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ABSTRACT

The theory and practice of far-infrared, two-beam

interferometry is summarized. A description of the instru-

mentation and performance of the Aerospace Corporation two-

beam, double-beam, far-infrared lamellar-grating inter-

ferometer is given. Detailed experimental measurements

4nd analyses of the pure rotational spectra of the atmospheric

molecules nitric oxide (NO) a.nd water (H 0) are presented.2I
Also discussed in depth are measurements of the optical

constants of some important far-infrared window materials

and the fabrication and performance of narrow bandpass

filters for the far-infrared, Included is a discussion of

noise, experimental errors, and problems in the practice

of two-beam interferometry. Finally, a summary is given

of the computational programs necessary and convenient for

reducing the raw interferometric data to their more readily

used spectral form.
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1. INTRODUCG.TON

It is the purpose of this report to summarize the experience and

results obtained with the Aerospace Corporation two-beam, double-beam

lamellar- grating inte rfe romete r.

The history and status of two-beam interferometry, b.-metimes called

Fourier transform spectroscopy or autocorrelation spectroscopy, up to

October 1965 has been summarized by Loewenstein (Ref, 1), and the inter-

ested reader is referred to his article for a comprehensive survey.

Briefly, Fourier transform spectroscopy, which had its inception in the

works of Michelson (Ref. 2), has p~roved to be a valuable tool in the in-

vestigation of the far-infrared region (FIR) of the electromagnetic spectrum.

Fellgett (Refs. 3, 4) has shown that, when detector noise is the limiting

factor, the gain in signal to noise (S/N) of an interferometer over a conven-

tional single-slit dispersive spectrometer is INf/2, where N is the number

of spectral elements in the region studied. This is called the multiplex or

Fellgett advantage.

There are two types of two-beam interferometers used in the infrared

(IR). The classic Michelson interferometer, which utilizes division of

amplitude to produce the two interfering beams, has been developed by

Gebbie (Ref. 5) for use in the FIR. J. Connes (Ref. 6) has also used a

Michelson for low-level intensity studies in the middle- and near-IR.

Recently, J. Connes and P. Connes (Ref. 7) have reported on truly spectac-

ular spectra of Mars and Venus in the near-IR using a Michelson interfero-

meter. In the FIR, Bell (Refs. 8, 9) and Chamberlin, et ai. (Ref. 10) have

exploited the fact that in a Michelson interferorneter the interfering beams

are well separated in space before recombination. This allows placing

reflective or absorbing samples in one arm of the Michelson interferometer

and thus obtaining phase information.

- 1-



A. second type of interferometer, the lamellar grating interferometer,

produces the two interfering beams by dividing the wave front (thui avoiding

experimental difficulties typical of a beamsplitter). This interferometer

has been developed by Strong and Vanasse (Refs. 11-13). A comparison

between these two types of interferometers and a conventional grating

spectrometer has been reported by Richards (Ref. 14). Recently a high

resolution lamellar grating has been described by Hall, et al. (Ref. 15).
It is an FIR instrument which has a double-beam differencing mode of opera-

tion that helps alleviate the dynamic range problem.

The present report consists of a brief survey of the theory of two-

beam interferometry with emphasis on the experimental techniques

necebsary for obtaining the interferometric data. A brief discussion of

some idealized cases is presen~e'd to familiarize the reader with interfero-

grams (the raw data from interferometers) and their direct interpretation

in some simple cases. Next, the instrumentation of the two-beam, double-

beam lamellar grating is described and the advantages and disadvantages of

its double-beam differencing mode of operation discussed. The next section

consists of experimental results obtained with this instrument. Included

are the measurement and analysis of pure rotational spectra, linewidth

measurements and pressure shifts, index of refraction measurements of

gases, optical constants for solids in the FIR, and the fabrication and per-

formance of narrow bandpass filters for the FIR. Some of these results

have been published, others are being prepared for publication, and some

are preliminary in nature (and in these cases the conclusions drawn must

be considered somewhat speculatory). The next section deals with some of

the more important experimental errors encountered in two-beam inter-

ferometry and how these errors are reflected in the spectrum. Also in this

section are discussed some of the problems we have encountered which are

pecu.,iar to two-beam interferometry (and some peculiar to our instrument)

and how their eventual solution will undoubtedly lead to a higher S/N ratio

-2-



for FIR interferometry. The last section deals with the computer programs

and options that are necessary and useful to convert the interferogram into

the more familiar spectrum. Included is a discussion and listing (FORTRAN)

of the conventional "direct sum" Fourier cosine transform program and the

less flexible, but much faster, Cooley-Tukey program.

-3-



II. THEORY

There are many excellent treatments (Refs. 6, 12, :6-20) that cover

with varying degrees of rigor the theory and practice of two-beam interfer-

ometry. In this section we shall only summarize the theory and then discuss

a few simple theoretical examples which will be useful in understanding the

experimental results in Section IV.

Consider a beam of monochromatic electromagnetic energy which is

passed through a two-beam interferometer. The intensity F'(x) detected

would have the following form (Ref. 21).

F'(x) = I + I cos Z1rxv (1)

where I is the average intensity (i. e. , the average of F'(x)), x is the optical

path difference generated by the interferometer of one of the interfe'ring

beams with respect to the other, and v(= X"1 ) is the wavenurnber of the radi-

ation. If instead of monochromatic energy we have a band of wavinumbers,

then Eq. (1) may be generalized

00 00
F'(x) I(v)dv + J I(v) cos Zrxvdv W()

0o 0

The first integral is a constant and is the total intensity of the spectrum I(v)

(which also equals F'P()). In terms of FI(x) it is seen to be (1/2)F'(0) by

evaluating Eq. (2) at x = 0. Thus

F',x) - F'(0) f I1V) cos 2wxvdvaF(x) (3)

0

-o



In the literature F(x) is called the interferogram or interferograrn

function, as is F'(x). To avoid confusion we shall call F(x) the interferogram

function and F'(x) the interferograrn.

F(x) is the Fourier Cosine Transforn•. (FCT) of I(v). It then follows

that if F(x) is Fourier cosine transformed, the result will be I(V). That is,

aside from a multiplicative constant and recognizing that F(x) is an even

function of x,

00

I(v) f F(x) cos Zixvdx (4)

0

In this form Eq. (4) is of limited practical importance. In general,

if F(x) is known, a rather large computer is needed to calculate I(v), and

Eq. (4) must be put into a form for which a computer program can be written.

Analog computers have been usedI but usually with digital input data. It is

usually digital computers that are used to solve Eq. (4) for I(v). We there-

fore consider only the requirements for F(x) in digital form that will lead

to an accurate representation of I(v).

Let F(x) be measured at points x , x,, x2 , , then

I(v) t E F(xm)cos(Zyrx mv)AX

m=O

which reduces to, if all the x m are equal and x is at x = 0 z

number of papers describing such computers were given at the

"Colloque Sur Les Methodes Nouvelles de Spectroscopie Instrumentale,

April Z5-Z9. 1966, Bellevue, France. Many of these papers are scheduled
for publication in the Journal de Physique early in 1967.

bThi is very convenient for computer programming and for speed in the

computer calculation. See Section VI.

-6-



N

I(V) Ax[F(O)/? + E F (mA cos2 c rnAxv)] (5)
m=l

Now it is necessary to see how closely this summation will approximate

the true I(v). This has been discussed by Strong and Vanasse (Ref. 12).

Making use of sampling theorems from information theory, they obtain if

A x5 (6)
c

where v is the highest wavenumber having non-zero energy in the spectrum,

then I(v) is completely determined.

This relation is quite important as Ax should be as large as possible in

order to allow more time to measure each F(mAx). We anticipate the dis-

cussion of Section V by pointing out it is better to spend more time measuring

the F(mAx) with the largest allowed ax than it is to ineasure a larger number

of the F(mAx) for a shorter time each using a smaller Ax. What happens

when Ax is chosen too large is discussed in Section V_ it is also apparent

that if the spectral range of interest extends to va, then v should be chosen

(by filtering, etc. ) as close to va as is compatible with good S/N.

Now, what is the effect on I(v) when the sum (or integral) is not carri.d

out to infinity? An infinitely long (analog or digitaflinterferogram is a physical

3This is a sufficient, but not necessary, condition. Connes (Ref. 6)
has shown that if the spectral range of %, being passed by the interferometer
lies between v and v,, it is possible.1 to choose Ax = (Z(v - v 1 )j]1 or some-
what smaller, 'but ceriainly i, (Z vI}'_. Also if the double-Zoeamn differencing
technique is used I see Section II) and ij the highest obser,'d absorption is
at v , then on.-: can choose Ax (2 v )- (really a bit smaller since the feature
willin general have finite width) eve% though there is energy passed by the
instrument at higher wavenumber.

-7-
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impossibility. There are two important questions to consider: First,

in the absence of noise, what is the effect of the truncation of the interfero-

gram, i.e., taking the integration out to xmax = L or the sum out to

m = L/Ax? This is answered later in this section where the scanning function

of the two-beam interferometer is discussed. The second question concerns

the effect of noise. This is discussed in Section V.

Except to the practitioners of the art of two-beam interferometry, raw

interferometric data, i. e. , the interferograms, appear strange and unsug-

gestive. We shall now discuss some simple (idealied) e-amples of interfero-

grams and their interpretation. This material provides the baL!.",'nd for

interpretation of the experimentally observed interferograms discussed in

Section IV.

The simplest broadband I(v), such as a source would present, is

I(v) = I , a constant up to vc, and zero beyond. Substitution into Eq. (Z)

yields

F', (x) iV c [l + (sin y/y)]

where y : Zixvc

A more realistic source function would be one with zero or little

energy at low wavenumber (because of the blackbody radiation law), rising

toward larger v, then falling to zero at vc (due to the filtering optics).

A function meeting this requirement is

IV) 61

The factor 6 is included so that both I(v) functions considered here have the
-1 -1same total intenui~y between 0 cmn and v, cm

-8-



Substituting into Eq. (2), we ootain

F 0 V c Y , 2

with y defined as before.

For small values of x. Ft (x) and F 2 (x) fluctuate rapidly, but the ampli-
I2

tudes are damped such that both F'(x) curves approach asymptotically the

horizontal straight line, iF'x) = oy. The F'(x) falls uff as (Ztxv c), whereas
-2

F_(x) falls off more sharply, approximately as (Znxv c)-. In each case,

however, after only moderate x has been reached, the F'(x) curves become

essentially straight lines. This is what is observed experimentally. The
-I

FY(x) and F,(x) are shown in Fig. I, with vc = 100 cm . Thus when an

absorbing medium, such as a gas

whZ'se molecules have a dipole mo-

ment, is placed in the infrared beam, .

any variation of the F(x) curve from

a straight line (for intermediate and I

large values of x) may be attributed -

to the absorbing medium. i. I

Now let us consider what sort .

of interferogram a single absorption

line with Lorentz line shape would A4i "
0 o C1 0O02 0C03 004

look like Let .,

( eY() Fig. 1. Interferograms for

1(0- 0 G) "source-like" I(v). Line curve
0 1(v = 6io [(V/vc) -V/,

where dotted curve 1(v) 10, a constant,

Ad F' [x) is plotted in units of
. lC c 1 )

V v 0,o) 0 V l ( Vc = 00 cm -9).
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where A is a constant (independent of v), I the absorbing path lengi.h, c

the linewidth parameter (which for weak absorption is the half-width at half-

maximum intensity), v the wavenumber, and vo the resonant wavenurrber.

Then

F 0 (v)e d+ fv0j)e-v) cos Zrxvd%

Expanding the exponential in a power series we obtain

/

F'(x) o(v)dv + f(v) cos Zrrxvdv + jov) t dv

m=l

W M! Cos 2-rxv&
fI Iy~f

The first and second integrals are merely the source interferogram.

As discussed previously, this yields essentially a constant contribution to

F'(x) for intermediate and large values of x. The third integral is a con-

stant and represents the intensity removed from the bearn as a result of ab-

sorption. The fourth integral will give the deviation of the interferogram

from a straight line at intermediate and large values of x and thuui infor-

mr'.tion about the absorbing line.

Now in order to avoid overly cumbersome mathematical expressxons

let us simplify the above expression by neglecting all except the first ternms

in the summation. A more general treatment may be found in the literature

(Ref. ZZ). This will be a good approximation for weakly absorbing lines and

will yield a qualitative picture for absorption lines of similar shape. There-

fore

-10-



fI.AdI I (v) Ad
F'(x) Fix W dv- - 0Co rxd

71( V) f os+

where FP (W) is the Interferograrn of the source.
s

Now [(v-e)2 + E2]-1 is a sharply p-aked function (as long as L .. f

and ha.: !--r values in the regionv=vo. Thus small error will be made

in the following approximations. (a) set 0(p) = Io(, ), and (b) extend the

limits of integratiox, to +_CC, so

F ' (dv + Occos 2rrxv 0di
+ 0

-2 lxe

Fx) - I A~I, (1 + e cos 2TxVo) (7)
s 0 0

The effect of the single absorption line is given by the second term

and its dependence on x by the terrrm in brackets, as shown in Fig. 2. The

amplitude of this factor. o(V )A.i, is the intensity removed from the beanm

by the absorbing line, and in general it is quite small in comparison with

the total incident intensity. Thus. F' (x) will be only slightly modificd by a

single absorption line. As an 1llustration,for L: 15 cm. p -'400 Torr, the
-1

FIR absi-ption spectrum of CO between 15 -nd 115 cm (-20 lines, not

just one) remc.ves less than SS of the incident intensity This means that

the variation of F'(x) about its average value (I/Z)F'-,') wiHl be quite small (less

than 51 at bestO and according t- the above treatment, if the lines have

approximately Lorentzian shape, will decay exponentially Making f smaller,

which can be done for CO by lowering the pressure, will make the argument

of the damping exponential smaller, but of course the integrated intensity

will also become smaller(A.% pressure). This is a characteristic oroblern

-11-
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of absorption interferometry and is called the "dynamic range" problem.

How it has been solved is discussed in Section III.

Another simple example is the interferogram generated by a spectrum

which consists of evenly spaced (in cm-) lines. The theoretical interfero-

grams can be obtained by summing over the absorption line contribution in

Eq. (7). Let the v's be designated vl(lowest), v,, 3' , Vr (highest) and

be equally spaced such that

V vY Vr P-6V1 I'= 1? - I= 3 - 2 = m -rn-i 5

or in terms of X

I T 2 S 3 7i-k m

The varying part of the interferogram will be a sum of contributions such as
that shown in Fig. 2. When x = X1 (=lI/5), then x = 2X2 = 3X =3 =mX,

so all the cosine contributions will have a maximur.. Likewise, wher.

x = Z21 (=2/6v), then also x = 4X2 =6 3 = == 6mXm, and again a'l the co-

sines will have their maximum value. The same situation occurs at

x = 3\] 4X1 . Thus, significant variations of F'(x) about its average

value (1!2) F' (0) are expected when x = mX1 = m/6v. Such features,

called signatures in interferometry, have been observed in the FIR inter-

ferograms of linear (Ref. 23) and diatomic (Ref. 24) molecuies. This will

be further amplified and discussed in Section IV.

We now come to the question of finite or truncated interferograms.

For this topir it i3 natural to inquire what is the scanning function of a two-

beam interferometer. The scanning function of a spectrometer or inter-

ferometer may be thought of as the output spectrum of the instrument when

a monochromatic line is the input. Thus

-13-



I(M) =6(v)
0

and

F(x) = f6(vo cos Z.rxvdv = cos Znxv,

Now suppose we FCT F(x) out to x = L, rather than x+. Then

L(V) = L [-=, (v- , ) J L sinc ZrL(v- vo) (8)

and this is the scanning function of a two-beam interferometer. This is

shown in Fig. 3. The IL(v) does have its largest maxima at v v, but its4 o
resemblence to 6(vo) is not too good for finite L. Perhaps most annoying

0

(to the spectroscopist at any rate)are the extraneous sidelobes, or feet,

whose amplitudes decay as _(v - vo) . The two sidelobes adjacent to the

central maxima are not small and, as seen in Fig. 3, are about (first minima

to second maximum) 3416 of the peak value at v = v . The width of the

scanning function is determined by L and the first minima are at v-v 0

=:j.07 15(L) ". The relative amplitudes of the sidelobes do not depend on L.

In contrast, the scanning function for a conventional grating spectrometer is

of the form (sinc) which has much smaller sidelobes.

We are now in a position to discuss resolution. Resolution is a some-

what arbitrary criterion, usually stated in terms of how well two equally

intense lines appear separated in an output spectrum. The Rayleigh criterion

!or a diffraction grating spectrometer is that two lines of equal intensity

To within a multipl'cative factor IL(v)-.*6( vo) as L-*co. See W. Heitler,
Quantutmi Theory of Radiation (Clarendon Press, Oxford, 1954), Chapter II.
page 66.
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Fig. 3. The scanning function of a two-beam interferometer.
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should be considered to be just resolved when the principal intensity maxi-

inim of one coincides with first intensity minimum of the other. On this

basis there will be a dip of intensity of 18. 9% between the two lines. Figure

4 shows two such lines separated byAv=0. 715(L) 1 , i.e. , applying the first

part of the Rayleigh criterion to two lines as would be seen by a two-beam

interferometer. The dip in intensity between the two lines is considera3ly

less than 18. 9%6. Strong and Vanasse (Ref. 12) have introduced the modular

resolution criterion and it is

(&Omodular (9'

This, of course, is more conservative than &v= 0.715 (L) ", and two lines

separated by this1v are shown in Fig. 5. The dip in intensity between the

two lines ia greater than 18. 9%. Additional reasons for preferring the

modular resolution criterion are given later in Section IV.

The sidelobe problem appears to be serious, especially as compared

with its almost negligible importance in a grating spectrometer. It is pos-

sible to suppress these sidelobes by apodization. Essentially, apodization

consists of multiplying the interferogram function by a monotonically de-

creasing function of x such that F(L) = 0. The theory and practice of apodi-

zation has been discussed by Filler (Ref. 25). One of the disadvantages of

apodization is lower resolution.

Indiscriminate apodization can be, and usually is, useless. It is

instructive to consider what effect the scanning function has upon a line of

finite width (lines with zero width are quite unphysical). One can show by

convolution theory that a line wh:ose shape is given by f(v) will appear in the

output spectrum as f(v)*S(v), i.e. , the convolution of f(v) with S(v) ar the

scanning function, We shall again consider a line with a Lorentz shape.

IN) AE

V0
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Fig. 4. Two 6 function lines separated by 0. 715(L)"I as would be
seen by a two-beam interferometer which has been
scanned out to x L.max
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Fig. 5. Two 6 function lines separated by (L) as would
be seen by a two-beam interferometer which
has been scanned out to x xL.
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F(x) = TAe -ZrrxEcos 2wxo

Now if F(x) is FCT (or I(v) is convolved with S(v)) out to x L, we obtain

I() IM -Z,,LE [o ~,( /vo -\ ii 10
IL(v) = fly) I - e [CO ZiL(v- V)- sin ZtrL(v- v ( 110)

When L--00, it is obvious IL(v)-I() as it chould. Also to within a mul-

tiplicative constant, I(v)-' 6(v ) as e -- 0 and IL(v) --. sinc ZwL(v- v ) as 0 -. 0.
0 L

For finite L, the exponential term and the term itmultiplies describes the

distortion of the line from its true shape. Figures 6, 7, and 8 are plots of

Eq. (10) for Le = 0o, 3/4, and 1/Z. On the scale of these plots, the case

Lf = I would appear identical to LE = oo. In general, the maximum intensity

of IL(VM = IL(Vo) differs from I(v ) as

SL (Vo0) =(v 0 ) (1 - e .2 IA

(On the graphs, A is chosen such that (vo ) = 1.) For Lf = 3/4, the feet are

just becoming discernible and the maximum intensity, IL(Vo) differs from

I(V ) by--0. 8%. For Le = 1/2, the sidelobes are now quite apparent and

I (Vo ) is -4. 6% weaker than I(V).

Let us define

4A(v) = I(v) - IL(V}

and furthermore let

VI = the value of v where A1(v) has its first minima, and

V z =the value of v where AI(v) has itS second maxima (the first
maxima is of course at v Y 0).

-19-
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Now we define

IF MAItV2 ) - dI(V 1 )

so that IF measures the maximum sidelobe intensity. A plot of I.(vo)/IF

versus LE is shown in Fig. 9. This curve rises quite steeply as a function

of Le, i. e. , as the width of the scanning function (a-werned by L) apprqaches

4E, the sidelobe intensity decreases very rapidly. As an example of its use-

fulness, suppose the S/N in the spectrum is 100/1; then there is no point

in making IL(Vo)/IF much greater than 100/1, which means LE *-0. 2 1. For

Le-G. 81, the interfm e- Zx( cos Z 0 will be down to e•" 2 (0 " 81) of

its value at x = 0, which is down by a factor of 162. The use of this curve

when noise in the interferogram is considered is discussed in Section V.

4
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Fig. 6. The Lorentz line shape.
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Fig. 7. Plot of IL~v) for a Lorents line with La = 31%.

- zz -



0.8

0.6

0.4

0.2

Yo-4t va-S twe-2i .o-c fto +l af+2f v6+34

Fig. 8. Plot Of IL(v) for ,, Lorentz line wit) L, - 1/2.
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III. DESCRIPTION OF THE INSTRUMENT

A. OPTICS

The optical diagram of the lamellar grating interferometer is shown

in Fig. 10. The source of radiation is a high-..pressure, 85-W fused quartz

90LOMETER

14PE LAMELLAR
GRATING

1ý1
M12

Fig. 10. Lamellar grating interferometer optical diagram.
The foci of the ellipsoids M1 and M2 are between
M 5 and M 6 (sample beam) and at M 3 (reference
beam), respectively.
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mercury arc lamp (G. E. H85A3) with the outer glass envelope removed.

The arc is mounted in a water-cooled housing with two cutouts through

which the reference and sample beams emerge. The two beams are caught

and focused by two ellipsoidal mirrors M 1 and M2 " The upper or sample

beam is folded by two flats M 4 and M 5 and then passed through the sample

chamber. Mirror M 5 is a polished aluminum flat to match the reflectance

of the aluminum chopper wheel M 6 . The beam comes to a focus in the

middle of the sample chamber allowing the use of minimum size samples.

The focus is a circle of 0. 95 cm diam. The lower or reference beam passes

under the sample chamber and comes to a focus on the flat M 3 . Flat M3

is located on a six-position slide assembly which allows changing between
the mirror and any of five Z. 5-cm diam samples for reflection studies
from outside the tank without breaking the vacuum in the chamber. The

flat M 3 folds up the reference beam perpendicular to the sample beam. The
two beams are then recombined by the polished aluminum semicircular
chopper mirror M6 which rotates at 19 cps. To match precisely the intensi-

ties of the two beama, motorized iris diaphragms have been placed in

equivalent positions in both beams approximately 18 cm before the first

focus.

Mirror M 7 is a 33-cm diam spherical mirror which refocuses the

combined beams. A limiting aperture, which reduces the angular spread

of the beam by a factor of 2, can be moved into place in front of M 7 from

outside the tank. This feature is of great use in studies of solid samples.

After striking M8 and M 9 , the beam is refocused on the circular entrance

aperture (not shown in the figure) of the interferometer proper. The size of

the aperture is determined by the high-frequency radiation cutoff of the

system (Ref. 12).

The interferometer optics consist of two 45.7-cm diam spherical

mirrors and the lamellar grating. The two spherical mirrors are arrayed

in a Czerny-Turner configuration which allows the grating to be used in

parallel light in the zeroth order.

-26-



The lamellar grating consists of two sets of interleaving plane mirrors,

as shown in Fig. 11. There are 24 facets in each set, each facet being

0. 635 cm wide and 30. 5 cm long, giving a total area of 30. 5 X 30. 5 cm for
5

the grating. The grating is made of Pyrex. The individual facets of each

grating are flat and coplanar to two fringes of the 54611 line of Hg, except

for the outside facets of each grating, which deviat,. by about four fringes.

These four facets have been blanked off to eliminate distortions in the inter-

ferograms caused by their optical imperfections.

After the optical path difference has been introduced by the grating,

the beam is reflected to the second Czerny-Turner mirror, which after

being folded by the diagonal flat M 13 (scatter grating), refocuses it on the

exit aperture mounted on the end of a light pipe. Flat M13 is adjustable

from outside the tank to permit the final alignment to be made in vacuum.

This is desirable because nearly all the FIR energy is absorbed by water

vapor in the air. The size of the exit aperture is the same as the entrance

aperture. The circular light pipe, 65 cm in length, takes the beam to

the wall of the vacuum tank where a gallium-doped germanium bolometer

(Texas Instruments) is mounted. The detector operates at 4.20K and has

a sensitive area of 5 X 5 mm.

One of the severe problems of the FIR is radiation purity. The

mercury arc lamp emits orders of magnitude more energy in the ultraviolet

(UV), visible, and near-IR. Eliminating this high-frequency radiation re-

quires an elaborate array of transmission and reflection filters. However,

in interferometry the problem is not nearly as difficult as in conventional

dispersive spectroscopy. Filtering is accomplished in this instrument by

the following means: At positions M 9 and M 1 3 , coarse (<20 lines/mm)

gratings are placed, which provide the high-frequency cutoff filtering of the

source radiation. Wavelengths shorter than approximately 1. 5 times the

5 Manufactured by Davidson Optronics of West Covina, Calif.
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Fig. 11. Front view of the lamellar grating. At the right is the chopper
assembly, the back side of M8 and the six-position slide
assembly on which M 3 is mounted. Mirror M1D in just below
the grating; M13 , which is replaced by a scatter grating after
alignment, is above the grating. Also shown (in front of M 3 )
are the filter wheel and variable diaphragm.
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blaze wavelength of the grating are thrown out of the beam at the blaze

angle of the grating. To longer wavelengths, the gratings appear as plane

mirrors. By changing these gratings, the high-frequency cutoff can be

changed. Two identical gratings in series sharpen the cutoff. Various

sets of gratings are available to vary the high-frequency cutoff. In addition

to filtering by the two scatter plate gratings, there is filtering by black

polyethylene and crystalline quartz. A sheet of black polyethylene is

located between the source and chopper in front of the sample area on

the grating side of the source housing after mirrors M 5 and M 2 . This

cuts down the UV and visible light entering the sample chamber and helps

to eliminate the sometimes deleterious effects of UV light on samples

under study. If gas samples are to be studied, they must be contained in

a conventional gas cell that has windows offering two more filtering positions.

Wedged crystalline quartz windows are used. To compensate for the ab-

sorption in the sample beam, two nearly identical pieces of crystalline

quartz are placed in the reference beam. These are located between M3

and M6 on a four-position filter wheel controlled from outside the tank.

In the other three positions of the filter wheel are an opaque shutter for

blanking off the reference beam, an open hole for studies where the filtering

of crystalline quartz is not wanted, and one additional space where any other

compensation filter can be placed (e. g., polyethylene). The crystalline

quartz absorbs the intermediate IR radiation of the source. The quartz

pieces in the reference beam are slightly thinner -- by a few hundredths of

a millimeter -- than those on the sample cells. The four-position filter

wheel can be rotated about an axis perpendicular to the optic axis. This

allows the effective thickness of the filters to be varied to obtain a precise

equivalence of both beams, which in necessary to ensure complete balance

of the spectral transmission of both beams. Slight deviations in balance

lead to anomalies in intensity for the region of zero optical path difference.

Figure 11 shows the lamellar grating and mirrors M 3 , M6 , M 8 , M10 .

and M 1 3 . Figure 12 shows a side view of the interferometer. Figure 13

-29-
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Fig. 12. Side view of the interferometer. At the left is the source
housing and optics. The side view of the chopper is in the
center of the figure. A "swing-away" limiting diaphragm
can be seen in front of mirror M 7 . The interferometer is
on a dolly with rails matching those in the vacuum tank
(extreme left).

gives an overall view of the interferometer. The sample chamber slide@

into position between the source housing and the chopper wheel. The sample

chamber has been put in place on the left side and the light pipe attached to

the bolometer on the right side. The bolometer is located in an elbow just

outside the hole from which the light pipe is protruding. All electrical and

cooling water connections are made by vacuum-tight connectors in the bulk-

head at the lower left.
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Fig. 13. The interferometer in place in the vacuum tank. The light
pipe can be seen protruding from the right-hand side of
the chamber wall. Tne sample chambeLr is in place on the
left side (appears black). The rails upon which the instru-
ment rides are at the bottom and the electrical cooling
water connections at the bottom left. The diameter of the
vacuum tank is 1. 68 m.
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B. MECHANICS

The interferometer is mounted on a heavy steel box frame which is

kinematically supported in a vacuum chamber. Thus deflections in the
6

vacuum chamber walls will not alter the alignment of the optics. Evacua-

tion is necessary to eliminate the strong water vapor absorption in the

FIR. A 10-in. vacuum pump system can evacuate the chamber with all the

apparatus inside to a pressure of 10"5 Torr in a few hours. Liquid-nitrogen

trapping helps to remove the last traces of water vapor. Figure 14 shows

the vacuum tank and the electronics console.

I
FV. 14. Electronic console and vacuum tank

6 The interferometer frame and mirror mounting were manufactured
by American Astrophysics, Monrovia, Calif. The vacuum chamber was
manufactured by Advance Tank and Manufacturing Company, Gardena, Calif.
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The sample chamber can be isolated from the rest of the vacuum

chamber by gate valves, which also function as ports through which the

sample beam passes. With the gate valves closed, the sample chamber

can be brought up to atmospheric pressure without impairing the vacuum

in the main chamber for rapid change of samples. By closing one of the

gate valves, single-beam interferograms of the reference beam can be ob-

tained.

Access ports have been provided in the chamber walls to allow minor

adjustments to be made from outside the chamber without rolling out the

entire interferometer. The entire interferometer can be lowered down on

wheels which ride on rails for servicing outside the chamber. A matching

set of rails on a dolly mate with these rails, ard the interferometer can

be rolled out onto the dolly.

The entire vacuum chamber is vibrationally isolated from the floor

by air suspension mounts under each of the six legs. These mounts isolate

the chamber from vibration and shock down to a few cycles per second,

eliminating spurious modulation due to external vibration.

The heart of the interferomeier is the grating and its drive system.

The lower set of facets of the grating is mounted on a movable platform

suspended from a stationary platform holding the upper set of facets by

three flexure hinges similar to those used by Strong (Ref. 13). These three

hinges theoretically allow the lower platform to move in a perfectly parallel

fashion with respect to the upper platform. Unfortunately, torsional oscil-

lations and pitch, roll, and yaw errors of the order of I arc-deg necessi-

tated further constraint. A flat, parallel-fiided steel bar was installed

below the lower platform. Two sets of ball race bearings were attached

to the lower platform contacting the bar on its two vertical surfaces in

order to eliminate torsional oscillations and reduce the pitch and yaw errors

to less than I I arc sec ov- 83 mm of travel. The errors in pitch and yaw

are smoothly varying functions of the travel and are the worst at the extreme
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end of the travel. The roll error, z'ct important opticaily, wa, reduced

to below the point where scrapring of the facets was a danger. Since the

platform rises through an arc about 0. i in. during the travel, no restraint

could be applied to this motivn.

The grating platform i. driven by a stepping motor which has 200

steps per revolution. The use of a stepping motor eliminates coasting and
allows fine control of the drivw" by controlling the drive pulse rate to the
motor. The stepping motor is geared down by very low back',h -hgea"s..

The drive is transmitted to the grating platform by meanb of a

lead screw and a pin riding on the driver nut. The entirc P;.atiormr- l r•
loaded to ensure that the driver nut always rides on the ,,a-ne mide of the
lead screw. The drive system is capable of movin- tte grating platform in

increments less than 0. 5 L.

The relative position of the two scts of facets is mrnsured by two

separate systems, coarse and fine. The coarie 4ystcrn is capable of

measuring the absolute position of the fateky, to within I mm over th• entire

path. The fine system can measure the absoluLt# ;osltion of the facets to

1i. S.p over a 4 mm cycle. The two rompiementary systems together can

measure the absolute position of the facets to .± 1. 5ý ovter the entire path.

The position of zero optical path di~icence can be deter.i~e• -i an accuracy

of better than L1. 5&. Relative to this position there is A c..-.-stant precision

of better than ±1. 5 .& for the location of any poiAnt over the entire range of

travel. Unfortunately, the error varies irk a periodic manner, which leads

to apparent "ghosts" in the spttArs obtaitt:ý. This is discussed in Section

V. A change in the method of measuring grating poiition is being planned,

employing a laser interferometer.

The coarse system uses a synchro to dieter-'nine the position of the

grating platform. Approxi tely one revolutuon of the -. iynchro corresponds

to the fuE: travel of the grating pla•.:orm.
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The fine system uses a linear metric Inductosyn scale (Farrand

Controls, Inc. , Valhalla, New York) to delermine the position of the grating;

platform. This system similar to thosu ised on automatic milling machi,+'es,

measures position by means of the inductie coapling between a stationary

set and moving set of linear pole patterns. The moving set, supported on a

glass blank, is mounted on the aide of the grating platform. The stationary

set is mounted on the grating platform immediately orosite the moving set

on the side support m,.mber. The stationary set is 250 mm long, allowing

its use over the full travel of the grating platform. Figure lI shows a back

view of the lamellar grating. The Inductosyn scales can be se ýn at the right

and the drive system underneath the grating platform.

The grating platform has a maximum travel of 10. 0 crr., of which

S. 3 ci are useful, 0. 3 cm on one side of the coplanar position of the grating

and 8. 0 cm on the other side. A travel of 8. 0 cm is equivalent to an optical

path difference of 16. fl cip. 1xiving a modular resolution of 0. 063 cmn" The

intensity pasecd by the interferomete.- as a functi-.n of the optical path dif-

ference generated by the inteiferometerr, known as the interferogram, is,

in theor•+, sym-7strc about the coplarnar position. In practice we have

found this wilt not be true unless the inzýident parallel beam is strictly per-

pendicular to the gra•ing facets in the •-. perpendicular to the grating

grooves. The incident !beam does, of cýu,,Aree, deviatt from perpendicularity

in the aaimuth parallel to the grating grc,.vei because of the Czerny-Ta:4ier

optical system. This means that the optical pýth difference generated is

not Zd (d geometrical separation of two sets of facets), but rather Zd coo a,

where a is the angle between incident beam and the normal to the facet faces.

T•h arsgle 'a approximately 9 deg and it is measured with a theodolite to an

iccuracy of t IS arc see, which is sufficiently accurate to eliminate it as

a source of systematic error in the me-ourtment of optical path difference.

The aormals of the two sets of gratings are made parallel by adjusting the

gratings in their mounts while monitoring the adjustment with a comparison

autocollima'or capable of detecting deviation from parallelism of less than
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Fig. 15. Back view of lamellar grating. The flexure hinge supporting
the movable platform i. visible in the middle of the figure.
The-e are two more fiexure hinges in the front of the platform.
On he rightarethe linear inductosyn plates. The rdrive system
can be seen below the movable platform.
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I arc sec. The entire usable travel of the grating (8. 3 cm) has been

monitored and is rechecked after any adjustment with this comparison auto-

collimator. With these precautions, very symmetric interferograms are

obtained.

C. ELECTRONICS AND DATA RECORDING SYSTEM

The interferogram is not recorded continuously, but is sampled at

equally spaced increments. The system is designed to sample at multiples

of 101i in optical path difference. The actual sampling interval is dictated

by the highest frequency present and has been discussed previously.

The grating is allowed to sample each point for 2 to 8 sec to im-

prove the S/N. During this time the output of the detector, suitably ampli-

fied and synchronously detected, is fed into a voltage-to-frequency converter

that converts the voltage output linearly into a frequency which is then

counted for the gate or sampling time. At the end of this time, the narmber

of counts (0 to 9999) accumulated in the counter and the number of the point

are pun~ched on paper tape and printed on a digital printer. The grating

then advances to the next point, and the proc.ess is repeated. This process

is continued until the entire interferograrn has been punched out on the

paper tape. This tape output is then processed by the data reduction center

and the Fourier cosine transformation is c~mputed yielding the frequency

spectrum. The digital. printer output can be used to check for errors in the

input data to the computer. Unfortunately, the use of punched paper tape

has not been entirely satisfactory. We are in the process of converting to

punched cards.

The grating drive system has been designed to operate in several

different modes. These range froma completely manual mode to a com-

pletely automatic sampling mode. Other modes of the grating drive system

art: the automatic mode, in which the grating will proceed to and remain

at any position dialed into the controls; and the manual mode, in which the

grating can be moved under direct control of the operator and thus is useful
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for survey work

Figure 16 is a block diagram of the grating drive and data recording

systems. The strip chart recordis used primarily for visual indication of

performance during a run. The oscilloscope is used in a similar fashion.

The interferogram can be recorded either single-beam or double-

beam. In double-beam operation, the outputs of the reference and sample

beams are differenced automatically by the broadband ac preamplifier

following the detector. This difference signal is recorded. In single-beam

operation, one of the two beams is blanked off. As has been discussed

previously, there is a problem of "dynamic range" in absorption interfero-
metry. Double-beaming circumvents this problem. In double-beaming
two beams are used, one of which passes through the sample cell (sample

beam) and the other through a matched reference cell (reference beam);

then the sample beam intensity (or signal) is subtracted from the reference

beam intensity (or signal). When this is done, most of the information about

the spectral distribution of energy from the source is lost, but such infor-

mation may be recovered by a prior or subsequent recording of single-beam

interferograms of the source alone. In practice, this is not difficult or

inconvenient as the single-beam source interferogram need run out only to

a 3- to 5-mm optical path difference and can be obtained in a time interval

short compared with the higher resolution double-beam interferograms where

the ol Oical path difference typically runs out to 100 to 160 mm.

We write ti; appropriate equations for the intensity passed by the

interferometer for the reference and sample beams:

reference beam: F'x P W F F()i I(~oZfxd
r 7FO r f

0
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Fig. 16. Block diagram of larnellar grating interferometric system.
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sample beam: F's(X) F(0) + s I (v)cosZiixvdv
s 2s f 8

0

where all the symbols have their previous meaning, and the subscripts r

and s refer to the reference and sample beam, respectively. Differencing

these equations and transposing the constant term to the left side, we ob-

tain the double-beam interferogram function, F (x):
r-s

VC

Fs-F(x) a F, [N(0 - F0W)7 j 1 ~'(V) - I (v)] cosZwrxvdv (11)Fr-Sx) (r) s f r S

0

With matched beams and no sample, the detector will see essentially a dc

signal that will not be amplified by the broadband ac preamplifier. In

practice, because of the finite dimensions of the chopper (chopping is not

done at a focus, see Fig. 10), there is ripple in the signal at the chopping

frequency; however, the ripple is nearly 90 deg out of phase with any true

signal and is largely filtered out by the phase lock amplifier.

To balance the beam, it is necessary to have matched spectral dis-

tribution of energy in the two beams. The total intensity is matched by a

motorized iris in each beam (set back -18 cm from the focus). Making the

beams spectrally eqAiivalent is more difficult to achieve since there must

be equal filtering in each beam. For gas spectroscopy, a cell is required

in the sample beam (usually quartz windows are used) so that an equivalent

set of windows must be inserted in the reference beam. As mentioned pre-

viously, they may be rotated through small angles to provide a variable

thickness of quartz. This is necessary because of wedging of windows (to

prevent a troublesome channel spectrum) and optical inhomogeneity of the

windows. In practice, perfect balance is not obtained, but with the above-

mentioned modifications, near perfect balance can be obtained everywhere
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double-beam (upper) inter- double-beam (upper) inter-
ferometric features of the ferometric features of the
pure rotational spectrum of channel spectrum of a plane
carbon monoxide. parallel window of crystalline

quartz.

except in the region of x = 0. The unbalance there is -20 times the noise

level of the instrument.

The Fourier cosine transform of the left side of Eq. (11) will yield

[Ir(V) - Is(v)] , the difference between the reference beam spectrum and

the sample beam spectrum. Thus an absorption spectrum appears as

though it were an emission spectrum. As discussed above, the source

(reference beam) spectrum can be easily obtained from single-beam runs.

The advaptages of double-beam aifferencing over single-beam

operation can b- discussed in terms of Figs. 17 and 18, which compare

single-beam and double-beam interferograms of carbon monoxide and

quartz, all obtained with the central maximum at full ccale. As can be

seen, the "dynamic range" problem has been greatly alleviated by double-

beam differencing.
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IV. RESULTS

A, HIGH RESOLUTION SPECTROSCOPY OF GASES

1. CARBON MONOXIDE

A portion of the double-beam interferogram of the pure rotational

spectrum of carbon monoxide (CO) is shown in Fig. 19. The absorption

path length was 15 cm, and the pressure in the gas cell was 732 Torr. Had

this interferogram been obtained

single beam, keeping the central -0- . I

maxima full scale, the features due 11

to the pure rotational spectra of CO

would be down in intensity by a f. c--.L

tor of -15.
2r

Carbon monoxide is diatomic _"

and therefore its pure rotational S I?

spectrum consists of almost evenly

spaced lines (in cm-) As dis-

cussed in Section II, its pure rota- 4

tional interferogrem should have

signatures spaced at equal intervals __..

in x, the optical path difference. II IS 21 24

These signatures are apparent in

Fig. 19, and the reciprocal of their

spacing Vives an average value of

2Bo (the separation of the lines in

cm" 1 ). It is alsc seen that the sig- OPTICAL PATH (IFFUCREW (me)

natures are distorting with larger Fig. 19. The pure rotational

optical path difference. Qualitative- double-beam inte rfe rogram of
uis losing CO. The evenly spaced features

, tare characteristic of diatomic
amplitude and the second minimum and linear molecules.
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is gaining, which is due to the fact that the pure rotational spectrum of CO

is not made up of uniformly spaced lines, bat rather lines that converge at

higher wavenumber because of centrifugal distortion. This leads to the

distortion of the signatures. If the lines had been diverging, the appropri-

ate lobes would have lost and gained amplitude in the reverse order. Also,

it is seen that signatures decay very rapidly in amplitude, over and above

that caused by the distortion of the signatures, and this is due to the finite

width of the absorption lines. In this interferogram -25 signatures were

observable before they were lost in the noise. At lower pressures one

would of course expect to see more signatures (lines are narrower), and in

fact at p z 202 Torr we have seen the 61st signature at x v 16 cm. Finally,

there is an extra signature at x - 3. 6 mm. That is caused by a channel

spectrum generated in the quartz envelope of our source. It produces a

cosine modulation in the spectrum. We have found that by proper editing of

the interferogram, thb channel spectrum can be eliminated. This problem

is discussed further in Section V.

Figure 20 shows the result of performing the Fourier cosine trans-

formation on the CO interferogram, that isthe pure rotational spectrum of

CO between 19 and 100 cm1. The dashed line is the approximate envelope

of the source spectrum (absorption goes up) and would be the place to which

a 100% absorbing line would go. The variation in the base line is the channel

spectrum mentioned previously. These features are quite broad and are not

mistaken for the much sharper pure rotational lines of CO. The wave-

numbers for the pure rotational spectrum of CO can be determined quite

accurately from microwave (Ref. 26) and near-IR (Ref. 27) (.ata; therefore,
the measurement of this spectrum will not be discussed further, although

it was very useful for calibration purposes.

It is, however, important to look at the line shape. As is well

known in interferometry, if even a small error is made in the measurement

of optical path differences (see Section V), shifts of the lines and serious
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Fig. 20. The pure rotational spectrum of CO. The intensity
scale is arbitrary, but the dashed line indicates the approxi-
mate intensity contour of the source. The cosinusoidal vari-
ation of the base line, especially noticeable at low wave-
number, irises from the channel spectrum due to the lamp
envelope.

distortion of line shapes occur, Figure Zi shows a typical result from our

interferometer. Shown is the J = 16-17 transition of CO, The open circles

are the intensity points as given by the computer The line looks and is

very symmetric. In order to examine the line shape more closely, the first

derivative of this line shape was computed (open squares). IZ has the ex-

pected shape. but there is about a 7% difference between the maxima and 4

minima. If the line had been perfectly symmetric these would have been

--45-NJ



equal but of opposite sign. This

P, - excellent symmetry of line shape

4.20 and reasonably good first deriva-
- tive shape have encouraged us to

eai this shaectioen.clouifgtheuline,rd pursue line shape measurements,

-- 20 and this will be discussed later
- in this section. Also if the line

0 were perfectly symmetric, the
6 " Ie 00 00 extrema of the first derivative

Fig. 21. The .J : 16-17 transition curve would be equidistant (in cm-)
of CO. The circles are intensity from v These waenumber inter-
points computed from the inter- 0

ferogram. The shuares are the vals were measured for a number
first derivative points computed of CO spectra, and a typical set
frcm the intensity points.

of results is shown in Table 1.

The lines measured spanned the
-1

region 26 to 81 cm . In the first column, JL is the lower state rotational

quantum number, (AVD .is the wavenumber inter",al between Vo and the ex-

trema of the first derivative curve on the low wavenumber side of Vo, and

(AVD)+ is the corresponding interval on the high wavenumber side. rhe

last column gives the differences (6) between (V D) and D)+ . The ag ree-

ment between these :wo quantities is quite good; the average value of 6,
-3 -l

without regard to sign,is 2. 3 x 10 cm and in our opinion is a good

indication of the accuracy in measurement attainable with our instrument

(at least for isolated lines with reasonably good S/N). The differences. 6

are of random sign, thus indicating that any e.-ror in locating x : 0 in

the interferogram is negligible (see Section V).

At this point it is worthwhile examining interferograms from another

point of view (Ref 28). In a recent series of articles Gordon (Ref. Z9) has

developed the theory concerning the information obtained when the band

shapes of IR and Raman bands are Fourier-transformed Of particular

interest is his treatment for pure rotational absorption His development
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Table 1. First Derivative Extremes (Referenced to vo) for the Pare
Rotationat Lines of Carbon Monoxidea

(,•'D). ,(D)+ , 6 = (AvD) - + (AvD),

cm cmn cn. l

6 0.0477 0.0441 +0. 0036
7 0. 0498 0. 0562 -0. 0064
8 0.0570 0. 0539 +0. 0031
9 0.0649 0.0618 +0.003!
10 O.0590 O.0593 -0.0003

11 0.0649 0.0669 -0.0020
12 0.0593 0.0567 +0.0026
13 0.0611 0.0625 -0.0015 !
14 0.0615 0,0589 +0. 0026)
15 0.0599 0.0603 -0.0004

16 0 0531 0.0550 -0.0019
17 0 0502 0 0526 -0.0024
18 0.0539 0.0525 +0.0014
19 0.0496 0.0471 4O. 00 5
20 O.0516 0.05Z7 -0.0011

a From an interferogram with absorbing path 15 cnr., p=608 Torr.
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sho-,.• tnal it a pure rotaAonal absorption band, suitably normalized to

ui;iit area, is Fourier-transformed (frequency to time) then the dipole mo-

ment correlation function <u(o) • u(t)> ic obtained. Gordon interprets this

correlation function (in the classical limit) as follows:

"Imagine that one could observe the microscopic re-
orientation of a single molecule in a system of many
molecules in thermal enuilibrium. Suppose that at
a time "o" the dipole of this molecule points along a
direction u(o). Then we follow the thermal motionp
of the nol'ecule and at a time later we nieasurv the pr-i-
jection of u(t) on the original directir.:-, - u(o) u (t.
Now we make this measurement again and aga-11., picking
out different reference times "o.' Fwa'. vr- 11e•y, we average

all of these t;-ajectorifs -:.'! - ufi,. to obtain the correla-
tion funiction <.u . -{t

An interferogr., . the FCT of the spectrur- and is the intensity

passed '. th- t'-rferometer measured as a function of the optical path

dif"--_--.: grnerated by tOhe interfercmeter. The optical path difference

is l-nearly related tu the time of retardation by the velocity of light: thus,

.. tgrain may be -isily converted from t.-he optical path differt .ce

scale to the time retardation scale by dividing by the velocity of light. Early

interferograms (Refs. 23, 24) are complicated by the fact that features of

the interferogram corresponding to the absorption of the sample are super-

imposed un the source interferogram, by using a d\-,-,•bi -beam' (refe'-ence

and sample beam) two-beam interferometer, we can to a large extent sbh-

tract the source interferogram, and suitably nrrnal, the resulting "ntIer-

ferogram so that it corresponds to the dipole tmonint correlation (unction

d.-r'b!d bn,- Gordon {the correspondence is not e'xact. -see Re( i0) A

portion, o'.- sucAn 1in rte firogram is shown in Fi.g , t%-r .•aseoas CO

(p t,78 Torr. and absorption path it-ngth - !.S cii)

The interpretation of the interferogran orn th,. .,as-s of waveielgth

and optical path difference has been given previously (Ret 23 ,ill and

the interpretation on the basts of freouency and t:nme tit ea,4il" ,,,r* I rolnl
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Gordon's development. In the semiclassical limit at a time t = 0, a

molecule in the Jth angular momentum state (= -T [J(J+l)]l/ 2 /I ofi J/1,

where 1 is the moment of inertia of the molecule) is perfectly correlated

(with the system and itself) since t = 0 is chosen as the reference point.

After the time of one revolution has passed the correlation will now be less

(or even negative), since molecules in other different angular momentum

states (0, 1, 2, . J -1, J+1, J+2, ... ) will have made more or less

revolutions, After times longer than the time of average rotation, the

correlation function will oscillate (with decreasing amplitude) about the

zero value. However, in the case of diatomic and linear molecules we can

expect the correlation function to become significantly positive again for

times longer than the average rotational period. This will happen when

the molecule in the Jth state has made J rotations, then the molecules in

any other JP state will have made 3' rotations, and if the system has not
been disturbed the state of the system at this time will duplicate (ne-

glecting translation) the state of the system at t = 0. Also, on the basis of

this interpretation, smaller but quite significant negative correlations are

expected just before and after the large (-I) positive correlation. This

behavior is shown quite clearly in Fig. 22. For CO a large positive-cor-

relation occurs at t - 8. 7 x 10" 12 sec, the dipole correlation function

attaining the value -0. 90 at this time. Extending the argument to longer

times shows that the correlation function should show the same behavior

at integer multiples of this time. Indeed, the interferogram from which

Fig. 22 was taken showed 24 such features (out to t-2 x 10"10 sec). Two

general observations ma; '.e -ir't .sLvu•u.,s 9.•4L&L. (,.2leood i't¾., : a

in interferometry).

First, the correlation peak for any given signatare is always less

than the one preceding it. This is understandable, using a semiclassical

approach. Comparing the state of the system at t = 0 with some later time

t', we see that some of the molecules will have had their rotational motion

interrupted (by inelastic collisions, or even elastic collisions, that d-sturb
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the phase of the rotation), and thus these moleculet will be uncorrelated

(on the average). At nmoderately low pressures and above, this collisional

type interruption is the main contribution to the breadth oi the spectral

line. In fact, it is possible to analyze the fall-off of intensity (or corre-

lation factor) of these signatures for line-width parameters.

Second, the signatures are not symmetric abjout the maximum posi-

tive correlation. The negative correlation just before the large positive

correlation is less negative than the one just after. This is because zio

molecule is perfectly rigid but rather distorts when rotating (centrifugal

distortion); therefore, even in the semiclassical limit the angular velocities

of the various states are not integer multiples of the lowest rotating state

but rather converge slightly, since the moment of inertia increases slightly

for each higher state of angular momentum.

Quantum mechanically the above arguments would have to he modi-

fied since it is not the rotational frequencies that are observed, but rather

the differences in rotational frequencies (usually AJ ± 1). It is expected

that the more rigorous argument will lead to much the same interpretation.

2. DEUTERIUM CHLORIDE

A portion of the pure rotational interferogram of deuterium chloride

(DCl) is shown in Fig. 23. The expected signatures characteristic of dia-

tomic and linear mo:ecules are seen out to xZ2. 5 cm. Between 2. 5 and

3. 0 cm there are still variations in the interferogram, but to signatures

are apparent. After about 3. 2 cm the signatures reappear, although they

are broader and down considerably -n intensity. This is interpreted as due

to the isotopic splitting of the pure rotational spectrum of DCI, due to the

two chlorine is,.Popes Cl 3 5 and Cl3 DCI is essentially a mixture of two
35 37

molecular species DC1 and DC1 . The rotational constants for the two

molecules are slightly different; thus, the interferogram consists of two

sets of signatures that, at small x (low resolution) are in step (superpose

constructively), at larger x are out of step (superpose destructively), and at
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still larger x get back in step. one lobe removed. The fact that this phenomn-

enon is observed in the interferogram indicates that at least some of the
35 37

ifotopc lines in the DC1 and DCI pure rotational spectrum are resolved.

Two other comments are in order. The last part of the interfero-

gram (x = 13. 5 cm) is shown, and the estimated signal (true variation about

average value of I(x)) to oise is about one. Also, there is a drift down-

ward (in intensity) of the interferogram. This is instrumental in nature

and is unimportant, since a long term drift (in x) correspond: ;, extremely

low wavenumber (frequency) components in the spectrum (0 to -2 cm-

in Fig. 24 are shown sei ;ed rtiok,8 ,L' the purc rrtational spectrum

of DC1. The J = 1-02 (21.5 cm 1), J = 2--o3 (32.3 cm I), and J = 3- 4

(43. G cm-) regions are shown. The J = Z-.3 transition is clearly split,

and it is evident that the resolution displayed .'; better than the separation

of the lines, which in 0 094 cm. The J = 1-.2 is not split but is definitely

asymmetric. The calculated splitting is 0. 063 cm" (Refs. 32, 33). The

theoretical resaiution of this run was 0. 074 cm . It is clear from the

=',.z than adequately split J = 2-*3 transition and the unresolved but

definitely asymmetric J = 1-42 transition that the theoretical resolution

is closely approached.

3. NITRIC OXIDE

Nitric oxide (NO) has been of ircat :ccicntific interest because of its

unique property of being a stable diatomic molecule having an odd number

oý electrons. (The pure rotational spectrum of NO is reported >i Ref 34.)

The -ro!•md etat- 'A NO in , 2 t-te w.hich in T' lit intro 2 , I and 4
I . . .. 3 / 2

components by spin-orbit interaction. The splitting is small (= IZZ cm

resulting in appreciable population of both components at room temperature.

The consequence of this splitting in the pure rotational spectrum of NO is

the appearance of two series of lines that can be assigned to the two compo-

nents of the -T state. Rotational constants can be -

but because of the perturbation by the iow-lying electronic state the con.ta.t._
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so derived are only effective constants which are combinations of the usual

rotational constants and additional terms due to the spin-orbit perturbation.

The mi':rowave spectrum cf NO was reported by Gallagher and

Johnson (Ref. 35), who determined the effective molecular constants for2 2
the 2I/2 state and calculated the constants for the 2r3/2 state. Favero,

Mirri, and Gordy (Ref. 36) more recently have reported the millimeter wave2
spectrum of the 23/2 state and derived constants for it. Recently there has

been a great deal of work in the near- and intermediate-IR spectral regions.

Arcas, et al. (Ref. 37) studied the 3-0 band of NO with a precision of -0. 03 cm. 1

Olman, et al. (Ref. 38) studied this band and also the 2-0 band with a pre-

cision of about 0.01 cm"I, Meyer, at al. (Ref. 39) studied the 2-0, 3-0, and

4-0 bands with a precision of better than 0.01 cm-I. James and Thibault

(Ref. 40) studied the fundamental region with a precision comparable to that

of Olrnan, et al. Palik and Rao (Ref. 41) reported results obtained in the

FIR spec*ral region with a precision of about 0. 05 cm"I.

Thu0 impui ....... In values of the effective constants

as determined by the numerous experimenters, and, in particular, the

effective rotational constants determined in previous IR investigations

(Refs. 37-41) differ significantly from those determined in microwave in-

vestigations (Refs. 35, 36).

Therefore, in order to resolve the discrepancies between microwave

and IR results, it was decided to re-investigate the pure rotational spectrum

ot NU at high resolution. Ti..-. r-, .. -,& 1i were determined once with

high resolution ( 0. 06 cm 1 ) and were corroborated by a lower resolution

( 0. 1 cm ) run. The precision of the line positions is estimated to be
-1

abolit 0. 003 Cm except at the high and low extremes of the spectrum

where the S/N was poorer.

The parameters for the high resolution run are as follows: The

S .t,•. wafs, ig . -a. diti~aUlt-aamp.dt_4.ý4&..nptical.pati. diufn_. . .

increments. Each point was sampled for 7 seconds to improve the S/N. The
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maximum optical path difference generated was 160 rnm. A total of 4000

points were recorded in the interferogram. The transfhrrred specitum was
-1

coraputed at 0. 02 cm Intervals

Air Products and Chemicals NO of 99. 0% purity was used. The

gas was addit-oonally purified by passing through a dry ice-acetone trap.

The sample was ilightly contaminated by NO 2 as was evidenced by its pale

yellow color when viewed through the cell. Some of the weak unidentified

features in the spectrum may be due to NO2 absorption. The sample was

contained in a 15-cm path length cell with crystalline quartz windows at

a pressure of 399 Torr at room temperature (298 0 K).

Figure 25 shows selected regions of the interferogram. Many

qualitative features of the pure rotational spectrum of NO can be deduced

directly from the interferogram. First, it can be seen that there are

actually two sets of signatures (denoted by the "a' and "b" sequence) that

are well separated beyond about 30-mn optical path difference. It follows

from this that the spectrum will consist of two sets of almost uniformly

spaced lines, the spacing for the "a" sequence being larger than that for the

"b" sequence. Second, the "a" sequence is distorting (smearing out) .*nore

rapidly than the "b". It follows then that lines corresponding to the "a" set

will show a greater convergence (because of centrifugal distortion and higher

order terms) than those of the "b" set. Finally, adjacent signatures in each

set are nearly inverted copies of each other, which indicates that the quantum

nurn'.er -S 'it. rxýrgy '--0 expres :-n is noninitegr. h" lvtct, since adjacent

signatures are completely inverted with respect to each othei , J is half-integral.

Figure 26 shows the sptctrum computed from the interferogram

shown in Fig. 25. The relative intersities of the lines are influenced by

the envelope of the source output spectrum and are not true indications

of the band contour. The source o-atput spectrum has been discussed pre-

viously. This run was not calibrated for intensity, but the shape! of the

source spectrum is very similar to that shown in Fig. Z0.
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Table 2 lists the frequencies of the lines observed and their assign-

ments, together with deviations from frequencies calculated using constants

derived from analyses of these data. Frequencies of peak absorption were

cormputed by the method of zero slope from the 0. 02 cm 1 interval computer

output. As mentioned above, the accuracy of the observed frequencies is

to. 003 cmr . The frequencies art quoted to 0. 0001 cm -1 Little confidence

is placed in the last figure, but it is included to offset roundoff errors in t'-e

comparison with calculated values. Transitions not used in the least squares

analyses are enclosed in parentheses,

Table 2. Observed Frequencies and Deviations of Calculated
Frequencies of Nitric Oxide

1/ a b, "3/2b
Observed, (obs -calc)a (obs'calc)b Observed, obab. calc)a (obs.calc)b

3 + 1/2 cm"1 Xl04, cm-nI xt0
4 , cm"1 cm

4l X10
4 , c- "I Xi04. cm"i

S (18.3926) +25 +24 (13,9079) -73 -78

6 11.7317 -19 -20 22.3500 .12 -16

7 25. 0754 -16 -17 25. 746 - 9 -16
!"8 28. 4ZZ 5 +2 1 ÷21 29. ZZO 3 +Z2 +IS5

9 31. 7640 + a + 7 32.6467 0 -6

10 35. 1071 + 8 + 36.0787 +16 +11

11 38.4503 +14 +14 39.5027 - 3 - I

12 41.7932 +21 +21 42. 9265 + 2 0

13 45.1322 - 7 - 7 46.3463 -4 -

14 48. 4753 +11 +1: 49.7639 - 2 - 2

is 51.814 - 7 - 7 53. 178 +. 5 + 7

16 55. 1552 + 6 + 6 56.588 - 9 + 6

17 58. 4923 -32 -12 59.9960 6 - 1

1i 61.8298 -17 -16 63. 3991 -10 - 4
19 65.167 6 - 5 - 5 66.800 8 + a +IS

20 6C $01 9 -IS -14 70. 198 5 +25 +31

21 71.6373 + 3 + 4 73.5869 -1 - 5

22 75. 1669 -17 -17 76.9733 -25 -Z!

23 76. 4 99 0 + 7 + 7 60. 350 -25 -25

24 81.68281 +27 +26 83.7404 +14 + 9

25 85.150O0 + 1 0 67. 1144 + 2 -10

26 (86.4764) +71 469 (90, 4826) -26 -47

27 (91.7845) -48 -51 (93.8565) +47 +12

aLeast squares analysis determining B 0 Do. and Ho

bLeast squares analysis holding S° at microwave value (2, Ref. 35;

2, 3/2' Ref. 36) and determining Do and Ho.
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The data were analyzed by computing a ieast squares fit to the fol-

lowing power series in (J + 1):

0 (J + 1) - (40D - 2Ho) U + 1)3 + 6Ho0 p !)5

where v is the frequency of the transition, J the quantum inumber of the lower

state, B the effective rotational constant, D the effective centrifugal distor-
0

tion constant, and H° the effective higher order distortion constant, which is i
not negligible for NO. Least squares analyses were made on each series

and on the difference frequencies between the two statee. It is felt that the

difference frequencies are more accurate than the frequencies themselves5  11
since the differences tend to minimize any errors in the wavenumber scale

such as might be generated by a phase erzo- ,e interferogram. 4
The first line in Table 3 sPowa the iesult of these analyses. The

errors given are 95% confiderce in'erv~lr. The dicrences between the ob-

served frequencies and thope :alcx latel ua3n• the constants determined by
h

-.. 1

Table 3. Effective RC. ade . ,oiviti-its of Nitric Oxide (in crn

Reference Ba ff(2 
r'I) Boeff( 2 ' AB sff( W /2_ T1/Z) Doeff(2 ) it______________________ . 3/2) AcfV 3/z D w 1 /2)

-- This work 1. 67185,O0.000081 .. 720178±to. 000062 0, 048323j 0. 000057 (3.4-t3. O)x10 4"7

-- This worka [1.-6718614] (1. 7196531 [0.04779172] (3. o+.1. 4)xI0"7

-- This workb [(1.6718614] [1.o7202435 (0.04838213)] (3.,6+ 1. 4.0") 7

35 Microwave 1.6718614 1.7196531 I. 13x10"6

36 Microwave 1.,7202435

40 Nea.-IR 1. 672Z90. 00025 I. 7Z014+ 0. 00025 (7. 728+ 3.3rv7!067

37 N•,-r IR 1.67199 1.71958 1.77xi0"6

38 Near-'R I.67233±0.00019 1.7201210. 00018 (1.6+0. 3)xIO" 6

39 Near-IR 1,67223 1.72002 1 5x10 6

01 FIX 1.6'20 1.7198 1.8xl0' 6
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these analyses are shown in the third and sixth columns of Table 2. The

average deviations from frequencies used in the analyses for either state
-1

aro about £L0. 0012 cm . Since the analyses reproduced the microwave

rotational constants so well, it was decided to use the microwave values of

the effective B 's and perform least squares analyses for the effective D 'so o

and H0 's; The results of these analyses are shown as the second and third

lines in Table 3. The second line is the result of using Gallagher and

Johnson's (Ref. 35) values for both Bo( Tr1/2) and Bo0( r3 /2). The assumed
values are given in brackets. ýThe constants of the z •3/2 state derived ,

by the analysis reproduced the observed frequencies with significantly

greater deviations of a nonrandom character than the constants given in

the first line, indicating that the value of Bo(2 n3/Z) calculated by Gallagher

and Johnson is in error. The third line is the result of using Gallagher

and Johnson's (Ref. 35) value of Bo( Tr1/ 2 ) and Favero, Mirri, and Gordy's

(Ref. 36) value of B ( 2r 3 /2 ). The constants derived from these -nalyses

Table 3, Continued

z z3/ 2 2f . f(

Deff 3/Z Deff( 2  - "1/2 0 H0eff( 1 ' o 3/2, 0o f3/2- 'l/2)

(10. 24-0. 23)x10 6  (9. 90j.0. 2I)xl0" (- 1. 42.(,. Z5jxl0" (+ 1. 00+ 0. L3)xlO- (÷2. 42±0. 21)%10

(8. 51±0. 40)x10"6 (8. 14+0. 40)xIO" (-1. 40±.0. 18)x10" 9  (-0. 51±"0. 53)x10"9  (+0.89±0. 54)x10 9

(10.464-0. 1Z)x10 6 (10. 10±0. 10)xl0 (-1.40± 0. 18)x 10-' (+1.19±0. 15)xl0"9  (+Z. 59k.0. 14)x10" 9

10. 64x1"O

(10. 70.±0. 19)xl0"6  -2. 091xO_9 (calc) +2. 093xl0"9 (ca'c)

9.77xl0"(

(9ý 5+0. 3)xO" 6

9.3xlO6

10.0xi0"6

aConstants derived by assuming the microwave values of B from Ref. 35

and performing least squares cvlculat-ons ^n dateroniiD 0 and H 0o O

bConstants derived by aswuming the micsow&vt value , 9 rf3f(,( ,) fr' -n
Ref. 35 and B eff(

2
,r, ) from Ref. 36 and performing le at sqW.IIe cal-

culations to dAermliis , and H.
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have significantly smaller confidence intervals and reproduce the observed

frequencies as well as the complete analysis. The differences between the

observed frequencies and those calculated using the constants given in the

third line are given in the fourth and seventh columns of Table 2. The aver-
-l

age deviations for either state are about 0. 0012 cm , the same as for the

complete analysis.

The values of the difference constants are also included in Table 3.

It should be noted that the confidence limits are smaller than for either

state separately. This corroborates the belief that the difference frequencies

are known better t•.an the frequencies themselves. Finally, ,'able 3 includes

a tabulation of constants derived by other experimenters given the spectral

region in which data were obtained.

Once the values of the effective constants have been determined, the

unperturbed ground state rotational constants can be obtained from them.

Using the formulation developed by James and Thibault (Ref. 40) the true

constants are given by

B = I/Z (B + B -3D)0 ol o2 0

Table 4. Rotational Constants of D0 = /2 (Dol + D 2)

Nitric Oxide
H = I/2 (H + H)

0 ol oZ

B0 = 1. 696008 j0. 000072 cm" I where the subscripts I and 2

_denote the 2 1/2 and 2W3/2

D0 = (5. 29 .0. 27) x 10"6 cm"- states, respectively. The con-
stants obtained from these re-

H = (-2.1 2. 6) x 10" 1 0 cm I lations are given in Table 4.

The errors quoted are approxi-

mately 95% confidence )imits.
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One constant of NO which is of great interest is the spin-orbit

coupling constant, A . The conventional relation (Ref. 40) used for calcu-

lating A0 is

00

BBZ0
BOz 0BoM [A0(A0 4Bo0)] I-/z'

Using the values of these constants given in Tables 2 and 3, one obtains a

value of A of IZZ. 49 cm- But, as James and Thibault (Ref. 40) have0

pointed out, thij formulation is incorrect, They derived a rather extensive
series of equations from whi ch the correct value of A can be obtained. Un-

'ortunately these equations depend strongly on the values of Do0 l, D0 2 , and

D0, constants which have not been well determined. Using these equations

for A0 , a value of 128.6 cm" is obtained. Little confidence can be placed

in this value, however, for reasornj stated above. Information obtained in

the vibrational spectrum of NO, namely the difference in band origins of

the satellite band and the 23/2 " 23/2 band, gives a direct measure of 60.

The value of A is very sensitive to this parameter. A is related to 6° by

the following equation (Ref. 39):

Ao= [62o+ 3(Bo+ 3 Do /21 + ZB

Using James and Thibault's (Ref. 40) value of 6 O 119.732 cm", and the

values of B 0 and D from Table 3, one obtains a value of A of 123. 1600 cm-l

The accuracy of this value is limited by the precision with which 60 is known.

The inaccuracies of the other constants are in the fifth and greater decimal

places.

Included in Table 3 are valuts of the effective rotational constants

obtained in the other investigations. It should be noted that our value of
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B 0 (2 n 1/ 2 ) reproduces the microwave value of Gallagher and Johnson (Ref. 35)

well within our experimental uncertainty. Our uncertainty does not bracket

any of the other IR values of this constant. It should be pointed out that in

two of the near-IR investigations (Refs. 38, 40) the data were not analyzed

using the well-known combination difference irlations 7, but rather were

directly analyzed in terms of a power series in J whose coefficients are

combinations of upper and lower state constants. This type of analysis

suiffers the usual drawbacks of data fitted to a high order polynomial, many

coefficients of which are small. The other near-IR investigations (Refs. 37,

39) did use conm-ination relations.

Our value of B( 2T3/ 2 ) is bracketed by the two microwave values

and does not overlap either within our uncertainty. No uncertainty was

quoted with either microwave value. We are very close to the value of

Favero, et al. (Ref. 35). However, when the microwave values of the

effective Bo 0 's were used in the least squares analyses of our data, only the
effective B of Favero, et al. (Rei. 35) gave good agreement with observed
frequencies and, importantly, the agreement using their value of Bo( 23/2)

was no different than that using our value.

The values of the centrifugal distortion constants are much less

accurately determined. In general, the value of D (2 r3/,) agrees with other

values, u 10 X 10 cm . The uncertainty of this value is of the same order

as that given for other values. However, the value of Do (2I/2) is con-

siderably lower than any other. This value is the least well determined of

all the effective constants. One overriding factor with respect to both Do

and H0 is that our data are the only data accurate enough to allow significant

7 Because many of the lines in the vibration-rotation bands were not resolved
or were blended with overlapping water vapor lines, the authors of Refs. 38
and 40 felt there were insufficient combination relations involving
unblended lines to permit an accwrat,: analysis.
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determinations of the effective higher order dist,ý,7tion constants, H . Our
values of the effective H0 Is agree in sign with the calculated values of James

and Thibault (Ref. 40). Their data were not accurate enough to permit a

significant experimental determination of these constantb.

4. WATER VAPOR

H. M. Randall's 1938 review article (Ref. 42) on FIR spectroscopy

aptly described the FIR absorption spectrum of water vapor as "a complex I
and apparently chaotic arrangement of lines. " Since the first observation

by Wright and Randall (Ref. 43) in 1933 of a water vapor spectrum in which

rotational structure beyond 100• was resolved, the pure rotational spectrum

of water vapor has served as a test of instrumentai performance and a

background with which nonvacuum spectrometers have had to contend.

Early workers (Refs. 43-45) in the FIR spectral region were able to
-1 0

achieve a resolution of up to 0. 5 cm in their observations of the spectrum

of water vapor. However, using those results the energy levels, and hence

rotational constants, could not be determined as accurately as possible

from the ntar-IR vibration-rotation spectrum. Therefore, observations of

the pure rotational spectrum of water vapor were used only for illustrations

of instrumental performance and secondary frequency calibrations for the

FIR. No further analysis of the spectra was attempted. Genzel and Eckhardt

(Ref. 46) first reported the very far (beyond Z00i) IR spectrum of water

vapor in 1954. Since then there have been many papers (Refs. 47-55) on the

FIR spectrum of water vapor; however, none with resolution comparable to

that obta.inable in the near-IR vibration-rotation spectrum. Four separate

measurements of the spectrum were made using a cell with 15-cm absorbing

path length and with pressures of 7.5, 10.0 (2 runs), and 16.5 Torr at room

temperature (Z98°K). The modular resolutior of the four runs was between

0. 06 and 0. 09 cm

The parameters for the runs are as follows. The interferograms

were digitally sampled at 40-v optical path difference increments. Each
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point was sampled for 5 to 7 seconds (constant for a given run) to improve the

SIN. The maximum optical path difference generated was between 114 and

160 mam. Between 2850 and 4001 points were recorded in each interferogram.

The transformed spectrum was computed at approximately 0. 02 cm1 intervals.
-1

Figure 27 shows the spectrum from 5 to 125 cml computed from one

of the interferograms. This spectrum was obtained with 10. 0 Torr pressure

(2983K) in a 15-cm cell and has a modular resolution of 0. 063 cm-1 The

relative intensities of the lines are influenced by the envelope of the source j
output spectrum and are not true indications of actual intensities. These

runs were not calibrated for intensity, but the shape of the source spectrum

is very similar to that shown in Fig. 20.

Below the spectrumn are shown the calculated (Ref. 56) frequencies and

relative intensities for pure rotational transitions of water vapor using the

energy level scheme of Gates, et al. (Ref. 57). These relative intensities

have not been normalized to the source spectrum.

Figure 28 shows details of two portions of the spectrum illustrating
-1

the resolution attained. Figure 28a shows the triplet at 38 cm The

calculated separation of the 541 - 634 (38. 6421 cm") and 3 12- 321 (38. 7916

cml) transitions is 0. 149 cm- 1 Figure 28b shows the doublet at 59 cm 1.

The calculated separation of two components is 0. 0678 cm-. These results

are the first published to resolve this doublet.

Table 5 lists the frequencies of the lines (in cm' ) observed and

their assignment, together with calculated frequencies, calculated relative

intensities (Ref. 56), and observed relative strength. The calculated fre-

quencies were computed from energy levels determined in this study. The

calculated relative intensities are normalized to 100 for the 303'-31Z transi-

tions at 36. 6055 cm-, the line of greatest apparent intensity in our spectra.

The relative strengths are rough guides of apparent intensity, and therefore

precision, of the lines as observed in our spectra. Whenever possible,
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Table 5. Pure Rotational Transitions of Water Vapor

Observed Calculated Calculated
Frequency, Frequency, Relative kelative

cm -1  cm 1  Strength Intensity Assignment

18.5706 (47)* (18. 5706)** M 13.7 101--1 10

25.0855 (19) (25.0855) S 15.1 202--'2 11

30.5568 (45)2 30. 5601 W 0.8 3 31"-422

323655 (42) 32.3649 W 1.2 4 31-524

32.9512 (10) (32.9512) S 6.6 1 11- 202

36. 6055 (15) (36. 6055) S 100.0 303- 312

37.1371 (7) (37. 1371) S 4.4 0 00-- 111

38.4650 (3) 38.4682 S 10.9 2-z 31

38.6421 (79) 38.643 W 2.2 541-634

38.7916 (18) (38.7916) S 108.6 312-l321

40. 2830 (10) (40. 2830) S 43.6 413- 422

40.9873 (6) (40.9873) S 20.9 211- 220

42. 6330 (34)2 42.62 . W 0.7 652- 743

43.2500 (34) 43.Z4 8  W 0.8 734 -827

44.0989 (20) (44.099) M 5.2 5 32-- 6 Z5

47.0529 (29) (47.053) S 135.7 514523
4 8 . 0 6 0 2 ( 5 8 ) (48.060Z) W 1.0 633 726

51.4376 (57) 51.4338 W 1.4 54Z - 6 33

53,4446 (20) (53. 4446) S 54.3 404 '4 13
55.4063 (16) (55.4063) S 79.1 212--221

55.7046 (78) (55.7046) S 113.0 101 -- &12

57.,Z690 (31) (57.2690) S 175.7 z12 -3 03

58.177Z2 (32) (58. 7722) 5 34.5 6244- 6633

Ss. 900 (79)3 58.890 W 1.5 642- 735
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Table 5. (cort)

Observed Calculated Calc alated
Frequency, Frequency, Relatf e Relative

cm cm Strength Intensity Assignment

59.8i1 z (48) j59.871) 41.8 615 -. 6Z4

59.9393 (44) (59.939) S.63.3 7Z5 -734
62.3008 (19) (62.301) S 149.2 5 53 .- 532

62.8713 (.)1 62.841 w 1.3 752 -- 845

64.01C 4 (31) f64.Q0?8j S55.3 3 13 - z

64.040 Izz. 4 32 - 523
67.2408 (Z6) (67. A40) M 1Z.0 8z6 -- 835

68.0598 (42) (68.059 8) S 57.1 4 22-431
69. 1918 (24) (69. 1918) S 30.1 3z2 -413
72.1861 (16) (7Z,1861) S 116.5 202--313
73.2591 (3Z) (73.2591) S 127.4 3 330

74. 1080 (30) (74. 108) S 206.0 505 514

74. 8753 (73) (74.875) M 4. 1 7 -83543 36
7 5Z32 (24) (75. 5z) 2 233.4 4 4

14 23
77. 3d18 (38) [77.3Z] -** M 12.8 936-945

78.1936 (30) (78.193) S 101.6 76 7

78.9147 (Z6) (78.9147) S 47.4 3Z-331

79.7754 (19) (79.77 4) S 180.8 313 -4 04

80.9975 (37) 181.001 M 18.0 9Z?7-936

81.6175 (43) (81.618 ) M 11.0 8 35-8 44

8Z. 1528 (Z8) (82. 15Z8) S zz2. 4 2Z3 -- 43Z
85. 6Z9, (37) A8 5 . 629) M 11.1 643 -7

I9 43 181 - 34
85.7834 (_) 185.801 W 38 11 47

87.7594 (32) (87.7594) S 78.1 5Z4 533
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Table 5. (cont)

Observed Calculated Calculated
Frequency, Frequency Relative Relative

-1 -1
cm cm Strength Intensity Assignment

88.0774 (261)j 8'.0791 S 706.8 3 03- -414

88. 8771 (51) (88.878) M 70.0 734- 43

89W5818 (513) (89.5818) M 86.2 15-5

92.5155 (24S)t 92.5403 M 26Z. 0 1 -2

10 21
96.067, (99) (96.067) M 198.7 625 - 6

25 34

96. 212 8 (32) 196. 18681 M 169.7 6 06-.6 11
96. 246 J 40.6 633 - 642

98.8006 (40) (98.8006) 21.8 5 33-62

99. 0668(179) 99.0241 M j83.9 i 2I24

199. 14c 1 Z75.8 423 -- 514

100.021 0 (54) I9 j9. 9 6) . 14-l15[9.98] Z3. 7 81 --- 8P6

100. 5zl9 (Z56) 1iO0"z. M1, 3.1 1028 -40 1 7

1100.555 
975.5 4 148 "5 05

101.5Z34 (84) (101. Z3) M 160. 5 5 --440

4 3 32 41
104. Z884 (61) (104. Z884) W 44.4 4 44

104. 5705 (39) (104. 5705) M 359.0 404 -15

105. 1133 (.1 (105. 12) W Z.2 854 -9

1105, 637 6(79) 1105 . 6S 23. 6 32~ > 41
105. 658 I23;.2 616 "'25

106. 139 0 0{5) ('106. 139 0) W 58.0 5 33 -- 47"

107.0756 (96 (107. 0756) W 47.7 7 35

107. 738z (54) (107.73 w 148.2 6 -62 834 43

1I1.1207 (139) IM 101 M 335 44

111. 128d 27., -3z

-- 172. 11 22
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Table 5, (cont)

Observed Cakulaied Calculated
Frequency, Frequency, Relative Relative

c-rn M Streugth Intensity As signment

116.5959 (70) (11.. j96) W 57.7 836 -8A5

117.0678 (154) [117.07] W 13.1 945 -- 954

117.9666 (51) (117.967) W 173.6 '07 -- 716

120,0838 (134) (120.0838) W 418.9 5t5 -.-606

120.5049 (142) (120.505) W 89.2 827 -836
121.2913 121.90 W 1303.3 5 -6

12.18 3 03 - 16

( ) average deviation for four observations in 0. 0001 cmr 1

""*( ) tr'--nsition used in the determination of the enerzy levels
[ ';•* []calculated from the energy levels of Ref. 57

I line width very pressure sensitive, frequency quoted is

from the lowesL p! :ssure observation

1 oi~ly observed in one spectrum

only cbserved in two spectra

only observed in three spectra
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38.20 0.40 0.W 0.9 90 59.60 0.80 60.00 0.7-0
V (cm-1)

Fig. e.8. The 38.6 and 59.-9 cm r1-gion of the pure rotational spectrum

of water vapor. The circles are the intensity points computed
from the inteý:ferogram.

strong and mediumn lines were uIsed in the analysis. The frequencies of peak

absorption were computed by the method of zero slope from the computer

output. The accuracy of the observed frequencies for strong and medium

lines is estimated to be ±0. 003 cm" I and slightly more for the weak lines.

Frequencies are quoted to 0. 0001 cm" and slightly more for the weak lines.

Frequencies are quoted to 0. 0001 cm- only to offset roundoff errors in the

analysis. Little confidence is placed in the last figure.

The transitions listed in Table 5 were assigned from calculations based

on the energy levels of Gates, et al. (Ref. 57), which were the most recent
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complete set of energy levels published. Once the transitions were assigned,

new values of the energy levels could be determined by adding up transitions

through the levels from the ground state.

Since the water molecule is a b-type asymmetric rotor, selection rules

allow only ee--oo and eo-.oe transitions, where e and o refer to the evenness

or oddness of the limiting prolate and oblate symmetric rotor quantum nurn-

bers. This is reflected in the spectrum by two independent sets of transi-

tions. The eo and oe sets cannot combine with the oo and ee sets. Hence,

the eo and oe sets cannot combine with the ground state, which is ee.

This results in the Iol level being the lowest state of the eo and oe levels.

The energy difference between the ground state, 0 energy level and the 101

energy level cannot be determined directly. Fortunately, the sum rules of

Fraley and Rao (Ref. 58) make possible the calculation of this parameter.

Fraley and Rao (Ref. 58) have developed a set of sum rules for ortho-

rhombic asymmetric molecules that are very useful in the analysis of the

pure rotational spectrum of water vapor. These sum rules are:

( 1 )J (ee + eo- oo- oe) = A (T 0 + T ) + 3(aaaaaa)
J(J +l) o (I aaaa aa

+ J (J 4. 1) [ T° - 3(aaaaaa)]

+ 2(J + 1) (&aaaaa) (13)
J j2(j + l)(oaaa -(1-3) 1 00

)J (e +oo-eo-oe) = Bl 0 (T bbbb+ Tbb) + T bbbJ(J+ 1) (14)

J (ee-+-oe- eo-oo) = o1 0 + + T0 J(J+ 1) (15)
(l)0J(J+ 1 = o i(T cccc Tc) + cccc
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(ee + oo + oe+ eo) ( + C= (T0 + T1 + T0 +T
7 J(J+) )(Z +"I) 0 A+B0 ( aaaa aa bbb1.b bb

+T +T ) + (aaaaaa) + J(J + 1) (3Ta
0 0cc

+ 3T0  + 3T0  -2T 0  2ZTbb -ZT 0
bbbb cccc aa bb cc

S(aaaaaa)] + J (J + 1) . (aaaaaa) (16)

The notation ee, for example, stands for the sum of all energy levels of a

given J whose limiting prolate and oblate symmetric rotor quantum numbers

are both of even parity. A0 , B0 , and C are the rotational constants associ-

ated with each of the principal axes of the molecule. Taa To0 etc., areanna' Taa'et. e

the quartic distortion constants. (aaaaaa) is the higher order distortion

constant. Similar terms for (bbbbbb) and (cccccc) would be added to Eqs. (13)

through (15) if analysis showed them to be necessary.

Combinations of these sum rules give four sets of four simultaneous

equations, with the energy difference A between the 000 and Iol energy levels

as one of the unknowns. This was done for the transitions presented here

giving the result A = 23. 7913 + 0. 0016 cmrnI as the average for the four

sets of equations. This agrees well with the value quoted by Gates, et al.

(Ref, 57) of 23.79 cm" 1  Having this value, we can calculate the energy of

all the eo and oe levels relative to the true ground state.

Because some of the transitions observed here were analyzed as blends

of very closely spaced lines and, thus, are unsuitable in the determination

of energy levels and since it was desirable to extend the calculations to

J = 7, it was necessary to use transitions observed by other experimenters.

Thet ! are listed in Table 6. Two of these are microwave transitions (Ref.

59) and are more accurate than our measurements; seventeen others were
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Table 6. Other Transitions Used to Derive Energy Levels

Frequency, Calculated

cm-1  Frequency, * Assignment Ref.c m c m " I

0.7416830 0.74 5Z3-'616 59

12.68200 12.68 321 14 59

314.74 314.74 312 -- 441 5Z

340.55 340.55 726--'835 52

349.77 I349.79 661 "7 70
1349.79 660 "771

384.88 384.86 615 is-744

385.54 385.52 4 14 "5 41

396.44 396.43 717-'8Z6

426.33 426.31 42 2-'551

431.16 431.14 5 15--642

441.75 441.75 423--5 50

442.09 442.10 523--'652

456.87 456.88 624--753
472.39 472.41 5 46

506.94 506.93 625--7 52

536.25 536.26 532-'661

541.07 541.07 533 -0660

554.63 554.64 633 "762 51

567.23 567.23 634 "761 51

*Energy levels, Ref. 57
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taken from the spectra of Rao, et al. (Ref. 5Z) and Blaine, et al. (Ref. 51)

in the 300 to 600 cm region. These transitions were unassigned in the

original papers. They were chosen and assigned on the basib of freq-tency

and relative intensity calculations (Ref. 56) using the energy levels of

Gates, et al. (Ref. 57). The transitions were chosen when calculations indi-

cated that a single, relatively intense transition should occur we"l separated

from its nearest intense neighbors. As can be seen in Table 6 the lines
-1chosen agree with calculated values to within 0. 02 crr." , the quoted accuracy

of the other spectra. However, since the accuracy of these frequencies is

lower than our measurements, the energy levels derived using these transi-

tions are quoted to one less significant figure.

The energy levels derived from these calculations are given in Table 7,

together with values obtained from near-IR vibrational- rotational spectra

(Refs. 57, 60, 61). The accuracy of levels determined solely from transitions

measured in this work is estimated to be ±O. 003 cm- These energy levels

are indicated by four figures after the decimal point. Energy levels which

were determined using transitions from higher frequency spectra are indi-

cated by three places after the decimal point and are estimated to be accurate

to;£0. 02 cm- 1 . The energies of the 65Z, 651, 661, and 660 appear anomalous.

Perhaps there was an error accumulating in one of the two series that be-

came obvious only in these almost degenerate levels; or perhapa one of the

transitions used in the determination of these levels was misassigned. In

general, though, the agreement in the values of the energy levels betweeA

this work and the near-IR data is good.

Having determined a complete set of energy levels up to J % 7, we

can calculate frequencies of other transitions which were not used in the

calculations. Table 8 shows a comparison of obser-wed and Calculated fre-

quencies for three microwave transitions (Ref. 59). The agreement is

within the quoted accuracy of the energy levels. Also, in Table 5, a similar

comparison can be made for FIR transitions. Again, the agreement is good.
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Table 7. H2 0 Energy Levels (cm )

Fraley Benedict Gate a
JK 1 , K+IThis Work (Ref. 60) (Ref. 61) (Ref. 57)

0 0.0000 .000 .00 .00
00

101 23.7913 .792 .79 .79

111 37.1371 .132 .13 .13

110 42.3619 .366 .36 .37

2 70.0883 .085 .08 .08
023

Z-.- 79.4959 .486 .48 .48

211 95.1738 .167 .15 .17

221 134.9022 .890 .91 .91

220 136. ll1 .153 .15 .17

303 136.7649 .751 .77 .77

313 142.2744 .263 .26 .28

312 173.3704 .353 .36 .36

322 206.3026 .280 .28 .30

321 212.1620 .137 .16 .15

331 285.2173 .ZI1 .25 .23

330 285.4211 .410 .40 .43

404 222.0498 .037 .04 .06

414 224.8440 .817 .83 .83

4 275.4944 .481 .52 .52

423 300.3672 .333 .34 .35

4 315.7774 .756 .73 .79

4 382.52O0 .495 .49 .52
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Table 7. (cont)

Fraley Benedict Gates
K,K+ This Work (Ref. 60) (Ref. 61) (Ref. 57)

431 383.8372 .821 .83 .85

441 4 8 8 . 1 1 0 .110 .16 .10

440 488.1256 .136 .17 .13

505 325.399 .328 .36 .35
515 326. 6203 .601 .64 .64

514 399.507 .440 .45 .46
5 24 416.2021 .174 .18 .22

523 446.560 .487 .50 .50

533 503.9615 .938 .98 .00

532 508.861 .782 .80 .81

5 42 610.100 5 .108 .12 .12
541 610.384 .334 .34 .35

51 74Z'107 .071 .08 .10

5 s 742.117 .074 .08 .10

606 446.7041 .671 .66 .71

616 447.302 VAM .24 24

6is 542.8909 .873 .87 .91

625 552.960 .880 .92 .92

624 602.7621 .728 .67 .77

634 649.027 .95Z .97 .97

633 661.5343 514 .56 .56

643 756.765 .704 .72 .75

64Z 757.780 .77 .78

652 888.65o .602 .61 .60
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Table 7. (cont)

Fraley Benedict Gates
K.I,K+I This Wcrk (Ref. 60) (Ref. 61) (Ref. 57)

651 888.592 .635 .65 .63

661 1045.111 .045 .09 .07

660 1045.032 .045 .09 .07

707 586.295 .213 .28 .26

7 586.464 .449 .43 .48

716 704.262 .194 .18 .22

7Z6 709.5945 .558 .58 .60

725 782.455 .383 .41 .40

735 816.6701 .671 .65 .72
734 842.394 .334 .36 .38

744 927.771 .723 .76 .77
743 931.27V .228 .23 .22

753 1059.632 .62 .65

752 1059.900 .824 .83 .85

7 1216.164 .199 .19 .20

761 1216.257 .199 .19 .20

771 1394.80z .815 .91 .86

770 1394.881 .815 .91 .86

827 885.642 .569 .62 .62

826 982.904 .92 .91

836 1006.147 .090 .14 .12

835 1050.144 z0 .15

845 1122.74 .694 .78 .72

8 1131.76Z .78 .76

44,-
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Fig. 29. The sum rule plot for the "a" axis of the vsater molecule.
The quantity F27.70 - 0.O2J (J + 1) 1 cm has been sub-
tracted from turns to make the curvature more apparent.
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Fig. V0. The sum rule plot for the "b" axis of the water molecule.
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Fig. 3 1. The sum ratle plot for the "c" axis of the water molecule.
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Fig. 32. The sum rule plot for the combination of all axes of the
water molecule.
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Table 8. Comparison of Observed and Calculated Microwave
Transitions of Water Vapor

Observed Calcultted.
(Ref. _?9), crn- Assignment

cm

6. 114549 6. 1133 220 - 3,3

10.84596 10.8429 422 -- 515
14.94370 14.9461 330 -- 423

Also, vrith a complete set of energy levels the sum rules of Fraley

and Rao can be used to determine the rotational constants. Plots of the sum

rules are shown in Figs. 29 to 32. Only the plots in Figs. 29 and 32, vihich

are associated with the a-axis of rotation, show significant curvature. This

indicates that the data can give a significant value for the higher order dis-

tortion constants only for the a-axis (aaaaaa).

Least squares fins to the sum rules shown in Eqs. (13) through (16)

resulted in the values shown in Table 9. The errors quoted are 95% confidence

intervals. The iollowing formulas (Ref. 58) applicable to planar ortborhombic

molecules are used to obtain the remaining quartic distortion constants and

the rotational constants:

B /A 2 (\)
aabb T: -cc

Tbbbb "I--e/

( 
)



Table 9, Parameters Derived from Least Sqaares Fits
to the Sum Rules of Fraley and Rao (cm-1)

A T o Z= . 8801 :L 0. 0034

B T TA = 9. 5134 0. 0090

10Co' c 9. Z813c 0. 0021

T0  = -0. 0084 0. 0012
aaaa

Tb0 = -0. 0083 0 0012bbbb

-T = -0. 00107 - 0. 00027

(aaaaaa) = (6.89 10. 26) x 105

(bbbbbb) m (cccccc) s 0

Ao+ B 4 Co 31.6742;0. 0027

T° + To T --000829
aý4 bb cc

(&aaaaa) + (bbbbbb) + (cccccc) (6. 02 j 0. 98) X 10"5
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"I" e e ) 1
aacc aaaa Tbbbb 2B "cccc

See e e)

r bbbb Tcccc

T• T° T T° T (0
bbcc 2 A / b \-ZB 2C

'o - 0(a 0

The subscript e refers to equilibrium values of the rotational constants that

are related to the ground and excited state constants by relations of the

following type:

A v- A ai(v + y (21)

wherp v is the vibrational quantum number and sum is over the fi ndamental

vibrations of the molecule. The a's and equilibrium rotational constants

were evaluated by weighted least squares fits to our values of ground state

constants plus approximately 40 excited-state constants given by Benedict

(Ref. 62). The resuilts of these analyses are given in Table 10. With these

values of the equilibrium rotational constants, the remaining quartic dis-

tortion constants and the ground state rotational constants can be caiculated.

The results of these calculations are given in Table 11. The errors quoted

are 95% confidence intervals. The values of the ground state rotational

constants (Rel. 62) as determined from the vibrational-rotational spectrum

are also included. The agreement is excellent. Also included are calculted

values of the six quartic distortion constants. These were calculated from

relations given by Kivelson and Wilson (Ref. 63) between vibrational force

constants and the distortion constants. The force constants were determined
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Table 10. Equilibrium Rotational Constants
(cmrn1)

A = 27. 1107
e

B = 14. 5922
e

C = 9.5120
e

A B C

CL 0.%0168 0.2075 u, 1694

CL -3.4957 -0.1561 0. 1387

C3 1. 1418 0. 1096 0. 1467

from the harmonic frequencies of H 0 and D.0 given by Benedict, et al.
2 D0

(Ref. 64). The agreement between observed and calculated values of the

quartic distortion constants is quite good. It should be noted that the six

values are not linearly independent. They are linear combinations oi four

independent values.

5. LINE WIDTH

a. Direct From Interferogram

As was mentioned previously (Sections II and III-A) the fall-off of

intensity in an interferogram is due in a large measure to the width(s)

of the lines in the spectrum. If the lines of the spectrum are very nearly

evenly spaced, then it will be the signatures that are dampled out as

-exp - Z•wx (Ref. 22).

A number of interferograms (conditions of different pressures) were

obtained for CO in a 15-cm absorption cell (see Fig. 19).
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Table 11. Ground State Rotational Constants
of the Water Molecule

This Work Previous Work (Ref. 62)

A = 27, 8761 ±; , 0034 27.877

B0 = 14.5074 + 0. 0090 14.512

C = 9.2877 to0.0021 9,285
0

This Work Calculated

Ta = -0. 1084 £0. 0012 -0. 1088aaaa

Tbbbb = -0. 0083 0. 0012 -0.00672

T° = -0. 00107 ; 0. 00027 -0.00093cccc

T° 0 +0.01985 +0. 01846aabb=

T°0 = -0.00491 -0. 00515

T°b = -0. 00108 -0, 00077
T° 0 -0. 01602

aa

0

Tbb -0.02368

T° = -ý0. 02584

[aaaa] = (6. 89 t 0. %6) x 10 5

(bbbbbb] w(cccccclo 0

NOTE: Only four of the T 0  are independent, the others being linear
ci.py 6

combinations of these.
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Inthe analysis of the signa- - - '

tures, the intensity was taken as

the average between the largest

maxima and two adjacent minima.

The first through the ninth sign&- L*.

tulmewere used. The zeroth sig- ' 04

nature was not used because any 1.8

imbalance between the reference si

beam and sample beam would be

most evident here (i.e. , in the 40 U s U U 1.0 ,.14 ,.6 ,., U it

neighborhood of x= .0, zero opti- ,,ihSPIU "O uMu

cal path difference). Signatures Fig. 33. The natural logarithm of
the reduced optical path difference

beyond •.he ninth were not used for CO (I = 15 cm, p = 521 Torr).

for reasons die cussed later in this

section. The. resulting inteisities were normalized to the first signature in-

tensity and then the natural logarithms of these relative intensities were

plotted as a function of x. (The

x's were taken where the largest

maximum of the signature occurred.)

The resulting graph is a straight

line, within the experimental error,

and its slope is ZwrE. A typical re-

-- sult is shown in Fig. 33.

This procedure was carried

S"IW4out for four runs at pressures of

52 1. 440, 375, and ZS4 Torr. The
e's obtained were: 0. 065 jO. 004,

0.057 10.003, 0.047±0.005. and
0. 033 0, 004 cml, respectively.

Fig. 34. Linewidth parameter These results are shown in Fig. 34,
versus pressure for CO.

where E is plotted as a function of
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pressure. The result is a straight line whose intercept is the origin, within
-4 -iexperimental error. The slope is e/p =((1.27 * 0. 1z) × :0 cm /Torr.

The microwave value for e/p is (0. 17 * 0.07)X 10- 4 cr' I/Torr and the

microwave data (Ref. 65) were obtained at a pressure of less than i Torr.

Although the two results are in agreement within the experimental error, the

discussion to follow will show that the value obtained from the interferometry

data should be larger than the microwave value and indeed represents an

average upper limit for this parameter.

In general, this method is subject to the fo•lowing systematic error@:

First, the signature shape is distorted because CO (or any othe-

molecule for that m. qter) is not a rigid rotor, Thus, its pure rotational

spectrum consists of lines that are not exz.ctly equally spaced in wavenumber.

(If the rotational lines were exactly equal'y spaced, the signatures would be

symmetric and undistorted.) The lines converge slowly due to centrifugal

distortion effects, and this is su-ficient to distort the signatures so that the

fall-off in intensity is greater t6,an is expected from the exp(-Zuxc) factor

alone. The method used for neasuring the intensities compensates for this

distortion to some extent; however, comparison between calculated signature

shapes including and negleci ing the centrifugal stretching term indicate the

intensities of the higher signatures (Sth, 9th, etc. ) were underestimated by

-5% (Ref. 22). The distortion of tht signatures becomes more pronounced

as one gnee to higher signatures at larger x.

Second, the lines are assumed to be Lorentzian with a Lambert-Beer's

Law for absorption. That is I = v)L where -y(v) is the Lorentz line

shape function and L is the absorption path. In Ref. 22 it is shown that,

when the exponential is expanded in a power series, the effect of the higher

order terms (3rd and beyond) yields a factor that will decrease the intensity

of the signatures in addition to the exp(-Zrxc) factor. Again this becomes

more important as one goes to signatures at larger x.

Because of these two errors, only signatures one through nine were

used in the analysis, that is, signatures of relatively small x.
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Third, in general the lines will have different widths because of

possible rotational resonances (Ref. 66) and Doppler broadening. For a

temperature of 295K, ed(J = 0 - 1) -0.05 X 10-4 cm"I and the J = 19-- ZG

transition, it will be -~1. 0 X 104 cm -i. Our measurements were at pressures

corresponding to t of 0. 03 to 0.07 cm' ; therefore, the Doppler broadening

is negligible.

Fourth, there is the problem of instrumental broadening (in interferom-

eters due to finite entrance and exit apertures, and the usual optical problems,

parallelness of the two grating faces, etc. ). The corresponding problem for

conventional spectrometers is a very great one and in fact extensive "slit

width" corrections must be made, since often the width of the lines under

investigation is much narrower than the band of radiation passed by the

entrance and exit slits. From the data presented here (i. e., the fact that

the # vs p curve extrapolates through the origin well within the experimental

error), it is apparent that any instrumental broadening it within the experi-

mental error.

The result obtained may therefore be considered an average upper

limit for the line width parameters of CO, as all the major systematic errors

tend to give a larger 4 value.

b. From the Spectrum

The preceding treatment is valid as long as each of the lines have the

same line width parameter and the absorption is not too strong; even then it

is applicable only to diatomic and linear molecules, and the result is an

average value. The more practical and interesting cases are those where

8 Individual lines can be studied by using a numerical filtering technique dis-
cussed by Connes (Ref. 67). Essentiakly this involves convolving the inter-
ferogram (obtained between, say, 0 and tc cm-i) with the mathematical
function that is the Fourier transform of an ideal filter passing all the radia-
tion between vj and vZ (the region of interest) and none of the radiation outside
this range. The result of this convolution is the interferogram one would
have obtained if the input radiation had been physically filtered by a filter
having the characteristics of the ideal filter. In this way, single lines may
be studied and the necessary correction for the systematic errors may be
applied more easily.
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the maximum abaorption is strong and the liHe width6 do vary. The follow-

ing is a discussion of some preliminary results obtained for the pure rotational

spectieurm of CO.

• A beam of radiation traversing a length I of an absorbing medium will

absorb intensity according to the well-known Lambert-Beer's Law, and the

intensity passed I(v) can be written

I(v) = I (v)e _(Y)M (22)

where 10 (v) is the incident intensity and -y(vi is the absorption coefficient. As

discussed in Section MI, a two-beam interferometer operating in a double-

beam differencing modes does not measure I(v) and in fact gives little

information about Is(v). What is measured is IP(v), and it is

I,(v) = 10o(v) - I(v) = (V)[1 -0"((v)I[ (23)

Now, aside from the fact that little is known about I (v) from a double-

beam run, the measurement of intensities in the FIR is fraught with other

difficulties (see Section V). Thus. we shall restrict ourselves to a discussion

of what information is available from I•(v), making only the assumption that

1s(v) does not change radically9 over small intervals of Y. Differentiating

I(v) with respect to v yields

di (V) -y(V)i dlo(V) + I !!yV)
: Ii - e J dv +1I(v)e~'([-Idv-

91n this respect, it has been our experience that the largest variation of
Io(v)/cm 1 Iis caused by the channel spectrum from the lamp envelope of
the scurce (see Section V).
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and if Is(v) is a constant in the region of interest

= dv

Differentiating again with respect to v we obtain

d2 1A(V) 2 _ 2 d" v2t (24)
d0 kd v dv (

For pure rotational spectra the Lorentz form of y(v) has been found

tc be a good approximation to the line shape, at least in the region of maxi-

mum absorption. It is given by1 0

-Y (V) AtZ(25)
(v - V •) + 4

Now the maximum of Ia(v) occurs when

-• = 0 or when v = v
dY- 0

Therefore, vo is determined by finding -where the slope of Ia(v) is zero.

Information about A or E is neither determined nor required. Equation (24)

yields, when set to sero,

4 2 2 2 4
4 .Z4 (Vv - ) + ZAt (v -v ) 3 (v- 0) 0O (2)

o100

0This will be a good approximation as long as vo >>%; i. e. the lines are
sharp aud the pressure of the absorbing gas not so high as to make three or
more body collisions important with respect to two body collisions.
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The values of v where this equation is oatisfied are where dIA(v)/dv

hat its maximhirux and miniiznrn values. In fact, for a symmetrical line they

are equally displaced about v . We define0

AV T) = V-V 0!

for those two values of v which satisfy Eq. (26). The quantity AVD is

the wavenumber difference between v and where dIA(v)/dv has itm extreme

values. Dividing Eq. (26) by (&%vD) and letting y = (E/A v D) and At

we obtain

4 2
y - (1 -Q)-3 0 (27)

Now Q is the maximum absorption coefficient timcs the absorbing path length

I and, in general, may range from near vero to very large numzbers. Since

Q cannot be negative and y = EY/VD is also a positive quantity, the only root

of Eq. (27) having physical significance is

y= - Q + [(0 Q)2 + 1]I/2 t i2 (28)

For Q , 0, the weak absorption case, y = or t- 3 l •' w4hic*,

is the relation usually used in the microwave region (Ref. 68). For 0 > 0,
3 1 12 VD '

Now Eq. (26)can be solved for i ifAvD, A, and t are known. Now a v

can be measured (see discussion on the CO pure rotational spectrum in'this

section), and I is known from the experirnent. The par Ameter A is a 6 1 nction

of pressure, population of the states involved in the transition (upper otate

also since stimulated emission is not negligible in the FIR. 4 the rroiiarnalic

equilibrium is assumed however), the dipole moment of the molecule, etc.

An explicit formula for A is given in Townes and Schawlow (Ref. 66). Thus

-9Z- >
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if this information is known, A may be calculated. If this is not the case,

then it is still possible to get E by makirg two runs at different values of 1.

Then two Eqs. (Z6. will result and the factor involving A can be elirminated.

The resulting equation will have 4 as a function of (A D) I (A D)2 and the

ratio (I1 /ll.

In practice it is necessary to correzt the measured AvD siace in

general the resolution of the ýnterferometer is finite axy, thus, the line

shape observed will be the trut line shape convolved with the scanning

function of the interferometer. As might be expected, the raw Av

(L finite) is large. than the true A vD(L - I". For AM!# ei, a correction

curve of the form (AVD)L/(A D)c vs LE can be plotted and is whl)w1n in

Fig. 35. Plotted also is 4L/a vs Lt. As is seen this quantity changes

very allwly with L, and thus a reasonable value of e is obtained directly

from the spectrum; L is known and, therefore, the correction factor can

Sbe dete rrnied.

Such a cnrrection curve is inadequate when (Al/f) is not small

compaxed with .ne. We have calculated correction curves for various

v4lues of (Al /#). A typical case is shown in Fig. 36.
PrelLrninary results for the paire rotationAl speýtrunn of CO are shown

i- Fig. .r7. The results have been normalized t, I -'itrn prc.isure (assuming

t veries line-rly proportional to pressure). The solid lines ar- curves

-from a t•heoretical calcuaUon (Ref. 69) of self-broadened line widths for

line ir mclecules.

Because the dipole moment z• CO is so smael (0. 112 Debye). it is

tht q uadrupole mrn•et Q that is responsible (%t least for low J) for the

pretsare broadening. Although týle dat4 pints have considerable scatter,
-26a v.i'¢, of Q ror. chxt less th-an 4 X 10 esu is iadicated.

.6. ABSORPITION CF GASF$. IN THE .kIEDIJM PRESSURE
RANGES (-[-a~rn),-

The pteeltm!iary results ed line width measurements have pointed out

the de irabiiity .Aiing meaturemrnts at higher pressures. In the 4ow to

2•.edium nr.sare ;svurte (where only two body collirions are important)
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Fig. 37. PrelimInary line widths (self-broadened) for the pure
rotational lines of CO. The solid curves are theoretical
carves for the quadrapolc moment of CO equal to 5 x 10- 2 6

esu and 4 X 10-6 esu.

-96-



studies in the near-IR (vibration-rotation spectra) and microwave (usually

low J pure rotational spectra) region, it has been found that the absorption

lines are broadened linearly with pressure. At higher pressures (where

three or more body collisions become important), the lines are broadened

in an asymmetric manner (i. e., the line shape is ne longer symmetric

about the peak absorption). It has also been observed that the lines are

shifted in wavenumber because of the increased pressure. Most of these

studies have been carried out in the near-IR (Ref. 70).

Before the development of two-beam interferometers for the FIR,

such investigations were not feasible since the S/N was so poor as to preclude

using narrow enough slits in conven-

tional spectrometers to make studies

on line shapes. Usually only investi-

gations reporting wavenumber measure-

ments were carried out. The per-

formance of the Aerospace FIR

lamellar grating has indicated that

some of these studies are now

feasible. A small cell has been

designed, fabricated, and tested in

the I to 10 atm range. A photograph

of this cell is shown in Fig. 38. It

has a clear circular aperture of -2. 5

cm diam and an absorption length of

Fig. 38. Absorption cell for medium -6. 5 cm. Some preillninary tests

pressures (-i to 10 atm) have been made with CO in the absorb-

ing cell, but no analysis or measure-

ments have been made.

B. OPTICAL CONSTANTS OF SOLIDS

The index of refraction of optical materials is commonly measured

by a variety of techniques for wavelengths in the visible and near visible
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regions. In the FIR spectral region (80 to 500 i, 20 to 125 cm-) most of

these methods are not used either because they are not feasible in this

spectral region or because they require special equipment that has not

been developed. An exception is the channel spectrum technique in which

the radiation is multiply reflected between the faces of a flat sample so

that interference in the transmitted beam produces a spectrum consisting

of a series of maxima nearly equally spaced in frequency ('- -hannels").

The maxima occur at those wavelengths for which the otical thickness of

the sample is an integral number of half wavelengtbs; hence, from wave-

length and thickness measurements, the index of refraction can be

determined.

Interferometers are admirably suited to this determination since they

are fundamentally wavelength-measuring devices. In the FIR region, they

are superior to grating type instruments because of their high sensitivity

and spectral resolution. In recent years the required instrumentation and

techniques have been developed to a high degree (Refs. 8, 9, 71, 72). The

application of the Aerospace Corporation lam.ellar grating interferometer

to the measurement of refractive indices is discussed here.

The transmittance of a material is determined by its index of refraction.

This index, in general, must be complex to account for absorption within the

material. The channel spectrum technique is effective for determining the

index, provided the absorption is not too large. The energy transmitted

through the sample can be calculated in the following manner "or the geometry

of Fig. 39. Let i- n + ik be the complex index, r = (n - 1)/(n + 1) be the

amplitude reflectance and t = 2/(n + i) be the transmittance at each surface.

Then

A(v) t 2 1 + 1: r 21eiZr fivh cos + 6

t 2(1 + Er21e11U (29)
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in the vector sum of the amplitudes of

the transmitted components. Here

v is the wavenumber

h is the sample thickness

o is the angle between normal to
the dample surface and the
ray within the medium, and

t, + ik t. 6 is the phase shift produced by
absorption within the medium.

The energy transmittance

F4g. 39. Geometry of sample for
channel spectrum index of
refraction measurements. T(v) =A A* (30)

has been derived in many forms (Ref. 21). Here, where we are interested

in the general solution with absorbing materials, and where the measurement

is mad& by Fourier transform methods, it is convenient to express this

transmittance by (Ref. 8)

T) () (V) (i +2 P coo (31)

where

4 - 2 2 exp(-ah/cos P)

-16(n 2+k 2)aU-hcg(2
{[(n + 1) z l+ k zI.0-P P)
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P _ . n - 1)2 + k (33)

{[(n + l)z + OJexp(ah cos P))

= 4wrnhv coo + 6 =41rnhv co° P + Tan -1 2 (34)

and a = 4wkv is the customary absorption constant. The more familiar

form of Eq. (31)In terms of the same parameters is T(v) = T(V) (I - p )/

(I + p 2 2p coo e). p is significant in that it is the fraction of the energy

that survives two reflections and two transmittances through the sample.

The angle of the beam within the sample P to related to the external

angle y by Snell's law, which becomes, when solved for cos P for a

sample of complex index

coo z + ( (35)
n n n

T (IV) is the average transmittance that would be observed if there were

no interference, i. e. it is the scalar sum of the transmitted energies.

Equation (33) is obviously the Fourier rosino sories expansion of

T(v), i.e.,

T(v) = a A1 coo to

I--0
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where

A T(V) A = 2T(v)p

Because the interferometer used for these measurements generates an

"interferogram" that is the Fourier transform of T(v) (multiplied by the

source function), Eq. (33) is a very convenient form to work with. The

interferogram function (see Section II) can be written as

F(x) =f ,(v)(t + 2 Zp Icos 18)cos Zpvxdv

0

where x is the optical path difference in the interferorneter. In this equation

the source function has been absorbed into T(v) and the constant term in the

interferogram has been dropped. If T(v) and p were constant and v extended
from zero to h-•1inity, F(x) would simply consist of a series of 8-functions

with coefficients At lQcated at x = 10/2w. For a finite range of 0, these

6 functions are broadened into sinc (= sin x/x) functions, which are further
distorted by the nonconstancy of T and p.

These distorted sinc functions have been given the name of "signatures".

Since they contain all the available information about the sample, it is

Here we note that the modular resolution definition is tho- appropriate one,
since no "channels" in the observed spectrum will be seen unless at least
the first signature is observed.
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possible to replace the interferogram between signatures by a constant, thus

eliminating a major fraction of the recorded noise without significantly dis-

torting the spectrum obtained from the transformed interferogram.

From Eq. (31) it is evident T(v) will be a maximum when all the cosine

terms in the sum are in phase; i. e. , when 0 = m - ZTr, where m is an integer,

from which

2 -vh cos + = m (36)

This leads to a series of maxima equally spaced in v, provided n is constant.

From measured values of these vmax and the other parameters in Eq. (36),

it is possible to calculate n(v). The phase shift 6 can be neglected for the

first approximation.

From a measured mean transmittance and the above index value, the

absorption coefficient a z 4wvk can be calculated (see Eq. (32), which in turn

can be used to determine 6 (see Eq. (34) so that a corrected n can be found).

The process can be repeated if necessary until n and k achieve stationary

value s.

This method is limited by the requirement that the sample be trans-

parent enough that a significant fraction of the radiation can survive at least

two internal reflections and three passes through the sample. We now make

some semiqurantitative estimates of the maximum thickness permitted for a

given n and absorption coefficient. For a difference spectrum (see Stction UI-C)

the noise can be as low as 10-3 E , where E is the s.arce intensity. Foro 0
n < 4 the amplitude of the channels may be approximated by ZT(v)PEo, the

first term in the series of Eq. (31), which is the contribution of the first pair

of internal reflections. (The T(v) term is removed in the differencing

technique. ) Assuming a S/N of at least 2 is needed to make meaninglul

measurements, then 2T(V)p > 2 X t . For the absorption constants and
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frequencies involved, k << n, and an adequate approximation becomes

22
-2¢h -, (ni 4 1) (n2 + 1)

e <1I0 2 i

n(n - 1)

Figure 40 gives, as a function of the absorption constant, a, the maximum

value of h which satisfies this relation, with the refractive index as a

parameter.

We now turn to an analysis of the accuracy with which the parameters

needed for calculating Li can be determined.

too, , , "' • " ,

SIOC I ~ Fr F

to-

- 4.6
I.-

; I.I-

0.1 1.0 to 100

ABSORPTION a 4, KY(Cm"1 )

Fig. 40. Maximum sample thickness usable with
present techniques for channel spectrum
determination of refractive index in the
FIR, for values of the real index n and
absorption coefficient a' 47rkv.
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Since the order number, m, must be an integer there is no difficulty

determining it exactly, provided that the accuracy is sufficient to distinguish

between adjacent integers. Since in this wavelength region m is never lai.er

than a hundred or so, accuracy is easily achieved. A simple procedure for

determination of m is the following: Two values of vmax are determined
from the spectrum for m = mI and m = m 1 + p. Substituting twice in
Eq. (36) and subtracting, we have Znh cos P(v I max - "Z max) = p' from

which an average n can be found. Inserting this value in one of the above

equations then leads to a value of m. This technique will be adequate only

as long as n iz relatively constant, but when it is not, there will be strong

absorptions and, as shown above, the method becomes unsatisfactory.

The determination of frequency furnishes an ultimate limit to the final

precision. Measurements with our interferometer on pure rotational spectra

indicate a limiting instrumental wavenumber accuracy of about 0. 003 cm -1

or, for 60 cm- radiation, about 5 parts in 10

To achieve this precision requires, however, locating the peaks in the

spectrum with a similar precision. The precision with which thc experi-

mental peaks can be located is in turn limited by the inherent sharpness of

the peaks, governed by how many terms in the series of Eq. (31) contribute

significantly to the spectrum. The rate at which the terms in thin series

die off is in turn controlled by the index of the material. The precision is

also limited by changes in the base lineswhich may make the lines appear to

shiftand by noise. Figure 41, the channel spectrum of fused quarts, ahow$

two problems: First, if there is any

change in absorptiort there will be archanging base line; second, the channel
~~ spectrumn we are ii-xterested in uses only

a small part of the dynazric range of the

a a s instrument. Both of these problemsFt•, (in")
may be significantly decreased by means

Fig. 41. Transmittance of 2. 14 mr,; of the facilities in the Aerospace inter-
thick fused quartz T(v)
showing both channels and ferometer for double-beam difference
transmittance change caused
by changi"•' tbsorption.
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interferometry. We can, while obtaining the interferogr'am, subtract the

interferogram of a similar samriple, different only in tha:ý -t is wedged and

therefore does not exhibit a channel spectrum. The resulting interferogram

and its Fourier transforrn, the spectrum, apvear in the upper past of Fig. 42.

The changing base line has indeed been

- removed, but apparently at the expense
LLL of adding a good deal of noise. Howeve".

because of the localized -ature of the

, information ne,-d- .iVr Cie channe',

| • spectrum in the intergrro.-.r £igta-

ture, ao di(c.'I s3ed -bo. it 's pos.ib.e

to artificia' .y reniove much o;f the noise

S • from the ircerferogram before it is

tran-fornwc, and still not har.-n the

Fig. 42. Difference interferograwu information content of the spectrum -s

and spectrum for fused far as determining r-efracti-te indices
quartz, without editing i0 concerned. The results of this ire
(upper) and with editing
loweer). .,cw." in de lower part of Fig. 42.

With all these procedures for improving

the measurement of the individual maxima, .t is pugsible to decrease the

sci.tter in points on the index ciarva by as much as a factcr o) 4 or 5 in the

case 4f an absorbing material of low index sucti kus~d quart:,

If the refractive indices are to be dcterminid with an accurAcy limited

only by the frequency measurement. ;jie error in the thickness value must not

be lim.ti-g. For a typical sample tt'.ickness of 3 mm, this means a thickness

determination to within a fraction o- a fringe of visible light The flatiess and
parallelism of the faces must be hfO,.' withi.n similar tolerances. Sample

preparation to these tolerances has -cen carried out in our optical shop. The

measurements xf thicknoss to within *0, 2 - were made by a commercial

metrology laboratory. If ineasuremenws to this prectsion are tobe meaningful,

t 2 Metrolonics Inc., Burbank, ,alif.



'iI
the.material must be homogeneous to a similar extent. Since independent

methods of analyzing the homogeneity are difficult, we have started with high

purity ,naterial. 13

Within the sample all li:,'t rays should -,ee the same thickness of

material. This effective thickness depends however on the angle with which

the light is incident on the sample, the rays at large angles seeing an

apparently foreshortened thickness as indicated by the cosine P in Eq. (34).

Ideally then the measurements should be made in parallel light, but since this

is not possible with the Aerospace instrument, the observed r(v) is a sum

over the possible angles weighted according to the solid angle, and is, except

•r•- a constant multiplier,

T(v) =(v) I+ [sin P cos e8(p)dj

where P. ls the maximum internal angle. Carrying out the integration,

m+

sin j3 cos 18(P)dA =[cos 141 s+ y

where y 2winhlvcos A Im
Since the position of the channels ks d.,termintd by the first term in the

summation, the sin((y/y term in the abevý- equation with m = t is the one th.-

•t/--ts •ur aLttention. in cur instrume't, with its cutoff frequency of 125 cm

the rv-n. alae y can have is 250 -hn(cos pm - I). If we wish to have
it, 'eaning our channel amplitude never goes Through zero, then

13 Germanium and silicon c.me from Exotic Materials, Costa Mesa, Calif.
Fused quartz was Infrasil grade low H.0 quartz.
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hn < [250(cos pm )] -. For an -: ternal half angle of 7o 5 deg, this leads

to a maximum thickness for sarnples of silicon and german'urm. t. 1 and 1. 8

cm, respectively. If this criterion ic met, the additional effects introduced

by the convergence of the beam on the amplitude af the modulation is less

pronounced than the change in, source intensity with energy. The only

correction needed then is to replace 'lie thickness hi with [lie( :0 cP m )] /Z.

A sufficiently accurate determination of n to correct for beam convergence

can usually be obtained from the positions of the signatures in the[• interferogram. I
For mate:.ials -lifficiently transparent f.r this method to be successful,

the imaginary part of the dielectric constant k. which gives rise to both

absorption and the phas:- factor 6, must be small. An estimate of sufficient

precision ce.n therefore be made by means of Eq. (321 from a spectrurn of the

average transmittance r(v), using preliminary channel measurements to

obtain a value of n. The average transmittance spectrum is also easily

obtained from a single-beam interferogram by using only that portion of the

interferogramn around x = 0 and then dividing this spectrum by a. spectrum

t0 obtained under similar conditions,

y i*- ij but without the sample in the beam.

-I2 ,For the materials reported on here,

the phase factor was small enough to14_ ___ ___ __ ignore in comparison to tha uncertainty

Sin locating the channel spectrum peaks.
SFigure 43 shows the results of

the analysis as described when applied

IMI -to the fusea quartz spectrum in Figs.

S1- 41 and 42. The error bars on the
M • -refractive index data indicate the

0 50 we statisticai scatter between nearby
S0 Fm1WY•mJnab

Fig. 43. Absorption coefficient points and are smaller near the middle
• a = 4nkv, and real re-

factikve indrex forfse- of the spectral region of interest,:• fractive index for fused

quartz. since this is the region where our
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instrument has the best S/N. The absorption curve was calculated, by menans

of Eq. '32), from an average transmittance spectrum. The error bars on the

absorption curve indicate the uncertainty of each point on the curve. This

uncertainty arises almost entirely from the uncertainty in the transmittance

measurements.

Because silicon has a higher index and lower absorption, more internal

reflections contribute to the spectrum, as may be seen from the presence of

3 signatures in Fig. 44 Figure 45 shows the refractive index and absorption

SPCTRUM

__ \iA II \; V i J

20 • 2 23 24 225 50 5 52 53 54 55 116 U1 120
FRKQUENIY (m-)

1.1 13 1., 2.1 2.7 2.9 & 4.0 4.2
PATH DIFFERENCE (cm)

Fig. 44. Region of interferogram and spectrum for
0. 194 cm thick silicon sampie. Because of
the high reiractive index and low absorption,

three signatures are visible, indicating that
light une•rgoing up to six internal reflections
is contributing significantly to the spectrum.
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constant in the FIR f•r silicon. The
F

,-r-ý- error bars have the same significance

; 0•_ ___-_as those used on the fused quartz data.

The higher number of internal reflec-

tions making significant contributions

4- to the spectrum makes the peaks in the

spectrum sharper, leading to lower

- 40 ) sI0 scatter in the index data points. The

transmission of one sample of silicon

Fig. 45. Absorption coefficient and has been determined independently with
real refractive index for
silicon, a commercial grating spectrometer

(Perkin-Elmer 301) over a wide spectral

range. These results are presented in Fig. 46, together with the measured

transmittance with the interferometer in the region where the instruments

Si 0.1938 cm
-~6o 0 PE3o0 DATA

0 A INTERFEROMETER DATA

_ 00

"40 0 0'

'-20

0 _ ,

0 200 400 600
"FREQUENCY (cm-")

Fig. 46. Mean transmittance T(v) of silicon.
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overlap. Fium these measurements,

-- I , , -, i --• , estimates of the uncertainty in trans-f~ {-Imittance have been made.
Figure 47 shows the refractive

t &"4 - index and absorption constant for

ig Mo _germanium in the FIR. Figure 48 is a

plot of transmittance, again taken over
S0FEKY .,YIo t a wide range with the Perkin-Elmer 301,

for comparison. Because of the chemical
Fig. 47. Absorption coefficient and similarities between silicon and ger-

real refractive index for
germanium. manium, a spectrum similar to Fig. 44

for silicon might be expected. Germanium, however, exhibits more dispersion

and more absorption. This may be caused by impurities in the sample but,

we think we are observing the low-frequency side of the band at 100 cm-1

reported by Aronson and McLinden (Ref. 73).

80-

Ge 0.2007 cm .
S60 o PE 301 DATA

A INTERFEROMETER DATAj

Cn40 
0

z 0~
0C 0

S20

0 I I I
0 200 400 600

FREQUENCY (cm-)

Fig. 48. Mean transmittance for germanium.
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We have presented a method for determining the refractive index of

materials from channel spectrum measurements. The equations used to

obtain values make no assumptions except that of nearly normal incidence, so

the polarization of the radiation is unimportant. This method is particularly

well suited for interferometric measurement techniques since, as is shown,

the spectrum may be written as a Fourier cosine series. Since the inter-

ferometer gives us the cosine transform of the spectrum, the a:proximations

which are justifiable in treating the data are easily seen.

The method is good for materials which are not strongly absorbing in

this spectral region. Limiting sample thicknesses for varying combinations

of real index and absorption have been estimated.

These methods have been applied to a number of materials, with data

presented for three, to show the application of the technique. It should be

noted that the values are close to these measured in the radio frequency part

of the spectrum and may differ widely from values in the visible region, as

the fused quartz shows.

C. INDEX OF REFRACTION OF GASES

The results just described have encouraged us to try to apply the same

principles to tl'e measurement of the indices of refraction of gases in the

FIR. The high-pressure absorptioa cell can be modified into an "interference

cell. " Tile faces against which the cell windows are mounted have been

ground flat (-3 fringes of HG 5460 A) and parallel (-8 arc sec). The windows

are phano concave lenses of crystalline quartz. The focal lengths of the

lenses are chosen such that the entering beam is made parallel inside the

cell and then restored to its original divergence on leaving the cell. The

interior surfaces of the windows are plain and provide the reflective surfaces

for interference. In the FIR the reflectivity of a single surface of quartz is

- 13% (in this respect germanium would be a better window material). Only

preliminary tests of the cell as an interferometer have been completed. The

first channel signature (at x z 13-cm optical path difference) hai been observed.

The observed S/N for the signature is not as large as hoped for, and part of

the reason for this is that the source is extended in nature. This results in

difficulty in locating the focus in the sample chamber and subsequent
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placement of the interference cell. A short arc Hg lamp is presently being

tested (for reasons in ad'4ition to its more point-like feature) and evaluated

for use as a source in the FIR.

D. NARROW BANDPASS FILTERS

Fabry-Perot etalons consisting of two parallel wire meshes have been

used by earlier investigators (Refs. 74-77) as efficient narrow band filters

for the FIR and microwave regions (wavelengths greater than about 50 p.).

These filters have been further developed in this laboratory, the fabrication

procedures and the performance obtained being the subject here. This work

has been greatly facilitated by the availability of the Aerospace Corporation

lamellar graLiig intcrferometer, which has a sensitivity and spectral resolu-

tion unavailable to the earlier workers. This permitted much better evalua-

tion of the improvements in the filter design.

The spectrum transmitted by such a filter is described in texts on

physical optics. The power transmissivity T is given by

t2T = (37)
[(1 - r) 2 + 4r ein 6/s]

where t and r are the power transmissivity and reflectivity, respectively,

of the individual meshes, and 6 is the phase shift of the radiation passing

twice through the gap between the meshes, i. e.,

6 = Zvbi con e+ 2 (38)

where l/k is the wavenumber of the radiation, b is the mesh separation,

p. is the index of refraction of the assumed nonabsorbing material in the gap,

0 is the angle of incidence, and 0 is the phase shift caused by reflection at a

mesh surface.
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All the filters discussed will have an air (or vacuum) gap between the

meshes and, hence, ýi = i. If the meshes are made of a metal with high

conductivity the losses are small, or, t I - r; and thus

Tt -= t (39)
t2 2

t + 4r sin2 6/2 i + (4r/t ) sin 6/2

It i3 evident from this equation that Tmax = I for 6 = m 2w, where m is an

integer, i. e., there is a series of transmrittance peaks equally spaced in

wavenumber for v = v mx where

Vmax Zb cos e (40)

Also, for 6 =(m + i/Z) Zw, Tmin = (t - r/i + r) , therefore Tmin--0 as

r -. 1. The conventional measure of the sharpness of the fringes is the

finespe F, defined as the ratio of the separation between adjacent fringes

to the width at half maximum (half width) of a given fringe. For r near I

this is given very closely by

1/2 1/2Z
F = i -(r) (41)

and F -. w as r -. 1. A large finesse, of course, indicates narrow fringes.

The above theory assumes an ideal filter, i. e., no resistive losses,

perfectly flat and parallel meshes, and the angle of incidence 6 is either

zero or a constant. In order to achieve a finesse F for nearly normal

incidence, the allowable variation in b is 6b~t/2vF, thus, for F = 100,
-15"W-100 cm . 6b 5 X 10 cm, or approximately one visible light fringe.

This result is surprising in view of the general impression that the construc-

tion tolerances for FIR components can be rather sloppy because of the
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large wavelengths involved. Attempts have been made by other workers to

construct tunable filters, with adjustable mesh spacing, b'it the performance

has been mediocre because the mesh parallelism was not adequately main-

tained. Also, simple rugged filters have been constructed by cementing

meshes onto the faces of a wafer of fused quartz. Again the performance has

been mediocre, perhaps due to inhomogeneities or lack of flatness in the

quartz, but more probably due to lack of perfect contact between the quartz

and the mesh caused by inclusions of cement.

The available meshest4 are from

5 to 2000 mesh (rulings per inch), and

are about 0. 0002 in. 5-ýL thick. For

the FIR region considered here
(v = 10 to 100 cm' 1 ), 250- to iOOO-mesh

END rulings are most suitable. These
PIECES -PRECISION S.S. SHIMI meshes are fragile and have no rigidity

GRIDS of their own and so must be carefully

stretched over a supporting ring to

remain flat, as shown in Fig. 49. The

meshes are cemented as smoothly as

TPA possible onto the two temporary sup-
STEMPORARY,

SUPPORTS ports shown. No wrinkles, as seen by

reflected light, can be permitted at
this stage. These are then hung over
the other members, as shown, the

weight of the support rings stretching

Fig. 49. Details of filter construc- the meshes taut. The assembly is
tion. The space is cutIfrom phecisi stainls cutthen clamped between the end pieces,from precision stainless

steel shim stock and the the excess mesh trimmed off, and the
burrs carefully removed. joint sealed with epoxy cement.
The faces of the end
pieces touchinig the grids
are machined and 'apped 14Available from Buckbee-Mears Corp.,

St. Paul, Minn.
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Since the wire meshes must be very accurately flat and parallel, the

most critical component is the stainless-steel shim space shown. Ours have

been cut from precision shim stock, any burrs on the edge being carefully

removed by lapping. The end pieces also are carefully machine I tnd lappec.

A completed filter with a i-in. aperture is shown in Fig. 50.

Calculations of the transmittance ox "eflectance

of a metal mesh are difficult because of the complex

two-dimensional geometry. The most successful

approach involves the calculation of an equivalent

transmission line and has been solved for the related

problems of one-dimensional arrays of various

shaped wires (Ref. 78-80) and the problem of circular

openings in a metal sheet (Ref. 81). We find however

a very satisfactory analysis of filter performance

can be based on the empirically determined values

of power reflectance r and power transmittance t
Fig. 50. Photograph for a single mesh. Scaling the distance d between

of a com-
pleted filter. mesh opening by the wavenumber v allows us to

to -lot results in terms of the dimensionless

variable vd, making it possible to compare data taken on different meshes in

different frequency ranges. Figure 51 is a plot of the transmission of four

different mesh materials as a function of this reduced variable vd. The

transmission curves for this retion are nearly straight lines on a loglog

plot, indicating a simple power law relation. T I~e curves for two of the

materials coincide as anticipated. The 250-mesh material, however,

exhibits a higher transmittance, as might have been expected, since each
cell in this mesh has about 17% more open area than the cells in the other

meshes. The nickel mesh exhibits a higher transmission, perhaps due to

its higher resistivity.

For vd greater than that shown in the figure, the measured trans-

mittance first rises to a maximum of about 900/6 at vd•- 0.85 and then

decreases and oscillates for greater vd. For vd > t, a mesh begins to act

-i15-



Fig. 51. Transmission of a single wire mesh as/ a function of reduced fequency, vd,
2 Jwhere d is the spacing between openings;

0250-mesh (d = 102t) copper (Buckbee-
S0., M eers ruling no. 25027); a 500-m esh

/ (d = 2 0 4p.) nickel (ruling no. unknown);
0500-mesh (d = 204t) copper (ruling no.
509); @750-mesh (d 306k., ýpper
(ruling no. 761).

05 .

0 SM WN CO

0.1 0.2 0.4 Q0.60.11.0

as a two-dimensional diffraction grating; hence, varying amounts of trans-

mitted power ar, diffracted out of the acceptance angle of the measuring

instrument, making details of the measured transmittance dependent on the

particular experimental geometry used for the measurement. In view of the

variability of mesh fabrication and the difficulties of measuring absolute

transmissions in this spectral region, we feel the present results are in

satisfactory agreement with those of others (Refs. 9, 74-76, 82). Indeed

the data in Fig. 8 of Russell and Bell (Refs. 9, 83) superimpose on our

500- and 750-mesh data for values of Yd from 0.25 to 0.75.

rhe Aerospace interferometer cannot meaxsure reflectance at normal

incidence, and hence we cannot show that r : t-t, thus den--instrating the

absorption in the mesh to be small. However the data of Mitsuishi,

et al. (Ref. 75) indicate that losses are indeed small, at least for vd < 0. 85.

Also the performance of the filters discussed in Section V could not have

been actieved had there been large losses in the meshes.
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rhe choice of mesh material for a particular filter application depends

-i the wavenumber and finesse specified. For example, from Eq. (40) if

F = 100 is required, r-z97% or t t3%. From Fig. 51, this gives vd = 0. 19
-i!-

for the 500- or 750-mesh grids, and v•. 54 cm or 36 cm" , respectively.
Note that the above finesse assumes an ideal filter and makes no allowance

for fabrication imperfections.

Filters have been successfully made using a number of meshes and shim

spacers. A measured spectral response curve fcr one of the better samples

(750 mesh, 0. 0807-cm space) is given in Fig. 52. This is the actual energy

21 26 31 36 41 46 51

51 56 61 66 71 76 81

Fig. 52. Energy throughput of a wire mesh filter consisting of
two 750-mesh screens separated by a 0. 08G5 cm spacer.
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through.t, and it is multiplied by the spectrum of the source and the

t• -.-','tance of the interferometer. Transmission peaks appear approxi-

mately every 6 cm 1 , the three at 6, 12, and 18 cm being missing

because of the low energy available in this interval. The widths of the peaks

increase with v as expected from the mesh transmittance given in Fig. 51.

From the noise level at the base of the peaks, it is evident that peak

transmittance values and off-peak rejection can be determined at best to

within about 5%. This is poorer than the measurements on single grids

because of the small amount of energy transmitted with a n'rrow trans-

mittance peak.

Wavenumber determinations are much more accurate than intensity

measurements as they- are calcu ted dircctiy from the grating displace-
-1

ment. Transmittance •&-a.-ri c•- be read to about 0.003 cm and half-widths
.-1

to about 0. 00£ cm

The h -'i4•i thus de*lrmined is not the true half-width of the filter,

but it i *r--zo.dened by the finite resolution of the interferometer and by

the convergence of thf- m•esuring beam of radiation. The resolution of the

interferometer is limited by the maximum displacement permitted the

lamellar grating. However, before this limit ,b reached the interferogram

signal falls into the noise, and hence, in practice the resolution is actually

limited by t0- SiN In order that there be a usable signal it is necessary

that a conveigent beam be transmitted through the filter, 0 varying from

0 to 0 and v max varying from nn, - O/2•b to mni - o/0Tib cos 0, acccrding

to Eq. (40). For a beam of half-angle 0max it cart be shown that this broadens

the peaks by appro:;imatcly 6v 0 VI
6 M.ax

in Fiv. -3:2flcsse calculated irom the measured hali-widths is plotted

again.t V ,,- __ 0-Cmesh filters. As expecte,!, V decreases with v. The

largest values (100) were obtained in a filter with 4 thin spacer and ,-orr,--

spondingly wide, more easily meas'ireuý peaks. Ihe two curves tor the ftlters

with the wide space were obtained with A na deg and A 4 degmax " max "

and clearly show, the broadening duo to bean rornvergenc,,. The finesse
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values reported here have no corrections applied, and yet they are about

three times larger than values reported by earlier workers (Refs. 74, 76)

for which a spectrometer slit-width correction was applied.

The magni*ude of the corrections which could be applied here is indi-

cated by Fig. 54 for the 750-mesh, 0. 0807-cm shim filter. The upper curve

M60 ( O.0064 . SPACERI * 0 MEASl.O FINESSE
WIDE ArGLE FINESSE CLLCUIUTE0

o 750 ME(SM OOIS., ULER FROM MRID TRANSMITTANCE
WIDE ANGLE

A0 - CORRECTED FORo CPCOVERGENCE ANGLENARROW ANGLEO

7A 0 ? ESH O30I$6 SPACERl I- r0tONETED FSORUTI
L WlOE AINGLE .NTtVEYLRSLTO

" o100

0

00

0 0
0

0 20 40 60 00 100 120 140 I.

WWI -0 20 40 '0 00 100 120 140

Fig. 53. Measured finesse for Fig. 54. Reduction in finesse for
750-mesh filters of 750-mesh, 0. 081-cm spac-
different spacing. ing filter due to limitations

of measuring technique.

is the fineese calculated from the measured mesh transmittance (Fig. 51).

It assumes a perfect filter fabricAtion and ideal measuring instrumentation.

Introducing the 4 deg beam angle convergence lowers the finesse to the

second curve. Including, in addition, the finite resolution of the particular
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i,iterferometei measurement lowers the finesse to the bottom curve. It is

seen that this curve is in close agreement with the actual measured finesse.

Because the corrections are an orcder of magnitude larger than the ideal

half-width, the true finesse cannot be calculated with any precision. We can

conclude however that it is significantly larger than the value of 58 measured

at 24 cm . The ideal finesse of 10M0 shown in the figure is unreasonably

large, as it would require meshes flat and parallel to within about 500 -.

Further evidence that the measured finessc iz too low is given by
Fig. 55, which is a graph of the measured transmittance at the peaks for

the same 750-mesh, 0. 0805-cm space

filter, measured again with 4 and 8

o00 deg beam angles. Increasing ihe beam

00 angle and hence widening the peak
80 - IDARREW ANGLE decreases the measured transmittance

* WIDE ANGLE0

as would be expected from an unresolved

V1 'peak. The peak transmittance at this

j40 wavenumber for the 750-mesh,

0. 0142-cm spacer filter is about 40%o,
20- 0 or about three times as large. Since

0 the meshes and wavenumbers are0 0 40 60 80 100 120
2 4 ( 0m-I) identical, the transmittance should not

be greatly different. This would indi-
cate a true finesse of at least 180.

Fig. 55. Transmission as a function c
of frequency for a 750- The off-band rejection cannot be
mesh, 0. 081-cm spacing adequately measured with our instru-
filter for two beam con-
vergence angles. ment--or any existing FIR instrumenta-

tion. From the data presented, however,

we have some corfidence that an adequate mathematical description of the

filter can be made using Eq. (37) and the measured transmittance of the single

meshes (Fig. 51). Filter imperfections will broaden the peaks, but they

should havy little effect on the off-band rejection. Resistive losses

however will degrade the rejection. The minimum transmittance
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halfway between peaks calculated from this equation is shown in Fig. 56. The

low frequency peaks (Fig. 53) do indeed

intersect sharply with the noise base line,

so these results az:e not unreasonable. The

high rejectiun levels shown in Fig. 56 are

of course to some extent meaninglei. ii a

10-1 room temperature environment, since the

blackbody radiat")n from the filter itself,

or reflected from other portions of the

TW instrument by the filter, can easily be

much larger than the oil-band energy

transmitted by such a filter.

We feel that these interference filters

can now be made to order with finesse,

peak transmittance, and off-band rejection

better than can be rrnzasured with any
I i I I 1 i

20 5 40 60 60 o 12 1s existing instrumentation. In particular
applications, additional filtering will be

needed to eliminate the unwanted higher
Fig. 56. Calculated transmis- harmonics. This filtering will have to be

sion halfway between
peaks of a 750-mesh tailored for each case. A study of suitable
filter, materials and techniques is in progress.
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V. NOISE, EXPERIMENTAL ERRORS, AND PROBLEMS

A. ORIGIN ERROR (x = 0 point)

The origin error has been discussed by Connes (Ref. 6) and is briefly

reviewed here. We will consider its effect on a Lorentz line.

AE

input Spectrum I(v)
(V - ij ) 2 4 E

0

Interferogram Function k(x) = TAe cos 2xv00

We now assume an error has been made in locating the first point of the

interferograrn at x = 0; therefore,

Xmeasured X(true)

where • is the error. Thus,

F(x) = TZAe"CO(S) j -

=Ae TCe cos Ztr(x -)v

The output spectrum is then

o V

The exponenti&! factor a 2wB is usually very close to one in that

usually p• < I; therefore, we neglect it. Equation (42) is shown in Fig. 57

for the cases Av -,0 (no error), Ov 1/8, and Ov° 1/4. As seen in this
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Fig. 57. Appearence of a Lorentz line when an error has been
made in the location of the origin; curve A, AV 0.
curve 13, Pv 0 = 1/8, and curve C, Ov. 1/4.

-124-



f'gurc, the line shape can be severely distorted and significant apparent line

shifts are possible. The amount of distortion depends on P and v . When an

error of this type is made in the interferogram, its effect in the spectrum is

usually quite striking. As an example, assume 3 .- 50ýk (a large error) in an

interferogram made up of lines spread out in the wavenurnber region 0 to
-i -1

100 cm In the region -0 cm , the lines would appear almost as they
-1

should; near v - 50 cm , where 3v- 1/4, the lines would have the most0

asymmetric appearance, somewhat like their first derivative shape; Ilear
-i

v - 100 cm , the lines would again have near their true shape but would be

upside down. It is obvious that good spectral data will be obtained only if

Pv << 1/4.
0

When P3 is sufficiently small so that 2ntpv° is srn-_ii enough for the

small angle approximation to hold in Eq. (42), then the shifts and distortion

in the line shape can be easily calculated. These are summarized in Table 12.

Table 12. Distortions Caused by Mislocation of Origin (x = 0)

Quantity P = 0 P - 0 (small angle approx.)

SAt At v-V 0
IM2 '2 t1(v) P4l vo) €'-~q

(v - .) + (2 (v -) +

I(V) at v U

'Max f 9 4A

Half -width U 2ft I

q =Zy1v
0
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B. PERIODIC ERROR

Another possible error in the measurement ,)f x is a periodic error,

a type of error expected if a screw type mechanisrn (Ref. 6) (arid, as we shall

show, a linear inductosyn system) is used. Let us assume a monochromatic

line input.

Input Spectrurrm I(v) 6( v )o"

Then

F(x) c u,, 2 xv

Now let us assume a periodic error of period Le and amplitude B; thus,

.f[2"(true) +
Xmeasured - X~true' L e

where * is a phase factor The ---- asured interferogram functiun will then be

FB() W coo {z Ix + B sin(2-- + ] V,
e

and now,,, calling v =L i

4e e I

F (x) ; coo[Z,,rx, 2-Bv sin(Z,,xev 4 *)il

- cos(Ztxv 'cosu 2vB% sin(2..xv + 4)]O o

- sin(2,,xv )sin( ZrBv, sin(Zwrxv + Ofl
o o e
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We now assume ?B. is smiall enol-igh that the smail ang1 c

approximation is valid; therefore.

FB(x) cos(2irxv) - 2rf1v sin(ZTrxv )sin(2rxte 4 ¢)

cos(2 ry ) TTBv cos[ 2irx(v - ) + 0 + Tr ev cos[ 2Trx(v )+ v
)0 0 0 +

In the spectrum, the first term gives the line at v 0: the second and

third terms yield ghosts at v = v a ±e, where shape will in general be dis-

torted by the phase factor € in much the same way as discussed in SectionV-A.

It is obvious that if 27tBv is not small enough that the small angle approxi-0

mation is valid, so that higher order terms should be carried in the expansion,

"then these higher order terms would contribute ghosts at v - v :0 nv . We

can estimate the first relative ghost intensity:

ghost intensity TrBv for 0
line intensity o

We have examined our linear inductosyn scale for this type of error.

The following technique was employed. The sign•t•e: of a diatonic molecule

should be evenly spaced in optical path difference. The positions oi dh.-

maximums of the first eight signatures of HBr were measured (the isotopic

splitting is negligible in this molecule for signatures in the neighborhood of

the origin). These eight measuremnents were then fitted to an equation of the

form: x(signature maximum) = an + b, where n is the signature number and

b is included to account for any origin error. The best values of a and b

were determined, and the deviation calculated and plotted as a function of x

The results are shown in Fig. 58 with a sine curve of amplitude I -S and

period 2 mm fitted to best cover the points. The error bars represent the

uncertainty, due to noise. in locating the signatur, m,-xirma. There is little

doubt that a periodic error exists. For 3 - 1. '-1 and a period of -2 mm, the
-1

ghost intensity at -50 cm line should appear with -2% of the line intensity
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aOPTICAL PATH DIFFERENCE (A)

Fig. 58. Cptical path difference error in a linear inductosyn
scale. The superposed curve is a sl;-e curve of
amplitude 1. 5u and period 2 mai.

at displacements of - 5 cm-- away from the line. The over-all noise level

of most of our spectra. would hide these ghosits; howevec, see F'ig. 5_ Tliere

are features at -*5 cm- about eca. of the 'lines' that appear to b,,, ghostos.

Tuie remedy for this error it, of course a more accurate measuremert

of x, the optical path difference. The pc'rsibi~y of using a singie mode laser

ih iiezng examnined.-

C7 CHO4ICCEOF' x

As rnentionrd previousiy. the optical path diffrrenice 1incrernen! ax is

fixed b) &arrpling thero'y: ;. r.. ax ýQ~v ),whe re vis ý.he t s wavcý
c

number of the spec i-ian. Three points a.j discusstid: (1) dettrevinnat ion *i

(2) effect of chov..ing ax too '4A-ge. io~d 3)efl, ct of chv~o~ang 4,X -Smaller than

nerd be.

We dete'rminir.t Ax~or 1 ina t:Se followi.*ý mannre Ar, L-t erfercigranp oi

the source is obtainaed witin a re a\ý velv prnal Ax, co'rres onding io a larg-t

V his interfertoirarn is :ht-n .ririsforrred and talh- wp~er-rum 6,f 1h e 1~~pa 4
mo4dii'ied by the filtering is o'otained. Where the intenr ii~ty goe~ to Ivero'
(within the noise level) is the true v nd thus, the rrnaximuem Ax iR 4eferroined.

This is donrw ~henever sources or .6ti1tring aý. ;nge--ff-nf are c h A ~d



.rclerstmA(. in turnris W ho s, at nnrl-g :;it *r , i 'Ihit ,rait (,f h anning

function is Oleternrijuri by 1- thc niaxflvuni optical path difhrence gene rituld.

The range over %f.ich the scanning func hon st ans Iis dlete rm~rec by Wx.

Ac tually, exc ept as Ax .. , there is mur'- than one sca nniing func tiun. Yo r a

given Ax the first scannin function covers the spectral region 0 -vC tMe

second, Zv c-v ;the third, & -v C : etc. Thus when ay is taken. too) large

or there is internsi ty in the spectrun beyon d (2Ax 1 oe will alias the

spectral information beyondý back into the region <v T

suppose the true cutoff %va~v4nurinber of a Fpec rumn is 125 ctim (for Which

Ax 7:1 /25 0 cm 2 40i,4) but Ax1, is chosen to be 501t (corresponding to a v o

100 cm ) Under these conditions the_ spectral cia .ta betw.eeýn 0 - 1 001 (n,

will be displayed as they should he, but in addition th-e spectral data, between

100 -- 123 Ocm- will be foldt ci over on top of' the data bctween 1010 cm-- an d

75c.~u-n i is is ssomewphat simrilar Zoj tht( overlapping of order-s in a grating

spectronicter and is usuaky undesirable,

T~here is, however, one case whcre t'he multi-order sca-,ining function

~san advantage. Suppcsec there is no intensity in the regions corresptnd(ing

to the 1 st, And? ,n - O tri order, but thei e in intensity in the nth and

none beyond. TMen Ix can be chosen as [2(,~ 4 1) V .*ii' J (zV insteatd

t cý

r-easured. This hAn. been exploied by thu Conne s (Refs. U. 7) in their n~ear -

Mkng., Ax sinslier -ha.a neved be is equiut'a lo(t to rr&ý,king larger t ianr

need br. -and Mah~ining the sarhe re so~qt.-onre-C ire ore, ;)otts to be

niv u red In thet-,ry the~rt i5 no disadvanta~e, but in practice it ati!.-untis. to

a waste of) nioasuring liit and ConMPUIUer 'til-tV Tbix i( eaxpnc1, on in the

discussiton ofd noine in intr~rfrrcrnetrrv

t5n"is mft scni ~ng its the fo~rmal Asc.iec "bin it ib ~ien to ~ r

in thi,% fliafnnei



D. CHANNEL SPECTRA

One of the most annoying phenomenon encountered in FIR interferometry
-i

is channel spectra. In this frequency region (10-1Z5 cm ), surfaces not

plane parallel tinder the usual optical criteria (a fraction to a few wavelengths

of visible light) may be plane parallel in the FIR and will produce channel

spectra. The effect is quite easy to see in IR interferometry, and signature-

type features will be easily detected in interferograms at x = 2nd (Ref. 72),

where n is the index of refraction of the plane parallel slab of material, and

d is its thickness. Windows can be suitably wedged to prevent this phenomenon,

and all the windows have been so treated in our interferometer. However, the

thin pieces of black polyethylene used as filters cannot be wedged and are

believed to contribute somnewhat to the previously discussed residual unbalance

at the origin. The channel signature will come close to x = 0 since d - 100i.

and n - i. 5; of course, there is some cancellation because of double beaming.

More troublesome is the fused quartz envelope of the high-pressure Hg

arc used as the source. It seems to have local areas of plane parallelism

and, since the reference beam and sample beam do not originate from exactly

the same region of the plasma and envelope, the effect is far from cancelled

by double beaming. We have tried dimpling the lamp as suggested by

Richards (Ref. 18), but this led to great difficulties in making an equivalent

match between the two beams. We have therefore left our lamps undimpled.

The result is a cosine variation of the source spectrum that is superimposed
-i

on the sample spectrum with a period of -1. 3 cm and whose amplitude

decrea ses at higher wavenumbers. Fortunately these channels are quite wide,

and their maxima and minima are easily determined; thus, they are not

confused with the sharp lines observed in the high resolution spectra. How-

ever, as the width of the lines approaches the period of variation the error

in the frequency determinations is greater. It is estimated that the amplitude

of oscillation (in intensity) of this channel spectrum is four to eight times the

noise level in the low wavenumber region of the spectra.
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As mentioned, the channels are much stronger in the low wavenumber

region and are almost nonexistent above 55 cm From this we infer that

most of the energy in the low wavenumber end of the spectrum (Z 55 cm' )

comes from inside the lamp (i. e. , the plasma) and most of the energy above
-1 16

55 cm comes from the hot quartz ervelope.

E. LONG TERM COURCE FLUCTUATIONS - STEP FUNCTIONS

The medium-high pressure Hg arc lamp has been the most

frequently used source for the far infrared. Although no comprehensive

comparison of possible FIR sources has been made, it is rather firmly

established that the medium-Higl nressure Hg arc is a brighter FIR source

than a glowbar (Ref. 83), a ".e dit.-harge (Ref. 84), or a high pressure Na

lamp (Ref. 85).

It has been •ur exeerience that che stability of Hg arcs such as the

G. E. AH3 and AV4 "ku 'he hmiti-g factor (i. e. , largest contributor to the

noise) in o-ir r-b3erved 3/N (if the channel spectra are not considered noise).

At first, "* wou]1 se tm +at monitoring the source and using this to operate

a feedback l•op so z s i. compensate for these fluctuations would eliminate

this difficulty. Asidc Irom the negative resistance characteristics of these

lamps such a qchcnv,; is not practical since the Hg arc is in reality two

sources, the plasm-r.a, and the hot envelope of the lamp. Most, if not all, of

the fluctuations are in the plasma. Their onset is quite rapid and may have

quite a long duration (-15 minutes). We have seen, quite often, a step function

type discontinuity in the interferogram. Conversely, the FIR energy output

from the envelope should be quite stead.v, and, even if it did change, such a

change would be expected to be slow and quite small (if power input is

regulated to some degree). The arc fluctuations are caused by two inter-

ralated effects: changes in the voltage-current characteristics and actual

arc w.- ndering over the electrodes. The phenomenon is very noticeable in

A0A room temperature, fuzed quartz does show a cutoff in the 50-60 cmr-1

region; however, it is impossible to say what the spectral transmission
properties are at the temperatures the envelope reaches when the lamp is on.
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double-beam operation (-4% of F'(x) average). In this respect we have found
that the AH3 i riips appear somewhat more stable than the AH4 lamps. We

surmise that this is due to the capillary restrictions in the AH3 lamps not

present in the AH4 lamps, and thus the actual physical wandering of the arc

in the AH3 lamps is less than in the AH4 lamps.

We now consider what effect a step function in the interferogram has

on the spectrum obtained by Fourier cosine transformation. Consider a step

function of amplitude A starting at xI and cnding at x The effect of the

"box" in the spectrum is ascertained by Fourier cosine transforming the "box"

from optical path difference space (x) into wavenumber space (v). Thus

x 2

box~ =JA(xt' x2)cos Zirxvdx =A fco
0

which can be written

1(V~box = [A(x 2 - x)] • [cos Trv(x 2 + x )I fsinc Tfv(x 2 - x )I

The first term, the amplitude, is proportional to A, which is the

amplitude of the step function in optical ?atii aifference space and to (x 2 - x1 ),

the duration of the step function in optical path difference space. The second

term gives the rate of the variations in wavenumber space. If (xZ + xI) is

large, the fluctuations will be rapid and will appear to thz observer as high-

frequency noise. The last term is the ervelope (in gereral) of this function,

and it is seen that the largest fluctuati.nks cf 1 :.)box r..cu. it. tke low wave-

number region.

It ic postsihle to "edit" the interfowrogrvmrn by etaimatinr+ A from the

record, then subtracting it from the interferograrn function from noits -Ia

to x 2 . This will eliminate the gross effects of the extrareots b-ix, bnt in

no way compensates for the fact that there has been a real spectral charjp

of intensity (plasma change) or an apparent change (arc wancei).
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We are testing and evaluating some "short arc" dc operated Hg lamps

in the hope that they will provide a solution to this problem.

F. STOP-AND-GO SCANNING AND TIME CONSTANTS

As described, digital computation is the most flexible and accurate

means of performing the Fourier transforms required in interferometric

spectroscopy. This requires that the continuous interferogram be sampled,

meeting particular requirements of frequency and total number of samples

as discussed in this report. The simplest scheme for taking those data is an

on-the-fly technique in which the grating moves continuously. Data are taken

during a time interval sufficiently short that the grating has not moved

appreciably. If a high S/N were available in the interferometer output, this

scheme would allow rapid data acquisition. However, because of the low S/N

available in the signals being detected, obtaining adequate S/N in data taken

by this method would require extremely slow scanning rates leading to long

total run times with much of the time being spent unproductively in going

between points. This problem can be eliminated of course by moving rapidly

between positions where data are desired, then stopping grating motion during

the data-taking process. This stop-and-go technique is the one used in the

Aerospace instrument.

Proper operation of such a system, however, requires a proper regard

for the time constants of the detecting system. There are three principal

time constants in the detecting system in our instrument: (1) The time

cnstant, T, of the synchronous detector in the 19-cycle amplifier; (2) the

gate time, T, used by the preset counter; and (3) the period AT X 1/3 seconds

required for the grating to move to a new position. The first controls the

highest frequency noise that will appear in the output; the second controls the

length oi time ("integration time") over which the data are averaged; the third

is only indirectly under the control of the experimenter.

These filtering parameters are adjusted for any particular run to

optimize the conflicting requirements of a low noise level and a reasonable

total run time. Failing to recognize that the adjustments are interdependent,
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however, may lead to systematic errors in intensity in the final spectrum,

If the ratio of the integration time to the detector time constant is too low and

if the signal level is quite different from the preceding point, the signal

averaged by the counter will be changing over an appreciable portion of the

period of averaging. This adds to the interferogram another function

proportional to the first derivative of the interferogram.

The magnitude of this contribution can be estimated with the aid of

Fig. 59, a schematic representation of the signal changes during one data

acquisition cycle. At tk data acquisition at the preceding location is

completed; between to and tV, the grating moves to a new location and stops.

For convenience the signal (solid lie) is assumed to vary linearly during this

time. At tY, data taking at the new point is initiated and continued throughout

"a period T until time t2 . Th-e output signal from the 19-cycle detector, with

"a poor choice of time constants, is shown as the dashed line. The fractional

error in the data taken then will be the ratio of the hatched area to the

rectangle of area TE 2 . This fractional error is:

X

The first set of parentheses represents the amount of change in the signal and thus

the largest possible error. The first square brackets represent the decrease

in this maximum error because the output signal has some time, AT, in which

to start to follow the input signal change; the second brackets introduce the

error caused by the input to the counter changing during the data taking.

Since the noise is expected to go down with ths squsre root of the

integration time, increasing T above about 10 seconds increases the overall

run time more than is worthwhile for the improvement in voise. Since a pen

recorder runs off the output of the detector, an offhand choice for r would be

a little longer than the i-second r•uiponse time of the recorder, possibly $
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Fig. 59. Schematic representation of signals into and out of the
19-cycle detector during one data acquisition cycle.
During time AT, grating~ is moving to new position.
During time T, the "integration time'. data are taken.
Hatched area is the amount by which the final inte-
grated information will be in error due to the constant
of the detector.

13

- i 35



seconds. With these values almc..; '- z-'orrection takes place during the

moving time ([ ] 0. 95), whereas, the error during the integration process

is still about 30%. The solution is to decrease the detector time constant as

much as possible and to independently increase the recorder time constant if

desired. If we reduce T to 0. 5 second, 25% of the change can occur while

the grating is moving. The error in the integration is about S-/o,so the total

error is now only a little above 3%, a ten-fold reducticr. 114,e effec't ot thiz

improvement in accuracy in intensity measurements on the transformed

spectrum may be seen from Fig. 60, which shows two spectra of a mercury

vapor source taken under identical circumstances, except for the time

constant of the 19-cycle detector. From this figure, it is apparent that

proper choice of time constants is imperative for a system having several

cascaded systems, each with a comparable individue I time constant.

------ 10/- RATIO

20/I RATIO

"" 2 45 65 85 10 12 45
FREQUENCY (cm-1)

Fig. 60. Effect on the spectrum of a large detector time constant.
Both curves are spectra of a medium-pressure mercury
vapor source, and except for the detector time constant,
were taken under identical operating conditions. The in-
tesration time was 10 sec/point. The solid line corres-
ponds to a detector time constant r of 0. 50 sac; the dashed
line is the sp-,_ctzur obtained with a r of 3 sec.
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G. BACKGROUND RADIATION

In any spectrometry, and partifularly in the FIR, backgroundv radiation

competing with that from the sample can introduce serious errors in measure-

ments. IL is important that this source of error be understood and that all

possible means to minimize it be used. In order to assess this error, con-

-iidr .ivat th, P1•ir: rrit'n law as applied to these long wavelengths. It

can be written

E(\)

e -1

where cI and c2 are constants and X and T are the wavelength and the

absolute temperature of source. For XT >> c., by expanding the exponential

and keeping only the leading termnwe obtain the Rayleigh-Jeans approximation

c 2

where we see that E(X) is simply proportional to T, not rapidly varying as

it is for small X. In a room temperature (300"K) environment with a source

at 3000'K (very high for available sources), the radiance (W/cm 2 ster) is

only 10 times greater for the source. The source in our case fills a solid

angle, as seen by the detector through the interferometer, of about t/50,

whereas, the background fills 2w, which Is larger by about 300. Hence,the

integrated energy from the background exceeds that from the source by a

factor larger than 30 even before absorbing samples are inserted in the beam.

Fortunately, two factors act to greatly reduce the effect of the back-

ground. First, most of the background radiation does not pass through the

interferometer and it Is not modulated by the interferometer displacement;

hence, it introduces a constant zero shift in the interferogram that is ignored
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in the computer trar.sformation. Second, an even larger fraction of the

background is not chopped and the detector response it produces does not

contain the 19-cycle modulation frequency to which the amplifier is tuned.

Radiation must pass through bcth the interferometer and the chopper to be

transformed into an output spectrum. In any case, however, it adds to the

detector noise. Also the chopped-norn-nodulated component uses up some of

the available dynamic rauge ot -,he arplifier.

In order to minimize the effects of stray chopped radiationit is

necessary to baffle the system carefully. Baffling in this spectral region

is more difficult than it is for the shorter wavelength region because most

of the usually black materials are not black. Even black flocking reflects

about 20%. Also, ordinarily opaque materials such as heavy cardboard

transmit about 10%. Sheet metal appears to be about the only truly opaque

baffling material, and we have not found any really good nonreflecting surfaces.

We have been able to reduce the chopped-nonmodulated component to less than

10%6 when highly transmitting samples are being measured, but the percentage

increases drastically for absorbing materials.

If an absorbing sample is in the sample holder, the chopped and

modulated radiation received by the detector when the sample is being viewed

consists of:

1. Desired radiation from the source transmitted by the sample

2. Radiation emitted by the sample

3. Radiation from the surroundings that is -reflected by the sample
into the beam

4. Radiation, similar to items 2 and 3, from the sample bolder and
other surrounding structures.

There are similar components in the reference beam which, of course,

subtract from the signal due to the sample beams.

It is easy to estimate the effect of sample emission. Consider a 4ource

of effective temperature T5 radiating energy through a sample at ambient

temperature Ta. The sample has an absorbtivity, a, that equals it.

emissivity. e.
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If the sample were in equilibrium with its surroundings at Ta, it would

absorb a fraction, a, of the radiation of wavelength X passing through it

within a given solid angle, but it would also emit an equal amount into the

same solid angle. In our case, the source radiation enteri ig the sample is

T /T times as large because of the higher temperature of the source. Hence,
8 a

the radiation observed is proportional to T (1 - a) + aTa = T - a(T - T a).

An apparent absorption, a' I a[ I - (Ta /T$)], is observed that can never be
ia erUia,, 1 "'r /1 P With the commonly used qi1artz Hg arc sou rce, tho,

hot quartz is the radiating material for Y near 100 cm'. If T is then

'900"K, the error in a is •301%. The observed transmittance will then never

be less than 301%.

The reflection by the sample allows the detector to see other emitting

surfaces near the sample. These surfaces can have any spectral radiation

profiles and hence the-distortion introauced into the measured spectrum

cannot be predicted. It will not be a simple multiplier as in the case of

absorption but may even introduce extraneous features into the spectrum.

An interesting special case arises when the sample acts as a partially

reflectikg mirror perpendicular to the beam. The detector then "sees itself."

and since the detector is cooled, the magnitude of the error is reduced. This

effect has been observed with metal meshes run single-beam, the reference

beam being blocked off by a blackened metal plate. The metal meshes are

highly reflective and the detector sees itself in the sample beam. but it sees

the 300"K surroundings in the reference beam. The measured "tranomittance"

is negative as a result.

It should be pointed out that under these circumstances the detector does

not see just itself but half of itself and half of the surroundings. The inter-

feremeter puts half of incident energy into the central maximuma and half into

the higher orders. Looking backward through it, we see an extended field of

view with half transmittance from the position of the central maximum and

half from the positions of the higher orders. Since the detector is very cold,

the effective temperature that the detector sees under these conditions

approaches Ta1Z as extraneous scattered radiation is reduced.
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H. DRIFT

During the data taking, changes in signal intensity with time constants

of the order of hours are observed. In a particular run there are varying contri-

butions of two types to these cr-inges: (1) an effect correlated with the motion

of the lamellar grating as reflected in motion of the interferometer entrance

aperture image in the exit aperture; (Z) nonreproducible drifts of detector, j
source, and critical amplifiers. Independent of the cause, however, is the

eiiect of these slow changes on the output spectrum. They lead to an increase

in low wavenumber noise in tie spectrum and may have some effect on line

Fh,.pes in higher wavenumber regions of the spectrum.

'I o illustrate thirswc ditctiss results of a detailed study of a water I
vapor inte.rferogram which showed a particularly sirnpie long-term change,

Is 1,,01'C-Ur-less linear decrease with increasing path difference. This ia

shown i'n Fig. 61, which .s a plot of averages of 10 adjacent points taken at

0 2 4 6 81I0 t2 14 16 " 8

OPTICAL PATH DIFFERENCE (cm)

Fig. 61. Averagesl over adjacent 1O-point regions of a water vapor
interferograrn, showing a case of nearly linear drift.
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100-point intervals in the inLerferogram. A first approximation to the

apparcnr furm 1' thr ihAterferograrn, F a (x) a , ) X a' a "x

F'(x) ( (1 - ax)

where F- x) = F, (x ) + Fw(x) is the interferogram due to the water alone,

and the quantity in brackets introduces the linear fall-off. The spectrum

then is obtained by Fourier transforming F a(x) and is

x
m

E(,) F (x)cos OSr•vxdxJ a
0

x
m

alw(XM) f (xm - x)cos Zwvxdx

0

x

+ w(X)(1 - ax)cos Z"vxdx

proportional to v; although it is large in magnitude at •, 0 in the region of

the spectrurn where there is sufficient energy to make observations.

t, Z 20 cm this term will make little contribution.

T% gain an idea of the effect of the additional ( - ax) factor in the

integrand of the second term of Eq. (4.3),it is convenient to assume we are
2 I1discussing lines with a lorentzian shape. E(v) t(v - V 4 (Av) - , half,

0
maximum width of Av centered at frequencies vo. It has bee-n shown th,.t the
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ZX

"1 1go ,ALL,
0.005 0.05 0.5

Ln FREQUENCY w(cm tl)

Fig. 62. Difference I-etween the spectrum near v = 0
as obtained from the unc,'rrected interfero-
gram -.nd that obtained from the same inter-
ferograri alter dividing each point by (I - ax).
The straight line has slope -2, as suggested
by the v-4factor in the first term of Eq. (43).
The x-marks along the v axis are zeros of
sin wTvxr•1 .
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interferogram expected from this line is an exponentially decaying cosine,

cos 27rv x exp(-ZirAvx). Then the apparent spectrum given by E,(t) for this

line will be

E IM) cos(2Trvo x)cos(2wvx)e-2xAV (I - ax)dx

0

If a is not too large, (I -ax)maybe thoug t of as the first terms in the expan-,

sion of exp(--ax). The form of the function to be transformed then is the Lorentz

line interferogram. Thus the line shape must also be Lorentzian with an

apparent line width Av =tv + a/Zw somewhat wider than the true line width.a

The applicability of this approach

SI + I I "'---i is demonstrated by dividing each point

in the apparent interferogram by (1-ax),

_ 10 Tv thus obtaining the actual interferogram.

--- TIPMOZED The difference between the transforms

o g0 the corrected and uncorrected inter-

ferograms near u = 0 appears as a

I -loglog plot in Fig. 62. The decaying

sine curve is obvious. The straight
line has the expected die-off slope of

-2 and is seen to agree well. Figure 63

shows one of the lines in the water vapor
32.6 32 33.0 3 3.4 A6 spectrum. The solid line is the trans-

FNIOIENCY (cm-')
form of the uncorrected interferogram,

Fig. 63. Lines obtained from the whereas the dashed line obtained from
corrected interferogram (dashed the corrected interferogram shows the
line) and from the uncorrected
interferogram (solid line). Note narrowing effect of eliminating the
the decrease in width at half- drift from the interferogram.
maximum intensity obtained at the
expense of some increase in the
apparent noise in the base line.
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The particular analytic expressions developed here are applicable

only to interferograms of separated lines of Lorentzian shape which show

a drift linear with increasing position. The effect of other long period drifts,

however, would be expected to be similar, introducing increased noise at low

wavenumbers in the spectrum and making changes in the line shapes at higher

wavenumbers.

I. NOISE

Let the interferogram function F(x n)be measured at points xo, xt,

x2 , x, n xN(= L). We assume the separations Ax(= x. - x. ) are

all equal and chosen such that 6x = (2vc) in accordance with the sampling

theory condition (see Section II). In each F(x n) there will be a contribution

that is the noise and is called Ao, AV, A2 , *., An,. ., AN. The An are

assumed to be independent of x and F(Xn) and furthermore their mean value

is zero. We then take as a measure of the noise in the interierogram its

standard deviation NI given by

(=N

n=O

The spectrum is obtained from the interferogram function by Fourier cosine

transformation and thus the component of noise in the spectrum, Bm, at vm

is given by 1 7

N

B =Ax' A cos Zwx vm _a n n mi
n=O

4

17For the term n = 0, we should use A /2 rather than Ao, but as long as. 0

N is reasonably large, the error is small.
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We shall calculate the B only at those v that are independent.
m -1 m

The independent v m are located Av = (T,) cm apart, and taking the first

V at 0 cm'i we have v =r= v = m(L)-, furthermore, X = nx, and

Ax = (2V-. Making these substitutions we obtain

N

B A Cos1/&r ) (44)Bm n= /V--T
n-=0

The mean value of the B 's ism

M M N

Bm A0o
'' "M + 1 m 2(M + l)v c :n ýV-O"

Interchanging the sum over m and that over n, and multiplying by

Am(=t), and then approximating the sum over m by its limiting integral form,

we obtain

N VcL

B ( 21M+ t)v f A n o c d

and making the change in variable y = (nm/v L) the integral reduces to the
C

form cos nydy, which is zero. Therefore B = 0. We proceed to calculate
the standard deviation of the noise in the spectrum. Squaring Eq. (44) and
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summing over m, we obtain

M M N

ms0 c ms0 n=O

M N N

+ -!-A Acoo co
2V 2 E : 1Ap r -ML co7L

c in=0 ~

Again, by interchanging the sum over rn witn the other sums and

approximating this sum by the limiting integral, then dividing by M(=N/2),

we obtain the standard deviation squared of the noise in the spectrum N2
S

M N
N 2 F B2 .-L E A A2

8 = 4 m 4vc N n
m-=O n=O

Therefore,

Ne Nl N, (45)

which it equivalent to the expression given by Connes (Ref. 6) and Bell(Ref. 8).

We have carried out the following numerical exercise to confirm Eq. (45).

One thousand numbers were chosen randomly with a normal (Gaussian)

distribution such that the standard deviation was 1000 units. These one

thousand numbers were then used on a.noise interferogram and were Fourier

cosine transformed with various values of L and Ax. rhe standard deviation

in the noise spectra were then computed, and the re suits are summarised in

Table 13. The ranges of L and Ax weire chosen to be representative for the

FIR region. Equation (45) predicts that, if Ax in decreased (or vc multiplied)
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Table 13. Calculated (from Eq. 45) and Observed Standard Deviations

L, cm Ax, 1 NI NS (calc) NS(obs)

4.00 40 1 O0c 89 86

3.60 40 1000 83 83

3.20 40 1000 80 79

2.^80 40 1000 75 74

2.40 40 1000 69 69

2.00 40 1000 63 64

8.00 80 1000 179 172

4.00 80 1000 127 126

6.00 60 1000 134 131

3.00 60 1000 95 97

a. 00 20 1000 45 44

1.00 20 1000 32 31

o. t0 o 1000 ZZ 2t

0. 50 to 1000 16 15

by a factor R, the noise in ýhe spectrum will be reduced by a factor R

The number of points will of course be increased by R (for constant L). Thus,

if the same amount of time is available for the measurements, N, will be

resulting in no change for N . In practice, however, it is

still advisable to select Ax as large as possible equal to (2 v to minimize thec
"Idoad time" the time it takes the interferometer to go from point to point,

during which no data are-taken), since in general the smaller Ax becomes

the more dead time there will be per-itnit length of optical path difference.
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Making Ax as large as possible also minimizes the total number of points in

the interferogramr which can be of some consequence when computer

economics are considered.

Connes (Ref. 6) has considered the case of an interferogram that is a

cosine function. This corresponds to a line in the spectrum having zero width.

The signal (maximum intensity of the line) is proportional to L, and therefore

the S/N is proportional to Li/2. For such a case the interferogram should

be carried out as far in optical path difference as possible since an increase

in L always increases the S/N in the spectrum. This is a limiting case and

is appropriate when the resolution attained in the interferogram (governed

by L) is much less than the width of the line. When the resolution becomes

comparable to the line width. then the dependence of S/N in the spectrum will

be different than the L 1 / 2 dependence.

Consider a spectrum 1(v) made up of a single line having a Lorentz shape.

This line shape was chosen since it represents a good description of weakly

absorbing pressure broadened lines, and is mathematically tractable for the

Fourier cosine transformation we wish to carry out. And now calling the

signal In the spectrum, SS= IL( Vo) (see Eq. 10),

SS = I(Vo)(i - e"Z!t L 1 (46)

and therefore the S/N in the spectrum is

Nil I( 4 (2t L)1/2(47)

where SI = F(O), the maximum signal in the interferogram.

The S/N in the spectrum has a maximum when Lc a 0. 200. For
1/2

Le < 0. 2, the S/N curve rises -iL as is to be expected since L < I/.; for
L4 0. 2 the curve flattens out, then falls gently toward the asymptotic

-=48-
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dependence of L"I/2 If x is set equal to (5E)' 1 in the interferogram function

(see Section II), then the amplitude of the interferogram function at this value

of x wi"l be down to -28. 5% of its maximum value at x = 0. Thus, for

maximum S/N in the spectrum, the interferogram should be terminated

when it has been damped down to 28. 5% of its maximixm value.

In Fig. 64 is a plot of IL(v) for Lc = 0. 200, and also I(v). The intensity

of IL(v) differs markedly from I(v). It is -28% lower. Also, the character-

istic sidelobes, or feet, are quite prominent. For Le = 0. 200, the intensity

of the first sidelobe (the strongest) is (measured from the first minima to the

second maxima) -'16% of the central maxima (measured from the first maxima

to the first minima). In such a spectrum, if the S/N is greater than -6, these

sidelobes might be interpreted as real lines and, therefore, it would be

desirable to suppress them. The sidelobe intensity depends on L, and in

general the sidelobe intensity will be decreased by making L larger.

The quantity IF (discussed in Section II) represents the maximum intensity

of the first (and strongest) sidelobes; therefore. IL(vo)/IF measures the

maximum intensity to sidelobe intensity. There is little to be gained in

carrying the interferogram beyond that L which yields I L(V )/IF much larger

than the S/N. The function IL(V)AFvS 2irLe is shown as cnrve D in Fig. 65.

Also shown are three SS/NS curves characterized by the parameter

5ivt1/2
C)• lr100 (curve A) ; 300 (curve B) : and 500 (curve C)

Consider for example curve B. If maximum S/N in the spectrum is required

the Interferogram should be cut off where Le v 0. 20,as discussed previously,

and this would yield a S/N in the spectrum of ~190/1. However, if we require

that the sidelobes be the same sise as the noise, then we are interested in

where curve B intersects curve D, which happens at 2wLe w 5. 35. The SIN

in the spectrum will then be -130/1. In this case the interferogram will be
-5.35

carried down to e • 0. 005 of its maximum value. Then the difference
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"The inset shows I(v) - 7L(v) at the sarme scale.
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I(v 0 ) - IL(vo) will be also within the noise. If (8v c /irE) 1 / 2 > I (and generally

it is), then the interferogram will be carried out beyond where the signal in

the interferogram is lost in the noise of the interferogram.

Two-beam interferometry is usually applied to rather broad band

absorption investigations (this does not of course exclude high resolution).

This will lead in general to two complications not considered in the previous

discussion. First, ,he quantity we have been calling the signal in the inter-

ferogram (which can be thought of approximately as the variation of the

interferogram about its average value) is usually only a small percentage of

the total signal detected by the detector. This is the well-known dynamic

range problem of two-beam interferometry. It can be suppressed by the

technique of double-beam differencing (see Section MI). Second, usually

more than one line is present in the spectrum being examined interfero-

metrically, and the line width parameters c may not all be equal. Thus,

the interferogram will not have a simple damped cosine form, but rather

will be the net result of many of these terms (one for each line). In the case

of diatomic and linear molecules the argumrents of these cosines are related

nearly harmonically and the grosser features of the interferograms are its

well-known signatures (Refs. 22, 23),and the damped amplitude of these

signatures are then a measure of the (total) signal in the iaterferobram.

At the other extreme is the pure rotational interferogram of the water

molecule. This interferogram is very irregular (Ref. t5); however, the

amplitude does decay (on the average) as one goes to larger x and an average

assessment of the damping is possible. To a certain extent in pure rotational

spectroscopy the line width parameter is somewhat in the control of the

experimenter since it depends on the pressure of the absorbig gas. For

best S/N in the spectrum, the pressure in the absorption cell should be fixed

so that the average of the signal In the interferogram in the victnity of

I'sA word of caution, however. In the pure rotational interferogram (Ref. 1P)
of DCI, the signatures die out and then come back at larger L because the
spectrum is made up of a series of closely spaced doublets.
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x L is -28% of the average of the signal in :he vicinity of x 0 (the region

about x = 0 should be excluded from the average). This will provide (on the

average) the best compromise between S/N in the spectrum and sharp lines

and presumably the best condition for wavenumber measurements. If there

are overlapping lines the presence of the sidelobes will, in general, introduce

an error in the wavenumber measurements. This is discussed later.

The line shape assumed is a good approximation for weak absorption.

For more strongly absorbing lines the Lambert-Beers law is more appro-

priate, and in general the line shape will be modified. If such a line

(hereafter called Lorentz-Lambert-Beers line or, for short, LLB line) is

compared with a Lorentz line normalized such that both have the same

maximum intensity and same effective half-width at half-maximun, then

the L line will be "squarer" in the senst it is broader (more intense) between

V - ' eff and vo0 + eff and narrower (less intense) outside this range. We

have generated a number of I (v) for various values of y(vo) I > I and F.iurier

cosine transformed these functions, the result being the interferogram

function they would present. In the region xi < I these interferograrm. were

damped out -exp - 1I2wE effx 1, but in the region xf) eff - I the cosine modula-

tion came back with amplitude small but not negligible in comparison with

its amplitude near x = 0. To a first order of approximation the difference

between these two line shapes iooks like two lines separated by telf and thus

one would expect iubsidiary maxi-na and minima when x(f)e ,

The magnitude of the amplitutde of the interferogram at x(1) I, ,

is of course determined by the adifference between the LLB line shape and the

19W . .. . .
When an interferogram is measured using the double-beam differencing
rnode of operation (Ref, 15) the result (after Fourier cosine transformation)
is "it I(01~ the spectrum, but rather iAW 00I ~' - Mvw)], whiere JVO~' is the
spectrum tt.at would be obtained with no *A Opie in the cell, if we assurnc a
Lambedt-Beers law for *bor|Ption, w-- have P).v) : Io4v}XI -Y-(0, where
y(v) is the absorption coefficient and .! the %bl•rbing path. For y(vOl << 1.
this reduces to t&(,) 0 a o(vo)y9'vf Vr pressure broader~ed lines y(v)has
the form give-n by Eq. -12 1).

-153-



Lorentz line shape. As far as the spectrum is concerned the contribution

from these parts of the interferogram will "square" out the line.

Wo. hgave assumed no error in the measurement of x, the optical path

diffe:ence. 20 Such an error can be quite degrading as far as S/N in the

spectrum is concerned. Consider for example an interferograrn which has

large armplitude features, such as signatures. In the vicinity of a signature,

the rate of ch .nge of intensity in the interferogram is very large with respect

to a change in x, and thus a small error in x could lead to a large change

in intensity of the interferogram. This is very undesirable in that the apparent

noise generated by such an error could be very much larger than the true

noise. Furthermore, these larger apparent noise excursions occur at

exactly those places in the interferogram that correspond to the positiona

of greatest contribution to the intensity of the lines in the wavenumber

spectrum. Thus the noise level in the wavenumber region of the 1ines could

be greater than in the wavenumber regions where there are n,) lines.

FVnally, we consider the question AJ resolution. Shown in Fig. 66 are

two identical lines with Lt = 0. 200 (optimum S/N situation) separated by 4 t.

The dip in intensity between the lines is -11% (3omewhat smaller than the

Rayleigh criterion; if the separation were -4. 2 the dip in intensity would be

-18%, very close to the Rayleigh criterion). The lines are separated by 4t

but appear (measureraent of maximum intensities) to be separated by -3. 8C.

Well separated lines could be me-sured more accurately (depending of course

on the S/N). Aj-odization oi the interferogram would suppress the sidelobes,

but little or no gain in measurement accuracy would be expected since the

lines would then be broader and their central intensity region would overlap

even more.

20If the error is constant fi. e. , mislocatlon of the origin, x = 0) then serious

shifts and distortions of line shape may result. If the error is periodic.
ghosts will be seen in the spectrum (Ref. 6). See Section V-A, B.
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K
VI. COMPUTATIONAL TECHNIQUES

A. INTRODUCTION

Development of efficient means to carry out the calculations indicated

in Eq. (5) has enabled Fourier transform spectroscopy to become a practical

means of spectroscopy. Because the computational techniques are so

necessary, this section is devoted to a discussion of the algorithms used

and tests that may be applied to them, and it closes with a brief discussion

of programming the algorithms for use on a high speed computer, including

flow diagrams. With detectors presently available, the only meaningful

energy information available is relative, not absolute. Because of this,

constant factors are customarily left out of the equations of Fourier transform

spectroscopy. When this is done, Eq. (5) becomes

El*) = N 10) ÷ 1 F(j&x) cos Zw7jv4x (48)
j=1

Notice the finite sampling of the interferogram forces the computed

spectrum E(v) to be periodic with period I /Ax. Furthermore, since

cos(y + nir) = cos(y - niT), Etv + (i/jZAx)]= E[(i/Z)4x - vJ, all the information

must be contained in a frequency band between 0 and (ZAx)"i [or in general

v and v + (Zax) ].

B. COMPUTATIONAL ALGORITHMS

The computational algorithms used must carry out the operations

indicated in Eq. (48) as efficiently as possible. Two algorithms have been

developed, each with particular advantages.

I. DIRECT SUM ALGORITHM

The conceptually simplest way to carry out Eq. (48) for a given value

of v is to take a value of F(nrx), multiply by the required cosine, and add
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the result to the sum of the preceding manipulations. This involves N

multiplications and finding N cosines for each output point. If we define

a "manipulation" as one addition, one multiplication, and finding one function,

to obtain M output points from an interferogram of N points will require NM

manipulations. By far the slowest of these processes is the calculation of

the cosine by the computer. This can be speeded up, however, because all

the arguments for the cosines needed to calculate the transform at one

frequency are integrally related to each other. This allows the use of the

recursion formula

cos(nx) = 2 cos(x) cos[(n - i)x] - cos[(n - Z)xl n = 1,2,

The recursion formula, however, introduces accumulated roundoff error

into the cosines. In practi -e, a compromise is sought by periodically

computing a set of cosines from the basic definition while obtaining most

of the cosines from the recursion relation. Even with this feature the

computer takes about 40 asec per input-output point, meaning a spectrum

of 4000 points in and 4000 out would take about I I minutes.

2. COOLEY -TUKEY ALGORITHM

It was noticed that if certain simplifying restrictions were made on the

relationship between input point spacing Ax and output point spacing Av, a

number of similarities existed between the computation of Fourier series

and the factorial experimental designs familiar to statisticians. From this,

Cooley and Tukey (Ref. 86) have developed algorithms suitable for general

complex Fouriei series computation. Forman (Ref. 87) was the first to

bring these algorithms to the attention of spectroscopists. The algorithm

computes the output spectrum of M points by means of several intermediate

arrays, each of which also contain M points. The trigonometric weighting

is not calculated all at once for each interferogram point but partially applied

each time a new array is computed.
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The most convenient way to accomplish the weighting is to use complex

exponentials, since the weighting function of the sum of two arguments may

then be obtained by the multiplication of the two weighting functions. It

becomes very convenient to also require that AvAx = I/M, the number of

output pointe. If we let F(v) = E(kA v) = ZAx Real [ T(k)],S(j)= F(jAx),

j 1, 2 . .N, and S(0) = F(0)/2, Eq. (48) may be rewritten compactly as

N
T(k) = -S(j)WJk (49)

j=0

where W = exp(i2w/M) and N = the number of input points.

All the information in the interferogram can be obtained if M = N;

however it is often convenient to have the output points more closely spaced.

Forman has pointed Jlt that this can be effectively done by extending the

interferogram function with zeroes, until it has M points. In the following

proof of the algorithm it is shown that the same effect can be obtained with

the calculation of fewer intermediate arrays if calculation of the first array

is modified slightly. The success of the method depends on N and M being

highly composite numbers, the most efficient base being 3. It may be shown

however (Ref. 86) that either base 2 or 4 is only about 616 less efficient, and

for some methods of programming digital computers a binary-based system

is much more convenient; therefore, this will be the system used for our

demonstration of the algorithm.

The interferogram is required to have N = 2 n points, extending the

actual data with zeroes if necessary. The spectrum is desired at M = 2m

output points with m = n + p; m, n, and p aU being positive integers. It is

convenient to express j and k explicitly in binary notation

rn-i

k =kiM-m1 i +km-22 ... k° =k k 1Z1

1=0

-159-

I '



, n-i .2n-2 -0

i nn-i + kn 2 Jo . = 0

When the sum (Eq. 49) is rewritten in the following way, th'., final result can

be computed in n passes through the data, each pasi involving the calculation

of M points, corresponding to the n summations ovcr the binary digits.

T(k) = ... ~i... J0)Wnl ' .

Jo=0 J1=0 Jn-2 = 0 Jn- =0

wn- 2 k ,n-2xW~n2• ... Wj~

The only dependence on binary dWgit jn-I is enclnsed within the squart bria Aats3

thus we can eliminate it from tha sum by carrying out the summation ant.

define the result as S1 .

jn- 2. .- . +k P ?.)
(k ks' Jn-Z' " J Sn-l Jo''J" 0 p

xWin M(kp+i÷ +km~t2n-2)

Since W raised to any integer power is unity, the right-hand factor of this

equation is always 1. making SI depend only on k. . .. kp, Jo . . . . in-2.

as we have indicated in the arpnment of SI. This process is repeated on the

next innermost sum to obtain S. and so on until the last summation over Jo

yields the desired transform. The relation between arrays on two successive

passes may be summarized by the recursion formula
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S 1+1(k p+I...' kit ksf in-1-2' "' Jo)

=. I S(kp+t- k I"I . . .ks on-)-it Jo)

in-1 -1

X in-I- (ko2n + + k " + 1 (50)w

If we define S,(0,... 0, Jn-i' in-Z' " jo) = S(jn-i' ' " " jo) =S(j), the

computation can be carried out by applying the recursion scheme Eq. (50)

to the M points in the So array to obtain the SI array, and repeating the

operation a total of n times. The calculation of one point in one array

requires two multiplications, two additions, and the finding of two exponentials.

In the entire computation then there are nM points to be computed, meaning

the total number of manipulations (as

2 , defined earlier) is 4 nM = 4Mlog 2 N.
- " The extra factor of 2 is introduced

20- because of the complex operations,

making this relation directly comparable
z

CofNTONAL - with the NM manipulations required in
15I SUMMATIO

the Direct Sum scherme. The saving in

IO-_ _ time for long runs may be seen in

-4 Fig. 67, which in a comparison of

IBM 7090 running time for the same

TUKEY-COOtY data processed by two programs, dif-
NETN0O fering only in the algorithm used for the

0 2000 4000 6000 transform. A similar curve has not

NUMBER OF OUTPUT POINTS been obtained for the CDC 6000 series

computers, but the scaling factor
Fig. 67. Comparison of computing

times for the Direct Sum appears to be about 6, since data
and Cooley-Tukey algo- requiring 4096 input and output points
rithme on the same datarun on the I aM data takes about 26 seconds of 6600 central
Srun on an IBM 709
computer, processor time as compared with the

i: -16 1-
it



1. 8 minutes required on the 7090 system. The time required for a single

manipulation is still not the same for both algorithms, since by proper

choice of a programming scheme only 4(M-i) sines and cosines are needed

by the Cooley-Tukey algorithm as compared with the NM required in the

Direct Sum algorithm. For this number, it is practical to calculate each

trig function from its argument rather than use recursion relations with

their accumulating error. However, since all advantages are not on the

side of the Cooley-Tukey algorithm, it is reasonable to turn next to a

comparison of the two methods.

3. COMPARISON OF ALGORITHMS

The Direct Sum method gives output points at intervals A v input to the

program. It uses a minimum of computer memory, needing only enough to

store the N points of the interferogram plus the actual number of output

points No desired for a total requirement of less than 2 No locations. These

two features make this algorithm particularly attractive in studies of small

regions of the spectrum where, for convenience, a great number of points

per revolution width is desired. No information in gained in addition to that

possible from interpolation with an appropriate function in a spectrum with

the number of output points equal to the number of input points, but it is

simpler to not involve additional computer programs. A disadvantage of

this method is the large amount of time required.

The Cooley-Tukey method solves the time problem, but it has other

disadvantages. It is required that Av :I /Mhx. Because Ax is specified

by the experimental conditions of the interferometer, the only possible

variation in Av is through the choice of M; but since M must be an integral

power of 2, the choices are limited. The resulting A v is seldom a simple

number, which may be of some inconvenience if further hand computation on

the spectrum is required. A more serious limitation is the memory required

by this method. The algorithm calculates the arrays S1 at all the points

between 0 and I /L at a spacing of Av. As pointed out earlier, the only

portion of the transform of interest is from 0 to I/2 L; thus M 2 NO or

! -162-L0
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twice as many points are calculated as ar: desired in the final spectrum,

requiring 2 N locations. Points are needed for calculating the S i+ a~rra.

in a different sequence than they occur in the Si array, so some provision

must be made to save at all times at least part of the preceding array (the

minimum amount convenient for saving is half). This requires N. more

locations. Since each of these 3 N locations must store a complex number,
0

with both real and imaginary parts, the memory requirements are for 6 No

locations or three times the memory ±'equirements of the Direct Sum method.

Because even large computers typically have only about 32, 000 cells of core

memory, No is limited at present to a maximum of 4096 points, in turn

limiting the smallest spacing between points, A min', to a value somewhat

greater than would be convenient on many occ,'sione. We are at present

conxidering the possibility of writing a special program, taking advantage L

of th,. 60-bit word size in the CDC 6000 computers, to store irk the same

compcter word the real and imaginary part of each element in the S array,

allowing oar maximum number of points to be doubled and the rrinimum

spacing between output points halved.

Each algorithm then has its advantages. The Cooley-Tukey algorithm

is particularly suited for scans of wide-frequency regions at high resolution.

The Direct Sum approach is particularly suitable for detailed studies of a

narrow-frequency range with a small output point spacing chosen for con-

venience in further analysis.

4. rEST PROBLEM

In checking any computer program it is desirable to h4ve a problem

simple enough to be worked by hand, and yet one which tests the capabilities

of the program. The function we have chosen to check the Fourier cosine

transform algorithms is a straight line F(x) Eo 0 - x/x nifor -5 x S xm.

and F(x) = 0 for x > x. The interferogram, as plotttd by the ,mputer, is

shown in Fig. 68. The transform as obttined by the computer is lasted in
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9W, 2 ESr I iiARFERC'CRt• STRAGIVr LINE 16 0105'6?.

.INI'

IW4UT INTERFEROMRAV POINT NO.

Fig. 68. Test interferogram as plotted by the computer.

Table 14 and shown as plotted by the computer in Fig. 69 for E = 8000,

Ax 0. 1, which leads to xn =. 6 and v = 5. The computations have

intentionally been extended to Zv . so the periodicity of the function discussedC'

earlier could be demonstrated. The two series algorithms agree to within

*1 in the eighth significant figure, and they agree with test hand calculations

made at a few output points to within the error of tho cosine tables available

for the hnd calculations.

The Integral transform for this simple interferogram can of course also

be calculated in closed form and the result is

Ef,, = E(o - cos Z,, , V)/(4,Zv,) ( 51)
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LugT2 TEST INTERFEROGRAII STRAIGHT LINE 16 01/05/67.

•.us

M10.

II

II

OUTPfI ISPECMM 4__

Fig. 69. Transform of test interferogranm as cermputed and plotted
by the. ýcomputer.

This has been evaluated for the vales of v where s..im resuhs are available,

and these results ai:e also listed in Table 14. Fron) the above dint usnion

of -mpaatioma: precision it is apparaeLnt the differeýces betw.en the evaluation

o Zq, (50)and tfhe 2xf x -.vaiuatto-•n .CuOt be du.-to computational errors.

The differences arive rather fror tb1 fmiite sampling of the interferogram.

as may be sean fToii Fig, 70, -w.hjre t•he differences between the integral

transform n d tn s -ri -ploftti .for -A 4x ~O•.•, 05 and 0. 1., which leads to

To fai~leatue co Mpwarisdn between the integrat res'tilt anid computer results,
the factor of 2 dropped In obtaizing Eq- (48? is reinserted as a multiple of
this intlegral
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Table 14. Comparison of Integral Transform and Sum Transfoxm
of Stralght Line Interferograrn

Eo 02E(lu}
S(! 0 con Zwx V)i5ZI;2 M (computer sum with

(cm ) in Ax = 0. 1 sampling)

0 12800.000 12800.000

0.15625 10375.289 10383.627

0. 3125 5187.6446 5204.3434

0.46875 1152.8099 1161.1795

0.625 0 ,-to"8

0.78125 415.01157 423.44627

0. 9375 576. 40496 593. 36480

1.09375 211.74060 220.27446

1.25 0 -o

1.40625 128. 08999 136. 75898

1. 5625 207.50578 225.00743

1.71875 85.746192 94.588898

1.875 0 -to -8

2. 03125 61. 392244 70.450783

2.1875 105.87030 124.23754

2. 34375 46.112396 55.433426

2.5 0 ~io09

2.65625 35.900655 45.536630

2.8125 64.044995 83.675684

2.96875 28.740413 38.751138

3..1Z5 n -to-8

3.28125 23.526733 33.981318
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T-ble 14. continued

Eo 2E(u )
v (,, (I - coo 2fXmV) (computer sum with

(cm."I Zrx mv Ax = 0. 1 sampling)

3.4375 42. 873096 64.285108

3.59375 19. 613023 30. 592392

3.75 0 -to-8

3.90625 16.600463 28.200623

4. 0625 30. 696122 54. 600961

4.21875 14.232221 26.5685W3

4.375 0 -to-8

4. 53125 12. 336848 25. 550089

4.6875 23.056198 50.485028
4,8437 10.796347 25.060336

5,0 0 ~1o- i
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200-

EXACT TRANSFORM

W~ 100
2

LII

AX 0.1

A X : 0.05

0
0 8 16 24 32

POINT NUMBER

Fig. 70. Difference between sum and integral for different sampling

frequencies of the interferogram. (8t Exact transform

minus surn with N = 16 samples, Ax = 0. 1. (2) Exact trans-

form minus sum with N = 32 samples, Ax= 0. 05,
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interferograms of 32 and t6 points, respectively. Equation (51) is also

plotted for comparison. In terms familiar to spectroscopists, these dif-

ferences arise because the filtering in the "instrument"t which determined

the original interferogram, the straight line, did not cut off the radiation

above v = i/2 Ax. This radiation is being aliaised back at lower wavenumbers

and makes the energy appear higher at v < v . As Ax is decreased, in the

examples shown, the cutoff frequency is increased, making less energy

available above the cutoff frequency for aliasing into the region of interest.

C. COMPUTER PROGRAM

The computer program includes facilities for plotting both the

interferogram and computed spectrum, facilities to subtract the asymptotic

value from the raw interferogramn, and also facilities to modify input points.

The latter feature makes it convenient to apply experimental corrections to

the interferogram. The heart of the program, of course, is the sections

which perform the summing of the series. In the present program these are

subroutines written in FORTRAN. Descriptions, flow charts, and listings of

these subroutines follow.

Identification

FCTRAN - Fourier Cosine Transform by direct sum

6400/6600 FORTRAN

PurLose

To provide the Fourier Cosine transform of set of data, by a direct

summation of the series

E(kAv) Ax {F(O) +2÷ F(jAx) coo 2rjk&xA]
j-1

Method

For details of the method, see Fig. 71.

-169-



INITIALIZATION

XNUK s BEG

INITIALIZE COSINECAULT
TABLE CALCULATION A

LzI K:'3 SERIES SUM

<0 

--

UL

< 0 K - I 0 0 * L > 0 K K - N U< K K := K K + i

CALCULATE 30CALCULATE 
iimimmi

COSINE qFROM COSINE FROM >0
RECURSION SUBROUTINEL L+I

CALCULATE &d .EU
COSINE FROM RTR

SUBROUTINE

K-lK+i I K-Nx . CALCULATION

, I 
CO M PLETE

,YES zo

Fig. 71. Flow Chart of Direct Sum Method.
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Usage

CALL FCTRAN (BEG, DELX, DNU, NX, FNUMX, PF, NNU, IAV)

where

BEG is the first value of v for which the transform is desired.

DELX is the spacing between points in the function to be trans-

formed, The units of BEG, DNU, and FNUMX are

reciprocal to the units of DE1,X.

DNU is the spacing between desired output points.

NX is the number of values in the function to be transformed.

FNUMX is the largest value of v for which the transform is desired.

PF is a constant phase factor shift which may be put in,

usually zero.

NNU is the number of values.

IAV is not used.

The input data are assumed to be in tlbe first NX locations of a common

array, F. The output transform is placed into the first NNU locations in a

cnmmon array, T. The content of F at the end of the execution is unchanged.

Restrictions

The calling program must specify as COMMON three arrays: NOUT,

F, T, with the dimensions of 10, 8192, 16384, respectively.

Memory Requirement

2568 exclusive of COMMON.
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SIMOUTI'4E FCTMA'4 ISCB.3CLxtrflNsx.Je.PmltP.oN'U,1AV) FeCI1

C FtT4AN4 DIRECT SUM ALGOPIT"1M FOR !0111ER COSI~W TRANSFOR14 PCs a

C OECLARITIVE9 F04MAT AND INITIALIZATION 4 qATE4E'4?S FCI 3

C 
FCI 4

COMMON MO4JTsPoT PCI S

MOIMENSION P14496920, T(8l9pop)o N0JT(1@01 PCI 6

PRINT 0 PCq 7

XNUKOREO FCI 9

C 
PCI 10

C INITILIZE COSINE TASLE CALCULATION FPCIt1

C PCI it

§00? KI9aINNU PCI 13

fPPUNUX6'~)CLX FCI 16

AMOAMOOIPS, 1.0) PCI 14

csT~wa~zo*coSIAM6TPI) rc% ii
APONARO'Pf PCs 1?

T(1,3)mcnSiTPIOARS) Fes is

APSGAMOOIZ.@ePR,1.OIPF FCI 19

713.2) COIIPIOARA) PCs 30

C PCI a2

C CALCULATF COSINE TABLE FePC 23

C 
PCs 24

00 1 K03,411 PCs as

I 00 PCsIT3

it Ift0icaIoofto1 PCs a9

LoLoi 1 Fes 30

0010o4 PCI 31

3 tNI"OcoU1ft FCI 32

4 Ao"AMOO1PLOATInOLC)P l.~ *rgICI*P e 33

TfI"IOICqp)eOCOITPI#Av) PCI 34

I CONTINUE PCI 3S

C 
PCs 3',

C SERIES 1 uo CALCULATION A40 CALCULATION 00 NEW FU(OUWCT VALUV PCI 3?

C 
PCs 30

TIKR.1)O".@ MC 39

F§0 44ROtNX PCI 40

7 CONTINUE 
FCI 44

C PCI, 41,

C (~TUxWINO StATEME4TS PCs 44
C PCs 4?
C PC 40

00 1t9o- 96# 1 PCs 49

a Titl$* 
PCs so

9 ORm"T 14I1to?"Oti-PCT SUM W IqTI4 Fe I
CNO 

FCI 14.



Identification

FCTRAN - Fourier Cosine transform by Cooley-Tukey algorithm.

6400/6600 FORTRAN

Purpose

To provide the Fonrier cosine transform of a set of data by the Cooley-

Tukey algorithm applied to the series

E(kAv) = Ax F(0)+2j F(j&x) coo 2wjk x v

Method

For details of the program, see the flow chart (Fig. 72). The input

routines calculate the following quantities: The number of input, N = Zn, and

output points, M = 2 m, within the limitations of the memory of the computer.

The interferogram is filled out with zeroes if necessary. LD = 2 * M/N.

KB is the beginning of temporary storage in the F array. For all but the

largest number of output points (M = 8192 in the present program), this in

set to protect the input interferogram. 3 = M/4, IBEG = M/2, NBEG = 0.

The calculation of the array resulting from one pass involves boxes i through

ii. Initiaiizing another pass involves boxes iii and iv. The output routines

rearrange the spectrum so that the portion of interest fills in the lowest

NNU positions in T. These routines also multiply by Ax and insert the phase

factor if nonzero. The naming convention of FORTRAN to distinguish

between fixed and floating point numbers is observed. Divisions of fixed

point numbers is assumed truncated. Operations indicated with t are

complex.

For details of the mathernatics, see Section B.

the calculated points when leaving.

NX is the number of values in the function to be transformed.
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F C T R A NN 
oI > /A

INPUTYES
ROIUTINESYE

F(k8 TO KB+ M/2)- T(M/2 TO M)

NBEG g

"IBEG : 0
NNEEX 22 LD: 2*LD

J J/2

a: No J:5/1

iii

LNEI 
OUTPUT

ROUTINES

NEI *L

W: .i.[21riL+LOJ + RETURN

INDO 1+(1-1) m814 + L*NBEG + ISEG
Ka I+ it

F (K| 1 T (IND) - T (INO +J)* W

T(I) a T(IND) +T (INO+J)W. +

ls +1

Fig. 7Z. Flow Chart of Cooley-Tukey Method.

.174-



Usage

CALL FCTRAN (BEG, DELX, DNU, NX, FNUMX, PF, NNU, IAV)

where

BEG is the first value of v for which the transform is desired

when calling this routine. When returning, it will be the

value of v corresponding to the value of E(kAv) in the first

location of T. It will be an integral multiple of the value

of DNU returned.

DELX is the spacing between points in the function to be trans-

formed. The units of BEG, DNU, and FNUMX are

reciprocal to the units of DELX.

DNU is the desired spacing between output points when entering

the routine. It is the actual spacing between the calculated

points when leaving.

NX is the number of values in the function to be transformed.

FNUMX is the largest value of v for which the transform is desired.

It is unchanged by the subroutires )"perations.

PF is a constant phase factor which may be inserted. It is

usually zero.

NNU is the number of v values desired when entering the program.

It is the number of values beyond BEG for which the trans-

form is calculated when leaving the program.

LAV not used.

The input data are assumed to be in the first NX locations of an array

in COMMON, F. The output transform is placed into the first NNU locations

in an array in COMMON, T.
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Restrictions

The calling program must specify as COMMON three arrays: NOUT,

F, T, with the dimensions of 10, 8192, 16384. respectively.

The contents of the array F will be modified by this subroutine if

effective number of output points is 8192.

Memory Requirement

5528 exclusive of COMMON storage.
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APPENDIX

INTERFEROMETRY A14D CONVENTIONAL SPECTROSCOPY

In theory, two-beam interferometry has a decided S/N advantage over

conventional single-slit dispersive spectroscopy when detector noise is

the limiting factor (see Section I, Introduction). In a paper on FIR

instrumentation, Richards(Ref. 14) describes an experimental comparison

of a Michelson and a lamellar grating interferometer with a conventional

grating spectrometer. With respect to the comparative performance of

thest two types of instruments in the FIR, Richards said,

"We experimentally verify the Fellget advantage of the inter-

ferometer to within about a factor of 3 in time. This is of the

order of the uncertainties in our estimates of noise levels and

grating and filter efficiencies. "

This statement was disputed by Kneiibuhl, Moser, and Steffen (Ref. 55) in

a paper describing the construction and performance of a conventional FIR

grating spectrometer. They conclude,

"From these spectra, we conclude that the performance of

Fourier-transform spectrometers may be slightly better than

that of grating sper•trometers, but the difference is certAinly

smaller than that stated by Richards. The spectral resolution

yet obtained by both types of spectrometers lies between 0. 1 and

0. 05 cm- in the spectral region between 30 and 60 cmi. I"

This statement was challenged by Dowling and Hall (Ref. 88), who said,

"While achieving remarkable performance with their spectrometer

wc feel that some comments and conclusions arrived at by 1CMS

with respect to the comparative performance of these two types

of instruments are not supported by the evidence presented and,

furthermore, are in disagreement with our experience with a far-

infrared, lamellar grating interferometer."
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And also with respect to the resolution vet obtained by both types of

instruments they said:

"To the best of our knowledge this resolution has not yet been

demonstrated for conventional grating spectrometers and has

only recently been demonstrated for interferometric instruments."

More details are given in these and other papers (Refs. 15, 89, 90).

With the exception of the detector employed, the optcal parameters

of the conventional grating spectrometer (Ref. 55) and the Aerospace

lamellar grating interferometer (Ref. 15) are quite similar. These are

given in Table A-I.

In the previous comparison (Refs. 55, 88, 90), there was quite a

large difference in experimental conditions (pressure and absorbing path

length) in the respective water vapor spectra. Presented here are data

obtained with the lamrallar grating interferometer under experimental condi-

tions closer to those used by KMS (Refs. 55, 90).

We obtained two single-beam22 runs for H20 with the lamellar grating

interferometer with an absorbing path length of -9.2 m and a pressure of
-1-1/2 Torr. The first of these was a reasonably high resolution run

(&VM/- 0. 10 cm'I). The transformed interferogram (i.e., the spectra)-1
showed the triplet at -38 cm" quite clearly resolved (Ref. 88), indicating

the run had good resolution and reasonable sensitivity (the line at 38. 642
-1 . -1I

cm is quite weak and close to the strong line at 38. 792 cm ). However,-1
the "new" lines seen by KMS (Ref. 55) at 46. 3, 49. 5, and 50.25 cm' were

23not observed. Although the apparent S/N for this run was somewhat poorer

2 2 'In order to obtain a long absorbing path (to correspond to the long absorb-
ing path used by KMS) the entire optical path (from detector to source) was
used by admitting H2 O to the whole system. This, of course, precluded
double-beam operation, and thus we encountered the dynamic range poblem.
2 3 We believe this is due in part to the dynamic range problem.
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Table A-1. Comparison of a Conventional Grating Spectrometera

and a Lamellar Grating Interferometerb

Conventional

Spectrometer Inte rfe romete r
i ~2

Grating area 1050 cm 930 cm

f-number - f/4 - f/4

Slit or entrance 2
aperture area 0. 8 cm 0. 7 cm

Detector and NEP Golay Ge Bolomneter T = 4. 2K

(8 X I0 ) (5 X 0 1z

aRef. 55

bRef. 15

CThis is from advertising literature from Eppley Laboratories (Golay) and

Texas Instruments (Ge Bolometer). It has been our experience in comparing
our bolrmeter and Golay cells that the bolometer is -6 to 9 times better
NEP-wise than the factor of 16 deduced from the advertising literature.
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than in double-beam runs (Ref. 88), we feel it was sufficiently high to detect

these lines if the relative intensities as shown in Fig. 3 of Ref. 55 are any-

where near correct. Their absence confirms our contention (Ref. 88) that

these lines are second-order water vapor lines (and they (: indeed correspond

exactly within the accuracy of the wavelength quoted by KMS) appearing in

the first-order spectrum because of incomplete filtering.

A second run was made in a much shorter time. The optical path

difference attained was - 5. 0 cm (AvM ~ 0. 20 cm ) in increments of 30p,2
25

of optical path difference and each point was sampled for 0. 75 sec. This

interferogram function was FCT twice, once with L = 5. 0 cm (total time of

run, including dead time = 41. 8 min) and also with L = 3. 5 cm (by deleting

the last 1. 5 cm of the interferogram, which corresponds to a running time
-1

of 29.3 min). The 55-56 cm regions of these spectra are compared with

the corresponding region as given by KMS (Fig. 4 of Ref. 55) in Fig. 73.

The experimental conditions are listed in Table A-2. The results of KMS

are "normalized transmittance. " We have "normalized" our curves by

assuming that the greatest intensity in this region corresponds to 100%

transmission (and this appears to be what KMS have done). We make the

following observations:

1. In Fig. A-l, the depth-of-absorption curves B and C are much
greater than in A.

2. The B and C lines appear much more symmetrical than in A,
evpecially the high wavenuraber component.

3. In A the low wavenumber component appears slightly stronger than
the high wavenumber component. In B ..nd C the opposite is true.
Theoretical relative intensities predict the higher wavenumber
component to be stronger (Ref. 56).

24 -1We point out that Ax = 30 ýL corresponds to v = 166 cm . This Ax was
chosen since we had changed our filtering sliglCtly, and to be sure of avoiding
aliasing we chose Ax = 30 ji. Actually we could have used Ax = 40 ýi as it
was apparent from the spectrum Av c 5 125 cmr1. This would have resulted
in a -33% reduction in time with small loss in the S/N in the spectrum.

2 5 The dead time (i.e. the time it takes to move from point to point) during

which no data are taken, ior 30 ýL optical path difference steps, is also 0. 75
sec. Thus the efficiency of this run, measuring time per total time, was - 50%.
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Table A-2. Comparison of Experimental Parameters

Illustrated in Figure 71

A (KMS) B C

Absorbing path 7.4 m 9.2 M 9.2 m

Pressure 2 Torr I-1/2 Torr 1-1/2 Tcrr A
a a

Computer time 0 -44 sec -44 sec

bbScan time for 17. 3 min 0.42 min 0. 29 minb

55-56 cm" region1

aComputer is a CDC 6600. The actual FCT time is small compared with
the read-in, read-out time, etc.

bBased on the total time it took to get the interferogram and the fact that
-1

100 cm was covered. See text for a discxiesion on KMS's objection

to this.
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4. TI-- apparent noise level increases frcm B to C, whereas one
would expect it to decrease (see Section V). We note in particu-
lar that maximum intensi.- :aiiation in the 55.8-P56. 0 cm- 1

more than doubles in going from B to C (no H 20 absorption line
is expected heie). We interpret these variations (and they are
seen in proximity to the other strong and medium lines) as being
the sidelobes discussed in Section JI. We thus infer that these
lin s are narrower than the scanning functions of these two runs
and the variations observed are not true noise. We make no
comment on the noise level for the spectra shown in Fig. 71-A
since KMS made no estimate of their S/N

Kneubiihl, Moser, and Steffen (Ref. 89) have objected to the "equivalent

scan time" used by Dowling and Hall (Ref. 8-3) in comparing results obtained

with the two instruments, on the basis,

"The equirvlr . can time introduced by Dowling and Hall does

not seemn to be a great value. Theoretically, high resolution

of a '-•'•i spectral region can be achieved by an aperiodic

iýitcrferotneter in a short time (e.g., ) min). But this requires

a narrow band filter with a bandwidth of the order of magnitud-
-i

•i i cm , e.g., a diffraction-grating spectrometer.

Although a diffraction-grating spectrometer would serve admnirably as a

narrow bandpass filte.r (as long as higher order radiation is filtered out), iucl

a complicated instrument may not be necessary. The progress in fabricating

nar:ow bandpass filters (Ref. 9) for th-e FIF is quite encouraging in this

rean-ect.

In his well-known treatmnnt, Fellgett (Refs.3. 4) has shown that the

S/IN gain of a multiplex instrument over conventional scanning spec~rortnters

is .,•"!I2 where N is the number of spectral elements (resolution widths) to

be _g_-dAed. The advantage is I when N = 4. That is. all other quantitict-

being equal, the interferometer has the advantage if N > 4, the ctnventioral

spectrometer when N 1 4. Usually many more than four spectral clerucnts

are desired.

At the present tinme the conventional spectrcrneter offers the advantage

of short wavenumber scans, but with the development of narrow bandpass
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filters (Ref. 91) and the more efficient use of the time available for

measurement (i. e., minimization of the dead time), we believe this advantage

is a temporary one. 26

ZbAn opinion expressed in a letter to J. F. Moser.
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