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FOREWORD

The work reported herein was done at the request of the Space
Systems Drivision (SSD), Air Force Systems Command {AFSC}, for the
Aerospace Division of the Martin~-Marietta Corporation under Program
Element 64409094, System 624A.

The test results presented were obtained by ARO, Inc. (a sub-
sidiary of Sverdrup & Parcel and Associates, Inc.), contract operator
of the Arnold Engineering Development Center {AEDC), AFSC, Arnold
Air Torce Station, Tennessee, under Contract AF43600)-1200, The
test was conducted under ARO Project No. PB0605 from January 18
through 27, 1966, March 14 through 16, 1966, May 2 through 18, 1966,
and October 31 through November 10, 1966, The manuscript was sub-
mitted for publication on January 27, 1867.

Information in this report is embargoed under the Department of
State International Traffic in Arms Regulations. This report may be
released to foreign governments by departments or agencies of the
U. S. Government subject to approval of the Space Systems Division
(SSBDD), Los Angeles, California, or higher authority. Private indi-
viduals or firms require a Department of State export license.

This technical report has been reviewed and is approved,

Richard W. Bradley Leonard T. Glaser
Lt Col, USAF Colonel, USAF
AF Representative, PWT Director of Test

Directorate of Test
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ABSTRACT

A wind tunnel investigation was conducted to obtain the structural
response of 0.07-scaled aeroelastic models of Titan III missile con-
figurations to buffet airloads at transonic Mach numbers. Test results
in the form of bending-moment response in the pitch and yaw planes
were obtained for various payload, upper stage, and booster combina-
tions. The tests were conducted in the Mach number range from 0. 6
to 1.4 and at angles of attack ranging from 0 to 4 deg. The basic
Centaur /Voyager configuration experienced flutter in the first pitch
and yaw elastic bending modes as Mach number was increased above
0.80. The flutter was eliminated by (1} adding to the payload a
cylindrical shroud having the same diameter as the payload and
(2) adding to the payload a boattail shroud with a ring of vortex gen-
erators upstream of the boattail, The MOL and Apollo configurations
exhibited slightly different trends in the bending-moment variations
with Mach number, although both configuration families experienced
peak loads at Mach numbers near 0, 95. Increasing dynamic pressure
caused a proportionate increase in the pitch and yaw structural
response. Increasing angle of attack, in general, resulted in a re-
duction in the structural response, although there were deviations from
this trend for certain configurations.

iii
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NOMENCLATURE

lb-sec

Aerodynamic damping, s

1b-sec
ft

Control-system damping,

lb-sec
£t

Structural damping,
Model core diameter, ft

Normal force on support springs, lb
Side force on support springs, 1b
Free-stream Mach number

Model station, in.

Free-stream static pressure, psf

Free-stream dynamic pressure 0.7 pmME, psf

Free-stream dynamic pressure for off-normal test condi-
tions, psf

Reynolds number based on model core diameter, (V,d)/u
Free-siream velocity, ft/sec

Total model weight, 1b

Angle of attack, deg

Kinematic viscosity of the free stream, ft2/sec

Totzl elastic rms bending moment, in. -1b

Totzal elastic rms bending moment for test conditions at
off-normal dynamic pressures, in.-lb

Total rms bending moment, in. -1b

Angular coordinate about the model, positive clockwise
looking upstream with ¢ = 0 at the top of the model, deg

ix
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PHASE (I TEST CONFIGURATIONS

Configuration Number Configuration Description
1 Titan III-A, Transtage/Std 1100-1b fairing,
5-segment SRM's
2 Titan III-C, Transtage/Std 21, 000-1b fairing,

5-segment SRM's
3 Titan III-C, Centaur/Voyager, 5-segment SRM's

Titan II-C, Centaur/Voyager with Shroud A,
b-segment SEM's

5 Titan III-C, Centaur/Voyager with Shroud B,
S5-segment SEM's
6 Titan II1-C, Centaur/Voyager with Shroud C,
5-segment SRM's
8 Titan III-C, Centaur/Voyager with Shroud B,
T-segment SRM's
8 Titan III-C, Transtage/15-ft-diam Bulbous
Payload, 5-segment SRM's
15 Titan IN-C, Centaur/Voyager with large for-
ward vortex generators, 5-segment SRM's
16 Titan III-C, Centaur/Voyager with aft vortex
generators, 5-segment SRM's
17 Titan III-C, Centaur/Voyager with splitter
plates, 5-segment SRM's
19 Titan III-C, Transtage, 13-ft-diam, 20-ft-long
Cylinder/Blunted Cone, 5-segment SRM's
20 Titan HI-C, Transtage, 13-ft-diam, 40-ft-long
Cylinder/Blunted Cone, 5-segment SRM's
22 Titan III-C, Centaur/Voyager with small and
large forward vortex generators, 5-segment
SRM's
24 Titan III-C, Centaur/Voyager, 7-segment SRM's
25 Titan lII-C, Centaur/Voyager with Shroud C and
small forward vortex generators, S-segment
SRM's
26 Titan III-C, Centaur/Voyager with small for-

ward vortex generators, 5-segment SRM's

27 Titan III-C, Transtage, Centaur/Gemini,
5-segment SRM's
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PHASE [ll TEST CONFIGURATIONS

Configuration Number

30

31

32

33, 41%

34

35

36

37

40

Configuration Description

Titan III Stretched Core, Transtage/Std
21, 000-1b fairing, 7.5-segment SRM's

Titan III Stretched Core, MOL with
Protuberances /Gemini, 7.5-segment SRM's

Titan III Stretched Core, MOL /Conical Nose,
7.5-segment SRM's

Titan III Stretched Core, MOL /Gemini,
7.5-segment SRM's

Titan III Stretched Core, MOL /SV-5,
7.5-segment SRM's

Titan III Stretched Core, 13-ft-diam, 20-ft-
long Cylinder/Apollo without launch escape
tower, 7.5-segment SRM's

Titan III Stretched Core, 13-ft-diam, 20-ft-
long Cylinder/Apocllo with long launch escape
tower, 7.5-segment SRM's

Titan III Stretched Core, 13-ft-diam, 40-ft-
long Cylinder/Apollo with long launch escape
tower, 7.5-segment SRM's

Titan III Stretched Core, 13-ft-diam, 20-ft-
long Cylinder/Apollo with short launch escape
tower, 7.53-segment SRM's

*#*Configurations 33 and 41 were geometrically the same; the
difference was that configuration 41 had lower structural damping.

xi
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SECTION |
INTRODUCTION

As launch vehicles pass through the transonic Mach number range,
they are subjected to large unsteady aerodynamic forces., These forces
may generally be categorized as (1) buffet loads which produce elastic
deformations of the entire vehicle, and (2) buffet loads which affect local
panels and vehicle components composing the external surface of the
vehicle, In both cases, important aeroelastic problems arise which,
because of the lack of theoretical methods to predict the buffet loads,
may be solved only through experimental investigation. There are two
basic experimental techniques employed to analyze the response of the
vehiclie to buffet loads. The first involves direct measurement of the
unsteady aerodynamic forces by distributing a large number of unsteady
pressure sensors over the vehicle surface. Correlation techniques are
applied to the measured unsteady pressures to form a matrix of the
forcing function. By properly defining the transfer function based on the
elastic characteristics of the missile structure, the vehicle response
may be determined analytically from the matrix of the forcing function,
The second, more direct, method of measuring the vehicle response to
buffet loads involves fabricating an aeroelastic model which is dynamic-
ally similar to the prototype vehicle. The response is measured directly
by bending-moment sensors attached to the model structure. By properly
employing the scaling relationships, the model results may be adjusted
to full scale, and reasonable estimates of the prototype-vehicle response
are obtained. Because of the small scale of most wind tunnel models it
is not feasible to aeroelastically scale the panels and components compos-
ing the external surface of the vehicle. Thus, the unsteady pressure
sensor approach is usually employved to analyze the response of these
structures to local buffet forces.,

The primary objective of the present investigation was to measure,
for various payload and booster configurations, the structural response
of 0, 07-scaled, aerocelastic models of Titan III missile configurations to
buffet airloads at transonic Mach numbers. A secondary object was to
obtain sound-pressure levels at various locations on the model surface
to assist in defining the effects of local buffet forces, The tests were
conducted in the Propulsion Wind Tunnel, Transonic (16T) at AEDC dur-
ing the periods from January 18 through 27, 1966, March 14 through 16,
18966, May 2 through 18, 1966, and October 31 through November 10, 1966,
The first three test periods constituted the Phase II Wind Tunnel Test
Plan, and the last entry was the first of a series of entries categorized as
the Phase III Wind Tunnel Test Plan.
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SECTION (I
APPARATUS

2.1 TEST FACILITY

Tunnel 16T is a variable density wind tunnel, The test section is
16 ft square and is lined with perforated plates to allow continucus
operation through the Mach number range from 0.55 to 1.60 with mini-
mum wall interference.

Details of the test section showing the locations of the models and
support strut arrangements are presented in Figs. 1 and 2 (Appendix I)
for the Phase II test configurations and in Fig. 3 for the Phase III test
configurations. A more extensive description of the tunnel is given in
Ref. 1, and the latest calibration resulis are presented in Ref. 2,

2.2 TEST ARTICLES

The test articles were aeroelastically scaled Titan III missile con-
figurations. The model physical properties are presented in Appendix II,
and details of the model scale factors are presented in Appendix III.

The configurations consisted of single-body {Titan III-A) and three-body
{Titan III-C) boosters with various upper stages and payloads, A sum-
mary of the various configurations tested during the Phase II and

Phase III entries and corresponding configuration numbers are presented
in the nomenclature,

2.2.1 Phase Il Test Configurations

The booster for the single-body, Titan III-A configuration consisted
of a 112-9—in. -diam Titan III core as shown in Fig. 4a. The booster for
the thrlee-body, Titan III-C configurations consisted of the 120-in. -diam
Titan III core centerbody and two 121-in, -diam strap-on, solid-rocket
motors (SRM). The strap-on rockets were either the standard 5-segment
SRM's or the longer 7-segment SRM's. Details of the Titan III-C boosters
are presented in Fig. 4b. The upper stage (stage III) of each configura-
tion was either the Martin Transtage (Fig. 4a) and/or the General Dy-
namics/Astronautics Centaur stage (Fig. 4b).

The payloads were as follow:

1. Standard fairings (10-ft-diam cone-cylinder payload),
configurations 1 and 2, Fig. ba.
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2. The 15-ft-diam bulbous payload, configuration 9,
Fig. oa.

3. Voyager with four different shrouds (18-ft-diam bulbous
payloads), configurations 3 through 6, Fig. 5b.

4, The 13-ft-diam Manned Orbiting Laboratory (MOL)
payloads (20- and 40-ft-long cylinders), configurations
19 and 20, Fig. 5Sc.

5. The 10-ft-diam MOL/Gemini payload (the Martin transtage
and the GD/A Centaur were stacked to simulate a 10-ft-diam
MOL cylinder), configuration 27, Fig. 5c.

The basic Centaur/Voyager {configuration 3) and the Centaur/Voyager
with shroud C (configuration 6) were also tested with modifications to the
payloads, These modifications are illusirated in Fig. 6.

2.2.2 Phase lll Test Configurations

The boosters for all Phase Il test configurations were three-body
configurations consisting of a modified Titan III core centerbody and two
121-in, -diam, 7.5-segment SRM's. (The core used for the Phase I test
was extended in length to accommodate the 7, 5-segment SRM's), The
modified core is referred to as the Titan III stretched core, Details of
the Phase 1II booster are presented in Fig, 7.

Basic payloads were as follow:

1. Standard fairing (same as configuration 2 payload),
configuration 30, Fig. 8a.

2. The 10-ft-diam MOL with three different payloads,
configurations 32, 33, and 34, Fig. 8a,

3, The 13-ft-diam Apollo with different escape tower
and cylinder lengths, configurations 35, 36, 37, and
40, Fig, 8b.

In general, the reaction control rockets were the only protuberances
external to the MOL cylinder (Fig. 9). However, one MOL configuration
was tested with four additional protuberances (configuration 31) as illus-
trated in Fig. 9.

2.2.3 Model Construction
Some of the details of the model construction are shown in photo-

graphs of the model at various stages of the assembly in Fig. 10, The
model consisted of the following components:
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1. Sting support system, Fig. 10a,
2, Elastic structure with concentrated weights, Fig. 10b.

3. External skin, Fig. 10c,

The model sting support system for the three-body configurations
consisted of three steel pipes cantilevered from a cross member which
attached to the PWT sting system. The long center prong entered the
model core and the shorter outside prongs entered the SRM's. For the
single-body configuration (configuration 1), the two outside prongs and
the cross member were removed, leaving only the core prong.

The models were supported on the sting by spring systems housed
inside the sting, The spring support system was designed to restrain
the model in the axial direction, support the model weight, and to pro-
vide a minimum of restraint to motion in the pitch and yaw free-free
bending modes. Schematics of the spring support systems for the single-
and three-body configurations are shown in Figs. 11 and 12, respectively.
For the single-body configuration, the model structure was supported at
two points — near the forward and rear nodes of the first pitch and yaw
free-free bending modes. For the three-body configurations, the model
structure was supported at three points — at the upstream end of the core
and at the downsiream end of each SRM. These points also corresponded
closely to the nodes of the first pitch and yaw free-free bending modes.
As the model weight was changed or as the model was pitched to angle of
attack, the change in load on the support springs caused the model to be
vertically displaced off the centerline of the sting. The model was re-
centered by pitching the cantilevered end of the springs. This was accom-
plished by remote-controlled, electric-powered pitch systems housed
inside the sting. In addition to the spring support system, the model sting
housed a snubber and brake system to lock the model when excessive rigid
body vibrations were encountered. A fouling system was connected to the
snubber to indicate interference in the rigid body modes. A second brake
system was located in the payloads to lock the model when excessive
vibrations in the elastic modes were encountered. The payload brake was
attached to a spike which in turn was connected to the core prong. An
analysis of the effects of the spring support system on the bending-moment
response of the model is presented in Section 4. 4

The structural backbone of the model was the core, stage III, and
SRM elastic structures. The core and stage III structures were con-
structed of 2024-T4 aluminum tubing, and the SRM structures were con-
structed of 6061-T6 aluminum tubing. The tubes were machined to satisfy
the scale stiffness requirements. Steel weights were attached to the
elastic structiices to simulate the running inertia and mass characteristics.
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The correct aerodynamic form was obtained by covering the skeleton
structures with aluminum and/or balsa wood cylindrical segments. The
joints between the aluminum segments were sealed with a silastic rubber
which enabled the segments 10 move independently and thus not restrain
the model in bending.

The payloads were constructed of a skeleton of aluminum and ply-
wood with the external contour shaped from balsa wood and fiber glass.
The payload weight, center of gravity, and mass moment of inertia
were simulated; however, except for the Phase III MOL: section, the
stiffness was higher than that dictated by similitude laws. The MOL
section was constructed of 7075-T6 aluminum tubing and chemically
milied to obtain the correct scaled stiffness distribution. Balsa wood
was bonded directly to the MOL aluminum structure to obtain the cor-
rect aerodynamic geomeiry.

2.3 INSTRUMENTATION
2.3.1 Model

Insirumentation in the model consisted of the following:

1. Pitch and yaw bending-moment sensors located on the core and
Phase III MOL structures.

2. Normal- and side-force sensors located on the support springs,
3. Pitch and yaw accelerometers located in the model payloads.

4, Position sensor located at the forward support spring attach-
ment point.

5. Microphones distributed on the model surface.

The bending-moment and force sensors were strain-gage bridges
with four active arms. The gages of the bending-moment sensors were
bonded to the exterior of the core and MOL structures such that the
geometric center of the sensors was at the model centerline. The gages
of the force sensors were bonded to the support springs, and the
geometric centers of the sensors were at the spring centerlines. Typical
core and spring cross sections showing details of the gage installations
are presented in Fig, 13. Axial locations of the bending-moment
sensors are presented in Fig, 14a for the Phase II test configurations
and in Fig. 14b for the Phase III test configurations,

Two crystal accelerometers were installed in the payloads. One
accelerometer was sensitive to motion in the pitch plane, and the other
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was sensitive to moetion in the yaw plane., The axial location of the
accelerometers varied with payload configuration changes.

The position sensor located at the forward support spring attach-
ment point measured the vertical displacement of the model from the
center of the sting support. This sensor was a linear potentiometer
for the Phase Il test configurations and a differential transformer for
the Phase III test configurations. The differential transformer proved
to be the more reliable position sensor.

Up to ten microphones were distributed over the model to meas-
ure local sound-pressure levels, The microphones were of secondary
importance to the test, and since the microphone results are omitted
from this report, their locations are not presented,

2.3.2 Data Recording ond Menitoring

Outputs from the model instrumentation were conditioned and re-
corded and/or monitored on-line as illustrated in Fig, 15. Dynamic
measurements were recorded on two magnetic-tape systems and two
oscillographs., Up to four root-mean-square {rms) voltmeters were
used to obtain on-line readings during the test. Steady-state measure-
ments were processed through the PWT force and moment readout sys-
tem described in Ref. 1. Also, a schlieren system was used to obtain
still and motion pictures of the flow about the mcdels,

Oscilloscopes and television cameras, in addition to the data re-
cording instrumentation, were used to monitor the model during the test.

SECTION Il
TEST DESCRIPTION

3.1 TEST CONDITIONS

The tests were conducted in the Mach number range from 0. 60 to
1.40 and at angles of attack ranging from 0 to 4 deg. Tunnel stagnation
temperature ranged from 100 to 110°F. To satisfy model scaling param-
eters (see Appendix IIl), it was necessary to test at dynamic pressures
corresponding to the full-scale flight trajectories. Variations of the
dynamic pressure (q_) with Mach number (M,) for the various configu-
rations are presented in Fig. 16. The dynamic pressure variations in
Fig. 16 represent the upper limit of the q, dispersions for the full-
scale flight trajectories and are referred to as the normal g, schedules.



AEDC-TR-67.33

The resulting variations in Reynolds number, based on the model core
diameter, are presented in Fig, 17. If should be pointed out that the
necessity to match dynamic pressure resulted in a mismatch in
Reynolds number between the model and the prototype vehicle. This
mismatch was not congidered detrimental to the purpose of the test
(see Ref. 3).

In addition to the tests conducted at the normal q_ schedules
(Fig. 16), the effects of variations in dynamic pressure were investi-
gated for the Mach number range of peak buffet response. These
dynamic pressures (q.} ranged within 20 percent of the normal q,,
schedules.

3.2 TEST PROCEDURE

The test consisted of two distinct phases (1) model vibration test-
ing before air-on testing and (2) air-on buffet testing.-

3.2.1 Model Vibration Tests

The model vibration tests were conducted to establish the model
rigid body and elastic modal characteristics (in both pitch and yaw)
when supported by the model sting system and the remaining PWT
sting assembly. These tests were conducted on each configuration in
the tunnel before the air-on tests and in the following manner:

1. An electromagnetic shaker driven by a variable frequency
oscillator was connected to the payload of each configuration,
and a reference accelerometer was attached to the model at
a station near the payload.

2. Each of the first two rigid body modes (translation and rota-
tion) and the first three elastic modes in both pitch and yaw
were excited by the shaker and "tuned" by monitoring Lissajous
displays of the shaker input and accelerometer output on an
x-y oscilloscope,.

3. After each mode was properly tuned, the modal response fre-
quencies were recorded. A second roving accelerometer was
attached to the model near the fixed accelerometer, and the
roving and fixed accelerometer outputs were connected to the
x and y axes of an oscilloscope, respectively. The desired
modal frequency was tuned, and the phase angle of the two
accelerometer outputs as displayed on an oscilloscope was
adjusted to unity. The modal shape was determined by moving
the roving accelerometer to various predetermined stations
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along the length of the model and recording the phase angle
from the oscilioscope displays. This procedure was repeated
for each mode.

4, After each modal shape survey, the outputs of the bending-
moment sensors for each modal frequency were recorded on
magnetic tape and on an oscillograph. The oscillograph data
provided a quick check of the bending-moment sensors and
the bending-moment sensitivity distribution of the configura-
tion.

3. The damping of each elastic mode was determined by exciting
the modes, removing the excitation force instantaneously, and
recording the resulting decays on an oscillograph. This pro-
cedure was repeated at various amplitudes of excitation to
determine the effect of amplitude on the damping character-
istics of each mode.

3.2.2 Air.On Buffet Testing

Because of the nature of the test, it was necessary to proceed to
desired test conditions with extreme caution. Before tunnel start, the
model was locked, utilizing the rigid body and elastic vibration brake
systems discussed in Section 2. 2. 3. After the flow was established at
a low dynamic pressure, the model was unlocked. Dynamic pressure
was increased until the desired test conditions were realized and the
data were recorded. All bending-moment and force sensors were
monitored to ensure that loads in excess of the structural capability of
the model were not reached. In the event that excessive loads were
encountered (flutter for example, as was the case for several configu-~
rations), the model was immediately locked utilizing first the rigid
body brake systems and second the elastic vibration brake system.

3.3 DATA REDUCTION

Steady-state force and bending-moment measurements and test
conditions were reduced and tabulated on-line. The steady-state force
and moment results were used primarily to monitor the test and are
not presented herein.

The buffet response bending-moment, accelerometer, and micro-
phone measurements as recorded on magnetic tape will be reduced by
the Martin-Marietta Corporation, Denver Division. Selective rms
bending-moment measurements were hand recorded during the test.
The bending-moment sensors selected were the pitch and yaw sensors
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most sensitive in the first elastic pitch and yaw bending modes, respec-
tively, These data were obtained using time-integrated, rms voltmeter
systems developed in PWT. The real time data sample for the rms
analysis was 20 sec. Also, the selected bending-moment sensor out-
puts were filtered to exclude the rigid body frequencies and thus obtain
the bending moments resulting from vibration in the elastic modes. The
on-line bending-moment results are presented herein.

3.4 PRECISION OF MEASUREMENTS

The uncertainties in setting and maintaining test conditions are
estimated to be as follow:

Mach number +0. 005
Dynamic pressure +4 psf
Angle of attack 10. 10 deg

The Mach number uncertainty does not include the longitudinal
variation in the tunnel test section, Maximum variations from the
average Mach number in the vicinity of the test articles ranged from
+0. 005 at subsonic Mach numbers to £0. 015 at supersonic Mach num-
bers (Ref. 2).

The uncertainties in the fluctuating bending moments based on the pre-
and post-test calibrations of the bending-moment sensors are estimated
to be as follow:

7

Pitch AGM = £0. 010 opy
Phase 11

Yaw AO’M = 10, 005 UM

Fitch Aoy = £0.002 OM
Phasge II1

\Yaw AGM = 0, 004 °M

The bending-moment uncertainties do not include statistical errors
resulting from nonstationarity of the measurements.

SECTION LY
RESULTS AND DISCUSSION

4.1 GENERAL

Variations of the total elastic rms bending moment (o}g) resulting
from buffet airloads with free-stream Mach number (M) are presented
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in Figs. 18 and 19 for the Phase Il and III test configurations, respec-
tively. These results were obtained by hand recording rms voltages

of the selected bending-moment sensor outputs during the test. The
bending-moment sensors with stations as noted in Figs. 18 and 19 were
selected because of their close proximity to the station of peak bending-
moment sensitivity for the first pitch and yaw elastic bending modes,
as mentioned in Section 3.3. For some configurations, it was neces-
sary to use a less sensitive sensor because of failure of the primary
sensor. Thus, a comparison of the bending moments between configu-
rations should not be made. Also, it should be noted that the bending-
moment sensor outputs were filtered below 10 cps to exclude the rigid
body frequencies of the support springs from the rms measurements,

A discussion of the effects of the support springs on the structural
response of the models is presented in Section 4. 4.

4.1.1 Phaose |l Test Results

Variations of opy with M, for the single-body, Titan III-A configu-

ration (configuration 1, Fig. 18a) indicate a relatively low structural
response, especially in pitch, and are probably indicative of model
response to the tunnel free-stream disturbances. Also, configuration 1
exhibited little variation of oy with M, whereas the three-body,

Titan III-C configuration with the same geometry payload (configura-
tion 2, Fig. 18b) experienced peak response in the Mach number range
from 0.80 to 0.90.

The primary configurations for the Phase II test were the
Centaur/Voyager configurations. The basic Centaur/Voyager (configu-
ration 3) experienced flutter in the first pitch and yaw bending modes
as Mach number was increased above 0. 80 {(Fig. 18d). The flutter was
alleviated by adding to the payload a cylindrical shroud of the same
diameter as the payload (shroud B, configuration 5, Fig. 18i). The
Centaur/Voyager with a shroud of smaller diameter than the payload
(shroud A, configuration 4) also experienced flutter. Tests of this con-
figuration at Mach numbers above 1. 0 indicated that the flutter Mach
number regime was from approximately 0. 80 to 1.00, as shown in Fig. 18h.
The Centaur/Voyager with a boattail shroud (shroud C, configuration 6}
experienced flutter near M, = 0.90; however, the flutter was eliminated
by adding a ring of vortex generators to the payload immediately up-
stream of the shroud (configuration 25) as shown in Fig. 18j. The addi-
tion of vortex generators and splitter plates to the basic Centaur/Voyager
(configurations 15, 16, 17, 22, and 26) was unsuccessful in eliminating
the flutter instability, as shown in Fig. 18.

10
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4.1.2 Phase Il Test Resulis

Variations of opy with M for the standard cone fairing configuration
(configuration 30), Fig. 19a, were similar to those for configuration 2
which had a shorter booster. The Mach number range of peak struc-
tural response was from 0. 80 to 0. 90.

The MOL: family of configurations consisted of several payload
geometries; however, variations of oy with M, for all configurations
were similar (Figs. 19b through f). Bending moments were relatively
large in the range 0.8 < M, £ 1.0, and a small, sharp peak occurred
at M, = 0.95. In general, variations of opg with M, for yaw were less
than the variations for pitch.

Variations of opg with M, for the Apollo configurations were some-
what different in appearance from the MOL variations, as shown in
Figs. 19g through j. The maximum structural response for the Apollo
configurations occurred in the Mach number range from 0. 90 to 0, 85,

4.2 EFFECTS OF DYNAMIC PRESSURE

The effects of variations in dynamic pressure about the normal q_
schedule were investigated for the Phase III MOL and Apollo configura-
tions, and the results are presented in Figs. 20 and 21, respectively.
In Figs. 20 and 21, the rms bending moments at off-normal dynamic
pressures are plotted versus the rms bending moments at normal
dynamic pressure where each point represents a given Mach number.
The data were obtained for the Mach number range of peak buffet
response (from 0, 80 to 1.20). Although there is considerable scatter
in the results, it is evident that the structural response in both pitch
and yaw varied with dynamic pressure. The rms bending moments for
dynamic pressures 20 percent below the normal q_ {oy) were less than
those recorded at normal q_ {opg) in both pitch and yaw as shown in
Fig. 20 for the MOL configuration and in Fig. 21 for the Apollo configu-
ration. Similarly, a 20-percent increase in dynamic pressure caused
the structural response to increase as shown in Fig. 21 for the Apollo
configurations.

From an analysis of the structural response presented in Ref. 4,
it was shown that, for the case where aerodynamic damping is large
relative to structural damping, the rms bending moment varies with the
square root of the dynamic pressure. That is, for the case where

Ca > Cg + Cg
then

oy« Vq,,

11
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For the case where aerodynamic damping is small relative to structural
damping

Cy < Cs + C¢

then
oM ¥ Qe

The results presented in Figs. 20 and 21, in general, indicate that the
rms bending moments varied as the first power of the dynamic pressure
and therefore suggest that the aerodynamic damping was relatively
small. The structural damping was generally less than 3 percent of
critical damping for the present configurations {see Appendix II). For
the prototype vehicles, the structural plus control-systems damping

is estimated to range from 3.5 to 4.5 percent of critical damping for
the first elastic mode. Damping in the higher modes is estimated to be
one percent of critical damping.

4.3 EFFECTS OF ANGLE OF ATTACK

The effects of angle of attack were investigated for certain Phase II
and II test configurations, and the results are presented as variations
of op1 with a for both pitch and yaw. The results for the Phase II and III
test configurations are shown in Figs. 22 and 23, respectively. The
angles of attack for each configuration depended on the loads experi-
enced versus the stress capability of the model and ranged from 0 to
4 deg.

The buffet loads experienced by the single-body, Titan III-A (con-
figuration 1) were essentially invariant with angle of attack as shown in
Fig. 22a. Increasing the angle of attack resulted in a noticeable de-
crease in the pitch bending-moment response for the three-body,
Phase 11 test configurations (Figs. 22b through f). One exception was
configuration 19 at M, = 1.0 (Fig. 22e), and this trend may have been
affected by nonstationarity of the structural response (see Section 4. 4).
In general only slight variations with angle of attack were observed in
yaw structural response for the Phase Il test configurations.

The effects of angle of attack on the structural response of the
Phase III test configurations other than configurations 30 and 32 are
inconclusive because of the restricted range of angles of attack investi-
gated and the nonstationarity of the results. The structurzal response
for configuration 30 increased in pitch and yaw at 1-deg angle of attack
and decreased as angle of attack was increased above 1 deg (Fig. 23a),

12
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Configuration 32 experienced a decrease in structural response in pitch
and yaw with increasing angle of attack (Fig. 23c).

4.4 EFFECTS OF SPRING SUPPORT SYSTEM

The bending moments presented in Figs. 18 through 23 are indica-
tive of struciural response of the model in the elastic bending modes
since the response in the lower frequency domain was filtered. How-
ever, it is interesting to note the effect of the spring support system as
indicated by comparing the total unfiltered bending moments (GMT) with
the total elastic bending moments (opg). The results are presented
quantitatively for representative configurations in Figs. 24a and b for
pitch and yaw, respectively. The support springs increase the rms
bending moments approximately 25 percent in pitch (Fig. 24a), whereas
their effect was negligible in yaw (Fig. 24b). The scatter in the results
presented in Fig. 24 indicates that the structural response was non-
stationary. Values of oy were recorded approximately 2 min after

the recording of opg. Nonstationarity was also observed from succes-
sive readings of opq, as shown for a few conditions in Fig. 18.

4.5 FLOW VISUALIZATION

Schlieren photographs of the flow about the model payloads were
obtained for most configurations in the Mach number range from 0, 60
to 1.40. Typical examples are presented in Figs. 25a and b for a MOL
configuration (configuration 31) and an Apollo configuration (configura-
tion 37), respectively, The schlieren photographs show large regions
of separated flow surrounding the paylcoads, and for M, 2 0,90, the
formation of shock waves on the MOL and Apollo cylinders.

4.6 APPLICATION OF RESULTS

The designer is obviously concerned with more than the bending
moment at a single vehicle station as presented herein. To properly
analyze the total vehicle structure, the distribution of the buffet bend-
ing moments along the vehicle is required. In order to obtain the full-
scale bending-moment distribution it is necessary to (1} determine the
bending-moment sensitivity along the model for each elastic mode,

(2) determine the modal contributions to the total elastic bending
moments resulting from buffet airloads as measured from a wind tun-
nel model, (3) determine the full-scale modal contributions by proper
application of scaling relationships, (4) determine the full-scale

13
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bending-moment distributions for each mode, and (5) determine the
resultant bending-moment distribution by summing the distributions of
each mode. The vehicle is usually designed to some appropriate safety
factor. The present vehicle will be designed to a factor of 3 oy (full
scale).

Analysis of the test results to obtain the full-scale bending-moment
distributions will be conducted by Martin-Marietta Corporation, Denver
Division, and because of the time involved, these results were not in-
cluded in this report,

SECTION V¥
CONCLUSIONS

On the basis of wind tunnel tests conducted on aeroelastically
scaled Titan III missile configurations, the following conclusions can be
drawn:

1. The single-body, Titan III-A configuration experienced rela-
tively low buffet loads and exhibited little variation of buffet
bending moments with Mach number.

2. The three-body, Titan III-C configurations with a standard
cone payload fairing experienced peak response to buffet loads
in the Mach number range from 0. 80 to 0. 90.

3. The basic Centaur/Voyager configuration experienced a flutter
instability in the first elastic pitch and yaw bending modes as
Mach number was increased above 0. 80, This instability was
eliminated by (a) adding to the payload a cylindrical shroud
having the same diameter as the payload and (b) adding to the
payload a boattail shroud with a ring of vortex generators up-
stream of the boattail.

4. The MOL configurations investigated during the Phase III test
experienced peak structural response to buffet airleads at
Mach numbers near 0. 95,

5. The Apollo configurations investigated during the Phase III test
experienced peak bending-moment response to buffet airloads
at Mach numbers near 0. 95; however, the trends with Mach
number were somewhat different from the trends for the MOL
configurations.

6. Increasing dynamic pressure caused a proportionate increase
in the pitch and yaw structural response.

14
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=1

Variations of rms bending moment with angle of attack, in
general, indicated that the structural response in pitch and
yaw decreased with increasing angle of attack. However,
there were deviations from this trend for certain configura-
tions.
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a. Sting Support System

c. External Skin
Fig. 10 Photagraphs of the Model at Yarious Stages of Assembly
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TABLE |

PHYSICAL PROPERTIES OF TYPICAL PHASE Il TEST CONFIGURATIONS

Config. 1 Config. 2 Config, 3 Confzg. 5 Contig. 8 Config. 9 Config. 20
Physical -
Property Frece-Free Bending Modes
Pitch Yaw Pitch Yaw Pitch Yaw Pilch Yaw Pitch Yaw Pitch Yaw Piteh | Yaw
E 45,4 —_ 24.3 23.3 18.9 19.0 19.0 18.7 22.7 20.0 19.7 19.0 20.6 20.0
fl b 43.1 43.1 23.2 20.5 21.0¢ 18.9 21.0 1.9 23.9 19.4 18.5 17.1 . o
a 97.8 ——— 40.0 49.1 40.0 12.2 40.5 42.5 32.8 36.3 39.9 42.3 10.2 40.4
2 b 87,0 | 87.0 0.2 | 39.6 38.0| 38.5 | 38.0 | da.5 | 39.7 | 40.2 | 38.2 | 35.5 - L
u | 192.4 —— 76.8 | 100.2 60.3 72.7 62.2 73.0 59.1 83.5 57.1 76. 0 67.9 50.8
3 | 188.1 | 188.1 71.6 | 79.7 61.1| 54.7 61.1 | 54.7 76.7R | 49.5 57.1 51.7 — L
Cs+ Cc\ a | 0.006 —_— 0.014 0.025 ¢.0295 [ 0.020 0,008 0,018 0,056 0,011 0D.028 0.025 0,031 U.044
Cor o blo.ozo | 0.020 |0.045 |0.045 |0.045 | 0.045 | 0.085 [0.045 | 0.045 | 0.045 |0.045 | 0.045 | 0.045 | 0.045
" B7.75 394.6 A11.0 404.5 475.3 398.4 388,86
i b B7.74 376.4 386.1 — 460.2 378.4 e
where: (1) Subscripts 1, 2, and I} denote (irsl, second, and third bending modes, resprclively.

{(2) 2 and b denote actual and deslgn values, respectively.

{3) €., denotes eritical damping.

(4) Weight represents M, = 1.0 condilion.
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TABLE i
PHYSICAL PROPERTIES OF TYPICAL PHASE 1l TEST CONFIGURATIONS

Physical Config. 30 Config. 31 Confilg. 32 Config. 34 Config. 36 Contig, 37 Confip, 41
Free-Free Bending Modes
Praoperty -
Pitch | Yaw Pitch Yaw Piich | Yaw Pitch Yaw Pitch { Yaw Pitch | Yaw Pitch | yaw
a 241.8 21.0 18.5 16,7. 19.5 18.7 16.5 15.7 19.2 18.7 17.3 16.5 16.5 | 17.6
t1 b —— J— 16.0 13.9 1B.2 15.3 14.8 13.1 15.3 13.4 13.1 13.6 16.0| 13.9
af 41.5 | 45.2 31.5 27.0 31.6 | 30.3 29.6 27.3 3o.1 | 29.0 30.4 | 29.2 28.7 | 30.0
12 b - —_—— 28.6 27.4 30.2 29.4 27.8 28.6 25.7 21.3 24.2 23.8 28.6 | 27.4
a| B3.0 | 96.0 80.5 95.0 43.0 | v4.0 9.0 87.0 79.9 | R0.0 68.0 | 77.0 95.0 | 82.0
"a b -— -— 76.9 B6.7 2.7 86.8 70.6 82.7 38.2 63.3 49.4 60.4 76.9 | 86.7
(E}f Cc) a |0.024 | 0.015 | ¢.032 |U0.024 | 0.023 | 0.027 | 0.015]| 0.014| ©.020| 0.019 | ©0.021 | V.016 | ©.016 | 0.018
Cor b | 0.035 0.035 0,035 0.035 0,035 0.035 0.035 0.035 0.035]| 0.035 0.0356 0,035 0.035 0.035
y a 471.7 471.2 470.3 472.8 471.4 169,9 471.2
b 457 ,4 456.4 454.5 456.3 455.4 456,9 456.4
Where: (1) Subscripts 1, 2, and 3 denote first, second, and third bending modes, respoclively.

(2) a and b denote actual and design values, rcspectively.

(3) Ccr denotes critical damping.
{4) Weight represents M, - 1.0 condition.
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APPENDIX Il
MODEL SCALING

The models were aeroelastically scaled to be dynamically similar
to the prototype vehicles. The scale factors used in the model design
were dictated by the wind tunnel size and the necessity to match perti-
nent dimensionless and independent parameters [referred to as pi (7)
terms, Ref. 3]. The descriptive variables and the basic dimensions
are:

Symbol Variable Dimensions
By Free-stream speed of sound LT 1
E Young's modulus of elasticity FL™2
f Frequency T-1
g Gravitational acceleration LT"2
I Area moment of inertia L4
Im Mass moment of inertia FT2L
£ Typical linear dimension L
M Total mass FT2L"?
m Mass per unit length FT2L2
Te Free-streamn temperature o}
Ve Free-stream velocity LT}
o Angle of attack Dimensionless
Vg Kinematic viscosity of the free stream L2r-1
Py Mass density of air FT2L7*
Pg Mass density of structure FT21,74

where L, T, F, and @ are the basic dimensions of length, time, force,
and temperature, respectively.

The following design conditions were considered pertinent:

2 2
(Eref)M = (ﬁr”)P {Geometry) (1)

(v“’)m - (E)P (Mach number) (2)

A na Ao
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(-f—j) = (_f!_) (Strouhal number) (3)
Voo /M Voo /P

“y = %p {Angle of attack) (4)

(pa) - (Pa) (Mass density ratio) (5)
Pa/M P /P

where M and P denote model and prototype, respectively, and ref de-
notes a reference parameter. To satisfy tunnel requirements for less
than one-percent tunnel blockage, (freflpg = 0.07 (£refdp.

1

From the necessity to match Mach number, Eq. (2}, it can be shown
that

Voo , %
gT-:n))ll\: = [(TW)\I/(TOO)P] (6)

\
where T, is absolute temperature in degrees Rankine. Because of
limitations in the test facility, there was a temperature mismatch
between the model test conditions and the prototype flight regimes.

This mismatch is considered small, such that %—""))M = 1.0.
oo/ P

~
3

The bending stiffness and running mass of the model were also the
correct scaled values of the prototype vehicle.

), - &)
EI“ref M E[amf P (7)
m = m
(mrcf)M - (mref P (8)

The necessity to match pertinent conditions Egs. (1) through (6) re-
sulted in a mismatch in certain remaining 7 terms.

Voo £
Vo M

(_Y«;Z)M - (V_;N_z (Froude number} (10)

For example:

(V“’ I)P (Reynolds number)

v

oa

(9)

and

gt g
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The mismatch in Reynolds number implies a lack of similarity in
the boundary layers on the model and prototype vehicles. The mismatch
in Froude number implies a lack of similarity in the gravity effects or
that slosh and ""deadweight' are not matched. It was felt that these mis-
matched conditions were not critical to the nature of the test.

The various parameters of the model are defined as follow:

Scale Factor n = 0.07
v _ .

Length e - 0 0.07
Stiffness Eloh _ ()¢ = 240 x 107
(E‘S)P

Mr\{ L -4
; Mass = () =343 x10
Mp
. ™M 2 —3
Running Mass = = (n}" = 4.90 x 10
P
Frequency LIS S P
‘P n
Mass Moment ([_mlM _ (n)s - 1.68 «x 10—6

of Inertia (Im}p
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2. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual, Enter
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1zed

3, REPORT TITLE: Enter the complete report title 1n all
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If a meaningful title cannot be selected without classtfica-
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immediately following the title,

4, DESCRIPTIVE NOTES: If appropriate, enter the type of
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If malitary, show rank and branch of service. The name of
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(2) ‘'‘Foreign announcement and dissetntnation of this
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tory notes,
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