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PREFACE
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U. S. Navy Fleet Material Support Office (FMSO) by Dr. Barnard H.

Bissinger, Chairman of the Mathematics Department, Lebanon Valley

College, Annville, Pennsylvania and Consultant to FMSO. They represent

a more advanced state of development and are intended as a follow-on

course to material covered in ALRAND Report 50 of 3 September 1965,

"Statistical Training Manual - Volume I. "

It is hoped that te manual will help other units who wish to provide

training in this type of mathematics. Any corrections or remarks indi-

cating improvement will be gratefully accepted.
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I. CONFIDENCE

A. Floating Interval.

We concluded our previous course while we were discussing how

the basics of sampling theory are used to obtain information about samples

randomly drawn from a known population. Specifically we considered the

mean (x) or sum S(x) of the elements of a sample and how other such

means or sums of other random samples of the same size from the same

uriverse might be related to this particular one. We considered the dis-

tribution of this sample statistic and declared the means to be normally

distributed when the sample size was 30 or more. So we used a sample

in class to learn more about samples by way of their means and also by

way of their standard deviations.

i The every-day practical problem requires us to use known samples

and infer conclusions about the unknown population from which the sample

comes; e. g., what is the population mean when the sample mean is known?

Our rudiments of sampling theory will help us to make such a determination.

Initially we will consider the problem of describing the population parame-

ter from its corresponding sample statistic when the sample statistic is

the mean.

The oldest method of making such an estimate was introduced by

LaPlace in 1814 in dealing with the problem of inferring the value of

the probability of success (p) in the binomial distribution from an observed

vhvalue of the random variable x of the distribution. He regarded the :

(12
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size of an interval which would include p as fixed but thought of p as

a random variable. He was confident that a certain percentage of the

time p would be in the interval and as a result it later became known as

a confidence interval. It was not until 1927 that the correct interpretation

of the interval as a random or floating interval was given by E. B. Wilson.

Let us go through such an argument.

First, recall a few general facts. The sampling distribution of

means is a frequency distribution of the means of all samples of a particu-

lar size each of which is drawn randomly from the same population. The

mean of the sampling distribution of means tends to be very close to the

population mean, although individual sample means may vary quite a bit

from this value. However their variability is probably much smaller

than the variability of the observations in the population. It decreases

with increases in the sample size. For a large size sample the standard

deviation of the values in the sample will not be very different from that

of the population. Finally for many large size samples, the sampling

distribution of their means is essentially a normal distribution.

So we estimate the population standard deviation ax by the sample

standard deviation; call it s. Then we obtain an estimated standard err6r

(deviation) of the mean by dividing s by 4rn, which we can call s-X

where n is the sample size. Next, in making a guess about the popula-

tion mean, we decide on what level of confidence (probability of being

correct) we want. This determines for us the confidence interval or

/ J



confidence limits vithin which the population mean should lie. It specifies

a range of values. To increase the confidence level we must make the

estimate less precise. On the other hand we can be more precise if we

are willing to take a bigger risk (less confidence). For example, suppose

we have sampled a universe and developed a mean of 100 and a standard

deviation of 7. We desire a confidence level of 95%16, which means we

expect the sample mean to be within our confidence interval 95 times

for 100 samples. Therefore we would expect to experience sample means

between 86 and 114 in all but 5% of the samples drawn. Now if we desire

to be more precise, we narrow the confidence interval. If we establish

the confidence interval as 93 and 107, we expect our mean to be within

the confidence interval only 68% of the time. So precision is sacrificed

to high level of confidence and vice versa. However, both precision

and confidence level can be increased by increasing the sample size.

Now a very important point has been blithely skipped over in the

last paragraph on procedure. Recall that we learned how to calculate

the probability that went with a certain distance from the mean of a

normal distribution to a value of the variable which had that mean. How

tance about it to pick up the mean? This is the approach LaPlace failed

to conceive.

For example, you will recall that for a fairly normal distribution

of sample means, you are fairly sure that about 68% of all possible

tit.
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s.ample means will be within *I standard errors of the mean of these

means which in turn is the population mean. About 95% of all possible

sample means will be within * 2 standard errors of the population mean.

Or we can say the probability of finding a sample whose mean is more

than 1 standard deviation from the population mean is . 32. Also, we

can say the probability of the mean of the sample being more than 2

standard deviations from the mean of the population is only . 05.

Consequently we can expect 95% of the time to get a sample whose

mean is no farther away from the population mean than * 2 standard

errors of the sampling means. Hence the same size interval centered

on every possible sample mean will pick up the population mean about

95% of the time. Therefore when it is placed on one such sample mean,

we can be 95% confident of picking up the mean. Actually these last

remarks constitute w,/hat we mean by 95% confidence and as such are

definitions.

The above is so easy to say symbolically that the needed concept of

the floating interval is often iost to the learner. For the situation as

pictured below in Figure 1 we can say

= x

Figure 1

4



Pr{-2 < < + 2} " .95sN'-n

which can be rewritten as

Pr{Z-2-i <. < x+ s-- 9 5

where n is fairly large and o3 is estimated by sIN-P. This exemplifies

as an observable random interval such that the probability is . 95 that

it contains jL. It is a 951o confidence interval for p. and . 95 is the

confidence coefficient.

We have set up an estimator for a parameter by using a random

interval with a specified probability of including the true value of the i

parameter. Such a device is called an interval estimator.

B. Floating Interval Again.

To suxnmarize, we realize in a practical situation that we have only

one sample and one mean. We have seen how all possible means behave

under chance variation, but we have rLu way of knowing whether our single

sample mean is at a point A or B or a point C, or at any other point along

the x scale in Figure 2.

.= mean of all 5's

c A ,B

Figure 2

5
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b, We have said we shall estimate the location of by going out

a distance d on either side of W and then claim t is in this interval.

Now you know from the theory of the normal curve that if our claim is

to be correct, the distance d will depend upon the width of the hump in

the graph in Figure 3. That is, d depends on the size of 0-x. If o-5 is

small, the distance d does not need to be large in order to ensure that

L is between 5 - d and R + d. If o5 is large, the sample means are

more scattered and so a larger d will be necessary for an accurate esti-

mate of 1.3E.

The size of Ti measures the reliability of the mean, or the extent

to which x is expected to be in error from 4 simply by chance variation.

We have seen that the mean of the sample becomes more reliable as the

size of the sample increases, for then a- decreases. So we can always

rely on the sample size to pump more reliability into our estimate if time

and expense permit a larger sample.

On the other hand even if a3 is small, there can still be sample

means as far away from sq as is the point C in Figure 3. And although

we take a d large enough so that the intervals A k d and B h d include

-, that is, so that they give a correct claim to the location of 43E, the

same d may not be large enough to make correct the claim that 43E is

in the interval C * d. But remember that we are willing to run a speci-

fied risk of making an inaccurate claim.

Let us agree that we need to be only 90% confident that our claim

about p, is true, that is, we should expect only 9 out of 10 such claims ,)I



to be correct. This means that we shall take d large enough so that

the claim will be correct for 90,16 of all possible sample means. Now

the area table for the normal curve tells you that 90%o of all the cases in

a normal distribution are no more than 1. 6 standard deviations from the
mean of the distribution. So 90% of all sample means are within a dis-

tance of ± 1. 6cT- of p-. Hence if we make the claim that i is in the

interval from 3E - 1. 6arx to R + 1 . 6o-', we can be 90%6 certain that our

claim is correct. This is true because only 10%6 of all possible sample

means are like C, which is farther away from Wx than 1. 6cr3 as illustrated

in Figure 3.

d~ 161 d- 6 aT

C A B

A-d A A+d

B -d B B+d

I .. ..,.. ',,SC -d C C+ d

Three "Floating" Intervals

Figure 3

7
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It is worthy of noting that these confidence intervals are deter-

mined fully, with exact probabilities, without assuming any a priori

probability distribution for the parameter. This may seem paradoxical

to you for how can we speak of the probability that a parameter lies in

an interval when the parameter has no probability distribution. The

answer lies in the fact that the ends of the interval vary at random in

repetitions of the experiment, while the parameter point remains fixed.

It' s all in the way you say it.

There is one additional point to emphasize. In our formulas on

page 5, we use for the standard deviation of the base population the estimate

s from the sample. Justification for this was discussed on page 2,

Now from one sample to another this estimate may change a bit. Hence

in Figure 3 the lengths of the three floating intervals might better be

shown to be slightly different when a"y is so obtained. However the

conclusions maintain as before.

C. Project - Simulation.

1. We will select at random 10 samples of size 16 from a popu-

lation with known mean and standard deviation.

2. For each sample compute 7 and Sx.

3. Compute an estimate of the base population mean . at each

of the confidence levels 90%, 95%o, and 99%6 for each sample above.

4. Use the true base population standard deviation to compute

the same estimates as in 3. Examine to what extent this changes the

results of 3.



5. Note how many of these 10 estimates actually contain the true

base population mean and compare this to the number we should expect

from the theory of smpling. Again compare the results using the sample

standard deviation with those using the true standard deviation.

To develop our solution, let us assume a frequency distribution as

shown in Table I. Then we will create some device such that the numbers

0 through 10 appear in accordance with our assumed frequency. That is, 0

will appear once and there will be 48 counters marked #5. Numerous gadgets K
can be devised. Suppose we have a free turning gear with 200 teeth. Each

of the teeth is marked with one of our numbers in a random manner so that

when the gear is set in motion and then stopped any tooth has an equal chance

of stopping at -u.r reference point. We should expect to see #5 at the refer-

ence point 48 times as often as #10. With this device we can proceed with

the simulation. Another commonly used device for random selection is

to mark slips of paper with numbers, and put them into a hat. The hat is

filled with 200 slips of paper, in this case, each marked with a number in

accordance with Table I. The slips of paper (counters) are thoroughly

mixed so that all counters have equal opportunity for selection. In the class

we had no mechanical device, thus the hat was used.

Table I

....__ _ _.. _ _ _KMark printed on counter x 01 Z 34 567 89
Number of counters 00x 131023 394839 2310 3 1

9



i The mean of the total counter population is 5. 0 and the true standard

: deviation is 1. 715S.

Select a random sample of 16 counters by replacement. That is,

draw a counter, record its number, and then replace it. Mizk t~e counters

before each selection. (The cooperative efforts of the members of t-)e

class produced the following 10 samples.)

Table H

Sample

S Number 0 1 2 3 4 5 6 7 8 9 I0 sx

1 2 3 5 2 1 3 4.38 1. 20

2 1 2 1 2 4 2 2 2 '3.0/4 2.0oo

II

3 3 4 4 4 1 4.75 m.24

4 1 1 2 1 1 7 1 2 5.13 1.65

5 2 3 3 5 2 1 5.00 1. 86

6 1 1 2 5 2 3 1 1 4. 25 2.17

7 1 5 4 3 2 1 5.13 1i.41

8 1 2 1 3 4 2 3 5.44 2. 16

9 1 1 3 3 4 1 1 2 4.63 2. 36

10 2 3 8 Z 1 4.94 1. 39

Before tabulating for each sample the addi.ional required inf ormation

let us develop it c len (Thescoplera. If c represents the degree of

confidence and Zc the corresponding coefficient or the number of standard

Tabe0 I



deviations from normal theory, then our three intervals are given below

each followed by the words "yes" or "no," depending on whether they

did or did not pick up the true mean.

C= .90, z c = 1.65, 4. 38 1 (1.65)(1. 20)/4

C< = .95, zc = 1.96$ 4. 38 *(1.96)(1. z0)/4

c: = .99, zc = 2. 58, 4. 38 ± (2. 58)(1. 20)/4

(3.88, 4.87) No

(3. 79, 4.97) No

(3.60, 5.15) Yes

A similar calculation for each of the other nine samples yields

the results in Table MII.

Table III

Confidence Interval _

Sample Nr c .90 c = .95 c .99

1 3.88 -4.87 3.79 - 4.97 3.60 -5.15

2 3.11 -4.76 2.96 -4.92 2.65 -5.23

3 4.24 - 5.26

4 4.44 - 5.81

54.13 - 5.87A
6 3.35 - 5.15

7 4.54 - 5.71

8 4.55 - 6.31

9 3.65 - 5.63

10 4.37- 5.51,

Or1
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Note that when the 90% confxdence interval contained the true mean,

we did not bother to calculate an interval for greater confidence as it would

automatically also contain it.

In summary we can write

Table IV

Confidence in Percentage Percentage of Times Mean Included

90 80

95 80

99 100

Remember we are straining the use of normal theory by using

samples as small as 16 in size. However this strain was overcome by

our taking a base population which was fairly normal itself. Also we

took only 10 such samples and couldn' t possibly obtain percentages of

times the mean was picked up to a finer difference than 10%. Nevertheless

the above project should instill into you a feeling for and a clear know-

ledge of the concept of a confidence interval. Ideally we want the per-

centage and corresponding confidence in a row to agree.

* D. The Binomial Distribution.

We learned earlier that the binomial distribution

_n x n-x

fB(x) = qnx x 0, "-.n

12



where

n n
Cx n!

x! (n - x)!

n = sample size

p = probability of success

q 1-p

is approximately normally distributed with mean np and standard deviation

'nfpq. As we saw in the last course, the probability of x being within

a distance of z Nrnfpq units of np is given approximately by ZFN(Z) - 1, i. e.,

Pr{np - z 4'n < x < np + z 4nPq} ZFN(z) -1

For example, if n = 400, p = .2, q = .8, then np 80, 8 and

for a probability of .95 (when z = Z) we know that the interval (64, 96)

will contain x about 95%6 of the time.

Now suppose we have a binomial distribution in which p is not

known and from n trials we found x occurrences. We let za represent

the coefficient and a would equal 2. 516 if we use Z standard deviations or -

the 95% confidence level. Then we can say

Pr{-za < x -n p < +za} . l-2a

where Pr {z > z = a. The two confidence limits for p are such that

4-np?

or are the roots of

13I
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p2 (n2 + nz)- pWax + nzI)+X2  0.

Solving this quadr'atic in p, we find these two values are

n 4nz

+ a hZ x(;-x + z
n+z.n 2n n3 4n 2

Note as the sample size n increases the above formula reduces to

(we must assume x increases so that x/n doesn' t fade as it is really

this proportion we obtain to estimate p)

F z fix/)(l ix2Ij

This conforms to our normal theory which would give

0"

n n

If the population happened to be finite of size N, we would have to

correct our standard deviation wherever it occurs by multiplying it by

Consider the case when N = 101 and n = 37. Now this is sufficient to

assume approximate normality (usually assumed when n - 30 and N - 100).

However the correction factor becomes N(l01 - 37)/(101 -71) = 0.8. Hence

wa must replace the standard deviation in the above confidence interval

estimate by . 8 of itself. Only when N is very large compared with n is

the factor nearly 1 and hence negligible.

In 1934 Clopper and Pearson in Biometrika constructed intervals

of the type just discussed for p and presented graphs for 951o and 97.5%

14



confidence levels of p for some values of n from 10 to 1000. Instead of

x, they used the sample estimate x/n.

E. The Poisson Distribution.

A discussion, similar to that just given for the binomial distribution,

can be made for the case when the base population is Poisson distributed.

W. E. Ricker, following the original lines of Clopper and Pearson, pre-

sented this in 1937 in the Journal of the American Statistical Association.

He gave the formula

x + 1.92 ± 1.960 + 1. 0

for the 95%o confidence limits of . = X for an observed value of x, while

for 99% confidence he gave

x + 3.32 ± 2.57 6 ,Flx+ 1.7 .

Actually, Professor Pearson suggested this to him via the fact that the

Poisson distribution gets more and more normal as the mean X increases

so that the end-points of our random interval for a confidence of 1 - 2a is

Xz .X(2x+Z z ) + xz =0.

Limiting ourselves to large values of x that might occur in a sample, we

sometimes consider the result as an estimate of thLe mean, hence also of

the variance of the assumed base Poisson distribution to which it belonged.

Then the estimating random interval end-points, say for 95%6 confidence,

are taken to be

x± 1.96 0 1x.

15
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By way of comparison we have for x 50 the estimators by the

essentially two different methods as given in Table V.

Table V

Confidence

Lower Upper Lower Upper
Formulas Used Limit Limit Limit Limit

Pear son-Ricker 37.9 65.9 34.8 71. 8

Old Method 36. 63.9 31.8 68.2

F. Examples Using Confidence.

1. Problem 1. Suppose you know a certain part has its quarterly

demands uniformly distributed over some interval of demand sizes

whose smallest value is zero. You wish to e,timate the upper end-point,

call it a, of the interval. Now suppose you have a sample of size 20 and

its mean is 3. 2. What are the 90/ confidence limits for a?

a. Sokution. The distribution function can be written

f(x) = 1 0 < x 5 a.
a

Now its mean and variance are easily computed to be

a
=. fxiLdx a

0 a 2

a
f x= 1dx pz az

0 a 12

/ILII
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For 1 - 2a = .90, we find zc = 1. 645. For samples of size n, the standard j

deviation of the means of such samples is

Ox a/Ni-T = a
X q-n q-n -2

Hence

x -

Pr -1.645 < +1.645 9

So the two values we seek for bounding a are

a 1  1.__

When~ nr 20ann 32

When n= 20 and R'- 3. 2, this gives the values 5.3 and 8.1. So our con-

fidence interval estimate for a is (5. 3, 8. 1).

2. Problem 2. A sample of 100 stock items indicated 55% were on

hand. Find 95% confidence limits for the proportion of on-hand items

in the entire stock.

a. Solution. This is, like Problem 1, calling for a two-

sided interval estimator. The estimate as given by the formulation on

p-Age 14 is

.55 1. 96 (.55)1.45 .55 L.I0• " 100"

Therefore we can be 95% confident that the true proportion lies in the

interval (.45, .65).

3. Problem 3. An analysis of 40 randomly selected requisition

cards revealed that Z4 were from the same Navy Supply Center. Find

17

i_



V

95%6 confidence limits for the actual proportion of such cards to be expected

in the long run from this same center.

a. Solution. I:f we assume the binomial distribution with

n = 40 and = 24/40 =. 6, then the Clopper-Pear son tables give us the

interval estimator (. 45, . 74). If instead, we assume the normal distri-

bution and use the approximating formula, we get

.60± 1.96-( "6)(.4)• 40

or the confidence interval (. 45, . 75).

4. Problem 4. Suppose our random variable x is gamma distributed

and that from a sample we find the first decile (10% cumulation) is 1.33 while

the ninth decile (90% cuirulation) is 5. 62. Find the shape and scale of the

parameter.

a. Solution. This is a deterministic problem in that the two

empirical values given completely determine a and P. To see this,

compute the value of the quotient of the 10 percentile value and the 90

percentile value, namely 1.33/5.62 or . 236. Note in Table VI that this

value of this ratio is found in the right-hand column and opposite to a = 2. 5.

Now in Table VII opposite to a = 2. 5 we find x/P is 1.417 at the 10th

percentile and is 6. 008 at the 90th percentile. This overdeterministic

situation gives the following two equations for

1.33 = 1. 417 and .62 6. 008

1. = 938 8 5.62 - .935
1.417 6.008

i 18
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Since each yields essentially the same value, . 94, we accept it and feel

some justification in the assumption of the gamma distribution. No con-

fidence estimation was used here.

5. Problem 5. We know that a demand random variable is normally

distributed N( L, aZ) and = 100. A sample of size 25 is drawn and the

observed mean x is 250. Find 95o confidence limits for the unknown

population mean Ii.

Spopl a. Solution. Since the sample size is close to the border

value of 30 beyond which we usually assume the sample means are normally

distributed, we might as well invoke the same hypothesis. Then our

confidence interval becomes

250k 1.96(10) _ 250 3.9

or (246.1, 253.9).

6. Problem 6. From a population of unknown parameter p repre-

senting a proportion having an attribute, a sample of 400 yields 320 with

this attribute. Find 90%6 confidence limits for p, the true probability of

the attribute.

a. Solution. Denoting our empirical value of p by ^, our

90%6 confidence interval is given by

~G
p i. 65A ( "=1n

which for = . 8 and n 400 becomes (.767, . 833).

19
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Table VI

Ratios Facilitating the Estimation of the Parameters a, of the Gamma

Distribution

a D,/M DS /M I D9 /M D1 /D, D9 /D5  DI /D9

.5 Curve J-Shaped .0348 5.960 .0058
0 Curve J-Shaped .152 3.323 .0455
.5 2.366 6.252 .247 2.642 .0934

1.0 .532 1.678 3.890 .317 2.318 .137
1.5 .537 1,451 3.079 .370 2.122 .174

2.0 .551 1.337 2.661 .412 1.990 .207
2.5 .567 1.269 2.403 .447 1.893 .236
3.0 .582 1.224 2.227 .475 1.819 .261
3.5 .595 1,192 2.098 .500 1.760 .284
4.0 .608 1.168 1.999 .521 1.711 .304

4.5 .620 1.149 1.920 .539 1.671 .323
5.0 .630 1.134 1.855 .556 1.636 .340
5.5 .640 1.122 1.801 .571 1.606 .355

6.0 .649 1.112 1.755 .584 1.579 .370
6.5 .657 1.103 1.716 .596 1.556 .383

7.0 .665 .096 1.682 .607 .535 .396
7.5 .672 1.089 1.651 .617 1.516 .407
8.0 .679 1.084 1.624 .627 1.499 .418
8.5 .685 1.079 1.600 .635 1.483 .428
9.0 .691 1.074 1.578 .643 1.469 .438

9.5 .697 1.070 1.559 .651 1.456 .447
10.0 .702 1.067 1.541 .658 1.444 .456
11.0 .712 1.061 1.509 .671 1.423 .472
12.0 .720 1.056 1.482 .682 1.404 .486
13.0 .728 1.051 1.458 .693 1.387 .500

14.0 .736 1.048 1.438 .702 1.372 .512
15.C .742 1.045 1.420 .711 1.359 .523
20.0 .769 1.033 1.352 .744 1.309 .569
25.0 .789 1.027 1.308 .768 1.274 .603
30.0 .804 1.022 1.277 .786 1.249 .629

*Mode to left of Di. Where: Di = ith decile; M = mode.
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Table Vi

Selected Percentage Points of the Gamma Distribution: Values of x/P

Corresponding to Stated Values of F(x)

.05 .10 . 25 . 50 .75 •.90 •.95
-. 5 .00197 .00790 .0508 .227 .662 1.353 1.921

0 .0513 .1I05 .288 .693 1.386 2.303 2.996

.5 .176 .29a .606 1.183 2.0o54 3.126 3.907I 1.0 .355 .532 .961 1.678 2.693 3.890 4.744
1.5 .573 .805 1.337 2.176 3.313 4.618 5.535 1

2.0 .818. 1.102 1.727 2.674 3.920 5.322 6.296
2.5 1.084 1.417 2.127 3.173 4.519 6.008 7.034
3.0 1.366 1.745 2.535 3.672 5.109 6.681 7.754
3.5 1.663 2.084 2.949 4.171 5.694 7. 342 8.460
4.0 1.970 2.433 3.369 4.671 6.274 7.994j 9.154

4.5 2.287 2.789 3.792 5.170 6.850 8.638 9.838
5.0 2.613 3.152 4.219 5.670 7.423 9.275 10. 513

.5 . 3.521 4.650 6.170 7.992 9.906 11.181
6.0 3.285 1.85 5.083 6.670 1. 0.532 . 42

6.5 . 630 4.273 5.518 7.169 9.123 11.154 12.498

7.0 3.981 4.656 5.956 7.669 9.684 11.771 13.148
7.5 4.336 5.043 6.396 8.169 10.244 12.384 13.794
8.0 4.695 5.432 6.838 8.669 10.802 12.995 14.435
8.5 5.058 5.825 7. 281 9.169 11.359 13.602 15.072
9.0 5.425 6.221 7.726 9.669 11.914 14.206 15.705

9.5 5.796 6.620 8.172 10.169 12.467 14.808 16. 335

10.0 6.169 7.021 8.620 10.668 13.020 15.407 16.962

11.0 6.924 7.829 9.519 11.668 14.121 16.598 18. 208
12.0 7.690 8.646 10.422 12.668 15. 217 17.782 19.443
13.0 8.464 9.470 11.329 13.668 16.310 18.958 20.669

14.0 9.246 10.300 12. 239 14.668 17.400 20.128 21.886
15.0 10.035 11.135 13. 52 15.668 18.487 21.293 23.098
20.0 14.072 15. 382 17. 755 20.668 23. 883 27. 045 29. 062
25.0 18. 218 19.717 22.404 25.667 29.234 32.711 34.916
30.0 22.444 24.113 27.085 30.667 34.552 38.3,5 40.691
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G. Comparison by Two Samples.r
Sometimes we want to compare the means of two samplcs. Really

we should say we are interested in how great may be the difference between

the means of their base populations. Denote these two means by F±i and

iLz and also denote the sample size by n, and n, respectively, with

means x-- and RZ, respectively. If the samples are lerge, then we learned

in the previous course what the variance for x1 - XZ is in either a finite

population or an indefinitely large population in terms of the variance of

each population. At that time we also remarked that the difference x -Z

is essentially normally distributed. Hence

-- -X' - 1

is N(0, o), or

Prx -xz ( L -z < + zc n C.

The above symbolism is a slight break with the convention of writing a

for c when 't is the subscript and of writing 1 - 2a for c on the right

side of the last expression. It seems more natural to write simply what

we just did and realize that for, say c = . 90, you must pick zc so that

F(Zc) = .95.

From our discussion in the previous course you will recall we use

fo r a-- -
xI -xz

Z

'x- + .x-z for indefinitely large populations and
ni n?

:4 I
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oNr n for finite populations.

Rewriting our previous probability statement we obtain the confidence

interval estimate for L -liz,

Pr{5I 3E2 - ZcOrg. Z < tj- iz <  -x 2  I' ZcaO-R? - " C.

When the aI and zr are not known, we may replace them Ly their

sample estimates, s, and s , respectively.

1. illustration. For a particular Federal Stock Number (FSN) we

find that out of 580 orders in one year, the mean demand (average requisition

ksize) is 34. 4 units per order and the standard deviation is 8. 83 while in

the succeeding year from 786 orders the mean demand is 28.02 and the

vt standard deviation is 8. 81. What are the 95% confidence limits for the

* difference of the means of the two conceptually different populations?

[ a. Solution. For c .95 we have zc = 1.96. Therefore

the limits sought are

t (34.45 - 28. 02) .96 (8. 83) + (8. 81)z
¥:580 786

6.43 I. 96 X .8-

or 6.43 ± .95

So we are 95% certain that if there are two different patterns of behavior

II for each year, the means differ by no less than 5. 48 and by no more

than 7.38.

If we are interested in confidence limits for the difference of two

population proportions, P, and Pz, then really this is simply another

23



I

I

application of the general theory we just learned. The excuse for remarking

on it lies in the simplicity of the resulting expression. Suppose P and P2

are the sample estimates from samples of size n, and n?, respectively.

Then

(PI -D )-(pI -p?

PI -Pz

is N(0, 1) and so

Pr[-Zc < P " -z) < + z} c.

Pi -Pz

Now using the sample estimates for our required variances we have

z = pi(I - I) + Pz(1 -

P1 -PZ n3  
nZ

for indefinitely large populations

or

P= (I-Pi) (N1 -ni 2(Inz IN-lI

for large finite populations.

Rewriting our previous probability statement we obtain the confidence

interval estimate for p, - pZ,

Pr{ Zc.piz <p " P P Z cpip } Ac.

2. Illustration. One FSN was ordered in 230 days out of 400 days

while another was requested 200 out of 500 days.. Find 951o confidence

intervals for the difference between the conceptual rates of demand.
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S i

a. Solution. Assume indefinitely large populations. For

c = .95 we have Zc 1.96. Therefore the limits sought are

230 nn /I(230/400)(l - 230/400) + (200/500)(1 -200/500)
-0 0 01 " 9 400 500

(.400)(.

.575)14 400) 1 196V(.575)(. 425) (.400)(.600) '
400 -+ 500 j

or .175*065

So for all practical purposes we might say the difference between the

mean demand rates lies between .110 and .240.

it 7

25- "- m m m . . .. -,

m./i m m



II. SMALL SAMPLE THEORY

A. Some History of Research and Development.

In 1908 in the paper entitled "The Probable Error of a Mean" appear-

"ng in Biometrika, W. S. Gossett, alias "Student, " wrote

"Any experiment may be regarded as forming an individual
of a " population" of experiments which might be performed under
the same conditions. A series of experiments is a sample drawn
from this population.

"Now any series of experiments is only of value in so far
as it enables us to form a judgment as to the statistical constants
of the population to which the experiments belong. In a greater
number of cases the question finally turns on the value of a mean,either directly, or as the mean difference between the two

quantities.
"If the number cf experiments be very large, we may have

precise information as to the value of the mean, but if our sample
be small, we have two sources of uncertainty: (1) owing to the
"error of random sampling" the mean of our series of experi-
ments deviates more or less widely from the mean of the popu-
lation, and (Z) the sample is not sufficiently large to determine
what is the law of distribution of individuals. It is usual, however,
to assume a normal distribution, because, in a very large num-
ber of cases, this gives an approximation so close that a small
sample will give no real information as to the manner in which
the population deviates from normality: since some law of dis-
tribution must be assumed it is better to work with a curve whose

area and ordinates are tabled, and whose properties are well
known. This assumption is accordingly made in the present
paper, so that its conclusions are not strictly applicable to popu-
lations known not to be normally distributed; yet it appears
probable that the deviation from normality must be very extreme
to lead to serious error. We are concerned here solely with the
first of these two sources of uncertainty.

"The usual method of determining the probability t"at the
mean of the population lics within a given distance of the mean of
the sample is to assume a normal distribution about the mean
of the sample wita a standard deviation equal to s/N-n, where s
is the standard deviation of the sample, and to use the tables of
the probability integral. A

"But as we decrease the number of experiments, the
value of the standard deviation found from the ample of

26



experiments becomes itself subject to an increasing error,
until judgments reached in this way become altogether
misleading."

A few paragraphs later, Mr. Gossett goes on to say

"Again, although it is well known that the method of using
the normal curve is only trustworthy when the sample is
"large, " no one has yet told us very clearly where the limit
between "large" aid " small" is to be drawn.

" The aim of the present paper is to determine the point
at which we may use the tables of the probability integral in
judging of the significance of the mean of a series of experi-
ments, and to furnish alternative tables for use when the num- j
ber of experiments is too few." 7

The reader must be wondering by now why we classify this concern

under the heading "Small Sample Theory. " Actually it' s not the size of

the sample that is the basic concern--it is the estimating of the base popu-

lation standard deviation from the sample and this estimate goes to the

lean side when the sample size is small. However, if we know the standard

deviation of our base population for which we are attempting to ascertain

the mean and if the base population is essentially normal, then the means

of samples of any size are normally distributed and we use the zc for our

confidence c on the base population standard deviation divided by 47n.

The problem arises, as Gossett said, when the base population is

unknown, even though assumed normal, because then we cannot use the zc

confidence limits since o is not known. That is, we don' t know when we

can use it, supposing there are such times, and further, when we can' t

use it, we need to know how to modify zc to get confidence c.

The sun and substance of the mathematical problem is to find for

a sample (x1 , Xz, , xn) of size n from a population N( t, (r) the
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theoretical distribution of the random variable

s/N-n

where s is the standard deviation of the sample set of numbers.

Fortunately it can be proven that this distribution function does not

involve o, the population standard deviation. Mr. Gossett first obtained
z4

the distribution of s in random samples after having examined many

empirical situations. He did this by using the relation connecting the first

foar moments of the Pearson Type III curve

X-1 axj
y = A(x-.) e ), x > , a > O, X > O,

which generalizes the gamma distribution and hence also the chi-square

distribution to be studied later. Knowledge of the first four moments of

any frequency function belonging to Pearson' s system is sufficient to deter-

mine that function.

Tediously, as Gossett puts it, he obtained the moments (M) of sz

about its mean (since he used the bias formula he calculated the mean of

sz to be '(n - 1)/n) to be, in order,

O, 2- (n - 1)/nZ, 83. (n - 1)/n 3 , 1211?(n- l)(n+3)/n 4 ,

so that

P, = 8/(n-l), Pz = 3(n+ 3)/(n - 1),

where Pi and PZ are " shape predictors" not sensitive to magnitude of

the data. These values satisfy the Pearson criterion

28
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-3 3Pi -6 0

for a Type III curve. Consequently Gossett said he believed that s2

followed the law

y= cxPe-yx

where

4d (n- 1)n

2 2 n

M3  8n' 4z (n -) ?

p 4 n In - n- 3

fh 2 2

Consequently he got

n-3 nx
~2 '21

fs(X) = cx e ?+7

The distribution of s may be found since the frequency of s is that

of s2 and all we must do is to compress the base line suitably. Gossett

reasoned

y, = (s)

Then yj d(s?) = y 2 d(s).

Y? = 2sy1

n-3 ns2

.'. y= Zcs(s 2 ) e2

.ns
z

= Zcsn-2 e

or
nx z

fs(X= A n - e  z

29f5x)" . ].



Next he derived the distribution ol .-z xis. the distance of the mean of

sample measurements in terms of s, for which he got

1.n- n- 4 5 3 (1 + zz)- n
Zn-3n-5 + ,odd

y(z) 1n - 2 n - 4 4.2 (1 + zZ} "n/2

*~*4..~l~za ,even7r n- 3 n - 5 "' 1 Tnee

or

7 n

I ~ 1 _____ (1 + ZZ) - /

which has the following descriptive values:

1= I '?-, - 3 0, = 31(n -3)(n -5), 3+ 6/(n-5).

And it is symmetric about zero so if we wanted to fit a normal to it, we

would use the given formula for o, (a- = 1/4nf--3). Remember, P(n + 1)

nI(n) was generalized from the case when n is a positive integer and then

F(u + 1) = n!.

Now Gossett' s original papers suffered from two defects:

1. As n increases the z-scale becomes very close.

2. Except in the case for which it was designed, n, the number in

the sample, is not the best number under which to enter the table, but

n - 1, the number of degrees of freedom, is .

AA
So at Fisher' s suggestion new tables were constructed with argument

t = z/-n' where n' is now one less than the number in the sample, which

Gossett temporarily called n'. So if we switch from z to the more familiar

t, then we could say that the new variable and old variable are related by I
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t t =(n- 1)z'

dt = - dz

Moreover we get to see again how when we stretch (or compress) units

horizontally, we must do just the opposite vertically to preserve area. In

this case the distribution of t is found from that of z since the frequency

of t is equal to that o, z so that all we have to do is expand the base line

suitably. So we find written in many books

n-i (t) 2 n-

1r(n - 1)

which may not be as appealing to some people as the original form of

Mr. Gossett.

The new descriptive values are

n I* = 0, I4 3(n- l)Z/(n -3)(n -5),

Pz 3 + 6/(n - 5'.

The parameter n - 1 is called the degrees 6f freedom. For small n

this t-distribution differs considerably from the unit normal distributions

which it approaches as n increases without limit. In Figure 4 the graph

for n = 4 is compared with that of the limiting normal. Here it can be

seen that the probability of a large deviation from the mean is much larger

in the t-distribution than in the normal case.
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- : Student's t, n= 4

Standa-d Unit Normal

-4 -3 -2 -1 0 1 2 3 4

Figure 4

To see that the normal distribution is the limiting distribution we j
write fn(t) as

n+l

The factor in brackets can be shown to approach unity and for every fixed t,

_ n1log i + -2

Hence

fn(t)" e

All of the above remarks can be gleaned from Table VII[ of values

that gives t for confidence c. Consistent with our notation heretofore

let us write

)° ft, n-I (t)

for "the probability density function of the random variable known as
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f Table VIII. Values of tc for Centered Confidence Interval

Degrees of c
Sample Size Freedom

n n -1 .99 .95 .90

2 1 63.657 12.706 6.314
3 2 9.925 4.303 2.920
4 3 5.841 3.182 2.352
5 4 4.604 2.776 2.132
6 5 4.032 2.571 2.015
7 6 3.707 2.447 1.943
8 7 3.499 2.365 1.895
9 8 3.355 2.306 1.860

10 9 3.250 2.262 1.833
11 i0 3.169 2.228 1.812
12 11 3.106 2.201 1.796
13 12 3.055 2.179 1.782
14 13 3.012 2.160 1.771
15 14 2.977 2.145 1.761
16 15 2.947 2.131 1.753
17 16 2.92 2.120 1.746
18 17 2.898 2.00 1.740
19 18 2.878 2.101 1.734
20 19 2.861 2.093 1.729
21 20 2.845 2.086 1.725
22 21 2.831 2.080 1.721
23 22 2.819 2.074 1.717
24 23 2.807 2.069 1.714
35 24 2.797 2.064 1.711
36 35 2.787 2.060 1.708
27 26 2. 779 2. 056 1. 706
28 27 2.771 2.052 1. 703
29 28 2. 763 2. 048 1. 701
30 29 2. 756 2.045 1. 699
31 30 2. 750 2.042 1. 697

41 40 2.7u5 2.021 1.684
61 60 2.660 2.000 1.671

121 120 2.617 1.980 1.658
00 00 2.576 1.960 1.645
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Student' s t - when the sample size is n or the number of degrees of

freedom is n - 1"'

It is apparent from Table VIII that s underestimates (r on the average

for a fixed n. For any given confidence as n decreases to zero, the con-

fidence coefficient t increases. On the other hand for large n we see that

t is practically zc and that in the limit this equality exists. Also it is

to be noted that tc settles down faster for larger values of c. For example,

when n goes from 10 to 11, tc changes by only. 02 for c .90 while itL M
changes by .1 for c= .99.

Gossett, in concluding remarks, expressed belief that if the base

population distribution is not normal and if, consequently, the mean and

standard deviation of a sample have greater variability, still they will tend

to counteract each other, a mean deviating more from the general mean
! tending to be divided by a larger standard deviation. Experience in sub-

sequent years showed him correct for small samples of size less than 30

from populations sufficiently nearly normal.

B. Using the t-distribution.

So, if we want to estimate the mean il of a base population by using

a sample of size n whose mean is x and whose standard deviation is s,

we simply decide on the desired confidence c, then look up tc for n - i

degrees of freedom. It follows that we can say

Pr-tc < t <+t.. " c

34
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or

Pr t = C.

Once again we have a random interval

which 100~c% of the time should include t.

1. Illustration. A set of 11 requisitions for a part'icular stock

number has a mean x= 4 (average requisition size) and a standard deviation

S 6. What are the 95% confidence limits for the true mean (p.) or the

average requisition size for all requisitions for this stock number?

a. Argument. Since n - 1 10 =degrees of freedom and

C= . 95, we find from Table VIII that tc 2. 228. Therefore the 95% con-

fidence limits for p. are

4 ± 2. 228() 4~ 4

or the estimating interval is (3. 6, 4. 4).

Suppose x1 and RZ are the means of two samples {xij } and {xzj}

of sizes nj and n?,, respectively, from the same base population. Then

3F, - 3Z -( Ll. - x1 4 -(s - z)

f1 nzn

will be normally distributed N(0, 1). Now we must estimate T from our

sample data. You may recall that when we pooled two sets of data that

had the same mean we found the pooled variance to be the weighted
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arithmetic mean Of the two variances, namely

Consistent with this, if we le[t ~~ n ~z]/n n )

S, (x11 i ) sRI = (Xcj 3F)Z

we estimate a, by

S =

When this sample standard deviation is used in place of a-, then

X 1  72 - (iLl -L

nj n?

is distributed as "Studezit' s t" with nj + nz -2 degrees of freedom.

Therefore we can say

Pr {c < 1 1c C

nj nz

or the 1O0co confidence interval estimate of i - z is

7? tc s i+ , +i ~ ts ar

2. llustration. Si,;ppose tosets of quarterly demandobevtnsae I

16 17

16 27

70 1s

36



JI

16 25

20 27

17 29

15 27

21 23

17

Estimate the difference t - tz on the assumption they each came from a

different base population.

a. Argument. First we calculate

nI =8 nz 9

1 =D51 = 17.62 Xz =D = 23.33

S= 37.88 S2 = 184.00

S + S2 = 221.88

x1 -X? = 5.71.

Then the estimated variance of the difference between the means is given by

s2 (n, + nz) = (S1 + S2 )(n, + n,) (221.88)(17)
nl nz (n, + n? - Z)(n nz) (15)(9)(8)

= 3.50

and the estimated standard deviation is 1.87. Hence for degrees of freedom

(n, + n2 - 2) = 15, we have for, say 95% confidence, the interval estimate

for t - Iz of

5.71 + 2. 131(1.87) = 5.71 • 3.98

or

(1.73, 9,69).

3i
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Another conclusion of a confidence type can be drawn. We are 95%

confident that the means of the two assumed base populations are different

since the lower end-point of our estimating interval is positive. If the

value zero had been included in our confidence interval, then equality of

the means would not be rarer than 5% of the time due to chance.

3. Illustration. Here are two sets of demands that certainly appear

to be alike. It must be remembered that we test by virtue of the quotient

of our sample means' difference and a pooled estimate of standard deviation.
I ' D, D

79.98 80. 02

80.04 79.94

80.02 79.98

80.04 79.97

5: 80.03 79.97

80.03 80.03

80.04 79.95

79.97 79.97

80.05

80. 03

80.02

80.00

80.02

41
a. Argument. We find D1  80. 02, D = 79. 98, n = 13,

n2  8, s, = . 000574, s= .000984. Therefore our estimate of a is 1;
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-12 (. 000574) + 7(. 000984) = / 000725 = . 0269s= 19 "

Now for c = .95 and degrees of freedom = 19, we find from Table VIII that

tc = 2. 093. So our error term becomes

t s l +n - 2.093 X .0269 X .025
tS ni nz"3 8 '

and we find that with 95% confidence these two sets of demands come from

separate populations the difference of whose means is . 04 1 . 025. Or we

can say we are 95% confident the true difference of the base population

means lies in the interval (. 015, . 065).

Again we can also be confident that the two base populations have

different means.

C. Chi-square.

Of interest is the sample random variable

- + (x, - + ... + (x -

T.2

which can be written equivalently as

(n - 1)s

Wh3n the samples of size n are drawn from a normal distribution with

variance a?, this new random variable has its density function given by

in~)-~ lI ' -1 enl
1 I(n- Us Z t3i~ Ln - -z

In
2 2 rl -e

39 
(



Karl P;arson may have used an awkward symbol to replace this variable,

but he wanted to " characterize a sum of squares. " So he picked the Greek

for " ch" which is X and then put a 2 on it in exponential position. He

called the symbol X , "chi-square," and wrote the above probability

density as

n- 3 Xz

f(X2) n (xz) 2 e 2n-1 [n .1

2

We say this is X with n -1 degrees of freedom" and that

(n-l)sZ (n-l)sZ

XUC XLC

is a 100c% confidence interval for c- while

XUC

K ,is a 100% confidence interval for T. In keeping with our earlier method

of notation we will write

12) for f(x2 )
fch , n- 1 (X

Looking back to page 90 of ALRAND Report 50, Volume I, we see

this is simply r with X = 1/2 and k = (n - 1)/2.

1. Illustration. The standard deviation of a random sample of 16

requisitions for an item is 9. 6/N-5 based on units per requisition.

Assuming the requisition size in units per requisition is normally distributed,

find 95% confidence limits for the standard deviation of the historical
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requisition size for this item and also for the size of requisitions to be

experienced in the future.

a. Argumnent. The degrees of freedom are n - 1 15. For

c .95, we find in Table IX

Z 2
X 97 27.5, X 0 5  6.26.

Hence

V77 5 = 5.24, V7i 5  2.50

and our confidence interval estimate is

9.6 9.6

Nfli5 ,l5
5. 24 2.50 )

or

(1.83, 3.84), roughly (2, 4).

A few additional remarks arc in order about this distribution function.

The graphs of a few look like Figure 5.

n=5

0 1 2 3 4 5 6 7 8 9 10 11 12

~Figure 5

41..."

nI



Table IX. Values of the Cumulative X? Distribuiition

Sample Degrees of
Size Freedom Cumulative Probability

n n-1 .010 .025 .05 .10 .90 . 95  .975 .990, ,

2 1 .0002 .001 .0039 .0158 2.71 3.84 5.02 6.63
3 2 .0201 .0506 .103 .211 4.61 5.99 7.38 9.21
4 3 .115 .216 .352 .584 6.25 7.81 9.35 11.34
5 4 .297 .484 .711 1.064 7.78 9.49 11.14 13.28
6 5 .554 .831 1.145 1.61 9.24 11.07 12.83 15.09
7 6 .872 1.24 1.64 2.20 10.64 12.59 14.45 16.81
8 7 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48
9 8 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09

10 9 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67
11 10 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21
12 11 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72
13 12 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22
14 13 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 I
15 14 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14
16 15 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58
17 16 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00
18 17 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41
19 18 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81
20 19 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19
21 20 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57
22 21 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93
23 22 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29
24 23 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64
25 24 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98

26 25 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31
27 26 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64
28 27 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96
29 28 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28
30 29 14.26 16.05 17.71 1977 39.09 42.56 45.72 49.;99A

31 30 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89
41 40 22.16 24.43 26.51 29.05 51.80 55.76 59.34 63.69
51 50 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 V
61 60 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38
71 70 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.4
81 80 53.44 57.15 60.39 64.28 96.58 101.9 106.6 112.3

90 61.75 65.65 69.13 73.29 107.6 113.1 118.1 124.1
101 100 70.06 74.22 77.93 82.36 118.5 124.3 129.6 135.8
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When the degrees of freedom, n', is greater than 2, the mean value

is n' and the variance is 2n' while the mode is at n' - 2.

Next, to make it obvious this new distribution belongs to small sample

theory, we note, when (xl, xz, ", xn) is a 1andom sample from N(±, oz),

that

a / fn boils down to zJ

z.(xi -x- s / ,In

-, (n -l)

our " Student-t" variable. Note the denominator in the first expression is

the square root of our x2 divided by (n - 1) which is equivalent to the square

root of (sz /oz). Right here you might expect that X' becomes normal as

n gets bigger. Also the choice of the concept of degrees of freedom becomes

more meaningful when we see vie are really referring to the number of

random variables independently chosen fron the normal distribution. In

symbols we have found

t = x

Vx n

if x comes from N(O, 1).

Student' s t, therefore, affords the solution to a variety of problems

beyond that for which it was originally intended because it is applicable to

all cases which can be reduced to a comparison of the deviation of a normal

variate with an independently distributed estimate of its standard deviation,

derived from the sums of squares of homogeneous normal deviations

either from the true mean of tne distribution or from the means of samples.
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We can distinguish, by virtue of degrees of freedom, by saying that

for a random sample (xj, xz, , xn) from N(p., rz ) both of the following

random variables are distributed like chi-square and further

n 2

II~has n degrees of freedom

while

n-

z ( - has (n 1) degrees of freedom.

There are many applications for which we need a transformed version

of x . Suppose our random variables are x 1 , Xz "'', xn, each beingI

N(O, 1). Then

Variable = x Frequency Function with n d. f.

n
E xi fch;n(x)
1

n -n x1 nfch;n(nx)
n1

V nxi ZXfch;n(xz

1 ,x 2nxfch;n ( n x z ) .

n I

A fine algebraic property of x is that if xi is of ii degrees of
S z z with nj + n2 degrees

freedom, and similarly for X , then X, +)(I is w

of freedom. This reproductive property is shared by the binomial, Poisson,

and normal distributions.
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2. Illustration. Suppose you are interested in only 90% confidence

in e3tirrating the population variance o- from a sample of size 10 with

sz = 195. From Table DC we find

Z 3. 33, X 9 = 16.92..05 .95

Then the interval estimate is given by

Pr{3.33 < 9(195) < 16.921 = .90.
0.Z

Thus the interval estimate for 0- is

9(195) < az < 9(195)

16.92 3.33

or

103 < T' < 5Z7.

D. Fisher' s Z and Snedecor' s F Distributions.

In 1924 Fisher concerned himself wth the distribution of quotients

of sums of squares of normally distrib-ited r:andorn variables. He called

Z
AVI/n,

X? /n2

ZZ
e and found the distribution of Z. As mysteriously complicated as this

appears at first, so is the reason for it that simple. He wanted to devise

a testing function for the difference between two variances, so! and Sz ,

derived from two samples from normal distributions. If we went about

this as we have with other statistics, wa would have considered how often

s, - s? would exceed its observed value. Of course our testing statistic
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would have to have o1 and a- in it. The only way to get rid of them

would be to replace them by si and sz , respectiveiy. But remember

how we had to get a new distribution when we similarly changed the test

statistic

/ to

for small samples. Here we would be trying to revamp something like

(Si -Sz)-('l -' -) into (s, - s?) - (Oi -(r")

VZn1E Zn---z Znz

Fisher said the only exact treatment can come from eliminating the unknown

(Y1 and o z from the distribution by replacing the distribution of si by

that of In c,, i = 1, 2. In this way you will note our interest goes from

S1 s to Ins, -Xnsz to In s_
~S2

Moreover, whereas the sampling errors in si are proportional to oi,

the sampling errors of In s, depend only on the size of the sample from

which sl was calculated.

In 1 934 Snedecor transformed the variable to e2Z and out of honor

to Fisher wrote F for e 2 Z. He gave the probability element to be

n -i
Sn j + n z 2 -1 F )

-5 nZ
fs F) ni+nZ d F F > 0,

r ni-2l + F-

where we have nj and nZ degrees of freedom.

4
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Th.4i is a highly tabulated function for which Tables X and XI give

values of F for 90% and 95% confidence, respectively. The following

characteristics apply:

Mean = LF nZ P nz > 2
n2 - 2

I2n Zn(n, + nZ - 2)
Variance = = n > 4F n1 (nZ - ) (n - 4)

Mode = n  - 2. nZ  n, > 2.

ni  n 2 + 2

Using our definition of x? for sampl-s, we see that if n, + 1 and n Z + 1

are the sample sizes (then n, and nz are the degrees of freedom),

2
ni s I

=~~~ 2 Z~oXf /n_ n, T12 s, / 0o1 F./ nZ  nZ s z  S /a-

Znz(2

Just as in the nonsymmetric case of X? we here will designate, in

contrast to the symmetric cases of the normal z and Student t, our lower

and upper confidence limits multipliers by FLC and FU-C, respectively.

What is tabulated is the ratio of the sample variances of different

sizes from a standard unit normal distribution. Like the t-distribution,

it is independent of population variance if both samples are drawn from

the same population, i. e.,

Z Z"
F ___

SZ /o $
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Our general probability statement, therefore, for any two diflirent normal

populations and for any two different size samples with variances szi

Zand s? is

Pr FLC < s:/SZ: <

or

Pr { -- 1 <-- < s 1Z c
Sz .Z FLC S z  =

This gives a probabilistic hold on relative precisions, if you will,

from two samples and thereby on the variance ratio oz z

The tables are set up for ratio values greater than unity, that is,

for a larger variance in the numerator, i.e., for F > 1. Consequently

the lower confidence limit, FLC, for a fixed confidence cannot be directly

read from the table. However it can be found by using the table.

Think of the ratio F = s z/Szz as in Figure 6.

FLC 1 FUC F s/S z

Figure 6
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Since the identification of which sample' s variance is in the numerator is

arbitrary, we see that

Pr{F < l} = Pr{F > } = 1/2.

Suppose we wish to find for coridence c the FUC and FLC when the

numerator sample has ni degrees of freedom and the denominator sample

has nz degrees of freedom.

Since Pr{F > F'} = Pr{F < I/F' },

but also Pr{F < 1/F'} Pr{I/F > V

we have FLC(n, n) = 1/FUC(n , n j)"

where F' is a specific value of F.

1. Illustration. Suppose we have a sample of size 8 with variance

7.14 and a sample of size 10 with variance 3. 21. Find a 90% confidence

interval estimate for the quotient of the pop/dations' variances.

a. Argument. The larger variance goes into the numerator

of F: so n = 7 and nz = 9. Then

F = 7.14/3. 21 = Z. 22.

From the 95%6 cumulative Table XI we see that

FUC(7, 9) = 3. 29 while FLC(7,9) = /Fuc(9, 7)

= 1/3.68

. • Pr <8  3. 29 "

or Pr3.1i- (2. 22) < < 3.68(2. 22) A .9
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So a 90% confidence interval estimate of the quotient of the population

variances is (.67, 8. 18).

2. Illustration. Two different samples of size 25 each have variances

1. 04 and .51. What can be said about the population variances?

a. Argument. By an argument similar to that in the previous

illustration, we find for n1 = nz 24 and for c = .90 that FUC = 1.98

I/FLc

. Prl_9 < 1. 04/."51 < l'. 98 9
1 Z Z"

or Pr 1.04 < / z < (1. 04)(1. 98)9
..5lh. 98) .51

So (1. 03, 4.04) is a 90% confidence interval estimate of the quotient 0-i /.

It should be noted that this F-distribution includes the normal distri-

bution, the X -distribut;on and Student' s t-distribution as special cases

T, per the following:

(1) nZ  Co F y /ni.

(Z)n = oo- I/F = XZ / nz.

(3) n1 = i - fF = t.

(4) n =I -" F = z .

3. There is a very important point to make regarding the nced for

an F-distribution analysis before making a t-distribution analysis on the

difference between two sample means such as was done in the illustration

50
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in paragraph B3, page 38. Therein it was assumed the variances of the

base populations were equal and/or both populations were the same. We

pooled the two sample variances to get a good estimate of this variance

which the application of Student' s t needed and assumed was the same for

the two base populations.

Therefore it falls upon us, prior to a Student' s t analysis on the

difference of the sample means, to determine whether the sample variances

are enough alike to support the assumption that they are independent esti-

mates of a common population variance, So the F-distribution should

enter the scene first.

4. Finally, and in contrast, for large samples we should remember

that the twc sample standard deviations are analyzed by considering the

variance of the actual random variable difference of 'e two standard

deviations and that we do this by using the variance of the distribution of

sample standard deviations which is Zn.

a. Illustration. Two independent samples of sizes 744 and

22 have standard deviations 1.6 and 2. 1, respectively. Compare the

samples with regard to the possibility of their corning from a common

population. For example, such a problem might arise in dealing with

superceding items. The original FSN supported a known population with

known demands over time. We have collected demands on the superseding

FSN for a period of time, and. now we would like to know if it is supporting

the same population as the superseded item.



(1) Argument. Assuming it is, we estimate the variance

by pooling to be

s 2 = 743(1.6)2 + ?1(2. )2 2.61fSZ 744 + 22 - 2

Therefore

S =o Z +- - 2. 61 + 2. 61
Si -SZ Si sz 2(744) 2(22)

1 .0611

o" ="Z 4 .248 say .25 .

So the calculated standard deviation of the random difference between

standard deviations of two such sized samples is 0. 25. Thus

r{_zc < (SI - SZ SI -S? Si - SpPrO-C(sj -sz - 0.25 < z c  ---c..

But (s, - sz)/0. 25 is N(0, 1), and so our particular difference, 2.1 - 1.6 = .5

and thus two standard deviations would cover the random difference between

the sample deviations so we would assume a common population.

[

I?
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MTT. TOLERAiNCE

A. Floating Interval.

Heretofore we have studied the theory and method of estimating

magnitudes of population characteristics by intervals, namely confidence

intervals. Now we wish to speak briefly of another type of interval esti-

mate which is used when you want, so to speak, to cover a range of values

and not just a single value. In particular, it is frequently desirable to

make an estimate which, with certain confidence as we have used the con-

cept, contains nearly all of the population values. There are times when

you and I would like to know within what limits a certain percentage, say

99%, of the base population lies.

Obviously if we knew the mean p. and standard deviation o of the I
base population and also if it was normally distributed, then (p. - 3o-, p. +

3a) would be a satisfactory interval. In lieu of such base population know-

ledge, we can use the sample mean R, the sample standard deviation s,

and then we can pick a kc such that x - kcs and R + kcs would include

99.7% of the base population with level of confidence c. The choice of kc I
depends as much on our further assumptions about the type of base popu-

lation distribution as on the size of the sample.

The end points of such " floating" intervals are called statistical °i

tolerance limits and the interval itself a statistical tolerance interval.

Obviously, as the sample size increases, these intervals tend to a fixed

size which depends on the percentage of base population you wish to pick up.
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n,

In contrast, confidence intervals decrease in width to zero as 
the sample

size increases. Though both types tend to vary less in both position and

width among each other for a fi-ed sample size, the confidence interval

pinches in on the true value of the population parameter while the statistical

tolerance intervai tends to a fixed size since it gives limits within which

an expected proportion of the population lies with some confidence.

So we see a tolerance multiplier k which depends on n, P, and c

is such that we can be 100co confident that a proportion P of the population

lies between x - ks and + ks. Now there are tables that provide us with

values of k if a normal distribution can be assumed and there are tables

for when it can't be assumed. Historically the latter came first from the

work of S. S. Wilks and we will discuss them later in the course. For the

present we will restrict ourselves to the assumption of normality and use

*1 values of k from known tables with the experimental data in an earlier

illustration.

B. An Illustration.

From the data in the Project - Simulation, pages 8 to 12,

tolerance intervals for each of the three different confidences . 90, .95

and . 99 can be calculated and then the percentage of base population they

pick up can be given. For n = 16, we must modify the t-distribution

coefficients 1. 753, 2.131, 2. 947 to the values in Table XII. The values

in Table XII were ta.ken from much more extensive tables whose repro-

duction here is not warranted for our immediate purpose. Further we

56



Table XII

.90 .95 .99

.90 2.246 2.676 3.514

.95 Z.437 2.903 3.812

.99 2.872 3.421 4. 492

will restrict ourselves in the examination of the data to 90% coverage, i. e.,

P = . 90, and to c = . 90. The calculations and results are given in Table

X]II, using k = 2. 246.

Table XIII 1-u
Sample Empirical Satisfactory

Number -x R . 2. 246s, 3+ 2. 246s) Proportion Coverage

1 4.375 1. 204 (1. 671, 7. 079)- (2, 7) 91% Yes

2 3.938 2.00 (0, 8. 430) - (0, 8) 98% Yes

3 4.750 1.24 (1.965, 7. 535)-- (2. 7) 91% Yes

4 5.125 1.65 (1.419, 8.831)-- (2, 8) 96% Yes

5 5.000 1.86 (.822, 9.178) -- (1, 9) 99% Yes

6 4.250 2.17 (0, 9.123)- (0, 9) 99.5% Yes

7 5.125 1.41 (1. 958, 8. 292) - (2, 8) 96% Yes

8 5.437 2.16 (.113, 10.761)--(1, 10) 99.5% Yes

9 4. 625 2. 36 (.676, 9.926)- (1, 9) 99% Yes

10 4.938 1.39 (1.817, 8.059)-(2, 8) 96% Yes
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IV. SIGNIFICANCE

A. Significance Testing.

Suppose a person has obtained a set of observations of some process

and has computed an average. He wants to know whether his statistic

represents all observations for the process. If his experience is such

that intuitively he believes the sample average is close to the average of

the base population, he will make the statement that they are about equal.

This is his hypothesis. To satisfy himself that his hypothesis is reasonable

he calculates the probability that his sample could have occurred. The

significance test does not tell him whether his hypothesis is right or wrong.

But by choosiIg the proper level of significance he knows, according to

probability theory, that he will seldom reject a true hypothesis, and thus

he can proceed as though his assumption wz.s fact.

A significance test involves a random sample and a probabilistic

computation which decides whether or not the sample could have reasonably

come from an assumed distribution. Acceptance of the assumed distribution

for parenthood comes when the observed sample result is no less probable

than some predetermined small probability like . 10, . 05, or . 01. This

degree of rareness due to chance is called the significance level. If the

result from the sample is less probable due to chance than this, we say

tt. - .sult is statistically significant and we mean significant of other than

chance. The region of values where probability of occurrence is greater

than this is called the acceptance region while the complementary region
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is called the critical or rejection region. The latter words are descriptive

of the decision to reject the parenthood of the assumed base population.

This is commonly called rejecting the Null Hypothesis which assumed no

difference between assumed base population and the sample other than

what chance allowed.

Actually this amounts to saying whether the computed confidence

interval does or does not include the corresponding parameter of the base

population. At the outset it appears that a confidence interval approach to

making such a decision has the advantage of giving some idea of how large

the difference between statistic and parameter is likely to be while a test

of significance gives a cut and dried yes or no.

When we reject the Null Hypothesis, i. e. , decide the discrepancy

between the statistic and parameter is too rare to be due to chance, we

are said to be invoking the principle of advocatus d'aboli or T ne Devil' s

Advocate. This derives from the characterization of that diabolical fellow

to make adverse criticism of what was deemed good.

Another word ought to be said here about the dependency of acceptance

or rejection on the particular characteristic and its distribution function.

We accept or reject the sample-parent association through such a device.

Hence, as we will show later, it is possible, given a fixed sample and an

assumed base population, to have two tests based on different statistics,

one accepting and one rejecting.

Significance tests use, in general, critical regions in one of the

three ways illustrated in Figure 7 for the particular value of 5% where
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we have two one-tailed tests and a two-tailed test.

f(x)

05 .05.05

00 0

Figurt. 7

Some examples may now be in order.

1. Illustration. A certain stock number has the probability p = . 8

that each requisition will be for a quantity of one unit of stock. During

the past month 10, 000 requtiisitions have been received, 8, 500 were for a

single unit of stock. Is the units-per-requisition pattern changing?

a. Argument. Our Null Hypothesis is that the sample behavior

of the last month is consistent with the long-known p = .8. Now if we use

the normal approximation to a binomial distribution assumed true here with

n= 10, 000 and p= .8, we have i = 8, 000 and a = 60 = 40. Suppose

we take ,, significance level of . 01. Then we would reject the 'Null Hypothesis;

i. e., we would reject this sample coming by chance from the assumed base

population if x > 8, 000 + (2. 33)(40) = 8, 093, where x = number of requisi-

tions with a single unit per order. For this can happen in only 150 of many

repeated cases due to chance. Since 8, 500 > 8, 093, we reject chance and

claim a significant difference due to other than chance. Hence we disassociate
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sample and assumed parent population. The size-order pattern has changed.

We are more than 99% confident though we do not usually so speak.

Confidence was used in reflecting how frequent due to chance some-

thing we found in one case would happen in repeated cases. When we reject,

as we just did, something that was rare due to chance before it was rejected,

it is not quite the same thing as making a positive confidence interval

statement. Still there is a relationship.

b. Argument (Alternate). Now we could have computed a 99%

confidence interval here. Since the hypothesis is p = . 8 and, let us s %y,

the alternative is p > . 8, we use a one-sided confidence interval and say

Pr 8 P < 2.33 .99.
85(15)

S10, 000

This can be reformed into

Pr{.835 < p} = .99.

Since p= .8 < .835, we reject p= .8 as it is not in the confidence interval

*(.835, 1).

2. Illustration. Suppose Washington decorates our unit when we

are very effective and they have done this for each of the past five months.

Would you say from the statistical point of view that our probability of

being decorated exceeds . 5?

a. Argument. From the significance testing point of view if

we accept p = . 5, then the sample situation has a probability of occurring
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equal to (.5)5 . 031 and we would reject the hypothesis of p = .5 at the

5% significance level, but not at the 1% level. Remember that if one uses

a higher value for the significance level, he runs a great risk of

accepting a lalse hypothesis.

b. Argument (Alternate). From another point of view we let x

be the number of times in 5 months we are decorated and p be the probability

of being decorated in any month. Then we ask that

Pr{x < 5} < .95

io that

Pr{x = 5} > .05.

This requires

pS > .05

or

p > .55.

So p must be as large as .5D to keep the sample action from being less

probable than . 05. Hence we do not pick up p = . 5 in our confidence interval

(.55, 1) and so we reject p = .5 for hypothesis. But certainly we must

agree with the fact that p exceeds . 5.

B. Relation between Confidence Intervals and Tests of Significance.

The practicioneer usually prefers a confidence interval statement

to that using only a test of significance because the width of the confidence

interval tells more about the reliance he can place on the results of the

experiment. Still, when a test of significance is accompanied by the

i
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! appropriate Operating ChrceitcCurve (OCC), about the same infor-

• 1 mation is provided. In order to understand this let us first consider our

S 'situation in deciding whether to accept or to reject a hypothesis.

i If we reject a hypothesis when we should not have, we say that a

Type I error has been made. If we accept a hypothesis when we should not

S have, we say that a TypTe II error has been made. In general in life these

two situations constitute the alternatives in making wrong decisions or

errors in judgment. Ideally we want tests to minimize such errors. Unfor-

:. tunately, for a fixed sample size, when we decrease one type of error

I

we increase the other. Only increasing the sample size reduces both.

l In industry in acceptance sampling the probability of the Type I error

is called the Producer' s Risk and denoted by a while the probability of a

Type II error is called the Consumer' s Risk and denoted by P. Obviously

the Type I error is the basis of our familiar level of significance test. It

represents the chance we are willing to take to be wrong in rejecting chance.

Now we could eliminate Type 11 errors by never accepting hypotheses!

But this would get us nowhere. Better should we study the probabilities

of making Type II errors and hope for little chance of making them. The

quantity (1 is helpful here in that it indicates the ability or power of

the test to reject the hypothesis if it is false. Hence it is called the Power

Function.

A confidence interval can be used for a test of significance -- this we

have illustrated. Using a rejection criterion alone in the converse
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situation is not the proper way to think of a significance test. You should

always think of the associated OC Curve as part of the test.

First let us look at several situations in which we highlight 3.

1. Illustration. If p is the probability of a particular FSN being

demanded in a day, suppose we order this item if, out of every 10 items

demanded, one or more are for this FSN. The probability that the experience

with 10 items does not have us order is a function of p. It is the operating

characteristic function of the examination procedure and is
= (1 - p)1 0 .

In Figure 8 we see a graph of P.

10

P)

01p

Figure 8

Figure 9 gives a graph of 1 - , the power function.

1 -t1

Figure 9

65



°j

Now represents the probability of not ordering the FSN when it

has the probability p of being demanded and hence should be replaced

according to this probability. Hence (1 - 3) represents tihe probability of

ordering. The graphs in Figures 8 and 9 show that the procedure is pretty

much iu ine with the actuality it is intended to follow.

2. Illustration. The Bureau of Budget (BUBUD) claims that a certain

FSN is not ordered by half the Stock Points while the unit here feels it is.

To test the situation you examine five Stock Points and decide to accept

BUBUD' s claim only if either all the five Stock Points ordered or all did

not order the item. Otherwise you will assume it is ordered by half the

Stock Points.

Now the probability of accepting BUBUD' s claim is a function of p,

the probability of a Stock Point ordering this item. This iunction of p is

the Power Function for your test, that is, it is (1 - ) where f is the proba-

bility of accepting your claim. Look at Figure 10.

1

Power = 1 -

p=p +

(10- p)5

I__ __ __ .. c.'0- ,

1/4 1/2 3/4 1

Fi.ure 10
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So if p = 1/4 or 3/4, your probabi'ity of not making a mistake is

only about 1/4, that is, your probability of not accepting p = 1 / 2 when

p I/2 is not very high. When p = 1 /2, then P is the probability of accept-

ing p = 1/2 when it should be accepted and so 1 - p is the probability of

not accepting it when it is true, But this is the Type I error, or a, which

is in this case . 06.

[a = -- pp+ 1-p) 5  + 1 .031 +.031 .06)

This test procedure is not very powerful in that it does not strongly

have you reject the hypothesis p 1 1/Z when p J 1/2.

Now let us take a numerical example and tie in both approaches of

confidence intervals and of significance testing with the operating charac-

teristic curve.

3. Illustration. An FSN has a mean requisition size of 300 and a

standard deviation of 24. Suppose we want to know at the 1%o level of

significance from a sample of 64 requisitions if this mean requisition size

h9s increased.

a. Argument. in customary notation we say

H0 : Null Hypothesis that D 300 has not changed

H1 : alternate hypothesis that D > 300 and D has

changed

The 17 level of significance corresponds in no.rmal theory to z = 2. 33 and

so to

D = 300+ 2. 33 ,) - 307.0.
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{ Graphically this is given in Figure 11.

i 
x-" 01

300 307

Figure 11

So our Type I error has probability a = . 01. For each possible

actual new value of D, there is a chance of accepting the old D = 300. To

show this, let us first take the value D = 310 as being the actual new average

demand. Then the means of samples of size 64 are normally distributed

about 310 and with some chance the sample means will be to the left of the

critical point point for rejecting the old hypothesis, D = 300, as shown in

Figure 1 2.

=.16 a 0

300 .307 310

Figure 1 Z

Now under the new hypothesis 307 corresponds to z -1 and so

p=.16.

68



More generally we can calculate I3 for various new D as given in

Table XIV.

Table XIV

S 290 295 30 305 310 315 320

1.00 1.00 .99 .75 .16 .00 .00

The OC Curve and Power Function are graphed in Figure 13.

1.0 = .01

.8

.6

.4

.2

0 1 .

290 300 320 295 310 320

Figure 13

Next let us perform an analysis still using 99%o significance similar

to what we did in Illustrations 1 and Z, pages 65 and 66, and indicating4I the associated confidence level approach. We want and have

P r -4~f 2. 3 = .99

JJ

which can be reformed into
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Pr{D- 7 < = .99

or (D - 7. co) is the confidence interval.

-2.33 0

Figure 14

Note the range of 99%o of the ac-ivity under the curve in. Figure 14,

starting 7 units to the left of I and thence to the right, is about 16 units

which is about the span of indeterminancy in the OC Curve from 300 to 315.

We see from Figure 14 that there is a small chance of keeping the

hypothesis D = 300 when D > 315 while we are almost certain of keeping

it when D < 300. Were we to have used the confidence interval approach

at c = . 99, i. e., a = . 01, our random interval would be one-sided simply

because the alternate hypothesis is D > 300. Thus we would say

(D - 7, 00)

is the confidence interval estimator and, as you know, this interval in

repeated samp3es on the average would include = LD 99 out of 100

times. Also we recognize that for this same percentage of times the value

of D would land in a span of about 16 imits.
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The two approaches can be illustrated with respect to determining

the sample size in order to detect differences between means. We can

specify limits to the risks for Type I and Type II errors. This locates

two points on the OC Curve. Selection of n follows from examination of

various OC Curves for different n and matching these two points.

On the other hand we can specify the magnitude of difference between

means which is our limit. Then we can compute the sample size which

gives with desired confidence an interval of this length. Let us illustrate this.

4. Illustration. In the problem of illustration 2, page 66, suppose

we t~st the hypothesis of the FSN being demanded half the time, i.e.,

P = .5, by examining a sample of future demands. Now let us decide

(1) the probability of rejecting p = .5, when it is correct,

is not to exceed. 05. This amounts to saying a = . 05.

(2) the probability of accepting p =. 5 when p > .6 or

p < .4 is not to exceed .05. This amounts to saying = .05.

Find the minimum sample size and state the statistical decision rule.

a. Argument. Graphically we have Figure 15.

_ .025 025 .02.

.4 .5 .6

Figure 15
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Let

N = number of observations in sample

x number of times particular FSN is ordered

Then

area under t = .5 curve to right of x 5N = .025
*iN(. 5)(. 5)

area under =.6 curve to left of x.6N = .025
N -(.6 )(. 4)

' x- .5N =1.96 and x - .6N -1.96.

.5N-N .49'FN

Hence we have the two simultaneous equations in x nd N,

x .5N+.980 4-N

x= .6N - .960rN,

which yield

N = 377

x = 208.

When p = .5, thenx- Np= 19. Thus we would get a similar span of

values to the left of 189. So we decide:

(1) accept the hypothesis p =. 5 if in 377 demands, we

have demands for this FSN in the range 189 ' 19, i.e., betweon

170 and 208.

(2) reject the hypothesis otherwise.

5. Illustration. In the last illustration retain everything but now

require: the probability of accepting p = . 5 when actually p > . 6 is . 05.
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In this case we find N 319, x = 177. So we say

a. Accept p .5 if x lies between 142 and 177.

b. Reject p . 5 otherwise.

In summary when the data present enough evidence to reject the

hypothesis, the probability a of an incorrect judgment is known in advance

since a is used in locating the rejection region. On the other hand, if

the data present insufficient evidence to reject the hypothesis, we are not

sure what to do. We should specify a practical significant alternative and

calculate P. In addition if the size of a sample is involved, we should pick

it so P is small. But in many practical problems the calculation of P may

be difficult, if not impossible. So more often it is better not to reject

rather than accept and then to estimate using a confidence interval.
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V. POINT ESTIMATION

An estimate of a population parameter by a single number is called

a point estimator. Historically the estimation problems concerned them-

selves with estimating parameters. One assumed that the distribution

of probability over the base population is one of a family of distributions

indexed by one or more real-valued parameters. Then estimates of the

parameters were made on the basis of experimental observations.

Suppose (x1 , xZ, "'', x n ) is a random sample from a distribution

which is characterized by an unknown parameter 0. Now 0 could be the

mean. What we try to do in point estimation is to develop a function of

the sample (xl, xz, , xn) which will have a distribution that will cluster

about E. More precisely a point estimator for 0 is a real single-valued

function of (x1 , Xz 2 ", xn), say t(xi, Xz, .. , xn) whose distribution

"clusters in some sense" around 0. This t-function is itself a random

variable. Graphically we like to get a distribution as shown in Figure 16.

f(t)

0 t(x,, xz, " xn )

Figure 16

Our job is to try to define the phrase "in some sense," i.e., to

Aqualify it. The present jargon used in doing this begins with two statements:
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t isn' t offset - unbias

t is as narrow as possible - efficient

In addition there are other qualifications we will discuss, namely being

consistent and sufficient.

A. Unbiasedness.

Suppose (x1 , x2 , , xn) is a random sample from a distribution

f(x) and suppose that there is a parameter 0 which (partially) describes

f(x). Let t(xi, xz, , Xn) be a random variable such that

E(t(x1 , x 2 , , Xn)) 0

where the expectation is taken over all possible random samples. Then

t(x 1 , x2 , "', xn) is calle3 an unbiased estinz.tor for 0. Precisely,

the average value of t is e.

i, Illustration. Suppose (x1 , xZ, ", xn) is a random sample from

a distribution f(x) whose mean is 0, i. e.,

E(x) = 0.

Let t(xj, xz , ", xn) =I(xi + xz + " Xn) =  . Then is an unbiased
n

estimator for 0, as you already know, since

xnE (t) E E(-X) E + +*** -

- E(x+ E(xz) + + iE(xn)
n n n
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e+ Le + + e
n n n

= , free of a..

2. illustration. Consider a sequence of Bernoulli trials and the

resulting binomial distribution of probability for the occurrence of the

event of interest x times, i.e., on x number of trials. Then if D is the

relative frequency sample estimate of p, we know from E(x) = np that

E(~ == E(x) =-n = p, free of n.
\n n n

Therefore is an unbiased estimate for p.

3. illustration. Suppose we again have the situation in the previous

illustration, only now we are interested in estimating the ratio p/(l - p).

This ratio is often desired where the ratio of the proportions of two things

is of intercst. Suppose we consider samples (xj, xz) of size 2. Then the

binomial variable which counts occurrences of the event of interest can be

either 0,1 , or 2. Let q = 1 - p. Suppose our estimator for p/q is

t(x l , xz). Assuming it is symmetric in x, and xZ , we can further assume

that t takes on only three different values, one for each of the three values

of the binomial variable x. Call these values a, b, and c, respectively.

They occur, as you know, with probabilities, qc, 2pq, and pa, respectively.] Then the expected value of t over all samples of size 2 is

E(t(x1 , x2 )) t(0, 0) Pr{t(O, 0)} + t(O, 1) Pr{t(0, 1)}

+ t(l, 0) Pr{t(l, 0} + t(1, 1) Pr{t(i, 1)}

aq + Zbpq + cpz.

:>//
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But if t is an unbiased estimator for p/qc, this must equal p/q, regardless

of the value of p. Now

aqz + Zbpq + cp : a + Zb + c,

yet we can always find a value of p .close enough to 1 so that

a + 2b + c < p/q.

Hence there is no unbiased estimator for p/q in general when n = 2. By

a similar argument it can be shown that the same conclusion is true for

any other value of n.

But this simply means that we cannot find one set of numbers {a, b, c}

that works for every p. We still might be able to find a correct set when

p is known. Practically this is no help, however, since our sampling

problems are directed to finding p.

This last illustration is not to be regarded with too much sorrow.

For though unbiasedness is a desirable property, it is not essential.

An estimate that is slightly bias but very closely clustered could be more

useful than an unbiased one that is widely spread. Moreover, as we shall

show, if consistency exists, we. know the bias disappears as the size of

the sample increases. In the last illustraton we know when n is large,

x/n should be near p and (n - x) in n-.ar q. Hence their ratio which

reduces to x/(n - x) should be near p/q. In a later section this can be

defended by showing it is consistent. Still you will note that this statistic

defies having its expected value calculated for any fixed n. For when

n 2, we get
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E 2-x- - ?' + 9.12pq+ 2 - = 0.

We recall the median of a sample unbiasedly estimates the population

median. Also we now have another good reason for the definition of standard

deviation or variance of a sample, with the n - 1 instead of n in the

denominator because

E{sZ} E , R2 n.E{,(x3  -X)

and since

n nE: (x 7- --z - M(xi - t)' n(E - L)?
i1 1

we have

x)z = -{n -

n=z E {(x - )z }.nE{( - )z

T z
=no- -n X

n

(n - 1)0.2

.'. E{sz} = 1 X (n - I)o-z = TZ, free of n.
n-

B. Efficiency.

Suppose t(x1 , Xz , , xn) anc *(x, X, "', xn) are two unbiased

estimators for the parameter 0 with variances q and t*,respectively.

Then the one with the smaller variance is called an efficient estimator
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for 8 while the other is called an inefficient one. This is rather loose

talk and we should use modifiers of a comparative nature. Equivalently,

but in another way, we say the efficiency of t relative to t* for estimating

0 is

-t* /t "

So when efficiency is less than 1, the other statistic is more efficient.

When a value of an efficient statistic is given, it is called an efficient

estimate.

The following theorem is remarkable and has been known a long time.

1. Theorem. Let (xl, xz, ", Xn) be a random sample from a

distribution whose mean is 0. Consider the weighted mean

cl x1 + CZXZ + .. + Cnxn

where ci + c? + " + Cn = 1. Then Ew is an unbiased estimator for e

and the variance of it attains its minimum value when ci = cz = ... = Cn = 1/n.

a. Argument. Consider n = 2. Then (xi, xz) is our random

sample from a population whose mean is 0 and variance is -. Now

xw c X1 + CzXz, Ci + C -1

- 0 - +o ++c? = (C + c )(r k <0.Z.
XW

Geometrically we are considering only points on the line c, + cz = 1 and

2 2z
also on the circle cl + cz = (k/o)2 as seen in Figure 17.

In order to get the smallest value of k/a- and still get a pint of

intersection with the line cl + cz = 1, we want the circle to just touch the
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line. Then the radius is 1/Pv2. Thus klo is I/4'2. At this point cl =

c? = 1/2 which says Ew should have the particular value R for minimum

variance which then is ix z / Z.

06 a

zc + cz (k/a-)Z

c, + c? =1

Figure 17

This rmeans if you take a sample, you can' t expect to do any better

than to take its mean to estimate the mean of the base population so far

as variance is concerned.

Thus the mean of the sample is called the most efficient estimator

for the base mean.

The forecast of quarterly demand is a point estimator. Locally it

is developed usirg single exponential smoothing and past observations of

demand. The demands are weighted, but the weights decrease geometrically.

The reason for this technique is to give greater emphasis to most recently

experienced demand. The sum of the weights applied to demand observa-

cions does not equal one because the last term in the formula for single

exponential smoothing contains a previous forecast and it is also weighted.
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The sum of all weighting factors does equal one, however. The equation

for single exponential smoothing can be written as follows:

x0 cl X, + CzXZ + . + Crnr a (1-C'~
cii~zx+..+mxm +(c) Xm~

where

cz= c( -cl)

C3 CI(l-c )

and

cm = c1 (I -C)m'

or

cI = Ci( cl

and ci is always a positive fraction.

The variance of R0 is determined as follows:

M-~1C0 CXl + Cll cI)xz +'' + c, (l co)'x

+ (1- c, ) m

z z z 2 z z 2 )Z(m-I)o.Z
O' = cl Ox+c(l-c) XZ + + c(l-ci) xm

ZmXz

+ (i c

.-c 1 ) -m

ci + (1 cj)? + + c (1

2m z

I ( c m x + (I -cl) L- -
C, cio 2m ci) i a +l Zm 2

c-c J1 )

II
C1[-( n mar



-c 1 z
C1 O as m oo

but

= oyz
rn-period average --

n

so single exponential smoothing is as efficient as an n-period average

where n = (2- c)/cl. Graphically:

z
-

Sample Mean

Exponentially Smoothed Forecast

Time
n -c

cl

Figure 18

Depending on the efficiency of Xm, the forecast developed by the

smoothing technique can theoretically be no better than an n-period mean.

Of cour-se, this conclusion ass4mes the demand distribution does not change.

2. Illustration 1. Let (x1, x, " xn) be a random sample from

N( ±, o) and let " be the mean and R be the median. You know that

o- a /n. Now we can show that
xx
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Since i is the best estimator for 4 in any distribution, the efficiency of

relative to x for estimating 4 is

2
or a' Z 1 - 2 =- .64.

This means a sample of size 64 is just as good when taking the arithmetic

mean as is one of size 100 when using the median.

3. Illustration 2. For a unit standard normal distribution, N(0, 1),

we 'find the average deviation from the mean is [ = 0. 79788 ; . 8.

Further we find in sampling from such a distribution, the Mean Absolute

Deviation (MAD) of the sample is an unbiased estimator for the base popu-

lation MAD. Hence we have

E(l. 25MAD) = a-

which explains our correction to the "PROGRAM 61" calculation-of MAD

to estimate a'.

How efficient then is the MAD? Well, the variance of 1. 25MAD

from samples of size n is

/- - Lat T. Ixi- -.
(I. 25MAD) n

- ? Zvar Ixi -l
Zn2

X n x var Ix - p.1
2n

Z

- {Elx- - [Elx- II'
2n
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Tn IT 2n

whereas the variance of the standard deviation s' from samples of size n

(corrected from s so that E(s') = o)is

Therefore the efficiency of 1. 25MAD relative to s' is

Elf = n -_ I - 8760.

2n

I In practice one usually does not have and resorts to using x in

its place. In such cases our formula for a in terms of the MAD must

be corrected to

' 
ii

AH n 'n-1

so that it is unbiased. A similar correction is needed for s. Remember

we only compare for relative efficiency the variance of two statistics,

when each is an unbiased estimator of the same parameter. Going back

to the correction for the sample MAD estimate of (r, we see from

1.Jn~l 1 1 + 3_+.k +...
n(n - ) n 2n Z  8n 48n

that

N, n(n - ) n

gives .0054 for n 10 and . 0008 for n = 25. Hence for all practical

purposes this correction is never of importance.
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Fisher remarked on these two estimators: "As n is made larger,

therefore the standard error of '. 25MAD tends to bear a constant ratio

to that of s. The former is the larger in the ratio 1 - 2- in other words,

the value of the standard deviation obtained from sz of a sample has greater

weight by 14% than that obtained from 1. 25MAD. To obtain a result of

equal accuracy by the latter method, the number of observations must

be increased by 14%."

C. Consistency.

We say t(xi, x?, " xn ) is a consistent estimator for e if

lim Pr{It(xi, xz2 , xn) - el < = 1 fol any 8 > 0.
n- co

Fisher called this the common-sense criterion and stated it as follows:

When applied to the whole population the derived statistic should be equal

to the parameter. This means as n gets bigger all the probability of

the distribution of the statistic t lies in the interval (( - 8 e + 8). This

convergence in probability to a constant is also convergenze in distribution.

From the graph in Figure 19 we see we could equivalently say:

e - 0 0+ 8 t(xx 2 , Y'n)

Figure 19

85



for an arbitrary 8 >0 and c > 0, no matter how small, we can find an

n(5 , ) such that E).

Pr{8 -6 < t(xi, xz, ", Xn) < e+ 6) > 1 - E for n > n(6, E).

1. Theorem. Let (xj, xz , • xn) be a sample from a distribution

whose mean is 0 and variance is a'. Then R is a consistent estimator for e.

a. Argument. We know E (x) = 0 and ar = / n. In Tchebycheff' sX '

inequality

Pr{I - e1 < kxa} >1 -/ z

let 6 = %0--. Then we obtain

6{- el < 8} > 1 -11(8/a-) =1 n6z
x x •

Hence

lirn Pr{J 0- < 6} 1.
n- oo

You can see the property of consistency is concerned with the behavior

of an estimator when the number n of elements in the outcome is large.

Actually we have used the Law of Large Numbers on several occasions to

show that an estimate is consistent, for example, R for 1. and sx for a-x .

Then again we showed this for proportions with respect to probabilities in

the case of the binomial distribution. However it is possible in this case

to get a strong conviction for it by a more detailed examination such as

that given in Appendix A.

In general, if t(xl, xz, ", xn) is an unbiased estLmator for E and

a-,. -*0 as n -c , we know the estimates more closely approach 0 as n

increases.
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D. Sufficiency.

In 19,20 Fisher became impressed by what he called the character-

istic of sufficiency. He assumed a normal base distribution with standard

deviation T. Then he considered the two common methods of estimating a-

or a from a sample (xl, xz, ", xn), namely

noi ; 7 S(Ix "-1) Mean Error

2
no2 = S(x E) Mean Square Error,

sometimes called Peter' s formula and Bessel' s formula, respectively.

He showed the ratio of the variances for a- and for a- to be (7r - 2), as

we discussed in a preceding section. Then he considered various powers

p of the deviations and showed the precision of the mean square is a true

maximum, i.e., for p = 2, while the variance is 14% greater for p = 1

and 9%6 for p = 3. Hence we have still another good reason for preferring

Bessel' s formula.

But even more important he showed that for a given value of Tz the

distribution of oI is independent of T. So when T? is known, a value of

a-, can give no additional information as to the true ,ralue of (r. The same

can be said if any other estimator is substituted for a.2 . Consequently the

whole of the information concerning the base population variance which a

sample provides is summed up in the single estimate oz. Now the same

cannot be said for (r, being taken first, since then a- does involve 0-.

This means we could improve our estimate of a- when we first determine

a- by taking a-.
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One must remember that this unique superiority of oZ depends

on the normal curve hypothesis for the base distribution. For some

other curve, a- might be the superior estimator for a-. As a matter of

fact it is when the base population is of the form

(x-mIlf2
-M

-e

a double exponential curve. In this case a-I must be altered to

na- = ,F2S(Ix I)

Fisher suggested we calculate Pz, the ratio of the fourth moment

to the square of the second moment. If this is near 3, th6 Mean Square

Error should be used; if this is near 6, perhaps we would be better using

ari for our estimate of ..

Later we will see that when this property of sufficiency exists for

an estimator, we will be able in general to find the estimator by the Method

of Maximum Likelihood. Also such a statistic will be most efficient if a

most efficient estimator exists.

The usual academic form in which the criterion of sufficiency is

7 presented leaves a lot to be desiTed insofar as determining a sufficient

estimator. The ordinary definition requires you know the statistic before

its sufficiency can be tested. This is why Fisher said he provided us with

the Method of Maximum Likelihood--to provide a statistic for which the

criterion of sufficiency is satisfied.

To exemplify this concept we shall examine several situations.
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1. Illustration. Consider the mean of the Poisson distribution

emx

The parameter m may be estimated from the mean 3 of the observed

sample. Now it can be proved that the distribution of nR is again the

Poisson series

e "nm(nm)nx

The probability of drawing in order any particular sample (xj, xz, •,

Kxn) is

nm m
~e

xi xz! ""Xn!

and this may be divided into two factors, viz.,

-nm (nmffn(nie-i (nrnni)! xl ----n ) Xn I x  JI)... IllXn
(nx) X, ! " n n

of which the first factor represents the probability that the actual total ni

should have been scored, and the second factor the probability, given this

total, that the partition of it among the n observations should be that

actually observed. In the latter factor, m, the parameter sought, does

not appear. Hence Y is a sufficient statistic for m.

a. Definition. Suppose a population has a probability density

f(x, e), where e is a parameter. Let (xl, xZ, ", xn) be a random

sample. If t(xl, x?, "" , x.) is a function (random variable with its own

probability law) such that the probabiliy density function of (xj, x, Xn)

89
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for any fixed value of t(xl, xZ, • ,Xn) does not depend on , then t(xl° ,

xz , " Xn) is a sufficient statistic and it or some simple function of it

will be a sufficient estimator fore.

This means that if

g((x 1 , xz, -", xn) t(xi Xz , Xn)) =t

does not depend on 0, then t is sufficient.

2. Illustration. Let

Oe-xe x 2- 0
f(x; e) =

0 X x < 0. )

Take a random sample (xj, XZ ••, xn). It has probability density function

One- G 

(X

1

Let t(x 1 , x?, -', Xn) = x. Then

E) e X
(n -I! tn-i

r [p(t, e)] X [g((xi, XZ, ..., xnflt)].

Since g(xl, xZ, , xnIt) is the constant (n - 1)! /tn ' l, we know t is

sufficient. In this case we can see the geometry for small size samples, viz.,

as in Figure 20.

This idea of sufficiency essentially says that in the space of samples

(xi, xz, .:, xn) you take a " slice" in such a way that there is a fixed

probability all over this slice. Then any function of sample values on this
Sslice has nothing to do with the parameter. All information about the

parameter is obtained by going from one slice to another and not within a
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slice. Incidentally, unbiasedness is not related to this. In the last

illustration as well as in many others we could take Zxj or Zxi /n for

a sufficient statistic. Usually a simple transformation makes it a sufficient

estimator. Unfortunately, sufficient estimators are the exceptions rather

than the rule. In practice we have to be content with L:ss satisfactory

estimators. However when a sufficient estimator exists and a most effi-

cient estimator exists, we know the sufficient estimator is most efficient.

g2 . xI + X2 = t

t "

4- we are on the line with uniform density for x,

t N

AX3

3 t X 1 + Xz + X 3 = tn=3

we are on the plane with uniform density

for (lx1 , xz) in x, - xz plane

t tZX1z

Figure 20

3. Illustration. Let f(x; e) = Ox( 1 - 0 )l-x x = 0, 1. Then for a

randcm sample (xi, xz, • , xn) we have
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f(xi, Xo", Xn) =f(Xi, 0) X f(x?.8" fXe

= EXi(l e)n - Z x x

= [p(t, e)] x[g((x1  XZ, , Xn)]Exi = t)]

which again shows t = Exi is sufficient for e.

So we see that if a statistic t is sufficient for O, it means that the

conditional distributiou of any other statistic y, given t = t', does not

depend on the parameter 0. Consequently when we know t it is

impossible to use y to make a statistical inference about e. For example,

you cannot then use y to find a confidence interval for 0. We might try

to show that x is a sufficient estimator for the mean L of the distribution

N(o, I).

4. Illustration. Let

I - _(x- )z

f(x; 0) - e

Then

f(xi, xz, ", Xn; ) f(xi; )f(xz; o)"'" f(xn;0)

_n: il~ ne - Z (x i -o / 2  .

I Now if we expand the numerator in the exponent on e, we get

"xi- 2nx8 + nZ._



Next if we use the identity x = nx. + Z(xi - ) to replace Exj in the

last expression, it becomes
nx + Z (x -)Z - ZnO + nez

E(xj -x)? + nx Zn-6 + no

= n(E- e)? + r(x -x)2 .

Therefore

f f(x1i x2 , ,xn; T- e /

(x --)I n - I I Z

[PCX; 0)] x [g"ixi, x,2,.. XnlI-
~Fn n

and so is a sufficient estimator for 0.

E. Maximum Likelihood.

In 1922 Fisher introduced his Method of Maximum Likelihood to

provide a statistic that was sufficient. The likelihood function Kj is the

compound probability function or density unction in the case of a continuous

distribution of a specific observed sample, i.e.,

L = f(xj; )f(xZ; e) ''" f(xn; 0)

for a sample (x, xz, ' xn) from f(x; 0). Since the logarithm of L is

maximum for the same value of E that maximizes L and since the logarithm

of a product is easier to differentiate, we set93]



Slog L

equal to zero and solve for 0 in terms of our sample values. Note this L[is not a probability as it does not obey the laws of probability with respect

to e.

When L log L is the same function for all samples yielding the same80

estimate 0, then a sufficient statistic exists.

The condition that 8L/a8 should be constant over the saxne sets of

samples for all values of E, which has been shown to establish the existence

of a sufficient estimate of 0, thus requires that the likelihood is a function

of 0, which, apart from a factor dependent on the sample, is of the same

form for all samples yielding the same estimate b. The sufficiency of

sufficient statistics may thus be traced to the fact that in such cases the

value of 0 itself alone determines the form of the likelihood as a function of 0.

1. Illustration. A sample (xi, x2, " , xn) of n demands come at

random from the exponential distribution

f(x) = 0 < x < 00.

Then

L = knek(x +x Z +  +xn)

TnL (xi +x? + +Xn)
ak k

which when set equal to zero gives

k = n/(xl + x +.. + xn) .

Thus the sample mean is the maximum likelihood estimator for the

population mean 1/k.
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2. illustration. Suppose the random sample (xi, x2 , ", Xn)

comes from the normaal distribution N(4, TZ). Further suppose

a. a, is known and p. is unknown. Then

nL - n -T (x 2 -

whih hetst'qu2ctrzroyild

.'n = ( x)n2Tn= cr- .p)I.nL _ n + n (xi 0

which when set equal to zero yields

( = Z(xj -/n .

b. p. is known and cr is unknown. Then

3InL = _n F ( -1) 2

which when set equal to zero yields

c. p and - are both unknown. Now we must solve simultaneously

8nL = n_ +_ 1 (xi _p) = 0
a- 2crT 2cr 4

a8nL = .__ z(x-4.)(-l) = 0
O p. 2 cr2

From the second equation we get

t= (Zx)/n = x.

Substituting this 3 for p. in the first equation yields

= Z(xr - - /n.
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Note the estimate . is unbiased but the estimate az is biased.

However by multiplying by the constant factor n/(n - 1) we can make the

latter estimate unbiased. Incidentally the corresponding estimate for 0

i%. Zb is not biased since L and not is subtracted from each xi.

F. Relation of Maximum Likelihood to Sufficiency.

For unbiased estimators you need consider only those estimates

based on (but necessarily equal to) a sufficient statistic. The sufficient

statistic may be a biased estimate, but this is easily adjusted as you have

seen. The remarkable thing is that for many problems there is at most

one unbiased estimator based on a sufficient statistic.

Now if a problem has a sufficient statistic, then the maximun like-

lihood estimator is based on that sufficient statistic. Before showing this,

let us recognize an alternate definition of sufficiency in the

1. Theorem. A statistic t(x 1 , xZ, ••, xn) is sufficient for the

one-parameter family f(x; 0) if and only if the sample probability function

or probability density function can be factored

f(xl, xZ, " ,xn; 0) p p(t; 0) X k(xl, xZ, ",X n

into two parts (two distributions often), one dependent only on the statistic

and the parameter, the second independent of the parameter.

We can state this more generally for two or more parameters.

Though we have already said this "hunt-and-peck" system is not desirable

r for locating a sufficient statistic, it is for the moment to be recognized

that the factorization says that the variation of the probability with 0 is
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tied to the statistic t, and that any other variation is independent of e.

Now let' s use this to show the

2. Theorem. If a sufficient statistic exists, then the maximum

likelihood estimate is based on it.

a. Argument. Let t(xl, x?, ••, xn ) be the sufficient statistic.

Then we know by hypothesis that

f(xi, xz, ",xn; ) = p(t; 0)h(xj, xz, ",xn).

The equation for the maximum likelihood estimate is

i [p(t; )h(xi , x?, ",xn)

or

8 p(t;) = 0

which, when solved for the maximizing 9, produces an estimate that

depends only on t.

0. Normality of M. L. E. foze Large Samples.

Before establishing the type of the distribution of the M. L. E. (Maxi-

mum Likelihood Estimator), let us calculate two expectations.

Consider 8, In f(x; 0). Note its mean value is zero, viz.,
86

+00E In f(x; ) f -In f(x;0 0)Xf(x; e)dx

-00

+00 1 X 8f(x; e) X f(x; e)dx

= " f(x; 0)
-00
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+00a

= -a f(x;e)dx

-00

S(1) .
88E

Next consider its variance. To avoid a lot of symbols, let S stand for

I_ .n f(x; e). Then
ae

+00[i

E(SZ)= f a E In f(x; E) f(x; e)dx.

~This function S, its mean, and its variance play an important role in our

work as we shall see with the variance of it in the next section. Right ou4l I
now we further realize that the sum FJS(xi; e), which we set equal to zero

to get the M. L. E. b, is a sum of independent and identically distributed

random variables and hence has a limiting normal distribution with 0 for

its mean and nr S for its variance. So, for large values of n, b is close

to 0 and there is an approximately linear relation between TS(xj; 0) and

- e, in general.

Another way of saying this is 4

E(FS(xi;e)) 0 and e - e C[ZS(xi; e)]

(ZS): N(O, no-) and : EN,

t n°S

Later we shall see that - has minimum variance. Before that, let us I
consider a statement of great content.
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H. Information (Frechet, Cramer-Rao) Inequality

Suppose x, is a sample of size one from a probability density function

f(x; E). Let r(x 1 ) be any unbiased estimator of 0. If

+00 +008
f f(x; )dx = f E f(x; )dx88
-00 -00

then

E[- In f (x; 0)]

To derive this result, let us drop the subscript on x, and proceed

as follows. By definition

frr(x) - elf(x; 0)dx= 0.

Differentiation of the last expression gives

f[r(x) - 0 1 nf(x; e))f(x; o)dx+J(-l) f(x; 8)dx =0.

8f

Thrfoef[{r(x) -e} Jf4"?8][x; x ;8  e N1T)]dx = 1.

Using Schwarz' s Inequality which in general is

Jg4(x)dx.fhZ(x)dx g [g(x) h(x)dx]

we get

f[r(x)- 8] 2 f(x; E)dx XJ[a In f(x; E)Z f(x; 0)dx 1

. a In f(x; e)]Z

9) "99 ,



The equality holds only when g(x) and h(x) are linearly related. In our

case this means
r(x) - e C 8 In f(x; e) identically in x.

30

1. Theorem. For a sample of size n, the last theorem extends to

z 1

r an In _(x; )

and equality again means:

So the

Iin a nf( )
i~ 8CE r(x1" x?' "'' X n )  o .

So the last two theorems tell us what the lower bound of variation is ;

and when we can achieve it. Let us compute this in the case of the normal

(x-e)3
f (x; W)- e 00 < x < 0.

Now

I nf(x; e) =nx -in (I/2(x G)

in f(x; e) -

and so

n na I n f(xi; 9) =

8en xl -n
C. i = 1

n

= constant unbiased est-mator
coestamator[depending only on x' s
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.-. LA-



Therefore we know i is the best estimator of e in the sense of

having minimum variance.

Let' s look at a discrete case

f(x; e) =X( e)l-x X 1.

Then

In f(x; e) = x In E + (1- x) In (1- 0),

I nf(x; 0) = x 1 -x = x-e
ae e i e (1 -0)

and so

n 8 I.n f(xj; e) -) [--xi - en] e n - e],.. 0- G( - 0) 0(1l. n j
i00.

Once again (Exi)/n shows up to be a good estimator. Since 2 ,xi is

the number of ones or occurrences, this proportion is the best estimator

for e.

Incidentally if we know we have the lower bound of variance fot our

statistic, this theory can give us a quick way to calculate it. For in the

normal example

x nE~ In n(1) n

and in the second example

2 1 1

X nE8 nf~z nE[ 1-~

1 (1 -0)

n0 n

1 01



which is the usual pq/n form.

in conclusion we can say that the minimum-variance estimate of a

parameter is the unbiased estimate that is based on the sufficient statistic

when such exists. And the maximum likelihood technique finds it! In any

case the M. L. E. has minimum variance.

I. Shortest Average Confidence Limits for Large Samples.

Though we have been concentrating on point estimation, it is proper (

to discuss this aspect of confidence interval estimation theory here since

our friend S(xi; e) plays a role in it.

It seems natural enough to want our confidence interval for a popu-

lation parameter as short as possible in some average sense. Generally

this cannot be arranged except in large samples for certain population

distributions. Rather than state for such cases a general theorem whose

proof is more complicated than we care to discuss in these lectures, let

us simply illustrate by taking the simple Bernoulli distribution

fB(x; p) = X p)1-x x = 0, 1.

Suppose we want 100co confidence limits for p from a sample (yi,

YZ Yn). Then
Ur Y

Yu

f fB(x; p)dx desired probability = f(p).
y,

We write the integral here to be general though our example would call

for a Z. To get the maximum probability for an interval is to get the
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smallest interval for a fixed probhbility. So let' s differentiate our last

integral with respect to p and set the result equal to zero, viz.,

f_ ff(x; p)dx = _- f(x; p)dx = 0.

Since we want an expectation (average) we want our integral to have the

factor fI(x; p). Hence we rewrite it

f(x; p)dx = [log f(x; p)] f(:rc; p)dx = 0.

Another way of introducing the importance of the log here is as follows

1. (Yi, Yz, '', Yn) is a random sample,

2. f(y,; p) X f(y?; p) X " X f(yn; p) is its probability,

3. To maximize it (a minimum is obviously an end condition) we

set the derivative with respect to p equal to zero, viz.,

._[f(y ; p) X f(yZ; p) X X f(Yn; p)] = 0
Op

and to get this into expec.'ation form we write it

( f ( ; )
( logf(yi; p) [i(yI ; p) X f(yZ; P) X X f(yn; P)] = 0.

This requires the parenthetical sum to be zero.

Now to go back to our original plan and go on from there we need

thi; additional fact mentioned earlier, namely,

Q alog f(yi; P)
nipSn i=Il O

is approximately normally distributed with zero mean and with variance
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= E l g4f(y ; P )n'I

Hence approximate 1 00c0 confidence intervals are obtained by setting

_ c0Q

and solving for p. This interval is smallest. V

Now for our Bernoulli distribution we follow this through.

alogf(x; ) = a [xlogp+ (1 - x)iog(l -

ap Tp

x - 1-x
p 1-p

Next

E[(alog f x; .P)~ E[ X _

I I -X pX(l )X -

=X 0 P )

Therefore

n [Y.

where

Sice = (Y~ ) n._

Since o = I X we haveQ p(l p) n

104
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and the l OOc% confidence limits are obtained from solving

(,p) Nfn Z

p(l - p)

which is exactly the same result as that given on page 13.
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VI. ORDER STATISTICS

When one tests the life of a sample of n items, it is obvious that

if ti denotes the time when the i-th one fails, then the data occur in a way

that their serial order also gives them in order of increasing magnitude,

i.e., ti < tz < t tn. We say that the sample values are ordered by

size in time. However, not all samples' values have this property so we

consider rearranging the values in the sample (xi, xz, ", xn) in increasing

order of magnitude and then denoting this array by

[ (x(11 , xf 2), ' , Xind).

Consider all samples of size n from a base population. Then the

smallest value in a sample varies randomly from sample to sample. So

does the next-to-smallest, etc. Hence we have n new random variables

each of which is called an order statistic as they are functions of a sample.

We say xj is the first order statistic while xcki is called the k-th order

statistic. Now remember

_ _ -I Xin)

and so these new random variables are not independently related. They

are dt. pendent in the strongest sense, namely, pairwise.

h A. Typical Order Statistic Distribution.

Let x denote a random variable with continuous density function

f f(x), - o < x < o0 and for n = 5 let our random sample be (xj, x?, ' x5 ).

Consider, say, the fourth order statistic, x,4 1 . Now for a particular
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sample, x(4 ) might bc any one of the five serially-ordered sample values,

and, moreover, it can be any value in the domain of the random variable x.

Suppose we say it is a particular value and denote this value by x'4) . Then

what is the probability that the fourth order statistic will have a value in

the interval

(xt 4 I ,X '4) + AX(4 ) )?

More generally, let A be the event that a sample value lies in the

interval (. a, x(4), B be the event that a sample value lies in the interval

(xI4) , X( 4 ) + AX(4 ) ), and C bc the event that a sample value lies in the

interval (x4) + AX( 4 ) , a0).

Now we ask how many equally likely samples satisfy the compound

event A and A and A and B and C, whose probabilities, suggested by

Figure 21,

Wi

3 11

A B' C
IX IX4 1 + AX

Figure 21

are

X"41

Pr{A} = f f(x)dx = F(xI ) ) ,

-00
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x~4 J. AX

Pr {B} f f(x) dx= f(xt14)+ GAx) XAx, (41 'e1
! o

Pr{C} f f(x)dx 1 F(x 4 1 + &Ax) 0
X( 4 ) + AX

Since eventually Ax(4) = Ax will go to zero, we may as well assume

now that it is small enough to assure us that x1s, is greater than or equal

to X( 4 ) + Ax. Then we can say that for any random sample (x1 , xz, Y xs)

event A occurs three times since three of our five observations must be

less than the fourth order statistic, event B the fourth order statistic's

range occurs once as does event C, the fifth order statistic' s range. We

can indicate this by putting the numbers 3, 1, 1 in the three regions as

shown in Figure 21. Hence such a typical sample would give the conpound

event of 3A' s, 1B, and 1C which in turn has the probability

[Pr{A}] 3 [Pr{B}]'[ Pr {C}]i.

Once again we ask how many equally likely serially-ordered samples

for each fixed set of five numerically ordered values would give this same

situation. Well, let' s first suppose xIM X= L, ie., that the fourth

snallest observation is the first observation.

Table XV lists the various different serial-numberings of these

values which satisfy our requirement.

So there are four equally" likely but different serial-nunberings for

our set of five values that give x, to be x,41 . Similarly we would find

four equally likely but different ones for each of xz, x 3 , x4 , x. to be x(4.
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Therefore we would have to multiply the probability of 3A' s, IB, and 1C

by 20 to get the probability of x(41 being in the interval (x14 1, x' 4) + Ax).

This can be written

Pr{x(4, < x(4 ) + Ax} - Pr{x( 4 ) < X14) }

= 20[F(xt 4 ,)] 3 [f(x[ 4) + E)Ax)] Ax[l - F(x 4) + Ax)] , 0 < 0 < 1.

Now divide both sides of the last equation by Ax, and then let Ax - 0.

By definition the left member becomes the density function for x( 4) • If

we denote it by g(x(4) ) then we have, dropping the prime on x( 4 )

g(x( 4 ) 20[ F(x(4 )]3 [1 - F(x, 4 )] f(XI4 )

for all values of xW4 for which x is defined.

The probability density function just derived is readily obtainable

as a particular application of the mldtinomial distribution. Just as we

derived the binomial distribution by asking a question in a Bernoulli Process

[Volume I, pages 73-75] we can obtain the multinomial distribution by

asking a similar question in a more general process.

Table XV

Less Than xk4, x(4) Greater Than X(4 )

{x2 , X3 X4 } x1  {N }

{X3, X4, X5X 1  {x

{XZ , X4 , - 5 } X {X3}
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B. The Generalized Bernoulli Process.

Suppose we have a process with the following characteristics:

On a trial (in a sequence of trials) some one of k different events

Ei, E2 , ... , Ek occurs;

The probability pi with which Ej may occur remains fixed trial

after trial. Note that P, + pz + "'" + Pk = ;

The trials are independent (i. e., the result on a trial is not affected

by the result on a previous trial).

1. Question. In n successive trials, what is the probability of nlj

occurrences of El, nZ occurrences of Ez, .. , nk occurrences of Ek?

Note that ni+nz + " + nk = n.

a. Argument. Proceedir~g as we did in the argument for the

binomial distribution, we note there is a multiple random variable or

multiple real-valued function in this question and it counts the number of

"successes" of each event E in an element of the sample space. The

sample space consists of all n-tuple arrays made up of any number of

each of the E, with the total of such numbers being rn, viz.,

el = (El , Ej,"" El)

% ,Sample space of

er = (E1, Es, EZ, E , kn elements.

\w

Ckn

I 10
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th
where e1 denotes the r series of trials. Therefore we shall call

X(er ) = "the number of E l ' s in er, the number of E?' s in er, "' the

number of Ek' s in er." Thc X(er) can be any set of k integers in an

ordered array where in each position there can be any integer from 0 to n.

In order to describe further the process and the random variable,

we introduce, as before, the probability distribution of the ordered arrays

of numerical outputs of this random variable. By way of illustration we

2give in Table XVI the development for the situation when n = 3 and k = 3.

Incidentally we can generate by the multinomial theorem of algebra

all the various probabilities by expanding

(PI + PZ + P3)

and we can get each one from the compact formula

3! n, n?, n 3
f(n1 , n?) = P P 3ni nz ! n3!

where

n= 0, 1, Z, 3 and

3
Zn, 3.

i= 1

We write the probability function as involving only Z of the nj since only

2 of them are functionally independent. Further examination of the table

will indicate the coefficient on the product of a particular set of powers

n1 , nz, n 3 of the probabilities p, , PZ, P 3 , respectively, is simply the

number oi permutations of three things taken three at a time when nj

i ~Ill ,



Table XVI

Nr of El , E Z , E 3  V
er X(e r ) Pr{er} (n,, nz, n3) Pr{X(er) = (ni, nz, n 3 )}

2 l Q 3 I2 I~3.{Ej , E-, El }  3, 0, 0 p, (3, 0, 0) pi

{E 2 ,, E,} 0, 30 P (0, 3, 0) P

{E3, E3, F3 } 0, , 3 pp3 (0, 0, ) P3

{E1, 1, E2} 2, 1, 1 Pi2Pz{E2 , E 1 , E1 } 2, 1, 0 p z

{E1 , E1 , E3 } I, 0,1 o ~z (,2 )3~ZI:

z

{Ez, E 3 , E_} 2, 0, 1 PiP3 (2, 0, 1) 3P 

{E3 , E1, E1} 20, ,1 p tp3

{E2 , E., E3} 2, 0, 0 PIP3
{EI , E3 El} I, 0, P1z (1 2, 0) 3 pl z
{E3, E 2 , E } 1, 2, 0 pP

{E .Ez, E }1, 2, 0 lPli Pi oZ)3z~
{Ez., E . F- ) O, I, 0 pip~ -?(,2 0 p

{E 2 , E, E3 } I. 2 0i PPP
{EE 3 ,E 3 } 10, 2, 1 P P3{E- - }3 - 0,0, 2,1 p*Pzp (0 I, 1) 3p p 3
{E 3 ,F 2 ,E 2 } 0, 2,1 P! 3

{E 3 , E3 , El} 1, 0, 2 P, P
{E3 , El , -3} 1, 0, 2 Pi P3 (1, 0, 2) 3,p

{E 1 E 3 E3 } 1, 0, 2 PiP

{E 3 , E3 , E 3 J 0, 1, 2 (0, 1P2) 3 pp

{E13 , EZ, E3} 0, 1, 2 ,2 (01,)3p

{E', E3 , E3 } 1, 1, 1 P, P Z
{1EI, EZ, -3 } 1, 1, 1 P1 PZP3

{E2 , El, E3 } 1, 1, 1 PI PZ P3 (1p,1 1) 6 pZ3
{Ez, E3 . El} 1, 1, 1 P1P1z P3
{E3 , El, .E 2 } 1, 1, 1 P PZ P3
{E3 , EZ, El} 1, 1, 1 P PZ P3

It.
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II
are of one type, nz of another type, and n 3 of a third type [Volume I,

pages 47-50].

In general, for n trials our probability rules tell us that a compound

event which has n1 , 1  s, nZ i EZ ' s," , nk "Ek' s" has probability

P1 P " Pk

Since there are P(n; nj, nz, ", nk ) ways of arranging this number of
'I1 Is,I I "E Z I , .It E ,,

, "E' s, we conclude

F'r Xer) = (ni , nZ, , nk)} P(n; nj , nZ, , nk)

nj n2  nk
-Pi Pz Pk

where each of ni can be any one of the values from 0, 1, ", n with

nj + nZ + + nk = n.

C. Application of the Multinomial Distribution to the Derivation of the

Distribution Function of an Order Statistic.

Let us now reconsider the Section A and the obtaining of the probability

density function of x(41 from a sample of size n = 5. In picking x five

times at random from a population with p. d. f. f(x), we want the selection

to be such that

Event Description of Event Probability of Event Nr of Occurrences

El xc(-oo, xt4)) F(x( 4 ) nj = 3

EZ xt(X(4) , x( 4 ) + 4;-) f(x(4 ) )dx(4) n% = 1

E3  xE (x(4 ) , o0) 1 - F(x(4 )) n 3 = 1

Substituting the corresponding probabilities in the mu3ltinomial

probability distribution function we have
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5'

51 [F(x( 4) )]I [f(x(4) )dX4 ]'[l - F(x, 4 )] 

which gives as the coefficient of dx(4 ) the probability density of the

fourth smallest or second largest observation as we found before in the

first section of this chapter.

D. Derivation of the General Order Statistic.

Consider the k-th order statistic from a random sample of size n

from a population whose probability density is f(x). Just as we did in

the previous section for the fourth order statistic from a sample of size 5,

we invoke the multinomial theorem and probability function for the three

events as shown in Figure 22.

fi W
n-k

El X(k) EZ X(k) + &x E3

Figure 22

The areas of the three regions into which different numbers of

observations of our size n sample fall are the three probabilities for the

events El, E?, E 3 as shown. Then event El occurs (k - 1) times, EZ

once, and E 3 (n -k) times.

So it follows that if g(x(k)) is the probability density function for x(k),

that
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g(x(k))dx(k) = n' [F(x(k))] f(x(k))dx(k)(k -1 )! M!) (n -k)1

.1:1 -F(x(k))]n-k

or

T(n+ 1) [F(X(k))]k-l[l - F(x(k)nkf(x(k))g(x(k)) = £(k)r(n - k+ 1)

It is interesting and useful to note that you can always write the

cumulative distribution function G(x(k)) of a single order statistic as an

incomplete Beta function in terms of the cumulative function F(x) of the

random variable. You will recall that the Beta function P(m, n) is defined

in terms of the Gamma function by

'1 1
r (m)r(n) f ym-l(l y)n-y

P(m,n = m+n ) y dyr(mr + n) 0

Now if you let y = F(x), then we can write

yt
k -I n-

G(x(k)) J y (I -y)ndy
x(k, n - k+ 1)

where

y F (x k))

By letting k = 1 we have the distribution function of the smal.cest

element in the sample and when k = n we obtain that for the largest. These

are sometimes referred to as Extreme Value Statistics.

1. Illustration. Consider the sample (x1 , xz, x, x5 ) from

f(x) = I, 0 < x < 1. Then

:i5I,5 _



4' t~

5 11) dXI dX 1l 4
g(x(1) )li f 1 (1dx(i I dx).

0! 1.!! XJ

This reduces to $
g(xl)) 5(1 x( ) ), 0 - x - 1

Note that this distribution has a very high ordinate at x(1) = 0 and drops

off rapidly as xtl) increases, reaching 0 when x() = 1. This is what

you would get for a frequency distribution of the values of the smallest

observation in repeated samples of size five.

On the other hand we get for the median, X13),

h(xj 3 j 30x?) (I - X( 3 ) )Z 0 :5 X(): 1

which is symmetric about X( 3 ) = 1/2 and has its highest value there,

dropping off to zero as X 3 ) goes to zero or unity. These two order statistic

distributions are shown in Figure 2S.

5A
2 - 4 h(x (3)

0 1 x

Figure 23
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One would expect the smallest value to have greatest chances of

being small while the nedian value would have little chance of being very

small or very large. On the other hand the median value in repeated

samples ought to be more frequently near the median of the population.

E. Maximum and Minimum Order Statistics.

The probability element of the minimum order statistic, x(j),from

a random sample of size n from f(x) is

0o n-!

n(f ff(t)dt f(xI I )cX(I)
IX(I I

and of the maximum order statistic, X(n), is

I X(n)lIn-i
n (n fj(t)dt f(x(n~dx(n)

Next suppose f(x) is uniformly distributed, 0 5 x 5 1. Then we find

)n-I
g(xrl, ) = n(l -xci)n, 0 < xo - 1.

Therefore the integral of g(x(1 ) from x to I is (I - X)n which is the

Pr{xl ) > x}. Therefore the cumulative distribution is

n
G(x) = Pr{xj1 ) < x} 1 - (I - x), 0 5 x -5 1.

This is obvious from simpler considerations since it is the probability

that not all n values of the sample fall into the interval (x, 1). By

elementary set reasoning we know this event is the complement of all

values falling into the interval which has the probability (1 - x)n .

Similarly the probability element of the n-th order statistic for the

uniform distribution over (0, 1) is

117



n-i
h(x(n)) nX(n) , 0 < X(n) 1 1.

n

Integration from 0 to x of h(x(n)) gives x which is the Pr{x(n) <x},

the cumulative distribution H(x). However we can get this directly for

this simple base population since it is the probability that all the n values

of the sample fall into the interval (0, x).

1. Illustration. Let f(x) = Zx, 0 < x < 1, and consider the random

sample (xl, x? x5). Then the schematic diagram pictured here

1 1 3II 3 -

0 x 1  (Z% X( 3 ) X1 4 ) X( 5) 1

suggests the probability density function

X(Z) X (z)+dX
g(x~ 2 ).F.if f(x)dx f Lf(x dxJX )d

3 Z 3
40x ) 2 (I - X(z)) , O<x( 21 1.

In a similar way we find

h(x 3 )= 60x(3) (1 XO) )? 0 l X "<
.:(5 I Xt3 , 0 < X15 1.

F. Maximum Likelihood + Order Statislics.

1. Illustration. Suppose a random sample of size n is drawn from

the exponential population with density function

f (x;a, P) P e - x ' )  a- x < 00, 0 < P.

/'? p
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Then the likelihood of the compound event of the n sample values is

n -8Z(xj -a)
L 1 e  1 II

and

In L = In P - nP( - a).

Taking the partial derivatives of In L with respect to each parameter and

setting each resulting expression equal to zero ana then solving these two

equations simultaneously gives us estimates - and P which should locate

a relative maximum for L, viz.,

anL
aa

a3nL n n(x a)1, P

and

:P 0

Now the first equation gives 3 = 0 which is not allowable in the second

equation since it could not then give a finite -. So differentation so used

fails as evidently no relative maximum exists!

Remember our purpose is to select an a and a P so that L is

maximum. From the definition of L, we can see that for any P > 0, L

would be greatest when - takes on its largest possible value since then

the exponent on e is largest. Now from the definition of f(x) we know that

/-
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all x are greater than or equal to a. Consequently a must be less than

or equal to every value in the sample. Therefore the greatest value which

can take on, consistent with the sample values, is the least value in the

sample, i.e., xl11 . So the maximum likelihood estimator a for a is the

first order statistic.

Next, substituting xjl) for - in the second equation of the last pair H
of equations yields the maximum likelihood estimator for 3,

1i

x - x( J)

2. Illustration. For a random sample of size n from a population

with uniform distribution f(x) = I/e, 0 - x 0 G, we have

L

en

InL -nino

81nL n

ae e

Obviously we get nowhere setting this last expression equal to zero

for this demands 8 be infinite. Equally useless is to say that L is largest

when E is smallest and so let' s take - to be xt1j the smallest value in

our sample. Elementary considerations, on the other hand, tell us that

0 - x(j) - "' - X - e and therefore we must have 8 as big as x,,, .

Consequently, under this constraint, our maximum likelihood estimator is

0= Xfn) •
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[2. Note the Cramer-Rao Inequality and the theory depending on it do

not hold here since our parameter is a value at the end of the donain of

the variable and hence not within an interval to permit using differentiation

for relative minimum-maximum analysis. If one did not recognize this

and calculated the lower bound for variance of the M. L. E. as given by

the Cramer-Rao Inequality, he would get

Inf(x) -in0

e8 n f(x))

nE __ n f I x_ n

Therefore

var 0 0 /n

But X(n) is our M. L. E. and we can find its variance as follows:

n-i

g(xmni)dxtn) = no ') d] en

g(xn)) = (xin /I)n - 1
e

_n E E { n Z
=- e, - e

{Xln}  nn+ I n+ "

Therefore

var{xf n)} O x n

(n +l) (n + 2)

/
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which is smaller than the lower bound to the variance found by using

theory when the hypothesis for it was not satisfied. So all is well, if you

look at all of it.

Incidentally the formula

E{xtni} = fn/(n+ 1)]o

is useful in predicting the maximum value in an assumed rectangular dis-

tribution when you have only a sample of size n. You simply use it in

reverse and say e is (n + 1)/n multiplied by the sample maximum. To

say when this is reliable and to what extent req-.ires more analysis than

we will go into here. One needs to calculate a probability statement about

the difference between [(n + l)/n]xinj and 0 so as to get some sort of

confidence interval for 0 in terms of the [ (n + l)/n]xn ) from a sample.

For n large, say n 1- 100, we know that the area under g(x(n ) to

the right of the mean, [n/(n + 1)] 0, is about . 63 while in an interval of

length 0/(n + 1) to the left it is about. 23. Hence about 85% of the time

xin) lies from (n - l)/(n - 1)]0 to 0. So we can say

Pr - 0 < _ n < e -" 86.
X )+------ n.8--6.

1 +l n+l n+l

This can be written as

pr n n+ < < n +lI ! .86.
Sn+ 1 n n- n

So if you call [(n + l)/n]xin) your estimate 0 of 0, then we can say that

we are 86%6 confident that 0 lies in
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in+1 n-i

To see how effective this really can be suppose we assume a rectangular

distribution and wish to estimate the upper bound or largest value from a

sample of size i00. If the largest value in the sample is also 100, then

our 0 is 101 and the 86% confidence interval is roughly (100, 103).

It must be remembered tihat the previous example was quite restrictive

and that if the base population is other than rectangular, a new probability

function for x1 ni needs to be calculated, a new mean, and no doubt new

considerations as to just what may be meant by a .7_aximun in the base

population, to say nothing as to the effect of the sample size n.

G. Confidence Interval + Order Statistic.

Suppose we assume the base population distribution of the previous

illustration and then we ask for the smallest sample size such that we can

be 99% certain that x(ni cuts off to the left the fraction P of the population.

Well, this means we must find a sample size such that the following proba-

bility statement is true,

Pr{x(n, /0 > } .99.

This can be evaluated as

Pe PO n-i
1- f g(x(n))dcni = - f nxin) dXtn)

0 0 0 
n

n P

e 0

2/
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=1-P n 
= .99

Suppose we take 13 = .95. Then we have

Pr{x,,.'G > 95} = 1 (. 9 5 ) n = .99

which gives

n(.n01) o.90

* 2n(. 95)

This means if we take a sample of size 90, then we can be 99%

confident that the largest value in our sample chops off at least 95% of1.
the universe.

You might say we have a one-sided confidence interval for G here

since we can express this as

Pr{e < 3ti/.95} = .99 for n = 90

or (xini, Xn / 95) is a 99% confidence interval for 0, the maximum value

of the population.

If we take our previous illustration where Xn) = 100, then we have

99% confidence in 0 lying between 100 and 106 for about the same sample

size. But if you look at the previous section you will note that the two-

sided confidence interval there given really is

xcn% , n + X~I
n -1 /

a one-sided interval, and gives us less confidence, 85%, in a smaller

interval, (100, 103), consistent with our later estimate.
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LH. Hypothesis Testing with an Order Statistic.

1. Illustration. Our hypothesis tells us that a random variable x

is distributed according to the law f(x) = x/Z, 0 -5 x -5 2. We want to test

this hypothesi by using for a test variate the value of the largest observa-

tion of three observations drawn at random from the base population.

Using a one-sided critical region on the right with a level of significance

of . 05, let us determine whether the hypothesis should be accepted or

rejected by the experiment which yielded the three sample values. 211,

1. 96, and 1. 52.

a. Argument. The density function of x, 3 1 is

g(xI 3 )) = f(x(3 )), 0 'C1 3) 2

which is motivated by the diagram

2 0

0 2

Using the assumed form for f(x), we find

g(x, 3 ) - 3 Xt3)) X

9(XI3) 3 2 TZX(3 ), 0 :5 X 2. :

Now the largest value in the experimental sample is 1.96 which we must

use, viz.,
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Pr{x(3) - 1.96} = 1 -G(1.96)

1.96
-I - g(xI 3, )dx, 3,

0[ 1.*96]

64= I 1 (.98)6
0

= 1-.8865 = .1135 .05

Therefore we do not reject the hypothesis.

I2
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VII. NONPARAMETRIC AND DISTRIBUTION-FREE TESTS

The two adjectives in the above title seem to be used alternatively

and interchangeably in the literature. We will accept this, though argu-

ment can be given to distinguish between them.

Most of the tests we have used were based in some way on the

assumption of normality. However, in practice we often know nothing

about the parent population and so we need tests which do not depend on

any assumption about the form of its distribution function. Distribution-

free tests are based on order statistics or ordered samples, that is, we

suppose the sample is ordered so that the observed data are arranged in

increasing order of magnitude. In contrast to the common measures of

location md dispersion, i. e., the mean and standard deviation with which

we concern ourselves in parametric testing, here we use the median,

quartiles, quantiles, etc., since they are sensitive to order by magnitude

while the mean and standard deviation are not. In particular, when samples

are small, distribution-free tests have proved safer than parametric ones

where an error or lack of precise information concerning the required

hypotheses has a rather dire consequence.

A. Sign Tests.

In earlier work we have tested, on the basis of a sample, whether a

iistribution was " located" at some prespecified point. Low let' s test

this nonparametrically. To do so we use the median ) of the sample to
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estimate the true median g of the base population. Suppose we wish to

test whether some other number go could be .

ILet xI, xz, "', Xn be our sample. Consider

Hypothesis: Median of distribution = 0

Alternative: Median of distribution # io

* To compute what is needed from our specific sample, we simply observe

the signs of the differences

x 1 -po, Xz - Lo, "'' Xn" -1o

and record the number of positive signs, y. Now Y = y is a random

variable since (xl, xz, , x n ) is a random sample. Moreover Y = y

under this hypotheses has a binomial distribution.

fB(Y) = Cy/2 , y = 0, 1, , n

since the probability of an observation falling to the right or left of the

true median is I/2 in either caw. We might as well assume a continuous

probability distribution for the base population X so that values equalling

the median have probability zero and hence can be neglected.

So, in our sample, we find how probable is the particular value of

Y and thereby make a decision about the 0 which gave rise to it.

1. Illustration. For the sample :emands 853, 857, 861, 851, 856,

859, 854, 849, consider the hypothesis that the median of the base popu-

lation is 850, the alternative hypothesis being it isn' t.

a. Argument. Apparently we should use a two-sided test,

rejecting the hypothesis if y is either too large or too small. The test
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statistic' s probability distribution is

= Cy/256, y = 0, 1, , B.

which in tabular form is

y 0 1 2 3 14 j5 6 17 1 8

f(y) .004 .031 .109 .2191.274 .219 .109 .031 .004

F(y) .004 .035 .144 .363 .637 .856 .965 .99611..000

Before we use the particular value of y = 7 which our sample gives, we

note from the above table that

Pr{y < 1 or y >7} = Pr{y= 0 or y = 8)

= f(0) + f(8) = . 008

Pr{y < 2 or y > 6} = Pr{y = 0 or y = 1 or y 7 or y = 8}
= f(o) + f(1) + f(7) + f(8) =. 070.

If we go bac'. to our original derivation of the distribution function for the

test statistic y and define y to count minus signs instead of plus signs,

then the same value of ;0 would give us for the same sample set a value

of 8 - y for y. This is why we here use a two-sided test to wash out the

effect of this arbitrariness. In other words the rarity due to chance of a

particular 0 for candidacy for median must be considered so as to

transcend this arbitrary choice in the definition of y. In our case this

means we must think of y = 1 along with y = 7 as describing the actual

situation of our data and hypothesized median.

Now if -Are decide to reject at the 1% level, then we see that y must

be 0 or 8 to have probability less than 1% so that we would reject our

129 / /4.



~~7.

hypothesis. Hence in our particular situation where y = 7 our test accepts

the hypothesis at the 1%4 rejection level. The same conslusion would

-maintain at the 5% rejection level since the actual case on hand occurs

due to chance as seen through the eyes of our test statistic 776 of the time

and is not rarer than 5% of the time. We can' t get a total of 576 of proba-

bility from the tails of our discrete probability function.

If we lower our rejection le ,el to 7%6, then we would reject the

hypothesis. But this is not a very stringent requirement for rejection.

In the same vein of thought but slightly more general lies the testing

of whether two different samples {xi} and {Yi} come from the same

population. If the samples are fairly large, we can invoke the LaPlace-

DeMoivre theorem as seen in the following case.

2. Illustration. Suppose we have two independent random samples

X1 , xz , .. , xn and yi, yz, "'', Yn and that we wish to examine the

possibility that they came from the same population with a distribution

function which we do not know.

a. Argument. Now the xi are not only random among them-

selves but also, under the assumption of a common base population dis-

tribution function, random among the yi. Hence the probability is 1/2

that any yi is less than any xi.

Let us prove this in general for any two independent random sample

values y and x. If f(x) is the common density function on (0, oo), then

from the joint density function we get
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Pr{y < x} = f(x)dx f f(y)dy
0 0

since the admissible region in the x - y plane for our event "y < x" is as

shown in Figure 24.

y y=x

(x, x

Y <

(x, 0)

Figure 24

x
If we let z = ff(y)dy, then dz = f(x)dx and z = 0 when x 0 while

0
z = 1 when x = co. Therefore

Pr{y < x} = fzdz = 1/Z.
0

Thus we see our probability and the event are independent of f(x) and

hence distribution-free. So we are on firm ground to say for z = x- yi

and for ui = 1 if zi > 0 and uj = 0 if zi < 0 that

Pr{u = 1} Pr{u = 0} 1/2.

Now ui is a random variable and consequently so is w = Muj. Its mean

and variance are seen to be

E{W}= EE{u±}= (+i +...+i) = n
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varfw} - Evar{ui} +-- " + =
4 ~ 44)

Therefore the standard deviation of w is "[n/2.

Recall how we proved the Central Limit Theorem in the previous

course on pages 174-177. So if n is large enough, say. over 30, we are

pretty sure w, though discrete, can be adequately described by a normal

distribution. This allows us to make the statement

( I-2:<w - n/2

Pr -Zc < 7f < c

which leads us to the associated statement

Pr Zc < w < n +

To further exemplify how the large sample theory joins the distribution-

free work, we take c = .95, n= 100, n/ 2 = 50, Nn/2 = 5, zc 1.96 ,

and find

Pr{50 - 1.96(5) < w < 50 + 1.96(5)} .95

or

Pr{40 < w < 60} .95.

We would therefore reject the hypothesis of the same population

for the two sets of data each of size 100 at the 5% critical level if the

sum of the ui is greater than 60 or less than 40. Basically this is analogous

to the first sign test; Z;ui is our binomially distributed test-variate

with p= 1/Z.

B. Point and Interval Estimation.
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As we said earlier, the base population median is estimated by the

sample median which is not unbiased but is consistent. Similarly we

estimate the population quantiles by the corresponding sample quantiles.

These are point estimators.

In contrast, to obtain a confidence interval estimate for , we use

the equal probability concept for an observation being to the right or left

of 1. It then follows that the probability that x(r,, the r-th order

statistic, exceeds is

Pd{X(r) > = Pr{xj 1 ) > , , 2, ", n}

+ Pr{x(1 ) < 1i; xci > p, i 2, 3, ", n}

+ Pr{x( 1 )<j o i1, 2; x(j)> , j 3, 4,", n}

+ Pr{xci) < , i = 1, 2, ,r - 1; Xc1j) > p,

jr, , n}

n( n + nLn + +Cn (C()

nn
So, if fB(i) = Ci ,), i=l1 2, *, n, then

r-l

Pr{xtr) > = fB(i)~i=O

Since p = 1/Z and hence our binomial distribution is symmetric, we also

have
n

Pr {xt r>

in-r+l
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Further we find
Sn n

Pr{X(Si < = B(i) = . CI/ 2
n

1=S i=S

and so

s-i s-i

Pr{x(r) < < X(s)} = fB(i) = Z r < s.
i=r i=r

Thus (Xfri , Xts) is a confidence interval for and the amount of

confidence is the value of the sum of the probabilities in the right side of

the last equation. These sums can be computed directly or by use of

the tables of the Incomplete Beta function, e.g.,

n
nt n-t

- FB(X) c p q Ip(x + 1, n - x)
t=x+ 1

fY (1 -y)nXldy
0

I yX(l - y)nX-ldy

0

1. Illustration. For a sample of size 6, we find

a. Pr{x(j) < < x(6 | } 62 97.
64

b. Pr{x(z < < x(5)= 50 = 78.

2. Illustration. Suppose Q1 is the lower quartile or . 25 quantile.

Then the probability of a random value being to the left of it is 1/4, to

the right 3/4. Hence for a sample of size 6
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Pr{xtl < < x( 4 1) = Pr{xji) < Q, < xjZ }

+ Pr{x(z) < Q1 < x13 }

+ Pr{x(3 ) < Q, < X( 4

= 6 W 5 +GC6 (1)Z(3)4 + ~6i3 (31 41 4 R)1-
1458 + 1215 + 540

4096

- 3213 78
4096

We note since the above sum is of three consecutive terms of the b*,nomial

distribution

i n-i

that this probability (confidence) could have been obtained from the Incomplete

Beta as

11/4 (1, 6) - Ii/4 (4, 3).

We will talk about quantiles in general shortly.

C. Tolerance Limits.

You will recall we spoke of these earlier in Chapter III when we

were estimating what size of spread would contain a certain percentage

of the base population whose form of distribution was known. At that

time we said we would return to the same concept when we no longer knew

the base population distribution function. Let us begin by studying an example.
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1. Illustration. Consider a random sample (xj, x2 , x 3 , x4 ) and

the random interval [Xtl) , x(41 ]. What proportion of future sampled

items will fall in this region?

a. Argument. First we must recognize we can give only a

v qualified answer. That is, the proportion P we get will depend on the

desired confidence we wish to put into it and vice versa. Now let us ask

for 95% coverage. Then

1

Pr{P([xc1 ,, x(4 )] -. 95} = 4! f x2 (l _x)'dx
Z! 1 ( ~ldz . 95

= 1 -1.95(3,2) = .015.

Thus there is only a small chance that the interval [x 1. , x( 41 ] will contain

95% of the probability of the distribution. Incidentally we used in the

above equation the general formula for the probability element of the

range V of a sample of size n, namely,

n(n - l)Vn-Z(l - V)dV.

In general for a coverage P - 3 and a confidence c we must solve

1 n-2 n-n
fn(n -l)V (1 - V)dV 1 - (n n  (n-) ) = c

where

Fv(P) = Pr{V -5 P} = 1 - c

which are usually intractable. Transcendental equations like this are

hard to solve, usually solved by trial and error. In the case when p and
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c are given and we wish to determine the smallest n for this desired

tolerance iater-tal, we must solve

F(P) = pn*l - (n -)p = 1 -c

for n. An approximation is

n X 1 + ~4 ch,4(1l +

For example, when c .95 and P.99, we get

. 1 .(9.488)(- -99) +1 473.

4 ~ .01 2

It is no wonder our original sample of size 4 gave us such a small chance

of containing 95% of the probability of the distribution. As a matter of

fact we need n = 132 to get 99% confidence that [x(l) - X(nj] will account

for 95% of the action.

This concept of working with a percentage of the probability and

not with the same percentage of the range was first given by the late 2

S. S. Wilks in two short classical papers. They mark at a later date as

great a contribution as the earlier confidence interval did for a parameter

of a distribution. It was known by Wilks and others that percentage of

range could not be handled.

D. Confidence Intervals for Quantiles.

We call as usual xp the p-th quantile point of a continuous cumulative

distribution function F(x) if F(xp) = p.

Now (x(k) , X(k, +k, ) is a confidence interval for Xp having confidence

/ 1
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Ip(ki, n + 1- k) -I(k + k2, n + I - 1 - k2 )

which is the

Pr{x(kl) < xp < X(k1+kzi

which in turn is really the probability of

F(xtk1l) < p < F(x(ki+k)).

Wilks tied up the essentials of all this in a very important theorem:

Wilk' s General Theorem. If Vr = the sum of any r coverages of

U s where Ui = F(xcj)) - F(x(i-i) ), then the probability element of Vr is

n! r-l n-r
Vr (1 Vr) dVr, 0 < Vr < I(n - r)!(r - 1)!

which is the Beta distribution for r and n - r + 1. The corollary of

Wilk' s General Theorem is also very useful and may be stated as:

Corollary. The average amount of probability for any one coverage

is, taking r =1,

EVi= f _V (I - V)nidV1 =(n, 2) n 1
P(n, 1) 0 P(n, 1) n+

It is no wonder some people say that confidence intervals on quantiles

are equivalent to tolerance statements about the population with the same

confidence.

E. Probability Paper Again.

The corollary just given by rights ought to be stated as:

Theorem. For any continuous distribution the expected values of

the n + 1 probability areas determined by the random sample of n
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values are all equal to each other and so their common value is 1 /(n + 1).

Remember how in Volume I on pages 108-111 we used arithmetic

probability paper to check on normality in large samples. Now suppose

we have a small sample, say size 10. Then as we promised on page 109

in Volume I, we would use order statistics plus the above theorem in

order to give us a similar check with the same graph paper.

The practical value of this lies in the fact that for any random

sample of size n, the total expected probability area to the left of the

i-th order statistic is equal to i/(n + 1). Now if we took the points

1~j n x() ) • - , (x(ni,

we could not plot the last one as it does not appear on our paper. The

symmetry of the normal distribution suggests that whatever probability

be assigned to xC1) , then ore minus it should be assigned to X(n)• We

could use the " spacings"

(lkP (X n)
xd + i xz ,n + 1 '' t) n +

or the " spacings"

I ) ~ , . ..3 Xlni, 2n.1

Much depends on your purpose in plotting. L. you wish to obtain

i. " optimum" estimates of the base population mean and standard deviation,

you will find the literature replete with intricate analysis for each sample

size. The last " spacings" given above are called by many authors
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"intuitively plausible" and are found to be nearly as efficient as the

optimum probability " spacings. " Moreover they follow a simple formula.

So we will use this spacing for plotting the order statistic cumulative

probabilities on the " linearized" probability scale against the observed

values of the sample wihich are measured on the arithmetic scale.

1. Illustration. The following ten demands were obtained randomly

and then reordered: 162, 191, 198, 212, 220, 232, 240, 252, 265, 286.

The corresponding cumulative probabilities for the associated order

statistics' values, using (2i - i)/Zn are

1/20, 3/Z0, 5/20, "', 17/20, 19/20, respectively.

On page 141 we see the plot or graph of these on arithmetic probability

paper. They seem to lie near the straight line we drew in by eye so we

accept normality of the base distribution. As before in large samples,

we now estimate the mean by the 50th percentile which is 224 while 262

at the 84th percentile yields the estimate of 38 for a-, the standard deviation.

The sample itself has a mean of 225. 8 and a standard deviation of 37. 1.

Note if we took our old formula for estimating a- using the 16th percentile

value we get (262 - 186)/2 = 38.

The same procedure can be used to estimate parameters for other

type distributions on their own " linearized" probability paper. The

spacings of the associated probabilities would change accordingly.
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Cumulative Percentage
Figure 25
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F. The Magnitude Test.

Suppose we have two random samples, {xI} and {yi}, of demands

and we wish to decide whether or not they come from the same parent

population. Now we have seen how the sign test, when used in such a

situation, considers only the signs of the differences zi = xi - yi and

does not take into account the magnitude of these differences. Consider

the following data from two samples of size 6,

i 1I . 2 .3 14 i 5 ,6

zi 3 14 -1 6 I5 1 "

Under the assumption that the parent population is the same, it

follows that the median of zi is zero. Further it follows that the two xi

and yi that give a value for zj might just as well have been interchanged.

This means any zi could just as well have been positive or negative. So

we might consider drawing a random sample of size 6 from the synthetic

population of six possible pairs of differences, one drawing from each

pair. This means each random sample uses a z1 with one sign. Hence

our population consists of 64 equally likely possibilities, ranging from the

extreme negative total of -40 when all signs are negative to that of +20

when all signs are positive. Our test variate is the sum of the six differences.

The following table gives the frequency of occurrence of the various sums.

a *2h0 *181 :*16 :hl4 1 *12 1*l0j*±8 6 4 EZ * 1 0

f(s)i 1 2 1 1 3 4 4 4 4 5T-6

So we see the prooability of s = 20 is 1/64, of s = -20 is 1/64, of 18

is 2/64, of -18 is 2/64, etc. Obviously the distribution is symmetric about
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Now suppose we use a significance level of 5% and a one-sided test.

Then the nearest we can come to it is by taking s = 18 which yields

Pr{s 2- 18} = 3/64 = .047. The actual sample value is s = 18 which falls

in the upper 5% critical region. Therefore, we would reject the null

hypothesis which in this case is that zero is the median which in turn

rejects the hypothesis that the two random samples came from the same

distribution.

Recall the sign test takes no account of the magnitude. In this last

example had we invoked the sign test, then the test variate would be x "

the number of positive signs and would have had the distribution

fB(X) = /2, x=0, 1, 2, , 6

For the same significance level and right-sided test we find x = 6 is the

only value falling in the critical region since f(6) = . 016 while f(5) + f(6)

.094+ .016 11. Since x= 5 in the actual sample we would accept the

null hypothesis thaat the number of positive signs equals the number of

negative signs and hence that both samples come from the same distribution.

In a sense the magnitude test generalizes the sign test in that the

former can be reduced to the latter by taking all possible arrangements

of a fixed number of excesses and lumping the probabilities of their sums.

It is important to note froni the previous discussion that for the

same sample(s) we have come up with opposite decisions from two different

hypotheses of randomness and their test variates. The lesson to be learned

is that we usually solve an interpretation of a problem and not the problem

per se.
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G. Conditional Events.

Many practical situations call for an estimate of what to expect

next after a sample has been taken. From another point of view we could

suggest certain possibilities and then calculate their chances of occurring.

It is this line of thought along which we will proceed. First let us look at

1. Illustration. Suppose we have had ten demands randomly given

from a hypothetical distribution f(x). For convenience we will assume

f(x) is defined over 0 to o. What we do will not be limited in application

by this as the same result would evolve for a finite range of x. Now

suppose three more demands are randomly drawn from f(x). What is

the probability that all three of these demands will be larger than any of

the fir st sample?

a. Argument. We know that

!= f| f(x)dx f(xlo )

and the next three must be larger than x(1 1 • The conditional probability

that this happens is

[ f(x) d .
X(l 0) J

Therefore the joint probability function of these two events is

0)[ dX 3

g(x(,) . f(x)dx 1 , 0 < x( 10 < 00

Hence the probability of this event is
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f g('%(, OI~-~ o) f f(x)dx10 Jx( o .

00 (1I I
10 f f W~x ff(x)dx f(x(lo0))dx; 1 0 ) 1

oxLoJLoio
XCI1 0)

If we let U = f f(x)dx, then dU = f(x 1 o )dx( o) and the integral becomes
0

1

10 f(1 - U) 3 U dU = lOp(4° 10) = 1/286
0

So we see the probability of the event of interest does not depend on the

form of f(x).

2. Illustration. For an arbitrary f(x), 0 -< x < oc, find the prcba.-

bility that after a random sample of size n is drawn, the next two

observations will lie outside the range of the sample.

a. Argument. This means that the (n + l)st and (n + 2)nd

demands lie outside of x( 1 
< x -< xn . As we did in the previous illus -

tration, we find the probability P of this event is given by

n-2
00 00 x n

n(n - 1)f f(x 1 ) )cbc, f f(xin) f f(x) &
0 xI) LXi .

X f f(x)dx dxjn }L x() J

Transforming by U f f(x)dx, V = f(x)dx, we see that U S V -5 1,
0 0
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Xfn)

V-U f f(x)dx

and so

P = n(n - 1) fdU f(V- U) [l- (V -U)] dV
0 U

6
(n+ 1)(n+ 2)

free of the form of the distribution f(x).

H. Elementary Protection Level Calculations.

The Theorem on page 138 can be used directly foir a simple but
typical protection level problem. Suppose we have a random sample of

size n which is ranked from smallest to largest in our usual notation

xl) to XCn ).

Now when we asked in the previous section about the probability of

two or more additional random values behaving il a way conditioned to

the original sample values, we ran into some calculus. However if we

ask only about the next value, things are very simple. Suppose we ask

for the probability that the next demand, call it x*, is greater than, say

Xjr ) , r -5 n. Among the n + 1 equally likely intervals created by the

ordered values of the size n sample, we are asking for x* to fall into

any one of n - r + I of them. Therefore

Pr{x* > x-I} - -r +1
n1l
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To apply this suppose we want a protection level of. 80 for an item

whose demand is known over the past nine quarters. Then we want the

probability of being out of stock to be no more than . 20. Our formula says

r > 10 - .20(10) = 8.

This means that stocking up to the level of the eighth ranked previous

demand reduces the probability of stockout to . 20. This used the second

highest previous demand.

To find that minimum sample size n for which x* need be only

larger than the second highest previous value at different protection levels

we offer the following table

Protection Level .060 1.70 .80 .85 .901 .95

Minimum n 3 4 1 6 9 12 19139

Related tables varying one or two of the three variables can be

constructed to magnify this elementary concept of protection.

I. Tests of Randomness,

Since all of our previous theory and technique depended on the random

selection or random occurrence of events or data, it sometimes is desirable

to test selected data for this property. Actually the following tests are

not capable of proving randomness exists if it does exist. They at best

indicate to what degree nonrandomness exists. It is important to realize

that each of these tests, even when they detect no nonrandomness, do not

assure randomness, Some will frequently not detect nonrandomness when

it is present. However, these tests are useful in avoiding faulty conclusions
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*1
because of incorrect assumptions and they can indicate the need for investi-

gation of factors systematically affecting obtained results, that is, they

can detect the presence of systematic variation.

Nonrandomness might be summed up by the following four character-

istics of observed data:

1. discontinuitie s,

2. trends,

3. cyclic or periodic movement,

4. extreme values.

Bear in mind that the first three of the above characteristics are

functions of the order in which the observed data, or the observed events

from which we get the data, occur. Except for extreme values, non-

randomness as characterized by any of the other three symptoms usually

can be made to disappear by a rearrangement.

1. Runs or sign test. Consider the following table giving three

different orders of the same number of heads as of tails, each from 20

tosses of a coin.

Table XVII

Toss Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Order I T T T T H H T T H T H T T H T H T T H T

Order2 1 T T H T T H T T H T T H T T H T T H T

Order 3 T T T T T T T H H H H H H T T T T T T
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The first series of heads and tails did occur randomly. The second and

third ones are rearrangements of the first one. The first one does not

appear unusual while the other two display some systematic effect. Now

it can' t be the number of heads since this is the same in each series.

It is the order which signals our attention. The second series is made

up entirely of sequences HTT. The third series is composed of a long

run of T' s followed by a long run of H' s followed by a long run of T s.

To get at this in a way more scientifically revealing that whikh we

noted above, let us examine such series for (1) length of a run of the same

event, (2) number of runs of different lengths.

The first series has one run of length 4 (tails), two runs of length 2

(tails), two runs of length 2 (heads), five runs of length 1 (heads), three

runs of length 1 (tails), or a total of thirteen runs. Note the shorter

length runs occurred more frequently than the longer length runs. On the

other hand the second series, obviously periodic, has more runs, fourteen,

but only two different ones and these are of lengths 1 (heads) and 2 (tils).

In the third series we have but three runs, each of great length. It

appears that increasing the number of runs tends to reduce the length of

runs and vice versa. Hence we seek a probabilistic description of both

at once.

Actually what we did with the runs is abstractly equivalent to what

we do with the signs of the differences of successive data. Hence it is a

sophisticated form of the use of signs. For, if in place of H' s and T' s
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we have twenty readings, then by taking the data in the order of its

occurrences and simply using the signs as follows:

sign (xz - x, ), sign (x 3 - xz), , sign (xn - Xn-l),

we consider the runs in (+)' s and (-)' s.

In general, if we have two different entities, type A and type B,

and if further we have in total m of type A and n of type B, then it can

be shown that in a series of length m + n if U = number of runs from the

rn of type A plus the number from the n of type B,

Pr {U 2V} V=
re+n)

m

Pr{U 2 Z+ I } )( Vmm nV

when the series is random. Extreme values for U, small ones indicating

a few long runs, large ones indicating many short runs, have low probability

and hence indicate possible nonrandomness.

a. Illustration 1. In 11 successive quarters demands for a

certain FSN appeared as follows

3, 7, 8, 10, 11, 13, 12, 11, 7, 6, 8.

We will assume they appeared randomly from a stable distribution. By

taking successive differences we find the sequence of signs is

consisting of three runs. Now how probable due to chance is the case of
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three or fewer runs in a sequence of 5 plus signs and 5 minus signs?

Well, the probability of at most three runs is

Pr{U 3} - Pr{U 3} + Pr{U 2}

since we cannot have less than two different runs. Hence, by taking

v = 1 in each of our previous formulae along with m n 5, we find

Pr{U5 1 0} 0 1OiI+~IO
(10) (10)

511

_ + 8 -. 0397
T5-2 25 2

So this supposed random sequence of de.ands has a property that

occurs due to chance only 4/ of the time. When this small number of

runs occurs, it is very likely viat some r.onrandom behavior is present.

We must remember, in order to us,- this method, to transform

our data into a sequence of events of two kinds. Commonly one designates

an element as above or below the median, thereby creating two classes.

This has the advantage of always making equal the number of elements

of each kind, i. e., we can always take m = n in our previous formulae.

If there are an odd number of elements, we drop the median. Miss Swed

and Dr. Eisenhart have given a table for this case, that is, for m = n.

A part of it follows in Table XVIII. The entries give the nurxibu z of runs

for a particular number of elements 2m = 2n such tbat the probability of

this number, of runs or less than (greater than) this number is a for a =

.05 and for. a .01.
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Table XVUI

Critical Values of U = Number of Runs

Lower Critical Upper Critical

a 0.05 a 0.01 a 0.05 a 0.01

.5 3 2 9 10

6 3 2 1 12

7 4 3 12 13

8 5 4 13 14

9 6 4 14 16

10 6 5 16 17

20 15 13 27 29

When m is large, theory tells us that we can use th- fact the run

distribution is nearly normal with expected value m + I and standard

deviation -

2. Mean square successive difference test. This test is more

powerful but not as quick and easy to apply as the tests in the former

section. The former tests were distribution-free whereas this one is not.

This test depends on a statistic whose distribution was discovered by

von Neumann. As happened so often with our classical distribution

functions, he assumed a normal distribution for his base population from

which the random samples come.

Here we must compute the average of the squares of the (n - 1)

successiv(z differences between successive elements in a random sample
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of size n. Now we can prove the expected value of this statistic, namely of

6n -
n-i

isZ 2 X regardless of the base population distribution. But the expected

value of the ordinary sample variance, namely of

2 r (x - X)z
S = n-i

Z
is T • Therefore we can say the ratioZ1x6

has expected value 2. Dr. von Neumann gave us the distribution function

for rI, and in 1942 Dr. Hart gave a table of its values. We repeat, as

has happened in so many other situations, Dr. von Neumann assumed

the sample came from a normal distribution. Table XIX is an abbreviated

form of Dr. Hart' s table.

Before we illustrate the use of -q in detecting nonrandomness in a

sample, we might get a feeling for its sensitivity to nonrandomness by

noticing how it might vary from the value of 2 in certain situations. For

example, when data has an upward trend, will increase much less

than s. So Tj would be less than 2. On the other hand, if the data rapidly

goes up and down, 6Z will increase proportionally greater than s?. Then

-q will be greater than 2.
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Table XIX

Critical Valuom for 1i

Sample Size Lower Critical Upper Critical
n a= 0.05 a= 0.01 a= 0.05 a a= 0.01

4 0. 78 0.63 3. 22 3.37

5 0.82 0.54 3.18 3.46

6 0.89 0.56 3.11 3.44

7 0.94 0.61 3.06 3.39

8 0.98 0.66 3.02 3.34

9 1. 02 0.71 2.98 3. 29

10 1.06 0.75 2.94 3.25

20 1. 30 1. 0't 2.70 2.96

a. Illustration 1. This illustration was first given by

C. A. Bennett of General Electric. He wished to show that the runs

test is not as powerful as the mean square successive differences test.

He gave the following results of measuring a standard sample in the

order of their analysis.

First let us compute q.
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Table XX

Sample Nr Result Difference Sample Nr Result Difference
i , xic- -c i xj Xi+l - Xi

1 83.50 0.13 11 84.40 0.10

2 83.63 0.53 12 84.50 0.38

3 84.16 -0.91 13 84.88 -0.34

4 83.25 0.11 14 84.54 0.16

5 83.36 0.90 15 84.70 0.10

6 84.26 -0.26 16 84.80 -0.56

7 84.00 0.61 17 84.24 -0.13

8 84.61 -0.15 18 84.11 0.41

9 84.46 -0.26 19 84.52 -0.38

10 84. 20 0.20 20 84.14
_ _ _..... _ _ _

Now

x= 1684.26 " = 141840,7214.

Hence

T(x, -x) 2 = 4.1341.

For n 20 we then find

Z 1 Z(x, - K) = 0. 2176.

Next

' zI= -L E(x,+4  - x,) 2 = 3.4664 0.1824
Sn-i 19
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Therefore

0.1824 = 0.838.
I - 0. 2176

Going back to Table XIX, we see that there are only two chances

in 100 of q] falling outside the interval (1. 04, 2.96) when n = 20. Hence

our computed value of q is significant of nonrandomness being present.

An examination of the original data indicates an upward trend.

Now let us use our earlier sign or runs test on this data. There

is a total of nine runs considering the runs above and below the median

of 84. 25. For n = 20 the expected number of runs is eleve-n and though

nine is smaller, it is not significantly small at the 5% level which is six

runs as can be seen from Table XVIII when m = n = 10. Therefore our runs

test does not detect the nonrandomness which the other test does detect.

There are other tests based on runs--the length of the longest run,

the distribution of runs, etc. No one test is best to detect nonrandomness

in all cases. For example, the test based on the number of runs may

not indicate nonrandomness while the test based on the longest run will.
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APPENDIX A. THEORY AND PRACTICE

We have spoken of the relation between probability and relative

frequency. It has been said that the gap between probability theory andt

practice is a difficult one to bridge. One bridge over the gap is "the law

of averages, " known in probability theory as the law of large numbers.

We can speak of it here since it refers to the situation in which there is

a sequence of independent events with fixed probability p. If a sequence

of n trials is made and the number of successes is Sn, the proportion

of successes in n trials is Sn/n. We ought to have some feeling that the

average Sn/n approaches the fixed probability p as the number of trials

gets larger and larger.

To this end let us consider the repeated tossing of an unbiased coin

and keeping tract of the proportion of heads. The law of large numbers

tells us that our hopes are not in vain; in some sense this proportion should

approach 1/2. Now we shouldn' t expect this proportion to suddenly become

exactly 1/2. So let' s take some small percentage of deviation, E, and

ask, for each number of trials n, what is the probability that the proportion

of heads differs from 1/2 by less than i. Specifically let e = 10%. Then

we have to find fo. each n the probability that the percentage of heads

lies between 40% and 60%. Now we need a probability measure of the set

of favorable sequences, i. e., those which will not deviate from 50% heads

by more than 10%. Our Binomial Law provides us with this. It says the
k n-k

probability of exactly k heads in a sequence of n tosses is nCk(. 5) (. 5 )
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A. sequence is tolerable if the number of heads k satisfies

Ik/n -.50 5 .10

If n = 5, then tolerab].e tosses have 2 or 3 heads since the ratios Z/5 = . 40

and 3/5 = . 60 are within the tolerance limits - they are the limits. On

the other hand a sequence with 0, 1, 4, or 5 heads is " out." The proba-

bility of a " tolerable" sequence is the sum of the terms in the Binomial

Law for those values of k for which k/n is " within limits. in the case

of n= 5 this says we must add the terms of the expansion (.50+ .50)'

for which k is 2 or 3, that is,

10(. 5 )z(. 5)3 + 10(. 5)'(. 5 )Z = .63

is the probability of an acceptable sequence of 5 tosses.

If you were to go on with this by taking larger values for n, keeping

= 10%, you would obtain among others the entries

n Number of Heads Acceptable Probability

5 2 or 3 .63

10 4, 5, or 6 .66

15 6, 7, 8, or 9 .70

20 8, 9, 10, 11, or 12 .74

100 40, ",60 .96

200 80, '', 120 .996

So we see the probability of acceptable sequences which deviate

from 50% heads by not more than 10% steadily increases as we toss the

coin more and more. However, note that ao matter how large n may

/
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become' the extreme cases of all heads or all tails and similar sequences

are still possible. For example, when n = Z00, they are included in the

.004 fraction of the sequences, the undesirable ones. They just are less

and less probable.
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