static collapse pressure, M being the fully
plastic moment per unit arc length and a the plate radius.

2.10.3 Clamped and Simply Supported Beams

It will now be proved that the permanent central de-

flection of a clamped or simply supported rigid-plastic beam caused by a

uniformly distributed blast pulse of any peak pressure p and impulse

10 is greatest when the pulse is rectangular.

We have already proved this for peak pressures in the

range ps < PM < 3ps by showing that the beam is representable by a mass

and a constant resisting force and applying the theorem of Section 2.10.1.

Whenever pm > 3p., deformation starts by mechanism 2, which, as described

in Sections 2.4.2 and 2.5.2, has two plastic hinges traveling toward each

other while the central shortening portion of beam between the hinges

undergoes translatory motion according to the equation m8 = p. After the

hinges meet at time t = t1 , deformation continues by mechanism 1 as

described in Sections 2.4.1 and 2.5.1 until motion ceases at time t = t2 .
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During this second phase of deformation the equation of motion is

n6 = 3(p - p s)/2. Although the representation for the theorem is met in

each of the two phases, they differ from each other and the theorem can-

not be applied directly.

We shall use (2.36) and (2.40) for the times t1  and

t and (2.38) and (2.41) for the central deflections (see Section 2.4.2).
2

With the central deflections, impulses, and areas under the impulse-time

curves at times t and t2 denoted by 61, 52, If, 12, Al. and A2

these equations give

(3A2 -A )/2- (31t 2  Iot )/4 0 < t<

M2 (3A2 - A )/2 - (31 t 2  I t )/4 t < t < t 2  (2.86)

(3A2 -A 1 )/2- (312t2  It )/4 t2 < t

where t is the pulse duration. In the first two expressions of (2.86)
0

we have 3tI = t2 = Io/p and in the last we have 3t, = II/p V and

t 2 = I2/ps. Whenever the pulse ends during motion by mechanism 1, i.e.,

o < to < t., the central displacement and velocity according to (2.38)

and (2.39) are 61 = A /m and 61 = I/m. Since A1 is a maximum for

a rectangular pulse (see proof of theorem in Section 2.10.1), the beam

commences mechanism 1 with a maximum displacement for this pulse and with

the same velocity as all other pulses having t < t . Thus the rectan-

gular pulse produces the maximum final central deflection whenever

to 1< tI

Expressions (2.86) are compared with the expression

for a rectangular pulse, which is embedded in the first of (2.86), by

means of areas in the impulse-time planes of Fig. 2.22. For this purpose

it is convenient to rearrange (2.86) into the form
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i

(A t2 /2) + (A2  I t2 /2) - (A1 -I ti/2)1/2 0 < to < t

m6 (A2 I t /2) + [(A - Iot /2) - (A - I t /2)1/2 t < t < t
2 2 o 2 2 o 2 1 11 a 2

,(A2  1 t 2/2) + [(A 2  I2 t 2/2) - (A 1  11 t /2)]/2 t2 < t

(2.87)

R M P F

07F

b ti I t
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0 o  l t2 t
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In each of the three diagrams the straight lines OR, OP,

and OF are the same, having slopes pml 3p, and p.. Line OR is the

path taken by a rectangular pulse, and the curve OM is the path taken by

any other pulse with the same peak pressure p and impulse I . Each
m 0

diagram corresponds to one case of (2.87). Since we are concerned with

blast pulses only, the peak pressures all occur at t = 0, so that at the

origin in each diagram the curve OM is tangential to OR. Apart from the

case of a rectangular pulse, the curves OM all lie to the right of OR.

By algebraically adding the areas represented by the

individual terms in each of (2.87) it can be seen that the sum is bounded

by the triangle ORF plus one-half of triangle OPF, which corresponds to

a rectangular pulse. Thus the rectangular pulse causes the greatest

central deflection.

2.11 The Pressure-Impulse Diagram

A useful method of descriting the behavior of structures subjected

to blast pulses is to construct a pressure-impulse diagram. For all

pulses of the same basic shape it shows how the peak pressure and impulse

must be varied in order to maintain a prescribed permanent deflection.

The ordinate of the diagram is the ratio X = p!ps of the peak pressure

to the static collapse pressure and the abscissa is the ratio i /1 of
the impulse (total area under pressure-time curve) to the ideal impulse

(zero duration) required to produce the same permanent deflectCn.

Such a diagram, applicable to both &imply supported and clamped

beams subjected to uniformly distributed blast pulses, is shown in

Fig. 2.23. Each curve corresponds to a fixed pulse shape and gives the

relationship between the peak pressure and impulse required to keep the

central deflection at some prescribed value. The curves are obtained as

(2 2follows: The central deflection due to a blast pulse is 6C = (I L / a )

(X), where v(M) is a known function of X, and the central deflection
2 2

due to an ideal impulse is 81 = (I L /M )(-). Since I is to be the
1 1 0

ideal impulse producing the same deflection as each pulse, we equate 6
2 0

and 8 to give the required relationship, Io/1 =
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FIG. 2.23 PRESSURE-IMPULSE DIAGRAM
FOR PINNED AND CLAMPED BEAMS

l'or a clamped beam subjected to a rectangular pulse we havet3(X - 1)/16X 1 .X 9 3

'u(X)

(4X -3)/24X X > 3

and

v()=1/6

so that

8\/(X 1)1 ~X 3

oI /I )

~4X(4X -3)3

Each curve has the asymptotes I /1 =1 and X =1 correspond-
0 1

ing to an ideal impulse and a static collapse load. Keeping the deflec-

tion constant, small changes in i 0cause large changes in X near the
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2 asymptote Io/ I = 1, and small changes in X cause large changes in
0 1

I near the asymptote \ 1.

It is interesting that a rectangular pulse with a pressure

greater than eight times the static collapse pressure (% > 8) requires

less than a 5% increase in impulse over an ideal impulse to provide the

same permanent central deflection; when X < 8 the impulse increments

required increase rapidly as X decreases. The triangular and exponen-

tial pulses exhibit a similar behavior.

To produce the same deflection, the ratio of peak pressures of

exponential and rectangular pulses with the same impulses is less than

2 whenever Io/I > 1.2; for pulses with the same peak pressure ihe ratio

of impulses is less than 1.25 whenever X > 3.5. Comparing exponential

and triangular pulses giving the same deflection, the ratio of p-aak

pressures is less than 1.5 whenever I /I1 > 1.2; the ratio of impulses
0 1

is less than 1.2 whenever X > 3.5. This suggests that in certain ranges

of peak pressure and impulse, pulse shape has a secondary effect (k > 3.5,

Io/I > 1.2).

2.12 Response of Beams to Uniformly Distributed Impulses: Comparison

of Theory and Experiment

We have seen that the use of rigid-plastic theory allows a simple

solution to the problem of finding the response of a clamped or simply

supported beam to blast loading. Consequently the s,-lution could possibly

be useful and convenient for engineering applications. Unfortunately

there are no experimental results with which to compare theoretical pre-
dictions except for a few in which beams are subjected to extremely short

pulses with large peak pressures. Hence our attempts to establish the

usefulness of the rigid-plastic theory are necessarily confined to ideal

impulses.

The rigid-plastic theory can be expected to provide reasonable

predictions only if the plastic work done is sufficiently greater than

the elastic strain energy involved. To give some measure of this we

4' introduce R, the ratio of kinetic energy input to elastic bending strain
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I

energy capacity. A consequence of the assumptions of rigid-plastic theory

is that the kinetic energy input equals the plastic work done when the

applied impulse is ideal. If I and m are the impulse and mass per

unit length, the kinetic energy input is 2/2m. If the maximum elastic

bending moment that can be sustained by the beam cross section is M e,2e

the bending strain energy capacity per unit length is M 2 /2D, where D

is the flexural rigidity. Hence R = I2 D/mMi
2 e
e

The descriptions and results of the experiments which follow are

for pinned and clamped beams, each of which is subjected to an impulse

uniformly distributed over its entire span. By comparing experimental

and theoretical permanent central deflections, we shall see that the

rigid-plastic theory gives reasonable predictions whenever R is greater

than about 2. An experiment for testing the assumed mechanisms of defor-

mation is described and discussed. Because the theory for an ideal im-

pulse is much simpler than the theory in Sections 2.4 and 2.5 for &eneral

blast pulses, it is given here in full before discussing the experiments.

2.12.1 Theory for Pinned Beams

The deformation is assumed to occur in two phases. In

the first, a plastic hinge originates at each support and travels toward

midspan. The two traveling hinges divide the beam into three parts which

behave as rigid bodies, the decreasing center part undergoing translatory

motion at its initial velocity until the hinges meet at midspa, while each

outer part rotates about its support. In the second phase, a stationary

plastic hinge occupies the midspan section and each half-beam rotates

about its support as a rigid body until motion ceases.

The mechanisms of deformation are those called mechanisms

2 and 1 in Section 2.5 for the treatment of the response of pinned beams

to uniformly distributed blast loading. There it was shown that pulses

with peak pressures p greater than three times the static collapse

pressure p5  started the motion by mechanism 2 with the initial position

of each traveling hinge given by 2()/L 3/k where X = p /p

L is the halfspan, and x (0), the initial position, is measured from
h



the nearer support. In the limiting process, p -
=  or X . e, we

approach an ideal impulse and we have x (0) -+ 0 so that our assumption

of a traveling hinge originating at each support is consistent -.ith the

ideal impulse considered as the limiting case of a blast pulse.

We shall now derive the required deformation formulas.

We refer to Fig. 2.24 for nomenclature and an illustration of mechanism 2.

2L

(a) SIMPLY- SUPPORTED BEAM

A x 1h

10 H 0K,
(b) MECHANISM 2

M01

y
(c) MOMENTS

CA- 3670-1!9

FIG. 2.24 SIMPLY SUPPORTED BEAMS UNDER
A UNIFORMLY DISTRIBUTED IMPULSE
(a) Simply supported bem, (b) Mechanism 2,
(c) Moments

The equation of motion of the rigid portion of length x h  rotating about

the support with an angular velocity w is

3 U/ 3 =-M (2.88)

where c i is the fully plastic moment. Note that in order not to violate

0.

moving hinge (see Section 2.4),
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The portion between moving hinges is undergoing trans-

latory motion at a velocity V = I/m. At the hinge, continuity of

velocity requires

WXh = V = I/m (2.89)

Eliminating W from (2.88) and (2.89) leads to the

following simple differential equation for the hinge location:

(2). = 6M /1 (2.!0)

h 0

which, with the initial condition Xh (0) = 0, integrates readily to give

2
xh = 6Mot/I (2.91)

Phase 1 erds when xh = L which, according to (2.91),

2h
occurs at ti = IL /6Mo. Eat~h element of the half-beam at time t has

undergone a rotation

t L dx

6(x,t1 ) = (2.92)

T

where T is the time when the hinge arrives at section x (the second

integral indicates how the evaluation may readily be performed). The use

of (2.90) in the second integral of (2.92) gives

U(x,tI ) = (I2/3mM )(L - x) (2.93)

With the approximation 6 = dy/dx the shape of the beam at time t1 is

y(x,t I ) = (I 2/6mM )(2L - x) x (2.94)

Motion is now completed by mechanism 1 (Fig. 2.25)

according to the equation

3.
.-L w/3 = -M (2.95)
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At time tI the angular velocity

hAs the value (t) =V/1. I/mLL n if t I h time when

motion ceases, w(t 2 ) = 0. Hence,

by integrating (2.95), we find

that t = IL2/2MO = 3t . During
2o 1

GA-3570-20a this phase of the motion all ele-

ments of each half-beam undergo
FIG. 2.25 MECHANISM I

the same rotation

tml I/mL

0(x,t2 ) - O(x,t1 ) = Ut - L/6m

t o (2.96)

By combining (2.93) and (2.96), we obtain for the final rotations

(x,t = (I 2/6nMo)(3L - 2x) (2.97)

and by introducing the approximation dy/dx = 8 and integrating, we

obtain for the final shape of the half-beam

2
Y(xt2) = (I /6mM )(3L - x) x (2.98)

2 0

Thus, the final shape of the entire beam consists of two parabolic arcs

intersecting at a finite slope at the center x = L. From (2.97) and

(2.98) the slope 9 = 9(o,t ) at the support and the central deflection
2

S = y(L,t ) are
2

2
8 = I L/2mM (2.99)

0

5 IL 2/3=1% . (2.100)
0

Formulas (2.98), (2.99), and (2.100) will be used for comparison with

experimental results.
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2.12.2 Theory for Clamped Beams

The results for clamped beams can be written directly

from (2.98), (1.99), %nd (2.100) merely by replacing M by 2M. This

is because clamping th7 supports introduces there fully plastic moments,

which double the resisti.ig moments acting on the rotating parts of the

beam. Thus the plastic hinge location in phase 1, the final beam shape,

the slope at the support, and the deflection at the center are given by

2
xh = 12M t/I (2.101)

h

y(x,t2) = (12 /l2M )(3L - x) x (2.102)

2
I = 2Li4mM (2.103)

0

= I2L 2/6mM (2.104)

2.12.3 Description of Experiments

The experiments were performed with Oeams of 2024-T4

aluminum, 6061-T6 aluminum, 1018 cold-rolled steel, and annealed 1018

steel. They were nominally 1-inch wide znd 1/4-inch deep with spans of

18 inches. Figure 2.26 shows the experime,tsl arrangement for pinned

beams. It shows in particular two different ways of providing ninned

ends. For the steel beams 1/4-inch-diameter steel pins were required

to withstand the shearing forces; the pins were supported by steel

bearing blocks to reduce the contact pressure on the sliding surface.

For the aluminum beams 1/8-inch-diameter steel pins through the ends of

the beams were strong enough. The span of the pinned beams decreased

during initial deformation. End conditions for clamped beams were pro-

vided by placing each end in a close-fitting tunnel so that during defor-

mation the material flowed into the span which was maintained constant

while end rotation was prevented.
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ALUMINUM BEAM

SPACERS-

SuiDING

SUPPOR STEE DOWE"J' L, PIN

TRAC "- {11 --'f [ NEOPRENE

SHEET-K
EXPLOSIVE xi2<

'xI

- STEEL

BEARING " BEAM
BLOCK--

FIG. 2.26 EXPERIMENTAL ARRANGEMENT

The impulse was generated by sheet explosive in the

form of a 1/2-inch-wide strip placed centrally over a l-inch-wide by

1/8-inch-thick solid neoprene attenuator laid on the beam as shown in

Fig. 2.26. The attenuator is a convenient minimum required to prevent

spalling of the beams. A five-grain mild detonating fuze was used to

detonate the explosive at the center of the beam. Central initiation

is preferred to end initiation, because the initial transverse velocity

distr.bution imparted to the beam is more uniform and the delivery time
10

of the impulse is halved. For a halfspan of 9 inches, the total deto-

nation time is about 32 I.Lsec. That the imparted velocity is uniformly

distributed along the beam is primarily due to the detonation velocity

of the explosive (0.28 inch/sec) being sufficiently supersonic relative

to the maximum wave vclocity (0.2 inch/Rsec).

For the explosive-attenuator-target configuration just

described, the initial velocities of four aluminum and four steel beams

were obtained by means of a rotating mirror streak camera trained on the
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center of each beam. From these experiments it was found that for each

beam material the impulse imparted to the beam was proportional to the

explosive thickness in the range of interest. A common parameter fcr

describing the calibration of sheet explosive for an explosive-attenuator-

target configuration is the impulse I per unit volume (dyne-sec/cm 
3 )

o

of explosive. I is often a constant over a wide range of explosive
0

thickness as it was found to be in the above calibration experiments.

Once I is known, the impulse I per unit length of beam is simply0

calculated from the product of I., the explosive thickness, and the

explosive width. Two values of I are listed in Table 2.1, one value

for the aluminum beams and the other for the steel beams.

Table 2.1

BEAM PROPERTIES

Mavr~lE C
O 

b d L 1

Ipsl) (lb/in.) (lb a-2/in.
4

) (inch) (inch) (Inches) (dyne-so /Cn
3 )

Al 2024-04 1 x 10 52, 0 0.000258 1.0 0.251 9.0 2.9 x 10

Al 6061-T6 10 l 10 40,000 0.00023 1.0 0.245 9.9 x 10
CR l~l _ steel 30 . l0 84,000 0.00732 1.0 0.248 9.0 2.25 x 1%

Annealed 1018 steel 30 s 10 43,000 0.000732 1.0 0.218 9.0 3.25 x 10

A high-impulse test (experiment CA2) was performed to

see if longitudinal extension occurred and so to assess the effects of

unavoidable frictional forces at the supports. The beam was suitably

scribed on its side, and measurements before and after deformation were

compared. No permanent extension of the neutral surface was observed.

This technique was also used to find the strain of the outer fibers at

midspan and resulted in a value of 4%.

Several of the experiments were photographed with a

Beckman and Whitley (Model 189) framing camera to provide a qualitative

Justification of the mechanisms assumed in the rigid-plastic theory.

Figure 2.27 is a photograph of experiment with frames at 83.3 sec

intervals (only alternate frames are shown). The observed deformation

follows the assumed mechanisms; the plastic hinge velocity obtained

from these photographs is later compared with the velocity predicted by

the rigid-plastic theory.
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FIG. 2.27 FRAMING CAMERA RECORD FOR EXPERIMENT CA3

Almost all of the observations are terminal and consist

of the central deflection, the maximum slope, and, in some cases, the

entire deformed shape of the beam.
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2.12.4 Experimental Results and Observations

Table 2.1 shows the beam materials and properties

along with the impulse constants I obtained from the calibration0

experiments. The yield stress 0  is the average from tensile tests.

Instead of the conventional yield stress, we use here the stress at the

point of intersection of a bilinear fit of that part of a stress-strain

curve un to 4% strain. Tables 2.2 and 2.3 give the experimental and

theorrtical results for pinned and clamped beams.

Table 2.2

EXPERISeNTAL AND THEORETICAL RESULTS FMR P110(7D BEAUS

I
Experiment

No. (1b.sec. 3n-1) R 6ex/L 9t 1. CA e

PA 1 0.124 4,39 0.5r4 0.766 0.865 1.296 0.652 0.590
2 0.098 2.8996 0.350 0.500 0.540 0.810 0.648 0.617
3 0.095 2.739 0.349 0.477 0.511 0.766 0.683 0.623
4 0.090 2.473 0.321 0.404 0.461 0.692 0.696 0.584

5 0.089 2.325 0.302 0.193 0.434 0.650 0.697 0.604

6 0.087 2.301 0.372 0.387 0.429 0.643 0.705 0.601
7 0.087 2.288 0.300 0.387 0.427 0.640 0.703 0.605
a 0.086 2.230 0.252 0.333 0.416 0.824 0.60? 0.534

9 0.086 2.219 0.256 0.334 0.414 0.621 0.619 0.538
10 0.084 2.140 0.289 0.370 0.399 0.598 0.724 0.616

11 0.066 1.337 0.116 0.149 0.249 0.374 0.463 0.398
12 0.065 1.299 0.117 0.152 0.242 0.363 0.682 0.418
13 0.064 1.239 0.105 0.137 0.231 0.347 0.457 0.395

14 0.062 1.162 0.081 0.110 0.217 0.325 0.376 0.339
15 0.060 1.108 0.083 0.107 0.207 0.30 0.402 0.345

PB 1 0.091 4.495 0.413 0.548 3.660 0.991 0.625 0.553

2 0.076 3.142 0.262 0.375 0.462 0.693 0.612 0.542
3 0.075 3.069 0.259 0.326 0.451 0.676 0.574 0.482

4 0.060 2.007 0.124 0.165 0.295 0.442 0.419 0.373
5 0.059 1.916 0.134 0.167 0.241 0.422 0.475 0.396

6 0.047 1.208 0.055 0.101 0.178 0.266 0.312 0.379
7 0.045 1.087 0.046 0.057 0.160 0.240 0.288 0.238

PS 1 0.161 4.571 0.314 0.415 0.464 0.697 0.677 0.596
2 0. I0 4.524 0.333 0.443 0.460 0.689 0.725 0.643

3 0.188 4.463 0.317 0.399 0.453 0.680 0.698 0.587
4 0.161 3.254 0.231 0.297 0.331 0.496 0,699 0.599
5 0.160 3.225 0.232 0.302 0.328 0.492 0.109 0.614

6 0.160 3.225 0.226 0.293 0.328 0.492 0.686 0.56

7 0.147 2.704 0.193 0.237 0.275 0.412 0.704 0.575
8 0.144 2.611 0.214 0.268 0.265 0.398 0.808 0.674
9 0.139 2. 425 0.141 0.188 0.246 0.370 0,573 0.509
10 0.137 2.374 0.144 0.183 0.241 0.362 0.599 0.506

11 0.134 2.251 0.178 0.227 0.229 0.343 0.777 0.662
12 0.131 2.160 0.148 0.190 0.219 0.329 0.673 0.577
13 0.129 2,103 0.133 0.172 0.214 0.321 0.624 0.537
14 0.127 2.029 0.141 0.178 0,206 0.309 0.684 0.-75
1 0.125 1.968 0.151 0.197 0.200 0.300 0.756 0.657

16 0.102 1.308 0.067 0.083 0.133 0.199 0,502 0.416
17 0.102 1.298 0.05R 0.075 0.132 0.198 0.438 0.379
18 0.101 1.296 0.062 0.076 0.132 0.198 0.473 0.365

19 0.064 0.511 0.015 0.025 0.052 0.078 0.283 0.321
20 0.044 0.239 0.003 0.006 0.024 0.038 0.137 0.165

PSA 1 0.124 7.473 0.312 0.403 0.389 0.583 0.803 0.691
2 0.124 7.376 0.296 0.368 0.384 0,576 0.770 0.639
3 0.092 4.081 0.162 0.208 0.212 0.318 0.764 0.653

4 0.092 4.055 0.171 0.209 0.211 0.316 0.811 0.661
5 0.091 3.9%6 0.144 0.192 0.206 0.309 0.700 0.620

PA - pi =ed 2024-T4 aluminum P6 pinned cold-rolled 1018 steel

PD = pinned 6061-76 aluminum PM pinned annealed 1018 steel
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~Table 2.3

FXPERI'.N2AL AND TRYORETICAL SLFLJLTS FOR CLAMPED SLAMS

Experi.ent [1 R L___ IL__
N2. (jlb. sac. .-e. th "x

/
"th x h

CA 1 0. 146; 6.469 0.453 0.567 0.603 0.905 0.752 0.627
2 0.14 .437 0.433 0.510 0.600 0.930 0.722 0.5167
3 0.0146 6.412 .. 0466 0. 00.4596 0.897 0.779 0.591
4 O.t44 6.236 0.409 0.490 U.581 0,872 0.703 0.562
5 0.143 6.191 0.462 0.509 0.577 0.4866 ;.S0 0.588

6 0.141 6.019 0.433 0.05 0. 0 842 0.772 0.629
C 0.129 5.002 0.28 0.334 0.14? 0.6 0.76 0.478
8 0.128 4.94 0.304 0.362 0.463 0.694 0.65 0.522
9 0.01 3.680 0.204 0.247 0.285 0.428 0.717 0.577
10 0.101 3.057 0.183 0.221 0.285 0.427 0.643 0.517

it 0.100 3.004 0.176 0.217 0.280 0.420 0.623 0.517
12 0.089 2.386 0.130 0.194 0.223 0.334 0.724 0.574
13 0.074 1.666 O.O08t 0.112 0.155 0.233 0.658 0.481

4 0.072 1.572 0.080 0.093 0.147 0.220 0.546 0.423
8 0.056 1.014 0.049 0.057 0.095 0.142 0.517 0.402

CS 1 0.221 6.216 0.231 0.21 0.317 0.476 0.729 0.570
2 0. 220 6.154 0.230 0,270 0.314 0.471 .733 0.573
3 0.19e 4.997 0.178 0.206 0.255 0.382 0.697 0.539
4 0196 4.895 0.17 0.226 0.250 0.375 0.748 0603
5 i.o166 3.519 e t124 0.e14h 0.180 0.269 e 693 .542

6 0.165 3.461 0.130 0.152 0.177 0.265 0.736 0.574
7 O. 115 1. 695 0. 050 0. 059 0. 086 0. 130 0. 578 0. 455
a 0.114 1.663 0.051 0.0ED 0.085 0.127 0.602 0.472
9 0.072 0.638 0.017 0.016 0.033 0.049 0.512 0.368

CA = clamped 2024-T4 MIUUmlOU.

CS = ¢laslpea cold-rolled 1018 t~eel

The subscripts "ex" and "th" stand for experimental and theoretical

r respectively. Symbols 6 and represent permanent central deflec-

tions and slopes at or nlear the supports. For the pinned beams in

Table 2.2, the theoretical values are obtained from formulas (2.99) and

(2.100); those for the clamped beams in Table 2.3 are obtained from

formulas (2.103) and (2.104). Table 2.4 contains the averages of the

deflection ratios 8e/t and the slope ratios 0 /9t for all cases
ex th ex 2 2

of the series PA, PS, PSA, CA, and CS in which R > 2, where R = I D/M
e

is the ratio of the kinetic energy input to the elastic strain energy

capacity.

The central deflection results in Tables 2.2 and 2.3

are plotted in Figs. 2.28 and 2.29. Several of the beams were measured

along their entire lengths, and the resulting pro-Iles are shown in

Figs. 2.30 through 2.33 along with the theoretical shapes as predicted

by either (2.98) or (2.102).
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Table 2.4

AVERAGE DEFLECTION AND
SLOPE RATIOS (R > 2)

ExperimentNo. ex/8th e ex/@th

PA 1-10 0.673 0.59.
PS 1-15 0.693 0.593
PSA 1-5 0.770 0.653
CA 1-1Z 0.716 0.563
CS 1-6 0.723 0.567

0.6
0.5 L

0.4 ~ THEORY 00.4.- • -

A 0.3L iQ

0.2 0 AL. 2()24-T4
ti9 0 AL. 6061-T6

0.1 & C.R. 1018 STEEL
& ANNEALED tO18 STEEL

o J I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

I L/3mMo
GA - 5733-60

FIG. 2.28 THEORETICAL AND EXPERIMENTAL CENTRAL
DEFLECTIONS FOR PINNED BEAMS
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FIG. 2.29 THEORETICAL AND EXPERIMENTAL CENTRAL
DEFLECTIONS FOR CLAMPED BEAMS
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FIG. 2.30 THEORETICAL AND EXPERIMENTAL SHAPES
FOR PINNED BEAMS OF 2024-T4 ALUMINUM
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FIG. 2.31 THEORETICAL AND EXPERIMENTAL SHAPES
FOR PINNED BEAMS OF C.R. 1018 STEEL
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FIG. 2.32 THEORETICAL AND EXPERIMENTAL SHAPES
FOR CLAMPED BEAMS OF 2024-T4 ALUMINUM
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FIG. 2.33 THEORETICAL AND EXPERIMENTAL SHAPES
FOR CLAMPED BEAMS OF C.R. 1018 STEEL

From the results in Tables 2.2 and 2.3 (and Figs. 2.28

and 2.29), it is clear that the central deflection or support slope

predictions are good for engineering applications. In the present series

of experiments no significant improvement of correlation occurs as R

is increased beyond 2. Table 2.4 shows that for the PA, PS, PSA, CA,

and CS series the average deflection ratios lie between 0.67 and 0.77

and the average slope ratios are between 0.56 and 0.66.,

From the deformed shapes shown in Figs. 2.30 through

2.33 we make the following observations.

1. Except in the central region, the experimental

curvature appears to be smaller than the theoretical curvature, especially

for the pinned steel (PS) beams in Fig. 2.31. This indicates that the

traveling hinge model of mechanism 2 overestimates curvature; this could

be attributed to elastic effects and, in the case of cnld-rolled steel,

to strain-rate effects. At the center, the deformation by mechanism 1

predicts a slope discontinuity, because of the ideal nature of a stationary

plastic hinge; a continuous &lope at the center would be provided by in-

cluding elastic effects, the knee of the stress-strain curve in the case

of the aluminum, and strain-rate or strain-hardening effects.
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2. The theoretically predicted curvature of the clamped

beams is K y - 2 /6mM , which is a constart, whereas the shapes! = xx O0

in Fig. 2.32 and 2.33 exhibit reverse curvatures adjacent to the support.

This criticism of the theory is not entirely valid, because experimental

design difficulties prevent a true comparison; keeping the span constant

requires that beam material be fed into the span region, thereby spread-

ing the stationary hinge at the support over a finite length of beam.

(An experiment providing clamping against rotation but allowing the span

to shorten as in the case of the pinned beam experiments introduces

longitudinal inertial forces.)

We have already mentioned that Fig. 2.27 provides a

qualitative justification of the mechanisms assumed in the rigid-plastic

theory. However, it does illustrate that elastic modes of vibration

can interfer with the smooth action of the mechanisms. This effect can

be seen by constructing from the framing camera record of Fig. 2.27 an

x-t plot of the traveling hinge. This is shown in Fig. 2.34. A smooth

curve could be obtained for 5 inches of the 9-inch half-span due to the

interaction with the elastic mode. The effect was to arrest the progress

of the hinge for about 100 Isec after which the mechanisms continued to

operate. The half amplitude of the vibration was comparable to the beam

depth.

Returning to Fig. 2.34, the theoretical x-t plot from

1/2
x= (12M t/I1/ is shown for comparison with the experimental x-t

h 0 1
plot. Except during initial motion, when the theory exhibits the singu-

- 1/2lar behavior Xh t , the actual hinge velocity is greater than

predicted. However, the trends are similar and, except for the inter-

action mentioned above, do give confidence in the use of the rigid-

plastic model and its mechanisms.
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CHAPTER 3

RIGID-PLASTIC CIRCULAR ' TES

by

A. L. Florence

3.1 Introduction

In the introduction to Chapter 2 we stated that it is difficult

to find the response of a beam to a suddenly applied load which is large

enough to cause plastic deformation even when geometry changes are neg-

lected. This is true a fortiori for circular plates even under axisym-

metric conditions. Not only is the stress-strain state nonlinear, it is

also biaxial.

In order to render plate problems tractable to analysis, an

idealization of the stress-strain relationship similar to that in beam
1

analysis was introduced by Hopkins and Prager. For appropriate materials

(e.g., aluminum alloys and steels) it is assumed that the material re-

mains rigid until a yield condition is satisfied, and only when it is

satisfied is plastic deformation possible; such a material is called a

rigid-perfectly plastic material. With this idealization Hopkins and
12Prager found the static collapse loads of circular plates. Later2

they developed the dynamical theory of rigid-perfectly plastic circular

plates and found the response of a simply supported circular plate to a

uniformly distributed rectangular load pulse.

Throughout thiF chapter the treatment is restricted to circular

plates of material insensitive to strain rate. Membrane forces are

neglected, and the yield condition which is expressed in terms of bending

moments is that of Tresca. Problems related to those treated in this

chapter can be found in Refs. 3 through 8.

Section 3.2 discusses the Tresca yield condition and associated

flow law. A development of the dynamical theory of rigid-plastic plates

is contained in Sections 3.3 and 3.4 ..ove.ing such topics as plastic
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'egimes, hinge circles, continuity requirements at regime boundaries,

equilibrium equations, and the analytical approach.

Sections 3.5 and 3.6 are devoted to finding the static collapse

pressures of simply supported and clamped plates.
9'1 0

In Section 3.7 the relationship among central deflection,

pressure, and impulse (area under pressure-time curve) is found for

uniformly distributed rectangular pulses acting on simply supported
1circular plates. Finally, a similar relationship is found in Section 3.8

for clamped circular plates.
11

3.2 Tresca Yield Condition and Flow Rule

We are now concerned with circular plates under axisymmetric

loads, so the stress components a r, y, and az in the radial, cir-

cumferential, and axial directions in the cylindrical coordinate system

(r, e, z) are the principal stresses. The plate is assumed to be thin

enough to allow the usual assumption that the stress normal to the

middle plane is negligible. Accordingly, we shall assume a = 0.z

In a simple uniaxial tensile test on an elastic-perfectly

plastic material,plastic deformation can occur only when the yield

stress a is reached. Similarly, in a biaxial state of stress,o

plastic deformation is possible only if a certain yield condition is

fulfilled. The two most common yield conditions are those of von Mises

and Tresca which, in terms of ar and ae, can be written as

2 2 2a -a Ure8 +~ %@= (3.1)

and

max (1%1 , Ia1 . a-a 9 1)=a (3.2)

wherc again c is the yield stress obtained from a uniaxial tensile
0

test. The yield stress a°  is regarded throughout as a positive quantity.

,0
See Ref. 9 for a more complete discussion of these yield conditions.
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The conditions (3.1) and (3.2) can be looked upon as equations of an

ellipse and a hexagon when plotted in two-dimensional stress space as

shown in Fig. 3.1.

/ 

t 

A

6A- 5733- 70

FIG. 3.1 von MISES YIELD ELLIPSE

AND TRESCA YIELD HEXAGON

From this point on we shall confine our attention to rigid-

perfectly plastic materials (which, for brevity, we shall call rigid-

plastic) obeying the Tresca yield condition. For stress states within

the hexagon of Fig. 3.1 the material is rigid; plastic deformation is

possible only when the stress state lies on the hexagon. Stress states

outside the hexagon do not exist. Note that since we have restricted

ourselves to rigid-plastic materials the yield hexagon retains its size,

shape, and position throughout deformation.

The flow rule states that the strain-rate vector ( , e) is an

outward normal to the yield hexagon when drawn in a strain-rate space

superposed on the stress space of "r and a . (r and axes super-

posed in the same sense on the o and a axes, respectively.) Ther
vector is drawn from the point on the yield hexagon describing the ex-

isting stress state. By way of illustration, we see that along the sides
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FA, AB, and BC, the strain-rate vectors are (Q r o), (o, '), and

( ) and (r , ), with -r =  in the last. At a corner, the
r 0 r

strain-rate vector can take on any direction between the outward normals

of the two sides forming the corner. Note that the flow rule is con-

cerned anly with the ratio of and and alone says nothing about
r '0

magnitudes.

Figure 3.2 shows a plate element and serves to establish the

sign convention adopted for the

bending moments M and M and
r a

for the shear force Q. PositiveM8 d ,

deflections w(r, t) are taken

in the direction of the positive
M,rdB

z axis (downward) so that positive

Mrd
-19 M9dr temd

moments cause tension below the mid-
plane and compression above the mid-

r
Z plane. Thus the moments per unit

arc length of a plate of thickness

hare
SA-ITuI-TI

h/2 h/2

FIG. 3.2 PLATE ELEMENT -NOTATION M f &yrzdz M f ozdz

-h/2 -h/2
(3.3)

It will now be shown that whenever plastic bending is possible these

moments take on particularly simple forms which allow the Tresca yield

hexagon in stress space to be transformed into a hexagon in moment

space. Also, the flow rule stating the normality of the strain-rate

vector ( r' € ) to the stress hexagon transforms to the flow rule

stating the normality of the curvature-rate vector ( k ) to the

moment hexagon.

We shall now make use of a second assumption of plate theory;

plate elements normal to the midsurface remain normal during deformation.

The kinematic consequence of this assumption is that r = zkr and

zite= and hence r/ / / , where, in terms of the transverse
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I
velocity v = 3w/6t, the principal curvature rates are

12r oV I av
r r2  r ar

Since the ratio r/ is independent of z, the strain-rate vector has

the same slope for each level z in the element, but the direction of

the vector above the midsurface is opposite that below the midsurface.

For a von Mises yield ellipse the slope and direction of the strain-

rate vector as an outward normal uniquely determines the stress distri-

bution on the sides cf the plate element. For a Tresca yield hexagon

a unique stress distribution can be justified if we regard each straight

side of the hexagon as the limit of a curve. Figure 3.3 shows a stress

distribution for a stress state on side AB of the hexagon in Fig. 3.1.

o T

+ +

FIG. 3.3 STRESS DISTRIBUTION ON PLATE ELEMENT
(Shown for stress point on AB of Fig. 3.1 -

note that r 0)

We have shown then that c r and 08, acting on the sides of the upper

half of a plate element, are constant (independent of z), and similarly,

they are constant on the lower half but opposite in sign. This simple
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stress distribution substituted into (3.3) for the bending moments

gives

2 2
M Ch2/4 m= ah/4 (3.4)r r M e

Thus, in terms of the moments, the Tresca yield condition

becomes

where M = a h2 /4 is the fully plastic moment per unit length.
0 0

Furthermore, with /it t the flow law states that the curvature-
re re

rate vector (i it) is normal to the moment hexagon when the '
r ey

plane is superposed on the Mr, M plane. The integrated or plate form

of the Tresca yield condition and associated flow law shown in Fig. 3.4

is the form we shall use in solving rigid-plastic plate problems.

, t
A

M,

CMo M,

D

FIG. 3.4 TRESCA YIELD HEXAGON FOR A PLATE

96



I|

3.3 Plastic Regimes, Hinge Circles, and Continuity Requirements

3.3.1 Plastic Regimes

By a plastic regime we mean the plastic bending moments

Mr and Me together with the curvature rates k r and ; associated

with a corner or a side of the Tresca yield hexagon (Fig. 3.4). During

plastic deformation due to axisymmetric loading, a circular plate is

generally divided into a central region and one or more annular regions,

each with a certain plastic regime. In dynamics problems the circles

separating the regimes can have radii which are functions of time, and

even the numer of regimes can vary. Let us first look at the regimes

in Fig. 3.4 to see what can readily be deduced to assist in the solution

of plate problems.

It is sufficient to consider the regimes FA, A, AB, B,

BC, and C forming one-half of the perimeter of the hexagon in Fig. 3.4.

From the Tresca yield condition, the flow rule, and the curvature-rate

formulas

2v 1 av

r 2 r Zr3r

the results of Table 3.1 are readily deduced. For brevity, a subscript

r is attached to the velocity v to denote partial differentiation.

The quantities a and b signify functions of time. It can be seen

that for the regimes FA, AB, and BC the r-dependency of the velocity

fields has been obtained.

Table 3.1

T4ESCA PLASTIC &GIM3

(Fg Bendieg ont. Curvature Rates Veloity Fields

FA Mr Mo 0 < M < U. r 0 0 v a

A Ur MO= 0 kr , 0 rr s 0 Vr 0

r 0 r
A r O<M U K =0 0 v=.rrb

B M
r  

0 v =r - r 0 0-/e

C M
r  - M =0 - 'i r 0 v rr - /r
r . 7r r
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3.3.2 Hinge Circles

If during deformation of a circular plate there is a

circle C across which the curvature rate K and hence dv/Sr isr

discontinuLous, C is called a "hinge circle;" it corresponds to a plastic

hinge in : rigid-plastic beam and, like a plastic hinge, need not be

stationary. Like the plastic hinge, the hinge circle may be regarded as

the limiting case of bending as an elastic-plastic material tends to a

rigid-plastic material (see Section 2.2). At the hinge circle the

curvature rate ir is infinite in the limit and, if the hinge circle is

stationary, the curvature r is also infinite in the limit (and the

curvature and slope are discontinuous across C). Referring to Fig. 3.4

or Table 3.1, the plastic regimes at hinge circles can be FA, A, and C

on the half of the hexagon under consideration, because an infinite ratio

r/ is possible in these regimes.
rQ

3.3.3 Continuity Requirements

In order to discuss the continuity requirements at a

hinge circle, we shall treat a specific case which arises when a simply

supported circular plate is subjected to a blast pulse with a sufficiently

high peak pressure, or to an impulse uniformly distributed over the whole

plate area. This should assist the physical interpretation of the results.
2

A more general treatment is given by Hopkins and Prager.

Consider then Fig. 3.5, which shows a plate radius at

an instant early in a plastic deformation process according to the

assumed plastic regimes indicated (see Fig. 3.4 for the plastic regimes

of the Tresca hexagon). A moving plastic hinge circle with a regime A

exists at a radius r = r (t) which is assumed to be decreasing. The
h

situation is similar to the corresponding clamped beam mechanism 2

treated in Section 2.4.2. The central circular area 0 2 r S r h(t) is

undergoing translatory motion at a velocity V(t) while the elemental

section in r ht) r S a is undergoing rotatory motion about the

support at an angular velocity w(t). The deformed portion of the radius

outside the hinge circle does not deform further because the plastic

regime AB requires r = 0.

r
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V (t) W

A 01 AB --
A A B

GA- S?%3-74

FIG. 3.5 SIMPLY SUPPORTED PLATE -
DEFORMATION AND PLASTIC
REGIMES

The displacement is continuous and is given by

t

f Vdt 0 ! r s r h(t)

0
w(r, t) t r (3.5)

fVdt - fe(r, t)dr rh(t) 5 r _ a

a r (t)

in which 9(r, t) =w/ar is the slope or rotation of an element of

the radius at time t.

By time differentiation of expressions (3.5), the

velocity distribution is

V 0 r < r (t)

- ( 3 . 6 )

V - W(r - rh ) + 8(r ,t)r r (t) < r a
h 'hp h h

As the radius of the plastic hinge circle decreases, each element of

radius which it passes is rotated an infinitesimal angle. This angle

is uwdt as the hinge circle radius cianges by rh dt; thus the hinge

circle leaves behind it a deformed radius with a continuous slope 0
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and a curvature Kr : w/rh" In our example, 9(r , t) of (3.6) is

infinitesimal and in the limit 6(rh , t) = 0, so that

w_ V 0 r g. rh(t)

3 - (3.7)

V - t(r - rh )  r h (t) r a

and the velocity is continuous at r = r (t). Note that if the hinge
h

circle were stationary, a case which arises with a rectangular pulse of

sufficiently high peak pressure, e(rh, t) would be finite but rh .
h'

Hence (3.7) again applies.

By time differentiation of (3.7), the acceleration

distribution is

( V 0 r < r (t)2 h
2w (3.8)

2
at -(r - r ) + wk h  rh(t) < r : a

and we see that a discontinuity of acceleration equal to wih  exists

at the hinge circle. Across a stationary hinge circle, the acceleration

is continuous (r = 0).

From (3.5) the slopes are

t)0 S r rh(t)
5w = (3.9)

br
- (r, t rh(t) < r a

and,since 0(rh' t) 0 when the hinge circle is moving, the slope

is continuous across the hinge circle. For a stationary hinge circle

9(rh , t) X 0 and the slope is discontinuous. Since x, = -aw/rbr,

there results show that the circumferential component of curvature is

cont-nuous across a moving hinge circle and discontinuous across a

stationary one.
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The radial component of' curvature ,A -,2w/Jr 2  is

discontinuous across the moving hinge circle. On th,: inidu t = ,

and on the outside, as we have shown, the hinge circle laves behind it

a curvature x1r j W/ih Across a stationary hinge circle xr can be

either continuous or discontinuous. In our example with a rectangular

pulse of sufficiently high pressure, Kr = 0 on either side of' the

hinge circle and is therefore continuous.

Differentiation of (3.7) with respect to r or (3.9)

with respect to t gives

3 0 0 ; r < rh(t)

2 ( (3.10)
)t6 r -w rh(t) < r < a

which shows that the curvature rate -a = -3w/tar 2is discontinuous
r

across a stationary of nonstationary hinge circle unless the angular

velocity w is constant.

Finally, we shall find the continuity conditions at a

hinge circle which apply to the bending moments and shear force.

Figure 3.6 shows two plate elements, one on either side of a hinge circle

0 (rh+ dr)d8

dr d

4'Mdr

~~~~ - y r

- - I] 0.

rh dr r

FIG. 3.6 PLATE ELEMENTS NEXT TO HINGE CIRCLE
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or regime boundary of' radius r = r h . With the forces and moments

shown, vertical equilibrium requires

Q1 '(r + dr) - Q'(r - dr) + (p - mw)r dr + (P" - mw' )r dr 0
h h tt h tt h

where wtt is the acceleration. Letting dr become zero leFves

Qt = Q so that the shear force is continuous. Moment equilibrium

about r = rh requires

M if (r + dr) - M'(r - dr) - (Q' + Q'')r dr - (W + M ')dr = 0

r h r h h ~

and, by again letting dr become zero, we have M I  M'I  so that the
r r

radial bending moment is continuous. Since the circumferential moments

M' and M' are independently in equilibrium, they need not be related

to each other and may have a discontinuity across r = rh.

3.4 Analytical Approach: Equilibrium Equations

The motion of a rigid-plastic beam takes place by means of

mechanisms consisting of finite rigid portions of beam joined by natural

or plastic hinges; the motion can be conveniently analyzed by using the

equations of rigid body dynamics. The motion of a plate, on the other

hand, involves yielding, not just at the hinge circle but throughout

finite regions of the plate. Nevertheless, by regarding an elemental

section as a tapered beam with moments M distributed along its sides,

a mechanism approach is possible. However, in view of the complicated

"beam" shape (being triangular or trapezoidal in plan) and its loading,

one is forced to start from the equilibrium equations of a plate element

bounded by the polar coordinate lines. The concept of a mechanism ap-

plied to an elemental sector of plate is still useful for an understanding

of the deformation process.
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With the aid of Fig. 3.7 the equations of equilibrium or motion

of a plate element are readily found to be

-(Qr + p- 0

(M r) - M -Qr = 0
t r 9

where p and m are the applied pressure and mass per unit area of

plate. Since the shear force is zero at the plate center, these

equations can be written in the form

r

(Mrr) - Mo = Qr - p - m Lt 2  dr (3.12)

0

To find the initial motion, a distribution of plastic regimes

is chosen corsistent with the center and support conditions. At the

plate center M r = M0 
= Mo, so that the regime there is A in Fig. 3.4.

At a simple support M = 0, giving regime B; at a clamped supportr

Mr = -M , suggesting regime C. Regime boundaries must provide continuous

radial moments M . The flow rule of these regimes suggest velocity fields.r

m-r rd~dr

Msdr rd8+ a (Or) drd9

d8. - Mrd +r a Mr) drd9

dt9

- - Medr

4dr

r

$A6735. 76

FIG. 3.7 PLATE ELEMENT - FORCES AND MOMENTS
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They have to be consiF nt with the boundary conditions and give a

velocity distribution ntinuous in r. The velocity fields and moments

are then substituted n (3.12). These procedures will be applied to

dynamic problems, bu first we shall devote the next two sections to

establishing static collapse pressures and mechanisms for simply sup-

ported and clamped circular plates.

3.5 Static Collapse Pressure of a Simply Supported Plate

The uniformly distributed pressure which just causes collapse

of a rigid-plastic simply supported circular plate will now be found.

Setting the inertia term equal to zero in (3.12) and treating the

pressure as a constant gives

Q = -pr/2

(3.13)

2
-(N r) - M6 = -pr /2
br r 9

We shall assume that at collapse the entire plate is plastic

so that at each element a plastic regime exists. Then, at the center

Vr = NM = mo, and at the support Mr = 0. Now Mr must vary contin-

uously from M. = 0 at the support to M = N at the center. Conse-r r o

quently, the plastic regimes governing the plate deformation are A, AB,

and B in Fig. 3.8, with A at the center and B at the support. This means

that throughout the plate M, = M0 and (3.13) can be integrated to give

M M - Dr2/6. Using the boundary condition M (a) = 0, where a is

the plate radius, gives a static collapse pressure

p = 6M /a2  (3.14)

Before (3.14) can be said to be the actual collapse and not

merely a lower bound, 9'10 we must prove that the velocity field stemming
2 2

from the flow law is admissible. Along AB of Fig. 3.8, = -d v/dr = 0,
*r

so that the velocity fields are of the form v = ar + 8, where a and

8 are constants. Now the boundary condition v(a) = 0 demands that

104



-aa and the velocity field
'Ic becomes

B A

M. vv (1 -r/a) (3.15)

where v is the indeterminate

__ _M. Mr velocity of the plate center at

/r collapse. The plate therefore

collapses into a cone with a

concentrated hinge circle at the

center, where the plastic regime

B, being a corner of the yield

hexagon, allows a discontinuity

of slope. The velocity distri-
FIG. 3.8 TRESCA YIELD HEXAGON REGIMES bution (3.15) gives the mechanism

FOR SIMPLY SUPPORTED PLATE

applicable to an elemental plate

sector. Each radius remains straight and rotates as a "rigid body" about

the support. Since the velocity field satisfies all conditions, (3.14)

gives the static collapse pressure.

3.6 Static Collapse Pressure of a Clamped Plate

We shall now find the uniform pressure which just causes

collapse of a rigid-plastic clamped circular plate. By setting the

inertia term equal to zero and by treating the pressure as a constant,

equations (3.12) become

Q =-pr/2

(3.16)

(M r) - Me = -pr 2/2
r r

At collapse, the entire plate is assumed to be plastic se that

at each plate element a plastic regime exists. Then, as for simply

supported plates, we have M. =.Me = M in plastic regime A at the

center (see Fig. 3.9). At a clamped support either the slope dw/dr = 0

(which gives -dv/rdr = 0) or a hinge circle exists there. To fi-id
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which condition actually occurs

me at the support, let us work out-

Kward from the center of the

plate, determining plastic re-

gimes as we proceed. For con-

tinuity of M , the regime forr

the area of plate surrounding

_______M" I______F M, the center is either A, AF, or

AB. It cannot be A(M M

M ) or AF(M = M , < M <M )o r o 0

because M M substituted
r o 2

in (3.16) gives M = M + pr /2,

which is incompatible with
A-733-73 M =M for A and: 0 < M9 < M

8 o 0 O

for AF. Thus, in the vicinity
FIG. 3.9 TRESCA YIELD HEXAGON - REGIMES

FOR CLAMPED PLATE of the center, the-regime is AB

(Me =m <M < M ), whichMO,  r or

is compatible with (3.16). The corresponding velocity field, from the

flow law kr = -d v/dr = 0, is of the form v = Cr + 5. For this regime

to extend to the support at radius a, we have v = -pi(a - r). Thus

zero slope is not possible at the support and, since the alternative is

a plastic hinge circle with Mr = -Mo, the plastic regime AB does not

reach the support. We therefore let B be the regime at an interior

circle of radius r - rb; outside this circle the regime is BC, since

M must be continuous throughout the plate. Regime BC has the yieldr

condition M - M M and the flow law it + , = 0, the latter de-

nanding velocity fields of the form v = y tnr + 6, where y and 6

are constants. With the support condition v(a) = 0, the velocity be-

2
comes v = -Y tn(a/r) giving at the support k = -y/a , which is not

zero. Hence the support is a hinge circle with plastic regime C, and

we have M = -M . We now proceed to find the collapse pressure using
r 0

the deduced distribution of plastic regimes, A at r = 0, AB in 0 < r <

rb, B at r = r bBC in rb < r < a, and C at r = a.

b0b
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In the region 0 < r < rb with plastic regime AB, we have

2
M , M so that (3.16) gives for M the expression M = hi - pr /6.

0 r r 0
At the as yet unknown radius r = r the plastic regime is B with

M = 0 so that the static collapse pressure is
r

Ps = 6Mo/r b (3.17)

provided the velocity field satisfies all its requirements. To find rb

we first note that the region rb < r < a is governed by regime BC with

the yield condition Me M, + 1 which when substituted in (3.16) gives2 2 r

*3 = M£--n(r/r) - p(r - r )/4. Then with the support condition
r 0 b b2

M r (a) = -M we have the equation for (r b/a)2

5 + tn(a/rb )2 = 3(a/r b)
2

with the solution r b/a 0.730. Thus the static collapse load of (3.17)

becomes

P= 112 /a 2  (3.18)Ps 11.26 M° /

This value must be regarded as a lower bound until it is established

that the velocity field satisfies all requirements.

The velocity distribution from the flow rule of regimes AB and

BC is

jr + 0 < r < r b

v (3.19)

Y tn r +6 rb < r <a

Eliminating from (3.19) the constants y and 6 by ensuring continuity

of v and dv/dr (no hinge circle with regime B) at r rb and

eliminating 8 by satisfying the support condition v(a) = 0 leads to
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- .Cb .n(1/gb) 0

v = (3.20)
I

b / b

where v - a, p r/a, and p r /a. The portion of the plate with-
0 ~ bb

in r rb becomes a cone with a concentrated hinge circle at the center

where the plastic regime is A. At r = rb where the plastic regime is

B, continuity of velocity and slope is assured. At the support where the

plastic regime is C, the velocity is zero and a hinge circle exists. All

requirements are met by the velocity field, and (3.18) is the static

collapse load.

3.7 Simply Supported Plate Subjected to a Rectangular Pulse

We shall now find the relationship among the peak pressure,

impulse, and final central deflection for a simply supported circular

rigid-plastic plate subjected to a rectangular pulse uniformly distributed

over its entire area. As shown in Fig. 3.10, the pulse has an instan-

taneous rise to a pressure p which remains constant until a time t
M 0

when it instantaneously falls to zero. The pressure and impulse functions

meeting this description are

p Pm O£ t < t
M 0

0 t > t !

I = i t  I I(t/t° 0 S t to

m 0 0o

.p t° = I°  t -2: to

It will be convenient to express our results ir terms of the

dimensionless variables

2 2
= pm/ps and = a/mM 0) (3.21)

where ps is the static collapse pressure, 6 the central deflection,
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I
Sp(f) a the plate radius, m the mass of

plate per unit area, and Mo the fully
0

0 plastic moment per unit length of polar

coordinate line. Instead of the sym-

bols M and M for the radial and
P r

circumferential bending moments, we

shall use M and N. This will permit

the consistent use of subscripts r

and t to denote partial differentia-

GA- 57$0,-79 trion.

FIG. 3.10 CIRCULAR PLATE PROBLEM We recall that in Section 3.5

the static collapse pressure and the

associated velocity field were found to be

Ps =6Mo/a
2  (3.22)

and

I wt  .(1 - r/a) (3.23)

When a rectangular pulse is applied with a pressure slightly in excess

of the static collapse pressure, the inertia forces are small so that

it is reasonnble to assumc the velocity distribution (3.23) with

V = V(t). From the point of view of the motion of a radius or diameter

and the analogcus motion of a simply supported beam, the velocity distri-

b.tion (322) will give rise to a mechenism which we shall call mechanism 1.

3.7.1 Mechanism 1, Phase 1 (0 S t S to)

The velocity distribution (3.23) implies that the whole

plate is plastic and governed by regime AB of Fig. 3.11c, with A at the

center and B at the support, as shown -n Fig. 3la. Consequently we

have

3 £ M M M N = M (3.24)
0 0
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Introducing now the equation of motion (see Section 3.4)

r

(Mr) - N= f(p - mwtt)r dr (3.25)

0

substituting N from (3.24), wt from (3.23), and integrating twice

with respect to r leads to

22
M I° - Pr2/2 + mVr (2 - r/a)/12 0 s t < t (3.26)

At the support M(a,t) = 0 so that, with the use of (3.22), expression

(3.26) gives the central acceleration

r as

A

A AS B V 2(p - ps)/m (3.27)

(a) MECHANISM I
With the initial conditions w(O,r) =

r
w(O,r) = 0,. and hence V(O) = 0, suc-

cessive time integrations of (3.27)

A A A AS 8 give the central velocity and deflection

(b) MECHANISM 2 as

N
V =2(p m- p )t/m

ma 2
B A

6 = (pi - p)t /m (3.28)

M M

This phase of the motion ends at

the same time as the pulse, at time

t . At this time the deflection ex-0
(C) TRESCA YIELD HEXAGON pression, in terms of the dimensionless

GA - 4733-50

variables X and v of (3.21), becomes
FIG. 3.11 MECHANISMS AND PLASTIC

REGIMES. (a) Mechanism 1,
(b) Mechanism 2, (c) Trescc = (1 - l/.)/6k (3.29)
yield hexagon 0
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Before considering the next phase of1 motion the

expression (3.26) must be examined to see if' any restrictions have to be

imposed in order that the moment M satisfies the yield condition (3.24).

As we shall presently see, a restriction is indeed necessary and takes the

form of a bound on the pressure pm' as in similar beam problems. This

is to be expected because we assumed inertia forces small enough not to

change the static collapse mechanism and, if the pressure is high enough,

this assumption can no longer be reasonable.

By substituting the central acceleration expression (3.27)

in (3.26), we find that moment can be represented in the form

M/M° = 1 - Xp2 + (X - i)p 2(2 - p) (3.30)

where, for brevity, we have let p = r/a. The derivative of (3.30) with

respect to p is 0[(X - 1)(4 - 3 p) - 2XI, which is zero at p = 0 and

less than zero for all p in 0 < p 1 1 if 1 < X < 2. Hence if X is

in the range 1 < X < 2, the moment decreases monotonically from M = M°
at the center to M = 0 at the support and thereby satisfies the yield

condition (3.24). As X is increased through X = 2, the sign of the

second derivative with respect to p changes from negative to positive

at p = 0, so that M changes from a maximum to a minimum. Thus, when-

ever ) > 2, the yield condition is violated in the neighborhood of the

plate center. This suggests that a central area of plate undergoes

translatory motion when % > 2. This will be taken up under mechanism 2

below.

3.7.2 Mechanism 1, Phase 2 (t < t < t )

During the remaining motion no pressure is being

applied. The radial bending moment and central acceleration, from (3.26)

and (3.27) with pm = 0, are

M = M + mVr2 (2 - r/a)/12 (3.31)

- -2ps/m (3.32)
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Noting that V(t ) = 2(p - p s)/t I. integrating (3.32) gives for the

central velocity

V = 2(Pm t - pat) (3.33)

The time t2 when motion ceases, obtained by setting V(t 2 ) = 0 in

(3.33), is t2 = (m/Ps)to = )t . By integrating (3.33) from t = t

to t = t2 the central deflection acquired during this phase of motion,

in terms of ) and v of (3.21), is found to be

2
2 - =(-l1/X)!/6 (3.34)

Thus with o determined by (3.29) the total central deflection is

V2  1( - I/.)/6 1 < X < 2 (3.35)

Again, to ensure that the radial bending moment satisfies

the yield condition (3.24), we substitute (3.32) into (3.31). Then we

have

M/M = 1 - p 2(2 - p)0

which shows that the moment monotonically decreases from M = 0 at0

p = 0 to M = 0 at p=I.

3.7.3 Mechanism 2, Phase 1 (0 : t < t
0

I. Section 3.7.1 it was found plausible (whenever

) > 2) to consider a mechanism in which a finite central portion of

plate undergoes translatory motion; the tendency of the bending moment

diagram to flatten out near the center as X -4 2 from below suggests

this mechanism. The plastic regimes are A in the central region bounded

by a hinge circle of some radius r = r with regime A, AB in the outer

annulus, and B at the support. Figure 3.11b shows mechanism 2 and the

distribution of plastic regimes.



From the flow law, continuity of velocity at r = rh,

and the support condition w (a, t) = 0, the velocity field of mechanism 2
t

is

V ~ ~0 -: r :r h

wt ( r (3.36)

S- )V r r a

An assumption of the mechanism is that the hinge circle is stationary

while a rectangular pulse is being applied. Note that

0 0 r s rh

Wtr

-V/(a - r) r r a

is discontinuous at r = rh, which is consistent with the definition of

a hinge circle.

For the central region 0 r < rh9 the equation of

motion is simply

mV = P or mV = 1 (3.37)

If we substitute p = p, wtt from (3.36), and N = M , in the equation

of motion (3.25), carry out the first integration on the right-hand side,

integrate the resulting equation from rh to r in the range rh < r < a

using the continuity condition M = M at r = rh, and simplify the

algebra we are led to the result

M/M = 1 - X(r - rh) 3 (r + r )/2a2r(a - rh ) r r a (3.38)

0 h h h h

Now making use of the support condition M(a, t) = 0, (3.38) yields

X = 2a 3/(a - rh ) 2(a + rh ) h > 2 (3.39)
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which, when substituted back into (3.38), gives

/ = 1 - a(r - r h) (r + r h)/r(a - rh ) 3(a + r ) rh s r I a

(3.40)

From (3.39), as 4 , r h - a which says that when an

ideal impulse (infinite pressure, zero duration) is applied the hinge

circle is at the support. In the next phase, which describes the

motion after the pressure has been removed, we shall see that the hinge

circle diminishes to a point at the plate center, so for an ideal im-

pulse the initial location is the support circle and it immediately

starts to decrease. For a given value of , (3.39) gives the

following cubic equation for ph = rh/a:

3 2

h - h -
0h + (1 - 2/X) 0 X > 2 (3.41)

The qjestion now arises as to whether a restriction

on X is necessary to ensure that the radial moment expressed by

(3.40) obeys the yield condition 0 ! M r M0 of the plastic regime AB.
0

It is readily shown by differentiating (3.40) that M r C for allr
values of r in the range rh r ' a, with r = 0 only at r = rh "

Consequently, M decreases monotonically from M = M°  at r = rh  to

M = 0 at r = a for all X > 2, and no restriction on X is required.

T".is phase ends with the pulse at time t = t . From
0

(3.37), the central deflection at this time, in terms of the variable

X and v of (3.21), is

v = 1/12X (3.42)0

3.7.4 Mechanism 2, Phase 2 (t < t < t )

With the removal of the pressure the central portion of

the plate moves at a constant velocity V := I /m. If the plastic0 0

hinge were to remain stationary, the plate would retain its kinetic

energy with no dissipation by plastic work. Clearly this is not
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possble, so the plast ic hinge Cil cle i.s assunif.d (,) dijil : .h and ,wentu-

ally become a point at che plate center. Thus we art. le.d to the velocity

field

wt = (3.43)
a to 0 r h (t (t

a- rh~t) •rVt) -:r <a

Substituting p = 0, wtt from (3.43), and N = M intoo

the equation of motion (3.25), carrying out the first integration on

the right-hand side, integrating the resulting equation from rh to r

in the range rh < r < a using the continuity condition M = M0 at

r = rhp and simplifying the algebra leads to the equation

2(M/M -1)a2r(a - rh) 2 + Xtorh(r - rh)2[r2 - 2r(a - rh  r h(4a - 3r = h 0

(3.44)

Use of the support condition M(a,t) = 0 in (3.44) gives

3
rh -2a /Xt (a,- r h)(a + 3r ) (3.45)

Noting that Xt° = I /p s , we see from (3.45) that for an

ideal impulse the initial velocity of the hinge circle i infinite

(as X -4 -, rh + a).

The location of the plastic hinge can be found by inte-

grating (3.45) and using (3.41) to give the initial Yocation. This

procedure results in the following cubic for Ph = rh/s:

3 2
h 2 + (1 - 2t/Xt) 0 X > 2 (3.46)
P- Pit - Oh +o

Substituting the hinge velocity rh from (3.45) back into

(3.44) gives for the bending moment distribution the expression

2[r2 3
M/M = 1 + a(r - rh)2r - 2r(a - r) - r h(4a - 3rh )J/r(a - rh ) (a + 3r )

r h h h < a
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Wo can show that M monotonically decreases from M = M at r = rh
0

to M = 0 at r = a for all \ > 2, so that no restrictions are

required.

This phase of motion ends at a time t when the hinge

circle reaches the plate center. Hence by substituting ph = 0 into

(3.46), we have tI = \t /2. From t = t to t = t the velocity of

the plate center is V , a constant. Thus the central deflection0

acquired during this phase is I o(t 1 - t )/m which, in terms of

and v, is

V, - vo = (I 2/X)/12 X > 2

and since vo = 1/12X by (3.42), we have

Vi = (I - 1/X)/12 X > 2 (3.47)

The remaining motion takes place by mechanism 1.

3.7.5 Mechanism 1, Phase 3 (t < t < t2 )

After the hinge circle becomes a point at the plate center,

the whole plate is in plastic regime AB, as it was throughout motion

when the pressures were in the range ps < Pm < 2Ps"

The acceleration V of the center is determined by (3.32)

and, after integration with V(t ) I/m and t1 = 1o/2ps, the velocity

of the center is found to be

V = 2(1 - P st)/m (3.48)

Motion ceases at a time t2 = I /ps = 2tl, determined by (3.48) with

V(t 2 ) = 0. The increase in central deflection, found by integrating

(3.48) from t1 to t2 , is (in terms of v)

V2 - 1 =1/24 k > 2
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and hence with 1 .girh by (3.,17)

v2 = (3/2 - 1/)/12 2 (0.49)

As . 4 ' with I held constant, an ideal itapulse is
0

approached which, according to (3.49), produces a central ck!'lection of'

v2 = 1/8 k = r (3.50)

3.7.6 Relationship among Pressure, Impulse, and.Central
Deflection

Figure 3.12 shows the relationship among pressure, im-

pulse, and central deflection in the form of a graph of A versus V

obtained from formulas (3.35) and (3.49). For convenien~ce, these

formulas are written on Fig. 3.12. The graph bears a strong resemblance

to the corresponding curves for clamped and simply snpported beams, as

can be seen from Figs. 2.16 and 2.17 (curve C). For a fixed impulse,

the central deflection 6 increases monotonically with the pressure,

tending to an asymptote at v = 1/8 representing the ideal Impulse

case. At low pressures the deflection is extremely sensitive to a

change in pressure. For example, increasing the value of ). from 1.1

to 2.0 increases by 5-1/2 times the value of 6. At high pressures the

deflection is insensitive to a change of pressure. In fact at X = 8

about 92% of the deflection due to an ideal impulse of magnitude I0

is attained.

Figure 3.13 is a pressure-impulse diagram and is con-

structed as follows.' For a rectangular pulse we have 6 = (I a 2/mM )(),
0 0

where v(M) is (3.35) or (3.49), and for an ideal impulse 11 we have
22

61 (I1. /mMo)v, where = 1/8 by (3.50). Let the two deflectionse a Te V 2
be equal. Then we have (10 /1 1 v1/v(X) so that

3X/4(k -1) 1 X 2
( o)2 = (3.51)

Il 3X/(3X -2) 2 X
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0t

0 o.02 0.04 0.06 0.08 0.10 0-12 0.4
V. 8/(I o2 /mM-)

FIG. 3.12 PRESSURE-IMPULSE-CENTRAL DEFLECTION
RELATIONSHIP FOR SIMPLY SUPPORTED PLATE

The curve in Fig. 3.13, obtained from (3.51), shows how

the pressure and impulse of a rectangular pulse have to be varied to

maintain a given central deflection 6. The curve is similar in form to

that for simply supported and clamped beams, as can be seen from Fig. 2.23

(curve C). The asymptotes I 'I = 1 and X = 1 represent the limiting

cases of ideal impulsive and static loading. It is interesting to

observe that whenever X > 6 the impulse giving the same deflection as

an ideal impulse is less than 6% larger than the ideal impulse.
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FIG. 3.13 PRESSURE-IMPULSE DIAGRAM FOR SIMPLY SUPPORTED
PLATE

3.8 Clamped Circular Plate Subjected to a Rectan! ular Pulse

Finding the response of a clamped circular rigid-plastic plate to

a rectangular pulse uniformly distributed over its entire area is far

more difficult than finding the response when the plate is simply

supported. Closed form solutions giving the variation of central de-

flection with pressure and impulse are not obtained as they were in

Section 3.7, because the velocity fields are far more complicated. We

recall from Section 3.6 that even finding the static collapse pressure

requires the solution of a transcendental equation. To obtain the

solutio-. thereforte, numeric-,l analysis is employed.
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As shown in Fig. 3.li, the pulse has an instantanf-us rise to

a pressure p which remains constant until a time t when it instan-

taneously falls to zero. The pressure and impulse Flunctions meeting

this description are

Pm 0 t < to

p m=

S { t >t 0

p =t 0 t t

I =

p t to

ppt

0

0 t.
6A-5733- S3

FIG. 3.14 CIRCULAR PLATE PROBLEM

3.8.1 Mechanisms of Deformation

In Section 3.6 it is established that the static

collapse pressure is

Ps 6Mo/r 2s (3.52)
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where r /n 0.73 is the solution of the equations

5 + tn(a/r )2 3(a/r )2

a being the plate radius. The associated velocity field (3.20) can be

expressed in the form

wt = - 0 P PS(3.53)

V 7 n(1/0) ps e p I

where p = r/a, ps = rs/a, and 1/a = tn(l/ps) + 1. V is the indeter-

minate velocity of the plate center.

When the pressure is slightly greater than the static

collapse pressure psi it is reasonable to assume that the dynamic mode

of collapse has a velocity field similar to (3.53) because iiiertia forces

are still small. The only difference in the velocity fields is that,

instead of the dimensionless radius psi we shall require a new radius

0 (t), which depends on the pressure and time. However, in the first

phase of motion covering the period during which the constant pressure

is being applied, we shall assume that p1  is constant at a value which

depends on the pressure. In the second phase, which covers the remain-

ing motion, p, will be taken as a function of time having as its

initial value the constant value in phase 1. Thus we have the following

velocity field:

V(1 - a p/p1 ) 0 e p : pl(t)

wt  =(3.54)

V a .n(l/p) Pl(t) p : 1

where

1/a ='tn(l/p,) + 1 (3.55)
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and 'l is understood to remain constant while the pr.s ur( is acting.

The motion of a radius or diameter in accordance with (3.54) and (3.55)

will resemble a mechanism. We shall call it mechanism 1. The distri-

bution of plastic regimes associated with this mcchanisn, is shown in

Fig. 3.15. As in section 3.7, M and N are the radial and circumferential

bending moments; they are positive when they cause tension (in the under-

side of the plate.

The assumption of small inertia

Sr forces makes it predictable at the out-

set that the velocity field (3.54) will

A B B BC C not be applicable for all pressures.

(a) MECHANISM I We shall see that the upper bound for

the pressure causing deformation by

W I mechanism 1 is pm 
2 ps" At this

pressure, an inflection point in the

A A A AB B BC C bending moment diagram occurs at the
(b) MECHANISM 2 r

plate center; slightly higher pressures

N bring about a change from a maximum

B1 A mo ment to a minimum, thereby causing

M0 the yield condition to be violated in

c M the neighborhood of the plate center.

As in the case of beams and simply

supported circular plates, this be-

havior suggests that whenever p >

(c) TRESCA YIELD HEXAGON 2ps a finite central portion of plate

QA-5733-S4 acquires a uniformly distributed

IG. 3.15 MECHANISMS AND PLASTIC velocity. This mechanism, called

REGIMES. (a) Mechanism 1, mechanism 2, has the distribution of
(6) Mechanism 2, (c) Trescayiehagnm 2, e plastic regimes shown in Fig. 3.15

yield hexagon
with the following velocity field:

V C 1 D -< P0(t)

wt V [i - C(o pol 0o z 0 1 (t) (3.56)

SV C tn(l/0) t 1
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where

1/a = tn(l/p) + (1 - /p 1 ) (3.57)

The plastic regime A now occupies a rinite circular

area, the circumference of which forms a plastic hinge circle of radius

PO(t). While the constant pressure (pm > 2p s) is acting, both p and

Pi are assumed to remain at a constant value which depends on the

pressure. Upon removal of the pressure they are no longer constant.

The hinge circle reduces to a central point and thereafter deformation

concludes by mechanism 1.

Starting from the equation of motion (Section 3.4)

r

(Mr)r - N = - f(p - mwH)rdr (3.58)

0

we shall now derive the equations governing motion by mechanisms 1 and

2. The resulting equations are applicable to general blast pulses but

will be solved only for the special case of a rectangular pulse.
4

3.8.2 Governing Equations for Mechanism 2

When the peak pressure of a blast pulse is large enough

to cause deformation by mechanism 2, the acceleration to be substituted

in (3.58) is obtained by differentiating (3.56) and (3.57) with respect

to time. The circumferential component is eliminated by using the yield

condition of Fig. 3.15 in conjunction with the distribution of plastic

regimes. Due to the three prope- ties M = M°  in 0 r ! ro , M(r1 t) 0P

and M(a,t) = -M., integration of (3.58) leads to the following three

equations:

V1 = Xe2 /2 (3.59)
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V'(P + r).n [2F(3 - 371 + -r2) + -n6 + 3 -2) - 2[ (6 - +- 3* )

+ r(I - 0)(4 - 3r)] -VT'rn 2 [2 (3 - 21)) I- T(4 - 3,)] (3.60)

~~2( s

%3e -r (3 - 3 + 2-21 e + )

3r 1) v,[ 3e2 I
V' T )[3e6" - 3 - 2 (3 - 371 + 3 2 -3E)] V r[3 " 3 -2

3 - 2 (1 - TI)(3 - 2T)) 2 2 2 (3 -6Ti+ 6 2 2 3)
(3.61)

-VTI'[a3e 2 - 3 - 2 (3 - 3172 + 2T)2 3 ) - 62(1 _ 'n) 2 ]

= [3e (2F - 1)/2 - (I + )]e 2  ( + n)2

The new dimensionless variables that have been intro-

duced in the derivation of (3.59), (3.60), and (3.61) are defined by

tn(l/= 01 X =  P/P =

(3.62)

The primes denote differentiation with respect to the variable TI

where

T' = 12M t/ma 2

For a rectangular pulse of pressure pmo we have X = pm/pS'

3.8.3 Governing Equations for Mechanism 1

Whenever the peak pressure is low enough to cause de-

formation by mechanism 1, the acceleration to be substituted in (3.58)

is obtained by differentiating (3.54) and (3.55) with respect to t.

N is eliminated by means of the yield condition used in conjunction

with the distribution of plastic regimes. Then, after integration
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of (3.58), satisfying the conditions M(rlft) = 0 and M(a,t) = 0

gives the following two equations:

V'( + l)(2 + 1) - V ' e = [e s - V l]e2 g(§ + 1)2 (3.63)

V'(§ + l)(3e 2 § _ 3) - 4§) -V'(3e 2  - 3 6F- 2 2 )

(3.64)

= [3%e S - 1)/2 - (1 + §I]e 2 (g + 1)2

Alternatively, (3.63) and (3.64) are obtainable from (3.60) and (3.61),

which govern mechanism 2, by setting r = l(p = 0, ro = 0) and T1 1 0.

3.8.4 Rectangular Pulse--Mechanism 2, Phase 1 (0 < t < t )0

Specializing to a rectangular pulse, a solution of

(3.59), (3.60), and (3.61), is obtainable if we assume that § and Tj

are constants while the load is applied. Thus we set ' = T1 = 0 in

(3.60) and (3.61), and substitute V" from (3.59). Note that )" = p s.

is a constant for a rectangular pulse. Equations (3.60) and (3.61) now

become

5(sg 3
2( + rt = Xe 2 'y 3 (2 -TI,) (3.65)

2(gs-g)

2(§ + T)(l + ) e [3e('(- - 1 + i)

(3.66)

+ g(3 - + 2 3(l -

The lower bound of X causing deformation by mechanism 2 can be found

by substituting 71 = 1 (p = 0) in (3.65) and (3.66). In this way, we

obtain

Xe2 s = 2(g + l)e2 § (3.67)

where is determined by the equation

3ge2 g 1 (3.68)

125



From (3.67) and (3.68), X 2 and F = 0.216 (pi = 0.805).

For a given value of X > 2, (3.67) and (3.68) fix the

initial values of and TI, and hence of o and pl.

The pulse ends at a time t - t (TI = T ) and, if
0

the velocity of the plate center at this time is Vol integration of

(3.59) gives

V =1/2 Xe S T I /m
o 0 0

Now V = pt/m; therefore, by integration, the central deflection 6
m 0

at time t is
0

2
v°  1/12 Xe = p/12X (3.69)

where we have introduced the dimensionless deflection

22
v 0 a 22/mM )

3.8.5 Rectangular Pulse--Mechanism 2, Phase 2 (t < t < t1

When t > t no pressure is acting, so that X = 0
0

and hence, from (3.59), V/ = 0. Thus the central region of the plate,

0 ! r < r (t), moves at a constant velocity V = I /m. It is evident

from (3.60) and (3.61) that F and 11 can no longer be treated as

constants. Introducing now a new dimensionless time,

T = 12M(t - t0 )/ma2Vo = 12M (t - t )/I a2

(3.60) and (3.61) become

-8 + 3T2) + n(l - Tj)( 4 - 3I)] + '[2(3 - 2 ,n)

(3.70)

+ 14 - 3T9] = e2 ( + n)2/n2
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Cr 3e 3 2F_ 3 2 (1 T1r)(3 -2rT) 2 3 6n+ T r

2 2 3 2 ( TI 2- 2F,:
+ I[3e- - 3 - 2g(3 - 3n + 2r 3 ) - 692(1 - ) ( + TJ)2(g + 1)

(3.71)

where the primes denote differentiation with respect to T.

The numerical technique is described in detail in

Refs. 5 and 11 but, briefly, it consists of putting (3.70) and (3.71)

in the form d /d= -P( ,T)/Q(,rl) and, starting from the initial

values of and T1 obtained from (3.65) and (3.66), computing the

trajectory in the ( ,11) plane (method of isoclines) until n - 1. The

duration of phase 2 is found by summing the increments b/' along

the trajectory. If phase 2 ends at time t., the central deflection

occurring in phase 2 is 6 -6 V (t - to). In terms of v and

T, we have

- o =71/12 (3.72)

with vo given by (3.69).

3.8.6 Rectangular Pulse--Mechanism 1, Phase 3 (t < t < t2 )1 2

The equations governing the final phase of motion,

obtained by setting r = 1, Ti= 0, and \
. 0, in (3.60) and (3.61),

are

C'( + 1)(2 + 1)- - + 1)22 (3.73)

1'(g+ l)(3e - 3 4 ) - C(3e2 - 3- 6 - 212) (+ 1)e

(3.74)

where V/v and primes denote differentiation with respect to T.
0

From (3.73) and (3.74), we find that

(l+ [ d1

4 + 7e + 2e2- 3e 2  j
1 (3.75)
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where is the value, o" * and the end of' phase 2.

Motion ceases when V = 0 or = ) and this occurs

when F F, 0.478, which is the solution of 4 + 7 + 2.2- 3e2 = 0.
2 -

Let T 2 be the value of T when motion ceases. Then

2

T -1 f (3e
2F - 4 - 6 - 3) d (3.76)

2 FJ 2 2 27 ~
e ( + 1)(4 + 7- 2 - 3e

Finally, let the central deflection by 52 when T T2 . Then

I2a 
f

52 -1 f2 M f 3
0

and hence
22

1 (" (3e - 4 2 -6§ - 3)C2d
'2  %'1 12 f 2E 2 2 ). (.7

e2'(m + 1)(4 + 7 + 2 2 
- 3e

where is given by (3.72) and C by (3.75).

3.8.7 Rectangular Pulse--Mechanism 1, Phase 1 (0 < t < to

When the pressure lies between p5  and 2p., the

equations governing the motion during phase 1 are

2 s 2

V(2 + 1) = e - e2 1) (3.78)

V'(3e2 -  3- 4 ) 3Xe s-(2 - 1)/2 - ( + 1)1 e2(g + 1)

(3.79)

where the primes denote differentiation with respect to T1. These

equations can be obtained by setting T = 1, 71= 0, and g' =0 in

(3.60) and (3.61).
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Eliminating V' between (3.78) and (3.79) gives

3e s (e ; - 1)/2 P + 1) (2 + 1)
(3.80)

1 ] (3e 2  3 - 4 )

which determines , and hence ol, for each X. Substituting this

value of F into (3.78) and integrating gives the velocity

V = Xe 2 ( s - ) _ I I e2  (F + 1)7'/(26 + 1) (3.81)

A further integration gives the central deflection at time t as0

TO
2m0 12 V(T')dT'0

0

which leads to the result

SI2(
I1 - I/ke (g + 1)/6Xe (2 + 1) (3.82)

3.8.8 Rectangular Pulse--Mechanism 1, Phase 2

This phase of motion is essentially the same as the

phase 3 motion described in Section 3.8.6. According to (3.81), the

central velocity when the pressure is removed is

V = ";I I1- I/Xe 2(Q + l)/m(2 + 1)

Let V/Vo, as was done earlier, and let motion2;
cease when T = T2 . Then C and T2 - T1 (where r = T = 2/Xe 's)

are again represented by (3.75) and (3.76) and, in place of (3.77),we

have
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e2I -- 2) 220 2 2 2 2P2 (~~3241 -6713)' d:

1, (3.83)

where v i s given by (3.82), -2 = 0.478, and g, is the solution of

(3.80).

3.8.9 Relationship among Central Deflection, Pressure,

and Impulse

Figure 3.16 gives a curve of X versus v which shows

the relationship among the final central deflection 5, the pressure PM'

and the impulse per unit area I for a clamped plate. Whenever X > 2o

the curve is obtainable from (3.69), (3.72), and (3.77): whenever

1 < X < 2 is is obtainable from (3.82) and (3.83). Also shown in

Fig. 3.16, for coparison,is the X versus V curve for a simply

i4

12 -- PM

010

9-

,m 8 CLAMPEO.

6 SIMPLY I
5 SUPPORTED ]

4-

3

2

0 002 0.04 0.06 0.08 0. 10 0.12,, /112 o2/Mo I

FIG. 3.16 PRESSURE-IMPULSE-CENTRAL
DEFLECTION RELATIONSHIP
FOR CLAMPED AND SIMPLY
SUPPORTED PLATES

4
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tsupported plate (taken from Fig. 3.12). In using Fig. 3.16 it should/r2 2

be noted that PS = 6M /r for clamped plates and Ps = 6M /a for
s 0 s 0

simply supported plates. The former is 1.875 times the latter.

Figure 3.17 is a pressure-impulse diagram which shows

how the pressure and impulse must be varied to provide the same central

deflection of a clamped plate. In other words, points on the curve

define a family of rectangular pulses, each member of which produces

the same central deflection of a clamped plate. (The corresponding

curve for a simply supported plate, shown in Fig. 3.13, lies almost on

top of the curve in Fig. 3.17.) The coordinates have been rendered

dimensionless by using X = p s aiid I/Ill where I1 is the ideal

impulse producing the same central deflection as each member of the

family of rectangular pulses. The formula giving the central deflection
22

due to an ideal impulse is that given in Ref. 4, namely 61 = 0.07 I a /mM
1 0

or N) 0.07.

15

0  to t

PM10

)LL

0
-IO 1.5 2.0 2.5

FIG. 3.17 PRESSURE-IMPULSE DIAGRAM
FOR CLAMPED PLATES
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From Figs. 3.16 and 3.17, the following conclusions

are drawn:

1. For a given impulse, the central deflection 6
increases monotonically with the pressure pm'
becoming a maximum equal to 61 above when
the pressure is infinite (ideal impulse).

2. Again, for a given impulse value, rectangular

pulses with pm > 6ps, (X > 6), produce deflections
of simply supported and clamped plates which are
respectively over 85 and 90% of the deflection
caused by an ideal impulse (see Fig. 3.16).

3. For a given central deflection, Fig. 3.17 shows
that as the pressure is decreased from infinity
to a value corresponding to X - 6, the increase
in impulse necessary to maintain that deflection
is less than 7%. Larger increases are necessary
as X decreases further, especially in the
range 1 < X < 2.

3.9 Circular Plates under Uniformly Distributed Impulses:
Comparison of Theory and Experiment

In this section we shall describe experiments, present results,

and compare them with the corresponding predictions of the bending

theory of rigid-plastic plates with a view to establishing the useful-

ness of the theory. In the experiments, each simply supported and each

clampe circular plate is subjected to an impulse (pulses of extremely

short duration) uniformly distributed over the entire area. The per-

manent central deflections and, for a few of the simply supported plates,

the shape'are compared with the results of the rigid-plastic theory

using an ideal impulsive loading (zero duration). The theoretical

results are extracted from Refs. 4 and 5.

In Section 2.12 a similar correlation for beams pointed out that

the rigid-plastic theory was sufficiently accurate for many engineering

applications. Five series of beam experiments were performed and for

each series the average ratio of experimental to theoretical central

deflection was found (see Table 2.4). These five averages fell between

0.67 and 0.77. However, to ensure a minor role for elastic effects, it

was necessary that the ratio R of kinetic energy input to elastic

strain energy capacity be greater than 2 to 3. We shall also see that for
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plates,correlation of the final central deflection ratios is satisfactory,

but now large deflections cause a limitation. Deterioration of agree-

ment becomes pronounced when the ratio of predicted deflection to plate

radius exceeds values around 1/3. The deterioration is due to membrane

forces unaccounted for by the theory. If the dellectious are small

enough, the elastic energy becomes significant, but the limited experi-

mental data available do not establish a lower bound o., R fcr good

agreement. However, in one of the three series of experiments reported

here R was as small as 4 and correlation was still satisfactory.

3.9.1 Theoretical Results

After being subjected to a uniformly distributed im-

pulse, the final axisymmetric shape of a simply supported circular plate

of rigid-plastic material obeying the Tresca yield condition and associ-
4

ated flow law is

w = 12a2(1 - r/a)[3 + 2r/a + (r/a)21,i24,M (3.84)0

which gives, for the central deflection, the formula

= Ia 2/8M (3.85)
o

In (3.84) and (3.85), I and m are the impulse and mass per unit area,

a is the plate radius, and M is the fully plastic moment per unit

arc length.

When the plate is clamped against rotation the central

deflection is

= 0.56 I a I/8mM (3.86)
0

Before turning to the experiments, the expression will

be derived for the ratio R between the kinetic energy input, which

equals the plas-ic work done, and the elastic strain energy capacity of

the plate. Let the maximum elastic bending moment per unit length by

Me. Then M = od 2/6, where g is the yield stress and d is the
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plate thickness. If this moment is applied unitotmly around the cir-

cumference of the plate, a state of pure beading exists. This iF the

state of maximum bending strain energy which, per unit area, is

M2/(1 + v)D, where v is Poisson's ratio and D = Ed 3 /12(1 - V2 ) is

e

the flexural rigidity, E being Young's modulus. The kinetic energy
2 2

delivered per unit area is I /2m, so the energy iatio is R = 312E/

2-,d2(I - v), where 0 = m/d is the mass density.
0

3.9.2 Description of Experiments

The simply supported plate experiments vere performed

with plates of 6061-T6 aluminum and 1018 cold-rolled steel, all nominally

1/4-inch thick and 8-1/2 inches in diameter. They were simply supported

on a heavy steel annulus at a diameter of 8 inches. Figures 3.18 and

3.19 show the experimental arrangement. The impulse was generated by

sheet explosive rolled to a uniform thickness and cut out to form a disk

8 inches ir diameter. This was placed over a similar disk of solid neo-

prene attenuator nominally 1/8-inch thick which in turn was layed cen-

trally over the plate. The neoprene was used to reduce the high peak

AA

-LIFTING HANDLE A

FASTENING BOLT-
4 PLACES (D

SEUIGRING (I)PLAN VIEW

I ~SHEET EXPLOq,~JE 3

NEOPRENE8 4
I ATTENUATOR ®

4 HICK PLATE®6

SPACER®

77

SECTION A-A

FIG. 3.18 EXPERIMENTAL SET-UP (arranged for simply

supported plates)
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FIG. 3.19 EXPERIMENTAL ARRANGEMENT

pressure in the shock wave from the explosive in order to eliminate

plastic waves in the plate, possible changes in material properties,

and spalling. A five-grain mild fuse was used to detonate the explosive.

The detonation velocity (0.28 in/Rsec) is supersonic relative to the

maximum plate velocity (0.21 in/I-Lsec), and the initiation point is at
12

the center of the plate, so it is assumed, by analogy with beam results,

that simulation of an ideal impulse simultaneously applied over the whole

plate is satisfactory. As can be seen iu Figs. 3.18 and 3.19, a steel

annulus was placed over the supporting annulus to control the plate as

it rebounded. Sufficient clearance was provided between the two annuli

by means of spacers to prevent the edge of the plate striking the upper

annulus as it deforms plastically.
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The clamped plate experiments were performed with

plates of 6061-T6 aluminum, all nominally 1/4-inch thick and 9-3/4

inches in diameter. Using the two steel annuli shown in Figs. 3.18 and

3.19, with inner diameters of 8 inches, the plates were clamped to pre-

vent rotation but not radial displacements. Around the rim of each

platc at 3/4-inch spacing, 5/8-inch-long slots were cut so that during

deformation circumferential membrane forces in the annular portion of

plate outside the B-inch-diameter circle were suppressed. The slots can

be seen in Fig. 3.20, which shows two plates after impulsive loading

(one sectioned along a aiameter).

FIG. 3.20 CLAMPED PLATES AFTER IMPULSIVE LOADING

For the explosive-attenuator-plate configuration

described above, the impulse imparted was obtained by firing free plates

in front of a double-flash X-ray unit. The rigid-body displacement in

the predetermined time between radiographs gives the plate velocity.

It was found that for each plate material the velocity ii~parted was

proportional to the thickness of explosive over a range from 15 to 60

mils, the range of interest in the plate deformation experiments. This

procedure thus provided a simple linear calibration curve of impulse

versus explosive thickness. The constant slope of this curve is ex-

pressible as impulse per unit volume of explosive with units dyne see/

cm 2/mil or dyne sec/cm 3 and is given the symbol I . Values of I1

for the aluminum and steel plates are listed in Table 3.2.
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yfuld~u Ma,-4I, l'Iat, Plat'. I

Ml'ti .. 1 re.2

AI, 6(4i -'r6 14) X II) 1 42,))0 0. (m(|(| :1 0.251 4 2. 5 P Il

''.R. t At. 1011K :14) x II I "9{|1)44 0.() O 732 11.241 4 2.7 10

The plate materials were chosen because of the small

strain-hardening moduli and because they are believed to be insensitive

to strain rate (especially the 6061-T6 aluminum alloy).

To determine the yield stress, an average value was

taken of static tensile tests with specimens cut with and across the

grain. Each stress-strain curve was replaced by two straight lines,

the slope of the strain-hardening portion being obtained by curve

fitting to about 3% strain. The ordinate of their point of inter-

section was taken as the yield stress.

In addition to permanent central deflections, changes

in thickness at the center and near the support was measured. In a

few cases deflections along a radius were measured to give a plate

profile. The deflection measurements will be compared with the pre-

dictions of formulas (3.84), (3.85), and (3.86).

3.9.3 Experimental Results and Observations

Table 3.2 contains the materials, properties, and the

impulse constants I mentioned above. Tables 3.3 and 3.4 contain

the results of experiments with simply supported and clamped plates,

respectively. The symbol 6ex stands for the experimental central

deflection and 6th stands for the theoretical central deflection

according to (3.85) or (3.86). The right-hand column of Tables 3.3

and 3.4 show the central deflection ratios 6 ex/6th which are used as

a measure of the accuracy of the rigid-plastic theory. Figures 3.21

and 3.22, showing the variation of the central deflections with impulse,

assist the comparison of theoretical and experimental values.
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Fig-ures 3.23 and 3.24 provide a comparison of* theoretical and experi-

mental shapes for a few simply supported plates. Figure 3.25 shows the

profiles of' several clamped plates; the theoretical profile is not

explicitly available in the literature.

Tn,1,, 3.3

I:X4'444I hlN1'AI H.ES:iUI.TS R311 SIMPL'4Y SiUPRTEDr: PIATYS

I m- I

Mptrrmnt -- 4 - En./nr/a

Al. 6061-Tr6 1 0.317 21.9414 76.5 0.421 1.195 ().352
2 0.2896 49. 949 6:3.7 0.312 0.991 0.314
:4 0.349 19, 94H)4 63.3 04.3:4440.9449 41.34H
4 0.283 19,54m6 1..2 04.333 40.956 0.34H

0.244 1994444) 45.2 41.2S3 0.703 0.3511

6 0.2404 16. 6w9 41.1 1. 26H (). 699 0.39
7 04.2404 144,644 44.1 0.261 40.61411 0.380
44 04.2444 1(1,6()() 4:4.9 44,264 04.6114 0.3447
9 01.221 15,2004 :17.4 1 0.253 (0.579 0.437

1(4 0.219 15,1(4(4 :16.7 0. 243 04.573 (0.425

11 0.192 13,2004 29.1 (0.199 0.438 0.455
12 0.191 13,2(X) 27.7 01. 222 (1.433 0.514
13 O .1114 12,M49 25.9 (.1IN" 0.4443 0.467
14 0.149 10,300 16.9 n.155 0.264 0.544

is 0,144 9,9(40 15.91 44.152 44.247 0.615

16 0.142 9,8440 15.3 0.12? 0.239 0.533
17 01.141 9,700 15,1 0.147 0.235 0.625

I9 0.139 9,60(4 14.6~ 0.134 0.228 0.5884
19 0.136 9.404 4 4.1 (4.122 0.221 0.551
20 0,123 9,500) 11.6 (4.099 0.1441 0.541

34 0.114 44,100 10.6 0.116 0.J65 0.700

22 0.104 7.400 8.9 0.09S 0.139 0.715

C.ft. StC~l 1019 1 0.505 34.800 61.7 0.261 0.629 0.414

2 0.501 34,600 60.8 0.251 0.620 0.410
3 0.450 31,000 49.0 0.224 0.500 0.448

4 0.436 30,100 46.1 0.215 0.471 0.456

5 0.414 29,600 41.4 ().211 0.423 0.498

6 0.359 24,4400 31.3 0.19.1 0,319 0,603
7 0.349 24,100 29.5 0.175 0.301 .,5442

44 0.344 23,700) 28.7 0.16? 0.292 0.571
9 0.331 22,800 26.6 0.152 04.271 0.563

10 0.314 21,600 23.9 0.135 0.243 0.553

11 0.312 21,500 23.6 0.143 0.241 0.595
12 0.272 18,800 17.9 n.114 0.183 0.623
13 0.258 17,800O 16.1 0.097 0.164 0.590

14 0.215 14,8400 11.2 0.077 0.114 0.674
15 0.157 10,800 6.0 0.032 0.061 0.519

16 0.156 10),800 5.9 0.031 0.060 U.507

17 0.156 10.800 5.9 0.036 0.060 0.595
18 0.153 10,600 5.6 0.045 0,058 0.786
144s 0.123 8,500 3.7 0.024 0.038 0.625
20 0.121 8,300 3.6 0.025 0.02s6 0.676

Value of Maison's ratio Is taken to be v =0.3.
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FXPERIMENTAL RESULTS r,8 CIAMrIv i'LAT.S

Mat r181 NO. K 2 t2 th

_________V ________ Ij dvn.

Al. 5061-T61 1 0. 26(4 55.00 0.264 01.491 Q. 536

3 0. 238 I 16. 43.6 0 229 ".389 U. 569
4 0.228 15,70) 39 9 0.221 I 0.357 [.819
5 0.229 15,700 q a 0. 21- C 0.35 a 0.610

6 0.21,1 14,600 34.4 0707 0.307 0.674
7 0.232 14,000 31.4 2.185 0.2%1 0.658

8 0.196 13 500 29. 4 0.161 n.263 U.688

9 0.180 "2,400 24.7 0.154 0.220 0.700
0 (l17o 1,70o 22.2 0.144 o.118 j 0.727

11 0,162 11.200 20.1 0.134 0.180 0.744

12 0.144 10,000 16.0 0.112 0.143 0.183
13 0:144 9,900 15.8 0.108 0.141 0.769

0.-- 0/0 -
C.3

0.2 -

o / 0 AL. 6061-T6
0.1 1 A C.R 1018 STEEL

0 0.2 0.4 0.6 0.8 1.0 1.2
12 alemMo

FIG. 3.21 CENTRAL DEFL.ECTION-IMPULSE RELATIONSHIP
FOR SIMPLY SUPPORTED PLATES
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FIG. 3.23 DEFLECTION CURVES FOR SIMPLY SUPPORTED
PLATES - Al. 6061-T6
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Measurements of the plate thickness indicate thinning

at the centers and thickening at the supports. In the series of simply

supported aluminum plates, the extent of thinning increased gradually

with increasing impulse to 8% at the maximum impulse. Thickening in-

creased similarly to 6%. In the series of simply supported steel plates,

the corresponding maximum values were 4% and 4%. In the series of

clamped aluminum plates, the maximum values were 9% and less than 1%.

The thickness changes are indications of membrane forces increasing with

central deflection.

The main observation to be made is that within certain

limits to be described, the rigid-plastic theory does serve as a reason-

able first-order theory. The lower limit of the useful range is deter-

mined by the energy ratio R, which gives a measure of elastic effects.

In the present series of experiments, minimum values of R are 9 and 4

for the simply supported aluminum and steel plates, and R = 16 for the

clamped aluminum plates. At these values correlation is at its best,

although for steel a leveling off of correlation is detectable between

R = I and R = 4 (unfortunately the scatter is worst in this region).

A reasonable guide for the lower limit of the range of applicability of

the theory may be taken as R = 4. For the upper limit a suitable

criterio,, is a maximum value for the ratio of the theoretical central

deflectio. to the plate radius (a measure of the "cone angle"), suggested

here as th/a t 1/3. Whenever 6th < 1/3 Tables 3.3 and 3.4 show that

6ex/6th > 0.5.

It is interesting to compare Figs. 3.21 and 3.22 with

Figs. 2.28 and 2.29 for beams. The main difference is that when the

central deflections become large (say, th/a > 1/3) correlation deterio-

rates rapidly for plates but remains satisfactory for beams. This is

due to the increasing significance with deflection of the plate membrane

forces.

Figures 3.23 and 3.24 indicate a satisfactory prediction

of the deflected shape of a simply supported plate except at the center

where a discontinuity of slope is predicted. Although no theoretical
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shape is readily available for clamped plates, the theory does predict

a discontinuity of slope at the support due to the actio: of a stationary

plastic hinge circle. The experimental evidence of a "discontinuity" of

slope at the support (that is, a very rapid change of slope) is given

by Figs. 3.23 and 3.24.

t

I__ _ _ _ _ ___



REFERENCES

1. Hopkins, H. .. and W. Prager, "The Load Carrying CapacitiL", of
Circular Plates," J. Mech. and Phys. of Solids 2, 1-13, 153.

2. Hopkins, H. G. and W. Prager, "On the Dynamics of Plastic Circular
Plates," Zeitzchrift fur Angewandte Mathematik and Physik 5,
317-330, 1954.

3. Florence, A. L., "Clamped Circular Rigid-Plastic Plates under
Central Blast Loading," Int. Journ. Solids and Structures 2,
S19-335, 1966.

4. Wan=,, A. J., "The Permanent Deflection of a Plastic Plate under
Blast Loading," J. Appl. Mech. 22, 375-376, 1955.

5. Wang, A. J. and H. G. Hopkins, "On the Plastic Deformation of
Built-in Circular Plates under Imr.ulsive Loading," J Mech. and
Phys. of Solids 3, 22-37, 1954.

6. Shapiro, G. S., "On a Rigid-Plastic Annular Plate under Impulse
Load," Prikl. Mat. Mekh. 23, 172-175, 1959.

7. Florence, A. L., "Annular Plate under a Transverse Line Impulse,"
AIAA Journ. 3, 1726-1732, 1965.

8. Florence, A. L., "Circular Plate under a Uniformly Distributed
Impulse," Int. Journ. Solids and Structures 2, 37-47, 1966.

9. Hodge, P. G., Jr., Plastic Analysis of Structures, McGrUw-Hill
Book Co., Inc., New York, 1959.

10. Hodge, P. G., Jr., Limit Analysis of Rotationally Symwetric Plates
and Shells, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963.

11. Florence, A. L., "Clamped Circular Rigid-Plastic Plates under Bla.3t
Loading," J. Appl. Mech. 33, 256-260, 1966.

12. Florence, A. L., "Traveling Force on a Timoshenko Beam," J. Appl.
Mech. 32, 351-358, 1965.

144

}C



CHAPTER 4

DYNAMIC ELASTIC AND PLASTIC PULSE BUCKLING OF BARS

by

H. E. Lindberg

4.1 Introduction

For about a century it has been recognized that structures,

particularly those made from high-strength alloys, must be designed

to resist static buckling from high compressive stresses. However,

buckling from dynamic loads has received serious attention only since

World War II, and only within the last 10 years has a basic understanding

of buckling under explosive loads been developed. This development

followed closely the introduction of high-speed electronic and photo-

graphic instrumentation to observe such buckling, which can occur in a

small fraction of a millisecond. The present chapter gives the funda-

mentals of dynamic buckling using a simple pinned bar to give the theory

in its simplest possible form. In Chapter 5 this theory is applied to

cylindrical shells under radial pressure pulses.

Physical evidence of dynamic buckling can take on very different

aspects, depending upon the nature of the applied load. This is illus-

trated in Fig. 4.1, which shows two identical simple columns subjected

to axial loads with differing time histories. In the column on the left

the peak load is less than the static buckling load, but it oscillates

at a critical frequency that induces large growth of lateral vibrations.

The critical relation between the load frequency 2 and the natural

frequency w of the bar is 0 = 2w . In the column on the right, the

load is much greater than the static buckling load but it is applied

for only a short time. Under such a load the bar deforms mnontonically

into a very high order pattern with no oscillations. The critical con-

dition in this case is a duration of load application sufficiently long

to produce plastic bending strains or excessively large displacements.
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FIG. 4.1 VIBRATION BUCKLING AND PULSE BUCKLING

In the mathematical formulation of both of these problems, the

underlying feature is the appearance of a parameter involving the load

that multiplies the lateral displacement. Thus, dynamic buckling can

be defined as dynamic response of structural systems induced by time-

varying parametric loading. Both problems in Fig. 4.1 fall within this

definition. However, problems involving parametric oscillations, as in

the bar on the left, have a somewhat longer historical background than

problems involving monotonic parametric growth, as in the bar on the

right. Consequently, the terms dynamic buckling and dynamic stability

were first associated with oscillation problems. This association was

accentuated by the appearance in 1956 of a book by V. V. Bolotin in

which he defined "the theory of the dynamic stability of elastic systems

as the study of vibrations induced by pulsating parametric loading."

However, as more work is done on buckling from single pulses, the term

dynamic buckling is taking on the more general definition adopted here.

Nevertheless, it is still useful to divide dynamic buckling

problems into two groups, corresponding to the two examples in Fig. 4.1,

because to a large extent occillation problems are associated with
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conventional vibration analysis, while single pulse problems are asso-

ciated with impact and explosive loads. These two types of buckling can

therefore be appropriately called vibration buckling and pulse buckling.

Chapters 4 and 5 are concerned almost entirely with pulse buckling, A

detailed accouat of vibration buckling is given in the book by Bolotin.

Since pulse buckling is so very different from static buckling,

before the detailed theory is given it is illustrative to examine the

forms of buckling to be considered. Several structural elements buckled

from pulse loads are shown in Fig. 4.2. A common feature in all these

examples is that the buckling is in very high order modes, This is a

consequence of the extremely high membrane stresses induced by intense

pulse loads. The first three examples (Figs. 4.2a, b, c) are of very

thin structures in which plastic bending has taken place in a pattern

established by initial dynamic elastic buckling motion. The thin strip

in Fig. 4.2a was buckled from a 40,000-psi elastic stress wave eminating

from a jaw gripping the left end. The thin cylinder (radius-to-thickness

ratio a/h = 480) in Fig. 4.2b was rolled from sheet metal of the same

thickness as the strip in Fig, 4.2a and was subjected to an impulsive

radial pressure which produced a hoop stress approximately equal to the

compressive stress applied to the thin strip. The wavelengths of the

buckles are about the sae as in the buckled strip. These lengths

correspond to harmonics having from 50 to 100 waves around the circum-

ference. Figure 4.2c shows a similar thin cylinder (a/h = 550) photo-

graphed while buckling from an elastic impact at the lower end which

gave an axial stress 1.5 times the classical static buckling stress.

The axial wavelengths of the buckles are an order of magnitude smaller

than those in large deflection static buckling, and the circumferential-

to-axial aspect ratio of the buckles near the impacted end averages

about 3:1 compared to about 1:1 in static buckling.

The other three examples of buckling in Fig. 4.2 show the forms

which result when the compressive stress is beyond the yield stress and

buckling takes place during plastic flow. The solid aluminum rod in

Fig. 4.2d was impacted at its left end at a velocity of about 500 ft/sec.
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(d))

FIG. 4.2 EXAMPLES OF DYNAMIC PULSE BUCKLING

148



The buckles here are much shorter in comparison to the !at.-ral dirension

of the bar than thcse in the elasttcally buckled strip in Fig. 4.2a.

This is be'zausp drr!§-g ,latic flow resistance to flexure is governed by

the tangent modulus. wnich is of the order of 100 tinies smaller than

the elastic modulus. Figuie 4.2e shows a relatively tik (a/h ; 5)

cylindrical shell buckled in an axisymmetric pattern. again during

dynamic axial plastic flow. The hemispherical shell in Fig. 4.2f was

subjected to an intense impulsive external pressure causing dynamic

plastic flow in two dimensions. Over the top of the hemisphere the

shell is buckled into a dimpled pattern from the combined flcw. Around

the edges, where the flow is similar to that in a cylindrical shell,

under radial impulse, a one-dimensional wave pattern again appears.

These examples demonstrate that dynamic forms of buckling can

be very different from static forms. The corresponding theories must

therefore reveal the mode of buckling in addition to predicting the

pulse amplitude and impulse that produce buckling. The theories de-

veloped in the following pages are motivated by experimental observa-

'ions and are compared to experimental results. Simply supported bars

are treated first in order to give the essential concepts in their

simplest form. To relate the dynamic and static problems, stLtic elastic

and plastic theories are sumarized before the dynamic theory is given.

In Chapter 5 the dynamic coAcepts are applied to cylindrical shells under

radial pressure pulses.

4.2 Equations o Motion

The simplest problem in elastic buckling is that oi a simply

suppcrted uniform bar under axial conpression, as in Fig. 4.3. The

bar is of length L and supports an azial compressive force P. its

cross section is uniform with uxial distance x , measured from one end.
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Deflection y is taken positive downward, and is measured from an un-

Atressed initial delection yo(x) . An element of length dx between

two cross rections taken normal to the original (undeflected) axis of

the beazi is shown in Fig. 4.3b. The shearing force V and bending

momcn M acting on the sides of the element are taken positive in

the directions showr. The inertia force acting on the element is

.oA( 2y/t 2)dx, where 0 is density of the bar, A is the area of the

cross section, Lnd t is time.

_L

0 -X P

- dx

ly

(a)

PA d22 d.
dp2

M+dM

P

a. y +Y) !I

FIG. 4.2 BAR NOMENCLATURE AND ELEMENT OF LENGTH
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The basic equations for the analysis of bar buckling are derived

from dynamic equilibrium of the element in Fig. 4.3b and the moment-

curvature relation for the bar. Summing forces in the y direction

gives

-V -pA L dx + (V + dv) =0
6t

or

p_ dx (4.1)

Taking moments about point n and neglecting rotary inertia of the

element results in

Al - PA dx + (V + dV)dx - (M + diM) + P a (y + y)dx = 06t 2

Terms of second order are neglected, reducing this equation to

V -P - (y + y) (4.2)

If the effects of shear deformations and shortening of the beam

axis are neglected, the curvature of the bar axis is related to the

bending moment by

e -M (4.3)

ax2

in which E is Young's modulus and I is the moment of inertia of the

bar section, assumed symmetric about the xy plane (otherwise the bar

would twist in addition to bending). The differential equation for the

deflection of the beam axis is found by differentiating (4.2) and then
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eliminating V by means of (4.1) and M by means of (4.3) twice

differentiated. The result is

EI + P - (y + y) + oA 0 (4.4)
x 4 x 2  0-

4.3 Static Elastic Buckling of a Bar

For static buckling, the inertia term is neglected and (4.4)

becomes

2

EI +Pd2 y  
-P d y

dx dx
2  dx

2

2
or, substituting k = P/El,

2
d4y k2  k 2 d YO (4.5)

4 2 2(45
dx dx dx

If we consider first a bar with no initial deflection, we need only the

general solution to the homogeneous equation (with y(x) = 0). This

solution is

y =A sin kx + B cos kx + Cx + D (4.6)

For a simply supported bar the deflection and bending moment are zero at

the ends and the boundary conditions are

2at x= and x=L (4.7)

dx

Applying these to (4.6) gives

B =C=D=O , sin kL= 0

and therefore

kL = nT
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where n is an Integer. Using the definition of k , this becomes an

equation for P.

2
P I n 2 (4.8)

n 2
L

Thus, with no initial deflection, only discrete values of P give a

nontrivial solution, and the magnitude A of the deflection is undeter-

mined.

Before discussing these solutions further, let us treat the bar

having an initial shape yo(x) . The solution for the perfectly straight

bar suggests that yo(x) should be expressed by the Fourier sine series

Y(x) = a sin- -- (4.9)n=l

The coefficients in this series are found from

L

a = 2 Yo(x) sin dx (4.10)

0

Substituting (4.9) into (4.5) gives the following differential equation

for the imperfect bar.

2 22
d y k2 d2y = 2 n TTn

£.+~ 2 k ~ l at sin nTT (4.11)
dx4  dx2  L n  L

To find a particular solution, we take

yp = A sin (4.12)

n=1 

( . 2

When this is substituted into (4.11), the coefficients A are found
n

to be

2
-ka -Pan n

A = -- (4.13)

k -nTr/L n
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The complete solution is then

S n n 
-

y A sin kx + B cos kx + Cx + D - P p sin T- (4.14)
n=l n

Since P , and hence k , is arbitrary, application of the boundary con-

ditions (4.7) gives A B C D 0 and the general solution is

simply

y n siny = - i - .(4.15)n 1 P - P n

From this solution we see that the deflection becomes arbitrarily

large as P approaches the critical loads P given by (4.8). How-
n

ever, the dynamic solution given in subsequent sections shows that the

motion is unstable for any load greater than the lowest critical load

Pi which, from (4.8), is g.ven by

2
P TT E (4.16)

1 2L

In the neighborhood of P = P the first term dominates the deflection.

Neglecting the higher terms, the midspan deflection for P < P1  is given

approximately by

- Pa 1

S(L/2) --- (4.17)
P - P 1

Figure 4.4a gives a plot of deflection 6 from (4.17) versus end load
2P . On the basis of this formula, Southwell suggested that the critical

load P could be extracted from test data by plotting 6/P versus 6 .
1

In this form, (4.17) becomes

_ (6 + a (4.18)
P PI

which gives the straight line in Fig. 4.4b. The inverse of the slope

gives the critical load P and the 6 intercept gives the coefficienti1

a1 as shown.
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(a) (b)

FIG. 4.4 FORCE-DEFLECTION CURVE AND SOUTHWELL PLOT
FOR SMALL DEFLECTION ELASTIC BUCKLING

If the bar is treated as initially perfectly straight but sub-

jected to an eccentrically placed load, the Southwell procedure can

still be used to determine the critical load. Consider, for example,

that the load is displaced from the centroidal axis by an amount e

equal at both ends. This can be treated as a bar having an initial dis-

placement given by

Yo(x) x 0, L

(4.19)

= 0 x=0, L

Substituting this displacement into (4.10), the coefficient of the first

term in its Fourier expansion is

a1  = (4.20)

Thus, for P in the neighborhood of P the Southwell plot is as
1

described previously, and the 6 intercept is now 4c/rr If the bar
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is considered to have both an initial shape and some eccentricity, (4.18)

becomes

P 1 + (l+ (4.21)

For real columns, in which borh a and c are small and

difficult to measure, there is therefore no wa\ of telling in a South-

well plot how much of the deflection is caused '% load eccentricity and

how -uch is caused by an initial deflection. I:n e'periments run near3-5

the turn of the century, it was found that the xnerimental buckling

deflections could be calculated, on the averrge, uL-ing values of equi-

valent eccentricity given by

e = 0.06 r 2/c (4.22)

where r 2/c is the core radius of the cross section, r being the n

radius of gyration and c being the distance from th: elartic axis to

the outermost fiber. For a rectangular bar of depth h , this gives

c = 0.01 h. In long columns, it is reasonable to assume that initial

imperfections in shape become more important and these can be expected

to depend on the length of the column. On this basis, Salmon found

that, although equivalent imperfections from a large collection of

experimental results scattered by an order of magnitude at any given

length, both the average amplitude of the imperfections and the range

of amplitudes increased in proportion to the length of the bars. For

the longer columns, almost all imperfections were in the band

a1
0.0001 < < 0.001 (4.23)

Several authors have proposed that imperfections depending on

both the core radius and the column lengt. can be expected to be present.

For short columns, these calculations take into account plastic defor-
mation, discussed in the next section.
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They suggest that a conservative estimate for an equivalent deflection

including both types of imperfections can be taken as

a 0.150 (4.24)

In the dynamic problems in subsequent sections, we will see that the

range of normalized imperfections found in static buckling give reason-

ably good agreement with values observed in dynamic buckling.

4.4 Static Plastic Buckling of Bars

If we consider a sequence of simply supported bars of fixed

cross section but with decreasing length, the maximum load each bar can

sustain before elastic buckling, from (4.16), increases as P1

-r EI/L 2 . The corresponding stress is

S ?E(4.25)

where the slenderness ratio L/r is the ratio between the bar length

and the radius of gyration of the cross section. As this ratio becomes

smaller, the compressive buckling stress from (4.25) increases and

eventually approaches the yield stress u of the bar material. Thus
y

we would expect plastic effects to become important at slenderness ratios

smaller than about

L TT~/2
= 1 (.6

TT(N_)1/2

where E is the yield strain. For example, 6061-T6 alumiAum has a

yield stress near a = 40,000 psi which, with E = 10 x 106 psi, gives

a yield strain of 0.004. From '4.26), plastic behavior would be ex-

pected to become important in this material for slenderness ratios

smaller than 4'r = 50. For structural steel, = 45,000 psi,
6 y

E = 30 x 10 psi, and therefore C. = 0.0015, and so plastic effects

must be considered for slenderness ratios as large as L/r = 80.

Generally speaking, bars or columns with L/r > 100 are called slender
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columns and bucklirng is predicted quite well by the elastic theory.

Columns with L/r < 50 are called short columns, and plastic effects

must generally be considered.

In addition to reducing the load that the bar could otherwise

carry, plastic deformations change the basic character of the load-

deflection curve. This is illustrated in Fig. 4.5, which gives load-

deflection curves (in terms of

average stress across the bar)
__ F I I V-1 I I I

43 A e0 calculated for a simply supported

4e 0.OOIh steel column having several values
427

e0.002h of load eccentricity. In contrast
41

to the monotonic increase in load
r with deflection typical of elastic

% 39
.0005 c buckling (Fig. 4.4), the plastic

e-: O.O05tb38 -- buckling curves exhibit a maximum

37 - value of load. A further increase

36. in deflection is accompanied by a

decrease in load. Thus, there is
35

3a range of loads below the maximum

0 0.02 0.04 0.06 0.08 0.10 which have two equilibrium deflec-

h - tions, the smaller one being stable

and the larger one unstable. Near
FIG. 4.5 COMPRESSIVE STRESS-DEFLECTION

CURVES FOR PLASTIC BUCKLING the maximum, it is possible for
small disturbances to cause the

deflection to move from the stable

to the unstable branch and hence to still larger displacements. Such
I

sudden jumps in displacement are actually observed in plastil 'buckling

experiments and account for the wide scatter in observed plastic buckling

loads compared to those in elastic buckling. Figure 4.5 shows that small

changes in imperfections, represented here by load eccentricity, can

cause significant changes in the critical load.

To develop a theory for plastic buckling, we must return to the

relationship between bending moment and curvature and examine the in-

fluence of axial force and plastic strains on this relationship. As in
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elastic buckling, plane cross sections are assumed to remain plane as

the bar bends so that axial strains vary linearly across the bar. An

element of bar under this assumption with its neutral axis bent to a

radius of curvature p is shown in Fig. 4.6. In the absence of com-

pressive forces, the strain at a

fiber located a distance z from

the neutral axis is

-- (4.27)

M-b- If, in addition to the bending

fT moment M which produces this
M -t curvature, the section also sus-

tains an axial compressive force
P , each fiber is additionally

compressed so that the total

t FIG. 4.6 ELEMENT OF FLEXED BAR strain is

S -- + e (4.28)
0 c

The res-ulting stress distribution across the section is given in

Fig. 4.7, in which it is assumed that the stress-strain curve is the

same as in a simple tension-compression test.

In the following, let us consider a simple rectangular bar of

depth h and width b . To find the relation between the strain quan-

tities e and A = h/p and the loads P and M , the stress distri-

bution across the section must be integrated. The compressive load P

is

h/2

P = - b f dz (4.29)

-h/2

7
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FIG. 4.7 STRESS DISTRIBUTION UNDER PLASTIC THRUST

AND FLEXURE

Since o is known as a function of strain e, it is convenient to change

the variable of integration in (4.29), using (4.28) in the form

z p( - e ) , dz = pde (4.30)C

In ters of strain, (4.29) is then

P bp 2 ode bh 2 - de (4.31)

This integral represents the net area under the shaded portion of the

stress-strain curve in Fig. 4.7, multiplied by an appropriate quantity

to give total force, positive when compressive.
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The b(-nding monent about the ce. )idal axis is

h/2

M = b f TYdy (4.32)

-h/2

which, using (4.3C) ad = h/r and I = bh3 /12, becomes

2 2 /2

M = bp 2  ( - c)de =2-f ( - eo)adE (4.33)

f 0 0

This integral is the first moment of the shaded area of the stress-strain

diagram (Fig. 4.7) about the vertical dotted axis. Equation (4.33) can

be represented in the forv.

E 2
- dx- (4.34)

P dx

where

= 12 f, - eo)Ode (4.35)

if the material is elastic, then a = EC and (4.35) gives E'= E so

tnat the moment-curvature relation (4.34) reduces to the elastic form

given in (4.3).

Load deflection curves such as those in Fig. 4.5 are generated

using the load-strain relations just developed. This must be done

numerically, because even for the simplest nonlinear stress-strain law

no analytical expressions can be written to allow direct calculaticn of

deflection for a given load. Instead, the bar is broken up into a num-

ber of longitudinal segments of length &x. Values for c and e2 at

the center of the bar are chosen and froin these P, M, and the radius of

curvature p are calculated. Since P and M are known, the sum 5

of the central deflection plus eccentricity is calculated from 60 -

6 + c M/P. Then, assuming the element Lx is a circular arc of radius

p , the displacement and moment at the next element toward the support
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are calculated. These are used, with a curve of N1 vs. h/: at constant

P (generated using (4.31) and (4.33)), to calculate n for the next

element. Proceeding in this way to the pinned support, the total de-

flection 6 between the center of the bar and the support is calculated.

Finally, the eccentricity corresponding to the originally assumed i

and E2 at the center of the bar is e - 5. This procedure is re-

peated for many values of E: and un+il curves can be drawn of P

vs. 6 for various c as in Fig. 4.5.

Bounds for the maximum nossible buckling load for a perfectly

straight bar having no load eccentricity (corresponding to point A il

Fig. 4.5) can be obtained very simply. To find these bounds we need be

concerned only with small perturbations in displacement of the perfectly

straight bar under thrust. It is assumed that up to the point of buck-

ling the increasing stress is uniform throughout the section. The upper

bound is found by assuming the load is constant as the influence of a

flexura] perturbation is examined. The lower bound is found by assuming

that the load continuously increases as the flexural perturbation is

applied. Arguments that these procedures yield upper and lower bo[inds
8%

have been given by Shanley.8

If we treat the load as constant as the perturbation in flexure

is allowed, the small bending stresses, superimposed on the direct

stresses from the compressive load, are distributed through the cross

section as depicted in Fig. 4.8b. At the fiber on the concave side of

the bar the compressive strain increases and moves out along the loading

curve from point A to point B in Fig. 4.8a. For small strain increments,

this increase in compressive stress can be associated with the tangent

modulus F.. In the fiber on the convex side of the bar, the strain in-

crement is tensile and is accompanied by unloading, from point A to

point C in Fig. 4.8a, along the elastic modulus E. Since the compres-

sive load is assumed constant, the net force from the flexural stress

distribution in Fig. 4.8b must be zero. For the rectangular cross sec-

tion being considered here, this condition gives
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E h = Eh 2  (4.36)

In terms of the total depth h h + h2 we then obtain

1 2.,

Taking the first moment of the area in Fig. 4.8b, the bending moment M

for the rectangular cross section of width b is

Ehl hi 2 h3 4E E1 h2 b h t (4.38)
p 2 3 12p ('+ t2

This equation is analogous to Eq. (4,3) for elastic bending (noting that
2 2

1/p - d y/dx ) with the elastic modulus E being replaced by a reduced

modulus E given by

4E E

r

___L __ __

F ,, h, h -,

C

(a) (b)

FIG. 4.8 MOMENT-PRODUCING STRESSES FOR FLEXURE UNDER
CONSTANT THRUST

1
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Thus, in place of (4.3), the moment curvature relation is now

M r -E I (4.40)
r dx2

The remaining equations are the same as in elastic buckling, so that for

a simply supported bar the critical load is given by (4.16) with F

replaced by Er:

2

r 2 (4.41)r 2
L

This theory is called the von Karman reduced modulus theory. From the

derivation of E it can be seen that the reduced modulus depends notr

only on the material properties but also on the shape of the cross

section. For example, in an idealized I beam, in which it is assumed

that one-half of the cross section is concentrated in each flange, the

reduced modulus is

2E EtE = -+ (4.42)
r E+ Et

If, instead of taking the load to be constant as the bar flexes,

it is assumed that the load is steadily increased as in a testing machine,

a lower effective modulus is obtained. In the initial stages of buckling

the increase in load produces a strain which overrides the decrease in

strain on the convex side of the column. Thus all points throughout the

cross section lie on the loading stress-strain curve, as depicted in

Fig. 4.9a. The state at the centroidal axis is at point A, and points B

and C, corresponding to the outer fibers on the concave and convex sides

of the column, lead and lag point A because of the flexure. All three

points move out along the stress-strain curve as the motion proceeds.

In this case the effective modulus is simply Et  and the buckling load

for a simply supported column of any cross section is

2
7 E I

tPt (4.43)
Pt 2

L
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FIG. 4.9 MOMENT-PRODUCING STRESSES FOR FLEXURE UNDER
INCREASING THRUST

This theory is called the Shanley tangent modulus theory. Since Et

is always smaller than E, Shanley proposed that it be used as a con-

servative estimate for plastic buckling. Critical loads calculated

using Et agree well with data from experiments run on circular and

rectangular aluminumbars9 ,10 with L/r ranging from 20 to 100. Since

for many engineering metals both Er  and Et decrease rapidly with

r very little increase in stress, the difference in critical loads from
the two theories is usually small.

4.5 Dynamic Elastic Buckling of a Simply Supported Bar

The static buckling considered in the preceding sections was

concerned with the steady load that can be safely carried by a column

or bar. If, instead, a load is suddenly applied and then removed, as

in striking a nail, the maximum load can far exceed the static buckling

load without inducing objectionably large strains or deflections. On

the other hand, oscillatory forces such as from reciprocating or un-

balanced machinery, even while producing loads smaller than the static

buckling load, can nevertheless produce objectionably large deflections

if the frequency of oscillation bears a critical relation to the natural

frequency of the column. Both of these problems involve dynamic buckling.
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As discussed in the introduction, the impact of a nail is a pulse

buckling problem, whereas a column under an oscillatory load is a

vibration buckling problem. In the remainder of this chapter we will

examine several examples of elastic and plastic pulse buckling of bars.

In the pulse problem loads can be applied with no appreciable

buckling right up to and beyond the elastic limit, provided only that

they are applied for a short enough time. Because of this feature in

the dynamic problem, rather than asking for the maximuim load that can

be carried, we specify a load and ask for the response. Knowing how

the buckling grows with time, the maximum duration for which the given

load can safely be applied is then determined. In Chapter 5 this pro-

cedure will be applied to more general problems in which the load varies

continuously with time.

Consider first a simply supported bar under a compressive load

P, uniform throughout its length as shown in Fig. 4.3. The force P

may be much larger than the critical Euler load P but, for the present,

the average compressive stress is assumed to be within the elastic limit.

To keep the bar from buckling during application of the load P, imagine

that it is supported all along its length by lateral constraining blocks.*

Then, at time t = 0, the blocks are suddenly removed and buckling motion

begins. The motion is governed by Eq. (4.4), repeated here.

El + P - (y + yo) + pA 0 (4.44)4x x2  0 2
ax ax a

After dividing through by El, it is convenient to introduce the param-

eters

2 P 2 I 2 Ek=EI r , c =- (4.45)
P

In practice, the load is suddenly communicated to the bar by an axial
stress wave (or waves). Effe,;ts of these waves are small as will be
seen in Settion 4.3.
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The first two parameters have already appeared in the static problem.

The new parameter, appearing because of the dynamic inertia term, is

the wave speed of longitudinal stress waves in the bar. Using these
Yquantities, the equation of motion (4.44) becomes

2

64 2 1 2 2a 0
+ k2 L + _ = 2 - Yo (4.46)

4 2 2 2 2 2

As in the static problem, the boundary conditions of zero mo-

ment and displacement at the ends of the bar give

y= X = 0 at x = 0 and x ='L (4.47)
x

The solution to (4.46) subject to boundary conditions (4.47), as in the

static problem, can be expressed by a Fourier sine series in x. Thus,

we assume a product solution

y(x,t) = q (T)sin x (4.48)

n=l

The initial displacement yo(x) is also expressed in series form by

(xt) A sin (4.49)

n=1

where the coefficients can be found from

L

A= f y(X)sin nr dx (4.50)
n L 0 L

0

Equations (4.48) and (4.49) are now substituted into (4.46) to give the

following equation of motion for the Fourier coefficients qn(t):

4T4 2T22\ l 222 nnk 1 - k2 n
k - Aq  + r2 q k A (4.51)

\L 4  L 2 n r cn L2n
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'hich, rearranging to the more standard form, becomes

2222 22 n
rc n2r n2 12 _ k2) r2k2c2  .n2 A (4.52)

qn + 2 = 2
L 2 L

Ont of the principal points of the theory of dynamic buckling to

be discussed in this volume appears here. The nature of the solutions

to Eq. (4.52) depends upon the sign of the coefficient of qn If

nrV'L < k, this coefficient is negative and the solutions are hyperbolic;

if n-/L > k, this coefficient is positive and the solutions are trigo-

nometric. Thus, if the mode numbers n are sufficiently large,

n > kL/TT, the displacements are trigonometric and therefore bounded.

However, over the lower range of mode numbers, n < kL/7, the hyperbolic

solutions grow exponentially with time and have the potential of greatly

amplifying small initial imperfections. These modes are therefore

called the "buckling modes."

The mode number n = kL/T, separating the trigonometric and

hyperbolic solutions, gives a wavelength corresponding to the wavelength

of static buckling under the given load P; no matter how long the

duration of load application, if n > kL/T the motion remains bounded,

while for any n < kL/7 the motion diverges. To see more clearly this

relation to a static problem, recall first that from Eq. (4.48) the

deflection curve of the bar is a sine wave with n half-waves. For

n = kL/n this curve is given by sin kx. One half-wave of this deflec-

tion curve, corresponding to the buckle shape of a simple pinned Euler

column, therefore occupies a distance from the left support given by

kxst =

0.1

Xst= rV/k (4.53)
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Using the definition k P/El, this relation gives

2
P = E-l (4.54)

x st

This is identical to Eq. (4.16) for the static buckling of an Euler

column of length xst under the load P.

The dynamic equation also demonstrates the statement made in

Section 4.3 that loads greater than P1 i--EI/L 2 give unstable motion.

This follows from the observation already made that the motion is un-

stable if the coefficient of qn in (4.52) is negative, that is, if

22

2 < 0 (4.55)
L

2
Since k = P/El is positive, this quantity is most negative for n = 1.

Using n 1 in Eq. (4.55), the left-hand side is negative for all

P > 7 EI/L 2 and the motion is unstable as previously stated.

2 2
For the dynamic problems of present interest here, P > > r EI/L

and many modes are unstable. Thus the mode numbers of the buckling modes

are very high and the wavelengths of the buckling are so short that the

total length of the bar becomes relatively unimportant. In fact, in ex-

periments to be described later, dynamic buckling is produced by impact

at one end of the bar and, because of the finite speed of axial wave

propagation, buckling occurs before any signal is received from the op-

posite end. In this problem the total length of the bar has no signifi-

c-nce at al].. We should therefore seek a characteristic length other

than the length of the bar. Because the nature of the motion changes at

the static Euler wavelength xst -TT/k, it is quite natural to use 1/k

a6 the characteristic length in the x-direction, along the bar. Similarly,

it is natural to normalize lateral deflections with respect to the radius

gyration. r of the cross section. The ratio between these lengths is a

significant parameter and will be denoted by s:
2  r2k2 r2P P

s r k = (4.56)
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Thus the wavelength of the buckling varies inversely with the square root

of the strain G due to the compressive load P. This will be discussed

more fully later.

To incorporate these lengths into the equation of motion, we

introduce the nondimensional variables

2
v sx s ctW kx (4.57)
r rr

Using these, Eq. (4.44) becomes

w + w + w w (4.58)
0

where primes indicate differentiation with respect to and dots

differentiation with respect to T . Boundary conditions (4.47) become

w=w'w =0 at =0 and (4.59)
r

and the product form of solution is now expressed by

w(Eg,T) = g (T) sin (4.60)

n=l

Similarly, the initial displacements are

wo( ) E a sin n(
0 n=l (

where

an 2 f wo() sin d (4.62)

0

A wave number r is introduced by

nr T (4.63)

and finally (4.60) and (4.61) are substituted into (4.58) to give the
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eqnLations of motion for the Fourier coefficients g (T):
n

+ 12 (I2 _ ) )2 an(.4

This equation corresponds to (4.52); in the new notation the transition

from hyperbolic to trigonometric solutions occurs at .= .

The general solution to (4.64) is

a n
gn(T) = Cn cosh p n + Dn sinh pn 2 fo'- n < 1

(4.65)
a

gn(T) = Ca cos pn' + Dn sinpn- n - for - > I

where n(i -

Substituting these into (4.60), the general solution for the lateral dis-

placement is

w(", T) = = Cn cosh pn
T + D sinh p I sin

(4.66)

S Cos pn + D sin pn 7  sin: ~n=N+ln1

where N is the largest integer for which < 1.

The bar is assumed to be initially at rest. Also, recall that

w is measured from the initial displacement w so that the initial0

conditions are

w( ,O) = 0(gO) = 0 (4.67)
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2
Applying these to (4.66) yields D - 0 and C a a /1 - 2). TheLi fl ii

final solution is then

a 1osh
(,2= E 2 [ - J sJn (4.68)n=l 1 - r. I Co

in which the hyperbolic form is taken for r. < 1 and the trigonometric

form for ? > 1.

Equation (4.68) shows quantitatively the exponential growth of

the buckling terms. The ratio between the Fourier coefficients a otn

the initial displacement and the coefficients gn(7) in the buckling

bar will be called the amplification function and in this problem is

given by

gn )  i cosh

S(T) . . . [1 (4.69)
n an i1 Lcos Pn

A plot of this function, treating E as a continuous variable, is given

in Fig. 4.10 for several values of nondimensional time T. It is apparent

that as time increases, a narrow band of wavelengths is amplified having

wave numbers centered at somewhat less than r = 1. To find the wave

number of the most amplified mode for late times, we differentiate (4.69)

for < 1.

25 I I
T--6

20

15

IC

10

0 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
77

FIG. 4.10 AMPLIFICATION FUNCTION
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dn - (1 - 2-2) i2 2( 2 2 P T sinh pn T + (cosh p - )
dr 2r (1 - i (4.70)

Setting this to zero yields

I I cosh pnT - 1
2 2 p n7 sinh p n (4.71)

For times sufficiently large that significant amplification has occurred,

cosh pn T - 1 -s-inh pn7 and (4.71) is approximated by

PTr = - (4.72)

To a lessor approximation, for large r such that pn > > 1, the wave

rumber of the most amplified mode is therefore

1
7 -1 c 0.707 (4.73)

Using this to obtain an estimate for pr (1 - 2 )1/2 a

better estimate for r..r, from (4.72) is

cr F? j(4.74)

For example, at T = 6, Eq. (4.74) gives 1r 0.866, which is about

22% larger than the value in (4.73). At T = 10, the estimate in (4.73)

is only about 12% low. Thus, for practical purposes, the wavenimber of

the most amplified mode can be taken as 1 = I/ This will be called

the "p1referred" mode of buckling. The corresponding wavelength is found

from

r p : 2t , or - = 2i47 (4.75)

in dimensional units, from (4.57), thip length is

r - r= 8. 8J r/JT (4.76)

p s p
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A graph of t)-A aximum amplification plotted against 7 is

given in Fig. 4.11. yond - = 4, grcwth is very rapid; at T = 12

initial imperfecticns are amplified by more than 400. These results

suggest that a bar under very high compression will buckle into wave-

lengths near 8.88 rI/' at nondimensional times between 4 and 12.

Better estimates for critical buckling times are given in succeeding

sections.

400

350

300

250

6 m~z 200

50

0

o

0 2 4 6 8  10 12
NORMALIZED TIME, "r

FIG. 4.11 MAXIMUM AMPLIFICATION vs. TIME

4.6 Danamic Elastic Buckling under Eccentric Load

As an example. consider a bar eccentrically loaded as in

Fig. 4,12. For this problem, the initial deflection is taken as

w( ) 6/r 0 "t

(4.77)

w 0
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FIG. 4.12 ECCENTRICALLY LOADED BAR

Expanding into the Fourier sine series

w( ) = a sin (4.78)
n=l

the coefficients are found using formula (4.62), which yields

46a = n odd

n nTr

(4.79)

a = 0 n even
n

From (4.68), thp buckled shape is given by

cosh
Sn -I] sinn=1,3 Lcos (4.80)

To evaluate this sum, recall that

= ; and for n odd, r = .- (4.81)

Then

46 - 46 = 46 1-2 26
nrm r x r- 2r - (4.82)

and (4.80) can be written

: ~, ) = 26 - P I sin ?f AT
) .T n=1,3... r(1 ) caS " 

-[COi

• (4.83)
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If we assume that the bar is very long compared to the wavelengths of

the buckling, A- 4 d-n and can be treated as a continuous variable.

The sum (4.83) can then be replaced by the integral

T) 26 1 cosh i d
rr ( - r 2 [cos n

0 L (4.84)

A plot of the function

r(fl - cos

T2 p -i (4.85)

in the integrand is given in Fig. 4.13 for T = 6. To obtain an approxi-

mate analytical expression for the integral in (4.84), we replace this

curve by the triangle of height A in Fig. 4.13, where A(T) = f(l/4-7, T).

30 -

A

0 .5 ___ [ 0 5 2.0

FIG. 4.13 FOURIER COEFFICIENTS (transform) OF BUCKLED SHAPE

Then 1
20 f0 26A(') . . 2

ThenT) 1 A(T)T sin ndn = ["A- sin n- cos T1. 0

28A(T) (4.86)
-(sin - cos )

This is merely a plausible argument, but the result is correct, as can
be confirmed by using a Fourier integral representation from the start.
Converting from a sum to an integral here can be done because the
function multiplying sin ri in the integrand dies off for large ri such
that there is no difficulty with sin n oscillating in the interval
6r.= 2n/L. For a more rigorous discussion see Ref. 12.
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where

A(,) 1 [cosh ,/2 - 11 (4.87)

The function
1

W() = (sin - cos ) (4.88)

which gives the approximate shape of the buckling bar, is plotted in

Fig. 4.14. The wavelengths between peaks are slightly greater than 2-

near the support and approach 2rT away from the support.

0~) (IT. 6
80 -

FIG. 4.14 APPROXIMATE BUCKLED SHAPE OF BAR UNDER
SUDDENLY APPLIED ECCENTRIC LOAD

This discussion gives an estimate for the buckled shape of a bar

under idealized eccentric thrust, and also shows how the amplitude of the

buckled form grows with time. Specification of a criterion for failure

by dynamic buckling, however, depends on the particular structural pro-

blem at hand. For example, if the bar is a push rod used to measure

rapid displacements, large deflections within the elastic limit could

constitute failure. On the other hand, in a rod used as a hammer, large

displacements are probably not objectionable so loing as the motion re-

mains elastic and the rod returns to its initial shape.

To give a concrete example, let us calculate the duration of

load application required to produce a combined bending-compressive

stress equal to the yield stress. The ma:imum bending strezs occurs at
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point B in Fig. 4.14 where the curvature W'= 0.235 and is a maximum.

In general, the compressive bending stress in the inner fiber, for a

rectangular bar of height h, is

h-2 2 /
2 h .Eh Ehs 2,,

b 1 2 2 2 rw 3 Esw (4.89)
r

Using (4.86) with W'' = - 0.235 and the time variation from (4.87), the

bending stress at B is

b = 3 Es2 2((r .235)=- 0.732 -r a c Io s h ) - 11

(4.90)

where y is the compressive impact stress.c

The threshold of buckling is defined by the total stress

cb + a reaching the yield stress ay . Using ab from (4.90), this

condition gives the following relation between the compressive stress

and the time at which first yield occurs:
F cr

1 + 0.732 [cosh (T - (4.91)

A graph of Tcr versus c /a from (4.91) is given in

Fig. 4.15 for several values of eccentricity 6, with 6 expressed

in terms of depth h of a rectangular bar for later comparison to

experiment. The values chosen range over an order of magnitude, from

6 = 0,00316 h to 6 = 0.0316 h. The mid value 6 0.01 h is a repre-

sentative value found from static experiments, as given by Eq. (4.22).

We shall see that the dynamic buckling experiments in Section 4,8 suggest

that the static data do indeed give equivalent imperfections in the

appropriate range for the dynamic problem.

Also given is a curve of the amplification G (from (4.69)
p

with r = l/ I )required to produce first yield for an eccentricity

6 0.01 h. Similar curves for 6 = 0.00316 h and 6 = 0.0316 h are

omitted for clarity. This curve shows that for small values of impact
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FIG. 4.15 CRITICAL BUCKLING TIMES TO FIRST YIELD
FOR BAR UNDER ECCENTRIC LOAD

stress the amplification must be very laige to produce yield, This

results because the bending contribution must be larger and also be-

cause the wavelength of the buckling is longer. Under these conditions,

depending on the practical application, large buckling deformations way

constitute buckling before the yield stress is reached, thus placing an

upper limit on Tcr. However, with the yield definition of buckling
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here, T cr approaches infinity (as does the length of the bar) as P

approaches zero. At the other end of the curves, as the impact stress

approaches the yield stress, the amplification required to produce first

yield is quite small (less than 10 for o /c = 0.9). Also, in a real
C y

material the yield stress is not sharply defined and, more important,

the tangent modulus begins to fall rapidly as the material yields so

that the elastic modulus in the present buckling formulation is in-

appropriate. Thus,application of the curves in Fig. 4.15 has little

meaning for real materials beyond about a /a 0.9. Buckling in this0 y

range of loads is considered in Section 4.9.

To obtain a physical interpretation of the curves, we observe

that in physical units nondimensional time T corresponds to the im-

pulse of the applied load. Thus, from the definition of T in

Eq. (4.57), this impulse is

Pt = AEr (4.92)

c

and the critical impulse to cause first yield from buckling is

AErI T (4.93)cr c cr

Also, the applied load can be expressed by

P =Aa = Aa ( ) (4.94)

Thus the curves in Fig. 4.15 can be interpreted as giving the combinations

of load amplitude P and load impulse I that produce threshold buck-

ling. Load points above the curves give more severe buckling, while

load points below the curves give no permanent buckling deformations.

We shall see in Chapter 5 that amplitude-impulse curves of this type can

be applied to more complex structures, such as a cylindrical shell under

lateral pressure.
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4.7 Dynamic Elastic Buckling with Random Imperfections

Another form of imperfection, more uniquely concerned with the

dynamic problem, is suggested by experiments to be described later in

which rubber strips were buckled over a wide range of dynamic thrusts.

it was found that the strips buckled into wavelengths which varied ran-

domly at each thrust, with a mean and standard deviation both inversely

proportional to the square root of the thrust as suggested by Eq. (4.76).

These results are consistent with the assumption that random imperfections

in the strips are amplified by the buckling motion so that the resulting

buckled form, although still random, has statistics determined by the

buckling amplification function given by Eq. (4.69) and in Fig. 4.10.

Several methods of representing a random function have been

13
described by Rice in the study of filtering electrical noise. In the

electrical problem, the function represents the variation of current with

time, I = 1(t). In the buckling problem here, the random function re-

presents the variation of lateral displacement with distance along the

bar, w = w(V). Thus there is an analogy between the two problems, with

electrical current being associated with mechanical displAcement, and

time in the electrical problem being associated with axial position in

the mechanical problem. In the electrical problem, a noise signal I (t),
0

having Fourier components a (w ), is fed into a filter having an atten-
a n

uation characteristic F(n). The output signal is I(t), having Fourier

components A (w) = F(wn)an(wn). In the mechanical problem, the "input"n n n

is the initial displacement wo( ), having Fourier components a n (),

and the "output" is the buckled form w( ), having Fourier components

gn(TI) = G(, r)an(). The mechanical problem contains one added variable,

time - , so that the amplification characteristic also depends on time

as indicated by G (T) in Eq. (4.69), which is denoted here by G(r ,'i).
n

However, at each instant the analogy is quite close. The only difference

is that in the electrical problem the process is stationary, that is,

the currents continue indefinitely in time and the statistics are taken

to be independent of time. In the buckling problem, the boundary con-

ditions at the ends of the bar must be met so that the statistics depend
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also on the position , the variable analogous to time. If the buckle

wavelengths are very short compared to the length of the bar, however,

one would expect that some distance from the end of the bar its effect

diminishes and the assumption of white noise would be acceptable. With

this assumption the two problems are completely analogous and all the

theory a-ailable for the electrical problem can be used here.

It is not necessary to assume that the random imperfections are

stationary; this assumption merely makes the mathematics simpler. Before

this is done, consider a random form of imperfection which does satisfy

the boundary conditions of simple supports at = 0 and F = . These

imperfections are given by

() = a sin rF (4.95)
n=l

where

n TT ,T=

and N will be specified later. The coefficients a are randomU

normal, having mean value zero and standard deviation c(r). The normal

or Gaussian probability distribution is shown in Fig. 4.16. It is fur-

ther assumed that a is constant over all wavenumbers of interest, then

P(On}

.- STA' aRD DEVATION

-4v -3r -24r -a 0 or 2w 30' 4d#
on

FIG. 4.16 ASSUMED NORMAL DISTRIBUTION OF FOURIER
COEFFICIENTS OF INITIAL IMPERFECTIONS
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Fq. (4.95) is called (nonstationary) white noise. in order that w ()0

remain bounded, a must ultimately die off for large r,. Since our

central concern is in the buckled shape w(F) after the Fourier co-

efficients have been amplified by G(.n, T),and Fig. 4.10 s-orws that for

n ; 2 the amplification is very small, harmonics with r. > 2 can safely

be neglected. Thus, in the initial deflections given by (4.95) we merely

specify that (i;) dies off in some unspecified manner for r > 2 and

is constant for 0 < -,< 2. This is the usual assumption justifying the

use of white noise as a filter input.

Since the concept of white noise can be applied only when

associated with a piocess passing a finite band of wavenumbers, we must

defer any examples of random functions until after the amplification

function with its inherent cut-off has been applied to give the buckled

shapes. This function, repeated from Eq. (4.69),is

1 cash ]
G( i 2 p() 1 (4.96)

1- L osj

where 2 1/
p(rT) (1 - 2)-n,/

and the hyperbolic form is taken for T < 1. The buckled form iA given

by

N
w(E) a nG(r , T) sin rP (4.97)

n71

where N is the largest value of a for which T < 2.

With a cutoff characteristic now applied, examples can be given

of the functions characteristic of Duckling from random imperfections.

Figure 4.17 gives two examples of buckled forms calculated from Eq.(4.96)

using a length 0 = 5 , which is 25 complete Euler lengths and very

long compared to the highly amplified wavelength X = 2 'I corres-
p

ponding to r, = 1/ J2. With this choice for t,, N = 100. The pro-

cedure was to select 100 random numbers from a population having a
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FIG. 4.17 TWO EXAMPLES OF BUCKLED FORMS
FROM RANDOM IMPERFECTIONS

Gaussian distribution as in Fig. 4.16, with a = 1. These were then

used as the coefficients a in Eq. (4.96) and the summation was takenn
over 100 modes, corresponding to 0 < . % 2. Higher harmnics would

have had a negligible effect as already mentioned because of the rapid

decrease of G(n ,-) with n for n > 2.

In each example in Fig. 4.17 (i.e., for each set of 100 random

coefficients) the buckled shape is plotted at T = 4 and T = 6. In

both examples, there are more crests (waves) at T* = 4 than at T = 6.

This is a consequence of the shift in the peak of the amplification

function in Fig. 4.10 from Tr ; I at = " to -n 0.8 at T = 6.

At still latei times little further change in the number of crests ould

be expected because, as discussed in Section 4.5, the point of maximum

amplification cannot shift below = I/J21 0.707.
18
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Another feature exhibited in these exnmplf- is typieal of bukl,'d

forms from white noise: although they consist of a randen, a.semblage ol

harmonics, they exhibit a surprisingly regular pattern of waves. The

average wavelength of this pattern depends, of course, on the region of

amplification defined by the amplification function. In fact, an am-

plification function which is squere in shape, constant for r < 2 and

zero for r > 2, would give a wave pattern similar to those shown in

Fig. 4.17. This is exactly the waveform of the imperfection w ()
0

correipanding to the computational procedure used in generating the

curves in Fig. 4.17, but it is not the waveform of the "-xctual" imper-

fection, whose Fourier components do not cut off abruptly at r.= 2.

This is the reason that numerical examples had to be deferred to the

discussion of buckled shapes; any specification of a cut-off wavenumber

already implies filtered noise.

The only way of quantitatively describing buckled shapes such as

in Fig. 4.17 is to give statistics of the features of interest. The most

easily measured quantity in experiments is the buckled wavelengths, so

statistics of wavelengths will be calculated for later comparison to

experiment. Direct calculation of these stat~stics is beyond the means

of currently available analysis except for a special case to be given

later. Instead, the statistics are calculated by the Monte Carlo method;

a large sample of random buckled forms is generated numerically by the

procedure just described and the resulting data are plotted directly in

the form of a probability distribution (histogram) for the feature of

interest. To determine the distribution of wavelengths, 65 random

buckled shapes as in Fig. 4.17 were calculated, each with a different

set of 100 random values for a . Wavelengths in each buckled shape
n

were then measured for 7 = 6 and the histogram in Fig. 4.18a was pre-

pared. The wavelengths were measured between alternate zero crossings

for the first three waves from the support F = 0, not counting the

support as a crossing. Separate 3histograms were also prepared for the

first, second, and third waves individually and no significant differences

were found, indicating that the end support does not seriously affect the
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FIG. 4.18 THEORETICAL AND EXPERIMENTAL HISTOGRAMS
OF BUCKLED WAVELENGTHS

wavelengths even a small distance from the support. Many more computa-

tions would have to be added before this would approximate the proba-

bility distribution, but the main features of the distribution are

apparent. The mean wavelength is . = 7.4, which lies between the

Euler wavelength X. = 2n = 6.28 and the "preferred" wavelength

Xp ; 2r2 = 8.88, as shown. The standard deviation of the wavelength

is O 1.7 and the ratio of standard deviation to mean wavelength is

0 /XM 0.23.

Figure 4.18b gives a histogram prepared from experiments on

about 50 aluminum strips buckled under axial impact as described in

Section 4.8. The mean value of the buckled wavelengths is somewhat

larger than in the theoretical histogram (Xm = 9.5 compared to km =

7.4 in Fig. 4.18a) and the spread in wavelengths is somewhat smaller.

The narrower spread possibly results because part of the initial imper-

fection was in the form of an eccentric impact, which tends to produce

a fixed wavelength as described in Section 4.6. However, the general
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teutures of the observed distribution are adequately represented by th.

white noise theory. More extensive experimental examples are given in

Section 4.8.

An analytical expression for the mean wavelength directly in

terms of the amplification function G(r ,T) can be given if it is

assumed that the buckling displacements are stationary, i.e., if thp end

conditions are neglected as discussed earlier. With this assumption the

initial imperfections can be represented by stationary white noise as

follows:

N
Wo an sin (r + Dn) (4.98)

n=l

This form is similar to Eq. (4.95) except that here the Fourier compo-

nents are added in random phase, with the phase angles Cn uniformly

distributed (with equal probability) in the interval 0 f zn 2n . The

buckled displacements are then

Nwo( ) = an~G( , T)sin(rT + cn (4.99)

n=l

With the standard deviation of a constant, it is reasonably simple to

demonstrate 1 3 that the mean wavelength between alternate zero crossings

in the buckled form is
M1/2

JG2(r , T)d,11

m (T) = 2n o (4.100)

f 2
G
2
(r ,T)d

0

No analytical expression has yet been found for the standard deviation
14

of wavelengths, even with the stationary process assumption (Slepian

discusses the current status of this perennial problem in information

theory).
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For the complicated G(- ,7) in Eq. (4.96), no closed fyrm ex-

plessions for the integrals in Eq. (4.100) were found. lnstvad, the

integrals were evaluated numerically over the region 0 < -r 2 of sig-

nificant amplification for several values of T. The resulting mean

wavelengths arc plotted against T in Fig. 4.19. The mean wavelength

increases monotonically with 7, but in the region > 6 of significant

amplification (see Fig. 4.11) the increase is very small. At T = 6,

Fig. 4.19 gives ) 7.4 which is the same result found in Fig. 4.18m
for buckles satisfying the pinned end conditions. Also plotted is the

wavelength corresponding to the most amplified mode, given approximately

by Eq. (4.74) for large T. The mean and most amplified wavelengths are

very close together and have very nearly the same variation with T.

For large T, both approach the preferred wavelength X = 2r-Tf2.

p

PREFERRED WAVELENGTH kp 2 V /

MEAN WAVELENGTH A
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FIG.4.19 MEAN AND MOST AMPLIFIED WAVELENGTHS vs. TIME
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These results suggest that, if it is rcasonable to assume that

random imperfections are present in a bar as described, then the bar

will buckle over the entire compressed length and the wavelength of the

buckles will be reasonably well characterized by the preferred wavelength

) = 2-2. To calculate a threshold of buckling, one can make the

simplifying assumption that the motion consists of response in only the

preferred wavelength, with an assumed single equivalent imperfection at

this wavelength. This will now be done.

As in static buckling, imperfections can be divided into two

types, one type having amplitudes proportional to the thickness of the

bar and the other having amplitudes proportional to the wavelength of

the buckling. In the following, both types will be considered and it

will be shown that the resulting critical times T for buckling do not

depend strongly upon which type is assumed.

We treat first imperfections having amplitudes proportional to

the buckle wavelength \ and denote the coefficient of this Fourier
p

component by Ap, in physical units. Thins we assume
p

A Lp (4.101)
p p

where L is the preferred half-wavelength (the buckled shape of an
p

Euler column) under the applied load P, corresponding to a half-wavelength

X /2 in nondimensional units. In dimensionless form these quantities,
p
using (4.57), are expressed by

A X sL
a P , - = i , X 27 2' (4.102)
p r 2 r p

and the imperfection is now given by

p s2 (4.103)
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The criterion for buckling is taken as in Section 4.6 on eccentric im-

pact; a critical time Tr is 1(-termined such that the bending stress

plus the direct stress due to P reaches the yield stress.

The bending stress, from Eq. (4.89), is

ab = F3 Es 2 w,' (4.104)

The idealized buckled shape is simply a sine wave, given from Eqs. (4.96)

and (4.97) as

a

w(MT) = [cosh p(rp )'r 1]sin F (4.105)
2 - P

with .p =1/ . Differentiating (4.105) and substituting the result

into (4.104) gives the peak bending stress, at sin p j = 1, ab

P Es 2 . a osh - 1 (4.106)
IP

which, using a from (4.103), becomes
p

0 b~ Tf6' Esosh 2 l1 (4. 107)

2
Finally, we use s %c/E and the buckling criterion a. + oc = (y to

obtain

CTTc cr
cTS[= n8 cosh--- - 1 (4.108)

This equation is the counterpart of Eq. (4.91) for buckling from eccentric

impact. An essential difference is that here the critical curves for

buckling depend not only ,n the imperfection amplitude $ but also on

the yield strain C . This results from taking the imperfections pro-

portional to the buckle wavelengths.

Curves of Tcr versus a y from Eq. (4.108) are given in

Fig. 4.20 for C 0.005, a representative value for engineering metals.
y
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- IMPERFECTIONS PROPORTIONAL

TO BUCKLE WAVELENGTH
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FIG. 4.20 CRITICAL TIMES TO FIRST YIELD
FOR BUCKLING IN "PREFERRED" MODE

Values of 8 are takan from 0.0001 to 0.001, corresponding to the range

of imperfection amplitudes observed in static buckling as given in

Eq. (4.23). The curves are quite similar to those in Fig. 4.15 for

eccentric impact except that the critical times Tcr change more slowly

with c/cy (i.e., the curves are more nearly horizortal for intermediate
cy
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values of -c / ). Also, - does not shoot up to very large values
c y c

until a C /T is very small. These observations can be made by comparingcy
the solid curves (imperfections proportional to wavelength) to the dashed

clirve (which has the same functional form as in the curves for eccentric

impact).

Critical buckling times for imperfections proportional to the

depth cf the bar are found in essentially the same way. The equivalent

imperfection amplitude in the preferred mode is then given by

A = yr (4.109)P

Using this in place of Eq. (4.101) and applying the same procedure as

for imperfections proportional to wavelength, the expression for T

becomes

-l

( = I+ F osh--- - 1 (4.110)

This is exactly the same functional for as found for eccentric impact,

with the constant 0.732 6/r replaced by 3"Y = 4P Ap/r. Again, T

depends only on a C a and not on the magnitude of the yield strain £ .
c y y

As for imperfections proportional to wavelength, we take as

estimates for Y the values found appropriate in static buckling. For

a rectangular bar of depth h , the static empirical formula (4.24) gives

the conservatively large value y = 0.1 r/(h/2) = 0.058. In Fig. 4.20

the dashed curve is a plot of Eq. (4.10) for a somewhat smaller value

(y = 0.0346, corresponding to A /h = 0.01) to give an intermediatep

value for comparison to the solid curves. This comparison shows that

the values of T calculated for either type of imperfections (with

representative values for both taken from static buckling) give very

nearly the same result. More important, we shall see in the next section

that these curves compare favorably with observed thresholds of dynamic

buckling.

192
[a



4.8 Experiments on Dynamic Elastic Buckling of Bars

In practice, the most directly applicable physical problem for

the preceding theory is the impact of a long bar against a massive target.

We consider that the bar is originally stress free and moving toward the

wall with velocity V as shown in Fig. 4.214. Since to a good approxi-

mation the target can be considered to be a rigid wall, on impact the left

end of the bar immediately comes to rest. %djacent particles to the right

subsequently come to rest as a stress wave of magnitude a propagates to

the right at the bar sound velocity c . When the stress wave has passed

a distance x into the bar, the impulse applied by the end load at the

rigid wall must be equal to the initial momentum of the length xa
brought to rest by the stress wave. This condition is expressed by

x
aA - pax V

C A

or

a = pcV (4.111)

V

(b)

C° !
X CX

Q A- 5733-17

FIG. 4.21 AXIAL STRESS WAVE IN A BAR IMPACTING
A RIGID WALL
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This situation is conveftiently produced experimentally by using

a tensile testing machine. 15 The initial velocity V is produced by

first pulling the bar to a tensile stress C . Prior to applying the

tension a notch is filed in the lu - ivear the upper jaw with its depth ad-

justed so that fracture occurs at the notch when the stress in the remain-

der of the bar is near the desired stress c , After fracture, a (con-

pressive) relief wave travels down the bar at velocity c , leaving the

bar stress-free behind the wave and traveling at velocity V = /c by

the same argument just made for axial impact. When the wave arrives at

the loser jaw it reflects, again as a compressive wave. Since the rod is

completely stress-free and traveling at velocity V at the instant of

this reflection, formula-(4.11l) can again be used, giving a compressive

stress equal to the initial tensile stress o . In actual nact the stress

rises to this value in a finite time comparable to the time for stress

waves to cross the bar and communicate the notch fracture to the full

cross section.

4.8.1 Framing Camera Observations
i16

An example 16 of a strip buckled by this procedure is

given in Fig. 4.22. The strip is made of 6061-T6 alumin.m with a

TOTAL LENGTH

30.0- OF STRIP ,0.0I25* THICK BY 0.54 WIDE

2.0

1.0

CLAMPED
BOUNDARY

0

18 24 30 36 42 48 54G 686 78 84 90 96 102 OB114
TIME -psc

FIG. 4.22 ALUMINUM STRIP BUCKLING WITHIN A 40,000-psi AXIAL
STRESS WAVE (time measured from compressive reflection at lower jaw)
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0.5 x 0.0125-inch cross o.tion and a length of 30 inches between notch

and lower jaw. The photog'aphs show only a few inches of the strip just

above the lower jaw. The magnitude of the compressive wave was approxi-

mately 40,000 psi, between 10 and 20 percent below the yield stress. It

was photographed by an ultrahigh-speed framing camera at a framing rate

giving 6 microseconds between frames. In the figure, at 18 .Lsec after

the arrival of the compressive wave the strip appears straight, but care-

ful measurements show that it is slightly buckled even at this early time.

At 24 F-sec the deflection is perceptible in the printed reproduction here

and at later times the developing buckles are clearly visible. All the

buckles remain nearly fixed in position and merely grow in amplitude, just

as in the idealized eccentric impact example. The lowermost buckle con-

tinues to grow throughout the time shown, but the upper buckles oscillate

beyond 70 ILsec because the very large deflection of the lower buckles

reduces the thrust by allowing the remainder of the bar to move toward

the jaw. The rapidity of the buckling is demonstrated by the lateral

velocity of the crest of the lowermost wave, calculated to be 75 fps.

The wavelength of the lower buckle is about 0.47 inch, very close to the

value of 0.50 inch calculated for the preferred wavelength X from theP

theory.

4.8.2 Streak Camera Observations--Effects of the Moving
Stress Wave

The theory, of course, is not strictly applicable to

the impact problem because it assumes that the thrust is uniform through-

out the length of the bar. In impact, the thrust is applied by the mov-

ing axial stress wave and at each instant only the distance enveloped by

the wave is under compression. To observe possible effects of this mov-

ing wave, and also to observe early exponential buckling growth as pre-

dicted by the theory, another experiment&l arrangement1 7 was used to

amplify the tiny early motion. Instead of. observing the buckling directly

in an edge-on view as in Fig. 4.22, the strip was polished on one side

and the reflected image of a series of light sources was viewed with a

streak camera as shown in Fig. 4.23, The shift in position of the light
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sodrce is proportional to the product of the small change in slope of

the strip at the point in which the image forms and the distance between

the light source and the strip. With this method, deflections of the

order of 50 millionths of an inch were easily resolved and the exponen-

tial growth was observed.

POLISHED SURFACE11V IRT U AL

IMAGES / IMAGE OBSERVED

0 00 0
0-O L I?-2 FEET

C0 o CAMERA

6 0 09B ECTIVE'

LIGHT SOURCES

d>>a

FIG. 4.23 OPTICAL LEVER METHOD OF OBSERVING
BUCKLING SLOPE
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A plot of peak diaplacement versus time (assuming the

buckle was a simple sine wave at the observed 0.65-inch wavelength) is

shown in Fig. 4.24 for one such experiment.. The magnitude of the stress

wave in this experiment was approximately 30,000 psi and the cross section

of the aluminum strip was 0.50 x 0.0116 inch. The experimental points

are peak displacements A(t) measured from the initial (unmeasured) dis-

placement A . The lower smooth curve passing through these points is ao

theoretical curve calculated under the assumption that the growth is

T

1.00 2 3 4 5

(DEFLECTION PLUS

IMPERFECTION)

e. A4I o+9p(T)]

0

0 (DEFLECTION ONLY)
QL.

-- A =Ao~gp[T)

m ~~ 5.55 T /psec.I

0 5 0 Is 2 0  25 30
TIME FROM PASSAGE OF AXIAL WAVE -Assec

FIG. 4.24 EXPERIMENTAL (points, for deflection only) AND THEORETICAL
(curves) BUCKLE AMPLITUDE vs. TIME (matched at 22 lisec)
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adequately represented by the preferred mode. Taking TP = 1/2- in

Eq. (1.69), the amplitude of this mode is

A(T) = 2A [cosh"(T/2) - i] (4.112)0

Using C = 0.003, c = 0.20 in/Lsec, and r = O.0ll6/r2inch in

Eq. (4.57) gives T = 0.18 t, with t in Rsec. The Fourier coefficient

A of the equivalent initial imperfection was adjusted to 9.1 x 10
- 5

0

inch to fit the experimental data as shown. The upper curve is the cal-

culated total amplitude A + A(T).0

This experiment demonstrates that the observed buckling

consists of exponential growth which can be calculated quite adequately

by the simple theory. The simple uniform thrust theory is adequate,

even though the thrust is applied by a moving stress wave, because the

stress wave has moved a large distance along the bar before significant

buckling displacements appear. For example, in Fig. 4.24, the peak am-

plitude of the buckling is only about 0.001 inch (giving a bending stress

of 4600 psi, well within the elastic limit) at 30 lsec after passage of

the axial stress wave. At 30 Isec the stress wave has propagated about

6 inches along the bar, about 10 times the observed wavelength of 0.65

inch.

However, the high magnification of the optical lever

did reveal that the axial impact produced very high frequency bending

vibrations superimposed on the buckling motion. On the original streak

camera record an oscillation was observed having a period of 3.1 Isec

(320 kc/s) and a peak-to-peak amplitude of about 5 x 10-6 inch. The

oscillations appeared to be a wave train propagating along the bar from

the impact at the lower jaw at a phase velocity of 0.075 inch/Rsec,

giving a wavelength of (0.075) (3.1) = 0.23 inch. These oscillations

had little effect on the buckling, apparently because of this short wave-

length and because their period was so short compared to the buckling

These were observed on all three experiments performed.
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motion (3.1 1Psec corresponds to L = 0.55). Thus we can conclude that

effects dependent upon the moving axial stress front had a negligible

effect on the buckling.

The argument concerning the distance the axial stress

wave has traveled during the buckling motion can be stated analytically.

From the theory, wc have seen that whether we assume the imperfections

are local in nature, as in eccentric impact, or consist of a general ran-

dom form of imperfections, the wavelength of the buckles is always quite

close to the wavelength X = 2nTfr' of the preferred mode. Also, the
P

magnification of the buckling motion depends only on T , all other

essential parameters having been included in its definition. It seems

reasonable to assume that effects of the axial stresa wave will be small

as long as significant magnification takes place oaly after the axial

wave has passed several buckle wavelengths along the bar. Without speci-

fying a numerical value, we.assume that the buckled form is unalterably'

determined (e.g., the buckled deformations are much larger than the initial

imperfections) at a critical time cr" Using the definition T in

Eq. (4.57) gives for the corresponding real time

r

t = -- (4.113)
cr 2 r

Sc

Real time t can be expressed in terms of the number N of preferred

wavelengths L through which the axial stress wave passes at velocity c,
P

giving

LN
t = P N (4.114)

C CS

Putting this into expression (4.113) for critical time and using the

definition of s in Eq. (4.57) gives

Ncr .1 (4.115)
or

This suggests that neglect of axial wave effects depends only on the com-

pressive strain of the axial thrust. In metals this strain is very small
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within the elastic limit and, as we have observed, elastic buckling is

adequately represented by the constant thrust theory.

4.8.3 Experiments on Rubber Strips--Statistical Observations

Since formula (4.115) suggests that axial wave front

effects, if any, would be more pronounced at large compressive strains,

confidence in the theory would be enhanced for metals if it could be

demonstrated experimentally that the theory is acceptable in a material

which can withstand large elastic compressive strains. Pure gu:n rubber

is such a material and experiments have been performed using this ma-
17

terial to strains up to about 15%.

The apparatus for these experiments, in Fig. 4.25, is

very simple and can be used for classroom demonstrations. A strip of

pure gum rubber 0.0375 x 0.50 inch in section and about 1 foot long was

looped over one end of a rigid support bar and secured by means of masking

tape as shown, with extra layers of tape wound above and below the rubber

strip so that its end was separated from the support and cover bar. The

cover bar is shown above this assembly in the photograph. A strip of

emery cloth has been glued to it and saturated with chalk dust.

FIG. 4.25 APPARATUS AND TYPICAL RECORD FOR BUCKLING
RUBBER STRIPS
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To perform an experiment, the free end of the strip was

held between thumb and forefinger, the cover bar placed over the strip,

chalked side down and not touching the strip, and then the strip was

stretched to a specified strain and released. The wrinkled strip im-

pacted the chalk bar with sufficient velocity that a well-defined line

was left on the strip at the crest of each wave, as shown. The positions

of these lines were easily measured to an accuracy of 0.01 inch.

To examine the applicability of the random noise assump-

tion for imperfections, in addition to the applicability of the constant

thrust theory, many experiments were performed so that statistical distri-

butions could be prepared. Figure 4.26 gives histograms of the measured

wavelengths for several values of initial tensile elongation. These data

were taken from tests on 18 strips, each tested at all the strains, from

smallest to largest strain in order to minimize any perturbations caused

by the wrinkling of a previous test. Buckling at a strain greater than

25% is rather violent and leaves the strip with a definite bias toward

the corresponding wavelength. The number of waves observed in each test

varied from 2 to 3 at 3% strain up to 12 at 16% strain. The same strip

tested repeatedly at the same strain gave an almost identical wave pattern

each time, consistent with our mathematical model in which the imper-

fections are assumed random but fixed for any given bar. Data from only

the first test at each strain were used for the histograms. Each histo-

gram has a total of 65 observations so they can be compared directly.

It is significant that the general shape of all histo-

grams is the same and that the ratio between the standard deviation and

mean value is nearly constant over the entire range of strains, as shown

in Fig. 4.26. This demonstrates that the statistics are inherent in the

buckling process and are not the result of errors in measurement. It

also indicates that the strips had no preferred wavelength characteristic

of a manufacturing process. If these distributions are compared with

the distribution in Fig. 4.18, calculated assuming that initial imper-

fections can be represented by white noise, we see that the white noise

assumption gives a very good description of the observed buckling.
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To compare the observed wavelengths with the uniform

thrust tiheory, the large strains involved must be taken into account.

Only the final compressive strain resulting from the initial tensile

strain is needed, so the corrections can be obtained without reference

to the details of large strain-wave propagation. It is sufficient to

assume that the rubber behaves elastically so that the potential energy

stored in compression eoquals the initial potential energy in tension.

Tensile stress-strain tests were performed on sample strips which showed

that true stress was linear with elongation out to at least 100% with a

Young's modulus of 285 psi. Thus the initial tensile force F in the

strip is given by

A
0F = Ee- (4.116)1 +

where A is the unstressed cross-sectional area of the strip ando
Q( - ,o)/Lo is the elongation. The initial stored energy at uni-

0 0
form tensile elongation eT is equal to the work done by the end force

F(z),

=U f 0 
T 4

U -= J F(z)dz = EA =t f EAoto loge(l + CT) (4.117)T_ =E o0 1 +C 0

0 0

where z is in the position of the mving end of the strip. Similarly,

the compressive energy stored in the strip is

U = - EA o, loge(l - ) (4.118)
C 0 0 e

expressed so that the compressive strain e is a positive quantity.

Equating these energies, the compressive strain is simply

€T
c + (4.119)

Further, the increased thickness h from the unstressed thickness h0
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assuming the rubber is incompressible, is

h
0

h = (4.120)(1 - 1/2

The last c ,rreczion to be made accounts for the wrinkles being formed at

axial strain ec but measured when the strip has returned to zero strain.

The ratio of the observed wavelength .r to tne wavelength while under

compression is, by the definition of ,

(4.121)
C 1 C

The wavelength of the "most amplified" mode in dimen-

sionless coordinate is Xp = 22 . Using this with Eqs. (4.57)

and r = h/ T12, the wavelength of the most amplified mode while the

strip is under compression is

_.= 1/2 (4.122)

pcc

After the strip has relaxed, this preferred length would be elongated -

according to (4.121). Using (4.122) in (4.121) with (4.119) and (4.120)

the elongated length is given by

(2l/2 (1+ CT)2
rJ 1T/2 h (4.123)

In Fig. 4.27 the observed wavelengths of Fig. 4.2e are

plotted against this preferred length, the circled points giving the

mean values and the bars extending one standard deviation above and below

the circles. The mean values fall very close to a straight line through

the origin, and the ends of the standard deviation bars are also closely

bounded by straight lines. These observations suggest that Eq. (4.123)

gives the proper form of variation with strain. However, the ratio be-

tween observed and preferred wavelengths (the slope of the line through

the circles) is 1.70 here as compared to only 1.07 for the aluminum
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experiments given in Fig. 4.18. This difference is attributed to strain-

rate effects in the rubber. If, for example, these effects are lumped

into an effective dynamic compressive modulus k times the static tensile

modulus, the prcceding theory gives a slope of 1.00 for k 2.

16 IC 7 5 4 3

1.0

0_9
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* I 0.7

z 0.6

0.5

0.4

0.3
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0.1

0 1 _
0 0.1 02 03 04 0.5 0.6

PREFERRED WAVELENGTH (COMPUTED) -inches

FIG. 4.27 MEASURED vs. THEORETICAL WAVELENGTHS
(bars extend one staJndard deviation above and below
mean value)
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Although the foregoing interpretation of the discrepancy

between the aluminum and rubber experiments is soutewhat speculative, the

smooth variation of measured wavelength with strain strongly supports the

conclusion that lateral motion immediately behind the axial-stress front

has a negligible effect on the wrinkle formation and that a constant-

thrust theory can be used with confidence. The main effect of the travel-

ing thrust is that the duration of the thrust decreases as one moves away

from the struck end, and this could easily be accounted for by simply

assigning a different duration to each wrinkle. This conclusion should

also be applicable to more complicated structures, such as cylindrical

shells under axial impact. For large deflections, it might prove neces-

sary also to compute a new thrust for each wave, reduced owing to lateral

deflections in preceding waves.

4.8.4 Buckling Thresholds in Aluminum Strips

To obtain estimates of equivalent imperfections to be

used in estimating thresholds of pulse buckling, experiments were run

on thin 6061-T6 aluminum strips using a tensile testing machine as

described previously. Tests were run on strips 1/2 and 1/4 inch wide

and 0.0124 and 0.025 inch thick. The initial tensile stress (and

reflected compressive stress) was nominally adjusted to 0.4 ani 0.7

times the yield stress of 42,000 psi by appropriately sized fracture

notches in the strips. Duration of the thrust at the lower jaw was

varied by varying the length L between the notch and lower jaw, the

duration being 2L/c. For each combination of strip width, thickness,

and compressive stress, tests were run at increasing lengths until plastic

buckles appeared. These were observed by sighting down the shiny

finish of the strips, a simple procedure with high resolution. The

dimensionless time T , from its definition in Fq. (4.57), is

c 2L 2L
. . . . (4.124)

r c r

Two widths were tested at each thickness to examine the effect of frac-

ture time on buckling. It was found that possible effects were masked

by changes in critical loads caused by random variations in imperfections.
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Figure 4.28 gives a plot from tests at many combinations

of axial stress and duration, with open points representing tests in which

no buckling was observed and solid point3 tests in which buck'.ing was ob-

serv2d. The upper points (longer duration, buckling) are all solid and
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FIG. 4.28 COMPARISON OF OBSERVED BUCKLING
TO CRITICAL CURVES FOR IMPERFECTIONS
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TO STRIP THICKNESS

S
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the lower points (shorter duration, no buckling) are nearly all open, as

would be expected. At intermediate durations buckling and no-buckling

points are intermingled as a result of the random nature of the imper-

fections. Also given on the same graph are theoretical curves similar to

the dotted curve in Fig. 4.20 for assumed imperfections in the preferred

mode proportional to strip thickness. The experimental transition band

of intermingled points between no buckling and buckling follows the trend

of the theoretical curves, with equivalent imperfections in the experi-

ments ranging from about 0.01 to 0.03 times the thickness of the bar.

The most severe buckles generally appeared at the jaw

or one plastic hinge from the jaw, as would be expected because of the

longer duration of thrust near the jaw and the possibility of eccentric

loading (see Fig. 4.14). As often as not, however, 3 or 4 plastic hinges

were observed, suggesting that random imperfections throughout the bar

were at least as important as eccentric loading. Buckling a few wave-

lengths away from the jaw, of course, had to take place in a somewhat

shorter time, thus increasing the equivalent imperfections above those

implied in Fig. 4.28. However, this effect is small because the wave-

length of the buckling is small compar2d to 2L, as discussed in relation

to Eq. (4.115). Thus we can conclude that random imperfections in these

tests were equivalent to single imperfections in the preferred mode of

from 1 to 3% of the strip thickness.

4.9 Dynamic Plastic-Flow Buckling

In all the preceding theory the axial stress was much greater

than the static Euler buckling stress, but was nevertheless assumed to

be within the elastic range. Even if the stress exceeds the yield stress,

however, the mathematics of the elastic theory can still be used. For

this treatment it is assumed that the axial stress increases as buckling

takes place, as in the Shanley hypothesis in Fig. 4.9. Thus,bucklivg

flexure is accompanied by moments proportional to the tangent modulus Et

it
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and the equation of motion is the same as Eq. (4.4) in elastic buckling

with E replaced by Et.

EtI A + p -- (y + yo) + 
-  = 0 (4.125)

t 4 x2  0t2

Similarly, if dimensionless variables w, , and T are introduced using

Eq. (4.57), with the following modifications,

2
sc t E C

= - , s = (4.126)
r p p AE t  E t

the equation of motion (4.125) becomes

1 + " +l (4.127)
0

which is identical to Eq. (4.58). In Eq. (4.126) it has been assumed

that the small increase in p beyond yield can be neglected and that

Et  is constant.

The mathematics for the plastic problem is therefore identical

to that in the elastic problem, yielding a "preferred" mode with wave-

length gp = 2 F2, and resulting in large growth for 5 < T < 10. In

physical units, of course, these quantities are much different in the

plastic problem. Using the definition = sx/r from Eq. (4.57), we

see from Eq. (4.126) that the ratio of preferred wavelengths in the

plastic and elastic problems is

/ E 1/2
plastic Et (4.128)

Xelastic ay E

For many engineering metals the elastic modulus is about 100 times the

tangent modulus, so that buckles formed during plastic flow have wave-

lengths at least an order of magnitude smaller than in elastic buckling.

The buckling times are also an order of magnitude smaller, as is seen by

comparing the definitions of T in Eq. (4.57) and (4.126), giving

t a (Et /2
plasti c  (4.129)
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As in elastic buckling, the most directly applicable physical

problem for the plastic-flow buckling theory is axial impact of a bar

against a massive target. From Eq. (4.111), impact velocities that re-

sult in plastic flow are greater than

V -- = c € (4.130)
rC y

where C is yield strain and c is elastic wave velocity. For alumi-

num, magnesium, and steel, c is near 16,000 ft/sec and a typical yield

strain is 0.005. In these metals plastic flow buckling therefore occurs

for velocities greater than about 80 ft/sec; at smaller velocities the

initial buckling is elastic. Since Et does not decrease abruptly at

yield, there is a small transition in velocity over which buckle wave-

lengths and times decrease by an order of magnitude. The transition zone

is narrow, however, because

v = 1)l2de (4.131)

0

(the generalization of Eq. (4.130) to a continuously changing modulus 1 )

increases slowly beyond yield. Inclusion of a continuously changing

modulus in the buckling theory is given in the next chapter for cylindri-

cal shells subjected to radial impulse.
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CHAPTER 5

DYNAMIC PULSE BUCKLING OF CYLINDRICAL SHELLS
UNDER TRANSIENT LATERAL PRESSURES

by

H. E. Lindberg

5.1 Introduction

Cylindrical shells subjected to transient lateral pressures

(produced, for example, by blast waves) often fail by dynamic pulse

buckling. Three examples of dynamically buckled shells are given in

Fig. 5.1, the only difference between them being the peak pressure and

duration of the applied load. The shell on the left was subjected to

an impulsive pressure (duration short compared to the shell response

time) and has buckled into a very high order wave pattern with n = t5

waves around the circumference. The shell in the center was subjected

to a quasi-impulsive pressure (duration comparable to the shell resrpvnse

time) anl has several buckles around the circumference, corresponding to

n = 13 The shell on the right was subjected to a quasi-static pressure

(duration long compared te the shell response time) and has buckled into

n 7, very close to the static pattern for this shell. This chapter

(a) IMPULSIVE LOAD (b) QUASI-IMPULSIVE LOAD (W) QUASI-STATIC LOAD
n = 45 n et 13 n---7

FIG. 5.1 IDENTICAL SHELLS BUCKLED FROM PULSE LOADS OF VARIOUS DURATIONS
(6061-T6 aluminum, o/h 100, L/D = 1)
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is concerned with buckling over the entire range of load durations, from

ideal impulses to durations so long that the buckling is essentially

static.

At each extreme of pulse duration tne analysis becomes relatively

simple, and theories for the extremes have been given in the literature.

For very short durations the load is characterized entirely by the im-

pulse, and the wavelength of the buckling is so short that the length of

the shell is unimportant. Thus two parameters, load duration and shell

length, are eliminated from the problem and the solutions become parti-

cularly simple. These are given by Abrahamson and Goodier for relatively

thick shells and by Lindberg2 for very thin shells.

For very long durations the load is characterized entirely by

peak pressure and, although the length of the shell must be considered,

it is shown here that inertia forces can b neglected and the solution

is again relatively simple. This is a classical static buckling problem

and is given in several standard texts, for example Ref. 3. Between

these extremes, pressure, duration, shell length, and inertia forces

must all be considered. No previous investigations of this problem

are known to the authors. The present analysis treats this problem and

contains the simple theories as special cases.

The problem taken is that of a simply-supported cylindrical

shell subjected to external surface pressures uniform around the cir-

cumference. The time variations of pressure considered are triangular

and exponential in shape, as shown in Fig. 5.2. However, it is postu-

lated that the most significant load characteristics are peak pressure and

impulse. Therefore, in the theory to follow, loads that cause buckling

Applicability of the solution to asymmetric loads is discussed later.

t 4
Abrahamson has shown that the response of a wide variety of structures

to blast-type loads is most conveniently summarized in terms of the

peak pressure and impulse of the load.
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T TIME t T TIME t

(a) TRIANGULAR (b) EXPONENTIAL
CAt zS ,

FIG. 5.2 PULSE SHAPES

are characterized by these quantities, and for each type of shell a
",riti al curve" for buckling is generated in the pressure-impulse

plane as shown in Fig. 5.3. Impulse (per unit surface area) for the

triangular pulse is I PT/2, where T is pulse duration, and for the

oxponential pulse is I = PT, where T is the pulse time constant as

shown in Fig. 5.2.

p iMPUt sivE

QUASI-IMPULSIVE

SQUASI-STATIC

P0

GA.522-2i 0

FIG. 5.3 PULSE REGIONS AND SCHEMATIC
CRITICAL CURVE FOR BL,CKLING
IN THE PRESSURE-IMPULSE
PLANE
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5.2 Idealized Models

Loads that produce the types of buckling in the three shells in

Fig. 5.1 fall into three corresponding load regions indicated in Fig. 5.3.

Since the response of the shell differs widely from ono region to another,

the analysis is based on three corresponding models--a "tangent modulus"

model for impulsive loads, an "elastic" model for quasi-static loads, and

a "strain-reversal" model for a narrow range of quasi-impulsive loads for

which neither of the other models is applicable.

Under impulsive loads it has been found that,except in very thin

shells, buckling occurs only when the load is sufficiently intense to

produce membrane plastic flow. In the early motion buckling takes place

with no strain reversal and is therefore governed by the tangent modulus,

hence the name for this model. Fortunately, as shown in Fig. 5.1a, the

buckling is in high order modes; thus the effects of the ends are unim-

portant beyond a few wavelengths from the ends and, in the tangent modulus

model, the shell will be treated as infinitely long. The analysis will

follow that given in Ref. 5 except that finite pulse durations will be

considered.

Under quasi-static loads buckling occurs in lower order modes,

directly dependent on the length of the shell as shown in Fig. 5.1c. How-

ever, for most metal shells of precent interest, this buckling takes

place at pressures sufficiently low that the early buckling growth is

elastic, hence the name for this model. Static elastic theory is simply

extended to the dynamic problem by including radial inertia terms.

Under quasi-impulsive loads the membrane stress can be plastic

as under impulsive loads, but significant buckling deformation takes

place only after several oscillations in the hoop mode. To treat this

buckling a strain reversal model is used which considers nonlinear

stress variations Pcross the section, influenced by both the membrane

and flexural motion. This requires that the cross section be divided
i

into laminates, and the resulting theory becomes more complex. Since

it serves mainly to support the general character of the critical curves

2:0
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derived by the simpler theories, only the results from this analysis are

presented here.

5.3 Equations of Motion

5.3.1 Tangent Modulus Model

The notation adopted is shown in Fig. 5.4. With time

denoted by t and angular position on the cylinder denoted by e , we

are concerned in this model with

radial displacements w(9,t), measured

positi e inward from an initial un-

stressed deformation w (6), in an

L infinilely long shell. The equations

of motion for this problem are derived

by Abrahamson and Goodier. Under

impulsive or nearly impulsive radial

C' pressure, the shell elements initially

move inward nearly uniformly to a

smaller radius, inducing plastic cir-

cumferential membrane strains. The

FIG. 5.4 COORDINATES AND SHELL fundamental assumption is that during
NOMENCLATURE the early buckling motion the circum-

ferential strain across the section is

dominated by this membrane plastic flow, and therefore flexural motion

is accompanied by bending moments proportional to the instantaneous tan-

gent modulus; the strains in both the inner and outer fibers continue to

move along the plastic stress-strain curve, but one lags behind the other

because of the flexure. In the present problem we wish to treat a con-

tinuously varying tangent modulus Et , so the notation in Ref. 5 is

used. Constant shell and material parameters are defined by

2 h 2  2 E
= h c = - (5.1)

12a2

where a is the shell radius, h its wall thicknesj as shown ii Fig. 5.4,
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E is Young's (elastic) modulus, and p is mass density. Dimensionless

forms of the displacement and time variables are defined by

_ w_ ctU - - , u T- 'r (5.2)
a i a a

and a dimensionless form of the external pressure p , including small

nonsymmetric perturbations, is given by

a *(.)P(8,T) = E p *(@,T) (5.j)

With this nomenclature, the equation of motion, from Ref. 5, is

2 2 1
E 2 U + J 9 2 + (r+a u - E c i c 2

(5.4)

in which dots indicate differentiation with respect to T and a is

the circumferential membrane stress.

For simplicity, we will treat only the cos nJ tcrm:

in the initial shape and pressure imperfections so that the displact.

ments and pressure can be expanded in the series

CO

u 6 n cos no 5.5)
n=l

U(MT) = U() + Un(T) cos nO (.,.
n=l

p(O,T) = p (T) + p(7) cos n)0n

Substituting these into (5.1) and equating the coefficients of each term

in the series gives

u ° + - (1+ u)= Po (5.8)
E 0 0

2 2
-(n E- (n2  1)6n

8 n n
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The shell is taken at rest in the initial unstressed condition, giving

initial conditions

u (0) = u (0) = 0 , n = 0, 1, 2, ... (5.10)

The normalized amplitude u of the hoop mode is the

membrane strain e so that u is small and omitted compared to unity
0 0

in Eq. (5.8), giving a linear equation. Simple analytic solutions for

u for he triangular and exponential pulses in Fig. 5.2 were obtained0

by replacing the actual stress-strain curve by two straight lines, one

at the elastic slope E and the other at an average strain-hardening

modulus E For the flexural motion, however, Et appears as a co-

efficient in Eq. (5.9) and a continuous variation of E was used.
t

With u (7) = £ (T) known, a and E were taken as functions of
0 0 t

time from the stress-strain curve, inserted into Eq. (5.9), and the

motion of the flexural modes were found by numerical integration. The

material properties used are given in Appendix A.

5.3.2 Elastic Model

The governing equations of motion for the elastic
model are obtained using Donnell's equations with the addition of

inertia terms. As in the static buckling analysis of cylindrical shells,

the uniform radial deformation is assumed to be independent of the length

and end conditions, but it is required that the superimposed flexural de-

formations satisfy the end constraints. This assumption allows the

equation of motion to be separated into individual uncoupled equations

for each mode.

As in Ref. 5, for convenience we neglect the Poisson effect (1 - V 2)

and take (7 and E in both the elastic and plastic range directly
from availagle simple tension experiments rather than from circum-
ferential compression tests tinder appropriate axial constraint.
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The equation of equilibrium in the radial direction

is
42 2N a2 NI) 62

DV w + N a- (w + w) + (w + w.) + a 2 (w + w.)x x2  a xe a2 0 2

(5.11)

+ N ph -b2 p =052

where Nx, N N are the membrane forces with the sign convention
x G 9

chosen so that compression is considered positive, D is the flexural
-2

rigidity of the shell wall, and V the Laplacian operator:

Eh3 2 2 2
S 2 (5.12)

12(1 - v) ax2  a 2 2

The force N is taken as the sum of two parts, one

caused by the uniform radial deformation and the other caused by flexural

deformations; thus

w 2Eh 0o 2F
N E- (5.13)

0 1-2 x 2

where F is a stress function for the membrane forces produced by

flexural deformations and w is the uniform radial deformation. The0

membrane forces N and N are assumed to be independent of the uni-
x G

form radial motion, and for the flexural motion are given in the usual

manner in terms of F

2 2a2F  2F

N N- N514
x a2 be2 'xe aaoax (.4

The compatibility condition between the midsurface

strains then requires that

4 2
F Eh aw (5.15)

a 2 2
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The use of a stress function in the manner shown satisfies static equi-

librium in the x and y directions but neglects the small in-plane

inertia forces.

It is convenient to introduce the nondimensional

quantities

W , L ct
u ui. = , =- , 7 = (5.16)

a a 1 a a a

and express u, ui, and p in the series forms

u( ',e,) = U(T) + u (T) cos no sin-YL (5.17)
n=l

u q cos no sin -L (5.18)

n=l n

P Eh [ (T) + pn (T) cos nO sin (5.19)

a(l- 2)

Representing the radial deformation by Eq. (5.17)

assumes simple support conditions for the flexural motion, as well as

restricting the deformation to a half-wave in the axial direction. The

latter assumption is based on experience with static buckling and experi-

mental results of dynamic buckling. Although the assumption of simple

supports is not representative of the actual test conditions in the

present program, results from the simple support theory agree reasonably

well with the experiments. To comply with the assumed form of the dis-

placement, the initial shape imperfections and pressure perturbations

are also taken to vary sinusoidally in the axial direction, as given in

Eqs. (5.18) and (5.19).

Using Eqs. (5.16) and (5.17) in (5.15) yields

-~~ ~ ~ a a)a.E-Cos no sine

a\~~6/a n1 t
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from which it can be concluded that, for simple supports, F is of the

form

F = nu cos ng sin - (5.20)

n=l

where O are constants.n

Using Eqs. (5.13 - 5.19), taking F in the form of

Eq. (5.20), and dropping all second-order terms in u , the equilibrium
n

equation (5.15) can be separated to give

u+ =p (5.21)

and

2 (n2 + -r ] Un

22

= +nUo n1,2,3...

The shell is taken initially at rest with zero displacement as in

Eq. (5.10).

Equation (5.21) is solved analytically, and the

resulting expression for u is substituted into Eq. (5.22) but, as

for the tangent modulus model, the resulting equations for the flexural

modes must be integrated numerically, since no analytical solution is

apparent.

For a static pressure the derivatives with respect to

time vanish ard Eq. (5.21) gives u = p . Substituting this into0

Eq. (5.22), the coefficient of un  vanishes at a critical pressure for

each mode number given by

(Po)cr 1 2 L2n + , T)2 + (1 j (5.23):~ + !
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The smallest of these critical pressures is the static collapse pressure

which, for v = 0.3, is given approximately by

P = 0.92E (()5/2 (5.24)

This is the result presented in Ref. 6 and is valid for

100 <z < 1 )

2 1/2 2
in which Z ( - V) L2/ah.

5.4 Amplification Functions and Critical Curves for Buckling

The governing equations of motion for both the tangent modulus

and elastic models exhibit the same general features, a single equation

to determine the motion of the uniform hoop mode, and for each flexural

c mode an equation that contains the hoop membrane force as a coefficient.

The equations can be put in the form

N
i -(1-\ =- (5.25)Uo El= Po

and

+ (w 2 N)u n =p + N6 (5.26)
n n n n n .

where wn  are the (no-load) bending frequencies and n are constants.

The major feature of the solutions is that for a sufficiently

large value of N the coefficient of u in Eq. (5.26) becomes

negative over a range of n and the solution becomes hyperbolic in

character rather than oscillatory; these are the buckling modes, and

the hyperbolic growth can lead eventually to permanent flexural defor-

mations. The general problem is to determine the pressure-impulse

levels that cause a particular flexural mode or group - flexural modes

to grow to magnitudes sufficiently large to exceed a specific buckling

criterion.
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To demonstrate the type of growth that occurs in each of the

lead regions in Fig. 5.3, consider an example of a shcll subjected to

triangular pressure pulses. The shell is made of 6061-T6 aluminum v ith

a/h = 100 and L/D = 1. The general procedure was to integrate the

equations of motion as described, which yields an amplification u (t)/n
, n n

for each flexural mode. These were then plotted against n , giving an

amplification function for each combination of peak pressure and impulse

(load point). Example curves are given in Fig. 5.5.

For impulsive loads high amplification does noi. occur until the

hoop strains are in the plastic range, giving high values of C /E
St

These high values make the coefficient of u in Eq. (5.9) negative for
n

a wide range of n , and most negative (at each instant) for n -

2 1/2
(y /2CL E t) . This is reflected in Fig. 5.5a by a broad amplification

function, extendiog to mode numbers as high as n = 150 and having a

maximum at n = 95 . Thus, undei impulsive loads the shell has a strung

tendency to buckle into a high order patL rn and, as postulated, shell

length has little effect.t

To calculate loads at a threshold of buckling it has been

shown that it is reasonable to assume that random imperfections are

present at all wavelengths. Thus, the dominant modes of buckling are

selected by the amplification function, and buckling can be said to be

eminent when the peak amplitude reaches a critical value. In this

chapter, buckling thresholds are calculated on the basis of an amplifi-

cation of 1000. Although this value was selected rather arbitrarily,

it will be shown that the change in load over a range of amplifications

from 100 to 10,000 is small for most practical applications.

Only perturbations 6 in shape are treated here. In Appendix B it is

demonstrated that these are likely to dominate over perturbations in

pressure.

A more extensive discussion of this type of bu-kling is given by
Abrahamson and Goodier1 under the simplifying assumption that ay and

E are constant.
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Using this criterion, a critical curve for buckling was calcu-

lated in the impulsive range using the tangent modulus theory. This
A!

is the upper curve in Fig. 5.6. The curve is hyperbolic in sbape,

approaching a critical impulse for high pressures and a critical pressure

for large impulses. The mode n'imber of maximum amplification increases

with peak pressure as shown by the numbers on the curve. Approximate

formulas for such curves are given later

I - tops
[0

3  
10

4  
10

5

0 0 0
-I I

(0() TANGENT MO(CULUS

94 THEORY
ooo 91____ _____

Z 76 3 7 0-(b)n25-'
(O)n. 10 Ia LASTIC

STRAIN- 717 ZTFORY

REVERSAL_2

10 100 iooo io, oo

I - psi-msec
G8- 57 -43

FIG. 5.6 CRITICAL CURVE FOR BUCKLING OF SHELL IN FIG. 5.5

At the other extreme, under a quasi-static load having a low

pressure and long duration, results from the elastic model, given in

Fig. 5.5d, show that very large amplification is confined to n = 6,

the static buckling mode for this shell. As the duration of the load

is increased still further, the minimum peak pressure that gives large

amplification approaches the static pressure as given by Eq. (5.24)

even though the pressure pulse rises instantaneously to its peak value.
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The sudden rise causes overshoot and oscillation in the hoop mode, but

any energy transferred from this oscillation to the buckling mode must

.4 be made through a serieA of many oscillations in the buckling mode.
8

This type of Mathieu instability cannot cause large plastic deforma-

tions of the type observed in the experiments because the kinetic energy

in the membrane oscillation is finite and, if the flexural oscillations

are sufficiently large to cause plastic strains, the energy would be ex-

tracted in small amounts at each oscillation. Instead, the dominant

buckling growth is caused by the psuedo-static component u = p (T) of

9
the membrane motion about which the hoop mode oscillates. Experiments

show that buckling takes place with little or no oscillation and is es-

sentially a single growth to large deformations. Because of the obser-

vations, throughout the present analysis only modes exhibiting hyperbolic-

type growth are considered to be significant for buckling.

A critical curve for buckling (amplification = 1000) under

quasi-static loads was calculated using the elastic model and appears

as the lower hyperbolt.-shaped curve in Fig. 5.7. As in the tangent

modulus curve, the mode number of the most amplifide mode increases

with increasing peak pressure. Pressures greater than about half the

static yield pressure result in hoop strains beyond the elastic limit,

but the dotted curve is extended to higher pressures assuming that the

material remains elastic. This extension meets the curve fnm the tan-

gent modulus theory in a cusp-like intersection and there is a sudden

jump in the mode number of the most amplified mode in going from the

elastic branch to the tangent modulus branch. Although the theory is

not strictly applicable near this cusp, application of the strain-

reversal theory shows that a cusp still persists and that there is a

jump in mode number.

Amplification functions from the strain reversal theory applied

near the cusp (as shown by the points in Fig. 5.6) are given in Figs.

5.5b and c. These show the rvapcn for the jump in mode number. Because

load points in this region have high enough peak pressures to induce

plastic flow in the hoop mode, i nd also have durations long enough to

allow growth of the low order "elastic" modes, large growth takes

place in both high and low order modes. Thus two maxima appear in the
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FIG. 5.7 CRITICAL CURVES FOR BUCKLING AMPLIFICATIONS t

OF 100, 1000, AND 10,000 (Exponential pulses,
smie shell as Fig. 5.5)

amplification function and a small change in load point changes the

absolute maximum from a high order to a low order mode, or vice-versa.

This is illustrated by the large shift in relative amplification in

going from a peak pressure of 360 psi and impulse of 60 psi-msec

(Fig. 5.5b) to a slightly smaller peak pressure of 300 psi and larger

impulse of 70 psi-msec (Fig. 5.5c). The amplifications of intermediate

modes fluctuate because in this range of loads buckling takes place

during a few oscillations of the hoop mode and small changes in phase

between the hoop and flexural modes significantly affect the amplifica-

tion, although the overall growth is exponential in nature.

Since the general behavior of the complete critical curve for

buckling in Fig. 5.6 is adequately described by using only the simpler

tangent modulus and elastic theories, no detailed discussion of the

strain reversal model is given in this report. Development of a more

complete elastic-plastic theory is still in progress.
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To examine the influence of the magnitude of the amplificatior

buckling criterion, critical curves were calculated as described above

for amplifications of 100, 1000, and 10,000. These are given in

Fig. 5.7, which, shows that over most of the load range the curves differ

by less than ±15%. The maximum difference, in the quasi-impulsive range,

is a factor of 1.6 between the 100 and 1000 amplification cur/es. Thus,

although buckling from pulse loads cannot be described with the accuracy

of an eigenvalue problem in static buckling, the hyperbolic growth makes

exact specifications of a critical amplification of secondary importanc:e.

5.5 Effects of Parameter Variations on Critical Curves

Before giving approximate formulas for determining critical

buckling curves, the numerical integration procedure is used to generate

example curves which demonstrate the effects of variations in pulse

shape, radius-to-thickness ratio, and length-to-diameter ratio.

5.5.1 Pulse Shape

Figure 5.8 gives a comparison between critical curves

calculated for exponential and triangular pulse shapes. The maximum

difference between the curves (measured along a line at 45 ) is 35% and

occurs in the knee of each branch. This difference is not significant

in many applications and we can conclude that changes in pulse shape

are of secondary importance.

5.5.2 Fadius-to-Thickness Ratio

re 5.9 gives critical curves for L/D = 1 with

/h :raiginc :orM 24 o 250; each curve is normalized to I 0nd Po

t(k tine g.ven a/h. The major effect of increasing a/h is an upward

,-vemet of the intersection between the tangent modulus and elastic

branches, -esulting in a broader range of quasi-impulsive response for

the thi:.-.er (higher a/h) shells. These same curves are repeated in

HIg. 5.10 without the normalization to show the broad range of pressures

and impulses involved.
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FIG. 5.10 EFFECT OF a/h ON CRITICAL CURVES FOR BUCKL!NG
(Some as Fig. 5.9, but without normalization for D = 6 inches)

5.5.3 L.ength-tc-Diameter Patio

Variations in L/ID affect only the elastic branch, as

shown in Fig. 5.11. Thus the main effect of increasing L/D is to lower

the quasi-static pressure asymptote Po I giving a broader range of

quasi-impulsive loads as for thin cylinders. The impulse "asymptote"

of the elastic branch does not change significantly becsase the mode

numbers in this region are s2fficiently high that end effects are

secondary.
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5.6 Approximate Formulas for Critical Curves

The general form of the critical buckling curves in the pre-

ceding examples is given in Fig. 5.12 and can be described by a few

approximate formulas based on the results of the numerical integration.

The curves consist of two branches, one from each model, each of which

can be approximated to an accuracy of about 20% by simple hyperbolas of

the form

-)(~~-1) 1 (5.27)

where PA and IA are the asymptotic values of the hyperbola. For the
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FIG. 5.12 CHARACTERIZATION OF CRITICAL CURVES
FOR BUCKLING

tangent modulus branch these asymptotes are given by

3 h
p a - (5.28)
T 4ya

'T (96)1/4 a(Pa)1/2 (ht)3/2 (5.29)

where K is the slope beyond yield of a plot of o/Et  versus com-

pressive hoop strain for the shell material.t For the elastic branch,

from Eq. (5.24) and observation of the numerical results, the asymp-

totes are given by

0.92E ()()52(5.30)
1 5 pcs. -) (5.31)

The formula for P is an empirical observation of the numerical inte-

gration; a derivation of IT  is given in Appendix C.

See Appendix A.
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The lines at 45 degrees in the log-log plot of Fig. 5.12 define

a characteristic time I /PA  for each branch which can be compared
AA

directly, for example, with the characteristic time T = I/P for an

exponential pulse. From Eqs. (5.28) and (5.29), the characteristic time

for the tangent modulus branch is

TT=(a6)1/4 4a -1/2 (h )l/2 (5.32)

However, in the numerical examples it was found that variations in K

moved the horizontal pressure asymptote slightly from the value given in

Eq. (5.28) in such a way as to compensate for the small variation of TT

with K given in Eq. (5.32). Thus, a better expression of T with K
T

in the range 10 < K < 60, typical of many engineering metals, is simply

T = 2 a e 1 (5.33)
T cy a

Similarly, from Eqs. (5.30) and (5.31), the characteristic time for the

elastic branch is

E

From Fig. 5.12 we see that if the time constant T of the

applied pulse is much shorter than TT , the load appears impulsive to

the shell, and if T is much larger than TE , the load appears quasi-

static. Loads with durations near or between T and T are quasi-
T E

impulsive, and both pressure and impulse are important to the response.

As shells become longer and thinner, TT and TE become more widely

separated (see Figs. 5.9 - 5.11) and the range of quasi-impulsive loads

increases. Conversely, for short, thick shells, the tangent modulus

and elastic curves move closer together and only a small range is quasi-

impulsive.
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5.7 Buckling from Asymmetric Loads

9 In all the experiments in the present investigation, and in

many practical applications, the load is applied by a blast wave passing

laterally across the shell. For moderately short duration blast waves

(in the quasi-impulsive and somewhat into the quasi-static range in

Fig. 5.3), the load is dominated by the diffraction phase and can be
9

approximated by

p(et) = ( Pp - e 2:

r 112 2

(5.35)

TT S 3
T1P Pi 2

where pr and pi are reflected and incident pressures, both assumed
*

to have the same exponential decay with time.

A rigorous treatment of shell buckling under asymmetric loads

would be very difficult, particularly since both elastic and plastic-

flow buckling must be considered, as we have seen for symmetric loads.

However, experiments show that critical pressure-impulse curves from the

symmetric load theory give reasonable estimates for buckling under

smoothly varying asymmetric loads such as in Eq. (5.35), taking pressure

and impulse at the peak load. This is demonstrated for impulsive plastic-

flow buckling in Fig. 5.13, which shows two shells, one buckled from a

cosine impulse over one side and the other buckled from a uniform impulse

of the same peak intensity. Both exhibit the same plastic deformation

and buckling in the area of the peak load. Similar examples are given

in Ref. 9 for shells subjected to quasi-static loads.

The small transit time of the shock across the cylinder is neglected,
and the pressure on the back surface (away from the oncoming blast)
rises slowly instead of sharply as does the front surface pressure in
Fig. 5.2. Neither effect has a serious influence on the shell buckling,

however, because the buckling is dominated by the front surface pres-

sure.
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FIG. 5.13 PLASTIC-FLOW BUCKLING FROM
ASYMMETRIC (left) AND SYMMETRIC
(right) IMPULSIVE LOADS (6061-T6
aluminum, D = 3 inches, L/D = 1, a/h = 24,
peak impulse 15G psi-msec for both shells)

The type of response likely to differ most widely under sym-

metric and asymmetric loads is elastic buckling from impulsive loads,
2 10which occurs in very thin shells. Payton's membrane solution for a

cosine impulse over one side shows that the peak membrane stress

(occurring under the peak impulse I) is about 70% of that in a shell

under a uniform impulse I, and the duration of the first positive swing

(during which buckling takes place) is also about 70% of the half period

of the symmetric (hoop) mode. Thus, since the buckling is in very high

order modes and grows in proportion to the product of the peak stress

and duration (see Ref. 7), buckling under an asymmetric load requires a

peak impulse about twice the impulse under a symmetric load. In moder-

ately thick shells (a/h Z 100), however, buckling takes place during

plastic flow and the results in Fig. 5.13 suggest that for these shells

asymmetric and symmetric buckling impulses will differ by less than the

factor of 2 estimated above the impulsive elastic buckling.

Under quasi-static (long) loads, asymmetric and symmetric

buckling loads are quite close because the buckling is dominated by the

)
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psuedo-static membrane stress, which is proportional to peak pressure.

Thus, the essential requirement for similarity in peak buckling load is

only that the pressure does not vary significantly over a buckle wave-

length. This is true for the smoothly varying pressures and relatively

high order buckling modes here. To a better approximation, Almroth's

results for static asymmetric buckling show that an average pressure

over a buckle wavelength could be used.

5.8 Comparison of Theory and Experiment

Extensive experiments were run on aluminum and magnesium shells

with L/D = 1 and radius-to-thickness ratios from 24 to 250. These are

described in detail in Ref. 9 and only a few results are given here for

demonstration. The shells were made from extruded tubing or rolled

sheet stock and were clamped rigidly at each end to heavy plugs. They

were subjected to lateral blast loads from explosive spheres and from

an explosive shock tube. Pulse shapes and pressure distributions from

these loads were measured on rigid models. The measured pulses were

very nearly exponential in shape as shown in Fig. 5.2b, and peak pressure

2
varied around the shell approximately as the cos distribution given in

Eq. (5.35).

Figure 5.14 gives theoretical and experimental buckling curves

for shells with a/h = 100 and a/h = 61. The lower experimental curves

give the maximum loads at which no permanent deformation of any type

was observed, and the upper experimental curves give loads at which the

peak permanent buckling deformation was about 10% of the shell radius.

It was a general observation that for quasi-static loads the two experi-

mental curves approached each other very closely; the shells were either

undamaged or severely buckled with deformations as large as 50% of the

radius. The impulsive end of the no-damage and 10%-buckling curves

differed by as much as a factor of 2. increases in load of about 50%

above the buckling curves generally resulted in very severe buckling and

tearing.
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The theoretical buckling curves in Fig. 5.14 lie within about

30% of the experimental buckling curves over the entire range of

pressure and impulse. There was a hint of a cusp-like shape in the

experimental curves, but the curves are drawn with a smooth hyperbolic

shape because very extensive experiments would be required to justify

an inflection. Mode numbers of buckling on the elastic model branch

agreed well with observed buckling in this load range. Mode numbers

on the tangent modulus branch were sometimes as large as twice the

experimental values, partly because of poor material property data and

partly because strain reversal was neglected; the strain reversal model

gave mode numbers in closer agreement with experiment. These favorable

comparisons between theory and experiment demonstrate that the assump-

tions made in the analysis are reasonable and the theory will be useful

in predicting pulse buckling of cylindrical shells.
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APPENDIX A

MATERIAL PROPERTIES USED IN THE CALCULATIONS

In the tangent modulus model the numerical calculations were

made using stress-strain data taken from tension tests on longitudinal

samples cut from the shell materials. The most important material

properties are Young's modulus, yield stress, and the variation of a/Et

with strain. Figure A.1 gives plots of O/Et  for several metals and

1.4 I I 1

'.3-

6061-T6 ALUMINUM SHEET
1-2- 0.0125" AND 00250'

6061-T6 ALUMINUM
. I-0.25" THICK . 6" diam EXTRUDED TUB-

0.12' THICK e'6 diam EXTRUDOED TUBE
.,' 1.0- 2024-TS ALUMINUM

0.25" THICK x 6" EXTRUDED TUBE
0.9 /

o" 0.8-

0.6 -
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0.4-

0.3-

AZ3-,-H2 MAGNESIUMj
0.2 -I o32 SHEETI. AZ318 MAGNESIUM

-0.34" THICK it 6" dIam
0 EXTRUDED TUBE

0 1 2 3 4 5
a 0 .1 2 .1tu

FIG. A.1 MATERIAL TANGENT MODULUS PROPERTIES
(from longitudinal tensile specimens)
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shows that for many of them O/Er increascs approximately linearly with

strain beyond yield. Theiefore. to the accuracy of the stress-strain

data, the calculations were nade using the formula

Y (A 1)

('/Et >~'-~
y y

where K is the slope taken from Fig. Al. Values oi K and other

p4ertir4tnt properties ar given in Table A.1 for the three metals used.

Table A.1

MATERIAL PROPERTIES
(Tensile Test Data)

Material E y E/E V K 3
(usi) (psi) (lb/in )

6061-T6 Al. 10 x 106 45,000 0.006 0.3 30 0.098
62024-TS Al. 11 x 10 66,000 0.033 0.3 35 0.100
6AZ31B Mag. C x i0 24,000 0.05 0.3 10 0.064

24
24

.. t
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APPENDIX B

RELATIVE IMORTANCE OF SHELL AND LOAD PERTURBAJ, IONS

To examine the relative importance of shell and lo'd perturbations

iQ trig-gering buckling, we conoider buckling under an ideal impulse 1
0

and obtain analytic results using the simplified iquaticns studied by
i*

Abrahamson and Goodier. For LP. ideal impulse the pressure term in

Eq. (5.9) is dropped and the initial cenditionA in Eq. (5.10) are re-

placed with

On 0

u ()0 , utO)= -- (B.1)n n och

th
where I is the perturbation of I in the n mode. Treating

, and E as constants, as in Ref. 1, the solution to Eq. (5.9) with

initial conditions (B.1) is

s 2
n f n o snUn s2 -in2tosh an - 1] + sih-q-r n- <

n -n r pch q 1,

(B.2)

where 22 a8 2 -- (2 )s2 _2 )

s and q = E n
a Et (B.3)

For large qnT the maximum dJ splacement due to either shell imper-

fections Gn or load imperfections n occurs approximately .t the

maxioum value of q , given by

it~ep~% J1 -- 1-Et1/2  an2E tc \ -a (B .4 )

I:o simple solutions are ipparent for quasi-impuloive loads and, for
quasi-static loads ,the effect of imperfection amplitudes is unimportant
in the present problem (see Fig. 5.7).
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and n is the integer n est s/T1. Using Eqs. (B.1 - B.4) and

n , s/ ,r" > > 1 , the itio can be formed between the maximum displace-

ment due to shell impei 2ctions and that due to load imperfections,

resulting in

Ushell _-
shel n coshQr 1 (8.5)

Uload (n V( CE )l1/2 sinh QT

ot

where V = I /fh is the initial inward velocity of the shell wall.
00

Finally, we recall from the definition of 8 in Eqs. (5.2) and (5.5)
n

that the shell imperfections in dimensional units are wn = a6 . Since
n n

inpulse buckling is at very short wavelengths, it is more reasonable to

take the imperfections proportional to the wall thickness h . Denoting

shell imperfections by win hy and observing that for large growth
in n

cosh Q- - i sinh QT , Eq. (B.5) becomes

Ushell _ Yn 1 12 Cy

Uload On V (pE )/2
0 t

Equation (B.6) carn be interpreted directly in terms of the circum-

ferential stress-strain curve for the shell material as shown in Fig. B.1

The initial kinetic energy of the shell wall is equated to the plastic

work in membrane strain, neglecting the elastic and strain hardening

contributions, giving

1 2 0h
I-PV 2~ C =0 -7 (B.7)
2 o y max yE t

where crh is the increment in stress due to strain hardening as shown

in Fig. B.1. Using Eq. (B.7) in Eq. (B.6) with a = o as alreadyY

assumed, we obtain

Uhl 6ay (B.8)
Uload \ Oh n
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(
The strain-hardening increment Uh is much smaller than the yield

stress for many engineering materials; thus Eq. (B.8) shows that for

these materials shell imperfections are likely to dominate over load

imperfections if we can assume that shell imperfections in terms of per-

cent wall thickness are comparable to percent imperfections in lcad.

For example, a 6061-T6 aluminum shell with a/h = 50 buckles at about

1.5% strain with Et _1 00,000 psi, giving u h = 1500 psi. Using this

in Eq. (B.8) with cy a 50,000 psi gives (v /9h)li2 = 14, Thus, if

we assume shell imperfections of 1% of the wall thickness (a reasonable

value, from observations of bar buckling 7), the impulse imperfection

would have to be 14% of the peak impulse in order to give comparable

buckling displacements. Such large load imperfections are very unlikely.

50 ..

|E -- 0NT6

40 --

0 -ALUMINUM

FiG. 8.1 STRESS-STRAIN CURVE

.V 245
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APPENDIX C

t CRITICAL IMPULSE FOR PLASTIC-FLOW BUCKLING

The simplified solution in Appendix B is also used to give the

approximate formula (5.28) for impulsive buckling. The magnitude of

u in Eq. (B.2) depends mainly on the argument QT of the hyperbolic

term, since we are concerned with large amplifications in which exponen-

tial growth dominates. Thus, it is reasonable to assume that the buck-

ling criterion of an amplification of 1000 corresponds closely to QT

reaching a critical value, i.e.,

sQTr B (0.1)

where B is a constant to be determined and T0 is the nondimensional

Aduration of the inward membrane plastic flow. In real time, this dura-

tion is given by

la

t= °--.- (C.2)
s ayh

y

in which the material has been assumed to be rigid-plastic. Using the

definition 7= ct/a and combining Eqs. (B.4), (C.1), and (C.2),

results in the following expression for the critical impulse I
0

20Lh( yl/()/B (C.3)0° =2hOy Y"

For a material in which Et  is nearly constant Eq. (C.3) suffices.

However, for most materials E decreases significantly with increasing
t

strain as discussed in Appendix A. In the numerical integration this

increase was described by Eq. (A.1), treating a/E as a function of
t

and hence of time T . Since most of the amplification of u takes

place near the end of the hoop motion (because c/Et  is increasing) a
t

reasonable approximation to th-e flexural motion can be found by assuming

a/Et  to be constant at its final value. With this assumption, C/E t
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from Eq. (A. 1) can be used in Eq. (C.3) to find I To eliminate c

from the final expression for 10, the relation between I and final

-train C must also be found. This is most easily done by equating

the kinetic energy imparted by I to the strain energy absorbed in
0

plastic work, which gives

I2 = 2Dh 2 f g(c)dE: (C.4)
o

0

Taking the material to be elastic, perfectly plastic gives

2 =  h2  ( s- __ (C.5)

To simplify the final expression for I we further assume that the0

final strain e is large enough that we can take e - e /2 ;e - e •ss y s y

With this approximation, Eqs. (A.1), (C.3), and (C.5) yield the desired

expression for critical impulse: I-

0/= B1/2 f )1/2 1hX3/2
o - a ell

The results of the numerical integration are matched by taking B = 12

which yields Eq. (5.32). Impulses from this formula a& ee with the

numerical integration within 5% for the materials in Tab e A.1 and

20 < a/h < 200.

2
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