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Ia Accoustic intensity

IC Irtensity of collapse

Id Intersivy of damage

pC Bubblile collapse pressure

Denzity of 1liquid

C& sound spe=d 1n liguid

Cm Sound speed in liquid-vapor bubble mixture
PO Refererce pressure at infinity

Rm Maximum radiue of bubble

Rf Final ccollapge radius of bubble

QO Partial pressure of gag 1nside the bubble at

The beginning cf collapse

k kRatio of specific heats for the permanent gas
ingide the bubble

3 Specllic heat per unit mass of liguid
& SNy Ty s e - iy 1 ) -
S Specilic neat per unit mass of gas

1
A, = (Dt )? 1Irermai diffusion layer in tne liguid

D Thermal diffusivity
£ Tim= of coliapze

¢
£ lercivy of gasg

0% sarrtacs vengion of the llquid
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kadius of the nucleus of thne bubble
Vvapor pressure of the liquid
Partial pressure of gas Ingide the nucleus

Number of moles of the gas
Perfect gas law constant

Ambient temperature

Mazgs of 1liquid evaporated

Jengity of the vapor

Mags of gas inside the bubble

Magg concentration of the gas 1in liguid
Volume concentration of gas in 1iquid
Molecular weight of vapor

Molecular weight of gas

Diffusivity of gas in liquid

Heat of vaporization for the entire bubble
Latent nheat of vaporization

Temperature difference between the bubble and
the liquid

Belling point in the 1liguid

Velocity of 1llquid adjacent toe the interface

Vvelocity of the vapor adjacent to the interface
ol

.
L

I'r'e velocity of the interface; i.e., bubble wall
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Bubble wall Mach number
Macr number with respect To sound
Macn number with respect to sound

sound speed 1In gas
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speed in liguid
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Radiuz of the specimen

Wave length 1rn liquid

keferernce veloclity in the free stream for flow

experiments
Mach number of the flow

Reyricidg number of the flow

Cavitarion parameter

Coefficziert of compressibility of

liquid
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SUMMARY

Similar to tne detfirition of tre 1ntensity of crvitntion
damage, the intensity of cavitation bubble coll pse 1&g defined
as the power tronsmitted per unit csurfoce area of the budble
wnhen the collapse prescure ic o maximum., Trie intensity of
collapse 1s given by trhe sguare of Tre maximum collapse pres-
sure divided by tne scoustic impedonce (p&Cé) of the liguid.
Various physical effects sucn as inertial effects, domplng due
to non-condensible gases, thermal 2ffects, compressibility ef-
fects, surface tension effects ani viscoug effects on the maxi-
mum collapse pressure are consliiered, Tre eftficlency of damage
given by tre intensity of damage divided by the intensity of
collapse is snown to deperd princilpally on Ttrne disszolved gas
content of the liguid (using tre data obtained from the vibra-
tory cavitation damage apparatus)., L 18 alsc srown thnat the
vapor 1tself migrt act as a damper near tolling point since the
bubble wall temperatures increase rapilly at trese temperniures.
When tne vapor pressure becomes imgortart, viscoglty also seemg
to affect tre efficiency of damage as evidenced vy the vehavior
of aniline. Tne efficlency of Jamage lg 1naependent of the sur-

face tensgion of -~ . liquia wivtrirn tne range cf tests.

Trne above rescults from tre vicrastory experliments -re used
to propose a modellrg tecrrizue To predict ttie r»te of depth of
erosion in actual operating nyarodyrnsmic systers, Cne of tre
primary questions 1O te arswere’ 15 “hs 71aganliuie of tne preg-

sure fleld th-t drives tre tuttcle Lo collapse. The zependence
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of this pressure field on other hydrodynamic scaling parameters
such as Reynolds number, Mach number and the cavitation parameter

will decide the success of the proposed model technique.
INTRODUCTION

At the present state of knowledge it is possible to predict
from model tests the various hydrodynamic forces such as drag,
1ift, thrust, etc. ©Similarly it would be highly desirable to
predict the intensity of cavitation damage in prototypes by con-
ducting model tests in the laboratory. As of now 1t is not pos-
sible to achleve this objective because there are no scaling
laws that relate the model-prototype behavior. It is the pur-
pose of this report to formulate such scaling laws and to dis-

cuss the physical phenomena that are scaled by these laws.,

Figure 1 shows the flow behind a circular cylinder and the
known and unknown parameters controlling cavitation damage. The
geometrical and kinematic similarities of the overall cavity
flow are controlled by the cavitation parameter and the Reynolds
number., However the modeling of the phenomenon of cavitation
damage requires that the energy of collapse of individual bub-
bles, the transmission of the energy to the material surface and
the absorption of the energy by the material in its deformation
and fracture be scaled also. Hence the problem is to define the
above phases of energy transmission and absorption quantitatively
and to determine the pérameters that control the efficilency of
this process, Figure 2. The intensity of material damage is

defined in References 1 and 2 ag
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1 Se
I, = — (1]
where
i i1s the depth of erosion,
€ is the time of erosion, and
S 1s the erosion strength.

e

The erosion strength 1s defined as the energy absorbing capaclty
of the material per unlt volume under the actlion of the erosive
forces (3). If a similar definition for the intensity of bubble
collapse can be derived, then the efficiency of this process

would be gilven by

H{ H
o]

2]

@]

where IC is the intensity of bubble collapse. As of now, such a
definition for the intensity of bubble collapse does not exist.
One of the accomplishments of this report is such a definition
which leads to logilcal scaling laws for the proposed technique

of modeling cavitation damage.
INTENSITY OF BUBBLE COLLAPSE

it 1s assumed in this report that the collapse pressure
emanating from an individual transient cavitation bubble causes
the eroslon. When a spherical bubble collapses with a bubble

wall velocity UB’ the collapse pressure as derived by Rayleigh
(L) is:
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2
I/C“

~ 3
{ - r/ .
B, L5

wnere
D is the maximum collapse pressure,

p% is the coefficient of compressibility or tulk
medulus of liquid,

0, 1g the density of 1liguid, ard
8! is Thne bubble wall velociiy.

t

o]
|
o)
o
(@]
o
c
—
L)
[

wnere o 25 the sound speed in liguid,

The Comprezzitinlity of tne liguild b, would be greatly

<

S

o))
]

2

Juwied dug Lo Tne presence of cavitatior tubbles. Tor Thls reason,

fres wound sgead of bne liquid-vapor butble mixuiure, C . would

e actual sound gpeec used for compuiing
""" e should te C , FEowever, very 1ittie is

q

wnOowWs about the values or ”q in cavitation ~clcuds. Until nmore

g knowe about C , the sound speed i1n iiguld C, will be used for
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computations., If we define the intensity of collapse as the

radiated power per unit surface area of the bubble, then

Collapse power transmitted
Surface area of bubble

Intensity of collapse

I

) a8
. pCMWR P

LyrR?

chB

Il

Making use of Equation [3) we get

2

pC
I, = =% ) fu]
C Py

it is interesting to note that the intensity of bubble collapse
i1e similar to the intensity of acoustic power radiated from a
simple source (Figure 3). The dimensions of 1‘c are the same as

1y whichk are in power per unit area.

The above discussion shows that the intensity of collapse
varies as the square of the maximum collapse pressure in a
given liquid. Hence, it is important to consider the various

physical effects that confrol this maximum collapse pressure.
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THE MAXIMUM COLLAPSE PRESSURE

The maximum collapse pressure depends upon the shape of
the bubble and the distance at which the bubble collapses.
Furthermore, the growth and the collapse of the bubbles depend

upon the following physical phenomena (5), (6):

ITnhertial effects

Damping effects

A.
B
C. Thermal effects
D Compressibility effects
E Surface tension effects
F

Viscous effects.

Ir order to qQuantitatively evaluate the relative influence of
tnese effects on the maximum collapse pressure, we will assume
that the Besant-Rayleigh bubble collapse (5) causes the damage.
(It is recognized that the Eisenberg bubble collapse (7), (8),
may also be Important. Hence, calculations for this case will

be useful.)

A, Inertial BEffects

Rayleigh (4) calculated the maximum collapse pressure for
a sprrerical bubble collapsing in an infinite liquid; it is

giver by

av)
]
=y
=]
©

5]

ks
(@]
|
oy
W
\nl
=v)|
)
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where
PO is the pressure at infinity,
R 1s the maximum bubble radius at the
m
start of collapse,
and Rf 1s the final bubble radius at the end of

collapse .

This maximum collapse pressure occurs at a distance of 1.587 Rf

from the center of collapse (4).

B. DPamping Effects

Now the final radius to whlch the bubble collapses depends
upon the amount of non-condensible gas present at the start of
the collapse and on whether the gas is compressed isothermally
or adiabatically. Assuming l1sothermal compression of the
permanent gas inside the bubble, Rayleigh (4) derives the fol-
lowing relationship between the final collapse radius and the

initial gas content, QO

R R
f f
PO 1 - R + QO loge Fl = 0
m m
R a
-—f- << 1
R
m
3
€ Rm QO
P
R \® 2
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Assuming adiatatic compression, Noltingk and Nepperas (9) de-

rive the following relationship:

a
‘m .
R

f e}

L7]

-1 2
P \k -1

where k is The ratio of specific heats for the permanent gas in-
cide the bubble., The value of k for air i1s 4/3. If the gas is

alr. then for adiabatic compression,

Rm ° Po °
= = | 7= . [7a]
Rf MQO
Hernice
. o
O QO
D = z e (8]
¢ ‘isothermal 6.35 5
Po Po °
p = = T [g]
¢ Iadiabatic 6.35 4Qo )

Fgquations L8] and [9] are graphically shown in Figure 4. It is
clear thiat The maximum collapse pressure and hence the intensity
cf' ccllapse depends on whether the bubble collapse 1s isothermal
or adilabatic. The Plesset-Hsieh criterion (5), (10) for the

collapsze of bubbleg is as follows:
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p,S,A
Isothermal if —2%ss [10]
p SR
g gm
£,S,A
Adiabatic — 1f < rtec [11)
p_S R
gegm
where
p 1s the density,
S 1s the specific heat per unit mass , and

A is the thermal diffusion length .

and subscripts 4 and g stand for liquid and gas respectively.
Physically speaking, the above criteria give the relationship be-
tween the heat capacity of the gas inside the bubble and the heagt
that can be conducted away 1n the thermal diffusion layer of the
liquid., 1If the latter is very large compared to the former, the
temperature within the bubble remains constant. If it is very
small then the temperature of the gas inside the bubble will rise.
This criterion is shown in Figure 5 for various test ligquids. The
trhermodynamic data were obtained from Reference 11 and the darta
for argon was obtained from Reference 12. At 20 kcs frequency,
bubbles of maximum radii of a millimeter or less will be under
isothermal compression while collapsing, for all the liquids
srown in Figure 5. For larger bubble sizes, the collapse would
become adiabatic. TFor this reason, the model-prototype correla-
tion chould take into account the Plesset-Hsieh criteria. How-
ever as seen in Figure 4, adiabatic collapse produces much less
pressures and may not be important as far as cavitation damage

is concerned,
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Gag content of the bubble - The partial pressure of the

gags inglde the bubble at 1ts maximum radius, QO (in Eguations [8]
ard L9]) corgist of three components:
1. The gas content at the beginning of the bubble
growth, 1.e., the gas inside the equilibrium

nucleus of radius Rno

2. The gas dissolved in the evaporated 1ligquid during
growth.

3. The gas that diffuses into the bubble from the
surrounding liquid during growth.

Herice the partial pressure at the start of the collapse, QO, will

be the gum total of the three components stated above.

Q =@ + Q& + Q [12]

O

1. Estimation of @ : The equation of static equilib-

rium Tor spherical bubbles is glven by

2
P+—l= +
o] R pv pg
n
where

PO 1s the pressure in the surrounding liguid,
Rn ig the equilibrium radiug of the nucleus,
2% is the surface tension of the liquid,
p, 1s tne vapor pressure of the liquid, and
P is the partial pressure of the gas.
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Hence

Assuming the gas inside the nucleus to be a perfect gas,

L a
- - 9
e 3 TR Ny Ta

where
Ny is the number of moles of the gas ,

is the perfect gas law constant , and

Ta is the absolute ambient temperature .
4 3
p_ = TR
N1=g3 n
BT
a

2Y _ |2y R
PO + Ry, P, 3 T Rn
0T
a

The partlal pressure, @, exerted by these molecules when the

nucleus grows to a maximum radius, Rm, is given by

4 a
Ql 3— WRm = NleTa

131
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2, Fstimation of @ : The mass of liquid evaporated

during growth, ig equal to the mass of vapor in the bubble and

is given by

L m v
where
my ig the mass of liquid evapcrated
Py is the density of vapor inside tThe bubble

Thie mass of gas which was originally digsolved in thig masg of

liguid before evaporation is

where ag is the mass fraction of gas dissolved in the liquid.

The numpber of moles of gas 1n this mass is given by

where Mg ig the mclecular weight of gas. Similarly the number of

moles of wvapor Nv 1s given by

whiere Mv is the molecular weight of vapor.
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Assuming the perfect gas law to be valid both for gas and vapor

Qs %WRa

il
&
@
ml—]

where

Qg is the partial pressure of the gas exerted by
Ny gas molecules

P, is the vapor pressure inside the bubble
L _ N _ M_V
p, N, g m,
Mv
= = 4
Qa pvagMg (14]

3. Estimation of Q: While the bubble grows from an

equilibrium nucleus to a maximum radius Rm, the gas dissolved in
The liquid with a partial pressure of PO will diffuse into the
bubble from a gas diffusion layer surrounding the bubble and is

given by Bebchuck (13) as
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1
(D t)?
@ =a p —HB L 15]
g o
R
m
wr.ere
G i3 the concentration of the dissolved gas,
£
Dg i1s the diffusivity of the gas,
T ig the diffusion time, and

1
(Dgt)2 is the gas diffusion layer thickness.

Now the partial pressure of the gag inside the bubble at

thie beginning of collapse 1s given by Equation [12] which becomes

Q = & + G + @
2y Rn ° MV
o TR TR LR ] TPy g W
n m g
A4
(D v)?
fPa —E—
& m
3 V3
A . -
P P E P R P g WM g R
c on o] m o) g m

Since <Br/Rm> is usually small compared to unity, fthe first term

on tr.e right rand <ide of the above equation is negligible com-

pared To the other two terms. Then
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(0_t)?

Q © M Dt .

o §X~a MX-+ a ——%——— [16]

P_ o &M, g -

At remperatures much lower than the boiling point of the liquid,

the vapor pressure 1s small. Hence

v
—_—< <
P 1
o)
Mv
Mo is of the order of 1
g

1
If we assume that the gas diffusion layer, (Dgt)g, is of the

same order of magnitude as Rm, then the Equation [16] may be

written as follows:

1
Q (D t)®
g —E (17]
P g R

o) m

However at temperatures close to the boiling point of the liquid,
Tthe vapor 1tself might act as a damper since the vapor may not
fully condense during collapse. This effect will be discussed

next.

C. Thermal Effects

The next important aspect that controls the collapse of
vapor bubbles is the heat ocutflow during collapse. The heat of

condensation is given in (5) as
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where

pv is the density of vapor, and

L is the latent heat of vaporization.

1
Trig reat flows into the thermal diffusion layer of thickness (Dt)2

where D 1s the thermal diffusivity and t is the time of collapse.

The nheat balance 1s given by

4 3 3
= = UqR 2 2 A
3 TR e, L TR _* (Dt) Py Sy AT
R Lop
ap = 27
2
3(Dt) S,Py
R L p
A.
T [18]
B 3(Dt) 8,0, T
where
AT is temperature difference between the liguid
and the wvapor,
TB ig the boiling point of the liquid at
atmospheric pressure, and
SL 1s the specific heat of 1liquid per unit mass.

Assuming a millimeter for Rm and 20 W seconds for growth or

collapse time in various liquids tested Figure © shows that the
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relative temperature difference increases sharply at temperatures

closer to the boiling points of the liguids. Thermodynamic data

are obtained from References 11 and 12,

Furthermore Plesset (5) has shown that

P '
v=R|1--=2[1-%
Py R
where
. dR . 4 .
R = It is the velocity of the bubble wall, i.e.,
" the interface
v is the velocity of the liguid adjacent to
the interface, and
v is the velocity of the vapor adjacent to

the interface,

since pv/p& ig very small, it is evidenw® that v 1s very nearly

equal to R for most practical cases,

Felative importance of dissolved gas content and vapor pres-

sure - From the above discussion, it 1s clear that when AT/TB

ig small, the damping is entirely due to the dissolved gag cor-
vent in the liquid. When AT/TB is increasing with ambient ifemper-
ature, the vapor itself may act as a damper. At these tempera-

tures the vapor pressure of the liguids become important.

D. Compressibility Effects

According to the Rayleigh bubble collapse mechanism, the
kiretlc energy of bubble collapse is stored in the bulk compress-

icility of the liquid and transmitted back to the material in the
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form of a short range shock. 1In order to investigate the compress-
ibility effects, we need the Mach number of the bubble collapse.

However, there are three sound speeds that are to be considered:

1. Tne sound speed in the liquid
2. The sound speed in the liguid-bubble mixture

3. The gound speed in the gas within the bubble

The Mach number MW’ may be defined as

[ 19]

wnere R 1s the bubble wall velocity and C is any of the sound
gpeeds that 1s Important. If we again consider the Rayleigh bub-

ble collapse, then R 1s given by
o _V/ RN
-V 2e(2] s
F
E 3
Since‘ EE’) >> 1
f

Y

From FEquations [ 6] and L7al

W

g

wiln

2
P
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\
For isothermal collapse

? [ 20]
For adiebatic collapse

During the analysis of experimental results, the effect of these

physical parameters will have to be considered.

E., Surface Tension Effects

The surface tension effects may be scaled by the Weber num-

ber, ww, for the motion of bubble wall given by

p&(é)QRm
W = ————
y o [21]

F. Viscous Effects

Similarly if viscous effects were to become important in
the bubble motions during growth and collapse, then the corres-
ponding Reynolds number, RW, for the bubble motion will be given

by

R = [ 22]

where v 1s the kinematic viscosity of the liquid.
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FFFICIENCY OF CAVITATION DAMAGE

As pointed out in the introduction, the efficiency of cavi-
tation damage will depend upon the various physical effects that
control the maximum collapse pressure. The efficiency of cavi-

tation damage may be defined as

, e
S S
IC pcz
Pl
From the prevlious dilscussion,
3
P, P, (Dgt) AT
= ol T T o Mw’ WWJ RW, Flow Parameters
o) & 0 m B
Hence
i Se 1
T P, (D 8)% g
n = =P | T , T R ijWW,Rw, Flow Parameters
POE & 0 m B
P2y

[ 23]

It would be interesting to see which non-dimensional param-
eters in Equation [ 23] really influence the efficiency of cavi-
tatlion damage for a typlcal experimental apparatus. One of the
most widely used equipments for studles on cavitatlion damage 1s
the magnetostriction vibratory apparatus. What follows is a
discussion of the correlation of the experimental data obtained

with this apparatus.
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CORRELATION OF EXPERIMENTAL RESULTS OF VIBRATORY TESTS

The basic idea in these experiments 1s to vibrate a test
specimen 1n a given 1liquid contained in a beaker at a given
amplitude and frequency (see Figure 7). These vibrations are
produced in most cases by the magnetostriction oscillators.
Since 1935 several authors (e.g. References 14 through 19) have
conducted these tests for investigating the phenomenon of cavi-
tation damage. The basic parameters involved in these tests are
the beaker dimensions, the specimen dimensions, amplitude and
frequency of vibrations, the physical and chemical properties of
the material and liquid used. The present analysis 1s confined
to relatively non-corrosive liquids and metals. Only physical

mechanisms are assumed to play any role.

When a cylindrical piston vibrates with its circular face
inside the llquid as shown in Figure Ta the maxlmum pressure PO

is given (Reference 20) by

Poo= p,CoU, (24]
where

U:wgJ

o) 0”0
€ =28 sin uw t,

o o
g is the amplitude of vibration at any time t,
‘ 50 is the maximum amplitude of vibration, and

W is the angular frequency of vibration.

*-—~—-—~———-—-—-a;__*;__EL___;___;__ﬁ_‘_*;___;___;___;__ﬁ;__*;___;___;_-—¥_-—;—
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For a geometrically similar ncon-cavitating system, the maximum

pressure depends upon the frequency parameter, p, given by

. _2m
Wy

where a is the radius of the test specimen and %z is the wave
length of sound in the liquid. At this Jjuncture, it is important
to recognize the following fact pointed out by Phillips.* It 1s
generally observed during experiments with the vibratory appara-
tus that there is a rim of area (at the periphery of the eroded
surface) which does not get eroded at all in soft aluminum (see
Figure 7b). The thickness of the rim is indeed of the order of
one~-half wave length as pointed out by Phillips 1if we use a value
of about 100 fps for the sound speed at 14000 cps oscillations.
This magnitude of sound speed 1s typical for alr-water mixtures.
Here agaln the importance of the compressibility of the two phase
mixtures is evident. If this were to be true, then the measure-
ment of rim thickness would give the magnitude of sound speeds 1in
cavitation bubble mixtures. For this case Equation [23] may be

written as

iS
_€
t
n = 2
PzCzUo
(0._t)?
D D t
_ v 8 AT
- F Fg) P s R s T B} MW’ wa RW’ }.L [25]
o) m B .

O.M. Phillips, personal discussion with the author.

" OM. Pnillips, personal discussion with the author.
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where
r is the volume concentration of dissolved
& gas (damping due to gas content)
pv/Po is the relative vapor pressure
1
(Dgt)2/Rm is the relative diffusion length
AT/TB is the relative-bubble-wall-temperature-in-
crease during collapse (thermal effects)
MW is the Mach number of the bubble wall motilon
(compressibility effects)
WW is the Weber number of the bubble wall
motion (surface tension effects)
Rw is the Reynolds number of the bubble wall
motion (viscous effects)
and M 1s the frequency parameter.

The experimental results of several authors are shown in
Figure 8 along with the range of varilables involved in these tests.
The rate of weight loss is plotted against temperature in the
melting-boiling range for each liquid. All these experiments were
conducted at atmospheric pressure except for one case 1n which
Kerr and Leith (16) conducted experiments at 2.4 atmospheres ab-
solute. The table attached to this figure gives all the avail-
able information on the liquid, material, amplltude, frequency
and pressure used in these tests. These data provide substantial
information to understand the relative importance of the various
parameters contained in Equation {25]. The surface tensions of
these ligquids vary from 25 dynes/cm (for aniline) to 75 dynes/cm

(for water), the viscosity from 0.3 centipoises to 10 centipoises,

e



HYDRONAUTICS. Incorporated

2l

tre sound speed from 1320 meters/sec to 1630 meters/sec and the
density from 0.8 gm/cm® to 1.0 gr/em®. Trese data were obraired
from the Internationai Critical Tables ard from the Hardtook of

Prnysics and Cremistry.

Tre efficiency as given in Equation [25] was calculated
from threse data and plotted against the dissolved air content as
shhowr. 1n Figure 9. The rate of depth of erogior. was obtair.ed
from rate of welght loss divided by fthe density of the material
and the area of specimen. The rate of erosion is timre dependenrt
(1), (21), (22). Our experimental data were obtained in the
steady state whereas all the other investigators did not geparate
the time effect. This is an obvicus limitation, The erosion
strength valuegs for the metals have been ottained from previougly
published results. In some cases as indicated 1in Figure 9, an
eguivalent erosior. strength has beern used To take into accournt
trie time effect. TFor water the dlssolved alr content wag measured
with the Van Slyke apparatus. The digsolved alr conter.t decreages
witn testing time at a congtant temperature 1ir the vibratory tests
as shown i Figure 10 and reaches a steady value, The steady
value depends upon the Test temperature as shown 1n Figure 11.
I Figure 10, the published values of air contert ir. water ar-
varioug temperatures are also showr for comparisor., The aip con-
tent for aniline, toluene and benzere are given 1in Irrernatioral
Critical Tables for room temperatursz, Tre alr corTent wag as-
sumed tOo vary inversely as the temperature and wag calculated for

every other temperature as shewn in Figure 11.
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The rate of damage increases with temperature and then de-
creases with increasing temperature as shown in Figure 8. The
peak damage occurs around 50 to 70 percent of the bollling point.
As shown 1n Figure 6, in this temperature range the relative
bubble wall temperature, AT/TB, seems to increase rapidly with
the result that the vapor pressure also becomes important. All
the data shown in Figure 9 are for the case when this effect is
not important (i.e., when the ambient temperature is below the
temperature that produces the peak damage). Above this tempera-
ture, the relative vapor pressure becomes the important corre-
lating parameter as shown in Figure 12 in which the values of
n/ﬂpeak

and aniline. Aniline seems to behave differently as compared to

are plotted against pV/PO for water, benzene, toluene

the other three ligquids. One posslible explanation is that the
viscosity of aniline is one order of magnitude higher than that
for the other three ligulds. Viscous damping seems to be impor-
tant at higher ftemperatures when vapor pressure plays a dominant
role. However at lower temperatures the viscosity seems to be
unimportant as shown by the correlation in Figure 9. This is
further supported by the experiments with solutions of non-
Newtonian additives shown in Figure 13. Vibratory cavitation
damage tests were conducted in solutions of sodium carboxy -
methylcellulose. The concentrations of these additives were
varied such that the vigcosity of these solutions would vary ten-
fold, No noticeable change in rate of damage were observed at

room temperature.
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Congidering the fact that the recgults presgenfted in Figure 9
telong to a wide variety of data colle.”ed by different autnors
uslng different experimental conditiors, the efficiency of aamage
geems to deperd primarily on dissolved gas content of the 1iquid
at vemperatures well below the boiling pcint. Additional infor-
marion pregented in Figure 12 seems to 1naicate that the relative
vapor pressure is also Imporrtant at temperatures close to boiling
pcint. The characteristic behavior of aniline indicates the
importance of viscosglity at higher temperatures. Additioral ques-
tiorsg az 1o wnether the compressiivility arnd surface tension ef-
fecrs are Importart or rot remaing To be verified by additioral
experiments since the range of values of surface tengion and
sound speedg 1In the present case corsidered are r.ot wide enough.
Furtrermore, the gas contert in the liquids must be actually
measured whille other propertiesg are accurately controlleda. Herce
further Investigations to refine theege correlartions and to check
Tne significance of compreseibilizy and surface tension effects

are necesgary.

However the correlations ghown in Figures 9 and 12 already
explain, a priori, a few of trhe gigrnificant experimerntal resulfc
that rieeded clarification,

1., For example, the variation of damage intensity
with tre square of the amplitude of motior ((21) and (23)) carn
ke explained as follows. The 1nternsity snould be proportional
o tne square of the amplitude according to Bquation [2%] if atl
tr.e termg on the right hand gide of thig equation remain consgtart

ard indeperdenit of the amplitude.

Ll e e e -
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2. In hydrocarbon 1liquids such as benzene, toluene,
aniline, etc., the intensity of damage 1s generally observed to
be much lower as compared to water. This can be explained in

terms of the higher solubllity of air in hydrocarbon llgulds.

3. Wilson and Graham (18) observed that the rate of
damage strongly depended on the value of pLC& (acoustic impedance
of the 1liguid) and an explanation of this effect is obvious from
the present analysis. The non-linearity in their correlation may
be explalined in terms of the variation in solubility of air in the

various liquids they studied.

4., Another interesting observation by Wilson and
Graham (18) is that the rate of damage did not vary wilth viscosity
over a wide range in thelr experiments with water and glycerene
mixtures at room temperature. This confirms our own experiments
with non-Newtonian additives shown in Figure 13. These results
verify that viscous effects are not important at lower tempera-

tures.

5. The dependence of damage on temperature is gener-
ally explalned (see for example (17) and (19)) as follows. At
lower temperatures the damage increases with temperature because
the solubllity of alr decreases with temperature. However at
higher temperatures the vapor pressure becomes lmportant in
dampening the collapse of bubbles. These explanations are guanti-

tatively demonstrated in Figures 9 and 12,

——
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I we neglect the compressibllity ana surface tenslon ef-

9

i
Pectyg, we may rewrite Fquatior [ 23] as

k, » Flow Parameters [ 26]

Wrern vapor pressure 1s not important

[}
N

=]
(WY

nN=——=F~F Tg, Flow Parameters

HYDRCDYNAMTC CAVITATION DAMAGE

Now tre guestion ig how tTo make use of the correlaticne ob-
raired for tre vibratory tegts to derive gsimilar relationztips
goverrilng the e¢fficiency of cavitation aamage i actuali tydro-

dyramic tlcew syvetemeg. Eguation [2?] may te rewritten for this

cage acg

3
1l
Il
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-
"
Q
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—
[}
A
f\j‘\
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o) 1g The cavitatior parameter ard

Ep i1g tne Reyrclds rumber of *r2 fliow,
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However the magnitude of the characteristic pressure fileld PO

that forces the bubble to collapse is not readily known.

Let us

consider a practical example shown in Figure 1 where cavitation

damage 1s produced 1in the wake

Reynolds number and cavitation

and

The turbulent pressure field

of a circular cylinder. The

parameter will be given by

would be given by

P ~ 3p, u'® = dp V32
° turbulent L L= L2g]
Similarly the stagnation pressure also will be given by
P, ~ 3cV 2 [30]
stagnation
where
Vg is the free stream velocity
P is the free stream pressure
u'  is the mean turbulent velocity fluctuation, and
D is the diameter of the cylinder.
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1T elther of the above two relationships were to be true, the
intensity of damage should vary as the fourth power of trne free
stream velocity (see Figureil). However, Knapp (24) found that
the intensity of damage varied as the 6th power of the free
stream velocity., Tre value of the exponert is known to vary

from 5 to 7 according to Kerr and Rosenverg (25). Thiruvengadam
(26) found that the exponent varied from 4.5 to 8.5 at a constant
value of fthe cavivation parameter deperding upon the cavitvating

body .

Trece congiderations lead us to conclude that an entirely
different approach may be needed to explain tThe high power
dependency con velocity. Lightnill (27, 28) arnalyzed the mech-
anism of conversion of energy from kinetic energy of fluctuating
snearing motiocns {Reynolds stresses) into the acoustic energy of
fluctuating longitudinal motions and derived the following egua-

tion from dimensional analysis:
. < 2 r
Ia PLCLV¥ — (31]

where Ia ig the acoustic intensity radiated by the turbtulent
eddieg acting as quadrupole sources. If we assume That the
cavitation bubbles get entrained by thesge eddies. then the eddies
would corresporid to oscillators driving tne bubbies to collapse
(Figure 14). Then just as in vibratory tests the efficiency of

damage may be written acg
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n = ——— [32]

where M 1s the Mach rumber of the flow. There are no gystematic
experimental data availlatle to check the validity of the above

relationships.,

Furthermore cavitation damage alsc dependg strongly on the
value of the cavitation parameter at a given velocity (29, 26).
Intensity of damage is maximum for a gpecific ¢ value at any
given velocity. These considerations indicate that two sets of
curves are necessary 1n order to predict a model prototype rela-
tionship as shown 1in Figure 15. The proposed method of model

testing needs verification.
CONCILUSIONS

The following conclusiong may be drawn from the previous

analyses:

1. The 1irtensity of butlble collapse ig defired as the
power radilated per unit surface area of the bubble. It 1s given
by the square of the collapse pressure divided by the acoustic

impedance of the liquid.

2., The efficiency of damage iz defined as the ratio
of the intengity of cavitation damage to the intensity of bubble

collapse.
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3. In the vibratory tests, the efficiency of damage
is primarily controlled by the isothermal damping of the dis-
solved non-condensible gases at lower ambient temperature of
the liquid. At higher temperatures closer to the boiling point,
the vapor of the liquid 1itself plays an important role. This 1s
because the relative bubble wall temperatures increase rapidly

at these temperatures.

4. When the vapor pressure is important, the viscosity
of the fluld also seems to be important as shown by the behavicor

of aniline,

5. Within the range of tests, the efficiency of dam-

age seems to be independent of the surface tension of the liquid.

6. The above results of the vibratory tests have been
extrapolated to propose a modellng technique to predict the in-
tensity of cavitation damage in actual hydrodynamic systems.

The proposed modeling technique needs experimental verifiication.
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KNOWN SCALING PARAMETERS

CAVITATION PARAMETER,
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THEY SHOULD CONSIST OF:

MATERIAL PARAMETERS
LIQUID PARAMETERS
BUBBLE PARAMETERS

PROTOTYPE

FIGURE 1 - PARAMETERS INVOLVED IN MODELING CAVITATION DAMA%
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INTENSITY OF BUBBLE COLLAPSE IC = ?

Iy . WHAT ARE THE PARAMETERS

EFFICIENCY n = I_ ' THAT CONTROL THIS EFFICIENCY ?

FIGURE 2 - PHASES OF ENERGY TRANSMISSION

MAXIMUM COLLAPSE PRESSURE , P.

PRESSURE SURROUNDING THE BUBBLE

TIME

P’ p, - LIOUID DENSITY

Py C, - SOUND SPEED IN LIQUID

INTENSITY OF COLLAPSE |C =

FIGURE 3 - DEFINITION OF INTENSITY OF BUBBLE COLLAPSE
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AND MILLIGAM 51 - 87 WATER 8.7 177 l 12 v 12
]
| NOWOTNY  [MAGNESIUM| WATER 2.0 1.18 1.0 o 13
f KERR CASTIRON | WATER 6.5 1.71 1.0 o 4
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ALUMINUM | waTER 8.0 — 1.0 o 15
BEBCHUCK | ALUMINLM | BENZENE 8.0 - 1.0 o 5
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FIGURE 8 - SUMMARY OF RESULTS OF VIBRATORY TESTS
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