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PREFACE

This report 13 based on a series of lectures on probability and
statistics presented to employees of the Operations Analysis Department,
U. S. Navy Fleet Material Support Office (FMSO) by Dr. Barnard H.
Bissinger, Chairman of the Mathematics Department, Lebanon Valley
College, Annville, Pénnsylvania and Consultant to FMSO, They represent
a more advanced state of development and are intended as a follow-on
course to material covered in ALRAND Report 50 of 3 September 1965,

"' Statistical Training Manual - Volume I, "
It is hoped that the manuai will help other units who wish to provide
training in this type of mathematics. Any corrections or remarks indi-

cating improvement will be gratefully accepted,

Submitted bﬁz ; é’ ; i

B, H. BISSINGER

Approved by//p [0/ /{(7[.’21:'4:6

_.d\ A. GILLESPIE, lommander, SC, USN
Director, Operations Analysis Department
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I. CONFIDENCE

A, Floating Interval,

We concluded our previous course while we were discussing how
the basics of sampling theory are used to obtain information about samples
randomly drawn from a known population. Specifically we considered the
mean (;c') or sum S(x) of the elements of a sample and how other such
means or sums of other random samples of the same size from the same
uriverse might be related to this particular one., We considered the dis-
tribution of this sample statistic and declared the means to be normally
distributed when the sample size was 30 or more., So we used a sample
in class to learn more about samples by way of their means and also by
way of their standard deviations.

The every-day practical problem requires us to use kncwn samples
and infer conclusions about the unknown population frorn which the sample
comes; e. g., what is the population mean when the sample mean is known?
Our rudiments of sampling theory will help us to make such a determination.
Initially we will consider the problem of describing the population parame-
ter from its corresponding sample statistic when the sample statistic is

the mean.

The oldest method of making such an estimate was introduced by
LaPlace in 1814 in dealing with the problem of inferring the value of
the probability of success (p) in the binomial distribution from an observed

value of the random variable x of the distribution. He regarded the
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size of an interval which would include p as fixed but thought of p as
a random variable, He was confident that a certain percentage of the
time p would be in the interval and as a result it later became known as

a confidence interval, It was not until 1927 that the ccrrect interpretation

of the interval as a random or floating interval was given by E, B, Wilson.

Let us go through such an argument.

First, recall a few general facts. The sampling distribution of
means is a frequency distribution of the means of all samples of a particu-
lar size each of which is drawn randomly from the same population. The
mean of the sampling distribution of means tends to be very close to the
population mean, although individual sample means may vary quite a bit
from this value. However their variability is probably much smaller
than the variability of the observations in the population. It decreases
with increases in the sample size, Ior a large size sample the standard
deviation of the values in the sample will not be very different from that
of the population. Finally for many large size samples, the sampling
distribution of their means is essentially a normal distribution.

So we estimate the population standard deviation oy by the sample
standard deviation; call it s, Then we obtain an estimated standard errér
(deviation) of the mean by dividing s by N n, which we can call O
where n is the sample size, Next, in making a guess about the popula-
tion mean, we decide on what level of confidence (probability of being

correct) we want. This determines for us the confidence interval or
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confidence limits vsithin which the population mean should lie. It specifies
a range of values. To increase the confidence level we must make the
estimate less precise. On the other hand we can be more precise if we
are willing o take a bigger -risk (less confidence). For example, suppose
we have sampled a universe and developed a mean of 100 and a standard
deviation of 7. We desire a confidence level of 95%, which means we
expect the sample mean to be within our confidence interval 95 times

for 100 samples. Therefore we would expect to experience sample means
between 86 and 114 in all but 5% of the samples drawn. Now if we desire
to be more precise, we narrow the confidence interval. 1f we establish

the confidence interval as 93 and 107, we expect our mean to be within

G B RS T TS T D B s S S R D O TR NS SN s st

the confidence interval only 68% of the time. So precision is sacrificed

to high level of coniidence and vice versa. However, both precision

and confidence level can be increased by increasing the sample size.
Now a very important point has been blithely skipped over in the

: last paragraph on procedure. Recall that we learned how to calculute

the probability that went with a certain distance from the mean of a

normal distribution to a value of the variable which had that mean. How

do we suddenly slip over to using a single value of the variable and dis-

tance about it to pick up the mean? This is the approach LaPlace failed

e

to conceive.

For example, you will recall that for a fairly normal distrioution

of sample means, you are {airly sure that about 68% of all possible

e
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sample means will be within £1 standard errors of the mean of these
means which in turn is the population mean., About 95% of all possible
sa.,mple means will be within +2 standard errors of the population mean.
Or we can say the probability of finding a sample whose mean is more
than 1 standard deviation from the population mean is .32, Also, we
can say the probability of the mean of the sample being more than 2
standard deviations from the mean of the population is only . 05.

Consequently we can expect 95% of the time to get a sample whose
mean is no farther away from ?:he population mean than 2 standard
errors of the sampling means. Hence the same size interval centered
on every possible sample mean will pick up the population mean about
95% of the time., Therefore when it is placed on one such sample mean,
we can be 95% confident of picking up the mean, Actually these last
remarks constitute what we mean by 95% confidence and as such are
definitions.

The above is so easy to say symbolically that the needed concept of
the floating interval ie often lost to the learner, For the situation as

pictured below in Figure 1 we can say

203 2oy
5 > %
U = Bx
Figure 1
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Pr{-2 < = <+2} = .95

8;’ n

which can be rewritten as

Pr{ix-2—_ <p<x+2-8.) = 95
-2 7o

where n is fairly large and o3 is estimated by s/N'r. This exemplifies

32..2-—%-— %+ y

Nn’ n

as an observable random interval such that the nrobability is . 95 that

it contains p. It is a 95% confidence interval for p and .95 is the

confidence coefficient.

We have set up an estimator for a parameter by using a random
interval with a specified probability of including the true value of the

parameter. Such a device is called an interval estimator.

B. Floating Interval Again.

To summarize, we realize in a practical situation that we h~ve only
one sample and one mean. We have seen how all possible means behave
£ 1.

under chance variation, but we have no way of knowing whether our single

sample mean is at a point A or B or a point C, or at any other point along

the x scale in Figure 2,
Rx = meanofall X's

)
>
v
®|

T

e S S T O

5

e — i, VA

N

T s the i 1 —————— T

.

- —

AR v o

Rigio s




[N

e

P s £ R e R g - s -

We have said we shall estimate the location of T by going out
a distance d on either side of x and then claim px is in this interval.
Now you know from the theory of the normal curve that if our claim is
to be correct, the distance d will depend upon the width of the hump in
the graph in Figure 3. Thatis, 4 depends on the size of 0. If of is
small, the distance d does not need to be large in order to ensure that
px is between x - d and x+ d. If ox is large, the sample means are
more scattered and so a larger d will be necessary for an accurate esti-
mate of px.

The size of oy measures the reliability of the mean, or the extent
to which X is expected to be in error from px simply by chance variation.
We have seen that the mean of the sample becomes more reliable as the
size of the sample increases, for then ox decreases. So we can always
rely on the sample size to pump more reliability into our estimate if time
and expense permit a larger sample.

On the other hand even if ox is small, there can still be sample
means as far away from jtiz as is the point C in Figure 3. And although
we take a d large enough so that the intervals A £d and B +d include
px, that is, so that they give a correct claim to the location of ux, the
same d may not be large enough to make correct the claim that px is
in the interval C £d. But remember that we are willing to run a speci-
fied risk of making an inaccurate claim.

Let us agree that we need to be only 90% confident that our claim

about pg is true, that is, we should expect only 9 out of 10 such claims

Ao,
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to be correct. This mmeans that we shall take d large enough so that
the claim will be correct for 90% of all possible sample means. Now
the area table for the normal curve “ells you that 90% of all the cases in
a normal distribution are no more than 1.6 standard deviations from the
mean of the distribution. So 90% of all sample means are within a dis-
tance of £ 1, 605 of px. Hence if we make the claim that Bx is in the
interval from X - 1,60 to X+ 1,60%, we can be 90% certain that our

claim is correct. This is true because only 10% of all possible sample

means are like C, which is farther away from px than l.60x; as illustrated

in Figure 3.

L w

Three " Floating' Intervals

Figure 3
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It is worthy of noting that these confidence intervals are deter-
mined fully, with exact probabilities, without assuming any a priori
probability distribution for the parameter, This may seem paradoxical
to you for how can we speak of the probability that a parameter lies in
an interval when the parameter has no probability distribution. The
answer lies in the fact that the ends of the interval vary at random in
repetitions of the experiment, while the parameter point remains fixed.
It' s all in the way you say it.

There is one additional point to emphasize. In our formulas on
page 5, we use for the standard deviation of the base population the estimate
8 from the sample, Justification for this was discussed on page 2.
Now from one sample to another this estimate may change a bit. Hence
in Figure 3 the lengths of the three {loating intervals might better be
shown to be slightly different when oy is so obtained. However the

conclusions maintain as before.

C. Project - Simulation.

1, We will select at random 10 samples of size 16 from a popu-
lation with known mean and standard deviation,

2, For each sample compute X and sx.

3. Compute an estimate of the base population mean p at each
of the confidence levels 90%, 95%, and 99% for each sample above.

4., Use the true base population standard deviation to compute
the same estimates as in 3. Examine to what extent this changes the

results of 3, y

o~




5. Note how many of these 10 estimates actually contain the true
base population mean and compare this to the number we should expect
from the theory of sempling. Again compare the results using the sample
standard deviation with those using the true standard deviation.

To develop our solution, let us assume a frequency distribution as

shown in Table I. Then we will create some device such that the numbers

0 through 10 appear in accordance with our asswned frequency. That is, 0
will appear once and there wiil be 48 counters marked #5. Numerous gadgets

can be devised. Suppose we have a free turning gear with 200 teeth, Each

of the teeth is marked with one of our numbers in a random manner so that
when the gear is set in motion and then stopped any tooth has an equal chance
of stopping at nur reference point. We should expect to see #5 at the refer-

ence point 48 times as often as #10. With this device we can proceed with

the simulation. Another commonly used device for random selection is

PR

!
& to mark slips of paper with numbers, and put them into a hat, The hat is f
‘ filled with 200 slips of paper, in this case, each marked with a number in f
é accordance with Table I. The slips of paper (counters) are thoroughly %
} mixed so that all counters have equal opportunity for selection. In the class ’
{ 3 we had no mechanical device, thus the hat was usad. ¢ :
. ' Table I
Mark printed on counter x Oj1{ 2} 3§ 4| 5| 61 7| 8} 9i10
’ Number of counters 200 f[x] |1{3]10{23[39{48{39|23]10| 3} 1 %ﬁ%g
3"*? i
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The mean of the total counter population is 5.0 and the true standard

deviation is 1, 715,
Select a random sample of 16 countere by replacement.
draw a counter, record its number, and then replace it.

before each selection.

class produced the following 10 samples. )

Mi:r the counters

Tha* is,

(The cooperative eiforts of the members of the

Table IT

Sample

Number 314151617 9 10| % Sy
1 3] 51211 3 4.38 |1.20
2 21 4122 2 3.94 }2,00
3 314114141 4,75 |1, 24
4 211 1 711 5.13 }1,65
5 3 315 2 5.00 {1.86
6 5121311 4,25 12,17
7 51431 2 5,13 il.41
8 2111314} 2 5.44 12,16
9 3131411 1 2 4,63 |2.36

10 213181} 2 1 4,94 }1.39

Before tabulating for each sample the additional required information

let us develop it clearly for sample 1. If ¢ represents the degree of

confidence and ’c the corresponding coefficient or the number of standard

10
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deviations from normal theory, then our three intervals are given below
each followed by the words " yes'" or '""no,'" depending on whether they

did or did not pick up the true mean.

¢ = .90, 1.65, 4,38 %(1,65)(1.20)/4

Z¢

¢ = .95 zc =1.96, 4,38 =(1.96)(1. 20)/4

¢ = .99, zo = 2,58, 4.38 *(2,58)(1.20)/4
(3.88, 4.87) No

(3.79, 4.97) No

O T R e e R R

(3.60, 5.15) Yes
A similar calculation for each of the other nine samples yields

the resuits in Table III,

shstiste P

&
Table III %
. -
Confidence Interval b
Sample Nr |l ¢ = .90 c = .95 c=.99 ; j‘
1 3,88 - 4,87 3.79 - 4.97 3.60 - 5,15 ;
2 3.11 - 4,76 2.96 - 4.92 2.65 - 5,23
3 4,24 - 5.26 %
4 4.44 - 5,81
¥ 5 4.13 - 5.87
! 6 3,35 - 5,15 j
7 4,54 - 5,71 i
8 4.55 - 6.31 ]
9 3,65 - 5,69 j
10 Jl4. 37 - 5,51 v
1i '
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Note that when the 90% conf.dence interval contained the true mean,

we did not bother to calculate an interval for greater confidence as it would

automatically also contain it,

In summary we can write

Table IV

Confidence in Percentage | Percentage of Times Mean Included

90 80
! 95 80
99 100

Remember we are straining the use of normal theory by using ' i

samples as small as 16 in size. However this strain was overcome by

our taking a base population which was fairly normal itself. Also we

took only 10 such samples and couldn't possibly obtain percentages of
times the mean was picked up to 2 finer difference than 10%. Nevertheless
the above project should instill into you a feeling for and a clear know-
ledge of the concept of a confidence interval. Ideally we want the per-

centage and corresponding confidence in a row to agree.

D, The Binomial Distribution, ’

We learned earlier that the binomial distribution

n-x
: fB(x) = Cgpxq F) x=oa M) n

&
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e ——————



(T

where
no_ n!
X xl(n ~x)!
n = sample size
p = probability of success
q=1-p

is approximately normally distributed with mean np and standard deviation
Nnpq. As we saw in the last course, the probability of x being within

%*
a distance of z N'npq units of np is given approximately by 2Fn(z) -1, de.,

Pr{np - zNnpq < x < np+ z Nnpq} 2 ZF;(Z) -1
For example, if n = 400, p = .2, q = .8, then np = 80, V’quq = 8 and
for a probability of . 95 (when z = 2) we know that the interval (64, 96)
will contain x about 95% of the time.
Now suppose we have a binomial distribution in which p is not
known and from n trials we found x occurrences. We let z, represent
the coefficient and a would equal 2. 5% if we use 2 standard deviations or

the 95% confidence level. Then we can say

X -np

N npq

Pr{-zqo < <+z,} = 1-2a

where Pr{z > z,} = @ The two confidence limits for p are such that

X-0P = %3z,
N npq

or are the roots of

.}'.
13 2

b P e e T e

!
§
!
;

ecanb i




PP(n® + nz2) - pl2ox+ nz3) + % = 0. ' i

Solving this qua.dr.atic in p, we find these two values are

2 Z
LT PP e
n+ zy N 2n n3 4n

Note as the sample size n increases the above formula reduces to 1

(we must assume x increases so that x/n doesn't fade as it is really

this proportion we obtain to estimate p)

n

[x K za-\/&/n)(i —x/n) ]

This conforms to our normal theory which would give

If the population happened to be finite of size N, we would have to

correct our standard deviation wherever it occurs by multiplying it by

-\ZN-n .
N.1

Consider the case when N =101 and n = 37, Now this is sufficient to

assume approximate normality (usually assumed when n 2 30 and N 2 100j,

However the correction factor becomes N (101 - 37)/(101 - 1) = 0.8. Hence

w2 must replace the atandard deviation in the above confidence interval !
estimate by .8 of itself, Only when N is very large compared with n is

the factor nearly 1 and hence negligible,

In 1934 Clopper and Pearson in Biometrika constructed intervals

of the type just discussed for p and presented graphs for 95% and 97.5%
14
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confidence levels of p for some values of n from 10 to 1000. Instead of

x, they used the sample estimate p = x/n.

E. The Poisson Distribution.

A discussion, similar te that just given for the binomial distribution,
can be made for the case when the base population is Poisson distributed.
W. E. Ricker, following the original lines of Clopper and Pearson, pre-
sented this in 1937 in the Journal of the American Statistical Association.

He gave the formula

x4+ 1,92+ 1,960~ +1.0

for the 95% confidence limits of g = N\ for an observed value of x, while

for 99% confidence he gave

x + 3.32% 2,576 Nx+1.7.

Actually, Professor Pearson suggested this to him via the fact that the
Poisson distribution gets more and more normal as the mean M\ increases

so that the end-points of our random interval for a confidence of 1 - 2a is

2 2
\2 -)\(Zx+za) + x* = 0,

Limiting ourselves to large values of x that might occur in a sample, we
sometimes consider the result as an estimate of tlie mean, hence also of
the variance of the assumed base Poisson distribution to which it belonged.
Then the estimating random interval end-points, say for 95% confidence,

are taken to be
x+ 1,960 Nx,

15
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essentially two different methods as given in Table V.

Table V
Confidence
95% 99%
Lower Upper Lower Upper
Formwas Used Limit Limit Limit Limit
Pearson-Ricker 37.9 65.9 34,8 71.8
0O1ld Method 36,1 63.9 31.8 68. 2

[

By way of comparison we have for x = 50 the estimators by the

¥. Examvples Using Confidence.

1. Problem l. Suppose you know a certain part has its quarterly
demands uniformly distributed over some interval of demand sizes

whose smallest value is zero. You wish to estimate the upper end-point,

call it a, of the interval. Now suppose you have a sample of size 20 and
its mean is 2, 2, What are the 90% confidence limits for a?
a. Soilution. The distribution function can be written

it

f(x)=}., 0 S x < a,
a

Now its mean and variance arc easily computed tc be

&

1

=
~nN

n
ol %

/
O
7
16 \ //
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For 1 - 2a=.90, we find 2z, =1.645. For samples of size n, the standard - :

deviation of the means of such samples is

§ j
: {
- = Tx =a/'~/12 . _2 I
X N'n N'n 12n z
L] i
Hence f
- a | ‘
X-3 ;
Pr¢-1,645 € e <+1.645$ £ .9 ‘
a/N12n J

So the two values we seek for bounding a are

L

2T, 1.6
2 Alan

When n = 20 and x = 3, 2, this gives the values 5.3 and 8.1, So our con-

fidence interval estimate for a is (5.3, 8.1).

i

2. Problem 2. A sample of 100 stock items indicated 55% were on

hand. Find 95% confidence limits for the prorortion of on-hand items

in the entire stock.
a. Solution. This is, like Problem 1, calling for a two-

sided interval estimator. The estimate as given by the formulation on

page 14 is

| (55)(.45) _
f .55&1.96'\/:-—11—0—(:— = .55 +,10

@’ Therefore we can be 95% confident that the true proportion lies in the

interval (. 45, .065).

N
A5
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3. Problem 3. An analysis of 40 randomly selected requisition

S

R

cards revealed that 24 were from the same Navy Supply Center. Find

17 \(y
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95% confidence limits for the actual proportion of such cards to be expected
in the leng run frora this same center,

a. éolution. If we assume the binomial distribution with
n = 40 and p = 24/40 = .6, then the Clopper-Pearscn tables give us the
interval estimator (.45, .74). If instead, we assume the normal distri-

bution and use the approximating formula, we get

60 + 1.967\/{:0)(.4)
) 40

or the confidence interval (.45, . 75).

4, Problem 4. Suppose our random variable x is gamma distributed
and that from a sample we find the first decile (10% cumulation) is i.33 while
the ninth decile {(90% cwmrwulation) is 5.62. Find the shape and scale of the
parameter,

a. Solution. This is a deterministic problem in that the two
empirical values given completely determine o and B. To see this,
compute the value of the quotient of the 10 percentile value and the 90
perceniile value, namely 1.33/5,62 or , 236, Note in Table VI that this
value of this ratio is found in the right-hand column and opposite to a = 2,5,
Now in Table VI opposite to a = 2.5 we find X/f is 1,417 at the 10th
percentile and is 6. 008 at the 90th percentile. This overdeterministic

situation gives the following two equations for B

}_EEZ = 1,417 and ?.-E@ = 6.008

p = 1:33 = 938 p = 562 o o935
1,417 6. 008
18 VS
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Since each yields essentially the same value, .94, we accept it and feel

some justification in the assumption of the gamma distribution. No con-

PP

fidence estimation was used here.

8
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5. Problem 5. We know that a demand random variable is normally

R

distributed N, ¢*) and ¢® =100. A sample of size 25 is drawn and the

observed mean x is 250, Find 95% confidence limits for the unknown
population mean .

a. Solution. Since the sample size is close to the border

value of 30 beyond which we usually assume the sample means are normally

e R S S N e S T U

distributed, we might as well invoke the same hypothesis. Then our

confidence interval becomes

wo= 250+ L9800 aen s 3
NZ5 ;
g e
; or (246.1, 253.9). :
6. Problem 6. From a population of unknown parameter p repre- é :

senting a proportion having an attribute, a sample of 400 yields 320 with

this attribute. Find 90% confidence limits for p, the true probability of

e S e N S FA W A gy A

the attribute.

$ a. Solution. Denoting our empirical value of p by P, our
P 90% confidence interval is given by
|
. p+ i.65T\[RL=D)
which for p = .8 and n = 400 becomes {. 767, .833). .§
&
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Table V1

Ratios Facilitating the Estimation of the Parameters @, f of the Gamma

Distribution
a D, /M D; /M E@/h& D, /Dg D, /D; D, /D, %
-5 Curve J-Shaped . 0348 5.960 . 0058 }
0 Curve J-Shaped .152 3,323 . 0455 i
.5 % 2.366 6.252 . 247 2. 642 . 0934 ‘
1.0 .bh32 1.678 3,890 . 317 2.318 137 E
1.5 .537 1.451 | 3.079 |.370 2.122 .174 !
}
i
2.0 . 551 1.337 2,661 .412 1.990 . 207 ;
2,5 . 567 1. 269 2,403 . 447 1.893 . 236
3.0 .582 1.224 2.227 . 475 1.819 . 261
3.5 . 595 1.192 2.098 .500 1.760 . 284
4,0 .608 1.168 1.999 .521 1,711 . 304
1
4,5 .620 1.149 1,920 .539 1.671 . 323
5.0 . 630 1,134 1.855 . 556 1.636 . 340
5.5 . 640 1.122 1.801 .571 1.606 . 355
6.0 . 649 1,112 1,755 .584 1.579 . 370
6.5 . 657 1.103 1.716 .596 1.556 . 383
7.6 . 665 1.096 1,682 .607 1.535 .396
7.5 . 672 1. 089 1.651 617 1.516 . 407
8.G .679 1.084 1,624 .627 1.499 ,418
8.5 ., 685 1,079 1,600 .635 1,483 .428
9.0 . 691 1.074 1.578 .643 1.469 . 438
9.5 . 697 1,070 1.559 . 651 1,456 . 447
10,0 . 702 1,067 1.541 . 658 1,444 . 456
11,0 L712 1. 061 1.509 . 671 1.423 .472
12,0 . 720 1.056 1.482 . 682 1,404 . 486
13,0 . 728 1,051 1.458 .693 1,387 . 500
14,0 . 736 1,048 1,438 .702 1,372 .512 ’
15.C . T42 1,045 1.420 L7111 1,359 .523
20,0 . 769 1,033 1.352 . 744 1.309 .569
25,0 . 789 1,027 1,308 . 768 1.274 . 603
30.0 . 804 1,022 1,277 .786 1, 249 .629
*Mode to left of D3y, Where: D = ith decile; M = mode.
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Table VII i “ ]
g L
% !
Selected Percentage Points of the Gamma Distribution: Values of x/p § ;
z :
Corresponding to Stated Values of F(x) % (
(% 7' '
f F »
% a . 05 .10 .25 .50 .75 .90 .95 : !
§ -.5 .00197 | .00790 | .0508| .227 | .662| 1.353| 1.921 :
: 0 . 0513 .105 . 288 693 | 1.386| 2.303| 2.996 g '
§ .5 176 .292 606 | 1.183 | 2,054| 3.126| 3.907 | ‘
£ 1.0 . 355 .532 961 | 1.678 | 2.493| 3.890 | 4.744 3
3 1.5 .573 . 805 1.337 | 2.176 | 3.313| 4.618| 5.535 g
2
¢ 2.0 .818. 1.102 1.727 | 2.674 | 3.920| 5.322| 6.296 5
& 2.5 1.084 1.417 2.127 | 3.173 | 4.519{ 6.008| 7.034 % |
i 3.0 1.366 1.745 2.535 | 3,672 | 5.109| 6.681 | 7.754 )
% 3.5 1.663 2,084 2.949 | 4.171 | 5.694| 7.3421 8.460 5
: 4.0 1.970 2.433 3.369 | 4.671 | 6.274| 7.994| 9.154 g 3
& !
i 4.5 2. 287 2.789 | 3.792 | 5.170 | 6.850| 8.638] 9.838 § |
- 5.0 2.613 3.152 4.219 | 5.670 | 7.423| 9.275]|10.513 = :
k 5.5 2.946 |{ 3.521 | 4.650 | 6.170 | 7.992] 9.906|11.181 i
: 6.0 3. 285 3.895 5.083 | 6.670 | 8.558 | 10.532| 11,842 ] %
3 6.5 3.630 4,273 5.518 | 7.169 | 9.123} 11.154{ 12.498 %
?
% &
¢ 7.0 3.981 4.656 5.956 | 7.669 1 9.684| 11.771| 13.148 %
: 7.5 4.336 5.043 6.396 | 8.169 {10.244| 12.384} 13.794 %
{ 8.0 4.695 5,432 6.838 | 8.669{10.802|12.995| 14.435 &
4 8.5 5.058 5.825 7.281 | 9.169 {11.359] 13,602 15,072 "
; 9.0 5.425 6.221 7.726 | 9.669 |11.914| 14,206 15.705
% 9.5 5.796 6.620 8.172 |10.169 }12.467| 14.808] 16.335
: 10.0 6.169 7.021 8.620 |10.668 13,020} 15,407 16.962
: 11.0 6.924 7.829 9.519 |11.668 |14.121} 16.598] 18. 208
b 12.0 7.690 8.646 |10.422 {12.668}15.217| 17.7€2] 19.443
; 13.0 8. 464 9.470 {11.329 |13.668 |16.310] 18.958] 20.669
' 14.0 9.246  110.300 {12,239 |{14.668 [17.400]| 20.128| 21.886
; 15.0 10.035 |11.135 |13,152 |15.668 |18.487| 21.293]| 23,098 &
} 20.0 14.072  |15.382 [17.755 |20.668 | 23.883| 27.045| 29.062 7
; 25.0 18.218 19,717 22.404 |25.667 | 29.234| 32.711{ 34.916 B
{ 30.0 22.444 | 24.113 | 27.085 |30.667]34.552| 38.315]| 40.691 §
i b3
§ ey
! & ‘
21 ‘./"«' %
- %
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G. Comparison by Two Samples.

Sometimes we want to compare the means of two samples. Really
we should say we are interested in how great may be the difference between
the rneans of their base populations. Denote these two means by p; and
p2 and also denote the sample size by n; and n,, respectively, with
means X; and X,, respectively. If the samples are lerge, then we learned
in the previous course what the variance for ¥; - X, is in either a finite
population or an indefinitely large population in terms of the variance of
each population. At that time we also remarked that the difference % - %,

is essentially normally distributed. Hence

;El -322 - (i -P-z)

UX! Xz

is N(0, 1), or

Pr{-zc <H % - by - 1o ) <+ Zc} = .
X1 -%,

The above symbolism is a slight break with the convention of writing «
for ¢ when it is the subscript and of writing 1 - 2¢ for ¢ on the right
side of the last expression. It seems more natural to write simply what
we just did and realize that for, say ¢ = .90, you must pick 2z, so that
F(ze) = .95,

From our discussion in the previous course you will recall we use

for 0= ~—
Xy =Xz
o’ ol
XL+ %2 for indefinitely large populations and
m nz

AN
A
.
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g T (T - m) % (N 22 for £ ul

A |+ —*—2=1 for finite populations.

gf’ n Nx - 1 nZ lNz —1

|

Rewriting our previous probability statement we obtain the confidence
interval estimate for p; - u;,

Pr{x1 -X - Z(-:O"}-El _?‘-z < B = K2 < X3 - X 4 zco-.i_l -‘}'{.z} = .

EE TN

2
When the v and 0': are not known, we may replace them Ly their

R R P R AR B B e 3 W

x4
ro,

SRR

X

. 2 2 .
sample estimates, s; and s; , respectively.

1. Ilustration. For a particular Federal Stock Number (FSN) we

find that out of 580 orders in one vear, the mean demand (average requisition
size) is 34. 4 units per order and the standard deviation is 8. 83 while in

the succeeding year from 786 orders the mean demand is 28. 02 and the

A S T

standard deviation is 8.81. What are the 95% confidence limits for the

AR B

difference of the means of the two conceptually different populations?

a. Solution. For c¢ = .95 we have Zc = 1,96. Therefore

the limits sought are

2
(34. 45 - 28.02) + 1,967 /(8:83)° 4 (8.81)
580 786

P T T ST R R TR

i3 T
i it o in

6.43 £ 1.96 X .84

or 6,43 = ,95

RSy

Y,

e

So we are 95% certain that if there are two different patterns of behavior

L

e

%

for each year, the means differ by no less than 5. 48 and by no more

than 7. 38,

If we are interested in confidence limits for the difference of two

population proportions, p; and p;, then really this is simply another

e e AN, I NG LA, OYLpe
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application of the general theory we just learned. The excuse for remarking

A r ey i s A s b =

on it lies in the simplicity of the resulting expression. Suppose P, and P,
are the sample estimates from samples of size ny and n,, respectively,

Then

(Br_-P2) -(p -pp)
UP: -P2

is N(0, 1) and so

Pr_-Pz - (pr_-P2) s
pr{_zc<P Py - (p1_- P2 <+Zc}-°-

o
P1-P2

Now using the sample estimates for our required variances we have

o2 _ b -%) +Pz(1"Pz)

P1 =Pz n na

for indefinitely large populations

or

il -D1) [Ny -nx‘+ Pl -B) [N, - mp)
ny N, -1/ n, N, -1

for large finite popul.ations.
Rewriting our previous probability statement we obtain the confidence
interval estimate for p, - p;,
Pr{d - B - 2c0p p, <P1 =Pz <P -2 + 205 5} ¥ c.
2, Dlustration, One FSN was ordered in 230 days out of 400 days
while another was requested 200 out of 500 days.. Find 95% confidence

intervals for the difference between the conceptual rates of demand,

24

B ssdoame o




S R R B T A e RTRY

TEY

e R g YA e B AT B o G R €7

TN AT A T S RO e T P

.o e L YMETTFAY SRR

B el S

T My e - DI N or - - - A g F AR TGN T AEAGR e s o

a. Solution. Assume indefinitely large populations. For

¢ = .95 we have z¢ = 1.96. Therefore the limits sought are

1230 200y 4 5en\/ (230/400)(1 - 230/400) , (200/500)(1 - 200/500)
\200 ~ 500/ v 400 500

(.575)(. 425) , (. 400)(. 600)

(.575 - .400) £1.9¢ 400 00

or .175 %, 065
So for all practical purposes we might say the difference between the

mean demand rates lies between ., 110 and . 240,

25
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II. SMALL SAMPLE THEORY

A. Some History of Research and Development.
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In 1908 in the paper entitled " The Prcbable Error of a Mean' appear-

ing in Biometrika, W. S. Gossett, alias ''Student," wrote

" Any experiment may be regarded as forming an individual
of a " population' of experiments which might be performed under
tne same conditions. A series of experiments is a sample drawn
from this population.

""Now any series of experiments is only of value in so far
as it enables us to form a judgment as to the statistical constants
of the population to which the experiments belong. In a greater
number of cases the question finally turns on the value of a mean,
either directly, or as the mean difference between the two
quantities.

"If the number cf experiments be very large, we may have
precise information as to the value of the mean, but if our sample
be small, we have two sources of uncertainty: (1) owing to the
"error of random sampling' the mean of our series of experi-
ments deviates more or less widely from the mean of the popu-
lation, and (2) the sample is not sufficiently large to determine
what is the law of distribution of individuals. It is usual, however,
to assume a normal distribution, because, in a very large num-
ber of cases, this gives an approximation so close that a small
sample will give no real information as to the manner in which
the population deviates from normality: since some law of dis-
tribution must be assumed it is better to work with a curve whose
area and ordinates are tabled, and whose properties are well
known. This assumption is accordingly made in the present
paper, so that its conclusions are not strictly applicable to popu-
lations known not to be normally distributed; yet it appears
probable that the deviation from normality must be very extreme
to lead to serious error. We are concerned here solely with the
first of these two scurces of uncertainty.

'""The usual method of determining the probability that the
mean of the population lics within a given distance of the mean of
the sample is to assume a normal distribution about the mean
of the sample with a standard deviation equal to s/ NE n, where s

%‘ is the standard deviation of the sample, and to use the tables of

: the probability integral.

i " But as we decrease the number of experiments, the

: value of the standard deviation found from the -ample of

; y ‘}:’
i 26 ~
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experiments becomes itgelf subject to an increauing error,
until judgments reached in this way become altogether
misleading. "

A few paragraphs later, Mr, Gossett goes on to say

" Again, although it is well known that the method of using
the normal curve is only trustworthy when the sample is
"large,'" no one has yet told us very clearly where the limit
between '"large" and ' small" is to be drawn. '

"The aim of the present paper is to determine the point
at which we may use the tables of the probakility integral in
judging of the significance of the mean of a series of experi-
ments, and to furnish alternative tables for use when the num-
ber of experiments is too few."

The reader must be wondering by now why we classify this concern
under the heading " Small Sample Theory." Actually it's not the size of
the sample that is the basic concern--it is the estimating of the base popu-

lation standard deviation from the sample and this estimate goes to the

lean side when the sample size is small. However, if we know the standard

deviation of our base population for which we are attempting to ascertain
the mean and if the base population is essentially normal, then the means
of samples of any size are normally distributed and we use the z¢ for our
confidence ¢ on the base population standard deviation divided by Nn,

The problem arises, as Gossett said, when the base population is
unknown, even though assumed normal, because then we cannot use the 2z
confidence limits since ¢ is not known. That is, we don't know when we
can use it, supposing there are such times, and further, when we can't
use it, we need to know how to modify z¢ to get confidence c.

The sum and substance of the mathematical problem is to find for

a sample {xy, %, ***, Xp) of size n from a population Nfu, o?) the C‘/

27
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theoretical distribution of the random variable

t = 5_{—_..:_&.
s/Nn

where s is the standard deviation of the sample set of numbers.
Fortunately it can be proven that this distribution function does not
involve o, the population standard deviation. Mr, Gossett first obtained
the distribution of s° in random samples after having examined many
empirical situations. He did this by using the relation connecting the first

four moments of the Pearson Type III curve

y = A - le L s e > 0,005 0,
which generalizes the gamma distribution and hence also the chi-square
distribution to be studied later. Knowledge of the first four moments of
any frequency function belonging to Pearson's system is sufficient to deter-
mine that function.
Tediously, as Gossett puts it, he obtained the moments (Mj) of s?
about its mean (since he used the bias formula he calculated the mean of

s to be p2{n - 1)/n) to be, in order,

0, Zp.zz(n - 1)/n%, Bp: (n - 1)/n3, 12;3.; (n-1)n+ 3)/n4,
so that

Bp = 8/(n-1), Bz = 3(n+3)/(ln-1),
where B; and B, are ' shape predictors' not sensitive to magnitude of

the data. These values satisfy the Pearson criterion

3 S N

-
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for a Type III curve. Consequently Gossett said he believed that s

followed the law

: y = cxPe ¥¥
| where
3
y=2M < 4dl-lo o o
M, 8n’pi(n - 1) 2y,

i

- o4 .1.m-l_y-n-3,
P B 2 2

Consequently he got

n-3 nx
2 2

fg2 (x) = ecx e

The distribution of s may be found since the frequency of s is that

of s* and 21l we must do is to compress the base line suitably. Gossett

reasoned
i o= ols®)
Y2 = Y(s)
) Then V1 d(s*) = y,d(s).
c y2 = 28y,

|
i . ns?

n-3 .ns_
Ce Vs 2cs(s?) 2 o A
2

n-ze 2“‘2

2¢cs

or
nx?

- ——

fg(x) = Axnnze 2z
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Next he derived the distribution of . z = x/s, the distance of the mean of

sample measurements in terms of s, for which he got

Gt £ AP T e

-n/2
ln-2n-4 .53 @42 i
2n-3n-5 =3 | » B odd 'I
y{z)

2 ] :
}_n-Zn-4 _._1+z -/ % *

Tn-3n-5 31( ' » @ even :

or %
% :
(3} -
5. -n/2 5
y = —— ._..._.__1(1+ 2%) i

which has the following descriptive values:

c =1/Nn-3, B =0, pg =3/(n-3)n-5), B, = 3+ 6/(n - 5),

And it is symmetric about zero so if we wanted to fit a normal to it, we

e b e n e e i i o

would use the given formula for o, (¢ = 1/Nn - 3). Remember, I'(n + 1) =

A A ST AR BRIV AR IAOIIY, S0, Yy R Rt ST

nl'(n) was generalized from the case when n is a positive integer and then

Tla+ 1) =

B LI PEAGEDEN Al - Ve

Now Gossett' s original papers suffered from two defects:

R S S AR R s e

T R e B Y

1. As n increases the z-scale becomes very close.

P R

2, Except in the case for which it was designed, n, the number in
the sample, is not the best number under which to enter the table, but

n - 1, the number of degrees of freedom, is .

So at Fisher's suggestion new tables were constructed with argument

. t = z¥n' where n' is now one less than the number in the sample, which

e AR
b

Gossett temporarily called n'. So if we switch from z to the more familiar

b
o5 s

A

t, then we could say that the new variable and old variable are related by

e ey
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2 = (n-1)z%
dt = Nn-1dz

Moreover we get to see again how when we stretch (or compress) units

horizontally, we must do just the opposite vertically to preserve area. In
this case the distribution of t is found from that of z since the frequency
of t is equal to that uf z so that all we have to do is expand the base line

suitably. So we find written in many books

which may not be as appealing to some people as the original form of
Mr. Gossett.

The new descriptive values are

T ;\/-2:}’, , Bt =0, pg = 3(n - 1%/(n - 3)n - 5),

B, = 3+ 6/(n - 5,

The parameter n - 1 is called the degrees of freedom. For small n

this t-distribution differs considerably from the unit normal distributions
which it approaches as n increases without limit, In Figure 4 the graph
for n = 4 is compared with that of the limiting normal. Here it can be
seen that the probability of a large deviation from the mean is much larger

in the t-distribution than in the normal case,

%)
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Student's t, n= 4 . :
. [
% |
Standaird Unit Normal 4 3 J
LS
i
H
4
5 igure 4 <
b :
¥ To see that the normal distribution is the limiting distribution we % i
. write f,(t) as g
L t g
i 1 ntl % :
1"(3 + -—) _l —— 7 '
2 20 N2y 1 1+ £ ) 2 4 :
Tmy Nalves ! 'a I
; 3] :
;
i 8 H
L The factor in brackets can be shown to approach unity and for every fixed t, @
.
i n+ 1 £ t* :
] log 1+5) -~ -5 I
] g 2 g n 2 <
g
:; Hence
3 £(6) /2 g
P t) > —— e . 5
i n N 2w §
: § All of the above remarks can be gleaned from Table VII of values %@i
. % that gives t_ for confidence c¢. Consistent with our notation heretofore %
H
d let us write B
{ 2
§ o
: g
{ 7
' % for " the probability density function of the random variable known as i
A Y D
H v
ha { J’-' }I‘ i‘;%g
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Table VIII. Values of t, for Centered Confidence Interval

Degrees of c
Sample Size Freedom
n n-1 99 . 95 .90

2 1 63.657 2,706 6.314
3 2 9.925 4.303 2.920
4 3 5. 841 3.182 2.352
5 4 4,604 2,776 2,132
6 5 4,032 2.571 2,015
7 6 3.707 2, 447 1.943
8 7 3.499 2,365 1.895
9 8 3.355 2,306 1.860
10 9 3. 250 2,262 1.833
11 iG 3.169 2,228 1.812
12 11 3.106 2,201 1.796
13 12 3. 055 2,179 1.782
14 13 3.012 2.160 1,771
15 14 2,977 2,145 1,761
16 15 2,947 2,131 1.753
17 16 2,92 2,120 1. 746
18 17 2,898 2,110 1.740
19 18 2,878 2,101 1.734
20 19 2,861 2.093 1.729
21 20 2,845 2,086 1.725
22 21 2,831 2,080 1.721
23 22 2,819 2.074 1.717
24 23 2,807 2,069 1.714
25 24 2,797 2,064 1,711
26 25 2,787 2,060 1,708
27 26 2,779 2, 056 1,706
28 27 © 2,771 2,052 1.703
29 28 2,763 2,048 1,701
30 29 2,756 2,045 1.699
31 30 2,750 2,042 1.697
41 40 2,705 2,021 1,684
61 60 2,660 2,000 1,671
121 120 2,617 1.980 1.658
0 -z~ 00 2,576 1.960 1.645

33




1

R SN

Student's t - when the sample size 15 n or the number of degrees of
P g

e v

# freedom isn ~1."
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It is apparent from Table VIII that s underestimates o on the average

s

for a fixed n. For any given confidence as n decreases to zero, the con-

fidence coefficient t increases. On the other hand for large n we see that

t. is practically z. and that in the limit this equality exists. Also itis

4
n

i

to be noted that t. settles down faster for larger values of c. For example,

when n goes from 10 to 11, t, changes by only .02 for ¢ = .90 while it

o
¥

R ST g s i A s S OB X

3 changes by .1 for ¢ =.99, ;

2

E’ Gossett, in concluding remarks, expressed belief that if the base %5

% population distribution is not normal and if, consequently, the mean and %

:% standard deviation of a sample have greater variability, still they will tend %

; to counteract each other, a mean deviating more from the general mean &:

% tending to be divided by a larger standard deviation. Experience in sub- =

‘ sequent years showed him correct for small samples of size less than 30 :
from populations sufficiently nearly normal. i

- 3

B. Using the t-distribution.
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So, if we want to estimate the mean p of a base population by using

RET
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-
J&m{‘“
rar 7

a sample of size n whose mean is x and whose standard deviation is s,

.
3;3;,;;,;{’ -
o fead 7

X,
A
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we simply decide on the desired confidence c, then look up t; forn -1

o e
.
i

degrees of {reedom. It follows that we can say

-
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. Pr{-tc < X-p <+tc} .
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or

Pr ':E-tc—J_f- <.¢<3’£+tc.~7_s._} z c.
n n

Once again we have a random interval

(;z-tc__i_, X+ tc%}

n n
which 100c¢% of the time should include p.
1. Qlustration. A set of 11 requisitions for a particular stock

number has a mean x = 4 (average requisition size) and a standard deviation
s = ,6., What are the 95% confidence limits for the true mean (u) or the
average requisition size for all requisitions for this stock number?

a. Argument. Since n -1 =10 = degrees of freedom and |
c =,95, we find {rom Table VI that te = 2, 228. Therefore the 95% con-

fidence limits for p are

4 & z.zzs(-'-i) = 4% 4

N11
or the estimating interval is (3.6, 4.4). i
Suppose x; and X, are the means of two samples {x11} and {x;;}

of sizes n; and n,, respectively, from the same base population. Then

T % - la ~p2) o X -F - (- )
’0_2 . UZ o-.\/nl +ng
-~ - ny n;
ny n2

will be normally distributed N(0,1). Now we must estimate ¢ from our

sample data. You may recall that when we pooled two sets of data that

Lad the same mean we found the pooled variance to be the weighted

35 s
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¥
s arithmetic mean of the two variances, namely : '
g {
g 2 N 2 2 : 1
K S = [ (nl - 1)81 + (nz - 1)82 ] /(n1 + n, - 2). i 5

Consistent with this, if we let

it s 2 S ————

m 2 n, 2
S, = Z(Xli':‘zl) y Sy = Z(xzj-;i-z),
i=1 j=1

AT T R

we estimate o by

SR I Pt SRR ik T e R LR LA et

N
5 =
n1+n2-2

When this sample standard deviation is used in place of ¢, then

’fg f
¢ x -% -y -pg) % % .
‘ YL+ L N
£ n n & -
& ' 2 g .
%’5 is distributed as " Studeut's t" with n; + n, - 2 degrees of freedom. $ ‘
55 b
i“ Therefore we can say : : :
5 ;
2 % - ) ' -
3 Xy = Xp - . .
é Pr{-t, < 2—T2—BLZP2l <+ ¢ ) 2 ¢
@ l /L, ]
%;‘ m N, %
4 .;:~
¢, or the 100c% confidence interval estimate of p; - p, is 3
¥

¢ ——— — —— — 1 ] 1
- X) ~ X = teS _1-+—1-,x1-xz+t¢s —_—T ],

n

nl nz ni 2

-

2, Dlustration. Suppose two sets of quarterly demand observations are %5 : ]
D D, : .
4
3 16 17 =
é\ i 2}
4 16 27 i 5
A ¥
¢ &
: 20 18 :
: < 3
1 R P =
: 7, 5 4
N
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16 25
20 27
17 29
15 27
2l 23

17

Estimate the difference u; -y on the assumption they each came from a
different base population.

a. Argument. First we calculate

n = 8 n, = 9
X =D =17.62 X, = D, = 23,33
S, = 37.88 S, = 184,00

S; +8, = 221.88
'}-{-[ - -)Zz = 5, 71.
Then the estimated variance of the difference between the means is given by

s(ny +1n,) _ (S) +S,){m +1n,) o (221.88)(17)
n Iy (n; + n; = 2)(ny 0y} (15)(9)(8)

= 3,50
and the estimated standard deviation is 1, 87. Hence for degrees of freedom
(np + n, -2) = 15, we have for, say 95% confidence, *he interval estimate
for py - pp of
5,71 + 2,131(1.87) = 5,71 = 3.98
or
(1.73, 9.69).

/ / ‘f/'
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Another conclusion of a confidence type can be drawn. We are 95%
confident that the means of the two assumed base populations are different
since the lower end-point of our estimating interval is positive. If the
value zero had been included in our confidence interval, then equality of
the means would not be rarer than 5% of the time due to chanca.

3. Illustration. Here are two sets of demands that certainly appear

to be alike. It must be remembered that we test by virtue of the quotient

gg of our sample means' difference and a pooled estimate of standard deviation.
s D D,
£
g 79.98 80. 02
£
¥ 80. 04 79. 94
g 80, 02 79. 98
%y 80. 04 79.97
§ 80. 03 79.97
¥ 80. 03 80. 03
*3
i 80. 04 79. 95
]
: 79. 97 79. 97
A 80. 05
%«'
? 80. 03
E 80. 02
% 80. 00

80.02

o e

a. Argument, We find D, = 80.02, D, = 79.98, n, = 13,

- e

n, =8, st =. 000574, szz =,000984. Therefore our estimate of ¢ is

38 ~a
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. =-\/12(. 0005741)9+ 7(.000984) _ yTGOGTIE = . 0269

Now for ¢ = .95 and degrees of freedom =19, we find from Table VIII that

te = 2.093, So our error term becomes

\/BLEB2 = 2,093 x . 0269 x 13+8 _ 455
te* Vm, 1093 X 0269 X \[z5os =

and we find that with 95% confidence these two sets of demands come from

separate populations the difference of whose means is , 04 t,025. Or we
can say we are 95% confident the true difference of the base population
means lies in the interval (. 015, . 065).

Again we can also be confident that the two base populations have

different means,

C. Chi-square.

Of irterest is the sample random variable

2 2 2
(5 =% + (% -%) + ¢+ (x5 - %)

o

which can be written equivalently as

(n - 1)37‘.

6‘2

V/I:an the samples of size n are drawn from a normal distribution with

variance ¢?, this new random variable has its density function given by

£ . '9{—1 -1 (n-1)s*
1 (n -1}’ “© " (202
(_r_x_-_l_l ;n-l“ o2 ) e (27 .
PANEI o ) )
A
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Karl Pearson may have used an awkward symbol to replace this variable,
but he wanted to ' characterize a sum of squares." Sc he picked the Greek
for ""ch' which is x and then put a 2 on it in exponential position, He
called the symbol e , ''chi-square," and wrote the above probability

density as

i(x*) = (n -l non x2) %e

n-3 x
2 "2

We say this is "y® withn -1 degrees of freedom' and that

(n - 1)s® , (n-l)sz)
2 2
Xuc XLe

is a 100¢% confidence interval for ¢ while

Nn-1lsg , Nn -1 s)
2 / 2

\/;UC *Lc

is a 100c¢% confidence interval for ¢. In keeping with our earlier method

of notation we will write

feh? n-  X°) for HXF)

Looking back to page 90 of ALRAND Report 50, Volume I, we see
this is simply I with X = 1/2and k = (n - 1)/2,

1. Ilustration, The standard deviation of a random sample of 16
requisitions for an item is 9.6/N'15 based on units per requisition,
Agsuming the requisition size in units per requisition is normally distributed,

find 95% confidence limits for the standard deviation of the historical

WY
40 )
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requisition size for this item and also for the size of requisitions to be
experienced in the future.

a. Argument. The degrees of freedom aren -1 =15, For

¢ =,95, we find in Table IX

2 = 2’
Xggs = 21:3 X 55 = 6.26.

Hence

2 - 2 -
VX.975 = b, 24, Vx_oz5 = 2,50

and our confidence interval estimate is

or

(1.83, >.84), roughly (2, 4).

A few additional remarks are in order about this distribution function.

The graphs of a few look like Figure 5.

01 2 3 4 5 6 7 8 9 10 11 12

Figure 5
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Table IX. Values of the Cumulative x* Distribution
Sample| Degrees of ) .
Size Freedom Cumulative Probability
n n-1 .010 . 025 . 05 .10 .90 .95 .975 1.990
2 1 .000z2} .o001 .0039| .0158| 2,71 | 3.84 ] 5,02 | 6.63
3 2 .0201| .0506] .103 . 211 4.61 | 5,99} 7.38 | 9.21
4 3 .115 . 216 .352 .584 6.25 | 7.81 | 9.35 |11.34
5 4 . 297 . 484 L711 | 1,064 7.78 1 9.49 111.14 [13.28
6 5 . 554 .831 | 1,145 | 1.61 9.24 {11.07 {12.83 |15.09
7 é .872 | 1,24 1.64 2.20 10,64 12,59 {14.45 [16.81
8 7 1.24 1.69 2.17 2.83 12.02 14,07 {16.01 [ 18,48
9 8 1.65 2,18 2.73 3.49 13.36 | 15.51 {17.53 | 20.09
10 9 2, 09 2.70 3.33 4.17 14,681 16.92119.02 | 21,67
11 10 2. 56 3.25 3.94 4,87 15,99 | 18.31 } 20,48 | 23.21
12 11 3.05 3.82 4.57 5.58 17.28 1 19.68 | 21,92 | 24.72
13 12 3.57 4.40 5.23 6.30 18.55} 21.03 | 23.34 | 26. 22
14 13 4.11 5.01 5.89 7.04 19.81 1 22.36 | 24,74 | 27.69
15 14 4.66 5.63 6.57 7.79 21.06f 23.6826.12} 29.14
16 15 5.23 6. 26 7.26 8.55 22,31 25,00 | 27.49 | 30.58
17 16 5.81 6.91 7.96 9.31 23,541 26.30 ] 28.85] 32.00
18 17 6. 41 7.56 8.67 [10.09 24,77 27.59 | 30,19 | 33.41
19 18 7.01 8. 23 9.39 ]10.86 25.99] 28.87 | 31.53 | 34.81
20 19 7.63 8.91 10.12 |11.65 27,201 30.14 | 32.85| 36.19
21 20 8. 26 9.59 110.85 |12.44 28.41 | 31.41 | 34.17| 37.57
22 21 8.90 10,28 |[11.59 |[13.24 29.62} 32.67{ 35.48| 38.93
23 22 9.54 |10.98 |12.34 |14.04 30.81 | 33.92( 36.78] 40.2
24 23 10.20 [11.69 [13.09 |14.85 32,01} 35.17] 38.08| 41.64
25 24 10.86 |12.40 13,85 |15,66 33.20} 36.42} 39.36| 42.92
26 25 11.52 }13.12 [14.61 16.47 34.38] 37.65] 40.65| 44.31
27 26 12.20 |13.84 (15.38 {17.29 35.56| 28.89 | 41.92| 45.64
28 27 12,88 [14.57 {16.15 [18.11 36.74 40.11 ] 43.19| 46.96
29 28 13,56 |15.31 16.93 [18.94 37.92) 41.34| 44. 46| 48.28
30 29 14.26 {16.05 7.71 19.77 39.09| 42.56 45.72| 49.59
31 30 14.95 |16.79 |18.49 | 20.60 40.26{ 43,77 46.98} 50.89
41 40 22,16 24,43 |26.51 29,05 51.80) 55,76 59.34{ 63.69
51 50 29.71 {32.36 |34.76 |37.69 63.171 67.50| 71.42] 76.15
61 60 37.48 140.48 |43.19 | 46.46 74.40] 79.08{ 83.30| 88.38
71 70 45.44 ]148.76 |51.74 55,33 85.53| 90.53 | 95.02{100. 4
81 80 53.44 {57.15 [60.39 |64,28 96.581101.G |106.6 1112.3
91 90 61.75 |65.65 169.13 |73.29 [107.6 {113.1 1118.1 |124.1
101 100 70.06 |74.22 |77.93 [82.36 |118.5 l124.3 [129.6 {135.8
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When the degrees of freedom, n', is greater than 2, the mean value
is'n' and the variance is 2n' while the mode is at n' - 2.

Next, to make it obvious this new distribution belongs to small sample
theory, we note, when (x;, %, ***, Xp) is a 1andom sarmrple from N(u, o?),

that

X -

o /Nn boils down to X -
/_Z_ix,- -x!?‘_ s/Nn
—\ c(n ~ 1)

our " Student-t'" variable. Note the denominator in the first expression is

the square root of our x? divided by (n - 1) whick is equivalent to the square
root of (s®/o?). Right here you might expect that xz becomes normal as

n gets bigger. Also the choice of the concept of degrees of freedom becomes
more meaningful when we see we are really referring to the number of
random variables independently chosen from the normal distribution. In

symbols we have found -

t = ___X

AL
if x comes from N{(C,1).

Student's t, therefore, affords the solution to a variety of problems
beyond that for which it was originally intended because it is applicable to
all cases which can be reduced to a comparison of the deviation of a normal
variate with an independently distributed estimate of its standard deviation,
derived from the sums of squares of homogeneous normal deviations

cither from the true mean of tne distribution or from the means of samples.

43 . i
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; We can distinguish, by virtue of degrees of freedom, by saying that

‘;f,i

; for a random samvle (x;, x;, ***, xn) from N{u, %) both of the following :
% random variables are distributed like chi-square and further

¥ f
£ no 2 ‘%3
Z» = (-—-*—;_—-E) has n degrees of freedom

; 1 :
: while :

n - 2 i
= (zc-—‘;_—-}-{—} has (n - 1) degrees of freedom.
1

ARG

AR

There are many applications for which we need a iransformed version

2 . .
of X°. Suppose our random variables are x;, xz, **°, Xp, each being

N(0,1). Then

TR Wwy'j‘“’\"E“%\,"&%‘ﬂ‘_&&f@”'j’@\?ﬁ%}iﬁﬁx' B

Variable = x Frequency Function with n d.f{.
Doz
Z xi fch;nlx)
1
£ -
X Sl 7' nfch;n(nx)
o 1 i
: §
= x?i 2xfch.n(xz) i
1 ! %
n &
1 Zx; 2n.>':.fcl.l;n(1'1x2 ). :
n 1

A fine algebraic property of x° is that if Xi is of n; degrees of
freedom, and similarly for xi , then xi‘ + x‘;: is Xz with ny + n; degrees
of freedom. This reproductive property is shared by the binomial, Poisson,

and normal distributions.
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2, Dlustration, Suppose you are interested in only 90% confidence

in satimating the population variance o® from a sample of size 10 with

s* = 195, From Table IX we find

2 2
X = 3.33, X, = 16.92.

Then the interval estimate is given by

Pr(3.33 < 2195 < 16,92} = ,90.
o

Thus the interval estimate for o is

9(195) <« 52 < 9{195)
16.92 3,33

or

103 < ¢% < 527.

D, Fisher's Z and Snedecor's F Distributions,

In 1924 Fisher concerned himself with the distribution of quotients

of sums of squares of normally distrib-ited random variables., He called

2
1/m

PAS

2
z/nz

>

2Z .
e and found the distribution of Z, As mysteriously complicated as this

appears at first, so is the reason for it that simple. He wanted to devise
a testing function for the difference between two variances, sé and sf,
derived from two samples from normal distribution.s. If we went about
this as we have with cther statistics, wa would have considered how often
sy - s, would exceed its observed value. Of cogrse our testing statistic

45
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would have to have 0, and ¢, in it. The only way to get rid of them
would be to replace them by s; and s;, respectively. But remember
how we had to get a new distribution when we similarly changed the test

statistic

KB g X-op
o /Nn s/Nn

for small samples. Here we would be trying to revamp something like

(sp = sz)=-{oy -0,) into (sy - s3) - (00 = 0)

2 2 2 2
01 4+ 92 51 4+ _S2
an an an an

Fisher said the only exact treatment can come from eliminating the unknown
oy and 0, from the distribution by replacing the distribution of s; by
that of In £,, i =1, 2. In this way you will note our interest goes from

S
sy -8, to Ins) -ins; to In-=>
Sz

Moreover, whereas the sampling errors in s; are proportional to oy,

the sampling errors of {n s; depend only on the size of the sample from

which s; was calculated.

2Z

In 1934 Snedecor transformed the variable to e and out »f honor

to Fisher wrote F for e%%. He gave the probability element to be

r n; + nz)’ n F)
=
£5(F) = ming 4[2HF, F >,

r (nl )r‘(“’-vl + AL p
n;

where we have n, and n; degrees of freedom.
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This is a highly tabulated function for which Tables X and XI give
values of F for 90% and 95% confidence, respectively. The following

characteristics apply:

Mean = pp = 22, n, > 2
nz-Z

2

2 + -2

Variance = 0';\ = na (my :lz ) , Mp > 4
n (ng - 2) (n; - 4)

n -2 n
Mode = .2 2.2

, >2,
n; ny + 2

-

Using our definition of x?‘ for samplzs, we see thatif nj +1 and n, + 1

are the sample sizes (then n;, and n, are the degrees of freedom),

2

mS
Xf/nl - n10'12 - 312/0'12 = F
X/, Resz  silof

n; o,

Just as in the nonsymmetric case of x°, we here will designate, in

contrast to the symmetric cases of the normal z and Student t, our lower

and upper confidence limits multipliers by F1,c and Fyg, respectively.

What is tabulatad is the ratio of the sample variances of different
sizes from a standard unit normal distribution. Like the t-distribution,
it is independent of population variance if both samples are drawn from

the same population, i.e.,

2 2
F o= 51 /0'2 . 51
- ._2_-_.__ - —T.
2
s; /o S
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Our general probability statement, therefore, for any two difierent normael
populations and for any two different size samples with variances s;z
and szz is
st /s~
PrFLC<T-—%<FUC = ¢
oy /o
or

2 2
1 sf g 1 s
Pr 2L <« < — 2LV

Fyc Szz . O'zz Fic Szz

This gives a probabilistic hold on relative precisions, if you will,
from two samples and thereby on the variance ratio 0_12/0_22 .

The tables are set up for ratio values greater than unity, that is,
for a larger vaviance in the numerator, i.e., for F > 1. Consequently
the lower confidence limit, Fj , for a fixud confidence cannot be directly
read from the table. However it can be found by using the table.

Think of the ratio F = sf /s as in Figure 6.

FLC 1 FUC F = s1 /s,
Figure 6
1 . / 3
48 7
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Since the identification of which sample's variance is in the numerator is

arbitrary, we see that

Pr{F <1} = Pr{F > 1} = 1/2,
Suppose we wish to find for confidence ¢ the FyCc and Fy¢ when the
numerator sample has n) degrees of freedom and the denominator sample
has n, degrees of {reedom.
Since Pr{F > F'} = Pr{F < 1/F'},
but also Pr{F <1/F'} = Pr{1/F > F'},
we have FLClny,ny) = 1/FUuC(n,,n )
where F' is a specific value of F.
1. Illustration. Suppose we have a sample of size 8 with variance
7.14 and a sample of size 10 with variance 3.2l. Find a 90% confidence
interval estimate for the quotient of the popualations' variances.
a. Argument. The larger variance goes into the numerator
of F, so oy =7 and n; = 9. Then
F = 7.14/3.21 = 2,22,

From the 95% cumulative Table XI we see that

Fyc(r,g) = 3-29 while Fyeqr, ¢y = 1/ Fyc(o, 7)

= i/3.68
S B S 9
. by m 0.12/0'2'2 . 9 = 7
0'2
or Pr}-—ﬁf_(Z. 22) <« L < 3,68(2.22)) £ .9
\3. 29 o7




So a 90% confidence interval estimate of the quotient of the population

variances 1s (.67, 8.18).

2. Iliustration. Two different samples of size 25 each have variances

N R TIC N Da

1.04 and .51. What can be said about the population variances?

a. Argument. By an argument similar to that in the previous

illustration, we find for n; = n; = 24 and for ¢ = .90 that Fyg =1.98 =

1/Fi¢

s Pr{elo< 10451 ¢ 1.98} : g
1.9 oy [0y

or  Prl 1.04 o g2ygr oo (1.04)(1.98)} : .9
.51(1.98) .51

2, 2
So (1.03, 4.04) is 2 90% confidence interval estimate of the quotient ¢} /o, .

R T R B T R A Y R Y

It should be noted that this F-distribution includes the normal distri-
bution, the Xz -distribution and Student's t-distribution as special cases

: per the following:

T R L R TR BRI R T SRS SRR e <o

; 2
(n, =0 ~ F = /my.
; = 2
% {2Yn =0 = 1/F =x"/n,.
: (3)m =1 ~ NF =t :
p 3
¢ (4) ny =1 %
% }-—» T = ¥ ég
L n, = o0 o
@ % 2
3. There is a very important point to make regarding the nced for
P!
an F-distribution analysis before making a t-distribution analysis on the §
{ £
: difference between two sample means such as was done in the illustration ‘%’E‘
b
e
!
50 - &
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in paragraph B3, page 38. Therein it was assumed the variances of the
base populations were equal and/or both populations were the same. We
pooled the two sample variances to get a good estimate of this variance
which the application of Student' s t reeded and assumed was the same for

the two base populatiorns.

Therefore it falls upon us, prior to a Student's t analysis on the
difference of the sample means, to determine whether the sample variances
are enough alike to support the assumption that they are independent esti- ;
mates of a common population variance. So the F-distribution should
enter the scene first.

4. Finally, and in contrast, for large samples we should remember
that the twc sample standard deviations are analyzed by considering the
variance of the actual random variable difference of:i\?g‘te two standard
deviations and that we do this by using the variance .o‘f' the distribution of
sample standard deviations which is ¢ /2n.

a. Illustration. Two independent samples of sizes 744 and
22 have standard deviations 1.6 and 2.1, respectively. Compare the
samples with regard to the possibility of their coming from a common
population, For example, such a problem might arise in dealing with
superceding items. The original FSN supported a known population with
known demands over time. We have collected demands on the superseding
FSN for a period of time, and now we would like to know if it is supporting

the same population as the superseded item.
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(1) Argument. Assuming it is, we estimate the variance

by pooling to be

2 = 143(1.6)° + 21(2.1)°

= 2,61
744 + 22 - 2
Therefore
o2 = ¢2 +g2 2 2,61 . 2,61
81 -5z 5 Sz 2(744) 2(22)
£ ,0611

. 248 say .25 .

o
81 -8z
So the calculated standard deviation of the random difference between

standard deviations of two such sized samples is Q. 25, Thus

<(51-Sz)"}lsx-sz=.§l—‘_§a<z zc
0.25 ¢ -

Pr - ZC ps
S1 ~S3

But {s; ~ s;)/0.25 is N(0, 1), and so our particular difference, 2.1 ~1,6=.5
and thus two standard deviations would cover the random difference between

the sample deviations so we would assume a common population.
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I, TOLERANCE

A. Floating Interval.

Heretofore we have studied the theory and method of estimating
magnitudes of population characteristics by intervals, namely confidence
intervals. Now we wish to speak briefly of another type of interval esti-
mate which is used when you want, so to speak, to cover a range of values
and not just a single value. In particular, it is frequently desirable to
make an estimate which, with certain confidence as we have used the con-
cept, contains nearly all of the population values. There are times when
you and I would like to know within what limits a certain percentage, say
99%, of the base population lies.

Obviously if we knew the mean p and standard deviation o of the
base population and also if it was normally distributed, then (u - 30, p +
30 ) would be a satisfactory interval. In lieu of such base population know-
ledge, we can use i:he sample mean X, the sample standard deviation s,
and then we can pick a k¢ such that x -~ kes and X + ks would include
99. 7% of the base population with level of confidence c¢. The cheice of k¢
depends as much on our further assumptions about the type of base popu-
lation distribution as on the size of the sample,

The end points of such " floating' intervals are called statistical

tolerance limits and the interval itself a statistical tolerance interval.

Cbviously, as the sample size increases, these intervals tend to a fixed

size which depends on the percentage of base population you wish to pick up.

s,
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In con;;rast, confidence intervals decrease in width to zero as the sample
size increases. Though both types tend to vary less in both position and
width among each other for a fixed sample :ize, the confidence interval
pinches in on the true value of the pcpulation parameter while the statistical
tolerance interval tends to a fixed size since it gives limits within which
an expected proportion of the population lies with some confidence.

So we see a tolerance multiplier k which depends on n, P, and ¢
is such that we can be 100c% confident that a proportion P of the population
lies between X - ks and x + ks. Now there are tables that provide us with
values of k if a normal distribution can be assumed and there are tables
for when it can't be assumed. Historically the latter came first from the
work of S. S. Wilks and we will discuss them later in the course. For the
present we will restrict ourselves to the assumption of normality and use

values of k from known tables with the experimental data in an earlier

illustration.

B, An Illustration.

From the data in the Project - Simulation, pages 8 to 12,
tolerance intervals for each of the three different confidences .90, .95
and . 99 can be calculated and then the percentage of base population they
pick up can be given. For n = 16, we must modify the t-distribution
coefficients 1, 753, 2.131, 2,947 to the values in Table XII. The values
in Table XII were taken from much more extensive tables whose repro-

duction here is not warranted for our immediate purpose. Further we
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will restrict ourselves in the examination of the data to 90% coverage, i.e.,

Table XII
P
c .90 .95 .99
.90 2, 246 2,676 3.514
.95 2,437 2,903 3.812
.99 2.872 3.421 4.492

XUI, using k = 2, 246.

Table XIII

P=.90, andto ¢ = .\‘90. The calculations and results are given in Table

Sample | Empirical | Satisfactory
Number = s [(X-2.246s, X+ 2, 246s) Proportion Coverage
1 4,375 | 1.204| (1.671, 7.079)~ (2, 7) 91% Yes
2 3.938 | 2,00 | (0, 8.430)~— (0, 8) 98% Yes
3 4.750 | 1.24 | (1.965, 7.535)~— (2, 7) 91% Yes
4 5.125 | 1.65 | (1.419, 8.831)~ (2, 8) 96% Yes
5 5.000 {1.86 | (.822, 9.178)-~(1, 9) 99% Yes
6 4.250 | 2,17 | (0, 9.123)— (0, 9) 99. 5% Yes
. 7 5.125 |1.41 | (1.958, 8.292)— (2, 8) 96% Yes

8 5,437 | 2,16 |(.113, 10.761)— (1, 10) 99.5% Yes
9 4.625 |2.36 |(.676, 9.926)— (1, 9) 99% Yes
10 4.938 {1.39 |(1.817, 8.059)— (2, 8) 96% Yes




Ry

On the average we should get 90% of the tolerr.ace intervals covering

90% of the population. We did better since all of them covered at least 90%.

Hence we acquire some reassurance in this illustration for saying we are

90% confident in any one sample estimate.

There are tables available that give a different value of k such that
we can be 100c¢% confident that a proportion P of the base population will -
lie above (below) X - ks{x + ks). And, as we stated earlier, we have tables

for all such cases when the assumption of normality is dropped.
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IV. SIGNIFICANCE

A. Significance Testing.

Suppese a person has obtained a set of observations of some process

W Ky

and has computed an average. He wants to know whether his statistic
represents all observations for the process. If his experience is such

that intuitively he believes the sample average is close to the average of

the base population, he will make the statement that they are about equal.
This is his hypothesis. To satisfy himself that his hypothesis is reasonable
he calculates the probability that his sample could have occurred. The
significance test does not tell him whether his hypothesis is right or wrong.
But by choosiug the proper level of significance he knows, according to
nrobability theory, that he will seldom reject a true hypothesis, and thus

he can proceed as though his assumption was fact,

A significance test involves a random sample and a probabilistic
computation which decides whether or not the sample could have reasonably
come from an assumed distribution. Acceptance of the assumed distribution
for parenthood comes when the observed sample result is no less probable
than some predetermined small probability like .10, .05, or .01, This

degree of rareness due to chance is called the significance level. If the

result from the sample is less probable due to chance than this, we say

tt.- - :sult is statistically significant and we mean significant of other than

chance. The region of values where probability of occurrence is greater

than this is called the acceptance region while the complementary region




is called the critical or rejection region. The latter words are descriptive

of the decision to reject the parenthood of the assumed base population.

This is commonly called rejecting the Null Hypothesis which assumed no

difference between assumed base population and the sample other than
what chance allowed.

Actually this amounts to saying whether the computed confidence
interval does or does not include the corresponding parameter of the base
population. At the outset it appears that a confidence interval approach to
making such a decision has the advantage of giving some idea of how large
the difference between statistic and parameter is likely to be while a test
of significance gives a cut and dried yes or no.

When we reject the Null Hypothesis, i.e., decide the discrepancy
between the statistic and parameter is too rare to be due to chance, we

are said to be invoking the principle of advocatus diaboli or The Devil's

Advocate. This derives from the characterization of that diabolical fellow
to make adverse criticism of what was deemed good.

Another word ought to be said here about the dependency of acceptance
or rejection on the particular characteristic and its distribution function.
We accept or reject the sample-parent association through such a device.
Hence, as we will show later, it is possible, given a fixed sample and an
assumed base population, to have two tests based on different statistics,
one accepting and one rejecting.

Significance tests use, in general, critical régions in one of the

three ways illustrated in Figure 7 for the particular value of 5% where

[
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we have two one-tailed tests and a two-tailed test.

£(x)
.05 .05 . 025 . 025
_ i TN b /\Jn‘i
0 . 0 0

Figur 7

Some examples may now be in order.

1. TNlustration. A certain stock number has the probability p=.8
that each requisition will be for a quantity of one unit of stock. During
the past month 10, 000 requisitions have been received, 8,500 were for a
single unit of stock. Is the units-per-requisition pattern changing?

a. Argument. Our Null Hypothesis is that the sample behavior

of the last month is consistent with the long-known p = .8. Now if we use
the normal approximation to a binomial distribution assumed true ‘here with

n=10,000and p=.8, we have u = 8,000 and ¢ =~'1,600 = 40, Suppose

we lake u significance level of . 01. Then we would reject the Null Hypothesis;
i.e., we would reject this sample coming by chance from the assumed base
population if x > 8, 000 + (2,33)(40) = 8, 093, where x = nurnber of requisi-
tions with a single unit per order. For this can happen in only 1% of many

repeated cases due to chance. Since 8,500 > 8,093, we reject chance and

claim a significant difference due to other than chance, Hence we disassociate

ERRTE
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sample and assumed parent population, The size-order pattern has changed.
We are more than 99% confident though we do not usually so speak.

Confidence was used in reflecting how frequent due to chance some-
thing we found in one case would happen in repeated cases, When we reject,
as we just did, something that was rare due to chance before it was rejected,
it is not quite the same thing as making a positive confidence interval
statement. Still there is a relationship.

b. Argument (Alternate). Now we could have computed a 99%

confidence interval here. Since the hypothesis is p = .8 and, let us sy,

the alternative is p > .8, we use a one-sided confidence interval and say

Pr .85 - p < 2.33) = .99,

: (. 85)(.15)
L 10, 000

This can be reformed into
Pr{.835 < p} = .99.

Since p= .8 < ,835, we reject p=.8 as it is not in the confidence interval
{. 835, 1),

2. Dlustration. Suppose Washington decorates our unit when we
are very effective and they have done this for each of the past five months.
Weculd you say from the statistical point of view that our probability of
being decorated exceeds .57

a. Argument, From the significance testing point of view if

we accept p = .5, then the sample situation has a probability of occurring
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equal to {.5)° = . 031 and we would reject the hypothesis of p=.5 at the
5% significance level, but not at the 1% level. Remember that if one uses
a higher value for the significance level, he runs a great risk of
accepting a false hypothesis.

b. Argument (Alternate). From another point of view we let x

be the number of times in 5 months we are decorated and p be the probability
of being decorated in any month. Then we ask that

Pr{x < 5} < .95
30 that

Pr{x = 5} > ,05.
This requires

p > .05
or

p > .55,
So p must be as large as .5> to keep the sample action from being less
probable than .05. Hence we do not pick up p = .5 in our confidence interval
(.55, 1) and so we reject p = .5 for hypothesis. But certainly we must

agree with the fact that p exceeds .5.

B. Relation between Confidence Intervals and Tests of Significance.

The practicioneer usually prefers a confidence interval statement
to that using only a test of significance because the width of the confidence
interval tells more about the reliance he can place on the results of the

experiment. Still, when a test of significance is accompanied by the
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appropriate Operating Characteristic Curve (OCC), about the same infor- ;
|

mation is provided. In order to understand this let us first consider our

‘situation in deciding whether to accept or to reject a hypothesis.

If we reject a hypothesis when we should not have, we say that a

Type I error has been made. If we accept a hypothesis when we should not

have, we say that a Type Il error has been made. In general in life these .

two situations constitute the alternatives in making wrong decisions or
errors in judgment. Ideally we want tests to minimize such errors. Unfor-
tunately, for a fixed sample size, when we decrease one type of error
we increase the other. Only increasing the sample size reduces both.

In industry in acceptance sampling the probability of the Type I error

is called the Producer's Risk and denoted by @ while the probability of a

Type II error is called the Consumenr's Risk and denoted by B. Obviously

the Type I error is the basis of our familiar level of significance test, It
represents the chance we are willing to take to be wrong in rejecting chance.
Now we could eliminate Type II errors by never accepting hypotheses!

But this would get us nowhere. Better should we study the probabilities

of making Type II errors and hope for little chance of making them, The
quantity (1 - B) is helpful here in that it indicates the ability or power of

the test to reject the hypothesis if it is false, Hence it is called the Power

Functien,

A confidence interval can be used for a test of significance--this we

have illustrated. Using a rc¢jection criterion alone in the converse

17
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situation is not the proper way to think of a significance test. You should
always think of the associated OC Curve as part of the test.

First let us look at several situations in which we highlight §.

1. Illustration. If p is the probability of a particular FSN being
demanded in a day, suppose we order this item if, out of every 10 items
demanded, one or more are for this FSN. The probability that the experience
with 10 items does not have us order is a function of p. It is the operating
characteristic function of the examination procedure and is

B = (1-pi°.

In Figure 8 we see a graph of B.

A
11
p
0 1 i
Figure 8
Figure § gives a graph of 1 - §, the power function.
A
1.1
1-p 1/
—
Figure 9
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Now P represents the probability of not ordering the SN when it
has the probability p of being demanded and hence should be replaced
according to this probability. Hence (1 - B) represents the probability of
ordering, The graphs in Figures 8 and 9 show that the procedure is pretty
much iu tine with the actuality it is intended to follow.

2. Dlustration. The Bureau of Budget (BUBUD) claims that a certain
FSN is not ordered by half the Stock Points while the unit here feels it is.
To test the situation you examine five Stock Points and decide to accept
BUBUD' s claim only if either all the five Stock Points ordered or all did
not order the item. Otherwise you will assume it is ordered by haif the
Stock Points,

Now the probability of accepting BUBUD' s claim is a function of p,
the probability of a Stock Point ordering this item. This function of p is

the Power Function for your test, thatis, it is (1 - ) where B is the proba-

bility of accepting your claim. Look at Figure 10,

Power =1 -
p=p’ +

a-p’

1/4 1/2 3/4 1

Figure 10

vy
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So if p=1/4 or 3/4, your prohability of not making a mistake is

only about 1/4, that is, your probability of not accepting p = 1/2 when

p # 1/2is not very high. When p = 1/2, then B is the probability of accept-
ing p = 1/2 when it should be accepted and so 1 - § is the probability of

not accepting it when it is true. But this is the Type I error, or @, which

is in this case . 06.

[e=1-p=p"+ (1 -pf = (%)5 + (1 -—12-}5=.031+.031 = . 06]

This test procedure is not very powerful in that it does not strongly
have you reject the hypothesis p # 1/2 whenp # 1/2.

Now let us take a numerical example and tie in both approaches of
confidence intervals and of significance testing with the operating charac-
teristic curve.

3. IDlustration. An FSN has a mean requisition size of 300 and a

standard deviation of 24. Suppose we want to know at the 1% level of

significance from a sample of 64 requisitions if this mean requisition size
has increased.
a. Argument, In customary notation we say

Hy: Null Hypothesis that D = 300 has not changed

H): alternate hypothkesis that D > 300 and D has
changed
The 1% level of significance corresponds in normal theory to z = 2.33 and

s0 to

B = 300+ 2.33(% = 307.0.
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Graphically this is given in Figure 11,

0

300 307

Figure 11

So our Type I error has probability ¢ = .0l. For each possible
actual new value of D, there is a chance of accepting the old D =300. To
show this, let us first take the value D =310as being the actual new average
demand. Then the means of samples of size 64 are normally distributed
about 310 and with some chance the sample means will be to the left of the
critical point point for rejecting the old hypothesis, D= 300, as shown in

Figure 12,

Y
ol

Now under the new hypothesis 307 corresponds to z = -1 and so

g =.16.
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More generally we can calculate § for various new D as given in

R Rl veve

Table XIV,

e

Table XIV

IR

S xS

wl]

290 295 300 305 310 315 320

B 1.00 | 1.00 |.99 .75 .16 . 00 . 00

The OC Curve and Power Function are graphed in Figure 13,

K‘"

o

Co o s R W it

> D %

290 300 320 295 310 320

v

Figure 13

Next let us perform an analysis still using 99% significance similar

to what we did in Illustrations 1 and £, pages 65 and 66, and indicating

the associated confidence level approach. We want and have

0l 245 ., z3$
T{ ———— . 2
24/ 64

.99

which can be reformed into
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Pr{-ﬁ-7<p5 = ,99

or (5 - 7, ®) is the confidence interval,

— 1 —

5] 3, 3 T e

z -2 + 7> D
P']? > z

-2.33 0 >

Figure 14

Note the range of 99% of the activity under the curve in ngure 14,
starting 7 units to the left of pp and thence to the right, is about 16 units
which is about the span of indeterminancy in the OC Curve from 300 to 315.

We see from Figure 14 that there is a small chance of keeping the
hypothesis D = 300 when D > 315 while we are almost certain of keeping
it when D < 300. Were we to have used the confidence interval approach
atc=.99, i,e., a=,01, our random interval would be one-sided simply
because the alternate hypothesis is D > 300. Thus we would say

(D -7, »)
is the confidence interval estimator and, as you know, this interval in
repeated samples on the average would include pf5 = pp 99 out of 100
times.

Alsc we recognize that for this same percentage of times the value

of D would land in a span of about 16 units.
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The two approaches can be illustrated wirth respect to determining
the sample size in order to detect differences between means. We can
specify limits to the risks for Type I and Type II errors. This locates
two points on the OC Curve. Selection of n follows from examination of
various OC Curves for different n and matching these two points.

On the other hand we can specify the magnitude of difference between

means which is our limit. Then we can compute the sample size which

gives with desired confidence an interval of this length. Let us illustrate this.
4, Ilustration. In the problem of Illustration 2, page 66, suppose
we t2st the hypothesis of the FSN being demanded half the time, i.e.,
? = .5, by examining a sample of future demands. Now let us decide
(1) the probability of rejecting p = .5, when it is correct,
is not to exceed .05, This amounts to saying a =, 05.
(2) the probability of accepting p=.5 whenp 2.6 or
P S .4 is not to exceed . 05. This amounts to saying § = . 05.
Find the minimum sample size and state the statistical decisjon rule.

a. Argument. Graphically we have Figure 15.
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Let

number of observations in sample

Z
H

x = number of times particular FSN is ordered

Then

- .5N i
area under p = .5 curve to right of et = , 025 '
. € NN 5. 5)

- 6N
area under p = , 6 curve to left of X2 = 025
N N(. 6)(. 4)

. X - .5N _ 1.96 and -}5-:-——6—13 = 1,96,
5NN 49NN

Hence we have the two simultaneous equations in x and N,
t

5N + . 980 NN

X

x = .6N - .960 NN,
which yield

N = 377

x = 208.

When p=.5, thenx - Np =19, Thus we would get a similar span of

values to the left of 189, So we decide:
(1) accept the hypothesis p =, 5 if in 377 demands, we
have demands for this F'SN in the range 189 £19, i.e., betwecn
170 and 208,
(2) reject the hypothesis otherwise.
5. Nlustration. In the last illustration retain everything but now

require: the probability of accepting p = .5 when actually p > .6 is . 05,

72 >
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In this case we find N = 319, x=177. So we say
a. Acceptp=.5if x lies between 142 and 177,
b. Reject p = .5 otherwise.

In summary when the data present enough evidence to reject the
hypothesis, the probability @ of an incorrect judgment is known in advance
since « is used in locating the rejection region., On the other hand, if
the data present insufficient evidence to reject the hypothesis, we are not
sure what to do. We should specify a practical significant alternative and
calculate B. In addition if the size of a sample is involved, we should pick
it so P is small. But in many practical problems the calculation of § may
be difficult, if not impossible. So more often it is better not to reject

rather than accept and then to estimate using a confidence interval.
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V. POINT ESTIMATION

An estimate of a population parameter by a single number is called

a peint estimator. Historically the estimation problems concerned them-

selves with estimating parameters. One assumed that the distribution
of probability over the base population is one of a family of distributions
indexed by one or more real-valued parameters. Then estimates of the
parameters were made on the basis of experimental observations.
Suppose (%, %, ***, X,) is a random sample from a distribution
which is characterized by an unknown parameter 6. Now 8 could be the

mean. What we try to do in point estimation is to develop a function of

the sample (x;, %;, **°, Xpn) which will have a distribution that will cluster

about 8. More precisely a point estimator for 6 is a real single-valued
function of (x;, %z, ***, ¥n), say t(x;, x,, +++, Xn) whose distribution

" clusters in some sense!' around 6. This t-function is itself a random

variable. Graphically we like to get a distribution as shown in Figure 16.

£(t) A

Figure 16

Cur job is to try to define the phrase '"in some sense,' i.e., to

qualify it. The present jargon used in doing this begins with two statements:
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t isn't offset =—— unbias,
t is as narrow as possible = efficient .
In addition there are other qualifications we will discuss, namely being

consistent and sufficient.

A, Unbiasedness.

Suppose (%, %z, ***, Xn) is 2 random sample from a distribution
f(x) and suppose that there is a parameter 0 which (partially) describes
f(x). Lett(x;, %2, **°, Xn) be a random variable such that
E(tta, xz, "', X)) = ©
where the expectation is taken over all possible random samples. Then

t{xy, %2, *°*, %n) is called an unbiased estimator for 6. Precisely,

the average value of t is 0.

1. MHlustration. Suppose (%1, %, **'s Xn) is a random sample from

a distribution f(x) whose mean is 0, i.e.,

E(x) = 8.

Let t{xy, %z, ***, Xn) = 1 +x, #+ *+* +%5) = X. Then X is an unbiased
n

estimator for 6, as you already know, since

E(t) = EX)

; p's
E{E‘_l_+_’:2_.+---+_2
n n n

SRR

1 1 1
1 + LE(x,) +** + ~E(x,)
nE(x1) = (x2) = (xn
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6, free of 1.

2. Dlustration. Consider a sequence of Bernoulli triais and the
resulting binomial distribution of probability for the occurrence of the
event of interest x times, i.e., on x number of trials. Then if D is the
relative frequency sample estimate of p, we know from E(x) = np that

E(®) = E(g;_) = %E(X) = %E = p, free of n.

Therefore P is an unbiased estimate for p.

3. Illustration. Suppose we again have the situation in tlie previous
illustration, only now we are interested in estimating the ratio p/(1 - p).
This ratio is often desired where the ratio of the proportions of two things
is of intercst. Suppose we consider samples (x;, x;) of size 2. Then the
binomial variable which counts occurrences of the event of interest can be
either 0, 1, or 2. Let q=1 - p. Suppose our estimator for p/q is
t(x;, %2). Assuming it is symmetric in x; and x,, we can further assume
that t takes on only three different values, one for each of the three values
of the binomial variable x, Call these values a, b, and c, respectively.
They occur, as you know, with probabilities, qz, 2pq, and pz, respectively.
Then the expected value of t over all samples of size 2 is

t(0, 0) Pe{t{¢, 0)} + t(0, 1) Pr{t(0, 1)}

E(t(xy, x2))

+ t(1, 9) Pr{t(t, 0} + t{1, 1) Pr{t{i, 1)}

ag® + 2bpg + cp?.

7 6 \.;. ~”
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But if t is an unbiased estimator for p/q, this must equal p/q, regardless
of the value of p. Now
aqz + 2bpq + cpz Sa+ 2b+ g
yet we can always find a value of p .close enough to 1 so that
a+ 2b+ ¢ < p/q.

Hence there is no unbiased estimator for p/q in general when n= 2, By -
a similar argument it can be shown that the same conclusion is true for |
any other value of n,

But this simply means that we cannot find one set of numbers {a, b, c}
that works for every p. We still might be able to find a correct set when
p is known. Practically this is no help, however, since our sampling
problems are directed to finding p.

This last illustration is not to be regarded with toc much sorrow.
For though unbiasedness is a desirable property, it is not essential.
An estimate that is slightiy bias but very closely clustered could be more
useful than an unbiased one that is widely spread. Moreover, as we shall
show, if consistency exists, we know the bias disappears as the size of
the sample increases. In the last illustration we know when n is large,
x/n should be near p and (n - x)/n n.ar q. Hence their ratic which
reduces to x/(n - x) should be near p/q. In a later section this can be
defended by showing it is consistent. Still you will note that this statistic
defies having its expected value calculated for any fixed n. For when

n =2, we get

(N

1
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E(-X_|ze—m—q® + —— 2pq+ —==p® = o.
(z_x) 7-03 T L 1PIT P T

We recall the median of a2 sample unbiasedly estimates the population
median. Also we now have another good reason for the definiticn of standard
deviation or variance of a sample, with the n - 1 instead of n in the

denominator because

2 n( -)z 1 n 2
E{s"} = E(ZX*L X = L E(Z(x; - %)
1 n-1 n-1 i

and since

n n' - 2
12(X1 -%? = 1E(Xi -p)? - nE - p)

we have

a 2 2 2 h 2
E IZT(Xi - %) E i‘-‘:(ri - )} ~E{nE-p)}

n
SE{(x; - p)?} - nE{X - p)?}
1

2

= n0'z -n X —
n
= (n.-l)o'z
S E{sf) = 1 1X (n - 1)e* = o, free of n.
n—

B. Efficiencz.

Suppose t{xy, %Xz, ***, Xn) and t¥{x;, %, *°*, X,) are two unbiased
estimators for the parameter 6 with variances (th and cr:*, respectively,

Then the one with the smaller variance is called an efficient estimator
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for © while the other is called an inefficient one. This is rather loose
talk and we should use modifiers of a comparative nature. Equivalently,

but in another way, we say the efficiency of t relative to t* for estimating

0 is

g /¢ -
So when efficiency is less than 1, the other statistic is more efficient.
When a value of an efficient statistic is given, it is called an efficient
estimate.
The following theorem is remarkable and has been known a long time.
1. Theorem. Let(x;, %, °°°, %n) be a random sample from a
distribution whose mean is 6. Consider the weighted mean
Xy = C1%p tCaxp toeee +ocpx,
where ¢; + ¢ +°** + cn=1. Then X is an unbiased estimator for 6
and the variance of it attains its minimum value when ¢y =c¢; =*** =¢cp=1/n.
a. Argument. Consider n= 2, Then (x1, x;) is our random

. . . s 2
sample from a population whose mean is 6 and variance is ¢°. Now

Xy T X +t 2%z, cp +cy =1

2 2 2 R 2 2
c2 = cfof + ez’ = (ef ter)o =k <o,
Xw

Geometrically we are considering only points on the line ¢; + ¢; =1 and
also on the circle cf" + czz = (k/o)® as seen in Figure 17,
In order to get the smallest value of k/o and still get a point of

intersection with the line ¢; + ¢; = 1, we want the circle to just touch the
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line. Then the radius is 1/N 2, Thus k/o is 1/N 2, At this point ¢; =

c; = 1/2 which says X should have the particular value X for minimum

I

variance which then is o’ /2.

\4\ Cy

o+ = (k/o)

Y

Ci

CI+CZ=1

Figure 17

L B
R R T

This means if you take a sample, you can't expect to do any better

than to take its mean to estimate the mean of the base population so far

as variance is concerned.

s it % s <o e oo b
it

Thus the mean of the sample is called the most efficient estimator

for the base mean.

The forecast of quarterly demand is a point estimator. Locally it
is developed usirg single exponential smoothing and past observations of
demand. The demands are weighted, but the weights decrease geometrically.
The reason for this technique is to give greater emphasis to most recently
experienced demand, The sum of the weights applied to demand observa-
tions does not equal one because the last term in the formula for single

exponential smoothing contains a previous forecast and it is also weighted.
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The sum of all weighting factors does equal one, however. The equation

?

rwmw—a. M A o b sl ol g W e an
i
t
B

for single exponential smoothing can be written as follows:

)

- m.—
Xo = X3 tcpXp b tepxy, t(l - ) X,

where

v —p———

<2 c1{l - c1)

c(l - ¢ )z

]

Cs

m-1

cm = C1(1 "‘cl)
or
i-1

ci = ¢l -¢)

and cj is always a positive fraction.

The variance of Xp is determined as follows:

.}?0 =Caxy +C1(1 -cl)xz X +01(1 _cl)m-lxm

+ (- ) F

2(m-1) 2

2 2 2 2 2 2 z
Oy = €1 0y *+C1 (1-c;) c'xz+~-- +tc (l-c)

2m_2
4+ (1 - C;) O'Em

2m 2
+ (1 - C]_) U-}-{-m

]

- - 2Zm 1, 2m
cf[l (I -¢) Jux+(1-c1) cr;‘:-m

1 (1 -y )?
- C1 2m, 2 Zm 2
2“Cl[l--(l--cl) Joo + {1 -c) o’-im
g1 -
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abariadin

r



TR

|
i
;
H
[
i

AN £

-~ -9 ¢ as m-—o
2 - c; X
but
2 ?
2 . = 9% !
Tn-period average - L
n

so single exponential smoothing is as efficient as an n-period average !

where n = (2 - ¢;}/¢;. Graphically:

Sample Mean

/__/Exponentially Smoothed Forecast

Figure 18

Depending on the efficiency of xp,, the forecast developed by the

smoothing technique can theoretically be no better than an n-period mean.
Of course, this conclusion assymes the demand distribution does not change.

2. Ilustration 1. Let (x;, x;, ***, x,) be a random sample from

Nlu, ¢2) and let X be the mean and % be the median. You know that

y

2
0 = 0 /n. Now we can show that

2
S§+o( 1).
n

I
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Since x is the best estimator for p in any distribution, the efficiency of

% relative to x for estimating p is

Cla = 2 = ¢

T 2 T
-0 /n
2 L

This means a sample of size 64 is just as good when taking the arithmetic
mean as is one of size 100 when using the median.

3. IHlustration 2. For a unit standard normal distribution, N(C, 1),

we find the average deviation from the mean is N2/r = 0,79788 = .8.
Further we find in sampling from such a distribution, the Mean Absolute
Deviation (MAD) of the sample is an unbiased estimator for the base popu-
lation MAD. Hence we have
E(l.25MAD) = ¢

which explains our correction to the " PROGRAM 61" calculation of MAD
to estimate o .

How efficient then is the MAD? Well, the variance of 1, 25MAD

from samples of size n is

- w3 Tl

o
(1. 25MAD)

= T _Zvar |x; - p|
2n®

X n X var |[x-pl
2n?

I {Elx - p]® - [E|x - p|]?)
2n

A
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14 whereas the variance of the standard deviation s' from samples of size n

i (corracted from s so that E(s') = ¢) is

i

e 2

: 2 o

5 O'S' = "2—' + 0 {..]:.-

n n?

i Therefore the efficiency of 1. 25MAD relative to s' is

In practice one usually does not have p and resorts to using X in

its place. In such cases our formula for ¢ in terms of the MAD must

be corrected to

FEAY

’ Q
+
O
| —
R Lt A R D R R e A R B R BN R R T s

- %1 - X|
VEL o

so that it is unbiased. A similar correction is needed for s. Remember

RN T

we only compare for relative efficiency the variance of two statistics,

when each is an unbiased estimator of the same parameter. Going back

to the correction for the sample MAD estimate of ¢, we see from

g b
;, g —_—.1——- - l + 12 + 3 + 154 + o v e
: Na@ - 1) n 2n 8n* 48n
%g that
P 1

1
n

A= Nnf{n - 1) )

‘,‘,,,_.,,.“,.,_.,.,,,,
e

gives . 0054 for n =10 and . 0008 for n = 25. Hence for all practical

o,

purposes this correction is never of importance.

B N e

G

o

R A st o T S S S S TR U R

84

23N

5

T T s nauy

S e e e m—— [OR—

T S T A N ORT RN

[ N

S - TPy . YT SN

rakinry

ESEIE™; SR

2 vrr b et sy




Fisher remarked on these two estimators: ' As n is made larger,
thercfore the standard error of ', 25MAD tends to bear a constant ratio
to that of s. The former is the larger in the ratio N - 2; in other words,

the value of the standard deviation obtained from s* of a sample has greater

weight by 14% than that obtained from 1.25MAD. To obtain a result of
equal accuracy by the latter method, the number of observations must

be increased by 14%."

C. Consistency.

We say t{x;, %Xz, ***, Xp) is a consistent estimator for 0 if

lim Pr{ltlx;, x,, "**, %) - 8] < 8} = 1 fo1r any & > O.
n—co

Fisher called this the common-sense criterion and stated it as follows:

When applied to the whole population the derived statistic should be equal
to the parameter. This means as n gets bigger all the probability of

the distribution of the statistic t lies in the interval (0 - 6, 6 + &), This
convergence in probability to a constant is also convergenze in distribution.

From the graph in Figure 19 we see we could equivalently say:

S

: ; >
g -0 3] p+ 6 t(Xl, Xy, "y ¥n)

Figure 19
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for an arbitrary & > 0 and ¢ > 0, no matter how small, we can find an
n(d, ¢) such that
Pr{o-06< tlxy, X, ***, %Xn) < 0+ 86} > 1 - ¢ .for n > n(d, €).
1. Theorem. Let (x;, %, ***, %n) be a sample from a distribution

. . . 2 S . .
whose mean is § and variance is ¢°. Then x is a consistent estimator for 0.

a. Argument. We know E(x) = 6 and 0'.;. = 0'; /n. In Tchebycheff's
inequality
Pr{|X - o] <\og} > 1 -1/\2
let & = Ao Then we obtain

Pr{|%- 6] <8} >1-1/(8/c ) =1 -cZ/nE,
Hence

lim Pr{|x-06| <8} = 1,

n—oo
You can see the property of consistency is concerned with the behavior
of an estimator when the nurmnber n of elements in the outcome is large.
Actually we have used the Law of Large Numbers on several occasions to
show that an estimate is consistent, for example, x for p and s;g for 0';5.
Then again we showed this for proportions with respect to probabilities in
the case of the binomial distribution. However it is possible in this case
) to get a strong conviction for it by a more detailed examination such as
that given in Appendix A,
In general, if t(x;, %, **°, X,) is an unbiased estimator for 6 and

2 .
¢. = 0 as n — o, we know the estimates more closely approach 6 as n

increases.
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D. Sufficiency.
In 1920 Fisher became impressed by what he called the character-

istic of suificiency. He assumed a normal base distribution with standard

deviation 0. Then he considered the two common methods of estimating o?

or ¢ from a sample (x;, %Xz, ***, Xn), namely

™
-\/; S{|x -X|) Mean Error

1

noy

il

nO‘zz S(x - %) Mean Square Error,

sometimes called Peter's formula and Bessel's formula, respectively.
He showed the ratio of the variances for o; and for ¢, to be (v - 2), as
we discussed in a preceding section. Then he considered various powers
p of the deviations and showed the precision of the mean square is a true
maximum, i.e., for p = 2, while the variance is 14% greater for p=1
and 9% for p = 3, Hence we have still another good reason for preferring
Bessel' s formula.

But even more important he showed that for a given value of o, the
distribution of ¢; is independent of ¢, So when o, is known, a value of
oy can give no additional information as to the true ralue of . The same
can be said if any other estmator is substituted for o,. Consequently the
whole of the information concerning the base population variance which a
sample provides is summed up in the single estimate 0,. Now the same
cannot be said for o; bteing taken first, since then o, does involve o,
This means we could improve our estimate of ¢ when we first determine

oy by taking o,.
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One must remember that this unique superiority of ¢, depends
on. the normal curve hypothesis for the base distribution. For some
other curve, ¢; might be the superior estimator for ¢, As a matter of

fact it is when the base population is of the form

[x-m|~N2
1 T

RV ’

a double exponential curve. In this case 07 must be altzred to
ney; = N2S(|x-Xx|).

Fisher suggested we calculate $,, the ratio of the fourth moment
to the square of the second moment. If this is near 3, thé Mean Square
Error should be used; if this is near 6, perhaps we would be better using
oy for our estimate of o,

Later we will see that when this property of sufficiency exists for

an estimator, we will be able in general to find the estimator by the Method

of Maximum Likelihood. Also such a statistic will be most efficient if a
most efficient estimator exists.
The usual academic form in which the criterion of sufficiency is

presented leaves a lot to be desired insofar as determining a sufficient

estimator. The ordinary definition requires you know the statistic before

its sufficiency can be tested. This is why Fisher said he provided us with

the Method of Maximum lL.ikelihood--to provide a statistic for which the
criterion of sufficiency is satisfied.

To exemplify this concept we shall examine several situations.
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1. HDlustration. Consider the mean of the Poisson distribution

- X
e mm

x!

The parameter m may be estimated from the mean X of the observed

sample. Now it can be proved that the distribution of nx is again the

Poisson series

-nm(nm)nx

(nx)!

e

The probability of drawing in order any particular sample (%1, %, *
Xn) is
nx

-nm
e m

¥ 1% ! e xp!

and this may be divided into two factors, viz.,

DX — X1 Xz X
o-nm (o)™ (nx)!”xn!(;ll_) 1) &,n

{nx)* Xpixy !

of which the first factor represents the probability that the actual total nx

should have been scored, and the second factor the probability, given this
total, that the partition of it among the n observations should be that
actually observed. In the latter factor, m, the parametcr sought, does
not appear. Hence X is a sufficient statistic for m.

a., Definition. Suppose a population has a probability density
f(x, 0), where 6 is a parameter. Let (xy, %z, ***, Xn) be a random

sample, If t{x;, xz, ***, Xp) is a function (random variable with its own

probability law) such that the probability density function of (%3, %z, ***, Xn)
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for any fixed value of t(x;, x,, ***, %) does not depend on 6, then t{x;,
Xz, *'"» ¥n) is a sufficient statistic and it or some simple function of it

will be a sufficient estimator for 6.

This means that if
gllxy, %, <, Xn)lt(xl, Xz, %, Xn)) = t'
does not depend on 6, then t is sufficient,
2. Nlustration. Let
pe~%X0 20
f(x; 6) =

0 , ¥ <0,

Take a random sample (x;, Xz, -+, xn). It has probability density function

ene-—ezxi

Let t{x1, %3, ***, *Xn) = Zx;. Then
4 n"l "et - 1
oRe "0t - 5 (6t)y " " "e y (n -1)!

(n-1)! tn-1

[plt, 8)] x Tgllxy, %2, <o-, Xn)lt)].
Since g{x;, %, ***, xnlt) is the constant (n - 1)! /tn‘l, we knew t is
sufficient. In this case we can see the geometry for small size samples, viz.,
as in Figure 20.

This idea of sufficiency essentially says that in the space of samples
(x1, %2, ++:, %xn) you teke a " slice' in such a way that there is a fixed
probability all over this slice. Then any function of sample values on this
slice has nothing to do with the parameter. All information about the

parameter is obtained bty going from one slice to another and not within a
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slice. Incidentally, unbiasedness is not related to this. In the last
illustration as well as in many others we could take Zx; or Zx;/n for

a sufficient statistic. Usually a simple transformation makes it a sufficient
estimator. Unfortunately, sufficient estimators are the exceptions rather
than the rule. In practice we have to be content with l¢ss satisfactory
estimators. However when a sufficient estimator exists and a most effi-

cient estimator exists, we know the sufficient estimator is most efficient.

N .{1 sz =
a=2 \\ A/}/’

t
\we are on the line with uniform density for x

—
N

| *1

AN

by

P
»”

w

we are on the plane with uniform density
for {x;, X2) in x; - x; plane

X1

Figure 20

3, Illustration. Let f(x; 8) = 0°(1 - O)I"X, x =0, 1. Then for a

randcm sample (3, %z, ***, Xp) we have
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flxy, %2, ***, Xn) f(x1, 8) X £{x;, 0} **+ f(xn, 6)

Tx; -z
e X (1 _e)n X3

[{?) o1 - e)n't] X [[—,zt)‘]

. [P(t» 9)] X[g((xla Xas "7 Xn)IExi = t)]

B R SRR

fa i ”MM rw.e&‘;mn;,
N
n
e e ———A m———————an

which again shows t = Zx; is sufficient for 6.

e
R S N S

oy

So we see that if a statistic t is sufficient for 0, it means that the
conditional distribution of any other statistic y, given t =t', does not

depend on the parameter 6. Consequently when we know t = t!, it is

%Z impossible to use y to make a statistical inference about §. For example,
4 you cannot then use y to find a confidence interval for 9, We might try

to show that X is a sufficient estimator for the mean p of the distribution
N(e, 1).

4, Illustration., Let

kA ey

_{x-0)?
1L, 2
N 2w )

f(x; ) =

s S

e

b

Then
flxy, %2, ***, %n; 0) = f(x3;0)(xz; 0) +~+ £(xp;0)

R

g e A S e U e s N e oo TS L S e L

1 )ne -Z(xg —6)2/2'
N 2r

Now if we expand the numerator in the exponent on e, we gat

© L o N e SRR
,
H

Txi - 2n%0 + ne°.
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Next if we use the identity Exiz = nX? + Z(xy - 'SE)?' to replace Exf in the

last expression, it becomes

] nxl + Sxy - X - 2nX0 +ne?

2 ~2 - z
Z(xy - %) +nx . 2nxp+ nbd

L n(® - 8) + Z(x; - ?,

Therefore )

PRI Ty

f(xlp Xz5 """ ¥Fnis 9)

—
Nem

ST £

e ke e RO T AN St Samm e~

l> _Z(x1-x)
1 1 2

X

L '\/ 21 ) N'n °

= [pfx; 0)] X [g{bq, Xz, ", Xn)[X =

2]

and so X is a sufficient estimator for 6.

E., Maximum Likelihood.

In 1922 Fisher introduced his Method of Maximum Likelikood to

provide a statistic that was sufficient. The likelihood functior L is the

compound probability function or density function in the case of a continuous

! distribution of a specific observed sample, i.e., -
= f(x;; 0)f(xy; )+ £(xy,; 6) ;
: for a sample (x;, x5, ***, Xn) from f(x; 6). Since the logarithm of L is

maximum for the same value of 9§ that maximizes L and since the logarithm

b of a product is easier to differentiate, we set ) :
o S :
i 93 l\m__‘ ! |
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equal to zero and solve for 6 in terms of our sample values. Note this L
is not a probability as it does not obey the laws of probability with respect
to 6.

When -586 log L is the csame function for all samples yielding the same
estimate 5, then a sufficient statistic exists.

The condition that 81./09 should be constant over the same sets of
samples for all values of 9, which has beeu shown to establish the existence
of a sufficient estimate of 9, thus requires that the likelihood is a function
of 9, which, apart from a factor dependen? on the sample, is of the same
form for all samples yielding the same estimate 8. The sufficiency of
sufficient statistics may thus be traced to the fact that in such cases the
value of © itself alore determines the form of the likelihood as a function of 0.

1. Ilustration. A sample (x;, %, "', ¥n) of n demands come at

random from the exponential distribution
f(x) = ke-kx, 0 < x < o0,

Then

which when set equal to zero gives
k = n/{xy +x, + <+« +xp) = 1/x,
Thus the sample mean X is the maximum likelihood estimator foxr the

population mean 1/k.
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2. Ilustration. Suppose the random sample (x;, x5, **°, xn)
¢ p T ops 2
comes ‘rom the norrnal distribution N{u, ¢ ). Further suppose

a. 0 is known and p is unknown. Then

n { 2

L= [ 1\ i_exp[-z_(ﬁ_:&] )
,——-——2“_, e 202

Ini. = -Zin2r-ninc -']:"2 Z(xs - p)?

J 5 2 i=MN,

9in L 1
= . Z(x; - )

which when set equal to zero yields
w o= (Bxi)/n = X

b. p is known and ¢ is unknown. Then

2

3L . _n . Z(x; -u)
o0 o o3

which when set equal to zero yields
(5)2 = Z(xy - ) /n.

¢c. p and ¢ are both unknown. Now we must solve simultaneously

9L - -_n_+_..];4.2(x1—|.1.)2 = 0
902 202 20

8L - |1 maxy-p)N-1) =0
oM 2¢*

From the second equation we get
go= (Zxg)/n = X,
Substituting this x for p in the first equation yields

A
o? = Z{x; - X)°/n.
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Note the estimate p is unbiased but the estimate ¢° is biased.

However by multiplying by the constant factor n/(n - 1) we can make the
latter estimate unbiased. Incidentally the corresponding estimate for o

iv. 2b is not biased since p and not X is subtracted from each xj.

F. Relation of Maximum Likelihood to Sufficiency.

For unbiased estimators you need consider only those estimates
based on {(but necessarily equal to) a sufficient statistic. The sufficient
statistic may be a biased estimate, but this is easily adjusted as you have
seen. The remarkable thing is that for many problems there is at most
one unbiased estimator based on a sufficient statistic.

Now if a problem has a sufficient statistic, then the maximum like-
lihood estimator is based on that sufficient statistic. Before showing this,
let us recognize an alternate definition of sufficiency in the

1. Theorem. A statistic t(x;, x,, *+*, xn) is sufficient for the
one-parameter family f(x; 6) if and only if the sample probability function
or probability density function can be factored

flxy, %2, *°, x5 0) = plts 0) X k(xy, x5, <", xp)
into two parts (two distributions often), one dependent only on the statistic
and the parameter, the second independent of the parameter,

We can state this more generally for two or more parameters.
Though we have already said this " hunt-and-peck' system is not desirable

for locating a sufficient statistic, it is for the moment to be recognized

that the factorization says that the variation of the probability with 0 is
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tied to the statistic t, and that any other variation is independent of 6.
Now let' s use this to show the
2, Theorem. If a sufficient statistic exists, then the maximum

likelihood estimate is based on it.

a. Argument. Let t{x;, x;, *°*, xpn) be the sufficient statistic.

Then we know by hypothesis that
f(x;, Xz, "°°, Xn; 0) = plt; 8) hixy, x,, “**, Xn).
The equation for the maximum likelihood estimate is

—a::[P(t; 8 hixy, %, °°°, Xn)] = 0
208

or

O oplt:® = 0
90

which, when solved for the maximizing 5, produces an estimate that

depends only on t.

CG. Normality of M, L.E. for Large Samples,

Before establishing the type of the distribution of the M. L. E. (Maxi-

mum Likelihood Estimator), let us calculate two expectations.

Consider .9 In f(x; 0). Note its mean value is zero, viz.,
90

+00
i %Jzn £(x; 0) X £(x; 6)dx

E|2_ i £(x; )
90

+c0 1
! £(x; 0)
-00

26

97 e




TG o e - PO < B e e TR S S PRI . o mmw o L

+00
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J 36 f(x; 0)dx

n
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—
=
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Next consider its variance, To avoid a lot of symbols, let S stand for

9 in f(x; 6). Then
a6

96

+00 >} 2

0'; = E(S?) = | ["‘ In £(x; e)] flx; o)dx.
-0

This function S, its mean, and its variance play an important role in our

work as we shall see with the variance of it in the next section. Right

now we further realize that the sum ZS(xj; 6), which we set equal to zero

to get the M. L.E, B, is a sum of independent and identically distributed

random variables and hence has a limiting normal distribution with 0 for

. 2 . . “ .
its mean and nog for its variance. So, for large values of n, © is close

: to 0 and there is an approximately linear relation between ZS(xji; 6) and

L 8 - 0, in general.

Another way of saying this is

E(ZS(x3;0))= 0 and 8 -0 = C[ZS(x;; 0)]

-~

(ZS) : N(0, ncrg' and §: N(e, -l-z-)
Y\a'
.4 S

z —_WW“
R I - Gl e A

: Later we shall see that ® has minimum variance. Before that, let us

o

Lo consider a statement of great content.
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H. Information (Frechet, Cramer-Rao) Inequality.

Suppose x; is a sample of size one from a probability density function

f(x; 8). Let r(x;) be any unbiased estimator of 0. If

+00 +en

d
2 r gk e)dx = [ —= f(x; 6)dx ,
90 20
-00 ~00
then
o? = 1
T

9 2
£[ -2 tn £(x; 0)]
L] n £x; 0)
To derive this result, let us drop the subscript on x; and proceed

as follows. By definition
flr(x) - 0]f(x; 6)dx = 0.

Differentiation of the last expression gives

f[r(x) - 8] (?_ﬁl_gigij)]f(x; 0)dx + [(-1) £(x; 8)dx = 0.

Therefore
f[ {r{x) - 8} N f(x; 9)][w5fé(—}ﬁ-—-e—)— N f(x; e)] dx = 1.
Using Schwarz's Inequality which in general is
2
fgtbadx-[h (dx 2 [fglx) hioax]
we get
. ]2
flrlx) - 8)%f(x; @)ax XJ[Q%%E‘—L-Q—)] f(x; 8)dx = 1
. z 1
- c_ 2 —————
r E[a In f(x; 6)]
30
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The equality holds only when g(x) and h(x) are linearly related. In our

case this means

= ¢ 84n f(x; 6)

r{x) - 6 30

, identically in x.

1. Theorem. For a sample of size n, the last theorem extends to

R RN e
e e e o aeeaematrare

2 1 :@ﬁ
c 2 . - 5 z

T nE[d In f(x; 6)] % ,
38 3

and equality again means

6.€nf(x ; 0)
CZ : = r(xy, X2, **°, ¥4) -~ 0.

So the last two theorems tell us what the lower bound of variation is

and when we can achieve it. Let us compute this in the case of the normal

(x-0)*
1 e 2 , =0 < x < o0,
N 2w

A 3 s s it

f(x; )

Now ‘

g; In f(x; 8) = - InN 2% -(1/2Xx - 0)%,

% o
bl E)Inf(x;e)=x_e ]
bk 98 |
) &

Cod
Pov and so
4 .

¢ n n

9 In f(x;; -

. Z n f(x;; 9) - Z X3 - 108 |

$ ) 96 .

rat i=1 a

g | = [___.Exi - e] i

) n ;

; = constant[mbizxsefd estimator - ] ) i

Q depending only on x's

100




Therefore we know x is the best estimator of 6 in the sence of
having minimum variance.

Let's look at a discrete case

flx: 08) = g (1 - e)l"‘, x =0, 1. f

Then
In f{x; 8) = xfn6+ (1 -x)In(l - 06), 1‘
O nflx;0) = X-1-%x = _x-8
30 o 1-0 o(l-0°
and so
- b
T Dmfbse) = 1 _[Txy-oen] = B _|ZXi_gf
i_lae o1 - o) e{l -98)| n

Once again (Zx;)/n shows up to be a good estimator. Since Zx; is
the number of ones or occurrences, this proportion is the best estimator ‘

for o.

Incidentally if we know we have the lower bound of variance foi our
statistic, this theory can give us a quick way to calculate it. For in the

normal example !

2 - 1 - 1
X nE[a In f'lz nfl)  n
. 06 4
and in the second example
0_?- - 1 - 1
X nE"afn_f_]Z E[-’-‘--l -x]z .
Ty 5 1.0
= _ 1 = 801 - o)
[ ?
N ————— .
Lo(1 - o) _
P
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which is the usual pq/n form.

in conclusion we can say that the miniraum-variance estimate of a
parameter is the unbiased estimate that is based on the sufficient statistic
when such exists. And the maximum likelihood technique finds it! In any

case the M. L. E, has minimum variance,.

I. Shortest Average Confidence Limits for Large Samples.

Though we have been concentrating on point estimation, it is proper
to discuss this aspect of confidence interval estimation theory here since
our friend S(xji; 6) plays a role in it.

It seems natural enough to want our confidence interval for a popu-

lation parameter as short as possible in some average sense. Generally

this cannot be arranged except in large samples for certain population
distributions. Rather than state for such cases a general theorem whose
proof is more complicated than we care to discuss in these lectures, let
us simply illustrate by taking the simple Bernoulli distribution

1.
fp(x; p) = p(l -p) ¥ x =0, 1.

Suppose we want 100c% confidence limits for p from a sample (y;,

Y2, *°", ¥g). Then

Yu
J fB(x; p)dx = desired probability = £f(p).
Yy

We write the integral here to be general though our example would call

for a Z. To get the maximum probability for an interval is to get the
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smallest interval for a fixed probability. So let's differentiate our last

integral with respect to p and set the result equal to zero, viz.,

] )
—_— [ f X; p dx = — flx; dx = .
op [tts; @) fap s p) 0

Since we want an expectation (average) we want our integral to have the

factor f{x; p). Hence we rewrite it
f-@— f(x; p)dx = [_8_ [log £(x; p)] £(x; p)dx = 0.
ap ap

Another way of introducing the importance of the log here is as follows
1. (vi, vz, ***, ¥n) is 2 random sample,

2, fly1;p) X flyz; p) X *++ x fly,; p) is its probability,

3. To maximize it {(a minimum is obviously an end condition) we

set the derivative with respect to p equal to zero, viz.,

.E.‘;’-[f(m; p) X £lyz3p) X +** X flypip)] = 0
P
and to get this into expec:ation form we write it

n
i=1

This requires the parenthetical sum to be zero.
Now to go back to our original plan and go on from there we need

the additional fact mentioned earlier, namely,

n
9 logflyi; p)
Q=1
n igl op

is approximately normally distributed with zero mean and with variance

/‘/ I."IE
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Hence approximate 100c% confidence intervals are obtained by setting

t
(]
T S O

aty

and solving ror p. This interval is smallest.

Now for our Bernoulli distribution we follow this through.

dlogf(x; p) . 8 [xlogp+ {1 - xiog(l - p)j

i
g,
i
ap op %
- x . 1-x .
p l-p §
Next %
N
2 &
E{(alogf(x; _1_)_)_)2} - E[i‘. 1 -x] g
op ] tp 1-p o
) [’E';-XJPX(I-F)IX— T i
x=0 =P pit =P §
] Therefore %
: 1 v 1 -y P-p %
Q = = i | i & = - 5
| niz‘;[p 1~p] p(l - p)
Eﬂ
! where
f( ’13 = (Z‘fl)/n
Since o = __1 x 1, we have
1-p n
Q _ {p - p)
“Q .\jT_r_l_____rT
n
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and the 100c% confidence limits are obtained from solving

B-pWn _ =2z,
N'p(1 - p)

which is exactly the same result as that given on page 13.
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VI. ORDER STATISTICS

When one tests the life of a sample of n items, it is obvious that
if t; denotes the time when the i-th one fails, then the data occur in a way
that their serial order also gives them in order of increasing magnitude,
i.e., i St £+« 5 th, We say that the sample values are ordered by
size in time., However, not all samples' values have this property so we

consider rearranging the values in the sample (x;, x;, **°, %n) in increasing

order of magnitude and then denoting this array by

é’ (ey, %20, °°, Xm,)-

3 Consider all samples of size n from a base population. Then the

:

3 smallest value in a sample varies randomly from sample to sample. So

¥ .

: does the next-to-smallest, etc. Hence we have n new random variables

n each of which is called an order statistic as they are functions of a sample,
; 3 We say xqy is the first order statistic while xk, is called the k-th order
# Z% statistic. Now remember

% X(1) s X2 £ = x;n)
L ,

e and so these new random variables are not independently related. They

are dependent in the strongest sense, namely, pairwise.

A, Typical Order Statistic Distribution.

Let x denote a random variable with continuous density function
f(x), - < x < o and for n =5 let our random sample be (x;, xz, ***, x5).

Consider, say, the fourth order statistic, x,,. Now for a particular
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sample, x;, might b2 any one of the five serially-ordered sample values,
and, moreover, it can be any value in the domain of the random variable x.
Suppose we say it is a particular value and denote this value by x0,. Then
what is the probability that the fourth order statistic will have a value in
the interval

(xte) , Xfay + Axg)?

More generally, let A be the event that a sample value lies in the
interwval (- oo, x('“ ), B be the event that a sample value lies in the interval
{x(1) X[y + Axyy ), and C be the event that a sample value lies in the
interval (x/y) + Axqyy , o).

Now we ask how many e¢qually likely samples satisfy the compound

event A and A and A and B and C, whose probabilities, suggested by

Figure 21,
£ _f(x) |
3 1 1 ;
| -
A v B C
X4y X(ay + &x
Figure 21
are
X/4)
Pr{A} = [ f{x)dx = Flx{y),
-
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Xigy 4 A% %

Pr{B} = [ f(x)dx = flxq + 084x)XAx, 0 <9 <1 g

X:4) .§

% R

Pr{C} = [ flx)dx = 1 - F(xjy + &x). 2

x:.“ + Ax %

Since eventually Ax, = Ax will go to zero, we may as well assume %

i now that it is small enough to assure us that x5, is greater than or equal %

to x4y * Ax. Then we can say that for any random sample (x;, Xz, *++, X5)

4

2

event A occurs three times since three of our five observations must be

o

less than the fourth order statistic, event B the fourth order statistic's

range occurs once as does event C, the fifth order statistic's range. We

can indicate this by putting the numbers 3, 1, 1 in the three regions as

shown in Figure 21. Hence such a typical sample would give the com.pound :
event of 3A's, 1B, and 1C which in turn has the probability
n [Pr{A}]3[Pr{B}]l[Pr{C}]l. é

Once again we ask how many equally likely serially-ordered samples

for each fixed set of five numerically ordered values would give this same

ST A S e,
SN Y e

i R S ARG SO SIS SRR T IS PRI RIS BT TR Y

situation. Well, let's first suppose x{4 = x, i.e., that the fourth

Eriapor g

e

sniallest ohservation is the first observation.

R

Table XV lists the various different serial-numberings of these

B e 3 TR

values which satisfy our requirement.

T
;

b So there are four equally likely but different serial-numberings for
- 1N our set of five values that give x; to be x5, . Similarly we would find

four equaily likely but difierent cnes for each of x;, x3, %, %5 to be xl,.

X 2/ h
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Therefore we would have to multiply the probability of 3A's, 1B, and 1C
by 20 to get the probability of x4, being in the interval (x};,, xl4 + Ax).
This can be written
Pr{xy, < xhy + Ax} - Pr{xl,, <xly,}
= 200 Fixlyy )] [£lxlyy + 04x)]Ax[1 - Flxl,, + Ax)]', 0 < 0 < 1,
Now divide both sides of the last equation by Ax, and then let Ax — 0.
By definition the left member becomes the density function for x4 . If
we denote it by g(x(, ) then we have, dropping the prime on x4, ,
glx) = 200 Fl) )P [1 - Fla )] flxsy )
for all values of x4, for which x is defined.
The probability density function just derived is readily obtainable
as a particular application of the multinomial distribution. Just as we
derived the binomial distribution by asking a question in a Bernoulli Process
[ Volume I, pages 73-75] we can obtain the multinomial distribution by

asking a similar question in a more general process.

Table XV
Less Than xiy, x4y Greater Than xi,,
{x2, x5, %} X3 {5}
{X3, X4, XS} X1 {XZ}
{xZ: X4, X5} X1 {X3}
{xz, %3, x5} X1 {x, }
109 N
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B. The Generalized Bernoulli Process.

Suppose we have z process with the followiny characteristias:

On a trial (in a sequence of trials) some one of k different events
E,, E;, +++, Ex occurs;

The probability p; with which E; may occur remains fixed trial
after trial. Note that py + pp ++-- + pk = 1;

The trials are independent (i.e., the result on a trial is not affected
by the result on a previous trial).

1. Question. In n successive trials, what is the probability of n;
occurrences of E;, n, occurrences of E,, +++, nx occurrences of Ey?
Note that n; + np + +++ + nk = n.

a. Argument. Proceeding as we did in the argument for the
binomial distributicn, we note there is a multiple random variable or
multiple real-valued function in this question and it counts the number of
"successes' of each event E; in an elemen® of the sample space. The
sample space consists of all n-tuple arrays made up of any number of

each of the E;, with the total of such numbers being n, viz.,

ey = (Ey, Ey, **°, Ep)

N Sample space of

\
.

r = (Ey, Es, Ez, By, e

\

K" elements.

\
\
<
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: where e, denotes the rth

.

series of trials. Therefore we shall call
X(e,) = "the number of E,'s in e,, the number of E,'s ine,, **, the
number of Ex's in ey.' Thez X(ey) can be any set of k integers in an i
; ordered array where in each position there can be any integer from 0 to n.
In order to describe further the process and the random variabls,
we introduce, as before, the probability distribution of the ordered arrays

of numerical outputs of this random wvariable. By way of illustration we

give in Table XVI the development for the situation when n =3 and k = 3.

c

Incidentally we can generate by the multinomial theorem of algebra

all the various probabilities by expanding

(pp + p2 + Ps)3

and we can get each one from the compact formula

o

! n n; nj
f(nlv nZ) = -—'i-—:s—‘r——-' P1 Pz P3
ny.nz.nNns3.
where !
;
i
nt =0, 1, 2,3 and i

‘3
Z gy = 3.,
i=]

We write the probability function as involving only 2 of the n; since only
2 of them are functionally independent. Further examination of the table
- will indicate the coefficient on the product of a particular set of powers
ny, n,, n3 of the probabilities p;, p;, p3, respectively, is simply the

/ : number oi permutations ¢f three things taken three at a time when n;

111 .
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{EZ-v El: El} 2: 1: 0 PIZPZ

‘ !

Table XVI “ 1

|

Nr Of El: Ez, E3 % ‘:

er X{ey) Pr{ey} ||(m, nz, ns) Pr{X(er) = (ny, nz, n3)} ;% {
{El: El: El} 3: 0: 0 P (3o 0, O) P1 2 ;
Z

{E2, E2, Bz} |0, 3, 0|p; (0, 3, 0) P: i |
{E;, Es, B3} |0, 0, 3|p) (0, 0, 3) Ps 3 ;
. i
{El: El: EZ} 2: 1: 0 Plzpz 2 j
{Ela EZ: El} 2: 1: 0 Plzpz (2, 1: 0) 3pl P2 i‘
]

™

{Ey, Ey, E3} 2,0, 1 {p’ps \
{El 2 E3 ’ El } 2: ’ 1 P1 P3 (23 o: 1) 3P1 P3
{E3 > El » El } 2: 0’ 1 PL P

(=]
™~

| &

S TRy P i gy

o

{EZ 3 E." ) El } 1: 2’: P1 p%z 2
{EZ ) El ’ EZ } 1: 2: P1 P2 (1 ) 2: 0) 3P1 P2
{El ) EZ 3 EZ } 1: Z: 0 P Py

o

{EZ Fl EZ > E3 } 0: 2: 1 pZ2 Ps
{EZ ’ E3 ’ EZ } 0: 2: 1 PZZ P (0: 2: 1) 3Pzz P3
{E3 » EZ > EZ } Oa Z: 1 pZZ Ps

{E3 ) E3 > El } 1: 09 2 %1 p32 2
{E3 > El ’ E3 } 1: 0: 2 %} PBZ (13 0: 2) 3P1 P
{El 3 E3 ) E3 } 1: 0: 2 1%} p32

o el AR R R R SR N OO L A PR R KT SRR N R R -

i {E3: Es, EZ} 0, 1, 2 F2p32 2
! {E;, Ep, E3} |0, 1, 2|pp# (0, 1, 2) 3p2 p3
: {E;, Es, Es} | 0, 1, 2| p,pf
f {Ei, B2, B3} |1, 1L, 1| pipems
5 {E1, Es, E;} |1, 1, 1|pp2ps
?S : (E,, Et, s} |1, 1, 1| pipeps || (1, 1, 1) 61 Pz P3
] {EZ: E3a El} 1) 1: 1 P1 P2 P3
i {(Es, B, B2} [ L, 1, 1 {pip2ps
; ¥ {ES, EZ: El} 1: 1: 1 P1P2Ps3
¥ .
U /-’. 3 ’I. é
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are of one type, n, of another type, and nj of a third type [ Volume I,
pages 47-50],

In general, for n trials our probability rules tell us that a compound
event which has n;, "E;'s," n, "E;'s," »+*, nk "E's" has probability

m_n;,,, Ik
P17 P2 Pic -

Since there are P(n; n;, n,, ***, n) ways of arranging this number of
"Ey's," "Ep's," -o¢, "Er's," we conclude

Pr{X(er) = {m, nz, >, nk)} = Pln; ny, np, ***, ng

n_n nk
“PL P22 Pk
where each of niy can be any one of the values from 0, 1, ***, n with

m +n, +°°° +np=n.

C. Application of the Multinomial Distribution to the Derivation of the

Distribution Function of an Order Statistic.

Let us now reconsider the Section A and the obtaining of the probability
density function of x4, from a sample of sizen =5, In picking x five
times at random from a population with p. d.f. f(x), we want the selection
to be such that

Event Description of Event Probability of Event Nr of Occurrences

E; xe (=00, Xy4) Flxy) n =3
Ez Xe€ (X(4) » X(4) + A‘)\'.) f(X(4) )dX(4) nz = 1
E3 Xe (X(4) 2 oo) 1 - F(X(4) ) n3 = 1

Substituting the corresponding probabilities in the multinomial

probability distribution function we have

113 -
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[F(xeey )] [£lteay Vdxs) 1Y - Flxgay )

e

which gives as the coefficient of dx4; the probability density of the

Py

fourth smallest or second largest observation as we found before in the

4

£

first section of this chapter. ¥
1 %

D. Derivation of the General Order Statistic. 2
Consider the k-th order statistic from a random sample of size n Z;f

1

from a population whose probability density is f(x). Justi as we did in 2

the previous section for the fourth order statistic from a sample of size 5,

we invoke the multinomial theorem and probability function for the three

events as shown in Figure 22.

ﬂ_f(x)
‘/k-l 1
n -k

~— > X
——— /\""\/"/\ ~
E, %)y Ez2 x()t % E
Figure 22

The areas of the three regions into which different numbers of
observations of our size n sample fall are the three probabilities for the
events E;, E,, E; as shown. Then event E; occurs (k - 1) times, E,

once, and E; (n - k) times.

R s B A N S B R T o B B B vt R T e

So it follows that if g{x(k)) is the probability density function for x),
that
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g(x )dx k) = n.
(1) (k) (k - 1) (1) (n - k)!

k-1
[Fleae)] [ £beqe)dxqg]

[1 - Flegg)] ™™

or

T{n+1)
TEKIT(n -k+ 1)

glxgq) = [Fleg] 1 - Floegpg) T Xelprg) |

It is interesting and useful to note that you can always write the
cumulative distribution function G(x(k)) of a single order statistic as an
incomplete Beta function in terms of the cumulative function F(x) of the
random variable. You will recall that the Beta function B(m, n) is defined

in terms of the Gamma function by

1
= I(m)I'(n) . m-l, -1y
B(m, n) Tt é’y (1-y) y

Now if you let y = F(x), then we can write

t

y .
! - 1 k-1 n-k&
Glx(x)) = Al k1) g yooo(l -y) Tdy

where

1

1
y' o= Flxq) .
By letting k = 1 we have the distribution function of the smallost

element in the sample and when k = n we obtain that for the largest. These

are sometimes referred to as Extreme Value Statistics.

1. Ilustration. Consider the sample (x;, x,, '**, X5) from

Qe

f{x) =1, 0 <x <1, Then

e et A 1 - - -
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51 X1y e 1 1 4
glxyy Ydxqy = W S 1dx] (ldxq,) (j‘ ldx) .
Y X,
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This reduces to
glxay) = 5(1 -xqy ), 0 S xyy S1

Note that this distribution has a very high ordinate at x(;; = 0 and drops

St T e e ST Tt AU R L R

off rapidly as x), increases, reaching 0 when x;;, = 1. This is what

AR

5
you would get for a frequency distribution of the values of the smallest %
observation in repeated samples of size five. 2

On the other hand we get for the median, x;,,

h(XB) ) = 30X(z3) (1 - X(;))? 0= X(3‘ =1

which is symmetric about %3y = 1/2 and has its highest value there,

TR

dropping off to zero as X, goes to zero or unity. These two order statistic

=

]
:
:
L
.

distributions are shown in Figure 25.

T
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1
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<2 ~h(xey )

¥ —f(x)
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i Figure 23
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One would expect the smallest value to have greatest chances of

[P

being small while the median value would have little chance of being very
small or very larye. On the other hand the median value in repeated ‘

samples ought to be more frequently near the median of the population.

E. Maximum and Minimum Order Statistics.

The probability element of the minimum order statistic, x(;,,from

a random sample of size n from £(x) is

0 n-1
n ff(t)dt) f(X(l) )d.X”_)
X

and of the maximum order statistic, x(n), is i
-1
) "
n{ [ £(t)dt f(x(n)\d.x(n) .
-00

Next suppose f(x) is uniformly distributed, 0 £ x = 1. Then we find

n-1
glxaay ) = nll ~xi5,) 0 = xy = 1.

Therefore the integral of g(x(y ) from x to 1 is (1 - x)n which is the

R

" i ’ 4,.*' S 4 e o " ' L
e A ST i SR A S S G R S b, R

Pr{x() > x}. Therefore the cumulative distribution is

e et

Glx) = Prixg, <x} = 1-(1-x", 0sx=1,

' This is obvious from simpler considerations since it is the probability

i that not all n values of the sample fall into the interval (x, 1). By

asenes

u I
o
e M RO

elementary set reasoning we know this event is the complement of all

n
values falling into the interval which has the probability (1 - x) .

oy

Similarly the probability clement of the n-th order statistic for the

uniform distribution over (0, 1) is

;
é
i
5
|
4
.
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n-1
h(x(n)) = nX(p) , 0

IA

X(n) 2 1.

Integration from 0 to x of h(x(y)) gives x" which is the Pr{x(n) < x},
the cumulative distribution H(x). However we can get this directly for
this simple base population since it is the probability that all the n values
of the sample fall intc the interval (0, x).

1. Illustration. Let f(x) = 2x, 0 < x < 1, and consider the random

sample (%3, %X, *°*, x;). Then the schematic diagram pictured here

1 1 3
- e ~ — v -
[ ] (] | ! 1 i
1) v L] 1 1 [ 1
0 xuy x@v Xy Xy X o1

suggests the probability density function

3
1 -
51 X(2) X(zytdx 1
glx )= = | [f(x)dx| X | [ flx)dx|X]| [f(x)dx], 0=x,,=1
2y 17113}
0 X(2) X2
3 2 3
= 40X(2)(1 - X(Z)) s OSX(Z‘SI.
In a similar way we find
5 .
h(X“ . ) = 60X{3) (1 - X‘é) )2, 0= X(3) 1.
x5y ) = 10x(95,, 0 =x5,s 1.
F., Maximum Likelihood + Order Statis*ics.
: 1. Ilustration. Suppose a random sample of size n is drawn from

the exponential population with density function

f(x; a,B) = Be-ﬁ(x-a); @ =x <o, 0<B.
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Then the likelihood of the compound event of the n sample values is
2 (xs-0)
B ZTixi-a
L = ﬁne 1 s
and

InL = nmnp - np(x -~ a).

Taking the partial derivatives of {nL with respect to each parameter and
setting each resulting expression equal to zero ana then solving these two
equations simultaneously gives us estimates @ and B which should locate

a relative maximum for L, viz.,

9inL

da np
0L =B _ 5% .

op p

and
)

nB = 0
.f_}.-n(;-&) = 0
B

Now the first equation gives B = 0 which is not allowable in the second
equation since it could not then give a finite @ So differentation so used
fails as evidently no relative maximumn exists!

Remember cur purpose is to select an @ and a f so that L is
maximum. From the defiaition of 1., we can see that forany p > 0, L
would be greatest when @ takes on its largest possible value since then

the exponent on e is largest. Now from the definition of f(x) we know that
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all x are greater than or equal to a. Consequently @ must be less than

Pap——

or equal to every value in the sample. Therefore the greatest value which

TR R SR RTS8

@ can take on, consistent with the sample values, is the least value in the
sample, i.e., X(,. 9S50 the maximum likelihood estimator & for « is the

first order statistic. ‘

Next, substituting xq) for @ in the second equation of the last pair

of equations yields the maximum likelihood estimator for B,

B =t

X - xq
2, IDlustration. For a random sample of size n from a population

with uniform distribution f(x) = 1/6, 0 = x = 9, we have

1
L=—n

I

Obviously we get nowhere setting this last expression equal to zero

for this demands 6 be infinite. Equally useless is to say that L is largest

o e o -

when @ is smallest and so let's take § to be xy1) the smallest value in

our sample. Elementary considerations, on the other hand, tell us that
. 0 =xpy - = Xiny = © and therefore we must have 0 as big as Xeay e

Consequently, under this constraint, our maximum likelihood estimator is

8 = xm,.

g ) 120 ~ -
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Note the Cramer-Rao Inequality and the theory depending on it do

i not hold here since our parameter is a value at the end of the domain of
the variable and hence not within an interval to permit using differentiation
for relative minimum-maximum analysis. If one did not recognize this
*. and calculated the lower bound for variance of the M. L, E. as given by

the Cramer-Rao Inequality, he would get

Mnf(x) = -no

! (_a__fznf(x))z 1Pl L
50 6] @

S

nE ?—%f-(—’f—) =nf Lxlax =2
0 o2 0 02
Therefore
. var § 2 62 /n

But Xin, is our M.L.E. and we can find its variance as follows:

n-1
X dx
glx iy )%, = nff L ax =
t o 6 9
- n n-1
g(x‘n,) = E(X(m/e)

Therefore

n
(n+1)2(n+ 2)

var {xn,} = 0% X
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which is smaller than the lower bound to the variance found by using
theory when the hypothesis for it was not satisfied. So all is well, if you
look at all of it.

Incidentally the formula

E{xpn,} = [n/(a+t1)]0

is useful in predicting the maximum value in an assumed rectangular dis-
tribution when you have only a sample of size n. You simply use it in
reverse and say 8 is (n + 1)/n multiplied by the sample maximum. To
say when this is reliable and to what extent requires more analysis than
we will go into here. One needs to calculate a probability statement about

the difference between [ (n + 1)/n]x( and 6 so as to get some sort of

m

confidence interval for 6 in terms of the [ (n + 1)/n]x ) from a sample.
For n large, say n 2 100, we know that the area uader g(x‘m) to

the right of the mean, [n/(n + 1)]6, is about .63 while in an interval of

length 6/(n + 1) to the left it is about . 23. Hence about 85% of the time

Xy lies from [(n - 1)/{n + 1)]0 to 8. So we can say

n

Pri{-__9 < - <8 2
r{m *m "~ 5 n+1} - 86

This can be written as

e

prd B _ntly cgc_B ntly = .86,
r{n+1 n my < ® n-1l n (m}

So if you call [ (n + 1)/n]xn, your estimate ® of 6, then we can say that

we are 86% confident that § lies in
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To see how effective this really can be suppose we assume a rectangular |
distribution and wish to estimate the upper bound or largest value from a
sample of size :00. If the largest value in the sample is also 100, then
; our 6 is 101 and the 86% confidence interval is roughly (100, 103).
It must be remembered tirat the previcus example was quite restrictive
and that if the base population is other than rectangular, a new probability
] function for xi,, needs to be calculated, a new mean, and nc doubt new

considerations as to just what may be meant by a maximum in the base

population, to say nothing as to the cffect cf the sample size n.

G. Confidence Interval + Order Statistic.

[

Suppose we assume the base population distribution of the previous
illustration and then we ask for the smallest sample size such that we can
be 99% certain that x(n; cuts off to the left the fraction § of the population.
Well, this means we must find a sample size such that the following proba-
~ bility statement is true,

Pr{xm) /0 > B} = .99.

This can be evaluated as

pe 6 n-1 .

1 - Jglxpy)dsn, = 1-J Py dxy,
0 0 o
! n] 6
= 1 - _JE_F'_]
¢ 0
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=1-8%= .99

Daxs

Suppose we take B = .95, Then we have
n
Pr{x.,'5 >.95} = 1-(95) = .99

which gives

in{. 01)

mio - %

This means if we take a sample of size 90, then we can be 99%

SR N A S R S N SR TR U L e S s b o AL S P

confident that the largest value in our sample chops off at least 95% of
the universe,

You might say we have a one-sided confidence interval for 6 here
since we can express this as

Pr{e < s,,/.95} = .99 for n= 90

or (X;q,, ¥n / 95) is a 99% confidence interval for 8, the maximum value
of the population.

If we take our previous illustration where Xin, = 100, then we have
99% confidence in 6 lying between 100 and 106 for about the same sample

size. But if you look at the previous section you will note that the two-

sided confidence interval there given really is

n+1
(xln\’ — x(m)

1
a one-sided interval, and gives us less confidence, 85%, in a smaller

interval, (100, 103), consistent with our later estimate.
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H. Hypothesis Testing with an Order Statistic.

1. IDlustration. Our hypothesis tells us that a random variable x

is distributed according to the law f(x) = x/2, 0 = x < 2, We want to test

this hypothesis by using for a tast variate the value of the largest observa-

* gt

tion of three observations drawn at random from the base population.
Using a one-sided critical region on the right with a level of significance
of . 05, let us deiermine whether the hypothesis should be accepted or
rejected by the experiment which yielded the three sample values . 211,
1.96, and 1.52,

a. Argument. The density function of x;3, is

X{3) .
H
glxi)) = 2—?—1—'— [ f(x)dx| £(x3), 0 = x5, 2
. . O

which is motivated by the diagram !

2 1 0
- " — - e,
A ! ! . .
0 X3 2
Using the assumed form for f(x), we find
3
glxamy) = 3(x,3)) 1{—2—- =33 X3, 0% xy = 2

Now the largest value in the experimental sample is 1. 96 which we must

| use, viz.,
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Therefore we do

PI'{X(3) 2 1.96}

not reject the hypothesis.

126

G(1.96)

1.96

fglxa, )dx s,
0

1. 96

X3y

= 1 -{.98)°

0

.8865 = ,1135 ¢ .05
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E Vi, NONPARAMETRIC AND DISTRIBUTION-FREE TESTS

1 The two adjectives in the above title seem to be used alternatively
! and interchangeably in the literature. We will accept this, though argu-
. ment can be given to distinguish between them.

Most of the tests we have used were based in some way on the

. .
: assumption of normality. However, in practice we often know nothing

.: about the parent population and so we need tests which do not depend on

y any assumption about the form of its distribution function. Distribution-
' free tests are based on order statistics or ordered samples, that is, we
%: suppose the sample is ordered so that the observed data are arranged in
: increasing order of magnitude. In contrast to the common measures of
location ind dispersion, i.e., the mean and standard deviation with which
\} we concern ourselves in parametric testing, here we use the median,

i quartiles, quantiles, etc., since they are sensitive to order by magnitude

while the mean and standard deviation are not. In particular, when samples

are small, distribution-free tests have proved saier than parametric ones
where an error or lack of precise information concerning the required

hypotheses has a rather dire consequence.

. A, Sign Tests.

In earlier work we have tested, on the basis of a sample, whether a

PRy

listribution was ''located" at some prespecified peint. Low let’'s test

this nonparametrically. To do so we use the median X of the sample to

(N R S A SN,
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estimate the true median 1t of the base population. Suppose we wish to
test whether some other number {1, could be {i.
Let %, %, *°*, Xn be our sample. Consider

Hypothesis: Median of distribution = f(o

Alternative: Median of distribution ¥ [, .
To compute wha:t is needed from our specific sample, we simply observe
the signs of the differences

X - }7-0, Xz - ilo: Tt ¥n - ﬁo
and record the number of positive signs, y. Now Y = y is a random
variable since (%3, %z, *°°, xn) is a random sample. Moreover Y =y
under this hypotheses has a binomial distribution.

n,.n
fply) = CYIZ, y=0,1, +*, n

since the probability of an observation falling to the right or left of the
true median is 1/2 in either case. We might as well assume a continuous
probability distribution for the base population X so that values equalling
the median have probability zero and hence can be neglected.

So, in our sample, we find how probable is the particular value of
Y and thersby make a decision about the ﬁo whicn gave rise to it.

1. Nlustration. For the sample emands 853, 857, 861, 851, 856,
859, 854, 849, consider the hypothesis that the median of the base popu-
lation is 85C, the alternative hypothesis being it isn't.

a. Argument. Apparently we should use a two-sided test,

rejecting the hypothesis if y is either toc large or too small. The test
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statistic' s probability distribution is

8 LR ]
fB(Y) - Cy /256: y = 0’ 11 ’ 8.

which in tabular form is

y 0 1 2 3 4 5 6 |7 8

fly) || .004 }.031 ]1.109 1.219 {.2741.219 }.109 |.031} .004

F(y)|l .004 }.035 |.144 |.363 |.637 |.856 |{.965 }.996]1.000

bt

Before we use the particular value of y = 7 which our sample gives, we
note from the above table that

Pr{y<1l or y> 17}

Pr{y =0 or y = 8}

£(0) + £(8) = . 008

1 Pr{y<2ory>6}=Pr{y=Cory=lory=Tory=8}
= £(0) + £{1) + £(7) + £(8) = . 070.

If we go back to our original derivation of the distribution function for the

8§ test statistic y and define y to count minus signs instead of plus signs,

then the same value of [, would give us for the same sample set a value

of 8 - y for y. This is why we here use a two-sided test to wash out the

effect of this arbitrariness. In other words the rarity due to chance of a
particular fi, for candidacy for median must be considered so as to

transcend this arbitrary choice in the definition of y. In our case this

'?5 means we must think of y =1 along with y = 7 as describing the actual
situation of our data and hypothesized median.

Now if we decide to reject at the 1% level, then we see that y must
be 0 or 8 to have probability less than 1% so that we would reject our
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hypothesis. Hence in our particular situation where y = 7 our test accepts

4the hypothesis at the 1% rejection level. The same conslusion would

maintain at the 5% rejection level since the actual case on hand occufs

due to chance as seen through the eyes of our test statistic 7% of the time

and is not rarex than 5% of the time. We can't get a total of 5% of proba-

bility from the tails of our discrete probability function. .

If we lower our rejection le rel to 7%, then we would reject the
hypothesis. But this is not a very stringent requirement for rejection.

In the same vein of thought but slightly more general lies the testing
of whether two different samples {x;} and {yi} come from the same
population. If the samples are fairly large, we can invoke the LaPlace-
DeMoivre theorem as seen in the following case.

2. Illustration. Suppose we have two independent random samples
X1, X2, ***s Xpn and y3, V2, *°°°', Yn and that we wish to examine the
possibility that they came from the same populaiion with a distribution
function which we do not know.

a. Argument. Now the x; are not only random among them-
salves but also, under the assumption of a common base population dis-
tribution function, random among the yj. Hence the probability is 1/2
that any y;i is less than any x;j.

Let us prove this in general for any two independent random sample
values y and x. If f(x) is the common density function on (0, «»), then

from the joint density function we get
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00 x
Pr{y < x} = [f(x)dx [ f(y)dy
0 0

since the admissible region in the x - y plane for our event 'y < x'" is as

shown in Figure 24,

4 }\ y = XA/
y >x -~
(x, %) K
<ix
! U 3 X
(x, 0)
Figure 24
x
If we let z = [ f(y)dy, then dz = f(x)dx and z = 0 when x = 0 while
0
z = 1 when x = w. Therefore
1
Pr{y < x} = fzdz = 1/2,
0

Thus we see our probability and the event are independent of f(x) and

hence distribution-free. So we are on firm ground to say for z; = x; - yi

and for u; = 1 if z3 > 0 and uy = 0 if z3 < 0 that

[P

Pr{u; =1} = Pr{ug; = 0} = 1/2.

Now u; is a random variable and consequently so is w = Zuj. Its mean

and variance are seen to be

P

E{w} = ZE{ui} = (_]2-_+%+...+_]é_) =

s

~~
S
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var{w} ~ Zvar{ui} = (_‘](:1..;.%4.... +%1_)

Therefore the standard deviation of w is N n/2.

Recall how we proved the Central Limit Theorem in the previous
course on pages 174-177. So if n is large enough, say over 30, we are
pretty sure w, though discrete, can be adequately described by a normal

distribution. This allows us to make the statement

- 2 .
Pr{~zc<—“:—\/:n—/l}-i/-—<2c = C

which leads us to the associated statement

PrE'ch<W<—+ch c.

To further exemplify how the large sample theory joins the distribution-

free work, we take ¢ = .95, n=100, n/2 =50, Nn/2 =5, z¢c = 1. 96,
and find

Pr{50 - 1.96(5) < w < 50+ 1.96(5)} = .95
or

Pr{40 < w < 60} = ,95,
We would therefore reject the hypothesis of the same population
for the two sets of data each of size 100 at the 5% critical level if the
sum of the ui is greater than 60 or less than 40. Basically this is analogous
to the first sign test; Zu; is our binomially distributed test-variate

with p=1/2.

B. Point and Interval Estimation.
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As we said earlier, the base population median is estimated by the
sample median which is not unbiased but is consistent. Similarly we
estimate the population quantiles by the corresponding sample quantiles.
These are point estimators.

In contrast, to obtain a confidence interval estimate for 1, we use
the equal probability concept for an observation being to the right or left

of I, It then follows that the probability that xr,, the r-th order

statistic, exceeds p is

Pe{xiy > £} = Pr{xy>f, i=1, 2, °°*, n}
+ Pri{xq) <p;xi,>n, i=2, 3, ***, n}

+Primn<f, i=1, ;% > {0, j=3, 4, n)

So, if f5(i) = C{

r-1
Pr{x(r) > lI} = igofB(i)

Since p = 1/2 and hence our binomial distribution is symmetric, we also

have

Pr{x > ;;,} = fB(l .

(P )
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Further we find

n n
n,.n
?r{x(Sj < F"} iZ:SfB(i) = igsCi /2

4

and so

s-1 s-1
Pr{x,, < g < x4} = Z fg(i) = Z c?/zn, r < s.
i=r i=r
Thus (x(y,, X.g,) is a confidence interval for I and the amount of
confidence is the value of the sum of the probabilities in the right side of
the last equation. These sums can be computed directly or by use of

the tables of the Incomplete Beta function, e.g.,

n
ntn-t
1 - Fpix) = Z Cipgq
t=x+1

i

Ipx+1, n - x)

p

X n-x-1
fy (1 -y) dy
= 0
1 'S n-x-1
fyQ-y dy
0

1. Illustration. For a sample of size 6, we find

a. Pr{Xu) < |.~J. < X(G)} = -66-):1.2- = -97.

b, Pr{xg, < { < x4y} = %g = ,78.

2, Illustration. Suppose Q, is the lower quartile or .25 quantile.
Then the probability of a random value being to the left of it is 1/4, to

the right 3/4. Hence for a sample of size 6
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Pr{xg, < Q1 < x4} Pr{xp) < Q < x,}
+ Prixg) < Q < %3 }

+ Pr{xgs, < Q@ < x¢n}

= CHY(E) et R F e L) )

1458 + 1215 + 540
4096

_ 3213 . 9
4096

We note since the above sum is of three consecutive terms of the binomial

distribution

i n-i
tgld) = Cln(%i] ()
that this probability (confidence) could have been obtained from the Incomplete
Beta as
L (1,6) - 1,,4(4,3).

We will talk about quantiles in general shortly.

C. Tolerance Limits.

You will recall we spoke of these earlier in Chapter III when we
were estimating what size of spread would contain a certain percentage
of the base population whose form of distribution was known. At that
time we said we would return to the same concept when we no longer knew

the base population distribution function. Let us begin by studying an example.
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1. Ilustration. Consider a random sample (x;, %, x3, %,) and

the random interval [ %1y, Xt4y]. What proportion of future sampled

items will fall in this region?

a. Argument. First we must recognize we can give only a
qualified answer. That is, the proportion P we get will depend on the
desired confidence we wish to put into it and vice versa. Now let us ask

for 95% coverage. Then

1
4 [ (1 - x)' dx

Pr{P([xa), % ]) 2 .95} 2:1! g5

Thus there is only a small chance that the interval [xq, , X ] will contain
95% of the probability of the distribution. Incidentally we used in the
above equation the general formula for the probability element of the

range V of a sample of size n, namely,

nln - V31 - v)av.
In general for a coverage P 2 $ and a confidence ¢ we must solve

1
fon - l)Vn-Z(l -V)dv = 1 - (nﬁn-l- n - l)ﬁn) = c
B

where
Fv(ﬁ) = Pr{V=p})=1-¢
which are usually intractable. Transcendental equations like this are

hard to solve, usually solved by trial and error. In the case when B and
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¢ are given and we wish to determine the smallest n for this desired
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tolerance interval, we must solve

FB) = op® cm-1)p = 1 -¢

for n. An approximation is

. 1 l

n = _Xch4(1-p

For example, when ¢ = .95 and § =,99, we get

-1 1,991 , 1 _
5 (9. 488)( 2| +1 = 413,

It is no wonder our original sample of size 4 gave us such a small chance
of containing 95% of the probability of the distribution. As a matter of
fact we need n = 132 to get 99% confidence that [xq; , x(ny] will account

for 95% of the action.

This concept of working with a percentage of the probability and
not with the same percentage of the range was first given by the late

S. S. Wilks in two short classical papers. They mark at a later date as

great a contribution as the earlier confidence interval did for a parameter
of a distribution. It was known by Wilks and others that percentage of

range could not be handled.

D. Confidence Intervals for Quantiles,

We call as usual xp the p-th quantile point of a continuous cumulative

distribution function F(x) if F(xp) = p.

Now (x(kl) » Xy +kz)) is a confidence interval for Xp having confidence

)y
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Ip(kl, n+l-kj- Ip(k1 tk, n+l X% -k;)
which is the
Pr{xg < xp < %k, +k, }
which in turn is really the probability of
Flegen ) < p < Flxg 41 »
Wilks tied up the essentials of all this in a very important theorem:

Wilk' s General Theorem. If Vi = the sum of any r coverages of

U’ s where Ui = F(xu)) - F(x@u-1) ), then the probability element of V¢ is

nl

r-1 n-r
: v (1 -Vy) av 0<V, <1
n-x)(r-1)7 % * T T

which is the Beta distribution for r and n - r + 1. The corollary of
Wilk' s General Theorem is also very useful and may be stated as:
Corollary. The average amount of probability for any one coverage
is, takingr =1,
1

= 1 Vi(l - V. n-1 Vy, = S(n: 2) = 1 .
E{V} ST Of 1 ( 1) dvy o) —

It is no wonder some people say that confidence intervals on quantiles
are equivalent to tolerance statements about the population with the same

confidence.

E. Probability Paper Again.

The corollary just given by rights ought to be stated as:

Theorem. For any continuous distribution the expected values of

the n + 1 probability areas determined by the random sample of n
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values are all equal to sach other and so their common value is 1/(n + 1),

Remember how in Volume I on pages 108-111 we used arithmetic
probability paper to check on normality in large samples. Now suppose
we have a small sarnple, say size 10. Then as we promised on page 109
in Volume I, we would use order statistics plus the above theorem in
crder to give us a similar check with the same graph paper.

The practical value of this lies in the fact that for any random
sample of size n, the total expected probability area to the left of the

i-th order statistic is equal to i/(n + 1). Now if we took the points

(Xu) ’ %1-)’ (X(Z): -r-?;-}: Tt {X(m: %}

we could not plot the last one as it does nct appear on our paper. The
symmetry of the normal distribution suggests that whatever probability
be assigned to %1, , then ore minus it should be assigned to x,. We

could use the " spacings"

1 2 n
s 23] e 1) (e 5

or the " spacings"

1

1 3 oo |
‘X(I\: Z{), (X(Z): —2;1-)’ :(x(n):

%

Much depends on your purpose in plotting. I. you wish to obtain
"optimum'' estimates of the base population mean and standard deviation,
you will find the literature replete with intricate analysis for each sample

size. The last " spacings' given above are called by many authors

139




PO

A

"intuitively plausible' and are found to be nearly as efficiert as the
optimum probability " spacings." Moreover they follow a simpls formula.
So we will use this spacing for plotting the order statistic cumulative
probabilities on the ''linearized" probability scale against the observed
values of the sample which are measured on the arithmetic scale.

1. IHiustration. The following ten demands were obtained randomly
and then reordered: 162, 191, 198, 212, 220, 232, 240, 252, 265, 286.

The corresponding cumulative probabilities for the associated order
statistics' values, using (2i - 1)/2n are
1/20, 3/20, 5/20, -+, 17/20, 19/20, respectively.

On page 141 we see the plot or graph of these on arithmetic probability
paper. They seem to lic near the straight line we drew in by eye so we
accept normality of the base distribution. As before in large samples,
we now estimate the mean by the 50th percentile which is 224 while 262
at the 84th percentile yields the estimate of 38 for o, the sta.n'dard deviation.
The sample itself has a mean of 225.8 and a standard deviation of 37.1.

Note if we tock our old formula for estimating ¢ using the 16th percentile
value we get (262 -~ 188)/2 = 38,

The same procedure can be uscd to estimate parameters for other

type distributions on their own ' linearized" probability paper. The

spacings of the associated prcbabilities would charge accordingly.
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o F. The Magnitude Test,

Suppose we have two random samples, {x31} and {yi}, of demands
and we wish to decide whether or not they come from the same parent
population., Now we have seen how the sign test, when used in such a

situation, considers only the signs of the differences 2; = %3 - y; and

does not take into account the magnitude of these differences. Consider .

the following data from two samples of size 6,

13 14
6

2 5 1 6
z; 13 1 4 1 -1} 5 | 1

|

Under the assumption that the parent population is the same, it

x
1

follows that the median of z; is zero, Further it follows that the two x3
and y; that give a value for z; might just as well have been interchanged.
This means any z; could just as well have been positive or negative. So
we might consider drawing a random sample of size 6 from the synthetic
population of six possible pairs of differences, one drawing from each
pair. This means each random sample uses a z; with one sign. Hence
our population conzists of 64 equally likely possibiiities, ranging from the
extreme negative total of -20 when all signs are negative to that of +20

when all signs are positive. Our test variate is the sum of the six differences.

The following table gives the freduency of ccecurrence of the various sums.

8 |;ezo|=e13|¢16|¢14|¢1z!¢103¢8|¢6]£4}&z[ 0
f(s)ll|2;111F3I474l4|41516

So we see the provability of s = 20 is 1/64, of s = -20is 1/64, of 18
is 2/64, of -18 is 2/64, etc. Obviously the distribution is symmetric about

s = 0,
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Now suppose we use a significance level of 5% and a one-sided test.

Then the nearest we can come to it is by taking s = 18 which yields
Pr{s 2 18} = 3/64 = ,047. The actual sample value is & = 18 which falls

in the upper 5% critical region. Therefore, we would reject the null

hypothesis which in this case is that zero is the median which in turn

%
|
%
k-

rejects the hypothesis that the two random samples came from the same
distribution.

Recall the sign test takes no account of the magnitude. In this last
example had we invoked the sign test, then the test variate would be x =

the number of positive signs and would have had the distribution
6 16
fg(x) = Cyx /2", x=0,1, 2, ***, 6

For the same significance level and right-sided test we find x = 6 is the

oaly value falling in the critical region since £(6) = . 016 while £(5) + £(6) =

.094 + .,016 =,.,11. Since x = 5 in the actual sample we would accept the

j
j
:
i
}

null hypothesis that the number of positive signs equals the number of
negative signs and hence that both samples come from the same distribution.
In a sense the magnitude test generalizes the sign test in that the
former can be reduced to the latter by taking all possible arrangements
of a fixed number of excesses and lumping the probabilities of their sums.
It is important to note frora the previous discussion that for the
same sample(s) we have come up with opposite decisions from two different
hypotheses of randomness and their test variates. The lesson to be learned

is that we usually solve an interpretation of a problem and not the problem

per se.
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G. Conditional Events,

Many practical situations call for an estimate of what to expect

next after a sample has been taken, From another point of view we could

suggest certain possibilities and then calculate their chances of occurring.

It is this line of thought along which we will proceed, First let us look at

1. IDlustration. Suppose we have had ten demands randomly given
from a hypothetical distribution f(x). For convenience we will assume
f(x) is defined over 0 to w. What we do will not be limited in application
by this as the same result would evolve for a finite range of x. Now
suppose three more demands are randomly drawn from £(x). What is
the probability that all three of these demands will be larger than any of
the first sample?

a. Argument. We know that

9
10! P

gran) = =1 f flx)dx| flxqoy)
% Lo

and the next three must be larger than x;; 9y . The conditional probability

that this happens is

3
o0

[ £{x)dx| .
X(10y

Therefore the joint probability function of these two events is

3
0

glxpoy ) [Elx)ax| , 0 = x10) <
X{l0)

Hence the probability of this event is
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o0 ’ o0 3
[ glx 01 )% 0n] [ £(x)dx
0 X1 0}

3

wfxan || @
= 10 [ | [ £(x) I f(x)dx flx(1 0y)d%0 0y -

0 |0 X(1 0
X(10) .
If we let U = [ f(x)dx, then dU = f(x( ¢ )dxq ¢y and the integral becomes
0
1 3
10 f(1 -U) U'dU = 10p(4, 10) = 1/286
0

So we see the probability of the event of interest does not depend on the
form of f(x).

2, Illustration. For an arbitrary f{x), 0 < x < oo, find the prcba-
bility that after a random sample of size n is drawn, the next two
observations will lie outside the range of the sample.

a. Argument. This means that the (n + 1)st and (n + 2)nd
demands lie outside of x¢y £ X £ X(p,. As we did in the previous illus-

tration, we find the probability P of this event is given by

n-2
o0 o0 X(n\
n(n - 1) ff(Xu) )dX(n f f(xm, f f(x) i
0 X(1) X1y
r 2
, Xy
X 1« ff(x)dx dX(n)
X(1)
¥ X(m

Transforming by U = of f(x)dx, V = [f(x)dx, we see that U = V s 1,
0
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Ximy
V-U = [flx)dx
x¢n
and so
1 1 ne2 .
P=nn-1)fdU f(V-U) [1-(V-U)]-av
0 U
6

(n+ 1)}n+ 2)

free of the form of the distribution f(x).

H., Elementary Protection Level Calculations,

‘ The Theorem on page 138 can be used directly for a simple but
tyl;ical protection level problem. Suppose we have a random sample of
size n which is ranked from smallest to largest in our usual notation
Xy to Xepnye.

Now when we asked in the previous section about the probability of
two or more additional random values behaving in a way conditioned to
the original sample values, we ran into some calculus. However if we
ask only about the next value, things are very simple. Suppose we ask
for the probability that the next demand, call it x%*, is greater than, say
X(ry, ¥ S n, Among the n+ 1 equally likely intervals created by the

ordered values of the size n sample, we are asking for x* to fall into

any one of n - r + 1 of themi, Therefore

Pr{x* > %y} = =
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To apply this suppose we want a protection level of . 80 for an item
whose demand is known over the past nine quarters. Then we want the
probability of being out of stock to be no more than ., 20, Our formula says

r 210 -,20(10) = 8,

This means that stocking up to the level of the eighth ranked previous
demand reduces the probability of stockout to . 20, This used the second
highest previous demand.

To find that minimum sample size n for which x* need be only
larger than the second highest previous value at differeat protection levels

we offer the following table

Protection Level ' .50 |

W
18
o~
0
P
[ oY
Pt
0
W
0

Minimum n I
Related tables varying one or two of the three variables can be

constructed to magnify this elementary concept of protection.

I, Tests of Randomness.

Since all of our previous theory and technique depended on the random
selection or random occurrence of events or data, it sometimes is desirable
to test selected data for this property. Actually the following tests are
not capable of proving randomness exists if it does exist. They at best
indicate to what degree nonrandomness exists. It is important to realize
that each of these tests, even when they detect no nonrandomness, do not
assure randomness. Some will frequently not detect nonrandomness when

it is present. However, these tests are useful in avoiding faulty conclusions
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because of incorrect assumptions and they can indicate the need for investi-

gation of factors systematically affecting obtained results, that is, they

can detect the presence of systematic variation.

Nonrandomness might be summed up by the following four character-

istics of observed data:

1, discontinuities,

2. trends,

3. cyclic or periodic movement,

4, extreme values,

Bear in mind that the first three of the above characteristics are
functions of the order in which the observed data, or the observed events
from which we get the data, occur., Except for extreme values, non-
randomness as characterized by any of the other three symptoms usually
can be made to disappear by a rearrangement,

1. Runs or sign test, Coneider the following table giving three

different orders of the same number of heads as of tails, each from 20

tosses of a coin,

Table XVII

Toss Number

1 234567891011 12 13 14 15 16 17 18 19 20

-3
ey
3

Orderl | TTTTHHTTHT H T T H T H T

Order 2 |HTTHTTHTTH T T H T T H T T H T

Order3 {( TTTTTTTHHH H H HHT T T T T T
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The first series of heads and tails did occur randomly. The second and

third ones are rearrangements of the first one. The first one does not
appear unusual while the other two display some systematic effect. Now

it can't be the numher of heads since this is the same in each series.

It is the order which signals our attention. The second series is made
up entirely of sequences HTT. The third series is composed of a long
run of T's followed by a long run of H's followed by a long run of T's,

To get at this in a way more scientifically revealing that which we
noted above, let us examine such series for (1) length of a run of the same
event, (2) number of runs of different lengths.

The first series has one run of length 4 (tails), two runs of length 2

(tails), two runs of length 2 (heads), five runs of length 1 (heads), three
runs of length 1 (tails), or a total of thirteen runs. Note the shorter
length runs occurred more frequently than the longer length runs. On the

other hand the second series, obviously periodic, has more runs, fourteen,

et S A S v hn o S i

but only two different ones and these are of lengths 1 (heads) and 2 (tz.ils).
In the third series we have but three runs, each of great length, It
appears that increasing the number of runs tends to reduce the length of
runs and vice versa. Hence we seek a probabilistic description of both
at once.

Actually what we did with the runs is abstractly equivalent to what

we do with the signs of the differences of successive data. Hence it is a

sophisticated form of the use of signs, For, if in place of H's and T's
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we have twenty readings, then by taking the data in the order of its
occurrences and sémply using the signs as follows:
sign (x, ~ %), sign {x3 - x;), ***, sign {xn - xpn.1),
we consider the runs in (+)'s and {-)'s.
In general, if we have two different entities, type A and type B,
and if further we have in total m of type A and n of type B, then it can
be shown that in a series of length m + n if U = number of runs from the

m of type A plus the number from the n of type B,

3200
Pr{U = ZV} - V(;rll.*-;_l
SPR e e i Y

")

when the series is random. Extreme values for U, small ones indicating
a few long runs, large ones indicating many short runs, have low probability
and hence indicate possible nonrandomness.

a. Illustration l. In 11 successive quarters demands for a

certain F'SN appeared as follows

3, 7, 8, 10, 11, 13, 12, 11, 7, 6, 8.
We will assume they appeared randomly from a stable distribution. By
taking successive dit:.ferences we find the sequence of signs is

SRR TR I S

consisting of three runs. Now how probable due to chance is the case of

;o
Sy
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e
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three or fewer runs in a sequence of 5 plus signs and 5 minus signs?
Well, the probability of at most three runs is

Pr{U s 3} = Pr{U = 3} + Pr{U = 2}
since we cannot have less than two different runs. Hence, by taking

v = 1 in each of our previous formulae along with m = n = 5, we find

eeqo = oy < Jollol , [illo) *fo]ls)

5| )
| = s o = L0397

So this supposed random sequence of dernands has a property that
occurs due to chance only 4% of the time. When this small number of
runs occurs, it is very likely that some r.onrandom behavior is present.

We must remember, in order to us: this method, to transform
our data into a sequence of events of two kinds. Commonly one designates
an element as above or below the median, thereby creating two classes.
This has the advantage of always making equal the number of elements
of each kind, i.e., we can always take m = n in our previous formulae.
If there are an odd number of elements, we drop the median. Miss Swed
and Dr, Eisenhart have given a table for this case, that is, for m = n.

A part of it follows in Table XVIII. The entries give the nurubz- of runs
for a particular number of elements 2m = 2n such that the probability of
this number, of runs or less than (greater than) this number is a for o =

.05 and for @ =,01,
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Table XVIII

Critical Values of U = Number of Runs

Lower Critical Upper Critical

m =n a = 0.05 a = 0,01 a = 0,05 e = 0,01
5 3 2 9 10

) 3 2 11 12

7 4 3 12 13

8 5 4 13 14

9 6 4 14 16
10 6 5 16 17
20 15 13 27 29

When m is large, theory tells us that we can use the fact the run
distribution is nearly normal with expected value m + 1 and standard
deviation N /2,

2. Mean square successive difference test., This test is more

powerful but not as quick and easy to apply as the tests in the former
section, The former tests were distribution-free whereas this one is not.
This test depends on a statistic whose distribution was discovered by
voir Neumann, As happened so often with our classical distribution
functions, he assumed a normal distribution for his base population from
which the random samples come.

Here we must compute the average of the squares of the {n - 1)

successive differences between successive eclements in a random sample
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of size n. Now we can prove the expected value of this statistic, namely of

2
2 = Z(xigey - %1)

ne-l
is 20':;, regardless of the base population distribution. But the expectied
value of the ordinary sample variance, namely of
Z(xi - x)°
n-1

2
is o Therefore we can say the ratio

62

———

n = 2
has expected value 2, Dr. von Neumann gave us the distribution function
for n, and in 1942 Dr. Hart gave a table of its values. We repeat, as
has happened in so many other situations, Dr. von Neumann assumed
the sample came from a normal disf:ribution. Table XIX is an abbreviated
form of Dr. Hart's table,

Before we illustrate the use of 1 in detecting nonrandomness in a
sample, we might get a feeling for its sensitivity to nonrandomness by

' ,

noticing how it might vary from the value of 2 in certain situations. For
example, when data has an upward trend, & will increase much less
than s°. So n would be less than 2. On the other hand, if the data rapidly

goes up and down, 8% will increase proportionally greater than s®. Then

n will be greater than 2.
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Table XIX

Critical Values for n

Sample Size Lower Critical Upper Critical
n a=0,05 a=0,01 a=0,05 a=0,01
4 0.78 0.63 3.22 3.37
5 0.82 0.54 3.18 3.46
6 0.89 0.56 3.11 3.44
7 0.94 0.61 3.06 3.39
8 0.98 0. 66 3.02 3.34
9 1.02 0.71 2.98 3.29
10 1.06 0.75 2,94 3.25
20 1.30 1,0« 2,70 2.96

a. Illustration 1, This illustration was first given by

C. A. Bennett of General Electric. He wished to show that the runs
test is not as powerful as the mean square successive differences test,
He gave the following results of measuring a standard sample in the
order of their analysis.

First let us compute n .
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Table XX
Sample Nr | Result Difference Sample Nr | Result Difference
i Xi Xiey - X4 i X3 Xisy = X3
1 83,50 0.13 11 84, 40 0.10
2 83.63 0.53 12 84,50 0.38
3 84.16 -0, 91 13 84.88 -0, 34
4 83. 25 0.11 14 84.54 0.16
5 83.36 0. 90 15 84,70 0.10
6 84. 26 -0, 26 16 84,80 -0.56
7 84. 00 0. 61 17 84, 24 -0.13
8 84, 61 -0.15 18 84,11 6.41
9 84, 46 -0. 26 19 84,52 -0.38
10 84, 20 0. 20 20 84,14
Now
Txs = 1684,26 Sx{ = 141840, 7214,
Hence
Slxy - x)° = 4.1341,
For n = 20 we then find
2 1 2
s° = 7 Z(xy - %) = 0,2176.
Next
6 = 1 B(x1,; - x; ) = 3.4664 - 1524
n-1 19
155 a
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Therefore

0,1824
0.2176

0.838. 7
Going back to Table XIX, we see that there are only two chances
in 100 of n falling outside the interval (1.04, 2.96) when n = 20. Hence

our computed value of n is significant of nonrandomness being present.

An examination of the original data indicates an upward trend.

-

[y
Now let us use our earlier sign or runs test on this data. There

is a total of nine runs considering the runs above and below the median

of 84.25. For n = 20 the a2xpected number of runs is eleven and though

nine is smaller, it is not significantly small at the 5% level which is six

runs as can be seen from Table XVIII when m = n =10, Therefore our runs

test does not detect the nonrandomness which the other test does detect.
There are other tests based on runs--the length of the longest run,

the distribution of runs, ctc. No one test is best tc detect nonrandomness

in all cases, For example, the test based on the number of runs may

not indicate nonrandomness while the test based on the longest run will.
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APPENDIX A. THEORY AND PRACTICE
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We have spoken of the relation between probability and relative

R,

practice is a difficult one to bridge. One bridge over the gap is " the law

AR

:
S
frequency. It has been said that the gap between probability theory and 2 z
H
of averages,' knowr in probability theory as the law of large numbers. !

We can speak of it here since it refers to the situation in which there is
a sequence of independent events with fixed probability p. If a sequence

of n trials is made and the number of successes is Sp, the proportion

SRR S RS A RS S et

of successes in n trials is Sp/n. We ought to have some feeling that the

SR

average S,/n approaches the fixed probability p as the number of trials

gets larger and larger.

To this end let us consider the repeated tossing of an unbiased coin

and keeping tract of the proportion of heads. The law of large numbers
tells us that our hopes are not in vain; in some sense this proportion should o
approach 1/2. Now we shouldn't expect this proportion to suddenly become Coy

exactly 1/2, So let's take some small percentage of deviation, ¢, and

ask, for each number of trials n, what is the probability that the proportion

oo ik Btda gk sy a s LT A

of heads differs from 1/2 by less than ¢. Specifically let ¢ = 10%. Then

we have to find fer each n the probability that the percentage of heads

%% lies between 40% and 60%. Now we need a probability measure of the set

of favorable sequences, i.e., those which will not deviate from 50% heads

by more than 10%. Our Binomial Law provides us with this. It says the

n-
probability of exactly k heads in a sequence of n tosses is pCkl. 5) {.5) .

" R - 5t R
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A sequence is tolerable if the number of heads k satisfies

|k/n - .50| s .10
If n =5, then tolerable tosses have 2 or 3 heads since the ratios 2/5 = .40
and 3/5 = , 60 are within the tolerance limits - they are the limits. On
the other hand a sequence with 0, 1, 4, or 5 heads is "out.'" The proba-
bility of a ' tolerable' sequence is the sum of the terms in the Binomial

" within limits." In the case

Law for those values of k for which k/n is
of n =5 this says we must add the terms of the expansion (.50 + . 50)5
for which k is 2 or 3, that is,

10(.5Y(.5)° + 10(.5)*(.5)* = .63
is the probability of an acceptable sequence of 5 tosses.

If you were to go on with this by taking larger values for n, keeping

¢ = 10%, you would obtain among others the entries

n Number of Heads Acceptable Probability
5 2or3 : .63
10 4, 5, or 6 . 66
15 6, 7, 8, or 9 .70
20 8, 9, 10, 11, or 12 .74
100 40, °**, 60 . 96
200 80, +--, 120 . 996

So we see the probability of acceptable sequences which deviate
from 50% heads by not more than 10% steadily increases as we toss the

coin more and mere. However, note that no matter how large n may
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becomé‘_the extreme cases of all heads or all tails and similar sequences
are still possible. For example, when n = 200, they are included in the
. 004 fraction of the sequences, the undesirable ones. They just are less

and less probable.
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