UNCLASSIFIED

AD NUMBER

AD810227

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; MAR 1967.
Other requests shall be referred to
Ballistic Systems and Space Systems Div.,
AFSC, Los Angeles AFS, Los Angeles, CA.

AUTHORITY

Space and Missile Systems Organization ltr
dtd 19 Jan 1972

THIS PAGE IS UNCLASSIFIED




S

810227

AEFOTINTH BTG 2
TR-IOOYBL80.0%).7

Best Available Co’pyv“

invesiigations ir the For-Infrared with a
Lameliar Grating Interferometer

MEVICH 1067

Pr:pmd "w} !4 DOWL!NG
Space Tapsia mey |
Labeos stnries: Division
l.abuwmy (betum S
AEROSPACE coimumm *

:.‘—M P

Prepsred for BALLISTIC SYST2ME AND sm'.cz svs‘rms mmm .
SR FORC: SYSTEMS COMMAND -
195 AHGELTS AIR PORCE STATION -

Lor Angeles, California

Fumgyrareyiirl YO OF | I HOSOMOR I s, IWITED, .



Air Force Regort No. Aerospace Report No.

58D.TR-67-3 TR-1001(9260-01)-7

INVESTIGATIONS IN THE FAR-INFRARED WITH A
LAMELLAR GRATING INTERFEROMETER

Prepared by

J. M. Dowling
Space Physics Laboratory

Laboratories Division
Laboratory Operations
AEROSPACE CORPORATION

March 1967

Prepared for

BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISIONS
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California




FOREWORD

This report is published by the Aerospace Corporation, El Segundo,
California, under Air Force Contract No. AF 04(695)-1001 and documents
research carried out from January 1965 to January 1967. On 17 March
this report ‘was submitted to Capt. R. D. Eaglet for review and approval,

Contributing authors to this work were Drs. R. T. Hall, C. M. Randall,
and R. D. Rawcliffe. The authors would like to express their appreciatior
to Drs. E. B. Mayfield, R. A. Becker, and B. H. Billings for their constant
encouragement and many helpful discussions concerning the work reported
here, The assistance of Mr. S. B, Wiemokly and Mr. T, E, Mott in the
fabrication and maintenance of the expcrimental apparatus is gratefully

acknowledged.

Approved

A Brelin)

R. A. Becker, Director
Space Physics Laboratory
Laboratories Division
Laboratory Operations

Publication of this report does not constitute Air Force approval of the

report's findings or concluesions. It is published only for the exchange and

stimulation of ideas.

Approved

ﬁo;ert D. Eaglet(J
Capt, USAF

Chief, Space Environment and
Electronics Branch




ABSTRACT

The theory and practice of far-infrared, two-beam
interferometry is summarized. A description of the instru-
mentation and performance of the Aerospace Corporation two-
beam, double-beam, far-infrared lamellar-grating inter-
ferometer is given. Detailed experimental measurements
wnd analyses of the pure rotational spectra of the atmospheric
molecules nitric oxide (NO) and water (HZO) are presecnted.
Also discussed in depth are measurements of the optical
constants of some important far-infrared window materials
and the fabrication and performance of narrow bandpass
filters for the far-infrared. Included is a discussion of
noise, experimental errors, and problems in the practice
of two-beam interferometry. Finally, a summary is given
of the computational programs necessary and convenient for

reducing the raw interferometric data to their more readily

used spectral form.
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1. INTRODUCSTION

It is the purpose of this report to summarize the experience and
results obtained with the Aerospace Corporation two-beam, double-beam

lamellar-grating interferometer.

The history and status of two-beam interferometry, sometimes called
Fourier transform spectroscopy or autocorrelation spectroscopy, up to
October 1965 has been summarized by Loewenstein (Ref. 1), and the inter-
ested reader is referred to his article for a comprehensive survey.

Briefly, Fourier transform spectroscopy, which had its inception in the
works of Michelson (Ref. 2), has nroved to be a valuable tocl in the in-
vestigation of the far-infrared region (FIR) of the electromagnetic spectrum.
Fellgett (Refs. 3, 4) has shown that, when detector noise is the limiting
factor, the gain in signal to noise (S/N) of an interferometer over a conven-
tional single-slit dispersive spectrometer is ¥N/2, where N is the number
of spectral elements in the region studied. This is called the multiplex or

Fellgett advantage.

There are two types of two-beam interferometers used in the infrared
{IR). The classic Michelson interferometer, which utilizes division of
amplitude to produce the two interfering bearns, has been developed by
Gebbie (Ref. 5) for use in the FIR. J. Connes (Ref. 6) has also used a
Michelson for low-level intensity studies in the middle- and near-IR.
Recently, J. Connes and P. Connes (Ref. 7) have reported on truly spectac-
ular spectra of Mars and Venus in the near-IR using a Michelson interfero-
meter. In the FIR, Bell (Refs. 8, 9) and Chamberlin, et al. (Ref. 10) have
exploited the fact that in a Michelson interferorneter the interfering beams
are well separated in space before recombination. This allows placing

reflective or absorbing samples in one arm of the Michelson interferometer

and thus obtaining phase information.




£. second type of interferometer, the lamellar grating interfercmeter,
produces the two interfering beams by dividing the wave front (thus avoiding
experimental difficulties typical of a beamaplitter). This interferometer
has been developed by Strong and Vanasse (Refs. 11-13). A comparison
between these two types of interferometers and 2 conventional grating
spectrometer has been reported by Richards (Ref. 14). Recently a high
resolution lamellar grating has been described by Hall, et al. (Ref. 15).
It is an FIR instrument which has a double-beam differencing mode of opera-

tion that helps alleviate the dynamic range problem.

The present report consists of a brief survey of the theory of two-
beam interferometry with emphasis on the experimental techniques
necessary for obtaining the interferometric data. A brief discussion of
some idealized cases is presenied to familiarize the reader with interfero-
grams (the raw data from interferometers) and their direct interpretation
in some simple cases. Next, the instrumentation of the two-beam, double- .
beam lamellar grating is described and the advantages and disadvantages of
its double-beam differencing mode of op=zration discussed. The next section .
consists of experimental results obtained with this instrument. Included
are the measurement and analysis of pure rotational spectra, linewidth
measurements and preasure shifts, index of refraction measurements of
gases, optical constants for solids in the FIR, and the fabrication and per-
formance of narrow bandpass filters for the FIR. Some of these results
have been published, others are being prepared for publication, and some
are preliminary in nature (and in these cases the conclusions drawn must
be considered somewhat speculatory). The next section deals with some of
the more important experimental errors encountered in two-beam inter-
ferometry and how these errors are reflected in the spectrum. Also in this
section are discussed some of the problems we have encountered which are
pecu.iar to two-beam interferometry {(and some peculiar to our instrument)

and how their eventual solution will undoubtedly lead to a higher S/N ratio

iy




for FIR interferometry. The last section deals with the computer programs

and options that are necessary and useful to convert the interferogram into

the more familiar spectrum. Included is a discussion and listing (FORTRAN) t

of the conventional '"direct sum'' Fourier cosine transform program and the

less flexibie, but much faster, Cooley-Tukey program.
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II. THEORY .

There are many excellent treatments (Refs, 6, 12, ;6-20) that cover
with varying degrees of rigor the theory and practice of ‘wo-beam interfer-
ometry. In this section we shall only summarize the theury and then discuss
a few simple theoretical examples which will be useful in understar.ding the

experimental resuits in Section IV.

Consider a beam of monochromatic electromagnetic energy vhich is

passed through a two-beam interferometer. The intensity F'(x) detected

would have the following form (Ref. 21).

F'(ix) =141 cos 2mxv (1) f

where I is the average intensity (i.e., the average of F'(x)), x is the optical
path difference generated by the interferometer of one of the interfering
beams with respect to the other, and v(= X'l) is the wavenumber of the radi-

ation. If instead of monochromatic energy we have a band of wavenumbers,

then Eq. (1) may be generalized

[+ 4} [+ o}
F'{x) = fl(v)dv + fl(v) cos 2nxvdv {2)

(o] (¢]

The first integral is A constant and is the total intensity of the spectrum I(v) [
{which also equals F'eo})). In terms of F'(x) it is seen to be (1/2)F'(0) by
evaluating Eq. (2) at x = 0. Thus

[+ ]
Fix) - {,F'(o) - fl(v) cos 2nxvdvamF(x) (3)
Q

‘5.




In the literature F(x) is called the interferogram or interferogram
function, as is F'(x). To avoid confusion we shall call F(x) the interferogram

function and F'{x) the interferogram.

F(x) is the Fourier Cosine Transform: (FCT) of I(v). It then follows
that if F(x) is Fourier cosine transformed, the result will be I(v). That is,
aside from a multiplicative constant and recognizing that F(x) is an even

function of x,

00
I(v) = fF(x) cos 2mxvdx (4)

(o]

In this form Eq. (4) is of limited practical importance. In general,
if F(x) is known, a rather large computer is needed to calculate I{v), and
Eq. (4) must be put into a form for which a computer program can be written.
Analog computers have been \wec.ll but usually with digital input data. It is
usually digital computers that are used to sclve Eq. (4) for I(v). We there-
fore consider only the requirements for F(x) in digital form that will lead

to an accurate representation of I{v).

Let F(x} be measured at points X0 Xph X, ot then

[~ o)
Hv) = Z F(xm)co'(vamv)Axm

m=0

which reduces to, if all the ax  are equal and x_ is at x = 0,2

T;mxmber of papers describing such computers were given at the
""Colloque Sur Les Methodes Nouvelles de Spectroscopie Instrumentale, *
April 25-29, 1966, Bellevue, France. Many of these papers are scheduled
for publication in the Journal de Physique early in 1967.

2
“T hin is very convenient for computer programming and {or speed in the
computer calculation. See Section VI.

-6~
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N
I{v) =Ax[F(0)/2 + Z F(mAx)cos(ZwmAxv)] (5)

m=1l

Now it is necessary to see how closely this summation will approximate
the true I(v). This has been discussed by Sirong and Vanasse (Ref. 12).

Making use of sampling theorems from information theory, they obtain if

Ax < -ZIV—C- (6)
where Ve is the highest wavenumber having non-zero energy in the spectrum,
then I(v) is completely determined.

This relation is quite important as &4x should be as large as possible in
order to allow more time to measure each F(mAx). We anticipate the dis-
cussion of Section V by pointing out it is better to spend more time measuring
the F{mAx) with the largest allowed Ax than it is to ineasure a larger number
of the F(mAx) for a shorter time each using a smaller Ax. What happens
when Ax is chosen too large is discussed in Section V. It is also apparent
that if the spectral range of interest extends to vy then Ve should be chosen

(by filtering, etc.) as close to v, as is compatible with good S/N.

Now, what is the effect on I(v) when the sum (or integral) is not carricd

out to infinity 7 An infinitely long {(analog or digitallinterferogram is a physical

TThis is a sufficient, but not necessary, condition, Conres (Ref. 6)

has shown that if the spectral range of v being passed by the interferlometer

‘. . » » - -

lies between v, and v,, it is pouxblc! to choose Ax = [Z(v - vl)] or some -
what smaller, Lbut cer%ainly x{2v)” Also if the dOuble—zbeam differencing
technique is used (see Section II) Gnd is the highest obser:red absorption is

at v_, then on. can choose Ax = {(2v )}~ " {really a bit smaller since the feature
will in general have finite width) eveh though there is eneryy passed by the
inatrument at higher wavenumber.

e Sopranm e g




impossibility. There are two important questions to consider: First,

in the abasence of noise, what is the effect of the truncation of the interfero-
gram, i.e., taking the integration out to X ax® L or the sum out to

m = L/Ax? This is answered later in this section where the scanning function
of the two-beam interferometer is discussed. The second question concerns

the effect of noise. This is discussed in Section V.

Except to the practitioners of the art of two-beam interferometry, raw
interferometric data, i.e., the interferograms, appear strange and unsug-
gestive. We shall now discuss some simple (idealized) examples of interfero-
grams and their interpretation. This material provides the bac¥eg.2nd for
interpretation of the experimentally observed interferograms discussed in

Section IV.

The simplest broadband I{v}, such as a source would present, is
) = Io , a constant up to Vs and zero beyond. Substitution into Eq. (2)

yields
F‘l (x) = {ovc[l + (sin Y/Y)]

where y = wavc.

A more realistic source function would be one with zero or little
energy at low wavenumber (because of the blackbody radiation law), rising

toward larger v, then falling to zero at Ve {due to the filtering optics).

A function meeting this requirement is

2
o - o1, () (27)
C L
C

The factor 6 is included so that both I{v) functions considered here have the

same total intensity between 0 cm ! and v cm .

-8-




Substituting into Eq. (2), we ootain

3 <sin y _cos y+1\
Y ¢/

with y defined as before.

For small values of x, F'l(x) and F’Z(x) fluctuate rapidly, but the ampli-
tudes are damped such that both F'(x) curves approach asymptotically the
horizontal straight line, F'(x) = Iovc' The F'l(x) falls off as (anvc)'l. whereas
F‘Z(x) falls off more sharply, approximately as (anvc)'z. In each case,
however, after only moderate x has been reached, the F'(x) curves become
essentially straight lines. This is what 18 cbserved experimentally. The
F)(x) and F}(x) are shown in Fig. 1, with v_ = 100 cm™ !, Thus when an
absorbing medium, such as a gas

wiicrge molecules have a dipole mo-

20 ~ ' ' . .
ment, is placed inthe infrared beam, ' : :
any variation of the F{x) curve from

1.6
a straight line (for intermediate and

- 4
large values of x) may be attributed =
1

to the absorbing medium. - P -

Now let us consider what sort o8l x / i !
of interferogram a single absorption ‘ / [
line with Lorentz line shape would (o X ST S S S

0 oct 002 0.03 004
look ltke Let sicm)
“Y(+) Fig. 1. Interferograms for
I(v) - Io(v}e "'source-like" [(v}. Line curve
v} = 6l [(v/ve) - (vE/v Y],
where dotted curve I(v) = [5, a constant.
Yiv) = Ael F'(x) 1s plotted in units of
2 F A
(v-v )7+ [Ovc(vcf 1.00 cm ")
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where A is a constant (independent of v), L the absorbing path length, €
the linewidth parameter (which for weak absorption is the half-width at half-

maximum intensity), v the wavenumber, and Y the resonant wavenumber.

Then

Fi(a) = '/Io(v)e—y(v)dv+ﬁo(v)e-Y(v)cos 2 movdy

Expanding the exponential in a power series we obtain

bard m
F'(x) = flo(v)dv +_[I°M cos Zwxvdv +'/;0(V) E (-rtx)! dv

m=1

© ( Y)m
+ Io(v)‘ Z ——r;?-— cos 2uxvey
=1

The first and second integrals are merely the source interferogram.
As discussed previcusly, this yields essentially a constant contrihution to
F'(x) for intermediate and large values of x. The third integral is a con-
stant and represents the intensity removed from the beam as a result of ab-
sorption. The fourth integral will give the deviation of the interferogram
from a straight line at intermediate and large values of x and thus infor-

mztion about the abaorbing line.

Now in order to avoid overly cumbersome mathematical expressions
let us simplify the above expreasion by neglecting all except the first terms
in the summation. A more general treatment rnay be found in the literature
(Ref. 22). This will be a good approximation for weakly absorbing lines and

will yield a qualitative picture for absorption lines of similar shape. There-

fore

© e
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Io(v)Ael 1O(V)Aei
F'ix) = F'S(x) - dv -f—~—2—z cos 2wxvdv
(v-w )" +e (v-v ) e

where F'S(;;) is the interferogram of the source.

Now [(v— vo)z + cz]—l is a sharply praked function {as long as Vo =€)
and ha: lz-ze values in the regicnv= Vo Thus small error will be made
in the follewing approuximartions: (a) set Io(v) = IO(VO), and (b) extend the

limits cof integration to +&, so

-

0 Cens 2mxv. dv

Frix) = F's(x) - Io(VO)Aelf'”ﬂ'Z'_T +/ S Lo} -
(v-v.) +E€ (v-v ) +€
—o © - o
= FL(x) - 1 (v} Afn (14 e 2™€ og 2mxy ) 7y

The effect of the single absorption line is given by the second term
and its dependence on x by the term in brackets, as shown in Fig. 2. The
amplitude of this factor. Eo(vo)Alw{, is the intensity removed from the beam
by the absorbing line, and in general it is quite small in comparison with
the total incideat intensity. Thus, F’s(x) will be oniy slightly modified by a
single absorption line. As an :llustration,for L- 15 cm, p >400 Torr, the
FIR absocsption spectrum of CO between 15 znd 115 cm-l {(~20 lincs, not
just one) remocves less than 5% of the incident intensity.  This means that
the variation of F'(x) about its average valuc {1/2Z)F'0C} will be quite smalliless
than 5% at best) and according t~ the above treatment, 1f the lines have
approximately Lorentzian shape, will decay cxponentially Making € smaller,
which can be done {or CO by lowering the pressure, will make the argument
of the damping exponential smaller, but of course the integrated intonaity

will also become smaller{A « pressure). This is 2 characteristic oroblem

“11- |

2 e e




1%

8

[x% 13 sc3 . (4522-) dre 4]

~l2-



of absorption interferometry and is called the "dynamic range' problem.

How it has been solved is discussed in Section III.

Another simple example is the interferogram generated by a spectrum
which consists of evenly spaced (in cm-l) lines. The theoretical interfern-
grams can be obtained by summing over the absorption line contribution in

Eq. (7). Let the vo's be designated vl(lowest), Vosligs {highest) and

y V.
m
be equally spaced such that

or in terms of A

The varying part of the interferogram will be a sum c¢f contributions such as
that shown in Fig. 2. When x = )\1 (=1/6v), then x = Zkz = 3X3 . m)\m,
so all the cosine contributions will have a maximure. Likewise, when

X = le (=2/6v). then also x = 4%2 = 6)\3 =+ + + =2mM\,,, and again all the co-
sines will have their maximum value. The same situation occurs at

x = 3>\1, 4)\1, T Thus, significant variations of F'(x) about its average
value (1/2) F' (0) a2re expected when x = mxl = m/6v. Such features,

called signatures in interferometry, have been observed in the FIR inter-
ferograms of linear (Ref. 23} and diatomic (Ref.24) molecuies. This will

be further amplified and discussed in Section IV.

We now come to the question of finite or truncated interferograms.
For this topir it i3 natural to inquire what is the scanning function of a two-
beam interferometer. The scanning function of a spectrometer or inter-
ferometer may be thought of as the output spectrum of the instrument when

a monuchromatic line is the input. Thus

-13-
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1(v) = s(v)

and

F(x) = f&(vo) cos 2uxvdv = cos wavo

Now suppose we FCT F(x) out to x = L, rather than x—e. Then

sin 2wl(v -~ vo)
IL(V) =L [ ZTTL(VTVOY

] = L sinc 2wL(v- Vo) (8)

and this is the scanning function of a two-beam interferometer. This is
shown in Fig. 3. The IL(v) does have its largest4maxima at v= Vo but its
resemblence to 6(v°) is not too good for finite L. ©° Perhaps most annoying

(to the spectroscopist at any rate)are the extraneous sidelcbes, or feet,

whose amplitudes decay as ~(v - vo)'l. The two sidelobes adjacent to the
central maxima are not small and, as seen in Fig. 3, are about (first minima
to second maximum) 34% of the peak value at v = Vo The width of the
scanning function is determined by L and the firstminima are at v- Yo

=3 0.7 IS(L)'I. The relative amplitudes of the sidelobes do not depend on L.
In contrast, the scanning function for a conventional grating spectrometer is

of the form (sinc)2 which has much smaller sidelobes.

We are now in a position to discuss resolution. Resolution is a some-
what arbitrary criterion, usually stated in terms of how well two equally
intense lines appear separated in an output spectrum. The Rayleigh criterion

for a diffraction grating spectrometer is that two lines of equal intensity

{To within a multipl’cative factor I, (v)—§( vo) as Lwwo, Sce W. Heitler,
Quantur.: Theory of Radiation (Clarendon Press, Oxford, 1954), Chapter II,

page 66.
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Fig. 3. The scanning function of a two-beam interferometer.
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should be considered to be just resolved when the principal intensity maxi~
tavm of one coincides with first intensity minimum of the other. On this
basis there will be a dip of intensity of 18. 9% between the two lines. Figure
4 showe two such lines separated by Av=0. 715(L)'1, i.e., applying the first
part of the Rayleigh criteriontotwo lines as would be seen by a two-beam
interferometer. The dip in intensity between the two lines is considerably
less than 18.9%. Strong and Vanasse (Ref. ]2) have introduced the modular
resolution criterion and it is

-1

(Aav) L (9

modular

This, of course, is more conservative thanAv= 0,715 (L)-l, and two lines
separated by thisAv are shown in Fig. 5. The dip in intensity between the
two lines i3 greater than 18.9%. Additional reasons for preferring the

meodular resolution criterion are given later in Section IV.

The sidelobe problem appears to be serious, especially as compared
with its almost negligible importance in a grating spectrometer. It is pos-
sible to suppress these sidelobes by apodization. Essentially, apodization
congists of multiplying the interferogram function by a monotonically de-
creasing function of x such that F(L) = 0. The theory and practice of apodi-
zation has been discussed by Filler (Ref. 25). One of the disadvantages of

apodization is lower resolution.

Indiscriminate apodization can be, and usually is, useless. It is
instructive to consider what effect the scanning function has upon a line of
finite width (lines with zero width are quite unphysical). One can show by
convolution theory that a line whose shape is given by f(v) will appear in the
output spectrum as f(v)*S(v}), i.e., the convolution of f(v) with S(v) ae the

scanning function. We shall again consider a line with a Lorentz shape.

A¢
(V - Vo)z+‘

I(V) = ]

-16-
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Two § function lines separated by 0. 715(14)'l as would be
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F(x) = nAe-Z“xe cos 2mx

Now if F(x) is FCT (or I{v) is convolved with S(v)) out to x = L, we obtain

vV=-yv

I (v) = 1) l | - e 2TLeE [cos 2nliv-v ) -( <

°> sin 2nL{v- vo)] (10)

When LL—00, it is obvious IL( v)—=1I(v) as it chould. Also to within a mul-
tiplicative constant, I{v)— b(vo) as € -0 and IL(v) — ginc 2wL{v- vo) as € =0,
For finite L, the exponential term and the term it multiplies describes the
distortion of the line from its true shape. Figures 6, 7, and 8 are plots of
Eq. (10) for L€é =00, 3/4, and 1/2. On the scale of these plots, the case
L€ = 1 would appear identical to L€ =o0. In general, the maximum intensity

of IL(v) = IL(vo) differs from I(vo) as

-ZwLé)

IL(vo) = I(vo) (1 -e
(On the graphs, A is chosen such that I(vo) = 1.) For L€ = 3/4, the feet are
just becoming discernible and the maximum intensity, IL(VO) differs from

I(vo) by~0.8%. For Lé=1/2, the sidelobes are now quite apparent and
IL(VO) is ~4. 6% weaker than I(vo).

Let us define
Al(v) = I{v) - IL(v)
and furthermore let

vy ® the value of v where Al{v) has its first minima, and

v, = the value of v where AI{v) has ita second maxiima {(the first
maxima is of course atv = vo).

-19-
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Now we define

IF iAvaa) - AI(vl)

so that IF measures the maximum sidelobe intensity. A plot of IL..‘VO)/IF
versus Le is shown in Fig. 9. This curve rises quite steeply as a function
of LLe, i.e., as the width of the scanning function (#~verned by L) appréaches
€, the sidelobe intensity decreases very rapidly. As an example of its use-
fulness, suppose the S/N in the spectrum is 100/1; then there is no point

in making IL(vo)/IF much greater than 100/1, which means L&é~0.21. For

Zmxe cos Zmo will be down to e'?'"(o' 81) of

Le~0. 81, the interferogram e’
its value at x = 0, which is down by a factor of 162. The use of this curve

when noise in the interferogram is considered is discussed in Section V.

-20-
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III. DESCRIPTION OF THE INSTRUMENT

A, OPTICS
The optical diagram of the lamellar grating interferometer is shown

in Fig. 10. The source of radiaticn is a high-pressure, 85-W fused quartz

*

BOLOMETER

LANELLAR
GRATING

i
-0 TRAVEL

47 r’\
Mi2 ("0}
~9
4]

Fig. 10. Lamellar grating interferometer optical diagram.
The foci of the ellipsoids M; and M, are between

Mg and Mg (sample beam) and at M3 (reference
beam), respectively.
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mercury arc lamp {G. E. H85A3) with the outer glass envelope removed.

The arc is mounted in a water-cooled housing with two cutouts through .
which the reference and sample beams emerge. The two beams are caught

and focused by two ellipsoidal mirrors M1 and MZ“ The upper or sample

beam is folded by two flats M 4 and M5 and then passed through the sample

chamber. Mirror M5 is a polished aluminum flat to match the reflectance

| of the aluminum chopper wheel M6' The beam comes to a focus in the !
;’ middle of the sample chamber allowing the use of minimum size samples.

The focus is a circle of 0. 95 cm diam. The lower or reference beam passes

under the sample chamber and comes to a focus on the flat M3. Flat M3

is located on a six-position slide assembly which allows changing between

the mirror and any of five 2. 5-cm diam samples for reflection studies

from outside the tank without breaking the vacuum in the chamber. The

flat M, folds up the reference beam perpendicular to the sample beam. The

two beams are then recombined by the polished aluminum semicircular
chopper mirror M6 which rotates at 19 cps. To match precisely the intensi-
ties of the two beama, motorized iris diaphragms have been placed in
equivalent positions in both beams approximately 18 cm before the first

focus.

Mirror M., is a 33-cm diam spherical mirror which refocuses the

] combined beams. A limiting aperture, which reduces the angular spread

of the beam by a factor of 2, can be moved into place in front of M., from
outside the tank. This feature is of great use instudies of solid samples.
After striking M8 and M9,
aperture (not shown in the figure) of the interferometer proper. The size of

the beam is refocused on the circular entrance

the aperture is determined by the high-frequency radiaticn cutoff of the
{ system (Ref. 12).

The interferometer optics consist of two 45.7-cm diam spherical

mirrors and the lamellar grating. The two spherical mirrors are arrayed ’
in a Czerny-Turner configuration which allows the grating to be used in
parallel light in the zeroth order. 3




The lamellar grating consists of two sets of interleaving plane mirrors,
‘as shown in Fig. 11. There are 24 facets in each set, each facet being
0.635 cm wide and 30.5 cm long, giving a total area of 30.5 X 30.5 ¢m for
the grating. The grating is made of Pyrex. > The individual facets of each
grating are flat and coplanar to two fringes of the 5461 2 line of Hg, except
for the outside facets of each grating, which deviat. by about four fringes.
These four facets have been blanked off to eliminate distortions in the inter-

 ferograms caused by their optical imperfections.

After the optical path difference has been introduced by the grating,
the beam is reflected to the second Czerny-Turner mirror, which after
being folded by the diagonal flat Ml3 (scatter grating), refocuses it on the
exit aperture mounted on the end of a light pipe. Flat M13 is adjustable
from outside the tank to permit the final alignment to be made in vacuum.
This is desirable because nearly all the FIR energy is absorbed by water
vapor in the air. The size of the exit aperture is the same as the entrance
aperture. The circular light pipe, 65 cm in length, takes the beam to
the wall of the vacuum tank where a gallium-doped germanium bolometer
(Texas Instruments) is mounted. The detector operates at 4, 2°K and has

a sensitive area of 5 X 5 mm.

One of the severe problems of the FIR is radiation purity. The
mercury arc lamp emits orders of magnitude more energy in the ultraviolet
(UV), visible, and near-IR. Eliminating this high-fre.uency radiation re-
quires an elaborate array of transmission and reflection filters. However,
in interferometry the problem is not nearly as difficult as in conventional
dispersive spectroscopy. Filtering is accomplished in this instrument by
the following means: At positions M9 and M, ,, coarse (<20 lines /mm)
gratings are placed, which provide the high-frequency cutoff filtering of the

source radiation. Wavelengths shorter than approximately 1.5 times the

1‘:'Marmfact:\.u‘ed by Davidson QOptronics of West Covina, Calif.




Fig. 11, Front view of the lamellar grating. At the right is the chopper
assembly, the back side of Mg and the six-position slide
assembly on which M3 is mounted. Mirror M)q is just below
the grating; M;3, which is replaced by a scatter grating after
alignment, is above the grating. Also shown (in front of M)
are the filter wheel and variable diaphragm.
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blaze Wavelength of the grating are thrown out of the beam at the blaze
angle of the grating. To longer wavelengths, the gratings appear as plane
n:irrors. By changing these gratings, the high-frequency cutoff can be
changed. Two identical gratings in series sharpen the cutoff. Various
sets of gratings are available to vary the high-frequency cutoff. In addition
to filtering by the two scatter plate gratings, there is filtering by black
polyethylene and crystalline quartz. A sheet of black polyethylene is

located between the source and chopper in front of the sample area cn

the grating side of the source housing after mirrors M5 and MZ' This
cuts down the UV and visible light entering the sample chamber and helps
to eliminate the sometimes deleterious effects of UV light on samples
under study. If gas samples are to be studied, they must be contained in
a conventional gas cell that has windows offering two more filtering positions.
Wedged crystalline quartz windows are used. To compensate for the ab-
sorption in the sample beam, two nearly identical pieces of crystalline
quartz are placed in the reference beam. These are located between M,
and M, on a four-position filter wheel controlled from outside the tank.
In the other three positions of the filter wheel are an opaque shutter for
blanking off the reference beam, an open hole for studies where the filtering
of crystalline quartz is not wanted, and one additional space where any other
compensation filter can be placed (e. g., poly=thylene). The crystalline
quartz absorbs the intermediate IR radiation of the source. The quartz
pieces in the reference beam are slightly thinner -- by a few hundredths of
a millimeter -- than those on the sample cells. The four-position filter
wheel can be rotated about an axis perpendicular to the optic axis. This
allows the effective thickness of the filters to be varied to obtain a precise
equivalence of both beams, which ie necessary to ensure compiete balance
of the spectral transmission of both beams. Slight deviations in balance
lead to anomalies in intensity for the region of zero optical path difference.
Figure 11 shows the lamellar grating and mirrors M,, M(,' MS' MlO’

and M”. Figure 12 shows a side view of the interferometer. Figure 13
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Fig. 12. Side view of the interferometer. At the left is the source
housing and optics. The side view of the chopper is in the
center of the figure. A 'swing-away' limiting diaphragm
can be seen in front of mirror M7. The interferometer is
on a dolly with rails matching those in the vacuum tank
(extreme left),

gives an overall view of the interferometer. The sample chamber slides
into position between the source housing and the chopper wheel. The sample
chamber has been put in place on the left side and the light pipe attached to
the bolometer on the right side. The bolometer is located in an elbow just
outside the hole from which the light pipe is protruding. All electrical and
cooling water connections are made by vacuum-tight connectors in the bulk-
head at the lower left.

L.




Fig. 13,

The interferometer in place in the vacuum tank, The light
pipe can be seen protruding from the right-hand side of
the chamber wall. The sample chamber is in place on the
left side {appears black), The rails upon which the instru-
ment rides are at the bottorn and the electrical cooling
water connections at the bottom left. The diameter of the
vacuum tank is 1,68 m.




B. MECHANICS

The interferometer is mounted on a heavy steel box frame which is
kinematically supported in a vacuum chamber. Thus deflections in the
vacuum chamber walls will not alter the alignment of the optics. 6 Evacua-
tion is necessary to eliminate the strong water vapor absorption in the
FIR. A 10-in. vacuum pump system can evacuate the chamber with all the
apparatus inside to a pressure of 10'5 Torr in a few hours. Liquid-nitrogen
trapping helps to remove the last traces of water vapor. Figure 14 shows

the vacuum tank and the e¢lectronics console.

Fig. 14, Electronic console and vacuum tank

6'l‘he interferometer {rame and mirror mounting were manufactured
by American Astrophysics, Monrovia, Calif. The vacuum chamber was
manufactured by Advance Tank and Manufacturing Company, Gardena, Calif.
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The sample chamber can be isclated from the rest of the vacuum
chamber by gate valves, which also function as ports through which the
sample beam passes. V/ith the gate valves closed, the sample chamber
can be brought up to atmospheric pressure without impairing the vacuum
in the main chamber for rapid change of samples. By closing one of the

gate valves, single-beam interferograms of the reference beam can be ob-
tained.

Access ports have been provided in the chamber walls to allow minor
adjustments to be made from outside the chamber without rolling out the
entire interferometer. The entire interferometer can be lowered down on
wheels which ride on rails for servicing outside the chamber. A matching
set of rails on a dolly mate with these rails, ard the interferometer can

be rolled out onto the dolly.

The entire vacuum chamber is vibrationally isolated from the floor
by air suspension mounts under each of the six legs. These mounts isolate
the chamber from vibration and shock down to a few cycles per second,

eliminating spurious modulation due to external vibration.

The heart of the interferomeier is the grating and its drive system.
The lower set of facets of the grating is mounted on a movable platform
suspended from a stationary platform holding the upper set of facets by
three flexure hinges similar to those used by Strong (Ref. 13). These three
hinges theoretically aliow the lower platform to move in a perfectly parallel
fashion with respect to the upper platform. Unfortunately, torsional oscil-
lations and pitch, roll, and yaw errors of the order of | arc-deg neccssi-
tated further constraint. A flat, parallel-vided steel bar was installed
below the lower platform. Two sets of ball race bearings were attached
to the lower platfarm contacting the bar on its two vertical surfaces in
order to eliminate torsional oscillations and reduce the pitch and yaw errors
to less than 1 arc sec over 83 mm of travel. The errors in pitch and yaw

are smoothly varying functions of the travel and are the worst at the extreme

vianine apmecenes o s
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end of the travel. The roll error, nct important opticaily, was reduced
to below the point where gcraping of the facets was a danger. Since the
platform rises through an arc about 0. i in. during the travel, no restraint

could be applied to this moticn.

The grating platform iz driven by a atepping motor which has 200
steps per revolution. The use of a stepping motor eliminates coasting and
allows fine conirol of the drive by controlling the drive pulse rate to the
motor. The stepping motor is geared down by very low backl:=h .g.eéfrs.
The drive is transmitted to the grating platform by means o>f a pre-isioa:.
lead screw and a pin riding on the driver nut. The entire piatiorm ‘e nre.
loaded to ensure that the driver nut always rides on the ame z2ide of the
lead screw. The drive system is capable of moving the grating piatform in

increments less than 0. Sp.

The relative position of the two s«ts of facets is mvasured by two
separate systems, coarse and fine. The coarte system is capable of
measuring the absolute position of the faceis t> within 1 mm over ths entire
path. The fine system can measure the absoiuts sosition of the facets to
11.5p over a £ mm cycle. The two compiementary sysiems together can .
measure the absolute position of the facete to 1.5 over the entire path.
The position of zero optical path diijerence can be determined 1o an accuracy
of better than £ 1. 5u. Relative to this position there is & cosstant precision
of better than 1 1. 5u for the location of any point over the entire range of
travel. Unfortunately, the error varies it & periodic manner, which leads
to apparent '‘ghosts’ in the spectra obtained. This is diacussed in Section
V. A change in the method of measuring grating position is being planned, -

employing » laser interferometer.

The coarse aystermn uses 3 synchro to deterrnine the position of the

grating platform. Approxi .tely one revolution of the synchro corresponds

to the {ul! trave! of the grating platiorm. g
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The fire system uses a linear metric Inductosyn scale (Farrand

Controls, Inc., Valhalla, New York) to determine the position of the grating

platform. This system similar to thos- used on automatic milling machiues,

measures position by means of the inductive coapling between a stationary
set and moving set of linear pole patterns. The moving set, supported on a
glass blank, is mounted on the side of the grating platform. The staticonary
set is mounted on the grating platform immediately or posite the moving set
on the side support member. The stationary set is 250 mm long, allowing
its use over the full travel of the grating platform. Figure 15 shows a back
view of the lamellar grating. The Inductosyn scales can be se-n at the right

znd the drive system underneath the grating platform.

The grating platform has a maximum travel of 10.0 cmr,, of which
.3 ¢ are useful, 0.3 cm on one side of the coplanar position of the grating
and 8.0 ¢m on the other side. A travel of 8.0 cm is equivalent to an optical
path difference of 16.2 cin. giving a modular resolution of 0. 063 cm'l. The
intensity pasezd by the interferometes as 2 function of the optical path dif-
ference generated by the intexferometer, known as the interferogram, is,
in theory, symmetiric about the coplamar position. In practice we have
found this will not be true unless the incident parallel beam is strictly per-
pendicular fo the grating facets in the s2i.. ...« perpendicular to the grating
grooves. The incidant beam does, of course, deviate from perpendicularity
in the asimuth parallel to the grating grecoves because of the Ceerny-Turuer
optical system. This means that the optical path difference generated is
not 24 {d = geumetrical separation of two sets of facets), but rather 2d cos o,
where a 19 the angle between incident beam and the normal to the facet faces.
The angle is approximately 9 deg and it is measursd with a theodolite {0 an
tccuracy of £ 15 arc sec, which is sufficiently accurate to eliminate it as
& source of systematic srvor in the measursment of optical path difference.
The aormals of the two sets of graiings are made paraliel by adjusting the
gratings in their mounts whiie monitoring the adjustment with a comparison

autocollimaior capable of detecting deviation from paralleliam of leas than

Wi €11 s
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Fig. 15.

Back view of lamellar grating. The flexure hinge supporting
the movable platform iz visible in the middle of the figure.
The e are two more flexure hinges in the front of the platform,
On he rightarethe linear inductosyn plates. The Arive system
can be seen below the movable platform.
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| arc sec. The entire usable travel of the grating (8.3 cmj} has been

monitored and is rechecked after any adjustrnent with this comparison auto-
collimator. With these precautions, very symmetric interferograms are

obtained.

C. ELECTRONICS AND DATA RECORDING SYSTEM

The interfe rogram is not recorded continucusly, but is sampled at
equally spaced increments. The system is designed to sample at multiples
of 10y in optical path difference. The actual sampling interval is dictated

by the highest frequency present and has been discussed previously.

The grating is allowed to sample each point for 2 to 8 sec to im-
prove the $/N. During this time the output of the detector, suitably ampli-
fied and synchronously detected, is fed into a voltage-to-frequency converter
that converts the voltage output linearly into a frequency which is then
counted for the gate or sampling time. At the end of this time, the number
of counts (0 to 9999) accumulated in the counter and the number of the pcint

are punched on paper tape and printed on a digital printer, The graling

then advances to the next point, and the process is repeated. This process
is continued until the entire interferogram has been punched out on the
paper tape. This tape output is then processed by the daia reduction center
and the Fourier cosine transformation is computed yielding the frequency
spectrum. The digital printer output can be used to check for errors in the
input data to the computer. Unfortunately, the use of punched paper tape
has not been entirely satisfactory. We are in the process of converting to

punched cards.

The grating drive system has been designed to operate in several
different modes. These range froma completely manual mode to a com-
pletely automatic sampling mode. Other modes of the grating drive system
are: the automatic mode, in which the grating will proceed to and remain
at any position dialed into the controls; and the manual mode, in which the

grating can be moved under direct control of the operator and thus is useful
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for survey work.

Figure 16 is a block diagram of the grating drive and data recording
systems. The strip chart recordis used primarily for visual indication of

performance during a run. The oscilloscope i used in a similar fashion.

The interferogram can be recorded either single-beam or double-
beam. In double-beam operation, the outputs of the reference and sample
beams are differenced automatically by the broadband ac preamplifier
following the detector. This difference signal is recorded. In single-beam
operation, one of the two beams is blanked off. As has been discussed
previously,there is a problem of ""dynamic range'' in absorption interfero-
metry. Double-beaming circumvents this problem. In double-beaming
two beams are used, one of which passes through the sample cell (sample
beam) and the other through a matched reference cell (reference beam);
then the sample beam intensity {or signal) is subtracted from the reference
beam intensity (or signal). When this is done, most of the information about
the spectral distribution of energy from the source is lost, but such infor-
mation may be recovered by a prior or subsequent recording of single-beam
interferograms of the source alone. In practice, this is not difficult or
inconvenient as the single-beam source interferogram need run out only to
a 3- to 5-mm optical path difference and can be obtained in a time interval
short compared with the higher resclution double-beam interferograms where

the oy tical path difference typically runs out to 100 to 160 mm.,

We write tlie appropriate equations for the intensity passed by the

interferometer for the reference and sample beams:

e

reference beam: F;(x) = -é-F;(O) + f Ir(v)cosanvdv
o
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Ve

sample beam: F;(x) = %F;(O) + f Is(v)cosZTrxvdv
o

where all the saymbols have their previous meaning, and the subscripts r
and s refer to the reference and sample beam, respectively. Differencing
these equations and transposing the constant term to the left side, we ob-

tain the double-beam interferogram function, Fr_s(x):

Ve
F._x) =F_(x) - Fix) - % [F;(O) - F1(0)] = f [1,0) - I,)] cos2mxvav (11)
[¢]

With matched beams and no sample, the detector will see essentially a dc

signal that will not be amplified by the broadband ac preamplifier. In

practice, because of the finite dimensions of the chopper (chopping is not
done at a focus, see Fig. 10), there is ripple in the signal at the chopping
frequency; however, the ripple is nearly 90 deg out of phase with any true .

signal and is largely filtered out by the phase lock amplifier.

To balance the beam, it is necessary to have matched spectral dis-
tribution of energy in the two beams. The total intensity is matched by a
motorized iris in each beam (set back ~18 cm from the focus). Making the
beams spectrally eq;’xivalent is more difficult to achieve since there must
be equal filtering in each beam. For gas spectroscopy, a cell is required
in the sample beam (usually quartz windows are used) so that an equivalent
set of windows must be inserted in the reference beam. As mentioned pre-

viously, they may be rotated through small angles to provide a variable

thickness of quartz. This is necessary because of wedging of windows (to
prevent a troublesome channel spectrum} and optical inhomogeneity of the
windows. In practice, perfect balance is not obtained, but with the above-

mentioned modifications, near perfect balance can be obtained everywhere
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Fig. 17. Single-beam (lower) and Fig. 18. Single-beam (lower)and

double-beam (upper) inter- double-beam (upper) inter-
ferometric features of the ferometric features of the
pure rotational spectrum of channel spectrum of a plane
carbon monoxide. parallel window of crystalline

quartz.

except in the region of x = 0. The unbalance there is ~20 times the noise
level of the instrument.

The Fourier cosine transform of the left side of Eq. (11) will yield
[Ir(v) - Is(v)] , the difference between the reference beam spectrum and
the sample beam spectrum. Thus an absorption spectrum appears as
though it were an emission spectrum. As discussed above, the source

(reference beam) spectrum can be easily obtained from single-beam runs.

The advantages of double-beam aifferencing over single-beam
operation can b~ discussed in terms of Figs. 17 and 18, which compaze
single-beam and double-beam interferograms of carbon monoxide and
quartz, all obtained with the central rmaximum at full ccale. As can be

seen, the ''dynamic range' problem has been greatly alleviated by double-

beam differencing.
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IV. RESULTS

A HIGH RESOLUTION SPECTROSCOPY OF GASES

1. CARBON MONOXIDE

A portion of the double-beam interferogram of the pure rotational

spectrum of carbon monoxide (CO) is shown in Fig. 19.

The absorption

path length was 15 cm, and the pressure in the gas cell was 732 Torr. Had

this interferogram been obtained
single beam, keeping the central
maxima full scale, the features due
to the pure rotational spectra of CO
would be down in intensity bya f. c-

tor of ~15.

Carbon monoxide is diatomic
and therefore its pure rotational
spectrum consists of almost evenly
Ag dis-

its pure rota-

spaced lines (in cm-l).
cussed in Section II,
tional interferogrem should have
signatures gpaced atequalintervals
in x, the optic’al path difference.
These signatures are apparent in
Fig. 19, and the reciprocal of their
spacing pives an average value of
2By (the separation of the lines in
ecm-!). It is alsc seen that the sig-
natures are distorting with larger
optical pathdifference. Qualitative-
ly, the first large miniraum is losing

amplitude and the second mirimum

1 {ARBITRARY UNITS)
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Fig. 19. The pure rotational
double-beam interferogram of
CO. The evenly spaced features
are characteristic of diatomic
and linear molecules.
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is gaining, which is due to the fact that the pure rotational spectrum of CO
is not made up of uniformly spaced lines, but rather lines that converge at
higher wavenumber because of centrifugal distortion. This leads to the
distortion of the signatures. If the lines had been diverging, the appropri-
ate lohes would have lost and gained amplitude in the reverse order. Also,
it is seen that signatures decay very rapidly in amplitude, over and above
that caused by the distortion of the signatures, and this is due to the finite
width of the absorption lines. In this interferogram ~25 signatures were
observable before they were lost in the noise. At lower pressures one
would of course expect to see more signatures (lines are narrower), and in
fact at p = 202 Torr we have seen the 61st signature at x s 16 ¢cm. Finally,
there is an extra signature at x= 3. 6 mm. That is caused by a channel
spectrum generated in the quartz envelope of our source. It produces a
cosine modulation in the spectrum. We have found that by proper editing of
the interferogram, th~ channel spectrum can be eliminated. This problem

is discussed further in Section V.

Figure 20 shows the result of performing the Fourier cosine trans-
formation on the CO interferogram, that is,the pure rotational spectrum of
CO between 19 and 100 cm™ !,

of the source spectrum (absorption goes up) and would be the place to which

The dashed line is the approximate envelope

a 100% absorbing line would go. The variation in the base line is the channel
spectrum mentioned previously. These features are quite broad and are not
mistaken for the much sharper pure rctational lines of CO. The wave-
numbers for the pure rotational spectrum of CO can be determined quite
accurately from microwave (Ref. 26) and near-IR (Ref. 27) Cata; therefore,
the measurement of this gpectrum will not be discussed further, although

it was very useful for calibration purposes.

It is, however, important to look at the line shape. As is well
known in interferometry, if even a small error is made in the measurement

of optical path differences (see Section V), shifts of the lines and serious
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.

distortion of line shapes occar. Figure 2! shows a typical result from our
interferometer. Shown is the J = 16 —*17 transiticn of CO. The open circles
are the intensity points as given by the computer The line locks and is
very symmetric. In order to examine the line shape more closely, the first
derivative of this line shape was computed (open squares). i has the ex-
pected shape. but there is about a 7% difference between the maxima and

minima. If the line had been perfectly symmetric these would have been

-45.
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equal but of opposite sign. This

excellent symmetry of line shape
and reasonably good first deriva-
tive shape have encouraged us to
pursue line shape measurements,

and this will be discussed later

ABSORPTION { ARSITRARY UNITS)

in this section. Also if the line

were perfectly symmetric, the

v {em™)

extrema of the first derivative

Fig. 21. The J = 16 =17 transition curve would be equidistant (in cm-l)
of CO, The circles are intensity from v These wavenumber int
points computed from the inter- G- er-
ferogram. The s uares are the vals were measured for a number

first derivative points computed

from the intensity points. of CO spectra, and a typical set

of results is shown in Table 1.

The lines measured spanned the
region 26 to 81 em™!. In the first column, JL is the lower state rotational .
quantum number, (AvD)_is the wavenumber interval between Y, and the ex-
trema of the first derivative curve on the low wavenumber side of v,, and
(A.VD)+ is the corresponding interval on the high waverumber side. The
last column gives the differences (§) between (AVD)- and ’AVD)+ . The agree-
ment between these iwo guantities is quite good; the average value of b,
without regard to sign,is 2. 3 x 10-3 cm.l and in our opinion is a good
indication of the accuracy in measurement attainable with our instrument
(at least for isolated lines with reasonably good S/N). The differences. b,

are of random sign, thus indicating that any e.ror in locating x = 0 in

the interferogram is negligible (see Section V).

At this point it is worthwhile examining interferograms from another
point of view (Ref. 28). In a recent series nf articles Gordon (Ref. 29) has
developed the theory concerning tne information obtained when the band
shapes of IR and Raman bands are Fourier-transformed Of particular .

interest is his treatment for pure rotational absorption His development
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Table 1. First Derivative Extremes (Referenced to v,) for the Pure
Rotaticnal Lines of Carbon Monoxide®

R R N LR Wt el "
‘¥ ;" TR % ~
J - DTN G S S,

e TR T R

5 (Bvp) (avp), 5= (Avp)_ - {avg),
L -1 -1 -1
m cm chn.
6 0. 0477 0. 0441 +0. 0036
7 0.0498 0.0562 -0. 0064 ,
8 0.0570 0.0539 +0.003] ;
9 0. 0649 0.0618 +0.0031 é
10 0.0590 0.0593 -0. 0003 1
E
11 0.0649 0.0669 -0. 0020 ;
12 0.0593 0. 0567 +0. 0026
13 0.0611 0. 0625 -0.0015 5
14 0.0615 0.0589 +0. 0024 :
15 0. 0599 0.0603 -0. 0004 g
16 0 0531 0. 0550 -0.0019
17 0 0502 0 0526 -0. 0024
18 0.0539 0.0525 +0.0014
19 0. 0496 0.0471 +0.0025
20 0.0516 0. 0527 -0.0011}

*From an interferograrm with absorbing path - 15 cm, p=608 Torr.
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show . that it a pure rotawuonal absorption band, suitably normalized to
unit area, is Fourier-transformed (frequency to time) then the dipole mo-
rnent correlation function <u{o) . u(t)> iz obtained. Gordon interprets this

correlation function {in the classical limit) as follows:

"Irmagine that one could observe the microacopic re-
orientation of a single molecule in a system of many
molecules in thermal equilibrium. Suppose that at

a time "'o" the dipole of this molecule points along a
direction u(o). Then we follow the thermal motions

of the mofecule and at a time later we muvasure the pro-
jection of u(t} on the orxgmal directicn ; u{o) - u(t‘

Now we make this measurement again and an%m picking
out different refercnce times o' Finally, we average
all of these t: J)ectm:;ss af:\:‘, - ufr 10 obtain the correla-
tion function < uful  uit} -

An interferogram is the FCT of the spectrum and is the intensity

passed "y the inisrferometer measured as a function of the optical path

HER AN

difirssnos generated by the interfercmeter. The optical path difference

is linearly related tG the time of retardation by the velocity of light: thus,
interirvyograing may be c1sily converted from the optical path ditfere .ce .
scale to the time retardation scale by dividing by the velocity of light. Early
interferograms (Refs. 23, 24) are complicated by the {act that features of

the inter{erogram corresponding to the absorption of the sample are super-

imposed un the source interferogram. By using a "double~beam” (reference

and sample beam) two-beam interierometer. we can to a large extent sub-

tract the scurce interferogram. and suitabiy normalize the resulting inter-

ferogram so that it corresponds to the dipole moment currelation tunctron

desoribed by Gordon {the correspondence 1s not exact. see Ref 30} A

portien of such annterierogram is shown in Fig 22 for gaseous CO

{(p  #©78 Torr. and absorption path length . 1% ¢m)

The interpretation of the interferogram on the hasis of waveieagth
and aptical path difference has been given previousiy {(Ret 23 31) and

the interpretation on the bas:is of frecuency and time is easily «ren fram

~48.
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Gordon's development. In the semiclassical limit at a time t = 0, a
1/2
[iwh J/1,

whére I is the moment of inertia of the molecule) is perfectly correlated

molecule in the Jth angular momentum state (= 4 [ J(J+1)]

(with the system and itself) since t = 0 is chosen as the reference point.
After the time of one revolution has passed the correlation will now be less
(or even negative), since molecules in other different angular momentum
states (0, 1, 2, ..., J-1, J+1, J+2, ...) will have made rnore cor less
revolutions. After times longer than the time of average rotation, the
correlation function will oscillate (with decreasing amplitude) about the
zero value. However, in the case of diatomic and linear molecules we can
expect the correlation function to become significantly positive again for
times longer than the average rotational period. This will happen when
the molecule in the Jth state has made J rotations, then the molecules in

any other J' state will have made J' rotations, and if the system has not
been disturbed the state of the syetem at this time will duplicate (ne-

glecting translation) the state of the system at t = 0, Also, on the basis of
this interpretation, smaller but quite significant negative correlations are
expected just before and after the large (~1) positive correlation. This
behavior is shown quite clearly in Fig. 22. For CO a large positive-cor-
relation occurs at t~8.7 x 10'12 sec, the dipole correlation function
attaining the value ~0, 90 at this time. Extending the argument to longer
times shows that the correlation function should show the same behavior
at integer multiples af this time. Indeed, the interferogram from which
Fig. 22 was taken showed 24 such features (out to t~2 x 10"‘0 sec), Two
general observations ma,/ te Mmzde alour wuvoe tcatury t {Lalled o Al s

in interferometry).

First, the correlation peak for any given signature is always less
than the one preceding it. This is understandable, using a semiclassical
approach. Comparing the state of the system at t = 0 with some later time

t', we see that some of the molecules will have had their rotational motion

interrupted {by inelastic collisions, or even elastic collisions, that d'sturb




the phase of the rotation), and thus these molecules will be uncorrelated
(on the average). At nioderately low pressures and above, this collisional
type interruption is the main contribution to the breadth cf the spectral
line. In fact, it is possible to analyze the fall-off of intensity (or corre-

lation factor) of these signatures for line-width parameters.

Second, the signatures are not symmetric avout the maximum posi-
tive correlation. The negative correlation just before tne large positive
correlation is less negative than the one just after. This is because 0
molecule is perfectly rigid but rather distorts when rotating (centrifugal
distortion); therefore, even in the semiclassical limit the angular velocities
of the various states are not integer multiples of the lowest rotating state
but rather converge slightly, since the moment of inertia increases slightly

for each higher state of angular momentum.

Quantum mechanically the above arguments would have tc he modi-
fied since it is not the rotational frequencies that are observed, but rather
the differences in rotational frequencies {(usually AJ = 11). It is expected

that the more rigorous argument will lead to much the same interpretaticon.

2. DEUTERIUM CHLORIDE

A portion of the pure rotational interferogram of deuterium chloride
(DC1) is shown in Fig. 23. The expected signatures characteristic of dia-
tomic and linear mo.ecules are geen out to x=2.5 cm. Between 2.5 and
3.0 cm there are still variations in the inferferogram, but a0 signatures
are apparent. After about 3.2 cm the signatures reappear, although they
are broader and down considerably ‘n intensity. This is interpreted as due
to the isotopic splitting of the pure rotational spectrum of DCI1, due to the
two chlorine isuiopes Cl,35 and Cl37. DCl is essentially a mixture of two
molecular species DC135 and DC137. The rotational constante for the two
molecules are slightly different; thus, the interferogram consists of two
sets of signatures that, at small x (low resolution) are in step (superpose

constructively), at larger x are out of step (superpose destructively), and at
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Fig. 23. The pure rctational, double-beam interferogram of DCI,

-52-

N b TR 3

4
1
‘
B




still larger x get back in step. one lobe removed. The fact that this phenom-
enon is observed in the interferogram indicates that at least some of the

a 2
isotop: < lines in the DC13' and DCl)7 pure rotational spectrum are resolved.

Two other comments are in order. The last part of the interfero-
gram (x =13.5 ¢m) is shown, and the estimated signal (true variation about
average value of I(x)) to oise is about one. Also, there is a drift down-
ward (in intensity) of the interferogram. This is instrumental in nature
and is unimportant, since a long term drift (in x) correspond: .v extremely

low wavenumber (frequency) components in the spectrum (0 to ~2 cm'l).

in Fig. 24 are shown s¢iccied regions of the pure relational spectrum
of DCl, The J = 1—2 (21.5 cm'l), J=2-+3(32.3 cm'l), and J = 34
(43.6 cm'l) regions are shown. The J = 2—+3 transition is clearly split,
and it is evident that the resolution displayed .z vetler than the separation
of the lines, which ia 0 094 cn. The J = 1-+2 is not split but is definitely
asymmetric. The calculated splitting is C¢. 063 cm'l {Refs. 32, 33). The
theoretical resdlution of this run was 0. 074 cm"l. It is clear from the
more than adequately split J = 2-—+3 transition and the unresolved but
definitely asymmetric J = 1—*2 transition that the theoretical resolution

is closely approached.
3. NITRIC OXIDE

Nitric oxide (NO) has been of yrcat ccicntific interest because of its
unique property of being a stable diatomic molecule having an odd number
oi electrons. (The pure rotational spectrum of NO is reported 'n Ref 34.)

The ground etate of NO is a 2. st~te vhich is aplit inta?n, ,_ 2nd /'"1/2

l/e
components by spin-orbit interaction. The splitting is small (=122 cm"l),
resulting in appreciable population of both components at room temperature.
The consequence of this splitting in the pure rotational spectrum of NO is

the appearance of two series of lines that can he assigned to the two compo-

nents of the “n state. Rotational constants can be derived 167 Both seriey,

but because of the perturbation by the iow-lying electronic state the constants

’53¢~




B

1-we 92170 St fucuuo .mvvvfmnh.onuuouvcd
_wd $60°0 St IPIQNOP (WD 7°2¢) €27 = [ U3 19} H-W2 £90°0
st 321qnop (-2 S “12) 2~1=[ 243 })0 Suiyiids pajejudad w

1
syl ‘1Dd jo wmiioeds jeuorzejoa 2and ay3 jo suoiBax pai1va . °© ‘2 ‘813

(jwa) 4
5 5 & 8 8 8 8 8 222 =
o - O W o B w i o o » =
LD _

-~—NOILdYOS8Y




Tt ———interferogram-was digitally sampled at 40- u aptical path difference

so derived are only effective constants which are combinations of the usual

rotational constants and additional terms due to the spin-orbit perturbation.

The mizrowave spectrum c¢f NO was reported by Gallagher and
Johnson (Ref. 35), who determined the effective molecular constants for
the 2"1/2 state and calculated the constants for the 2173/2 state, Favero,
Mirri, and Gordy (Ref. 36) more recently have reported the millimeter wave

spectrum of the 211 state and derived constante for it. Recently there has

3/2
been a great deal of work in the near- and intermediate -IR spectral regions.

Arcas, et al. (Ref. 37) studied the 3-0 band of NO with a precision of ~0,. 03 cm'.1

Olman, et al. (Ref. 38) studied this band and also the 2-0 band with a pre-
cision of about 0.01 cm=-!, Meyer, at a1, (Ref. 39) studied the 2-0, 3-0, and
4-0 bands with a precision of better than 0.01 cm-!, James and Thibault
(Ref, 40) studied the fundamental region with a precision comparable to that
of Olman, et al, Palik and Rao (Ref, 41) reported results obtained in the

FIR spectral region with a precision of about 0. 05 em-l,

Theae ie wignilicaui disapgsccisit in values of the effective constants
as determined by the numerous experimenters, and, in particular, the
effective rotational constants determined in previous IR investigations
(Refe. 37-41) differ significantly from those determined in microwave in-

vestigations (Refs. 35, 36).

Therefore, in order to resolve the discrepancies between microwave
and IR results, it was decided to re-investigate the pure rotational spectrum
ot NOU at high resoiution. Ti. !'n ~oliilor o were determined once with
high resolution ( =0.06 cm” l) and were corroborated by a lower resolution
(=C.1cm’ l) run. The precision of the line positions is estimated to be
about 0,003 :m'l except at the high and low extremes of the spectrum

where the S/N was poorer.

The parameters for the high resolution run are as follows: The

increments. Each point was sampled for 7 seconds to improve the S/N. The
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maximum optical path diiference generated wae 160 mm. A total of 4000
peints were recorded in the interferogram. The transfirmed spectium was

. -1,
coraputed 2t 0.02 cm ~ intervals

Air Products and Chemicals NO of 99. 0% purity was used. The
gas was additionally purified by passing through a dry ice-acetone trap.
The saraple was slightly contaminated by NO2 as was evidenced by its pale
yellow color when viewed through the cell. Some of the weak unidentified
features in the spectrum may be due to NO2 absorption. The sample was
contained in 2 15-cm path length cell with crystalline quartz windows at

a pressure of 399 Torr at room temperature {298°K).

Figure 25 shows selected regions of the interferogram. Many
qualitative features of the pure rotational spectrum of NO can be deduced
directly from the interferogram. First, it can be seen that there are
actually two sets of signatures (denoted by the ''a' and ''b'"' sequence) that
are well separated beyond about 30-mm optical path difference. It follows
from this that the spectrum will consist of two sets of alinost uniformly
spaced lines, the spacing for the "a' sequence Leing larger than that for the
"b'" sequence. Second, the 'a'' sequence is distorting (smearing out) .more
rapidly than the 'b'. It follows then that lines corresponding to the "'a' set
will show a greater convergence {because of centrifugal distortion and higher
order terms) than those of the 'b'" set. Finally, adjacent signatures in each
set are nearly inverted copies of each other, which indicates that the quantum

numher T in he prergy '"~vel expres ‘on is nonintegrael lu tact, since adjacent

signatures are completely inverted with respect to each othe:, J is half-integral.

Figure 26 shcws the spcctrum computed from the interferogram
shown in Fig. 25. The relative intersities of the lines are influenced by
the envelope of the source output spectrum and are not true indications
of the band contour. The source output spectrum has been discussed pre-
viously. This run was not calibrated for intensity, but the shape of the

source spectrum is very similar to that shown in Fig. 20.
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| Table 2 lists the frequencies of the lines observed and their assign-
ments, together with deviations from frequencies calculated using constants
derived from analyses of these data. Frequencies of peak absorption were
corrputed by the method of zero slope from the 0. 02 crn"1 interval computer
output. Ae mentioned above, the accuracy of the observed frequencies is
4+0.003 cm-l. The frequencies ars quoted to 0. 0001 cm -l Littie confidence
is placed in the last figure, but it is included to cffset roundoff errors in the
comparison with calculated values. Transitions not used in the least squares 4

analyses are enclosed iu parentheses.

Table 2. Observed Frequencies and Deviations of Calculated
Frequencies of Nitric Oxide

s ", b z"s/ . b
Observed, (obs-calc) {obs-calc) Observed, (obs-calc)® (obs-calc)
1+1/2 cm! x10%, em™!  x10%, em-t em™ x10%, em! xiof, em
5 {18. 39:6) +25 +24 {18.907,) 13 -78
6 21731, -19 .20 22.350, .12 -18
7 25.075, -16 -17 25.784, -9 <16
8 28. 422 +21 421 29.220, +22 +15
9 31.764, +8 +7 32. 648, 0 -6 |
10 35.107, +8 +8 3. 078, +18 +11 ;
11 38. 450, +14 +14 39.502, -3 -1
12 41.793, +21 +21 42. 926 + 2 0
13 45.132, -1 -7 46. 346, -4 -5
14 48.475, +11 +1: 49.763, -2 -2
18 51.814, -1 -7 53.178, + 5 + 7 ‘
16 55. 155, +6 +6 56.588, -9 +6 ;
17 58. 492, -12 .12 59.996, -6 -1 ‘ )
18 61.829, -17 -16 63.399, -10 -4 ;
19 65.167, -5 -5 66. 800, + 8 +15 )
20 68.501, -15 -i4 70. 198, +28 +31 !
21 71.837, + 3 + 4 13,586, -1l -5 is
22 75. 1664 -17 .17 76.973, -25 B 3 |
23 78.499, +7 +7 80. 357, -25 -25
24 81.628, +27 426 83.740, +4 +9 !
28 85. 150, + 1 0 87. 114, + 2 . -10
26 (88.478)) +71 169 (90. 482,) -26 -47
27 (91.7045) -48 51 (93.8565) +47 +12
4
ALeast squares analysis determining Bo' Do. and H
b;.aut squares analysis holding Bo at microwave value (2'1”2, Ref. 35;
*3/2 Ref. 36) and determining Do and Ho'
4
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The data were analyzed by computing a ieast squares fit tc the fol-
lowing power series in (J + 1}):

Ve 2B (34 1) - (4D_-2H NI+ 1)® + 6H_(J + 1)° (12)

where v is the frequency of the transition, J the quantum number of the iower
state, BO the effective rotational constant, D0 the ef{ective centrifugal distor-
tion constant, and Ho the effective higher order diatoriion constant, which is
not negligible for NO. Least squares analyses were made on each series

and on the difference frequencies between the two statee. It is felt that the
difference frequencies are more accurate than the frequencies themselves,
since the d{fferences tend to minimize any errors in the wavenumber scale

such as might be generated by a phasz erro={ e interferogram.

The first line in Table 3 sliows the 1esult of these analvses. The
errors given are 95% confiderce in‘ervale. The diticrences between the ob-

served frequencies and thore calcilateld using the constants determined by

Table 3. Effective Ruiaiicnal JSonateute of Nitric Oxide (in cm'l)

Reference B ete(?r, ) B _etin, /2) aB_eff(*x, j2-2m2) D et /2

-- This work 1.67185420. 000081  i.72017840.000062 O.0483233 0.000057  (3.443. 0)x10°

-- This work" f1.6718614] {t.7196531) [0. 04779172) (3041 4)x1077

-~ This work® [1.4718614] (1. 7202435) (0. 04838213) (3. 6+1. 4)x10”7

35 Microwave 1.6718614 1.7196531 1.13x10°®

36 Microwave 1.7202435

40 Nea:-IR 1.6722940.00025  1.720144 0. 00025 (7.728+3. 51077

3 Ne.r (R 1.67199 1.71958 1.77x30°8

38 Near-'R 1.6723340.00019  1.7201240. 00018 (1.620. 3)x10"%

39 Near-IR 1.67223 1.72002 1 5x10™%

41 Fin 1.6720 1.7198 l.axlo'6
-60-
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these analyses are shown in the third and sixth columns of Table 2. The
average deviations from frequencies used in the analyses for either state
are about £0.0012 cm-l. Since the analyses reproduced the microwave
rotational constants so well, it was decided to use the microwave values of
the effective Bo's and perform least squares analyses for the effecrive Do's
and HO'S.- The results of these analyses are shown as the second and third
lines in Table 3. The second line is the result of using Gallagher and
Johnsun's {Ref. 35) values for both Bo(znllz) and Bo(2ﬂ3/2)' The assumed
values are given in brackets. |The constants of the ™3, State derived |
by the analysis reproduced the cbserved frequencies with significantly
greater deviations of a nonrandom character than the constants given in
the first line, indicating that the value of Eo(2ﬂ3/2) calculated by Gallagher
and Johnson is in error. The third line is the result of using Gallagher
and Johnson's (Ref. 35) value of B ( 11’1/2) and Favero, Mirri, and Gordy's

{(Ref. 36) value of B ( 1r3/2). The constants derived from these analyses

Table 3, Continued

2 2
D eff( v AD eff("my ,p- T o)

3

v 2 , 2 2
3/2) H ei{( "1/2, F oeff( "3/2’ AHoeff( T32" "1/2)

(10.24£0. 23)x10°%  (9.904 0. 21)x10 (-1.42¢_c.39,xxo" (+1.00£0. 23)x10"7  (+2. 4240, 21)x10"7

(8.51£0.40)x10°% (8. 14£0.40)x10"%  (-1.40£0.18)x10™%  (-0.5120.521%107% (40.8920. 54)x10"°

(10. 464 0. xz)x:o“‘ (10.1()10.11)):‘10‘6 (-1.4040. 18)x10”? (+l.l910.15)x10-9 (+2.59w.14)x10'9
-¢

10. 64x10

-6

-6 -2.091x10" 7 (cale)  +2.093x10" Y(catc)

{10.7010. 19)x10
9.77x10"
{9.5+0. 3);;10’6
9. 3::10'6

10. ox10°®

& Constants derived by assuming the microwave values of Bo from Ref. 35
and performing least squaves cslcrlations *n daterinine D and H .

Conutantl derived by asvuming the microwav: vaiue of B rm \H}) fr-m

Ref. 35 and B eff(® " ) from Ref. 36 and performing leSst squifer cal-
culations to d&ermin %) and H
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have significantly smaller confidence intervals and reproduce the observed

frequencies as well as the complete analysis. The differences between the

observed frequencies and those calculated using the constants given in the

third line are given in the fourth and seventh columns of Table 2.

age deviations for either state are about 0.001]2 cm'l, the same as for the

complete analysis.

The values of the difference constants are also included in Table 3.

It should be noted that the confidence limits are smaller than for either

The aver-

state separately. This corroborates the belief that the difference frequencies

are known better than the frequencies themselves.

a tabulation of constants derived by cther experimenters given the spectral

region in which data were obtained.

Finally, .able 3 includes

Once the values of the effective constants have been determined, the

unperturbed ground state rotational constants can be obtained from them.

Using the formulation developed by James and Thibault (Ref. 40) the true

constants are given by

Table 4. Rotational Constants of
Nitric Oxide

1. 696008 £ 0. 000072 cm™

B =
(o]

6 -1
D_ =(5.2940.27) x 10°° em
H = (-2.1£2.6) x 10710 em™!

-62-

Bo =1/2 (Bol + Boz - 3Do)
Do =1/2 (D01 + Doz)
I“Io =1/2 (Hol + HoZ)

where the subscripts 1 and 2
denote the 2"1/2 and 2"3/2
states, respectively. The con-
stants obtained from these re-
lations are given in Table 4.
The errors quoted are approxi-

mately 95% confidence limits.
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One constant of NO which is of great interest is the spin-orbit
coupling constant, Ao' The conventional relation {(Ref. 40) used for calcu-
lating Ao is

2B?
o

B, "B, " [A A - 4B )] 172
0O O o

Using the values of these constanis given in Tables 2 and 3, one obtains a
value of Ao of 122.49 cm’l. But, as James and Thibault (Ref. 40) have
pointed out, this formulation is incorrect. They derived a rather extensive
series of ¢quationa from which the correct value of Ao can be obtained. Un-

fortunately these equations depend strongly on the values of D DoZ' and

Do’ constants which have no‘t been well determined. Using tgcl:se equations
for Ao, a value of 128.6 cm~ " is obtained. Little confidence can be placed
in this value, however, for reasons stated above. Information obtained in
the vibrational spectrum of NO, namely the difference in band origins of
the satellite band and the 21.13/2 - 2113/2 band, gives a direct measure of b
The value of Ao is very sensitive to this parameter. Ao is related to 5, by

the following equation (Ref. 39):

2 3

1/2
2
oF 3(Bo+2-D°) ]

Ao = [6 + 2Bo

Using James and Thibault's (Ref. 40) value of 60, 119.732 cm'l. and the
values of B_and D_ from Table 3, one obtains a value of A_ of 123.1600 cmfl.
The accuracy of this value is limited by the precision with which 6, is known.
The inaccuracies of the other constants are in the fifth and greater decimal

places.

Included in Table 3 are values of the effective rotational constants

obtained in the other investigations. It should be noted that our value of
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Bo(Z"IIZ) reproduces the microwave value of Gallagher and Johnson (Ref. 35)
well within our experimental uncertainty. Our uncertainty doee not bracket
any of the other IR values of this constant. It should be pointed out that in

two of the near-IR investigations (Kefs. 38, 40) the data were not analyzed

using the well-known combination difference rclations7, but rather were

directly analyzed in terms of a power series in J whose coefficients are

combinations of upper and lower state constants. This type of analysis
suffers the usual drawbackse of data fitted to a high order polynomial, many
coefficients of which are small. The other near-IR investigations (Refs. 37,

39) did uee comhination relations.

Our value of Bo(2w3/2) is bracketed by the two microwave values

and does not overlap either within our uncertainty. No uncertainty was

quoted with either microwave value. We are very close to the value of
Favero, et al. (Ref. 35). However, when the microwave values of the
effective Bo's were used in the least squares analyses of our data, only the
effective Bo of Favero, et al. (Rei. 35) gave good agreement with observed
frequencies and, importantly, the agreement using their value of B°(2v3/2)

was no different than that using our value.

The values of the centrifugal distortion constants are much less

accurately determined. In general, the value of Do(Z“B/Z) agrees with other
values, 510 X 109 em™!. The uncertainty of this value is of the same ordes:

as that given for other values. However, the value of Do(zwuz) is con-
siderably lower than any other. This value is the least well determined of

all the effective constants. One overriding factor with respect to both Do
and Ho is that our data are the only data accurate enough to allow significant

TBecauu many of the lines in the vibration-rotation Lands were not resolved
or were blended with overlapping water vapor lines, the authore of Refs. 38
and 40 felt there were insufficiant combination relations involving

unblended 1lines to permit an accuratc analysis,




determinations of the effective higher order distsrtion constants, Ho. Our
valuee of the effective Ho's agree in sign with the calculated values of James
and Thibault (Ref. 40). Their data were not accurate enough to permit a

significant experimental determination of these constants.

i 4. WATER VAPOR

H. M. Randall's 1938 review article (Ref. 42) on FIR epectroscopy

! aptly described the FIR absorption spectrum of water vapor as ""a complex

and apparently chaotic arrangement of lines. ' Since the first observation
by Wright and Randall (Ref. 43) in 1933 of a water vapor spectrum in which
rotational structure beyond 100y was resolved, the pure rotational spectrum
of water vapor has served as a test of instrumentai performance and a

background with which nonvacuum spectrometers have had to contend.

Early workers (Refs. 43-45) in the FIR spectral region were able to
achieve a resolution of up to 0.5 cm'l in their observations of the spectrum
of water vapor. However, using those results the energy levels, and hence
rotational constants, could not be determined as accurately as possible
from the ncar-IR vibration-rotation spectrum. Therefore, observations of
the pure rotational spectrum of water vapor were used only for illustrations
of instrumental performance and secondary frequency calibrations for the
FIR. No further analysis of the spectra was attempted. Genzel and Eckhardt
(Ref. 46) first reported the very far (beyond 200u) IR spectrum of water
vaper in 1954. Since then there have been many papers {Refs. 47-55) on the
FIR spectrum of water vapor; however, none with resolution comparable to
that obtainable in the near-IR vibration-rotation spectrum. Four separate
measurements of the spectrum were made using a cell with 15-cm absorbing
path length and with pressures of 7.5, 10.0 (2 runs), and 16.5 Torr at room
temperature (298°K). The modular resolutior of the four runs was between

0.06 and 0.09 cm™ !,

The parameters for the runs are as follows. The interferograms

were digitally sampled at 40-u optical path difference increments. Each




point was sampled for 5 to 7 seconds (constant for a given run) to improve the
S/N. The maximum optical path difference generated was between 114 and

160 mm. Between 2850 and 400] points were recorded in each interferogram.

The transformed spectrum wae computed at approximately 0. 02 c:m'l intervals.

Figure 27 shows the spectrum from 5 to 125 cm”l computed from one
of the interferograms. This spectrum was obtained with 10.0 Torr pressure
(298°K) in a 15-cm cell and has a modular resolution of 0. 063 — The
relative intensities of the lines are influenced by the envelope of the source
output spectrum and are not true indications of actual intensities. These
runs were not calibrated for intensity, but the shape of the source spectrum

is very similar vo that shown in Fig, 20,

Below the spectrum are shown the calculated (Ref. 56) frequencies and
relative intensities for pure rotational transitions of water vapor using the
energy level scheme of Gates, et al. (Ref. 57). These relative intensities

have not been normalized to the source spectrum.

Figure 28 shows details of two portions of the spectrum illustrating
the resolution attained. Figure 28a shows the triplet at 38 cm'l. The
. - -1 —
calf\;lated separation of the 541 634 (38. 64?.l em ") and 312 321 (38.7916
cm” ') transitions is 0. 149 em- 1. Figure 28b shows the doublet at 59 em- !
The calculated separation of two comporents is 0. 0678 cm'l. These results

are the first published to resolve this doublet.

Table 5 lists the frequencies of the lines (in cm'l) observed and
their assignment, together with calculated frequencies, caiculated relative
intensities (Ref. 56), and observed relative strength. The calculated fre-
quencies were computed from energy levels determined in this study. The
calculated relative intensities are normalized to 100 for the 303—-312 transi-
tions at 36. 6055 cm'l. the line of greatest apparent intensity in our spectra.
The relative strengths are rough guides of apparent intensity, and therefore

precision, of the lines as observed in our spectra. Whenever possible,
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Table 5. Pure Rotational Transitions of Water Vapor

Observed Calculated

Frequency, Frequency, Relati galcu.l?.ted :
) -1 elative e1at1} . . i
cm cm Strength Intensity Assignment
18.5‘706 (47)* (18.5706)** M 13.7 101_’110
25.0855 (19)z (25.0855) S 15.1 202 Zu
30.5568 (45) 3(').5601 w 0.8 331 422
32.,3655 (42) 32.3649 w 1.2 431——524
32.951Z (10) (32.9512) S 6.6 1“»202
36.6055 (15) (36.6055) S 100.0 303 312
3‘1.1371 (7) (37. 1371) S 4.4 000 l11
38.4650 (3) 38.4682 S 10.9 ZZI—~3lz
38.6.»4.".l (79) 38.6&3 w 2.2 541--—634
38.7916 (18) (38.7916) S 108. 6 312-'321
40. 2830 (10) (40, 2830) S 43.6 413 422
40.9873 (6) 2 {40. 9873) S 20.9 z“»zzo
42. 6330 (34)2 42. 622 w N 652~743
43. 2500 (34) 43. 2.48 w .8 734-*827
44.0989 {20) (44. 099) M 5.2 532—-625
47.0529 (29) (47.053) s 135.7 5“—‘523
48.0602 (58) (48.0602) w 1.0 633*726
5!.43?6 (57) 51.4338 w 1.4 542-‘633
53““6 (20) (53.4446) s 54.3 49‘-'4”
55.4063 (16) (55. 4063) S 79.1 sz«?zu
55'7046 (78) (55.7046) § 113.0 101-le
57..2690 31) (57.2690) 5 175.7 212*303
58.7723 (32)3 (58.7722) s 34.5 62‘—-633
55.9030 (79) 58.090 w 1.8 6‘2-735

~b8.
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Table 5. (cont)
Cbeerved Calculated Caicualated
Frequency, Frequency, Relat:ve Relative
cm_1 cm Strength Intensity Assignment
59.871, (48) (59. 87}2)] < 41.8 615 =654
59.939, (44) {59.93,) 63.3 15— T34
62.300 (191) (62.30)) S 149.2 523~ %,
62.871, (-) 62.84, 1.3 T, = 8,c
64.012, (31) {64. 02.82[ < lss. 3 3,73,,
64.04, | 22.2 4,, 5,3
67.240, (26) (67.24.) M 12.0 8,0~ 83¢
58.059, (42) (68.0598) S 57.1 4,, =43,
69.1914 (24) (69.191y) S 30. 1 3,0 =43
72, 186l (16) (72, 1861) S 116.5 20,35
73.259, (32) (73.259)) S 127. 4 3,0 =330
74,108, (30} (74.10g) S 206.0 505 <514
74.875, (73) (74.87,) M 4.1 43~ 836
75.523, (24) (75.523,) 5 233.4 4,45,
17.313, (38)  [17.32)+~> M i2.8 936 ~ Y45
78.193, (30) (78.19,) s 101. 6 76~ 75
78.914, (26) (78.914,) S 47.4 3,2 =35
79.775, (19)  (79.777) S 180.8 3,3 = %04
80.997, (37) [81. 00] M 18.0 9,7~ %6
81.617, (43} (81.61p) M 11.0 835 = 8,4
82,152, (28) (82.152) S 222.1 4, ~4,,
85,629, (37_1) {85. 62¢) M 11.1 6g3 — 3¢
85. 783, (-) i85.80] w 1.8 11,5~11,
87.799, (32) (§7.759,) S 78.1 5.4 =533




Table 5. (cont)

C;baer‘ved Calculated Caleulated
requency, Frequency  Relative Relative
cm cm Strength Intensity Assignment
88,077, 1261y 85.079 5 706. 8 303414
88.877) (51)  (88.87,) M 70.0 Toa~ "3
89.581 (51)  (89.581y) M 86.2 51655,
92.515; (245)1 92, 540, M 2h2.0 1o ~2,,
96.067, (99)  {96.06,) M 198, 7 6, — b4
96.2124 (32) 96. 1864 M {69' 7 606 " 015
96.24 | 40, 6 655645
98.800, (40)  (98.800,) 21.8 5,57 654
99. 066 (179) ::‘1’240 M {;z: i“ :zzo
9. > 23 °14
100. 021, (54) gz'zg w 2;': 1;47"‘;56
o ' 17 7226
100. 521, (256) |(00-23 M ' 3.1 10,8105
7 | 100. 55, 975, % 44 =505
101,523, (84)  {101.52,) M 160.5 5.2 ~5a] |
104,288, (61) (104,288 ) W 44.4 45, =440
104.570, (391) (104.570,) M 359, 0 494 =515
105,113, (-)'  (105.12) w 2.2 CHp ;
105,637, (79) 105. 594 M I”f" » Y32 T §
105, 65, 237.2 66 b5 §
106,139, {€5)  (106.139) w 58, 0 53— 547 !
107.075, (96)  (107.075) w 47.7 Th6 = T35
107.738, (54)  (107.73p) W 148.2 634 =643
111.120, (139) ‘“1* “’-xJ M { 33.5 T35 T 744
2 111. 128, 172.9 2,,=3,,
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Table 5. {cont)

e

Observed Silcu}ated Calculated
Frequen}:c v # TEQUERTY,  Relative Relative
crn cm Streugth Intensity Assignment
[ 7 “ o —
11&.59-9 (70)  {11e. 39} w 57.7 836 845
117.067, (154) [117.07] W 13.1 V45 =54
117.9666 {51) (117.967; w 173.6 707 *?16
120°0838 (134) (120.0838) W 418.9 515 "'606
E. Ar —
120.5049 (142g (IZO,JOS) W 89.2 827 836
4 2 2 —
121.9}.38 (14) 1..,1.‘:"03 w 1302.3 505 616
s« -
() average deviation for four observations in 6. 0001 cm 1
. - () transition used in the determination of the ener~y levels
i [] calculated from the energy levels of Ref, 57
! t line width very pressure sensitive, frequency quoted is
from the lowcsi pr 2ssure observation
1 only observed in one spectrum
?
only cbserved in two spectra
? only nobserved in three spectra
,ﬂ : B [
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Fig. «8. The 38.6 and 59.9 cm'l‘ r~gion of the pure rotational spectrum
of water vapor. The circles are the intensity points computed
from the intexferogram.

strong and medium lines were used in the analysis. The frequencies of peak
absorption were computed by the method of zero slope from the computer
output. The accuracy of the observed frequencies for strong and medium
lines is estimated to be £0.003 em” 1 and slightly more for the weak lines.
Frequencies are quoted to 0. 0001 c:m"l and slightly more for the weak lines.
Frequencies are quoted to 0. 0001 cm“l only to offset roundoff errors in the

analysis. Little confidence is placed in the last figure.

The transitions listed in Table 5 were assigned from calculations based .

on the energy levels of Gates, et al. (Ref. 57), which were the most recent
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complete set of energy levels published. Once the transitions were assigned,
new values of the energy levels could be determined by adding up transitions

through the levels from the ground state.

Since the water molecule is a b-type 2symmetric rotor, selection rules
allow only ee«00 and eowce transitions, where ¢ and o refer to the evenness
or oddness of the limiting prolate and oblate symmetric rotor guantum num-
bers. This is reflected in the spectrum by two independent sets of transi-
tions. The 20 and oe aets cannot combine with the oo and ee sets. Hence,
thke eo and oe sets cannot combine with the ground state, which is ee.

This results in the 10 level being the lowest state of the eo and oe levels.

1
The energy difference hetween the ground state, 000, energy level and the 101
energy level cannot be determined directly. Fortunately, the surn rules of

Fraley and Rao (Ref. 58) make possible the calculation of this parameter.

Fraley and Rac (Ref. 58) have developed a set of sum rules for ortho-
rhombic asymmetric molecules thatare very useful in the analysis of the

pure rotational spectrum of water vapor. These surn rules are:

J (ee + €0 - 00 - ne) _ 1,0 c
(-1) NEED) = Ao -1 (Taaaa + Taa) + 3(aaaaaa)
1 o0
$IT 4 1) [Z T - 3(aaaaaa)]
+ JZ(J + l)z(aaaaaa) (13)

J (ee+oo-eo-oe); 1,0 o 1 .0
(-1 NAERVE = By -2 Tpppp * Top) + 7 T’ 1 (14)
J (ee+ oe - eo - 00) _ | Q) o l no
(-1) JWU+ 1) - Co "1 (chcc * ch) t3 chch(J+ 1) (15)
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(ee+oo+oe+eo) - o 0 0
B VER AED 3B, + B+ C) -gp (To, . + TS + Toup + Ty

o)
+T0_ 4 TO ) + 5y (anaaaa) + I + 1) [FG (312
o o o
+ 3Tbbbb + 3chcc - ZTa Z'I‘bb - ZT )
- %e (aaaaaa)] 4 JZ(J ¥ 1)2 ';- (aaaaas) - {16)

The notation ee, for example, stands for the sum of all energy levels of a
given J whose limiting prolate and oblate symmetric rotor quantum numbers

are both of even parity. Ao, Bo’ and Co are the rotational constants associ-
o o
aaaa’ Taa’ etc., are

the quartic distortion constants. (aaaaaa) is the higher order distortion

ated with each of the principal axes of the molecule. T

constant. Similar terms for (bbbbbb) and (ccccec) would be added to» Eqs. (13)

through (15) if analysis showed them to be necessary.

Combinations of these sum rules give four sets of four simultanecus
equations, with the energy difference A between the Ooo and lol energy levels
as one of the unknowns. This was done for the transitions presented here
giving the result A = 23.7913 + 0.0016 em™! as the average for the four
sets of equations. This agrees well with the value quoted by Gates, et al.
(Ref. 57) of 23.79 cm'l. Having this value, we can calculate the energy of

all the eo and oe levels relative to the true ground astate.

Because some of the transitions observed here were analyzed as blends
of very closely spaced lines and, thus, are unsuitable in the determination
of energy levels and since it was desirable to extend the calculations to
J =7, it was necessary to use transitions obeerved by other experimenters.
Thet > are listed in Table 6. Two of these are microwave transitions (Ref.

59) and are more accurate than our measurements; seventesn others ware
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 Table 6. Other Transitions Used to Derive Energy Levels

Frequency, Calculated
' cm'l Freque.ncy, * Assignment Ref.
cm
0.7416830 0.74 523_.616 59
12. 68200 12.68 321——414 59
314.74 314.74 312 -—441« 52
340. 55 340. 55 726 --835 52
349,77 343.79 %1770
349.79 660 -—771 .
384. 88 384. 86 615«'744
385.54 385.52 414-’541
396. 44 396. 43 717-‘826
426. 33 426. 31 422 -0551
431.16 431. 14 515"642
441.75 441.75 423 550
442.09 442.10 523—'652
456, 87 456. 88 624—°753
472. 39 472. 41 5,4--6Sl
506. 94 506.93 625 -7 52
536.25 536.26 532 --'661
541. 07 541.07 533——660
554. 63 554. 64 633 ——762 51
567.23 567.23 634"'761 51

*Energy levels, Ref. 57
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taken from the spectra of Rao, et al. (Ref. 52) and Blaine, et al. (Ref.51)

in the 300 to 600 cm'l region. These transitions were unassigned in the
original papers. They were chosen and assigned on the basis of freqency
and relative intensity calculations (Ref. 56) using the energy levels of

Gates, et al. (Ref. 57). The transitions were chosen *vhen calculations indi-
cated that a single, relatively intense transition should occur we’l separated
from its nearest intense neighbors. As can be seen in Table 6 the lines
chosen agree with calculated values to within 0. 02 crr»'l, the quoted accuracy
of the other spectra. However, since the accuracy of these frequencies :s
lower than our measurements, the energy levels derived using these transi-

tions are quoted to one less significant figure.

The energy levels derived from these calculations are given in Table 7,
together with values obtained from near-IR vibrational-rotational spectra
(Refs. 57, 60, 61). The accuracy of levels determined solely from transitions
measured in this work is estimated to be + 0. 003 cm-l. These energy levels
are indicated by four figures after the decimal point. Energy levels which
were determined using transitions from higher frequency spectra are indi-
cated by three places after the decimal point and are estimated to be accurate
to £0.02 cm‘l, The energies of the 652, 651, 661' and 660 appear anomalous.
Perhaps there was an error accumulating in one of the two series that be-
came obvious only in these almost degenerate levels; or perhaps one of the
transitions used in the determination of these levels was misassigned. In
general, though, the agreement in the values of the energy levels betweea
this work and the near-IR data is good.

Having determined a complete set of energy ievels uptoJ = 7, we
can calculate frequencies of other transitions which were not used in the
calculations. Table 8 shows a comparison of observed and calculated fre-
quencies for three microwave transitions (Ref. 59). The agreement is
within the quoted accuracy of the energy levels. Also, in Table 5, a similar
comparison can be made for FIR transitions. Again, the agreement is good.
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Table 7. H,O Energy Levels (em™ ")

: Fraley Benedict Gates
Tk Ky THE WOk (pet. 60) (Ref, 61) (Ref, 57)
000 0. 0000 . 000 .00 . 00
1, 23.791, . 192 .19 .79
1, 37.137, . 132 .13 .13
10 42.361, .366 .36 .37
20, 70,088, . 085 .08 .08
2. 79.495, . 486 .48 .48
E XY
24 95.1734 .167 .15 17
2,5y 134.9?22 . 890 .91 .91
) 2,, 136.181 .153 .15 17
‘ 395  136.764g .751 .77 .77
13 12274, . 263 .26 .28
3, 173.370, .353 .36 .36
3,  206.302, . 280 .28 .30
3,,  212.162, 137 .16 .15
3,  285.217, .21 .25 .23
3390  285.421, . 410 .40 .43
4, 222,049 .037 .04 .06
4, 224844, .817 .83 .83
275. 494, . 481 52 .52 §
300.367, .333 .34 .35 é
315,777, . 756 .13 .19 |
382,520, . 495 .49 .52 !
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Table 7. (cont)

YK K, This Work (rferfafl?é) (Ret o1 (gfft.eg'z)
4,, 383.837, 821 .83 .85
| 4, 488. 11, 110 .16 .10
44 488.125, . 136 17 13
505 325.39 .328 .36 .35
5.5 326. 620, , 601 . 64 .64
54 399. 50, . 440 .45 .46
5,4 416.202 174 .18 .22
5, 446.56, .487 .50 .50
5.3 503. 961, .938 .98 .00 |
55 508. 86, 782 .80 .81
54 610.100, .108 12 12 ‘
; 541 610, 38, .334 .34 .35
B, 742.10, .071 .08 .10
5o 14211, 074 .08 .10
606 446.704, . 671 .66 11
6,6 447.30, . 231 .24 .24
65 542. 890, .873 87 .91
6,5 552.96, . 880 .92 .92
| 654 602.762, .728 .67 77
} 634 649. 02, .952 .97 .97
65, 661. 534, 514 .56 .56
h 643 756.76, .704 .12 .75
647 757.78, 77 .78
bs, 888. 65 . 602 .61 .60

0
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Table 7. {(cont)
- . Fraley Benedict Gates
SK_pK,, T Werk  (Ret. 60) (Ref. 61 ) (Ref. 57)
H 651 888. 592 . 635 . 65 .63
661 1045. 11, . 045 .09 .07
660 1045.(!3z . 045 .09 .07
707 586. 295 .213 .28 .26
7” 586. 464 . 449 .43 .48
716 704, 26z . 194 .18 .22
726 709. 5945 . 558 .58 . 60
725 782. 455 .383 .41 .40
735 816. 6701 . 671 .65 .72
734 842.394 .334 .36 .38
744 927.?'7l .723 .76 .17
743 931. 2'?'z . 228 .23 .22
P 1059.63z .62 . 65
752 1059.900 . 824 .83 .85
762 12!6.164 . 199 .19 .20
761 1216.257 . 199 .19 .20
7” 1394. 802 . 818 .91 .86
770 13‘94.88l . 815 .91 .86
827 885. 642 . 569 .62 .62
826 982.90, .92 .91
836 - 1006. M., . 090 .14 .12
835 1050, 14‘ .20 .18
85 1122, 743 . 694 .18 .72
8“ 1131.762 .18 .76
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Fig. 29. The sum rule plot for the ''a' axis of the viater molecule.
The quantity {27.70 - 0.02J (J +1) ] cm™" has been sub- .

tracted from sums to make the curvature more apparent.
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Fig. 3¢. The sum rule plot for the 'd'" axis of the water molecule.
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Table 8. Comparison of Observed and Calculated Microwave
Transitions of Water Vapor

Observed a
(Ref. ?9), Calcu-l.i.t,d, Assignment
- cm
cm
6.114549 6.1133 ZZO—.313
10. 84596 10. 8429 422 — 515
14.94370 14. 9461 330 ~423

Also, vith a complete set of energy levels the sum rules of Fraley
and Rao can be used to determine the rotaticnal constants. Flots of the sum
ruies are shown in Figs. 29 to 32. Only the plots in Figs. 29 and 32, which
are asscciated with the a-axis of rotatién. show significant curvature. This
indicates that the data can give a significant value for the higher order dis-

tortion constants cnly for the a-axis (aaaaaa).

Least squares fi*s to the sum rules shown in Eqs. (13) through (16)
resulted in the values shown in Table 9. The errors quoted are 95% confidence
intervals. The jollowing formulas (Ref. 58) applicible to planar orthorhombic
molecules are used to obtair the remaining quartic distortion constants and

the rotational constants:

_82 . AZBZ
T . e\, e e
aabd aaaa 2‘\3 vCcece ZC‘
-A: \
+ T {(17)
bbbb 2 Bzg )
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Table 9. Parameters Derived from Least Squares Fits

to the Sum Rules of Fraley and Rac {cm-1)

T T L Il A g e R e O e Yo, mTn e s TR O 2 AR

»

'
o s
-3
[

it

27.8801 1 0. 0034

il

14.5134 ¢ 0. 0090

= 9,2813 4 0.0021

(e]
[+]
’
sbad
L]
14

= -0.0084 + 0.00i2

O - bs
Tbbbb = ~0.0083 1+ 0.00:2

0

LR -0.00107 £ 0. 00027

(aaaaaa) = (6.89 & 0.26) x 10™°

(bbbbbb) & (ccececc) sV
Ao + Bo + Co =51.6742 £ 0. 0027

°+T°

Ta,;a bb

+T° = -0.00829
cC

(saaaaa) + (bbbbbb) + (ccccec) = (6.02 £ 0. 98) X 107>
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cz -Aici\ A%
T =T + T, + T {18)
aacc  "aaaal ,,2 bbbb \ o /; ccec\, 2 .
e e e
»CzBi C‘-z 132
Tyubee = Yaaaa "EAE' * Topbo ‘;gi t T e ;EE (19)
O o o] [} TO (20)

‘aa’” Tﬁ@\ly B Tyyaa . aaPp

The gubscript e refers to equilibrium values of the rotational constants that
are related to the ground and excited state constants by relations of the

following type:

A = A - Zl:ui(v+-§-) (21)

wherz v is the vibrational quantum number and sum is over the findamental '
vibrations of the moclecule. The a's and equilibrium rotational constar.ts

were evaluated by weighted least squares fits to our values of ground state

constants plue approximately 40 excited-state constants given by Benedict

(Ref. 62). The results of these analyses are given in Table 10. With these

values of the equilibrium rotational constants, the remaining quartic dis-

tortion constants and the ground state rotational constants can be caiculated.

The results of these calculations are given in Table 11. The errors quoted

are 95% confidence intervals. The values of the ground state rotational

constants (Rel. 62) as determined from the vibrational-rotational spectrum

are also included. The agreement is excellent. Also included are calculated

values of the six quartic distortion constunts. These were calcvlated from

relations igiven by Kivelson and Wilson (Ref. 63) between vibrational force R

constants and the distortion constants. The force constants were determined
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Table 10. Equilibrium Rotaticnal Constantse

{cm™%)
e = 27.1107 .
Be = 14,5922
e ™ 9.5120
A B C

a, 0.2168 0. 2075 V. 1694
a, -3. 4957 -0, 1561 0. 1387
ajz 1.1418 0. 1096 0. 1467

from the harmonic frequencies of HZO and DZO given by Benedict, et al.
(Ref. 64). The agreement between observed and calculated values of the
quartic distortion constants is quite good. It should be ncted that the six
values are not linearly independent. They are linear combinationa oi four

independent values.

5. LINE WIDTH

a. Direct From Interferogram

As was mentioned previously (Sections II and IIi-A) the fall-off of
intensity in an interferogram is due in a large measure to the width(s)
of the lines in the spectrum. If the lines of the spectrum are very nearly
evenly spaced, then it will be the signatures that are dampled out as
~exp - 2wxe (Ref. 22).

A number of interferograms (conditions of different pressures) were

obtained for CO in a 15-cm absorption cell (see Fig. 19).
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Table 11. Ground State Rotational Constants
of the Water Molecule

This Work Previous Work {Ref, 62)
Ao = 27.8761 £ 9, 0034 27.877
Bo = 14. 5074 £ 0, 0090 14.512
C0 = §.2877 &£ 0. 002} 9.285
This Work Caliculated
o -
Taaaa = -0.1084 + 0.0012 -0.1088
o —
Tbbbb = -0,0083 £ 0.0012 -C. 00672
o - -
chcc = -0.00107 £ 0.00027 {.00093
° i .
Taabb = +0.01985 +9. 01845
o — - -
Taacc = -0, 00491 0.00515
o - - - )
Tbbcc = -0.00108 0. 00077
o

Taa’ -0.01602
o - -

Tbb' 0.02368

T° = ;0.02584
cC

[aaaaaa] = (6.89 £ 0.26) x 1073

[bbbbbb] m [cceccec]m 0

NOTE: Only four of the T:p
combinations of these.
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Inthe analysis of the signa-
tures, the intensity was taken as
the average between the largest
maxirma and two adjacent minima.
The first through the ninth signa-
tures wzreused. The zeroth sig-
nature was not used because any
imbalance between the reference
beam and sample beam would bz
most evident here (i.e., in the
neighborhood of x = 0, zero opti-
cal path difference). Signatures
beyond ihe ninth were not used
for reasons discussed later in this

"le'lll'rlll]llll1[']_|7
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L] [} a4 (] w X ] [X § 1.4 (1] ] ] 0
2bal MCPERENCED 1O FINT DOMATVRY

Fig. 33. The natural logarithm of
the reduced optical path difference
for CO (1 =15 cm, p = 52! Torr).

section. The resulting intewsities were normalized to the first signature in-

tensity and then the natural logarithms of these relative intensities were

«cs wia

)
-j—-u.:,u.s.un"g‘-

—

agam; (R}

Fig. 34. Linewidth parameter
versus pressure for CO.

(The

x's were taken where the largest

plotted as a function of x.

maximum of the signature occurred.)
The resulting graph is a straight
line, within the experimental error,
A typical re-

sult is shown in Fig. 33.

and its slope is 2we.

This procedure was carried
out for four runs at pressures of
521, 440, 375, and 254 Torr. The
€'s obtained were: 0. 065 + 0. 004,
0.057 £ 0.0G3, 0.047 £+ 0.005, and
0.033 4+ 0,004 em” !, respectively.
These results are shown in Fig. 34,

where ¢ is plotted as a function of
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pressure. The result is a straight line whose intercept is the origin, within

4 em™} /Torr.

experimental error. The slope is ¢/p = (1. 27 £0.13) X ;07
The microwave value for e¢/pis (1.17 £ 0. 07) X 10"4 cm. -1 /Torr and the
microwave data (Ref. 65) were obtained at a pressurc of less than { Torr.
Although the two results are in agreement within the 2xperimental error, the
discussion to follow will show that the value obtained from the interferometry
data should be larger than the microwave value and indced represents an
average upper limit for this parameter.

In general, this method is subject to the followirg systematic errors:

First, the signature shape is distorted because CO (or any othei

molecule for that m. tter) is not a rigid rotor. Thus, its pure rotational

spectrum consists of lines that are not exzctly equslly spaced in wavenumber.

(If the rotational lines were exactly equal.y spacec, the signatures would be
symmetric and undistorted.) The lines converge slowly due to centrifugal
distortion effects, and this is su‘ficient to distort the signatures so that the
fall-off in intensity is greater than is expected from the exp(-2wx¢) factor
alone. The method used for nmeasuring the intensities compensates for this
distortion to some extent; ho'vever, comparison between calculated signature
shapes including and negleciing the centrifugal stretching term indicate the
intensities of the higher signatures (9th, 9th, etc.) were underestimated by
~5% (Ref. 22). The distortion of ths signatures becomes more pronounced
as one gnees to higher signatures at larger x.

Second, the lines are assumed to be Lorentzian with a Lambert-Beer's
Law for absorption. Thatis I = Ioe'Y(V)L where y(v) is the Lorentz line
shape function and L is the absorption path. In Ref. 22 it is shownr that,
when the exponential is expanded in a power series, the effect of the higher
order terms (3rd and beyond) yields a factor that will decrease the intensity
of the signatures in addition to the exp(-2wxe¢) factor. Again this becomes
more important as cne goes to signatures at larger x.

Because of these two errors, only signatures one through nine were
used in the analysis, that is, signatures of relatively small x.
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Third. in general the lines will have different widths because of

possible rotational resonances (Ref. 66) and Doppler broadening. For a

temperature of 295'K, ¢,(J = 0—1) ~0.05x 10™* em™! and the J = 19—+ 26

transition, it will be ~1.0 X 10™% cm™). Our measurements were at pressures

corresponding to ¢« of 0.03 to 0,07 cm'i; therefore, the Doppler broadening

is negligible.

Fourth, there is the problem of instrumental broadening (in interferom-
eters due to finite entrance and exit apertures, and the usual optical problems,
parallelness of the two grating faces, etc.). The corresponding problem for
conventional spectrometers is a very great one and in fact extensive ''slit
width" corrections must be made, since often the width of the lines under
investigation is much narrower than the band of radiation passed by the
entrance and exit slits. From the data presented here {i.e., the fact that
the ¢ vs p curve extrapolates through the origin well within the experimental
error), it is apparent that any instrumental broadening is within the experi-

mental error.

The result obtained may therefore be considered an average upper
limit for the line width parameters of CO, as all the major systematic errors
tend to give a larger ¢ value,

b. From the Spectrum

The preceding treatment is valid as long as each of the lines have the
same line width parameter and the absorption is not too strong; even then it
is applicable only to diatomic and linear molecules, and the result is an

average value, 8 The more practical and interesting cases are those where

BImlhrid\.uu lines can be studied by using a numerical filtering technique dis-
cussed by Connes (Ref. 67). Essentially this involvel convolving the inter-
ferogram (obtained between, say, 0 and v, em-1 )} with the mathematical
function that is the Fourier transform of an ideal filter passing all the radia-
tion between vi and v2 (the region of interest) and none of the radiation outside
this range. The result of this convolution is the interferogram one would
have obtained if the input radiation had been physically filtered by a filter
having the characteristics of the ideal filter. In this way, single lines may |
be studied and the necessary correction for the systematic errors may be
applied more easily.
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the rnaximum abaorption is strong and the line widthé de vary. The follow-
ing is a discussion of some preliminary results obtained for the pure rotational
spectrurn of CO,

. A beamn of radiation traversing a length £ of an absorbing medium will
absorb intensity according to the well-known Lambert-Beer's Law, and the

intensity passed I(v) can be written
I(v) = Io(v)e'Y(V" (22)

where Io(v) is the incident intensity and y(V) is the absorption coefficient. As
discussed in Section IlI, a two-beam interferometer operating in a double-
beam differencing modes does not measure I(v) and in fact gives little
information about Io(v). What is measured is IA(v). and it is

L(v) = 1) - 1(v) = L(v)[1 - YN (23)

Now, aside from the fact that little is known about Io(v) from a double-

beam run, the meaeurement of intensities in the FIR is fraught with other
difficulties (see Section V). Thus, we shall restrict ourselves to a discussion
of what information is available from I,(v), making only the assumption that

I (v) does not change radically9 over amall intervals of v. Differentiating

I,(v) with respect to v yields

dI_(v) i dI_(v) _
—3'0;,— = {1 - 7YV -39‘7‘— +1,(v)e vt [‘l %ﬂ]

91:: this respect, it has been our experience that the largest variation of
La(v)/o:m’1 is caused by the channel spectrum from the lamp envelope of
the scurce (see Section V).
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and if Io(v) is a cox;ctant in the region of interest

di, (v)
s _ -y({v)t, dy(v
—§ = eV e

Differentiating again with respect to v we obtain

a’1,(v) 2(aym)\2 | a° (
Tr =1 |4 (_g;(!)) - -;Xz(l’) e YV) (24)
v v

For pure rotational spectra the Lorentz form of y(v) has been found

tc be a good approximation to the line shape, at least in the region of maxi-

mum absorption. It is given byw

v(v) = Ac ] (25)

(v-vo) + ¢

Now the maximum of IA(v) occurs when

Qﬁ-"):o orwhenvzvo

Therefore, v is determined by finding where the slope of IA(V) is zero.
Information about A or ¢ is neither determined nor required. Equation (24)

yields, when set to sero,

4 2 2 2 4
« <2¢ (v-vo) +ZM(\'-VO) (-3(\'-\'0) =0 {26)

W‘I‘hh will be & good approximation as long as v, > «; i.e., the lineq are

sharp and the pressure of the absorbing gas not so high as to maks three or
more body collisions important with respect to two body collisions.




The values of v where this equation is satiafied are where dIA(V)/dv
has its maximuia and minimvuran values. In fact, for a symmetrical line they

are equally displaced about Yo We define
Bvy = [v - vo{

for those two values of v which satisfy Eq. (26). The quantity AvD i
the wavenumber difference Detween e and where dl (V)/dv has itz extreme
values. Dividing Eq. (26) by (A\D) and letting y = (e/Av ) and QQ = At /s,

we obtain
v o294 -Q) -3=0 (27)

Now Q is the maximum absorption coefficient times the absorbing path .lengitbh
f and, in general, may range from near zero to very large numbers. Since
Q cannot be negative and y = ¢ /A b is also a positive quantxt-y, the only root.
of Eq. (27) having phyeical significance is ‘

y={t-Q+[(1-Qf+ali3te | - (28
| . IR Y- S Y- S
For Q « 0, the weak absorption case, y = 3 or €= 3 &vp, whick
is the relation usually used in the microwave region (Ref. é8). For Q>0
/2 CoL
3 av ’ :

D’

can be measured (see discussion on the CO pure rotational s\pectrum in this

section), and f is known from the experiment. The parameter A ix a f.{a.nc_tign L

of pressure, population of the states involved in the transition (uppér atate

also since stimulated emission is not negligible in the FIR, a thermodwnariic :

equilibrium is assumed however), the dipole moment of the molecule, ctc.
An explicit formula for A is given in Townes and Schawlow}(ReL‘ 66). Thus
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if this information is known, A may be calculated. If this is not the case,
then it is still possible to ge! ¢ by making two runs at different values os 1.
Then two Eqs. (25 will result and the factor involving A can be eliminated.
The resulting equation will have ¢ as a function of (AvD}i, (Avn)z andvthe
ratio (l /l ), ,

In practice i s neceuary to correct the measured AvD, siace in
general the resolution of the interferometer is finite and, thus, the line
shape observed will be the trus line shape convolved with the scanning
function of the interferometer. As might be expected, the raw avy,

(L finite) is larger than the true AvD(L -3, For Alfs “<i, a correction
curve of the form (Av (Ax )Q vs Le¢ can be plotted and is stown in
Fig. 35. Plotted also il 'L/‘@ ve Le¢. As is seen this quantity changes
very slowly with L, and thus a reasonable value of ¢_ is obtained directly
from the spectrum; L is known and, therefore, the correction factor can
be determined.

Such a correction curve is inadeguate when {Af/¢) is not small
- compared with one. We have calculated correction curves for various
_values of (At /¢). A typical case is shown in Fig. 36.

Preliminary results for the pure rotational spectrum of CO are shown
in Fig. 37. The results have been normalized t3 { -xtm preisure (assuming
¢ varies linecrly proportional to preasure). The solid lines are curves
from a theoretical calculation (Ref. 69) of eclf-broadened line widths for
linear mclecales,

‘Because the dipole moment of CO is 80 small {0. 112 Debye), it is
. the §uadru’pole mameant @ that is rﬂ»s;ﬁaniibie {at least for low J) for the
pregsure broadening. Although t}éé dats points have considerable scatter,

& vadae of Q sonewhat less zhin 4 X !{)'26 esu is iadicated.

6. ABSORPTION OF GASES IN THE MEDIUM PRESSURE
| RANGES (~1 =12 aum);

The prelimiaury results of line width measurements have pointed out
the deeirabiiity af musking meacurements at higher pressures. In the iow to
medium pm-émre vange (where only two body colliefons are important)
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Fig. 37.

Preliminary line widths (self-broadened) for the pure
rotational lines of CO. The solid curves are theoretical
carves for the ??dra,polc moment of CO equal to 5 X 10~

esu and 4 X 10 esu.
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studies in the near-IR (vibration-rotation spectra) and microwave (usually
low J pure rotational spectra) region, it has Leen found that the absorption
lines are broadened linearly with pressure. At higher pressures (where
three or more body collisions become important), the lines are broadened
in an asymmetric manner (i.e., the line shape is no longer symmetric
about the peak absorption). It has also beea observed that the lines are
ghifted in wavenumber because of the increased pressure. Most of these
studies have been carried out in the near-IR (Ref. 70).

Before the development of two-beam interferometers for the FIR,
such investigations were not feagible since the S/N was 80 poor as to preclude
using narrow enough slits in conven-
tional spectrometers to make studies
on line shapes. Usually only investi-
gations reporting wavenumber measure-~
ments were carried out. The per-
formance of the Aerospace FIR
lamellar grating has indicated that
some of these studies are now
feasible. A small cell has been
designed, fabricated, and tested in
the 1 to 10 atm range. A photograph
of this cell is shown in Fig. 38. It

hase a clear circular aperture of ~2.5
cm diam and an absorption length of
Fig. 38, Absorption cell for medium ~6.5 cm. Some preluninary tesats
pressures (~1 to 10 atm) have been made with CO in the absorb-
ing cell, but no analysis or measure-

ments have been made.

B. OPTICAL CONSTANTS OF SOLIDS

The index of refraction of optical materials is commonly measured

by a variety of techniques for wavelengths in the visible and near visible
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regions. In the FIR spectral region (80 to 500 p, 20 to 125 cm'i) most of
these methods are not used either because they are not feasible in this
spectral region or because they require special equipment that has not
been developed. An exception is the channel spectrum technique in which
the radiation is multiply reflected between the faces of a {lat sarple so
that interference in the transmitted beam produces a spectrum consisting
of a series of maxima nearly equally spaced in frequency (' channels").
The maxima occur at those wavelengths for which the ortical thickness of
the samnple is an integral number of half wavelengths; hence, from wave-
length and thickness measurements, the index of refraction can be
determined.

Interferometers are admirably suited to this determination since they
are fundamentally wavelength-measuring devices. In the FIR region, they
are superior to grating type instruments because of their high sensitivity
and spectral resolution. In recent years the required instrumentation and
techniques have been developed to a high degree (Refs. 8, 9, 71, 72). The
application of the Aerospace Corporation lamellar grating interferometer
to the measurement of refractive indices is discussed here.

The trangmittance of a material is determined by its index of refraction.
This index, in general, must be complex to account for absorption within the
material. The channel spectrum technique is effective for determining the
index, provided the absorption is not too large. The energy transmitted
through the sample can be calculated in the following manner ‘or the geometry
of Fig. 39. Letn =n + ik be the complex index, r = (n - 1)/(n + 1) be the
amplitude reflectance and t = 2/(n + 1) be the transmittance at cach surface.

Then

©
A(v) = tz 1+ Z ruel(z"l « 2iivh cos B + §)
L1=1

=t2(1 + zrilelt?) (29)




is the vector sum of the amplitudes of
the transmitted components. Here

| — . ....._.q
y v is the wavenumber
h is the sample thickness

<. -i p is the angle between normal to
N the sample surface and the
‘\\ ray within the medium, and
fe Reatil R ) 6 is the phase shift produced by

absorption within the medium.

The energy transmittance

Fig. 39. Geometry of sample for
channel spectrum index of *
refraction measurements. T(v)=A- A (30)

has been derived in many forms (Ref. 21). Here, where we are interested
in the general solution with absorbing materials, and where the measurement
is mads« by Fourier transform methods, it is convenient to express this
transmittance by (Ref. 8)

-]
T(v) =1»(v)(1 +2 3, olcos z'e) (31)
=1 |

where

L l exp(-ah/cos 8)
n+ 1)

- l6|nZ + kzle_x_gg-ah(cm B) (32)

{{m+ )" +x°)%(1 - oM

T{v} =
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2 2
: [(zn -1)° +x°] (33) .
{{(n+1)" + k" ]exp(ch cos B)}

6=4mnhvcos B+ 6 =4mnhvcos B + Tan"i(—z—ﬁtz-—-—) (34)
n +k -1

and a = 4rkv is the customary absorption constant. The more familiar
form of Eq. (31)in terms of the same parameters is T(v) = 7(v) (1 - pz)/
1+ ;:»2 - 2p cos 0). p is significant in that it is the fraction of the energy
that survives two reflections and two transmittances through the sample.
The angle of the beam within the sample P is related to the external
angle y by Snell's law, which becomes, when solved for cos P for a

sample of complex index

2 2 2 2. 2% 2]
cop=gli- o e o N(omhe () @) o
n

T(v) is the average transmittance that would be observed if there were
no interferences, i.e., it is the scalar sum of the transmitted energies.

Equation (33) is obviously the Fourler cosine gearies expansion of
T(v), i.e.,

@
T(v) = ZA‘ cos 10
1=0
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where
Ay = T(v) A, =27v)p?
0 ’ 1=0

Because the interferometer used for these measurements generates an
"interferogram'' that is the Fourier transform of T(v) (multiplied by the
gource function), Eq. (33) is a very convenient form to work with. The

interferogram function (see Section II) can be written as
0
F(x) =f ﬂv)(l + 21 Epl cos la)coa 2pvxdv
(<}

where x is the optical path difference in the interferometer. In this equation
the source function has been absorbed into T(v) and the constant term in the
interferogram has been dropped. If 7(v) and p were constant and v extended
from zero to infinity, F(x) would simply consist of a series of §-functions
with coefficients A, lacated at x = 18/2r. For a finite range of 8, these

& functions are broadened into sinc (= sin x/x) functions, which are further

distorted by the nonconstancy of T and p.

These distorted sinc functions have been given the name of ''signatures''.

. . 11 ...
Since they contain 21l the available information about the sample,  it.s

“Here we note that the modular resolution definition is the appropriate one,

since no ''channels' in the observed spectrum will be seen unless at least
the first signature is observed.
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possible to replace the interferogram between signatures by a constant, thus
eliminating a major fraction of the recorded noise without significantly dis-
torting the spectrum obtained from the transformed interferogram.

From Eq. (31) it is evident T(v) will be a maximum when all the cosine
terms in the sum are in phase; i.e., when® =m + 27, where m is an integer,

from which

21vhcos[3+-2%;=m (36)

This leads to a series of maxima equally spaced in v, provided n is constant.
From measured values of these Vmax and the other parameters in Eq. (36),
it is possible to calculate n(v). The phase shift &§ can be neglected for the
first approximation.
From a measured mean transmittance and the above index value, the
absorption coefficient @ = 4nvk can be calculated (see Eq. (32), which in turn .
can be used to determine & (see Eq. (34) so that a corrected n can be found),
The process can be repeated if necessary until n and k achieve stationary .
values.
This method is limited by the requirement that the sample be trans-
parent enough that a significant fraction of the radiation can survive at least
two internal reflections and three passes through the sample. We now make
some semiquantitative estimates of the maximum thickness permitted fcr a
given n and absorption coefficient. For adifference spectrum{(see SectionIII-C)
the noise can be as low as i0'3 Eo. where Eo is the scurce intensity. For
n < 4 the amplitude of the channels may be approximated by ?.'r(v)pEo. the
first term in the series of Eq. (31), which is the contribution of the first pair
of internal reflectiona. (The v(v) term is removed in the differencing

technique. ) Assumming a S/N of at least 2 is needed to make meaningtul

-2
measurements, then 21(v)p > 2 X 10 ~. For the absorption constants and R




frequencies involved, k << n, and an adequate approximation becomes

“3in4 )%+ 1)
n{n - 1)2

e-Zah < 10

Figure 40 gives, as a function of the absorption constant, a, the maximum
value of h which satisfies this relation, with the refractive index as a
parameter.

We now turn to an analysis of the accuracy with which the parameters

needed for calculating n can be determined.

100 T T 1]
€
L 10 —
=
3 .
=
= ~
=
=
= 10
<
=

ol paal ool

ol 10 10 100

ABSORPTION @ : 47Ky (¢

Fig. 40. Maximum sample thickness usable with
present techniques for channel spectrum
determination of refractive index in the
FIR, for values of the real index n and
absorption coefficient o = 4nwkv.
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Since the order number, m, must be an integer there is no difficulty
determining it exactly, provided that the accuracy is sufficient to distinguish
between adjacent integers. Since in this wavelength region m is never layger
than a hundred or so, accuracy is easily achieved. A simple procedure for
determination of m is the following: Two values of Ymax 3F¢ determired
from the spectrurn for m = m, and m = m, + p. Substituting twice in

Eq. (36) and subtracting, we have 2nh cos #{v ) =p, from

{ max ~ Y2 max
which an average n can be found. Inserting this value in one of the above
equations then leads to a value of m. This technique will be adequate only
as long as n iz relatively constant, but when it is not, there will be strong
absorptions and, as shown above, the method becomes unsatisfactory.

The determination of frequency furnishes an ultimate iimit to the final
precision. Measurements with our interferometer on pure rotational spectra
indicate a limiting instrumental wavenumber accuracy of about 0. 003 cm-'t,
or, for 60 cm-1 radiation, about 5 parts in 105. ’

To achieve this precision requires, however, locating the peaks in the
spectrum with a similar precision. The precision with which the experi-
mental peaks can be located is in turn limited by the inherent sharpness of
the peaks, governed by how many terms in the series of Eq. (3!) contribute
significantly to the spectrum. The rate at which the terms in thiz series
die off is in turn controlled by the index of the material. The precision is
also limited by changes in the base line,which may make the lines appear (o -
shift,and by noise. Figure 41, the channel spectrum of fused quarts, shows

two problems: First, if there is any

change in absorption there will be a

changing base line; second, the channel

'm

|
- r‘ﬂlfﬁwﬂ spectrum we are iiterested in uses only
opN 1

T —

a small part of the dynamic range of the

\ . . . Ty
® % © © instrument. Both of these problems
Ut {w') :

may be significantly decreased by means
Fig. 41. Transmittance of 2. 14 mr: )
thick fused quartz T(v)
showing both channels and ferometer for double-beam difference
_ transmittance change caused
by changine .bsorption.

of the facilities in the Aerospace inter-
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interferometry. We can, while ubi2ining the interferogram, subtract the
interferogram of a similar sample, different only in that it is wedged and
therefore does not exhibit a channel spectrum. The resulting interferogram

and itg Fourier transfcrm, the spectrum, aprear in the upper pa:t of Fig. 42.
The changing base line has indeed been

removed, but apparently at the expense
of adding a good deal of noise. However,
because of the localized nature of the

information ne~d+  for tie charnet

spectrum in the inteif=2roy: «m sigra-
ture, a: discussed aboe. ., it :3 poerible

to artificia .y rewiove much of the noise

o y ) d w from the incerferogram before it is
N TIANE, - AENtL, en” :
RTAFTIOMAY reT™ tran~forravea and still not harm the

. . . information content of the spectrum ~s
Fig. 42. Difference interferogramn - P

"and spectrum for fused far as determining refractive indices
. . "

quarex, thhov:xt edx?xr}g is concerned. The results of this cre

(upper) and with editing

“(lewer), wagwe in e lower part of Fig., 42.

With all tiese procedures for iimproving
the measurement of the individual maxirma, it is pussible to decrease the
‘scatter in points on the index curve by as much as a factor of 4 or 5 in the
case of ar. absorbing material of low index such as fussd quartz.

If the refractive indices are to be determinad with an accuracy limited
~only by the frequency measurement, ihe érrvor in the thickness value must not
be limiting. For a typical sample thickness of 3 mm, this means a tnicknessn
determination to within a fraction ol a fringe of visible light The {latriess and
paralleiism of the faces must be hels! within similar tolerances. Sampie
preparation to these toierances has Lizen carried out in our optical shop. The
measurements of thickness to within £0. 2 u were made by a commercial

metrology laboratory. = If measurements to this precisionare tobe meaningful,

lzMetrolouica Inc., Burbank, Talif.
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”~

the material must be hornogeneous to a similar extent. Since independent
methods of analyzing the homogeneity are difficult, we have started with high
purity material.

Within the sample all lijht rays should ;ee the same thickness of
material. This effective thickness depends Lowever on the angle with which
the light is incident on the sample, the rays at large angles seeing an
apparently foreshortened thickness as indicated by the cosine B in Eq. (34]j.
Ideally then the measurements should be made in parallel light, but since this
is not possible with the Aerospace instrument, the observed T{v) is a sum
over the possible angles weighted according to the solid angle, and is, except

{er a constant multiplier,

= e
T(v) = "(v)|1 + E ;(cosap - 1)/ﬁin P cos e6(p)df
1-1 - p

where ﬁm :8 the maxirnum internal angle. Carrying out the integration,

CUs ‘3 + 1. s
f sin 3 cos £8{p)dH :{cos l&’mh( : ;n )}“; X
A ‘

where y = énfnhv{cos (Sm - 4). |

Since the position of the channels .8 dstermined by the first term in the
summation, the sin(y;/y term in the abovs equation with m = 1 is the one thar
sttracis our attention. In cur instrumert, with its cutofi frequency of 12% cm
the mozirmuwn value y can have is 250 rhnicos B, - 1) U we wish 10 have

¥ < ¥, eaning our channel amplitude never goes through zero, then
¥ P g

3(.‘u.-rrruuium and silicon c.me from Exotic Materials, Costa Mesa, Calif.
Fused quartz was Infrasil grade low H,O guartz.
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hn < [ 250(cos Py - 1)) '1. For an « <ternal half angle of 7.5 deg, this leads
to z maximum thickness for samples of silicon and germanium, 1.1 and 1.8
cm, respectively. If this criterion ic met, the additional effects introduced
by the convergence of the beam on the amplitude of the modalation i3 iess
pronounced than the change in source intensity with energy. The only
correction needed then is to replace the thickness h with [aft + cos 5m)] /2.
A sufficiently accurate determination of n to correct ior beain convergence
can usually be obtained from the positions of the signatures in the
interferogram.

For materials ~mfficiently transparent for this method to be successful,
the imaginary part of the dielectric constant k., which gives rise to both
abgorption and the phas? factor §, must be small. An estimate of sufficient
precision cea therefore he made by means of Eq. (32) from a spectrum of the
average transmiitance T(v), using preliminary channel measurements to
obtain a value of n. The avcrage transmittance apectrum is also eaesily
obtained froimn a single-beam interferogram by using only that portios of the
interferogram arcund x = 0 and then dividing this spectrum by a spectrum
obtained under similar conditions,

0 ¥ i T 1 l ¥ T T T

- — but without the samnple in the beam.
For the materials reported on here,

the phase factor was small enough to

ABSIPPTION (em™) erbvts
T
1

=

Figure 42 shows the results of

the analysis as described when applied

g”“"’ . 71 to the fused quartz spectrum in Figs.
E“" - 1 41 and 42. The error bars on the
- i -~ refractive index data indicate the
1 1 1 ! [ 'y 1
0 mu?mec.-') % statistical scatter between nearby
Fig. 43. Absorption coefficient points and are smzller near the middle

a = 4nkv, and real re-
fractive index for fused
quartz.

of the gpectral region of intereat,

since this is the region where our

o ignore in comparison to the uncertainty
" in locating the channel spectrum peaks.

¥
i




instrument has the best S/N. The absorption curve was calculated, by m=ans

of £q. {32), from an average transmittance spectrum. The error bars on the
absorption curve indicate the uncertainty of each point on the curve. This
uncertainty arises almost entirely from ithe uncertainty in the transmittance
measurements.

Because silicon has a higher index and lower absorption, more internal
reflections contribute to the spectrum, as may be seen from the presence of

3 signatures in Fig. 44 Figure 45 shows the refractive index and absorption

_erlLllll_‘ iLLl)‘lwlllJ___Ll
0N2BM45 50 8 52 83 54 55 % e 120
FREQUEN.Y (cw~!)

- '\NTERFEROGRAN

£HERGY (ARBITRARY UMITS)
}
|

—
_P—-—v~'\/\/\}\\ K\f\/\/""w"‘* Ls "\’\“/W 1 o .

8 SN N VNN YRS VO O SR NN VRN NN TN SN R TS N S I
L 13 1 25 27 29 30 40 42

PATH DIFFERENCE (cm)

Fig. 44. Region of interferogram and spectrum for
0.194 cm thick silicon sampic. Because of
the high reiractive index and low absorption,
three signatures are visible, indicating that
light uncsrgoing up to six internal reflections
is contributing significantly to the spectrum.
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Fig. 45. Absorption coefficient and
real refractive index for
silicon.

range.

constant in the FIR for silicon. The
error bars have the same significance
as those used on the fused quartz data.
The higher number of internal reflec-
tions making significant contributions
to the spectrum makes the peaks in the
spectrum sharper, leading to lower
scatter in the index dats points. The
transmission of one sample of gilicon
has been determined independently with
a commercial grating spectrometer

{(Perkin-Elmer 301) over a wide spectral

These results are presented in Fig. 46, together with the measured

transmittance with the interferometer in the region where the instruments

TRANSMISSION (%)

80 —— T LI I A |
— $i 0.1938 cm u
O PE30 DATA |
a INTERFEROMETER DATA

o 200

400 600
FREQUENCY (em™")

Fig. 46. Mean transmittance 7(v) of silicon.
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Fig. 47. Absorption coefficient and
real refractive index for
germanium.

overlap. Fium these measurements,
estimates of the uncertainty in trans-
mittance have been made.

Figure 47 shows the refractive
index and absorption constant for
germanium in the FIR. Figure 48 is a
plot of transmittance, again taken over
a wide range with the Perkin-Elmer 301,
for comparison. Because of the chemical
similarities between silicon and ger-

manium, a spectrum similar to Fig. 44

for silicon might be expected. Germanium, however, exhibits more dispersion

and niore absorption. This may be caused by impurities in the sample but,

we think we are observing the low-frequency side of the band at 100 cm~

reported by Aronson and McLinden (Ref. 73).

80 1T

TRANSMISSION (%)
£ N

o o

|

ny
o

Ge 0.2007 cm  «.-
O PE 30! DATA ]
A INTERFEROMETER DATA

Jo )Loop ]

0 200

400 600

FREQUENCY (cm”')

Fig. 43. Mean transmittance for germanium,
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We have presented a method for determining the refractive index of
materials from channel spectrum measurements. The equations used to
obtain values make no assumptions except that of nearly normal incidence, so
the polarization of the radiation is unimportant. This method is particularly
well suited for interferometric measurement techniques since, as is shown,
the spectrum may be written as a Fourier cosine series. Since the inter-
ferometer gives us the cosine transform of the spectrum, the ajproximations
which are justifiable in treating the data are easily seen.

The method is good for materials which are not strongly absorbing in
this spectral region. Limiting sample thicknesses for varying combinations
of real index and absorption have been estimated.

These methods have been applied to a number of materials, Wwith data
presented for three, to show the application of the technique. It should be
noted that the values are close to thcse measured in the radio frequency part
of the spectrum and may differ widely from values in the visible region, as

the fused quartz shows.

C. INDEX OF REFRACTION OF GASES

-

The results just described have encouraged us to try to apply the same
principles to the measurement of the indices of refraction of gases in the
FIR. The high-pressure absorptica cell can be modified into an "interference
cell." The faces against which the cell windows are mounted have been
ground flat (~3 fringea of HG 5460 .3-) and parallel (~8 arc sec). The windows
are phano concave lenses of crystalline quartz. The focal lengths of the
lenses are chosen such that the entering beam is made parallel inside the
cell and then restored to its original divergence on leaving the cell. The
interior surfaces of the windows are plain aud provide the reflective surfaces
for interfecrence. In the FIR the reflectivity of a single surface of quartz is
~13% (in this respect germanium would be a better window material). Only

preliminary tests of the cell as an interferometer have been completed. The

first channel signature (at x ~ 13-cm optical path difference) has been observed.

The observed S/N for the signature is not as large as hoped for, and part of
the reason for this is that the source is extended in nature. This results in

difficulty in locating the focus in the sampie chamber and subsequent
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placement of the interference cell. A short arc Hg lamp is presently being

tested (fo;' reasong in ad<ition to its more point-like feature) and evaluated

for use as a source in the FIR.
D. NARROW BANDPASS FILTERS

Fabry-Perot etalons consisting of two parallel wire meshes have been
used by earlier investigators (Refs. 74-77) as efficient narrow band filters
for the FIR and microwave regiona (wavelengths greater than about 50 p).
These filters have been further developed in this laboratory, the fabrication
procedures and the performance obtained being the subje-ct here. This work
has been greatly facilitated by the availability of the Aerospace Corporation
- lamellar grating intcrferometer, which has a sensitivity and spectral resolu-
tion unavailable to the earlier workers. This permitted much better evalua-
tion of the improvements in the filter design.

The spectrum transmitted by such a filter is described in texts on

physical optics. The power transmissivity T is given by

T t (37)
_ 37
[(1 - r)% + 4r ein®6/s]

where t and r are the power tranamissivity and reflectivity, respectively,
of the individual meshes, and 6 is the phase shift of the radiation passing

twice through the gap between the meshes, i.e.,
8 =2m . 2vbu cos 6 + 2¢ {38)

where + = 1/\ is the wavenumber of the radiation, b is the mesh separation,
# i8 the index of refraction of the assumed nonabsorbing material in the gap,
8 is the angle of incidence, and ¢ is the phase shift caused by reflection at a

mesh surface.




All the filters discussed will have an air (or vacuum) gap between the

meshes and, hence, g = 1. I the meshes are made of a metal with high

conductivity the losses are small, or, tx1{ - r; and thus

2

¢ 1
T = = 1 (39)
t* + 4r 8in26/2 1 + (4r/t%) sin®6/2

It i3 evident from this equation that Tax = 1 for 5 = m 27, where m is an
integer, i.e., there is a series of transmittance peaks equally spaced in

renumber for v = v where
wav ber £ max’

v _ _mm -
max 27b cos 6 (40)

- = 2 | -~
Also, for 6 ={m + 1/2) 2w, Tmin =(1 -r/1+r)", therefore Tmin 0 as
r - 1. The conventional measure of the sharpness of the fringes is the
finesre F, defined as the ratio of the separation between adjacent fringes
to the width at half maximum (half width) of a given fringe. For r near 1

this is given very closely by

1/2
- “("1 . (41)

1/2
_™r)
F = i -r

and F+-wasr—-1. A large finess=, of ccurse, indicates narrow fringes.
The above theory assumes an ideal filter, i.e., no resistive losses,
perfectly flat and parallel meshes, and the angle of incidence 6 is either
zero or a constant. In order to achieve a fincsse F for nearly normal
incidence, the allowable variation in b is ébx1/2vF, thus, for F = 100,
v~100 cm'l. &b = 5 X 10‘5 cm, or approximately one visible light fringe.
This result is surprising in view of the general impression that the construc-

tion tolerances for FIR components can be rather sloppy because of the
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large wavelengths involved. Attempts have been made by otler workers to

construct tur.able filters, with adjustable mesh spacing, but the performance
has been mediocre because the mesh parallelism was not adequately main-
tained. Also, simple rugged filters have been constructed by cementing
meshes onto the faces of a wafer of fused quartz. Again the performance has
been mediocre, perhaps due to inhomogeneities or iack of flatness in the
quartz, but mozre probably due to lack of perfect contact between the quartz
and the mesh caused by inclusions of cement.
The available meshea14 are from
5 to 2000 mesh (rulings per inch), and
§ are about 0. 0002 in.x 5-p thick. For
the FIR region considered here
(v = 10 to 100 cm'l), 250- to 1000-mesh

rulings are most suitable. These
PRECISION S.S. SHIM

meshes are fragile and have no rigidity
¢hips  ©of their own and so must be carefully
- stretched over a supporting ring to

————— a\ § remain flat, as shown in Fig. 49. The

meshes are cemented as smoothly as

possible ontc the two temporary sup-

TEMPORARY .
SUPPORTS ports shown. No wrinkles, as seen by

reflected light, can be permitted at

this stage. Thesc are then hung over
the other members, as shown, the
weight of the support rings stretching

Fig. 49. Details of filter construc- the meshes taut. The assembly is
tion. The space is cut
from precision stainless
steel shim stock and the the excess mesh trimmed off, and the
burrs carefully removed.
The faces of the end
pieces touchiug the grids

ax;et machined and .apped MA‘K‘w.'z;ilz\hnle from Buckbee-Mears Corp.,
) St. Paul, Minn.

then clamped between the end pieces,

joint sealed with epoxy cement.
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Since the wire meshes must be very accurately flat and parallel, the
most critical component is the atainless-steei shim space shown. Ours have
been cut from precision shim stock, any burrs on the edge being carefully
removed by lapping. The end pieces also are carefully machine ! ind lappec.
A completed filter with a 1-in. aperture is shown in Fig. 50.

Calculations of the transmittance o1 -eflectance
of a metal mesh are difficult because of the complex
two-dimensional geometry. The most successful
approach involves the calculztion of an equivalent
transmission line and has been solved for the related
problems of one-dimensional arrays of various
shaped wircs (Ref. 78-80) and the problem of circular
openings in a metal sheet (Ref. 81). We find however

a very satisfactory analysis of filter performance

can be based on the empirically determined values

of power reflectance r and power transmittance t

Fig. 50. Photograph
of a com-

pleted filter.  mesh opening by the wavenumber v allows us to

for a single mesh. Scaling the distance d between

to ~lot results in terms of the dimensionless

variable vd, making it possible to compare data taken on different meshes in
different frequency ranges. Figure 51 is a plot of the transmission of four
different mesh materials as a function of this reduced variable vd. The
transmission curves for this region are nearly straight lines on a loglog
plot, indicating a simple power law relation. The curves for two of the
materials coincide as anticipated. The 250-mesh material, however,
exhibits a higher transmittance, as might have been expected, since each
cell in this mesh has about 17% more open area than the cells in the other
meshes. The nickel mesh exhibits a higher transmission, perhaps due to
its higher resistivity.

For vd greater than that shown in the figure, the measured trans-
mittance first rises to a maximum of about 90% at vd= 0. 85 and then

decreases and oscillates for greater vd. For vd > {, a mesh begins to act
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Fig. 51. Transmission of a single wire mesh as
a function of reduced fequency, vd,
where d is the spacing between openings;
0250-mesh (d = 102u) copper (Buckbee-
Meers ruling no. 25027); A 500-mesh
(d = 2044+) nickel (ruling no. unknown);
0500-mesh (d = 204n} copper (ruling no.
509); @ 750-mesh (d = 306, .cpper
(ruling no. 761).

TRANSMISSION
o

as a two-dimensional diffraction grating; hence, varying amounts of trans-
mitted power ar. diffracted out of the acceptance angle of the measuring
instrument, making details of the measured transmittance dependent on the
particular experimental geometry used for the measurement. In view of the
variability of mesh fabrication and the difficulties of measuring absolute 7
transmissions in this spectral region, we feel the present results are in
satisfactory agreement with those of others (Refs. 9, 74-76, 82). Indeed
the data in Fig. 8 of Russell and Bell (Refs. 9, 83) superimpose on our

500- and 750-mesh data for values of vd from 0. 25 to 0. 75.

The Aerospace interferumeter cannot measure reflectance at normal
incidence, and hence we cannot show that r - {-t, thus den:unstrating the
absorption in the mesh to be small. However the data of Mitsuishi,
et al. (Ref. 7%) indicate that losses are indeed small, at least for vd < 0. §5.
Also the performance of the filters discussed in Section V could not have

been achieved had there been large losses in the meshes.
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The choice of mesh material for a particular filter application depends
-a thc wavenumber and finesse specified. For example, from Eq. (40) if
F = 100 is required, r < 97% or t ~3%. From Fig. 51, this gives vd = 0. 19

for the 500- or 750-mesh grids, and v 54 cm"1 or 36 cm'i, respectively.

Note that the above finesse assumes an ideal filter and makes no allowance

for fabrication imperfections.

Filters have been successfully made using a number of meshes and shim

spacers. A measured spectral response curve fcr one of the better samples

{750 mesh, 0.0807-cm space) is given in Fig. 52. This is the actual energy
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Fig. 52. Energy throughput of a wire mesh filter consisting of
two 750-mesh screens separated by a 0. 08C5 ¢m spacer.
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throughput, and it is multiplied by the spectrum of the source and the

tvzasviittance of the interferometer. Transmission peaks appear approxi-
-1 - . s

mately every 6 cmm , the three at 6, 12, and {8 cm t being missing

because of the low energy available in this interval. The widths of the peaks
£

increase with v as expected from the mesh transmittance given in Fig. 51.

From the noige level at the base of the peaks, it is evident that peak
transmittance values and off-peak rejection can be determined 2t best to
within about 5%. This is poorer than the measurements on single grids
because of the small amount of energy transmitted with a nzrrow trans-
mittance peak.

Wavenumber determinations are much mere accurate than intensity
measurements as they are calculafed direcily from the grating aisplace-
ment. Transmittance pezlbs c4% be read to about 0.003 cm—i and half-widths
to about 0. 005 cm

The hslf-wigsh thus de*~rmined is not the true half-width of the filter,
but it i3 Sroadened by the finite resolution of the interferometer and by
the convergence of the mmeasuring beam of radiation. The resoiution of the
interferometer i8 limited by the maximum displazement permitted the
lamellar grating. However, beforec this limit is reached the interferogram
signal falls into the noise, and hence, in practice the resolution is actually
limited by the S/N. In order that there be a usable sigral it is necessary
that a convergent beam be transmitted through the filter, 8 varying from
0to6 and ¥ max varying from mu - ¢/27b to mn - ¢/2nb cos ¢, avcerding

to Eq. (40}, For a beam of half- ang!c B ax Mt Can be shown that this broadens
v/l

.“‘.A_.\ '

In Fig. %2 fincsse calculated irom the measured hali-widths s plotted

the peaks by appreorimately évg

againsgt ¥ for thres 750-mesh filters. As expecterd, ¥V decreases with v. The

largest vaiues (100) were cbtained in a {ilter with & thin spacer and corre-
4 p

spondingly wide, more easily meas ireit peaks. The twa vcurves tor the filters

with the wide space were obtained with 8 F deg and R - 4 deg
max - max *

and clearly show the broadening duv to beam convergence. The finesse




values reported here have no corrections applied, and yet they are ahout
three times larger than values reported by earlier workers (Refs. 74, 76)
for which a spectrometer slit-width correction was applied.

The magnitude of the corrections which could be applied here is indi-

cated by Fig. 54 for the 750-mesh, 0.0807-cm shim filter. The upper curve

1c0 T T T T T T Ty IOOGbﬁ,rv,',v,w,,
: * 750 MESH 0.0086 . SPACER | - s - NEASUED 1]
v whi - o« fwess tucmates |1
O T o™ eee - FROM GRID TRANSMITTANCE | 4
‘ o 1 e o et | ‘ © " Cobmrel ‘
- ) 1 & = 0 CORRECTED FOR ]
4 T50 WESH 20319 ia. SPACER
o o | INSTRVMENTAL RESOLUTION | |
I -
4
“t « 100} 4
2 4
4
10 PUEN SN U RN WU W S | Xl\ Ad l
0 20 40 6 80 (00 120 140 1ol .
vim™) 0 140
Fig. 53. Mecasured finesse for Fig. 54. Reduction in finesse for
750-mesh filters of 750-mesh, 0.081-cm spac-
different spacing. ing filter due to limitations

of measuring technique.
is the finecse calculated from the measured mesh transmittance (Fig. 51).
It assumes a perfect filter fabrication and ideal measuring instrumentation.

Introducing the 4 deg beam angle convergence lowers the finesse to the

second curve. Including, in addition, the finite resolution of the particular
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rnerferomete:r measurcment lowers the finesse tc the bottom curve. It is
seen that this curve is in close agreement with the actual measured finesse.
Because the corrections are an order of magnitude larger than the ideal
half-width, the true finesse cannot be calculated with any precision. We can
conclude however that it is significantly larger than the value of 58 measured
at 24 cm’ 1. The ideal finesse of 10460 shown in the figure is unreasonably
large, as it would require meshes flat and parallel to within about 500 A

Further evidence that the measured finessec iz toc low is given by
Fig. 55, which is a graph of the measured transmittance at the peaks for

the same 750-mesh, 0. 0805-cm space

filter, measured again with 4 and 8

100 r T ' , . deg beam angles. Increasing the beam
angle and hence widening the peak
sor :’ i;ﬁgg%:{dgu decreases the measured transmittance
50| as would be expected from an unresolved
g peak. The peak transmittance at this
S‘OT wavenumber for the 750-mesh,
" 0.0142-cm spacer filter is about 40%,
2or or about three times as large. Since
0 1 i I A the meshes and wavenumbers are

0 20 40 60 80 100 120

viem1) " identical, the transmittance should not

be greatly different. This would indi-

g y

Fig. 55. Transmission as a function cate a true finesse of at least 180.

of frequency for a 750- The off-band rejection cannot be

mesh, 0.081-cm spacing

filter for two beam con-

vergence angles, ment--or any existing FIR instrumenta-

adequately measured with our instru-

tion. From the data presented, however,
we have some corfidence that an adequate mathematical description of the
filter can be made using Eq. (37) and the measured transmittance of the single
meshes (Fig. 51). Filter imperfections will broaden the peaks, but they
shouild havz ilttle effect on the off-band rejection. Resistive losses

however will degrade the rejection, The minimum transmittance
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halfway between peaks calculated from this equation is shown in Fig. 56. The

n-i
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Fig. 56. Calculated transmia-

sion halfway between
peaks of a 750-mesh
filter,

low frequency peake (Fig. 53) do indeed
intersect sharply with the noise base line,
80 these results are not unreasonzble. The
high rejection ievels shown in Fig. 56 are
of course to some extent meaningleés i a
room temperature environment, since the
blackbody radiat’on from the filter itself,
or reflected from other portions of the
instrument by the filter, can easily be
much larger than the oft-band eneryy
transmitted by such a filter.

We feel that these interference filters
can now be made to order with finesse,
peak transmittance, and off-band rejection
better than can be mgaasured with any
existing instrumentation. In particular
applications, additional filtering will be
needed to eliminate the unwanted higher
harmonics. This filtering will have to be
tailored for each case. A study of suitable

materials and techniques is in progress.
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V. NOISE, EXPERIMENTAIL ERRORS, AND PROBLEMS

A, ORIGIN ERROR (x = 0 point)

The origin error has been discussed by Connes {Ref. 6) and is briefly

reviewed here. We will consider its effect on a Lorentz line.

Input Spectrum I(v) = Aez 5

(u-—vo) + €

2mx

Interferogram Function k(x) = mAe” fcos Zn’xvo

We now assume an error has been made in locating the first point of the

interferogram at x = 0; therefore,

p

x =x -
measured (true)
where B is the error. Thus,

F(x) rrAe'Z"(x"B)

i

‘cos 2m{x - [3)vo

= ﬂ-AeZ”ﬁ‘e~2"x‘cos 2n(x - ﬁ)vo

The output spectrum is then

. , vV - v
‘g“’) = @“"“af - Atz ~5 cos erﬁvo -( - o)s;in Znﬁvo (42)
I {v - VO) + €

2nfe

' "Thfbmic_{'apﬁéﬁt-ie\i factor e is usually very close to one in that
usually B << 1; therefore, we negiect it. Equation (42) is shown in Fig. 57

for the cases ﬁvo = 0 {no error), 5v0'=_= {/8, and ﬁvo =1/4. As seen in this
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Fig. 57. Appearence of a Lorentz line when an error has been
made in the location of the origin; curve A, fv_ =0,

curve B, ﬂvo = 1/8, and curve C, bvo = 1/4.
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figurc, the line shape can be severely disterted and significant apparent line
shifts are possible. The amount of distortion depends on # and Yo *Yhen an
error of this type is made in the interferogram, its efiect in the spectrum is
usually quite striking. As an example, agsume f = 50u (a large error) in an
interferogram made up of lines sprcad out in the wavenumber region 0 to
100 cm'i. In the region ~0 cm-i, the lines would appear almost as they
should; near v 50 cm-i, where ﬂvo ~1/4, the lines would have the most
asymmetric appearance, somewhat like their first derivative shape; near
v ~ 100 cm-i, the lines would again have near their true shape but would be
upside down. It is obvious that gcod spectral data will be obtained only if
ﬁvo << 1/4.

When P is sufficiently small so that Znﬁvo is smali enough for the

small angle approximation to hold ir Eq. (42), then the shifts and distortion

in the line shape can be easily caiculated. These are summarized in Table 12.

Table 12. Distortions Caused by Mislocation of Origin {x = 0)

Quantity g=0 B = C (small angle approx.)
Vv - vy
I(v) A A { - —2gq
(V-V)z+€2 (v-v)2+cz ¢
G o
.9
I(V')max at Vo s~ 3
;
A Afy . .313_)
l(v)max € € (i 4
5 2
Half-width 2¢ 2¢(1 + _%-)
q = ZWﬂvo
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B. PERIODIC ERRNOR

Another possible error in the measurement of x is a periodic error,
a type of error expected if a screw type mechanism (Ref. 6) (and, as we shall
show, a linear inductosyn system) is used. l.et us assume a monochromatic
line input.

Input Sgectrurm I(v) - (v )
Then

F(x) = Cub WXV
o

Now let us assume a periodic error of period Le' and amplitude B; thus,

X = X
measured (true)

2rx
+ Bsin —L-—lﬁ“"e + ¢
e

where ¢ is a phase factor The meagurec interferogram function will then be

FB(X) s cos{Zw[x + B sin(g—z—‘- 4 ¢)]vo}

-1

and now, calling v = L
e e

1"

Fp(x) = cos {erxvg + 2nBv _ sin(Zmxv 4 ol

= cos(Z'xvo}coul ZvBro sin(?.t!xve + o))

ain(anvO)sin_{ Z"BVQ sin(?.wxve + ¢)]
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We now assume 2vBv is smiali encugh that the smail angle
(9}

approximation is valid; therefore,
F(x)~ cos(2rxv ) - 2rnBv sin(2mxv }sin(2rxv 4
p(x) = cos(2mxv ) . sin(2mxy_)sin(2rxv_ 4 ¢)

= cos(Z”xgo) - TerO cos]| wa(vo -y ) + o) + TTBVO cos[va(vO + ve) + ¢

In the spectrum, the first term gives the line at Vo the second and

third terms yieid ghosts at v = Vo E Ve where shape will in general be dis-

torted by the phase factor ¢ in much the same way as discussed in Section V-A.

It is obvious that if ZTTBVO is not small enough that the small angle approxi-
mation is valid, so that higher order terms should be carried in the expansion,
then these higher order terms would contribute ghosts at v - v nv . We
can estimate the first relative ghost intensity:

ghost intensity "By,
line intensity

for ¢ =

We have examined our linear inductosyn scale for this type of error.
The following technique was employed. The signature of a diatomic molecule
should be evenly spaced iz optical path difference. The positions orf Jic
maximums of the first eight signatures of HBr werc measured (the isotopic
splitting is negligible in this molecule for signatures in the neighborhood of
the origin), These eight measurements were then fitted to an equation of the
form: x(signature maximum) = an + b, where n is the signature number and
b is included to account for any origin error. The best values of a and b
were determined, and the deviation calculated and plotted as a function of x.
The results are shown in Fig. 58 with a sine curve of amplitude 1. 54 and
period 2 mm fitted to best cover the points. The error bars represent the
uncertainty, due to noise. in locating the signatur muxima. There is little
doubt that a periodic error exists. For 3 ~1.% and a period of ~2 mm, the

ghost intensity at ~50 cm-i line should appear with ~2% of the line intensity
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Fig. 58. Cptical path difference error in a linear inductosyn
scale. The superposed curve is a sine curve of
amplitude {.5u and period 2 min.

at displacements of ~ 25 Cm_l away from the line. The over-all noise level

of most of our spectra would hide these ghests; however, see Fig. 82 . There

are features at ~ 5 cm-1 about each of the "lines” that appear to be ghosts.
The remedy for this error is of course a more accurate measurement

uf x, the optical ath difference. The possibility of using 2 single mode laser

is veing examined.

€. CHOICE OF ax

As mentioned previously, the optical path difference increment Ax is
y . : . -1 ‘ '
fixed by wampling theery: [ e. . AX = »*2\*{{)\ , where T the cu¥afl wave-
number of the speciium. Three points ave discuseed: (1) determination af v ,

(2} effect of choesing Ax too lacge, and {3} et "ct of chovsing &» smaller than
¥ E g &ax

need be.

B T N VPR S

We determine Axior « ) in the {ollowing manner. An interfevogram of
< : ‘ ~

the source is obtained with a relst:vely small Ax, corresponding 1o a large
¢ This interferagram is then transformed and the spestrum of the lemp as
modified by the filtering is obtained. Where the intenrity goes {v zero

(within the noise level) is the true +_, and thus the maximum Ax is determined.
€ R

i
¢

This is done whenever sources or {iitering 8 angevnents arc changed
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When Ax o chissen tac jarge o bas ooy takes Dl e Pt an Des!

understood In terms of the soanning fanction The Lreadth of the scanning
£

functior is determined by [, the maxinmum optical path difference generated.

J
. L 4 ‘ ta ‘
The range over which the scanning function scans 1s determured by Ax.
Actually, except as Ax - 0, there is more than one scanning function. For a
given Ax the [irst scanning function covers the spectral region 0 - v . tne
. - ¢
second, Z2v = v ; the third, 2v =+ 3v : ¢tc. Thus when Ax is taken too large
c ¢ c ¢ {
or there 1s Intensity in the gpectrum beyond v {28x)  one will alias the

~

spectral informatinn beyond Y back into the region <V o ldjustrats,

suppose the true cutoff wavenumber of a spectrum 18 125 ¢ (for which
p

ax = 1/250 em™! - 40u) but Ax ks chosen to be 53 (corresponding to a vooof
.

100 cm-ll Under these conditions the spectral data between 0 » 100 em

will be displayed as they should be, but in addition the spectral data between

100 -~ 125 zm * will be folded over on top of the data between 100 (-m_1 and

i

7% cxn . This is somewhat similar io the overlapping of orders in a grating

spectromuter and is usuaily undesirable.

‘ There is, however, one case where the multi-order sr.?,::;:nning functrion

is an advantage. Suppese there 1s no intensity in the regions corresponding

s

to the {st, 2nd,. . ., {n - 1}th order, but thete is intensity in the nth and
none beyond. Then &x can be chosen as {2(n + ”vc - Euvc_}a[ = (Zvcf1 instead
of ax ={2(n + l‘;vC 1‘1, and for the same resolution fewer points need be
measured.  This hans been exploited by the Conues (Refs. 4, 7) in their near-
IR studizs. '

Making Ax smaller shan need be is wquivalent to making v larger than
need be, -and obtaining the same resolution reguires more points to be
measurc& “in theory there is no disadvan{.agc‘. bul in pracice it amosunts to
& waste of measuring time and computer time.  This i1x expanded on in the

2

discussion &f naise n interfercmetry

1

N

There 18 ne &Canning in the formal sease, but it is comvenient to disvass o
In this manner. :
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D. CHANNEL SPECTRA

Cne of the most annoying phenomencn encountered in FIR interferometry
is channel spectra. In this frequency region (10-125 cm-l), surfaces not
plane parallel under the usual optical criteria {a fraction to a few wavelengths

of visible light) may be plane parallel in the FIR and will produce channel

Z

f

[

|

|

‘, spectra. The effect is quite easy to see in IR interferometry, and signature-

] type features will be casily detected in interferograms at x = 2nd (Ref. 72),

[ where n is the index of refraction of the plane parallel slab of material, and

d is its thickness, Windows can be suitably wedged to prevent this phenomenon,

and all the windows have been so treated in our interferometer. However, the

thin pieces of black polyethylene used as filters cannot be wedged and are
believed to contribute somewhat to the previously discussed residual unbalance
at the origin. The channel signature will come close to x = 0 since d ~ 100p
and n ® 1. 5; of course, there is some cancellation because of double beaming.
More troublesome is the fused quartz envelope of the high-pressure Hg
arc used as the source. It seems to have local areas of plane parallelism
and, since the reference beam and sample beam do not originate from exactly
the same region of the plasma and envelope, the effect is far from cancelled
by double beaming. We have tried dimpling the lamp as suggested by
Richards {Ref. 18), hut this led to great difficulties in making an equivalent
match between the two beams. We have therefore left our lamps undimpled.

The result is a cosine variation of the source spectrum that is superimposed

on the sample spectrum with a period of ~1. 3 cm-1 and whose amplitude
decreases at higher wavenumbers. Fortunately these channels are quite wide,
and their maxima and minima are easily determined; thus, they are not
confused with the sharp lines observed in the high resolution spectra. How-
ever, as the width of the lines approaches the period of variation the error

in the frequency determinations is greater. It is estimated that the amplitude
of oscillation {in intensity) of this channel spectrum is four to eight times the

noise level in the low wavenumber region of the spectra.
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As mentioned, the channels are much stronger in the low wavenumber
region and are almost nonexistent above 55 cm-l, From thies we infer that
most of the energy in the low wavenumber end of the spectcrum (<55 cm-i)
comes from inside the lamp (i. e., the plasma) and most of the energy above

55 cm™! comes from the hot quartz ervelope.

E. LONG TERM COURCE FLUCTUATIONS - STEP FUNCTIONS

The medium-high pressure Hg arc lamp has been the most
frequently used source for the far infrared. Although no comprehensive

comparison of possible FIR sources has been made, it is rzther firmly

established that the medium-higt pressure Hg arc is a brighter FIR source
than a glowbar (Ref. 83), a I.e discharge (Ref. 84), or a high pressure Na
lamp {Ref. 85).

It has been dur ex.erience that the stability of Hg arcs such as the
G.E. AH3 2ad AI'4 is *he lLimiting factor (i. e., largest contributor to the
noise)'in cir ~bserved 3/N (i1 the channel spectra are not considered noise).
At first, * woull se:m *hat monitoring the source and using this to operate
a feedback loop 80 &5 1o nompensate for these fluctuations would eliminate
this difficulty. Asidc {rorn the negative resistance characteristics of these
lamps such a schemiw is not practical since the Hg arc is in reality two
sources, the plas:ra, and the hot envelope of the larnp. Most, if not all, of
the fluctuationes ar+ in the plasma. Their onset is quite rapid and may have
quite a long duration (~15 minutes). We have seen, quite often, a step function
type discontinuity in the interferogram. Converseiy, the FIR energy output
from the envelope should be quite steadyv, and, even if it did change, such a
change would be expected to be slow and quite small (if power input is
regulated to some degree). The arc fluctuations are caused by two inter-
ralated cffects: changes in the voltage-current characteristics and actual

arc wendering over the electrodes. The phenomenon is very noticeable in

ibAt room temperature, fuzed quartz does show a cutoff in the 50-60 cm"1

region; however, it is impossible to say what the spectral transmission
properties are at the temperatures the envelope reaches when the lamp is on.
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double-beam operation (~4% of F’(x) average). In this respect we have found
that the AH2 lamips appear somewhat more stable than the AH4 lamps. We
surmise that this is due to the capillary restrictions in the AH3 lamps not
present in the AH4 lamps, and thus the actual physical wandering of the arc
in the AH2X lamps is less than in the AH4 lamps.

We now consider what effect a step function in the interferogram has
on the spectrum obtained by Fourier cosine transiormation. Consider a step
function of amplitude A starting at x, and cnding at X, The effect of the
""box'" in the spectrum is ascertained by Fourier cosine iransforming the ''"box"

from optical path difference space (x) into wavenumber space {v). Thus

X

2

[+ ]
I(v)box = fA(xl, xz)cos 2rxvdx = Af cos 2uwxvdx
0 X
i

which can be written

I(V)box = [A(x2 - xi)] + {cos Tv{x, + xi)] - {sinc Tv{x, - x‘)}

The first term, the amplitude, is proportional to A, which is the
amplitude of the step function in opticai pati: aifference apace and to (xz - xl),
the duration of the step function in optical path difference space. The second
term gives the rate of the variations in wavenumber space. If (xz + x‘) is
large, the fluctuations will be rapid and will appear to the observer as high-
frequency noise. The last term is the ervelope (ir general) of this function,
and it is seen tha¢ tae Jargeat fluctuatione cf I }’box ¢.cu, ir. the low wave-
number region.

It ie possitle to "edit" the interfarcgram by eatimatint A from the
record, then subtracting it from the interferogram function from noints - 1
to x,. This will eliminate the gross effects of the extrareovs bax, but in
no way compensates for the fact that there has been a real spectral charge

of intensity (plasma change) or an apparent change (arc wanaez).




We are testing and evaluating some ''short arc' dc operated Hg lamps

in the hope that they will provide a solution to this problem.

F. STOP-AND-GO SCANNING AND TIME CONSTANTS

As described, digita'l computation is the most flexible and accurate
means of performing the Fourier transforms required in interferometric
spectroscopy. This requires that the continuous interferogram be sampled,
meeting particular requirements of frequency and total number of samples
as discussed in this report. The simplest scheme for taking those data is an
on-~the-fly technique in which the grating moves continuously. Data are taken
during a time interval sufficiently short that the grating has not moved
appreciably. If a high S/N were available in the interferometer output, this
scheme would allow rapid data acquisition. However, because of the low S/N
available in the signals being detected, obtaining adequate S/N in data taken
by this method would require extremely slow scanning rates leading to long
total run times with much of the time being spent unproductively in going
between psints. This problem can be eliminated of course by moving rapidly
between positions where data are desired, then stopping grating motion during
the data-taking process. This stop-and-go technique is the one used in the
Aerospace instrument.

Proper operation of such a system, however, requires a proper regard
for the time constants of the detecting system. There are three principal
time constants in the detecting system in our instrument: (1) The time
constant, 7, of the synchronous detector in the 19-cycle amplifier; (2) the
gate time, T, used by the preset counter; and {3) the period AT = { /3 seconds
required for the grating to move to a new position. The first controls the
highest frequency noise that will appear in the output; the second controls the
length of time ("integration time'') over which the data are averaged; the third
is only indirectly under the contro! of the experimenter.

These filtering parameters are adjusted for any particular run to
optimize the conflicting requirementl of a low noise level and a reasonable
total run time. Failing to recognize that the adjustments are interdependent,
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however, may lead to systematic errors in intensity in the final spectrum,

If the ratio of the integration time to the detector time constant is too low and
if the signal level is quite different from the preceding point, the signal
averaged by the counter will be changing over an appreciable portion of the

period of averaging. This adds to the interferogram anbother function

proportional to the first derivative of the interferogram.

The magnitude of this contribution can be estimated with the aid of
Fig. 59, a schematic representation of the signal changes during one data
acquisition cycle. At ty data acquisition at the preceding location is
completed; between t, and ty, the grating moves to a new location and stops.
For convenience the signal (solid line) is assumed to vary linearly during this
time. At e, data taking at the new point is initiated and continued throughout
a period T until time t,- The output gignal from the 19-cycle detector, with
a poor choice of time constante, is shown as the dashed line. The fractional
error in the data taken then will be the ratio of the hatched area tc the

rectangle of area TEZ' Thie fractional error is:

x = (2 gm)e - 2]
X [(-*,I-.)(i ; e‘T/*)]

The firat set of parentheses represents the amount of change in the signal and thus
the largest possible error. The firat square brackets represent the decrease
in this maximum error because the output signal has some time, AT, in which
to start to follow the input signal change; the second brackets introduce the
error caused by the input to the counter changing during the data taking.

Since the noise is expected to go down with tha square root of the
' integration time, increasing T above atout 10 seconds incresses the overall
run time more than is worthwhile for the improvement in noise. Since a pen
recorder runs off the output of the detector, an offhand choice for T would be
3 little longer than the {-second rasponse time of the recorder, possibly 3
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Schematic representation of signals into and out of the

19-cycle detector during one data acquisition cycle.

During time AT, grating is moving tc new position.

During time T, the "integration time', data are taken.
Hatched area is the amount by which the final inte-
grated information will be in error due to the constant
of the detector.
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seconds. With these values alm~ <t 2 correction takes place during the ’
moving time ({ ] = 0.95), whereas, the error during the integration process |
ie still about 30%. The solution is to decrease the detector time constant as |
much as possible and to independentlv increase the recorder time constant if
degired. If we reduce T to 0.5 second, 25% of the change can oceur while

the grating is moving. The error in the integration is about 5%, s0 the total

error is now only a little above 3%, a ten-fold reducticn. The effects ot thic

improvement in accuracy in intensity measurements on the transformed

spectrum may be seen from Fig. 60, which shows two spectra of a mercury
vapor source taken under identical circumstances, except for the time
constant of the 19-cycle detector. From this figure, it is apparent that
proper choice of time constants is imperative for a system having several H

cascaded systems, each with a comparable individu:! time constant.

T M 1 M M T M . T TI‘ T l T l

----- 10/3 RATIO
——— 20/ RATIO ‘ )

ENERGY (ARBITRARY UNITS)

FREQUENCY (cm~1)

Fig. 60. Effect on the spectrum of a iarge detector time constant.
Both curves are spectra of 2 medium-pressure mercury
vapor source, and except for the detector time constant,
were taken under identical operating conditions, The in-
tegration time was 10 sec/point. The solid line corres-
ponds to a detsctor time constant v of 0,50 sec; the dashed .
line is the sp-.isum obtained with a t of 3 sec.
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G. BACKGROUND RADIATION

In any spectrometry, and pattifularly in the FIR, background radiation
competiang with that from the samgle can introduce serious errors in measure-
mente. Ii is important that this source of error be understood and that all
possible means to minimize it be used. In order to assess this error, con-
sider {firat the Planct r=diation law as applied to these long wavelengths. [t

can be written

where cy and ¢, are constants and A and T are the wavelength and the
absolute temperature of scurce. For AT >> €, by expanding the exponential

and keeping only the leading term,we obtain the R‘ayleigh_—.]‘ eans approximarion

E(\) = ;-;- AT
where we see that E(\) is simply proportional to T, not rapidly varying as
it is for small A\. In a room temperature (300°K) environment with a source
at 3000°K (very high for available sources), the radiance (W/c:mZ ster) is
only 10 times greater for the scurce. The source in our case fills a solid
angle, as seen by the detector through the interferometer, of about t/50,
whereas, the background fills 2n, which is larger by about 300. Hence,the
integrated energy from the background exceeds that from the source by a
factor larger than 30 even before absorbing samples ase inserted in the beam.
Fortunately, two factors act to greatly reduce the effect of the back-
ground. First, most of the background radiation does not pass through the
interferometer and it is not modulated by the interferometer displacement;
hence, it introduces a constant zero shift in the interferogram that is ignored
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in the computer trarsformation. Second, an even larger fraction of the
background 18 not chopped and the detector response it produces does not
contain the 19-cycle modulation frequency to which the amplifier is tuned.
Radiation must pass through bcth the interferometer and the chopper to be
transformed into an output spectrum. In any case, however, it adds to the
detector noise. Also the chopped-nonmodulated component uses up some of
the available dynamic rauge o :he amplifier.

In order to minimize the effects of stray chopped radiation,it is
necessary to baffle the system carefully. Baffling in this spectral region
is more difficult than it is for the shorter wavelength region because most
of the usually black materials are not black. Even black flocking reflects
about 20%. Also, ordinarily opaque materials such as heavy cardboard
transmit about 10%. Sheet metal appears to be about the only truly opaque

baffling material, and we have not found any really good nonreflecting surfaces.

We have been able to reduce the chopped-nonmodulated component to less than
10% when highly transmitting samples are being measured, but the percentage
increases drastically for absorbing materials.

If an absorbing sample is in the sample holder, the chopped and
modulated radiation received by the detector when the sample is being viewed

consists of:

f. Desired radiation from the source transmitted by the sample:
Radiation emitted by the sample ,

3. Radiation from the surroundings that is reflected by the sampIe
into the beam .

4. Radiation, similar to items 2 and 3, from the sample holder and

other surrounding structures.

There are similar components {n the reference bexm ‘u'v'h.i_vc_h, of course,

subtract from the signal due to the sample beams.

It is easy to estimate the effect of umple emiumm Cbnsider a source

of effective temperature T radiating energy through a umple L ambiem
temperature Ta‘ The umple has an abmrbtivitv, a, that equlu it&

emissivity, e,
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If the sample were in equilibrium with its surroundings at Ta' it would
absorb a fraction, a, of the radiation of wavelength A passing through it
within a given solid angle, but it would also emit an equal amount into the
same solid angle. In our case, the source radiation enteri .g the sample is
Ts/Ta times as large because of the higher temperature of the source. Hence,
the radiation observed is proportional to T'(l -a)+ a'I‘a = T’ - a(T’ - Ta).

An apparent absorption, a‘’ = a[t - (Ta/Ts)] , is observed that can never be
jarger thaon ! T /T With the cornmonly used quartz Hg arc source, the

a I ]
hot quartz is the radiating material for v near 100 cm'l. It 'I‘. is then

2900°K, the error in a is 230%. The observed transmittance will then never
be less than 30%.

The reflection by the sample allows the detector to see other emitting
surfaces near the sample. These surfaces can have any spectral radiation
profiles and hence the-distortion introduced into the measured spectrum
cannct be predicted. It will not be a simpie multiplier as in the case of
absorption but may even introduce extranecus features into the spectrum.

An interesting special case arises when the sample acts as a partially
reflectinug mirror perpendicular to the beam. The detector then '‘sees itself, "
and since the detector is cooled, the magnitude of the error is reduced. This
effect has been observed with metal meshes run single-beam, the reference
beam being blocked off by a blackened metal plate. The metal meshes are
highly reflective and the detector sces itself in the sample beam, but it sees
the 300°K surroundings in the reference beam. The measured ‘transmittance"”
is negative as a result.

It shouid be pointed out that under these circumstances the detector does
not see just itself but half of itself and half of the surroundings. The inter-
fercmeter puts half of incident energy into the central maximum and half into
the higher orders. Looking backward through it, we see an extended field of
view with half transmittance from the position of the central maximum and
half from the positions of the higher orders. Since the detector is very cold,
the effective temperature that the detector sees under these conditions
approaches T_/2 as extraneous scattered radiation is reduced. '
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During the data taking, changes in signal intensity with time constants
of the order of hours are observed. In a particular run there are varying contri-
hutions of two types to tnese chinges: (1) an effect correlated with the motion
of the lamellar grating as refiected inz motion of the interferometer entrance
aperture image in the exit aperture; (2) nonreproducible drifts of detector,
source, and critical amplifiers. Independent of the cause, however, is the
ettect of these slow changes on the output spectrum. They lead to an increase
in low wavenumber noise in the spectrum and may have some effect on line
shapes in higher wavenumber regions of the spectrum.

To illustrate this,wc discuse results of a detailed study of a water
vapor interferogram which showed a particularly simple long-term change,

s tuure-ur-less linear decrease with increasing path difference. This i3

shown in Fig. 61, which ‘s a plot of averages of 10 adjacent pointe taken at

0 N .
gg B .‘HH®@1M®@C>°DO B
x [ © °oooc°°
E - _
e 4
N S ]
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m B
i | .
) N N R N NUNE N NN SR N
0 2 4 6 8 10 i2 4 i6 I8

CPTICAL PATH DIFFERENCE (cm)

Fig. 61. Averages over adjacent 10-point regions of a water vapor
interferogram, showing a case of nearly linear drift.
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100-point intervals in the inierferogram. A first approximation to the

'
apparcni form of the iuterferogram, Fa (x) - I‘; (xm) 4 I”a(x) is

a1 N et )
I-a(x; = .cw(.x) (1 -ax)

where F;N’x) = F,’"(xm) + Fw(x) is the interferogram due to the water alone,
and the quantity in brackets introduces the linear fall-off. The spectrum

then is obtained by Fourier transforming Fa(x) and is

X
m
r

Efv) = J Fa(x)cos 2rvxdx
(e}

1

X
m
al {x_) / (x__ - x)cos 2myxdx
W m m
Q

x
m
f :'w(x)(l - ax)cos 2ruvxdx

(o}

2 . 2
aIw(xm)xm Bin wvxm
( + E!(\') {43)

+

2 mvx

The first term in Eq. (43) makes its main contribution at v - 0 and falls off
—:sroportim&l to v'z; although it is large in rmagnitude at ¢ = 0 in the region of
the gpectrumn where there is sufficient energy to make observations,
v & 20 cm*t. this term will make little contribution.

To gain an idea of the effect of the additicnal {1 - ax) factor in the
integrand of the second term of Eq. (43),it is convenient to assume we are
discussing lines with a l.orentzian shape, E(v) = v - »uo)z 4 (A\-)Z !'i. of hal(

maximum width of Av centered at irequencies Yo it has been shown thet the
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1
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Difference Letween the spectrum near v = 0
as obtained from the uncorrected interfero-
gram ~nd that obtained from the same inter-

ferograra arter dividing each point by (1 - ax).

The strajght line has slope -2, as suggested

by the v"“ factor in the first term of Eq. (43).

The x-marks along the v axis are zeros of
sin wvx__.
15}
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interferogram expected from this line is an exponentially decaying casine,
cos 2rrvox exp(-2rAvx). Then the apparent spectrum given by El(v‘) for this

line will be

o .
Ei(v) ='[cos(2ﬂvox)cos(2wvx)e
o

°2"XAV(1 - ax)dx

If a is not too large, (1 - ax) maybe thought of as the first terms in the expan-
sion of exp(-ax). The form of the function tv be transformed thenis the Lorentz
line interferogram. Thus the line shape must also be Lorentzian with an

apparent line width Ava = Lv + a/27 somewhat wider than the true line width.

The applicabiiity of this approach

T T T T T is demonstrated by dividing each point

. in the apparent interferogram by (l-ax),
A8 0 Ter — thus obtaining the actual interferogram.,
— URAPODIZFD
——— ANTIAPODIZED - The difference between the transforms

- or the corrected and uncorrected inter-
ferograms near v = 0 appears as a

loglog plot in Fig. 62. The decayirg

sine curve is obvious. The straight

ARSIRPTION {ARBITRARY UN(TS)

line has the expected die-off slope of
-2 and is seen to agree well. Figure 63

shows one of the lines in the water vapor

»s 28 330 B2 B4 B gpectrum. The solid line is the trans-
FREQUENCY (cm—1)

form of the uncorrected interferogram,

Fig. 63. Lines obtained from the whereas the dashed line obtained from
corrected interferogram (dashed
line) and from the uncorrected
interferogram (solid line). Note narrowing effect of eliminating the
the decreass in width at half-
maximum intensity obtained at the
expense of some increase in the
apparent noise in the base line.

the corrected interferogram shows the

drift from the interferogram.
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The particular analytic expressions developed here are applicable
only to interferograms of separated lines of Lorentzian shape which show
a drift linear with increasing pcosition. The effect of other long period drifts,
however, would be expected to be similar, introducing increased noise at low
wavenumbers in the spectrum and making changes in the line shapes at higher

wavenumbers.
I NCISE

Let the interferogram function F\x ) be measured at points X 0 X
Xop ot 0y Koot ,xN( L). We assume the separations Ax(:= xJ - xJ 1) are
all equal a.nd chosen such that Ax = (Zv ) in accordance with the sampling
theory condition (see Section II). In each F(xn) there will be a contribution
that is the noise and is called A, Ai’ AZ’ coeey, An,- <oy, AN' The An are
assumed to be independent of x and F(xn) and furthermore their mean value
is zero. We then take as a measure of the noise in the interferogram its

standard deviation N; given by

N
1/2
<«
L.JA

n=0

zl-—

The spectrum is obtained from the interferogram function by Fourier cosine
transformation and thus the component of noise in the spectrum, Bm' at v _

is given by 17

' N
=AXZ A cos2mx v
n n m
n=0

For the term n = 0, we should use A /2 rather than A,, but as long as
N is reasonably large, the error is small. -
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We shall calculate the Bm only at those Vi that are independent.
The independent Ve, are located Av = (\'.)-1 c:m'1 apart, and taking the first
v, at 0 c:rn'1 we have v, = mav = m(L)'i; furthermore, x = nAx, and

Ax = (Zvc)'i. Making these substitutions we obtain

N
1 Tnm
Bm =5 E An cos(v L) (44)
c c
The mean value of the Bm's is

M

M N
_ 1 ‘ _ { mTm)
BT WMAT 12 Bm T 2™ BN Z An °°°(VOL)
m=0 m=0 n=

Interchanging the sum over m and that over n, and multiplying by

Am(=1), and then approximating the sum over m by its limiting integral form,
we obtain

N ch
—-_— i Tam
B~ 2M+ Vv E :/ Ay cos(v L )dm
c c
n=0 Yo

and making the change in variable y = {vm/ ch) the integral reduces to the

1 ——
form cos nydy, which is zero. Therefore Bm= 0. We proceed to calculate
the standard deviation of the noise in the spectrum. Squaring Eq. (44) and
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summing over m, we obtain

mz=0 c On
M N N
i § : z : fTpm rm
+ — ApAr coa(v T, )cos(v L)
2v c
¢ m=0 p=0 r>p

Again, by interchanging the sum over m with the other sums and
approximating this sum by the limiting integral, then dividing by M(=N/2),
we obtain the standard deviation squared of the noise in the spectrum Ni.

m=0 n=0
Therefore,
i/ _\1/2
L LAx
N, (z:.j) N (‘T’) Nt (43)

which is equivalent to the expression given by Connes (Ref. 6) and Bell (Ref. 8).
We have carried out the following numerical exercise to confirm Eq. (45).

One thousand numbers were chossn xmddmly with a normal (Gaussian)
distribution such that the standard deviation was 1000 units. These one
thousand numbers were then used on a noise interferogram and were Fourier
ccsine transformed with various values of L and Ax. The standard deviation
in the noise spectra were then computed, and th’e results are summarised in
Table 13. The ranges of L. and Ax were thosen to be representative for the
FIR region. Equation {45) predicts that, if Ax is decreased (or v multiplied)
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Table 13. Calculated {(from Eq. 45) and Observed Standard Deviations

L, em ax, B NI NS (calc) Ns(obs)
4. 00 40 100C 89 86
3. 60 40 1000 453 83
3. 20 40 1000 80 79
2.80 40 1000 75 74
2.40 40 1000 69 69
2.00 40 1000 63 64

- 8.00 80 1000 179 172

4,00 80 1000 127 126
6. 00 60 1000 134 131

-3.00 60 1000 95 97
2. 00 20 1000 45 44
1.00 20 1000 a2 31 -
1.00 | 10 1000 22 21
0.50 10 1000 16 15

t/2

by a factor R, the noise in \he spectrum will be reduced by a factor rl/¢.
The;"number of points will of course be increased by R (for constant L). Thus,
_if thg same amount of time is available for the measurements, NI will be

increased by Rt /2 resulting in no change for,NQ. In practice, however, it is

~ still advisable to select Ax as large as possible equal to (2 vc)"l to minimize the

""dead time" (the time it takes the interferometer to go from point to point,
- . during which no data are-taken), since in general the smaller Ax becomes
the more dead time there will te '.per.\aln_it. length of optical path difference.

-147-

e s . AR " T ———

J




Making Ax as large as possible also minimizes the total number of points in
the interferogram which can be of some consequence when computer
economics are considered.

Connes (Ref. 6) has considered the case of an interferogram that is a
cosine function. This corresponds to a line in the spectrum having zero width.
The signal (maximum intensity of the line) is proportional to L, and therefore

t/ 2. For such a case the interferogram shouild

the S/N is proportional to L
be carried out as far in optical path difference as possible since an increase
in L always increases the S/N in the spectrum. This is a limiting case and
is appropriate when the resolution attained in the interferogram (governed
by L) is much less than the width of the line. When the resolution becomes
comparable to the line width, then the dependence of S/N in the spectrum will
be different than the L!/2
Consider a spectrum I(v) made up of a single line having a Lorentz shape.
This line shape was chosen since it represents a good description of weakly
absorbing pressure broadened lines, and is mathematically tractable for the
Fourier cosine transformation we wish to carry out. And now calling the

signal in the spectrum, Ss = IL(vo) (see Eq. 10),

dependence.

Sg =I(v )1 - e """‘L') (46)

and therefore the S/N in the spectrum is

S _ 51 (2% “2[1 - ;'”‘L'] |
- | 47
N “;(" ) (zmx,)”z | (47)

where 81 = F(0), the maximum signal in the interierogium

The S/N in the spectrum has a maximum when Le = 0.200. For .
Le < 0.2, the S/N curve rises ~L 172 as is to be expected since L < 1 /¢ for |
Le ~ 0.2 the curve flattens out, then falls gently toward the asymptotic .
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1/2. If x is set equal to (Se)'1 in the interferogram function

dependence of L~
(see Section II), then the amplitude of the interferogram function at this value
of x wiil be down to ~28. 5% of its maximum value at x = 0. Thus, for
maximum S/N in the spectrum, the interferogram should be terminated

when it has been damped down to 28. 5% of its maximum value.

In Fig. 64 is a plot of IL(v) for Le = 0.200, and also I{v). The intensity
of IL(v) differs markedly from I(v). It is ~28% lower. Also, the character-
istic sidelobes, or feet, are quite prominent. For Le = 0.200, the intensity
of the first sidelobe (the strongest) is (measured from the first minima to the
second maxima) ~16% of the central maxima (measured from the first maxima
to the first minima). In such a spectrum, if the S/N is greater than ~6, these
sidelobes might be interpreted as real lines and, therefore, it would be
desirable to suppress them. The sidelobe intensity depends on L, and in
general the sidelobe intensity will be decreased by making L larger.

The quantity IF (discussed in Section II) represents the maximum intensity
of the first (and strongest) sidelobes; therefore, IL( vo)/IF measures the
maximum intensity to sidelobe intensity. There is little to be gained in
carrying the interferogram beyond that L which yields IL(vo)/IF much larger
than the S/N. The function IL(v)/IF vs 2nLe¢ is shown as curve D in Fig. 65.
Also shown are three SS/NS curves characterized by the parameter

S, /8v 1/2 A
-ﬁl-(—;‘i) = 100 (curve A) ; 300 {curve B) : and 500 (curve C)
A\

Consider for example curve B. If maximum S/N in the spectrum is required
the interferogram should be cut off where Le¢ = 0. 20,as discussed previously,
and this would yield a S/N in the spectrum of ~190/1. However. if we require
that the sidelobes be the same size as the noise, then we are interested in
where curve B intersects curve D, which happens at 2#Le x 5. 35. The S/N

" in the spectrum will then be ~130/1. In this case the interferogram will be

carried down to e's' 3,5 ~ 0. 005 of its maximum value. Then the difference
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Fig. 64. 1(v), solid curve, and I;(v), for L = (5()'1. dashed curve.
The inset shows I{v) - _I‘L(v) at the same scale.

-150-




(CURVE D)

I (%)
IF

{ CURVES A, B, AND C),

400

T 7 T ] T
D
300—
200
C
B
100

Fig. €S

27& |

Sp-ect-’um S/N curves (A B, and <), and maximum

_ muntxty ter ndelo'be intetimity curve tD).

. -151-

IV ey C 1 e

; W




N SR AT G e

I(vo) - 1 (v,) will be also within the noise. If (8v_ /me)}/% 5 1 (and generally
it is), then the interferogram will be carried out beyond where the signal in
the interferogram is lost in the noise of the interferogram.

Two-beam interferometry is usually applied to rather broad band
absorption investigations (this does not of course exclude high resolution).
This will lead in general to two complications not considered in the previous
discussion. First, Je quantity w2 have been calling the signal in the inter-
ferogram (which can be thought of approxirnately as the variation of the
interferogram about its average value) is usually only a small percentage of
the total signal detected by th:e detector. This is the well-known dynamic
range problem of two-beam interferometry. It can be suppressed by the
technique of double-beam differencing (see Section III). Second, usually
more than one line is present in the spectrum being examined interfero-
metrically, and the line width parameters ¢ may not all be equal. Thus,
the interferogram will not have a simple damped cosine form:, but rather
will be the net result of many of these terms (one for each line). In tiie case
of diatomic and linear molerules the argum.ents of these cosines are related
nearly harmonically and the grosser features of the interferograms are its
well-known signatures (Refs. 22, 23) and the damped amplitude of these
signatures arc then a measure of the (total) signal in the iaterferogram. 18
At the other extreme is the pure rotational interferogram of the water
molecule. This interferogram is very irregular (Ref. 15); however, the
amplitude does decay (on the average) as one goes to larger x and an average
assessment of the damping is possible. To a certain extent in pure rotational
spectroscopy the line width parameter is somewhat in the control of tka
experimenter since it depends on the pressure of the abcoﬂiig gas. For ,
beat S/N in the spectrurn, the pressure in the absorption cell should be fixed
80 that the average of the signal in the interferogram in the vicinity of |

T8

A word of caution, however. In the pure rotational interferogram (Ref. 15}
of DC{, the signatures die out and then come back at larger L. because the
spectrum is made up of a series of closely spaced doublets.
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x = L is ~28% of the average of the signal in the vicinity of x = 0 (the region
about x = 0 should be excluded from the average). This will provide (on the
average) the best compromise between S/N in the spectrum and sharp lines
and presumably the best condition for wavenumber measurements. If there
are overlapping lines the presence of the sidelobes will, in general, introduce
an error in the wavenumber measurements. This is discussed iater.

The line shape assumed is a good approximation for weak absorption.
For more strongly absorbing lines the Lambert-Beers law is more appro-
priate, and in general the line shape will be modified. 19 If such a line
(hereafter called Lorentz-Lambert-Beers line or, for short, LLB line) is
compared with a Lorentz line normalized such that both have the same
maximum intensity»and same effective half-width at half-maximum, then
the L line will be '"squarer' in the sense it is broader (more intense) between
Vo T € eff and Vo + €off and narrower (less intense) outside this range. We
have generated a number of IA(v) for various values of y(’vo) { > 1 and Fourier
cosine transformed these functions, the result being the interferogram
function they would present. In the region xe¢ < 1 these interferograms were
damped out ~exp - !Zm eif™ !, but 1n the reginn x{e¢ )eff ~ 1 the cosine modula-
tion came back with amplitude smalil but not negligible in comparison with
its amplitude near x = 0. To a first order of approximation the difference
between these two line shapes iooks like two lines separated by * o ff and thus
one would expect subsidiary maxiina and minima when *((,eﬁ =1, 2, «* -,
The magnitude of the amplituCe of the interferogram at x{f,.}eﬁ =1,2,3, - - -,

is of courae determined by the Qifference between the LLB line shape and the

T9%hen an interferagram is measured using the double-beam differencing

rmode of operation {Ref, 13) the result (after Fourier cosdine transformation)
is not I{v} the spectrum, but rather {Hiv} = {L{v) - Hv)], where I,{v} is the
spectrum that would be obtained with no sample in the celll If we assume a
Lambert-Beers law for absorption, we hava L(v) = IgivXi - o~ Y(V}), where
y{v) is the absorption coefficient and 1 the shsarbing path. For yiv)f <<,
this reduves to fyiv) ¥ lg(vylvivH . For pressure broadered lines yiv) has
the form given by Eq. {2 1) : : -
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Lorentz line shape. As far as the spectrum is cuoncerned the contribution
from these parts of the interferogram will ''square'' out the line.

Wea nave assumed no error in the measurement of x, the optical path
diffe-ence. 20 Such an error can be quite degrading as far as S/N in the
spectrum is concerned. Consicer for exaruple an interferogram which has
large amplitude features, such «s signatures. In the vicinity of a signature,
the rate of ch :nge of intensity in the interferogram is very large with respect
to a change in x, and thus a small error in x could lead to a large change
in intensity of the interferogram. This is very undesirabie in that the apparent
noise generated by such an error could be very much larger than the true
ncise. Furthermore, these larger apparent noise excursions occur at
exactly those places in the interferogram that correspond to the positicna
of greatest contribution to the intensity of the lines in the wavenumber
spectrumi. Thus the noise level in the wavenumber region of the lines could
be greater than in the wavenumber regions where there are no lires.

Finally, we consider the question (f résolutivn. Shown in Fig. 66 are
two identical linas with Le = 0. 200 (optimum S/N situation) separated by 4¢.
The dip in intensity between the lines is ~11% (somewhat smaller than the
Rayleigh criterion; if the separation were ~4. 2¢ the dip in intensity would be
~18%, very close to the Rayleigh criterion). The lines are separated by 4«
but appear (measurement of maximum intensities) to be geparated by ~3. 8¢.
Well separated lints could be mezsured more accurately {(depending of course
on the S/N). Apcdization o1 the interferogram would suppress the sidelobes,
but little or no gain in measurement accuracy would be expected since the
lines would then be broader and their central intensity region would overlap

even more.

20

If the error is constant fi. e., mislocation of the origin, x = 0) then serious
shifts and diatortions of line shape may result. If the error is periodic,
ghosts will be seen in the spectrum (Ref. 6). See Section V-A, B.
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Fig. 66. Two identical Lorentz lines separated by 4¢, and

Le = 0,200,
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VI. COMPUTATIONAL TECHNIQUES

A. INTRODUCTION

Development of efficient means to carry ocut the calculations indicated
in Eq. (5) has enabled Fourier transform spectroscopy to become a practical
means of spectroscopy. Because the computational techniques are so
necessary, this section is devoted to a discussion of the algorithms used
and tests that may be applied to them, and it closes with a brief discussion
of programming the algorithms for use on a high speed computer, including
flow diagrams. With detectors presently‘available, the only meaningful
energy information available is relative, not absolute. Because of this,
constant factors are customarily left out of the equations of Fourier iransform

spectroscopy. When this is done, Eq. (5) becomes

N
E(v) = Ax |F(0)+2) F(jAx) cos 2mjvAx (48)

j=1

Notice the finite sampling of the interferogram forces the computed
spectrum E(v) to be periodic with period 1 /Ax. Furthermere, since
coa(y + nw) = cos(y - nmn), E[v + (1 /{24x%x)]= E[(l J2)Ax - v], all the information

must be contained in a frequency band between 0 and (ZAx)"1 [or in general
vand v + (?.A.x)-1 ]. ' '

B. COMPUTATIONAL ALGORITHMS

The computational algorithms used must carry cut the operations
indicated in Eq. (48) as efficiently as possible. Two algorithms have been
developed, each with particular advantages.

i. DIRECT SUM ALGORITHM

The conceptually simplest way to carry out Eq. (48) for a given value
of v is to take a value of F(nAx), multiply by the required cosine, and add
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the result to the sum of the preceding manipulations. This involves N
multiplications and finding N cosines for each output point. I we define

a "manipulation’’ as one addition, one multiplication, and finding cne function,
to obtain M output points from an interferogram of N points will require NM
manipulations. By far the slowest of these processes is the calculation of
the cosine by the computer. This can be speeded up, however, because all
the arguments for the cosines needed to calculate the transform at one
frequency are integrally related to each other. This allows the use of the

recursion formula
cos(nx) = 2 cos(x) cos[(n - 1)x] - cos[(n - 2)x] : n=1,2, ...

The recursion formula, however, intrcduces accumulated roundoff error
into the cosines. In practi:e, a comproimise is sought by periodically
computing a set of cosines from the basic definition while obtaining most
of the cosines from the recursion relation. Even with this feature the
computer takes about 40 psec per input-output point, meaning a spectrum
of 4000 points in and 4000 out would take about 11 minutes.

2, COOLEY-TUKEY ALGORITHM

It was noticed that if certain simplifying restrictions were made on the
relationship between input point spacing Ax and output point spacing Av, a
number of eimilarities existed between the computation of Fourier series
and the factorial experimental designs familiar to statisticians. From this,
Cooley and Tukey (Ref, 86) have developed algorithms suitable for ganeral
complex Fourie. series computation. Forman (Ref. 87) was the first to
bring these algorithms to the attention of epectroscopists. The algorithm
computes the output spectrum of M points by means of several intermediate
arrays, each of which also contain M points. The trigonumetric weighting
is not calculated all at once for each interferogram point but partially applied
e¢ach time & new array is computed.

-158-




The most convenient way to accomplish the weighting is to use complex
exponentizls, since the weighting function of the sum of two arguments may
then be obtained by the multiplication of the two weighting functions. It
becomes very convenient to also require that AvAx = 1 /M, the number of
output pointe, If we let E(v) = E(kAv) = 2Ax Real [ T(k)], S(j)= F(jAx),

i=1{, 2, . .N, ard S(0) = F(0)/2, Eq. (48) may be rewritten compactly as

N
() = 3 SGW (49)
j=0

where W = exp(i2n/M} and N = the number of input points.

All the informatior in the interferogram can be obtained if M = N;
however it is often convenient to have the cutput points more closely spaced.
Forman has pointed cat that this can be effectively done by extending the
interferogram function with zeroes, until it has M points. In the following
proof of the aigorithm it is shown that the same effect can be obtained with
the calculation of fewer intermediate arrays if calculation of the first array
is modified slighktly. The success of the method depends on N and M being
highly composite numbers, the most efficient base being 3. It may be shown
however (Ref. 86) that either base 2 or 4 is only about 6% less efficient, and
for some methecds of programming digital computers a binary-based system
is much more convenient; therefore, this will be the system used for our
demonstration of the algorithm.

The interferogram is required to have N = 2" points, extending the
actual data with zeroes if necessary. The spectrum is desired at M = 2™
output points withm = n + p; m, n, and p all being positive integers. It is
convenient to express j and k explicitly in binary notation

m-1
m-~{ m-2 _ ]
1=0




n-i
s s ,a=1 n-2 A Y |
j= Jmiz + kn.zz “ o Jo_- ;go J‘Z

When the sum (Eq. 49) is rewritten in the following way, ths final result can
be computed in n passes through the data, each pass invoiving the calculation
of M points, corresponding to the n summations ov<r the binary digite.

1 1 1 1 | i et ‘
- . =4
T(k) = }: }: —— Y, E Sy iW T , v
o=0 31-0 -2 © 0 Jn-i'o
. n-2 .
j_ ke j k
x w n 2 ¢ o 0 w ° 9

The only dependence on binary d'git jn-i is enclnsed within the square brackots;
thus we can eliminate it from th2 sum by carrying cut the summation anc.

define the result as Si’

n-l P
2 (k°+. - +gp2 )

.y . K ' w nel
EX S NN AL 21 Slig_go o+ o0 J)W
n- :

) an_im(kﬁp A

Since W raised to any integesr power is unity, the right-hand factor of this
equation is always 1, making S, depend only on k AR kp, j 0" ' Jp.2e

as we have indicated in the argument of Sl . This process is repeated on the
next innermost sum to obtain S, and so on until the last summation over j °
yields the desired transform. The relation between arrays on two successive
passes may be summarised by the recursion formula
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Sl+l(kp+£' e R Ky g g 1 3o
= 2 Sy ppegr - v+ o Kop g qr v e s 3Q)
Jn-g-1
X wjn-l—l(kozn-l-1+ ot kp+! -1) (50)
If we define So(0,. .. 0, §_ (s i 50 -3 ) =Sl s «+ - §;) =S, the |

computation can be carried out by applying the recursion scheme Eq. (50)
to the M points in the S, array to obtain the S y array, and repeating the
operation a total of n times. The calculation of one point in one array |
requires two multiplications, two additions, and the finding of two exponentials. :
In the entire computation then there are nM points to be computed, meaning f
the total number of manipulations (as

. 25 T T T T ™ defined earlier) is 4 nM = 4Mlog2N.
B The extra factor of 2 is introduced
. =2 -] because of the complex operations,
~;« 3 making this relation directly comparable
E I8 ﬁ%rm L7 with the NM manipulations required in
: E n the Direct Sum acheme. The saving in
| g 0 __i time for long runs may be seen in
‘; 4 N Fig. 67, which is a comparison of
| 5 . ] 1BM 7090 running time for the same
TUKEY-COOLEY data prccessed by two programs, dif-
.Emonl p fering only in the algorithm used for the
0o 2000 4000 6000 transform. A similar curve has not

NUMBER OF QUTPUT POINTS been obtained for the CDC 6000 series
computers, but the scaling factor

Fig. 67. Comparison of computixig
times for the Direct Sum appears to be about 6, since data

and Cooley-Tukey algo- requiring 4096 input and output points
. ::::T: :: f;&’;;’;g data takes about 26 seconds of 6600 central
computer, processor time as compared with the
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i. 8 minutes required on the 7090 system. The time required for a single

manipulation is still not the same for both élgorithms, since by proper .
choice of a programming scheme only 4(M-1) sines and cosiues are needed

by the Cooley-Tukey algorithm as compared with the NM required in the

Direct Sum algorithm. For this number, it is practical to calculate each

trig function from its argument rather than use recursion relations with

their accumulating error. However, since all advantages are not on the

side of the Cooley-Tukey algorithm, it is reasonable to turn next to a

comparison of the two methods.
3. COMPARISON OF ALGORITHMS

The Direct Sum method gives output points at intervals Av input to the
program. It uses a minimum of computer memory, needing only enough to
store the N points of the interferogram plus the actual number of output
points N, desired for a total requirement of less than 2 N, locations. These
two features make this algorithm particularly attractive in studies of small
regions of the spectrum where, for convenience, a great number of points
per resolution width is desired. No information is gained in addition to that
possible from interpolation with an appropriate function in a spectrum with
the number of output points equal to the number of input points, but it is
simpler to not involve additional computer programs. A disadvantage of
this method is the large amount of time required.

The Cooley-Tukey method solves the time problem, but it has other
disadvantages. It is required that Av = { /MAx. Because Ax is specified
by the experimental conditions of the interferometer, the only possible
variation in Av is through the choice of M; but since M must be an integral
power of 2, the choices are limited. The resulting Av is seldom a simple
number, which may be of some inconvenience if further hand computation on
the spectrum is required. A more serious limitation is the memory required
by this method. The algorithm calculates the arrays Si at all the points .
between 0 and 1 /L. at a spacing of Av. As pointed out earlier, the only
portion of the transform of interest is from 0 to 1/2 L; thus M =2 N, or .
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twice as many points are calculated as arz desired in the final spectrum,
requiring 2 N<> locations. Points are needed for calcuiating the Si +p drray
in a different sequence than they cccur in the Si array, so some provision
must be made to save at all times at least part of the preceding array (the
minimum amount convenient for saving is half). This requires N, rore
locations. Since each of thesge 3 No locations muat store a compiex number,

with both real and imaginary parts, the memory requireménts are for 6 N

iocations or three times the memory requirements of the Direct Sum method.

Because even large computers typically have only about 32, 000 cells of core
memory, N, is limited at present to a maximum of 4096 points, in turn
limiting the smallest spacing between points, A.Vmin' to a value éome\irhat
greater than would be convenient on many occasione. We are at present
convidering the possibility of writing a special prégram, taking advantage
of th: 60-bit word size in the CDC 6000 computers, to store in.the game
computer word the real and imaginary part of each element in the § array, |
allowing oar maximum number of points to be doubled and the mxmmam

spacing between output points halved.

Each algorithm then has ita advantages. The Cooley-Tukey __a.lgérithm :

is particularly suited for scans of wide-frequency regiémn at high resolution..

The Direct Sum approach is particularly suitable for detailed studies of a~
narrow-frequency range with a small output point spacing chosen for con-
venience in further analysis. Lo el

4, TEST PROBLEM

In checking any computer program it is desirable to have a problem

simple enough to be worked by hand, and yet one which tests the capabilities

of the program. The function we have chosen to check the Fourier cosine
transform algorithms is a ltraight line F{x} = E (1 - x{xm)f for 0s x < ‘m'
and F(x) = 0 for x > X The interferogram, as plotted by the vomputer, is
shown in Fig. 68. The transform as obtiined by the computer is listed in

alb 3"

e i s



T2 TEST INVERFERCORAN STRAICHT LINE \6 01/05/67.

i,

L orew

L

INPUT INTERFEROGRANM POINT NO.

Fig. 68. Test interferogram as plotted by the computer.

Table 14 and shown as plotted by the computer in Fig. 69 for Eo = 8000,

Ax = 0.1, which leads to x . = 1.6 and Ve T 5. The computations have
intentionally been extended to Zvc. so the periodicity of the function discussed
earlier could be demonstrated. The two series algorithms agree to within

+{ in the eighth significant figure, and they agree with test hand calculations
made at a few cutput points to within the error of the cosine tables 2vailable
for the hand calculations. ' :

The integral transform for this simple interferogram can of courase also.

be calculated in closed form and the result is

E(v) = E (1 - con 2rx_v) /(4x?x_+?) 6o
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Fig 69. Txa.nsfarm of test mterf»rogram as crmputed and plotted
by the Lompu'er o : . } o

This has bean evaluaf.éd {o;‘&h? §algze_a-of_ v where sum reau!'s are available, _ *
and those results ave alao listed in Table 1420 Fror the above discussion |
of ramruzatioﬁal prea:i'sibn it is apparsnt the. diffe rences betwusn the evaluation
ol £q. {50} and t*m sum evaxmthn camzmt be dus to computational errors.

The d:&réncel ariw :ather from thﬁ f’miw sampling of the interferogram,

as may ba sesn feom’ Fxg 10, e;!‘mra th e\&xfferauces between the integral
transform and ewina 2ra plotted for & Axﬁofii&. 05 and 0.1, which leads to

i

To fatil&tam companuau imtman the irtegral resui"n and computer results,
the {acter of 2 dro?pefi ia abuin&ng Eq (%8‘ is romnertea as a multiple of

- thu m.egral
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Table 14. Comparison of Integral Transform and Sum Transfoim
of Stra:ght Line Interferogram
Eo 2E(v)

v —3——z (1 - cos2mx_v) (computer sum with
(cm") 2T XinY Ax = 0.1 sampling)

0 12800, 099 12800. 000
0.15625 10375, 289 10383. 627
0. 3125 5187. 6446 5204. 3434
0. 46875 1152. 8099 1161.1795
0. 625 0 ~1078
0. 78125 415. 01157 423, 44027
0.9375 576. 40496 593. 36480
1.09375 211, 74060 220.27446
1.25 0 ~10°8
1.40625 128. 08999 136. 75898
1. 5625 207.50578 225.00743
1.71875 85. 746192 94. 588898
1. 875 0 ~10°8
2.03125 61. 392244 70. 450783
2.1875 105. 87030 124.23754
2. 34375 46.112396 55.433426
2.5 0 ~07?
2. 65625 35. 900655 45. 536630
28125 64. 044995 83. 675684
2. 96875 28. 740413 38. 751138
3. 125 n ~1078
3.28128 23.526733 ‘ 33.981318
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T:ble 14. continued

E, 2E(v)

v -1 ;:2;7 (1 - cos 2mx_ v) (computer sum with
{em ) m Ax = 0.1 sampling)
3. 4375 42. 873096 64. 285108
3.59375 19. 613023 30. 592392
3.75 0 ~1078
3. 90625 16. 600463 28.200623
4.0625 30. 696122  54.600961
4,21875 14. 232221 26. 568573
4.375 0 ~108
4.53125 12. 336848 25. 550089
4. 6875 : 23, 056198 50. 485028
4, 8437 10. 796347 25. 060336
5,0 0 ~107 !
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ENERGY

POINT NUMBER

Fig. 70. Difference between sum and integral for different sampling
frequencies of the interferogram. (1) Exact tranaform
minus sum with N =16 samples, ax = 0.1, (2) Exact trans-
form minus sum with N = 32 samples, 4x = 0. 05,

=168«




interferograms of 32 and 16 points, respectively. Equation (51) is also
plotited for comparison. In terms familiar to spectroscopists; these dif-
ferences arise because the filtering in the "instrument' which determined

the original interferogram, the straight line, did not cut off the radiation
above v, = 1 /2 Ax. This radiation is being aliared back at lower wavenumbers
and makes the energy appear higher at v < v As Ax is decreased, in the
examples shown, the cutoff frequency is increased, making less energy

available above the cutoff frequency for aliasing into the region of interest.

C. COMPUTER PROGRAM

The computer program includes facilities for plotting both the
interferogram and computed spectrum, facilities to subtract the asymptotic
value from the raw interferogram, and also facilities to modify input points.
The latter feature makes it convenient to apply experimental corrections to
the interferogram. The heart of the program, of course, is the sections
which perform the summing of the series. In the present program these are
subroutines written in FORTRAN. Descriptions, flow charts, and listings of

these subroutines follow.

Identification

FCTRAN - Fourier Cosine Transform by direct sum
6400 /6600 FORTRAN

Purpose
To provide the Fourier Cosine transform of get of data, by a direct

summation of the series

N

E(kav) = Ax [F(0)+2) F(jax) cos 2wjkaxav
=1

Method
For details of the method, see Fig. 71.
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FCTRAN | .

INITIALIZATION
KK = 1
XNUK = BEG

—© [ ]

INITIALIZE COSINE
TABLE CALCULATION CALCULATE

L=l K=3

SERIES SUM

| KK =KK+1

20 CALCULATE '
CALCULA
NE TR0 COSINE FROM
CRECURSION, SUBROUTINE
RECURSION JeROuTI '
CALCULATE | Ve |
COSINE FROM RETURN
SUBROUTINE

COSINE TABLE
CALCULATION
COMPLETE

Fig. 71. Flow Chart of Direct Sum Method.
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Usage
CALL FCTRAN (BEG, DELX, DNU, NX, FNUMX, PF, NNU, IAV)
where
BEG is the first vailue of v for which the transform is desired.
DELX is the gpacing between points in the function to be trans-
formed. The units of BEG, DNU, and FNUMX are
reciprocal to the units of DEI.X.
DNU is the spacing between desired output points. :
NX is the number of values in the function to be transformed. 3

FNUMX is the largest value of v for which the transform is desired.

PF is a constant phase factor shift which may be put in,

usually zero.

NNU is the number of values.
IAV is not used.

The input data are assumed to be in the first NX locations of a common
array, F. The output transform is placed into the first NNU locations in a

common array, T. The content of F at the end of the ¢xecution is unchanged.

Restrictions

The calling program must specify as COMMON three arrays: NOUT,
F, T, with the dimensions of 10, 8192, 16384, respectively.

V= o 4 o e 1 1 82

Memory Requirement

2568 exclusive of COMMON.
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SUSROUTINE FCTRAN (BEQDELX s DNUSHX o FNUMY 4 PF o NNUs 1AV)
FCTRAN DIRECT SUM ALGORITHM FOR FOIURIER COSINE TRANSFORN
DECLARTTIVE, FORMAT AND INITIALIZATION STATEWENTS

COMMON NOUTF T
NIMENSION F(3086e2)s T(819202)9 NOUT(1IO0)

PRINY ©
1P1eg,7831093)
AINUKeAEG

INITILIZE COSINE TABLE CALCULATION

BO 7 KKsY NN
FREINUKENELX

ARGSAMED (FRy1,0)
CST2u2,00COS(ARGOTP])
APGSARG+PF
T(102)2CNS{TPIARE)
ARGEAMOD (2,00F Ry ,0) ¢BF
T(202)2CNS(TPTOARN)

L=l
CALCULATF COSINE TABLE

D0 § KeI NN

1F (Kel0neL) 19302
TIKe2)BCATROT (K] o 2) T (Kn247)
0 70 S

INDICE10084 0]

Lele]

60 10 &

INOiICel 808,
ARGSAMODIFLOATLINDICI 8F R, 1,0) oPF
TLINDICs2)0COS(TPI®ARG)

CONT INUE

SERIES SUN CALCULATION ANO CALCULATION 0F NEw FREQUENCY VALUF
TI(NKe))mn, 0
& Ju2 N3
TIKR1IOF ()T 00 e R) o TR Y)Y
TR )INELAS(F (L) 02, 00T (KKe 1))

INUKSDNUCTLOAYT (KK) o8L8
conT tNuet

RETURNTINA STATEMENTS
tageanmie)

00 § 1sInES,163802
"“'.o.

RETURN

FOMIAT (AR, ]THOIGZCT SUN METHND)
oo
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Identification

FCTRAN - Fourier Cosine transform by Cooley-Tukey algorithm.
6400 /6600 FORTRAN

Purpose

To provide the Fourier cosine transform of a set of data by the Cooley-

Tukey algorithm applied to the series

N

E(kAv) = Ax |F(0)42) | F(jAx) cos 2mjkAxAv
j=1

Method

For details of the program, sece the flow chart (Fig. 72). The input
routines calculate the following quantities: The number of input, N = 2", and
output points, M = 2™, within the limitations of the memory of the computer,
The interferogram is filled out with zeroes if necessary. LD =2 * M/N.

KB is the beginning of temporary storage in the F array. For all but the
largest number of output points (M = 8192 in the present program), this is
set to protect the input interferogram. J = M/4, IBEG = M/2, NBEG = 0.
The calculation of the array resulting from one pass involves boxes i through
ii. Initializing another pass involves boxes iii and iv. The output routines
rearrange the apectrum so that the portion of interest fills in the lowest

NNU positions in T. These routines also multiply by Ax and insert the phase
factor if nonzero. The naming convention of FORTRAN to distinguish
between fixed and floating point numbers is observed. Divisiones of fixed
point numbers is assumed truncated. Operations indicated with t are

complex,.
For details of the mathematics, see Section B.

the calculated points when leaving.

NX is the number of values in the function to be transformed.
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NO I>M/2

INPUT YES
ROUTINES ‘
F(KB TO KB+ M/2) —— T(M/2 TOM) | +
NBEG ¢ J
18E6: 0
NEX = 2 LD=2%LD
I: i J:d/2
iii
 (I-1/J
YES ' ‘
@ #uTPUT
ROUTINES
m +

NEX 2 L +
w:exp [21iL+LD] m

|

INDs 1+ (I~1) med J +LuNBEG + IBEG
K: I4+xB
F(K} 2 T{IND) ~ Y(IND+J)n W +
T{I) : T{IND) +T{IND+J) W, +
I: 141
-}
Fig. 72. Flow Chart of Cooley-Tukey Method. .
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Usage
CALL FCTRAN (BEG, DELX, DNU, NX, FNUMX, PF, NNU, lAV)

where
BEG is the first value of v for which the transform is desired
when calling this routine. When returning, it will be the
value of v corresponding to the value of E(kAv) in the first
location of T. It will be an integral multiple of the value
of DNU returned.

DELX is the spacing between points in the function to be trans-
formed. The units of BEG, DNU, and FNUMX are
reciprocal to the units of DELX,

DNU " is the desired spacing between output points when entering
the routine. It is the actual spacing between the calculated

points when leaving.
"NX is the number of values in the function to be transformed.

FNUMX is the largest value of v for which the transform is desired.

It is unchanged by the subroutincs nperations.

PF is a constant phase factor which may be inserted, It is
usually zero.

NNU is the number of v values desired when entering the program.
It is the number of values t2yond BEG for which the trans-

form is calculated when leaving the program.
LAV not used.

The input data are assumed to be in the first NX locations of an array
in COMMON, F. The output transform is placed into the first NNU locations
in an array in COMMON, T,

-l?s.




Restrictions o o e

The calling program must specify as COMMON three arrays: NOUT,
F, T, with the dimensions of 10, 8192, 16384, respectively. ’

The contents of the array F will be modified by this subroutine if

effective number of output points is 8192.

Memory Requirement

552!8 exclusive of COMMON storage.
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APPENDIX
INTERFEROMETRY AND CONVENTIONAL SPECTROSCOPY

In theory, two-beam interferometry has a decided S/N advantage over
conventional single-slit dispersive spectroscopy when detector noise is
the limiting factor (see Section I, Introduction). In a paper on FIR
instrumentation, Richards(Ref. 14) describes an experimental comparison
of a Michelson and a lamellar grating interferometer with a conventional
grating spectrometer. With respect to the comparative performance of
these two types of instruments in the FIR, Richards said,

'""We experimentally verify the Fellget advantage of the inter-

ferometer to within about a factor of 3 in time. This is of the

order of the uncertainties in our estimates of noise levels and

grating and filter efficiencies."

This statement was disputed by Kneiibuhl, Moser, and Steffen {Ref. 55) in
a paper describing the construction and performance of a conventional FIR
grating spectrometer. They conclude,
""From these gpectra, we conclude that the performance of
Fourier-transform spectrometers may be slightly better than
that of grating spectrometers, but the differsance is certainly
smaller than that stated by Richards. The spectral resolution
yet obtained by both types of spectrometers lies between 0.1 and

0. 05 cm'1 in the spectral region between 30 and 60 cm"i. i

Thin statement was challenged by Dowling and Hall (Ref. 88), who said,
""While achieving remarkable performance with their spectrometer
we¢ feel that some comments and conclusions arrived at by KMS
with respect to the comuarative performance of these two types
of instruments are not supported by the evidence presented and,
furthermore, are in disagreement with our experience with a far-

infrared, lamellar grating interferometer, "

A-l
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And also with respect to the resolution yet obtained by both types of
instruments they said:
"To the best of our knowledge this resolution has not yet been
demonstrated for conventional grating spectrometers and has
only recently been demonastrated for interferometric instruments. "

More details are given in these and other papers (Refs. 15, 89, 90).

With thie exception of the detector employed, the opi.cal parameters
of the conventional grating spectrometer (Ref. 55) and the Aerospace
lamellar grating interferometer (Ref. 15) are quite similar. These are
given in Table A-l.

In the previous comparison (Refs. 55, 88, 90), there was quite a
large difference in experimental conditions (pressure and absorbing path
length) in the respective water vapor spectra. Presented here are data
obtained with the lamellar grating interferometer under experimental condi-
tions closer to those used by KMS (Refs. 55, 90).

We obtained two e:ingle-bearn22 runs for HZO with the lamellar grating
interferometer with an absorbing path length of ~9.2 m and a pressure of
~1-1/2 Torr. The first of these was a reasonably high resolutioa run
(AvM ~ 0.10 crn'l). The tranlsformed interferogram (i.e., the spectra)
showed the triplet at~38 cm™ "~ quite clearly resolved (Ref. 88), indicating
the run had good resolution and reasonable sensitivity (the line at 38. 642
em™! is quite weak and close to the strong line at 38, 792 em™!). However,
the "'new' lines seen by KMS (Ref. 55) at 46.3, 49.5, and 50.25 cm'1 were

not observed. Although the as.p]:uu'mrxtz3 S/N for this run was somewhat poorer

In crder to obtain a long absorbing path (to correspond to the long absorb-
ing path used by KMS) the entire optical path (from detector to source) was
used by admitting H,O to the whole system. Thia, of course, precluded
double-beam operation,and thus we encountered the dynamic range pcoblem.

23We believe this is due in part to the dynamic range problem.




Table A-1. Comparison of a Conventional Grating Spectromc:tera

and a Lamellar Grating Interferometerb

Conventional
Spectrometer Interferometer
Grating area 1050 cm2 930 c:m2
f-number ~f/4 ~{/4
Slit or entrance - 2
aperture area 0.8 cm” 0.7 cm
Detector and NEP Golay Ge Bolometer T = 4.2°K
-uil ¢ -12 "
(810 ) (5x 10 °7)
“Ref. 55
b

Ref. 15

€This is from advertising literature from Eppley Laboratories (Golay) and
Texas Instruments (Ge Bolometer), It has been our experience in comparing
our bolhmeter and Golay cells that the bolometer is ~6 to 9 times better
NEP-wise than the factor of 16 deduced from the advertising literature.




than in double-beam runs (Ref. 88), we feel it was sufficiently high to detect
these lines if the relative intensities as shown in Fig. 3 of Ref. 55 are any-
where near correct. Their absence confirms our contention (Ref. 88) that
these lines are second-order water vapor lines (and they ¢> indeed correspond
exactly within the accuracy of the wavelength quoted by KMS) appearing in

the first-order spectrum because of incomplete filtering.

A second run was made in a much shcerter time, The optical path
difference attained was~5.0 cm (AvM ~ 0.20 cm'i) in increments <)2f530|z,24
of optical path difference and each point was sampled for 0.75 sec. This
interferogram function was FCT twice, once with L = 5. 0 cm (total time of
run, including dead time = 41.8 min) and also with LL = 3.5 cm (by deleting
the last 1. 5 cm of the interferogram, which corresponds to a running time
of 29.3 min). The 55-56 cm-l regions of these spectra are compared with
the corresponding region as given by KMS (Fig. 4 of Ref. 55) in Fig. 73.
The experimental conditions are listed in Table A-2, The results of KMS
are ''normalized transmittance.' We have ''normalized" our curves by
assuming that the greatest intensity in this region corresponds to 100%
transmission (and this appears to be what KMS have done). We make the
following observations:

1. In Fig.A-l, the depth-of-absorption curves B and C are much

greater than in A,

2. The B and C lines appear much more symmetrical than in A,
ecpecially the high wavenuraber component,

3. In A the low wavenumber component appears slightly stronger than
the high wavenumber component, In B .nd C the opposite is true.
Theoretical relative intensities predict the higher wavenumber
compenent to be stronger (Ref. 55).

24We point out that Ax = 30 u corresponds to v_ = 166 cm'l. This Ax was
chosen since we had changed our filtering slightly, and to be sure of avoiding
aliasing we chose Ax = 30 p. Actually we could have used Ax = 40 p as it

was appareni from the spectrum Av, = 125 cm=1. This would have resulted
in a ~33% reduction in time with smadll loss in the S/N in the spectrum.

ZSThe dead time (i.e. the time it takes to move from point to point) during
which no data are taken, for 30 p optical path differcnce steps, is also 0.75
sec. Thus the efficiency of this run, measuring time per total time, was -50%.
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Table A-2. Comparison of Experimental Parameters

Illustrated in Figure 71

A (KMS) B C
Absorbing path 7.4m 9.2 m 9.2 m
Pressure 2 Torr {-1/2 Torr 1-1/2 Terr
Computer time 0 ~44 sec? ~44 sec®
Scan time for 17.8 min 0.42 minb 0.29 minb

55-56 cm” | region

aComputer is a CDC 6600. The actual FCT time is small compared with
the read-in, read-out time, etc.

bEased on the total time it took to get the interferogram and the fact that
-1 . . C ‘-

100 cm ~ was covered. See text for a discussion on KMS's objection ~ f

to this.

e N R T N

A-b

e mtis < pen
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4. Tt~ apparent noisc level increases frcm B to C, whereas one
would expect it to decrease (see Section V). We note in particu-
lar that maximum intensity -2i.ation in the 55.8—+56.0 cm-!
more than doubles in going from B to C (no H,0 absorption line
is expected here), We interpret these variations (and they are
seen in proximity tc the other strong and medium lines) as being
the sidelobes discussed in Section II. We thus infer that these
lin:s are narrower than the scanning functions of these two runs
and the variations observed are not true noise. We make no
comment on the noise level for the spectra shown in Fig. 71-A
since KMS made no estimate of their §/N

P ok g W s St

Kneubihl, Moser, and Steffen {Ref. 89) have objected to the "equivalent
scan time'' used by Dowling and Hall (Ref. £83) in comparing results obtained 4

with the two inatruments, on the basis,

"The equivalisent £can time introduced by Dowling and Hall does
not sezin to be a great value. Theoretically, high resolution

of a ern:zii spectral region can be achieved by an aperiodic
interferometer in a short time (e. g., > min). But this reqQuires
a narrow band filter with a bandwidth of the order of magnitud-

T

. -1 . . .
«i iem *, e.g., a diffraction-grating spectrometer.

Although a diffraction-grating spectrometer would serve admirably as a
narrow bandpass filt-r (as long as higher order radiation is filtered out), such
a complicated instrument may not be necessary. The progress in fabricating
nar:ow bandpass filters (Ref. 9) for tiie FIF is quite encouraging in this
resnect.

In his well-known treatment, Fellgett (Refs, 3, 4) has shown that the
S/N gain of a multiplex instrument over conventional scanning specirometers
in \'N/2, where N is the number of spectral elements (resolution widths) to
he stugied. The advantage ia | when N = 4. That is. all other quantities
being equal, the interferometer has the advantage if N > 4, the ccaventional
spectrometer when N < 4. Usually many more than {four spectral elements
are desired,

At the present time the conventional spectremeter offers the advanitage

of short wavenumber scans, but with the development of narrow handpass




| filters (Ref. 91) and the more efficient use of the time available for

| . . . . . . . .
i measurement (i.e., minimization of the dead time), we believe this advantage .

is a temporary one.

e

| 2GAn opinion expressed in a letter to J. F. Moser,

PET
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