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Similar to tr:e defiri~.ior1 or tr:e lr;tensity of c:·vit..,tion 

damage) the intensity of c~vit8tion t~bble coll~pse 1s aefined 

as the power tr~rsmitted 8sr u~tt surf2ce are1 of the t~bble 

when the colL=:pse pressure is · rr: xirrum. Tr;e intensity of 

collapse is given by t~e square of ~~e maximum collapse pres

sure divided J::;y tne '1COt;Stic irr,pej·-,nce (pt:::'t) of tr;e liqu:i,.d .. 

Various physical effects sucn as inertial effects, d~mping due 

to non-condensible gases, ther~2l effects, compressibility ef

fects) surface tension effects and viscous effects on the m3xi-

mum collapse pressure are considered. Tne efficie~cy of dam1ge 

given by tte intensity of damage divided by the intensity of 

collapse is sr,own to deper~d principally on t.rie dissolved gas 

co~tent of the liquid (using tre data obtained from the vibra-

tory cavitation damage apparat~s). ~t is also s~own t~at the 

vapor itself mlg~t act as a damper near boiling poict since the 

bul)ble wall terhperaunes incre3.se r3pi-21y 2t tr:.ese temper:-1 tures, 

When tne vapor pressu_re becor11es ir:~~ortact, viscosity :1lso seem~: 

to affect U:e efficier1cy of :Ja"C;age as evid<=;nce:) uy trte oehavior 

of aniline. Tne efficiency of jamage is in0ependent of the sur 

face tension of ~ Jiqt:~iG \·JiU.ir, t:;e ra.::-,f!;e ol ·cests. 

The above results fr·om u-e varatury experiments ::re used 

to propose a mocleUc_g tecrr"~~ue co oreilct ~-Le l'' Le of jeptr:. of 

sure field t~~t drives t~E tubole co collap5e. 
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of this pressure field on other hydrodynamic scaling parameters 

such as Reynolds number, Mach number and the cavitation parameter 

will decide the success of the proposed model technique. 

INTRODUCTION 

At the present state of knowledge it is possible to predict 

from model tests the various hydrodynamic forces such as drag, 

lift, thrust, etc. Similarly it would be highly desirable to 

predict the intensity of cavitation damage in prototypes by con

ducting model tests in the laboratory. As of now it is not pos

sible to achieve this objective because there are no scaling 

laws that relate the model-prototype behavior. It is the pur

pose of this report to formulate such scaling laws and to dis

cuss the physical phenomena that are scaled by these laws. 

Figure l shows the flow behind a circular cylinder and the 

known and unknown parameters controlling cavitation damage. The 

geometrical and kinematic similarities of the overall cavity 

flow are controlled by the cavitation parameter and the Reynolds 

number. However the modeling of the phenomenon of cavitation 

damage requires that the energy of collapse of individual bub

bles, the transmission of the energy to the material surface and 

the absorption of the energy by the material in its deformation 

and fracture be scaled also. Hence the problem is to define the 

above phases of energy transmission and absorption quantitatively 

and to determine the parameters that control the efficiency of 

this process, Figure 2, The intensity of material damage is 

defined in References 1 and 2 as 
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i s 
e 

t 

i is the depth of erosion, 

t is the time of erosion, and 

S is the erosion strength, 
e 

The erosion strength is defined as the energy absorbing capacity 

of the material per unit volume under the action of the erosive 

forces (3). If a similar definition for the intensity of bubble 

collapse can be derived, then the efficiency of this process 

would be given by 

[ 2] 

where I is the intensity of bubble collapse. As of nm<J, such a 
c 

definition for the intensity of bubble collapse does not exist. 

Or.e of the accomplishments of this report is such a definition 

which leads to logical scaling laws for the proposed technique 

of modeling cavitation damage. 

INTENSITY OF BUBBLE COLLAPSE 

It is assumed in this report that the collapse pressure 

emanating from an individual transient cavitation bubble causes 

the erosion. When a spherical bubble collapses with a bubble 

wall velocity UB, the collapse pressure as derived by Rayleigh 

(4) is: 



s 1 ,--~c e 
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~ is the maximum collapse pressure, l:'c 

n 
~B 

~.8 '·t 

is the coefficien~·. of compressibility or bulk 
modulus of liqu~d, 

is the density of liquid~ a~d 

ls tne bubble wall velocity. 

l3] 

speed in liqu~d. 

T1~,e ~.uepre::: :oibL~i cy of ti:'!.e liqu:'-.d 6-G would be grea:.ly :ce-

~'·· f''J d0·c ~o ·jnt-. orssence of cavitatioL ·cub.oles. ·For ':'!:11s rea:::.;OrJ) 

of tt:\t: liquid-vapor bubb:Le ILi.·,-c~.ure, C, wou},j 
rr~ 

;:;hould t r:= C • 
!IJ 

kuow~ abou~ t~e ~alues of C in cavitation clcuds. Until more 
rr. 

c " 
nt" 

speed in liqui0 C will be Gsed for 
.f._, 
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computations. If we define the intensity of collapse as the 

radiated power per unit surface area of the bubble, then 

since 

Intensity of collapse 

I c 

= 
Collapse power transmitted 

Surface area of bubble 

p 47TRa dR 
c dt 

= 
47TR2 

dR 
UB = dt 

JV1aking use of Equation [3] we get 

I c 

It is interesting to note that the intensity of bubble collapse 

is similar to the intensity of acoustic power radiated from a 

simple source (Figure 3). The dimensions of I are the same as 
c 

I which are in power per unit area. 
d 

Tne above discussion shows that the intensity of collapse 

varies as the square of the maximum collapse pressure in a 

given liquid. Hence, it is important to consider the various 

physical effects that control this maximum collapse pressure. 
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THE MAXIMUM COLLAPSE PRESSURE 

Th.e maximum collapse pressure depends upon the shape of 

the bubble and the distance at which the bubble collapses. 

F'urthermore, the growth and the collapse of the bubbles depend 

upon the following physical phenomena (5), (6): 

A. Inertial effects 

B. Damping effects 

c. Thermal effects 

D. Compressibility effects 

E. Surface tension effects 

F. Viscous effects. 

Ir order to quantitatively evaluate the relative influence of 

tnese effects on the maximum collapse pressure, we will assume 

that the Besant-Rayleigh bubble collapse (5) causes the damage. 

(It is recognized that the Eisenberg bubble collapse (7), (8), 

may also be important. Hence, calculations for this case will 

be usefuL) 

A. Inertial Effects 

Rayleigh (4) calculated the maximum collapse pressure for 

a sp~erical bubble collapsing in an infinite liquid; it is 

gi··vec. by 

p ( R )

3 

6.~5· R"; c 5J 
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is the pressure at infinity, 

is the maximum bubble radius at the 
start of collapse, 

is the final bubble radius at the end of 
collapse . 

T~is maximum collapse pressure occurs at a distance of 1.587 Rf 

from the center of collapse (4). 

B. Damping Effects 

Now the final radius to which the bubble collapses depends 

upon the amount of non-condensible gas present at the start of 

the collapse and on whether the gas is compressed isothermally 

or adiabatically. Assuming isothermal compression of the 

permanent gas inside the bubble, Rayleigh (4) derives the fol

lo~ing relationship between the final collapse radius and the 

initial gas content, Q : 
0 

p [1-(::rJ + Qo loge ( :: r 0 
0 

(:: r << l 

l ::r p 

log 
0 

e Q 
0 

p (:; r 0 

= e Qo [ 6] 
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Assuming adiabatic compression, Noltingk and Nepperas (9) de

rive the following relationship: 

1 
( 1-k) 

wtere k is r;he ratio of specific heats for the permanent gas in

E i·5c the bubble" The value of k for air is 4/3, If the gas is 

air, then for· adiabatic compression, 

Hence 
p 

PC I isothermal 

p 0 
o Qo 

6.35 e [ 8] 

PC I adiabatic 
p o (4· pQOO ls 

= 6,35 

Eq ua u ons [ 8] and [ 9] are graphically shown in Figure 4. It is 

clear thaT, the maximum collapse pressure ana hence the intensity 

of cc.llapse depends on whether the bubble collapse is isothermal 

or a:.::llaba-slc, The Plesset-Hsieh criterion (5), (10) for the 

collapse of bubble8 is as follows: 
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Pt8t'\t 
>> 1 

p S H 
g g m 

Isothermal if 

P,e, 8,r/'t 
<< 1 

p S H 
g g m 

Adiabatic if 

p is the density, 

S is the specific heat per unit mass , and 

A is the thermal diffusion length . 

[ 10] 

[ 11] 

and subscripts t and g stand for liquid and gas respectively. 

Physically speaking, the above criteria give the relationship be

tween the heat capacity of the gas inside the bubble and the heat 

that can be conducted away in the thermal diffusion layer of the 

liquid. If the latter is very large compared to the former, the 

temperature within the bubble remains constant. If it is very 

small the~ the temperature of the gas inside the bubble will rise 

This criterion is shown in Figure 5 for various test liquids. The 

ttermodynamic data were obtained from Reference 11 and the data 

for argon was obtained from Heference 12. At 20 kcs frequency, 

bubbles of maximum radii of a millimeter or less will be under 

isother'.Tl.al compression while collapsing, for all the liquids 

arown in Figure 5. For larger bubble sizes, the collapse would 

become adiabatic. For this reason, the model-prototype correla

tion should take into account the Plesset-Hsieh criteria. How

ever as seen in Figure 4, adiabatic collapse produces much less 

pressures and may not be important as far as cavitation damage 

=. s cone erned . 
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Gas content of the bubble - The partial pressure of the 

ga.:: ins1de the bubble at its maximwn radius 9 Q (in Equations [8] 
0 

and [9]) corsist of three components: 

l. The gas content at the beginning of the bubble 
growth 3 Le .. , the gas inside the equilibrium 
nucleus of radius R . 

n 

2, The gas dissolved in the evaporated liquid during 
growth. 

3. The gas that diffuses into the bubble from the 
surrounding liquid during growth. 

He~ce the partial pressure at the start of the collapse~ Q ~ will 
0 

be tr..e sum total of the three components stated above. 

[ 12] 

1. Estimation of Qa. : The equation of static equilib

rium for spherical bubbles is given by 

wnere 

p is the pressure in the surrounding liquid, 
0 

R is the equilibrium radius of the nu.c leus, 
n 

'Y is the surface tension of r.he liquid, 

Pv is tr1e vapor pressure of the liquid) and 

pg is the partial pressure of the gas. 
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Hence 

Assuming the gas inside the nucleus to be a perfect gas, 

where 

4 rrR 3 = 
Pg 3 n 

N1 is the number of moles of the gas , 

8 is the perfect gas law constant , and 

T is the absolute ambient temperature . 
a 

4 rrR 3 

N1 
pg 3 n 

8T 
a 

(Po+ ~- p ) 4 7r R 3 
R0 v 3 n 

= 
8T 

a 

The partial pressure, ~' exerted by these molecules when the 

nucleus grows to a maximum radius, R , is given by 
m 

~ 4 rrR 3 
3 m 
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2. Estimation of ~ : The mass of liquid evaporated 

during growth, is equal to the mass of vapor in the bubble and 

is g1ven by 

~~ is the mass of liquid evaporated 

p is the density of vapor inside the bubble 
v 

The mass of gas which was originally dissolved in this mass of 

liquid before evaporation is 

where ·.::t i b 
g 

4 
m = agm p = - 1rR 

3 
p a g -u 3 m v g 

tne mass fraction of gas dissolved in the liquid. 

Tne number of moles of gas in this mass is given by 

m 4 a. 
N2 = __..& - ·rrR 3 p _g_ 

M - 3 m v M 
g g 

where M is the molecular weight of gas. Similarly t:he number of 
g 

moles of vapor N is given by 
v 

N 
v 

wtlere rvrv is LD.e molecular weight of vapor, 
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N2 
N -

v 

Assuming the perfect gas law to be valid both for gas and vapor 

where 

pv 

~ .!±_ 1fR 3 
3 m 

Nz 8 T a 

P .!±_ 1rR 3 == N 8 T 
v 3 m v a 

is the partial pressure of the gas exerted by 
N2 gas molecules 

is the vapor pressure inside the bubble 

Qa N2 
M 

v 
== == a 

pv N g m 
v g 

M 
~ 

v 
== pv a 

g M 
g 

[ 14] 

3. Estimation of Qa: While the bubble grows from an 

equilibrium nucleus to a maximum radius R , the gas dissolved in 
m 

tne liquid with a partial pressure of P will diffuse into the 
0 

bubble from a gas diffusion layer surrounding the bubble and is 

g:ven by Bebchuck (13) as 
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~ = a 
g 

p 
0 

wr.e:re 

\~, is the 
g 

LJ is the g 

t is the 
1 

(D t) 2 is the g . 

R 
m 

concentration 

diffusivity of 

of tt~e dissolved 

the gasJ 

diffusion timeJ and 

gas diffusion layer· thickness. 

[ 15] 

gasJ 

Now the partial pressure of the gas inside the bubble at 

the beginning of collapse is given by Equation [ 12] which becomes 

1 

M 
v + p a v g M 
g 

+- p 0 
0 g 

(D t )"2 
-~g __ _ 

2·-y 

R 
m 

-·-··--
p F 

o n 

1 

p ] ( R ) 
3 

p M. . (D t;) 2 ] _3_ _ll + _2_ a ~ + :x -""'g __ 
P R P gM g R 

o m o g rn 

21r1c r::: \' fl /H ) is usually small compared to Lm.ity _, the first term c m· 
on E~e rigL,t t:and si.de of the above equ.ati.oE is negligible com-

pare~ to t:he otter two terms. Then 
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R 
m 

At r:em.peratures much lower than the boiling point of the liquid, 

the vapor pressure is small. Hence 

pv 
-< < 1 
p 

0 

M v 
M 

g 
is of the order of 1 

If we assume that the gas diffusion 

same order of magnitude as R , then 
m 

written as follows: 

1 

layer, (D t) 2 , is of the 
g 

the Equation [16] may be 

R 
m 

[ 17] 

However at temperatures close to the boiling point of the liquid_, 

t:hE: vapor itself might act as a damper since the vapor may not 

fully condense during collapse. This effect will be discussed 

next, 

C" Thermal Effects 

'The r,.ext important aspect that controls the collapse of 

vapor bubbles is the heat outflow during collapse. The heat of 

condensation is given in (5) as 
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4 
3 

·rrE 3 p L 
m v 

pv is the density of vapor~ and 

L is the latent heat of vaporization. 

1 

T~is neat flows into the thermal diffusion layer of thickness (Dt)~ 

where D is the tnermal diffusivity and t is the time of collapse. 

The heat balance is given by 

where 

4 
TrR 3 p L ~ 4-TrR 2 (Dt) t p, S ~ 6 T 

3 m v m -v -v 

6T ~· 

6T 

I' 
B 

Rm L Pv 

3(Dt)
2 stpt 

1 

3(Dt)~ StptTB 

6T is temperature difference between 'the liquid 
and the vapor~ 

is 'the boiling point of ~he liquid at 
atmospheric pressure~ and 

is the specific heat of liquid per unit mass. 

Assuming a millimeter for R and 20 ~ seconds for growth or 
m 

[ 18] 

collapse time in various liquids tested Figure 6 shows that the 
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relative temperature difference increases sharply at temperatures 

closer to the boiling points of the liquids. Thermodynamic data 

are obtained from References 11 and 12. 

where 

Furthermore Plesset (5) has shown that 

' 
R = 

v 

v' 

dR -
dt 

is the velocity of the bubble wall, i.e,, 
the interface 

is the velocity of the liquid adjacent to 
the interface, and 

is the velocity of the vapor adjacent to 
the interface. 

Since p /p i~ very small, it is evident that v is very nearly v' t ~ 

equal toR for most practical cases. 

Relative importance of dissolved gas content and vapor pres.

sure - From the above discussion, it is clear that when t:.'r/'rB 
is srral1, tne damping is entirely due to the dissolved gas con

terlt in the .liquid. When b.T/TB is increasing with ambient temper

ature, the vapor itself may act as a damper. At these tempera

tures the vapor pressure of the liquids become important. 

D, Compressibility Effects 

According to the Rayleigh bubble collapse mechanism, the 

kir:etic energy of bubble collapse is stored in the bulk compress

ibility of the liquid and transmitted back to the material in tne 
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form of a short range shock. In order to investigate the compress

ibility effects, we need the Mach number of the bubble collapse. 

However, there are three sound speeds 

L The sound speed in the 

2. The sound speed in the 

3" The sound speed in the 

The Mach number M , may be defined as 
w 

M 
w = 

. 
R 
c 

that are to be considered: 

liquid 

liquid-bubble mixture 

gas within the bubble 

[ 19] 

where R iE the bubble wall velocity and C is any of the sound 

speeds that is important. If we again consider the Rayleigh bub

ble collapse, then R is given by 

R 3 

Since ( R; ) >> l 

From Equations [6] and [7a] 



HYDRONAUTICS, Incorporated 

·' 

. 
R = 

p 
2- 0 

3 p e 

R ~ -J ~ Po[~)3 
3 p 4Q 

0 
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For isothermal collapse 

[ 20] 

For adiabatic collapse 

During the analysis of experimental results, the effect of these 

physical parameters will have to be considered. 

E. Surface Tension Effects 

The surface tension effects may be scaled by the Weber num

ber, W , for the motion of bubble wall given by 
w 

F. Viscous Effects 

w 
w [ 21] 

Similarly if viscous effects were to become important in 

the bubble motions during growth and collapse, then th~ corres

ponding Reynolds number, R , for the bubble motion will be given 
w 

by 

R w = 

. 
R R 

m 
v 

where v is the kinematic viscosity of the liquid. 

[ 22] 
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EFFICIENCY OF CAVITATION DAMAGE 

As pointed out in the introduction, the efficiency of cavi

tation damage will depend upon tne various physical effects that 

control the maximum collapse pressure. The efficiency of cavi

tation damage may be defined as 

Id 
T1 -

I 
c 

From the previous discussion, 

Hence 

i s 
e 

h t 
Fa '11 = 

p 2 

0 

p-tC-t 

1 

(D t) 2 
g 
R 

m 

1 

pv (D t) 2 
g . 

-p J 
R 

0 m 

i s 
e 

t 
=: 

PC 
2 

ptCt 

liT 
' ' T 

B 

R ' w Flow Parameters) 

Parameters). M ;W ,R , Flow w w w 

[ 23] 

It would be interesting to see which non-dimensional param

eters in Equation [23] really influence the efficiency of cavi

tation damage for a typical experimeGtal apparatus. One of the 

most widely used equipments for studies on cavitation damage is 

tt1e magnetostriction vibratory apparatus, What follows is a 

discussion of the correlation of the experimental data obtained 

with this apparatus. 



HYDRONAUTICSJ Incorporated 

-21-

CORRELATION OF EXPERIMENTAL RESULTS OF VIBRATORY TESTS 

The basic idea in these experiments is to vibrate a test 

specimen in a given liquid contained in a beaker at a given 

amplitude and frequency (see Figure 7). These vibrations are 

produced in most cases by the magnetostriction oscillators. 

Since 1935 several authors (e.g. References 14 through 19) have 

conducted these tests for investigating the phenomenon of cavi

tation damage. The basic parameters involved in these tests are 

the beaker dimensionsJ the specimen dimensionsJ amplitude and 

frequency of vibrationsJ the physical and chemical properties of 

the material and liquid used. The present analysis is confined 

to relatively non-corrosive liquids and metals. Only physical 

mechanisms are assumed to play any role. 

When a cylindrical piston vibrates with its circular face 

inside the liquid as shown in Figure 7a the maximum pressure P 
0 

is given (Reference 20) by 

where 

u w s OJ 0 0 

s == s sin 
0 

s is the 

s is the 
0 

w is the 
0 

w tJ 
0 

p 
0 

amplitude of vibration at any time 

maximum amplitude of vibrationJ and 

angular frequency of vibration. 

[ 24] 

tJ 
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For a geometrically similar non-cavitating system, the maximum 

pressure depends upon the frequency parameter, ~' given by 

where a is the radius of the test specimen and At is the wave 

length of sound in the liquid. At this juncture, it is important 

* to recognize the following fact pointed out by Phillips. It is 

generally observed during experiments with the vibratory appara

tus that there is a rim of area (at the periphery of the eroded 

surface) which does not get eroded at all in soft aluminum (see 

Figure 7b). The thickness of the rim is indeed of the order of 

one-half wave length as pointed out by Phillips if we use a value 

of about 100 fps for the sound speed at 14000 cps oscillations. 

This magnitude of sound speed is typical for air-water mixtures. 

Here again the importance of the compressibility of the two phase 

mixtures is evident. If this were to be true, then the measure

ment of rim thickness would give the magnitude of sound speeds in 

cavitation bubble mixtures. For this case Equation [23] may be 

written as 

* 

iS 
e 

t 

=F[r g' ' R 
m 

6T J , T , M , W , R , ~ 
B w w w 

O.M. Phillips, personal discussion with the author. 

[25] 
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and 

r 
g 

pv/Po 

l 
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is the volume concentration of dissolved 
gas (damping due to gas content) 

is the relative vapor pressure 

(D t) 2 /R is the relative diffusion length 
g m 

b.T/TB 

M 
w 

w 
w 

R 
w 

is the relative-bubble-wall-temperature-in
crease during collapse (thermal effects) 

is the Mach number of the bubble wall motion 
(compressibility effects) 

is the Weber number of the bubble wall 
motion (surface tension effects) 

is the Reynolds number of the bubble wall 
motion (viscous effects) 

is the frequency parameter. 

The experimental results of several authors are shown in 

Figure 8 along with the range of variables involved in these tests. 

The rate of weight loss is plotted against temperature in the 

melting-boiling range for each liquid. All these experiments were 

conducted at atmospheric pressure except for one case in which 

Kerr and Leith (16) conducted experiments at 204 atmospheres ab

solute. The table attached to this figure gives all the avail

able information on the liquid~ material) amplitude) frequency 

and pressure used in these tests. These data provide substantial 

information to understand the relative importance of the various 

parameters contained in Equation [25]. The surface tensions of 

these liquids vary from 25 dynes/em (for aniline) to 75 dynes/em 

(for water)~ the viscosity from 0.3 centipoises to 10 centipoises~ 
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TLe sound speed from 1320 rr;eters/':Oec to H:iSO r:r.etersjsec and -r:he 

::le.nsi.+Jy frorr, 0.8 gmjcm3 
~.o l.O grr/crr?, T.~~e.;e data were ob·raired 

frorn the Tnt ernati ona l Cri.ti cal Tables and frorr' the Harcdb ook of 

Pnysi.cs and Chemistry. 

The efficier.cy as given :ir, Equat:ion [ 25] was calculated 

from these data and plotted against tne dissolved air content as 

showc in Figure 9. Tb.e rate of depth of erod oc was obtalLed 

from rar;e of weight loss divided by tne den:::ity of the .rnater·ial 

ar.d the area of specimen, The rate of erosion 1.::: ti.rre depender.t 

(1), (21), (22), Our e.xperimental data wer·e obtained in the 

steady state whereas all the other inve~tigators did not separate 

tne time effect. This is an obvious limitatior1. The erosioE 

s-cr·ength values for the metals have been attained from previously 

published results, In some cases as indicated in Figure 9, a~ 

equivalent erosioc strength has been used ~o take into account 

tne time effect. For water the dissolved air content was measured 

wi::r: the Van Slyke apparatus. r:rw dissolved air cocter.t decreases 

wi.tn testiEg time at a COLE'tar,t temperature ir the vibratory rests 

as st,own in Figuroe 10 ar;.d reacL~es a steaay value" TLe st-eady 

vall)e depends upon t:r.,e test -sernperatur·e as 2~.'.owr~. in ~'igure llo 

In Ftgure 10, the publisr1ed values of air contec: i.r water a: 

various temperatures are also st~owr. for cortparisoLo Tt~e ai:r• con~

ten~ for aniline, toluene and be~zere are given in I~rernational 

Cri·::ical 'Tables foro room temper"at.u.r'e, Tr~e a1r coc::enr_ wa2 as-

sumed to vary inversely as the tempePature ar~d wa-c calculated for 

ENery other temperaTure as srcown in Figure ll. 
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The rate of damage increases with temperature and then de

creases with increasing temperature as shown in Figure 8. The 

peak damage occurs around 50 to 70 percent of the boiling point. 

As shown in Figure 6J in this temperature range the relative 

bubble wall temperature_, 6T/TBJ seems to increase rapidly with 

the result that the vapor pressure also becomes important. All 

the data shown in Figure 9 are for the case when this effect is 

not important (i.e.J when the ambient temperature is below the 

temperature that produces the peak damage), Above this tempera

ture, the relative vapor pressure becomes the important corre

lating parameter as shown in Figure 12 in which the values of 

T!/'ll k are plotted against p /P for waterJ benzene) toluene 
pea v o 

and aniline. Aniline seems to behave differently as compared to 

the other three liquids. One possible explanation is that the 

viscosity of aniline is one order of magnitude higher than that 

for the other three liquids. Viscous damping seems to be impor

tant at higher temperatures when vapor pressure plays a dominant 

role. However at lower temperatures the viscosity seems to be 

unimportant as shown by the correlation in Figure 9. This is 

further supported by the experiments with solutions of non

Newtonian additives shown in Figure 13. Vibratory cavitation 

damage tests were conducted in solutions of sodium carboxy

methylcellulose, The concentrations of these additives were 

varied such that the viscosity of these solutions would vary ten

fold. No noticeable change in rate of damage were observed at 

room temperature. 
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Considering the fact that the results presented in Fig0re 9 

belong to a w1de variety of data colle~~~d by different autnors 

Ubing different experimental condit!ors, tne efficiency of darrage 

seems to depend primarily on dissolved gas content of tne llquiJ 

at :::emperatures well below the boiling poir,_t 0 Addltior;al infor

mation presented ir; Figure 12 seems to ina1cate tnat the relaGive 

vapor pressure is also importanc at r;ernperatures close to boiling 

point. rhe characteristic benavior of aniline indica~es the 

impor-r.·anc e of viscosity at higr.ter t ernpera turt=:.s o Add1 t.ioLa 1 qu es

tiors a;: to wnether the co'T!.press.ib:l.lity and surface tension ef

feu s ace lmportart or Lot remains t:o be verified by additional 

experimEnts since the range of values of surface tension and 

Eound speeds in tne preser~t case cor,si:iered are r~.ot wide enoug>- .. 

Purt~ermore, the gas conteLt in the liquids must be actually 

rr,ea:::ured wrli.le other proper1:'ies are accurately controlle(J" Herce 

furtner investigations to refine these correlations and to check 

tr1~ slgnifi.cance of compreesibtli.~y and surface tension effect~ 

are necessary. 

however the correla~ions shown in Pigures 9 and 12 already 

explain, a priori, a few of t~e sig~ificant experimental result~ 

that neeaed clarification; 

l, For example, the variation of damage intensity 

Wlth tne square of the amplitude of motior ((21) and (23)) can 

t,F explained as follows o T'r1e intercc-it,f f:,r"oulj be proportior:al 

'::O tne square of 'Lhe amplitude according to Equation [ 25] if aLl 

tr.E r.errru:: on ttle right hand 2ide of c:t..is equatiorc remai.n cor:s+ar,t 

arJ l.ndepende.r1t of the amplitude. 
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2. In hydrocarbon liquids such as benzene, toluene, 

aniline, etc., the intensity of damage is generally observed to 

be much lower as compared to water. This can be explained in 

terms of the higher solubility of air in hydrocarbon liquids. 

3. Wilson and Graham (18) observed that the rate of 

damage strongly depended on the value of ptCt (acoustic impedance 

of the liquid) and an explanation of this effect is obvious from 

the present analysis. The non-linearity in their correlation may 

be explained in terms of the variation in solubility of air in the 

various liquids they studied. 

4. Another interesting observation by Wilson and 

Graham (18) is that the rate of damage did not vary with viscosity 

over a wide range in their experiments with water and glycerene 

mixtures at room temperature. This confirms our own experiments 

with non-Newtonian additives shown in Figure 13. These results 

verify that viscous effects are not important at lower tempera

tures. 

5. The dependence of damage on temperature is gener

ally explained (see for example (17) and (19)) as follows. At 

lower temperatures the damage increases with temperature because 

the solubility of air decreases with temperature. However at 

higher temperatures the vapor pressure becomes important in 

dampening the collapse of bubbles. These explanations are quanti

tatively demonstrated in Figures 9 and 12, 
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:f we neglect tne compresslbili~y ana s~rface tensio~ ef

fects, we may rewrice Equa+:ioc [ 23] as 

i 5 
e 

t 

p d 

0 

pv 
p 

0 

F w , Flow Parameters ) 

Whe~ vapor pressure is not important 

l 8 
e 

t 
T) =-

p z 
0 

,. 0 
t-' ' \ .. .-' - {, {, 

H'iJRODYNAlVL::C CA\!::.TAriON UAIVJ.AJ-E 

[ 2E;] 

Now tr:e question is how to make ~se of tte correlat1Dn2 ob-

~a10eri for the vibratory ~es~s to derive si~:lar relations~1p~ 

governl:1g T,Le efficiency of cavl tation oarr,age i.r: actua.L Lyd: o

cJyrarnic flew systems, Eq_uation [27] rr_ay ce rewrltten for u.:s 

caEe aE 

T) = 

i s 
e 

l 

p 2 
0 

f-e, c:t 

=.., (r ~ o ~ :R g e 

o :is tne ca-;rita T ior:: pa:cameter arci 

f<; 1::: t..-'"" ReyLolds number of +L:'j f.low" 
p 
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However the magnitude of the characteristic pressure field P 
0 

that forces the bubble to collapse is not readily known. Let us 

consider a practical example shown in Figure l where cavitation 

damage is produced in the wake of a circular cylinder. The 

Reynolds number and cavitation parameter will be given by 

V D 
CXl 

R = e \J 

and 

0 = 

The turbulent pressure field would be given by 

[ 29] 

Similarly the stagnation pressure also will be given by 

P ~ l.r-V 2 
0 2~ CXl 

stagnation 
[ 30] 

where 

v is the free stream velocity 
CXl 

Poo is the free stream pressure 

u' is the mean turbulent velocity fluctuation, and 

D is -che diameter of the cylindero 
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If either of the above two relationships were to be true~ the 

intensity of darrage should vary as the fourth power of trje free 

stream velocity (see Figurel4), Howevery KLJ.app (24) found tnat 

the intensity of damage varied as t~e 6th power of the free 

stream velocity. T~e value of the exponent is known to vary 

from S to 7 according to Kerr and RosenOerg ( 2:3). Thiruvengadam 

(26) found that tr1.e exponent varied from 4,.5 to 8,5 a-r a ~~ons~ar:.t 

value of the cavi~ation parameter depending upon the cavitating 

body. 

Tr-:ese consider"ations lead us to conclude that an entirely 

different approach may be needed to explain the high power 

dependency on velocity. Lightnill (27 1 28) analyzed the mecn

ani sm of conversion of energy from kineti.c ener·gy of fluctuating 

snearing motions (Reynolds stresses) into the acoustic energy of 

fluc~uating longitudinal motions and derived the following equa

tion from dimensional analysis: 

[ 31] 

where I is the acoustic intensity radiated by the turtulent 
a 

eddies acting as quadrupole sources" If we assume r~r-"at the 

cavitation bubbles get entrained by these eddies. then tne eddies 

would correspond to oscillators driving the bubbles to collapse 

(Figure 14). Then just as in vibratory tests the efficiency of 

damage may be written as 
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i. s 
e 

t 

where M is the Mach number of the flow, There are no systemati.c 

experimental data available to check the validity of the above 

relationships, 

Furthermore cavitation damage also depends strongly on the 

value of the cavitation parameter at a given velocity (29~ 26). 

Intensity of damage is maximum for a specific 0 value at any 

given velocity. These considerations indicate that two sets of 

curves are necessary in order to predict a model prototype rela

tionship as shown in Figure 15. The proposed method of model 

testing needs verification. 

CONCLUSIONS 

The following conclusions may be drawn from the previous 

analyses: 

l, The ictensity of bubble collapse is defi~ed as the 

power radia.ted per urd t surface ar·ea of tne bubble. It is given 

by the square of the collapse pressure divided by the acoustic 

impedance of the liquid. 

2. The efficiency of damage is defined as the ratio 

of the intensity of cavitation damage to the intensity of bubble 

collapse. 
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3. In the vibratory tests, the efficiency of damage 

is primarily controlled by the isothermal damping of the dis

solved non-condensible gases at lower ambient temperature of 

the liquid. At higher temperatures closer to the boiling point, 

the vapor of the liquid itself plays an important role" This is 

because the relative bubble wall temperatures increase rapidly 

at these temperatures. 

4. When the vapor pressure is important, the viscosity 

of the fluid also seems to be important as shown by the behavior 

of aniline. 

5. Within the range of tests, the efficiency of dam

age seems to be independent of the surface tension of the liquid. 

6. The above results of the vibratory tests have been 

extrapolated to propose a modeling technique to predict the in

tensity of cavitation damage in actual hydrodynamic systems, 

The proposed modeling technique needs experimental verification. 
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KNOWN SCALING PARAMETERS 

I. CAVITATION PARAMETER, 

p- p 
(] =--v 

~p v2 

2. REYNOLDS NUMBER = VD v 

UNKNOWN SCALING 
PARAMETERS 

THEY SHOULD CONSIST OF: 

MATERIAL PARAMETERS 
LIQUID PARAMETERS 
BUBBLE PARAMETERS 

FIGURE 1 - PARAMETERS INVOLVED 11'-J MODELING CAVITATION DAMAGE 
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