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ABSTRACT

This is the second report on radome design., It was written to
provide information on the technological gains made since the lirsi
volume was released. Both volumes are intended to provide scien-
tists and engineers working on radomes with a concise reference
containing most of the information they will need, Topics covered
in this volume are: physical design; electrical design; environ-
mental simulation and testing; materials and construction; evalua-

tion and correction; and hypersonic applications., Comprehensive
bibliographies are included.

(This abstract is subject to special export controls and each
transmiftal to foreign governments or foreign nationals may be

made only with prior approval of AFAL (AVPT), Wright-Patterson
AFB, Ohio,)

The publication of this report does not constitute approval by the
Air Foroe of the findings or conclusions ocontained herein. It is
published only for the exchange and stimulation of ideas.

. ﬁf@w/zwé

H A. DOMBROWSKI

Lt Colonel, USAF
Chief, Electronic Warfare
Division
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SYMBOLS

Effective dinfneter of antenna
Boresight error derivative (slope)
A constant

Center of gravity

Outer diameter of radome at the
base

Young's modulus of elasticity

Totaul force on. radome

Drag force colinear with radome
major axis

Drag force normal to radome major
axis

Force due to inertia

Force due to pressure differential
Force due to effect of O-ring or
gasket seal

Force due to vibration

Modulus of rigidity

Insertion phase difference

A constant

Mach rumbers

Modulus of rupture

A constant

Radius of curvature of ogive
Reflection coefficient
(perpendicular)

Reflection coofficient (parallel)
Temperature

Trahsmission coefficient
(perpendicular)

Transmission coefficivnt (parallel)
Semimajor axis of ellipse
Semiminor axis of ellipse

Specific heat capacity at constant
pressure

Thickness of radome wall

Distance from radome tip to coordi-
nate center of ogive
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Distance from radome major axis
to coordinate ceyter of ogive

Heat transfer coefficient

Thermal conductivity

Total length of radome

A constant

Any positive integer

Internal pressure

Cartesian coordinate; radius at an
axial station

Distance from vertex to gimbal
center for log spiral radome
Flight times

Cartesian coordinate; distance
measiured from radome tip
Half-power beamwidth of antenna
pattern

Linear coefficient of thermal expan-
sion

‘Thermal diffusivity = k/pe,
Vertex angle

Loss tarigents

Angular error in leading the
radome

Relative dielectric conatant

Angle of incidence

Wavelength in free space

Poisson’s ratio

A constant = 8,1416

Density of radome material
Normal stress; tension is positive
Normal stress in radial direction
Normal stress in circumferential
direction

Normal stress in meridional
direction
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CHAPTER 1
PHYSICAL DESIGN TECHNIQUES

During the past decade, aircraft and guided
missiles have undergone a number of major
advances. The most significant advance is the
transition from transonic to hypersonic veloci-
ties. The effect of these velocities on the elec-
trical and structural characteristics of the
radome must, therefore, be considered in any
design. In this chapter, the various radome
types and configurations are reviewed. The de-
sign crileria for hypersonic radomes are pro-
vided and the various aerodynamic, thermal,
structural, electrical, and environmental trade-
offs are discussed. One type of radome construc-
tion, the thin wall, is examined in detail. Meth-
ods of attaching the radome to the missile
structure are described, Methods used to evalu-
ate radome performance are presented, and the
chapter concludes with a review of the factors
that affect radome strength.

1-1 DESIGN CRITERIA FOR RADOMES USED
ON SUPERSONIC AND HYPERSONIC
VEHICLES

1-1.1 DEFINITION OF RADOME TYPES

A radome is & dielectric cover that protects
an internal structure from its environment
without impairing the performance of the vehi-
c¢le on whieh it is mounted. Radomes for hyper-
sonic vehicles are of two types: (1) those that
form the leading structure of a missile or an
aircraft, and (2) those that are mounted flush
with the fuselage. Radomes of the first type
protect radar system components, such as di-
rectional guidance, mapping, or weather an-
tennas, Radomes of the second type protect fixed
or flush-mounted antennas. The radome must
not only protect the system, but it must also

have a minimal effect on antenna character-
istica. In particular, its effpets on boresight
error angle, the rate of change of this angle
with antenna beam position, snd on the an-
tenna gain and pattern must be kept to & mini-
mum, Such effects result from complex electro-
magnetic ibteractiony affecting the radome, an-
tenna, and other components of the vehicle near

- the radiating system, Since the radome is near-

est to the system and is usually in the near ficld
of the antenna, it causes the primary distor-
tions. Since electrical performance of the
radome is essentially determined by its wall
construction and aerodynamic shape, these
parameters can be used to define the radome.

1-1.2 TYPES OF WALL CONSYRUCTION

A groeat desl of time and effort has been spent
in attempting to minimize the effects of wall
construction and thickness on antenna per-
formance. Since the various radiating systems
have different purposes and, therefore, differunt
requirements, many types of construction have
been investigated. A review of the literature on
radome design shows that the various types of
construction can be grouped in a logical se-
auenee as follows, based upon electromagnetic
boundary conditions and wall composition;

Solid Walls

Thin

Multiple one-half wavelength
Laminated Walls

“A" sgandwich

“B” sandwich

“C” sandwich

Double wall

Half sandwich

Multiple layer

B N A T T



Detailed descriptions of these constructions and
analyses of their respective merits are contuined
in References 1 through 3. A summary of the
various radome constructions follows,

1-1.2.1 Solid Wail

Solid-wall radomes are divided according to
thickness as zither thin wall or multiple one-
half waveleugth, and are constructed either as
a monolithic or composite structure, A mono-
lithic wall is made from a single material and
is usually formed by a casting process. A com-
posite wall is made of severul materials. It is
formed by casting a filled plastic or ceramic ma-
terial, a fillmnent, or roving winding; and by
laying up sheets of these materials with suit-
able binders,

1-1.2,2 Thin Wull

Thin-wall radomes are so called because the
wall thickness is small in comparison with the
wavelength of the incident radiation. A wall
thickness of 1/20 of the wavelength in the ma-
terial ig usually adequate. Physically, this thick-
ness is on the order of hundredths of an inch at
X-band ard incceases to tenths of an inch at
S-band. The advantages of thin-wall radomes
are lightness, negligible effact of wall-tnickr.ess
tolerance on electrical performance, high trans-
mission efficiency, and negligible sensitivity to
changes in polarization and angle of incidence;
it is also relatively broadband. In the past, thin-
wall radomes made of plastic materials have
heen limited to low-velocity, clear-weather ap-
plications. The recently developed ability t»
fabricate thin ceramic walls, which, as shown
in Chapter 8, have greater resistunce to rain-
fall at relntively high velocities, should encour-
age renewad interest in this type of conatruc-
tion. They are especiully useful for low-fre-
quency applications such as those for C- and
S-band radomes,

1-1.2.3 Multiple One-Half Wavelangth

Thick solid-wall radomes are clussified by the
number of multiples of one-half wavelengths of
electrical thirkness they contain. For a specific
radome fabricated from a material having a

dielectric constant of ¢, an effective angle of
incidence of 9, and that operates at n wavelength
of Au, thie mechanical thickness is approximately

d— o T (11
2(€ — sin*@) v+ - h

where n {8 an integer cqual to or greater than
zero. Note that the thin-wall radome is an ap-
proximution of the zeroth order,

In clagsifying thick solid-wall radomes, it is
conventional to define thickness in terms of n,
which determines the number of one-half wave.
lengths of electrical thickness. Thus, for n equal
to 1, 2, or 3, the wall {3 called one-lalf wave-
length, {ull wavelength, or threc-half wave-
length, respectively. Figure 1-1 illustrates the
thin-wall radome and the first three orders of
one-half wavelengths, The simplest structure,
one-half wavelength, has been employed for
most high-spead radomes. It has the ndvantages
of being light, structurally adequate at high
frequencies, and simple in electrical design: it
has the least adverse effect on system por-
formance and has good resistance to rainfall
at high misslle velocities. The wide use of this
type of structure has provided a wealth of in-
formation on physical design, electrical cor-

Y
4

‘rection, and environmental reliability, The use

Figure 1\1. Types of Solid-Wall Radomes
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Figure 1-2. Types of Luminated Radomes

of higher-order thicknesses causes greater elec-
trical degradation, but also affordd greater
structura; reliability at frequencies above
X-band.

1-1.2.4 Laminated Whall

Laminated radomes differ electrically from
solid-wall radomc, in that they have a greater
number of boundary conditions and several dif.
ferent types of materials make up their struc-
ture. The two distinet types of construction
favored, cored and multilayer, ave illug‘rated in
Fig. 1-2, The cored construction of the “A” and
“C" sandwiches consists of an effective low-
dielectvic-constant core contained by two high-
dielectric-consiunt skins, while the “B" sandwich
conaists of a high-dielectric~-constant core with-
in two low-dielectric-constant skins, Since the
dielectric constant of mosl materials increases
with density, a low value of dielectri¢ constant
implies low density, and vice verss. The low-
dielectric-conztant core is obtained by using a
foamed material, i.e., one of low density,

The low-dielectric-constant core can be simu-
lated by using a high-dielectric-constant ma-
terial in a fluted or honeycomb configuration.
These latter constructions, however, are not
electrically isotropic, wheroas the foumed ma-
terinls are. Other disadvantages are that a
mosaic i8 needed to produce a doubly curved
surfuce (only slight curvature can be obtained
in any section), thus limiting their use to large
radomes, Fluted and honeycomb constructions

have an advantage of allowing the passage of
air for ducted heating of the skins. Foamed
cores are easy to fabricate and can be used with
both large and small radomes,

1-1.2.5 “A" Sandwich

The "A" gandwich construction consists of
outer and inner skins of a material having a
higher dielectric constant than that of the core.
The optimum ckin spacing, measuved through
the core material, is approximately one-quarter
wavelength. Thus, this construetion is analogous
o that of a one-quarter-wavelength trans-
former. In this counstruction, the strength-to-
weight ratio and bandwidth are greater than in
4 solid-wall radome. Also, the hard surface is
more impervious to possible damage caused by
handling and the environinent, The sandwich
is, howaver, more se.sitive to variations in
polarization and angle of incidence,

1.1,2.6 “'B" Sandwich

The “B" sandwich construction, which con-
gists of skins having a low diele.tric constant
and a thin solid core having a high dielectric
constant, is similar to the one-quarter-wave-
length coating used in optical systems. As the
thickness of the core appronches zero, this type
of radome approaches the one-half wavelength
construction. Althongh the “B”" sandwich can
be designed to provide equai transmission for

.perpendicular and parallel polarizations, it does




noi afford maximum transmission. Although it

is superior electrically to the “A” sandwich, the .

“B" aandwich is not suitaple for use in extreme
environments or in apnlicatinng vagnirine =
strong durable surface.

1-1.2.7 “C" Sandwich

The “C" sandwich construction consists of
five layers, i.e., three dense skins and two cores.
Thus, it is basically two “A’’ sandwich radomes
with no spacing between them. This type of con-
struction has the best strength-to-weight ratio
and is ideally suited to very-high frequency
applications in which greater rigidity ia re-
quired. Its transmission efficiency and band-
width are somewhat greater than those of the
“A’ sandwich.

It should be noted that although Fig. 1-2
illustrates identical skin thicknesses for the
sandwich constructions, the sandwich design is
not limited to this symmetrical construction. If
diffcrent dielectric constants are used for the
two sking, an asymmetrical construction can be
employed for greater structural resistance in
the outer skin, or to provide a means of com-
ponsating ‘for the change in electrical thick-
ness of the outer skin caused by aerodynamic
heating. Although the sandwich design has been
limited to plastic materigls, future designs
should consider the use of the ceramics, espe-
cially for “A” sandwiches. As indicated in
References 4 through 6, recent studies have
shown the feasibility of employing a ceramic
foam between ceramic skins, eliminating the
bond line reflection found in plastic sandwiches,

1-1,2.8 Double Wal!

The double-wall radome corisists of two solid
sking separated by an air core. For this reason
it has also been called an air-core radome. As
shown in Reference 7, the optimum skin apacing
is somewhat less than one-quarter wavelength.
If the skins are thin, ruther th#n one-half wave-
length, the design can then be considered as a
degenerate “A” sandwich, i.e., the dielectric
constant of the core is unity. Although a radome
of this design is light and has a passage for
air to heat the skins, maintenance of the spacing
is difficult, especially in the presence of high
vibration.

1-1.2.9 Half Sandwich

A construction similar to the thin solid-wall
radoine is ihe one-paif A" sandwich, which
congists of a thin wall with a poertion of the
core added for greater rigidity. If the ceramic
foam construction described in References 4 and
b is used, such a structure combines the advan-
tage of additional rigidity with the performance
of a thin solid wall. This design is especially
attractive for use at low frequencies.

1-1.2.10 Muiltiple Layer

The multilayer wall, consisting of thin layers

of materials having different dielectric con-.

stants, is best for ECM radomes. Reference 8
includes a series of reports that illustrate the
design, and Reference 9 illustrales the com-
plexity of designing a radome having a large
number of sheets, each with an optimum thick~
ness and dielectric constant. Because of this
complexity, the use of multilayer radomes has
been limited to applications requiring extreme
structural rigidity or broadband capability. Al-
though, at present, this design consists of plastic
laminates, recent advances in materials tech-
nology, reported in Reference 10, indicate that
the use of ceramica is feasible. It is expected
that such a radome will be characterized by
high structural reliability, good electrical per-
fsrmance over wider bandwidths, better resist-
ance to thermal shock and rainfall, and that it
will be less expensive to fabricate,

1-1.3 TYPES OF AERODYNAMIC
CONFIGURATIONS

The contour of flush-mounted radomes fol-
lows that, of the body of the vehicle and is usu-
ally a right circular cylinder or cone. If the
surface area of the radome is small compared
with the missile diameter, a planar cover can
be used. However, such radomes are not con-
sidered to be separate structures as are nose
radomes, which act as a transition between the
body and the airstream. An aerodynamicist
takes congiderable care to minimize the effect of
aerodynamic drag caused by a nose radome, but
he usually does not consider flush-mounted
radomes specifically. Since a radome designer
approaches the radome from the standpoint of
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electromagnetic theory, he usually desires a
hemispherical shape, which is not acceptable to
the aerodynamicist. Let us, therefore, review the
varicus radoms conluurs considered during the
early phases of missile design, This discussion
will serve as an introduction to the design of
such centours. Reference 11 should be consulted
if more detailed information is desired.

1-1.3.1 Ellipsoid

An ellipsoidal shape is obtained by revolving
an ellipse or elliptic segment about cne of its
major axes. If the ellipse is rotated about its
major (minor) axis, an oblate (prolate) ellips-
oid is obtained. As shown by Eq. 1-2, the exact
shape depends on the magnitude of a and b,
which are the lengths of the major and minor
axes, respectively. As a approaches b, the con-
tour becomes more bulbous and finally becomes
a hemisphere. The equation for an ellipse is

r:.—.b[l— (—"-};—i‘-)] (1-2)

The symbol convention is shown in Fig. 1-3.
With the ellipsoid at its limiting value, i.e,
the hemisphere, electrical characteristics are
affected the least, but only at the expense of
aerodynamic performance. Hemispheric shapes
are usually employed at low velocities, where
the drag is not an important factor, or at high
reentry velocities, where the additional drag in-
creases deceleration or where a larger nose
radius is required to minimize aerodynamic
heating and the resultant thermal stresses.
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Figure 1-3. Ellipsoidal Radome
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Figure 1-4. Logarithmic Spiral Radome

1-1.3.2 Logarithmic nr Equiangular Spiral
1

The logarithmic or equiangular spiral is gen-
erated by revolving a segment of a spiral about
its major axis, ‘This contour, which may require
an aft fairing since it recedes before reaching
the gimbal center, is primarily of importance
to the radome designer, since, if the antenna iy
mounted at the center of the spiral, the central
ray will strike the radome at a constant angle
of incidence, which is the same as the vertex
angle, 3. This contour degenerates into & hemi-
sphere when B8 equels zero. The general equa-
tion for the logarithmic spiral is

L )] (1-3)

The general surface and symbol conventions are
shown in Fig. 1-4.

rf (X —8)t=
§* exp [-—2 tan B tan—! ( x

A hemisphere is the optimum electrical con-
tour, since, if the antenna is located at the ori-
gin, the central ray strikes the radome at normal
incidence at all look angles. This is an advan-
tage, since transmission coefficients are equal
for both parallel and perpendicular polariza-
tiong, but it is also a disadvantage since any
signal reflected from the inner surface is re-
flected back to the anlenna. Like the ellipsoid,
this shape is used to minimize heating at high
velocities., For this reason, the hemisphere has
been extensgively used as a means of blunting the
nose of radomes,
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Figure 1-5. Oglval Radome

1-1.3.3 Ogive

The term ogive has been extended to include
niot only the normal architectural construction,
but also all convex solids bounded in part by an
are of a circle having a radius R whose center
lies on the side of the axis of revolution that is
opposite to the arc. If the bounding arc cuts the
axis, the ogive is said to be pointed. If the figure
is truncated, the ogive is called blunted. An
ogive that includes its bnse is known as a tan-
gent egive, while one that does not is called a
sccant ogive. As is true of the previously de-
scribed shapes, the ogive has been used exten-
sively in radome design because it is easily
fabricnted and is relatively acceptable anero-
dynamically at high speeds. As shown by re-
viewing the following general equation and Fig,
1-5, an ogive alsu degenerates to a hemisphere:

r=[R*— (x—-)*"—g  (1-4)

1-1.3.4 Power

The power series of contours was designed
to provide minimum drag under specific aero-
dynamic conditions. The three-quarter power
shape is an approximation to the true New-
tonian shape. Since the equation for the three-
quarter power shape is simpler than the com-
plex equation defining the Nwtonian shape and

the differences between the shapes are small
(the power shape is less bulbous), the approxi-
mate shape is nsually used. The general power
shapes are generated by rotating tha foure
defined by Eq. 1-5 about its major axis:

P= o (—’})m (1-5)

where D = base diameter
" | = total radome length
m = constant

1f exponent m is equal to unity, the equation is
that for a cone; if m is equal to 1/2, the equa-
tion is that of a parabola., The familiar three-
quarter nose shape that approximates the New-
tonian shape i3 obtained by letting m equal 8/4.

1-1.3.5 Parabolic

Like the power series, the parabolic series of
shapes was derived to minimize aerodynamic
drag for a particular set of conditions. Thege
shapes ave obtained hy revolving the shape de-
fined by Eq. 1-6 about ity major axis:

X _ o X\
1--:_123_ 27*““1) (1-6)
2-—-C

The symbols have the saume definitions as for
the power series, where m is replaced by C.
Aguin, a right circular cone is obtained when C
is equal to zero. If C is equal to unity, the shape
becomes a parabolic segment.

1-1.3.6 Haack-Von Karman

The Haack-Von Karman contours have be-
come well known to many radome designers
through the fame of the originators and the
complexity entailed in generating these shapes.
Note that the Haack body is also known as the
Sears and Sears-Haack body since the shapes
were independently derived by these two aero-
dynamicists, As shown in Refercnce 14, a gen-
eral equation can be derived that is based on the
requirement of minimum drag as expressed in
Eq. 1-7. Here, aerodynamic drag can be varied
in accordance with the radome length, area,
and volume desired.
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where ¢ = cos ™! (! - 2-5[)

If K is equal to zero, Eq. 1-7 becomes that for
the Von Karman nose, which has tha least drag
for a given length and base diametzr, If K ig
equal to 1,3, this equation reduces to that for
the Sears-Haack nose, which has been optimized
for minimum drag oo the basis of length and
nose volume,

1-1.4 FACTORS AFFECTING RADOME DESIGN

Although it is assumed that the various fac.
tors affecting radome design that are considered
in the following paragraphs apply primarily to
nose-mounted radomes, they are equally appli-
cable to radomes mounted elsewhere vn the mis-
sile. A nose-mounted radome was selected for
discussion because all the design criteria asso-
ciated with an object subjected to the environ-
ment surrounding a leading aerodynamic body
must be considered. The radome designer must,
of course, consider all the basie factors affecting
missiie performance, which include the weight,
volume, length, size, and pousition of the antenna,
as well as the interface between the radome and
the missile body. In addition, with airborne
missiles there are environmental variables asso-
ciated with pylon and bay mounting. The fac-
tors directly affecting radome design can be
grouped into the following general categories;
aerodynamic, thermal, electrical, struectural, en-
vironmental, wall construction, and physical.
Since each of these is directly affected Ly the

. properties of the material of which the radome
is made, the effect of this material must also be
considered.

The following disens-.cn summarizes the
many factors influencing radome design, It does
not, however, present detailed design data. Such
information is generally available in design re-
ports such as Reference 1. Although a detailed
list of references is provided at the eand of this
chapter, the reader should also consult the
bibliography compiled by the Lincoln Labora-
tory Library. These two reports, References i2
and 13, comain the unclassified and classified
documents, respectively, published between Jan-
uary 19562 and October 1962,

1-1.4.1 Aerodynamic

A radome designer rarely evaluates the aero-
dynamic performance of a radome. He must be
aware, however, of the various interacting
effects that prompt an serodynamicist to pro-
po:  shapes that cannot be readily modified to
obtain optimum electrical performance. Aero-
dynamically, a radome is defined by its shape
and fineness ratio. The finencss ratio is the ratio
of {, the distance from radome tip to the maxi-
mur missile transverse section, to D, the diam-
eter of the maximum transverse section, These
twe parameters determine the aerodynamic
drag of the radome. For every fineness ratio,
there is a shape that results in the least aern-
dynamic drag for any given Mach number.

The various radome shapes previously dis-
cussed represent those usually employed in
radome design. These are illustrated in Figs.
1-6 through 1-9 and are based on a fineness
ratio of 2.5:1. The usge of the hemisphere,
Haack, ellipsoid, and parabcloid is usually re-
gtricted to the transonic region where these
shapes cause the least drag. Between Mach 1
and 2, the Von Karman, the one-half and three-
quarter power series, the one-half and three-
quarter power paraboloid, and the logarithmic
spiral cause the least drag. At velocities greater
than Mach 2, the Von Karman, ogive, three-
quarter power series, paraboloid, and cone are
the most suitable shapes.

The effect of nose shape on the drag coeffi-
cient was expressed by Jorgensen, who said,
“Although for the similarity-parameter range
investigated, the wave-drag of a Newtonian
shape (which is approximated by the three-
quarter power curve) is at most 10 percent less
than that of & Von Karman shape, it is 20 to
25 percent less than that of a tangent ogive,
and 15 to 20 percent less than that of & cone.”
(See Reference 18.)

References 14 through 20 present data on
serodynamic drag useful for specific design in-
formation. Since the ogive and cone together
with the Von Karmin and three-quarter power
shape are the best radome configurations for
the velocities of interest today, we will consider
their elative merits, Although a Von Karman
nose causes little aerodynamic drag, it is not
vasy to fabricate and requires template grind-
ing. The three-quarter power shape also pre-
sents the same problem. The ogive and cone ure
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Figure 1-9. Ogival Radomes with Various Types of Nose Blunting

not difficult to fabricate since templates for
them can be readily made, and if special grind-
ing equipment is used, iemplates are not even
required. The ogive has the advantuges of
slightly greater volume for a given fineness
ratio, low drag, inherently greater structural
reliability because of its bulbous shape, and
ease of electrical design because considerable
electrical design data are available for this
shape.

The effect of the shape of the nose on aero-
dynamic drag is of secondary importance when
compared with that of the fineness ratio. If the
drag inducad by the nose were the only con-
sideration of importance in selecting a radome
for the missile, a high fineness ratic would be
chosen. Figure 1-10 shows how dreg decrenses
as the fineness ratio and missile velocity are
varied. On the basis of these curves, the maxi-
mum fineness ratio would seem to be the best,
If, however, the effects of a reduction in trans-
verse area on antenna size are considered, a
compromise design must be adopted, It should
also be noted that for a given missile length,
diameter, weight, and the amount of propellant
nweded, drag can be increased or decreased by
lengthening the nose as the amount of propel-
lant is decreased or increased. In thig way, an
additional variable is introduced that reduces
the fineness ratio to a value less than that which
considerutions of drag would imply.

The thermal environment and stress encoun-
tered at high velocities dictate the use ot a blunt
nose for greater structural reliability. Thix shape
must also be considered by the aerodynamicist,
since it aflects total missile drag. Nose blunting
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Figure 1-10. Drag Coeflicient vs Fingness Ratio for
Several Mach Numbers

is achieved by replacing the pointed tip of the
radome with un elliptical or ogival scetion that
is tangent to the major contour. T'wo methods
can be used to blunt a4 radome: (1) blunt the
tip and maintain the fineness ratio and base
disnmeter constant, as illustrated in Figure 1.9
(2) blunt the tip and maintain the base diam-
cter constuant and reduce the fineness ratio.



The effect of blunting the radome tip is dis-
cussed in References 17, 19, and 20. It is shown
that for any Mach number, a decrease in fine-
ness ratio increases drag, but as the blunting
radiva is inecrensed, thig radius becomes the
more important criterion since ali shapes tend
to approach a hemisphere as the radius of the
tip increases. It should be noted, however, that
for small blunting radii, drag actually becomes
less than it is when an unblunied shape is em-
ployed. This fact can be explained by consider-
ing a conical body. At high wvelocities, the
surface pressure is high. If the tip is blunted,
this pressure becomes much greater at the tip.
However, as the nerodynamic flow expands, the
pressure decreases aft of the tip and the total
pressure on the body, and hence the drag, be-
comes less. If the base diameter and ogive
radius are maintained constant, the effective
finenesa rativ decreases ay the tip radius in-
creases, The decrease in i/D gradually cancels
this blunting effect and, as wouid ‘be expected,
drag increases. This point is illustrated in Fig.
1-11. A general rule-of-thumb is that if the
ratio of the blunting radius to the ogive radius
i8 less than 0.15 to 0.2, drag increases by only a
negligible amount,

Blunting the tip radius and maintaining the
fineness ratio and base diameter constant pro-

R, = o)
R|< R2<R5<R‘

DRAG COEFFICIENT el
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Figure 1-11. Drag Coeflicient vs Mach Number for
Various Nose-Blunting Radii

vide an additional advantage. Increasing the
ip radius while maintaining the length con-
ftant increases the effective tineness ratio ot the

/nose because if the ogive is continued until it
/| intarsects the major axis, a higher fineness
" ratio is obtained (see Fig. 1-11). This effective
" fineness ratio results in less drag than that

12

encountered with the original fineness ratio.
If the increase in drag due to tip radius is com-
pared with the decrease in drag caused by the
effective fineness ratio, it is found that a blunted
radome can cause less drag than a pointed ra-
dome having the same fineness ratio. However,
this is true only of small blunting radii, since
the limiting shape is a- hemispherical nose with
a cylindrical skirt that produces high drag.

Although the overall drag of a missile de-
pends on velocity and altitude, other aerody-
namic factors, such as acceleration, flight time,
and trajectory, must be carefully considered be-
cauge of their effeet on radome temperature
and structural reliability.

1-1.4.2 Thermal

A radome is subjected to a thermal environ-
ment not only during the short period during
which it is in tactical operation, but also while
it is on an aircraft or in storage. Since radomes
for air-to-air missiles are exposed to all three of
these, each is considered in detail. Storage tem-
peratures depend on geographic location and
storage conditions. The usual temperature ox-
tremes of —80°F to -+160°F encountered in
storage are not significant. Air-to-air missiles
on high-speed aircraft encounter one of two
types of environment. Bay-mounted missiles are
subjected to high temperatures when the bay
doors are open at high velocities and to very
low temperatures when the doors are closed,
especially at high altitudes. These conditions
are very similar to those encountered in stor-
age. Pylon-mounted missiles, however, are sub-
jected to the environment of the aireraft and
react directly to the free-stream conditions.
Thus, these radomes undergo aerodynamic heat-
ing similar to that of the aircraft radome or of
a free missile following the path of the aircraft.
Once a missile has been launched, it undergoes
a sudden acceleration and then beging to de-
celerate hecause of aerodynamic drag and
maneuvers. An air-to-air missile, therefore, ex-
periences an instantaneous increase in tem-




perature rather than the gradual increase that
is characteristic of ground-launched miscilag,
The temperature of & bay-mounted missile in-
creases more than that of a pyion-mounted mis-
sile, since the bay-motinied missile goes direcily
from the low temperature to the free-stream
environment.

Several areas of a radome can be thermally
critical. They are the forward or stagnation re-
gion, the transition region, and the region where
the radome is attuched to the missile. The first
area is characterized by laminar flow and high
local rates of heat transfer to the wall. The sec-
ond region is the most forward point on the
radome at which turbulent flow occurs and tur-
bulent heating rates occur. The third region
should be examined because there may be great
differences in the temperature of the radome
and the missile struclure.

Radome heat transfer rates always depend
on the Mach number history of 4 missile. This
history depends in turn on the weight, configu-
ration, and specific mission of the missile. For
air-to-nir missiles, the thermally critical flight
condition is also governed by capabilities of the
launching aircraft. The critical launch condi-
tion is usually the lowest altitude at which the
aircraft can fly at maximum speed. The critical
attack mode is less dependent on the launching
aircraft; in gencral, a snap-down attack is more
severe thermally than a co-altitude or snap-up
attack.

The methody used to calculate the tempera-
ture distribution through a radome wall and
along its axis are beyond tho scope of this
chapter. References 21 through 26 should pro-
vide & basic understunding of the heat trunsfer
analyses. In general, the effects of angle of
attack, i.e., circumferential and axial thermal
gradienty, are neglected, On a straight and level
(co-altitude attack) mission, these effects tend
to be averaged by missile roll and oscillatory
pitching motions caused by aerodynamic sys-
tem noisec. In a hard-turn maneuver, missile roll
again tends to average these effects; in addi-
tion, missile velocity decreases more rapidly be-
cause of the increase in drag at all angles of
sttack and thus decreases the driving tempera-
ture. This practice of assuming zero angle of
attack is conservative for the stagnation point
where temperatures are highest,

Anpalyses of the temperatures of the outer
surface of a radome reveal that the temperature
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is highest at the stagnation point or at the sonic
noint i€ tin bluntine {3 Gsed, aid thal 1t de-
creases aft of this point. The axial and cireum-
ferential thermal gradients are usually several
orders of magnitude less than the thermal gra-
dient induced in the wall. The radial tempera-
ture gradient is, therefore, the most important
factor in radome design since it can vary from
hundreds to thousands of degrees Fahrenheit
per inch, depending on the conditions of flight.
The temperature gradient produced by this
aerodynamic healing of a radome is higher
near the outer surface than it is at the inner
surface. The gradients through the wall pro-
duce thermal stresses in the wull because of
differential expansion from point to point. Since
the temperature of the outer surface of a
radome inereascs rapidly during boost, large
compressive stresses are imposed on this sur-
face, while lowoer tensile stresses oceur on the
ihner surface, As the missile decelerates, the
temperature of the outer surface decreases and
the above conditions are reversed, Various
methods of evaluating the effect of the thermal
gradient. are discussed in the literature of
radome design. References 25 through 82, to-
gether with their references, provide a reason.
ably complete summary of recent work in this
field. The methods employed range from de-
iailed analyses to simple cylindrical and planar
approximations. The consensuy is that a
#pherical approximation is valid at points near
the tip of a blunted radome if the meridional
tnermal gradient is not sharp and if the modu-
lus of elusticity is not a strong functio, f
temperature. At points aft of the tip «- a
blunted radome, where the inner radius is large
compared with the wall thickness, a cylindrical
or conical anulysls gives good approximate
stress values, Refernnces 21 and 26 present the
approximate methods and Referance 25 presents
the more detailed methods. it has been found
that the simple assumption of physieal proper-
ties that do not vary with temperature is not
valid at high velocities. (Roference 26,)

Since the tangent ogive is usually chosen as
the optimum radome shape, lot us consider such
a4 radome and the cffects that missile launch
and burn-out velocity, accelsration, finoness
ratio, and tip blunting have on temperature and
thermal stress, The following conclusions are
equally valid for radomes of any shape; only the
mugnitude of the change is different. A review
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of the stress equations shows that: (1) the
radial stress vanishes at the outer and inner
surfaces, (2) circumferential and meridional
siresses are equal 1n magnitude but vary with
position through the wall thickness, and (8)
circumferentinl and meridional stresses arc
maximum at the surface. Since the maximum
radial stress is significantly less than the maxi-
mum meridional stress, this discussion will be
concerned only with the meridional stress. If
two ogival radomes having a tip blunting radius
of 1.6 in. and fineness ratios of 3:1 and 2:1,
respectively, are fabricated of the same ma-
terial and are subjected to the same velocity
and altitude profiles, they experience consid-
erably different thermal environments as shown
in Fig. 1-12, In general, it is found that the
temperature of these radomes decreases with
increasing distance from the tip; however, for
high fineness ratios, the temperatures are
greatly in excess of those encountered with low
fineness ratios. Figure 1-13 shows the thermal
gradients at the stagnation point for a radome
with a high fineness rvatio. Figure 1-14 was ob-
tained by using these data to compute thermal
stress. It shows the differences between the vari-
ous siress components. Similar datas for the
other migsile stations provide the information
given in Fig, 1-15. The decrease in temperature
and thermal stress at the lower fineness ratios
is sclf-evident. If a radome i fown on a snap-
down and co-altitude trajectory, the tempera-
ture and peak tensile stress are approximately
10 to 15 percent greater for the snap-down tra-
jectory.

Acceleration has little effect on maximum
temperatures if the missiles attain the same
peak velocity. However, therinal stress increases
with increasing acceleration. Temperature,
thermal gradient, and thermal stress increase
for a radome subjected to 1the same acceleration
but to different initial velocities. An increase of
one in Mach number can cause a 50- to 100-per-
cent increage in stress, depending on the redome
material.

The peak temperature of the outer surface
is relatively independent of wall thickness.
Thermal gradients and thermal stresses, how- -
ever, become less with major increases or de-
creases in thickness, Since in the former case,
the heat is distributed through a greater mass,
the temperatures are lower. Since in the latter
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Figure 1-13. Stagnalion Point Temperature
Gradients

case there is less mass, the thermal gradients
are less but the average temperature through-
out flight is higher. A decrease in initial tem-
perature increases the thermal gradient and
thermal stress; however, the veak temperature
does not become appreciably less. The relation-
ghip of radome material to temperature is illus-
trated in a following section. Here. it is suffi-
cient to say that the properties of radome ma-
terial as a function of temperature must be
included in all analyses dealing with hypersonic
velocities. The temperature profile of hyper-
sonic¢ radomes is discussed in TDR-AFAL-64-
342, “Temperature Profile for Hyper Environ-
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mental Radomes,” Final Report under AF $3-

(615)-1277.

As shown in Fig. 1-12, the temperature is
highest at the tip of the radome, It affects the
radome both electrically by increasing the bore-

sight error and structurally by producing high
thermal stresses, Thermal strosses arc related

to thermal expansion, thermal conductivity,

strength, and elastic modulus of the dielectric

material. A discussion o>f the effect of these and
other properties of the material on the thermal
shock resistance of the radome is covered in
Paragraph 1-1.5.5.

The reduction of the temperature and ther-
mal gradient to the extent thal they do not
impair radome performance has led to an in-
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vestigation of the effect of the tip radius. If
Ltips having various radii are used to blunt the
radome, the temperature decreases ag the radius
increases. an shown in Wig 1.18 Tha offact of 2
decrease in temperature on the tensile thermal
stress on the inner surface of the radome is
shown in Fig. 1-i7. It can be seen that a large
reduction in stress occurs as the radius in-
creases from 0.6 to 1 in,, but that with further
increages in the radius, there is less reduction
in stress. Note that as the Lip radius increases,
the time of peak thermal stress is deferred. This
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Figure 1-16. Stagnation Point Temperature
Histarles for Radomes Having Various Tip Radii

STRESS=P»

1 1 L L : i

FLIGHT TIME =

Figure 1-}7. Tunsile Thermal Siress of Stagnolion
Point for Vaiious Radome Tip Radii vs Flight Time
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fact can be utilized to prevent catastrophic fail-
ure in specific systems. An example is & ground-
to-air missile, which has a life expectancy of
seconds. Here, before intercept, the stress can
ve reduced to a value below that at which failure
can occur.

Iu wnany systems, the relief afforded by nose
blun.ing is not suflicient to prevent radome fail-
ure. In these cases, additionzl steps must be
taken. One method, discussed in References 33
through 35, is to use an aerodynamic spike at
the tip. This spike huy been found to be effective
at low angles of attack. It causes a decrease not
only in radome temperature but also in drag.
Reference 36 presents data indicating that the
spike dees not adversely affect the electrical
performance of the radome beyond that ex-
pected for a radome with a fineness ratio that
is the same as the ratio of the distance from the
tip of the spike to radome base to the diameter
of this base. Jets of gas or fluids directed
forward from the tip reduce the radome tem-
perature. Although systems proposed in Refer-
ences 38 and 37 attain their objectives, they
impair the electrical characteristics of the
radome and increase the complexity and weight
of the missile because facilities for the storage
and transfer of gaus are required. However, these
systems should be considered, especially for
large-diameter migsiles. Other methods of cool-
ing, such as transpiration and convection, are
summarized in Reference 25. Cooling by tran-
spiration is desirable if weight and internal
pressure are important considerations: Tran-
upiration and convective cooling require internal
pressurization and either porous or slotted
walls: For this reason, these methods are nog
applicable to evacuated systems. The use of &
heat sink and ablative cover is considered in
References 23, and 88 through 40, exch of which
containsg a list|of references dealing with this
subject. An ablative cover has the advantages
of being self-regulatory and nat requiring the
pump and storzge equipment needed with tran.
spiration or mass injection systems. Ablatives,
such as Teflon, polyethylene, and fused silica
or quartz, not only absorb heut in ithe ablative
process, but also act as insulators because of
their low thermal conductivity. They also offer
the advantages of low electrical logs, the ab-
sence of a chur residue or a conductive liquid
layer, and smooth ablation that leaves an sero-
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Figure 1-18. Stagnation Point Temperalure
Histories for Radomes with Various Tip Radii and
Teflon Protective Covers,

dynamically clean surface. They can be readily
molded and then bonded to the radome to pro-
tect the tip area. These materials remove heat
by heating the solid to its ablation temperature,
melting or subliming the surface, injecling the
gaseous product into the boundary layer, and
chemically reacting with the boundary layer.
Because of its high ablation temperature, the
use of silica (or quartz) is limited to reentry
conditions, Teflon, having an ablation tempera-
ture of approximately 1000°F, is ideal for use
at hypersonic velocities. Reference 21 cites one
example of the use of Teflon to reduce the high
temperature and thermal stress in the tip area.
Figure 1-18 presenis temperature histories for
the same conditions as those on which Fig, 1-16
is based. Teflon 0,390, 0.275, ind 0.190 in, thick
was used for the 0.5-, 1.0-, and 2.0-in. radii,
respectively. The advantage of an ablation in-
sulation system is obvious. Since the heat flux
decreases aft of the tip, the thickness of the
Teflon can also decrease, as shown in Fig. 1-19,
Ablators that become churred provide additional
thermal protection, but have the disgadvantage
of leaving a conductive and molten layer. Ma-
terials such as phenolics, epoxides, phenylsilanes
and furans, if they are all reinforced with nylon,
silica, glass, and other fibers, are examples of
charring ablators. The phenolic-nylon system
discussed in Reference 23 has the desirable
properties of a chprring ablator, ie., gaseous
produects, a molten Inyer, a porous char layer,
and an insulating layer are formed.
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Figure 1-19. Cross Section of Radome Tip Protected
by Ablative Cover

1-1,4.3 Electrical

The primary electrical requirement a radome
must satisfy is to cause minimum distortion
of the electrical characteristics of the antenna;
therefore, boresight errors and derivatives as
well as absorption and transmission losges must
be kept small. Compensating techniques are
available to the radome designer (Reference 1)
to minimize these undesirable effects at ambient
tamperatures. Since facilities for the direct
measurement of boresight errors during a sim-
ulation of the expected thermal environment are
not availuble, such errors can be determined
only by theoretical analysis, The electrical char-
acteristics of a radome of a given shape and
fineness ratio are directly related to the elec-
trical wall thickness, which at all freqykncies
depends on dielectric constant, coefficié
thermnal expansion, and loss tangent. He,
variation in these properties with temper.
becomes important as velocity and, therefore,
radome temperature increase.

Since the temperatures of various portions
of the radome are a furction not only of posi-
tion but also of altitude, trajectory, shape, fine-
ness ratio, and time, the radome should have
-either of the following properties: (i) com-
pensation for the variation in dieiectric constant
by an appropriate variation in thermal expan-
sion and vice versa, or (2) a uniform dielectric
constant and uniform thermal expansion. The
compensation techniques documented in Refer-
ence 41 have been investigated at the Hughes
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Aircraft Company. The incorporation of dielec-
tric fillera in selected plastic materinls has re-
sulted in materials that have essentially con-
stant electrical thicknaue up to nperoximately
BO0°F, Silicone materials are favored because
their dielectric constant changes less than in
most plastigs. However, their electrical thick-
ness varies as much as 2.9 percent over the
temperature range from 70°F to 500°F. Since
this change is primarily due to the effect of
thermal expansion, filler materials having a
negative coeflicient of thermal expansion were
studied. These materials, titanium dioxide and
the titanates of calcium, barium, and strontium,
were used to load silicone plagtics. The primary
conclusions reached were: (1) the use of stron-
tium titanate in the proper quantity can result
in negligible changes in clectrical thickness, and
(2) this effect is predominant over the tem-
perature ‘range from 70°F to 500°F and dimin-
ishes at higher temperalures. Recent surveys
and studies of the properties of ceramic ma-
terials show that no material having these char-
acteristics iy available at present. Thus, ma-
terials having these characteristics are not
available for use at hypersonic velocities be-
cause the pesk temperatures encountered exceed
the capability of plastics.

The requirements for invariant dielectric con-
stunt and thermal expansion are not met with
plastic or ceramic materials. Thus, the material
with the smallest change in dielectric constant
and thermal expansion must be chosen, The
properties of two materiald that best approxi-
mate this condition, Pyroceram and fused silica,
are discussed in References 42 and 438, respec-
tively. The effect of u variation in the above
properties must, therefore, be evaluated, Refer-
ence 21 presents methods of approximating the

‘¢t of the thermal environment by consider-
mg the change in .wall thickness attributable to
thermal expansion and dielectric constant, Two
materials commonly considered for use with
hvpersonic missiles are evaluated. Figure 1.20
presents the results of such an analysis for a
one-half-wavelength solid-wall radome, If is ap-
parent from these data that the increase in wall
thickness is great cnough to increase boresight
errors and decrease transmission coefficients.

If tip blunting and an ablative c.ver are em-
ployed, the increase in electrical wall thickness
can be appreciably reduced. For the case in
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question, this thickness can be less than 0.002
in, with a minimum ablative thickness and tip
radius.

Reflection, tra