UNCLASSIFIED

AD NUMBER

AD810327

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; AUG 1966. Other requests shall be referred to Office of Naval Research, 875 North Randolph Street, Arlington, VA 22203-1995.

AUTHORITY

ONR notice, 27 Jul 1971

THIS PAGE IS UNCLASSIFIED

HU67951

TECHNICAL REPORT 233-10

ON MODELING CAVITATION DAMAGE

Ľ

By

A. Thiruvengadam

August 1966

HYDRONAUTICS, incorporated research in hydrodynamics

Research, consulting, and advanced engineering in the fields of NAVAL and INDUSTRIAL HYDRODYNAMICS. Offices and Laboratory in the Washington, D. C., area: Pindell School Road, Howard County, Laurel, Md. Verity K2 Document Display

Distribution Change Order Refer to Change Authority **Private STINET**

Home | Collections

View Saved Searches | View Shopping Cart | View Orders

Other items on page 1 of your search results: 1

View XML

Citation Format: Full Citation (1F)

Accession Number: AD0810327 **Citation Status:** Active **Citation Classification:** Unclassified Fields and Groups: 200400 - Fluid Mechanics **Corporate Author:** HYDRONAUTICS INC LAUREL MD **Unclassified Title:** (U) ON MODELING CAVITATION DAMAGE. **Title Classification:** Unclassified **Descriptive Note:** Technical rept., Personal Author(s): Thiruvengadam, A **Report Date:** Aug 1966 Media Count: 57 Page(s) Cost: \$9.60 **Contract Number:** Nonr-3755(00) Report Number(s): TR-233-10 **Project Number:** NR-062-293 **Report Classification:** Unclassified

Descriptors:

Distribution Change Order Refer to Change Authority

(U) *DAMAGE, *CAVITATION, MODEL TESTS, MATHEMATICAL MODELS, BUBBLES, PRESSURE, DAMPING, COMPRESSIVE PROPERTIES, VIBRATION, HYDRODYNAMICS, LIQUIDS, GASES, VAPORS

Identifier Classification:

Unclassified

Abstract:

(U) The intensity of bubble collapse is defined as the power transmitted per unit surface area of the bubble when the collapse pressure is a maximum and is given by the square of the collapse pressure divided by the acoustic impedence of the liquid. The efficiency of damage is defined as the ratio of the intensity of erosion of the material to the intensity of bubble collapse. Quantitative analysis is made to show how this efficiency would be affected by various physical effects such as inertia, damping of gas and vapor inside the bubble, heat transfer, compressibility, surface tension and viscosity. Experimental results with vibratory apparatus show that the efficiency of damage is primarily controlled by the damping of non-condensible gases and vapor. At higher temperature viscosity also seems to be important. Within the range of experiments, surface tension of the liquids tested seems to be unimportant. The group of non-dimensional numbers derived from the above analysis as used to formulate a modeling technique to predict the rate of depth of erosion in actual operating hydrodynamic systems. (Author)

Abstract Classification:

Unclassified

Distribution Limitation(s):

01 - APPROVED FOR PUBLIC RELEASE **Source Code**:

174500

Document Location:

DTIC AND NTIS

Change Authority:

ST-A ONR NOTICE, 27 JUL 71

Privacy & Security Notice | Web Accessibility

STINET

private-stinet@dtic.mil

AD-810 327

TECHNICAL REPORT 233-10

ON MODELING CAVITATION DAMAGE

By

A. Thiruvengadam

August 1966

Prepared Under

Office of Naval Research Department of the Navy Contract No. Nonr-3755(00) (FBM) NR 062-293 .

٠

.

-1.-

T

TABLE OF CONTENTS

SJMMARY	1
INTRODUCTION	2
INTENSITY OF BUBBLE COLLAPSE	3
THE MAXIMUM COLLAPSE PRESSURE	6
A. Inertial Effects	6
B. Damping Effects	7
C. Thermal Effects	15
D. Compressibility Effects	17
E. Surface Tension Effects	19
F. Viscous Effects	19
EFFICIENCY OF CAVITATION DAMAGE	20
CORRELATION OF EXPERIMENTAL RESULTS OF VIBRATORY TESTS	21
HYDRODYNAMIC CAVITATION DAMAGE.,	23
CONCLUSIONS	31
REFERENCES	33

-ii-

LIST OF FIGURES

- Figure 1 Parameters Involved in Modeling Cavitation Damage
- Figure 2 Phases of Energy Transmission
- Figure 3 Definition of Intensity of Bubble Collapse
- Figure 4 Bubble Collapse Pressures as a Function of Gas Content Both for Isothermal and for Adiabatic Damping
- Figure 5 Plesset-Hsieh Criterion for Various Liquids Tested
- Figure 6 Thermal Effects on Vapor Bubble Growth and Collapse
- Figure 7 Parameters Involved in Modelling Vibratory Cavitation Damage Experiments
- Figure 8 Summary of Results of Vibratory Tests
- Figure 9 Correlation of Efficiency of Damage with Air Concentration in Various Liquids
- Figure 10 Variation of Dissolved Air Content with Test Duration in Vibratory Test
- Figure 11 Dissolved Air Content in Liquids
- Figure 12 Correlation of Efficiency with Vapor Pressure at Temperatures Close to Boiling Point
- Figure 13 Effect of Non-Newtonian Additive on Cavitation Damage Rate
- Figure 14 Hydrodynamic Cavitation Damage
- Figure 15 Proposed Method of Modeling Cavitation Damage

-iii-

NOTATION

I_c Intensity of collapse I_d Intensity of damage p_c Bubble collapse pressure ρ_ℓ Density of liquid C_ℓ Sound speed in liquid	
I_{d} P_{c} P_{l} $Density of damage$ P_{l} $Density of liquid$ C_{l} Sound speed in liquid	
p _c Bubble collapse pressure ρ _l Density of liquid C _l Sound speed in liquid	
ρ _ℓ Density of liquid C _ℓ Sound speed in liquid	
C _l Sound speed in liquid	
C Sound speed in liquid-vapor bubble mixture	
P Reference pressure at infinity	
R Maximum radius of bubble	
R Final collapse radius of bubble	
Q Partial pressure of gas inside the bubble at the beginning of collapse	
k Ratio of specific heats for the permanent gas inside the bubble	
${}^{\rm S}_{\ell}$ Specific heat per unit mass of liquid	
S Specific neat per unit mass of gas	
$\Lambda_{\chi} = (Dt_{c})^{\frac{1}{2}}$ Thermal diffusion layer in the liquid	
D Thermal diffusivity	
t Time of collapse	
ρ lensity of gas	
γ	

-iv-

F _n	Radius of the nucleus of the bubble
₽ _V	Vapor pressure of the liquid
pg	Partial pressure of gas inside the nucleus
Ni	Number of moles of the gas
θ	Perfect gas law constant
Ta	Ambient temperature
₩. L	Mass of liquid evaporated
₽ ^V	Density of the vapor
lín g	Mass of gas inside the bubble
αg	Mass concentration of the gas in liquid
Г g	Volume concentration of gas in liquid
NJ V	Molecular weight of vapor
M g	Molecular weight of gas
Ĩ, g	Diffusivity of gas in liquid
Н	Heat of vaporization for the entire bubble
I.	Latent heat of vaporization
ΔΨ	Temperature difference between the bubble and the liquid
TE	Boiling point in the liquid
V	Velocity of liquid adjacent to the interface
V í	Velocity of the vapor adjacent to the interface
$U_{\rm B} = R = \frac{dR}{d\tau}$	The velocity of the interface; i.e., bubble wall

•

۰.

- V -

Mw	Bubble wall Mach number
Mwi	Mach number with respect to sound speed in gas
Mwa	Macn number with respect to sound speed in liquid
Cg	Sound speed in gas
Ww	Weber number of the bubble motion
R w	Reynolds number of the bubble motion
v	Kinematic viscosity of the liquid
۶ 0	Amplitude of the specimen in the vibratory test
wo	Frequency of the specimen
U _o	Velocity of the specimen
μ	Frequency parameter
а	Radius of the specimen
λ	Wave length in liquid
V	Reference velocity in the free stream for flow experiments
M	Mach number of the flow
R e	Reynolds number of the flow
σ	Cavitation parameter
β _e	Coefficient of compressibility of liquid

SUMMARY

Similar to the definition of the intensity of cavitation damage, the intensity of cavitation bubble collapse is defined as the power transmitted per unit surface area of the bubble when the collapse pressure is a maximum. The intensity of collapse is given by the square of the maximum collapse pressure divided by the acoustic impedance (ρ, C_{γ}) of the liquid. Various physical effects such as inertial effects, domping due to non-condensible gases, thermal effects, compressibility effects, surface tension effects and viscous effects on the maximum collapse pressure are considered. The efficiency of damage given by the intensity of damage divided by the intensity of collapse is snown to depend principally on the dissolved gas content of the liquid (using the data obtained from the vibratory cavitation damage apparatus). It is also shown that the vapor itself might act as a damper near boiling point since the bubble wall temperatures increase rapidly at these temperatures. When the vapor pressure becomes important, viscosity also seems to affect the efficiency of damage as evidenced by the behavior of aniline. The efficiency of damage is independent of the surface tension of the liquid within the range of tests.

The above results from the vibratory experiments are used to propose a modeling technique to predict the rate of depth of erosion in actual operating hydrodynamic systems. One of the primary questions to be answered is the magnitude of the pressure field that drives the bubble to collapse. The gependence -2-

of this pressure field on other hydrodynamic scaling parameters such as Reynolds number, Mach number and the cavitation parameter will decide the success of the proposed model technique.

INTRODUCTION

At the present state of knowledge it is possible to predict from model tests the various hydrodynamic forces such as drag, lift, thrust, etc. Similarly it would be highly desirable to predict the intensity of cavitation damage in prototypes by conducting model tests in the laboratory. As of now it is not possible to achieve this objective because there are no scaling laws that relate the model-prototype behavior. It is the purpose of this report to formulate such scaling laws and to discuss the physical phenomena that are scaled by these laws.

Figure 1 shows the flow behind a circular cylinder and the known and unknown parameters controlling cavitation damage. The geometrical and kinematic similarities of the overall cavity flow are controlled by the cavitation parameter and the Reynolds number. However the modeling of the phenomenon of cavitation damage requires that the energy of collapse of individual bubbles, the transmission of the energy to the material surface and the absorption of the energy by the material in its deformation and fracture be scaled also. Hence the problem is to define the above phases of energy transmission and absorption quantitatively and to determine the parameters that control the efficiency of this process, Figure 2. The intensity of material damage is defined in References 1 and 2 as

$$I_{d} = \frac{i S_{e}}{t}$$
 [1]

where

i	is	the	depth	of	erosion,	
t	is	the	time	of	erosion,	and
^S e	is	the	erosi	on	strength.	

The erosion strength is defined as the energy absorbing capacity of the material per unit volume under the action of the erosive forces (3). If a similar definition for the intensity of bubble collapse can be derived, then the efficiency of this process would be given by

-3-

$$\eta = \frac{I_d}{I_c}$$
 [2]

where I_c is the intensity of bubble collapse. As of now, such a definition for the intensity of bubble collapse does not exist. One of the accomplishments of this report is such a definition which leads to logical scaling laws for the proposed technique of modeling cavitation damage.

INTENSITY OF BUBBLE COLLAPSE

It is assumed in this report that the collapse pressure emanating from an individual transient cavitation bubble causes the erosion. When a spherical bubble collapses with a bubble wall velocity $U_{\rm B}$, the collapse pressure as derived by Rayleigh (4) is:

-- . .

$$\frac{\rho_{c}^{2}}{\beta_{\ell}} = \rho_{\ell} U_{B}^{2}$$

where

$$p_c$$
 is the maximum collapse pressure,
is the coefficient of compressibility or bulk
modulus of liquid,
 p_{χ} is the density of liquid, and
 U_B is the bubble wall velocity.

Hence

$$p_{c} = \rho_{\ell} C_{\ell} U_{B}$$
 [3]

since

$$\beta_{\ell} = \rho_{\ell} C_{\ell}^{2}$$

where \mathbb{G}_{k} is the sound speed in liquid.

The compressibility of the liquid β_i would be greatly reduced due to the presence of cavitation bubbles. For this reason, the sound speed of the liquid-vapor bubble mixture, C_m , would be much less than ∂_i . The actual sound speed used for computing the intensity of collapse should be C_m . However, very little is known about the values of C_m in cavitation clouds. Until more is known about C_m , the sound speed in liquid C_i will be used for computations. If we define the intensity of collapse as the radiated power per unit surface area of the bubble, then

Intensity of collapse =
$$\frac{\text{Collapse power transmitted}}{\text{Surface area of bubble}}$$

$$I_{c} = \frac{p_{c}^{4}\pi R^{3}}{4\pi R^{3}} \frac{dR}{dt}$$
$$= p_{c}^{U}B$$

since

$$U_{B} = \frac{dR}{dt}$$

Making use of Equation [3] we get

$$I_{c} = \frac{p_{c}^{a}}{\rho_{\ell} C_{\ell}} \quad . \qquad [4]$$

It is interesting to note that the intensity of bubble collapse is similar to the intensity of acoustic power radiated from a simple source (Figure 3). The dimensions of I_c are the same as I_d which are in power per unit area.

The above discussion shows that the intensity of collapse varies as the square of the maximum collapse pressure in a given liquid. Hence, it is important to consider the various physical effects that control this maximum collapse pressure.

-6-

THE MAXIMUM COLLAPSE PRESSURE

The maximum collapse pressure depends upon the shape of the bubble and the distance at which the bubble collapses. Furthermore, the growth and the collapse of the bubbles depend upon the following physical phenomena (5), (6):

- A. Inertial effects
- B. Damping effects
- C. Thermal effects
- D. Compressibility effects
- E. Surface tension effects
- F. Viscous effects.

Ir order to quantitatively evaluate the relative influence of these effects on the maximum collapse pressure, we will assume that the Besant-Rayleigh bubble collapse (5) causes the damage. (It is recognized that the Eisenberg bubble collapse (7), (8), may also be important. Hence, calculations for this case will be useful.)

A. Inertial Effects

Rayleigh (4) calculated the maximum collapse pressure for a spherical bubble collapsing in an infinite liquid; it is given by

$$p_{c} = \frac{P_{o}}{6.35} \left(\frac{R_{m}}{R_{f}}\right)^{3}$$
 [5]

-7 -

where

P is the pressure at infinity,

 R_{m} is the maximum bubble radius at the start of collapse,

and R is the final bubble radius at the end of f collapse.

This maximum collapse pressure occurs at a distance of $1.587 \text{ R}_{\text{f}}$ from the center of collapse (4).

B. Damping Effects

Now the final radius to which the bubble collapses depends upon the amount of non-condensible gas present at the start of the collapse and on whether the gas is compressed isothermally or adiabatically. Assuming isothermal compression of the permanent gas inside the bubble, Rayleigh (4) derives the following relationship between the final collapse radius and the initial gas content, Q_{a} :

$$P_{O}\left[1 - \left(\frac{R_{f}}{R_{m}}\right)^{3}\right] + Q_{O}\log_{e}\left(\frac{R_{f}}{R_{m}}\right)^{3} = 0$$

$$\left(\frac{R_{f}}{R_{m}}\right)^{3} << 1$$

$$\log_{e}\left(\frac{R_{f}}{R_{m}}\right)^{3} = -\frac{P_{O}}{Q_{O}}$$

$$\left(\frac{R_{m}}{R_{f}}\right)^{3} = e^{\frac{P_{O}}{Q_{O}}}$$
[6]

Assuming adiabatic compression, Noltingk and Nepperas (9) derive the following relationship:

$$\left(\frac{R_{m}}{R_{f}}\right)^{3} = \left[\frac{Q_{o}}{P_{o}}\left(\frac{k}{k-1}\right)\right]^{\frac{1}{(1-k)}}$$
[7]

where k is the ratio of specific heats for the permanent gas inside the bubble. The value of k for air is 4/3. If the gas is air, then for adiabatic compression,

$$\left(\frac{R_{m}}{R_{f}}\right)^{a} = \left(\frac{P_{o}}{4Q_{o}}\right)^{a} .$$
 [7a]

Hence

$$p_{c} |_{isothermal} = \frac{P_{o}}{6.35} e^{\frac{P_{o}}{Q_{o}}}; \qquad [8]$$

$$p_{c} \Big|_{adiabatic} = \frac{P_{o}}{6.35} \left(\frac{P_{o}}{4Q_{o}}\right)^{a} .$$
 [9]

Equations [8] and [9] are graphically shown in Figure 4. It is clear that the maximum collapse pressure and hence the intensity of collapse depends on whether the bubble collapse is isothermal or adiabatic. The Plesset-Hsieh criterion (5), (10) for the collapse of bubbles is as follows:

Isothermal if
$$\frac{\rho_{\ell} S_{\ell} \Lambda_{\ell}}{\rho_{g} S_{g} R_{m}} >> 1$$
 [10]

Adiabatic if
$$\frac{\rho_{\ell} S_{\ell} \ell}{\rho_{g} S_{g} R_{m}} \ll 1$$
 [11]

A D

where

- ρ is the density,
- S is the specific heat per unit mass , and
- Λ is the thermal diffusion length .

and subscripts & and g stand for liquid and gas respectively. Physically speaking, the above criteria give the relationship between the heat capacity of the gas inside the bubble and the heat that can be conducted away in the thermal diffusion layer of the liquid. If the latter is very large compared to the former, the temperature within the bubble remains constant. If it is very small then the temperature of the gas inside the bubble will rise. This criterion is shown in Figure 5 for various test liquids. The thermodynamic data were obtained from Reference 11 and the data for argon was obtained from Reference 12. At 20 kcs frequency, bubbles of maximum radii of a millimeter or less will be under isothermal compression while collapsing, for all the liquids shown in Figure 5. For larger bubble sizes, the collapse would become adiabatic. For this reason, the model-prototype correlation should take into account the Plesset-Hsieh criteria. However as seen in Figure 4, adiabatic collapse produces much less pressures and may not be important as far as cavitation damage is concerned.

-10-

<u>Gas content of the bubble</u> - The partial pressure of the gas inside the bubble at its maximum radius, Q_0 (in Equations [8] and [9]) consist of three components:

- 1. The gas content at the beginning of the bubble growth, i.e., the gas inside the equilibrium nucleus of radius R_n .
- 2. The gas dissolved in the evaporated liquid during growth.
- 3. The gas that diffuses into the bubble from the surrounding liquid during growth.

Hence the partial pressure at the start of the collapse, Q_0 , will be the sum total of the three components stated above.

$$Q_{2} = Q_{1} + Q_{2} + Q_{3} \qquad [12]$$

1. Estimation of Q_1 : The equation of static equilibrium for spherical bubbles is given by

$$P_{o} + \frac{2\gamma}{R_{n}} = p_{v} + p_{g}$$

where

 P_{o} is the pressure in the surrounding liquid, R_{n} is the equilibrium radius of the nucleus, γ is the surface tension of the liquid, p_{v} is the vapor pressure of the liquid, and p_{g} is the partial pressure of the gas.

-11-

Hence

$$p_{g} = \left(P_{o} + \frac{2\gamma}{R_{n}} - p_{v} \right)$$

Assuming the gas inside the nucleus to be a perfect gas,

$$p_{g} \frac{4}{3} \pi R_{n}^{3} = N_{1} \theta T_{g}$$

where

 N_1 is the number of moles of the gas, θ is the perfect gas law constant, and T_a is the absolute ambient temperature.

$$N_{1} = \frac{p_{g} \frac{4}{3} \pi R_{n}^{3}}{\theta T_{a}}$$
$$= \frac{\left(P_{o} + \frac{2\gamma}{R_{n}} - p_{v}\right)\frac{4}{3} \pi R_{n}^{3}}{\theta T_{a}}$$

The partial pressure, Q_1 , exerted by these molecules when the nucleus grows to a maximum radius, R_m , is given by

$$Q_{1} \quad \frac{4}{3} \quad \pi R_{m}^{3} = N_{1} \quad \theta \quad T_{a}$$

$$Q_{1} = \left(P_{o} + \frac{2\gamma}{R_{n}} - P_{v}\right) \left(\frac{R_{n}}{R_{m}}\right)^{3} \quad . \qquad [13]$$

2. Estimation of Q_2 : The mass of liquid evaporated during growth, is equal to the mass of vapor in the bubble and is given by

$$m_{\ell} = \frac{4}{3} \pi R_{m}^{3} \rho_{v}$$

where

 m_{ℓ} is the mass of liquid evaporated

 $\rho_{_{\rm V}}$ $\,$ is the density of vapor inside the bubble $\,$

The mass of gas which was originally dissolved in this mass of liquid before evaporation is

$$m_{g} = \alpha_{g} m_{\ell} = \frac{4}{3} \pi R_{m}^{3} \rho_{v} \alpha_{g}$$

where α is the mass fraction of gas dissolved in the liquid. The number of moles of gas in this mass is given by

$$N_{2} = \frac{m_{g}}{M_{g}} = \frac{4}{3} \pi R_{m}^{3} \rho_{v} \frac{\alpha_{g}}{M_{g}}$$

where M is the molecular weight of gas. Similarly the number of moles of vapor N is given by

$$N_{v} = \frac{\frac{4}{3}\pi R_{m}^{a} \rho_{v}}{\frac{M_{v}}{M_{v}}}$$

where M_{v} is the molecular weight of vapor.

-13-

$$\frac{N_2}{N_v} = \frac{\alpha M_v}{M_g}$$

Assuming the perfect gas law to be valid both for gas and vapor

$$Q_{a} \frac{4}{3} \pi R_{m}^{a} = N_{a} \theta T_{a}$$
$$p_{v} \frac{4}{3} \pi R_{m}^{a} = N_{v} \theta T_{a}$$

where

 \mathbb{Q}_2 is the partial pressure of the gas exerted by \mathbb{N}_2 gas molecules

 p_{v} is the vapor pressure inside the bubble

$$\frac{Q_2}{P_V} = \frac{N_2}{N_V} = \alpha_g \frac{M_V}{m_g}$$

$$Q_2 = P_V \alpha_g \frac{M_V}{M_g}$$
[14]

3. Estimation of Q_{a} : While the bubble grows from an equilibrium nucleus to a maximum radius R_{m} , the gas dissolved in the liquid with a partial pressure of P_{o} will diffuse into the bubble from a gas diffusion layer surrounding the bubble and is given by Bebchuck (13) as

$$Q_{a} = \alpha_{g} P_{o} \frac{\left(D_{g} t\right)^{\frac{1}{2}}}{R_{m}}$$
 [15]

wr.ere

is the concentration of the dissolved gas, D_g is the diffusivity of the gas, t is the diffusion time, and $(D_g t)^{\frac{1}{2}}$ is the gas diffusion layer thickness.

Now the partial pressure of the gas inside the bubble at the beginning of collapse is given by Equation [12] which becomes

$$\begin{aligned} Q_{O} &= Q_{L} + Q_{2} + Q_{3} \\ &= \left(P_{O} + \frac{2\gamma}{R_{n}} - p_{V} \right) \left(\frac{R_{n}}{R_{m}} \right)^{3} + p_{V} \alpha_{g} \frac{M_{V}}{M_{g}} \\ &+ P_{O} \alpha_{g} - \frac{\left(D_{g} t \right)^{\frac{1}{2}}}{R_{m}} \end{aligned}$$

$$\frac{Q_{o}}{P_{c}} = \left[1 + \frac{2\gamma}{P_{o}R_{n}} - \frac{P_{v}}{P_{o}}\right] \left(\frac{R_{n}}{R_{m}}\right)^{3} + \frac{P_{v}}{P_{o}}\alpha_{g}\frac{M_{v}}{M_{g}} + \alpha_{g}\frac{(D_{v}t)^{2}}{R_{m}}\right]$$

Since (R_n/R_m) is usually small compared to unity, the first term on the right hand side of the above equation is negligible compared to the other two terms. Then

-15-

$$\frac{Q_{o}}{P_{o}} \cong \frac{P_{v}}{P_{o}} \alpha_{g} \frac{M_{v}}{M_{g}} + \alpha_{g} \frac{(D_{g}t)^{\frac{1}{2}}}{R_{m}}$$
[16]

At temperatures much lower than the boiling point of the liquid, the vapor pressure is small. Hence

$$\frac{P_{v}}{P_{o}} < < 1$$

$$\frac{M_{v}}{M_{g}}$$
 is of the order of 1

If we assume that the gas diffusion layer, $(D_g t)^{\frac{1}{2}}$, is of the same order of magnitude as R_m , then the Equation [16] may be written as follows:

$$\frac{Q_{o}}{P_{o}} \cong \alpha_{g} \frac{\left(D_{g}t\right)^{\frac{1}{2}}}{R_{m}}$$
[17]

However at temperatures close to the boiling point of the liquid, the vapor itself might act as a damper since the vapor may not fully condense during collapse. This effect will be discussed next.

C. Thermal Effects

The next important aspect that controls the collapse of vapor bubbles is the heat outflow during collapse. The heat of condensation is given in (5) as

$$H = \frac{4}{3} \pi R_{m}^{3} \rho_{v} I$$

where

 ho_v is the density of vapor, and

This heat flows into the thermal diffusion layer of thickness $(Dt)^{\frac{1}{2}}$ where D is the thermal diffusivity and t is the time of collapse. The heat balance is given by

$$\frac{\frac{4}{3}}{\pi} \pi_{m}^{3} \rho_{v} L \cong 4\pi_{m}^{2} (Dt)^{\frac{1}{2}} \rho_{\ell} S_{\ell} \Delta T$$

$$\Delta T \cong \frac{R_{m} L \rho_{v}}{3 (Dt)^{\frac{1}{2}} S_{\ell} \rho_{\ell}}$$

$$\frac{\Delta T}{T_{B}} = \frac{R_{m} L \rho_{v}}{3 (Dt)^{\frac{1}{2}} S_{\ell} \rho_{\ell} T_{B}} \qquad [18]$$

where

- $\Delta \mathrm{T}$ is temperature difference between the liquid and the vapor,
- $T_{\rm B}$ is the boiling point of the liquid at atmospheric pressure, and
- S_{μ} is the specific heat of liquid per unit mass.

Assuming a millimeter for R and 20 μ seconds for growth or collapse time in various liquids tested Figure 6 shows that the

relative temperature difference increases sharply at temperatures closer to the boiling points of the liquids. Thermodynamic data are obtained from References 11 and 12.

Furthermore Plesset (5) has shown that

$$\mathbf{v} = \dot{\mathbf{R}} \left[\mathbf{1} - \frac{\boldsymbol{\rho}_{\mathbf{V}}}{\boldsymbol{\rho}_{\boldsymbol{\ell}}} \left(\mathbf{1} - \frac{\mathbf{v}'}{\overset{\circ}{\mathbf{R}}} \right) \right]$$

where

- $\dot{R} = \frac{dR}{dt}$ is the velocity of the bubble wall, i.e., the interface
- v is the velocity of the liquid adjacent to the interface, and
- v' is the velocity of the vapor adjacent to the interface.

Since ρ_v/ρ_ℓ is very small, it is evident that v is very nearly equal to \dot{R} for most practical cases.

<u>Relative importance of dissolved gas content and vapor pres</u>-<u>sure</u> - From the above discussion, it is clear that when $\Delta T/T_B$ is small, the damping is entirely due to the dissolved gas content in the liquid. When $\Delta T/T_B$ is increasing with ambient temperature, the vapor itself may act as a damper. At these temperatures the vapor pressure of the liquids become important.

D. Compressibility Effects

According to the Rayleigh bubble collapse mechanism, the kinetic energy of bubble collapse is stored in the bulk compressibility of the liquid and transmitted back to the material in the

form of a short range shock. In order to investigate the compressibility effects, we need the Mach number of the bubble collapse. However, there are three sound speeds that are to be considered:

- 1. The sound speed in the liquid
- 2. The sound speed in the liquid-bubble mixture
- 3. The sound speed in the gas within the bubble

The Mach number ${\tt M}_{_{\rm W}},$ may be defined as

$$M_{W} = \frac{\dot{R}}{C}$$
 [19]

where \mathring{R} is the bubble wall velocity and C is any of the sound speeds that is important. If we again consider the Rayleigh bubble collapse, then \mathring{R} is given by

$$\ddot{R} = \sqrt{\frac{2}{3}} \frac{P_o}{\rho} \left[\left(\frac{R_m}{R_f} \right)^3 - 1 \right]$$

Since $\left(\frac{R_m}{R_f} \right)^3 >> 1$
 $\dot{R} = \sqrt{\frac{2}{3}} \frac{P_o}{\rho} \left(\frac{R_m}{R_f} \right)^3$

From Equations [6] and [7a]

-19- $\dot{R} = \sqrt{\frac{2}{3} \frac{P_{o}}{\rho} e^{\frac{P_{o}}{Q_{o}}}} \text{ For isothermal collapse}$ $\dot{R} = \sqrt{\frac{2}{3} \frac{P_{o}}{\rho} (\frac{P_{o}}{4Q_{o}})^{3}} \text{ For adiabatic collapse}$ [20]

During the analysis of experimental results, the effect of these physical parameters will have to be considered.

E. Surface Tension Effects

The surface tension effects may be scaled by the Weber number, $W_{\rm w},$ for the motion of bubble wall given by

$$W_{W} = \frac{\rho_{\ell} (\tilde{R})^{3} R_{m}}{2\gamma}$$
 [21]

F. Viscous Effects

Similarly if viscous effects were to become important in the bubble motions during growth and collapse, then the corresponding Reynolds number, R_W , for the bubble motion will be given by

$$R_{W} = \frac{R_{m}}{v}$$
 [22]

where v is the kinematic viscosity of the liquid.

-20-

EFFICIENCY OF CAVITATION DAMAGE

As pointed out in the introduction, the efficiency of cavitation damage will depend upon the various physical effects that control the maximum collapse pressure. The efficiency of cavitation damage may be defined as

$$\eta = \frac{I_d}{I_c} = \frac{\frac{1}{t} \frac{S_e}{t}}{\frac{p_c}{\rho_\ell C_\ell}}$$

From the previous discussion,

$$\frac{P_{c}}{P_{o}} = F_{1} \left(\Gamma_{g}, \frac{P_{v}}{P_{o}}, \frac{\left(D_{g}t\right)^{\frac{1}{2}}}{R_{m}}, \frac{\Delta T}{T_{B}}, M_{w}, W_{w}, R_{w}, \text{ Flow Parameters} \right)$$

Hence

$$\eta = \frac{\frac{1}{c} \frac{S_e}{t}}{\frac{P_o^2}{\rho_\ell C_\ell}} = F_2 \left(\Gamma_g, \frac{p_v}{P_o}, \frac{(D_g t)^{\frac{1}{2}}}{R_m}, \frac{\Delta T}{T_B}, M_w, W_w, R_w, \text{ Flow Parameters} \right)$$
[23]

It would be interesting to see which non-dimensional parameters in Equation [23] really influence the efficiency of cavitation damage for a typical experimental apparatus. One of the most widely used equipments for studies on cavitation damage is the magnetostriction vibratory apparatus. What follows is a discussion of the correlation of the experimental data obtained with this apparatus.

CORRELATION OF EXPERIMENTAL RESULTS OF VIBRATORY TESTS

The basic idea in these experiments is to vibrate a test specimen in a given liquid contained in a beaker at a given amplitude and frequency (see Figure 7). These vibrations are produced in most cases by the magnetostriction oscillators. Since 1935 several authors (e.g. References 14 through 19) have conducted these tests for investigating the phenomenon of cavitation damage. The basic parameters involved in these tests are the beaker dimensions, the specimen dimensions, amplitude and frequency of vibrations, the physical and chemical properties of the material and liquid used. The present analysis is confined to relatively non-corrosive liquids and metals. Only physical mechanisms are assumed to play any role.

When a cylindrical piston vibrates with its circular face inside the liquid as shown in Figure 7a the maximum pressure P_0 is given (Reference 20) by

$$P_{\rho} = \rho_{\ell} C_{\ell} U_{\rho} \qquad [24]$$

where

$$\begin{split} & U_{0} = w_{0} \xi_{0}, \\ & \xi = \xi_{0} \sin w_{0} t, \\ & \xi & \text{ is the amplitude of vibration at any time } t, \\ & \xi_{0} & \text{ is the maximum amplitude of vibration, and} \\ & w_{0} & \text{ is the angular frequency of vibration.} \end{split}$$

-22-

For a geometrically similar non-cavitating system, the maximum pressure depends upon the frequency parameter, μ , given by

$$\mu = \frac{2\pi a}{\lambda_{\ell}}$$

where a is the radius of the test specimen and λ_{j} is the wave length of sound in the liquid. At this juncture, it is important to recognize the following fact pointed out by Phillips.^{*} It is generally observed during experiments with the vibratory apparatus that there is a rim of area (at the periphery of the eroded surface) which does not get eroded at all in soft aluminum (see Figure 7b). The thickness of the rim is indeed of the order of one-half wave length as pointed out by Phillips if we use a value of about 100 fps for the sound speed at 14000 cps oscillations. This magnitude of sound speed is typical for air-water mixtures. Here again the importance of the compressibility of the two phase mixtures is evident. If this were to be true, then the measurement of rim thickness would give the magnitude of sound speeds in cavitation bubble mixtures. For this case Equation [23] may be written as

$$\eta = \frac{\frac{1}{P_{\ell}} \frac{1}{P_{\ell}} \frac{1}{P_{0}}}{\frac{1}{P_{0}} \frac{1}{P_{0}} \frac{1}{P_{0}}}$$
$$= F\left[\Gamma_{g}, \frac{P_{V}}{P_{0}}, \frac{\left(\frac{D_{g}t}{P_{0}}\right)^{\frac{1}{2}}}{R_{m}}, \frac{\Delta T}{T_{B}}, M_{W}, W_{W}, R_{W}, \mu\right]$$
[25]

0.M. Phillips, personal discussion with the author.

where

and

Г g	is the volume concentration of dissolved gas (damping due to gas content)
p _v ∕P _o	is the relative vapor pressure
$(D_{g}t)^{\frac{1}{2}}/R_{m}$	is the relative diffusion length
∆t/t _B	is the relative-bubble-wall-temperature-in- crease during collapse (thermal effects)
M w	is the Mach number of the bubble wall motion (compressibility effects)
Ww	is the Weber number of the bubble wall motion (surface tension effects)
R _w	is the Reynolds number of the bubble wall motion (viscous effects)
μ	is the frequency parameter.

The experimental results of several authors are shown in Figure 8 along with the range of variables involved in these tests. The rate of weight loss is plotted against temperature in the melting-boiling range for each liquid. All these experiments were conducted at atmospheric pressure except for one case in which Kerr and Leith (16) conducted experiments at 2.4 atmospheres absolute. The table attached to this figure gives all the available information on the liquid, material, amplitude, frequency and pressure used in these tests. These data provide substantial information to understand the relative importance of the various parameters contained in Equation [25]. The surface tensions of these liquids vary from 25 dynes/cm (for aniline) to 75 dynes/cm (for water), the viscosity from 0.3 centipoises to 10 centipoises, -24 -

the sound speed from 1320 meters/sec to 1650 meters/sec and the density from 0.8 gm/cm^3 to 1.0 gm/cm^3 . These data were obtained from the International Critical Tables and from the Handbook of Physics and Chemistry.

The efficiency as given in Equation [25] was calculated from these data and plotted against the dissolved air content as shown in Figure 9. The rate of depth of erosion was obtained from rate of weight loss divided by the density of the material and the area of specimen. The rate of erosion is time dependent (1), (21), (22), Our experimental data were obtained in the steady state whereas all the other investigators did not separate the time effect. This is an obvious limitation. The erosion strength values for the metals have been obtained from previously published results. In some cases as indicated in Figure 9, an equivalent erosion strength has been used to take into account the time effect. For water the dissolved air content was measured with the Van Slyke apparatus. The dissolved air content decreases with testing time at a constant temperature in the vibratory tests as shown in Figure 10 and reaches a steady value. The steady value depends upon the test temperature as shown in Figure 11. In Figure 10, the published values of air content in water at various temperatures are also shown for comparison. The air content for aniline, toluene and benzere are given in International Critical Tables for room temperature. The air content was assumed to vary inversely as the temperature and was calculated for every other temperature as shown in Figure 11.

-25-

The rate of damage increases with temperature and then decreases with increasing temperature as shown in Figure 8. The peak damage occurs around 50 to 70 percent of the boiling point. As shown in Figure 6, in this temperature range the relative bubble wall temperature, $\Delta T/T_{\rm B}$, seems to increase rapidly with the result that the vapor pressure also becomes important. All the data shown in Figure 9 are for the case when this effect is not important (i.e., when the ambient temperature is below the temperature that produces the peak damage). Above this temperature, the relative vapor pressure becomes the important correlating parameter as shown in Figure 12 in which the values of η/η_{peak} are plotted against p_v/P_o for water, benzene, toluene and aniline. Aniline seems to behave differently as compared to the other three liquids. One possible explanation is that the viscosity of aniline is one order of magnitude higher than that for the other three liquids. Viscous damping seems to be important at higher temperatures when vapor pressure plays a dominant role. However at lower temperatures the viscosity seems to be unimportant as shown by the correlation in Figure 9. This is further supported by the experiments with solutions of non-Newtonian additives shown in Figure 13. Vibratory cavitation damage tests were conducted in solutions of sodium carboxymethylcellulose. The concentrations of these additives were varied such that the viscosity of these solutions would vary tenfold. No noticeable change in rate of damage were observed at room temperature.

-26-

Considering the fact that the results presented in Figure 9 belong to a wide variety of data collected by different authors using different experimental conditions, the efficiency of damage seems to depend primarily on dissolved gas content of the liquid at temperatures well below the boiling point. Additional information presented in Figure 12 seems to indicate that the relative vapor pressure is also important at temperatures close to boiling point. The characteristic behavior of aniline indicates the importance of viscosity at higher temperatures. Additional questions as to whether the compressibility and surface tension effects are important or not remains to be verified by additional experiments since the range of values of surface tension and sound speeds in the present case considered are not wide enough. Furthermore, the gas content in the liquids must be actually measured while other properties are accurately controlled. Hence further investigations to refine these correlations and to check the significance of compressibility and surface tension effects are necessary.

However the correlations shown in Figures 9 and 12 already explain, a priori, a few of the significant experimental results that needed clarification;

1. For example, the variation of damage intensity with the square of the amplitude of motion ((21) and (23)) can be explained as follows. The intensity should be proportional to the square of the amplitude according to Equation [25] if all the terms on the right hand side of this equation remain constant and independent of the amplitude.

-27-

2. In hydrocarbon liquids such as benzene, toluene, aniline, etc., the intensity of damage is generally observed to be much lower as compared to water. This can be explained in terms of the higher solubility of air in hydrocarbon liquids.

3. Wilson and Graham (18) observed that the rate of damage strongly depended on the value of $\rho_{\ell} C_{\ell}$ (acoustic impedance of the liquid) and an explanation of this effect is obvious from the present analysis. The non-linearity in their correlation may be explained in terms of the variation in solubility of air in the various liquids they studied.

4. Another interesting observation by Wilson and Graham (18) is that the rate of damage did not vary with viscosity over a wide range in their experiments with water and glycerene mixtures at room temperature. This confirms our own experiments with non-Newtonian additives shown in Figure 13. These results verify that viscous effects are not important at lower temperatures.

5. The dependence of damage on temperature is generally explained (see for example (17) and (19)) as follows. At lower temperatures the damage increases with temperature because the solubility of air decreases with temperature. However at higher temperatures the vapor pressure becomes important in dampening the collapse of bubbles. These explanations are quantitatively demonstrated in Figures 9 and 12.

-28-

If we neglect the compressibility and surface tension effects, we may rewrite Equation [23] as

$$n = \frac{\frac{1}{r} \cdot \frac{5}{e}}{\frac{p}{\rho_{\ell} \cdot c_{\ell}}^{2}} = F\left(\Gamma_{g}, \frac{p_{v}}{P_{o}}, R_{w}, Flow Parameters\right)$$
 [26]

When vapor pressure is not important

$$n = \frac{\frac{1}{t} \frac{S_e}{e}}{\frac{P_o^2}{\rho_\ell C_\ell}} = F\left(\Gamma_g, \text{ Flow Parameters}\right)$$
[27]

HYDRODYNAMIC CAVITATION DAMAGE

Now the question is how to make use of the correlations obtained for the vibratory tests to derive similar relationships governing the efficiency of cavitation damage in actual hydrodynamic flow systems. Equation [27] may be rewritten for this case as

$$\eta = \frac{\frac{1}{e}}{\frac{1}{e}} = F\left(\Gamma_{g}, \sigma, R_{e}\right)$$
[28]
$$\frac{1}{e} \frac{S_{e}}{\frac{1}{e}} = F\left(\Gamma_{g}, \sigma, R_{e}\right)$$

wr.ere

However the magnitude of the characteristic pressure field P_{o} that forces the bubble to collapse is not readily known. Let us consider a practical example shown in Figure 1 where cavitation damage is produced in the wake of a circular cylinder. The Reynolds number and cavitation parameter will be given by

$$R_e = \frac{V_{\infty}D}{v}$$

and

$$\sigma = \frac{p_{\infty} - p_{V}}{\frac{1}{2} p_{\ell} V_{\infty}^{2}}$$

The turbulent pressure field would be given by

$$\begin{array}{c} P \\ \circ \\ \text{turbulent} \end{array} \sim \frac{1}{2} \rho_{\ell} \overline{u^{\prime 2}} \simeq \frac{1}{2} \rho_{\ell} V_{\omega}^{2}$$
 [29]

Similarly the stagnation pressure also will be given by

$$P_{0} \sim \frac{1}{2} \rho V_{\infty}^{2}$$
 [30] stagnation

where

 V_{∞} is the free stream velocity p_{∞} is the free stream pressure $\overline{u'}$ is the mean turbulent velocity fluctuation, and D is the diameter of the cylinder. -30-

If either of the above two relationships were to be true, the intensity of damage should vary as the fourth power of the free stream velocity (see Figure 14). However, Knapp (24) found that the intensity of damage varied as the 6th power of the free stream velocity. The value of the exponent is known to vary from 5 to 7 according to Kerr and Rosenberg (25). Thiruvengadam (26) found that the exponent varied from 4.5 to 8.5 at a constant value of the cavitation parameter depending upon the cavitating body.

These considerations lead us to conclude that an entirely different approach may be needed to explain the high power dependency on velocity. Lighthill (27, 28) analyzed the mechanism of conversion of energy from kinetic energy of fluctuating shearing motions (Reynolds stresses) into the acoustic energy of fluctuating longitudinal motions and derived the following equation from dimensional analysis:

$$I_{a} \sim \rho_{\ell} C_{\ell} V_{\infty}^{2} \left(\frac{V_{\infty}}{C_{\ell}} \right)^{6}$$
[31]

where I_a is the acoustic intensity radiated by the turbulent eddies acting as quadrupole sources. If we assume that the cavitation bubbles get entrained by these eddies, then the eddies would correspond to oscillators driving the bubbles to collapse (Figure 14). Then just as in vibratory tests the efficiency of damage may be written as

$$n = \frac{\frac{i S_e}{t}}{\rho_\ell C_\ell V_\infty^2 M^6}$$
 [32]

where M is the Mach number of the flow. There are no systematic experimental data available to check the validity of the above relationships.

Furthermore cavitation damage also depends strongly on the value of the cavitation parameter at a given velocity (29, 26). Intensity of damage is maximum for a specific σ value at any given velocity. These considerations indicate that two sets of curves are necessary in order to predict a model prototype relationship as shown in Figure 15. The proposed method of model testing needs verification.

CONCLUSIONS

The following conclusions may be drawn from the previous analyses:

1. The intensity of bubble collapse is defined as the power radiated per unit surface area of the bubble. It is given by the square of the collapse pressure divided by the acoustic impedance of the liquid.

2. The efficiency of damage is defined as the ratio of the intensity of cavitation damage to the intensity of bubble collapse.

 $\neg \gamma_i >$

1

-32-

3. In the vibratory tests, the efficiency of damage is primarily controlled by the isothermal damping of the dissolved non-condensible gases at lower ambient temperature of the liquid. At higher temperatures closer to the boiling point, the vapor of the liquid itself plays an important role. This is because the relative bubble wall temperatures increase rapidly at these temperatures.

4. When the vapor pressure is important, the viscosity of the fluid also seems to be important as shown by the behavior of aniline.

5. Within the range of tests, the efficiency of damage seems to be independent of the surface tension of the liquid.

6. The above results of the vibratory tests have been extrapolated to propose a modeling technique to predict the intensity of cavitation damage in actual hydrodynamic systems. The proposed modeling technique needs experimental verification.

REFERENCES

- Thiruvengadam, A., "A Comparative Evaluation of Cavitation Damage Test Devices," HYDRONAUTICS, Incorporated Technical Report 233-2, November 1963. (See also Symp. Cavitation Research Facilities and Techniques, ASME Publication, New York, pages 157-164, May 1964).
- Thiruvengadam, A., "Intensity of Cavitation Damage Encountered in Field Installations," HYDRONAUTICS, Incorporated Technical Report 233-7, February 1965. (See also Symp. Cavitation in Fluid Machinery, ASME Winter Annual Meeting, November 1965. Available at ASME Headquarters, New York).
- 3. Thiravengadam, A., "The Concept of Erosion Strength," HYDRONAUTICS, Incorporated Technical Report 233-9, December 1965 (See also Symp. Erosion by Cavitation or Impingement, ASTM Annual Meeting, Atlantic City, New Jersey, June 1966. Available at ASTM Headquarters, Philadelphia, Penn.)
- 4. Reyleigh, Lord, "On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity," Phil. Mag. (6) 34, pp. 94-98, 1917.
- Plesset, M. S., "Bubble Dynamics," Proc. Symp.'Cavitation in Real Liquids', General Motors Research Laboratories, Warren, Michigan, 1962, Ed. R. Davies, ElServier Publishing Company, 1964.
- 6. Hsieh, D-Y, "Some Analytical Aspects of Bubble Dynamics," Trans. ASME, Jour. Basic Engr., Vol. 87, D, No. 4, pp. 991-1005, 1965.
- 7. Eisenberg, P., "On the Mechanism and Prevention of Cavitation," David Taylor Model Basin Report 712, July 1950.
- 8. Naude', C F., and Ellis, A. T., "On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact with a Solid Boundary," Trans. ASME, Jour. Basic Engr., D 83, 648, 1961.

-34-

- 9. Noltingk, B. E., and Neppiras, E. A., "Cavitation Produced by Ultrasonics," Proc. Phys. Soc. (Lond), B. 63, p. 683, 1950.
- 10. Plesset, M. S., and Hsieh, D-Y, "Theory of Gas Bubble Dynamics in Oscillating Pressure Fields," The Physics of Fluids, Vol. 3, No. 6, p. 882, 1960.
- 11. Kreith, F., "Principles of Heat Transfer," International Textbook Company, Scranton, Penn., 1962, pp. 535-539.
- 12. Jackson, C. C., Ed-in-Chief, Liquid Metals Handbook, 3rd Edition, Published by AEC and BuShips, U.S.A., 1955.
- 13. Bebchuck, A. S., "On the Problem of the Mechanism of Cavitation Damage to Solid Bodies," Jour, Acoustics, Vol. 3, p. 369(1957), Soviet Physics-Acoustics Vol. 3, p. 395, 1958.
- 14. Schumb, Walter C., Peters, H., and Milligan, Lowell H., "Cavitation Erosion of Metals," Metals and Alloys, pp. 126-131, May 1937.
- 15. Nowotny, Hans, "Destruction of Material Through Cavitation-Investigation with an Oscillator," 1942 (In German).
- 16. Kerr, S. Logan, and Leith, W. C., "A Review of Cavitation Damage by the Vibratory Method," Dominion Engineering Works, Ltd., 1955.
- 17. Bebchuck, A. S., "On the Problem of Cavitation Damage to Solid Bodies," Jour. Acoustics, 3, 1, 90-91, 1957, (Soviet Physics-Acoustics, p. 95).
- 18. Wilson, R. W., and Graham, R., "Cavitation of Metal Surfaces in Contact with Lubricants," Conference on Lubrication and Wear, The Institution of Mechanical Engineers, Paper 83, 1st-3rd October 1957.

- 19. Plesset, Milton S., and Devine, Robert E., "Temperature Effects in Cavitation Damage," Report No. 85-27, Division of Engr. and Appl. Sci., California. Inst. of Tech., April 1964.
- 20. Morse, P. M., Vibration and Sound, 2nd Edition, McGraw Hill Book Company, New York, 1948, p. 334.
- 21. Thiruvengadam, A., and Preiser, H. S., "On Testing Materials for Their Cavitation Damage Resistance," HYDRONAUTICS, Incorporated Technical Report 233-3, December 1963. (See also Jour. of Snip Research, Vol. 8, No. 3, December 1964).
- 22. Eisenberg, P., Preiser, H. S., and Thiruvengadam, A., "On the Mechanism of Cavitation Damage and Methods of Protection," Paper No. 6, Winter Annual Meeting, The Society of Naval Architects and Marine Engineers, November 1965.
- 23. Bebchuck, A. S., Borisov, J. I., and Rozenburg, L. D., "On the Problem of Cavitation Erosion," Acoustics Jour. 1958, pp. 372-373.
- 24. Knapp, R. T., "Recent Investigations of the Mechanics of Cavitation and Cavitation Damage," Trans. ASME, Vol. 77, pp. 1045-1054, 1955. (See also R. T. Knapp "Accelerated Field Tests of Cavitation Intensity," Trans. ASME, Vol. 80, pp. 91-102, 1958).
- 25. Kerr, S. L., and Rosenberg, K., "Ar Index to Cavitation Erosion by Means of Radio-Isotopes," Trans. ASME, Vol. 80, pp. 1308-1314, 1958.
- 26. Thiruvengadam, A., "Cavitation and Cavitation Damage," M. Sc. Thesis, Indian Institute of Science, Bangalore, 12, 1959.
- 27. Lighthill, M. J., "On Sound Generated Aerodynamically," Part I. General Theory, Proc. Roy. Soc. A. 211, 564, 1952.

- 28. Lighthill, M. J., "On Sound Generated Aerodynamically," Part II, Turbulence as a Source of Sound, Proc. Roy. Soc. A. 222, February 1954.
- 29. Shalnev, K. K., "Experimental Study of the Intensity of Erosion Due to Cavitation," Proc. Symp. on Cavitation in Hydrodynamics, N.P.L., (Teddington) H.M.S.O. Publication, p. 22-p.1, 1955.

KNOWN SCALING PARAMETERS

1. CAVITATION PARAMETER,

$$\sigma = \frac{P - P}{\frac{1}{2}\rho v^2}$$

2. REYNOLDS NUMBER =
$$\frac{VD}{v}$$

UNKNOWN SCALING PARAMETERS

THEY SHOULD CONSIST OF:

MATERIAL PARAMETERS LIQUID PARAMETERS BUBBLE PARAMETERS

FIGURE 1 - PARAMETERS INVOLVED IN MODELING CAVITATION DAMAGE

FIGURE 2 - PHASES OF ENERGY TRANSMISSION

FIGURE 3 - DEFINITION OF INTENSITY OF BUBBLE COLLAPSE

FIGURE 4 - BUBBLE COLLAPSE PRESSURES AS A FUNCTION OF GAS CONTENT BOTH FOR ISOTHERMAL AND FOR ADIABATIC DAMPING

FIGURE 6 - THERMAL EFFECTS ON VAPOR BUBBLE GROWTH AND COLLAPSE

$$\eta = \frac{I_{d}}{I_{c}} = \frac{1}{\rho_{\ell} C_{\ell} U_{o}^{2}}$$

$$\eta = F \left[\Gamma_g \cdot \frac{\Delta T}{T_B} , M_W, W_W, R_W, \mu \right]$$

LIQUID SURFACE

CAVITATION BUBBLES ON THE SURFACE OF THE TEST SPECIMEN

 $\xi = \xi_0 SIN \omega_0 t$

 $2\xi_{o}$ AMPLITUDE OF VIBRATION

ω ANGULAR FREQUENCY

$$U_{o} = \omega_{o}\xi_{o}$$
$$P_{o} = \rho_{\ell}C_{\ell}U_{o}$$
$$I_{a} = \rho_{\ell}C_{\ell}U_{o}^{2}$$
$$\mu = \frac{2\pi a}{\lambda_{\ell}}$$

(a)

FIGURE 7 - PARAMETERS INVOLVED IN MODELLING VIBRATORY CAVITATION DAMAGE EXPERIMENTS

AMBIENT TEMPERATURE - °C

INVESTIGATOR	TEST MATERIAL	TEST LIQUID	FREQUENCY (k cs)	AMPLITUDE (mils)	PRESSURE ATMOS+ PHERES	DATA SYMBOL	RE F.
SCHUMB, PETERS AND MILLIGAM	ALUMINUM 51 - ST	WA TER	8,7	1.97	1.0	7	12
NOWOTNY	MAGNESIUM	WATER	9.0	1.18	1.0	\diamond	13
KERR	CAST IRON	WATER	6.5	1.71	1.0	0	14
LEITH	CAST IRON	WA TER	6.5	1.71	2.4		14
, <u> </u>	ALUMINUM	WATER	8.0	_	1.0	D	15
BEBCHUCK	ALUMINUM	BENZENE	8.0	_	1.0	σ	15
	ALUMINUM	KEROSENE	8.0		1.0	0	15
WILSON AND GRAHAM	WROUGHT ALUMINUM	ANILINE	12.0	_	1.0	٥	16
DEVINE AND PLESSET	ALUMINUM 2 /H 129	WATER	15.0	1.00	1.0	▽	17
	ALUMINUM	WATER	14.0	0.69	1.0	Q	•
WHITE	ALUMINUM	BENZENE	14.0	0.69	1.0	7	•
	ALUMINUM	TOLUENE	14.0	0,69	1.0	0	
	ALUMINUM	ANILINE	14.0	0.69	1.0	0	•
			DATA OB	TAINED BY M	RS. S. W WH	ITE WITH	THE

HYDRONAUTICS' MAGNETOSTRICTION APPARATUS

	LIQUID PROPERTY RANGE COVERED BY CAVITATION DAMAGE									
LIQUID	VAPOR PRESSURE dynescm ²	VISCOSITY Centípoises	SUR=ACE TENSION dynes_cm	DENSITY g cm ³	VELOCITY OF SOUND m/sec_					
WATER	8.13 X 10 ³ - 8 14 X 10 ⁵	1,79 - 0.284	75.6 - 59.8	0.9998 - 0.9584	1431 - 1552					
ANILINE	1.46 X 10 ³ - 6.09 X 10 ⁴	10.2 - 1.27	44.1 - 39.4	1.03893 - 0.97787	1643					
BENZENS	6.06 X 10 ⁴ - 7.27 X_10 ⁵	0.758 - 0.329	30.2 - 25.0	0.88936 - 0.82466	1317					
TOLUENE	1.37 X 10 ² - 3.86 X 10 ⁵	0.772 - 0.354	27.7 - 25.0	0.92393 - 0.80913	1318					

FIGURE 8 - SUMMARY OF RESULTS OF VIBRATORY TESTS

FIGURE 9 - CORRELATION OF EFFICIENCY OF DAMAGE WITH AIR CONCENTRATION IN VARIOUS LIQUIDS

FIGURE 10 - VARIATION OF DISSOLVED AIR CONTENT WITH TEST DURATION IN VIBRATORY TEST

FIGURE 12 - CORRELATION OF EFFICIENCY WITH VAPOR PRESSURE AT TEMPERATURES CLOSE TO BOILING POINT

FIGURE 13 - EFFECT OF NON-NEWTONIAN ADDITIVE ON CAVITATION DAMAGE RATE

FIGURE 14 - HYDRODYNAMIC CAVITATION DAMAGE

DISTRIBUTION LIST (Contract Nonr 3755(00))

Chief of Naval Research		Director	
Department of the Navy		U. S. Naval Research Lab.	
Washington 25, D. C. 20360		Washington 25, D. C.	
Attn: Codes 438	3	Attn: Codes 2000	Ţ
461	1	2020	1
463	1	2027	6
429	1	'	
		Chief, Bureau of Ships	
Commanding Officer		Department of the Navy	
Office of Naval Research		Washington 25, D. C.	
Branch Office		Attn: Codes 300	1
495 Summer Street		305	1
Boston 10, Massachusetts	1	335	1
		341	1
Commanding Officer		342A	1
Office of Naval Research		345	1
Branch Office		421	Ĩ.
219 S. Dearborn Street		44 O	1
Chicago, Illinois 60604	1	442	1
		634A	1
Commanding Officer		634(B, Taylor)	1
Office of Naval Research		634 (L.Birnbaum) 1
Branch Office		430(L.Wechsler))
207 West 24th Street			/ -
New York 11. New York 10011	l	Chief. Bureau of Naval Weapo	ons
		Department of the Navy	
Commanding Officer		Washingtor 25, D. C.	
Office of Naval Research		Attn: Codes R	1
Brancn Office, Box 39		R-12	1
Fleet Post Office		RR	1.
New York, 09510	25	RRRE	ī
		RU	l
Commanding Officer		RUTO	1
Office of Naval Research			
Branch Office		Chief, Bureau of Yards and 1	Docks
1030 East Green Street		Department of the Navy	
Pasadena l, California	1	Washington 25, D. C.	
		Attn: Codes D-202	1
		D-400	1
		D-500	1

,

-2-

Commanding Officer and Director Superintendent David Taylor Model Basin U. S. Naval Academy Washington 7, D. C. Annapolis, Maryland Attn: Codes 142 1 Attn: Library 1 500] 513 1 Commanding Officer and Director 521 1 U, S. Navy Marine Engr. Lab. 526 Annapolis, Maryland 21402] 550 1 Attn: Code 750 1 563 1 589 7 Commander U. S. Naval Weapons Laboratory Dr. M. Strasberg (901) ī Dahlgren, Virginia Commander Attn: Tech. Library Div. 7 U. S. Naval Ordnance Laboratory Computation and Exterior Silver Spring, Maryland Ballistics Laboratory Attn: Dr. A. May (Dr. Hershey) 1 1 Desk DA 7 Desk HL 1 Commanding Officer Desk DR 1 NROTC and Naval Administrative Unit, M.I.T. Commander 1 Cambridge 39, Mass. U. S. Naval Ordnance Test Station China Lake, California Commanding Officer and Director Attn: Codes 5014 1 U S. Underwater Sound Lab. 4032 Fort Trumbull 1 New London, Connecticut 753 ٦ Attn: Technical Library 1 Hydrographer U. S. Navy Hydrographic Office Commanding Officer and Director Washington 25, D. C. U. S. Navy Mine Defense Lab. 1 Panama City, Florida 1 Commander U. S. Naval Ordnance Test Station Superintendent Pasadena Annex U. S. Naval Postgraduate School 3202 E. Foothill Boulevard Monterey, California Pasadena 8, California Attn Library ٦ Attn: Mr. J.W. Hoyt] Research Division 1 Commanding Officer and Director P508 U, S. Naval Electronic Lab. 7 P804 1 San Diego 52, California P807 Ţ Attn: Library 1 P80962 (Library) 1 Mr. J.W. Hicks 1

Commanding Officer and Director U. S. Naval Civil Engr. Lab. Port Hueneme, California Commanding Officer and Director U. S. Naval Applied Science Lab. Brooklyn, New York 11251

Commander Norfolk Naval Shipyard Portsmouth, Virginia

Attn: Code 9370

Commander New York Naval Shipyard U. S. Naval Base Brooklyn, New York

Commander Boston Naval Shipyard Boston 29, Massachusetts

Commander Philadelphia Naval Shipyard U. S. Naval Base Philadelphia 12, Penn.

Commander Portsmouth Naval Shipyard Portsmouth, New Hampshire Attn: Design Division

Commander Charleston Naval Shipyard U. S. Naval Base Charleston, South Carolina

Commanding Officer U. S. Naval Underwater Ordnance Station Newport, Rhode Island Attn: Research Division

Commander Long Beach Naval Shipyard Long Beach 2, California 1 1 Commander Pearl Harbor Naval Shipyard Navy No. 128 FPO San Francisco, California 1 1 Commander San Francisco Naval Shipyard San Francisco 24, California l 1 Shipyard Technical Library Code 130L7, Bldg. 746 San Francisco Bay Naval Shipyard Vallejo, California 94592 1 1 Superintendent U. S. Merchant Marine Academy 1 Kings Point, L.I., New York Attn: Dept. of Engr. Ĩ Commandant, U. S. Coast Guard 1300 E. Street, N. W. 1 Washington, D. C. 1 Beach Erosion Board U. S. Army Corps of Engineers Washington 25, D. C. 1 1 Commanding Officer U. S. Army Research Office Box CM, Duke Station Durham, North Carolina 1 Ĩ Commander Hdqs. U. S. Army Transportation Research and Development Command Transportation Corps

Fort Eustis, Virginia

1

1

-3-

-4-

Director		National Aeronautics and	
U. S. Army Engineering Research		Space Administration	
and Development Laboratories		Lewis Besearch Center	
Fort Belvoir Virginia		21000 Brookpark Boad	
Attra Tosh Dogumenta Conten	٦	Cloueland Obio 10135	
Atom: Tech. Documents center	Д.	Atta Dimeter	1
		Attn: Director	L ,
Defense Documentation Center		Mr. C.H. Hauser	L
Cameron Station			
Alexandria, Virginia	20	Director	
		Engineering Science Division	
Maritime Administration		National Science Foundation	
441 G. Street, N. W.		Washington, D. C.	L
Washington 25. D. C.			
Attn: Coordinator of Research	٦	Commander	
Div of Shin Design	1	Air Force Cambridge Research	
DIV. OI DHIP DESIGH	1	Conton 120 Albany Street	
Divid Machanica Soction		Combridge 20 Magg	
Fluid Mechanics Section		Cambridge 39, Mass.	
National Bureau of Standards		Attn: Geophysical Research	-
Washington 25, D. C.	_	Library	L
Attn: Dr. G.B. Schubauer	1		
		Air Force Office of Scientific	С
U. S. Atomic Energy Commission		Research, Mechanics Division,	
Technical Information Service		Washington 25, D. C.	1
Extension, P. O. Box 62		<u> </u>	
Oak Ridge. Tennessee	٦	Aeronautical Library	
oun nidge, iennessee	-	National Research Council	
Scientific and Technical		Mastron Pood	
Information Regility		Actions 7 Carada	7
		outawa (, canada	L
Aton: NASA Representative			
P. 0. Box 5700		Engineering Societies Library	
Bethesda, Maryland 20014	Ţ	345 East 47th Street	
		New York 17, New York	1
Director			
Langley Research Center		Society of Naval Architects an	nd
National Aeronautics and		Marine Engineers	
Space Administration		74 Trinity Place	
langley Field Virginia	-	New York 6 New York	٦
Langley Melu, Virginia	-1-	New IOFK O, New IOFK	T
Directory Awag December Ist		\mathbf{V} oble Tartestrucke - \mathbf{O} \mathbf{V}	
Director, Ames Research Lab.		webb institute of Naval Arch.	
National Aeronautics and Space	-	Gien Cove, L.I., New York	_
Adm. Moffett Field, Calif.	<u> </u>	Attn: Prof. E.V. Lewis	Ī
		Technical Library	1

The John Hopkins University Baltimore 18, Maryland Attn: Prof. S. Corrsin Prof. O. M. Phillips Prof. F. H. Clauser Director Applied Physics Laboratory The John Hopkins University 8621 Georgia Avenue Silver Spring, Maryland New York State University Maritime College Engineering Department Fort Schuyler, New York Attn: Prof. J. J. Foody California Institute of Tech. Pasadena 4, California Attn: Hydrodynamics Lab. Prof. T. Y. Wu Prof. A. Ellis Prof. A. Costa Prof. M. Plesset University of California Berkeley 4, California Attn: Dept. of Engineering Prof. H.A. Schade Prof. J. Johnson Prof. J.V. Wehausen Prof. E.V. Laitone Prof. P. Lieber Prof. M. Holt University of California Los Angeles, California Attn: Prof. R.W. Leonard

Prof. A. Powell

-5-

```
Director
    Scripps Inst. of Oceanography
    University of California
1
1
   La Jolla, California
                                 7
٦
    Iowa Institute of Hydraulic
      Research
    State University of Iowa
    Iowa City, Iowa
    Attn: Prof. H. Rouse
                                 ]
           Prof. L. Landweber
                                 1
1
           Prof. P.G. Hubbard
                                 1
    Harvard University
    Cambridge 38, Mass.
    Attn: Prof. G. Birkhoff
                                 1
l
           Prof. S. Goldstein
                                 1
    University of Michigan
    Ann Arbor, Michigan
    Attn: Engr. Research Inst.
                                 1
1
1
   Director
1 Ordnance Res. Laboratory
1 Penn. State University
    University Park, Penn.
    Attn: Dr. G.F. Wislicenus
                                 1
    Director
1
    St. Anthony Falls Hydraulic Lab.
    University of Minnesota
1
ī.
    Minneapolis 14, Minnesota
    Attn: Mr. J.N. Wetzel
1
1
           Prof. B. Silberman
                                 1
1
           Prof. L.G. Straub
                                 1
    Mass. Inst. of Technology
    Cambridge 39, Massachusetts
1
    Attr: Prof. P. Mandel
                                 ī
ī
           Prof. M.A. Abkowitz
                                 1
```

-6-

Institute for Fluid Mechanics Dr. E.R.G. Eckert and Applied Mathematics Mechanical Engr. Department University of Maryland University of Minnesota College Park, Maryland Minneapolis, Minnesota 55455 1 Attn: Prof. J.M. Burgers 1 Department of Theoretical and Applied Mechanics Cornell Aeronautical Laboratory Buffalo 21, New York College of Engineering Attn: Mr. W.F. Milliken, Jr. University of Illinois 1 Urbana, Illinois Attn: Dr. J.M. Robertson Brown University 1 Providence 12, Rhode Island Attn: Dr. R. E. Meyer Department of Mathematics 1 Dr. W. H. Reid 1 Rensselaer Polytechnic Institute Prof. Fred Bisshopp] Troy, New York Attr Prof. R.C. DiPrima 7 Stevens Institute of Technology Davidson Laboratory Southwest Research Institute Hobcken, New Jersey 8500 Culebra Road Attn: Mr. D. Savitsky San Antonio 6, Texas 1 Mr. J P. Breslin Attn: Dr. H. N. Abramson ٦ 1 Dr. D. N. Hu Ī Dr. S. J. Lukasik 7 Department of Aeronautical Engr. Univ. of Colorado Director Boulder, Colorado Woods Hole Oceanographic Inst. Attn: Prof. M. S. Uberoi 7 Woods Hole, Massachusetts 1 Courant Institute Director New York University Alden Hydraulic Laboratory New York, New York Worcester Polytechnic Institute Attn: Prof. P. Garabedian 1 Worcester, Massachusetts 1 Institut fur Schiffbau der Stanford University Universitat Hamburg Stanford, California Lammersieth 90 Attn: Dr. Byrne Perry Hamburg 33, Germany (Dept. of Civil Engr.) Attn: Prof. O. Grim 1 1 Prof. E. Y. Hsu Prof. K. Wieghardt ٦ (Dept. of Civil Engr.) 1 Dr. S. Kline (Dept. of Mech. Engr.) 1

Max-Planck Institut fur Stromungsforschung Bottingerstrasse 6-8 Gottingen, Germany Attn: Dr. H. Reichardt, Dir. Versuchsanstalt fur Wasserbau und Schiffbau Gartenufer (Schleuseninsel) 1 Berlin 12, Germany Attn: Prof.Dr.Ing. S. Schuster Netherlands Ship Model Basin Wageningen, The Netherlands Attn: Ir.R. Wereldsma Dr. J. B. Van Manen Mitsubishi Shipbuilding and Engineering Company Nagasaki, Japan Attn: Dr. K. Taniguchi Mr. W.R. Wiberg, Chief Marine Performance Staff The Boeing Company Aero-Space Division P. O. Box 3707 Seattle 24, Washington Mr. William P. Carl Crumman Aircraft Corporation Bethpage, L.I., New York Grumman Aircraft Corporation Bethpage, L.I., New York Attn: Engineering Library Plant 5 Mr. Leo Geyer

-7-

Dr. A. Ritter Inerm Advanced Research Div. Therr, Incorporated Ithaca, New York ì ì HYDRONAUTICS, Incorporated Pindell School Road, Howard County, Laurel, Md. Attr: Mr. P. Eisenberg (President) 7 1 Mr. M. P. Tulin (Vice President) Ţ Dr. J. Kotik 1 Tecnnical Research Group, Inc. 1 Route 110 Melville, New York 1 AiResearch Manufacturing Co. 9851-9951 Sepulveda Boulevard 1 Los Angeles 45, California Attn: Blaine R. Parkin 1 Hydrodynamics Laboratory Convair San Diego 12, California Attn: Mr. H. E. Brooke 1 Mr. R. H. Oversmith Ĩ. 1 Baker Manufacturing Company Evansville, Wisconsin 1] Gibbs and Cox, Inc. 21 West Street New York 16, New York 1 Electric Boat Division ï General Dynamics Corporation ī Groton, Connecticut Attn. Mr. R. McGandliss]

-8-

TTT Research Institute Dr. Harvey Brooks 10 W. 35th Street School of Applied Sciences 1 Harvard University Chicago 16, Illinois Cambridge, Massachusetts 1 Missile Development Division North American Aviation, Inc. Professor Holl Ordnance Research Laboratory Downey, California Attr: Dr. E.R. Van Driest 1 State College, Pennsylvania 1 National Physical Laboratory Ship Research Institute Ministry of Transportation Teddington, Middlesex, England Attn: Head, Aerodynamics Div. 700 Shinkawa, Mitaka l Tokyo, Japan Mr. A. Silverleaf 1 Professor F. Hammitt Aerojet General Corporation 6352 N. Irwindale Avenue College of Engineering Azusa, California Nuclear Engr. Department Attn: Mr. C. A. Gongwer l University of Michigan Ann Arbor, Michigan 1 Astropower, Inc. 2121 Paularino Avenue Oak Ridge National Laboratory Newport Beach, California Post Office Box Y Attn: R. D. Bowerman 1 Oak Ridge, Tennessee Attn: Mr. A. Grindell 1 Oceanics, Incorporated Technical Industrial Park Scientific and Technology Plainview, L.I., New York Division, Library of Attr: Dr. Paul Kaplan 1 Congress Washington, D. C. 20540 1 Director, Special Projects Office Mr. Jacques Dodu Department of the Navy Maitre de Conferences a la Washington 25, D. C. Faculte des Sciences Attn: Code SP-001 l Laboratoires de Mechanique des Fluides National Academy of Sciences 44-46, Avenue Felix-Viallett Grenoble (Isere), France 1 National Research Council Committee on Undersea Warfare 2101 Constitution Avenue Defense Metals Information Washington 25, D. C. l Genter, Battelle Memorial Institute, 505 King Avenue, Columbus 1, Ohio 1

-9-

1

Ĩ

1

Mr. James P. Couch (500-309)
National Aeronautics and Space
Administration
21000 Brookpark Road
Cleveland, Ohio 44135

Documents/Reports Section Scripps Library Scripps Institution of Oceanography La Jolla, California 92037

Manager, Oceanics Division Lockheed-California Co, 3380 North Harbor Drive San Diego, California 92101 1

Professor Owen L. White Civil Engineering Department University of Waterloo Waterloo, Ontario, Canada

Mrs. Eileen Cubberley Government Publications Assistant The Library, University of Waterloo Waterloo, Ontario, Canada 1

The Principal College of Engineering Guindy, Madras-25 India

1

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)					
1. ORIGINATIN G ACTIVITY (Corporate author)		28. REPOI	RT SECURITY CLASSIFICATION		
HYDRONAUTICS, Incorporated	··· 4	Unc	lassified		
Pindell School Road, Howard Co	unty,	2 5 GROUI	P		
		}			
ON MODELING CAVITATION DAMAGE					
A DESCRIPTIVE NOTES (Tune of mont and inclusive dates)					
Technical Benort.					
5. AUTHOR(S) (Lest name, first name, initial)	<u></u>				
Thiruvengadam, A.					
6. REPORT DATE	78 TOTAL NO. OF P	AGES	76. NO. OF REFS		
August 1966	52		29		
88. CONTRACT OR GRANT NO.	98. ORIGINATOR'S R	EPORT NUM	BER(S)		
Nonr 3755(00)(FBM) NR 062-293 5. project no.	Technical	Repor	t 233-10		
с.	9b. OTHER REPORT this report)	PORT NO(S) (Any other numbers that may be assigned			
d.		_			
10. AVAILABILITY/LIMITATION NOTICES					
Qualified requesters may obtain	copies of th	is rep	ort from DDC.		
11. SUPPL EMENTARY NOTES	12. SPONSORING MILI	TARY ACTI	VITY		
	Office of	Naval	Research		
	Departmen	t of t	he Navy		
13. ABSTRACT		d of i po	d og the newer		
The intensity of bubble transmitted per unit surface are pressure is a maximum and is giv pressure divided by the acoustic ficiency of damage is defined as of the material to the intensity analysis is made to show how thi various physical effects such as inside the bubble, heat transfer and viscosity. Experimental re that the efficiency of damage is of non-condensible gases and vap also seems to be important. Wit tension of the liquids tested se non-dimensional numbers derived formulate a modeling technique t erosion in actual operating hydr	a of the bub en by the sq impedence o the ratio o of bubble c s efficiency inertia, da c, compressib sults with v primarily c oor. At high thin the rang eems to be un from the abo co predict the odynamic sys	ble wh uare o f the f the ollaps would mping ility, ibrato ontrol er tem e of e import ve ana e rate tems.	en the collapse f the collapse f the collapse liquid. The ef- intensity of erosion e. Quantitative be affected by of gas and vapor surface tension ry apparatus show led by the damping perature viscosity xperiments, surface ant. The group of lysis as used to of depth of		

UNCLASSIFIED

Security Classification				······			
	_	LINKA		LINKB		LINKC	
		ROLE	wt	ROLE	WT	ROLE	WT (
Cavitation damage Model tests Non-dimensional numbers Scaling laws Physical effects Inertia, Damping, heat transfer Compressibility, viscosity, surfa Intensity of bubble collapse Efficiency of damage	ce tensi	sn					
						i	<u>_</u>
INST	RUCTIONS		. .				
 ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- 	imposed b such as:	by security	y classifi	cation, us	ing stand	dard state	ements
fense activity or other organization (corporate author) issuin the report.		Qualified	DDC."	ers may ob	tain copi	ies of thi	s
 2a. REPORT SECURITY CLASSIFICATION: Enter the over all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord- ance with appropriate security regulations. 2b. GROUP: Automatic downgrading is specified in DoD Di rective 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ized. 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis immediately following the title. 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter tast name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. 7a. TOTAL NUMBER OF PAGES: The total page count 	(2) ((3) ((3) ((4) ((4) ((5) ((5))))))))))	eport from 'Foreign eport by I 'U. S. Go- his report isers shal 'U. S. mil- eport dire shall requ 'All distr fied DDC report ha Departme fact and o PLEMEN' s. NSORING tmental pi- he researco TRACT: of the doc so appear	announcer DDC is no vernment directly 1 request itary age ctly from est throug ibution of users sh s been fu ent of Con- enter the CARY NO MILITAF coject off ch and de Enter an cument in elsewher	ment and o t authoriz agencies from DDC through ncies may DDC. Ot gh f this repo all reques rnished to nmerce, fo price, if k TES: Use RY ACTIV ice or labo velopment abstract g dicative o e in the b	dissemina red." may obta . Other of obtain c her quali rt is con t through t the Offi r sale to nown. e for addi ITY: En oratory sy . Includ civing a t f the repd	ation of the in copies qualified copies of fied user trolled. (trolled. (trolled. (the public the public the public the public the full atter the national example address prief and ort, even the technic	his of DDC
 should follow normal pagination procedures, i.e., enter the number of pages containing information. 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report. 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number mus be unique to this report. 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator) 	port. If a be attach It is be unclas an indica formation Ther ever, the 14. KEY or short p index ent selected fiers, suc project co words bui text. The	additional ed. highly de sified. E tion of the in the pa e is no li: suggeste WORDS: words for c. so that no ch as equi ode name, t will be f e assignm	space is sirable the cach para e military ragraph, mitation of d length is Key wor at charace ataloging o security pment more geograph ollowed l ent of lin	required, nat the abs graph of the security of representer on the lenguist from 150 ds are tec- therize a re- the report the report of classific del design hic location by an indica tes, reles,	a continu stract of ne abstra classific ed as (TS gth of the 0 to 225 y hnically eport and t. Key w ation is m ation, tr on, may b cation of and weig	uation sh classifie ct shall e tation of t (), (S), (C) e abstract words. meaningf l may be u vords mus required. required. ade name be used as technica ghts is op	eet shall d reports and with he in-), or (U). . How- ul terms used as t be Identi- , military s key l con- otional.

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those