UNCLASSIFIED

AD NUMBER AD808540 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; JAN 1967. Other requests shall be referred to Army Engineer Waterways Experiment Station, Vicksburg, MS. AUTHORITY AEWES ltr 27 Jul 1971

TECHNICAL REPORT NO. 3-755

TRAFFICABILITY CLASSIFICATION OF THAILAND SOILS

A P Move

James 1767

Advanced (benearch Projects Agency Directorals of Remote Area Cariffic

The same of the sa

U.S. Almy Material Comment

U. S. Aday Caphae Williams Exercised Station COMB OF EXERCISES

WERENALTS EXPERIMENT STATION

Destroy this repair when to larger people. The new results

TECHNICAL REPORT NO. 3-753

TRAFFICABILITY CLASSIFICATION OF THAILAND SOILS

Ь

M. P. Meyer

January 1967

Sponsored by

Advanced Research Projects Agency Directorate of Remote Area Conflict Order No. 400

Service Agency

U. S. Army Materiel Command
Project No. 1-V-0-21701-A-046
Task 02

Conducted by

U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS

Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of U. S. Army Engineer Waterways Experiment Station.

PAGES NOT FIDED ARE BLANK.

FOREWORD

The study reported herein constitutes a portion of the Mobility Environmental Research Study (MERS), sponsored by the Office, Secretary of Defense, Advanced Research Projects Agency (ARPA), Directorate of Remote Area Conflict, for which the U. S. Army Engineer Waterways Experiment Station (WES) is the prime contractor, and the U.S. Army Materiel Command (AMC) is the service agent. The broad mission of Project MERS is to determine the effects of the various features of physical environment on the performance of cross-country, ground-contact vehicles and to provide therefrom data which can be used to improve both the design and employment of such vehicles. One criterion of the project is that the data be interpretable in terms of vehicle requirements for Southeast Asia. Most of the funds employed for this study were allocated to WES through AMC under ARPA Order No. 400. The remaining funds were provided by the Directorate of Research and Development, AMC, as part of Department of the Army Project No. 1-V-0-21701-A-046, "Trafficability and Mobility Research," Task 1-V-0-21701-A-046-02, "Surface Mobility."

The study was performed by personnel of WES during the period August 1964-May 1966. The study was assigned to the Army Mobility Research Branch (AMRB), Mobility and Environmental (M&E) Division. Mr. M. P. Meyer had the primary responsibility for the general conduct of the study including the preparation of this report. Mr. J. G. Kennedy programmed the data for computer analysis. Mr. G. T. Ellis compiled the data and assisted in the analysis. Mr. C. A. Blackmon wrote the appendix. Others assisting in the study include Messrs. S. M. Hodge, J. E. Lee, and H. D. Molthan. All phases of the study were under the direct supervision of Mr. E. S. Rush, Chief of the Trafficability Section, AMRB, and the general supervision of

Dr. D. R. Freitag, Chief, AMRB; Mr. A. A. Rula, Chief, MERS Branch; Messrs. W. G. Shockley and S. J. Knight, Chief and Assistant Chief, respectively, M&E Division; and Mr. W. J. Turnbull, Technical Assistant for Soils and Environmental Engineering.

Directors of the WES during the conduct of this study and the preparation of this report were CoI. Alex G. Sutton, Jr., CE, and Col. John R. Oswalt, Jr., CE. Technical Director was Mr. J. B. Tiffany.

CONTENTS

																															Page
FORE	VORD				•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	iii
SUMM	ARY.		•			•		•	•	•		•	•	•	•	•	•	•	•	•		•					•		•		vii
PART	I:	IN	TRO	DDU	CT	'IO	N.	•	•	•	•	•	•	•		•				•	•			•	•	•	•	•	•	•	1
	Bac	kg	roi	ınd				•	•	•	•				•		•		•		•			•		•				•	1
	Pur	_																													1
	Sco	_																													1 2
	Ger	_																													2
PART	II:	T	RAI	FI	CA	BI	LI	ΓY	F	(C)	O	RS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	Soi	1	Bea	ari	ng	. a	nd	T	rac	eti	Lor	1 (aı	280	:it	ie	28	ı,			ī										6
	Met																														6
	Soi								_																	•					9
	Slo																														9 14
PART	III:		AN	LY	SI	S	OF	D	AT/	١.	•	•		•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	16
	Bas	ic	D	ate																											16
	Met					-			-	_	_	_		_	_	_	_		_	_	_	_	_		-						18
	Mes					-																									18
	Cun																					_									23
							-					•																	•	•	23
PART				LT			-								_				-												06
ST	DIES	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	Veh	ic	le	Ca	te	go	ri	es																							26
	Soi																														27
	Pro	ba	bi	Lit	v	of	V	eh:	[c]	le	"('0	' (on	Le	ve	1	ar	nd	Ś	OT	ir	Ø	Te	rı	cat	n				29
	App																											•	•	•	_,
	C	on	dit	io	ns		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	•	31
	Est	im	ati	lon	0	f	Pe:	rce	ent	ae	gе	of	1	re	8	Tr	af	fi	CE	bl	.e	•	•	•	•	•	•	•	•	•	34
PART	v:	CO	NCI	US	ΙO	NS	A	ND	RE	CCC	M	ŒÌ	ID A	(T)	ON	IS	•		·					•	•	•		•		•	36
	Con	cl	us	lon	s.			•				•																			36
	Rec										_	_	_	_	-		_				-	-	_	_	-	-	_		-		38

CONTENTS

	Page
LITERATURE CITED	39
TABLES 1-11	
PLATES 1-10	
APPENDIX A: SOURCES OF DATA AND DETAILED PROCEDURES USED TO	
OBTAIN DATA	Al
Preliminary Survey Study	A2
	A3
Surface Composition Study	A6
Soil Moisture-Strength Study	A7
U. S. Army Cold Regions Research and Engineering Laboratory	
(CRREL) Airphoto Pattern Study	A10
	Áll
TARLES ALAA6	

SUMMARY

The study reported herein consisted of a statistical analysis of the principal factors that influence soil trafficability and the application of the analysis to the development of a scheme for classifying soils under generally wet conditions in Thailand. The scheme is essentially a listing of soil types (in terms of the Unified Soil Classification System and the U. S. Department of Agriculture textural classification system) in decreasing order of median rating cone index. Means and ranges are given for each soil type in high- and low-topography positions for average and highest soil-moisture conditions during the wet season. The probability of successful negotiation of a soil type by military vehicles can be ascertained by comparing vehicle cone indexes with the frequency distribution of rating cone indexes for the soils. Results of the studies performed in the development of the trafficability scheme are summarized as follows:

- a. The probability of "go" for a given vehicle over a given soil type is higher on high topographic positions than on low topographic positions; on low topographic positions the probability of "go" is lowest during times of maximum soil-moisture conditions. For a given topography-moisture condition the probability of "go" decreases for USCS soils in the following order: clean, coarse-grained soils, coarse-grained soils with fines, fine-grained soils, and organic soils.
- b. Soils in Thailand have slightly higher strengths under wettest soil-moisture conditions and slightly lower strengths under average soil-moisture conditions during the wet season than do soils in humid-temperate areas of the United States.

TRAFFICABILITY CLASSIFICATION OF THAILAND SOILS

PART I: INTRODUCTION

Background

1. The study reported herein is a part of an extensive investigation conducted to develop techniques and procedures for determining off-road soil conditions in Thailand and a graphic means of presenting these conditions which will show the relations between vehicle mobility, soil type and moisture content, and slope. This study consisted of a statistical analysis of the principal factors that influence soil trafficability and the application of the analysis in developing a scheme for classifying Thailand soils under generally wet conditions. The scheme presented herein is essentially the same as that reported in a previous WES publication. The major differences are that this scheme is applied to a more restricted area, and some refinement of analytical procedures has been made.

Purpose

2. The purpose of this study was to develop a scheme for classifying the trafficability of Thailand soils in the wet season based on identification of the soils in terms of the Unified Soil Classification System (USCS) and the U. S. Department of Agriculture (USDA) textural classification system, general topographic data, and two general levels of soilmoisture content.

Scope

3. Trafficability data collected at 846 sites in Thailand on coarse-grained soils with fines and fine-grained soils of the 0- to 6- and 6- to 12-in. soil layers were statistically analyzed in the development of a trafficability classification scheme. In 1964 data from 238 sites were collected specifically for this study. Other data used were collected in various Mobility Environmental Research Study (MERS) programs including:

a preliminary survey of environmental factors affecting ground mobility in Thailand, performed in 1962; the study of a quantitative method for describing terrain for ground mobility, surface composition, performed in 1964-1965; a study of soil moisture-strength characteristics of selected soils in Thailand, performed in 1963-1965; a study of selected airphoto patterns of terrain features, performed in 1964-1965 by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL); and tests to develop an analytical model for predicting cross-country vehicle performance, performed in 1965. Most of these data came from the Chiang Mai, Nakhon Sawan, Khon Kaen, Lop Buri, Chanthaburi, and Pran Buri study areas. Analyses were made of cone index, remolding index, rating cone index, surface shear strength, moisture content, density, and specific gravity of soils of low and high topography identified according to the USCS and the USDA textural classification system.

General Approach

- 4. A soil trafficability classification scheme, if it is to be practicable, must first name or identify the soils according to some recognized system of soil classification, then establish trafficability limits for each soil type, and finally, if feasible, collect the various soil types into a small number of groups, each exhibiting a discrete trafficability behavior. The ideal scheme would be one that provides for consideration and evaluation of all aspects of the environment (pedologic, geologic, hydrologic, physiographic, climatic, and vegetative) that affect the trafficability of the soil. The scheme reported herein considers the soil type under very general space and time conditions in a tropical climate. Further refinement according to the environmental characteristics mentioned previously must await the collection of additional data and further analysis.
- 5. Because their trafficability behavior is not materially affected by moisture content, clean sands and gravel have been given a distinct place in the soil trafficability classification scheme and have been excluded from the various statistical analyses that are presented in this report.

6. The soil trafficability classification scheme presented in this report may be considered a composite classification scheme because it uses two well-known systems of soil identification and is based on two moisture levels. The two soil classification systems used are the USCS⁷ (fig. 1) and the USDA soil textural classification system⁸ (fig. 2). The USCS employs soil texture, plasticity, and organic content to name or type soils, whereas the USDA system is based solely on grain size distribution. Because the USCS characterizes soils on the basis of their engineering behavior, it is considered to be more applicable to the development of a soil trafficability classification scheme than the USDA system. However, since many areas in Thailand and other areas in Southeast Asia are mapped in USDA terms, it was also considered desirable to develop a scheme in USDA terms.

	Leborwkory Classificetion Criteria	7		(Ag) . 3	According Linits below "A" line of M loop of the line of the loop	the season of th	section has a favorage and the favorage	Do seged de de d	A the state of the	Atterney limits show "A" line of the FI greenest then T	bert edd gal	Comparison and Space Lance	<u> </u>			10		PARTICITY CAST The laboratory classification of files-grained setta	s they binder. (2) All sieve sizes on this chert are U. S. standard. Firstion purposes,	onsistency meer plactic limit)	After prettiate larger than the Re. to steep size are rescend, a speciase of soil force prettiate larger than 10 size of the contracting of page 12 to be contracted by the contraction of the state of the contraction of the theory of the prettian density in the third with larger and allowed to lose some mixture by respecting. Then the speciase to relight incl in themse. The thread it was presented to the pretting the presented to the pretting to the pretting to a thread should be presented to the pretting to a thread should be presented to the pretting to a thread should be presented to the pretting to a thread should be presented to the pretting to a thread should be pretting to the pretting the pretting the pretting the pretting the pretting to the pretting to the pretting to the plantic that the depart of the plantic that the pretting to the plantic that the pretting that the plantic that the pretting to the plantic that the pretting to the plantic that the pretting that the plantic that the pretting to the plantic that the pretting that the plantic t
TEMPTON and Description)	Information Required for Describing Soils	9	For undisturbed soil: and information on stratification, degree of compact.	ness, commutation, moisture comfitions, and drainings characteristics.	Olve typian, same; halicute approximate	8	oriptiva to	į	Mily and, gravelly; short 20% heri, anguler gravel particles 1/2-in. marine step rounds out sangular and grates, course to fine; shout 1/5	nomphastic fines with low dry strength; well comparted and moist in place; al- luvial cand; (30).		For undisturbed soils and information on structure, structification, each	sistency in undisturbed and re- middle states, neisture and drain- age conditions.	Olive Applical mass; limites to degree and	character of planticity; would mad maximus his of comres grains color- in we condition; odor, if any; local or geologic name and other portions	meenlyine incression; and queel in paresthees.	Example: Clayer silt, brow; slightly placte; and provide of fire seed;	mmercum vertical root bolas; firm and dry in place; loss; (ML).	d by combinations of group symbols. For example GM-OC, wall-groupdes grownl-send strings with elay bit PILED INMERIFCHICH PROCESSES FOR FIRE-CHANNED BOILS OR PRACTIONS performed on the admins for two temperaturely and security of the fired classification is not infended, simply where by band the course particles that interfers with the tests.	Æ	Where removing particle integer than the to store size, and a past of cold to the constraint of particle integer than the cold of the cold
UNITIED SOIL CLASSIFICATION (Including Tentification and Description)	netion Procedures so larger than 3 in. s on settanted usigits)		otantial tiele stare.	of sizes with	o planticity see M. below).	prospere	tential mounts	of sines	planticity see M. below).	-	Stere Size Suspension	1	- Madition	Shipe.	Silen to	2	Stages to	, spongy feel	symbols. For example in Frontiers for size particle move by head the court	sties)	man in the content of
UK (Tachudan	Field Identification Fro (Berluding particles larger	\$	rage in grain since and onbetantial number of all intermediate particle cises.	e else or a range ate elses missing.	mplastic flass or flass with low plasticity (for identification procedures ass HE below)	amtic flame (for identification mas CL below).	de range in grain size and embetantial of all intermediate particle sizes.	whomismaily one size or a range of size- with some informediate sizes adesing.	Sougharis fines or fines with low planticity (for identification procedures see ML below)	w identification	Liffention Processing Dilettery (Section	Outes to elow	Rose to wary allow	Slow	filer to nom	Pose	Mone to wary slow	of by color, oder, by fileron weller	combinations of group symbolic than Institution Fix Fixed on the minus Ho. 40 si out fulfilled by the fulfilled intended, simply remove the fulfilled in the fulfilled on the fu	Ley Strength (erushing characteristies)	of pritt, satisfy of pritt, satisfy of pritt, satisfy of pritt, satisfy of fraction contains a financial satisfier. Satisfy of the characteric consenses colly way of the freel open the freel open is feel of flour.
	(Berloding		Wide rease in gr	Prefeutamently one size or some informetiate sizes	Cor identifie	Plantic flame (f	Wide range in gr of all interme-	Professionally on	Monglastic fines (For 1dentific	Plastic flass (for	on Practice Py Streets (Creative	See to slight	Sedim to high	Slight to	Might to	Eigh to vary high	Section to high	Sentily identified by color, and frequently by fibrum	PIEST PIEST PER performed on ting is not intend	ley Strength (or	Offer investigation of the collection of the collection the collection of the collec
	Typical Pass		Well-graded growels, gravel-enad mixtures, little or no fines.	Porty grades gravels or gravel-sand mixtures, little or no fines.	Silty greeds, greed-end-silt maters.	Clayer gravels, gravel-cand-clay mixtures.	Well-graded sends, gravelly sends, little or no fines.	Porly graded easts or gravelly easts, little or no fines.	Silty seeds, seed-silt marteres.	Clayer sends, sand-clay utstures.		Inorganic silts and wery fine seads, rock flaws, silty or clayery fine seads or clayer silts with silght plantisty.	increase clays of low to mades planticity, gravelly clays, easily clays, and clays, silty clays, loss clays.	Organic silts and organic silty clays of low playticity.	Increment allts, missooms or distanceous fine semay or silty soils, elastic silts.	Incommic clays of high planticity, for clays.	Organic ciays of medium to high planticity, organic silts.	Post and other highly organic solls.	potessaing caracteristies of two groups are designated in the procedures are to be personalized screening.		of comband once that propose a past of maint of comband once the descension of the state of the
	Gross	î	8	8	8	8	85	ħ	ā	8		2	병	26		8	8	E	Soils posses		the first to the f
	Major Divisions	2	Acres of cereary of course stream of cereary				ant evelt Line at metv vot) att att att		•#	i£9 benn n stadii bii ≥ nadir s	of 18	of shalf himpli			Righty Organic Soils	undery classifications: St	er (reaction to senting)	After remarking particles larger than the command of the separation of water on the sur-consistency and because glossy. Men climits when the command of the			
		-			E .of na	- 0/0	of falv beden u	at or ald	tele vist	thest pert	acto evoto Ame and two		Tree ope		1,30100 3	o Jest o	off week	7	3	Dileter	Halfallita i

Fig. 1. Unified Soil Classification System

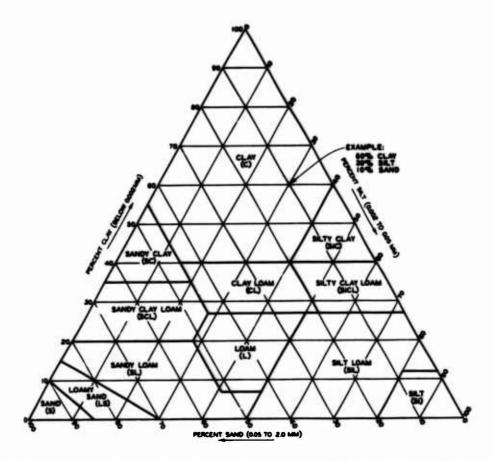


Fig. 2. USDA soil textural classification system

PART II: TRAFFICABILITY FACTORS

7. Trafficability is defined as the capacity of a soil to withstand traffic by vehicles. It is an important aspect of cross-country movement which may be defined as the ability of terrain to permit the movement of vehicles. The factors that influence cross-country movement are numerous. They include not only the many variables which combine to determine the strength and other physical properties of soils, but also slope and other natural obstacles such as drainageways, scarps, vegetation, and microrelief features, as well as man-made obstacles such as railroad embankments, canals, paddy dikes, etc. The investigation reported herein deals mainly with the trafficability of soils. However, the effects of slope are also considered.

Soil Bearing and Traction Capacities

8. Bearing and traction capacities are primarily functions of strength (or shearing resistance) of a soil. Bearing capacity is the ability of a soil to support a vehicle without undue sinkage; traction capacity is the ability of a soil to provide sufficient resistance between the propulsion element of a vehicle and the soil for the necessary thrust to move the vehicle forward. The trafficability of a soil is considered adequate for a given vehicle if the soil has sufficient bearing capacity to support the vehicle and sufficient traction capacity to enable the vehicle to develop the forward thrust necessary to overcome its rolling resistance.

Methods of Measuring and Evaluating Soil Trafficability

9. The soil strength measurements used in the WES system for predicting vehicle performance were used in developing the soil trafficability classification scheme discussed in this report. It has been demonstrated that the effect of soil on the performance of vehicles in terms of "go"*

^{*} In this report "go" means that 50 vehicles can pass in straight-line traffic or one vehicle can execute severe maneuvers without becoming immobilized.

and "no go," slope-climbing ability, drawbar pull, and force required to tow the vehicle can be predicted with reasonable accuracy if the mass and surface soil strengths are not vastly different. If the mass soil strength is high and the surface is wet or consists of a thin, soft soil layer, the vehicle will sink very little, but forward motion may be denied because of loss of traction. Present methods for predicting the performance of vehicles on such soils are not entirely satisfactory. Previous investigations have also shown that the change in strength of a soil which will be developed under vehicular traffic differs significantly for fine-grained and coarse-grained soils; therefore, the measurement and evaluation methods differ somewhat. These differences are discussed in the following paragraphs.

Soil strength measurements used for determining trafficability

- 10. Fine-grained soils and sands with fines, poorly drained. In fine-grained soils and in sands with fines, poorly drained, cone index (CI) and remolding index (RI) measurements are necessary to define soil trafficability. The CI provides an index of the in-situ or undisturbed shear strength of the soil prior to vehicular traffic. It, by itself, is inadequate for predicting the soil strength after repeated traffic by a vehicle because repetitive traffic invariably remolds the soil, thus altering its strength. The probable effect of vehicular traffic on soil strength is obtained from the RI, which indicates the direction and magnitude of the strength change that can be anticipated under vehicular traffic. An RI less than 1.00 denotes a strength loss as a result of remolding; an RI greater than 1.00 indicates a gain in strength. For example, a wet silt may retain only 25% of its undisturbed strength once it is subjected to repetitive vehicular traffic.
- 11. The trafficability of fine-grained soils and sands with fines, poorly drained, is therefore defined in terms of a value called the rating cone index (RCI), which is the product of the CI and the RI for the same soil layer. In general, the soil layer between the 6- and 12-in. depths is critical for most military vehicles operating in such soils. However, the depth of the critical layer varies with the strength profile of the soil and the vehicle type and weight. 9,10

- 12. Various instruments are currently being tested to determine their utility for predicting surface traction for soil trafficability purposes. One instrument (sheargraph) used in this study provides a measure of the ultimate cohesion and ultimate angle of internal friction for soil-to-soil and rubber-to-soil shear failures. In this study a normal load of 10 psi was arbitrarily selected as a constant in determining the surface shear strength of a soil. The equipment and procedures used in taking sheargraph measurements and in reducing and evaluating the data are described in references 11 and 12.
- 13. Coarse-grained soils. For coarse-grained soils or clean sands, CI measurements alone are adequate to quantify trafficability. Usually, the strength of clean sands is not altered significantly by changes in moisture content. Clean sands possess adequate strength to support vehicles without critical sinkage. In clean sands the first pass is the most critical, and subsequent passes are made with less difficulty. The O- to 6-in. layer is considered the critical layer for most military vehicles. Evaluation of soil trafficability
- 14. Fine-grained soils and sands with fines, poorly drained. The ability of a given vehicle to complete 40 to 50 passes traveling in a straight-line path over a level area or to execute severe maneuvers in fine-grained soils or sands with fines, poorly drained, is assured if the RCI of the soil in the critical layer in that area is equal to or greater than the vehicle cone index (VCI) assigned to that vehicle. In general, an RCI equal to 50% of the VCI indicates sufficient soil strength to permit one or two straight-line passes of the vehicle. 13 If the RCI is greater than the VCI of a given vehicle, the additional traction resulting from the excess soil strength can be used to accelerate the vehicle, negotiate slopes, or tow a load.
- 15. The VCI's for most military vehicles are tabulated in several publications.^{9,10} The referenced publications also contain formulas for computing mobility indexes, means of relating these indexes to VCI's, and the relation of drawbar pull, slope, and force required to tow the vehicle to soil strength.
 - 16. Coarse-grained soils. Studies being conducted on clean sands

have not yet progressed to the point of quantifying trafficability. Results thus far indicate that tracked vehicles usually experience little or no difficulty traversing level, clean-sand areas. The effect of soil strength on vehicle performance (in terms of drawbar pull and slope-climbing ability) of a given tracked vehicle is small; however, a significant difference in performance exists among vehicles having different types of track systems. A wide range in wheeled-vehicle performance occurs as a result of changes in tire pressure, number of tires, and tire size.

Soil Moisture

- 17. The principal factor influencing the strength of a given soil is its moisture content. Any soil in a comparatively dry state may be trafficable to all military vehicles; but at high moisture content, its strength and consequently its trafficability may be such that only certain vehicles can pass. It is apparent that moisture conditions must be taken into account in any evaluation of the trafficability of soils and, further, that soils must be at similar or equivalent conditions of moisture in order that they can be rated fairly in comparison with each other.
- 18. Moisture is added to the soil through precipitation, a rising water table, flooding, or irrigation. Moisture is generally depleted from the soil by runoff, gravitational percolation, evaporation, or transpiration through plants. The rate and magnitude of moisture gain or loss and the capacity of the soil to hold water are controlled primarily by the soil and by site characteristics that determine the porosity and permeability of the soil. These characteristics, for the most part, are influenced by the plastic, organic, and textural properties of the soil that are defined in terms of the USCS and the USDA soil classification system.
- 19. Climate must be considered in any type of soil-moisture analysis. The principal elements of climate consist of precipitation, temperature, atmospheric humidity and pressure, and wind velocity. Of these, precipitation and temperature are the two most important factors controlling the gain and loss of soil moisture. Similar soils within a specific climatic

area will have qualitatively similar seasonal soil-moisture conditions; and conversely, similar soils of different climates will have dissimilar seasonal soil-moisture regimes. Soils in hot, humid climatic areas, for example, generally approach minimum moisture levels more rapidly than soils in cool, humid climatic areas because of higher rates of evapotranspiration.

- 20. For purposes of this study, a wet season and a dry season are considered, based on the qualitative moisture conditions of the soil. The wet season is defined as the period of the year when generally high soil-moisture contents prevail; it corresponds to the period of maximum precipitation. The dry season is defined as the period of generally low soil-moisture contents, although maximum moisture contents may occur for short periods immediately after several days of heavy rain.
- 21. Soil-moisture studies conducted at specific sites in various sections of Thailand for continuous periods of almost two years have been used to refine a system for predicting the effects of meteorological factors on the trafficability of soils. The studies show, among other things, that the top 12 in. or so of soil attain relatively high moisture contents during the monsoon season beginning in May or June and continuing through October or November. The distribution of high-rainfall months wherein the rainfall exceeds 100 mm (3.94 in.) a month is recorded in the following tabulation for nine weather stations in Thailand that are located in areas that include most of the study sites.

Location of	Years of	Percent of Years of Record with Rainfall Exceeding 100 mm (3.94 in.) per Month													
Weather Station	Record	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	0ct	Nov	Dec		
Chiang Mai	19-1/2	0	0	0	20	80	75	89	100	100	63	11	0		
Khon Kaen	17	0	0	12	35	100	76	76	100	100	35	0	0		
Nakhon Sawan	15	0	7	0	13	53	53	67	93	100	73	0	0		
Lop Buri	17-1/2	0	0	24	29	71	82	94	89	100	61	6	0		
Bangkok	23-2/3	0	4	4	35	87	87	79	92	100	96	17	0		
Chanthaburi	23	4	9	26	70	100	100	100	100	100	96	26	0		
Sattahip (Chanthaburi Area)	23	0	17	17	48	74	26	30	35	87	96	52	4		
Hua Hin (Pran Buri Area)	20-1/3	5	0	0	15	55	40	25	40	67	81	43	0		
Songkhla (Hat Yai Area)	22-2/3	61	17	22	43	57	57	45	33	55	96	100	91		

Space and time factors affecting soil-moisture content

- 22. In order to estimate the trafficability of a site more accurately, consideration must be given not only to its soil type but also to its topographic position and its general relative moisture-content level. From a study of the data available, certain arbitrary "space" and "time" factors have been designated that are considered essential for optimum accuracy in estimating trafficability on the basis of existing knowledge and available data. Additional data and further study may produce more explicit criteria for estimating the trafficability at a site. However, at the present time, two space factors (low and high topography) and two time factors (wet-season and high-moisture conditions) will be used. These are illustrated in fig. 3 and explained in the following paragraphs.
- 23. Space factors. The depth to the water table has been found to be a significant factor in determining how wet a site may become. Sites which have a water table within 4 ft of the surface become wetter in the top foot than do sites with the water table below the top 4 ft, even though all other conditions appear to be the same.
 - a. Low topography. A site of low topography is one at which a water table is known to exist within 4 ft of the surface, perennially or at some time during the year. Such sites usually occur as bottomlands, lower terraces, depressions, or bottoms of slopes, or occasionally as upland flats associated with impervious subsurface layers or pans. They are generally characterized by poor to fair external drainage and moderately poor to very poor internal drainage. If the water table is actually observed at depths of less than 4 ft from the surface at a site at least once, the site automatically qualifies as a low-topography site. If observed data on water-table depth are not available, sites which appear, from observation, likely to have high water tables on the basis of their topographic position, drainage characteristics, proximity to surface water bodies, or soil coloring (gray or blue mottled soils usually indicate the presence of a consistent water table) are judged to be lowtopography sites.
 - b. High topography. Sites of high topography have water tables at depths greater than 4 ft from the surface at all times. These sites are characterized by soils with no impervious layers or pans and with moderate to good internal and external drainage. They are usually located on ridges or upper



Fig. 3. Profile of a typical area showing various topography-moisture conditions during year

slopes. If information on the water table is not available, it is usually possible to determine whether a site is one of high topography through a study of the topographic position and other environmental data available.

- 24. <u>Time factors</u>. While for this study it would have been desirable to have examined the means and ranges of pertinent soil values measured at a time when the moisture content was at rigorous reference levels, such as field maximum or field capacity, this was not feasible because only a few sites (the prediction-development sites) were known to have been tested when the moisture content was at these levels. In order to realize the benefit of values derived from large masses of data, less rigorous moisture levels, wet-season and high-moisture conditions, were selected. These conditions, or time factors as they are called in this report, are discussed in the following subparagraphs.
 - a. Wet-season condition. The wet-season condition is intended to represent the average moisture condition prevailing in soils during the wet season. Data from some of the drier sites were not utilized because the soil was too firm to obtain the necessary data for a determination of rating cone index. Exclusion of these data tended to bias the averages toward wetter-than-average conditions.
 - b. High-moisture condition. The high-moisture condition represents the worst trafficability condition that can occur at sites that undergo seasonal changes. Marshes, bogs, swamps, and other perennially wet, soft, spongy areas are prime examples of low-topography areas under a high-moisture condition at all times. Low-lying areas with fluctuating water tables and upland areas with seasonal perched water tables are typical examples of low-topography areas where a highmoisture condition occurs intermittently. Low- and hightopography areas that have been subjected to moderate or heavy rainfall are normally under a high-moisture condition during and immediately following rain periods. In this study a high-moisture condition at high-topography sites could not be identified from the collected data. quently, an analysis was not made for this topographymoisture condition and the classification scheme does not include data for this category. Only one set of highmoisture data (cone index, remolding index, rating cone index, sheargraph, and moisture content) was used in the analysis for a given low-topography site. At sites where highmoisture data were collected on more than one day, the set of data selected was for the day of lowest rating cone index. The moisture content for this day was usually, but not

necessarily, the highest recorded at the site. In analyzing the data, a high-moisture condition was considered to have been prevalent at a low-topography site when it was known that the water table was within the top 18 in. of soil. (This 18-in. criterion is based on studies in the United States that show that the strength of a soil decreases at a logarithmic rate with a decrease in depth to the water table and a relatively small rate of change of strength per unit change in depth to the water table when the water table is above a depth of 18 in.)

Slope

- 25. Vehicles that can traverse certain soils on level surfaces often become immobilized when climbing slopes on similar soils. These immobilizations can be attributed primarily to a downhill force, a function of the vehicle's weight and the angle of slope, which opposes the vehicle's forward thrust. In this report slope is expressed in terms of percent (vertical rise divided by horizontal distance, multiplied by 100). Slope index
- 26. The adverse effect of slope on vehicle performance can be expressed by an increase in rating cone index requirements above the vehicle's requirements for level terrain. These excess RCI points, called slope index, may be added to the vehicle cone index and the determination of "go" or "no go" is made by comparing this value with the measured RCI. Detailed procedures are available for determining slope effects and for estimating the maximum slopes negotiable by various vehicle types. 9,10 Three slope index values, one for tracked vehicles with grousers longer than 1-1/2 in., another for tracked vehicles with grousers shorter than 1-1/2 in., and the third for wheeled vehicles, can be obtained for a given slope from the three respective curves shown in plate 1. If, for example, the slope is 30%, the slope indexes for the three vehicle classes would be 13, 15, and 20, respectively.

Effective rating cone index (ERCI)

27. The ERCI is a combined soil strength-slope value which rates the trafficability of a sloping soil. The index is computed by subtracting the slope index from the rating cone index. For example, if the RCI of a soil

is determined to be 50 and the slope is 30%, the ERCI would be 37 (50 minus 13) for tracked vehicles with grousers longer than 1-1/2 in.; 35 (50 minus 15) for tracked vehicles with grousers shorter than 1-1/2 in.; and 30 (50 minus 20) for wheeled vehicles. The determination of "go" or "no go" on sloping terrain is based on a comparison of the vehicle cone index with the ERCI for the vehicle class. If the VCI is greater than the ERCI, vehicles of this type will not be able to climb the slope; if the VCI is less than the ERCI, the slope is considered negotiable. The ERCI can also be applied and, if desired, mapped in regard to level terrain. In this case, the slope index is zero for all vehicle classes and the ERCI is equal to the RCI of the soil.

PART III: ANALYSIS OF DATA

- 28. The data were classified and analyzed in terms of both USCS and USDA soil types under a high-topography, wet-season condition, a low-topography, wet-season condition, and a low-topography, high-moisture condition. The following studies were conducted:
 - a. A determination of means and standard deviations of cone index, remolding index, rating cone index, moisture content, dry density, and specific gravity for the 6- to 12-in. soil layer; cone index and moisture content for the 0- to 6-in. soil layer; and sheargraph shear strength for surface soils.
 - b. A cumulative frequency analysis of rating cone index for the 6- to 12-in. soil layer for each USCS and USDA soil type and for all soils.

Basic Data

29. The data used in these analyses were obtained from 846 sites, 701 of which were located in six MERS study areas, including 103 sites in Chiang Mai, 117 in Khon Kaen, 77 in Nakhon Sawan, 160 in Lop Buri, 182 in Chanthaburi, and 62 in Pran Buri. The remainder of the test sites were located in other sections of Thailand. The general locations of the sites are shown in fig. 4. The data were derived from six different test programs conducted for MERS during the period June 1962 through October 1965. The number of sites from each program which provided data for this study and for each analysis is shown in the following tabulation. The procedures

	Prelim- inary Survey	Traffic- ability Classi- fication	Sur- face Compo- sition	Soil Moisture- Strength	CRREL Air- photo Pattern	Terrain- Vehicle Tests	<u>Total</u>
Number of sites	165	238	224	75	121	23	846
Mean and standard deviation							
Wet-season condition							
CI, 0-6 in.	160	238	224	75	105	23	825
cI, 6-12 in.	157	238	224	75	105	23	822
RI and RCI, * 6-12 in.	91	193	146	70	69	14	
Sheargraph shear strength		227	197	50		22	583 496
Moisture content, 0-6 in.	145	238	106	75	105	22	691
Moisture content, 6-12 in.	130	238	105	75	104	20	6/2
Dry density, 6-12 in.	116	193	29	75		10	423
		(Continu	ed)				

^{*} Also used in analysis of cumulative frequency.

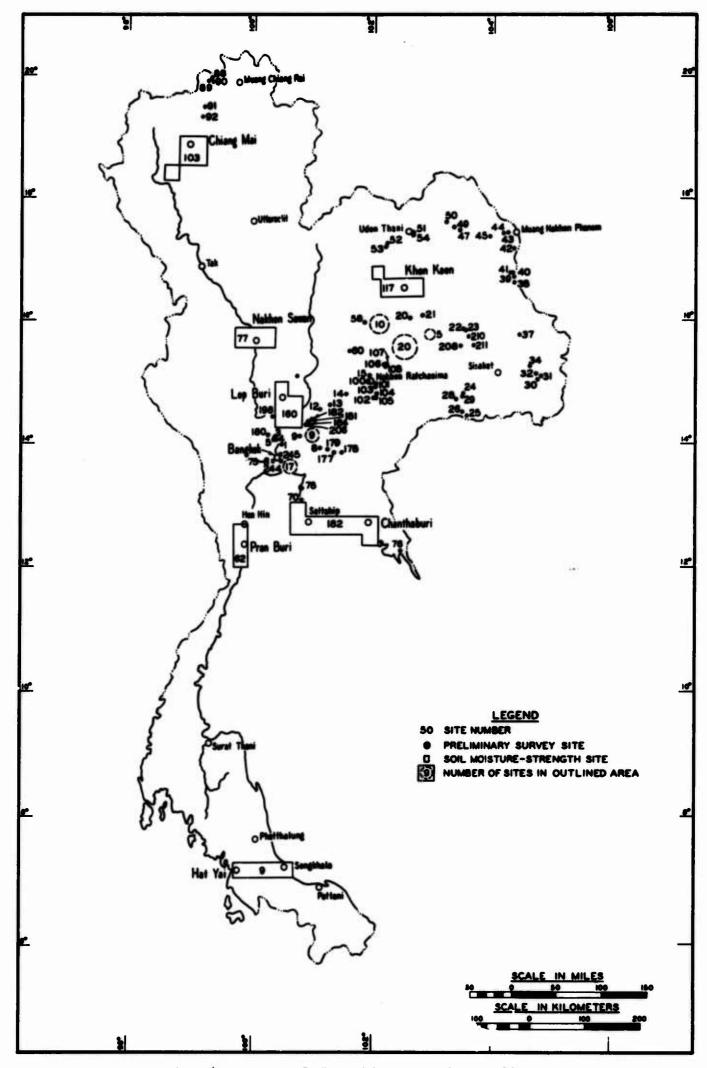


Fig. 4. General location of study sites

	Prelim- inary Survey	Traffic- ability Classi- fication	Sur- face Compo- sition	Soil Moisture- Strength	CRREL Air- photo Pattern	Terrain- Vehicle Tests	Total
Number of sites	165	238	224	75	121	23	8'.6
Mean and standard deviation							
High-moisture condition			-				
CI, 0-6 in.	70	72	64	40	7	15	268
CI, 6-12 in.	69	72	63	40	7	15	266
RI and RCI, # 6-12 in.	55	72 67	49	3 8	7	14	230
Sheargraph shear strength		43		4		15	
Moisture content, 0-6 in.	63	72	3 0	40		15	92 240
Moisture content, 6-12 in.	61	72	50	40		14	237

^{*} Also used in analysis of cumulative frequency.

used in obtaining data in each program are discussed in Appendix A; the data are presented in tables Al-A6.

Method of Computation

30. The General Electric 225 electronic digital computer was employed in computations for this study. Two computer programs were required, one to compute the mean and standard deviation values and one to determine the frequency of occurrence of rating cone index. Data for these programs were supplied to the computer by means of punched IEM cards. These cards form a data retrieval system containing for each site the characteristics of the site (e.g. geographic location, topography class, topographic position, slope, land use, vegetation, etc.), soil data (e.g. percent grain sizes, Atterberg limits, USCS and USDA soil type, specific gravity, organic content, etc.), trafficability data (including CI, RI, RCI, sheargraph measurements, moisture content, and density for wet-season and high-moisture conditions, etc.), and climatological data (e.g. longtime average annual rainfall and temperature, etc.). For a given site, eight IEM cards are required to store approximately 125 pieces of information describing the site, soil, trafficability conditions, and climate.

Mean and Standard Deviation Values of Soil Properties

31. This study establishes the statistical mean and standard deviation values of cone index and moisture content for the 0- to 6- and

6- to 12-in. soil layers; remolding index, rating cone index, dry density, and specific gravity for the 6- to 12-in. soil layer; and sheargraph shear strength for the surface soil. Values for the dynamic soil properties, including moisture content, cone index, remolding index, rating cone index, and sheargraph shear strength, were computed for each of the three topography-moisture condition categories. Values for the static soil properties, including density and specific gravity, were computed only for a wet-season condition (high and low topography, respectively). Data are presented for each of the soil types in the USCS and USDA system in tables 1-7. The mean values in each table, except those for moisture content (table 5), are arranged from top to bottom in decreasing order; the moisture contents are arranged in increasing order. Where data are presented for both the 0- to 6- and 6- to 12-in. layers (tables 1 and 5), the soil types are arranged in order of mean values of the 6- to 12-in. layer. Where data are presented for soil-to-soil shear and soil-to-rubber shear (table 4), the soil types are arranged in order of mean values of soil-tosoil shear.

32. The data were analyzed in terms of mean (X) and standard deviation (s) because these are probably the most widely used and most readily understood statistical measures. The mean (commonly termed arithmetic mean or average) is computed by summing the individual measurements and dividing by the total number of measurements. The standard deviation is a measure of the dispersion of the data around the mean. The standard deviation for less than 30 measurements was computed by means of the formula

$$s = \sqrt{\frac{\sum(x - \overline{x})^2}{n - 1}}$$

where

 Σ = the sum of

 $(x - \overline{x})$ = the deviation of an individual measurement from the mean of all measurements

n = the number of measurements

The -1 was omitted from the denominator of the formula when 30 or more

measurements were used in the computation. When the number of measurements for the specific condition exceeds 30, the interval defined by +1 and -1 standard deviation from the mean will usually contain approximately 68% of the data. Assuming the data are universally valid, if three additional measurements were taken, the values of two would usually fall within this interval. Mean and standard deviation values of a condition with fewer than 30 measurements, and especially of a condition with fewer than 5 measurements, should be viewed with skepticism.

- 33. The data in table 5 show that mean moisture contents for a given soil type are generally highest under a low-topography, high-moisture condition, intermediate under a low-topography, wet-season condition, and lowest under a high-topography, wet-season condition. If data had been developed for a high-topography, high-moisture condition, the mean moisture content would probably lie between those for the low-topography, wet-season condition, and the low-topography, high-moisture condition. This consistent pattern for all soil types (except a few with mean values that are based on relatively few observations and are therefore questionable) is presumed to be evidence in support of the proper identification of site data into the three arbitrary space-time categories used in this report.

 Analysis of strength
- 34. Cone index. The results of the analysis of CI are given in table 1. The data show mean cone indexes that are generally highest for the USCS coarse-grained soils with fines and USDA gravelly and sandy soils, intermediate for the USCS fine-grained soils and USDA loamy soils, and lowest for the USCS organic soil (OH) and USDA silty and clayey soils. Exceptions are the USCS low-plasticity soils (CI-ML and ML) of the 6- to 12-in. layer which have the highest mean cone indexes of all soils under low-topography, wet-season and high-moisture conditions. (The maximum mean value, for GC, is based on one sample and, therefore, is not reliable.) The data also show higher cone indexes for the 6- to 12-in. soil layer than for the 0- to 6-in. layer; the mean cone indexes for all soils under each of the three topography-wetness conditions range from 57 to 78 units higher in the 6- to 12-in. layer than in the 0- to 6-in. layer.
 - 35. The mean and standard deviation values for each of the soil

types and for all soils of a wetness condition are higher than those reported for temperate climates. This apparent difference can be accounted for by differences in the procedures used in the two studies for measuring cone index. In the temperate-soil study, the capacity of the cone penetrometer was 300 (0.5-in. cone), whereas in this study the capacity of the instrument was extended to 750 (0.2-in. cone) in order to satisfy the needs for soil strength data for other engineering purposes. The average cone index for firm soil is higher when measured with the 0.2-in. cone. For example, the soil tested with the 0.5-in. cone may give several 300+ readings, whereas the same soil tested with the 0.2-in. cone may give readings of 420, 480, etc.

- 36. Remolding index. The results of the analysis of RI are given in table 2. A comparison of the mean RI's for all soils shows lower average RI's for the low-topography positions. The data show an average RI of 1.03 for soils under high-topography, wet-season condition, an average RI of 0.76 for soils under low-topography, wet-season condition, and an average RI of 0.66 for soils under low-topography, high-moisture condition. Under each topography-moisture condition, the mean remolding indexes are generally highest for the USCS silty, coarse-grained and highly plastic, fine-grained soils and USDA sandy soils, lowest for the USCS low-plasticity, fine-grained soils and USDA loamy soils, and intermediate for the remaining soils. For the moisture levels considered in this report, relatively few soil types have mean RI's greater than 1.0.
- 37. Rating cone index. The results of the analysis of RCI are given in table 3. Like those for cone index, the data generally show rating cone indexes that are highest for the USCS coarse-grained soils with fines and USDA sandy soils, intermediate for the fine-grained soils, and lowest for the USCS organic soil (OH). The mean RCI for all soils under wet-season condition is about 60 units higher for high-topography than for low-topography position (i.e. 180 versus 121 RCI), and the mean RCI for low-topography position is 35 units higher under the wet-season condition than under the high-moisture condition (i.e. 121 versus 86 RCI). Because of test procedures that provide higher cone indexes in this study, the rating cone indexes are higher and the means and standard deviations are

appreciably greater than those for comparable soils in a temperate climate (see paragraph 35 for an explanation).

38. Sheargraph shear strength. The results of the analysis of sheargraph shear strength of the surface soil for a normal load of 10 psi are given in table 4. The soil types are those for the 0- to 6-in. layer. A comparison of the mean values for a given topography-moisture condition shows little difference between most soil types. The mean shear strengths for soil-to-soil and soil-to-rubber shear appear to be the highest for the high-plasticity and lowest for the low-plasticity USCS soils. A comparison of the mean values for all soils shows a decrease in strength with an increase in the moisture level of the soil for soil-to-soil shear. Only a slight decrease in strength is associated with an increase in moisture level for soil-to-rubber shear. Because the number of samples for most soil types was insufficient for proper statistical analysis, and because the soil type of the 0- to 6-in. layer may, in some cases, be different from that of the surface soil, the results and conclusions drawn from this analysis should be viewed with caution.

Analysis of moisture content

39. The results of the analysis of moisture content are given in table 5. The moisture content is inversely proportional to the soil strength. The data show mean moisture contents to be lowest for the USCS coarse-grained soils with fines and USDA gravelly and sandy soils, intermediate for the USCS low-plasticity, fine-grained soils and USDA loamy soils, and highest for the USCS high-plasticity and organic soils and USDA clayey soils. The mean moisture contents for all soils of the 0- to 6- and 6- to 12-in. layers are about 5% higher for low-topography than for high-topography, wet-season condition and those for low-topography position are about 4% higher for high-moisture than for wet-season condition. Also, mean moisture contents of all soils are about 2% higher for the 0- to 6-in. layer than for the 6- to 12-in. layer.

Analysis of dry density

40. The results of the analysis of dry density are given in table 6. Experience has indicated that changes in dry density of surface soils do not significantly affect their trafficability properties. However, the

density data, along with specific gravity and moisture content data, can be used to estimate the percent saturation of a soil, which is an indicator of the degree of wetness. In this study the density data were analyzed for high- and low-topography, wet-season conditions. The data show densities that are generally highest for the USCS coarse-grained soils with fines and low-plasticity, fine-grained soils and USDA gravelly and sandy soils, intermediate for the USCS moderately plastic, fine-grained soils and USDA loamy soils, and lowest for the USCS highly plastic and organic soils and USDA clayey soils. The mean density for all soils is about 2 lb per cu ft higher under a high-topography condition than under a low-topography, wet-season condition. A comparison of individual USCS soil types shows the density of all soils except CL and SM to be higher for the high-topography position than for the low-topography position. The CL and SM soil densities are slightly less in high positions than they are in low positions. Analysis of specific gravity

41. The results of the analyses of specific gravity are given in table 7. The specific gravity is a static soil property that does not vary with moisture content; consequently, the data were analyzed only for a wet-season condition. The mean specific gravity for all soils of high topography is 0.04 higher than that for all soils of low topography. Specific gravities are highest for the USCS plastic soils and USDA gravelly and clayey soils, and lowest for the USCS low-plasticity and organic soils and USDA silty and sandy soils.

Cumulative Frequency Analysis of Rating Cone Index

Procedures and presentation of data

42. The data used in this analysis are the same that were used in the mean and standard deviation analyses of RCI under wet-season and high-moisture conditions, respectively. The only difference between this and the previous analysis is in the statistical treatment of the data.

43. RCI's for each soil type under each topography-moisture condition were grouped into intervals of 10 RCI's from 1 to 300 and 300+, i.e. 1 to 10, 11 to 20, 21 to 30...291 to 300, and 300+. The measurements in

each class for the group of 300+ observations were tallied and their percentage of the total number was computed. The percentages were added cumulatively, starting with the percentage of 300+ observations and progressing in order of decreasing RCI. Thus, the 300+ or the larger value of the highest RCI increment for which data were available always was 0% frequency, and the smaller value for the lowest RCI increment for which data were available was 100% frequency. The RCI at 50% frequency is the median value.

44. The data are plotted in cumulative frequency graphs in plates 2-5 for the USCS soil types and in plates 6-9 for the USDA soil types. Graphs for three moisture conditions are usually shown for each soil type. Data were not available for sandy clay (USDA type) and OL and Pt (USCS types), nor were data available for analysis of one or more of the wetness conditions in some of the other soil types. The number of samples (sites) used in each analysis is indicated on its graph.

45. It is noted that where an appreciable number of samples were available for analysis, the three curves drawn for each soil type seldom cross each other. Also, the general range of RCI increases from the high-moisture graph through that for low-topography, wet-season, to the high-topography, wet-season graph. This is taken to be evidence of proper categorization of the basic field data into the three general moisture conditions.

46. Graphs are used to show the manner in which RCI varied. For example, the solid-line curve for CL soils in plate 4 shows that 10% of the CL soils under a low-topography, high-moisture condition had RCI's greater than 127, 20% had values greater than 100, and 30% had values greater than 90, etc.

Estimating probability of vehicle "go"

47. The graphs can be used for estimating the probability of "go" for military vehicles. A soil for which the RCI is greater than the VCI will permit 50 vehicles to pass in straight-line echelon or one vehicle to execute severe maneuvers. Thus, the cumulative frequency corresponding to the VCI indicates the probability of a vehicle's success in a given

soil type under a given general moisture condition. For example, if it is known that the soil type is CL and that the water table is within 18 in. of the surface so that the soil is under a low-topography, high-moisture condition (but specific data on strength cannot be obtained), it can be hypothesized from plate 4 that the M48 tank (VCI = 49) would have a 76% probability of "go."

Analysis for all soils

48. An analysis was made of the cumulative frequency of RCI for all soils under wet-season and high-moisture conditions. The procedures of analysis were the same as those used in the analysis of each soil type (see paragraph 43). The curves developed from the analysis may be used to estimate the percentage of areas trafficable for a given vehicle under a given condition of moisture. A discussion of the curves and their use is presented in paragraph 73.

PART IV: SOIL TRAFFICABILITY CLASSIFICATION SCHEME AND RELATED STUDIES

- 49. The soil trafficability classification scheme shown in tables 8 and 9 is essentially a listing of soil types in descending order of their median rating cone indexes under three conditions of moisture: high and low topography under wet-season conditions, and low topography under a high-moisture condition. Information for a high-topography, high-moisture condition was not included in the scheme because data were too few to permit proper analysis. Soil types according to both the USCS and the USDA soil classification system are employed. Thus the scheme can be considered a sixfold scheme for the classification of soils from a trafficability stand-point. The scheme considers the strength of soils in the 6- to 12-in. layer.
- 50. This part of the report summarizes the vehicle classification categories developed in an earlier study, and describes the soil trafficability classification scheme and its possible application in detail. Tables 10 and 11 supplement the classification scheme by providing specific data on the percent probability of "go" for military vehicles on level and sloping terrain for each of the three general moisture conditions and the two soil classification systems.

Vehicle Categories

- 51. Different military vehicles require different minimum soil strengths for operation. A soil condition that is easily trafficable for one vehicle may be impassable for another. Therefore, in order to make the soil trafficability classification meaningful, it was necessary to incorporate vehicle requirements into the scheme for estimating the probability of vehicle "go."
- 52. In an earlier study 15 a system was developed for classifying vehicles on the basis of the minimum soil strength each required for 50 straight-line passes or one severe maneuver on level ground. This system is condensed and repeated here.

Cate- gory	VCI Range	Vehicle and Vehicle Types
1	20-29	M29C weasel, M76 otter, Canadian snowmobile, and some lightweight experimental vehicles. Example: VCI of M29C weasel = 25
2	30-49	Engineer and high-speed tractors with comparatively wide tracks and low contact pressures. Examples: VCI of D7 engineer tractor = 40; VCI of Mll4 armored personnel carrier = 37
3	50-59	Tractors with average contact pressures, tanks with comparatively low contact pressures, and some trailed vehicles with very low contact pressures. Example: VCI of M48 medium tank = 52
4	60-69	Most medium tanks, tractors with high contact pressures, and all-wheel-drive trucks and trailed vehicles with low contact pressures. Example: VCI of M135, 2-1/2-ton truck = 62.
5	70-79	Most all-wheel-drive trucks, a great number of trailed vehicles, and heavy tanks. Example: VCI of 1-1/2-ton, 4x4 dump truck = 73
6	80-99	A great number of all-wheel-drive and rear-wheel-drive trucks, and trailed vehicles intended primarily for highway use. Example: VCI of 1/2-ton, 4x2 pickup truck = 88
7	100 or greater	Rear-wheel-drive vehicles and others that generally are not expected to operate off roads, especially in wet soils. Example: VCI of 5-ton, 4x2 dump truck = 119

The vehicle cone indexes for individual vehicles within the categories are included in Appendix A of reference 15.

Soil Trafficability Classification Scheme, Level Terrain

53. The soil trafficability classification scheme for level terrain is presented in USCS terms in table 8 for high and low topography under wet-season conditions, and for low topography under a high-moisture condition. The scheme is presented in USDA terms in table 9 for the same set of moisture conditions. Information presented in the scheme for each soil type includes a general estimate of the probability of "go" on level terrain for vehicles of various categories. Measurements of soil strength are also included.

Classification of vehicle "go"

54. For the sake of simplicity of presentation, the percent probabilities of vehicle "go" have been arbitrarily classified as follows:

Excellent	greater than 90% probability of "go"
Good	76 to 90% probability of "go"
Fair	50 to 75% probability of "go"
Poor	10 to 49% probability of "go"
No "go"	less than 10% probability of "go"

The probability-of-"go" information is illustrated in tables 8 and 9 by a series of bar graphs, one for each soil type.

Procedures for deriving "go" information

55. The vehicle cone indexes corresponding to 10, 50, 75, and 90% probability of "go," the limiting values of the vehicle "go" groupings, were derived from the cumulative frequency rating cone index graphs (plates 2-9). For example, from the CL soil graph for a low-topography, high-moisture condition (plate 4) it can be seen that the RCI's at 10, 50, 75, and 90% cumulative frequency are 128, 74, 50, and 39, respectively. This means that the soil strength will be greater than 128 RCI 10 times out of 100, greater than 74 RCI 50 times out of 100, greater than 50 RCI 75 times out of 100, and greater than 39 RCI 90 times out of 100. Table 8 shows that vehicles with a VCI greater than 128 will have less than a 10% probability of "go"; those with a VCI ranging from 74 to 128 will have 50% probability of "go"; those with a VCI ranging from 39 to 50 will have a 76 to 90% probability of "go"; and those with a VCI less than 39 will have greater than 90% probability of "go."

Reliability of "go" information

56. The probability lines delineating the vehicle "go" groupings on the bar graphs in tables 8 and 9 are solid where the data were based on more than four samples and the information shown was considered to be reliable. The lines are broken where less than five samples were used in the analysis or the data were otherwise questionable. The positioning of these

broken lines was based on an assumed RCI estimated from the textural, plasticity, and organic properties of the soil.

57. It should be noted particularly that the occurrence of obstacles was not considered in the probability of "go" estimates for level or sloping terrain. Obstacle components of terrain, such as trees, hedges, dikes, and streams, that present a definite deterrent or obstruction to mobility of vehicles would certainly decrease the probability of "go."

Soil strength information

58. The mean CI, RI, surface sheargraph shear strength for a load of 10 psi, and RCI, and the range of RCI (discussed in Part III) are presented again in tables 8 and 9. It may be noted that the mean RCI for a soil generally is greater than its median RCI, which is the same value as the VCI at 50% probability of "go."

Probability of Vehicle "Go" on Level and Sloping Terrain

59. The percent probabilities of vehicle "go" on level and sloping soils classified in terms of the USCS are presented in table 10 for both high and low topography under wet-season conditions, and for low topography under a high-moisture condition; these data on soils classified in terms of the USDA system are presented in table 11. The data for each soil typemoisture condition include the probabilities of negotiation of level terrain (0% slope) and slopes of 15, 30, and 45% by vehicles in each of the seven vehicle categories. The probabilities were established for the median VCI within vehicle categories 1 through 6 (i.e. 25 VCI for category 1, 40 VCI for category 2, etc.) and for the minimum VCI (100) in category 7, for tracked vehicles with grousers shorter than 1-1/2 in. and for wheeled vehicles. Tracked vehicles with grousers longer than 1-1/2 in. would have a slightly better probability of "go" on sloping soils than that computed for tracked vehicles with shorter grousers. For all practical purposes, however, the difference is insignificant, and the probabilities of "go" listed under the "tracked" column in tables 10 and 11 may be applied to both types of tracked vehicles. The probability of "go" established for a vehicle with a median VCI of a category will closely approximate and may

be used to estimate the probabilities of "go" for other vehicles within the same category.

Procedure for deriving "go" information

The probability data were obtained from the cumulative frequency rating cone index graphs presented in plates 2-9. If VCI is substituted for RCI and probability of "go" for cumulative frequency, an estimate of the probability of "go" on level terrain can be made for any vehicle for which a VCI has been computed (discussed in paragraph 47). In order to determine the probability of "go" for a given slope, the slope index, derived from the curve of the vehicle type shown in plate 1, was added to the VCI and the probability of "go" for the soil type-moisture condition was based upon the cumulative frequency reading for this new VCI value. For example, the probabilities of "go" for tracked and wheeled vehicles of 55 VCI (median VCI of category 3) on 0, 15, 30, and 45% slopes of a silt loam soil area under low-topography, wet-season condition were derived as follows. The VCI was substituted for RCI in the abscissa, and the probability of "go" was substituted for cumulative frequency in the ordinate of the silt loam low-topography, wet-season condition graph shown in plate 8. At 55 VCI the probability of "go," read from the graph, was 87%. This value applies to tracked and wheeled vehicles at 0% slope. The slope index at 15% slope, read from the curves of plate 1, was 7 for tracked vehicles with grousers shorter than 1-1/2 in. and 9 for wheeled vehicles. This index was added to the VCI to provide values of 62 (55 plus 7) for the tracked vehicles and 64 (55 plus 9) for the wheeled vehicles. The probabilities of "go" for the VCI values of 62 and 64, read from the graph in plate 8 for silt loam, low topography, and the wet season, were 80 and 79%, respectively. At 30% slope, the slope indexes were 15 and 20, the VCI's became 70 and 75, and the resulting probabilities of "go" were 74 and 68% for the two vehicle types, respectively; at 45% slope, the slope indexes were 27 and 40, the VCI's became 82 and 95, and the probabilities of "go" read from the graph were 60 and 49%, respectively. The probability of "go" can be estimated for any slope and for any vehicle for which a VCI has been computed by using data read from the proper soil type-moisture condition graph and

slope index curve, and following the procedures discussed above.

Reliability of "go" information

- 61. The probability values for a wet-season condition are undoubtedly influenced by the high-moisture, low-strength bias associated with the basic data (previously discussed in paragraph 24a); thus, the actual probability of "go" would be somewhat higher than that indicated.
- 62. The number of samples used in the analysis of a particular soil type-moisture condition provides a rough estimate of its reliability. Analyses based on more than 30 samples would generally have a small plus and minus probability error, i.e. the true probability based on an infinite number of the same type of samples would not vary by more than plus or minus a small standard error of estimate. The probabilities of "go," therefore, are considered to be of good reliability. An analysis based on fewer than 30 samples and especially fewer than 15 samples, but more than 4 samples, would have a moderate standard error of estimate (estimated at ±10 to ±25% probability of "go"). Probabilities based on an analysis of this number of samples are considered to be of only fair reliability and should be viewed with skepticism. Five was arbitrarily chosen as the minimum number of samples needed to provide a reasonably reliable probability value; probabilities of "go" were only estimated for the analyses based on fewer than 5 samples. The estimations were based on assumed strengths estimated from the textural, plasticity, and organic properties of the soil.

Application of Information for Estimating Trafficability Conditions

- 63. The information presented in the trafficability classification scheme and probability of "go" tables should be especially useful in military intelligence, military-operations planning, and vehicle-design work. The information may be applied in quantitative or qualitative terms to military problems or to studies of a tactical or strategic nature.
- 64. The information can be used to estimate trafficability conditions for areas in Southeast Asia that, in most cases, will not be accessible for measurement. Information needed for proper analysis includes

climate and weather, topographic position or water-table conditions, and soil type. Climatological and weather data can be obtained from meteorological records; data on topographic position (and slope if desired) are available from large-scale topographic maps, and information on soil type can be obtained from engineering or pedological reports. It may be reasoned that trafficability-prediction information would not be needed for accessible areas because direct strength measurements with the cone penetrometer could be taken where and when desired. The information, however, could be used in these areas to facilitate a particular study, e.g. the speedy selection of one of several possible access routes, the selection of possible barrier areas (mine fields, etc.) that normally would have good to excellent probabilities of "go," or the selection of broad areas providing the best positions for offensive or defensive operations.

Use of trafficability classification scheme

- 65. The following paragraphs explain by means of examples how the classification scheme can be used.
- 66. Season, soil type, and topography. If it is known that the season is the wet season, the soil type is CL, and the topography is low topography, the data in table 8 for low-topography, wet-season condition would be used to determine trafficability. In this case, the probability of "go" on the CL soil would be less than 10% for vehicles with VCI's greater than 185, between 10 and 50% for vehicles with VCI's between 89 and 185, between 50 and 75% for vehicles with VCI's between 58 and 89, between 76 and 90% for vehicles with VCI's between 42 and 58, and greater than 90% for vehicles with VCI's less than 42.
- 67. Season, soil type, topography, plus rainy weather or high-water-table condition. If, in addition to the knowledge of the season, soil type, and topography, it is known that the soil has been subjected to several days of rain, or if a high water table is known to exist, the low-topography, high-moisture condition data presented in table 8 (or table 9 for USDA soils) would be used. The probability of vehicle "go" on CL soils under these conditions would be less than 10% for vehicles with VCI's greater than 128, between 10 and 50% for vehicles with VCI's between 74 and

- 128, between 50 and 75% for vehicles with VCI's between 50 and 74, between 76 and 90% for vehicles with VCI's between 39 and 50, and greater than 90% for vehicles with VCI's less than 39.
- 68. Probability of one straight-line pass for a vehicle. For clayey soils, an RCI equal to about 50% of the VCI usually will permit one straight-line pass of the vehicle. 13 The probability of a successful operation may be derived from the classification scheme (tables 8 and 9) by projecting a line down from the VCI value multiplied by one-half and reading the probability at its intersection with the particular graph of soil type-wetness condition under consideration. For example, a vehicle with a VCI of 100 would have a recomputed index of 50 (100 x 0.50). The probability of its making one straight-line pass on a CL soil under low-topography, wet-season condition (from table 8) would be 76 to 90% (estimated at 83%).

Use of probability of "go" tables

- 69. The following paragraphs explain how the probability tables (tables 10 and 11) can be used. The particular data to be used, like that for the soil trafficability classification scheme, will depend upon the amount and type of information known, i.e. the topography, moisture condition, and the soil type and system in which the soil is classified.
- 70. Probability of "go" for vehicles within specific VCI categories. The probability of "go" on sloping ground may be estimated for tracked or wheeled vehicles within VCI categories. If, for example, a low-topography, high-moisture condition prevails and the soil is a CL with a 15% slope, the probability of "go" for tracked vehicles in category 3 (VCI 50 to 59) would be 63% (from table 10).
- 71. Comparison of probabilities between two vehicle categories. The probabilities of "go" can be compared for vehicles in two different categories to estimate the advantage that vehicles in one category would have over vehicles in another. For example, under the same set of conditions as those stated in the preceding paragraph, tracked vehicles in category 5 (VCI 70 to 79) would have a 40% probability of "go" (table 10). Since the table shows the probability of "go" for vehicles in category 3 to be 63%, the difference, 23% (63 minus 40), indicates the advantage in performance of vehicles in category 3.

72. Comparison of probabilities for different soil types and slopes. The probabilities of "go" for vehicles within a given category can be compared for two or more different soil types and slopes in order to determine quantitatively the advantage that one route would have over another. For example, if tracked vehicles in category 3 were being considered for use in a low-topography area under a high-moisture condition (table 10), the probability of "go" along route A, a CH soil with maximum slopes of 30%, would be 40%; the probability of "go" along route B, a CL soil with maximum slopes of 15%, would be 63%. Thus, from the standpoint of soil type and slope, route B would have a decided advantage of 23% (63 minus 40) over route A.

Estimation of Percentage of Area Trafficable

73. Cumulative frequency curves of the RCI data for all fine-grained soils and coarse-grained soils with fines tested in Thailand are shown for wet-season (high and low topography) and high-moisture (low topography) conditions in plate 10. For purposes of comparison, a similar set of curves is also shown for humid-temperate soils of the United States. The cumulative frequency of RCI, in percent, is plotted for a 10-300 range of RCI. The curves in plate 10 permit one to estimate the percentage of area trafficable for a given vehicle under a wet-season or high-moisture condition. Because the data are biased toward wetter-than-average conditions, estimates of percentages of trafficable areas made from the curves will be smaller than actual, i.e. on the conservative side. Examination of the data reveals that in Thailand a vehicle with a VCI of 80 can make 50 passes in 60% of the soil areas under average conditions in the wet season, and in 40% of the low-lying soil areas under poorest trafficability conditions (high-moisture condition). The same vehicle can make I pass (vehicle cone index is 80×0.50 or 40 for 1 pass) in 89% of the area under average conditions in the wet season and in 79% of the low-lying areas under poorest trafficability conditions. It should be emphasized that passable areas are considered strictly in terms of the bearing strength of soils on level surfaces. The presence and orientation of slopes and obstacles and

consideration of the extent of areas of sand would affect the percentage of area trafficable. A comparison of the curves for Thailand and U. S. soils shows that the Thailand soils have slightly higher strengths (68 median RCI for the Thailand soils versus 63 for the U. S. soils) under high-moisture conditions and slightly lower strengths (97 median RCI for the Thailand soils versus 107 for the U. S. soils) under wet-season conditions.

PART V: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 74. Based on the data and discussions presented herein, it is concluded that the scheme for classifying trafficability of Thailand soils has the following advantages:
 - a. It rates soil types (both USCS and USDA) according to their median rating cone index under high- and low-topography, wet-season conditions, and under low-topography, highmoisture condition.
 - b. From a consideration of cumulative frequency of occurrence of rating cone index, it permits a ready estimate of the chances of successful travel of any military vehicle (whose vehicle cone index is known) on any soil type under three space-time moisture conditions.
- 75. The conclusions that follow are based on the soil information derived from the various analyses of the basic data.

a. Soil strength.

- (1) Soils in low-lying positions (low topography) generally have lower strengths than those in high-lying positions (high topography). (Paragraphs 34-38 and tables 1-4.)
- (2) The initial strength (cone index) of the 6- to 12-in. soil layer ranges from 57 to 78 units higher than that of the 0- to 6-in. layer. (Paragraph 34 and table 1.)
- (3) The remolding indexes are generally highest for the silty coarse-grained soils and highly plastic fine-grained soils and lowest for the low-plasticity and loamy fine-grained soils. (Paragraph 36 and table 2.)
- (4) The remolding index of a soil decreases with an increase in the moisture level. Under highest moisture level (poorest trafficability condition) the soils retain an average of two-thirds of their initial strength after remolding. (Paragraph 36 and table 2.)
- (5) The initial and remolded strengths of soils (cone index and rating cone index) are highest for the USCS coarse-grained soils with fines and USDA sandy soils, intermediate for the fine-grained soils, and lowest for the organic soils. The rating cone index averages 60 units higher for high-topography than for low-topography position, and that for low-topography positions averages 35 units higher under wet-season condition than under

- high-moisture condition. (Paragraphs 34 and 37 and tables 1 and 3.)
- (6) Soils in Thailand have slightly higher strengths under high-moisture condition and slightly lower strengths under wet-season condition than do soils in humid-temperate areas of the United States. (Paragraph 73 and plate 10.)

b. Soil-moisture content.

- (1) For a given topography-moisture level the moisture contents are lowest for the USCS coarse-grained soils with fines and USDA sandy soils, intermediate for the USCS low-plasticity, fine-grained soils and USDA loamy soils, and highest for the USCS high-plasticity and organic soils and USDA clayey soils. (Paragraph 39 and table 5.)
- (2) The average moisture contents in the wet season are about 5% higher for low-topography than for high-topography positions, and those in low-topography positions are about 4% higher under high-moisture than under wet-season conditions. (Paragraph 39 and table 5.)

c. Density.

- (1) The densities are generally highest for the USCS coarsegrained soils with fines and low-plasticity fine-grained soils and USDA gravelly and sandy soils, and lowest for the USCS highly plastic and organic soils and USDA clayey soils. (Paragraph 40 and table 6.)
- (2) The average density is about 2 lb per cu ft higher under high-topography than under low-topography, wet-season condition. (Paragraph 40 and table 6.)

d. Specific gravity.

- (1) Specific gravities are highest for the USCS plastic soils and USDA gravelly and clayey soils, and lowest for the USCS low-plasticity and organic soils and USDA silty and sandy soils. (Paragraph 41 and table 7.)
- (2) The specific gravity of soils on high-topography position averages 0.04 more than that on low-topography position.

e. Probability of "go."

(1) The probability of "go" for a given vehicle on a given soil type is highest for high-topography, wet-season condition, intermediate for low-topography, wet-season condition, and lowest for low-topography, high-moisture condition. For a given topography-moisture condition, the probability of "go" decreases for soils in the

- following order: clean, coarse-grained soils, coarse-grained soils, coarse-grained soils with fines, fine-grained soils, and organic soils. (Table 8.)
- (2) On a basis of soil strength only, vehicles with vehicle cone indexes less than 80 (i.e. practically all military vehicles except those intended primarily for highway use) can n gotiate at least 60% of the soil areas during average wet-season conditions and at least 40% of the areas during poorest trafficability conditions. (Paragraph 73 and plate 10.)

Recommendations

76. It is recommended that:

- a. In order to improve the reliability of the probability-of"go" information that has been derived from a statistical
 analysis of existing data, new or additional rating cone
 index information should be collected on USCS soil typemoisture conditions with fewer than 15 observations. This
 information should include data from all soil types except
 SM and CL under high-topography, wet-season condition;
 SP-SM, SM-SC, and organic soil types under low-topography,
 wet-season condition; and SP-SM, SC, CL-ML, and organic
 soil types under low-topography, high-moisture condition.
- b. Sheargraph measurements should be incorporated in the trafficability classification scheme if investigations in progress show that these measurements can be related to vehicle traction.

LITERATURE CITED

- 1. U. S. Army Engineer Waterways Experiment Station, CE, <u>Trafficability of Soils</u>; Soil Classification, by M. P. Meyer and S. J. Knight. Technical Memorandum No. 3-240, Supplement 16, Vicksburg, Miss., August 1961.
- 2. , Environmental Factors Affecting Ground Mobility in Thailand;
 Appendix C: Soil Trafficability. Technical Report No. 5-625,
 Vicksburg, Miss., May 1963.
- 3. A Quantitative Method for Describing Terrain for Ground Mobility; Surface Composition. Technical Memorandum No. 3-726, vol II, Vicksburg, Miss. (not yet published).
- 4. Soil Moisture-Strength Characteristics of Selected Soils in Thailand (not yet published).
- Method for Describing Terrain for Ground Mobility; Selected Air-Photo Patterns of Terrain Features, by R. E. Frost and others. Technical Report No. 3-726, vol VI, Vicksburg, Miss., May 1966.
- 6. An Analytical Model for Predicting Cross-Country Vehicle Performance (not yet published).
- 7. ______, The Unified Soil Classification System. Technical Memorandum No. 3-357, vol 1, Vicksburg, Miss., March 1953 (Rev April 1960).
- 8. U. S. Bureau of Plant, Industry, Soils, and Agriculture Engineering, Soil Survey Manual. U. S. Department of Agriculture Handbook No. 18, U. S. Government Printing Office, Washington, D. C., August 1951.
- 9. U. S. Army Engineer Waterways Experiment Station, CE, <u>Trafficability of Soils</u>; A Summary of Trafficability Studies Through 1955, by S. J. Knight. Technical Memorandum No. 3-240, Supplement 14, Vicksburg, Miss., December 1956.
- 10. U. S. Department of the Army, <u>Soils Trafficability</u>. Technical Bulletin TB ENG 37, U. S. Government Printing Office, Washington, D. C., July 1959.
- 11. Cohron, Gerald T., "Soil sheargraph." Agricultural Engineering, vol 44, No. 10 (October 1963), pp 554-556.
- 12. , "Cohron sheargraph for shearing strength measurements."

 Journal, Environmental Sciences, vol 6, No. 6 (December 1963), pp 17-20.
- 13. U. S. Army Engineer Waterways Experiment Station, CE, One-Pass Performance of Vehicles on Fine-Grained Soils, by C. J. Nuttall, Jr., C. W. Wilson, and R. A. Werner. Contract Report No. 3-152, Vicksburg, Miss., July 1966.

- 14. U. S. Army Engineer Waterways Experiment Station, CE, <u>Water Table</u>
 <u>Prediction Study</u> (not yet published).
- 15. , Trafficability of Soils; Vehicle Classification. Technical Memorandum No. 3-240, Supplement 9, Vicksburg, Miss., May 1951.

Table 1

Mean and Standard Deviation Values for USCS and USDA Soil Types

Cone Index, 0- to 6-in. and 6- to 12-in. Layers

		US	CS						US	DA			
	0-	to 6-	in.	6-	to 12		 	0-	to 6-	in.	6-	to 12	
Tyroa	n.	<u> X</u>	_8_		<u>x</u> _	2		<u></u> .		2_			3
				High	-Topog	raphy,	Wet-Season Cond	ltion					
GC GM SP-SM SM-SC ML	 1 3 13	273 163 197	71 115	1 2 10 11	617 462 378 304	407 238 259	GL GSCL SC GSL LS	2 1 1 17	137 171 273 290	76 164	4 2 2 7 22	617 524 511 340 301	18 32 33 25 22
SC SM CL CH MH	7 42 8 8 17	155 243 100 168 128	85 149 63 185 66	17 59 23 15 14	286 269 258 205 179	187 209 221 163 76	CL SL SiC L SiL	9 35 2 19 10	204 184 127 149 98	162 129 83 106 42	8 49 2 28 6	278 264 252 218 210	20 18 20 20 26
CL-ML	3	89	18	8	135	41	SCL GCL SiCL C S GSiL	6 1 3 5	145 126 142 215	63 79 72	9 2 4 6 6	199 198 188 171 153 125	13 3 12 5
All soils	102	188	132	160	258	200	All soils	111	185	129	158	263	20
				Low-	lopogr	aphy, W	et-Season Condit	ion					
GC CL-ML ML SM SC	12 51 61 10	156 192 239 181	103 151 160 145	1 41 50 95 35	430 313 303 282 264	188 206 176 190	GCL GS1CL GSL GSCL	1 3	98 246	150	4 2 1 5 2	522 385 371 349 290	29 19 - 21 19
SM-SC CL SP-SM CH MH	7 84 1 57 28	248 155 100 74 99	134 152 49 44	20 241 9 119 35	250 209 193 134 125	183 160 103 90 73	SL IS S CL L	84 28 5 14 57	218 186 233 100 145	155 116 289 55 125	140 40 14 51 122	252 250 240 229 221	17 14 14 15 17
ОН	8	52	45	6	31	13	SiL SCL C SiCL Si SiC	83 25 32 4 23	142 104 63 114 300 63	123 45 35 129 299 58	98 34 43 51 2 39	210 195 184 154 141 97	17 13 14 14
All soils	319	158	142	652	217	168	All soils	362	152	138	648	216	16
				Low-To	pogra	ohy, Hi	gh-Moisture Cond	ition					
CL-ML ML SM-SC SM SC	7 28 1 19 2	119 124 249 171 68	117 109 159 8	20 21 32 12	266 257 249 201 167	209 221 259 114 82	GSL Si LS S GCL	2 9 4 1	337 145 259 103	392 102 327	1 13 6	311 208 207	14 ¹
CL MH SP-SM CH OH	38 13 1 29 4	74 91 78 47 30	30 34 24 17	98 16 2 53 4	127 116 100 94 35	55 66 35 57 14	Sil SL L CL SCL	23 30 31 12	85 126 83 76	40 75 36 39	26 46 58 22 15	190 178 167 158 123	186 142 139 76
1							C SiCL SiC	16 15 20	61 63 48	35 37 27	18 30 27	122 105 76	60 58 43
All soils	142	95	91	262	152	123	All soils	163	93	87	262	152	123

Table 2

Mean and Standard Deviation Values for USCS and USDA Soil Types

Remolding Index, 6- to 12-in. Layer

	USCS				USDA		
Туре	n and a state of the state of t	X .	8	Type	n	X	S
		High-1	pography, W	et-Season Conditi	on	anti-tribute of the company of the c	nth-otherwises is not all a subscribe a
SM	32	1.32	0.79	LS	12	1.62	0.9
СН	11	1.(.	0.16	CL	5 2	1.19	0.1
MH	9 4	1.02	0.36	Sic	2	1.16	0.0
SM-SC		0.98	0.22	SL	29 4	1.04	0.5
SC	10	0.94	0.27	S		1.03	0.4
CL-ML	7	0.83	0.28	SCL	8 5 3 3 23	0.95	0.2
CL	16	0.82	0.27	SiL	5	0.92	0.2
ML	7	0.69	0.33	C	3	0.90	0.1
GM	1	0.51		SicL	3	0.89	0.2
GC	1	0.45		L		0.83	0.2
				GSiL	1	0.71	
				GSL	1	0.51	
				GCL	ı	0.51	
				GL	1	0.45	
All soils	98	1.03	0.55	All soils	98	1.03	0.5
		Low-Top	ography, We	t-Season Condition	<u>n</u>		
SP-SM	6	1.31	0.68	S	9	1.34	0.6
SM	55	0.89	0.57	GSL	9 2	1.14	0.0
CH	101	0.88	0.24	LS	22	1.07	0.5
MH	34	0.79	0.28	c	32	0.87	0.2
SC	23	0.77	0.29	Si	1	0.86	
CL	187	0.71	0.23	SiL	72	0.83	0.3
OH		0.62	0.12	SiCL	47	0.77	0.2
CL-ML	5 24	0.57	0.21	GSCL	i	0.77	
ML	35	0.51	0.27	SiC	39	0.76	0.1
SM-SC	13	0.51	0.22	CL	38	0.75	0.2
				L	98	0.69	0.2
				SL	97	0.65	0.3
				SCL	26	0.64	0.1
				GCL	1	0.51	
All soils	483	0.76	0.34	All soils	485	0.76	0.3
		Low-Topo	graphy, Hig	h-Moisture Condit:	ion		
SP-SM	2	1.22	0.56	S	- 5	1.32	0.6
CH	50	0.79	0.24	IS	5 9	0.86	0.6
MH	16	0.66	0.24	SiL	21	0.78	0.2
CL	91	0.65	0.20	C	15	0.75	0.1
OH	91	0.65	0.11	CL	21	0.73	0.2
SC	11	0.64	0.30	Sicl	29	0.71	0.2
SM	20	0.53	0.31	SiC	^7	0.68	0.1
ML	17	0.43	0.22	SCL	15	0.60	0.1
CL-ML	12	0.42	0.13	L	50 28	0.59	0.2
SM-SC	3	0.34	0.21	SL	38	0.47	0.2
All soils	226	0.66	0.31	All soils	230	o.66	0.3

Mean and Standard Deviation Values for USCS and USDA Soil Types
Rating Cone Index, 6- to 12-in. Layer

	USCS				USDA		
	7	<u>X</u>	8	Туре	n	x	s
		High-To	pography, We	et-Season Condition			
GC SM	1 32	25 3 227	197	IS Sic	12	325 274	268 16
SC SM-SC CH	10 4 11	221 170 169	165 45 81	GL CL SCL	1 5 8	253 245 221	ნ9 193
CL MH CL-ML ML	16 9 7 7	150 148 118 104	125 83 62 89	SL S C Sicl	29 4 3 3 23	171 145 145 136	108 69 69 124
GM	í	89		L		124	91
				S1L GS1L GCL GSL	5 1 1	99 89 89 53	47
All soils	98	180	148	All soils	98	180	147
		Low-To	pography, We	t-Season Condition			
SP-SM SM SC CL-ML CH	6 55 23 24 100	234 197 144 108 108	184 170 102 74 90	S GSL LS C SL	9 2 22 32 97	301 293 230 141 121	267 94 164 129 123
CL ML MH SM-SC OH	187 34 33 13	102 101 90 85 22	60 91 57 53 13	L Si CL GSCL SiL	98 1 38 1 71	119 118 117 116 111	116 53 64
				GCL SiCL SiC GCL	26 46 39 1	91 84 78 53	56 52 54
All soils	480	121	111	All soils	483	120	111
		Low-Top	ography, Hig	h-Moisture Condition	<u>1</u>		
SP-SM SM SC ML CL	2 22 11 17 91	132 129 113 100 79	98 114 106 98 40	S LS CL SiL C	5 9 21 21 15	315 134 102 94 87	332 75 44 46 42
CH MH CL-ML SM-SC OH	50 16 12 3 4	70 67 65 47 24	44 36 36 37 14	L SCL SI SiCL SiC	50 15 38 29 27	85 79 75 66 53	69 42 82 33 35
All soils	228	86	81	All soils	230	86	81

Table 4

Mean and Standard Deviation Values for USCS and USDA Soil Types

Sheargraph Shear Strength in psi at 10-psi Normal Pressure

	0-	il-to-S	USCE	24	ber-to-	0-41		0.	11-to-8	USDA	Desk	ber-to-	0-43
	80	Shear		MUD	Shear			80	Shear		KUD	Shear	
Туре	n	X	8	n	1	8	Туре	n	<u>x</u>	8	n	X	8
in the second of the second se	· · · · · · · · · · · · · · · · · · ·		Market Confessionally distribution	Hig	h-Topog	raphy, k	iet-Susson Co	ndit	on	the mark the second second second	designate the complete	THE STATE OF THE PARTY OF THE P	ine er erene n in d itromeren en e
CL	14	8.88	1.23	4	7.45	0.85	SiL	1	9.00		1	7.10	
MH	4	8.88	1.90	4	6.43	1.11	CL	4	8.98	1.09	5	6.56	1.86
CH	2	8.40	0.28	3	4.30	1.21	L	8	8.94	1.45	8	6.49	0.88
ML	4	8.33	1.36		6.00	0.59	SiC	1	8.60		1	5.70	
CL-ML	3	8.13	1.95	3	6.70	0.96	Sicl	1	8.20		1	3.60	••
SM	11	7.61	1.00	11	5.24	0.76	SL	7	7.80	0.97	7 6	5.91	0.61
SC	2	7.20	0.99	2	5.90	1.13	LS	6	7.18	0.85		4.88	0.79
							SCL	1	6.50		1	5.10	
							C	1	6.20		1	5.00	
All soils	30	8.12	1.30	31	5.87	1.19	All soils	30	8.12	1.30	31	5.87	1.19
				Low	-Topogr	aphy, We	t-Season Cor	ditio	n				
CH	18	8.07	1.24	18	5 72	1.45	SCL	1	10.00		1	6.90	
CL	46	7.77	2.13	42	5.73 6.24	1.58	GCL	ī	9.40		ī	6.60	
SM-SC	5	7.46	1.16	5	5.16	0.86	CL	10	8.36	1.99	8	6.43	1.13
SC	á	7.27	0.65	á	5.83	0.76	SiL	35	7.75	1.62	34	5.87	1.58
SM	31	7.23	1.46	31	5.25	1.04	SL	42	7.59	1.32	42	5.37	1.02
SP-SM	1	7.10		1	5.70		L	24	7.15	2.22	23	5.51	1.27
ML	18	7.06	1.95	17	5.26	1.09	S	1	7.10		ĭ	5.70	
CL-ML	8	6.76	2.39	7	5.34	1.28	Sicl	17	7.04	2.28	15	6.25	1.65
MH	10	6.02	1.88	7	5.31	1.01	C	5	6.98	2.26	3	5.83	0.97
							LS	12	6.33	0.64	12	4.98	0.63
							GSL	1	4.00		1	4.40	
							SiC	2	3.65	2.33	1	3.30	
All soils	140	7.39	1.88	131	5.66	1.35	All soils	151	7.37	1.84	142	5.64	1.32
				Low-	lopogra	phy, Hig	h-Moisture C	ondit	ion				
CH	4	8.85	0.82	24	6.43	0.13	GCL	1	8.20		1	7.40	
CL-ML	4	7.00	3.36		5.57	2.61	SiL	10	7.53	2.66	9	6.02	1.66
SM	6	6.68	1.35	3	4.90	0.49	SL	5	6.86	1.36	5	4.62	0.92
CL	16	6.67	3.11	12	5.68	1.81	CL	5	6.84	3.54	3	5.17	3.00
ML	5	4.84	2.03	4	4.35	1.49	С	3	6.33	3.00	1	6.40	
MH	3	3.80	1.85				LS	4	5.93	0.77	4	4.73	0.51
							L	11	5.93	2.06	10	4.68	0.92
							Sicl	4	5.23	4.09	2	6.70	0.42
							SiC	1	2.00				
All soils	38	6.47	2.68	29	5.43	1.57	All soils	1111	6.43	2.52	35	5.31	1.46

Mean and Standard Deviation Values for USCS and USDA Soil Types
Moisture Content, % Dry Weight, O- to 6-in. and 6- to 12-in. Layers

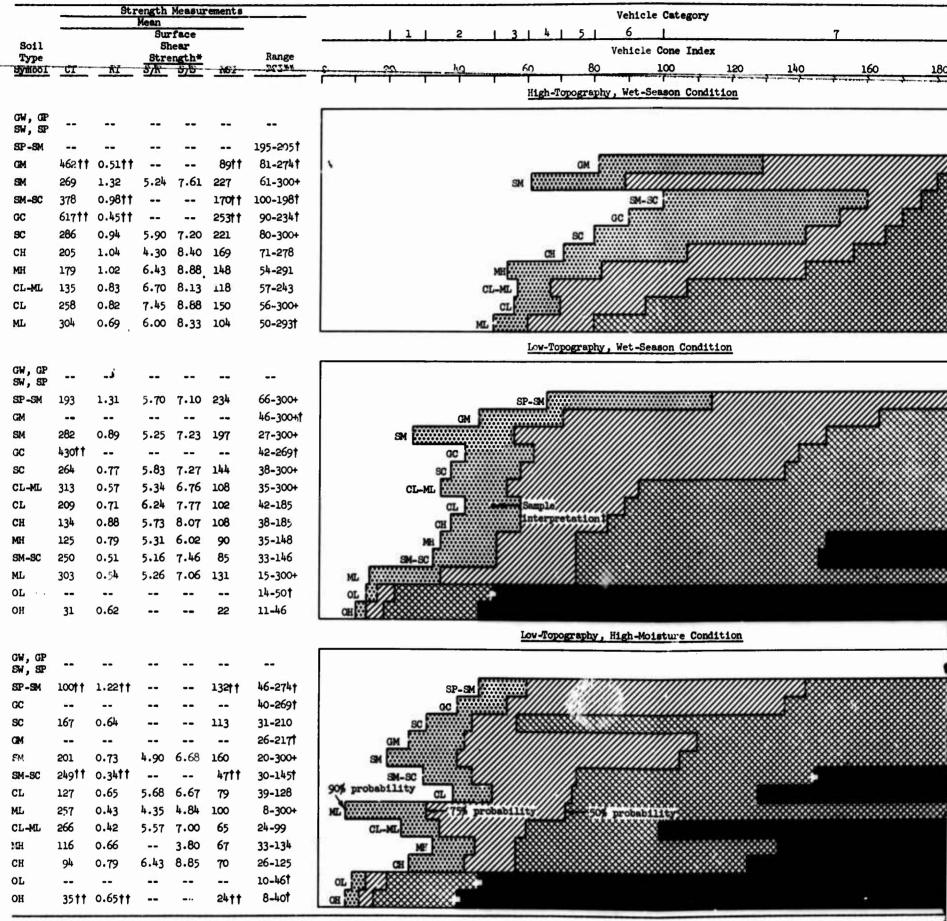
SN+SC 3 16.5 2.6 8 13.0 3.1 S 5 8.5 1.0 5 12.2 6.7 SN 39 12.9 6.5 bp 13.4 7.3 GL 2 18.3 0.4 1 14.0 GC 1 14.0 SC 2 14.1 8.0 CL-ML 3 15.9 1.1 8 15.8 3.3 GSL 1 11.0 5 14.6 3.3 SC 7 20.5 5.1 14 18.0 4.5 GSCL 1 17.4 1 17.6 CL 8 22.7 5.0 20 18.8 4.6 GSL 1 17.4 1 17.2 1 17.2 CL 8 22.7 5.0 20 18.8 4.6 GSL 5 1 19.9 9.8 8 18.8 4.1 CN 7 31.4 6.0 14 30.9 5.4 CCL 1 12.4 SOL 5 19.9 9.8 8 18.8 4.1 CN 7 31.4 6.0 14 30.9 5.4 CCL 2 19.4 4.2 CN 7 31.4 6.0 14 30.9 5.4 CCL 2 19.4 4.2 CN 7 31.4 6.0 14 30.9 5.4 CCL 2 19.4 4.2 CN 7 31.4 6.0 14 30.9 5.4 CCL 2 19.4 4.2 CN 7 31.4 6.0 14 30.9 5.4 CCL 2 19.4 4.2 CN 7 31.4 6.0 14 30.9 5.4 CCL 2 19.4 4.2 CN 7 31.4 5.0 14 30.9 5.4 CCL 2 19.4 4.2 CN 7 31.4 5.0 14 30.9 5.4 CCL 2 19.4 4.2 CN 7 31.4 5.0 14 30.9 5.4 CCL 2 19.4 4.2 SLCL 1 35.4 4 37.3 6.1 SLCL 1 1 1.9.9 3.6 40 6.6 1.5 1.3 GSCL 2 15.4 4.6 CL-ML 11 1.9.9 3.6 40 6.6 1.5 1.3 GSCL 2 15.4 4.6 CL-ML 11 1.9.9 3.6 40 6.6 1.5 1.3 GSCL 2 15.4 4.6 CL-ML 11 1.9.9 3.6 40 6.6 1.5 1.3 GSCL 1 1.5 T.7 SM-SC 7 17.5 10.2 20 16.2 4.4 GSCL 1 1.5 T.7 1 17.5 T.5 SM-SC 7 17.5 10.2 20 16.2 4.4 GSCL 1 1.5 T.7 1 17.5 T.5 GSCL 1 1.5 T.7 1 1.5 T				USCS							USDA			
SP-SM		O- t	o 6-in.	Taver	6				0- t	o 6-in.	Laver	6		
High-Topography, Wet-Season Condition	Tros		X		n			Туре				n		
SP-SM 1 11.0 15 16 9.1 3.8 19 11.1 4.6 SM-SC 3 16.5 2.6 8 13.0 3.1 s 5 8.5 1.0 5 12.2 6.7 SM 39 12.9 6.5 49 13.4 7.3 GL 2 18.3 0.4 11 14.0 GC 1 14.0 SC 2 14.1 8.0 CL-ML 3 15.9 1.1 8 15.8 3.3 GSL 1 11.0 5 14.6 3.3 SC 7 20.5 5.1 14 18.0 4.5 80CL 1 11.0 5 14.6 3.3 SC 7 20.5 5.1 14 18.0 8.5 SL 34 19.7 9.7 14.6 13.3 CM 1 12.4 6.0 18.8 14.6 881L 1 17.4 1 17.2 1 CM 31.4 6.0 14 30.9 5.4 60L 5 19.9 9.8 8 18.6					u4a	h_Tonog	manhy k	let-Seeson C	nd1+1	On.	100 mg 1010 mg 1011		**** ** ****** ***	and the state of the
SMN-SC 3 16.5 2.6 8 13.0 3.1 S 5 8.5 1.0 5 12.2 6.5 M 39 12.9 6.5 M9 13.4 7.3 GL 2 18.3 0.4 1 14.0 GC 1 14.0 SC 2 14.1 8.0 6.5 GC 2 14.1 8.0 8.2 SL 1 11.0 5 14.6 3.2 SC 2 14.1 8.0 8.2 SL 1 11.0 5 14.6 3.2 SC 2 14.1 8.0 8.2 SL 1 11.0 5 14.6 3.2 SC 1 12.6 6.0 M 1 12.6 6.0 SL 1 11.0 5 14.6 8.2 SL 1 11.0 8.2 SL 1 11.0 11.0 SL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1125	n-10pog	rapity, v				-			
SM 39 12.9 6.5 49 13.1 7.3 GL 2 18.3 0.4 1 14.0 GC 1 14.0 SC 12 14.1 8.0 GC 1 14.0 SC 12 14.1 8.0 3.3 SC 7 20.5 5.1 14 18.0 4.5 GSCL 1 11.0 5 14.6 3.3 SC 7 20.5 5.9 11 18.6 8.2 SL 34 19.7 9.7 43 16.9 9.1 CL 8 22.7 5.0 20 18.8 4.6 GS1L 1 17.4 1 17.2 GM 1 22.4 SCL 5 19.9 9.8 8 18.8 4.1 CH 7 31.4 6.0 14 30.9 5.4 GCL 1 21.4 4.2 CH 7 31.4 6.0 14 30.9 5.4 GCL 1 21.4 4.2 MH 17 41.6 8.5 14 39.1 8.3 L 17 27.5 13.6 27 23.8 11.9 CL 8 28.5 11.3 7 29.1 9.7 SIG 2 31.1 30.3 6 28.6 8.3 CL 8 28.5 11.3 7 29.1 9.7 SIG 2 31.1 3.4 6.0 19.6 10.4 All scils 104 21.1 12.0 138 19.5 10.2 LOW-TOPOGRAPHY, Wet-Season Condition GC 1 12.6 18 SCL 2 15.4 4.0 SM 58 15.5 6.5 90 15.6 6.1 GSCL 2 15.4 4.0 SM-SC 7 17.5 10.2 20 16.2 4.4 GSL 1 17.5 SM-SC 7 17.5 10.2 20 16.2 4.4 GSL 1 17.4 1 17.5 SM-SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 1 17.5 SM MI 18.5 9 16.4 7.3 GL 1 17.5 SM MI 22.2 10.0 49 18.5 6.9 S h 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 13.8 14.6 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 13.8 14.6 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 13.9 32.6 7.9 MH 26 46.0 20.4 34 45.8 20.5 L 38 17.9 28.5 12.7 93 27.1 12.6 GC 1 12.2 4.6 16 17.9 4.7 SSL 99 48.7 18.2 35 42.5 19.4 MI 26 24.6 6.1 30 18.3 55.5 15.8 SCL 3 25.2 16.9 13.8 32.6 7.9 CL MI 27.7 T 17 22.0 8.3 SSL 34 17.7 16.6 624 24.6 15.0 CL MI 27.8 SSL 34 23.8 8.0 2 33.5 12.6 SM-SC 1 16.6 6.1 30 18.0 5.5 SCL 1 15.8 35 42.5 19.4 CL MI 27.9 44.7 T 17 22.0 8.3 SSL 35 25 19.9 5.3 41.2 22.6 7.3 SSL 36 27.9 13.4 39.2 22.7 7.3 SSL 36 27.9 13.4 39.2 22.7 7.3 SSL 36 27.9 13.4 6.0 5.3 34.9 17.7 12.0 5.0 SSL 36 2.9 13.4 39.2 22.7 12.5 SSL														4.6
GC 1 14.0 SC 2 14.1 8.5 CL-ML 3 15.9 1.1 8 15.8 3.3 GSL 1 11.0 5 14.6 3.2 SC 7 20.5 5.1 14 18.0 4.5 GSCL 1 17.4 5 14.6 3.2 SC 7 20.5 5.1 14 18.0 4.5 GSCL 1 17.4 5 14.6 3.2 SC 7 20.5 5.0 20 18.8 4.6 GSLL 1 17.2 1.0 CL 8 22.7 5.0 20 18.8 4.6 GSLL 1 17.2 1.0 CM 7 31.4 6.0 14 30.9 5.4 GCL 1 17.2 1 17.2 1 1 22.4 SCL 5 19.9 9.8 8 18.8 4.1 17 41.6 8.5 14 39.1 8.3 L 17 27.5 13.6 27 23.8 11.9 MH 17 41.6 8.5 14 39.1 8.3 L 17 27.5 13.6 27 23.8 11.9 GL 2 23.3 10.3 6 28.6 8.3 CL 2 23.3 10.3 6 28.6 8.3 CL 2 23.8 10.3 7 29.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1														
CL-ML 3 15.9 1.1 8 15.8 3.3 GBL 1 11.0 5 14.6 3.5 SC 7 20.5 5.1 14 18.0 4.5 GBCL 1 17.4					-					_		_		
SC 7 20.5 5.1 14 18.0 4.5 GSCL 1 17.4					_							_		
ML 13 19.0 5.9 11 18.6 8.2 SL 34 19.7 9.7 k3 16.9 9.7 CL 8 22.7 5.0 20 18.8 k.6 GSIL 1 17.2 9 GM 1 12.4 SCI 5 19.9 9.8 8 18.8 k.1 10.1 11. 11. 11. 11. 11. 11. 11. 11.												•		
CTL 8 22.7 5.0 20 18.8 4.6 GSIL 1 17.2 1 12.4 SCL 5 19.9 9.8 8 18.8 4.1 CH 7 31.4 6.0 14 30.9 5.4 GCL 2 19.4 4.2 CH 7 31.4 6.0 14 30.9 5.4 GCL 2 19.4 4.2 CH 7 31.4 6.0 14 30.9 5.4 GCL 2 19.4 4.2 CL 8 28.5 11.3 6.2 27 23.8 11.2 CL 8 28.5 11.3 7 29.1 9.5 SLC 1 33.4 10.2 6 24.5 8.2 CL 8 28.5 11.3 7 29.1 9.5 SLC 1 35.4 4 37.3 6.1 19.5 CL 8 28.5 11.3 7 29.1 9.5 SLC 1 35.4 4 37.3 6.1 19.5 CL 8 11.5 SLC 1 35.4 4 37.3 6.1 19.5 CL 8 11.5 SLC 1 35.4 4 37.3 6.1 19.5 CL 8 11.5 SLC 1 35.4 4 37.3 6.1 19.5 CL 8 11.5 SLC 1 35.4 4 37.3 6.1 19.5 SLC 1 35.4 4 37.3 5.1 19.5 SLC 1 35.4 4 37.5 SLC 1 35.4 SLC 1														
OM 1 22.4 SCI 5 19.9 9.8 8 18.8 8 18.8 1 19.7 31.4 6.0 14 30.9 5.4 GCI 2 19.4 4.4 6.0 14 30.9 5.4 GCI 2 19.4 4.5 8.2 11.3 7 29.1 9.1 6.2 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12		-8								_		_		-
CH 7 31.4 6.0 14 30.9 5.4 GCL 2 19.4 4.2 MH 17 41.6 8.5 14 39.1 8.3 L 17 27.5 13.6 27 23.8 11.2 CL 8 28.5 11.3 7 29.1 9.7 SIC 2 23.3 10.3 6 28.6 8.3 CL 8 28.5 11.3 7 29.1 9.7 SIC 1 35.4 4 37.3 6.1 All soils 98 21.5 12.2 140 19.6 10.4 All soils 104 21.1 12.0 138 19.5 10.2 Low-Topography, Wet-Season Condition GC 1 12.6 18 28 15.5 5.7 37 14.6 4.7 SN 58 15.5 6.5 90 15.6 6.1 GSCL 2 15.4 4.0 CL-ML 11 19.9 3.6 40 16.1 5.1 GSLC 1 2.5.7 SN-SC 7 17.5 10.2 20 16.2 4.4 GSL 2 16.9 2.1 4 16.1 4.2 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 1 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 S 4 15.5 11.8 14 18.3 7.2 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 SIL 79 28.5 12.7 93 27.1 12.8 ML 52 22.2 10.0 10.4 14.5 8.5 20.5 L 56 25.9 16.2 118 22.7 12.5 SIC 1 16.6 18 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.0 2 33.5 12.6 SIC 2 20.0 7.0 12 20.7 3.8 SIL 79 28.5 12.7 93 27.1 12.8 SIC 1 16.6 1 18 4.3 12.8 44 43.6 5.5 SCL 3 25.9 16.2 118 22.7 12.5 SM-SC 2 20.0 7.0 12 20.7 3.8 GSL 1 17.4 1 18.0 4.7 18.0 18.0 18.0 18.5 19.5 19.6 19.6 19.0 18.0 18.0 18.5 19.5 19.6 19.0 18.3 17.0 18.2 18.3 5.1 18.4 14.1 18.0 18.3 17.0 18.2 18.3 5.1 18.4 14.1 18.0 18.3 17.0 18.2 18.3 5.1 18.4 14.1 18.0 18.3 18.0 18.5 19.9 18.3 19.0 18.5 19.0 18.3 19.0 18.5 19.0 18.3 19.0 18.5 19.0 18.3 19.0 18.5 19.0 18.3 19.0 18.5 19.0 18.3 19.0 18.5 19.0 18.5 19.0 18.5 19.0 18.3 19.0 18.5 19.0 18.3 19.0 18.5 19.0		_		-										
Sil 10 33,4 10.2 6 24,5 8.2 C 2 23.3 10.3 6 28.6 8.3 CL 8 28.5 11.3 7 29.1 9.7 Sid 2 31.8 4.5 2 31.1 37.3 6.1 Sid 2 31.8 Sid 3 31.4 Sid 3 31.7 Sid											-			4.2
Sil 10 33,4 10.2 6 24,5 8.2 C 2 23.3 10.3 6 28.6 8.3 CL 8 28.5 11.3 7 29.1 9.7 Sid 2 31.8 4.5 2 31.1 37.3 6.1 Sid 2 31.8 Sid 3 31.4 Sid 3 31.7 Sid	MH	17	41.6	8.5	14	39.1	8.3	L	17	27.5	13.6	27	23.8	11.5
CL 8 2 23.1 10.3 6 28.6 8.3 11.3 7 29.1 9.7 81C 2 31.8 4.5 12.2 140 19.6 10.4 All soils 104 21.1 12.0 138 19.5 10.3 **Eow-Topography, Wet-Season Condition** GC 1 12.6 18 28 15.5 5.7 37 14.6 4.7 SM 58 15.5 6.5 90 15.6 6.1 GSCL 2 15.4 4.6 CL-ML 11 19.9 3.6 40 16.1 5.1 GSICL 2 15.4 4.6 CL-ML 11 19.9 3.6 40 16.1 5.1 GSICL 1 12.5 7 SM-SG 7 17.5 10.2 20 16.2 4.4 GSL 2 16.9 2.1 4 16.1 4.2 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.7 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.6 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.5 SM 11 soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 **SP-SM 1 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM 23.6 1 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM 23.6 1 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM 24.2 1 10.4 2 SM 25.2 1 10.6 50 34.9 17.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 34.9 17.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 34.9 17.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 34.9 17.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 34.9 17.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 34.9 17.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 34.9 17.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 34.9 17.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 30.8 SL 25 19.9 5.3 41 22.6 16.9 SM 25.2 1 10.6 50 30.8 SL 25 19.9 5.3 41 22.6 16.9 SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM 25.2 1 10.6 50 30.4 SCL 12.0 SCL 12		·												8.2
CL 8 28.5 11.3 7 29.1 9.7 SiC 2 31.8 4.5 2 31.1 3.1 3.4 4 37.3 6.1 All soils 98 21.5 12.2 140 19.6 10.4 All soils 104 21.1 12.0 138 19.5 10.3 Low-Topography, Wet-Season Condition						. •						6		8.3
SiC 2 31.8 4.5 2 31.1 3.4 SiCL 1 35.4 4 37.3 6.1 All soils 98 21.5 12.2 140 19.6 10.4 All soils 104 21.1 12.0 138 19.5 10.3 **Low-Topography, Wet-Season Condition** GC 1 15.6 6.1 GSCL 2 15.4 4.6 CL-ML 11 19.9 3.6 40 16.1 5.1 GSCL 2 15.4 4.6 CL-ML 11 19.9 3.6 40 16.1 5.1 GSCL 1 1.5.7 SM-SC 7 17.5 10.2 20 16.2 4.4 GSL 2 16.9 2.1 4 16.1 4.2 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 S 4 17.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.6 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.6 SM 20 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.6 SICL 13 31.4 39 32.6 7.5 SICL 32 31.7 10.6 50 34.9 17.7 SICL 14 31.6 15.3 51 27.5 19.6 SICL 22 39.0 13.4 39 32.6 7.5 SICL 32 37.1 10.6 50 34.9 17.7 SICL 33 35.5 12.6 S1CL 32 25.7 18.2 35 42.5 19.6 SICL 32 37.1 10.6 50 34.9 17.7 SICL 32 38.0 2 33.5 12.6 SICL 32 37.1 10.6 50 34.9 17.7 SICL 32 38.1 10.3 6.9 12 18.3 5.1 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 SM-SC 2 20.0 7.0 12 20.7 3.8 GSL 15 18.3 5.0 SP-SM 1 16.8 2 24.8 7.0 S 31 1.7 7.0 15 SP-SM 1 18.4 3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 SIL 18 27.9 19.5 CL 14 41.3 15.4 16 34.0 7.1 SICL 12 38.1 13.4 26 39.4 21.7 CL 14 31.5 14.1 16 34.0 7.1 SICL 12 38.1 13.4 26 39.4 21.7 CL 14 41.3 15.4 16 34.0 7.1 SICL 12 38.1 13.4 26 39.4 21.7 CL 14 41.3 15.4 16 34.0 7.1 SICL 12 38.1 13.4 26 39.4 21.7 SICL 12 38.1 13.4 26 39.4 21.7 CL 14 41.3 15.4 16 34.0 7.1										28.5				9.7
Sign 1 35,4 4 37,3 6.1						3.		SiC	2	31.8		2		3.4
Compagnity Wet-Season Condition GC						1.1		Sicl	1	35.4		4		6.1
GC 1 12.6 IS 28 15.5 5.7 37 14.6 4.7 SM 58 15.5 6.5 90 15.6 6.1 GSCL 2 15.4 4.0 CL-ML 11 19.9 3.6 40 16.1 5.1 GSCL 1 12.7 1 12.6 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 1 17.5 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 1 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 8 4 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SGL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 SiL 79 28.5 12.7 93 27.1 12.6 SiCL 32 31.7 10.6 50 34.9 17.5 SiCL 35 26.4 27.7 17 22.0 8.3 SiCL 32 31.7 17.4 15 18.3 5.0 SiCL 32 31.7 17.4 SiCL 33.9 32.8 32.8 32.8 SiCL 33.9 32.9 32.8 SiCL 33.9 32.9 32.8 SiCCL 33.1 32.4 26 39.4 32.7 SiCCL 34.4 31.3 34.9 26 39.4 21.7 SiCCL	All soils	98	21.5	12.2	140	19.6	10.4	All soils	104	21.1	12.0	138	19.5	10.3
SM 58 15.5 6.5 90 15.6 6.1 GSCL 2 15.4 4.6 CL-ML 11 19.9 3.6 40 16.1 5.1 GSICL 2 15.4 4.6 CL-ML 11 19.9 3.6 40 16.1 5.1 GSICL 2 15.7 12.5 SM-SC 7 17.5 10.2 20 16.2 4.4 GSL 2 16.9 2.1 4 16.1 4.2 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 8 4 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 CL 14 31.6 15.3 51 27.5 19.6 S1CL 32 31.7 10.6 50 34.9 17.7 S1CL 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 LOW-Topography, High-Moisture Condition CL-ML 7 21.2 4.6 16 17.9 4.7 18 8 18.3 6.9 12 18.3 5.1 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 2 20.0 7.0 12 20.7 3.8 GSL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 2 20.0 7.0 12 20.7 3.8 GSL 15 18.2 23.4 12.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 12 20.4 12 20.4 12.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 12 20.4 12.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 12 20.4 12.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 22.2 28.4 12.5 CL 14 41.3 12.8 44.3 12.8 44.3 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 SICL 12 38.1 13.4 26 39.4 21.7					Low	-Topogr	aphy, We	t-Season Con	nditio	<u>n</u>				
SM 58 15.5 6.5 90 15.6 6.1 GSCL 2 15.4 4.6 CL-ML 11 19.9 3.6 40 16.1 5.1 GSICL 2 15.4 4.6 CL-ML 11 19.9 3.6 40 16.1 5.1 GSICL 2 15.7 12.5 SM-SC 7 17.5 10.2 20 16.2 4.4 GSL 2 16.9 2.1 4 16.1 4.2 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 8 4 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 CL 14 31.6 15.3 51 27.5 19.6 S1CL 32 31.7 10.6 50 34.9 17.7 S1CL 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 LOW-Topography, High-Moisture Condition CL-ML 7 21.2 4.6 16 17.9 4.7 18 8 18.3 6.9 12 18.3 5.1 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 2 20.0 7.0 12 20.7 3.8 GSL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 2 20.0 7.0 12 20.7 3.8 GSL 15 18.2 23.4 12.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 12 20.4 12 20.4 12.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 12 20.4 12.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 12 20.4 12.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 22.2 28.4 12.5 CL 14 41.3 12.8 44.3 12.8 44.3 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 SICL 12 38.1 13.4 26 39.4 21.7	GC				1	12 6		T.S.	28	15.5	5 7	37	14.6	h 7
CL-ML 11 19.9 3.6 40 16.1 5.1 GS1CL 1 15.7 SM-SC 7 17.5 10.2 20 16.2 4.4 GSL 2 16.9 2.1 4 16.1 4.2 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 8 4 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 CL 14 31.6 15.3 51 27.5 19.6 S1 4 23.8 8.0 2 33.5 12.6 S1CL 32 31.7 10.6 50 34.9 17.5 S1C 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 LOW-Topography, High-Moisture Condition CL-ML 7 21.2 4.6 16 17.9 4.7 IS 8 18.3 6.9 12 18.3 5.1 SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 SC 2 20.0 7.0 12 20.7 3.8 GSL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 SC 2 20.0 7.0 12 20.7 3.8 GSL 15 18.3 5.0 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 1 20.4 1 20.4 1 20.4 1 20.4 1 20.4 1 20.4					_									
SM-SC 7 17.5 10.2 20 16.2 1.4 GSL 2 16.9 2.1 4 16.1 4.2 SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 S 4 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 S1L 32 31.7 10.6 50 34.9 17.7 S1C 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 SM-SC 1 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.8 2 24.6 2.3 S1 1 17.7 15 18.3 5.0 SM-SC 1 16.8 2 24.6 2.3 S1 1 17.7 15 18.3 5.0 SM-SC 1 16.8 2 24.6 2.3 S1 1 17.7 1 12.4 15 18.3 5.0 SM-SC 1 16.8 2 24.6 2.3 S1 1 17.7 1 12.4 15 18.3 5.0 SM-SC 1 16.8 2 24.6 2.3 S1 1 17.7 1 12.4 15 18.3 5.0 SM-SC 1 16.8 2 24.6 2.3 S1 1 17.7 1 12.4				3.6										
SP-SM 1 18.5 9 16.4 7.3 GL 1 17.5 SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 S 4 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 CC 22 39.0 13.4 39 32.6 7.9 S1 4 23.8 8.0 2 33.5 12.6 S1 4 23.														
SC 10 17.1 5.9 34 18.5 9.9 GCL 1 17.4 4 18.0 8.4 ML 52 22.2 10.0 49 18.5 6.9 S 4 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 7.3 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 16.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 CL 14 31.6 15.3 51 27.5 19.6 S1CL 32 31.7 10.6 50 34.9 17.7 S1CL 32 30.9 S1CL 32 31.7 S1CL 32 31.1 31.4 62 39.4 21.7 S1CL 32 38.1 13.4 26 39.4 21.7 S1CL 32 38.1 13.4 36 39.4 21.7 S1CL 32 38.1 13.4 36 39.4 21.7 S1CL 32 38.1 13.4 36 39.4 21.7 S1CL 32 38.1 13.4 26 39.4 21.7 S1CL 32 38.1 13.4 36 39.4										•				
ML 52 22.2 10.0 49 18.5 6.9 S 4 15.5 11.8 14 18.3 7.3 CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 S1 4 23.8 8.0 2 33.5 12.6 S1CL 32 31.7 10.6 50 34.9 17.7 S1C 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 SM-SC 1 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.1 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 15.3 5.1 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 15.3 5.1 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.8 2 24.6 2.3 S1 1 17.7 15 15.0 SM-SC 2 20.0 7.0 12 20.7 3.8 GSL 1 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 1 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 CL 12 38.1 13.4 26 39.4 21.5 S1C 16 52.7 18.1 23 49.0 21.8	SC	10	17.1	5.9	34	18.5		GCL	1	17.4		14		8.4
CL 81 23.4 7.0 231 22.5 7.3 SL 83 18.0 8.5 139 18.3 12.0 CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 CL 14 31.6 15.3 51 27.5 19.6 S1 4 23.8 8.0 2 33.5 12.6 S1 23.7 10.6 50 34.9 17.7 S1 20.4 14.8 624 24.6 15.0 S1 23.7 10.6 50 34.9 17.7 S1 20.4 12.7 18.3 5.0 S1 23.7 18.3 5.1 S1 23.7 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3									4		11.8			
CH 50 36.6 10.8 113 35.5 15.8 SCL 3 25.2 16.3 34 18.5 4.5 MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 CL 14 31.6 15.3 51 27.5 19.6 S1 4 23.8 8.0 2 33.5 12.6 S1CL 32 31.7 10.6 50 34.9 17.7 S1CL 19 48.7 18.2 35 42.5 19.4 ALI soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 SM-SC 1 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.8 2 24.6 2.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 SL 1 17.7 1 20.4 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.1 13.4 26 39.4 21.7 S1CL 12 33.1										18.0				
MH 26 46.0 20.4 34 45.8 20.5 L 56 25.9 16.2 118 22.7 12.5 OH 8 66.2 20.1 6 93.4 11.9 S1L 79 28.5 12.7 93 27.1 12.8 CL 14 31.6 15.3 51 27.5 19.6 CL 22 39.0 13.4 39 32.6 7.9 S1L 32 31.7 10.6 50 34.9 17.7 S1C 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 Low-Topography, High-Moisture Condition CL-ML 7 21.2 4.6 16 17.9 4.7 IS 8 18.3 6.9 12 18.3 5.1 SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 12.4 CL 35 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 120.4 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1									3					4.5
CL-ML 7 21.2 4.6 16 17.9 4.7 IS 8 18.3 6.9 12 18.3 5.1 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SM-SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 CL 35 26.4 5.5 93 24.8 7.0 S 31 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 CH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39	MH		46.0	20.4		45.8			56		16.2			12.5
C 22 39.0 13.4 39 32.6 7.9 S1 4 23.8 8.0 2 33.5 12.6 S1CL 32 31.7 10.6 50 34.9 17.7 S1C 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 Low-Topography, High-Moisture Condition CL-ML 7 21.2 4.6 16 17.9 4.7 IS 8 18.3 6.9 12 18.3 5.1 SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 15 18.3 5.0 SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 10.4 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 CH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7	OH	8	66.2	20.1	6	93.4	11.9					93	27.1	12.8
C 22 39.0 13.4 39 32.6 7.9 Si														19.6
SiCL 32 31.7 10.6 50 34.9 17.7 SiC 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 Low-Topography, High-Moisture Condition					•					39.0		39		7.9
SiC 19 48.7 18.2 35 42.5 19.4 All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 Low-Topography, High-Moisture Condition CL-ML 7 21.2 4.6 16 17.9 4.7 IS 8 18.3 6.9 12 18.3 5.1 SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 120.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7														
All soils 304 26.5 15.2 627 24.5 15.0 All soils 347 26.4 14.8 624 24.6 15.0 Low-Topography, High-Moisture Condition CL-ML 7 21.2 4.6 16 17.9 4.7 IS 8 18.3 6.9 12 18.3 5.1 SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 1 20.4 SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 CC 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7														
CL-ML 7 21.2 4.6 16 17.9 4.7 IS 8 18.3 6.9 12 18.3 5.1 SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 1 20.4 SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 1 20.6 16.9 SP-SM 1 16.8 2 24.6 2.3 SI 1 17.7 1 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 SI 1 17.7 1 20.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 S1CL 12 38.1 13.4 26 39.4 21.7		-	_					Sic	-					19.4
CL-ML 7 21.2 4.6 16 17.9 4.7 IS 8 18.3 6.9 12 18.3 5.1 SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 1 20.4 SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7	All soils	304	26.5	15.2	627	24.5	15.0	All soils	347	26.4	14.8	624	24.6	15.0
SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 1 20.4 SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 1 20.4 2.6 16.9 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7					Low-	lopogra	phy, Hig	h-Moisture C	ondit:	ion				
SM 16 16.6 6.1 30 18.0 5.5 SCL 15 18.3 5.0 SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 1 20.4 SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 1 20.4 2.6 16.9 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7	CL-ML	7	21.2	4.6	16	17.9	4.7	LS	8	18.3	6.9	12	18.3	5.1
SM-SC 1 16.6 4 20.0 5.0 GCL 1 17.4 1 20.4 SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7											-			
SC 2 20.0 7.0 12 20.7 3.8 GSL 1 20.4 ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7													_	
ML 25 24.2 7.7 17 22.0 8.3 SL 25 19.9 5.3 41 22.6 16.9 SP-SM 1 16.8 2 24.6 2.3 S1 1 17.7 CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1CL 12 38.1 13.4 26 39.4 21.7				7.0										
CL 35 26.4 5.5 93 24.8 7.0 S 3 17.0 13.4 6 23.1 5.9 CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1C 16 52.7 18.1 23 49.0 21.8									25	19.9	5.3			16.9
CH 18 44.3 12.8 44 39.6 15.7 L 30 24.4 6.0 53 24.3 11.7 MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1C 16 52.7 18.1 23 49.0 21.8									1					
MH 13 46.9 19.9 14 52.7 27.3 S1L 18 27.9 7.9 21 26.0 9.0 OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 S1CL 12 38.1 13.4 26 39.4 21.7 S1C 16 52.7 18.1 23 49.0 21.8		35			93				3					5.9
OH 4 69.6 12.9 4 92.3 14.9 CL 12 33.2 13.7 22 28.4 12.5 C 14 41.3 15.4 16 34.0 7.1 Sicl 12 38.1 13.4 26 39.4 21.7 Sic 16 52.7 18.1 23 49.0 21.8														11.7
C 14 41.3 15.4 16 34.0 7.1 SiCL 12 38.1 13.4 26 39.4 21.7 SiC 16 52.7 18.1 23 49.0 21.8														9.0
SiCL 12 38.1 13.4 26 39.4 21.7 SiC 16 52.7 18.1 23 49.0 21.8	OH	4	69.6	12.9	4	92.3	14.9	CL	12	33.2	13.7	22	28.4	12.5
Sic 16 52.7 18.1 23 49.0 21.8														7.1
														21.7
Ul soils 122 30.3 15.7 236 28.5 16.8 All soils 140 30.3 15.1 236 28.5 16:8								SiC	16	52.7	18.1	23	49.0	21.8
	All soils	122	30.3	15.7	236	28.5	16.8	All soils	140	30.3	15.1	236	28.5	16:8

Table 6

Mean and Standard Deviation Values for USCS and USDA Soil Types

Dry Density, 1b per cu ft, 6- to 12-in. Layer

	USCS			The state of the s	USDA		
Туре	n	X	8	Туре	<u>n</u>	X	8
		High-To	pograph	y, Wet-Season Condi	tion		
SM-SC GC ML CL-ML SM	5 1 3 8 37	112.2 104.8 102.0 101.3 98.3	8.2 2.7 5.8 6.5	GSL GL SL S L	3 1 27 5 14	109.5 104.8 102.7 96.1 98.7	13.2 5.8 8.8 5.0
CL SC GM CH MH	13 9 1 5 7	96.6 95.8 94.6 82.4 75.1	6.7 11.1 6.6 10.9	SCL GCL IS SiL C	8 1 14 1 2	95.3 94.6 94.4 91.8 85.6	3.0 2.0
				SiCL CL SiC	4 6 2	79.1 78.9 75.5	10.7 12.1 1.7
All soils	89	96.2	10.9	All soils	88	96. 0	10.6
		Low-Topo	graphy	, Wet-Season Conditi	lon		
SM-SC SC SM CL-ML ML	12 13 48 23 29	101.9 100.3 99.5 99.4 97.7	5.1 7.5 7.7 8.4 7.9	GSicl GCL GSCL GSL SCL	1 1 2 23	117.3 110.4 107.9 103.4 100.5	13.5 7.2
CL SP-SM CH MH OH	135 6 54 8 4	97.1 92.0 80.5 69.9 47.7	8.2 5.7 10.3 10.5 4.7	SL IS L CL SiL	72 22 73 26 22	99.9 98.9 97.3 96.5 94.2	
				S SiCL C SiC	10 21 25 32	90.9 85.4 79.6 77.4	5.4 15.4 7.5 14.2
All soils	332	93.9	12.4	All soils	331	93.9	12.4

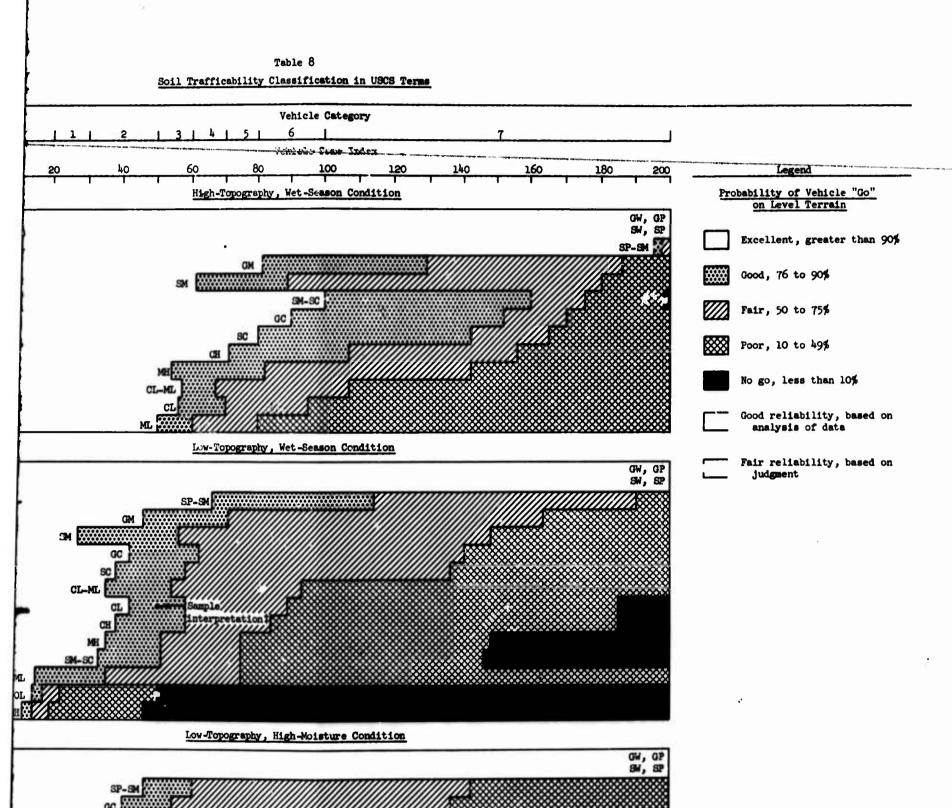

Table 7

Mean and Standard Deviation Values for USCS and USDA Soil Types

Specific Gravity, 6- to 12-in. Layer

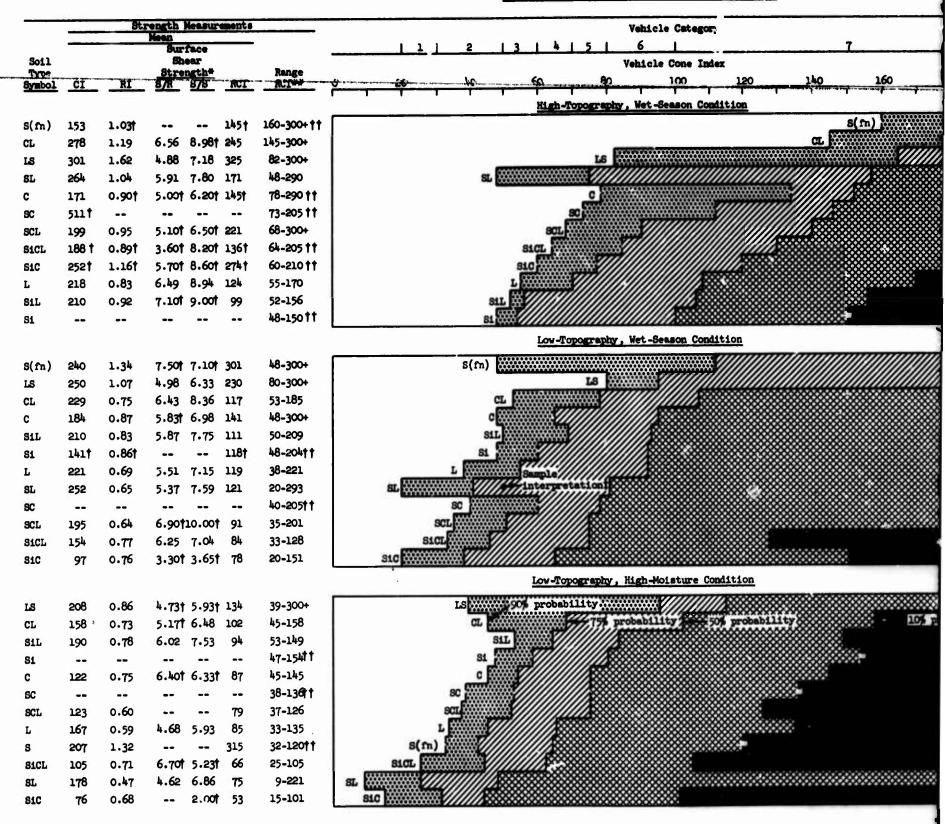
	USCS	3			USDA		
Туре	_11	<u>-</u>		Туре	<u> </u>	x	S
		Hfgh_Tor	oorenhy k	let-Season Condi	ition		
		iiigii-10	OBI apity 5	ico-beason cona	101011		
GM	2	3.10	0.28	GL	5	2.97	0.28
GC MH	1 12	2.96	 0 11	GSCL GSL	2	2.91 2.90	0.37
SC	15	2.77 2.77	0.11 0.24	GCL	2	2.81	0.30
SM-SC	12	2.71	0.20	SiCL	2	2.77	0.11
CH	12	2.69	0.06	CL	7	2.75	0.11
CL	18	2.68	0.03	L	19	2.69	0.06
SM ML	40 7	2.65 2.64	0.10 0.02	GSiL SiC	1 2	2.68 2.68	0.02
CL-ML	3	2.64	0.02	SiL	5	2.67	0.02
				SL	39	2.65	0.07
				C	6	2.65	0.05
				S	1	2.64	
				LS SCL	18 5	2.63 2.63	0.02
All soils	122	2.70	0.14	All soils	122	2.70	0.14
				t-Season Condit			
	_		Brapity, ne	O-BCGBOIL COIMIL	1011		
CH	86	2.68	0.07	GSicl	1 2	3.00	
SC MH	20 34	2.67 2.66	0.11 0.08	GL GSL		2.98 2.79	0.23
CL	128	2.66	0.06	GCL	5 3 1	2.76	0.05
CL-ML	24	2.65	0.04	GSCL	ĭ	2.73	
SM	65 4	2.65	0.07	Si	2	2.71	0.03
SP-SM	4	2.65	0.06	SiC	25	2.71	0.04
SM-SC ML	8 33	2.65 2:64	0.05 0.05	CL C	26 26	2.68 2.67	0.05 0.07
OH	33	2.61	0.18	SCL	13	2.65	0.03
				SiCL	36	2.65	0.08
				SiL	79	2.65	0.07
				L S	79 65 8	2.65 2.64	0.07
				LS	28	2.64	0.05
				SL	87	2.64	0.04
All soils	408	2.66	0.07	All soils	407	2.66	0.07
				3			

Table 8 Soil Trafficability Classification in USCS Terms


Vehicle category and cone index range are given in paragraph 52. Note:

A vehicle with a vehicle cone index of 50 would have a 75-90% chance of "go" on a CL soil of low-topography, wet-season condition.

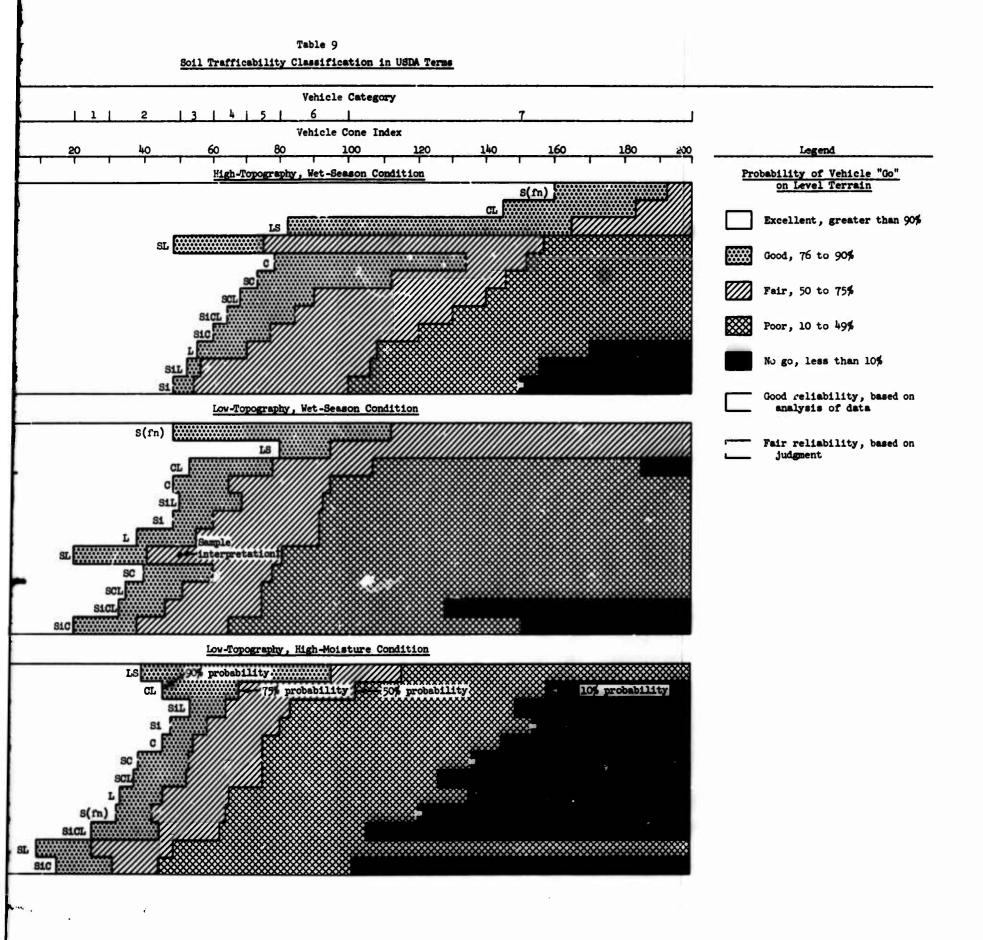
Sheargraph soil-to-rubber (S/R) and soil-to-soil (S/S) strength in psi for a normal load of 10 psi. Excluding lowest 10% and highest 10% of all RCI values.


Estimated from textural, plasticity, and organic properties of soil under given moisture condition.

paragraph 52.
/S) strength in psi for a normal load of 10 psi.
ues.
operties of soil under given moisture condition.

a 75-90% chance of "go" on a CL soil of low-topography, wet-season condition.

Table 9 Soil Trafficability Classification in USDA Terms


** Excluding lowest 10% and highest 10% of all RCI values.

Brised on analysis of less than five samples.

Vehicle category and cone index range are given in paragraph 52. in psi for a normal load of 10 psi.

^{††} Fstimated from textural, plasticity, and organic properties of soil under given moisture condition.

‡ A vehicle with a vehicle cone index of 50 would have a 50-75% chance of "go" on an SL soil of low-topography, wet-season condition.

in paragraph 52. 1 (S/S) strength in psi for a normal load of 10 psi. values.

c properties of soil under given moisture condition.
have a 50-75% chance of "go" on an SL soil of low-topography, wet-season condition.

Table 10 Precent Probability of "Go" for Tracked and Wheeled Vehicles on Level and Slo

	No.	_ 175			cle (CI Rai		0-29			_		VC	icle I Rar	age 30	1-49			_		VCI	cle (-59					V	cle (ige 6	50-6
Soil Type	of Sam-		Trac	ked			Whee	led			Trac		+			Slope			Trac	ked lope			Whee	led			Trac	ked ope			W) %
mbol	ples	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	
																									High	-Topo	graphy	y, We	t-Sea	son C	on
ab)																															
GP)	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
SMt	0	100	100	170	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
t	1	100	100	100	99	100	100	100	95 88	100	100	98	94	100	100	96	90 78	98	96	93 84	90 78	98	95	92 81	86	95 88	93	90 78	86 74	95 88	
-SC†	32 4	97 100	96 100	95 100	93 100	97 100	96 100	94 100	100	95 100	94 100	92 100	86 98	95	100	90††	78 95	92 100	89 99	97	78 94	92 100	88 99	96	73 91	99	83 97	95	92	99	
t	1	100	100	100	99	100	100	100	96	100	100	99	96	100	100	.97	93	99	97	95	92	99	96	94	89	96	94	93	90	96	
,	10	100	100	100	97	100	100	100	90	100	100	94	90	100	100	90	90	94	90	90	90	94	90	90	90	90	90	90	90	90	
H	11	100	100	100	98	100	100	100	91	100	100	95	91	100	100	91	82	95	91	91	82	95	91	86	82	91	69	82	82	91	
H.	9	100	100	100	95	100	100	100	78	100	100	88	78	100	100	78	78	88	78	78	75	88	78	78	66	78	78	78	66	78	
L-ML	7	100	100	100	96	100	100	100	86	100	100	92	86	100	100	86	71	92	86	86	71	92	86	73	71	86	82	71	71	86	
L	16	100	100	100	92	100	100	97	82	100	95	91	80	100	94	88	63	91	86	76	61	91	83	69	50	82	74	63	54	82	
ù†	7	100	100	100	87	100	100	99	68	100	95	83	65	100	92	75	50	83	72	61	48	83	69	55	40	6 8	59	50	42	6 8	
																								L	ow-To	pogra	phy, 1	Wet-S	eason	Cond	11 t
W, GP)	o	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	130	100	100	100	100	
W, SP)																															
P-SM Mt ···	0	100	100	100	100	100	100	100 91	91 78	100 94	100	100 85	88	100	100 88	100 82	83	100	98 80	83	83	100	93	83 74	83	91 78	83	83	83	91 78	
M	55	91	99 87	80	76	91	98 85	78	72	80	90 77	75	77 71	94 80	76	74	72 71	85 75	73	75 71	72 70	85 75	79 73	71	69 66	72	75 71	72 71	69 68	72	
C†	0	100	98	91	82	100	96	88	74	91	86	80	73	91	85	76	69	80	75	72	69	80	74	71	65	74	72	69	66	74	
C	23	100	97	87	78	100	94	83	72	87	82	77	71	87	80	74	69	77	73	69	68	77	72	69	61	72	69	69	61	72	
L-ML	24	96	91	87	76	96	90	82	73	87	79	74	73	87	77	73	69	74	73	73	66	74	73	71	48	73	72	69	51	73	
L	187	98	96	92	80	98	95	87	70	92	85	77	69	92	83	73	57	77	72	67	55	77	71	62	45	70	65	57	48	70	
H	100	95	93	89	78	95	92	84	65	89	81	76	62	87	80	74	52	76	69	59	50	76	63	55	44	65	58	52	46	65	
H	33	95	92	88	73	95	91	83	57	88	81	6 8	56	88	79	60	45	68	59	54	44	6 8	58	50	34	57	52	45	37	57	
M-SC	13	92	91	85	74	92	89	81	54	85	79	65	54	85	78	54	46	65	54	54	45	65	54	50	38	54	52	46	38	54	
L	36	84	79	69	65	84	77	68	57	69	68	62	56	69	67	58	47	62	58	55	46	62	57	50	43	57	53	47	1414	57	
L†	0	45	34	23	6	45	32	12	0	23	14	2	0	23	11	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	
ī	5	31	20	20	0	31	20	15	0	20	8	0	0	20	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
																								Lo	w-Top	ograp	hy, H	igh-M	oistu	re Co	one
, GP , SP	ο.	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	1
P-SMt	2	100	100	97	84	100	100	91	74	97	90	81	73	97	87	75	69	21	75	72	68	81	74	71	64	74	72	69	65	74	
Ct	0	100	98	90	78	100	96	85	72	90	83	75	71	90	81	73	67	75	73	70	67	75	72	69	63	72	70	57	63	72	
C	11	95	88	82	60	95	87	73	45	82	69	55	45	82	66	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	
Mt	0	92	85	78	72	92	83	74	67	78	74	71	66	78	73	69	61	71	68	65	60	71	67	63	56	67	64	61	57	67	
М	23	88	84	74	68	88	82	71	65	74	70	67	65	74	70	65	65	67	65	65	64	67	65	65	57	65	65	65	59	65	
1-SC†	3	9€	89	80	69	96	87	75	59	80	74	67	57	80	72	63	47	67	61	54	46	67	59	50	39	59	53	47	40	59	
	91	96	93	89	73	96	92	81	60	89	79	70	58	89	76	65	42	70	63	55	40	70	61	49	25	60	53	42	28	60	
Ļ	17	80	74	65	63	80	71	65	55	65	65	61	54	65	65	58	41	61	57	53	40	61	56	47	32	55	51	41	34	55	
L-ML	12	87	75	75	63	87	75	71	42	75	69	59	38	75	68	50	33	59	46	33	32	59	43	33	17	42	33	33	22	42	
i .	16	97	92	82	64	97	89	75	35	82	73	55	33	82	71	40	19	55	36	31	19	55	35	25	19	35	29	19	19	35	
1	50	91	87	78	54	91	85	68	45	78	64	. 52	43	78	60	48	30	52	47	40	29	52	15	35	24	45	38	30	25	45	
ut a+	0	43	32	20	0	43	29	11	0	20	8	. 0	0	20	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
H†	4	35	23	11	0	35	21	2	0	11	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	U	

[†] Soils with estimated probabilities.
† Sample interpretation: A wheeled vehicle with a vehicle cone index in the range 30-49 has an 90% probability of "go" on an SM soil at 30% slope under high-topographic sample interpretation.

Table 10

el	ed Je	Table hicle		Level	and	Slopi	ng Te	rrair	Clas	sifie	d in	uscs	Terms	1																	
		Vehi Vo	cle C	atego ge 60	ry 41	-					cle C			_				Vehi	cle C	atego e 80-	ory 6				vr	Vehic I Ran					
	Trac	ked			Whee				Trac	ked	, mare	<u>se 10.</u>	Wheel				Trac	ked	- rosa	<u>,c 00-</u>	Whee				Trac	ked	8c 10	0.	Whe	eled	
	% S1	.ope 30	45	0	% S1	30 30	45	0	15	.ope 30	45	0	% 310 15	30	45	0	15	.ope 30	45	0	% S1	.ope 30	45	0	% SI	30 30	45	0	15	lope 30	45
						1176								100									_			101				-5-	
po	graphy	, Wet	-Seas	on Co	ondit:	ion																									
00	100	100	100	100	100	100	100	1.00	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
00	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
55	93	90	86	95	92	89	83	92	90	87	83	92	89	86	80	87	85	83	79	87	84	81	75	84	82	80	76	84	81	78	70
38	83	78	74	88	82	77	72	81	78	75	72	81.	77	73	68	75	73	72	68	75	72	72	65	72	72	68	65	72	72		62
99	97	95	92	99	96	94	89	96	94	92	89	96	94	91	86	92	91	89	86	92	90	88	52	90	88	86	83	90	87	85	80
96	94	93	90	96	94	91	86	94	92	90	87	94	92	89	84	90	38	86	83	90	88	85	80	88	86	84	81	8 8	85	83	78
90	90	90	90	90	90	90	85	90	90	90	88	90	90	90	80	90	90	85	80	90	90	80	80	90	83	80	80	90	81	80	80
91	89	82	82	91	87	82	7 7	86	82	82	79	86	82	82	72	82	82	77	72	82	82	72	64	82	75	72	66	82	73	72	54
78	78	78	66	78	78	72	66	78	75	66	66	78	73	66	66	66	66	66	66	66	66	66	55	66	66	66	58	66	66	66	56
86	82	71	71	86	79	71	55	78	71	71	64	78	71	71	27	71	71	55	22	71	71	40	14	71	50	27	14	71	44	14	14
23	74	63	54	82	71	60	44	69	61	56	1424	69	60	50	41	56	48	111	39	56	46	44	38	74	44	41	38	44	44	38	31
68	59	50	42	6 8	56	46	36	55	48	43	37	55	47	40	33	43	39	36	32	43	38	34	29	38	35	33	30	38	35	32	27
	T	1-4 C		0	. 4.4																										
ζra	phy, I	vet-se	eason	Cona	ttion																										
.00	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
91	83	83	83	91	83	83	83	83	83	83	83	83	83	83	73	83	83	83	69	83	83	83	66	83	83	73	66	83	83	66	66
78	75	72	69	78	74	71	66	74	72	70	66	74	71	69	63	70	68	66	62	70	67	65	59	67	65	63	60	67	65	62	56
72	71	71	68	72	71	70	62	71	70	69	63	71	70	66	59	69	65	62	58	69	64	62	56	64	62	59	56	64	62	56	56
74	72	69	66	74	71	68	61	71	69	66	62	71	68	65	58	66	64	61	58	66	63	60	53	63	61	58	54	63	60	57	50
72	69	69 60	61	7 2	69 71	66 61	61	69 71	68 66	61	61.	69	66	61 48	58	61	61	61	57	61 54	61	61 42	52 38	61 42	61 42	58 40	51 38	61 42	61	56 38	48 38
73 70	72 65	69 57	51 48	73 70	63	53	42 37	62	55	54 50	39	71 62	62 54	45	40 31	54 50	46	42 37	39 30	50	43 42	34	24	41	36	37	25	41	42 35	29	18
65	58	52	46	65	56	49	38	55	50	48	39	55	50	44	34	48	42	38	33	48	41	36	21	40	37	34	24	40	36	32	21
5 7	52	45	37	57	51	42	29	50	44	39	29	50	43	34	27	39	32	29	27	39	30	27	21	30	28	27	23	30	27	27	15
54	52	46	3 8	54	51	43	38	50	45	38	38	50	44	38	34	18	38	38	33	38	38	38	15	38	38	34	20	38	38	31	15
5 7	53	47	44	57	51	46	40	50	46	44	41	50	46	43	37	1,1,	42	40	37	44	42	39	33	42	39	37	34	42	39	36	28
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
raj	hy, H	igh-M	oi stu	re Co	nditi	on																									
00	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
74	72	69	65	74	71	68	61	71	69	66	62	71	68	64	58	66	64	61	58	66	63	60	54	63	61	5 8	55	63	60	57	51
72	70	67	63	72	69	6 6	60	69	67	64	60	69	66	63	57	64	62	60	56	64	62	58	52	61	59	57	53	61	58	55	49
45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	145	45	45	45	45	45	45	45	37	45	45	45	39	45	45	45	37
67	64	61	57	67	64	60	52	63	60	5 8	53	63	60	56	48	3 8	55	52	48	58	54	50	43	54	51	48	1414	54	50	46	39
65	65	65	59	65	65	63	50	65	64	61	51	64	65	57	41	61	55	50	38	61	53	48	35	52	49	41	35	52	48	35	35
59	53	47	40	59	51	44	33	50	46	41.	35	50	45	39	27	41	38	33	26	41	37	30	19	36	32	27	20	36	31	24	13
60	53	42	28	60	50	36	18	49	40	30	19	49	37	25	14	30	23	18	14	30	21	16	9	20	17	14	8	20	16	13	6
55	51	41	34	55	48	3 8	30	47	40	35	30	47	39	32	30	35	31	30	30	35	30	30	23	30	30	30	25	30	30	30	23
42	33	33	22	42	33	29	8	33	32	25	8	33	30	17	8	25	14	8	8	25	10	10	8	8	8	8	8	8	8	8	8
35	29	19	19	35	26	19	19	25	19	19	19	25	19	19	19	19	19	19	19	19	19	19	12	19	19	19	14	19	19	19	8
45	3 8	30	25	45	37	28	17	35	29	26	20	35	29	24	11	26	23	17	11	26	23	12	10	22	15	11	10	22	13	10	O

at 30% slope under high-topography, wet-season condition.

Table 11 Percent Probability of "Go" for Tracked and Wheeled Vehicles on L

	No.			Vehic VCI	le Ca	tegor se 20-	y 1* .29							atego						ehicl VCI R								Veh:	
Soil	of		Trac	ked	N. N.		Whee				Trac	ked			Whee.				Tracke	d			Whee	led ope			Trac		
Type ymbol	Sam- ples	0	7º S1	.ope 30	45	0	70 S1	30	45	0	% S1	оре 30	45	0	15	90 30	45	0	% Slor	<u>30</u>	45	0	15	.ope 30	45	0	15	30	
			3.70	7.5								Sile						ı			_		_	H1	gh-To	pogra	phy,	Wet-	Ser
(f _n)†	4	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
S n'	12	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	91	92	92	92	83	92	92	92	
ւ Շ	29	97	96	93	89	97	95	91	83	93	90	88	81	93	90	86	72	88	85	79	72	88	83	76	72	83	78	72	
,	5	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
•	3	100	100	100	97	100	100	99	93	100	98	96	93	100	98	95	90	96	94	92	89	96	94	91	86	93	92	90	
t .	0	100	100	100	98	100	100	100	93	100	100	97	92	100	99	95	87	97	94	91	86	97	93	89	81	93	90	87	
L	8	100	100	100	100	100	100	100	93	100	100	100	91	100	100	100	75	100	97	88	75	100	95	82	75	93	85	75	
.C†	2	100	100	100	97	100	100	100	85	100	100	94	84	100	100	90	73	94	88	81	72	94	86	76	64	85	79	73	
.CL†	3	100	100	100	100	100	100	100	90	100	100	97	88	100	100	93	78	97	92	86	77	97	90	82	70	90	84	78	
	23	100	100	100	93	100	100	98	79	100	97	90	77	100	96	83	70	90	82	75	69	90	80	72	61	79 60	74	70	
L	5	100	100	100	91	100	100	100	60	100	100	79	60	100	100	60	60	79 75	60	60	60	79	60	60	60	60	60	60	
t	0	100	100	100	80	100	100	95	69	100	91	75	68	100	87	72	61	75	70	66	60	75	69	64	52	69	65	61	
																								Lo	-Top	ograpi	hy, W	et-Se	4
(۳	9	100	100	100	39	100	100	94	83	100	91	89	81	100	89	89	78	89	86	78	78	89	84	78	78	83	78	78	
'n	22	100	98	91	91	100	96	91	91	91	91	91	91	91	91	91	91	91	91	91	89	91	91	91	75	91	91	91	
	38	100	99	97	90	100	99	94	83	97	93	89	81	97	92	86	74	89	85	79	73	89	83	76	63	83	78	74	
	32	100	99	97	87	100	98	94	75	97	91	86	70	97	90	84	60	86	81	66	59	86	77	63	50	75	65	60	
L	71	96	95	93	89	96	95	91	78	93	91	87	76	93	90	82	62	87	80++	74	60	87	79	68	49	78	72	62	
	98	98	94	88	77	98	93	84	67	88	82	74	66	88	80	70	58	74	69	63	57	74	68	60	48	67	62	58	
	97	87	83	76	65	87	82	72	56	76	70	62	55	76	68	58	50	62	57	53	49	62	56	52	43	56	53	50	
CL	46	94	90	87	66	94	89	78	57	87	75	64	56	87	71	61	41	64	59	54	40	64	58	48	35	57	51	41	
† -	0	100	95	90	81	100	94	. 86	70	90	85	79	67	90	83	75	50	79	74	62	49	79	71	56	45	70	60	50	
L	26	. 100	96	84	73	100	93	80	61	84	78 65	70	59	84	77	65	39	70	64	58	38	70	63	47	29	61	54	39	
3 h	39 1	87 100	82	74 100	59 85	87 100	80 100	67 94	50 71	74 100	65 91	57 81	49 70	74 100	63 88	51 75	36 50	57 81	51 74	49 67	35 58	57 81	50 72	41 63	30 49	50 71	45 65	36 59	
P	_	100	100	100	97	100	100	74	1+	100	ΆŢ	OI	10	100	00	75	59	OT	14	91	90	01	14	U)	77	1.	3)	77	
																								Low	Торо	graph	y, Hi	gh-Mo	
	9	100	97	89	89	100	95	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	79	89	89	89	
	21	100	99	95	86	100	98	90	78	95	89	86	76	95	87	86	62	86	84	72	62	86	80	67	57	78	70	62	
L	21	97	95	95	92	97	95	95	73	95	95	89	70	95	95	80	57	89	78	66	52	89	75	62	30	73	64	57	
1	0	100	100	100	82	100	100	91	67	100	90	79	65	100	86	72	50	79	70	61	49	79	68	56	42	67	59	50	
	15	100	100	100	77	100	100	89	60	100	85	73	58	100	82	67	46	73	64	53	45	73	62	50	37	60	52	46	
t	0	100	97	88	76	100	95	84	61	88	82	73	59	88	80	67	47	73	65	56	45	73	63	50	37	61	53	47	
	15	100	97	87	76	100	95	83	60	87	82	68	60	87	81	60	33	68	60	60	32	68	60	46	21	60	56	33	
	50	95	91	84	65	95	89	77	51	84	72	61	49	84	70	55	40	61	53	46	36	61	51	43	23	51	44	40	
	5	100	100	100	80	100	100	90	68	100	86	80	64	100	83	80	60	80	74	60	60	80	71	60	60	63	60	60	
CL	29	90	86	83	60	90	85	72	47	83	68	57	45	83	64	52	28	57	50	42	25	57	48	35	14	47	39	28	
	38	77	67	60	44	77	65	54	30	60	51	40	30	60	49	32	26	40	31	29	26	40	30	28	24	30	28	26	
3	27	81	74	50	35	81	70	48	30	59	43	33	30	59	39	30	15	33	30	30	15	33	30	22	13	30	27	15	,

^{**} Probability of "go" based on median vehicle cone index within vehicle categories 1-6 and minimum vehicle cone index for category 7.

*** Probability of "go" for vehicles in category 7 equal to or less than given value.

† Soils with estimated probabilities.

†** Sample interpretation: A tracked vehicle with a vehicle cone index in the range 50-59 has an 80% probability of "go" on an SiL soil at 15% slope und

2 11

es on Level and Sloping Terrain Classified in USDA Terms

L																													
	icle (cle C								cle C										y 7##		
VC	I Rang	e 60.		1-3			Maria		Rang	e 70-					D		Rang	e 80-		-163	_		Trac		ge 10	0 or	Great		
d			Whee	Jed Jpe			Trac	.ope				led			Trac					eled				Lope				robe	
30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45
	_	_			_				_																				
t-	Season	Cond	lition																										
				•																									
00	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99
-				88	83				83		88	83	83	83	83	83	83	83	83	83	83	83	83	83	83	83	83	83	83
92	83	92	92			92	91	83		92				_		-	_												_
172	72	83	77	72	72	76	72	72	72	76	72	72	69	72	72	72	68	72	72	72	66	72	72	69	66	72	72	66	62
00	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
190	87	93	91	88	83	91	89	87	84	91	88	86	80	87	85	83	80	87	84	82	76	84	82	80	77	84	82	79	67
87	82	93	89	85	78	89	86	83	79	89	85	81	73	83	81	78	71	83	80	76	62	80	77	73	64	80	76	69	54
75	75	93	83	75	64	82	75	75	70	82	75	75	50	75	75	64	50	75	75	50	50	75	59	50	50	75	54	50	50
73	66	85	77	70	59	76	72	67	60	76	71	64	53	67	63	59	52	67	62	56	46	61	57	53	47	61	56	50	41
78	71	90	83	75	64	82	77	72	65	82	75	69	58	72	68	64	57	72	67	61	50	67	63	58	52	67	62	56	45
70	63	79	73	67	53	72	69	65	55	72	68	61	42	65	59	53	39	65	58	48	31	57	51	42	32	57	49	35	26
60	60	60	60	60	51	60	60	60	56	60	60	60	40	60	60	51	40	60	60	40	20	60	48	40	26	60	43	40	20
61	54	69	64	58	46	64	60	55	48	64	59	52	38	55	51	46	36	55	50	42	26	50	44	38	28	50	42	34	18
-S	ason	Condi	tion																										
78	78	83	78	78	78	78	78	78	78	78	78	78	72	78	78	78	70	78	78	78	67	78	78	72	67	78	79	67	67
91	79	91	91	86	73	91	89	82	73	91	88	75	70	82	73	73	69	82	73	73	-68	73	73	70	68	73	73	68	68
74	66	83	77	71	53	76	73	68	55	76	72	63	43	68	60	53	41	68	59	48	34	58	50	43	36	58	48	39	24
100	53	75	64	58	42	63	59	56	43	63	58	50	40	56	47	42	40	56	45	40	31	44	41	40	34	44	40	40	28
62	51	78	70	56	42	68	60	52	45	68	58	49	37	52	48	42	37	52	47	39	27	46	41	37	29	46	40	35	25
. 58	50	67	61	55	42	60	57	52	43	60	56	48	39	52	46	42	38	52	45	41	30	44	42	39	32	44	41	37	25
50	44	56	52	47	41	52	49	44	42	52	48	43	38	44	43	41	37	44	42	40	32	42	40	38	33	42	40	35	30
		100	50			48	40		31	48		35	23		34	29	21		- 32	26	9	32	28	23	11	32	26	19	
41	36 46	57		39 48	29			37			39 48			37	44			37	33 44	40				70.00					9
50		70	57		42	56	49	47	43	56		45	39	47		42	38	47			34	43	41	39	35	43	40	37	31
39	32	61	50	36	23	47	38	34	23	47	37	29	23	34	26	23	23	34	24	23	23	23	23	23	23	23	23	23	23
36	32	50	42	34	21	41	35	33	24	41	35	30	18	33	28	21	18	33	26	18	15	25	19	18	16	25	18	18	13
59	50	71	64	55	45	63	58	51	46	63	56	49	42	51	48	45	41	51	48	44	37	47	45	42	38	47	44	40	33
h-M	istur	e Con	ditio	<u>n</u>																									
	4.			120			2	2200	1 2 1	20	_	- 20	100	121		_		40											
39	84	89	89	89	60	89	89	89	63	89	89	79	50	89	72	60	47	89	69	55	11.11	67	58	50	ነተነተ	67	56	71,1	111
62	60	78	68	62	43	67	62	62	49	67	62	57	31	62	55	43	30	62	54	33	19	52	39	31	22	52	35	28	14
57	34	73	62	46	24	62	52	37	24	62	49	30	24	37	28	24	24	37	25	24	19	24	24	24	20	24	24	24	14
50	1414	67	57	47	37	56	49	45	. 38	56	48	42	31	45	41	37	30	45	40	34	23	39	35	31	25	39	34	29	18
46	39	60	51	44	27	50	45	40	30	50	14.14	37	20	40	35	27	20	40	34	20	20	33	24	20	20	33	22	20	13
47	39	61	51	14.14	30	50	45	40	32	50	111	37	24	40	36	30	23	40	34	27	14	34	29	24	16	34	28	21	8
33	26	60	51	30	13	46	32	27	13	46	31	21	13	27	18	13	13	27	16	13	7	13	13	13	9	13	13	13	7
40	25	51	43	32	19	43	36	26	19	43	34	23	17	26	22	19	16	26	21	18	12	20	18	17	13	20	18	16	8
60	60	68	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
28	16	47	36	23	10	35	25	17	10	35	24	14	8	17	13	10	8	17	11	10	3	10	10	8	5	10	10	7	3
26	24	30	28	25	24	28	26	24	24	28	25	24	21	24	24	24	20	24	24	24	18	24	24	21	18	24	24	18	10
15	21.	30	2),	16	7	23	16	16		00	15	12).	16	10	7	nh.	16	11	1.	1.	33	_		1.	•	1.	1.	1.

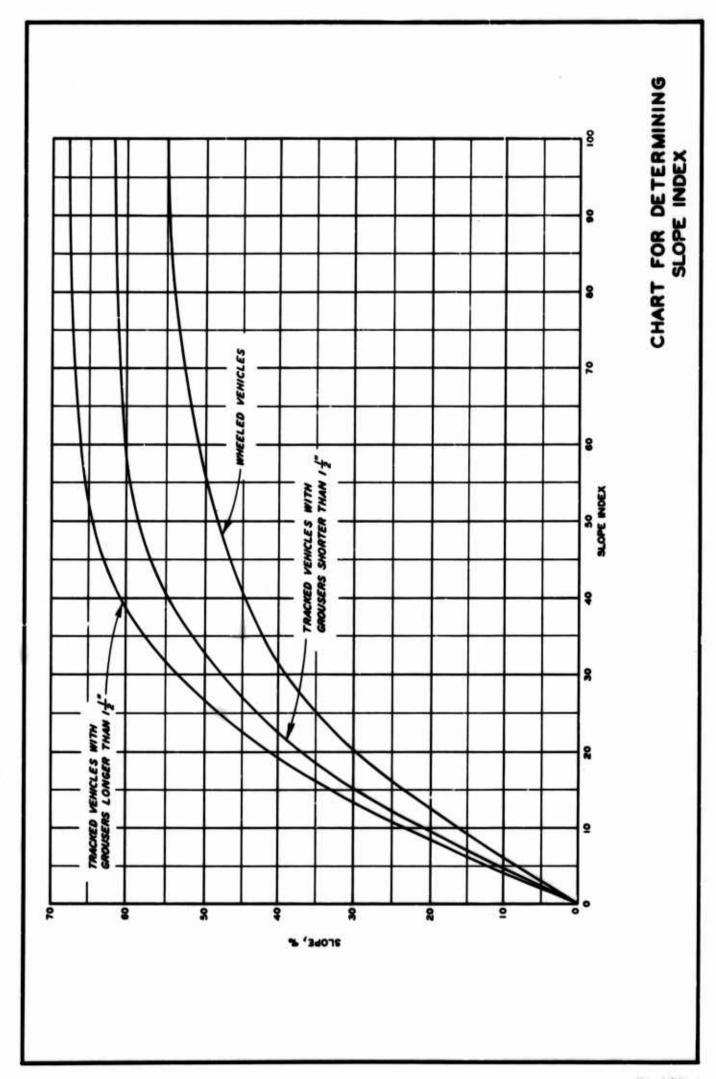


PLATE I

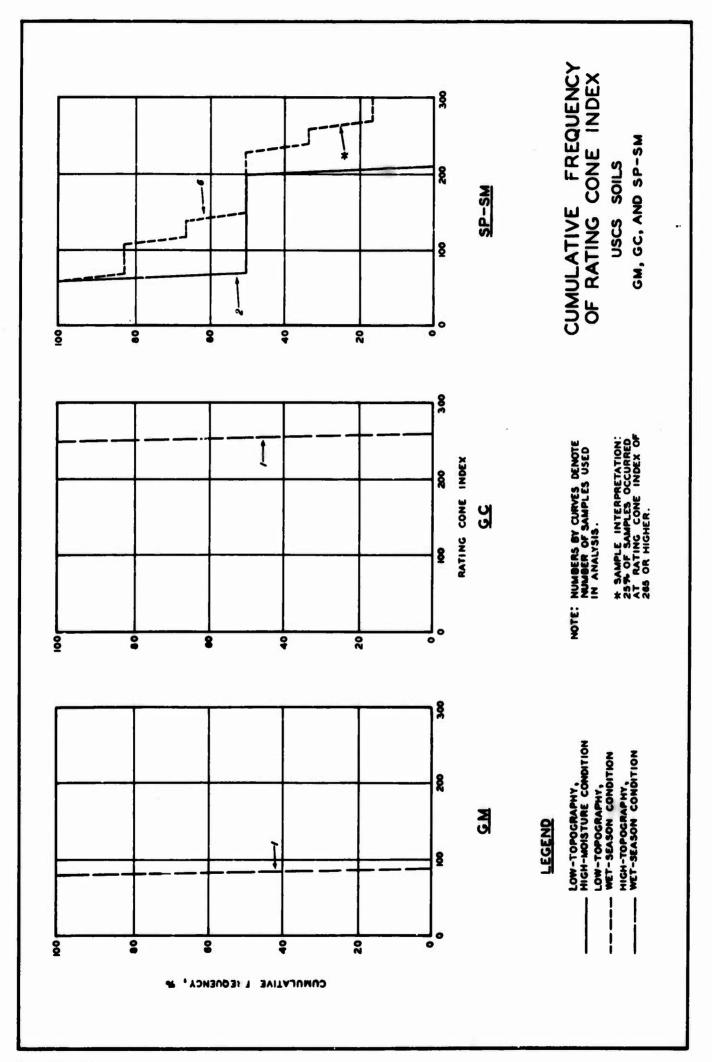


PLATE 2

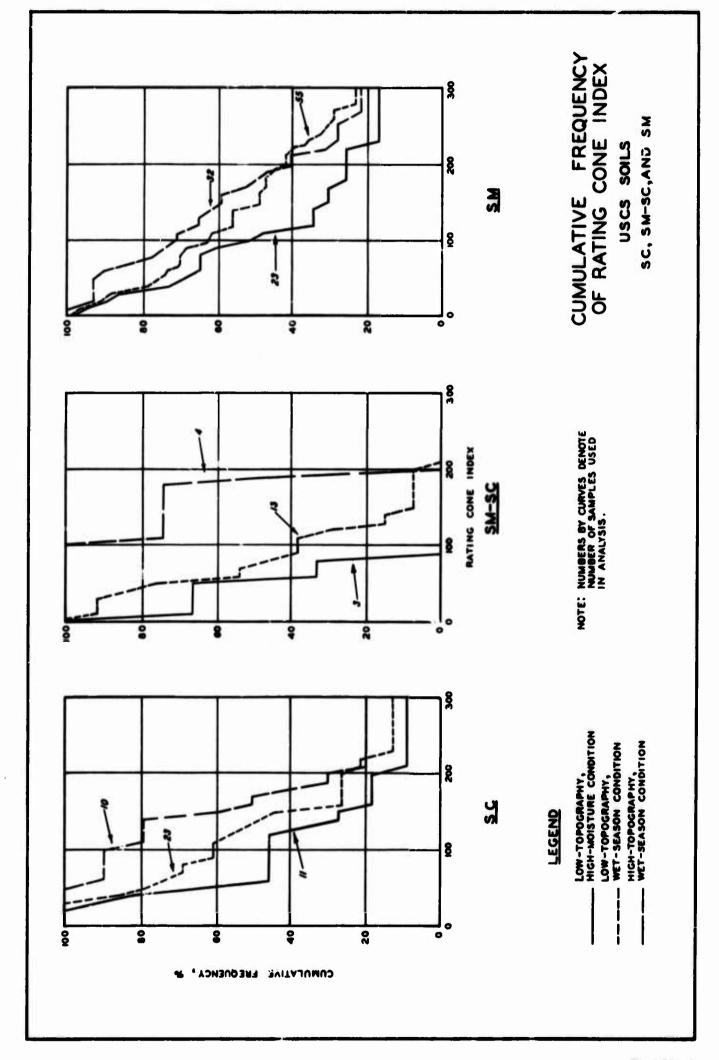


PLATE 3

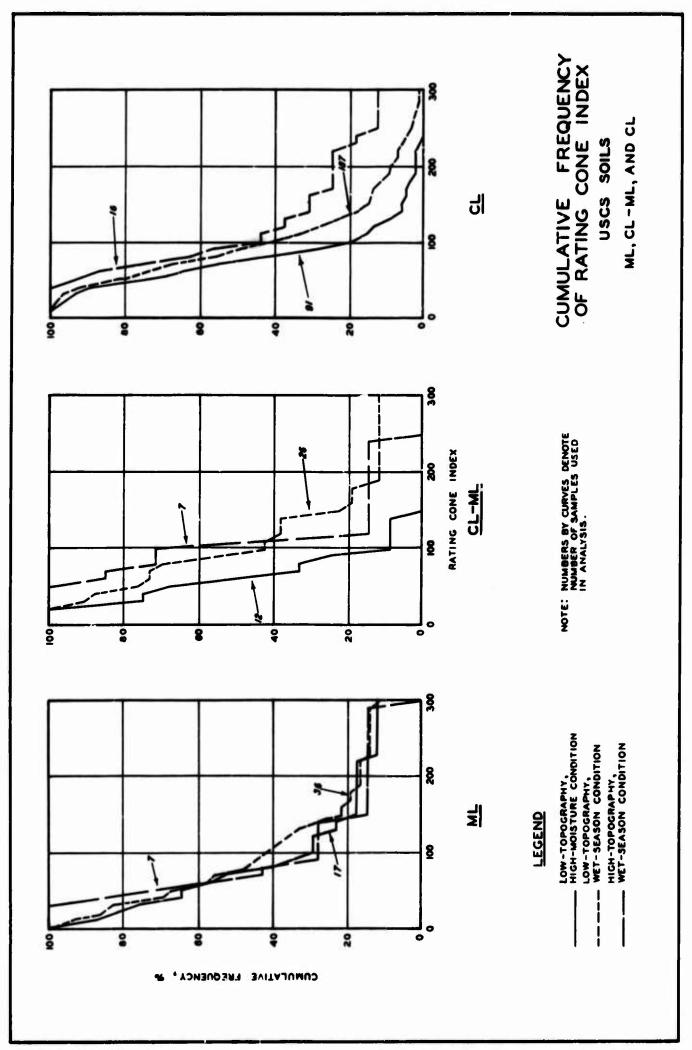


PLATE 4

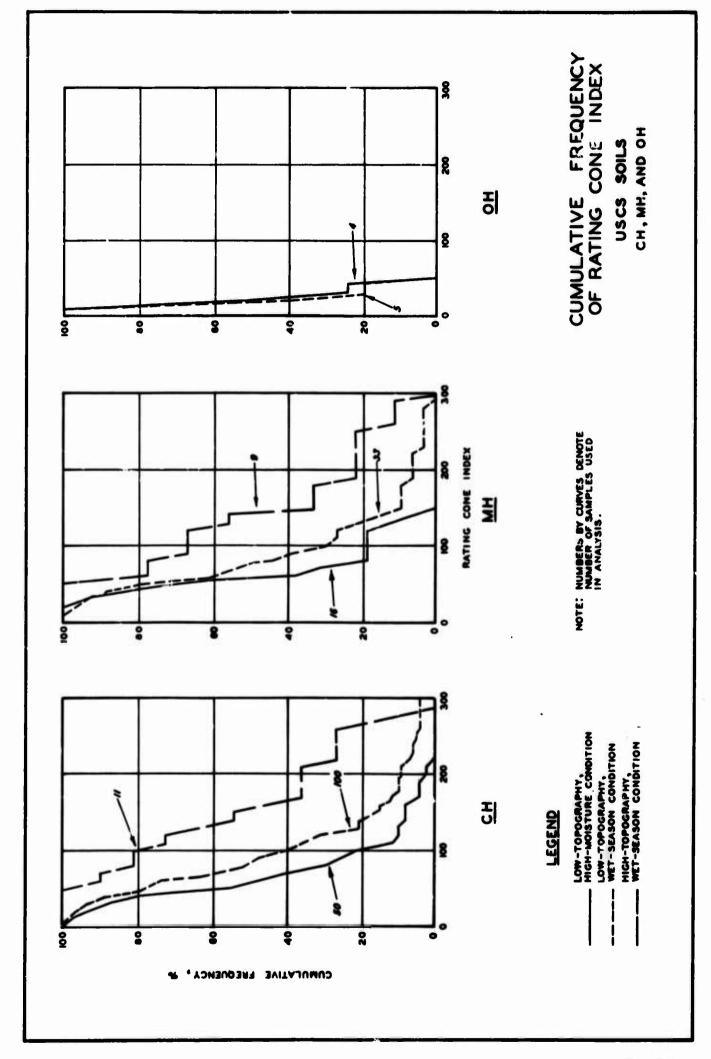
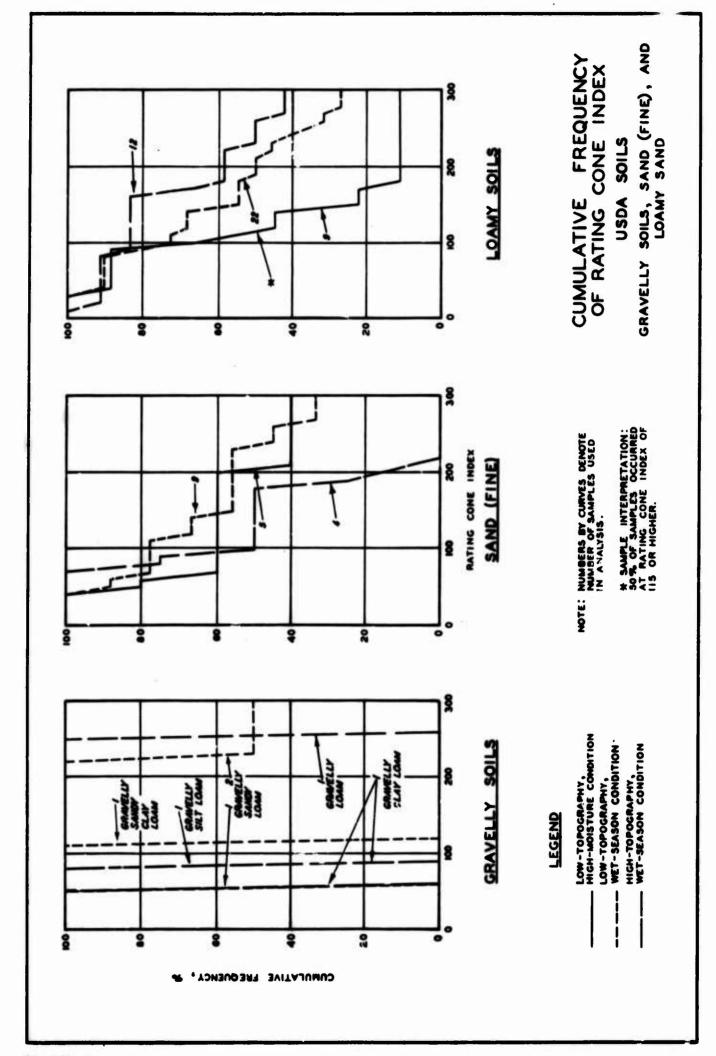



PLATE 5

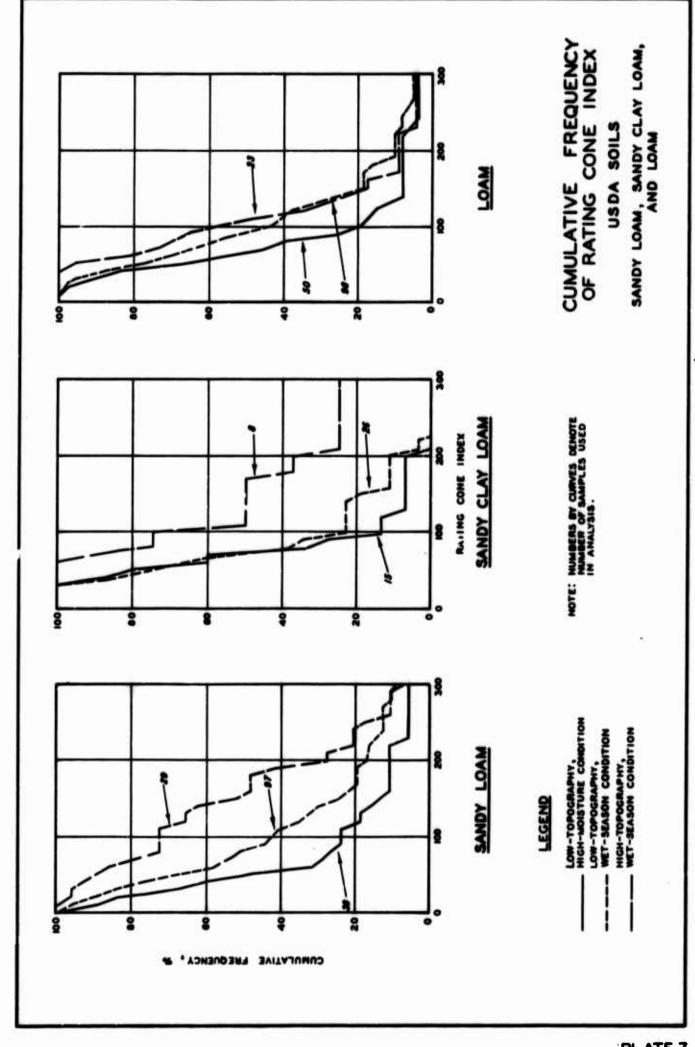


PLATE 7

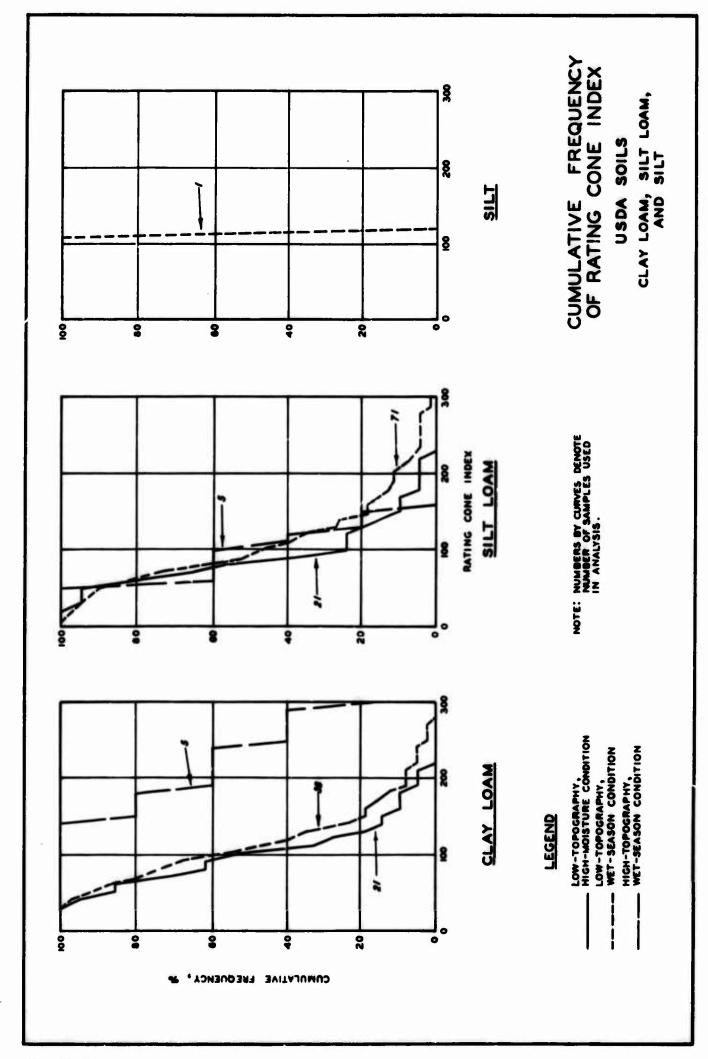
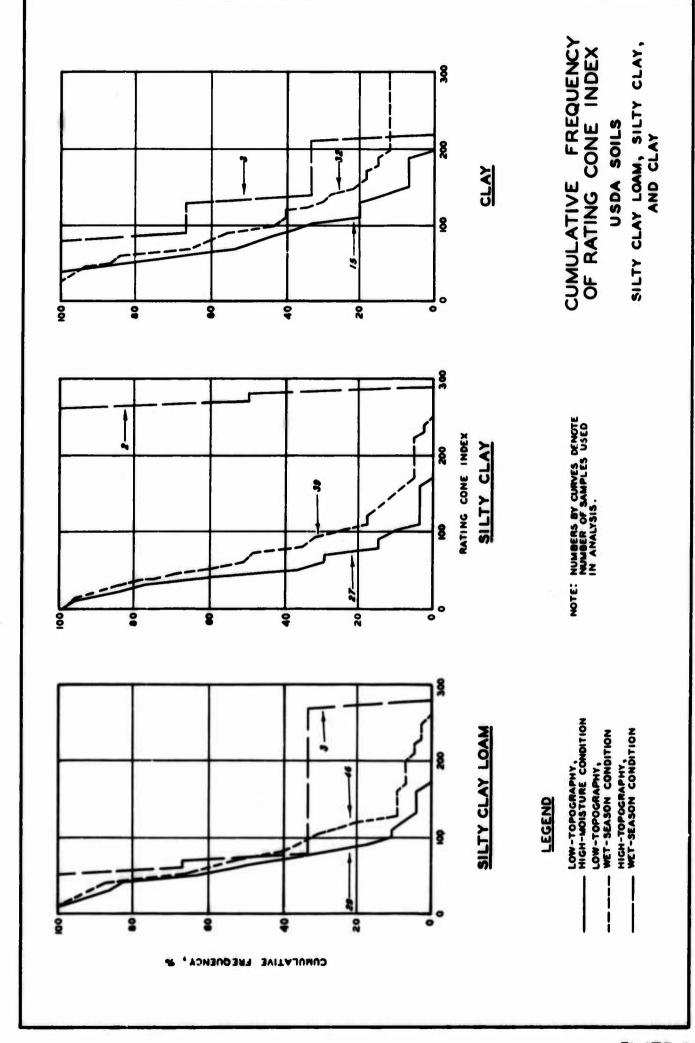
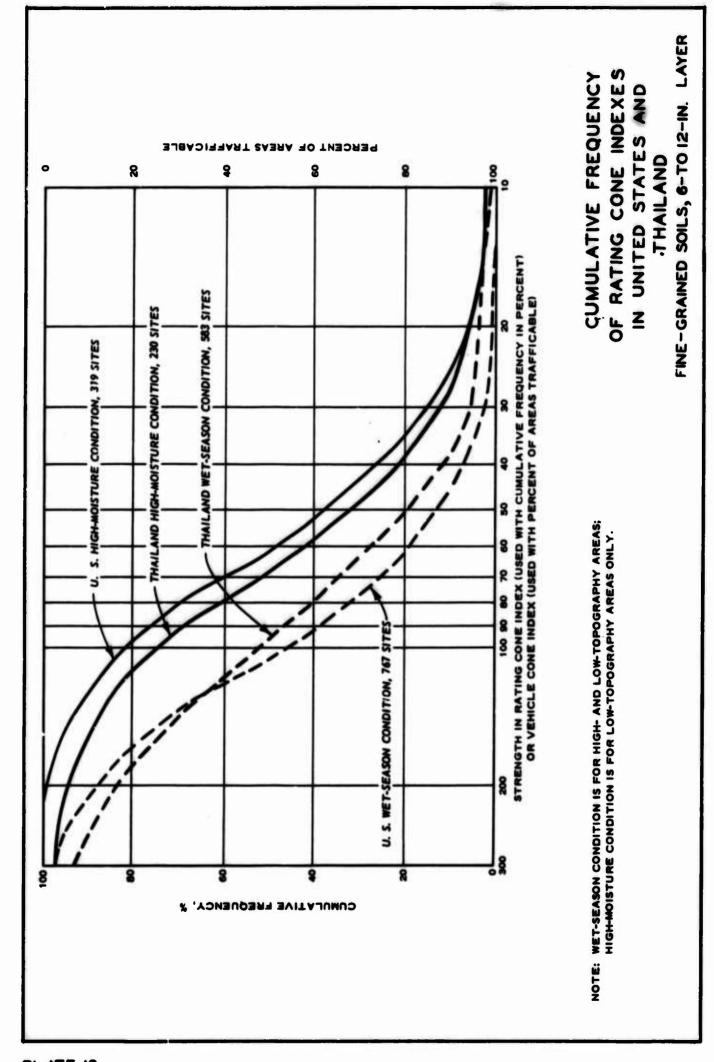




PLATE 8

APPENDIX A: SOURCES OF DATA AND DETAILED PROCEDURES USED TO OBTAIN DATA

- 1. The soil and site data pertinent to the soil trafficability classification analyses are presented in tables Al-A6. These data were obtained in six different programs conducted during the period June 1962 through November 1965 in Thailand. Soil data included are texture, Atterberg limits, USCS and USDA soil type, organic content, and specific gravity. Trafficability data included are moisture content, density, depth to water table, and strength, i.e. cone index (CI), remolding index (RI), rating cone index (RCI), and sheargraph cohesion, adhesion and tan ø values, for wet-season and high-moisture conditions. Site data included are geographic locations furnished on Army Map Service map sheets and military grid coordinates, topographic class, topographic position, slope, vegetation, and land use. The general locations of the sites are shown on a map of Thailand in fig. 4 of the main text.
- 2. In tables Al-A6, the trafficability data for the wet-season condition are the data obtained during one visit to a site or an average of data for two or more visits during the wet season, as noted in the tables. At some sites the RI and, consequently, the RCI could not be determined on some visits because of the firmness of the soil. In determining an average RCI for a site which was visited two or more times, the CI data used were those for which RI measurements were available. Data for high-moisture conditions (water table 18 in. or less from the surface) for all trafficability parameters except sheargraph are usually for one visit. If this condition occurred on more than one visit, the data presented in the tables and used in the analyses were for the day of lowest RCI. Sheargraph data are listed under the high-moisture condition only when the water table was at the surface or free water was above the surface.
- 3. The following paragraphs are grouped according to the six sources of data and contain a detailed discussion of sampling techniques, number of visits to a site and number of measurements taken during each visit, number and geographical locations of the sites, and other important features of the test programs relevant to the data for each of the sources.

Preliminary Survey Study

4. A preliminary study was made in Thailand to provide guidance for a planned, long-range research program to develop new methods and apply existing methods for measuring and predicting in quantitative and semiquantitative terms the effects of environmental factors on ground vehicles operating in Southeast Asia. Data were obtained from 202 sites visited during the period June-October 1962 by a team of specialist engineers, physical scientists, and technicians. The test sites were concentrated primarily in four geographic areas: the lower Chao Phraya Delta, the Bangkok Plain, the Khorat Plateau in south-central and eastern Thailand, and the Chiang Mai Basin in northwest Thailand. Also, some of the sites visited were located in the southeastern coastal plain. One visit was made to each site. The data collected for the preliminary survey study from 165 sites that are pertinent to this trafficability classification study are presented in table Al.

Soil and traff_cability data

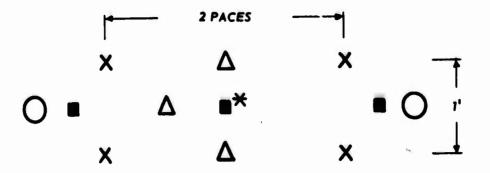
Site data

- 5. At each test site, 10 CI penetrations were made in an area approximately 10 by 20 ft. For each penetration, CI was measured at the surface and at 3-in. vertical increments to a depth of 18 in., and then at 6-in. vertical increments to a depth of 30 in., when possible. When soil conditions permitted testing, RI was measured at each site for the 0- to 6- and 6- to 12-in. layers. In some instances remolding index was measured for the 12- to 18-in. layer. Soil samples were taken for moisture content-density determinations for the same soil layers mentioned above. Representative bulk samples were taken from the 0- to 6- and 6- to 12-in. layers and occasionally from the 12- to 18-in. layer for laboratory tests. Samples were taken in an area approximately 1 ft square.
- 6. The site data obtained included geographic location of the test site, topographic position, slope, land use, vegetation, depth of soil, surface-water depth, and depth to water table. An attempt was made to sample a wide range of conditions and soil types with emphasis on testing the lowest and wettest areas on the assumption that the test results would

give some insight into the maximum moisture contents and minimum strengths that various soil types would exhibit during the peak of the wet season.

Trafficability Classification Study

- 7. Data collected for the trafficability classification study were obtained from 246 sites visited during the period August-October 1964 by a WES soil-trafficability team whose objective was to provide data specifically for the study reported herein. The sites were located within six MERS study areas: Nakhon Sawan, Lop Buri, Chiang Mai, Khon Kaen, Pran Buri, and Chanthaburi. In general, the rainy season extends from May to September in the northern area, from May to October in the central area, and from May to November in the south-central area of Thailand; hence, the period of testing coincided with the expected period of high soil-moisture content during the wettest monsoon season. One visit was made to each site. The data from 238 sites are presented in table A2.
- sets of CI profiles were taken with measurements taken at the surface and at 3-in. vertical increments to a depth of 18 in.; RI tests were run on two or occasionally three samples from the 6- to 12-in. layer, and surface sheargraph measurements were made at three different locations on the site. Soil samples were taken from the 0- to 6- and 6- to 12-in. layers with the trafficability sampler for determination of moisture content, density,


The strength data at each site were obtained as follows. Four

gravity. When the soil was too firm for sampling with the trafficability sampler, samples were secured with an Oakfield punch or with a shovel. The locations of test or sampling points for each site are shown in fig. Al.

Site data

grain-size distribution, Atterberg limits, organic content, and specific

9. In each area sites were selected to include a range of different soil types, topographic positions, land uses, and vegetation types with emphasis on the collection of data for soil type-topographic positions for which little or no data had previously been collected, e.g. moderately and highly organic soils on all topographic positions, all soils on upland

- X CONE INDEX
- REMOLDING INDEX
- REMOLDING INDEX (OPTIONAL)
- MOISTURE-DENSITY AND BULK SAMPLES
- ↑ SHEARGRAPH

Fig. Al. Site layout

depressions and ridges, and clayey sands, silts, and clays on upland flats. A special effort was made to include an equal number of sites in each combination of soil type and topographic position.

- 10. Land use at each site was described in one or more of the following terms:
 - a. Undisturbed; not obviously used by man or domestic animals.
 - b. Disturbed; obviously used by man or domestic animals.
 - Cropland currently in use (excluding hayfields, orchards, vineyards, tree plantations).
 Type
 - (2) Cropland currently lying fallow (excluding hayfields, orchards, vineyards, tree plantations). Type
 - (3) Pasture grazed by domestic enimals.
 - (4) Hayfields (not currently being grazed).
 - (5) Orchards, vineyards, tree plantations. Type _____
 - (6) Lawns, recreation areas.
 - (7) Logged, cut for fuel, newly cleared for slash-and-burn agriculture.

- ll. Since the essence of this program lay in securing a wide range of soil types and topographic position data during the high-moisture period of the wettest monsoon season, no attempt was made to collect detailed vegetation data; instead, the vegetation was described in general but consistent terms that could be readily identified even by relatively untrained observers. These terms are:
 - a. Forest. Trees more than 5 m (approximately 16 ft) tall with the crowns of the trees covering more than 90% of the area. Only the trees are significant; smaller plants are ignored.
 - b. Woodland. Trees more than 5 m (approximately 16 ft) tall with the crowns of the trees covering between 40 and 90% of the area.
 - c. Savanna. Trees more than 5 m (approximately 16 ft) tall with the crowns of the trees covering from 5 to 40% of the area. The "ground cover" may be wild grass, rice, maize, or any mostly herbaceous plants.
 - d. Tall scrub forest. Trees from 1.8 (approximately 6 ft) to 5 m (approximately 16 ft) tall with the crowns covering more than 90% of the area.
 - e. Tall scrub woodland. Trees from 1.8 (approximately 6 ft) to 5 m (approximately 16 ft) tall with the crowns covering 40 to 90% of the area.
 - f. Tall scrub savanna. Trees from 1.8 (approximately 6 ft) to 5 m (approximately 16 ft) tall with crowns covering from 5 to 40% of the area.
 - g. <u>Low scrub.</u> Shrubs from 0.7 (approximately 2.3 ft) to 1.8 m (approximately 6 ft) tall with the crowns covering more than 40% of the area.
 - h. Low scrub savanna. Shrubs from 0.7 (approximately 2.3 ft) to 1.8 m (approximately 6 ft) tall with the crowns covering from 5 to 40% of the area.
 - i. Tall-grass prairie. Herbaceous plants, usually of mostly grasses or grasslike plants, more than 0.7 m (approximately 2.3 ft) high with the plants covering more than 50% of the ground surface.
 - j. Short-grass prairie. Herbaceous plants, usually of mostly grasses or grasslike plants, less than 0.7 m (approximately 2.3 ft) high with the plants covering more than 50% of the ground surface.
 - k. Barren. More than 50% of the ground surface is bare, i.e. not covered by plants.

In the definitions listed above no distinction is made between cultivated

and noncultivated plants. Thus, a coconut plantation, a rubber grove, or an orchard is usually a "forest" or a "woodland" and a field of mature rice is a "tall-grass prairie."

- 12. Topographic slope was measured with an Abney hand level at each site on the contiguous area over which no change in true slope occurred. Topographic position was identified as one of the following:
 - a. Upland flat (UF)
 - b. Upland depression (UD)
 - c. Upland ridge (UR)
 - d. Upper slope (US)
 - e. Lower slope (LS)
 - $\underline{\mathbf{f}}$. Terrace flat (T)
 - g. Terrace slope (TS)
 - h. Bottomland flat (BF)
 - i. Bottomland depression (BD)
 - j. Natural levee (NL)
 - k. Stream bottom (SB)
 - 1. Tidal flat (TF)
 - m. Drainage ditch (DD)
 - n. Beach (B)

Other data collected included depth of water over soil surface, depth to ground water, and depth to bedrock if within several feet of the surface.

Surface Composition Study

13. The objective of the surface composition study³ was to secure data for establishing the range in variation of areal and seasonal soil strength in Thailand and for mapping soils exhibiting similar trafficability characteristics in selected study areas in Thailand. These data were obtained during the period April 1964 through June 1965 by a soil trafficability team. The study areas and the number of visits to sites in each area are shown in the following tabulation.

Area '	No. of Visits to Site
Nakhon Sawan	2
Lop Buri	3
Chiang Mai	2
Pran Buri	1
Khon Kaen	2
Chanthaburi	1

The data collected for the surface composition study from 224 sites that are pertinent to the trafficability classification study are presented in table A3.

Soil and trafficability data

14. At each site, soil-strength data were collected for CI, RI, and sheargraph tests. Four or more CI profiles were obtained. Measurements for each profile were made at 1-in. vertical increments to a depth of 18 in. RI tests were conducted on samples from the 0- to 6- and 6- to 12-in. layers. If the results of the tests on two samples from each layer were not in close agreement, a third RI test was made. Sheargraph tests were performed on the soil surface at only one point on the site. Soil samples were taken with the trafficability sampler in 3-in. increments to a depth of 12 in. for the determination of moisture content and density. Bulk samples were taken for laboratory determination of grain-size distribution, Atterberg limits, organic content, and specific gravity. At each site a pit was dug and the soil profile was described to a depth of 18 in. Data also were obtained on the color, pH, and reaction to HCl of soil horizons. From these data the soil series were identified.

Site data

15. The classification of site data for this study was the same as that used in the trafficability classification study (see paragraphs 10-12 of this appendix).

Soil Moisture-Strength Study

16. The objective of the soil moisture-strength study was to develop means for quantitatively predicting soil-moisture contents and

strength of the soil for use in predicting trafficability of the critical soil layer. Data for this study were obtained from 75 sites during the period May 1964-November 1965 by teams of Thai engineers and technicians. Data were collected during two wet seasons and one dry season. Sites were selected to provide a range in climate, tonography, soil type, and land use. The sites were located in seven MERS study areas and in the vicinity of Bangkok, Thailand.

17. Two types of sites, prediction-development (PD) and survey (TS), were established. Data from PD sites were used to develop rainfall-soil moisture-strength relations, and data from the TS sites will be used to check the accuracy of soil moisture-strength predictions that were based on the relations developed from PD site data. Twenty PD and 55 TS sites were established. The PD sites were visited daily to collect unit electrical resistivity data for use in measurement of soil-moisture content, and these sites and the TS sites also were visited one or more times each month to collect trafficability data. The data from this study that are pertinent to the soil trafficability classification study are presented in table A4.

Soil and trafficability data

- 18. Data from the PD and TS sites were collected in a 21- by 36-ft sampling area divided into 3-ft-square plots. Samples and direct measurements of the soil were taken in three randomly selected plots during each sampling visit to the site.
- 19. Six CI penetrations, two in each of three randomly selected plots, were made on each visit, and measurements of CI were averaged for the O- to 6- and 6- to 12-in. layers. RI tests were performed on samples of the 6- to 12-in. layer from each of the three plots. Data from the tests were averaged for each visit. The RCI for a specific visit was then tabulated in the usual manner. An attempt was made to obtain strength measurements concurrently with moisture measurements. CI and especially RI data could not be obtained as frequently as moisture data and at some sites could not be obtained at all during the dry season due to firmness of the soil. At some sites flooding prevented data collection for long periods during the wet season.

- 20. For each visit sheargraph measurements on the soil surface were made at two spots on each of the three selected plots and averaged. For most sites these data were obtained on four visits during the period of testing.
- 21. Soil samples of the 3-in. soil layers from the surface to a depth of 18 in. were taken with the trafficability sampler for determination of moisture content. Samples were obtained from two spots in each of three plots. The moisture content data were averaged for each 3-in. layer and for the 0- to 6- and 6- to 12-in. layers.
- 22. When a thin-walled piston type soil sampler could be used to obtain a relatively undisturbed sample of proper length, that sample was saved for moisture content and density determinations. Also, when the soil was moist, two 2-in. cores were taken with the San Dimas or drive-type sampler for determination of density. The density listed in the summary table for each site is the average of density values determined from tests on piston-type soil samples, or where no such samples were obtained, it is the average of the two density values determined from tests on San Dimas soil samples.
- 23. The USDA and USCS soil types for each site were determined from mechanical analysis and Atterberg limits of bulk samples taken from the 0- to 6- and 6- to 12-in. layers. The sample tested in the laboratory for each layer was a composite of three samples taken at each end and along a point on one side of the site. The bulk soil samples were also tested to determine the organic content and specific gravity of the soil layer.

Site data

- 24. Measurements of rainfall, depth to ground water, and ambient temperature were made daily at each of the PD sites.
- 25. Data describing the topographic position, slope, land use, and vegetation at a site were collected from observations in the field during the period of study. The systems for classifying topographic position, land use, and slope are the same as those used in the trafficability classification study (see paragraphs 10-12 of this appendix).

U. S. Army Cold Regions Research and Engineering Laboratory (CRREL) Airphoto Pattern Study

- 26. The purpose of the CRREL airphoto pattern study was to develop a method for interpreting, classifying, and mapping terrain features of Thailand from airphotos in terms of their effect on ground mobility. Data were obtained from 191 sites during the period 4 September-18 October 1964 by a team of specialist engineers and physical scientists.
- 27. The sites were located in two MERS study areas selected for detailed study--Lop Buri and Chanthaburi. The sites were selected primarily on the ability of the analyst to recognize tone and texture on aerial photographs. One visit was made to each site. The data from 121 sites pertinent to the trafficability classification study reported herein are presented in table A5.

Soil and trafficability data

28. Three or more CI penetrations were made at each site. For each penetration, CI generally was measured at 1-in. increments from the surface to a depth of 18 in. RI tests were made on samples from the 6- to 12-in. layer. Samples for determination of moisture content and density were taken with the trafficability sampler in 3-in. vertical increments from the surface to a depth of 12 in. The data were averaged for the 0- to 6- and 6- to 12-in. layers. (The density values are questionable and are not listed in the table.) When the soil was too firm to be sampled with the trafficability sampler, samples for moisture only were taken with the Oakfield punch. Bulk samples for determination of grain size, Atterberg limits, organic content, and specific gravity were taken from the 0- to 6- and 6- to 12-in. layers. The soil profile was described briefly in pedological terms.

Site data

29. The topography class, topographic position, and land use identification for each site were based on a general description or were interpreted from aerial or ground photographs of the site.

Terrain-Vehicle Tests

30. The terrain-vehicle test program was conducted to verify a mathematical model of cross-country vehicle performance previously developed in the United States, by applying it to tropical terrains and modifying it as required. Data for the program were collected in traffic test courses during the period September through October 1965 by a team of engineers, physical scientists, and technicians. The test courses ranged from 10 to 20 ft (hydrologic geometry, designated HG, test courses), to several hundred feet (surface geometry, designated SG, and multiple, designated M, test courses), to several thousand feet (cross-country, designated CC, test courses) in length. For purposes of this study, each of the HG, SG, and M test courses was designated as a site. Each of the CC test courses was subdivided into two or more short stretches, based on changes in soil type, topography, and land use. These stretches were also designated as sites; e.g. test course CC2 was subdivided into sites CC2-A, -B, and -C. The data used in this report are from 23 sites located in the MERS study area of Khon Kaen. Data from the vehicle test program pertinent to the trafficability classification study are presented in table A6.

Soil and trafficability data

31. The data in the table for each site are average values for the total number of visits. On each visit 10 or more CI penetrations were made. For each penetration, CI was measured at the surface, at depths of 1 in. and 3 in., and then at 3-in. vertical increments to 24 or 30 in. Several RI tests were made on samples from the 0- to 6- and 6- to 12-in. layers. Sheargraph measurements of the soil surface were taken in one small area. One set of samples per visit was obtained from the 0- to 1/4- and 0- to 1-in. soil layers for determination of moisture content, and another set of samples was obtained from the 0- to 6- and 6- to 12-in. layers for determination of moisture content and density. Bulk samples for determination of grain size, Atterberg limits, and specific gravity were obtained from the 0- to 6- and 6- to 12-in. layers.

Site data

32. Geographic location, topography class, topographic position, slope, land use, and vegetation data were obtained from general terrain information secured in the field. Again, these data, as tabulated, represent average conditions of the test area.

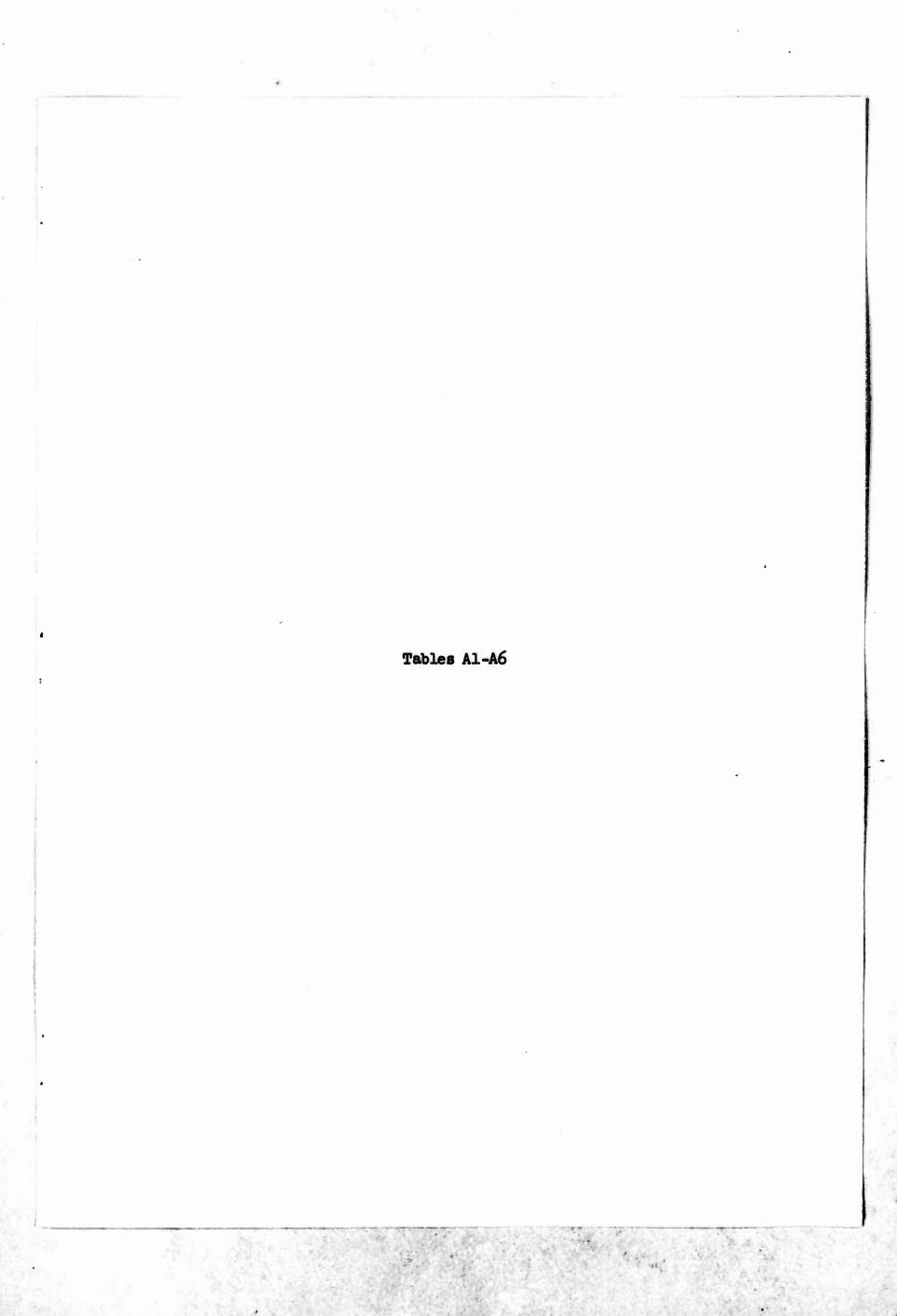


Table Ai

Preliminary Survey Study

Summary of Site, Soil, and Trafficability Data

	Locat	(on		Section A. S	ite i	ata						Section	В. Е	011	Dat			Or-	
•	.Desc	Grid	Throng	Thanks -				Depth		extur	SDA		By Wt		tte	-		gani	c Spe-
Site No.	Map Sheet	di- nates	Topog- raphy Class		Clope	Vegetation	Land Use	Layer in.	t	y Wt,		Туре*	1		نحليا	te	Туре	tent	
1	5153111	873521	1,0W	Bottomland flat	0	Bare	Cultiveted	0-6 6-12	12	54	34	SICL	92	63 65	27 27		CH CH		2.58
3	51531V	811787	Low	Drainage ditch	0	Short grass	Grazed	0-6 6-12	4 7	28 30	68 63	C	96 93	63 64	32 36		MEH	=	2.59
4	5153IV	811787	Low	Bottomland flat	0	Grass (6 in. high)	Cultivated (idle)	0-6 6-12	12	28 18	68 70	C	97 98	66 65	34		MH	==	2.48
5	5153EV	811787	Low	Bottomland dupression	0	Grass (8 in. high)	Cultivated (idle)	0-6 6-12	15 1	14 14	71 85	C	100 100	72 73	38 34	34 39	HER		2.52 2.55
8	5253IV	170848	Low	Lower slope	1	Short grass	Cultivated (idle)	0-6 6-12	56 54	19 22	25 24	SCL	63 63	20 25	18	NP 7	HL CL-HL	=	2.56
9	51531	105821	Low	Bottomland flat	0	Short grass	Cultivated (idle)	0-6 6-12	3 10	72 30	25 60	SIL	100 94	81 77	65	16 38	OH		2.34
12	5254I	426187	High	Terrace flat	0	Melons	Cultivated	0-6 6-12	11 7	45 22	44 71	S1C C	92 94	57 54	36 37	21 17	HH		2.60
13	525511	670353	High	Terrace flat	1-2	Brush and trees	Undisturbed	0-6 6-12	28 33	27 22	45 45	c -	78 73	40	29 29	11 15	HL HL		2.64 2.65
14	53551	049455	Low	Bottomland flat	1	Short grass	Cultivated (idle)	0-6 6-12	11 15	21 32	68 53	C	92 92	62 59	34 26	28 33	CH		2.70 2.69
15	5456111	925612	Low	Bottomland flat	0	Short grass	Cultivated (idle)	0-6 6-12	10 6	40 28	50 66	S1C C	93 95	59 62	30 28	29 34	CH	2.09 0.95	2.63
16	545711	269981	Low	Terrace flat	0	Short grass	Cultivated (idle)	0-6 6-12	66 62	24 23	10 15	SL SL	49	22 22	15	NP 7	SM-SC	1.05	2.61 2.69
17	545711	269989	Low	Terrace flat	0	Short grass	Cultivated (idle)	0-6 6-12	55 55	27 28	18 17	SL SL	57 55	38 29	15 13	23 16	CL	=	2.58 2.69
18	545711	268989	Low	Bottomland depression	0	Short grass	Cultivated (idle)	0-6 6-12	57 53	27 26	16 21	SL GSCL	62 47	25 26	15 21	10 5	CL SH-SC		2.61 2.73
19	555811	623412	Low	Bottomland flat	0	Rice	Cultivated	0-6 6-12	47 42	33 31	20 27	L	65 70	36 36	19 18	17 18	CL CL	0.78	2.71 2.71
20	5558IV	499639	High	Upper slope	1	Trees and brush	Undisturbed	0-6 6-12	85 86	12 12	3	LS	24 23	17	16	NP 1	SH SH		2.61 2.65
21	555911	771755	Low	Stream bottom	0	Short grass	Grased	0-6 6-12	92 93	5	2	8 8	17 13	20		HP	SH SH		2.63 2.66
22	57°71V	551305	High	Upland flat	2	Brush and trees	Und1sturbed	0-6 6-12	81 83	17 15	2	LS LS	35 34	17		HP HP	SH		2.57 2.64
23	57571V	5902 9 0	Low	Bottomland flat	0	Marsh grass	Grazed	0-6 6-12	73 80	22 17	3	EL LS	46 42	18	-	MP	SM SM		2.62 2.65
24	5754IV	387080	High	Terrace flat	1	Tall trees and bamboo grass	Undisturbed	0-6 6-12	51 25	34 51	15 24	L Sil	73 92	24 27	19	NP 8	HE.	-	2.59 2.62
25	5754111	610967	High	Upland flat	1	Trees	Undisturbed	0-6 6-12	72 72	7	21 22	SCL SCL	36 37	18 20	15	MP 5	SM-SC	0.46	2.61 2.60
26	5754111	550980	Low	Bottomland flat	0	Tall trees	Undisturbed	0-6 6-12	87 82	13 15	3	S LS	19 21	16	16	MP	SM		2.55 2.65
28	5754IV	400140	Low	Bottomland flat	0	Open trees with some grass	Cultivated (idle)	0-6 6-12	67 71	19 22	14 7	SL	37 38	18	=	MP	SH	0.42 0.32	2.60 2.61
29	5754IV	329150	Low	Bottomland flat	0	Scattered trees	Cultivated	0-6 6-12	71 52	21 33	8 15	SL L	50 53	14 14		NP NP		0.46 0.42	2.63 2.62
30	595611	920655	Low	Bottomland depression	0	Rice	Cultivated	0-6 6-12	51 71	29 13	20 16	SL.	68 55	18 19		HP HP		1.55 1.24	2.62 2.65
31	595611	923659	Low	Natural levee	0	Heavy brush with some trees	Undisturbed	0-6 6-12	73 62	16	21 22	SCL SCL	40 62		_	NP NP		1.08	2.56 2.62
32	595611	915672	Lew	Upper slope	1	Sparse grass with some trees	Cultivated (idle)	0-6 6-12	82 91	11 8	7	LS	30 25			NP NP		0.38 0.36	2.63 2.58
34	5956I	858858	Low	Bottomland depression	1	Short grass	Grazed	0-6 6-12	71 67	23 24	•	SL SL	38 41			NP NP		0.62 0.58	2.63 2.59
37	5958IV	603647	High	Upper slope	1	Open forest/brush and short grass	Undisturbed	0-6 6-12	62 78	26 15	12 7	SL LS	55 27		_	HP HP		0.70 0.50	2.62 2.62
38	59601V	703285	High	Upper slope	3	Short grass	Grazed	0-6 6-12	89	6	5	5	18 18		==	MP MP		1.29	2.61

Table Al (Continued)

_		IN East		Wet-B	e0.000	Condi	tion	500	£100 (· III	717c8p	Ility Data			Migh-	bistur	Cond	ition			III COL
		Depth	D						Shee	ugrapi	**	Dry						Shear	raph'		Depth to
	No. of Visits		Dry Density 1b/cu ft	1C. \$	CI	RI	RCI	Cu Děi	Zen Ju	ur pai	Tun a _{ur}	Density lb/cu ft	NC. S	CI .	RI	RCI	c _u pai	Ten fu	ur pai	a _{ur}	Tablet in.
1	1	0-6 6-12	68.0 84.2	52.2 35.4	21 93	1.00	21 73					68.0 84.2	52.2 35.4		1.00	21 73					+2
3	1	0-6 6-12	69.0 70.6	51.8 47.8	52 73	0.72 0.72	3° 53					69.0 70.6	51.8 47.8		0.72 0.72	37 53					6
4	1	0-6 6-12	72.0 75.2	38.0 36.6	85 100	1.27	108					72.0 75.2	38.0 36.6		1.27	108 91					18
5	1	0-6 6-12	65.8 80.5	54.5 37.0	44 75	0.91	40 49					65.8 80.5	54.5 37.0		0.91 0.65	40 49					+3
8	1	0-6 6-12	92.4 98.9	19.5 19.8	136 162	0.63	86 143														
9	1	0-6 6-12	58.4 78.3	51.8 34.9	152 193																
12	1	0-6 6-12	70.5	35.0 24.8	68 222+	0.90	61														
13	1	0-6 6-12		16.0 14.2	233+	=															
14	1	0-6 6-12	89.6	29.9 27.4	55 88	0.90 0.76	50 67					89.6	29.9 27.4		0.90 0.76	50 67					18
15	1	0-6 6-12		22.2	285 220																
16	1	0-6 6-12	108.6	15.9 13.4		0.83 0.66	120 123														
17	1	0-6 6-12	97.6 108.9	20.6 18.8		0.63	30 90														
18	1	0-6 6-12	106.1 107.9	18.4 18.2	89 150	0.60 0.77	53 116														
19	1	0-6 6-12	96.4 110.2	19.8 17.9		0.52 0.74	12 58					96.4 110.2	19.8 17.9		0.52 0.74	12 58					+2
20	1	0-6 6-12	93.2	5.0	231 305																
21	1	0-6 6-12	93.6	13.8	104 258		=					93.6	13.8	104 258	=	=					10
22	1	0-6 6-12	100.4	9.6	490 727																
23	1	0-6 6-12			277 475																
24		0-6 6-12			136 98		50 51														
25		0-6 6-12			127 145		102 102														
16		0-6 6-12	89.2	9.2	108 250																
8		0-6 6-12		14.2 17.5	100 100		70 26					103.2 99.5	14.2 17.5		0.65	70 26					11
9		0-6 6-12			61 110		52 40					111.0 99.2	14.8 19.5		0.86	52 40					1
10		0-6 6-12		21.5 20.5	44 78	0.21 0.33	9 26					93.9 88.0	21.5 20.5		0.21 0.33	9 26					+1
1		0-6 6-12			124 170																
12		0-6 6-12			316 582																
14		0-6 6-12		19.9 13.2	215 162	0.62	100														
7		0-6 6-12			243 198	0.82	162														
8		0-6 6-12	108.0 111.4	9.2 7.4			=														

c_u, ultimate soil-to-soil cohesion; β_u , ultimate soil-to-soil angle of internal friction; a_{ur} , ultimate soil-to-rubber adhesion; α_{ur} , ultimate soil-to-rubber angle of friction.

† Flus (+) denotes depth of water above surface. (2 of

	Locat			Section A. B	Ité D	ata						section	В.		USCS			Or-	
		Grid Coor-	Tupog-	Торо-				Depth		extur			By W	t	tter				Spe- cific
Site No.	Map Sheet	di- nates	raphy Class	graphic Position	Slope	Vegetation	Land Use	Layer in.		Silt	Clay	Туре	Fine		PL	PI	Туре	tent	Grav- ity
39	5960IV	700348	Lov	Terrace flat	0	Bare	Cultivated	0-6 6-12	51 59	36 30	13 11	L SL	65 56			NP NP	ML	0.74	2.63
40	5960IV	660420	Hf sin	Upland flat	0.5	Tall weeds with scattered trees	Cultivated (idle)	0-6 6-12	68 70	11 19	21 11	SCL SL	45 42		-	NP NP	SH SH	1.46	7.61 2.65
41	59601V	655415	Migh	Lower slope	1	Trees	Undisturbed	0-6 6-12	82	18	0	VGLS	13			MP	SM	1.15	2.70
42	5962111	698832	High	Upper slope	2	Scattered trees	Undisturbed	0-6 6-12	72 73	12 14	16 13	SL GLS	31 29			MP MP	SM SM	0.90	2.64
43	5963111	614180	High	Upland flat	9	Heavy tree growth	Undisturbed	0-6 6-12	50 51	29 18	21 31	GL VGSCL	37 23	39 52	27 32	12 20	SM SM	2.20 1.05	3.14
44	5963111	590171	Low	Bottomland flat	0	Low brush and scattered trees	Cultivated (idle)	0-6 6-12	35 20	46	19 33	L SICL	81 85	38 48	26 24	12 24	ML CL	2.87	2.64
45	58621	391151	High	Upland flat	0.5	Short grass and scattered trees	Cultivated (idle)	0-6 6-12	45	38 28	17	L VGCL	91 13	16 17		NP NP	HEL CH	2.01	2.50
47	5763111	640201	High	Upland flat	0	Trees	Undisturbed	0-6 6-12	69 60	24 31	7	SL SL	47			MP MP	SM	0.38	2.53
49	5763111	640220	Low	Terrace flat	0	Rice	Cultivated	0-6 6-12	54 56	37 41	9	SL SL	60 70	17	17	NP O	ML ML	0.50	2.61
50	5763111	505279	Low	Terrace flat	0	Bare	Cultivated	0-6 6-12	46 25	32	22 51	L C	85	17	21	иР 14	ML CL	0.58	2.55
51	556311	683239	Low	Terrace flat	0	Short grass	Cultivated (idle)	0-6	72 43	20 28	8 29	SL CL	53 62	17		NP NP	ML ML	0.46	2.58
52	54621	312063	High	Lower slope	15	Scattered trees	Undisturbed	6-12 0-6	82	8	10	LS	50			MP	SH	0.39	2.53
53	54621	326070	High	Lower slope	7	and tall grass Bamboo with	Undisturbed	0-6	45	19	36	SL CL	50	22	17	S NP	SH-SC	1.55	2,68
54	556311	683239	Low	Terrace flat	0	Short grass	Cultivated	6-12 0-6	72	20	38	SC SL	55	23		MP	HL.	0.46	
55	556111	661493	Higi.	pland flat	1	Trees and brush	(idle) Undisturbed	6-12 0-6	94	28	30 0	CL S	62 28	17	77	NP	ML. SM	0.39	2.62
56	5560II	696228	High	Upper slope	1	Brush and trees	Undisturbed	6-12 0-6	87	14	0	LS	30 35	20	19	NP.	SH	0.25	2.62
57	545811	142367	High	Upper slope	3	Short grass	Cultivated	6-12 0-6	71 82	14	7	SL LS	38 28	13 20	13	NP	SH	0.62	2.64
58	535811	204351	Low	Bottomland	0	Bare	(idle) Cultivated	6-12 0-6	100	17	3 0	LS	28 32	20	18	2 NP	SM	1.77	2.62
59	535711	033062	High	flat Upper slope	1	Short grass	Lawn	6-12 0-6	74 100	9	17 0	SL S	42 34	22		NP	SM	0.70	2.64
60	515611	001670	Low	Bottomland	0	Rice	Cultivated	6-12 0-6	71 40	17 30	30	SL C	38 66	18	19	31	SM	0.70	2.62
62	5151IV	770977	Low	flat Bottomland	0	Short grass	Cultivated	6-12 0-6	32	45 37	23 54	C C	70 92	68	26	42	CH	0.46	2.56
63	5151IV	770977	Low	flat Bottomland	0	Short grass	(idle) Cultivated	6-12 0-6	7	36 36	57 58	c c	95 96	68	28	40	CL	0.32	2.72
66	515411	061031	Low	flat Bottomland	0	Short grass	(idle) Cultivated	6-12 0-6	39	34	58 12	C L	93 67	72	30	42	CH	0.84	2.74
67	5151IV	795940	Low	flat Bottomland	0	Brush	(idle) Grazed	6-12 0-6	42	45	13 52	L C	97	18	14	4	CL-HL	0.38	2.65
68	5151IV	795940	Lov	flat Bottomland	0	Brush and	Grased	6-12	6	47	47	\$1C	97 91	79 70	25	54 38	CH	1.72	2.75
69	5151IV		Low	flat Bottomland	0	short grass Brush and	Grazed	6-12	5	48	47	S1C S1CL	97	69	30	39 52	CH	2.20	2.72
70	515011		-	flat		short grass	Fruit	6-12	4	46	50	SIC	97	97	36	61	CH	3.58	2.73
				Terrace flat		Recently cleared of trees	plantation	0-6 6-12	76 75	18	8	SL SL	28 29	11		MP	SH		
71	52481	530000	Low	Bottomland flat	0	Rice	Cultivated	0-6 6-12	73 75	5	20	SL SL	32 27	23	15	•	SC	1.35	2.64
73	52481	635955	Low	Beach	0.5	Bare	Undisturbed	0-6 6-12	96	3	3	8	20	27		MP	SM	0.22	2.68
74	5449111		Low	Terrace flat	0	Short grass	Grazed	0-6 6-12	45 52	52 37	11	S1L SL	70 58	17 14	17 14	0	HEL.	2.91 0.84	2.64
75 .	5449111	945008	Nigh	Upper slope	6	Rubber plantation	Cultivated	0-6 6-12	64	19	17 26	SL SCL	40	34 42	24 20	10 22	SM SC	3.94	2.64

Table Al (Continued)

				Wet-	Seaso	n Cond	ition	sect	ion C. 1	arricab	ility Data			High-He	isture	condi	tion		
2100	No of	Depth of Lever	Dry Density					c _u	Sheargre Tan	Tan	Dry Density					cu	Shear	an Tan	Depth to Water Table
No.			lb/cu ft	MC, 5	CI	RI	RCI	pai .	u pe	a aur	lb/cu ft	NC, S	CI	RI	RCI	psi	P _u	pai aur	in.
39	1	0-6 6-12	98.9 101.0	19.4 16.0		0.48	55				98.9 101.0	19.4 16.0	10 6 114	0.48	55				18
40	1	0-6 6-12	96.1 97.4	11.1 11.6															
41	1	0-6 6-12			442+ 750+		Ξ,	,											
42	1	0-6 6-12	102.3 118.2	10.2 10.4			= '	,											
43	1	0 6-12	104.5	18.6	191 297+		=												
44	1	0-6 6-12	88.0 91.4	26.6 27.9			64 113												
45	11	0-6 6-12	94.6	22.4		0.28 0.51	29 89				94.6	22.4		0.28	29 89				15
47	1.	0-6 6-12	96.1 108.6	14.1 9.2			=												
49	1	0-6 6-12	101.0 102.0	21.8 29.3		0.93	87												
50	11	0-6 6-12	99.6	24.6 19.4		0.24	29				99.6 99.6	24.6 19.4		0.24	29				1
51	1	0-6 6-12	106.1 111.7	17.5 14.6			234+ 161+												
52	11	0-6 6-12	102.4 117.0	7.6 12.0	486+ 273+														
53	1	0-6 6-12	Ξ	8.8			=												
54	1	0-6 6-12	104.2 110.2	20.6 17.3			189 97				104.2 110.2	20.6 17.3		0.78	189 97				+2
55	1	0-6 6-12	94.2 97.0	9.4 7.6	216 255	=	-												+
56	1	0-6 6-12	103.6 98.7	7.2 3.0		=	=												•
57	1	0-6 6-12	94.6 93.9	9.6 12.8	113 179														
58	1	0-6 6-12		3.7 6.8	750+	=	=					3.7 6.8	750+						+3
59	1	0-6 6-12	103.6 105.5	7.6 5.2	184 330+														
60	1	0-6 6-12	77.4 73.0	39.8 44.9	40 77	1.16	46												
62	1	0-6 6-12	77.7 76.2	37.5 38.1		0.79	24 50												
63	1	0-6 6-12	79.2 79.0	31.0 31.3		0.97 0.96	38 64												
66	1	0-6 6-12	100.4 98.0	19.4 19.4			54 45												
67	1	0-6 6-12	85.2 78.0	27.2 30.5		0.87 0.33	30 12				85.2 78.0	27.2 30.5		0.87	30 12				18
68	1	0-6 6-12	76.1 75.5	39.4 42.8		0.71 0.68	36 39				76.1 75.5	39.4 42.8		0.71 0.68	36 39				18
69	1	0-6 6-12	56.5 49.6	67.0 82.0		0.49 0.54	4				56.5 49.6	67.0 82.0		0.49 0.54	4				+1
70	1	0-6 6-12			210+														
71	i	0-6 6-12	88.9 99.6	25.4 17.8	61 230+		26 92+												
73	1	0-6 6-12	91.1 84.2	30.6 30.8			125 423				91.1 84.2	30.6 30.8		1.20 1.88	125 423				1
74	1	0-6 6-12	116.7 97.0	23.4 22.8			166 15				116.7 97.0	23.4 22.8		1.30 0.11	166 15				5
75	1	0-6 6-12	83.6 84.6	30.7 25.9	78 157		33 174												

Ä,

=	•			Section A.	ite i	20.0		_				ection	В.					_	_
	Locat	Grid						Depth			BDA			A	tter				Spe-
Site	Map	Coor-	Topog- raphy	graphic	Slop			of	b	extur y Wt,	3	1000	By W	_1	berg .imi	te		Con-	cific Grav-
lio.	Sheet	nates	Class	Position	3	Vegetation	Land Use	in.	Sand	Silt	Clay	Type	Pine	ш	PL	PI	Type	- 5	ity
76	5547IV	310535	Low	Bottomland flat	0	Short grass	Grazed	0-6 6-12	37 40	51 48	12 12	SIL	88 87	41 30	31 22	10	PE.	4.82	2.58
77	5448IV	832932	Low	Bottomland flat	0	Marsh grass	Undisturbed	0-6 6-12	53 33	31 42	16 25	SL L	74 72	49 37	34 23	15 14	CL	4.44	
78	5150 t	065730	Low	Bottomland flat	0	Mangrove	Undisturbed	0-6 6-12	65 67	26 25	8	SL SL	52 54	48	40		ML	2.22 2.94	2.60
80	4867111	202814	High	Terrace flat	2	Grass, brush, and small trees	Undisturbed	0-6 6-12	53 48	30 30	17 22	SL L	57 62	24	16	៊ី៖	CL	2.12 1.76	2.66
81	4867IV	190832	High	Upland flat	1	Small trees, brush, and grass	Undisturbed	0-6 6-12	74 73	20 20	6	SL SL	35 37	16		NP	SM	3.00 0.94	2.63
82	48671V	169837	High	Upper slope	35	Scattered trees and brush	Undisturbed	0-6 6-12	62 58	23 25	15 17	GL GSL	34 42	21 22	17 14	8	SH-SC	1.60	2.66
83	4867IV	149863	High	Upper slope	6	Scattered small trees and brush	Undisturbed	0-6 6-12	78 69	7 21	15 10	VCSL VCSL	12 14	21	15	6	SP-SH SH-SC		3.31
84	4867IV	129859	Low	Natural leve	• 0	Garden	Cultivated	0-6 6-12	18 17	54 50	28 33	SICL SICL	83 88	40	24	16	CL	2.67 3.11	2.65
85	4867IV	129859	Low	Bottomland depression	0	Bare	Cultivated	0-6 6-12	18 26	47 39	35 35	SICL	85 77	42 41	26 24	16 17	ML	3.00 1.14	2.70
86	47671	958948	Low	Bottomland depression	0	Bare	Cultivated	0-6 6-12	25 17	48 43	27 40	CL SICL	82 88	40 46	24 24	16 22	CL.	1.66	2.69
87	47671	947947	Low	Upper slope	2	Bare	Cultivated	0-6 6-12	17 19	41 41	42 40	SIC SICL	88 86	51	22	29	CR	3.04 1.60	2.66
86	4870IV	213999	Low	Lower slope	0.5	Rice	Cultivated	0-6 6-12	11 7	53 51	36 42	SICL SIC	94 96	49	26	23	CL.	6.21 3.30	2.69
89	4870IV	213001	Low	Natural levee	0	Short, heavy	Levn	0-6 6-12	38 44	45 38	17 18	L L	68	30	21	9	CI.	4.80	2.66
90	4870111	173905	High	Terrace flat	3	Short grass and scattered trees	Graved	0-6 6-12	36 39	44	20 18	r r	72 67	23	13	10	CL	3.27 1.60	2.65
91	4869 IV	105650	High	Terrace flat	7	Tall grass	Grazed	0-6 6-12	26 25	42 37	32 38	CL	83 93	63 63	40 34	23 29	161 161	6.45 3.14	2.81
92	4869111	007530	High	Upper slope	12	Scattered trees and grass	Undisturbed	0-6 6-12	62 62	25 25	13 13	SL	47 47	19	15	4	SH-SC SH-SC		2.66
93	4766IV	650465	Low	Bottomland depression	7	Tall grass	Grazed	0-6 6-12	20 36	48 37	32 27	SICL L	87 75	34	17	17	CL	3.55 1.56	2.66
94	4765IV	650465	High	Upper slope	28	Small trees	Undisturbed	0-6 6-12	66	26	 :8	VGSL	15	=		MP	SH	1.33	2.69
95	4766111	657445	High	Upper slope	2	Small trees and brush	Undisturbed	0-6 6-12	56 52	20 20	24 28	SCL SCL	55 57	30	15	15	ā	0.70 0.46	2.67
96	4766I	893574	Low	Bottomland flat	0	Bare	Cultivated	0-6 6-12	28 53	37 29	35 18	CL SL	77 55	33 26	19 15	14 11	CL	1.16 0.78	2.63
97	476/11	920680	Low	Terrace flat	1	Short grass	Cultivated (idle)	0-6 6-12	32 53	43 28	25 19	L	75 53	3, 23	20 16	13 7	CL-HL	1.52 0.44	2.67
98	476711	970780	High	Terrace flat	1	Short grass	Grazed	0-6 6-12	60 53	29 29	11 18	SL SL	47 53	18	16 12	2 7	SH CL-HL	0.98 0.54	2.62
99	47671	970831	Nigh	Upper slope	35	Tall trees and brush	Undisturbed	0-6 6-12	45 35	23 19	32 46	SCL C	58 68	60 57	34 30	26 27	MH	5.46 1.76	2.61
100	5455IV	909551	High	Lower slope	1	Samboo grass	Undisturbed	0-6 6-12	64 60	24 23	12 17	SL SL	44	20	13	ij	SH-SC	=	2.63
101	54551V	919537	High	Upper slope	1	Short trees and brush	Undisturbed	0-6 6-12	64	28 31	8	SL SL	49 53	14 17	14 14	0	SM ML		2.64
102	5455111	943369	High	Lower slope	1-2	Tall trees and bashoo grass	Undisturbed	0-6 6-12	74 70	20 24	6	SL	43 47	16		NP	SM	-	
103	54551V	942468	High	Upper slope	2.5	Tall trees and brush	Undisturbed	0-6 6-12	78 75	15 18	7	LS SL	30 32	13		MP	SH	=	2.64
104	5455IV	929416	Low	Bottomland flat	0	Bamboo and short grass	Undisturbed	0-6 6-12	52 48	30 29	18 23	L L	57 58	26	15	10		0.95	2.64
105	5455111	947340	High	Lower slope	1-2	Tall trees (thick)	Undisturbed	0-6 6-12	72 69	20 22	•	SL SL	40 40	13 11		HP HP	SH	=	=
106	545611	045705	Low	Bottomland flat	0	Short grass	Cultivated (idle)	0-6 6-12	47 48	30 30	23 22	L L	61 60	-		18 14		0.54 0.38	2.66
107	545611	045705	Low	Bottomland flat	0	Bare	Cultivated	0-6 6-12	45	33 33	22 18	L	64 58		13 11	8		1.98 0.78	2.66

Table Al (Continued)

1	_				Wet	-Seal	on Conc	ltion	Sec	tion C	. Tra	ricab	lity Data			figh-M	olsture	Condi	tion		
				Dry															Shear	 The	Depth to Water
1			Layer	Density	MC,	<u> </u>	RI	RCI		ø _u			Density	HC, 5	CI	RI	RCI	psi	4		Table in.
Feb.	76	1																			**
	77	1																			+2
Section Sect	78	1																			
1	80	1																			
1	81	1																			
64	82	1																			
## 6-12 94.2 23.6 12 0.78 1005 ## 6-12 100.4 23.1 80 0.40 48 100.8 23.8 80 0.40 48 ## 1	83	ι																			
6-12 100.4 23.4 80 0.40 48 100.8 23.8 80 0.40 48 100.8 23.8 20 0.40 0.46 77	84	1																			
87 1 0-4 51.0 117 0.46 77 88 1 0-4 10.2 33.4 35 0.56 9 0.73 50 88 1 0-6 10.2 33.4 35 0.56 20 100.2 31.4 35 0.56 20 89 1 0-6 10.2 31.4 31.4 31.4 39.0 39 79 89 1 0-6 10.8 14.6 177 0.50 89 90 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 14.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 89.8 26.6 15	85	1																			+5
80 1 0-4 100.2 33.4 33 0.56 20 100.2 33.4 35 0.56 20 100.2 33.4 0.59 79 84.8 25.2 134 0.59 79 87 84.8 25.2 134 0.59 79 87 84.8 25.2 134 0.59 79 87 87 87 87 87 87 87 87 87 87 87 87 87	86	1																			+6
89 1 0-6 81.1 35.3 90 0.71 64 6-12 86.4 31.4 79 0.50 89 91 0-6 100.8 18.4 177 0.50 89 91 0-6 80.8 42.2 147 91 1 0-6 80.8 42.2 147 92 1 0-6 91.2 101.4 213 0.92 196 93 1 0-6 90.2 20.4 133 0.72 196 93 1 0-6 90.2 20.4 133 0.72 196 94 1 0-6 90.2 20.4 133 0.72 196 95 1 0-6 92.7 10.5 190 95 1 0-6 12 101.4 23.6 95 0.58 55 101.4 23.6 95 0.58 55 97 1 0-6 89.8 28.6 15 98 1 0-6 89.8 28.6 15 99 1 0-6 80.8 43.6 55 0.60 33 80 0-12 101.4 23.6 95 0.58 35 101.4 23.6 95 0.58 35 100 1 0-6 99.8 11.7 127 99 1 0-6 80.8 35.6 55 0.60 33 80 0-12 107.4 11.8 171 101 1 0-6 99.9 17.4 2414 102 1 0-6 99.9 17.4 2414 103 1 0-6 99.9 17.4 2414 104 1 0-6 99.9 17.4 2414 105 1 0-6 99.9 17.4 2415 106 1 0-6 99.9 17.4 2415 107 1 0-6 99.9 17.4 2415 108 1 0-6 99.9 17.4 2415 109 1 0-6 99.9 17.4 2415 100 1 0-6 99.9 17.4 2415 101 1 0-6 99.9 17.4 2415 102 1 0-6 99.9 17.4 2415 103 1 0-6 99.9 17.4 2415 105 1 0-6 99.9 17.4 2415 106 1 0-6 99.9 17.4 2415 107 1 0-6 99.9 17.4 2415 108 1 0-6 105.2 2.6 99.0 1.44 331 6-12 109 1 0-6 99.9 17.4 2415 100 1 0-6 99.9 17.4 2415 101 0-6 99.9 17.4 2415 102 1 0-6 99.9 17.4 2415 103 1 0-6 99.9 17.4 2415 105 1 0-6 99.9 17.4 2415 106 1 0-6 90.9 17.4 2415 107 1 0-6 90.9 2 17.4 2415 108 1 0-6 105.2 2.6 90.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	87	1													_						+6
6-12 86.4 31.4 94 0.48 45 90 1 0-6 100.8 18.6 177 0.50 89 91 1 0-6 90.8 42.2 147	86	1																			+6
90	89	1																			
6-12 84.2 34.0 184 92 1 0-4 92.7 13.5 190 93 1 0-6 90.2 20.4 135 0.76 101 94 1 0-6 90.2 20.4 135 0.76 101 95 1 0-6 0-12 101.4 18.8 175 96 1 0-6 0-12 101.4 23.6 15 97 1 0-6 89.8 28.6 15 98 1 0-6 99.8 28.6 15 99 1 0-6 99.8 18.7 127 99 1 0-6 99.8 18.7 127 99 1 0-6 102.4 13.7 172 99 1 0-6 102.4 13.7 172 99 1 0-6 102.4 13.7 172 99 1 0-6 102.4 13.7 172 99 1 0-6 93.6 18.7 127 99 1 0-6 93.6 18.7 127 99 1 0-6 93.6 18.7 127 99 1 0-6 60.4 35.6 55 0.40 33 6-12 107.4 11.6 171 99 1 0-6 93.6 12.1 219 1.52 333 100 1 0-6 93.6 12.1 219 1.52 333 101 1 0-6 93.9 17.4 24.4 102 1 0-6 99.9 17.4 24.4 103 1 0-6 99.9 17.4 24.4 104 1 0-6 99.9 17.4 24.4 105 1 0-6 99.9 17.4 24.4 106 1 0-6 96.4 9.9 224 107 1 0-6 96.4 9.9 224 108 1 0-6 102.2 21.9 64 0.64 44 135 0.70 95 116.7 16.4 135 0.70 95 116.7	90	1																			
93	91	1																			
6-12 101.4 18.8 175 94 1 0-6 300+ 95 1 0-6 112 96 1 0-6 89.8 28.6 15 97 1 0-6 99.8 18.7 177 98 1 0-6 102.4 11.0 140 99 1 0-6 102.4 11.7 172 99 1 0-6 89.6 12.1 17 172 99 1 0-6 89.6 12.1 17 172 101 1 0-6 99.6 12.1 12.1 219 1.52 333 6-12 0-7 0 30.6 118 0.71 86 100 1 0-6 99.9 17.4 243 101 1 0-6 99.9 17.4 243 102 1 0-6 99.9 17.4 243 103 1 0-6 99.9 17.4 243 104 1 0-6 90.9 17.4 243 105 1 0-6 96.4 99.9 28.4 106 1 0-6 104.2 21.9 64 0.68 44 6-12 580+ 107 1 0-6 105.8 24.2 125 0.31 39 105.8 24.2 125 0.31 39	92	1						196													= :
95 1 0-6	93	1																			
6-12 116 96	94	1				100															
6-12 101.4 23.6 95 0.58 55 97 1 0-6 99.8 18.7 127 6-12 101.7 11.0 140 98 1 0-6 102.4 13.7 172 99 1 0-6 68.4 35.6 55 0.60 33 6-12 87.0 30.6 118 0.71 84 100 1 0-6 93.6 12.1 219 1.52 333 6-12 555+ 101 1 0-6 105.2 2.6 230 1.44 331 6-12 571+ 102 1 0-6 98.9 17.4 243+ 6-12 663+ 103 1 0-6 450+ 6-12 750+ 104 1 0-6 96.4 9.9 224 6-12 750+ 105 1 0-6 500+ 6-12 500+ 106 1 0-6 104.2 21.9 64 0.68 44 6-12 116.7 16.4 135 0.70 95 107 1 0-6 105.8 24.2 125 0.31 39 105.8 24.2 125 0.31 39	95	1		=			_														
98	96	1	6-12		23.6	95									15 95	0.58	55				**
6-12 107.4 11.8 171 99		1	6-12	101.7	11.0	140															
6-12 87.0 30.6 118 0.71 84 100 1 0-6 93.6 12.1 219 1.52 333 6-12 565+ 101 1 0-6 105.2 2.6 230 1.44 331 6-12 571+ 102 1 0-6 98.9 17.4 243+ 103 1 0-6 663+ 104 1 0-6 96.4 9.9 224 105 1 0-6 9.9 30.0 4.6 425 106 1 0-6 104.2 21.9 64 0.68 44 6-12 800+ 106 1 0-6 104.2 21.9 64 0.68 44 6-12 116.7 16.4 135 0.70 95 107 1 0-6 105.8 24.2 125 0.31 39 105.8 24.2 125 0.31 39			6-12	107.4	11.8	171		-													
6-12 565+ 101 1 0-6 105.2 2.6 230 1.44 331 6-12 571+ 102 1 0-6 98.9 17.4 243+ 663+ 103 1 0-6 663+ 6612 750+ 104 1 0-6 96.4 9.9 224 105 1 0-6 586+ 106 1 0-6 104.2 21.9 64 0.68 44 104.2 21.9 64 0.68 44 116.7 16.4 135 0.70 95 107 1 0-6 105.8 24.2 125 0.31 39			6-12	87.0	30.6	118	0.71	84													
6-12 571+ 102			6-12			565+	-														
6-12 663+ 103 1 0-6 450+ 6-12 750+ 104 1 0-6 96.4 9.9 224 105 1 0-6 586+ 106 1 0-6 104.2 21.9 64 0.68 44 6-12 116.7 16.4 135 0.70 95 107 1 0-6 105.8 24.2 125 0.31 39 105.8 24.2 125 0.31 39			6-12			571+															
6-12 7504 104 1 0-6 96.4 9.9 224 6-12 93.0 4.6 425 105 1 0-6 5884 6-12 8004 106 1 0-6 104.2 21.9 64 0.68 44 6-12 116.7 16.4 135 0.70 95 107 1 0-6 105.8 24.2 125 0.31 39 105.8 24.2 125 0.31 39			6-12			663+															
6-12 93.0 4.6 425 105 1 0-6 588+ 6-12 800+ 106 1 0-6 104.2 21.9 64 0.68 44 6-12 116.7 16.4 135 0.70 95 116.7 16.4 135 0.70 95 107 1 0-6 105.8 24.2 125 0.31 39 105.8 24.2 125 0.31 39			6-12		-	750+															
6-12 800+ 106			6-12	93.0	4.6	425															
6-12 116.7 16.4 135 0.70 95 116.7 16.4 135 0.70 95 107 1 0-6 105.8 24.2 125 0.31 39 105.8 24.2 125 0.31 39			6-12	••		800+							104.2	21.9	64	0.44	44				+5
	-		6-12	116.7	16.4	135	0.70	95					116.7	16.4	135	0.70	95				+1
	201	•																			••

				Section A.	Sire .	Data						ection	В.	S011					
	Local	Grid						Depth			SDA		-		tte	-			Spe-
Site	Map Sheet	Coor- di- nates	Topog- raphy Class	graphic	Slop	e Vegetation	Land Use	of Layer in.	1	extur by Wt.		Туре	By W	-	berg Limi PL	te	Turne	tent	cific Grav- ity
108		045705	Low	Bottomland flat	0	Short grass	Grased	0-6 6-12	62	30 15	8 17	SL SL	47	点 <u>比</u> 13 24		HP HP	Type sn sn	0.95	2.67
111	51511 v	770977	Low	Sottomiand flat	0	Short grass	Cultivated (idle)	0-6 6-12	9	39	52 60	C	92	64 65	29	35 36	CH	1.52	2.75
112	51511 V	770977	Low	Bottomland flat	0	Short grass	Cultivated (idle)	0-6 6-12	11	36 42	53 50	r: \$10	92	62 63	29 31	33 32	CH	4.87	2.77
113	51511V	795940	Low	Tidal flat	0	Short weeds	Undisturbed	0-6 6-12	16 16	41	43	SIC SIC	86	86 82	42	44	OH	7.91 9.01	2.72
114	51511V	795940	Low	Tidal flat	0	Bare	Undisturbed	0-6 6-12	5 7	45	50 53	SIC SIC	97 97	71 71	31	40	CIL	4.70	2.73
118	5151IV	795940	Low	Tidal flat	0	Bare	Undisturbed	0-6 6-12	14 10	43 43	43 47	SIC SIC	92 95	91 102	36 35	55 67	OH	8.86	2.69 2.71
119	5151IV	795940	Low	Tidal flat	0	Bare	Undisturbed	0-6 6-12	14 10	43 43	43 47	SIC SIC	92 95	91 102	36 35	55 67	CH	-	2.69 2.71
120	5151IV	795940	Low	Tidal flat	0	Bare	Undisturbed	0-6 6-12	6	47 47	44 47	SIC SIC	96 96	64 78	30 32	34 46	CH CP	4.05 4.15	2.75 2.75
121	51511V	795940	Low	Tidal flat	0	Hangrove	Undisturbed	0-6 6-12	6	46 54	48 37	SIC SICL	96 96	88 99	35 34	53 65	OH	10.48 8.32	2.71 2.75
122	51511V	795940	Low	Tidal flat	0	Short weeds	Undisturbed	0-6 6-12	. 10	43 41	47 53	S1C SiC	95 95	82 82	35 33	47	ON	8.01	2.76 2.75
123	5151IV	795940	Low	Tidal flat	0	Bere	Undisturbed	0-6 6-12	7	46 45	47 48	SIC SIC	96 94	6 8 77	30 32	38 45	CH	2.40 4.60	2.76 2.75
124	5151IV	795940	Low	Tidal flat	0	Bere ,	Undisturbed	0-6 6-12	7	46 45	47 48	SIC SIC	96 94	68 77	30 32	38 45	CI	=	2.76 2.75
125	5151IV	795940	Low	Tidal flat	0	Bere	Undisturbed	0-6 6-1?	9 11	39 43	52 46	C S1C	96 93	76 79	34 33	42 46	CH	2.48	2.74 2.73
126A	5556111	328777	High	Upland flat	3.5	Open forest and grass	Undisturbed	0-6 6-12	82 81	13 13	5	LS	28 28	13	13	- 0	SH	0.95	2.63
1268	5556111	331779	High	Lower slope	2	Heavy brush	Undisturbed	0-6 6-12	94 90	7	3	\$	13 24	17	15	2	SH	0.46	2.64
127	54561	253863	Low	Bottomland flat	0	Short grass	Cultivated (idle)	0-6 6-12	50 48	32 27	18 25	L SCL	59 63	27 30	13 12	14 18	CL	1.45- 0.86	2.65
128	5456I	231898	Lov	Bottomland flat	0	Rice	Cultivated	0-6 6-12	10 7	30 33	60 60	C	98 97	82	29	53	CIE	2.35 1.65	2.67
131	~5456I	252950	Low	Lower slope	0	Short grass	Cultivated (idle)	0-6 6-12	81 68	13 14	18	CLS CSL	37 36	18 37	18 11	0 26	SM	0.78	2.91
132	54561	221881	Low	Lover slope	0	Short grass	Cultivated (idle)	0-6 6-12	15 18	38 30	47 52	C	92 87	50 63	23 23	27 40	CH	1.98	2.66
133	5456I	244940	Low	Sottomland flat	0	Rice	Cultivated	0-6 6-12	54 42	30 30	16 28	SL	58 65	24 43	15 13	30	CL	1.65	2.68
135	545711	258981	Low	Nottomiand flat	0	Short grass	Cultivated (idle)	0-6 6-12	55 52	28 29	17 19	SL L	58 62	26	13	13	CL	0.95	2.65
136	545711		High	Lower slope	1	Brush and grass	Undisturbed	0-6 6-12	65	13 18	7 17	SL.	33 43	16 25	13	12	SC	0.38 0.55	2.72
137	545711		Low	Nottomland flat	0	Rice	Cultivated	0-6 6-12	71 57	15 18	14 25	GSL GSCL	53	39	16 15	24	SH-SC CL	0.55	3.00
138	5557111		Low	Lower slope	1	Short grass	Cultivated (idle)	0-6 6-12	73 76	20 17	7	SL LS	40 38	15	15	•	SH	0.70 0.55	2.65
142	5557111	14 = 55	Lov	Bottomland flat	0	Trees	Undisturbed	0-6 6-12	82 83	15 15	2	LS	32 28	16	14	2	SI	1.55 0.46	2.63
145	5155IV		Low	Bottomland flat	0	Short grass	Cultivated (idle)	0-6 6-12	20 21	40	42 39	CL	85 83	60	22	38	CII		2.71
146	5557111	2000000	HTEL.	Lower slope	1	Grass and brush	Undisturbed	0-6 6-12	18	29 27	53 58	C	92	62 68	25 25	37 43	CI	=	2,64
147	555811		Lov	Bottomland flat	0	Short grane	Cultivated (idle)	0-6 6-12	85 78	13	7	LS	30 33	16	14	2	3 1	0.32	2.66
148	55571	680287	Lov	Lower slope	1	Grass and weeds	Grased	0-6 6-12	65	27	7	SL SL	53	19 21	16 17		IEL CL-HL		2.66
151	55571	676296		Bottomland flat	0	Rice	Cultivated	0-6 6-12	83	15	3 2	LS	32	18	17 15	3	SM	0.32	2.64
154	55571	679299	Low	Nottonland flat	0	Rice	Cultivated	0-6 6-12	79 76	18 20	3		40 43	16	16	0	SM	0.25	2.68

				Wet-	Seaso	on Cond	lilon	Sec	tion C	Tra	rricabi	lity Data			ign-ko	isture	Condi				Depth to
Site No.	No. of	Depth of Layer in.	Dry Density 1b/cu ft	HC, 1	L cr	RI	RCI	c _u	Shea Tan	rgraph ^a ur psi	Tan cr _{ur}	Dry Density 1b/cu ft	MC. \$	cı	RI	RCI	c _u	Tan u	8	ran ² ur	Water Table in.
108	1	0-6 6-12	108.6 117.6	13.4	151	0.42 0.62	63 120	_		-		108.6 117.6	13.4	151	0.42	63 120					+1
111	1,	0-6 6-12	88.6 75.5	37.7	53 78	0.80	42					•				10 Table					
112	1	0-6 6-12	78.0 69.6	39.2 42.0	48 71	0.87	42 59														
113	1	0-6 6-12	65.8 42.4	57.2 109.8	53 54	0.81	43 44					65.8 42.4	57.2 109.8		0.81	43 44					5
114	1	0-6 6-12	76.4 72.7	42.2 47.2	50 60	0.68 0.70	34 42					76.4 72.7	42.2 47.2	50 60	0.68	34 42					5
118	1	0-6 6-12	52.1 50.2	75.6 85.7	21 25	0.62	13 14					52.1 50.2	75.6 85.7	21 25	0.62	13 14					5
119	1	0-6 6-12	=			0.62	16 16							26 28	0.62	16 16					5
120	1	0-6 6-12	79.2 74.0	40.3 46.2	61 54	0.86	52 44					79.2 74.0	40.3		0.86	52 44					5
121	1	0-6 6-12	49.9 45.2	84.4 98.2	15 23	0.64	10 14					49.9 45.2	84.4 98.2		0.64	10 14					1
122	1	0-6 6-12	63.0 52.8	60.6 75.6	31 36	0.70 0.64	22 23					63.0 52.8	60.6 75.6	31 36	0.70	22 23					3
123	1	0-6 6-12	75.8 68.0	42.9 52.6	52 56	0.75 0.71	39 40					75.8 68.0	42.9 52.6	52 56	0.75	39 40					1
124	1	0-6 6-12	=	-	48 57	0.75 0.71	36 40					=		48 57	0.75	36 40					1
125	1	0-6 6-12	69.9	47.8 57.0	36 43	0.57	22 34					69.9 64.9	47.8 57.0		0.57	22 34					1
126A	1	0-6 6-12	100.8	9.1	109 123	=															
1268	1	6-12	95.2	9.1	146 225	=	==														
127	1	0-6 6-12	109.2 103.6	15.8 16.4		0.81	119														
128	1	0-6 6-12	85.2 77.7	33.4		1.11	90														
131	1	0-6 6-12	116.4	17.2	311	1.52	280		•			116.4	17.2 20.4	311	1.52	280					+3
132	1	0-6 6-12	*1.4	29.6 32.0	115	=						81.4	29.6 32.0	74 115	=	_					+1
133	1	6-12	94.2	27.9	263		62														
135	1	0-6 6-12	105.2	19.2	133	0.83	39 110														
136		0-6 6-12	103.6	12.2	349	=	=														
137	1	0-6 6-12	103.6 117.3	15.4	371	=	=														
130 142	1	0-6 6-12 0-6	105.2	17.7 13.3 6.8	337		325 301														
145	1	6-12 0-6	89.2	5.4	114	0.75	32														
146	1	6-12 0-6		46.5		0.78	62														
147	1	6-12 0-6		- 16.9	119		157														
148	1	6-12 0-6	103.6	14.3 22.5	226 130	0.60	78					103.6	22.5	130	0.60	78					+3
151	1	6-12 0-6	103.0	18.6	65	1.04	149+					103.0	18.6	275+		149+					1
154		6-12 0-6	95.2	17.4	145		142					104.6	17.4	145		142					+18
	-	6-12	97.6	16.0								97.6									

(8 of 12 sheets)

		7		Section A.	Site I	Jata						Section	В.	301 I					
	Locat	Grid	4					Depth			BDA				USC:	-			c Spe-
Site	Map	Coor-	Topog- raphy	graphic	Slope			of Layer	1	lexturby Wt.	. 5	200	By W		ber ₍	ts		tent	
No.	Sheet	nates	Class	Position	5	Vegetation	Land Use	in.	Sand	8111	Clay	Туре	<u>Pine</u>	<u>. II</u>	PL	PI	Туре	- 5	ity
155	55571 V	542170	Lov	Bottomiand flat	0	Rice	Cultivated	0-6 6-12	75 75	21 19	6	SL LS	38 38	15 16	_	HP HP	SH		-
156	5457111	452119	Low	Bottomiand flat	0	Rice	Cultivated	0-6 6-12	76 70	21 17	3 13	LS	42 46	17 20	17	NP 3	SH	0.32 0.55	2.65
157	5457111	456119	Low	Lower slope	1	Scattered trees; logged	Cultivated (idle)	0-6 6-12	66 47	30 32	4 21	SL L	55 65	16 31	15	HP 16	HL.	0.38 0.62	2.66
158	54571	238262	High	Upland flat	0	Jute	Cultivated	0-6 6-12	80 80	16 17	4 3	LS	33 35	17 18	_	HP HP	SH	0.55	2.64
161	54571	321201	Low	Sottonland flat	0	Rice	Cultivated	0-6 6-12	35 43	43 34	22 23	L L	87 72	29 31	19 14	10 17	CL CL	=	7.67
162	54571	321201	High	Upland flat	0	Short grass	Cultivated (idle)	0-6 6-12	63 67	27 23	10 10	SL SL	77 47	21 21	18	3	ML SM	1.05 5.32	2.65
163	5557IV	358201	High	Upland flat	0	Jute	Cultivated	0-6 6-12	72 72	21 22	7 6	SL SL	47 45	20 19		10°	SM SM	1.05	2.62
164	3557IV	357201	Low	Bottominad depression	0	Grass	Undisturbed	0-6 6-12	23 30	54 51	23 19	SIL SIL	87 84	27 26	19 17		CL	0.78	2.63
165	55571 V	405198	Low	Bottomland flat	0	Rice	Cultivated	0-6 6-12	43 32	42 38	15 30	L CL	70 77	23 31	14 14	9 17	CL CL	0.70	2.67
166	5557IV	386197	Low	Bottomland flat	0	Grass and brush	Grazed	0-6 6-12	55 41	31 29	14 30	GSL GCL	53 62	20 48	16 18	4 30	CL-HE	1.05	2.82
167	5557 1 ¥	390197	Low	Lower slope	1	Rice	Cultivated	0-6 6-12	35 36	46 42	19 22	L L	75 74	26 30	15 15	11 15	CL	0.78	2.70
168	5557IV	492201	Low	Bottomland flat	0	Rice	Cultivated	0-6 6-12	59 52	33 30	8 18	SL . L	57 60	16 24	12	NP 12	ML CL	0.62	2.68
170	515411	143987	High	Lower slope	15	Tell grass	Cultivated (idle)	0-6 6-12	70 65	20 22	10 13	SL	34 28	29 25	17 17	12	SC SC	2.21 1.82	2.65
171	515411	141980	High	Lower slope	52	Grass and brush	Undisturbed	0-6 6-12	50 56	36 31	14 13	L SL	56 52	27 17	19 16	8	CL ML	3.72 2.48	2.67
172	5154II	120991	Low	Bottomiand depression	0	Corn	Cultivated	0-6 6-12	58 63	29 26	13 11	SL SL	46 43	26	21		SM-SC	2.94	2.67
173	515411	112002	Low	Bottomland flat	0	Tall trees and bamboo	Undisturbed	0-6 6-12	62 60	30 31	8 9	SL SL	47 47	16	14	- 2	SH	2.32 1.33	2.60
174	515411	099991	Low	Upper slope	2	Grass and brush	Grased	0-6 6-12	56	33	11	SL	52	28 17	25 17	3	HL HL	3.28 1.65	2.61
175	515411	076015	Low	Bottomland flat	0	Rice	Cultivated	0-6 6-12	55 43	37 44	8 13	SL L	52 63	14 18	13 14	1	ML CL-HL	1.82	2.61
176	515411	070021	Low	Terrace flat	0	Scattered trees	Cultivated (idle)	0-6 6-12	28 28	61 57	11 15	SIL SIL	78 77	18	16		ML	3.50 2.42	2.61
177	5253EE	457666	Low	Terrace flat	0	Rice	Cultivated	0-6 6-12	32 30	46 45	22 25	L L	80 82	44	22	22	CL	3.14 2.87	2,67
178	5253EV	421691	Low	Torrace flat	0	Rice	Cultivated	0-6 6-12	7	50 36	43 58	SIC C	96 96	48 62	33 29	15 33	ML CH	4.92 5.18	2.63
179	5253IV	164843	Low	Bottomland flat	0	Rice	Cultivated	0-6 6-12	23 18	60 59	17 23	SIL SIL	82 86	 30	19	11	CL.	3.91 3.91	2.64
180	5154111	733062	Low	Nottonland flat	0	Rice	Cultivated	0-6 6-12	5	53 52	39 43	SICL SIC	96 98	61	21	40	ā	4.34 3.96	2.71
181	5254IV	160009	Lov	Bottomland flat	0	Rice	Cultivated	0-6 6-12	21 22	65 57	14 21	SIL SIL	80 82	28 28	24 20	4	CL	1.98 1.65	2.60
182	5254IV	167100	Low	Bottomland flat	0	Rice	Cultivated	0-6 6-12	22 35	42 29	36 36	Cr Cr	82 82	70	21	49	ā	0.78 0.55	2.69
184	5254IV	160124	Low	Bottomland flat	0	Rice	Cultivated	0-6 6-12	13 11	54 55	33 34	SICL SICL	92 93	47	 22	25	CL.	3.86 1.33	2.65
186	5155111	650380	Low	Donton: 14	0	Rice	Cultivated	0-6 6-12	13 16	49	38 39	SICL SICL	95 93	46	22	24	CI.	3.27	2.69
187	5155111	6553 8 0	Low	Pot Crailand	0	Tall trees	Undisturbed	0-6 6-12	5	38 38	57 58	C C	97 97	59	27	32	ā	2.75	2.71
109	5155111	804351	Lev	Bottomland flat	0	Grace	Village	0-6 6-12	38 27	45 46	17 27	SICL L	60 76	49 48	25 25	24 23	CT	4.20	2.64
190	5155111	799358	Low	Bottomland flat	0	Short grass	Cultivated (idle)	0-6 6-12	10	37	53	<u>c</u>	92	70 	30	40	CI	3.00	2.70
192	5155TT	950398	Migh	Terrace flat	0	Corn	Cultivated	0-6 6-12	25 22	48 45	27 33	L CL	80 83	44	 22	22	CL.	3.86	_

				Wet	-Seas	on Conc	iltion	260				lity Data			iigh-M	isture	Condi	tion			
		Depth	Dry							rgraph		Dry	-					Shear		Miles	Depth to Water
ite	No. of Visits		Density 1b/cu ft	MC,	CI	RI	RCI	c _u psi	Ten Ju	ur psi	Tan Cur	Banad Ass	HC, \$	CI	RI	RCI	c _u psi	Tan Ø _u	ur psi	Tan Cur	Table in.
55	1	0-6 6-12			2114	=								44 211+		=					+2
6	1	0-6 6-12	105.2 103.9		153 198	1.24	190 226					105.2 103.9	17.6 18.2		1.24	190 226					+3
37	1	0-6 6-12	104.5 100.8	17.4 19.6	93 173							104.5 100.8	17.4 19.6	93 173		=				•	+3
56	1	0-6 6-12	95.2 92.0		318 270																
1	1	0-6 6-12		-	89 197																
52	1	0-6 6-12	108.6 107.6	15.6 18.8	64 56	0.48	31 12														
3	1	0-6 6-12	90.2	17.0	127 142																
14	1	0-6 6-12	91.8 95.8		122 138	0.34	41 28					91.8 95.8	23.4 22.9		0.34	41 28					+2
5	1	0-6 6-12	99.2 102.0	22.1 20.8	55 117		45 91														
16	1	0-6 6-12	106.1 110.4	18.4 20.2	99 103	0.26 0.51	26 53														
57	1	0-6 6-12	103.0 99.6		63 111		23 80					103.0 99.6	21.3 23.0		0.36 0.72	23 80				·	+6
	1	0-6 6-12	107.0 113.9		140 204	0.90 0.64	126 131					107.0 113.9	18.4 16.0		0.90	126 131					+12
0	1	0-6 6-12	85.5 96.8	21.9 18.4	43 67	0.38	16														
1	1	0-6 6-12	91.4 98.9	24.9 19.8	57 118	0.64 0.33	36 39														
2	1	0-6 6-12	91.1 96.7	26.4 23.8	60	0.34 0.12	20					91.1 96.7	26.4 23.8		0.34 0.12	20					+3
3	1	0-6 6-12	94.6 94.6	23.7 22.9	49 51	0.28 0.28	14 14					94.6 94.6	23.7 22.9		0.28	14 14					6
4	1	0-6 6-12	89.0 92.6	24.6 22.8		0.36 0.16	34 10					89.0 92.6	24.6 22.8		0.36 0.16	34 10					12
5	1	0-6 6-12	100.8 100.2	20.0 20.4	65 106	0.82 0.22	53 23					100.8 100.2	20.0 20.4		0.82	53 23					+7
6	1	0-6 6-12		25.8 20.8			75+					90.5 100.8	25.8 20.8	127+ 300+	0.59	75+ 					+10
7	1	0-6 6-12		24.3 27.6			81 127						24.3 27.6		0.63 0.47	81 127					+3
8	1	0-6 6-12		40.5 37.2			16 104					77.4 83.6	40.5 37.2	36 124	0.44 0.84	16 104					+6
•	1	0-6 6-12		22.0 27.6			16 71					100.4	22.0 27.6		0.20 0.55	10 71					+6
0	1	0-6 6-12		33.4 32.0			75 107						33.4 32.0	99 127	0.76 0.84	75 107					+2
1		0-6 6-12		30.6 25.0			36 81						30.6 25.0	104 193		38 81					+12
2	1	0-A 6-12		26.8 22.0			94					-		143 295		94					+1
4		0-6 6-12		39.1 25.6			78 97						39.1 25.6	63 103	1.24	78 97					+6
6		0-6 6-12	44.3	29.3	173 430		=														
,		0-6 6-12	-	33.8	56 117	0.90	52					=	33.8	58 117	0.90	52					+1
)		0-6 6-12		29.4	109 155	0.72	78														
		0-6 6-12				0.98 1.00	41 65					=			0.98 1.00	41 65					+4
2		0-6 6-12	-		100 196																

Table Al (Continued)

				section A. E	ite	6A					- 2	ection	3. 1	110	Date				
	Locat	ion			725										USCS			Or-	-
		Grid						Depth		UE	SDA .				tter	-		ganic	Spe-
		Coor-	Topog-	Topo-				of	7	extur	e		By W		berg			Con-	cific
Site	Map	di-	raphy	graphic	Slope			Layer	b	y Wt,	\$		\$	1	ini			tent	Grav-
No.	Sheet	nates	Class	Position	5	Vegetation	Land Use	in.	Sand	Silt	Clay	Туре	Piner	Ш	PL	PI	Type	5_	ity
193	5155II	951381	High	Terrace flat	: 0	Corn	Cultivated	0-6	34	38	28	CL	70		-		=	1.15	
								6-12	36	37	27	L	68	31	17	14	CL		2.65
195	5155111	865317	Low	Bottomland	0	Rice	Cultivated	0-6	13	29	58	C	92			-	7.0	4.05	
				flat				6-12	13	20	67	C	93	89	43	46	MH	1.77	2.71
196	515511	911230	Low	Bot touland	0	Short grass	Grased	0-6	13	41	46	SIC	93	116	44	72	CH		2.69
				flat				6-12	_	-									
198	5154IV	874146	Low	Bottomland	0	Trees	Undisturbed	0-6	5	45	50	SiC	97				_	1.65	
				flat				6-12	7	36	57	С	97	76	25	51	CH	1.45	2.72
201	51541	030191	Low	Bottomland	0	Rice	Cultivated	0-6	38	39	23	L	68				_	2.75	
				flat				6-12	43	33	24	L	63	34	17	17	CL	1.05	2.72
202	511د.	994242	Low	Bottomland	0	Tapioca	Cultivated	0-6	28	45	27	CL	78	34	20	14	CL	2.87	
				flat				6-12	22	42	36	L	83	37	18	19	CL	1.65	2.70
206	5154I	130102	Lov	Bottomland	0	Rice	Cultivated	0-6	12	40	48	SIC	88						•••
				flet				6-12	9	38	53	C	92	61	22	39	CH		2.75
208	5757111	590000	Low	Bottomland	0	Rice	Cultivated	0-6	53	39	8	SL	57	15	14	1	ML.	1.65	
				flat				6-12	40	28	32	CL	67	38	15	23	CL	1.33	2.66
210	5557I	739230	Low	Bottomland	0	Rice	Cultivated	0-6	73	25	2	LS	43				-	0.62	
				flat				6-12	75	22	3	LS	43	14		MP	SH	0.46	2.63
211	3657171	012111	Low	Bot toeland	<1	Rice	Cultivated	0-6	50	42		L	69	21	19	2	ML	1.88	77
				flat				6-12	42	38	20	L	70	27	15	12	CL	2.08	2.64

Table Al (Concluded)

				100				Sec	tion C	Tre	tirie o	lity Data						and the		
				Wet	-Seaso	on Conc	ition								HT Ch-Ho	isture	Condi	tion		
		Depth	D						Sher	graph		N-i-						Shear	raph	Depth to
Site No.	No. of Visits	of Layer in.	Dry Density 1b/cu ft	NC,	s ci	RI	RCI	c _u psi	Tan	ur psi	Tan ^C ur	Dry Density lb/cu ft	HC, \$	CI	RI	RCI	c _u psi	Ten Ju	ur Tan psi Gur	Table in.
193	1	0-6 6-12	101.1	21.6	113 205	1.00	113													
195	1	0-6 6-12		58.2	51 77	1.04	53 65					-	58.2	31 77	1.04	53 65				+6
196	1	0-6 6-12			55 67	=	=							55 67	=					+2
198	1	0-6 6-12	74.2 83.6	45.6 37.5	27 59	0.62	17 40						,			•	•			
201	1	0-6 6-12	=	35.2 23.4	48 101	=	=						35.2 23.4	48 101	=	=			•	+2
202	1	0-6 6-12	94.6 101.4	24.7 22.6	60 97	0.66	40 66													
206	1	0-6 6-12	91.0	30.7	52 86	0.80	42 74													
208	1	0-6 6-12	99.5 100.2	19.8 20.5	147 165	0.36 0.58	53 96					99.5 100.2	19.8 20.5	147 165	0.36 0.58	53 96				+6
210	1	0-6 6-12	101.4 100.5	17.8 17.8	184 475	-	=													
211	1	0-6 6-12		22.3 25.9	78 105	0.80	62 86					=	22.3 25.9	78 105	0.80	62 86			١,	•

Table A2
Trafficability Classification Study
Summary of Site, Soil, and Trafficability Data

	Loca	Hon		Section A.	site	Data						Sect10	n B.	501					
	LOCA	Grid						Depth			USDA				Atte			_ Or-	c Spe-
Site	Map	Coor-	Topog- raphy	graphic	Slop)e		of Layer		Texts by Wi			By W	t	ber				cific Grav-
No.	Sheet	nates	Class	Position	1	Vegetation	Land Use	in.			t Clay	Туре	* Pine	L		-	Туре	-	ity
						Naki	non Savan Area												
14	595 8 I	955583	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	50	16	34	sCL.	52	27	13	14	CL	0.62	
18	595 8 I	957584	Low	Terrace fla	et O	Low scrub	Undisturbed	0-6 6-12	43	23	34	CL	61	33	14	19	CL.	0.70	
10	5958I	950589	Lov	Upland depression	0	Low scrub	Undisturbed	0-6 6-12	52	27	21	SCL	58	24	12	12	CL.	1.10	
10	59581	950589	Low	Upland flat	. 0	Low scrub	Undisturbed	0-6 6-12	27	39	34	CL	83	33	16	17	CL	1.40	2.72
2A	59581	975562	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	49	18	33	SCL	53	36	18	18	CL.	0.70	2.72
28	595 8 I	978563	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	48	30	22	L	63	21			CL.	0.76	
2C	595 8 I	982568	Low	Terrace slope	1	Short-grass prairie	Cultivated (rice)	0-6 6-12	40	37	23	<u>.</u>	67	25	15	10	CL.	1.56	=
2D	595 8 I	984570	Low	Terrace fla	t O	Tall scrub	Cultivated (corn, rice)	0-6 6-12	16	49	35	SICL	90	29	17	12	cl	1.90	
28	595 8 I	994588	Lov	Terrace fla	t 0	Tall-grass prairie	Cultivated (idle)	0-6 6-12	78	16		LS	27	-			 SM	0.31	2.62
34	4958II	987476	Lov	Terrace fla	t O	Short-grass prairie	Cultivated (rice)	0-6 6-12	64	22	14	SL.	49	19	14	-	 SH-50	0.86	2.60
38	495811	993480	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	43	39	18			24	14	10	CL.	0.78	=
44	505 8 111	115373	Low	Matural levee	0	Short-grass preirie	Undisturbed	0-6 6-12	38	34	28	CL.	70	34	20	14		0.86	-
48	5058111	115373	Lov	Stream bottom	0	Short-grass prairie	Undisturbed	0-6 6-12	19	50	31	51CL	;;	34	20	14	CI.	1.72	=
4C	5058111	115374	Low	Natural levee	11	Short-grass prairie	Undisturbed	0-6 6-12	51	35	14	<u>.</u>	65	21	16		CL-HL		2.60
4D	5058111	101395	Lov	Bottomland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	67	23	10	SL	42	12		2	 \$X	0.76	2.61
42	5058114	110392	Lov	Terrace flat	0	Tall scrub	Banana orchard	0-6 6-12	70		-	SL.	41	15	14	- -	 SM	1.24	2.61
SA	50571V	213215	Low	Lower slope	1	Tall scrub	Cultivated (corn)	0-6 6-12	31	39	30	CL.	75		24		 CL	2.90	
58	50571¥	215214	Low	Lower slope	1	Short-grass prairie	Cultivated (corn)	0-6 6-12	41	33	26	L	69	31			CL CL	2.75	
sc	5057EV	224212	High	Upper slope	13	Tall scrub	Undisturbed	0-6 6-12	43	41	16	-	60	27	25		 M.	1.05	=
50	5057IV	227211	Wigh	Upland flat	0	Tall scrub	Undisturbed	0-6 6-12	25	36	37	GL.	82	43	_	19		2.35	2.74
58	5057I V	233209	Low	Upland depression	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	37	32	 31	CL.	_	_		25		1.40	=
64	505 0 III	207343	Low	Natural levee	0,	Short-grass prairie	Undisturbed	0-6 6-12	34	44	22	ī	85	_	_	 10		1.40	=
68	5058111	207342	Low	Bottoniand flat	0	Tell-grass prairie	Cultivated (idle)	0-6 6-12	31	34	35	GCL.	52	36		19		1.05	2.73
6 C	5058111	207341	Lov	Bottomland flat	0	Tall-grass prairie	Undisturbed	0-6 6-12	21	37	42	c	50	 55	 21	34		0.76	=
60	5058111	207341	High	Terrece flat	0	Tall scrub	Undisturbed	0-6 6-12	18	42	40	S1CL	- 61			36	_	0.46	
62	5058111	207341	High	Lover slope	1	Tell scrub	Undisturbed	0-6 6-12	14	30	56	-	-	70	_	43	_	1.40	2.74
7A	5057IV	226322	Lov	Bottonland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	16	51	33	SICL	90	49	21	28	CL.	2.10	=
78	5057IV	227322	Lov	Terrace slope	4	Tell scrub	Coconuc	0-6 6-12	37	31	32	ect.	51	35		17		1.15	2.74
7C	50571 V	227322	Low	Terrace flat	0	Low scrub	Undisturbed	0-6 6-12	33	34	33	<u>a</u>	73	60	 28	_		 1.10	-

* G = gravelly; VG = very gravelly.

(1 of 16 sheets)

Table A2 (Continued)

				Wet-	00000	Condi	tion					lity Data			Da-	bistur	e Como	Lition			
		Depth	Dry					_		r Lab		Dry			14:		_	Shear			Depth to Water
	No. of Visits	Layer	Density	MC. \$	CI	m	RCI	C _{tt}	Pan Nu	pei	a _{ur}	Density 1b/cu ft	MC. S	CI	M	BCI	Cu pei	Fan Fu			Tablet in.
						-	~	THE POST			wan Are		X	177			JOHN!		1110-0	11114	
14	1	0-6	113.2	16.6	60			3.6	o.30		0.70	113.2	16.6	60						-	5.0
		6-12	107.2	18.9		0,40	33					107.2	18.9		0.40	33					
13	1	0-6 6-12	109.5	16.1		1.00	132	5.0	0.75	0.8	0.62										
10	1	0-6	95.0	23.6	38			5.5	0.75	0.8	0.60	95.0	23.6				5.5	0.75	0.8	0.60	+0.5
10	1	6-12 0-6	97.0 96.6	24.0	58 208	0.58	34	0.2	1.19	2.1	0.51	97.0	24.0	20	0.58	34					
_	•	6-12	89.5	26.3		0.63	84				••••										
2A	1	0-6 6-12		14.3 25.2		0.47	204	1.7	0.53	0.2	0.47										
28	1	0-6 6-12	106.4	12.6 18.7		0.58	81	2.0	0.78	1.9	0.53										
2C	1	0-6	86.6	19.2		-		2.0	0.78	0.0	0.55										
		6-12	94.4	15.7		0.70	177		•												
2D	1	0-6 6-12	91.1 97.7	21.4 25.2		0.46	79	5.8	0.78	1.0	0.58										
22	1	0-6 6-12	101.1 105.1	12.4 12.1	66 57	0.56	32	2.0	0.51	0.2	0.40										
34	1	0-6	105.4	13.1				3.0	0.53	0.0	0.60										
38	1	6-12	98.0	10.1		0.32	122		0.51	0.7	1.00										
30	•	6-12	105.6	21.8		0.54	58	3.1	0.31	Ų.,	1.00										
44	1	0-6 6-12	97.2 88.4	20.2		0.58	138	0.2	0.58	0.8	0.58										
48	1	0-6	90.6	27.4		4	=	3.4	0.36	1.6	0.22	90.6	27.4	125		=	-				12.0
4C	1	6-12 0-6	95.9	23.9		0.41	55	0.0	0.84	0.6	0.23	95.9	23.9	133	0.41	55					
	•	6-12	94.2	14.2			1129+				0.03										
40	1	0-6 6-12	109.2 113.8	13.8 13.3	121 87	0.22	19	0.0	0.47	0.0	0.36										
48	1	0-6 6-12	107.7	13.4 12.0		2.05	310	0.0	0.67	0.2	0.40										
SA	1	0-6		22.8	157			0.8	0.65	0.0	0.51										
		←12		23.7			-														
58	1	0-6 6-12	96.3	15.9 20.1		1.23	260	0.0	0.45	0.2	0.58										
SC	1	0-6 6-12	_	12.3 15.8																	
SD	1	0-6	-	12.6				0.0	0.73	0.0	0.47										
52	1	6-12 0-6	82.3	14.1				0.2	0.09	0.7	0.23					•					
	•	6-12	93.4	26.4	129	0.70	90														
64	1	0-6 6-12	90.9 91.0	14.3 28.4		0.62	173	0.1	0.53	0.0	0.60										
68	1	0-6 6-12	=	26.0 23.5		=		0.5	0.40	0.2	0.51										
6C	1	0-6	82.7	40.2	62	_		1.0	0.49	0.4	0.27										
45	•	6-12	89,4		80	0.81	65				0.45								•		
60	1	0-6 6-12	90.5 88.1	22.0 32.6		0.81	75	U.U	0.58	0.0	0.47										
62	1	0-6 6-12	-	25.2 35.1		0.94	131	0.0	0.53	0.0	0.34										
7A	1	0-6	90.2	32.5				2.0	0.30	0.1	0.12	90.2	32.5			69	2.0	0.30	0.1	0.12	+1.0
78	1	6-12 0-6	86. 1	36.5 19.3		0.72	69	0.8	0.51	0.2	0,27	86.1	36.5	79	J./Z	•7					
		6-12		22.8	543+	-															
7C	1	0-6 6-12		23.9 26.6				2.4	0.49	0.7	0.34										

^{**} cu, white soil-to-soil cohesion; fu, whites soil-to-soil angle of internal friction; aur, whiteste soil-to-rubber adhesion

que, ultimate soil-to-rubber angle of friction.
† Plus (+) denotes depth of water above surface.

_	Locat	10m		ection A. 8	Ite D	NA .				_		ection	B. 8		Data			Or-	
	TOCAL	Grid						Depth	- 80		DA	_		A	tter			ganic	Spe-
Site	Hap	Coor-	Topog- raphy		Slope		2000000	Layer	by	extur	5		By Wt	_1	derg		-	tent	
No.	Sheet	nates	Class	Position	-	Vegetation	Land Use	in.		Silt	Clay	Type	Pines	正	PL.	PI	Type	<u>.</u>	1ty
70	5057IV	244318	High	Terrace fla	et O	Woodland	Undisturbed	0-6 6-12	43	38	19	L	52	39	23	16	CL	2.60	
72	3057 IV	244318	Low	Bottomiand flat	0	Short-grass prairie	Undisturbed	0-6 6-12	42	38	20	L	58	28	12	16	CL	0.64	_
77	50571V	243318	Low	Bottomland depression	0	Tall-grass prairie	Undisturbed	0-6 6-12	31	50	19	SIL	66	28	12	16	a.	0.92	
84	50571V	206259	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	44	32	24	L	66	30	16	14	CL	2.30	=
83	5057IV	206259	Low	Terrace Blope	1	Low scrub	Cultivated (idle)	0-6 6-12	27	40	33	CL	82	63	23	40	CIL	3.10	=
8 C	50571V	223266	High	Upper slope	5	Low scrub	Undisturbed	0-6 6-12	55	29	16	SL	48	25	18	7	SH-50	3.10	2.72
8D	5057IV	217268	High	Drainage ditch	0	Tall scrub woodland	Undisturbed	0-6 6-12	20	67	13	SIL	95	35	28	7	KL	2.75	
**	5057IV	207264	Low	Bottomland flat	0	Short-grass práirie	Cultivated (rice)	0-6 6-12	51	30	19	ī.	57	31	17	14	CI.	4.75	
94	5057IV	209322	Low	Bottomland flat	0	Tall scrub	Undisturbed	0-6 6-12	42	35	23	Ľ	59	43	19	24	CL	3.50	==
98	50571V	214187	Low	Bottomland depression	0	Short-grass prairie	Undisturbed	0-6 6-12	48	27	25	VGSCL	23	26	13	13	GC.	0.76	=
9C	5057IV	214187	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	63	24	13	SL	41	18	12	-	. SH-SC	0.64	
							Los Buri Area												
104	5153IV	854741	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12		43	52	81C	98	69	26	43	CIL	1.60	2.72
108	5153IV	859734	Low	Terrace flo	at O	Short-grass prairie	Undisturbed	0-6 6-12	15	40	45	SIC	••	55	27	28	CIL	1.10	=
100	5153IV	713745	Low	Bottomland depression	0	Short-grass prairie	Undisturbed	0-6 6-12	12	45	43	81C	98	55	24	31	CH	0.92	==
100	5153IV	713744	Low	Terroca slope	3	Short-grass prairie	Cultivated (idle)	0-6 6-12	-,	45	46	81C	98	56	23	33	CII	1.60	
102	51531 V	712744	Lov	Terrace flo	at O	Short-grass prairie	Levn	0-6 6-12	15	43	42	Sic	89	44	20	24	CL	1.10	
114	515411	721871	Low	Bottomland flat	0	Short-grass prairie	Grased	0-6 6-12	,	41	50	SIC	98	70	29	41	CH	1.40	2.69
118	515411	717872	Low	Terrace fl	at O	Short-grass prairie	Cultivated (rice)	0-6 6-12	12	53	35	SICL	96	48	20	26	C.	1.10	
110	515411	717872	Low	Metural levee	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	18	51	31	SICL	**	42	19	23	CIT 	2.10	
110	5153 IV	774824	Low	Bottomland flat	0	Tall-grass prairie	Cultivated (rice)	0-6 6-12	-	39	53	c	78	70	26	44	CIE	1.72	=
112	515317	705724	Low	Watural levee	0	Woodland	Apple	0-6 6-12	-5	40	55	51C	"	67	22	45	CIN	1.24	=
12A	515411	939923	Low	Terrace fl	at O	Tall scrub	Cultivated (idle)	0-6 6-12	19	38	43	c	03	54	22	32	CH	2.30	2.66
128	515411	939923	Low	Terrace fl	at O	Woodland	Undisturbed	0-6 6-12	14	36	50	c	91	65	23	42	ä	3.50	Ξ
12C	515411	027877	Low	Terrace fl	at O	Woodland	Apple orchard	0-6 6-12	16	62	22	SIL	94	39	24	15	CL	3.50	=
12D	515411	025877	Low	Sectonland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	12	46	42	81C	94	46	22	24	CL	2.30	=
12E	515411	015866	Lov	Tercace fl	at O	Short-grass prairie	Cultivated (idle)	0-6 6-12	10	33	57	c	97		26	62	CIN	1.10	=
13A	515511	1 873316	Low	Bottomland flat	0	Short-grass prairie	Grazed	0-6 6-12	-,	45	46	81C	93	00	30	50	CR	2.30	2.67
130	515511	I 67331 7	Low	Terrace slope	5	Tall-grass prairie	Cultivated (grased)	0-6 6-12	•	65	26	SIL	94	60	23	37	CIL	2.75	==
13C	515511	I 8733 17	Low	Terrace fl	at 0	Short-grass prairie	Cultivated (idle)	0-6 6-12	22	55	23	SIL	71	57	27	30	CI	3.10	=
130	515511	1 041331	Lov	Terrace fl	at O	Woodland	Coconut orchard	0-6 6-12	19	63	18	SIL	70	35	22	13	CL	2.30	=

=				Wet-Se	ason	Condition		ction	. Tr	a deab	lity Data		7	lgh-Mo	isture	Condi	tion		
## A		Depth	Dry				c _u	She o	urgrap	Tun	Dry					c _u	Shear	aur Tan	Depth to Water
	Visits		Density 1b/cu ft	1C. 5	<u>I</u>	NI N	I pai		pai	Ot .	Density 1b/cu ft	HC, S	CI	RI	RCI			psi aur	Table in.
70	1	0-6 6-12		12.6 5			0.8	0.27	1.4	0.20									
78	1	0-6 6-12	100.8 103.6	16.3 16.5		0.48 3		0.16	0.3	0.09									
77	1	0-6 6-12	104.0 110.3	19.8 1 17.9 2		0.40 13		0.23	1.0	0.22									
4	1	0-6 6-12	74.3 100.2	37.6 17.9 1		.00 14		0.30	0.0	0.25									
88	1	0-6 6-12		21.0 3 22.3 3		- :	0.8	0.23	1.0	0.16									
SC	1	0-6 6-12		7.9 6 8.7 7				0.28	1.0	0.22									
8 D	1	0-6 6-12		7.8 6 8.4 7	08+ 41+		1.9	0.47	0.7	0.27									
36	1	0-6 6-12	107.1 83.6	17.0 32.6 1	85 27 0			0.18	3.4	0.12									
94	1	0-6 6-12	87.4 86.6	27.9 1 34.5 1				0.27	0.0	0.09									
98	1	0-6 6-12	=	29.5 12.6 4	70 30 +			0.16	0.0	0.20									
9C	1	0-6 6-12	=	6.2 5 6.8 7			0.0	0.40	0.0	0.25									
								4	Lop By	ri Aree									
104	1	0-6 6-12	89.1 86.9	27.5 1 28.1 1				0.34	0.4	0.23									
108	1	0-6 6-12	74.3 76.6	36.9 1	31 92 0			0.32	1.0	0.16									
10C	1	0-6 6-12	79.9 92.2		63 69 0	.64 5		0.09	0.0	0.07	79.9 92.2	39.4 29.6		0.64	57	1.0	0.09	0.0 0.07	+1.0
100	1	0-6 6-12	89.2 93.0	23.1 1 25.3 1				0.27	2.2	0.07									
102	1	0-6 6-12	84.2 94.3	23.7 10 25.1 10		.74 70		0.23	1.5	0.25									
114	1	0-6 6-12	84.3 87.4	27.6 (34.6 1)				0.12	1.0	0.05									
113	1	0-6 6-12	=	27.5 16 23.6 15			1.7	0.20	1.7	0.11									
110	1	0-6 6-12	-	15.1 46 13.6 7			2.0	0.22	1.0	0.18									
110	1	0-6 6-12	77.8 83.5	30.3 S				0.18	1.0	0.09	77.8 83.5	38.3 35.0			84	0.0	0.18	1.0 0.09	+1.0
112	1	0-6 6-12	88.3 89.4	27.8 12 30.4 12				0.12	0.5	0.18									
12A	1	0-6 6-12	86.0	31.9 10 33.6 11				0.28	0.7	0.11	86.0	31.9 33.6			74		-		12.0
128	1	0-6 6-12	83.2	34.8 11 28.8 20			1.0	0.28	1.0	0.25									
12C	1	0-6 6-12	=	17.5 41 14.6 61			0.0	0.28	0.0	0.30									
120	1	0-6 6-12	92.3 81.7	24.6 13 30.4 6				0.32	0.2	0.22									
128	1	0-6 6-12	86.8 —	31.0 13 35.7 13				0.40	1.9	0.18									
134	1	0-6 6-12			8 - 3 0.		0.9	0.18	0.0	0.16		55.2 44.5	48 83		78	0.9	0.18	0.0 0.16	+1.0
138	1	0-6 6-12			7 - 6 0.		1.0	0.12	0.2	0.14	84.4 78.0	33.9 41.5	47 76	0.83	63	-	-		12.0
13C		0-6 6-12		32.6 7 29.6 15			1.2	0.18	0.8	0.22									
130		0-6 6-12		22.6 15 21.7 15			1.3	0.20	0.3	0.14									

(4 of 16 sheets

===	Too.4	lon	8	ection A. 51	te D	ata						ection	B. 8		Date			Or-	
•	Locati	Grid						Depth			BDA			A	tter	-		genic	Spe-
Site No.	Map Sheet	Coor- di- nates	Topog- raphy Class	Topo- graphic S Position	lope	Vegetation	Land Use	of Layer in.	by by	wt. Silt	Clay	Туре	By Wi	_ 1	berg Limit PL		Туре		cific Grav- ity
136	5155111	841331	Low	Terrace slope	5	Woodland	Coconut	0-6 6-12	19	58	23	SIL	79	41		19	CL.	1.72	
144	515511	984265	Low	Bottomland depression	0	Short-grass preirie	Cultivated (idle)	0-6 6-12	14	41	45	SIC	93	67	26	41	CH	1.90	2.70
148	515511	964265	Low	Terrace slope	2	Tall-grass prairie	Cultivated (peanut)	0-6 6-12	14	43	43	SiC	91	65		39	CIL	2.30	
14C	515511	983266	Low	Terrace slope	2	Tall-grass prairie	Cultivated (idle)	0-6 6-12	14	43	43	SIC	92	63	- 23	40	CH	1.40	
14D	515511	957276	Low	Terrace flat	0	Barren	Cultivated (peanut)	0-6 6-12	14	36	50	-	90	56	24	32	CH	1.65	2.73
14E	515511	958275	Low	Terrace flat	0	Barren	Cultivated (peanut)	0-6 6-12	23	39	38	CL	84	49	20	29	CL	1.15	
15A	51541	041174	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	43	41	16	L	65	29	13	16	CL	0.64	2.71
158	5154I	041173	Low	Terrace slope	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	21	60	19	SIL	85	27	17	10	Cr.	0.92	
15C	51541	041172	Low	Terrace flat	0	Tall-grass prairie	Lavn	0-6 6-12	36	40	24	L	69	37	15	22	Cr 	1.10	=
15 D	51541	906104	Low	Natural levee	0	Short-grass prairie	Grased	0-6 6-12	10	45	45	Sic	95	55	20	35	CH	1.10	
15E	51541	950126	Low	Terrace flat	0	Short-grass prairie	Cultivated (grates)	0-6 6-12	13	42	45	SIC	95	48	22	26	CL.	1.24	
16A	5154I	122126	Low	Netural levee	3	Savanna	Grazed	0-6 6-12	50	35	15	L	71	28	22	6	CL-HE	0.78	2.66
168	51541	123125	Low	Terrace flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	57	28	15	SL	60	27	23	4	ML	1.10	=
16C	51541	102074	Low	Netural levee	0	Tall scrub woodland	Benene orchard	0-6 6-12	19	56	25	SIL	89	37	22	15	CL	1.72	
16D	51541	103076	Low	Bottomland depression	0	Short-grass prairie	Undisturbed	0-6 6-12	7	35	58	c	98	62	22	40	CH	1.40	
162	5154I	104077	Low	Lower slope	3	Short-grass prairie	Grazed	0-6 6-12	23	45	32	CL	86	38	21	17	CI.	1.56	=
17A	515411	038929	Low	Bottomland flat	0	Tall scrub savanna	Cultivated (idle)	0-6 6-12	37	42	21	L	77	31	19	12	CL	1.24	
178	515411	037931	Low	Terrace flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	14	39	47	c	89	67	23	44	CII	1.56	2.73
17C	5154II	037932	Low	Lower slope	1	Short-grass prairie	Cultivated '	0-6 6-12	17	40	43	SIC	92	59	21	38	CIL	1.24	=
17D	515411	059995	Lov	Bottomland flat	0	Wood land	Undisturbed	0-6 6-12	27	52	21	SiL	81	26	16	•	CI.	1.40	2.73
1**		060999	Low	Terrace slope	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	17	74	,	SIL	92			MP	ML.	1.24	
177	515411		Lov	Terrace slope	1	Berron	Cultivated (rice)	0-6 6-12	17	78	3	SIL	90	-		**	HG.	0.92	-
18A		102988		Bottomland depression	•	Short-grass prairie	Undisturbed	0-6 6-12	44	45	ii	L	63	17	16	1	HL	1.24	2.58
183		101989	•	Terrace slope	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	39	49	12	ī	72	17	16	1	NIL.	1.10	-
19C		101991		Terrace flat		Tall-grass prairie	Leve	0-6 6-12	54	36	10	SL	54		-	M2	NIL.	1.10	-
180	515411	061012	Low	Terrace flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	52	38	10	L	57	=		MP	HL	1.40	-
194	4867IV	166867	Lov	Bottonland	0	₩ Woodland	Undisturbed	0-6	 80	16	-	LS	 29			 N2		0.50	=
198	4867IV	165867	Low	depression Terrace flat	0	Woodland	Undisturbed	6-12 0-6 6-12		16	5		 32	_	-			1.04	2.63
19C	4867IV	162866	Low	Sottonland	0	Short-grass	Cultivated	6-12 0-6	79 69	10	18	LS SL	37				SC SC	0.39	
190	4867IV	161866	Low	flat Drainage	0	Tall scrub	(rice) Undisturbed	6-12 0-6 6-12				-					-	0.55	
				ditch		voodland		6-12	55	16	29	SCL	57	35	18	17	CL.	V. 33	

		NoA		Wet-	Seaso	n Cond	Ition		ction (. Tr	region.	Hey Data			(Lgh-M	lature	Cond	tion		No. 41
Site	No. of	Depth of Layer	Dry Density					c _u	Ten	urgraph	Ten	Dry Density					c _u	Shear	aur Tan	Depth to Water Table
No.	Visits	in.	lb/cu ft	100			RCI	P41	-	pai	aur	lb/cu ft	MC, \$	CI	RI	RCI		P _u	psi aur	in.
13E	1	0-6 6-12	91.5 93.8	25.7 22.9		0.71	80	1.5	0.32	1.7	0.14									
144	1	0-6 6-12	81.4 84.6	36.3 34.6	30 100	0.92	92	0.4	0.22	1.2	0.09	81.4 84.6	36.3 34.6	30 100	0.92	92	0.4	0.22	1.2 0.09	+3.0
148	1	0-6 6-12	83.9 85.6	32.4 30.4	58 133	1.16	154	1.2	0.22	1.6	0.14									
14C	1	0-6 6-12	86.8	30.5	67 151	0.82	124	2.0	0.25	1.0	0.16									
14D	1	0-6 6-12	79.1 81.0		126 195	0.82	160	0.6	0,32	1.7	0.30									
142	1	0-6 6-12	88.6 91.0	25.9	97	0.76	144	0.4	U.45	0.0	0.28									
15A	1	0-6 6-12	106.8 103.2	19.0	76	0.51	59	0.5	0.23	0.8	0.09	106.8 103.2	19.0 20.4	76 115	0.51	59	0.5	0.23	0.8 0.09	+1.0
158	1	0-6 6-12	98.9	19.5	97	0.55		0.7	0.27	0.1	0.27				,.	•				
15C	1	0-6 6-12	93.9	31.8			126	1.6	0.28	0.4	0.30									
150	1	0-6 6-12	92.7		100	0.95	142	1.0	0,23	0.4	0.20									
156	1	0-6 6-12	89.7 92.5	29.4	90	0.93	137	1.8	0.23	0.0	0.32									
164	1	0-6 6-12	88.7 89.4		240	0.95	370	1.0	0.40	0.0	0.32									
168	1	0-6 6-12	93.5 92.3	19.9	237	1.07	361	0.0	0.49	0.0	0.30									
16C	1	0-6 6-12	82.8 90.5	30.3	65	0.61	43	1.3	0.32	0.0	0.36									
16D	1	0-6 6-12	88.0 87.6	28.8	55 95	0.49	46	0.0	0.18	0.0	0.12	88.0 87.6	28.8 31.5	55	0.49	46	0.0	0.18	0.0 0.12	+3.0
16E	1	0-6 6-12	94.5 91.6		244 201	0.68	137	0.1	0.51	0.0	0.22	•/.•	323	**	9.47	•				
17A	1	0-6 6-12	99.4 94.4	21.3	105	0.56	65	0.7	0.30	0.0	0.11	99.4 94.4	21.3 25.5	105	0.56	65	-			7.0
178	1	0-6 6-12	94.8	22.9	192		129	1.9	0.36	2.4	0.09	,,,,	• • • • • • • • • • • • • • • • • • • •			•				·
17C	1	0-6 6-12	97.3 94.3	23.6	83	_	41	0.5	0.18	1.1	0.16	97.3 94.3					0.5	0.18	1.1 0.18	+1.0
170	1	0-6 6-12	79.9 96.0	30.7	178		40	0.7	0.45	0,0	0.27	,,,,	2015			•				
178	1	0-6 6-12	=	14.8	647		=	0.0	0.36	0.0	0.28									
177	1	0-6 6-12	=	43.3	437+			0.0	0.47	1.6	0.32	=	43.3	437+ 750+		=	0.0	0.47	1.8 0.32	+3.0
184	1	0-6 6-12	97.5 92.8	19.6 25.5	221	_	31	2.0	0.22	0.0	0.25	97.5 92.8	19.6	221		31	_	 .	- =	9.0
188	1	0-6 6-12	98.6 97.9	19.3	221	-	182	0.0	0.32	0.0	0.32				917					
18C	1	0-6 6-12	93.7 92.8	15.9	423				0.42	0.8	0.25									
18D	1	0-6 6-12	97.6 102.6	20.0	261	_		0.0	0.27	0.0	0.20	97.6 102.6	20.0 18.9				0.0	0.27	0.0 0.20	+0.5
									Q	hiene	Hai Are					3-3-				
19A	1	0-6 6-12	99.4 102.1	16.5 16.1			93	0.0	0.27	0.7	0.14	99.4 102.1	16.5 16.1	96 175		93	0.0	0.27	0.7 0.14	0.0
198	1	0-6 6-12	92.5 94.8	18.7 19.5	155 174	0.52	90	0.5	0.30	0.9	0.34									
19C	1	0-6 6-12	86.2 100.0	46.0 22.3			31	-	-	-	_	86.2 100.0	46.0 22.3	128 112		31		-		+12.0
190	1	0-6 6-12	104.9 103.1	21.4 22.9			92	1.6	0.42	0.0	0.23	104.9 103.1	21.4 22.9	76 156	0.59	72	1.6	0.42	0.0 0.23	+6.0
				-171								200		1000						

(6 of 16 sheets)

			0	Section A. 8	Ite	DATA						Section	В.	5011	Dat				
-	Locat				-										USC	3		Or-	
		Grid		Topo-				Depth	I —,	ex tu	BDA		By W		ber				c Spe- cific
Site No.	Map Sheet	Coor- di- nates	Topog- raphy Class		Slop	e Vegetation	Land Use	Layer in.		y Wt.	5	Туре	Fine		Lini	te	Туре	tent	Grav-
									1172		-	-72-		=	_	-	-77-		-
198	486717	161862	High	Lover slope	3	Low serub	Orange orchard	0-6 6-12	75	21	4	LS	33	_		MP	SH	0.78	2.64
197	4867IV	160062	High	Upper slope	2	Wood Land	Undisturbed	0-6 6-12	69	24	7	SL	42			MP	SH	0.95	=
20A	40661V	135458	Low	Stream bottom	0	Sevenna	Undisturbed	0-6 6-12	83	10	7	GSL	13			HP	SH	2.10	
208	4866IV	135458	Low	Bottomland flat	0	Woodland	Undisturbed	0-6 6-12	60	27	13	SL	47	23	18	-5	SH-50	 C 2.50	
20C	4866IV	134458	High	Torrace fla	t 0	Tell-grass prairie	Cultivated (peanuts)	0 6 6-12	33	44	23	ī	81	34	21	13	CI.	2.66	
200	4866IV	131450	High	Upper elope	7	Tell-grass prairie	Grased	0-6 6-12	57	28	15	SL.	52	16	14	-2	NT.	1.72	
208	4866IV	133458	High	Opper flat	0	Short-grass prairie	Grased	0-6 6-12	48	31	21		63	22	13	-,	CL	1.40	2.65
20 F	4066IV	137458	High	Lover slope	18	Short-grass prairie	Cultivated (papper)	0-6 6-12	57	27	16	SL.	49	25	17		sc.	2.66	=
21A	4867111	028793	Low	Natural levee	0	Woodland	Undisturbed	0-6 6-12	66	21	13	SL.	46	20	17			1.56	Ξ
218	4867111	029794	Low	Terrace flat	0	Tall scrub	Benena orchard	0-6 6-12	55	27	18	SL	54	30	16	12	CL.	1.40	=
210	4867111	029794	Low	Terrate slope	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	56	26	10	SL.	57	28	18	10	CL.	0.70	2.68
210	4867111	030794	Low	Terrace slope	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	58	24	18	SL	57	28	18	10	ā	0.95	=
21E	4867111	031795	Low	Bottonland flat	0	Tall-grass preirie	Benera orchard	0-6 6-12		20	14	SL.	46	24	17	,	SH-50	0.78	
217	4067271	031795	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	 86	-	<u></u>	LS	20	_	=	HP	501	2.30	=
22A	4066IV	014533	Low	Natural levee	4	Tall scrub	Benena Orchard	0-6 6-12	40	31	29	CL	76	31	17	14	CL.	1.40	2.68
228	4066IV	015533	Low	Bottonland depression	0	Tall scrub woodjand	Benene Orchard	0-6 6-12	15	46	39	SICL		47	23	24	CL.	2.30	=
22C	4866IV-	015533	Low	Terrace slope	5	Tall scrub	Apple Orchard	0-6 6-12	30	40	30	CL.	78	40	21	19	cr -	1.90	
220	4866IV	026531	Low	Bottonland depression	0	Short-grass preirie	Cultivated (idle)	0-6 6-12	13	53	34	SICL	94	 33	20	13	CL	1.05	2.66
228	4866IV	027530	Lov	Terrace slope	1	Short-grace prairie	Cultivated (idle)	0-6 6-12	12	63	25	SIL	91	34	22	12	CL.	1.25	
23A	4866IV	097456	Low	Bottomland flat	0	Tall-grace preirie	Cultivated (idle)	0-6 6-12	34	30	36	CI.		54	26	28	CII	2.47	2.80
238	4066TV	097456	Migh	Lower slope	•	Tall scrub	Undisturbed	0-6 6-12	24	26	50	-		78	35	43	ä	2.75	=
230	4066IV	096457	High	Opland flat	0	Tall scrub	Undisturbed	0-6 6-12	23	28	49	OC:	63	72	35	37	101	1.55	=
230	4066EV	053510	Low	Terrace slope	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	25	44	31	CI.	75	32	19	13	CL.	0.95	
238	4866IV	054509	Low	Terrace slope	1	Low serub	Benene orchard	0-6 6-12	63	28	-	SL	48	=	=	-	#K	0.66	2.67
237	486617	055509	Low	Terrace elope	1	Woodland	Undisturbed	0-6 6-12	57	32	11	SL.	54	=	=	WP	Ë	0.95	=
236	406617	058507	Low	Terrace slope	1	Short-gross prairie	Cultivated (rice)	0-6 6-12	61	31	-	SL.	51	=	=	-	H.	0.78	=
244	4766I	854444	Low	Settenland flat	0	Low scrub	Grased	0-6 6-12	11	55	34	SICL	94	42	24	10	CL.	2.30	=
248	47661	855484	•	Terrace elope	2	Low scrub	Grased	0-6 6-12	29	46	25	7	79	27	16	-	a.	1.10	
24C	4766I	855404	Low	Terrece flat	•	Low serub	Coconst orchard	0-6 6-12	33	40	27	Ľ	75	33	19	14	C.L	1.90	2.64
240	4766I	854483	Low	Notural levee	•	Woodland	Benene orchard	0-6 6-12		26	-	SL	48	_		-	=	1.77	-
25A	47661	092573	Low	Bottomland flot	0	Woodland	Undisturbed	0-6 6-12	45	39	16	L		33	22	11	ä	4.30	=

(7 of 16 sheets)

·-		Depth		Wet-	Seaso	on Crad	ition	500				lity Data			1 ch - 16	isture	Condi			Depth to
	We of	of	Dry Density					c _u	Shee Ten	rgraph		Dry Density					cu	Shear	Tun Tan	Water Table
No.		in.	1b/28 ft	HC.	CI	H	RCI	P01	P _u	pei	aur	lb/cu ft	HC, \$	CI	RI	RCI	psi	≠ u	psi aur	in.
192	1	0-6 6-12	94.9 101.3	11.7 15.1		0.86	169	0.0	0.32	0.3	0.27									
197	1	0-6 6-12	98.2 97.6	15.2 13.3		0.98	114	1.5	0.34	1.4	0.32									
20A	1	0-6 6-12	89. 0	23.3	52 118	=	=	1.0	0.14	0.8	0.20	89.0	23.3 19.9	52 118	-	=		-		2.0
208	1	0-6 6-12	85.7 94.4	22.8 14.6		1.01	201	0.9	0.38	0.1	0.51									
20C	1	0-6 6-12	90.0 93.8	24.4 23.9	100		-	1.6	0.36	0.4	0.30									
200	1	0-6 6-12	92.4 104.0	26,2 17.6	116	_	50	0.4	0.30	0.7	0.23									
20E	1:	0-6 6-12	95.7 105.1	17.0	116	-	92	0.3	0.42	0.0	0.36									
207	1	0-6 6-12	94.0	15.6 16.3	207		146	1.0	0.38	0.0	0.18									
21A	1	0-6 6-12	92.7 100.9		93	_	-	0.4	0.32	1.2	0.32									
218	1	0-6 6-12	90.1	30.4 27.4	54	0.53		0.9	0.09	0.5	0.05	90.1 94.6	30.4 27.4	54	0.53		0.9	0.09	0.5 0.05	+5.0
21C	1	0-6 6-12	102.6 101.3	16.6 21.5	81	_	41	1.0	0.18	0.1	0.18	102.6 101.3	16.6 21.5	81	0.35	41	1.0	0.18	0.1 0.18	+0.5
210	1	0-6 6-12	88.0 96.3		92			1.5	0.16	0.6	0.14	88.0 96.3	33.1 25.6	92	0.37	46	1.5	0.16	0.5 0.14	+2.0
218	1	0-6 6-12	91.9 100.6	28.0	59		51	1.5	0.34	0.3	0.30	91.9 100.6	28.0	59	0.36	51	1.5	0.34	0.3 0.30	0.0
217	1	0-6 6-12	90.4	20.0	159	_	91		-	-	-	98.4	20.0	159	0.24	91		-		+6,0
22A	1	0-6 6-12	91.2 97.7	25.9 22.8	56		59	1.5	0.28	0.5	0.14		7737							
223	1	0-6 6-12	76.9 87.5	39.4 33.4	18	0.54	26	1.0	0.18	0.4	0.18	76.9 87.5	39.4 33.4	10	0.54	 26	1.0	0.18	0.4 0.18	+6.0
22C	1	0-6 6-12	87.1 96.5	26.2 21.5	57	0.73	61	1.7	0.38	0.7	0.20									
22D	1,	0-6 6-12	95.2 97.4		101	_		0.8	0.14	1.0	0.09	95.2 97.4	24.7 24.3	181 226	0.29		0.8	0.14	1.0 0.09	+2.0
22E	1	0-6 6-12	92.8 94.2	26.5 24.3	214	-	78	0.7	0.30	0.2	0.03									
234	1	0-4 6-12	81.8 87.5	37.3 33.2	101			0.8	0.53	0.5	0.18	81.8 87.5	37.3 33.2				0.8	0.53	0.5 0.18	0.0
239	1	0-6 6-12	=	34.3		=	=	0.7	0.42	1.2	0.09									
230	1	0-6 6-12	=	34.9	150		=	1.8	0.27	1.2	0.03									
230	1	11411	=	22.9 28.6	421+	-	=	0.3	0.45	0.0	0.18									
236	1	0-6 6-12	96.4 105.2	21.6 14.8	236	-	33	0.5	0, 32	0.5	0.25									
237	1	0-6 6-12	90.3 90.5	15.1 21.5	95		19	0.0	0.40	0.2	0.30									
236	1	0-6 6-12	104.3 110.0	15.4 12.4	82		74	0.7	0.34	0.4	0.23		15.4 12.4	82 295		74	0.7	0.34	0.4 0.23	+4.0
244	1	0-4 5-12	86.4 86.5	28.4 28.7	97	-	91	1.8	0.16	0.8	0.14	86.4	28.4 28.7	97 168		91		-		4.0
240	1	0-6 6-12	er. e	23.6 15.0	290+	_	=	2.0	0.16	0.0	0.18			onetic						
24C	1	0-4 6-12	85.6 95.0	31.1	87	-	- 90	2.1	0.22	0.1	0.25									
240	1	0-6 6-12	83.9 84.4		93		403+	0.5	0.32	0.2	0.28									
25A	1	0-6 6-12	77.6 79.6	29.0 14.7		0.93		1.3	0.45	0.0	0.30									

20

(8 of 16 sheets)

				ection A. S.	te i	ata						Section	3. 1						
	Locat	orid Grid						Depth			SDA			A	tte			Or-	c Spe-
Site	Мар	Coor-	Topog- raphy	Topo- graphic :	Slope	li		of Leyer		extur y Wt,			By Wi		berg Limi			Con-	
No.	Sheet	nates	Class	Position	4	Vegetation	Land Use	in.	send	311t	Clay	Туре	Piner	Ш	PL	PI	Туре		1ty
258	48661	891572	Low	Terrace slope	2	Tall scrub	Apple orchard	0-6 6-12	45	33	22	L	66	26	16	10	CL	0.86	2.66
25C	48661	889571	High	Terrace flat	0	Savanna	Grased	0-6 6-12	75	18	7	SL	32			HP	SH	0.86	-
26A	47671	948978	Lov	Bottomland flat	0	Tall scrub	Cultivated (rice)	0-6 6-12	55	17	28	SCL	51	25	12	13	CL.	1.05	
268	47671	948978	Low	Terrace flat	0	Tall scrub savanna	Undisturbed	0-6 6-12	43	38	19	ī	62	28	18	10	CL	3.96	=
26C	47671	947978	High	Lower slope	,	Tall-grass prairie	Benene orchard	0-6 6-12	76	16	-	SL	28	=		117	SH	1.10	2.64
26D	47671	947978	Nigh	Upper slope	9	Tall scrub	Cultivated (peanuts)	0-6 6-12	77	19	4	1.5	28	=		H?	SH	0.62	
26E	47671	947978	High	Upland flat	0	Tall scrub woodland	Undisturbed	0-6 6-12	74	15	11	SL	31			HP	SH	0.55	
27A	476711	962791	Low	Terrace flat	0	Short-grass prairie	Grased	0-6 6-12	58	25	17	SL	47	19	13	-6	SH-SC	0.78	=
278	476711	961792	Low	Lower slope	1	Short-grass prairie	Grased :	0-6 6-12	55	28	17	SL	52	22	14		CL	0.78	2.62
27C	476711	959793	Low	Lower slope	1	Short-grass prairie	Grased	0-6 6-12	63	25	12	SL.	42	17	14		SH	1.40	=
27D	476711	959794	Low	Metural levee	0	Savanna	Benene orchard	0-6 6-12	57	24	19	SL.	49	 22	15	7	SH-50	1.40	
						Sh	athaburi Area												
28A	5448IV	889951	Low	Terrace slope	2	Short-grass prairie	Grased	0-6 6-12	52	22	26	SCL	54	32	14	18	CL.	1.72	2.66
283	5448IV	889952	Low	Terrace slope	2	Short-grass prairie	Grased	0-6 6-12	53	24	23	SCL	52	24	15	-,	<u>cr</u>	0.78	-
28C	5448IV	889952	Lov	Terrace alope	2	Short-grass prairie	Grased	0-6 6-12	53	26	21	SCL	51	25	16	-,	a.	1.05	-
28D	544 8 IY	809953	Low	Terrace flat	0	Short-grass prairie	Grased	0-6 6-12	51	24	25	SCL	58	28	17	11	CL	1.88	2.66
29A	544 8 IV	840933	Low	Not tonland flat	0	Short-grass prairie	Cultivated (grazed)	0-6 6-12	37	43	20	_	67	44	24	20	CL.	5.74	2.66
298	544 8 IV	030932	Low	Bottomland fibt	0	Tall-grass prairie	Cultivated (idle)	0-6 6-12	34	45	21	L	78	 88	33	55	ā	15.00	2.46
29C	544 8 1V	841934	Low	Bottomland flat	0	Short-grass prairie	Grased	0-6 6-12	27	46	27	Ľ	78	34	17	17	CL	2.90	
30A	5448IV	759003	Low	Natural levee	0	Tell-grace prairie	Cultivated (idle)	0-6 6-12	54	19	27	SCL	58	28	16	12	CL	3.10	2.62
308	5448IV	759004	Lov	Terrace slope	2	Tail scrub woodland	Cultivated (pepper)	0-6 6-12	62	17	21	SCL	48	23	15	-	SC	1.72	
300	5448IV	750005	Low	Terrace slope	2 .	Woodland	Undisturbed	0-6 6-12	68	12	20	SL.	41	17	12	5	 SH-SC	1.40	2.64
300	5448IY	750006	Low	Terrace flat	0	Woodland	Undisturbed	0-6 6-12	61	16	22	SCL	51	 23	14	7	CI.	1.72	
31A	534911	213078	Low	Natural levee	5	Tall scrub woodland	Undisturbed	0-6 6-12	41	37	22	L	76	41	25	16	CL	1.40	2.66
318	534911	213078	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	11	57	32	SICL	93	65	33	32	161	2.30	=
31C	534911	212078	Low	Bottonland depression	0	Tall-grass prairie	Undisturbed	0-6 6-12	17	53	30	SICL	94	55	28	27	ā	1.90	
32A	534911	141101	Low	Terrace flat	0	Tall-grass prairie	Undisturbed	0-6 6-12	68	24	-	SL,	49	-	-	107	***	0.66	=
328	534911	141101	Low	Lover slope	•	Tell-grass prairie	Undisturbed	0-6 6-12	67	22	11	SL	49	12	=	#P	SH	0.86	2.64
32C	534911		Low	Upper slope	10	Low scrub sevenne	Cultivated (rice)	0-6 6-12	47	35	10	L	61	27	16	ū	ā	0.66	2.65
32D	534911		Low	Upper slope	11	Low scrub savenna	Cultivated (rice)	0-6 6-12	52	26	22	SCL	61	24	14	10	ā	0.66	2.68
33A	544 8 IV	759001	Lov	Bottomiand depression	0	Woodland	Rubber plantation	0-6 6-12	12	57	31	SICL	92	53	33	20	-	2.50	2.64

		Depth		wet	-5681	on Conc	ittion		Shee	rgrap	h				High-Mo	isture	cond	Shear	Frank		Depth t
Site No.	No. of Visits	of Layer in.	Dry Density 1b/cu ft	HC.	≰ ci	RI	RCI	c _u psi	Tan	ur	Tun	Dry Density lb/cu ft	HC, \$	CI	ŘI	RCI	c _u psi	Tan	4.	Tan	Water Table in.
258	1	0-6 6-12	99.0 106.5	20.4 17.2	85 136		91	0.8	0.30	1.1	0.22										
2SC	1	0-6 6-12	99.6 104.0	12.9 11.7	93		75	1.3	0.32	0.0	0.42										
6A	1	0-6 6-12	=		127 195		78		-		-	Ξ	24.7 15.2	127 195	0.40	78			-	••	+15.0
16B	1	0-6 6-12	87.3 86.7	27.9 30.4	69 58		19	1.0	0.49	0.0	0.45	87.3 86.7	27.9 30.4	69 58	0.32	19	-		_	-	11.0
6C	1	0-6 6-12	94.9 100.1	11.6 10.7	86 111	1.93	214	0.0	0.55	0.0	0.32										
6D	1	0-6 6-12	97.9	10.0 10.8		3.69	583	0.0	0.40	0.6	0.34										
62	1	0-6 6-12	101.0 112.0	12.5 11.8	204 239	=		0.9	0.38	0.6	0.22										
7A	1	0-6 6-12	89.9 107.2		148 173	0.32	55	1.3	0.38	0.7	0.22										
78	1	0-6 6-12	99.4 110.7	18.9 12.6		0.65	237	1.2	0. 30	0.3	0.30										
7C	1	0-6 6-12	94.6 104.2	23.9 15.3	381 420	0.35	147	1.0	0.42	0.3	0.23										
7D	1	0-6 6-12	98.7 102.9	18.5 17.5	93 115	0.47	54	0.3	0. 32	0.0	0,28										
BA	1	0-6	77.4	44.7	81		_	1.6	<u>Ch</u> 0. 27		0.23	77.4	44.7	••							
	1	6-12	100.1			0.54	83		0.42		0.23	108.1	18.7		0.54	83		0.27		0.23	+1.0
IC	1	6-12	108.4			0.68	76	0.4	0.46		0.23	108.4	18.0 17.2 25.9	122 112 139	0.68		1.0	0.42	0.0	0.23	0.0
lo lo	1	6-12	103.7	19.6	147	0.50	74		0.27		0.25	103.7	19.6	147	0.50	74	_		_	_	4.0
)A	1	6-12	103.6	18.8	145	0.54	78		0.14		0.12	103.6	18.8	145		78	•	0.14	•	0.12	6.0
08	1	6-12	79.0 59.6	37.6 57.7		0.38	35 4	-		_		79.0 59.6	37.6 57.7	93	0.38	35	0.0	W.14	0.0	0.12	+2.0
C	1	6-12	49.3	97.5		0.51	24	0.4	0.36	0.6	0.16	49.3	97.5	47 82	0.51	24	0.4	0.36	0.4	0.16	+2.0
)A	1	6-12	84.1	31.5	88	0.48	42		0.25			84.1	31.5			42	V	0.30	٠.٠	V.10	¥2.0
38	1	6-12	94.5		103	0.49	50		0. 32												
C	1	6-12 0-6	87.4 95.8	20.5	50	0.63	32		0.34	0.0											
XD.	1	6-12 0-6	98.2 91.0	16.7 23.6	91	0.46	42		0.36	0.2											
A	1	6-12 0-6	90.9 77.5	19.1 38.7	99	0.54	53		0.20												
	1	6-12 0-6	61.2	32.3 62.1	35	0.52	36		0.22												
C	1	6-12 0-6	75.1 62.4	41.3 58.6	26	0.69	43				_	62.4	58.6	26							+5.0
A	1	6-12 0-6	80.7 80.8	38.3	58	0.61	30	0.0	0.55	0.0	0.38	80.7	30.3		0.61	30	0.0	0.55	0.0	0.38	0.0
		6-12 0-6	95.7	22.3 19.4	77				0.53			95.7		109	0.07						
c	1	6-12 0-6	91.5	16.6 24.9	115	0.36	41		0.40												
D	1	6-12 0-6	92.8	18.9 24.3	76		49		0. 32												
A .		6-12 0-6	67.8	17.5	124				0.45			67.8	50.5	119			0.9	0.45	0.0	0. 30	+6.0
		6-12		42.5			58		A-	707				199		58		-4,			-5.0

(10 of 16 sheets)

_	•			Section A. S	157	A.S.						ee4108	3.				<u></u>		
	Locat	Grid	_					Depth	_		SDA .			-	tite:	-			c Spe-
Site	Map	Coor-	Topog- raphy		81op		27704755	of Layer		extur y Wt,	\$	20.0	By W	1	berg Lind			con-	Grav-
No.	Sheet	nates	Class	Position	_5_	Vegetation	Land Use	in.	Sand	811t	Clay	Type	Fine	· II	PL	M	DP	5_	1ty
338	544 8 IV	761000	High	Terrace elope	3	Tall scrub sevense	Cultivated (pepper)	0-6 6-12	17	44	39	SICL	87	56	43	13	160	2.10	Ξ
33C	5448IV	762999	High:	Terrace fla	t O	Porest	Apple orchard	0-6 6-12	19	46	37	SICL	36	55	43	12	100	2.30	2.85
344	5349111	951136	Low	Netural levee	0	Tall scrub sevenna	Jenone orchard	0-6 6-12	25	48	27	ī	•	40	25	15	CL	2.30	2.64
348	5349111	951137	Low	Terrace slope	1	Short-grass prairie	Grazed	0-6 6-12	46	23	31	SCL.	60	28	16	12	CL.	1.56	=
34C	5349111	950138	Low	Terrace elope	4	Short-grass prairie	Lern	0 ~6 6-12	34	20	46	ec	42	48	<u>-</u>	24	s c	1.77	Ξ
34D	5349111	950139	Low	Terrace slope	3	Short-grass prairie	Love	0-6 6-12	34	19	47	ec ec	42	36	19	17	SC	1.45	2.80
342	5349111	949139	High	Lower slope	5	Tall-grass prairie	Undisturbed	0-6 6-12	45	32	23	ī	54	- 36		14	GL.	1.86	2.72
35.1	5349XII	743027	Low	Bottomland flat	0	Tall scrub	Fruit orchard	0-6 6-12	46	38	16	_	70	22	15	-,	CL-HL	2.75	2.64
358	5349111	743028	Low	Terrace slope	4	Tall scrub	Fruit orchard	0-6 6-12	49	27	24	SCI.	67	26	13	13	ā	1.10	=
35C	5349111	743028	Low	Terrace fla	t 0	Tall scrub sevenna	Fruit orchard	0-6 6-12	65	28	-,	SL.	52	12	12	-	×.	0.92	2.63
350	5349111	742028	Low	Lower slope	5	Tall scrub	Fruit orchard	0-6 6-12	64		-,	SL	45	14	=	-	=	1.40	=
358	5349111	742029	High	Upper slope	10	Tall scrub	Fruit orchard	0-6 6-12	53	25	22	SCL		26	16	10	CI.	1.40	=
364	524 8 T	578980	Low	Bottomland flat	0	Short-grass prairie	Grased	0-6 6-12	72	-,	19	SL.	33	34	16	18	SC.	1.77	2.59
368	524 8 I	570979	Low	Terrace slope	2	Low scrub savanna	Orased	0-6 6-12	92	-5	-,	-	13	11	=	-	301	1.09	=
36C	524 8 I	577979	Low	Terrace flat	0	Low scrub	Grased	0-6 6-12	**	-2	-	-	-,	=	_	-	SP-SH	1.04	
360	52481	576979	Low	Lower slope	2	Short-grass prairie	Grased	0-6 6-12	97	-	-	7	-	=	-	 IIP	SP-8H	0.63	=
36E	52481	575979	Low	Upland flat	0	Woodland	Grased	0-6 6-12	93	-	-	-	-		=	 #	SP-MI	0.89	=
37A	514911	059082	Low	Bottomiand flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	48	26	26	SCL.	-	30	12	18	<u>a</u>	0.70	2.66
378	514911	059082	Low	Terrace slope	3	Tall scrub	Cocoart orchard	0-6 6-12	42	32	26	ī	63	36	<u>.</u>	73	CI.	1.33	=
37C	514911	059061	Low	Terrace flat	0	Tall scrub	Coconut	0-6 6-12	58	23	19	SL.	46	20	12	-	sc sc	0.70	=
370	514911	058080	Low	Terrece flat	. 0	Tell-grace prairie	Undisturb.	0-6 6-12	34	41	25	<u>.</u>	71	 29	14	15	cr	2.10	_
						Pre	n Juri Area												
384	49471	943509	Low	Stream bottom	0	Tall-grass prairie	Undisturbed	0-6 6-12	23	51	26	SIL		33	_	16	CI.	2.10	2.66
388	49471	943508	Low	Terrace slope	3	Tall scrub	Coconut orchard	0-6 6-12	40	35	17	L	67	 23	14	-,	ā	1.56	=
3 0 C	49471	943508	Low	Terrace slope	3	Woodland	Cocoaut orchard	0-6 6-12	42	37	21	ī	71	20	14	-	CI-HE	1.40	=
380	49471	943507	Low	Terrace flat	0	Woodland	Coconut orchard	0-6 6-12	47	36	17	ī	70	20	14	-	CI-HET	1.40	=
394	49471	937585	Low	Terrace flat	. 0	Tall scrub	Cultivated (rice)	0-6 6-12	57	31	12	SL.	-	 21	19	-	16.	0.95	2.58
398	49471	937585	Low	Lower slope	6	Tall-grass prairie	Cultivated (idle)	0-4 6-12	59	27	14	SL.	58	20	18	-	<u>.</u>	0.62	2.58
39C	49471	936506	Righ	Lower slope	6	Berren	Cultivated (corn)	0-6 6-12	47	27	26	SCL	-	27	15	12	ā	0.95	=
390	49471	936586	High	Upper slope	10	Tall servis woodland	Cultivated (corn)	0-6 6-12	51	32	17	ī	67	20	17	-3	ii.	1.10	=
40A	494 8 II	046693	Low	Netural levee	1	Tall-grace prairie	Grased	0-6 6-12	67	24	-,	SL.		21	18	-3	=	3.90	2.64

				Wet	Jose	on Cond	lition	30	etion (. п	The Cab	lity data			High-Ho	isture	Cond	ition		
		Depth	Dry		-14111	ette-filen		e:	Shee	THE PERSON		Dry					•	Shear	eur Tan	Depth to Water
No.	No. of Visits			HC.	cı	RI	RCI	c _u psi	4	W.	•	Density lb/cu ft	HC, 5	CI	RI	RCI	e _u		pai aur	Table in.
330	1	0-6 6-12	69.8 70.0	41.2 41.7		=	=	0.0	0.67	0.0	0.34									
330	1	0-6 6-12	57.0 69.6	53.4 43.3	86 79	0.68	54	0.5	0.47	0.0	0.36									
344	1	0-6 6-12	79.'3 86.5	36.8 30.3	125 114	0.54	62	1.2	0.18	0.7	0.07									
348	1	0-6 6-12	96.6 98.7	21.0 19.9		0.59		1.9	0.23	ò.2	0.27									
34C	1	0-6 6-12	90.7 103.0	23.0 17.7		0.63	154	0.6	0.30	0.8	0.25									
34D	1	0-6 6-12	90.7 90.7	24.3 10.0		0.55	321+	3.3	0.40	0.7	0.34									
348	1	0-6 6-12	96.1 94.9	26.9 21.4		=	=	0.2	0.47	0.0	0.30									
35A	1	0-6 6-12	92.6 97.2	23.9	71 81	0.34	25	C.3	0.43	0.5	0.36									
358	1	0-6 6-12	100.5 104.7	17.6 17.7	91 105	0.73	77	0.0	0,58	0.0	0.30									
35C	1	0-6 6-12	90.8 92.4	17.4 16.7	119	0.48	57	0.6	0.42	0.2	0.36									
350	1	0-6 6-12	87.7 89.4	16.1 16.0	88 114	1.28	146	0.4	0.40	0.3	0.27									
358	1	0-6 6-12	92.4 100.0	19.8 18.6	62 115	0.60	69	1.6	0.40	1.0	0.36									
36A	1	0-6 6-12	60.3 93.0	56.6 25.3	90 119	0.47	54	0.4	0.20	0.0	0.23	60.3 93.0	56.6 25.3	90 119	0.47	56	0.4	0.20	0.0 0.23	+4.0
368	1	0-6 6-12	80.2 85.1	21.3 25.5	101 117	0.30	44	1.0	0.30	0.3	0.25	80.2 85.1	21.3 25.5	101 117	0.38	44	1.0	0.30	0.3 0.25	0.0
36C	1	0-6 6-12	70.5 96.1	31.0 20.7	91 149	0.77	115	0.8	0.38	0.9	0.27									
360	1	0-6 6-12	84.5 90.0	8.1 7.0	96 208	1.13	235	0.0	0.36	0.0	0.27									
362	1	0-6 6-12	85.5	13.3 9.0		0.87	149	1.0	0.26	0.0	0.27									
37A	1	0-6 6-12	101.0 106.7	20.3 18.2	45	0.57	55	1.0	0.11	1.0	0.27	101.0 106.7	20.3 16.2	45 96	0.57	55	1.0	0.11	1.0 0.27	0.0
378	1	0-6 6-12		16.5 17.3			49	0.7	0.23	0.3	0.23		16.5 17.3		0.38	49	•	-		5.5
37C	1	0-6 6-12		18.1 16.8	31 68	0.61	41	1.2	0.18	0.4	0.27		18.1 16.8		0.61	41	1.2	0.18	0.4 0.27	0.0
379	1	0-6 6-12		30.1 25.0		0.42	34	0.0	0.27	0.0	0.27		30.1 25.0	50 81	0.42	34	0.0	0.27	0.0 0.27	0.0
									2r		ri Area									
384	1	0-6 6-12		23.6 16.5			115	1.5	0.65	0.8	0.30									
300	1	0-6 6-12	93.9 100.1	15.0 14.4	64 95	0.76	72	0.4	0,42	0.0	0.40									
30C	1	0-6 6-12	94.7 103.0	14.1 14.1	66 118	0.74	87	0.5	0.32	0.9	0.30									
380		0-6 6-12		17.3 16.9			33	0.3	0. 32	0.3	0.28									
394		0-6 6-12		22.7 20.2		0.23	11	0.5	0.30	0.2	0.32									
398		0-6 6-12		15.6 16.2		0.37	"	0.0	0, 34	0.0	0.36									
39C		0-6 6-12		16.3 15.1		0.83	71	0.3	0.42	0.0	0.42									
390		0-6 6-12	97.4 103.1	15.6 13.3	40 79	0.81	4	0.3	0.51	0.0	0.40									
404		0-6 6-12	87.9 93.0	23.5 17.4	115 143	=	=	0.0	0.53	0.2	0.30									

		4		ection A.	5160	Data						ection	3. 1					Or-	
	Locat	Grid						Depth			SDA				ter	-		gani	c Spe-
Site	Map	Coor-	Topog- raphy	Topo- graphic	810	10		of Leyer	<u>b</u>	extur y Wt,	5		By Wi		berg imi			Con-	cific Grav-
No.	Sheet	nates	Class	Position	5	Vegetation	Land Use	in.	Sand	811	Clay	Type	Piner	H.	PL.	PI	Type	5_	1ty
408	4948II	046693	Low	Netural levee	1	Tall-grass prairie	Grased	0-6 6-12	14	63	23	SIL	94	35	23	12	CL.	2.66	
40C	4948II	046692	Low	Terrace f	flat 0	Tall scrub	Grased	0-6 6-12	18	56	26	SIL	87	31	18	13	CL	1.56	-
400	494811	045691	Low	Bottomlas flat	M 0	Tall-grass prairie	Cultivated (rice)	0-6 6-12	17	50	33	SICL	92	 %	23	13	CL.	3.10	=
41A	49481	049853	Low	Terrace alope	1	Short-grass preirie	Cultivated (idle)	6-12	46	27	27	SCL.	61	34	14	20	CL.	0.70	
413	4940I	050650	Low	Terrace slope	1	Tall-grass prairie	Cultivated (grased)	0-6 6-12	47	25	28	SCL	57	 26	12	14	Cr.	0.86	2.66
41C	4948I	052847	Low	Terrace slope	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	25	36	39	CI.	78	40	16	24	Œ.	0.70	
41D	4948I	053844	Low	Terrace slope	1	Barren	Undisturbed	0-6 6-12	46	28	26	L	59	26	12	14	CL	0.76	2.64
42A	4949II	030059	Low	Terrace f	lat 0	Short-grass prairie	Cultivated (idle)	0-6 6-12	71	20	-,	SL	29	-		m	SH	0.28	2.63
428	4949II	038062	Low	Terrace f	lat 0	Short-grass prairie	Undisturbed	0-6 6-12	63	21	16	SL.	44	 23	15	-	SC	0.23	2.64
42C	4949II	039066	Low	Terrace f	lat 0	Berren	Undisturbed	0-6 6-12	72	16	12	SL	31	15	13	-	SH	0.30	2.64
42D	4949II	040069	Low	Terrace f	lat 0	Short-grace prairie	Cultivated (idle)	0-6 6-12	48	38	14	-	58	17	11	-	CL-HL	0.76	2.64
434	494911	036010	Lov	Terrace f	lat 0	Short-grass prairie	Cultivated (idle)	0-6 6-12	67	22	11	SL	41	12	12	 117	SN	0.32	••
438	494911	036013	Low	Terrace f	lat 0	Tall scrub woodland	Undisturbed	0-6 6-12	4	24	-	SL	40	12	12	117	S	0.76	
43C	4949II	036017	Low	Terrace f	lat 0	Tall-grace prairie	Cultivated (idle)	0-6 6-12	52	30	16	ī	53	17	10	7	CI-HIL	0.62	
430	4949II	037030	Low	Terrace f	lat 0	Short-grace prairie	Cultivated (idle)	0-6 6-12	49	33	16	L	59	17	12	5	CL-HI.	0.46	-
444	4949TI	045156	Low	Bottomlan flat	d 0	Short-grace prairie	Cultivated (rice)	0-6 6-12	34	32	34	CT	70	40	15	<u></u> 25	CT.	1.40	
448	4949II	043156	Low	Terrace slope	1	Tall scrub savanna	Undisturbed	0-6 6-12	26	57	17	SIL	83	22	16	•	CL-ML	1.10	
44C	4949II	041156	Lov	Terrace slope	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	25	44	31	a	80	32	13	19	CL	0.92	=
44D	494911	040155	Low	Terrace	1	Tall scrub savanna	Grased	0-6 6-12	37	45	18	L	71	23	14	7	CL	1.24	-
448	4949II	039155	Low	Terrace [lat 0	Tall scrub woodland	Undisturbed	0-6 6-12	55	28	17	SL	54	20	14	-6	CL-HL	0.62	
447	494911		Low	Terrace f	lat 0	Short-grace prairie	Culti mtsi (rice)	0-6 6-12	50	34	16	Ŀ	63	22	13	-	CI.	0.64	
47A	4949II	063146	Low	Terrace f	lat 0	Short-grass preirie	Cultivated (grased)	0-6 6-12	18	38	44	c	85	50	22	28	CII	2.30	
478	4949II	063148	Low	Terrace f	lat 0	Short-grass prairie	Cultivated (grased)	0-6 6-12	21	36	43	č	83	48	22	26	CI.	2.50	
48C	49481	040961	Low	Terrace slope	3	Short-grass prairie	Undisturbed	0-6 6-12	90	-6	4	•	12	=	=	HP	SP-SH	0.46	
480	4948I	030961	Lov	Torrace	1	Berren	Undisturbed	0-6 6-12	72	16	12	SL	24	14	14	IP	SM	0.95	-
							Then Keen Area												
49A	5460I	200433	Low	Terrace f	lat 0	Short-grass prairie	Cultivated (rice)	0-6 6-12	4	20	16	SL.	48	24	16	-	S C	0.64	2.67
498	5460I	202432	High	Lower slo	pe 3	Tall scrub sevama	Undisturbed	0-6 6-12	57	18	25	SCL	46	34	17	17	s c	1.10	= :
49C	5460I	203431	High	Upper sle	po 2	Tall scrub savanna	Undisturbed	0-6 6-12	70	21	•	SL	45	16	15	1	SK	0.46	Ξ
490	54 60 I	204429	High	Upland fl	at 0	Tall scrub savenna	Undisturbed	0-6 6-12	78	19	3	u	35	=	_	-	SN	0.64	2.64
30A	5460I	235363	Low	Drainage ditch	0	Sevenna	Undisturbed	0-6 6-12	95	4	1	-	5	=		=	SP-8H	0.28	

				Wet	Seas	on Cond	ition	se	ction (C. Tr	apricab	lity Data		-	iigh-H	isture	Cond	tion		
		Depth	Dry					_	Shee	argrap		Dry			-		_		rgraph.	Depth to Water
Site No.			Density lb/cu ft	HC. 1	CI_	RI	RCI	c _u psi	4	ur	•	Density lb/cu ft	HC, 5	CI	RI	RCI	Ca ps!	Ten Fu	aur Tan psi ^Q ur	Table _ in.
408	1	0-6 6-12	83.0 83.2	27.0	122		104	0.4	0.34		0.32									
40C	1	0-6 6-12	84.9 87.6	22.0 16.5		=		0.3	0.42	0.3	0.47									
40D	1	0-6 6-12	77.1 90.1	37.4 26.0	61 91	0.48	44	0.5	0.40	0.2	0.30									
41A	1	0-6 6-12	95.7	20.3 18.3		=	=	0.8	0.50	0.0	0.49									
418	1	0-6 6-12	100.2 86.8	16.8 16.0	166 264		==	0.6	0.65	0.0	0,49									
41C	1	0-6 6-12	98.3 99.2	21.6 21.0	108 185	0.58	107	1.8	6.22	0.7	0.27	90.3 99.2	21.8 21.0	100 165	0.58	107				9.0
41D	1	0-6 6-12	=	13.0 15.9		_		0.0	0.36	0.9	0.27									
42A	1	0-6 6-12	Ξ	11.5 8.5	218 5184	=		0.5	0.27	0.4	0.18	=	11.5 8.5	218 51 0 +		-	0.5	0.27	0.4 0.18	+3.0
428	1	0-6 6-12			212 4824	=	=	0.3	0.32	0.8	0.18									
42C	1	0-6 6-12			4674		=	0.0	0.51	0.0	0. 32									
42D	1	0-6 6-12		16.3 12.7	5674			0.3	0.28	0.2	0.16		16.3 12.7	228+ 567+			0.3	0.28	0.2 0.16	+5.0
43A	1	0-6 6-12	=	9.0	4724	=	=		0.34	0.2	0.28									
438	1	0-6 6-12		7.2	224	=			0.49		0. 36									134.7
43C	1	0-6 6-12	104.7 108.8	14.7	112	, , , , , ,	50		0.30		0.23	104.7	14.7	113		50	•••			9.0
430	1	0-6 6-12	=	28.1	713+			0.0	0.36	0.0	0. 32	-	28.1			-	0.0	0.36	0.0 0.32	+3.0
444	1	0-6 6-12	96.9 100.7	22.4		0.84	134	272		1272		98.9 100.7	22.4		0.84	134				+9.0
448 440	1	0-6 6-12 0-6	97.9 99.0 97.6	16.6 18.3	244	0.41	98		0.23		0.20	97.9 99.0	18.8	111 244	0.41	98	0.0	0.23	0.0 0.20	+1.0
44D	1	6-12 0-6		17.5	348	0.53	184		0.47		0.38									
44E	1	6-12	97.6	15.4	269	=	=		0.40											
447		6-12	97.3	11.7 25.2	236	0.67	158					97.3	25.2	127				_		+5.0
47A	1	6-12	105.5	18.8	143	0.47	67	0.0	0.53			105.5	18.8			67				73.0
47E	1	6-12 0-6		19.1	336	1.03	346			010										
48C		6-12 0-6	98.0	3.3	310 387	-	-	0.6	0.32	1.7	0.23									
48D	1		97.3 94.6	6.4	431				0.34											
		6-12	90.6	6.8	548+						201.									
49A	1	0-6	104.2	15.2	74	_	-	0.0	0.42		O 30	104.2	15.2	76						3.0
498		6-12 0-6	94.2	22.8 19.7	81	0.51	41		0.38			94.2	22.8		0.51	41		_		3.0
		6-12	96.2	23.2	142		107			-,,	*****									
49C		0-6 6-12	99.6	16.2	117		56		0.45											
49D		0-6 6-12		17.0		0.22	20	0.2	0.47	0.4	0. 32									
50A		0-6 6-12		22.3 23.0		0.82	62	0.8	0.20	0.5	0.12	99.9 96.8	22.3 23.0		0.82		0.8	0. 20	0.5 0.12	0.0

(14 of 16 sheets)

-				Section A. E	ite I	ata					S	ection	B. 1						
	Locat	ion Grid						Depth		18	SDA				UECS Vite			Or-	: Spe-
		Coor-	Topog-	Topo-				of	T	extur			By W		berg				cific
Site	Map	d1-	raphy		Slope		Licher Garer	Layer		y Wt,			*		انحنا			tent	Grav-
No.	Sheet	nates	Class	Position	3	Vegetation	Land Use	in.	Sand	3116	Clay	Туре	Fine	: <u>.</u>	PL.	PI	Type	-	1ty
508	5460I	235362	High	Lower slope	3	Woodland	Undisturbed	0-6 6-12	87	12	<u>_</u>	<u>-</u>	33	_		W	SH	0.31	=
50C	5460I	236361	High	Upper slope	2	Savanna	Undisturbed	0-6 6-12	85	13	- 2	LS	25			HP	SM	0.43	=
50D	5460I	237358	High	Upland flat	. 0	Woodland	Undisturbed	0-6 6-12	87	11		•	26	-	-	HP	 SM	0.23	=
51A	55601	673366	Low	Terrace fla	t O	Tall-grass prairie	Cultivated (rice)	0-6 6-12	69	18	13	SL	43	18	16	72	SN	0.28	2.67
518	5560I	674365	High	Lower slope	4	Woodland	Undisturbed	0-6 6-12	86	13	<u></u>	•	28			 IP	SM	0.46	-
51C	55601	675363	Nigh	Upper slope	3	Woodland	Undisturbed	0-6 6-12	82	17	1	1.5	36	-	-		5M	0.46	
51 D	55601	676361	High	Upland flat	0	Woodland	Undisturbed	0-6 6-12	86	13		5	27			 MP	SH	0.78	=
52A	55601	687288	LN	Terrace slope	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	34	45	21	ī	80	29	17	12	Cr —	0.62	2.68
528	55601	688285	Low	Terrace slope	2	Short-grass prairie	Cultivated (grazed)	0-6 6-12	34	42	24	Ľ	79	32	16	16	CL	0.76	
52C	55 6 0I	689281	Low	Terrace slope	2	Short-grass prairie	Cultivated (idle)	0-6 6-12	44	40	16	L	71	24	18	-6	CL-HL	0.50	=
52D	55 6 01	689279	Low	Terrace fla	t O	Tall scrub woodland	Undisturbed	0-6 6-12	58	34	-	SL.	56	16		16P	HL.	0.64	2.65
53A	5560111	425232	Low	Terrace fla	t O	Short-grass prairie	Cultivated (idle)	0-6 6-12	65	16	19	SL	52	34	17	17	CL.	1.10	
538	5560111	427231	High	Lower elope	4	Woodland	Undisturbed	0-6 6-12	79	18	-	LS	37	=		W.	SH	0.62	2.64
53C	5560111	428231	High	Upper slope	4	Short-grass prairie	Logged	0-6 6-12	77	16	7	SL	35	_	-	117	=	0.78	Ξ
530	5560111	429231	High	Upper ridge	0	Sevenne	Logged	0-6 6-12	84	14	7	LS	26	=	=	<u></u>	a K	0.38	_
53E	5560III	429230	High	Upland flat	0	Tall scrub woodland	Undisturbed	0-6 6-12	84	12	7	1.5	32		=	W?	SM	0.62	-
54A	5560111	534198	Low	Terrace slope	2	Short-grass prairie	Cultivated (idle)	0-6 6-12	38	29	33	ā	72	37	16	21	<u></u>	0.55	=
548	5560111	530198	Low	Terrace slope	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	54	24	22	SCL.	57	32	14	18	CL.	0.55	=
54C	5560III		Low	Terrace slope	2	Short-grass prairie	Cultivated (idle)	0-6 6-12	70	21	•	\$L	46	16	15	ī	SK	0.46	=
54D	5560111		Low	Terrace fla		Short-grass prairie	Cultivated (idle)	0-6 6-12	**	12	7	LS	33	=	-	**	SH	0.38	
55A	5560111		Low	Bottomland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	85	11	Ţ.	u	30	=	_		SN	0.55	2.64
558	5560111		Lov	Terrace slope	3	Woodland	Grased	6-12	77	15	-	SL	38	=	_	*	SH	1.10	
55C	5560111		Low	Terrace slope	2	Woodland	Grased	0-6 6-12	83	12	-5	LS	31	=	-		SH	0.62	
550	5560111		Low	Terrace slope	2	Tall-grass prairie	Grased	0-6 6-12	60	14	•	u	37	=	=	HP	S	1.24	=
56A	55 6 011		Low	Terrace slope	1	Short-grass prairie	Cultivated (rice)	0-6 6-12	41	35	24	7	64	32	17	15	CI.	0.92	=
568	5560II		Low	Terrace fla		Short-grass prairie	Lern	0-6 6-12	41	35	24	L	74	32	17	15	ā	0.78	=
56C	556011	748172	Low	Terrace fla	t O	Short-grass prairie	Cultivated (idle)	0-6 6-12	44	33	23	ī	"	29	18	11	ā.	1.24	_
560	5560II	747172	Lov	Terrace slope	1	Short-grass prairie	Cultivated (rice)	0-6 6-12	52	27	21	SCL	4	27	17	10	CT.	1.24	=

Table A2 (Concluded)

				Wet	Seas	on Cond	iltion	84	etion (Tr	i.ew	lity Data			High-H	olsture	Cond	Ition			
		Depth	Dry							rgrap		Dry					75	Shear			Depth to Water
Site No.	No. of Visits		Density 1b/cu ft	NC.	cı	RI	RCI	c _u psi	Ten	ur psi	a _{ur}	Density lb/cu ft	IC. S	CI	R	RCI	C _u	Ten y	ur psi		Table in.
508	1	0-6 6-12	92.8 92.8	20.7 19.9			97	0.0	0.36	0.3	0.34										
50C	1	0-6 6-12	96.5 92.3	17.5 19.9			61	0.8	0.42	0.5	0.42										
50D	1	0-6 6-12	94.2 95.0	18.5 19.0		0.63	77	0.5	0.34	0.2	0.34										
51A	1	0-6 6-12	102.6 104.2	20.3 18.4	58 84		33	0.3	0.34	0.7	0.30	102.6 104.2	20.3 18.4	58 84	0.39	33	-		-	-	1.0
518	1	0-6 6-12	95.9 91.2	15.4 8.0			220	0.0	0.40	0.0	0, 38										
51C	1	0-6 6-12	97.2 94.2	14.8 10.9			173	0.0	0,42	0.4	0.32										
51D	1	0-6 6-12	92.3 89.9	14.2 6.6		1.31	187	0.0	0, 36	0.0	0.36										
52A	1	0-6 6-12	103.3 93.8	20.4 25.5	46 64	0.67	43	1.0	0.16	0.2	0.18	103.3	20.4 25.5	46 64	0.67	43	1.0	0.16	0.2	0.18	+0.5
528	1	0-6 6-12	102.0 93.4	20.0 25.3	105 79	0.68	54	0.0	0, 36	0.6	0.27	102.0 93.4	20.0 25.3	105 79	0.68	54	=	-			3.0
52C	1	0-6 6-12	99.3 94.9	22.6 27.3	85 113	0.72	81	0.6	0.22	0.4	0.30	99.3 94.9	22.6 27.3	85 113	0.72	81	0.6	0.22	0.4	0.30	+1.0
52D	1	0-6 6-12	93.9 98.0	18.8 17.4	63 92		47	0.0	0.47	0.2	0.36										
53A	1	0-6 6-12	94.7 96.7	22.9 23.1		0.82	93	0.6	0.38	0.2	0, 30										
538	1	0-6 6-12	90.5 97.3	11.1 12.0		1.62	405	0.4	0.45	0.2	0, 28										
53C	1	0-6 6-12	92.8 99.0	11.3 10.6		1.23	214	0.1	0.40	0.0	0.36										
530	1	0-6 6-12	91.1 89.6	9.1	111	2.02	224	0.6	0. 32	0.7	0.32										
53E	1	6-12	91.1	7.6 8.7	96 128	2.05	262	0.2	0.45	0.0	0.40										22.2
544	1	6-12	97.4 97.9	26.9 25.8	134	0.93	125	0.8	0.23	0.0	0.34	97.4 97.9	26.9 25.8	134	0.93	125	<u> </u>	_	-	-	2.0
548	1	6-12	107.2	21.0		30	46					102.7 104.6	21.0		0.73	46		-		-	+2.0
54C	1	0-6 6-12	105.8	16.1	120		37		0.40			105.8	16.1	120	0.31	37	-	-		-	1.5
54D	1	0-6 6-12	97.4 98.3	19.2	143	1.03	147	0.7	0.47	0.3	0.38	97.4 98.3	19.2		1.03	147	-	_	-	-	6.0
55A	1	0-6 6-12	90.3	26.8	206		115	_			-	90.3	26.8 16.2	153 206	0.56	115	_	_			+1.0
558	1	0-6 6-12	104.5	13.7	133		56		0.47		0.36										
55C	1	0-6 6-12	99.7 99.2	10.8	162	=	=		0.42												
35D	1	0-6 6-12	94.7 97.3	7.4	170		336		0.40												
56A	1	0-6 6-12		23.5	141		107		0.27		0.12	93.3 95.5	23.5		0.76	107		0.27	0.4		0.0
568	1	0-6 6-12		19.1 25.3	105		57		0.27		0.18	103.2 95.2	19.1 25.3	132 105	0.54	57		0.27	0.0		0.0
54C	1	0-6 6-12	91.7	21.1 26.1	103		46	0.6	0.30	0.4	0, 20	96.3 91.7	21.1 26.1	96 103	0.45	46		0.30	0.4		+1.0
560	1	0-6 6-12		20.8 26.2			56	1.1	0.16	0.0	Q. 27	97.2	20.8 26.2	56 103	0.54	56	1.1	0.16	0.0	0, 27	0.0

Table A3
Surface Composition Study
Summary of Site, Soil, and Trafficability Data

=	Locat	ion		Section A.	Site I	ava				-		Section	В.		Date			Or-	=
		Grid Coor-	Topog-					Depth	_,	extur	SDA .		By W	A	tter berg	-		ganic	Spe- cific
Site No.	Map Sheet	di- nates	raphy Class	graphic Position	Slope	Vegetation	Land Use	Layer in.		W Wt.	Clay	Type*	Fine		PL	_	Туре	tent	Grav- ity
							Nakhon Savan Ar												
1T-1	50571V	313312	Lov	Bottomland flat	0	Tall scrub woodland	Undisturbed	0-6 6-12	45 45	34 34	21 21	L L	62 62	32 32	18 18	14 14	CT CT		-
1T-2	5058111	115380	Low	Sottonland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	72 72	21 21	7	SL SL	34 34	14 14	14 14	0	SH	=	
17-3	4958I	935603	Low	Bottomland flat	0	Tall scrub	Undisturbed	0-6 6-12	43 43	40 40	17 17	L	65 65	30 30	17 17	13	CL		=
1T-4	495 8 I	830660	Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	74 59	14 19	12 22	SL SCL	31 45	18	10	*	SIC	=	=
1 T- 5	5058111	190350	Low	Bottomland depression	0	Tall scrub woodland	Undisturbed	0-6 6-12	6	34 29	60 68	C	98 99	60 63	30 30	30 33	CH	-	
17-6	5058111	145345	Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	31 26	37 44	32 30	GCT.	60 74	35 37	20 23	15 14	CT CT	=	=
17-7	5058111	155355	Low	Bottomland flat	0	Lov screb	Undisturbed	0-6 6-12	77 66	11 16	12 18	SL SL	25 38	21	14	7	SM-SC	_	-
1T-8	5000111	160345	Low	Sottomiand flat	. 0	Low scrub	Undisturbed	0-6 6-12	49 45	34 36	17 19	L L	61 66	28 29	21 20	7	CL-HEL CL	=	
17-9	495 0 I	900652	Lov	Bottomland depression	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	26 22	48 41	26 37	CL CL	82 84	36 50	19 21	17 29	CL	0.58 0.55	
1T-10	4958I	849672	Low	Bottomland flat	0	Tall scrub	Undisturbed	0-6 6-12	29 28	51 50	20 22	SIL SIL	82 81	28 25	20 17	8	CT CT	3.06 2.24	=
17-11	5057 IV	210320	Low	Bottomiand flat	3	Short-grass prairie	Grased	0-6 6-12	59 49	33 34	8 17	SL L	45 52	18 25	14 15	4 10	SH CL	0.59	
17-12	507717	210260	Low	Bettemland flat	2	Tall scrub	Cultivated (idle)	0-6 6-12	25 24	34 36	41 40	C CL	81 82	71 70	23 23	48 47	CII	2.81 2.24	=
17-13	5051IV	230140	Low	Bottumland flat	0	Short-grass prairie	Cultivated (141e)	0-6 6-12	39 36	53 54	10	SIL SIL	80 79	23	19	7	CL-HL	1.90	=
17-15	50571V	200140	Low	Natural levee	0	Voodland	Cultivated	0-6 6-12	39 39	42 42	19 19	L L	76 76	36 36	26 26	10 10	ML	5.36 5.36	=
17-16	50571 V	200163	Low	Bettouland depression	2	Short-grass prairie	Cultivated (1dle)	0-6 6-12	76 55	10 17	14 28	SCL SCL	26 49	42	18	HP 24	SC	0.50 0.96	-
17-17	5057IV	210190	Low	Sottenland flat	•	Short-grass prairie	Cultivated (grased)	0-6 6-12	37 37	36 36	27 27	L L	70 70	29 29	16 16	13 13	CT CT	1.79	=
17-18	495811	835425	Low	Nottonland flat	•	Short-grass prairie	Cultivated (grased)	0-6 6-12	80 59	14 29	12	LS SL	32 51	16 17	14 13	2 4	SH CL-HL	0.43 0.45	_
17-19	495 8 II	863437	Low	Bettenland flat	0	Tall scrub	Cultivated (rice)	0-6 6-12	49	38 38	13 13	L	65 66		19 17		CL-HL CL	1.24 0.85	
1T-21	5057IV	261201	Low	Settonland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	67 60	23 27	10 13	SL	44	<u></u>	12	- ,	SC SC	0.93 0.45	
1T-22	5057IV	294176	Low	Bottomland flat	0,	Low scrub savenna	Logged	0-6 6-12	57 57	29 29	14 14	SL	44	20 20	15 15	5	991-SC 991-SC	0.77 0.77	
17-23	50571	576207	Low	Bottomland flat	•	Short-grass prairie	Cultivated (idle)	0-6 6-12	69 63	19	12 16	SL SL	39 45	20 23	10 12	10 11	SC SC	1.14	-
1T-24	50571	570220	Low	Bottomland flat	3	Tall scrub sevenas	Undisturbed	0-6 6-12	83 78	11 10	12	LS SL	19 22	11	12	-	SN	0.55	
17-25	5057I	528246	ler.	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	45 46	42 40	13 14	L	60 54	25	14	<u></u>	CL	1.25	
17-26	5057I	510250	Lov	Bottomland flat	0.	Tall scrub savanna	Undisturbed	0-6 6-12	50 50	28 29	22 21	L	47 46	37	14	23	SC SC	0.87 0.70	
17-27	5057 I	450235	Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	20 19	42 36	38 45	SICL C	87 86	62	 25	57	CII	0.23	
17-26	50571	350290	Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	58 57	21 20	21 23	SCL SCL	49 51	34	16	16	CL	0.61	
19GT- 20	495 8 I	907526	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	48 30	38 32	14 38	CL.	63 78	39	18	21	CL.	0.59 0.55	
19GT- 23	4950II	900426	Low	Bottomland flat	100	Short-grass prairie	Cultivated (grased)	0-6 6-12	51 53	31 31	18 16	L SL	58 58	22	15	7	CL-HL	1.56 0.83	
19GT- 27	495 0 II	997446	Lov	Bottomland flat	•	Short-grace prairie	Cultivated (idle)	0-6 6-12	74 56	19 17	7 27	SL SCL	36 52	 26	13	15	a.	0.67	

* G = gravelly; YG = very gravelly.

(1 of 16 sheets)

_				Wet-J	-	Condi	tion	30	CHICAL I		·	III Data			14	MoLetur	Com	III m		
		Dopth	Dry					_		الماط	_	Dry						Show Two	greght.	Depth to Water
Site Bo.	No. of Visits	Layer in.	Density 1b/cu ft	10. S	CI	BI	RCI	on mai	7,			Density 15/ca ft	Wi. S	CI	M	RCI	c _u		21 %	Tablet
				1		77-11					m Are					7742				
17-1	2	0-6 6-12	=	6.6 7.3		=	_	0.5	0.19	0.3	0.53									
17-2	2	0-6 6-12	Ξ	15.9 14.8		=	-	0.6	0.46	1.2	0.40		15.9 14.8	98 239	=	=	1.0	0.67	0.0 0.45	+3
17-3	2	0-6 6-12	=	10.1 14.0		-	=	0.0	0.81	1.0	0.54									
17-4	2	0-6 6-12	Ξ	14.3 17.4		0.97	202	0.9	0.78	0.3	0.49	-	14.3 17.4	121 206	0.97	202	0.9	0.78	0.0 0.51	**
17-5	2	0-6 6-12	=	35.9 24.4	78 208	0.91	55 192	2.6	0.60	_0.9 _	0.41		35.9 24.4		0.91	55 192	1.2	0.84	0.9 0.55	+5
17-6	2	0-6 6-12	Ξ	17.4 13.0			46	2.4	0.70	0.4	0.62		17.4	103	0.45	46	0.9	0.73	0.9 0.65	**
17-7	2	0-6 6-12	Ξ	16.3 12.6		=	_	2.8	0.54	0.7	0.49									
1T-6	2	0-6 6-12	=	9.7		=	=	2.6	0.48	0.4	0.50									
1T -9	2	0-6 6-12	_	22.0 14.8		0.36 0.88	37 211	4.3	0.42	0.3	0.75	=	22.0 14.8		0.36	37 211	4.3	0.42	0.3 0.75	*
17-10	2	0-6 6-12	Ξ	19.7 18.5			71 171	2.1	0.40	1.2	0.28	=	19.7 18.5		0.58 1.12	71 171	2.0	0.18	1.2 0.14	+3
17-11	2	0-6 6-12	=	10.1 7.9		=		1.6	0.76	0.2	0.53									
17-12	2	0-6 6-12	=	16.8		=		2.8	0.64	1.1	0.58									
17-13	2	0-6 6-12	=	19.9 17.0				0.7	0.50	0.8	0.35		=	111	=		1.2	0.34	0.9 0.36	+3
17-15	2	0-6 6-12	_	10.1			=	1.0	0.72	0.1	0.60									
17-16	2	0-6 6-12	-	25.0 24.3		=	=	2.0	0.37	0.9	0.44									
1T-17	2	0-6 6-12	=	32.7 28.2		0.52 0.71	39 227	1.7	0.74	0.6	0.52		32.7 20.2		0.52 0.71	39 227	1.4	0.75	0.4 0.47	**
17-18	2	0-6 6-12	=	7.1 10.0		=	=	1.8	0.52	0.8	0.45	=	=	227 458	Ξ	=	1.6	0.34	1.0 0.32	+4
17-19	1	0-6 6-12	=	=		=		3.2	0.14	1.0	0.42									
17-21	2	0-6 6-12	=	33.8 28.4			73 131	2.4	0.44	0.8	0.46		33.8 28.4		1.14 0.83		2.4	0.28	1.4 0.22	+3
17-22	2	0-6 6-12	=	11.6		=	=	2.4	0.58	1.4	0.50									
17-23	2	0-6 6-12	=	6.7		=	=	1.6	0.50	1.0	0.50									
1T-24	2	0-6 6-12	=	3.0		=	_	1.6	0.35	0.6	0.47									
1T-25	2	0-6 6-12	=	25.7 20.6			54 125	3.0	0.60	1.0	0.45		25.7 20.6	36 118	1.49 1.06	54 125	1.9	0.49	1.9 0.23	+3
1T-26	2	0-6 6-12	-	16.6			294 378	2.6	0.29	2.0	0.25	=	16.6 18.8	210 323		294 378	2.2	0.55	2.0 0,36	**
1T-27	2	0-6 6-12	Ξ	18.2 24.4			142 171	1.6	0.66	0.4	0.46									
17-76	2	0-6 6-12	=	43.6 27.8			27 96	2.4	0.76	1.7	0.52									
196T- 20	2	0-6 6-12	=	9.0		=	=	2.4	0.66	0.5	0.66							•		
196T- 23	2	0-6 6-12	=	5.3 5.4		=	=	2.0	0.42	0.1	0.46	=	=	116 176	=	=	2.4	0.38	0.2 0.47	+3
19GT- 27	2	0-6 6-12	=	5.5 8.2		=	=	1.6	0.44	0.2	0.47									

^{**} c_u , ultimate soil-to-soil cohesion; f_u , ultimate soil-to-soil angle of internal friction; c_{ur} , ultimate soil-to-rubber adhesion;

					Section A.	Site D	848					- 3	Section	3.	5011	Date					
	•	Locat	orid Coor-	Topog-					Depth	_	U	EDA .		By W		tter			Or- ganic Con-	Spe- cific	
	Site No.	Map Sheet	di- nates	raphy Class	graphic Position	Slope	Vegetation	Land Use	Layer in.		811t	Clay	<u> 27794</u>	% Pine		Mari	77	Dp.		Grav- ity	
	18GT- 30	5057IV	233146	Low	Bottomland flat	•	phor:-grace prairie	Cultivated (graced)	0-6 6-12	58 40	36 46	6 14	SL L	49 67	16	12	-	CL-IE	0.45	=	
				*********			transmitted the state of the st	Les Buri Area				****		and a females		-					****
	2 T -1	5153IV	825794	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	6	62 62	32 32	SICL SICL	96	61 61	23 23	38	CI	=	2.65 2.65	
	27-2	5153IV	715743	Low	Sottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	14 14	59 59	27 27	SICL SICL	90	57 57	29 29	28 28	CII		2.52 2.52	
	27-3	515317	750830	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	5	65 65	30 30	SICL SICL	97 97	44	30 30	34	CI	-	2.50 2.50	
	27-4	5153TV	786804	Low	Bottomland flat	0	Short-grass preirie	Cultivated (idle)	0-6 6-12	15 10	50 48	35 34	SICL SICL	87 84	62 60	27 26	35 34	CH		2.69 2.76	
	21-5	51541	085175	Low	Sottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	24 24	69	7	81L 81L	83 83	31 31	18 18	13	CL	••	2.64	
	21-6	51541	100135	Low	Bottomiand flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	26 25	62 60	12 15	81L 81L	78 74	58 62	23 23	35	CH	-	2.75 2.74	
	217-7	51541	000117	Low	Sottowland flat	0	Short-grass pro rie	Cultivated (idle)	0-6 6-12	24 24	66	10 10	SIL	83 83	40	18 18	22 22	CL		2.69	
	27-8	51541	142114	Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	7	65 53	28 39	SICL SICL	96 94	57 61	29 29	28 32	CH	-	2.69	
	2T -9	51541	040210	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	25 25	65 65	10	81L 81L	82 82	36 36	21 21	15 15	a.	**	2.68	
		51541	070000	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	40	55 55	5	81L 81L	56 56	17 17	15 15	2	HL.		2.75 2.75	
		515411	1000000	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	55 59	39 35	•	SL SL	53 49	=	=		SH.		2.63	
	2T-12	515411	000000	Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	35 35	54 54	11	81L 81L	73 73	25 25	19	6	CL-HL CL-HL		2.64	
		515411		Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	21	46	31	CT CT	83	42	25	16	CT CT		2.63	
		515411		Lov	Sottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	20 15	61	31	SICL	85	41	23	16	a. c.	••	2.64	
		515411		Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	12	58	34	SICL SICL	96 92	46	26 25	20	CT CT		2.68	
		515411		Low	Bottomland flat	0	Short-grass prairie Short-grass	Cultivated (idle)	0-6 6-12 0-6	3 8 12	67 67	25 25	SiL SiL	94 94 96	53 53 45	25 25 22	28 28 23	CI.	=	2.65 2.65 2.67	
		5154111	211945	Low	flat Bottomland	0	prairie Short-grass	Cultivated (grased) Cultivated	6-12	12	69	19	SIL SIL	96 96	45		23	CT CT		2.67	
		5154111		Lev	flat Bottomland		prairie Short-grass	(idle)	6-12 0-6	7 16	69	24	SIL SIL	96	49	25 20	24	CL CL	-	2.60	
		515417		Lov	flat Bottorland	0	prairie Short-grass	(1dle)	6-12	16	65	20	Sil	93	62	20 25	24 37	CI.	-	2.67	
		515511		Lov	flat Bottomland	0	prairie Short-grass	(grased) Cultivated	6-12 0-6	13	65 51	22 10	SIL	93 70	62 59	25	37	O1	-	2.59	
	27-22	515511	935370	Low	flat Bottomland	0	prairie Short-grass	(idle) Cultivated	6-12 0-6	39	51 59	10	S1L S1L	70 74	59 29	32 18	27 11	CL CL	-	2.63	
	27-23	515511	010240	Low	flat Bottomland	0	prairie Short-grass	(idle) Cultivated	6-12 0-6	34 46	59 42	7	S1L L	74	29	18	11 10	CL	_	2.63	
	27-24	5155111	600400	Lov	depression Bottomland	0	prairie Short-grass	(idle) Cultivated	6-12 0-6	33 10	49 54	18 36	L SICL	73	92	29	19	CL	_	2.65	
	27-25	5155111	680380	Low	flat Bottonland	0	preirie Short-grass	(grazed) Cultivated	6-12 0-6	10	54 66	36 25	SICL SICL	93 95	92		63 21	CL		2.56	
	27-26	5155111	820290	Low	flat Bottomland	0	Short-grass	(grased) Cultivated	0-6	22	59	19	SICL SIL	95	47 86	42		CL	_	2.65	
Į.	2T-27	5155IV	780470	Low	flat Bottomland	0	Prairie Short-grass	(grased) Undisturbed	6-12 0-6	22	59	11	SIL	87 82 82	51 51	42 20 20	31 31		=	2.56	
	2T-28	5155IV	803437	Low	flat Bottomland flat	5	Tall-grass	Undisturbed	6-12 0-6 6-12	25 36 36	56 56	11	SIL SIL	70 70	50 50		26 26		-	2.60 2.60	
Į,	27-29	515514	780420	Lov	Sottenland flat	0	Preirie Short-grase prairio	Cultivated (grased)	0-6 6-12	26 26	65 65	;	SIL	80	36	17	19	CT CT	-	2.57 2.57	
							F	(5:000)	V-14		••		-12			••	-7	-			

				Wet	-500	son Con	dition		CCION	c. 11	21110201	THE DAY		- 3	Kigh-K	Isture	Cond:	tion		
<u> </u>		Depth	Dry	771 (1)		10.01		-	She	er Kray		Dry					-	Shear		Depth to Water
Bite No.	No. of Visits		Density lb/cu ft	IC.	≰ CI	RI	RCI	C _u		ur pai	•	Density lb/cu fi	E. 5	CI	RI	RCI	e _u pai	4	psi Qur	Table in.
15GT-	2	0-6		19.2	230		_		0.58	0.6	0.56	=		190 530	-	=	1.0	0.55	1.0 0.45	*
						- Andrew Stephen				Lee B	uri Area			730					and deposits on deposits to the state of	and the second second
27-1	3	0-6				1.15	82	1.6	0.68		0,36									
27-2	3	6-12 0-6				0.88	125	1.4	0.68	1.7	0.49									
27-3	100	6-12				0.86	120													
H-		6-12		35.2 30.8		1.04	113	1.2	0.49	1.9	0.81									
100	3	=1.	=			1.19	112 122	1.0	0.70	1.4	0.35									
18-5	. 2	6-12	=			+ 1.36	46	0.6	0.78	0.8	0.51		23.0 18.3		1.36	46	0.6	0.78	0.8 0.51	+2
12-6	'1	0-6 6-12		35.2 29.6		1.20	40 65	0.5	0.84	1.6	0.42		37.7	25 67	1.54	39		-		
T-7	3	0-6	÷	29.6	120	0.94	142	0.0	1.00	0.4	0.65		35.0	30	0.73	22	0.0	1.00	0.8 0.55	+4
T-0	2	.6-15 01		24.2		2.95	238 295	1.7	0.75	1.0	0.36	_	27.8	105	2.95	95 295	1.7	0.75	0.6 0.58	+3
T-9		12	•		125	1.04	161								1.04	161	•••		0.0 0.30	,,
T-10	2	6-12 6-6	=			1.14	262	0.8	0.75	1.5	0.32									
		6-12	Ξ			0.46	71 121	1.1	0.73	0.8	0.55	=	23.5		0.46	71 121	1.1	0.73	0.8 0.55	+3
T-11		6-12	=		282 402			1.0	0.31	0.9	0.55		=	167	=	=	1.0	0.81	0.9 0.55	+6
T-12	2	0-4 6-12	S		168	0.93	105	0.3	1.08	1.2	0.66		24.1 24.4	113 175	0.93	105	0.3	1.08	1.2 0.73	+7
T-13		0-6 6-12	=\	31.2	166	1.90	228	1.1	0.84	0.8	0.67	_	44.4	1/3		-				
T-14	2	0-6 6-12	= /	31.7				0.6	0.84	0.8	0.57	_	29.8	112	_		0.6	0.84	0.5 0.67	**
T-15		0-6	_ }	27.6	282	-							27.6	265	•					
T-16		6-12 0-6	-	29.6	160	1.24	124	1.0	0.73	1.0	0.49		33.0 29.6		1.24	51 124	1.0	0.73	0.8 0.62	+6
		6-12			137	0.72 0.82	62 122	0.7	0.70	1.2	0.43		45.6 51.2		0.70 0.71	34 83	0.7	0.70	0.8 0.58	+9
T-17		0-6 6-12	=	27.	106 134	1.17	81 219	1.6	0,62	0.9	0.53									
T-18		0-6 6-12		39.6	55	0.84	34 60	1.9	0,58	1.8	0.34									
T-19		0-6 6-12	=	26.4	140	0.90	148	0.6	0.93	0.7	0.75									
T-20		0-6 6-12		37.6 31.4	pr.	1.36	71	1.7	0,60	1.4	0.44									
T-21	2	0-6	_ \	30.1		0.78	86													
T-22		6-12 0-6	_	30.5	269	1.40	263	1.7	0.50	1.3	J. 30									
		6-12		-	256 434	=	=	0.9	0.84	0.4	0.56									
T-23		0-6 6-12		29.2 27.0		0.00	80 222	1.2	0.70	0.7	0.48		27.6 27.7	85 104	0.77 0.85	65	1.2	.70	1.0 0.49	
T-24		0-6 6-12		31.0	54 20	0.61 0.72	53 73	2.0	0.55	1.3	0,42	,								
T-25		0-6 6-12		26.6	352+	0.68	26	2.0	0.42	1.0	0.72	` `							,	
T-26	3	0-6		**		1.14	36 84	1.2	0.57	1.5	0.36									
T-27	2	6-12 0-6		94	106	0.94	106													
1-26		6-12 0-6	_	•.•		1.16	52 218	1.1	0.67	0.2	0.51									
		6-12	- j	.8.0 21.0	364+	=	=	1.1	0.73	1.7	0,40									
T-29		0-6 6-12	= /	19.4	127	0.93	42	0.8	0.73	0.7	0.52									

(4 of 16 sheets)

				Section A.	BIES D	ara .						ection	3, 1						=
	Locat	Grid						Depth		U			_	A	tter	-		Or-	
Site	Map	Coor-	Topog- raphy	graphic	Slope			Layer	b	exture y Wt,	5		By Wt		berg init	_			cific Grev-
No.	Sheet.	nates	Class	Position		Vegetation	Lend Use	in.	Sand	311	Clay	Type	Pines	1	4	프	DP	<u></u>	1ty
21-30	5155IV	740480	Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	63	37	0	SL.	46	28 	15	13	SC	=	2.90
27-31	51551V	7/2515	Low	Sottonland flat	0	Short-grees prairie	Cultivated (grased)	0-6 6-12	40	50 50	10 10	SIL SIL	67 67	29 29	15 15	14 14	CL	=	2.65 2.65
2T-32	5155IV	720550	Low	Bottomland flat	0	Short-grass prairie	Cultivated (grased)	0-6 6-12	11 11	58 57	31 32	SICL SICL	93 92	64 61	26 31	36 30	CH		2.56 2.57
27-33	5155IV	830510	Low	Bottomland flat	0	Tall-grace prairie	Undisturbed	0-6 6-12	75	16	-,	SL	35	=	=		514	0.32	=
2T-34	5155EV	800570	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	55	30	15	SL	54	17	12	-5	CL-HL	0.32	=
27-39	5155111	788372	Low	Bottomland flat	0	Low scrub	Undisturbed	0-6 6-12	72	18	10	SL	38	=	-		SH	0.38	
27-36	5154111	734860	Low	Bottomland flat	0	Short-grace prairie	Cultivated (idle)	0-6 6-12	11	72 72	17 17	SIL	94 94	37 37	21 21	16 16	CL	=	2 63
						Chi	eng Hei Aree												
3T-1	47671	968842	··ON	Bottomland flat	2	Short-grass prairie	Cultivated (idle)	0-6 6-12	73	20	-,	SL	36	=	=	 MP	 SH	0-47	=
3T-2	47671	950891	Low	Natural levee	3	Woodland	Senana orchard	0-6 6-12	37	38	25	ī	79	39	21	16	CL	-1.05	=
3T-3	47671	542909	Low	Bottomland flat	1	Tall scrub	Benene orchard	0-6 6-12	60	13	27	SCL	49	24	13		SC /	0.74	=
3T-6	4867111	220700	Low	Terrace fla	t 1	Short-grass prairie	Cultivated (idle)	0-6 6-12	65	22	13	SL.	43	-		HP	SH	0.67	
3T-7	4667111	173702	Low	Netural levee	1	Short-grass preirie	Cultivated (grased)	0-6 6-12	40	36	24	ī	71	36	27	<u></u>	r.	1.77	
3T-8	47671	941909	Low	Bottomland flat	1	Tall scrub	Cultivated (orchard)	0-6 6-12	69	13	18	SL.	39	24	18	-	SH-SC	0.83	-
37-9	47671	946963	Low	Bottomiand flat	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	50	34	14	ī	38	31	19	712	CL	2.29	-
37-10	4767I	965922	Low	Netural levee	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	28	55	17	SIL	85	43	37.	12	16.	2.03	=
37-11	4867IV	049832	Low	Bottomland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	76	15	,	SL.	58	34	25	,	HE.	0.62	=
3T-12	4867IV	027882	Low	Bottomland flat	2	Short-grass prairie	Cultivated (idle)	0−€ 6−12	76	20	4	LS	38	=	=	MP	SM	0.46	Ξ
31-13	4867IV	145864	Low	Bottomiand flat	1	Short-grase prairie	Cultivated (grased)	0-6 6-12	51	23	26	SCL	53	3.5	18	17	CL	0.74	=
3T-14	4967111	036800	Low	Bottomland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	57	28	15	SL	52	35	22	13	CL	1.55	=
37-16	476711	956723	Low	Bottomland flat	1	Short-grees prairie	Cultivated (grased)	0-6 6-12	37	42	21	Ľ	75	19	15	•	CL-HL	0.66	
3T-17	476711	958718	Low	Bottomland flat	2	Short-grass prairie	Cultivated (grased)	0-6 6-12	52	35	13	L	57	15	13	2	ML	0.42	
3T-16	4766I	879568	Low	Bottomland depression	4	Short-grass prairie	Cultivated (grased)	0-6 6-12	76	18	-	LS	37		=	NP.	SH	0.51	
3T-19	4766111	685392	Low	Bottomland flat	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	46	34	20	ī	59	32	16	16	CI.	0.74	=
3T-20	4766111	670326	Low	Bottomland flat	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	6 1	12	7	Lis	24			MP	SH	0.51	=
3T-21	4766111	673283	Low	Bottomland flat	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	6z	20	18	SL.	44	19	12	7	SM-SC	0.70	
3T-22	4867111	060732	Low	Bottomland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	67	15	18	SL.	38	2,3	17	•	SH-SC	0.62	=
3T-23	4867111	063707	Low	Bottomland flat	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	22	52	26	SIL	4	40	23	17	CL	1.65	=
3T-24	4867111	025674	Low	Bottomland flat	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	25	44	31	œ.	78	32	17	15	a.	0.74	=
3T-25	4866IV	022536	Low	Bottomland flat	1	Sevenne	Grased	0-6 6-12	40	36	24	ī	72	28	₹7	11	CL	0.74	-
37-26	4866IV	057527	Low	Bottomland flat	1	Short-grass prairie	Cultivated (grased)	0-6 6-12	58	33		SL.	58	16	15	1	14.	0.63	

(5 of 16 sheets)

=		=	_	Tet-	Seaso	n Cond	Itles	54	etion C	- 111	111073	III V PALA	_	_		Lature	Condi	tion		_	_
***************************************		-Jupta	Dry		70 11111					nenee		Dry		****				Shore	grant.		Depth to
No.	- YELLAN	Layer in.		Of the second		N	MCI	e _n		ur poi	a _{ur}	Density 1b/cu ft	10, S	<u>CI</u>	RI	RCI	c _u pai	Tun ∮u	ur psi	Tun Cur	Table in.
21-30	2	6-12			4754 5444		-	1.4	0,65	1.0	0.40										
27-31	2	0-6 6-12	=	21.6 16.6		1.31 1.17	114 190	1.7	0.67	0.6	0.54										
27-32	3	0-6 6-12	=	35.6 36.4	99	0.86	104	1 3	C.47	0.4	0.44										
2T-33	2	0-6 6-12		25.7 21.6		-	=	0.9	0.81	0.8	0.55										
27-34	2	0-6 6-12	=	21.0		=	=	0.2	0.84	0.8	0.53										
27-35	2	0-6 4-12	=	16.7	560 574+		=	1.3	0.55	0.6	0.35										
2T-36	2	0-6 6-12	=			1.16 1.21	87 167	1.0	0.73	1.8	0.28										
									Ω	iese	Hai Are										
3T-1	2	0-6 6-12	=		323+ 300+		31 63	2.5	0.49	1.6	0.54										
3T-2	2	0-6 6-12	Ξ	15.0 18.2	222 377+		41 75	3.0	0.56	1.4	0.51										
37-3	2	0-6 6-12	=	11.1 13.3			33 36	2.7	0.54	2.0	0.48										
37-6	2	0-6 6-12	=	10.3 14.6			13	3.6	0.52	1.7	0.50	=	=	29 39	0.44	13	5.0	0.30	2.1	0.47	+4
3T-7	2	0-6 6-12		14.3 14.3		=		3.0	0.54	3.0	0.40	=	=	41 43	=	==	3.7	0.42	2.4	0.27	+5
37-8	2	0-6 6-12	=	13.6 14.0		=	=	2.8	0.60	0.9	0.60										
31-9	2	0-6 6-12		15.1 10.8			45 67	4.4	0.56	1.7	0.45	=			0.35	45 67	4.7	0.42	1.4	0.20	**
3T-10	2	0-6 6-12	=	24.9 24.0			39 60	5.0	0.36	2.0	0.42						, - u	-			
3T-11	2	0-6 6-12	=	19.1 12.2		0.64	96	3.6	0.54	1.5	0.56										
37-12	2	0-6 6-12	••	21.7 12.2		0.83	164	3.6	0.40	1.6	0.42										
3T-13	2	0-6 6-12	=	18.9 13.5			37 153	3.0	0.62	1.6	0.42										
3T-14	2	0-6 6-12		23.1 15.3			30 33	4.6	0.40	2.4	0.32										
37-16	2	0-6 6-12	= .	12.3 11.4			104 182	5.0	0.52	3.1	0.46										
3T-17	2	0-6 6-12			365+ 379+		19	4.3	0.52	1.6	0.60										
3T-18	2	0-6 6-12	85.9 95.8	31.9 26.5			474 516	3.5	0.49	1.4	0.40	85.9 95.8	31.9 26.5	106 108		==		-	-	-	12
3T-19	2	0-6 6-12	91.3 92.9	28.9 29.0			120 127	2.2	0.35	2.7	0.38										
3T-20	2	0-6 6-12	=		392+ 512+		99 146	2.2	0.70	1.4	0.40										
37-21	2	0-6 6-12	101.7 106.4	22.7 19.8			48	5.0	0.30	2.2	0.29										
37-22	2	0-6 6-12	92.4 104.9	29.2 20.4		-		2.5	0.46	2.0	0.46										
37-23	2	0-6 6-12	83.8 87.7	36.3 33.4			36 161	4.6	0.62	1.3	0.44		36.3 33.4	58 112	0.69	40	5.6	0.51	2.0 0	.47	0
3T-24	2	0-6 6-12	90.3 97.6	32.0 22.6			40 120	4.6	0.47	2.0	0.42										
37-25	2	0-6 6-12		11.4			92 139	3.6	0.50	2.4	0.48										
3T-26	2	0-6 6-12	=		442+ 451+		25 35	2.5	0.49	1.5	0.40										
3T-22 3T-23 3T-24 3T-25	2 2 2	6-12 0-6 6-12 0-6 6-12 0-6 6-12 0-6 6-12	92.4 104.9 83.8 87.7 90.3 97.6	19.8 29.2 20.4 36.3 33.4 32.0 22.6 11.4 11.8	130 67 142 113 182 66 134 434+ 462+	0.61 	86 161 40 120 92 139	2.5 4.6 4.6 3.6	0.46 0.62 0.47 0.50	2.0 1.3 2.0 2.4	0.44 0.42 0.48					99	5.6	0.51	2.0 0	.47	

	T PART 1			STANCE A.	HE D	648						section	J						
	Locat	OFIG						Depth			DA .				USE Vitor	•		Or-	
Site	Hap	Coor-	Topog-	graphic	Slope			of Layer	11.0	extur			By W		berg Limi			Con-	
No.	Sheet	nates	Class	Position	5	Vegetation	Land Use	in.			Clay	Drps.	Pines				Type	\$	1 ty
37-27	486617	129456	Low	Settenland flat	2	Low scrub	Undisturbed	0-6 6-12	33	44	23	L	76	31	20	11	a.	1.49	=
37-23	47661	973496	L	Nottenland flat	,	Short-grass prairie	Cultivated (grased)	0-6 6-12	25	-	27	 L	72	36	21	15	cī.	1.20	
37-29	4766I	966472	L==	Bottomland flat	1	Short-grass prairie	Cultivated (grased)	0-6 6-12		24	16	5L	52	23	16	7	CL-HL	0.55	••
37-30	4766I	935475	Lee	Sottonland flat	•	Short-grass prairie	Cultivated (grased)	0-6 6-12	24	54	22	SIL	85	30	25	13	ii.	2.23	=
M-11	47661	959576	L	flat	1	Short-grace prairie	Cultivated (grased)	0-6 6-12	<u></u>	24	16	SL	40	23	17	-	501-5 C	1.00	=
37-32	4766I	993544	Low	Settenland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	23	41	*	G.	-	37	25	12	NE.	1.35	
							Pres Burt Area												
47-2	49471	994501	Low	Bottomland flat	0	Tall-grass prairie	Grased	0-6 6-12	17	39	44	C	90	91	36	55	CII	4.34	
47-4	49471	977463	Low	Bottonland flat	0.7	Tall-grass prairie	Grased	0-6 6-12	13 16	62 59	25 25	SIL SIL	93 93	59 46	23 18	36 28	CI.	1.45 0.62	
47-5	49471	902446	Low	Bottomland flat	0	Short-grass prairie	Grased	0-6 6-12	10	56	34	SICL	96	57	20	37	CIII	1.98	
47-6	49471	973451	Low	Bottomland flat	•	Tall-grace prairie	Grased	0-6 6-12	20 20	45 45	35 35	SICL SICL	99	50 50	17 17	33	CH	1.15 1.15	
41-7	494711	970446	Low	Bottomland flat	0	Tell-grace prairie	Grased	0-6 6-12	-	49	42	81C	97	4	25	39	CM	3.54	
47-10	494711	984425	Low	Bottowland flat	0)	Tall-grace preirie	Grased	0-6 6-12	7	51 51	42 42	81C 81C	95 95	76 76	28 28	48	CI	0.55 0.55	
4T-11	49471	012526	Low	Bottomland flat	0	Short-grass prairie	Grased	0-6 6-12	17 32	32 35	51 33	CT.	93 74	70 60	36 24	34 36	CH	5.24 3.41	-
47-12	49471	018543	Low	Bottomland flat	0	Short-grace prairie	Grased	0-6 6-12	30 41	27 31	43 28	CT.	79 64	70 47	32 19	38 28	CE	5.24 3.13	=
4T-20	4940EI	901741	Low	Bottomland flot	0	Short-grass prairie	Cultivated (sugar came)	0-6 6-12	-	69	23	SIL	99	34	21	13	CL	1.33	
41-21	494611	904778	Low	Bottomland flat	0	Tall scrub	Undisturbed	0-6 6-12	60 56	26 25	14 19	SL SL	48 52	15 17	14 12	5	SH CL-HL	0.78 0.70	=
4T-22	4948II	898791	Low	Bottenland flat	0	Tell scrub forest	Undisturbed	0-6 6-12	24	56	20	SIL	83 	34	23	11	. CL	3.13	
47-23	494 0 II	879752	Less	Bottonland flat	0	Forest	Undisturbed	0-6 6-12	58	29	13	SL.	55	14	14	0	HEL.	0.70	
47-24	494811	862776	Low	Bottenland flat	•	Porest	Undisturbed	6-12	58 60	29 27	13 13	SL	50 48	22 17	16 14	3	200 200	2.75 1.33	=
4T-25	4948II	837739	Low	Hetural Leves	0	Forest	Undisturbed	0-6 6-12	35	41	24	L	77	24	16	•	CL.	0.95	
4T-26	4948II	845743	Low	Bot touland flat	0	Porest	Undisturbed	0-6 6-12	44	31 25	21 31	OCT.	60 40	26 30	14	12 16	SC SC	1.15 0,86	Ξ
47-27	49471	056578	Low	Bottonland depression	•	Barren	Undisturbed	0-6 6-12	39	16 20	15 41	SL C	30 66	17 45	15	30	SH CL	0.46	=
47-28	49471	054562	Law	Bot tonland flat	•	Short-grass prairie	Cultivated (grased)	0-6 6-12	27 17	50 51	23 32	SIL SICL	87 93	37 37	20 20	17 17	CL	3.62 1.98	=
47-29	49471	986530	Lev	Bettenland flat	0	Short-grass prairie	Grased	0-6 6-12	11 24	66 52	23 24	51L 51L	97 86	34 26	22 16	12 10	CL CL	1.33 1.45	=
47-31	4948II	929750	Lew	Bottomland flat	•	Tall scrub forest	Undisturbed	6-12	63 57	24 17	13 26	SCL SCL	50 50	16 22	13 10	12	SC	0.95 0.70	=
47-32	4948II	918744	Low	Bottomland flat	•	Short-grass prairie	Cultivated (rice)	0-6 6-12	20 21	52 43	28 36	SICL	86 87	31 35	14 13	17 22	CL	1.25 0.55	=
47-33	4948II	906723	Low	Bottomland flat	•	Short-grass prairie	Cultivated (ougst case)	6-15	22 20	53 55	25 25	S1L S1L	87 91	30 32	18	12 13	CL	1.15 1.15	=
							Den Keen Arne												
57-1	55 40 II	733172	Low	Bottomland flat	•	Short-grass prairie	Culcivated (rice)	0-6 6-12	30 34	58 56	12 10	SIL	81 77	28 28	17 17	11 11	CL		2.67
52-2	55 60 II	766184	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	16 14	60 52	24 34	SIL	88 91	68 79	40	28 33	16E	1.15	2.70 2.78

	_				Wet-	Seaso	on Cond	Ition		ction	C. Tr	THE CO.	lity Date			High-Ho	lature	Cond	tion		
			Depth	Dry				+	_		argrap		Dry					-	Shear	graph.	Depth to Water
1	io.	Visits	in.	240-320-120						u	psi	aur	Density lb/cu ft	HC, 5	CI	RI	RCI	cu pai		ur pai	Table in.
	3 1~ 27	P	6-12		14.2	223	0.69	<u>101</u> .	- 2-1	2.4	1.0	0.62	-		1-8 + 1 to compa	- No to the digraph		- tridiin asima wa			 turne de la constante de
	3T-26	2	0-6 6-12				0.97	107 124	3.4	0.31	1.0	0.32						٠			
	3T-29	2	0-6 6-12	=			0.45	52 120	0.8	0.66	1.5	0.48									
	3T-30	2	0-6 6-12	=			0.64	51 106	1.4	0.75	0.8	0.65									
	3 7-31	2	0-6 6-12	=			0.73 0.53	89	1.9	0.60	0.6	0.70									
	3T- 32	2	0-6 6-12	86.7			0.70	26 78	2.2	0.46	3.2	0.36									
										ı	tre 1	WEL ATO	ı								
,	4T-2	1	0-6 6-12	=			0.77	12 18					= "	==		0.77	12 18				5
	4T-4	1	0-6 6-12				0.74	39 61					=	=		0.74	39 61				+2
	NT-5	1	0-6 6-12	=	51.0 43.2		0.76	26 43					=	51.0 43.2		0.76	26 43				13
•	6T-6	1	0-6 6-12	=	46.7 38.6		1.12 0.80	27 46					Ξ	46.7 38.6		1.12	27 46				15
•	T-7	1	0-6 5-12	==	96.0 58.6		0.87	12 23						96.0 58.6		0.87	12 23				13
	T-10	1	0-6 6-12	==	-		0.47	44						=		0.47	44				5
4	T-11	1	0-6 6-12				1.41	80 59													
4	T-12	1	0-6 6-12		79.9 49.6		0.74	27 44						79.9 49.6		0.74	27 44				+1
4	T-20	1	9-6 6-12		8.2 9.4	3/7	=		2.5	0, 18	0.0	0.47									
4	T-21	1	0-6 6-12		2.8	393 560		==	0.0	0.70	1.8	0.27									
4	T-22	1	0-6 6-12			750+ 750+			0.0	0.62	0.0	0.42									
4	T-23	1	0-6 6-12			750+ 750+		=	0.4	0.40	0.0	0,58									
4	T-24	1	0-6 6-12			600+ 750+		=	0.0	0.73	0.0	0.60									
4	T-25	1	0-6 6-12			750+ 750+		==	1.5	0.45	2.5	0.47									
4	T-26	1	0-6 6-12	==		750+ 750+			0.0	0.73	0.0	0.73									
4	T-27	1	0-6 6-12	=	4.2			==	0.5	0,97	0.0	0.81									
4	T-28	1	0-6 6-12	-	12.2 15.0	750+ 750+	=		0.0	1.11	0.0	0.42									
4	T-29	1	0-6 6-12	=	29.5 28.7	62	0.67	42 78					=	29.5 28.7		0.67	42 78				+4
4	T-31	1	0-6 6-12		1.3	750+			1.5	0.84	1.7	0.34					.•				
4	T-32	1	0-6 6-12		6.5	750+			0.0	0.97	0.0	0.75									
4	T-33	1	0-6 6-12	=	6.0	151			0.0	0.58	0.0	0.84									
			-								hon Ka	en Area									
5	r- 1		0-6 6-12		19.7 20.8			102 172	3.0	0.54	0.4	0,58	=	21.8 23.6			50 69				18
.5	T-2		0-6 6-12		27.0 28.6			292 224	1.0	0,57	1.0	0.32									
							J														

			Section A.	alte l	ata						section	В, 1						
Iweat	Grid Coor-	Topog-	Торо-				Depth	- 4	extur	DA.		By Wt	A	USCS tter berg	•	-	Or- ganic	Spe- cific
Site Map No. Sheet	di-	raphy Class	graphic Position	Slope	Vegetati o n	Land Use	Layer in.	. b	y Wt,		Туре	% Pines		Limi	te	Type		Grav- ity
5T-3 556011	805180	Low	Bottomland	0	Barren	Cultivated	0-6	10	60	30	SICL	94	60	\ <u> </u>	31		1.05	2.71
5T-4 5560II	806220		flat Bottomland	0	Chartenana	Cultivated	\$32. 0-6	2- 84		25a			-49-	**		- 125		
31-4 336011	800220	Low	flat	Ů	Short-grass prairie	(rice)	6-12	77	11	6	LS	30			MP	SH		2.65
5T-5 5560II	810245	Low	Bottomland flat	0	Short-grass prairie	Cultivated (jute)	0-6 6-12	65	25 31	6	SL SL	37 42			NP NP	SH		2.63
5T-6 5560I	827257	Lov	Not touland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	76 83	22 17	0	LS LS	30 23			NP	SH		2.63 2.63
5T-7 5560I	850277	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	72 67	27 31	1 2	CSL	35 30	17 26	13 13	13	SH-SC SC		2.64 2.77
5T-8 5560II	735148	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	31 27	60	13	SiL SiL	77 81	22 25	18	7	ML CL-ML		2.61 2.71
5T-9 5660II	907186	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	77 75	20 21	3	LS LS	33 35			NP NP	SH		2.65 2.66
5T-10 5660II	933176	High	Upland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	82 79	16 18	2 3	LS LS	27 31			NP NP	SM SM		2.65 2.67
5T-11 5560II	718218	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	63 68	30 27	7	SL SL	46 39			NP NP	SM SM		2.67
5T-12 5560II	730246	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	40 39	54 53	8	SIL	69 70	28 33	18 22	10 11	CL CL		2.60 2.60
5T-13 5560II	610155	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	44	46 46	10 14	L L	65 67	35 38	22 21	13 17	CL		2.71 2.76
5T-14 5560II	660152	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	48 · 42	42 46	10 12	L L	63 68	24 31	17	14	ML CL		2.62 2.64
5T-15 5461II	160453	Low	Upland depression	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	72 76	24 24	0	\$1. 1.\$	3 9 33			NP NP	SM		2.65 2.64
5T-16 5461II	125460	Low	Upland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	59 °	46 39	5 7	SL SL	54 58			NP NP	ML		2.62 2.65
5T-17 5560II	66 5092	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	74 67	19 23	7 10	SL SL	33 41	25	17	NP 8	SM SC		
5T-18 5560II	667244	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	76 72	21 24	3	LS SL	40 46			NP NP	SH		2.65 2.67
5T-19 5460I	237277	Low	Sottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	9 10	61 65	30 25	SICL SIL	94 93	72 73	36 28	36 45	MH CH		2.68 2.78
5T-20 5460I	236287	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	59 59	37 34	7	SL SL	48 48	22 30	18 14	16	SM-SC SC		2.67
5T-21 5460I	234344	High	Upland depression	0	Short-grass prairie	Logged	0-6 6-12	73 65	23 28	4 7	SL SL	38 44	24	18	NP 6	SM SM-SC		2.68
5T-22 5460I	283324	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	41 44	52 47	7	SIL	69 65	23 29	14	NP 15	MI.		2.61 2.60
5T-23 5460I	163395	High	Upland flat	0	Woodland	Logged	0-6 6-12	82 82	15 16	3	LS LS	26 26			NP NP	SM SM		2.61 2.63
5T-24 5460I	143363	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	62 74	34 26	0	SL LS	49 34			NP NP	SM SM		2.59
5T-25 5460II	186253	Low	Bottomland flat	0	Berren	Cultivated (rice)	0-6 6-12	30 24	59 65	11 11	SiL SiL	81 87	50 41	20 29	30 12	CL ML		2.67 2.66
ST-26 5460II	293240	Low	Upland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	65 59	34 40	1	SL SL	47 52	20	16	NP 4	SM CL-ML	0.32 0.32	2.62 2.66
5T-27 5461111	990485	Low	Upland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	51 63	43 33	6	SL SL	58 48	22 19	-	NP NP	ML SM		2.72 2.72
5T-28 5460II	266190	Low	Bottomland depression	0	Low scrub	Cultivated (rice)	0-6 6-12	52 45	42 47	6	SL L	60 67	24 26	17 15	7 11	CL-ML	0.38 0.32	2.65 2.65
5T-29 5560III	455215	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	67 57	30 39	3	SL	48 60			NP NP	SM ML	0.38	2.67 2.67
5T-30 5560111	375225	Low	Bot tomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	54 54	44 41	2 5	SL SL	60 58	18		NP NP	ML ML	0.70 0.38	
5T-31 5560III	377173	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	20 14	67 62	13 24	SIL SIL	89 91	22 27	19 18	3	ML CL	0.55 0.38	
5T-32 5560III	504145	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	72 74	25 21	3	SL SL	37 38		-	NP NP	SM SM	0.70 U.38	2.63 2.66
5T-33 5560III	563137	High	Upland flat	0	Low scrub	Cultivated (jute)	0-6 6-12	77 79	19 18	3	LS LS	32 30	=	==	NP	SM	0.55 0.38	

				Wet.	Seaso	n Conc	lition	Sec	tion (Tre	HIICAD.	Hey Data			iigh-ko	Isture	Condi	tion			Denth *
III dhe nones		Depth			-			-	Shee	rgraph	Tan	Dry					c _u	Shear	egraph.	Ten	Depth to
	No. of Visits		Density lb/cu ft	MC.	S CI	RI	RCI	pai	1,4	psi	dur	lb/cu ft	KC, 1	CI	kr	- NCY	DAY.	1,	ur	<u>a, , , , , , , , , , , , , , , , , , , </u>	Table in.
iT-3	2	0-6 6-12	84.5 86.0			1.03	137 258	2.4	0.44		0.22										
T-4	2	0-6 6-12				0.97	139 251	2.2	0.41	0.8	0.42										
T-5	2	0-6 6-12	114.2 115.4	10.6 10.8	3384 3384	0.62	233	2.8	0.24	1.0	0.30										
T-6	2	0-6 6-12	91.4 104.0	16.6 11.4				1.2	0.58	0.1	0.44										
T -7	2	0-6 6-12	103.8 93.8	15.3 11.2		=		1.7	0.44	0.5	0.47										
T-8	2	0-6 6-12	87.4 77.5			0.40	58 81	0.7	0.62	0.2	0.52										
T-9	2	0-6 5-12			4344 5504	1.50	660	0.2	0.72	0.2	0.50										
T-10	2	0-6 6-12	90.2 93.7			2.48 1.94	460 347	1.0	0.58	1.2	0.37										
T-11	2	0-6 6-12			3024 4424	0.32	55	3.0	0.44	1.7	0.46										
T-12	2	0-6 6-12				0.97	201 106	3.6	0.36	1.0	0.24										
T-13	2	0-6 6-12	93.5 90.4			1.58	152 314	1.6	0.56	1.4	0.34	=	28.2 31.6		1.06	71 238		-			19
T-14	2	0-6 6-12				0.78	126 142	0.8	0.63	0.7	0.46										
T-15	2	0-6 6-12	96.5 96.3			1.24	246 485	2.3	0.42	0.1	0.51										
T-16	2	0-6 6-12	97.0 107.2			0.58	85 142	3.3	0.50	1.8	0.37										
T-17	2	0-6 6-12	99.8 101.5			0.49	53 117		0.60		0.44										
T-18	2	0-6 6-12	=	17.0	5564	0.76	271 225	0.4	0.56	0.6	0.41	=	6.3 12.6		0.76	271 225	0.7	0.60	1.0	0.40	0
T-19	2	0-6 6-12	93.0 95.0		160	1.08	60 146		0.41												
T-20		0-6 6-12		17.6	4284	1.42	152		0.53												
T-2 1		0-6 6-12	Ξ	10.4	4614	1.32	259 193		0.42												
T-22		6-12	96.5 98.4	19.5	180	1.03	242 148		0.82												
T-23		0-6 6-12	93.1 95.4	8.8	416	1.37 2.36	1020		0.52												
T-24		0-6 6-12	=	15.8	4534	1.22	231		0.66												
T-25		0-6 6-12		27.2	218	0.84	48		0.57												
T-26		0-6 6-12	-	13.4	452+	0.68	84		0.68												
T-27		0-6 6-12	=	12.1	462+	0.79	100 165		0.60		0.63		•••			46					10
T-28		0-6 6-12	107.5	20.6	174	0.96	180 270		0.56		0.48	=	24.1		0.79	94		_		_	19
T-29		0-6 6-12	97.7 96.0	13.8	224	1.24	344 300		0.79												
T-30 T-31		0-6 6-12 0-6	96.8	14.6	472+	0.86	252 137 206		0.59												
F-31		6-12 0-6	96.8 100.5	17.9	237	1.19	333 132		0.54												
r-32		6-12		10.6	495+	1.14	274														
r-33	2	6-12			750+			v. Z	0.62	0.7	V. 37										

(10 of 16 sheets)

_				Section A.	ग्रस्थ ।	eta						ection	В.		-			-	
	Loca	Urid Orid						Depth			SDA			-	tte	-			Spe-
Sit	е Мар	Coor-	Topog-	. Topo- graphic	Slope			of Layer	b	extur y Wt,	*		By W	2107	berg Limi			-	cific Grav-
No.	12.75	nates	Class	Position	-\$	Vegetation	Land Use	in.	Sand	8111	Clay	Type	Fine	3 <u>II</u>	PL	PI	Type	\$_	1ty
	34 556011		Lov	Sottonland	0	Berren	Cultivated	0-6	56	41	3	SL.	52				IL SL-VE		2.60
	35 5560III		High	Upland flat		Short-grass prairie	Cultivated (jute)	0-6 6-12	76 75	21 22	3	LS LS	33			NP NP	SH		2.62
5T-	40 556011	797160	Low	Bottomland flat	0	Low scrub	Logged	0-6 6-12	,	28	65	<u> </u>	96	86	30	56	CN	4.70	
5T-	41 5560II	792158	Low	Bottomland depression	0	Low scrub	Logged	0-6 6-12	;	35	60		97	80	28	52	CIL	3.96 1.98	
5 T -	42 55 6 011	794157	Low	Bottomland flat	0	Tall-grass prairie	Undisturbed	0-6 6-12		23	71	 c	97	100	31	69	CH	2.23 1.98	
5T-	43 5560II	794153	Low	Bottomland flat	0	Low scrub	Undisturbed	0-6 6-12		28		c	78	79	 27	52	CM	5.74 3.96	••
5T-	44 55 60 11	794153	Low	Bottowland depression	0	Low scrub	Logged	0-6 6-12	 7	29		c c	97	93	38	55	CH	5.50 2.75	
5T-	45 5560II	794153	Low	Bottomland depression	0	Low scrub	Logged	0-6 6-12	5	27	68	c c	99	93	35	58	CN	7.24 3.41	
57-	46 5560II	727240	Low	Bottomland flat	0	Short grass prairie	Cultivated (rice)	0-6 6-12	58	26	16	SL	53	21	12	,	CL.	1.25 0.70	=
ST-	47 55 6 0II	727237	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	33	38	29	CL	76	32	13	19	CL.	1.45 0.95	
51-	48 5560II	727240	Low	Bottomland flat	0	Short-grade prairie	Cultivated (rice)	0-6 6-12	35	41	24	ī	76	29	13	16	CL	0.78 0.70	
57-	49 5560II	732237	Low	Sottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	35	27	38	CL	74	40	14	26	CL	1.25 0.86	
5 T -	50 556011	760201	Low	Sottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	27	53	20	81L	89	28	18	10	CL	1.15 0.78	=
						Chest	haburi Area												
6T-	5349111	486103	Low	Bottomland flat	0	Woodland	Rubber plantation	0-6 6-12	52	30	18	GL	29	48	30	18	SH		3.14
67-	2 534911	120070	High	Terrace slope	2	Tall-grass prairie	Undisturbed	0-6 6-12	52	30	18	VGL	23	43	21	22	sc		3.19
6T-	3446IV	849000	High	Upper flat	2	Short-grass prairie	Rambutan orchard	0-6 6-12	33	48	19	ī	75	31	19	12	CL.	0.78	2.69
67-	534911	120093	Lov	Bottomland depression	0	Tall-grass prairie	Undisturbed	0-6 6-12	16	54	30	81CL	87	30	18	12	CT .	0.70	2.61
6T-	5 534911	133032	High	Terrace elope	2	Tall scrub woodland	Logged	0-6 6-12	64	33	-3	SL	49	=		NP	 SH	0.46	2.64
6T-	5449IV	969083	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	58	26	16	SL	45	25	15	10	SC	0.55	2.65
67-	534911	073103	Low	Bottomland depression	0	Short-grass prairie	Grased	0-6 6-12	10	64	26	SIL	86	30	20	10	CL	0.62	2.66
67-	544 0 IV	862788	Low	Nottonland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	69	21	10	SL	40	28		117	SH	0.38	2.68
6T-1		207077	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	•	52	42	SIC	95	47	30	17	ML	1.05	2.71
67-1	10 5448IV	883910	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	6-12	84	-	•	LE	18	21	14	7	SH-SC		2.65
67-	11 53481	145970	Low	Bottomland flat	0	Woodland	Cocoaut	0-6 6-12	80	14	6	LE	26			**	SM	0.70	2.65
	12 5448IV	2012	Low	Bottomland flat	0	Sevenne	orchard	0-6 6-12	86	•	•	LS	17	17	=	MP	SH		2.62
	3 544817	873881	Low	Bottomland flat	0	Sevenne	Cultivated (sugar case)		79	17	4	u	27			#P	SH	-	2.67
	4 5448111		Low	Bottomland flat	0	Low scrub	Nips pela orchard	0-6 6-12	14	52	34	SICL	91	77	33	44	CIL	4.15	2.60
	15 544 0 III		Low	Bottomland flat	0	Sevenne	Cultivated (idle)	0-6 6-12	18	44	38	SICL	85	60	36	24		5.02	2.61
	6 5448IV		Low	Bottomland flat	0	Sevenne	Cultivated (idle)	0-6 6-12	13	55	32	SICL	93	32	21	11	CT.	1.65	2.67
67-1	7 5340I	225970	Low	Sottomland flat	0	Low scrub	Logged	0-6 6-12	19	58	23	SIL	š	37	20	17	CL.	2.47	2.61

=				Wet-	Seaso	n Cond	Ition	Sec	tion C	. Tre	i en	lity Data			(ch-Ho	lature	Condi	tion			
		Depth	Dry				,	_				Dry						Shear		Tan	Depth to Water
	No. of Visits	Layer in.		HC. 5	CI	RI	RCI	pai	Pu.	pei	aur	Density 1b/cu ft	HC. 5	CI	RI	RCI		1,0	pai	aur	Table in.
3T-34		0-6 6-12					07	2.2	0.59	1.2	0.40										
57-35		0-4 6-12						1.6	0.58	6.3	6.45	t former state open and a state of the state		······································		****************				- 100-	
5T-40	2	0-6 6-12	72.8 72.8	19.8	329	1.67	449 420	0.6	0.91	0.0	0.61										
5T-41	2	0-6 6-12	=				=	0.6	1.04	0.7	0.51										
5T-42	2	0-6 6-12	68.5 74.9	62.0	106	1.78	175 149	0.6	0.72	0.0	0.48										
51-43	2	0-6 6-12	62.8				23 93	1.4	0.69	1.0	0.34										
5T-44	2	0-6 6-12	59.9 64.4				672 487	0.6	0.85	0.0	0.56										
5T-45	1:	0-6 6-12	65.2 70.5	ft MC. \$ CI RI RCI pai Pu pai																	
5T-46	2	0-6 6-12	=				359	0.9	0.86	0.6	0.49										
5T-47	2	0-6 6-12		Second Column Second Colum																	
51-48	2	0-6 6-12	=					1.3	0.76	0.7	0.64										
5T-49	2	0-6 6-12	==				=	2.2	0.69	0.8	0.60										
5T-50	2	0-6 6-12						1.4	0.97	0.4	0.52										
									Q	enthe	burt Ar	24									
6T-1	1	0-6 6-12	=		3 200 0.45 87 2.2 0.59 1.2 0.40 1 6644 -																
6T-2	1	0-6 6-12						0.0	0.93	0.6	0.53										
67-3	1	0-6 6-12								-											
6T-4	1	0-6 6-12						0.8	0.67	1.4	0.27	=								~	6
6T-5	1	0-6 6-12	=					1.0	0.49	0.6	0.47										
6T-6	1	0-6 6-12	=																		+1
6T-7	1	0-6 6-12	=		13.0 454- — 1.6 0.58 6.3 6.48 13.0 1.67 440 0.6 0.91 0.0 0.61 13.1 1.67 440 0.6 0.91 0.0 0.61 13.1 1.68 — 0.6 1.04 0.7 0.31 13.2 1.68 — 0.6 1.04 0.7 0.31 13.3 1.69 1.69 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7																
6T-8	1	0-6 6-12	=					0.8	0.47	0.7	0.42							-			12
67-9	1	0-6 6-12						2.6	0.42	0.4	0.45						2.6	0.42	0.4	0.45	0
6T-10	1	0-6 6-12	=						_												+3
6T-11	1	0-6 6-12						1.4	0.60	0.4	0.34										
6T-12	1	0-6 6-12	=	12.3	65			1.2	0.45	0.0	0.47										
67-13	1	0-6 6-12	=	19.2	80			1.0	0.45	0.0	0.55										
67-14	1	0-6 6-12	=	70.9	14																3
6T-15	1	0-6 6-12	=	45.6	29	0.78	23		-	-			45.6	29	0.78	23				-	*
6T-16	1	0-6 6-12	=																		+12
67-17	1	0-6 6-12	=	16.0	127	0.85	106	1.8	0.56	1.3	0.36										

(12 of 16 sheets)

				Section A.	3160	PBVA						Section	В.	6011					
	ocatio	on Fid						Depth		u	GDA .		_	-	USC			Or-	Spe-
	(200F-	Topog-		61			of		lex tu	re		By W		berg	-		Con-	cific
	ap eet 1	di- nates	raphy Class	graphic Position	Slop	Vegetation	Land Use	Layer in.		SII		Туре	Fine	-	Limi PL		T, pe	tent	Grav- ity
6T-18 544	VI.	800847	Low	Bottomland flat	0	Barren	Undisturbed	0-6 6-12	56	31	13	SL.	53	43	24	19	CL.	2.87	2.65
6T-19 534	81	210950	Low	Tidel flat	0	Low scrub	Logged	0-6 u-12	40	53	7	SiL	73	71	49	22	MK		2,64
67-20 534	8 1 :	171936	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	50	24	26	SCL	56	27	15	12	CL.	0.86	2,63
6T-21 534	0 I :	277879	Low	Beach	1	Woodland	Coconut	0-6 6-12	99	- 1		 \$				HP	SP-SM		2.72
6T-22 544	8117 S	901826	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	30	47	23	ī	74	39	18	21	CL.		2.62
6T-23 544	SIII (820809	Low	Bottomland flat	0	Savanna	Cultivated (idle)	0-6 6-12	21	45	34	Cr.	84	75	38	37	 MH	4.05	2.65
6T-24 5346	8I 1	195976	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	45	27	26	CL.	60	34	19	15	CL	0.78	2.66
6T-25 5446	BIV (10923	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0- 6-12	15	52	33	SICL	90	50	26	24	CH	0.70	2.66
6T-26 5446	BIV 9	76006	High	Upper slope	4	Savanna	Rubber plantation	0-6 6-12	76	15	9	GSL.	15	27	19	8	sc		2.77
6T-27 5349	DII 2	20081	Low	Bottomland flat	0	Short-grass prairie	Orange orchard	0-6 6-12	65	22	13	SI.	40	22	14	8	sc	0.62	2.63
6T-28 5446	BIA (96980	Lov	Bottomland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	14	59	27	SiL	90	49	34	15	ML.	1.33	2.61
6T-29 5446	DIV 9	40017	Low	Bottomland flat	0	Low scrub; short- grass prairie	Cultivated (idle)	0-6 6-12	34	34	32	CL	71	58	32	26	MH	0.78	2.67
6T-30 5449	111 9	78060	Low	Not touland flat	0	Low scrub; short- grass prairie	Cultivated (idle)	0-6 6-12	22	40	38	CL	75	53	33	20	HEI	0.78	2.70
6T-31 5449	III 9	93072	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	57	29	14	SL	52	27	15	12	CL	0.38	2.61
6T-32 5449			Low	Bottomland flat	0	Savanna	Rambutan orchard	0-6 6-12	22	47	31	Cr 	83	54	34	20	MH	1.33	2.65
6T-33 5449	III 9	32074	Low .	Bottomland depression	O	Woodland	Rubber plantation	0-6 6-12	50	30	20	L	55	32	20	12	CL	0.86	2.62
6T-34 5348		17015	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	15	56	29	SiCL	89	55	36	19	MH	2.35	2.63
6T-35 5448	IIV 7	75959	Low	Bottomland flat	0	Savanna	Rambutan orchard	0-6 6-12	59	29	12	SI.	48	58	45	13	SM	2.87	2.81
6T-36 5349			Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	87	11	2	s	22	-		NP	SH	0.38	2.63
6T-37 5449			Lov	Terrace flat		Low scrub	Rubber plantation	0-6 6-12	65	20	15	GSL	32	39	23	16	SC SC		2.61
6T-38 5448			Low	Upland flat	0	Short-grass prairie	Rubber plantation	0-6 6-12	59	21	20	SL	40	42	26	16	SM	1.65	2.58
6T-39 5448		TOTAL I		Terrace flat		Savanna	Durian orchard	0-6 6-12	43	36	21	L	60	54	34	20	MH	1.55	2.62
6T-40 5449			-	Upland flat	0	Low scrub	Cultivated (idle)	0-6 6-12	59	28	13	SL	50	41	29	12	SH	1.55	2.65
67-41 5449			-	Upland flat	``.	Savanna	Orange orchard	0-6 6-12	60	22	18	SL	44	38	19	19	sc	0.70	2.62
67-42 5448				Terrace flat		Savanna	Rubber plantation	0-6 6-12	63	24	13	SL	36	45	30	15	SH	1.33	
6T-43 54481 6T-44 54491				Bottomland flat	0	Savanna Toll comub	Rubber plantation	0-6 6-12	77	14	9	SL	26			NP	SM	1.45	2.60
6T-45 54481				Upland flat	0	Tall scrub woodland Savanna	Logged	0-6 6-12	45	37	18	Ľ	61	44	31	13	ML	1.65	2.60
6T-46 54481				Bottomland	72	Sevenne	Rubber plantation Rubber	0-6 6-12 0-6	59	17	24	GSCL		53	29	24	SH		2.64
6T-47 54481				flat Bottomland		Short-grass	plantation Durian	6-12 0-6	49	37	14	L	61	59	43	16	MH	1.98	2.73
6T-48 54481				flat Bottomland		prairie Savenna	orchard Rubber	6-12 0-6	56	36	•	SL	55	57	45	12	МН	2.08	2.65
				flat		7.77 1.177	plentation	6-12	31	55	14	SiL		39	26	13	ML	1.88	2.65

(13 of 16 sheets

PROPERTY OF THE PARTY OF THE PA

Table A3 (Continued)

				Wet-	Seaso	n Cond	ition	Sec	tion C	. Tre	प्रश्वा	lity Data			ligh-Mo	lsture	Condi	tion			
e i i a	No. of	Depth of	Dry Density					cu	Tan	rgrapt aur	Tan	Dry Density					c _u	Shears	raph aur	Tan	Depth to Water Tatle
	Visits		lb/cu ft	MC, \$	CI	RI	RCI	psi	øu	psi	ur	lb/cu ft	MC, %	CI	RI	RCI	psi	Ø _u	psi	<u>aur</u>	in.
6T-1	8: 1	0-6 6-12		45.5 54.6		0.97 0.98	13 21						45.5 54.6		0.97	13 21				-	6
6T-1	9 1	0-6 6-12			36 54	0.69	25 52			-					0.69	25 52			•	-	3
6T-2	0 1	0-6 6-12		18.9 20.6			122 92	1.0	0.62	0.2	0.36	**	18.9 20.6		0.65 0.70	122 92		-			12
6T-2	1 1	0-6 6-12		23.0 21.6			-			•-											
6T-2	2 1	0-6 6-12		18.3 33.3	55 87	0.80 0.58	44 50						18.3 33.3		0.80	44 50					+3
6T-2	3 1	0-6 6-12		59.0 75.3	30 46	0.85 0.81	25 37						59.0 75.3		0.85 0.81	· 37		-			+13
6T-2	4 1	0-6 6-12		31.6 23.7	94 130	0.65	61 104	2.0	0.36	1.3	0.34		31.6 23.7		0.65	61 104			-		, 6
6T-2	5 1	0-6 6-12				1.29	101 75			-			30.5 30.8		1.29	101 75					+7
6T-2	5 1	0-6 6-12		15.2 12.3				1.0	0.58	0.8	0.42										
6T-2	7 1	0-6 6-12		14.3 14.0			199 150	1.2	0.62	0.9	0.51										
6T-2	1	0-6 6-12		39.2 37.7			111 146	0.8	0.60	1.1	0.51		39.2 37.7		0.77 0.52	111 146		-			12
6T-2	1	0-6 6-12		21.9 33.4			86 79				-		21.9 33.4		0.64	86 79					+3
6T-3	1	0-6 6-12		33.3 30.2			67 125						33.3 30.2		0.66	67 125					+5
6T-3	1 1	0-6 6-12		17.5 15.2			-						17.5 15.2	155 185							+11
6T-3	1	0-6 6-12		36.7 30.6			52 92		**												
6T-3	3 1	0-6 6-12		24.7 21.5			92 90	2.8	0.60	1.9	0.45										
6T-3	1	0-6 6-12		34.7 45.5	132 90	0.60	79 36	2.4	0.49	1.2	0.47										
6T-3	5 1	0-6 6-12		48.2 44.8		0.33	13 29	1.2	0.73	1.7	0.42										
6T-36	1	0-6 6-12	Ξ	20.2 19.4			428 844		•	***			20.2 19.4		1.70 1.91	428 844					9
6T-3	1	0-6 6-12		13.1 14.1			248 359	2.2	0.51	0.5	0.49										
6T-3	1	0-6 6-12		17.5 20.7			124 344	1.7	0.40	0.5	0,51										
6T-39	1	0-6 6-12		30.0 29.0			135 182	0.5	0.49	0.3	0.45										
6T-40	1	0-6 6-12		29.3 28.6			40 70	2.2	0.62	1.2	0.58										
6T-41	. 1	0-6 6-12	=	17.2 16.9			144 149	2.0	0.60	1.0	0.55										
6T-42	1	0-6 6-12		23.3 22.4				0.8	0.42	0.2	0.36										
6T-43	1	0-6 6-12	=	11.0 11.1				0.5	0.51	0.2	0.55										
6T-44	1	0-6 (- 12		30.0 32.6			104 84	2.0	0,42	1.0	0.49										
6T-45	1	0-6 6-12	=		458 750+			1.0	0.40	1.0	0.36										
6T-46	1	0-6 6-12		40.9 40.0		1.53	81 130	1.2	0.55	1.5	0.49										
6T-47	1	0-6 6-12		47.3 46.5		0.38 0.89	26 62	0.6	0.60	0.8	0.58										
61-48	1	0-6 6-12	•		94 107			1.4	0.45	0.0	0.36										

Table A3 (Continued)

				Section A. S	Ite L	ACA						ection	B. S					V	
	Locat	ion													USCS			Or-	
		Grid						Depth		U:	SDA				tter	-		ganic	Spe-
		Coor-	Topog-	· Topo-				of	7	extur	e		By Wt		berg			Con-	cific
Site	Mag	di-	raphy	graphic	Slope			Layer	t	y Wt.	%		%	100	Limi	ts		tent	Grav-
No.	Short	nates	Class	Position	Ţ,	Vegetation	Land Use	in.	Sand	3114	Clay	Type	Fires	파	PL	19	Type	1/6	ity
6T-49	5448IV	995964	Low	Bottomland	0	Savanna	Rambutan	r-6				77							
				flat			orchard	6-12	36	7	7	L8	16	18		NP	SM	1.05	2.63
6T-50	5448IV	820970	Low	Bottomland flat	0	Savanna	Rubber plantation	0-6 6-12	60	21	19	SL	44	38	24	14	sc	0.95	2.61
6T-51	5448IV	877880	Low	Lower slope	25	Savanna	Rubber plantation	0-6 6-12	79	16	5	GLS	14	15		NP	SM		2.57
6T-52	534911	145098	Low	Terrace flat	0	Short-grass prairie	Rubber plantation	0-6 6-12	57	29	14	SL	53	 25	20		CL-ML	1.55	2.61
6T-53	5448IV	933858	Low	Upland flat	0	Low scrub	Rubber plantation	0-6 6-12	62	19	19	SL	39	46	30	16	SM	1.65	2.59
6T-54	54481V	790954	High	Upper slope	22	Tall scrub	Rubber plantation	0-6 6-12	49	40	11	VGL	 26	56	37	19	u:		3.30
6T-55	53481	130952	High	Terrace slope	6	Low scrub; short- grass prairie	Undisturbed	0+6 6-12	50	34	 16	GL.	41	29	 22	7	SH-SC		2.78
6T-56	5448111	620834	Low	Bottomland flat	0	Savanna	Logged	0−6 6−12	55	39	6	SL	54	76	44	32	MH		2.65
6T-57	5448111	817816	Low	Bottomland flat	0	Short-grass prairie	Grazed	0-6 6-12	94		2	s			<u></u>	NP	SP-SM	2.47	2.63
6T-58	534911	150065	Low	Bottomland flat	0	Tall scrub woodland	Undisturbed	0-6 6-12	55	28	17	SL	51	 22	15		CL-ML	0.95	2.63
6T-59	534911	159089	Low	Bottomland flat	0	Low scrub; short- grass prairie	Rubber plantation	0-6 6-12	20	38	42		83	52	27	25	СН	0.95	2.62
6 T-6 0	534911	187064	High	Upland flat	0	Tall scrub forest	Undisturbed	0-6 6-12	51	35	14		59	18		NP	HE.	0.55	2.64
6T-61	53481	152984	High	Upland flat	0	Low scrub	Undisturbed	0-6 6-12	60	28	12	GSL	29	24	16		sc	0.95	2.99
6T-62	5448IV	767963	Low	Bottomland depression	0	Savanna	Rubber plantation	0-6 6-12	70	21		GSL	19	36	24	12	sc.	==	2.85

Table A3 (Concluded)

								520	tion C	. Tra	iii lenb	Ility Data									
				Wet-	Seaso	n Cond	iltion								ligh-M	isture	Condi	tion			
		Depth	n						Shea	rgraph	ŀ	D.						Shear	graph.		Depth to
	No. of Visits	of Layer in.	Dry Density 1b/cu ft	MC, ≸	CI	RI	RC1	e u psi	Ten Ø	aur psi	Ten Gur	Dry Density lb/cu ft	ис, %	CI	RI	RCI	e u psi	Tan Ø	aur psi	Tan Gur	Tatle in.
6T-49	1	0-6 6-12				1.89 2.45	122 305	0.7	0.42	0.1	0.38		15.4 13.1	65 125	1.89	122 305					12
6T-50	1	0-6 6-12		19.6 20.3		1.02	90 125	0.7	0.51	0.7	0.47										
6T-51	3	0-6 6-12			750+ 750+			0.0	0.78	1.2	0.30										
6T-52	1	0-6 6-12		16.6 18.2				0.3	0.70	0.6	0.45										
6T-53	1	0-6 6-12		18.3 17.2			215 280	0.9	0.38	0.0	0.38										
6T-54	1	0-6 6-12			644+ 750+			1.0	0.62	0.8	0.47										
6T-55	1	0-6 6-12			612+ 750+			1.0	0.73	0.0	0.34										
6T-56	1	0-6 6-12		114.7 115.2		0.71	11 21						114.7 115.2		0.71 0.97	11 21	••				1
6T- 57	1	0-6 6-12		16.5 21.0		1.86	302 577	9.0	0.40	0.0	0.84										
6T-58	1	0-6 6-12		17.9 17.7			65 96	1.1	0.65	1.2	0.49										
6T-59	1	0-6 6-12		26.5 28.5			54 91	0.0	0.65	0.5	0.55										
6T-6 0	1	0-6 6-12		18.2 17.7			34 57	1.0	0.67	1.2	0.49										
6 T-6 1	1	0-6 6-12			428+ 750+			1.8	0.58	0.8	0.36										
6T-62	1	0-6 6-12			390 718+			1.4	0.55	1.0	0.47										

Table A4
Soil Moisture-Strength Study
Summary of Site, Soil, and Trafficability Data

		Grid						Depth		U	SDA		-		tter			Or- gani	c Spe
ite	Map	Coor-	Topog- raphy	Topu- graphic	Slope			of Layer		extur	e		Py Wt		berg Limi			Con-	ci: Gr
0.	Sheet	nates	Class	Position	4	Vegetation	Land Use	in.	Sand	SIL	Clay	Type*	Fines	LL	PL	ΡI	Туре	1/2	_ 1
							Chiang Mai	res											
241	4867IV	017901	Low	Bottomland flat	0	Short-grass prairie	Levn	0-6 6-12	35 31	49 49	16 20	L L	77 75	26 25	19 18	7 7	CL-HI	2.87 . 0.95	
242	4867IV	020902	High	Terrace flat	4	Low scrub	Undisturbed	0-6 6-12	73 69	20 24	7	SL SL	44	16 14	16 14	0	SM SM	0.78 0.55	
243	47671	997917	Low	Bottomland flat	1	Short-grass prairie	Levn	0-6 6-12	39 42	45 45	16 13	L L	72 69	24 18	16 13	8	CL-HI	1.55 . 0.62	
1	4867111	013761	High	Natural levee	0	Short-grass prairie	Lawn	0-6 6-12	39 38	42	19 18	L L	77 81	34 30	24 20	10 10	ML CL	2.75 2.08	
2	4867111	017765	High	Natural levee	1	Short-grass prairie	Lavn	0-f 6-12	22 20	50 50	28)	CL	86 86	49	29 25	20 18	ML CL	3.13 2.23	
3	476711	917791	High	Upper slope	20	Forest	Undisturbed	0-6 6-12	39 37	33 27	28 36	CL	73 70	65 56	45 33	20 23	MH	5.74 3.27	2. 2.
4	47661	896587	Low	Bottomland flat	0	Short-grass prairie	Cultivated	0-6 6-12	46 26	32 40	22 34	L CL	61 79	35 38	18 20	17 18	CL	2.08 1.65	
5	4766111	664413	Low	Terrace flat	5	Short-grass prairie	Undisturbed	0-6 6-12	67 54	22 27	11 19	SL SL	41 56	17 22	17 16	0 6	SH CL-HI	0.95	
6	4766111	654433	Low	Terrace flat	2	Short-grass prairie	Cultivated	0-6 6-12	31 32	47 50	22 18	i. L	72 79	42 30	21 17	21 13	CL	1.45 0.86	
7	4766111	657445	Low	Terrace flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	85 86	9	6	LS LS	21 17			NP NP	SM SM	0.46 0.32	
198	4867IV	165867	Low	Terrace flat	0	Woodland	Undisturbed	0-6 6-12	71 79	2 2 2 6	7 5	SL LS	43 32			NP NP	SM SM	0.70 1.04	2.
19C	48671V	162866	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	71 69	21 13	8 18	SL SL	36 37	24	13	NP 11	SM SC	0.86	
198	4867IV	161862	High	Lower slope	3	Low scrub	Cultivated	0-6 6-12	77 75	20 21	3	LS LS	32 33	<u></u>		NP NP	SM SM	0.46 0.78	
							Khon Kaen Are	•											
246	556011	667076	High	Terrace flat	1	Short-grass prairie	Cultivated	0-6 6-12	78 77	15 15	7 8	LS SL	33 37	16 14	16 14	0	SH SH	0.95 0.62	
247	556011	666077	Low	Not tomland flat	0	Short-grass prairie	Grazed	0-6 6-12	70 62	19 26	11 12	SL SL	43 48	17 14	17 14	0	SM SM	1.05 0.95	2.0
248	556011	662083	Lov	Terrace flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	76 75	17 17	7 8	SL SL	38 39	16 14	16 14	0	SM SM	0.78	
249	556011	657085	Low	Bottomland flat	1	Short-grass prairie	Cultivated (grazed)	0-6 6-12	61 61	27 23	12 16	SL SL	57 57	20 18	18 17	2	ML	0.78 0.46	
9	556011	689234	Low	Upland flat	1	Tall-grass prairie	Cultivated	0-6 6-12	75 81	20 14	5	LS LS	32 31			NP NP	SM SM	0.62	
10	110955	688230	High	Upper slope	3	Low scrub	Cultivated	0-6 6-12	68 74	24 18	8	SL SL	43 39	17	15	2 NP	SM SM	0.78 0.62	
11	556011	658190	Low	Bottomland flat	1	Short-grass prairie	Cultivated (grazed)	0-6 6-12	82 77	13 20	5 3	LS LS	33 40	13	13	NP O	SM SM	0.46	2.6
12	556011	657099	High	Natural levee	1	Short-grass prairie	Grazed	0-6 6-12	48	41	11 17	L L	71 76	27 26	22	5	ML CL-ML	0.86	
13	556011	658089	High	Metural levee	1	Short-grass prairie	Grazed	0-6 6-12	43 43	44	13 14	L L	80 80	30 25	23 19	7	ML CL-ML	1.65	
14	556011	659085	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (grazed)	0-6 6-12	26 13	46 51	28 36	CL SICL	84 93	<i>31</i> 41	19 18	18 23	CL	1.45	
56A	556011	749173	Low	Terrace slope	1	Short-grass prairie	Cultivated (1dle)	0-6 6-12	43 41	34 35	23 24	L L	67 68	26 32	14 17		CL CL	0.70 0.92	
56B	556011	748173	Low	Terrace flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	47 41	32 35	21 24	L L	66 74	26 32		11 15		0.62 0.78	
560	556011	747172	Low	Terrace slope	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	44	33	 23	L	66	29	18	11	 CL	0.86	
							Nakhon Savan Are	4											
251	5058111	215324	High	Terrace flat	1	Short-grass prairie	Lawn	0-6 6-12	25 25	44	31 35	CL CL		47 48	21 23			2.87 2.23	
15	495811	026467	Low	Bottomland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	20 11	48 41	32 48	SICL SIC		32 45	19 22	13 23		1.45 0.78	

* G = gravelly; VG = very gravelly.

(1 of 6 sheets)

				Wet-B	esson	Condi	tion	24				lity Data			Hei-	blstur	e Con	lition		No-41 4
		Depth of	Dry						Shee	rgraph	Ten	Dry						Shear	raph"*	Depth to Water
Site No.	No. of Visits	layer in.	Density lb/cu ft	MC, \$	CI	RI	RCI	c _u psi	4	ur psi	aur	Density lb/cu ft	HC. S	CI	RI	RCI	cu pai	d	pei aur	
									<u>c</u>	hiang	Mai Are	4								
D241	19	0-6 6-12	94.8 97.6	25.9 20.5	100+ 212+	0.68	150+	••					28.2 19.4	35 96	0.29	28				1
D242	18	0-6 6-12	93.4 97.8	12.8 11.7	156 177	2.60	472	3.2	0.58	0.7	0.43									
D243	18	0-6 6-12	97.9 109.8	20.4 15.0	192+ 348+	0.58	184+	3.8	0.58	0.9	0.70	98.7 113.8	19.2 15.3	90 121	0.44	53				23
\$1	14	0-6 6-12	86.2 89.3	19.4 15.6	497+ 661+	1.01	491+													
\$2	16	0-6 6-12	79.5 84.9	28.8 26.2	191 265+	1.02	247	3.1	0.68	0.2	0.63									
\$3	10	0-6 6-12	67.8 63.5	42.3 33.7	60 106	1.26	141	2.6	0.68	0.7	0.70									
S4	14	0-6 6-12	89.8 98.0	29.0 25.2	68 126	0.86	109	3.3	0.19	1.6	0.19		29.6 25.1	5Í 102	0.69	70				0
S 5	15	0-6 6-12	91.1 89.3	11.8 11.5	297+ 369+	1.64	421+	1.5	0.78	1.2	0.75									
S6	19	0-6 6-12	91.7 104.6	28.9 21.2	78 137+	0.78	103+						34.5 23.6	60 129	0.35	45				0
S 7	8	0-6 6-12	88.3 86.6	28.6 28.8	173 279	0.99	276					==	29.3 29.9	136 224	0.77	172				0
5198	8	0-6 6-12	93.2 95.4	17.2 14.3	263 297															
\$19C	9	0-6 6-12	96.0 101.6	21.9 17.5	170 167	0.37	62					==	21.6 20.1	169 147	0.17	25				1
819E	9	0-6 6-12	90.2 94.0	11.2 10.2	142 239	2.14	474		-											
									1	Chon K	en Are	•								
D246	7	0-6 6-12	96.4 100.1	12.1 11.7	181+ 230+	2.15	442+	0.6	0.76	0.3	0.60									
0247	6	0-6 6-12	101.1 105.2	17.3 16.5	151 200+	0.55	117+					=	16.2 17.1	92 1534	0.35	54+				1
0248	1	0-6 6-12	99.7 104.6	18.9 15.6	184+ 344+		332+	0.8	0.68	0.8	0.47		19.1 15.1		0.29	118+				0
249	7	0-6 6-12	95.8 97.4	17.5 15.1	211+ 504+	1.09	547+	0.6	0.81	0.9	0.32		18.8 16.6	185 388+	0.80	310+				18
59	6	0-6 6-12	97.5 99.1	12.4 12.2	87 160+	1.59	242+	0.8	0.58	0.4	0.60									
10	-4	0-6 6-12	89.5 93.2	13.9 13.4		1.87	193	1.1	0.54	0.6	0.47									
11	4	0-6 6-12	102.6 103.5	16.2 16.1	180 240	0.78	190	0.7	0.49	0.6	0.47		17.0 16.8	187 246	0.42	103	0.7	0.49	0.6 0.47	4
12	6	0-6 6-12	96.8 97.2	19.3 20.4	182 178	0.62	102	2.2	0.44	0.2	0.50									
13	7	0-6 6-12	91.1 92.4	19.5 20.1	191+ 157	0.69	115	2.2	0.64	0.5	0.54				•					
14	6	0-6 6-12	92.8 91.0	22.3 26.2	215+ 206+	0.98	209+	0.0	1.15	0.0	0.58		27.2 28.1	68 115	0.76	87	0.0	1.15	0.0 0.58	3
56A	4	0-6 6-12	91.9 95.4	19.7 20.0	118 214+	0.90	197+					95.4 97.6	19.7 20.4	94 172	0.78	134				6
56B	3	0- 6 6-12	98.0 99.3	21.3	86 117	0.78	91						21.6 22.0	82 101	0.76	 77				0
56D	3	0-6 6-12	99.5 93.0	17.4 21.1	131 123	0.74	91					98.2 92.3	17.3 20.7	142 116	0.73	85				20
									Ma	khon S	aven A	L94								
251	8	0-6 6-12	81.2 89.3	21.8 21.7	232+ 362+		366+	2.2	0.52	3.0	0.55									
15	9	0-6 6-12	74.9 63.0	26.2 25.2	112+ 22 9+		246+	3.7	0.43	1.5	0.65		25.9 25.4	66 122	0.88	107				0
									(Conti	nued)									

^{**} cu, ultimate soil-to-soil cohesion; fu, ultimate soil-to-soil angle of internal friction; aur, ultimate soil-to-rubber adhesion;

α_{ur}, ultimate soil-to-rubber angle of friction.

† Plus (+) denotes depth of water above surface.

				Section A. S	ite i	Jata					3	ect10	В.	Soll		_			
	Locat	Grid	m.	g				Depth			BDA		Les 11		tter-				Spe-
Site No.	Map Sheet	di- nates	Topog- raphy Class	Topo- graphic Position	Slope	Vegetation	Land Use	of Layer in.	b	extur y Wt, Silt		Туре	Fine		berg Limits PL	<u> </u>	Туре	tent	cific Grav- ity
TS16	505811	1 171364	Lew	Bottomland depression	1	Low scrub	Cultivated	0-6 6-12	10 5	34 33	56 62	c c	96 98	64 81		2		2.35	2.70
T\$17	50571V	206249	Low	Bottomland flat	1	Short-grass prairie	Cultivated	0-6 6-12	44	34 33	22 26	L L	67 68	40 43				2.87 2.35	2.67
TS18	50571V	207239	Low	Bottomland flat	0	Short-grass prairie	Cultivated	0-6 6-12	62 59	29 27	9 14	SL SL	54 53	20 19	16 14		CL-ML		
TS19	5057111	252102	Low	Bottomland flat	0	Short-grass prairie	Cultivated	0-6 6-12	59 49	28 33	13 18	SL L	47 57	19 24	11	8 2		0.95 0.70	2.64
T\$ 20	5057111	1 127103	High	Terrace flat	3	Short-grass prairie	Cultivated (idle)	0-6 6-12	17 16	43 41	40 43	S1C S1C	86 89	67 68		16		3.54 2.75	2.69
							Lop Buri Are	•		•									
PD252	515511	937287	Low	Bottomland flat	0	Low scrub	Cultivated	0-6 6-12	12 11	50 47	38 42	SICL SIC	95 93	78 88				3.27 3.00	2.69
PD253	515511	943282	High	Terrace flat	1	Short-grass prairie	Lavn	0-6 6-12	12 10	49 46	39 44	SiCL SiC	93 96	69 72				3.27 2.75	2.66
PD254	515511	951285	High	Lower slope	6	Low scrub sevenne	Cultivated	0-6 6-12	12 14	39 51	49 35	C S1CL	88 93	53 63				2.87 2.08	2.69
PU255	5254IV	213155	Low	Bottomland flat	1	Short-grass prairie	Grazed	0-6 6-12	28 30	47 46	25 24	L L	83 84	36 36	18 1 24 1			1.65	2.63
PD256	5254IV	220162	Low	Terrace flat	1	Short-grass prairie	Grazed	0-6 6-12	28 27	38 37	34 36	CL CL	83 84	58 62	25 26			2.23 1.77	2.71
TS21	5155IV	771468	Low	Bottomland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	30 30	36 33	34 37	CL CL	78 79	53 55	18 3 18 3			1.25 1.05	2.70
TS22	51551V	79447 9	Low	Bottomland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	36 34	33 34	31 32	CL CL	74 78	49	20 2 17 3			1.05	==
TS23	51551V	808487	Low	Bottomland flat	1	Low scrub	Cultivated (idle)	0-6 6-12	31 27	41 39	28 34	CL	79 83	42 51	19 2 18 3			1.55	2.68
TS24	51551V	834489	Low	Lower	3	Savanna	Undisturbed	0-6 6-12	43 42	32 28	25 31	L CL	70 70	37 41	21 1 23 1			2.60 1.65	2.82
T\$ 25	51541	071039	Low	Terrace flat	0	Short-grass prairie	Cultivated	0-6 6-12	9 12	84 78	7 10	Si SiL	96 94	17 16				0.85	2.60
TS25A	515411	084012	Low	Terrace flat	0	Savanna	Cultivated (idle)	0-6 6-12	30 29	58 51	12 20	SiL	78 80	27 21				1.05	=
TS25B	515411	064013	Low	Terrace flat	0	Tell scrub	Grazed	0-6 6-12	42 43	42	16 16	L L	66 44	29 23				1.05 0.62	Ξ
TS 26	51531	912764	Low	Bottomland flat	0	Short-grass prairie	Cultivated	0-6 6-12	16 13	49	35 38	SICL SICL	80 97	75 74	38 3 31 4			5.20 2.08	
							Bangkok Area												
PD244	5152111	740113	Low	Bottomland depression	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	6	41 37	53 57	S1C C	99 99	72 67	27 4 23 4			1.98	2.68
PD245	5152IV	711319	Low	Bottomland flat	1	Short-grass prairie	Cultivated	0-6 6-12	11 11	41 41	48 48	SIC SIC	98 98	67 66	29 3 27 3			3.00 1.65	2.68
TSS	505211	592229	Low	Bottomland flat	0	Short-grass prairie	Cultivated	0-6 6-12	13 12	43 41	44 47	\$1C \$1C	94 94	66	29 3 29 3			2.08 1.45	2.71
							Pran Buri Ares	Ž.											
PD257	4948I	040904	High	Terrace flat	1	Short-grass prairie	Lavn	0-6 6-12	72 75	23 19	6	SL SL	37 33		N			0.70 0.55	
TS29	494811	062776	Low	Bottomland flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	68 54	21 17	11 29	SCL SCL	45	18 28	13 11 1		M-SC SC	0.78 0.55	2.63
TS 30	494811	053772	High	Terrace slope	3	Tall scrub savanna	Cultivated	0-6 6-12	64 62	24 24	12 12	SL SL	51 48	18 17			ML M-8C	1.05	2.67
TS31	494811	951732	High	Terrace flat	0	Tall scrub woodland	Undisturbed	0-6 6-12	38	45	11 16	L	70 73	21 20		7 C	L-HIL (0.78	
TS32	4948II	944730	High	Terrace flat	1	Tall-grass prairie	Undisturbed	0-6 6-12	48	40	12 14	L	66	18 17			L-HL (
T\$33	4948II	925730	High	Terrace flat	0	Low scrub	Undisturbed	0-6 6-12	27 30	55 46	18 24	Síl L	85 86	28 23			CL .	1.65	=
TS 34	494811	967679	High	Terrace flat	1	Short-grass prairie	Cultivated (idle)	0-6 6-12	39 34	43 39	18 27	L	76 80	26 27	15 14 1			1.65	2.65

				Wet.	Seas	ori Cond	lition	Sec	tion C	. Tr	ar read	lity Data		Н	lgh-M	isture	Condi	tion			
		Depth	Dry							rgrap	n	Dry						Shear		Ф	Depth to Water
No.	No. of Visits	layer in.	Density 16/cu ft	MC, 1	<u>c1</u>	RT	RCI	cu psi	Tun Ø _u	ur psi	Tan Gur	Density lb/cu ft	MC, %	<u>c1</u>	RI	HCI	c _u psi	Ø _u	ur psi	Tan (tur	Tuble in.
TS 16	6	· 6-12	84.7 82.1	32.8 37.4	89 121	1.15	126	0.7	0.70	1.3	0.43		37.5 37.3	52 96	1.05	101					22
TS17	8	0-6 6-12	94.9 97.5	21.3 22.0		+ + 1.10	242+	3.5	0.45	1.3	0.51										
TS18	8	0-6 6-12	91.1 86.2	13.5 7.2	453· 746·			2.2	0.43	1.4	0.40		16.0 7.1	378+ 722+							0
TS19	4	0-6 6-12	112.1 109.9			0.63	79	3.0	0.43	2.0	0.45		15.0 19.2	62 105	0.53	56					0
T\$20	8	0-6 6-12	76.8 74.3	28.6 28.7		1.20	285+	3.7	0.49	1.9	0.38										
									1	Lop By	ri Area										
PD252	13	0-6 6-12	63.1 66.8	38.6 38.2		1.12	228	2.7	0.28	0.9	0.65	==	39.0 41.9	117 154	1.06	163					48
PD253	13	0-6 6-12	72.1 76.7	35.4 33.5		1.12	263+	5.4	0.28	0.6	0.30										
PD254	13	0-6 6-12	77.0 88.6	30.6 31.5	97 2524	1.18	27 9+	3.0	0.32	1.6	0.34										
PD255	14	0~6 6-12	87.5 95.1	26.5 24.0		0.94	117	3.8	0.97	0.8	0.70	==	29.1 27.2	70 88	0.92	81					3
PD256	14	0-6 6-12	87.7 90.8	28.1 26.3		1.07	180	2.6	0.84	0.9	0.68	=	30.5 27.3	96 108	1.01	109					24
TS21	9	0-6 6-12	95.0 97.1	25.1 24.2		1.08	115	2.6	0.58	0.6	0.50	==	27.9 26.6	55 61	1.22	74					29
T822	7	0-6 6-12	95.0 94.9	27.0 25.0	66 121+	0.92	106+	4.3	0.47	2.1	0.45		28.4 25.8	65 91	0.68	62					20
TS23	10	0-6 6-1:	90.8 90.9	28.8 25.3	74 2254	1.07	245+	3.1	0.32	0.7	0.48		38.5 25.4	51 187+	0.59	110+	1.8	0.02	0.1 0	.18	9
TS 24	9	0-6 6-12	87.7 85.9	26.0 26.0			278+	1.8	0.54	1.0	0.49		26.6 27.6	111 159	0.99	157	0.7	0.36	1.3 0	.40	0
T\$25	10	0-6 6-12	82.4 104.3	16.3 12.2									17.7 13.0	614+ 750+							0
TS25A	5	0-6 6-12	91.8 98.0	24.6 20.5			137+														
TS258	5	0-6 6-12	98.6 96.5	22.5 21.5		0.54	141+					=	23.5 21.7	119 152	 0.54	82					0
TS 26	11	0-6 6-12	64.1 78.7	51.8 39.7		0.84	125						58.4 44.8	116 139	0.50	70					2
										Bangk	ok Area										
PD244	15	0-6 6-12	76.0 86.4	39.5 35.0	47 72	0.97	70						41.7 37.4	32 57		46					0
PD245	12	0-6 6-12	78.8 82.6	34.8 34.2		0.99	105					=	38.2 35.1	55 61		46					0
TS8	17	0-6 6-12	74.6 72.7	44.3 49.1		0.93	59	3.5	0.18	1.4	0.19		52.2 56.8	47 55		35					0
									<u> 2</u>	ran B	uri Area	Ľ									
PD257	3					1.57		2.5	0.54	0.0	0.63										
T\$29	11		109.5 112.7	14.6 16.5		0.86		2.8	0.45	0.1	0.40	113.8 113.6				129					0
TS 30	4		101.0 112.0	15.4 13.6	72 144+	1.18	188+														
TS 31	5	0-6 6-12	95.6 99.0	17.2 16.8	77 70+	0.72	55+	3.0	0.73	0.7	0.56										
TS32	6	0-6 6-12	97.4 101.2			0.92		3.2	0.44	1.8	0.60										
T533	5	0-6 6-12				0.76		4.4	0.46	1.7	0.54										
TS 34	4	0-6 6-12	95.5 97.8	18.8 17.7	66	1.18	95	2.4	0,63	1.4	0.63										

Table A4 (Continued)

				section A.	ite L	ata			-	- 1	ection	В.	soil						
	Locat	ion Grid						Depth		Die	CT) A			1 13	USC:			Or-	Spe-
		Coor-	Topog-	Topo-				of	1	ex tur	SDA e		By W		berg				cific
Site	Map	di-	raphy	graphic	Slope			Layer		y Wt,			%	_	Limi				Grav-
No.	Sheet	nates	Class	Fosition	96	Vegetation	Land Use	in.	Sand	Silt	Clay	Туре	Fine	B LL	PL	PI	Туре	%	ity
							Chanthaburi Are	£											
PD258	5448IV	857957	High	Upper slope	2	Short-grass prairie	Gultivated (idle)	0-6 6-12	25 23	36 36	39 41	C C L	82 83	50 50	29 28	21 22	МН СН	3.27 1.58	2.67
PD259	5448IV	805932	High	Upper slope	2	Short-grass prairie	Cultivated	0-6 6-12	28 24	47 47	25 29	L CL	90 90	53 56	40 42	13 14	MOH MOH	3.00 2.75	2.88
TS35	514911	059028	High	Terrace flat	0	Forest	Cultivated	0-6 6-12	51 61	40 25	9 14	L SL	48 51	16 15	14 11	2 4	SM CL-ML	0.71	
T\$ 36	514911	060009	High	Terrace slope	4	Tall scrub woodland	Cultivated	0-6 6-12	47 41	35 37	18 22	L L	63 67	25 27	15 16	10 11	CL	1.55 0.78	2.69
T\$37	5249111	319085	High	Lower slope	2	Short-grass prairie	Lawn	0-6 6-12	63 61	11	26 30	SCL SCL	41 44	25 28	13 14	12 14	SC SC	1.45	2.61
TS 38	5249111	385046	Low	Bottomland flat	2	Short-grass prairie	Cultivated (grazed)	0-6 6-12	16 19	43 46	41 35	S1C S1CL	93 89	107 96	75 68	32 28	MH	2.60 12.35	2.29 2.40
TS39	524911	484093	Low	Bottomland flat	1	Short-grass prairie	Cultivated	0-6 6-12	76 68	20 19	13	LS SL	35 43	13	13	NP O	SM	0.86	2.62
T\$40	5448 IV	881961	Low	Eottomland flat	0	Short-grass prairie	Lawn	0-6 6-12	7 8	52 51	41 41	SIC SIC	92 92	71 66	46 38	25 28	HOH HOH	4.15 3.62	2.57
T541	5448IV	929843	Low	Terrace flat	2	Woodland	Cultivated	0-6 6-12	71 66	9 11	20 23	SL SCL	34 39	29 25	20 14	9 11	SC SC	1.77 1.25	2.60
T842	5448IV	934846	High	Lower slope	3	Tall scrub savanna	Cultivated	0-6 6-12	58 57	16 14	26 29	SCL SCL	43 43	43 42	25 23	18 19	SC SC	3.41 2.87	2.61
							Hat Yal Area												
PD260	5132111	657756	High	Terrace flat	1	Wood land	Cultivated	0-6 6-12	61 65	31 22	8 13	SL SL	51 51	22 19	18 15	4	CL→IL CL→IL	1.45	2.64
T\$43	5032111	354874	Low	Matural levee	1	Low scrub	Cultivated	0-6 6-12	56 52	28 30	16 18	SL SL	58 59	33 31	22 20	11 11	CL CL	2.23 1.15	
T844	303211	430760	High	Lower slope	5	Forest	Undisturbed	0-6 6-12	53 50	38 34	9 16	SL GL	55 28	21 26	18 17	3	ML GC	1.77 0.78	2.96
T845	5132111	667752	High	Lower slope	8	Woodland	Cultivated	0 -6 6-12	58 53	25 26	17 21	SL SCL	49 46	27 29	18 18	9 11	SC SC	1.98	
T\$46	5132111	659761	Low	Bottomland flat	. 1	Short-grass prairie	Cultivated (grazed)	0-6 6-12	38 43	48 43	14 14	L L	74 70	34 21	24 16	10 5	ML CL-HL	2.35 0.95	2.63
T847	5132111	702814	High	Lower slope	2	Forest	Cultivated	0-6 6-12	35 32	38 32	27 35	CL CL	75 62	58 58	32 33	26 25	MH	3.96 1.15	2.87
T848	5132111	706814	Low	Bottomland flat	0	Short-grass prairie	Cultivated	0-6 6-12	32 29	54 47	14 24	\$1L L	79 80	23 26	15 14	8 12	CL CL	1.33 0.70	2.67
T849	5132111	785925	Low	Terrace flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	25 19	47 40	28 41	CL C	82 88	103 70	68 35	35 35	MH	14.35 4.90	
T\$50	132IV	770946	Low	Terrace flat	0	Low scrub	Undisturbed	0-6 6-12	95 93	4	3	\$ \$	7 10			MP MP	SP-SM SP-SM	2.75 3.54	2.57

Table A4 (Concluded)

				Wet.	Seaso	n Con	lition	Sec	tion (. Tr	afficab	ility Data			High-	oisture	Condi	tion			
		Depth		0		0011	٧٥٠		Shea	rgrap	h						50,141	Shear	grant.		Depth to
Site No.	No. of Visits	of Layer in.	Dry Density 1b/cu ft	MC, 1	<u>c1</u>	RI	RCI	c _u psi	Tan		Tan	Dry Density 1b/cu ft	MC, %	CI	RI	RC1	c _u psi	Tan	aur psi	Tan Jur	Water Tuble in.
											burl &										
PD258	13	0-6 6-12	86.4 84.2		160 206	1.06	220														
PD259	12	0-6 6-12	62.2 63.4	43.4 43.5		1.34	181	3.7	0.70	0.0	0.65										
T\$35		0-6 6-12	106.8 110.4	12.7 12.4		0.69	78	2.1	0.65	0.2	0.58										
TS 36	8	0-6 6-12	102.7 101.6	16.2 15.2		 0.88	166+	3.9	0.65	0.5	0.60										
T837		0-6 6-12	102.8 101.8	12.4 13.7		1.23	460+	4.2	0.23	1.5	0.36										
TS 38	8	0-6 6-12	46.9 45.3	89.8 114.2		0.48	56						93.7 105.4	118 113	0.30	34					0
T8 39	6	0-6 6-12	102.6 116.6	18.6 13.7		0.65	193+						21.7 15.0	85 183	0.48	88+					
T\$40	10	0-6 6-12	67.9 67.5	50.0 50.9		0.74	94					68.6 66.2	49.9 53.6	94 108	0.54	58					10
T\$41	10	0-6 6-12	92.2 98.8		98 160+	0.94	153+		-				24.9 23.3	73 111	0.52	58					16
T\$42	10	0-6 6-12	69.3 71.8	22.0 21.7		1.02	204+														
										Hat Y	al Area										
PD260	4	0-6 6-12	93.1 98.7	15.4 14.5		1.44	250	1.1	0.54	0.4	0.56										
TS43	6	0 -6 6-12	93.0 98.4	20.1		0.88	106	2.3	0.47	1.6	0.32	89.0 95.8	1								
TS44	7	0-6 6-12	98.8 104.8		617+	0.45	253+	2.4	0.58	0.6	0.58										
T845	4	0-6 6-12	97.2 98.6	16.4 15.2		1.32	586+	2.0	0.59	0.3	ე.64										
TS46	16		89.3 112.6		177+	0.86	149+				=	80.3 115.4	41.4 17.7		0.46	64+					0
TS 4.7	10	0-6 6-12	81.9 87.8		230+	1.22	291+	2.5	Q.67	1.5	0.50										
TS48	14		109.1 114.8		292+	0.71	.81+	3.2	0.38	3.1	0.60	10. \ 112	20.9 16.6	110 134	0.53	71					0
T549	13	0-6 6-12	48.2 74.5	82.6 51.3	116	0.82	96	3.4	0. 38	0.0	0.49		73.5 46.0	88 87	0.67	58					16
rs 50	7	0-6 6-12	82.8 83.2	18.5 22.4		1.87	264	2.4	0.47	0.4	0.53	79.2 80.9	16.8 26.2	78 125	1.61	201					22

Table A5

CRREL Airphoto Pattern Study

Summary of Site, Soil, and Trafficability Data

Site No.	Map Short	Grid Coor- di- nates	Topog-	(II)											USCS			Or-	
	Sheet	4.1 -						Depth		l'extu	SDA		Dec Life		tter	-			: Spe-
		nauca	Class	graphic : Fosition	Slope %	Vegetation	Land Use	of Layer	- t	y Wt		Throng	By Wt	I	berg imit		There	tent	Grav
			CIANS	TOBICION	Jo.		p Buri Area	in.	Sano	211	CINY	Тури: -	Fines	1111	<u>PL</u>	PI	Туре	%	1 ty
1	51541	946123	Low	Bottomland flat			Cultivated	0-6 6-12	9	65 66	26 25	SIL	94 93	44 57	21 22	23 35	CL CR	0.92	2.68
2	5153IV	820785	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	5 7	67	28 26	SiCL	97 95	57	29 25	28	СН	2.41	2.65
4	515511	992256	High	Upland flat			Cultivated	0-6 6-12	48 48	39 39	13	L	60	48	25 25	23	CL	3.41	2.69
5	515511	923265	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	21 18	69 71	10 11	SIL	88 87	90 70	40	50	MH CH	2.67	
6	5154IV	868128	Low	Matural levee			Cultivated	0-6 6-12	10 11	66 64	24 25	SIL	95 93	62 59	22 28	40 31	CH	1.55	2.63
7	515511	960348	Low	Bottomland flat			Cultivated	0-6 6-12	21 11	69 81	10	S1L S1	88 94	79 84	37 30	42 54	MH	2.35	2.74
.1	5155211	618387	Low	Natural levee			Cultivated	0-6 6-12	16 17	63 63	27 20	SIL	94 89	51 46	29 24	22 22	MH CL	1.67	2.69
4	515411	139879	Low	Bottomland flat			Cultivated	0-6 6-12	6	81 79	13 18	SIL	96 98	28 28	23 21	5	ML C'ML	1.33	2.60
7	51541	023087	Low	Natural levee			Cultivated	0-6 6-12	23 25	67 62	10 13	SIL	83 81	38 47	28 20	10 27	ML	1.15	2.71 2.70
9	51541	045089	Low	Terrace flat			Cultivated	0-6 6-12	14 13	66 65	20 22	SiL SiL	90 92	52 54	25 24	27 30	CH	1.00	2.67
0	51541	048093	Low	Natural levee			Cultivated	0-6 6-12	20 7	67 65	13 28	SIL	85 94	35 57	22 22	13 35	CH CH	1.10	2.72
1	51541	021130	Low	Bottomland flat		-	Cultivated	0-6 6-12	10 44	80 50	10 6	SiL	94 59	40 32	16 22	24 10	CL CL	1.15	2.60
3	51541	053164	High	Lower slope			Cultivaced	0-6 6-12	19 17	70 66	11 17	SIL	87 88	45 51	16 21	29 30	CH	1.15 0.59	
7	5154111	623946	Low	Matural levee			Cultivated	0-6 6-12	14 13	68 71	18 16	SIL	91 92	48 39	25 24	23 15	CL CL	1.10	
8	5154111	657860	Low	Bottomland flat			Undisturbed	0-6 6-12	13	66 62	25 25	SiL SiL	95 92	58 53	26 27	1;' 26	CH	2.94 1.45	2.70
0	51531	891751	Low	Bottomland flat			Cultivated	0-6 6-12	35 25	44 50	21 25	SIL	70 79	63 69	24 35	39 34	CH	3.82 2.16	2.60
1	51531	948786	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	16 17	62 56	22 27	SIL	87	68 62	31 27	37 35	CH	1.65	2.69
3	51531	963793	Low	Bottomland flat			Cultivated	6-12	18 22	54 47	26 31	S1CL CL	87 83	73 79	39	29 40	161 161	4.70	
7	515411	040917	Low	Terrace flat			Cultivated	0-6 6-12	38 41	57 43	5 16	S1L L	74 70	17 25	16 15	10	CL	0.70 0.63	
	515411		Low	Lower slope	-		Cultivated	0-6 6-12	33 29	66 70	1	SIL SIL	79 81	19	19	0	ML ML	0.63	2.60
	515411		Low	Bottomland flat				0-6 6-12	18 33	55 52	27 15	S1L S1L	87 78	40 20	24 17	16	ML	1.20	2.64
	515411		Low	Matural levee			Cultivated	0-6 6-12	14 15	55 50	31 35	SICL SICL	90 89	63	27 40	29 23	MIH	1.98	2.61
	515411		Low	Natural levee			Cultivated	0-6 6-12	10 6	67 60	23 34	SIL	94 96	61	25 35	19 26	MH C.7	0.87	2.66
	515411		High					0-6 6-12	75	29 24	1	SL LS	39 32			HP HP	SM	0.67	2.65
	515411		Low	Bottomland flat	-		Cultivated	0-6 6-12	15 20	72	8	SIL SIL	90 85	19	16	1	ML ML	0.70	2.60
		123124	Low	Terrace flat	_	-	Cultivated	0-6 6-12	59 58	35	7	SL SL	58 58	27	26	MP	MI.	1.10	2.65
		116087	Low	Matural levee			Cultivated	0-6 6-12	18	58	32	SIL SICL	86	39 54	21	32	CH	_	2.76
		011092	Lov	Matural levee	-		Cultivated	0-6 6-12	18 5	61	32 34	S1CL S1CL	86 96	39 49	23	18 26	CL CL		2.69
60	51541	972100	Lov	Terrace flat			Cultivated	0-6 6-12	21 23	67 77	0	SIL	83	40	21 18	22	CL-HL	=	2.62

* G = gravelly; VG = very gravelly.

(1 of 8 sheets)

				Wet-S	eason	Condí	tion	Sec	tion (. Tre	virient.	lity Data			High-N	oisture	Cond	ition			
		Depth of	Dry							ntier,	Tan	Dry					-	Shear		Tan	Depth to Water
Site No.	No. of Visits	Layer in.		MC, %	CI	RI	RCI	c _u	Tan Ø	[®] ur psi	aur	Density lb/cu ft	MC. %	cı	RI	RCI	cu psi	ø _u	ur psi	aw	Table†
										Lop Eu	ri Ares										
1	1	0-6 6-12	==	26.2 33.6	92 112																
2	1 1	0-6 6-12		21.8 28.0	112 127																
4	1	0-6 6-12																			
5	1	0-6 6-12		38.2 33.7	82 82	=															
6	1	0-6 6-12		34.0 30.6	45 98																
7	1	0-6 6-12		40.8	120 144																
11	1	0-6 6-12		18.6	137+ 221+																
14	1	0-6 6-12		27.0 26.5		==															
17	1	0-6 6-12		21.4 24.6	112 66	=															
19	1	0-6 6-12	==	29.6 24.5	42 102	0.93	95														
20	1	0-6 6-12	==	28.6 28.1	37 101	0.43	43														
21)	0-6 6-12		25.9 29.2	32 224+	0.19	43+														
23	1	0-6 6-12		32.2 27.8	66 71	0.73	52														
27	1	0-6 6-12		27.3 25.4	189+ 300+		=														
28	1	0-6 6-12		26.5 20.2																	
30	1	0-6 6-12		49.0 35.5	45 116	0.49	57														
31	1	0-6 6-12		3 .3 34.6	82 91	0.83	76														
33	1	0-6 6-12		44.9	85 150	0.99	149														
37	1	0-6 6-12		18.6 21.2	96	1.00	96														
39	1	0-6 6-12		16.8 15.6	359+																
41	1	0-6 6-12		20.5 21.0	142 185+	0.63	117+								88 136	0.63	86				
44	1	0-6 6-12	Ξ	25.8 37.2		==															
46	1	0-6 6-1?		21.0 31.9	85 85	1.02	87														
47	1	0-6 6-12		18.8 13.8	547+ 750+	=															
48	1	0-6 6-12		18.8 13.8	487+ 750+																
49	1	0 ·6 6-12		22.0 20.6	103+ 194+	0.46	89+								82 135+	0.46	62+				+3.0
50	1	0 - 6 6-12		24.3 25.1	104 59	1.08	64								61 49	1.08	53				+2.0
54	1	0-6 6-12		24.5 27.0	93 105	0.99	104								78 89	0.99	88				+2.5
56	1	0-6 6-12		21.4 22.0	114	1.00	148														

⁽Continued)

** c_u , ultimate soil-to-soil cohesion; β_u , ultimate soil-to-soil angle of internal friction; a_{ur} , ultimate soil-to-rubber adhesion; α_{ur} , ultimate soil-to-rubber angle of friction.

† Flus (+) denotes depth of water above surface.

				Section A. :	_ Da	ta						Section	E.	Sol					
	Ivea	Gr! i						Depth			JEDA		_		US(01 gar	nic Spe-
Site	May Secot	Coor- di- nates	Topog- raphy Class	Topo- graphic Position	lope	Vern*ation	Land Use	of Layer in.		Textu by Wt d Sil		<u>Туре</u>	Fir.	_	bei Lim	its	<u> </u>	ter	n- cific nt Grav- ity
59	5154IV	881164	Low	Upland depression			Cultivated	0-6 6-12	11	68 69	21 22	SIL SIL	9:						2.79 2.78
0	51541V	881164	High	Upland flat			Cultivated	0-6 6-12	22 17	73 73	5 10	S1L S1L	84						2.69
2	51541	903210	High	Upland flat			Cultivated	0-6 6-12	15 17	~6 76	9	SiL	87						2.67
3	515511	856240	Low	Bottomland flat		14.	Cultivated	0-6 6-12	11 16	78 74	11 10	S 11. S 11.	94 91						2.66
4	515511	895262	Low	Bottomland flat			Cultivated	0-6 6-12	14 21	86 67	0 12	Si Sil	90 86		28 26		CH		2.79 2.82
5	5155111	791363	Low	Bottomland flat				0-6 6-12	22 18	63 69	15 13	Sil. Sil	85 87				CH CH	1.2	5 2.76 2.70
	515511	028252	High	Terrace fla	t		Cultivated	0-6 6-12	37 40	50 49	13 11	SiL L	73 67	39 40	21 21		CL		2.74 2.72
	515511	961276	High	Terrace slope				0-6 6-12	29 45	51	20 15	SiL	/9 63	60 59	27 25		CH		2.62 2.71
	515511	945303	lov	Bottomland flat		**	Cultivated	0-6 6-12	17 14	76 80	7	SiL Si	90 91	52 52	24 24		CH		2.67 2.69
	5153111	765348	Low	Bottomland flat			Grazed	0-6 6-12	17 15	69 72	14 13	S1L S1L	90 92	72 74	52 33		CH CH		2.70 2.66
	5155111	773402	High	Terrace flat				0-6 6-12	25 29	72 69	3 2	SIL	72 58	40 38	18		"L		2.68
,	5455111	837334	High	Lower slope			Cultivated (idle)	0-6 6-12	33 34	56 56	11 10	SiL SiL	77 76	58 57	24 28	34 29	CH		2.68
	5155111	819380	Low	Bottomland flat			Cultivated (grazed)	0-6 6-12	33 34	60 61	7	SiL SiL	75 75	43 44	19 20	24 24	CL CL		2.66 2.67
	5155111	773389	Low	Bottomland flat	-		Cultivated	0-6 6-12	19 16	76 76	5	S1L S1L	86 88	38 46	16 16	22 30	CL CL		2.66
	5155IV	737409	Low	Bottomland flat				0-6 6-12	20 27	64 56	16 17	S1L S1L	86 78	78 63	27 23	51 40	CH		2.54 2.58
	51551V	764440	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	25 22	63 67	12 11	SiL SiL	82 83	44 48	16 17	28 31	CL		2.59 2.61
	5155IV	838501	High	Lower slope				0-6 6-12	72 58	27 38	1 4	LS SL	36 51	22 27	16 15	6 12	SM-SC CL	:	2.71 2.68
	5155IV	788475	Low	Bottomland flat				0-6 6-12	28 24	63 68	9	SIL	80 85	46 51	22 20	24 31	CH		2.67 2.69
	5155IV	782570	High	Lower slope			Undisturbed	0-6 6-12	60 70	31 22	9	SL GSL	42 27		22 22	10	SC SC		3.12 3.39
	5155IV	773558	Low	Bottomland flat				0-6 6-12	57 54	40 39	3 7	SL	50 53	29 33	16 16	13 17	SC CL		2.69 2.67
	5154111	732893	Low	Natural levee			Cultivated	0-6 6-12	5	66 67	29 28	SICL	97 97		26 25	32 30	CH		2.59 2.60
	5154111	717860	Low	Matural levee			Cultivated	0-6 6-12	9	66 69	25 2 s	SiL Sil		55 54		30 29	CH		2.59
	51541	908135	Low	Bottomland flat			Cultivated	0-6 6-12	19 22	54 60	.7 13	Sil. Sil	87 37	76 77		33 44	CH		2.66 2.59
	515411	025884		Terrace flat		==	Cultivated	0-6 6-12	14 15	63 60	23 25	SiL Sil	91 89	39 45		18 25	CL CL		2.62 2.60
	515411	038907	Low	Terrace flat			Cultivated	0-6 6-12	26 30	64 57	10 13	SiL SiL	83 81		10 16	9 10	CL CL		2.59 2.60
	51541	107078	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	18 25	67 65	15	SiL Sil	88 82		20 20	16 20	CL		2.55 2.60
	51541	080120	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	23 29	68 60	9 11	S1L S1L	85 81	33 39		13 19	CL CL		2.62 2.72
							Chanthaburi Are	•											
	5448IV	986980	Low	Bottomland flat				0-6 6-12	82 63	13 28	5	LS SL	23 41	26		NP 10	SH SC	2.16 0.91	
	5448IV	987982	High	Upper ridge			Miscellaneous	0-6 6-12	51 43	27 28	22 29	GSCL VGCL	29 29			10 17	SM SM	1.66	
	5448IV	885997		Bottomland flat				0-6 6-12	78 78	20 17	2 5	LS LS	28 27		 	NP NP	SH:	1.33	

(3 of 8 sheets)

				Wet	Seaso	n Cond	Ition	Sec	tion C.	Traffice	bility Data			igh-M	dsture	Condi	tion		
214-	No. of	Depth	Dry					c _u	Shearg Tan	a Tar						^C u	Shear	aur Tan	Depth to Water Table
No.	No. of Visits	in.	Density lb/cu ft	MC, 9	6 <u>c1</u>	RI	RCI	psi	d	psi aur		MC, %	CI	RI	RC1	ps1	ø	psi aur	in.
59	1	0-6 6-12		42.9 47.2	51 50	1.28	64												
60	1	0-6 6-12		30.5 27.5	93 110	1.16	128												
62	1	0-6 6-12		35.8 29.3	56 1314	1.20	 157+												
63	1	0-6 612		44.8	27 49	1.33	65						19 42	1.33	56				+3.0
64	1	0-6 ⁻ 6-12		34.2 30.7	59 107	1.39	149						59 96	1.39	133				+3.0
65	1	0-6 6-12	==	31.6 27.5	54 79	1.06	84												
66	1	0-6 6-12		26.6 27.8	58 174+		225+												
67	1	0-6 6-12		30.5 26.9	744	1.01	161+												
68	I	0-6 6-12		28.3 24.6	90	0.86	118												
70	1	0-6 6-12		33.2 36.3	101 129	0.98	126												
71	1	,-6 6-12		20.6 17.2	84 125	0.71	89												
72	1	0-6 6-12		38.6	94	1.00	109												
73	1	0-6 6-12	-	23.0	107	0.80	74												
74	1	0-6 6-12		23.8	56 69	0.93	64												
75	1	0-6 6-12		37.0 31.1	91	1.09	125												
77	1	0-6 6-12		25.0 26.8	88	1.50	126												
79	1	0-6 6-12		18.0 12.1	217+ 300+		==												
81	1	0-6 6-12		28.8 26.4	=		==												
83	1	0-6 6-12	=	23.2	225+ 282+		=												
84	1	0-6 6-12		16.2 18.2	134	0.85	169+												
86	1	0-6 6-12		32.4 28.6	96	1.01	128						94 113	1.01	114				+4.0
87	1	0-6 6-12	9	30.2 26.4		0.85	94												
88	1	0-6 6-12	:	36.2 34.8	67		71												
89	1	0-6 6-12	=	=	111+ 190+														
91	1	0-6 6-12			104 100														
92	1	0-6 6-12		=		==													
93	1	0-6 6-12				==													
									Chanth	aburi Are	4								
100	1	0-6 6-12	=	21.0 16.4	181 290+														
101	1	0-6 6-12	i	17.4 16.4	171+ 221+														
109	1	0-6 6-12		15.0 14.0	240+ 178+														

(4 of 8 sheets)

_			- 5	ection A. Si	te Data						8	ection	В. 3						
	Loca	Grid						Depth		LIS	DA				uscs tter			Or-	Spe-
		Coor-	Topog-	Topo-				of		extur			By Wt		berg			Con-	cific
Site No.	Map Sheet	di- nates	raphy Class	graphic S Position	ope	Vegetation	Land Use	Layer in.		SIIt		Туре	% Fines	_	PL.	PĪ	Туре	tent	Grav-
			100000						_					120		_			
113	534911	128096	High	Lower slope				0-6 6-12	71 69	21 21	10	SL	35 36	19 21	19	4	SH-SC	1.10	
			• -1				W411								-				(10%)
116	5448IV	//0991	Low	Bottomland flat			Miscellaneous	0-6 6-12	49	35 38	16	L L	59 60	60 52	41 33	19	MH	4.61	
117	5448111	000178	1	Bottomland			Cultivated	06	82	91	•	LS	21	38	22	16	sc	3.62	2 60
117	3440111	009778	Low	flat			Cultivated	6-12	77	16	7	SL	25	38	30	8	SH	2.87	
118	5448111	002774	Low	Terrace flat				0-6	50	41	9	L	64	60	38	22	МН		2.65
***	3440	002//4	200					6-12	46	48	6	SL	66	79	44	35	МН		2.66
119	5448111	979767	Low	Bottomland				0-6	43	38	19	L	60	49	32	17	ML	3.07	2.60
				flat				6-12	24	46	30	CL	78	57	25	32	CH	1.06	2.61
120	5448111	969788	Low	Tidal flat			Miscellaneous	0-6	83	14	3	LS	20			NP	SM	1.67	
								6-12	92	8	0	8	10			NP	SP-SM	0.82	2.68
124	5448111	874790	Low	Bottomland				0-6	18	74 72	8	Sil	92 89	32	23 26	9	CL ML	2.41	
				flat				6-12	20	/2	8	\$1L	. 67	32	20	6	nL.	4.38	
126	5448111	897782	Low	Tidal flat			Miscellaneous	0-6 6-12	22 30	62	16	SIL	84	73 64	42 36	31 28	MR OH	8.98	
	21100000	50000	-																
127	5448111	895783	Low	Tidal flat			Cultivated	0-6 6-12	16	72 72	12 10	SIL	90	67	33 32	27 35	MH CH	5.79 6.20	2.55
100		******	1	#/dat #1aa							^			20	24		w.	0.61	2 44
128	5448111	893824	Low	Tidel flat				0-6 6-12	48 35	52 53	0 12	SIL	58 71	29 42	24 25	17	ML CL	0.92	2.62
129	5448111	903820	Low	Tidal flat				0-6	71	25	4	SL	30	47	34	13	SM	3.41	2.62
	3440111	,0,020	202					6-12	32	46	22	L	71	54	26	28	CH		2.65
131	5448IV	908835	Low	Terrace flat				0-6	64	33	3	SL	38	38	21	17	SC	1.55	2.58
		(1004)-						6-12	65	29	6	SL	38	40	19	21	SC	0.75	2.60
132	5448IV	882959	Low	Bottomland			Cultivated	0-6	55	34	11	SL	48	44	31	13	SH	2.15	
				flat			(1dle)	6-12	58	28	14	SL	44	43	30	13	SM	1.95	2.64
133	54481V	866877	Low	Beach			Cultivated	0-6	84	14	2	LS	20			NP	SM	1.15	
							(1d1e)	6-12	81	17	2	LS	23			NP	SM	0.71	2.65
137	5448IV	900857	High	Terrace				0-6	56 60	31 29	13	SL	49	48	28 28	20 21	SM	2.67	
				slope				6-12	80	27	**	3L	40	47	20	21	эn	0.95	4.37
138	5448IV	902891	Low	Terrace flat				0-6 6-12	68 71	24 23	8	SL SL	34 33	50 49	30 28	20 21	SM	2.23	
. 227			_																
139	5448IV	911931	Low	Bottomland flat				0-6 6-12	77 80	22 17	3	LS LS	25 22	33 33	21 19	12	SC SC	3.00	2.60
140	5448IV	804043	Low	Bottomland				0-6	80	10	10	SL	21	39	25	14	sc	1.15	2 62
140	J44014	070743		.flat				6-12	83	9		LS	18	27	19	8	SC	0.70	
141	5448IV	895962	Low	Bottomland			Miscellaneous	0-6	68	26	6	SL	40	21	20	1	SH	2.67	2.60
				flat				6-12	61	31	8	SL	49	22			SM-SC	0.96	2.64
143	54481V	804875	Low	Tidal flat				0-6	55	40	5	SL	56	60		22		5.32	
								6-12	41	50	9	SIL	68	80	46	34	OH 1	7.70	2.32
144	5448IV	611869	Low	Tidal flat				0-6	36	49	15	L	76		13			7.25	
								6-12	39	44	17	L	71	49	27	22	CL	5.72	2.50
145	54481V	812917	Low	Tidal flat				0-6	50	40 48	10 15	L L	65 75	21 26	21 17	0	ML	0 0.91	
	2011000							6-12	37										
146	54481V	757002	Low	Bottomland flat			Miscellaneous	0-6 6-12	54 47	38 45	8	SL L	48	43 38	25 23	18	SC CL	2.23	
14.		75700-	1				Culadurated				7			700					
147	5448IV	/5/993	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	57	35 36	7	SL	46	23 23		NP	SM	2.06 1.55	
148	5448IV	752981	High	Upper slope			Miscellaneous	0-6	47	37	16	L	57	54	35	19	МН	3.48	2.65
140	344011	/ /2/01		opper stope			HISCOII AMOUN	6-12	55	36	9	SL	50		35		ML	1.45	
149	5448IV	773974	High	Terrace flat				0-6	41	49	10	L	70	58	47	11	MH	2.54	2.92
•			2000					6-12	56	30	14	SL	53		47		HGH	1.20	
150	5448IV	786958	Low	Bottomland				0-6	54	36	10	SL	55		41		HEL	2.74	
				flat				6-12	52	36	12	L	56	56	43	13	MH	2.42	2.87
151	5448IV	790998	High	Upper slope				0-6	37	51	12	SIL	72	58		14	HH	3.14	
								6-12	51	37	12	L	59	60	29	31	СН	1.93	2.74
152	5448IV	786991	High	Terrace flat				0-6	55	26	19	SL SL	51	44	29 26	15 15		3.55	
								6-12	63	24	13		44					2.22	
154	5448IV	783984	High	Terrace flat				0-6 6-12	59 48	32 37	15	SL	53 61	58 57	47	11		2.35 2.11	
		2232-5																	
156	5448IV	883960	Wigh	Terrace flat				0-6 6-12	55 53	28 32	17 15	SL	51 53	24 23	19		CL-ML		
								0.101							100				11

				Wet	-Seaso	n Cond	Ition	Sec	tion C	Tra	rricabi	lity Data		_ н	igh-Mo	isture	Condi	tion		
Site	No. of	Derth of Laver	Dry Density		111.			c _u	Tan	rgraph ^a ur	Tan	Dry Density	•				c _u	Sheare Tan	a Tan	Depth to Water Table
No.	Visits	in.	lb/cu ft			RI	RCI	psi	Øu	psi	aur	lb/cu ft	MC, %	CI	RI	RCI	psi	ø _u	psi aur	in.
113	1	0-6 6-12		18.5 16.6	84 177															
116	1	0-6 6-12			118 135	1.01	134													
117	1	0-6 6-12	==	21.2 17.2	59 127															
118	1	0-6 6-12		31.0 40.0		0.64	82													
119	1	0-6 6-12		73.2 145.0																
120	1	0-6 6-12		16.4 18.2	145 108															
124	1	0-6 6-12																		
126	1	0-6		100.2	19 37		19													
127	1	6-12 0-6		77.7 52.7	42	0.52														
128	1	0-6		59.6	56	0.94	53													
129	1	6-12 0-6		24.8																
131	1	6-12 0-6		26.6 19.6		0.58														
132	1	6-12 0-6		30.2		0.59	84													
133	1	6-12 0-6		23.6	203+	0.96	195+													
		6-12 0-6		13.4	116															
137	1	6-12		30.3	127	0.49	62													
138	1	0-6 6-12		28.6 16.7	66 82															
139	1	0-6 6-12		23.9	52 185+	0.45	83+													
140	1	0-6 6-12		14.5 12.6			_													
141	1	0-6 6-12		20.9 19.1	127 74	0.46	34													
143	1	0-6 6-12		63.0 99.8	56 29	0.49	14													
144	1	0-6 6-12		32.0 44.0	124 82	0.73	60													
145	1	0-6 6-12		23.3 45.6	100 50	0.64	32													
146	1	0-6 6-12	==	24.6 22.6	159+ 290+	0.46	133+													
147	1	0-6 6-12		26.4			102+													
148	1	0-6 6-12	==	33.8	147+ 300+		291+													
149	1	0-6 6-12	==	45.5	231	1.29	279													
150	1	0-6 6-12	==	37.0 34.6	101															
151	1	0-6 6-12		44.9 42.3	192															
152	1	0-6		25.6	109															
154	1	0-6		22.2 54.4	56	1.23	196													
156	1	6-12 0-6		52.8	94	1.52	143													
		6-12																		

	-		Ε	ection A. I	ite Data							ection	В. :	011	Dat	9.			
	locat	ion Grid						Depth		10	SDA				USCS			Or-	c Spe-
		Cuor-	Jupog-	Tobo-				of		extur	'e		by di		berg			Con-	cific
Jito.	Mar Shoot	di- nates	raphy	graphic Posi tion	Slope	Vegetation	Land Use	in.	_	y Wt,	Clay	Туре	% Fine:	_	Limi PL		Туре	tent	Grav- ity
157		791948													_	_			
157	244614	/71740	High	Lower slope	-		Miscellaneous	6-12	43	45	12 11	L L	67 66	57 61	46	13 15	MH	3.38	
158	5448IV	784968	High	Upland flat			Miscellaneou	0-6 6-12	35 52	52 38	13 10	S1L L	76 56	65 57	46	19 13	MOH	3.88	2.73
159	54481V	807970	High	Terrace flat				0-6 6-12	54 46	31 35	15 19	SL L	51 58	21 36	20 20	1 16	ML	2.87 1.35	
160	54481V	811969	High	Terrace flat				0-6 6-12	58 58	23 24	19 18	SL SL	46 46	34 37	21 21	13 16	SC SC	2.94	2.60 2.61
162	5448IV	823969	High	Upper ridge				0-6 6-12	62 57	20 24	18 19	SL SL	44	22	19 18	3	SM-SC	2.03	2.59
164	54481V	853963	Low	Terrace flat				0-6 6-12	38 29	41 46	21 25	L L	63 66	40 54	26 29	14 25	ML CH	2.74	
165	5448IV	853963	Low	Bottomland flat			Miscellaneous	0-6 6-12	63 63	21 23	16 14	SL SL	40 40	32 34	20 20	12 14	CL CL	2.16	2.53 2.55
168	5448IV	780997	High	Upland flat				0-6 6-12	44 53	46 39	10	L SL	66 60	56 61	43	13 17	MH MH	2.42	2.78 2.76
171	5448IV	809007	High	Lower slope			Miscellaneous	0-6 6-12	71 66	17 24	12 10	SL SL	32 32	42 46	27 28	15 18	SM SM	3.07 1.77	2.53 2.52
172	54481V	926012	High	Lower 6lope			Miscellaneous	0-6 6-12	69 71	24 20	7	SL SL	35 31	34 43	19 24	15 19	SC SC	1.61	2.58
174	54481V	845988	High	Lower slope			Miscellaneous	0-6 6-12	42 51	41 37	17 12	L L	67 59	50 44	32 27	18 17	MH ML		2.56 2.62
176	5448IV	805932	High	Upland flat				0-6 6-12	56 61	38 32	6	SL SL	53 48	55 55	41 41	14 14	MH SM	2.42	2.84
177	5449111	977056	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	32 41	53 42	15 17	SiL	75 65	36 39	24 24	12 15	CL	2.16	2.58
178	5449111	973048	Low	Bottomland flat				0-6 6-12	72 71	21 21	7 8	SL SL	39 39	16		NP NP	SM SM	2.68 0.74	2.57 2.63
179	5448IV	963967	High	Upper ridge				0-6 6-12	71 67	20 22	9 11	VGSL SL	15 40	39 55	20 23	19 32	GC SC	1.15	
180	54481V	939969	Low	Bottomland flat				0-6 6-12	90 85	8	6 7	S LS	12 16	26 		NP NP	SP-SM SM	1.05	
181	5448IV	930969	High	Upper ridge				0-6 6-12	48 39	31 44	21 17	GL BGL	41 28	40 51	23 33	17 18	SC GC	3.82 2.17	2.63 2.63
182	5448IV	825930	High	Upland flat				0-6 6-12	57 58	35 32	8 10	GSL	41 36	35 45	26 26	9 19	SM SC	3.27 1.60	
183	5448IV	853934	Low	Natural levee				0-6 6-12	24 20	52 56	24 24	SIL	82 86	43 47	28 28		ML ML	2.03 1.83	
184	5448IV	862943	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	44	43 45	13 15	L L	58 58	60 58	29 43	31 15	CH MH	3.75 3.77	
185	5448IV	858957	Low	Bottomland flat			Cultivated (idle)	0-6 6-12	23 20	55 55	22 25	SIL	83 86	65 61	44 41	21 20	MOH MOH	5.39 4.25	
186	5448IV		Low	Bottomland flat			Miscellaneous	0-6 6-12	79 77	13 16	8	LS SL	22 26	26 26	 19	NP 7	SH-SC	2.75 2.35	
187	54481V	the same	Low	Bottomland flat			Miscellaneous	0-6 6-12	40 42	53 46	7 12	SiL	75 69	43 59	25 34	18 25		8.55 2.67	
189	54481V		Low	Bottomland flat			Undisturbed	0-6 6-12	35 59	40 26	25 15	SL.		68 56	44 11	24 45		7.75 7.82	
190	534911		Low	Bottomland flat			Miscellaneous	6-12	44	39 40	17 20	GL L		42 47		15 19	ML	4.40 1.45	
191	534911		Low	Bottomland flat				0-6 6-12	29 26	48 50	23 24	SIL		49 54	27 29	22 25		0.87 1.00	
192	534911		High	Lower slope				0-6 6-12	65 63	25 28	10 9	SL			17 17	7	SM-SC SM-SC		
193	534911		High	Lower slope		-		0-6 6-12	75 78	23 20	2	LS				NP NP		3.59 0.54	
194	534911	124028	Low	Bottomland flat				0-6 6-12	56 57	37 36	7	SL GSL		34 28		12 11	CL SC	3.00	2.58 2.79
195		137992	Low	Tidal flat	-			0-6 6-12	35 29	60	5 10	SiL SiL		24 27	20 18	9	CL-HL CL		2.77 2.76
196	53481	152982	High	Lower slope				0-6 6-12	83	17 15	0	LS LS	25 23			np np		0.87 0.32	

_				Wet-B	eason	Condi	ion	Sec	tion C	. Tra	ricabi	lity Data			Kigh-1	bistur	Cond	lition			20
		Depth of	Dry					_		rgraph	-	Dry						Shear	_	The state of	Depth to Water
Site No.		Layer in.	Density lb/cu ft	MC, \$	CI	RI	RCI	c _u pei	Tan gu	ur psi	Ten our	Density lb/cu ft	HC. S	CI	RI	RCI	c _u psi	∮ _u	ur psi	u.	Table** in.
157	1	0-6 6-12		60.4 46.4	116 150	0.82	123														
158	1	0-6 6-12		53.0 48.5	130 130	0.46	60														
159	1	0-6 6-12		26.6 19.0		0.59	135+														
160	1	0-6 6-12		28.3 24.6	92 133	1.14	152														
162	1	0-6 6-12																			
164	1	0-6 6-12																			
165	1	0-6 6-12		19.1 17.4	154 187	0.64	120														
168	1	0-6 6-12		40.0 44.2	298+ 300+																
171	1	0-6 6-12		29.6 20.2	130 151																
172	1	0-6 6-12		19.4 19.6	107 235+	0.78	103+														
174	1	0-0 6-12		38.2 30.8	117 120	1.19	143														
176	1	0-6 6-12		44.6 44.5	75 108	1.15	134														
177	1	0-6 6-12		32.6 26.0	188 173	0.79	137														
178	1	0-6 6-12		29.3 20.0	125 141	0.11	16														
179	1	0-6 6-12		=		=															
180	1	0-6 6-12																			
181	1	0-6 6-12				-															
182	1	0-6 6-12		22.9 16.2	176+ 241+																
183	1	0-6 6-12	=	28.4 20.4	112 219+																
184	1	0-6 6-12	=	52.0 49.0	86 109	0.53	58														
185	1	0-6 6-12		57.2 48.6	94	0.76	71														
186	. 1	0 -6 6-12		18.6 15.8	107 217	=															
187	1	0-6 6-12		40.2 91.2	33 18																
189	1	0-6 6-12		110.0 66.0	17 54	=															
190	1	0-6 6-12		32.7 17.5	115 245+	=															
191	1	0-6 6-12		28.7 22.6	144 157+	1.05	165+														
192	1	0-6 6-12	-		=	=	= ,														
193	1	0-6 6-12		=	=																
194	1	0-6 6-12	=	22.0 18.6		1.12															
195	1	0-6 6-12		18.2 17.8	205+ 280+	0.75	210														
196	1	0-6 6-12																			

Table A6

Terrain-Vehicle Tests
Summary of Site, Soil, and Trafficability Data

				ection A. S	Ite D	ata					Ž.	ection	В.	5011	Dat	a			
	Iweat														USC			0r-	
		Grid		_				Depth			DA_				tte				c Spe-
		Coor-	Topor-	Topo-	0.3			of		extur			By W		berg				cific
Sito	, al	d1-	raphy		Slope &		Land Man	Layer		y Wt,		There a M	% 101 mm		Limi		75		Grav-
No.	Shret	nates	Class	Position	16	Vegetation	Land Use	in.	Sand	2116	Clay	Туре*	rine	<u> </u>	PL	PI	Type	2	1ty
							Khon Kaen Area												
HG-1	556011	661097	Low	Bottomland flat	0	Short-grass prairie	Undisturbed	0 -6 6-12	22 22	49	29 29	CL	87 87	38 38	20 20	18	CL		2.71 2.71
HG-2	556011	661096	Low	Bottomland flat	0	Short-grass prairie	Undisturbed	06 6-12	41 41	31 31	28 28	CL	67 67	31 31	17 17	14 14	Cr Cr		2.68
HC-3	556011	662097	Low	Bottomland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	13 13	45 45	42 42	Sic	90 90	77 77	38 38	39 39	MOH		2.72 2.72
HG-4	556011	662097	Low	Bottomland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	13 13	38 38	49 49	c	90 90	69 69	37 37	32 32	10H		2.72 2.72
NG-5	556011	663097	Low	Bottomland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	31 31	27 27	42 42	C C	73 73	71 71	35 35	36 36	MH MH		2.77 2.77
HG-6	556011	661096	Low	Bottom!and flat	0	Short-grass prairie	Undisturbed	0-6 6-12	14 14	51 51	35 35	SICL SICL	93 93	38 38	21 21	17 17	Cr Cr		2.65 2.65
HG-7	556011	661097	Low	Bottomland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	39 39	46 46	15 15	L L	66 66	24 24	18 18	6	CL-ML CL-ML		2.72 2.72
HC-8	556011	661097	Low	Bottomland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	14 14	62 62	24 24	SiL SiL	93 93	21 21		NP NP	ML ML		2.63 2.63
HC-9	556011	662097	Low	Bottomland flat	0	Short-grass prairie	Undisturbed	0-6 6-12	19 19	51 51	30 30	SICL SICL	90 90	40 40	23 23	17 17	CL CL		2.64 2.64
SG-1	556011	688147	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	47 39	42 45	11 16	L L	63 69	15 19	14	NP 5	ML CL-ML		2.60 2.58
\$G-2	556011	687144	Low	Bottomland flat	0	Short-grass prairie	Cultivated (idle)	0-6 6-12	45 46	43 38	12 16	L L	64 63	21 25	15 16	6	CL-ML CL		2.61 2.67
SG-3	55601	691265	Low	Terrace slope	3	Short-grass prairie	Cultivated (idle)	0-6 6-12	46 50	41 36	13 14	L L	69 67	20 28	17	NP 11	ML CL		2.63 2.64
CC-2A	55601	645400	Low	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	46 63	35 30	19 7	L 3L	70 61	20 21	16	NP 5	ML CL-ML		2.63 2.63
CC-2B	55601	646401	Lov	Terrace fla	t O	Woodland	Undisturbed	0-6 6-12	59 57	35 30	6 13	SL	57 58	20	17	NP 3	ML		
CC-2C	55601	643399	Low	Terrace fla	t O	Woodland	Undisturbed	0-6 6-12	68 61	27 25	5 14	SL SL	45 51	20	16	h,	SM CL-ML		
CC-4A	556111	655468	Low	Terrace slope	2	Woodland	Undisturbed	0-6 6-12	80 79	14 14	6 7	GSL VCLS	18 13			NP NP	SM		
CC-48	556111	655472	Low	Terrace slope	2	Woodland	Undisturbed	0-6 6-12	82 79	13 16	5	LS LS	26 29			NP NP	SM SM		-
CC-SA	556111	662472	High	Upper slope	5	Barren	Undisturbed	0-6 6-12	41 47	20 16	39 37	CL SC	63 61	55 60	19 19	36 41	CH CH		
CC-5B	556111	661472	Lov	Lower slope	5	Tall-grass prairie	Undisturbed	0-6 6-12	72 58	14 11	14 31	SL SCL	43 57	24 36	17 15	7 21	SM-SC CL		
CC-5C	556111	658472	Lov	Bottomland flat	0	Short-grass prairie	Cultivated (rice)	0-6 6-12	54 53	34 30	12 17	SL SL	59 61	19 21	15 15	6	CL-ML		-
CC-5D	556111	657472	Low	Terrace slope	3	Woodland	Undisturbed	0-6 6-12	79 73	14 11	7 16	LS SL	30 37	22	12	NP 10	SM SC		
CC-SE	556111	653472	Low	Terrace slope	3	Woodland	Undisturbed	0-6 6-12	81 81	17 16	3	LS LS	27 27			NP NP	SM SM		
H-1	55601	684320	High	Upland flat	0	Woodland	Undisturbed	0-6 6-12	78 75	18 18	4 7	LS SL	34 36	13		MP MP	SM SM		

^{*} G = gravelly; VG = very gravelly.

Table A6 (Concluded)

				Wet-S	eason	Condi	ion	Sec	- oron	. 11	A A C C D	lity Data			Righ-	bistur	Conc	lition			10
		Depth							Shee	rgrep	h##	Desc						Shear	raph"	*	Depth to
Site	No. of	of	Dry Density					c _u	Ten	ur	Ten	Dry Density					c _u	Ten	ur	Zan	Water Tablet
No.		in.	1b/cu ft	MC, 5	CI	RI	RCI		≠ u	psi	Œ	1b/cu ft	MC. S	CI	RI	RCI		ø _u	psi	a _{ur}	in.
										Khon	Kaen Ar										
uc 1				20.2						CONTRACTOR OF THE PERSON OF TH	111110	11.77									
HG-1	1	0-6 6-12		28.3		0.72	97 182+	3.0	C-23				28.3		0.72	97 182+	3.0	0.23			0
HG-2	1	0-6		26.6	71	0.68	48	2.9	0.40				26.6	71	0.68	48	2.9	0.40			0
	-	6-12		26.5		0.67	111	•••					26.5		0.67	111	-11	0.40			•
HG-3	1	0-6		29.2	86	0.48	41	0.2	0.18				29.2	86	0.48	41	0.2	0.18			+1
		6-12		31.6	175	0.43	75						31.6	175	0.43	75					
HG-4	1	0-6		26.6		0.70	97	: 5	0.22				26.6		0.70	97	1.5	0.22			0
		6-12		30.1	246	0.58	143						30.1	240	0.58	143					
HG-5	1	0-6 6-12	92.3	27.5 31.0		0.80	114 133	1.7	0.40		•	92.3	27.5 31.0		0.80	114 133	1.7	0.40			0
uc 4			00.0																		•
HG-6	1	0-6 6-12	99.3 98.4	24.0 25.5	44 115	0.70	31 76	0.0	0.16			99.3	24.0 25.5		0.70	31 76	0.0	0.16			0
HG-7	1	0-6	104.1	21.7	73	0.62	45	1.2	0.18			104.1	21.7	73	0.62	45	1.2	0.18			0
		6-12		19.9	207	0.45	93						19.9	207	0.45	93					
HG-8	1	0-6	100.5	21.5	111		68	0.0	0.34			100.5	21.5		0.61	68	0.0	0.34			0
		6-12		22.4	299	0.77	230						22.4	299	0.77	230					
HG-9	1	0-6 6-12	97.2	23.4		0.60	27 84	0.0	0.18			97.2	23.4		0.60	27 84	0.0	0.18			0
SG-1	3	0-6	102.0	17.3			70		0.33		0.40						0.0	0.27		0.22	4.9
30-1	,	6-12	109.6	16.6	182	0.43	36 74	1.3	0.37	0.3	0.40	106.9 107.0	17.0 18.4		0.33	24 61	0.0	0.27	0.0	0.27	+2
SG-2	1	0-6	103.6	17.1	85	0.51	43	2.2	0.55	0.0	0.47	103.6	17.1	85	0.51	43	2.2	0.55	0.0	0.47	+2
		6-12			174									174							
SG-3	2	0-6	102.6	20.7	111		76	2.0	0.33	0.6	0.30	103.4	20.4		0.56	58 88	1.2	0.30	0.3	0.27	+3
		6-12	95.1	25.2		0.72	98						24.1		0.62						
CC-2A	2	0-6 6-12	99.6 107.8	21.3 17.9		0.47	36 46	0.5	0. 32	0.0	0.34	108.0 106.4	18 2 18.7		0.63	22	0.5	0.32	0.0	0. 34	+6
CC-28	1	0-6	110.7	14.0	225		-	2.7	0.36	1.0	0.32										
	•		104.1	13.3	237			,	0.30	1.0	0.32										
CC-2C	1	0-6	101.6	11.1	214			1.6	0.55	0.0	0.51										
		6-12	107.6	13.0	239																
CC-4A	1	0-6 6-12	_		399+			0.2	0.38	0.2	0.42										
CC-4B	1	0-6 6-12		9.5	169			2.3	0.36	1.5	0.25										
CC-5A	1	0-6		20.4	616+					0.0	0.36										
	-	6-12		20.1						0.0	0.30										
CC-5B	1	0-6		10.5	365			2.0	0.47	0.0	0.47										
		6-12	105.3	17.1	296																
CC-5C	1		109.2 99.1	17.2 20.9	98 136	0.32	31 58	2.8	0.34	1.2	0.23	109.2			0.32	31 58	2.8	0.34	1.2	0.23	+3
							5.5			• •	0.55	17.5.	20.7	. ,0	3.43	-					
CC-5D	1	0-6 6-12		12.2	145 188			2.0	0.45	0.6	0.38										
CC-SE	1	0-6	94.8	23.2	33	0.36	12	2.4	0.40	0.6	0.38	94.8	23.2	33	0.36	12	2.4	0.40	0.6	0.38	0
			100.5		46		35					100.5			0.75	35					
1-1	2		102.0		154			2.0	0.42	0.6	0.40										
		6-12	99.8	12.7	129																

 c_u , ultimate soil-to-soil cohesion; f_u , ultimate soil-to-soil angle of internal friction; a_{ur} , ultimate soil-to-rubber adhesion; a_{ur} , ultimate soil-to-rubber angle of friction.

⁺ Plus (+) denotes depth of water above surface.

DISTRIBUTION LIST FOR ARPA REPORTS

Address	No. of Copies
Secretary of Defense, ATTN: ARPA/AGILE, The Pentagon, Washington, D. C.	4
Commanding General, U. S. Army Materiel Command, ATTN: AMCRD-RV-E, Washington, D. C.	2
Dr. Daniel C. Drucker, Physical Sciences Council, Brown University, Providence, R. I.	1
Dr. Emil H. Jebe, Operations Research Dept., Institute of Science and Technology, University of Michigan, Box 618, Ann Arbor, Mich.	1
Commanding General, U. S. Army Tank-Automotive Center, ATTN: SMOTA-RCL (Mr. R. A. Liston), Warren, Mich.	3.
Dr. Ralph E. Fadum, Dean, School of Engineering, North Carolina State College of the University of North Carolina, Raleigh, N. C.	1
Prof. Robert Horonjeff, 3643 Brook St., Lafayette, Calif.	1
Director, Joint Research and Test Activity, APO San Francisco 96243	1
Director, OSD/ARPA R&D Field Unit, APO San Francisco 96243	2
Director, OSD/ARPA R&D Field Unit, APO San Francisco 96346	25
Commander, U. S. Military Assistance Command, APO San Francisco 96346	2
Dr. Clark N. Crain, Director, Project DUTY, Dept. of Geography, University of Denver, Denver, Colo.	2
CINCPAC, Camp H. M. Smith, Oahu, Hawaii	2
Mr. A. C. Orvedal, Chief, World Soil Geography Unit, Soil Conservation Service, USDA, Hyattsville, Md.	2
Commanding General, U. S. Army Natick Laboratories, ATTN: AMXRE-ED (Dr. L. W. Trueblood), Natick, Mass.	2
Chief, Source Material Unit, Branch of Military Geology, U. S. Geological Survey, Washington, D. C.	2

Unclassified

Security Classification

(Security classification of title, body of abstract and indexing annotation must be a 1. ORIGINATING ACTIVITY (Corporate author)	LD	A
		the everall report is classified) RT SECURITY CLASSIFICATION
U. S. Army Engineer Waterways Experiment Station		Unclassified
Vicksburg, Mississippi	25 GROUI	
3. REPORT TITLE		
TRAFFICABILITY CLASSIFICATION OF THAILAND SOILS		
		· · · · · · · · · · · · · · · · · · ·
4. DESCRIPTIVE NOTES (Type of repo. and inclusive dates)		
Final report S. AUTHOR(S) (Leet name, first name, initial)		
Meyer, M. P.		
6. REPORT DATE 74. TOTAL NO. OF 1	PAGES	75. NO. OF REFS
January 1967 137		15
8s. CONTRACT OR GRANT NO. Se. ORIGINATOR'S R	EPORT NUM	9 ER(S)
ь Риојест но. 1-V-0-21701-A-046 Technical	Report N	o. 3-753
Task No. 1-V-0-21701-A-046-02	NO(S) (Any	other numbers that may be assigned
4.		
10. A VAIL ABILITY/LIMITATION NOTICES	and aca	h twomewittel to
This document is subject to special export controls foreign governments or foreign nationals may be made	and eac	ith prior approval
Toreign governments or foreign nationals may be made	e om A	Ton prior approval
of II C Ammy Engineer Waterways Experiment Station		_
of U. S. Army Engineer Waterways Experiment Station		
11. SUPPLEMENTARY NOTES 12. SPONSORING MIL	ITARY ACTI	VITY
	ITARY ACTI	VITY
11. SUPPLEMENTARY NOTES 12. SPONSORING MIL	ITARY ACTI	VITY
11. SUPPLEMENTARY NOTES 12. SPONSORING MIL	ITARY ACTI	VITY
11. SUPPLEMENTARY NOTES 12. SPONSORING MIL U. S. Army 13. ABSTRACT	ITARY ACTI Materiel	vity . Command
11. SUPPLEMENTARY NOTES 12. SPONSORING MIL U. S. Army 13. ABSTRACT Pertinent soil trafficability data were collected di	Materiel	Command wet season at 846
13. ABSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the Classification System and the U.S. Department of A	Materiel uring the	ce wet season at 846 the Unified Soil are textural classifi-
11. SUPPLEMENTARY NOTES 12. SPONSORING MIL. U. S. Army 13. ABSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according Classification System and the U. S. Department of Acation system. Two general topographic positions (1).	Materiel uring the	ce wet season at 846 the Unified Soil are textural classifi- cography and low
12. SPONSORING MIL U. S. Army 13. ABSTRACT Pertinent soil trafficability data were collected desites in Thailand. The soils were identified according Classification System and the U. S. Department of Acation system. Two general topographic positions (topography) and two general levels of wetness were	Materiel uring the	command e wet season at 846 the Unified Soil are textural classifi- cography and low ed. A scheme for
13. ADSTRACT Pertinent soil trafficability data were collected desites in Thailand. The soils were identified according to the cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability	Materiel uring the ding to gricultuhigh top consider was dev	command te wet season at 846 the Unified Soil tre textural classifi- tography and low ted. A scheme for teloped. The scheme
13. ADSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified accordance Classification System and the U.S. Department of A cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffic	Materiel uring the ding to gricultu high top consider was dev ability	ce wet season at 846 the Unified Soil are textural classifi- cography and low ed. A scheme for reloped. The scheme under each of three
13. ABSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffic topography-wetness level categories and shows the process of the system.	Materiel uring the ding to gricultu high top consider was dev ability robabili	ce wet season at 846 the Unified Soil are textural classifi- cography and low red. A scheme for reloped. The scheme under each of three tty of successful
12. SPONSORING MIL U. S. Army 13. ABSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the U. S. Department of A cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil stransports.	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re	ce wet season at 846 the Unified Soil are textural classifi- cography and low red. A scheme for reloped. The scheme under each of three ty of successful equirements. The
Pertinent soil trafficability data were collected desites in Thailand. The soils were identified accordance classification System and the U.S. Department of Acation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil stracheme permits the estimation of the probability of	Materiel uring the ding to griculturing to high top consider was developed ability robability and the reconstruction of the reconst	command te wet season at 846 the Unified Soil tre textural classifi- tography and low ted. A scheme for teloped. The scheme under each of three try of successful equirements. The tessful operation for
Pertinent soil trafficability data were collected disites in Thailand. The soils were identified accordance Classification System and the U.S. Department of A cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffications topography-wetness level categories and shows the propassage on each soil for vehicles of known soil strascheme permits the estimation of the probability of given soil type, topography, and wetness-level cond	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions.	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for reloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of
Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil strackers permits the estimation of the probability of given soil type, topography, and wetness-level condiseveral routes and vehicles is available, the determination of the probability of given soil type, topography, and wetness-level condiseveral routes and vehicles is available, the determination of the probability of given soil type, topography, and wetness-level condiseveral routes and vehicles is available, the determination of the probability of given soil type, topography, and wetness-level condiseveral routes and vehicles is available, the	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions. mination	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for leloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of left of the vehicles with
13. ADSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil structures of the probability of given soil type, topography, and wetness-level conditions several routes and vehicles is available, the determine best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type.	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions. mination	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for leloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of left of the vehicles with
Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil strackers permits the estimation of the probability of given soil type, topography, and wetness-level condiseveral routes and vehicles is available, the determination of the probability of given soil type, topography, and wetness-level condiseveral routes and vehicles is available, the determination of the probability of given soil type, topography, and wetness-level condiseveral routes and vehicles is available, the determination of the probability of given soil type, topography, and wetness-level condiseveral routes and vehicles is available, the	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions. mination	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for leloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of left of the vehicles with
13. ADSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil structures of the probability of given soil type, topography, and wetness-level conditions several routes and vehicles is available, the determine best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type.	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions. mination	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for leloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of left of the vehicles with
13. ADSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil structures of the probability of given soil type, topography, and wetness-level conditions several routes and vehicles is available, the determine best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type.	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions. mination	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for leloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of left of the vehicles with
13. ADSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil structures of the probability of given soil type, topography, and wetness-level conditions several routes and vehicles is available, the determine best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type.	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions. mination	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for leloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of left of the vehicles with
13. ADSTRACT Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffication topography-wetness level categories and shows the propassage on each soil for vehicles of known soil structures of the probability of given soil type, topography, and wetness-level conditions several routes and vehicles is available, the determine best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the best chances of success over a given route or of the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type, topography, and wetness-level conditions are considered to the probability of given soil type.	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions. mination	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for leloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of left of the vehicles with
Pertinent soil trafficability data were collected disites in Thailand. The soils were identified according to the cation system. Two general topographic positions (topography) and two general levels of wetness were classifying soils according to their trafficability lists the soil types in order of decreasing traffic topography-wetness level categories and shows the propassage on each soil for vehicles of known soil structures contain the estimation of the probability of given soil type, topography, and wetness-level conditions several routes and vehicles is available, the determined to the contained of the probability of given soil type, topography, and wetness-level conditions are contained to the contained of the probability of given soil type, topography, and wetness-level conditions are contained to the contained of the probability of given soil type, topography, and wetness-level conditions are contained to the contained	Materiel uring the ding to gricultu high top consider was dev ability robabili ength re a succe itions. mination	ce wet season at 846 the Unified Soil are textural classifi- lography and low led. A scheme for leloped. The scheme under each of three ty of successful equirements. The lessful operation for If a choice of left of the vehicles with

DD . CORM. 1473

Unclassified
Security Classification

Security Classification

oils Trafficability	LII	IK A	LIN	K B	LINK C		
	ROLE	WT	ROLE	wT	ROLE	wT	
Soils Thailand							
Soils Trafficability							
Thailand							
INST	RUCTIONS					_	

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

- 2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in secondance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either Ly the originator or by the aponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - (1) "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S),

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Unclassified

Security Classification