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ABSTRACT 

An engineering model is developed of the error contours encountered in 
position fixing using synchronous time of arrival data.   Normal distribution is 
emphasized.   Probabilities of fixes occurring within circles and ellipses are 
determined using the natural oblique coordinates associated with the measuring 
system.   Comparisons are made of three-observer and four-observer configurations. 
Examples are provided and applications are discussed. 
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I.     INTRODUCTION 

In general, any event generating a signal which is sharply defined in time, and 
which is propagated with known velocity to three or more fixed observers, has a 
spatial position which can be calculated.   Conversely, from the reception at a single 
point (observer) of three or more sharply defined time signals emanating from syn- 
chronized fixed stations, a spatial position can be determined (i.e., LORAN). 

The determination of the position fix is accomplished by communicating the 
synchronous time of arrival (TOA) data to some common point of intelligence where 
the lines of position and their intersection can be calculated. 

The accuracy of calculations is, in general, directly proportional to the sharpness 
of the time signature and the separation (in space) of the observers or the stations. 

There have been numerous treatments (references   1, 2, 3, 4, 5, 6, and 7) of 
the physical systems which provide measurements for calculating a position fix.   Most 
of these also discuss the mathematics of calculation of the fix, as well as the various 
error factors encountered and their causes.   Analyses of the impact of errors on the 
spatial fix geometry has, however, for the most part been treated as incidental to 
these other objectives. 

Therefore, this effort was undertaken in response to an apparent need for the 
derivation of a.model of the geometric analysis of errors.   The prime purpose was to 
make this model thorough enough to explain the various factors and parameters and 
provide derivations of all functions and quantities necessary for understanding and 
using such r model.   In the following description of the method of attack, most of the 
analyses and results obtained did not appear tc be available today, as indicated by 
research of the references and many other sinilar documents. 

Engineering s'mpltti nations are used for greater insight, provided the end results 
are not co-laminated by more than 5% error.   Following a review of the fundamentals, 
a new tool of error geometry resulting from a uniform or constant error density is 
furnished as a means of making comparisons with other density functions.   Calcula- 
tions and curves are provided for the Quasi-Circular Error Probability (QCEP) 
radius tor all values of probability in addition to the usual probable error of CK = 50%. 
Determination is made of the Elliptical Error Probability (EEP) ellipse in terms of 
the probability of error, ratio of (space to time) gradients of the base lines, and the 
standard deviation of spatial displacement per base line.   A comparison is then made 
of QCEP's and EEP's. 

Since both the QCEP and EEP analysis is performed for dependent (three observers) 
and independent (four observers) lines of position, a comparison shows that, contrary 
to intuition, the three observers emerge superior to four. 

Derivation and application of elliptical transforms from a rectangular to an 
oblique coordinate system is provided.   Probabilistic/geometrical aspects of inter- 
preting single data sets (versus the usual distribution of large samples) are discussed. 
There is, in effect, a correction factor, which is derived, for the true divergence of 
the oblique coordinate system about the fix point.   Examples are also given of applying 
this model including a possible deep space application. 

1/2 
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II.    FUNDAMENTALS 

The most fundamental tool involved is the locus of points of a given time difference, 
i. e., difference in distance from a fixed pair of observers.   This locus, as shown in 
Figure I, is a hyperbola. 

The mathematics Involved in this vital system component are quite simple.   S 
the propagation from point P to observers A and B is in a straight line at a velocity 
V, then, for a given hyperbola. 

). - DB = v(t. - t   ) = constant (1) 

where t A and tß are the respective times of arrival (TOA's) measured to the same 
(synchronous) reference, and the distances DA and Dß are also straight-line measure- 
ments. 

It is important to note, for the sake of generalization, that we are not restricted 
to any plane of action.   Drawing the two hyperbolas in the plane of the paper was 
purely arbitrary.   The total loci of points are the surfaces of revolution obtained by 
revolving the hyperbolas, as shown in Figure Z, around the line A-B as an axis.   IF 
we wish to confine our interest to any particular surface, which supposedly contains 
the position fix, we may limit the loci to those of the lines of Intersection of the 
particular surface and of the hyperboloid of revolution.   The major part of this report 
is limited to a plane representation of the earth, or space, aa such a particular 
surface. 

If the paths of propagation are not straight lines, but have known radii of curva- 
ture, the loci surfaces may still be defined and will, in general, be hyperbolic In 
nature.   For example, in the case of an assumed sphere such as the earth, the radius 
of curvature is the radius of the earth and the propagation paths are (assumed) great 
circles.   The hyperbolic surfaces will, accordingly, have to be modified.   In effect, 
they would be generated from a plane hyperbolic figure whose distances DA and Dß 
represent great circle arc distances instead of plane straight line distances. 

While the development of this concept might be of considerable future benefit, 
it is not an objective of this report.   Suffice it to say that the change in the difference 
of path lengths is not linear and is given by 

A(DA ~ DB) = R(ö1 - e2) - 2R(sin 6^2 - sin 9^2) (2) 

where 

R ~ radius of the earth 

6. and 6  represent the great circle distances of D / and D« 

aw»1"»1" «nsw» 
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Figure 1.   Fundamental Hyperbolic Geometry 



Figure 2.   Basic Error Geometry (Three Cbservera) 
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or, perhaps more simply, starting with the original hyperbolic lines, the constants 
of difference would be obtained from 

DA - DB = R(92 - öj)  = constant 0) 

It can be shown that these modified hyperbolic surfaces will Intersect the earth in 
such a manner as to form closed curves which are ellipses, if four observers form 
two base lines which are conjugates of each other.   The extension of such hyperbolas 
into ellipses   on a spherical surface has been noted by Dr. E. A. Lewis of AFCRL.1 

The various formulas which have been developed for the direct calculation of 
position from two or more pairs of time differences are quite complicated.   None of 
these appears to offer the accuracy required for most applications.   One of the most 
promising methods currently in use to obtain accuracy is:  obtain an approximation of 
position using a relatively simple formula, calculate or look up the time differences 
which would occur if this were the true fix, and then compare these time differences 
with the data sets.   The resulting so-called space/time error could be reduced to as 
small a value as desired by moving the position a small amount in an indicated direc- 
tion and continuing iterations indefinitely.   There is usually, however, a practical 
limit to the number of such iterations allowable. 

Unfortunately, the error encountered in this calculation is not the only or worst 
error.   K is the TOA measurement itself which is more fundamental. 

What are the error distributions and how do they affect system engineering and 
total system accuracy?   For a given timing error or timing error distribution, 
calculate geometrical areas which contain the measured point with a given probability. 

Figures 2 and 3 relate the basic elements of the geometry involved.   For a first 
order of accuracy and simplification of the model, it is assumed that we are dealing 
only with the plane surface representation of the total hyperbolic loci and that the 
propagations are straight lines in that plane. 

The observers are Ak B, C and A, B, C, D for the three- and four-observer 
configurations, respectively.   Also the lines AB, BC and AB, CD, respectively, are 
the base lines of the three- and tour-obaerver configurations. 

The dashed curves represent the hyperbolas of a constant difference of time (or 
distance) as measured by these observers, and selected to include the point P.   The 

E.A. Lewis, Gfjometry and First-Order Error Statistics for Three- and Four- 
Station Hyperbolic Fixes on a Spherical Earth, AFCRL-64-461, June 1964. 

I 
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Figure 3.   Basic Error Geometry (Four Observers) 
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aajTnptotes to these curves are represeaieo as the straight lines from the center cf 
each bf^e line through the point P. thus introducing a small, negligible error in the 
acgles, ^m, Q.   The exact construction of the asymptote is accomplished as follows: 

a. The base intercept of the hyperbola is obtained from 

2a = v frA ~ TB) (4) 

b. A semicircle is drawn about each base line as a diameter, i.e., AB, BC. 

c. A vertical line is erected from the base line :> *&5.at   a  to the semicircle 
(Figure 2). 

d. A line is drawn from the base line center to this vertical Intercept of the 
semicircle, and then extended out as the asymptote. 

Tne concept of the base line error, e, is that the quantity tA -13, will have 
errors ±At associated with it, also associated at the base line is a quantity, e, 
given by 

= vAt 
'2 

If, then, the asymptotes rms Bm and rn, ön have associated with them the errors 
Aöm, Ada which result from errors em and €a, the crosshatched area would repre- 
sent the area of uncertainty for given error limits.   The equal division   or statistical 
centering of A 0 about the true asymptotes   is implied only for the sake of deriving 
a correction factor (see Appendix K).   If Adm and A0n represented error limits, the 
crosshatched area would represent the area of uncertainty for those limits,   hi the 
sections to follow, except for one portion which actually deals with such a hard 
limited case, the size of 0, and hence A d, is assumed to follow a normal probability 
distribution.   Another assumption made is that, for purposes of engineering accuracy, 
the crosshatched area is a parallelogram bounded by four displaced hyperbolic LOP's 
(lines of position). 

In order to measure cr evaluate these LOP displacements, the oblique coordinate 
system m, n is established at right angles to rm and rn, respectively, since it is 
assumed the LOP's are parallel to the respective rm or rn. 

Comparing the use of this oblique coordinate system to the usual orthogonal, 
rectangular coordinate system is believed to be unique in that it appears to be the 
first time that the complete analysis has been performed on the natural coordinates 
of the system.   Secondly, it offers a certain advantage in eliminating the necessity 
for understanding, defining, and computing, variances, standard deviation, correla- 
tion coefficient, etc., required for the use of rectangular coordinates.   Tc be more 
analytic, assume that we are dealing with the rectangular coordinate system x, y 
such that for a true fix point and given LOP displacements, for example m and n, we 
would have, 

y = n 

x = m esc 0 + n cot Ö 



üiKJJl—.      -"'!—■' 

It then becomes necessary to establish a correlation coefficient between x and y.   First 
establish the variance in x and variance in y.   For the case of m and n, independent of 
each other, the situation is not too bad, with. 

a2 = a2 

y       u 

a2 = esc2 9 a2 + cot2 0 a 2 

x m n 

and correlation coefficient p^ given by 

which turns out to be 

COVec.y) _ E^y) - E(x) E<y) 
a a oa x y x y 

COT 0 o 
rxy 

Wcsc2 9 o2 + COT2 e o 2 
T m n 

.|j|PPfPMi 
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Haviag determined these fundsmental rectangular parameters, the next step of 
comparison would be to uilegrate the probability density expression 

1 

2»a a vi- 
x y 

cxp 

xy 

over the area of interest.   Setting the exponent equal to a constant, such as   C , 
results in the area being an ellipse with probability 

a  = i-e 

which agrees with the results obtained using the oblique system. 

At this point perhaps the most significant difference is in determining the size of 
the ellipses for a given probability; the most significant advantage of the rectangular 
coordinates is that examination of the equation of the ellipse can provide the orienta- 
tion and size of ellipse.   By comparison, using oblique coordinates, a differential 
max/min determination must be made to obtain the true spatial description of the 
ellipses. 

Referring to the rectangular parameters, when the quantities m and n are not 
independent (three observers), the determination of variance x and the resulting 
Pxy, are considerably more complicated, resulting in much more complex expressions 
for the ellipses. 

By comparison, measurement and analysis in the oblique system virtually 
eliminate the requirement for establishing these statistical parameters in the space 
domain.   Äs shown in this report, once the correlation factor of errors in the paireo 
time differences (Atn and Atm) is determined, and the density function, f (Atn, Atm), 
is known the conversion to the spatial representation follows without further statistical 
analysis. 

Before comparing the difficulties of determining a circular area which contains 
the point with a probability a, a Quasi-Circular Error Probability (QCEP) is defined. 
A circular area of radius, R, regardless of the coordinate system, oblique or other- 
wise, which contains the point in question with a probability a is determined.   This 
differs from the classical definition of CEP^ in two respects.   First, values of R for 
all values of a from 0 to 1 are obtained, rather than the special case of # = 0.5 only. 
Second, the variatea. whether x,y coordinates or m,n coordinates, are not equal nor 
does H=/m2+n2 ; hence, there may or may not be a Rayleigh function involved, so it 
is 50% probable that R exceeds 1.177 of some equivalent O .   Nonetheless, a joint 
probability function throughout a circle is Integrated avi the results are abbreviated 
QCEP.  

3 Reference Data for Radio Engineers, International Telephone and Telegraph 
Corporation, 4th Edition. 
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Contrai.7 to calculations of the QCEP in the oblique systeir (Af^endices C and D) 
complication rather than simplification results from utilizing a rectangular coordinate 
system. 

In tae case of four observers, the rectangular coordinate system requires a 
solution of 

a. 

where 

and 

f.' 
4a a Ji-P   2 

x y^    ^xy 

f4 = (A-3"),'2 4A 

n.   — 
2a a (i 

x y -^ 

D = 
pxy 

a a (l- 
x yl Pxy2) 

a   = 
y 

a n 

(T      = 
X 

Jcsc2 
6 a  2 

x   m + COT2 0 x a
2 
D 

COT ^x^n 
pxy 

VCSC2 0 a  2 + COT2 0a2 

x   m K   n 

11 
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whereas, in the oblique system, the calculation 

a  ~ — 

where 

2^/Swa 
J (»(vj -♦[v2])ejq> 

n   -R 

sind 

[■ä 
yl  = 

y2   = 

sin 9 

-   da cote  +yR2-n2) 

VTa 
(ncotö  -^R2.n2) 

m 

da 

For the case of three observers, the ratio of complexity of rectangular over 
oblique systems is considerably greater.   Both systems will add a term to the * 
functions, but for the rectangular coordinates there is, in effect, a correlation 
factor within a correlation factor, which modifies the parameters as follows 

a   = a 
y       n 

2 '222 ü     = esc- 6 a     + cot   0 a    + esc ö cot Ö a a x xm n xxnm 

I esc 6 no + cot2 0, a2 

&     ■   x   m n x   n 
xy 

a Wese   B a     + cot   B a    + esc Ö  cot ö cr  a nf xm xn x xmn 

whereas, for the oblique system, the functions are changed only by the addition of a 
minus n/Sz/i ün term. 

As shown in Appendix A, the angles which form the asymptotes to the hyperbolas 
are given by 

(5) 6    = 
n 

9    = m 

cos" 

cos" 

^B-V 
2C 

^A " tB) 

2C 
(6) 

For all points beyond a distance of one base line, these asymptotes are a very good 
approximation to the hyperbolas themselves, e.g.,      ,.'' 

r   and r    > 2C n m (?) 

12 
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If greater accuracy is required for fixes which are closer, either more precise 
formulas must be used   or   solution by construction can be performed.   The latter 
may be performed by referring to a preconstructsd system of hyperbolas, provided 
the incremental steps in time differences per hyperbola are fine enough.   Faren - 
thetically, and as a philosophic rationalization, it is stated that the utility of this 
model is proportional in some manner to the range.   That is, it is difficult to 
visualize applications where rn or rm are less than 2C.   One probably encounters 
such things as:  "I can see the guy with my naked eye, "or," If the person or the 
event is that close to home, who needs a system to measure its location? " 

When 9n and dm have- been determined, these and the crossing angle ox are 
related by 

ex = i8oo + en-(0 + em) (8) 

where 0 is the angle between the base lines.   Perhaps the simplest way to determine 
the distances rn and Tm is by construction on the plane representation of the base line 
system. 

If direct calculation is preferred, it may be obtained as follows: 

In Figure 4, since the line d joining the centers of the fixed base lines is iixed, 
the angles e and f are also fixed.   Then using the law of sines 

d 
iünr 

m 
sin (ISOT^TT       sin. {0   -e) m 

r     - d m 

sin (180-f-ö ) 

sind 

(9) 

(10) 

rn = d 

sin (0m-e) 

sind     > 
(11) 

These relations are equally applicable to either the case of three observers or four 
observers.   Thus we have performed either a calculation or graphical solution, or 
combination, for all the geometric variables associated with a given set of fix data 

Regarding accuracy in the use of plane geometry, using the spherical surface 
of the earth, either a scaled sphere or globe or a plane map projection of the earth 
may be used for the construction and measurement of the geometric factors.   The 
former is apt to be quite inconvenient.   Concerning the latter, if the map were 
distortionless, and straight lines drawn on the map were the true representation of 
great circle segments of the globe, then the base lines and asymptotes would be true, 
and the plane model would be v/ithout error. 

13 
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Figure 4.   Geometry of Angles Lavo'^ed 

Since a Larabert conformal conic projection contains a distance measurement 
maximum error of about 1% to 2% for the ranges of concern herein, and since we are 
for most cases utilizing the asymptotes as LOP's (lines of position), the errors 
should be negligible.   This is particularly true if the crossing angle, #x, is calculated 
directly in terms of Lat. -Long, and spherical angles.   An enabling factor is the axiom 
that the tangent to the hyperbola at the point P bisects the angle subtended by the base 
line, such as APB.   Thus, if we are seeking a statistical analysis for some assumed 
point, P, L is relatively simple to establish the angle, öi and 02 (see Figure 3) of 
the true hyperbolas and then obtain 

e  = 
X V £. + e. BD 

where, for three observers, öBD = 0 

14 
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The details and derivation of such quantities as n, m, ÖQ, 6m, R and Fare 
given in Appendix A.   As seen in Figure A-l, determination of these quantities is 
independent of the number of observers involved since we are dealing with only one 
given pair of readings at a time,   hi resume, the formulas for these quantities 
follow: 

n  =  T At    ; m =  T   At n      n mm 

T    - T 

sin2 9 

2       2 (m   + n   - 2mn cos 9 ) 

(12) 

(13) 

(14) 

where, in addition to the quantities previously defined,    Ata is the net timing error 
made by A and B after subtraction, and Atm is the error of 6 and C, or C and D. 

F is a time to space gradient whose value is given by 

r v n 
rn      2C sin S (15) 

0X is the crossing angle formed by the intersecting hyperbolas or their asymptotes. 

B is the distance in the oblique axis system m, n to any point P* from the origin P. 

C is the base line radius or one-half of the base line. 

This concludes the essential geometry of the fix system. 
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IK.  DISCUSSION OF UNIFORM PROBABILITY OF ERROR GEOMETRY 

The probability of committing an error of any magr -ude has not yet been 
mentioned.   Of the many possible distributions of errors, this discussion shall be 
limited to two: 

1. Equal or uniform probability, 
2. Normal distribution of error. 

The first case will be dealt with rather briefly.   While such a distribution may never 
occur, its analysis has academic value if for no other reason than to provide a 
comparison or check against results of the second case or, for that matter, any other 
distribution.   The details of this analysis are given in Appendix B.   The important 
result to be noted is that for given limits of error of   e   the radius of a circle which 
would contain one-half of all the measured fixes, i.e., the QCEP (quasi-circular 
error probability) is closely approximated by the following expressions: 

CASE 

2R < AS  < AS_ n m 

RADIUS R 

R =  €/C V 27r 

r r n m  
sin 6  sin 6   sin Ö x n m 

(16) 

AS   <2R<AS n m 

AS  < AS    < 2R n m 

fr/C  2  
'    4CSÜ10  sin 9 x n 

R  = 
/ ^~ 

2C¥ .    . 2 /,     . » 4 sin    f    an 4 sin* 0   sin2 9      sin2 0 x m n 

(17) 

(18) 

The QCEP, for the cos exp a = 50%, means that there it a 50% probability that 
any one particular calculation using data which contains errors will produce a point P 
which lies within this same circle.   It can be seen from Figures 2 and 3, and from the 
previous discussion, that there is nothing inherently natural aboi'* a circular area of 
fix points.   In fact: if a continuous smooth curve of equal error probability were re- 
quired to approximate this area, it would be inclined to be an ellipse.   The inherent 
benef t of elliptical contours will be seen in the second case of normal distribution 
of error.   Meanwhile, we are faced with a necessity of at least being able to compute 
QCEP's in order to be compatible with other systems which cause the event P to occur, 
where the probability of cause is inherently circular. 

Since the second case of a normally distributed probüsility of committing an 
error   e   is believed to be more representative of this system, it will be treated in 
considerably more detail.   One example of a component of timing which may depart 
from the normal distribution of variance is the velocity of propagation of the event. 
Actually, throughout this study, the velocity is assumed to be constant, i. e., given 
no distribution whatsoever.   However, if the magnitude of variance, with different 
paths, is significant, it is believed that its distribution is more apt to be Rayleigh 
than normal. 

17/18 
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IV.  DETERMINATION OF STANDARD DEVIATIONS OF LINES OF POSITION 
DISPLACEMENTS 

This section discusses the determination of Ota and Om, the standard deviations 
of the statistical displacements of P' as measured along the axes, n, m. 

The first step is to establish the probability density distribution of the timing 
errors for a pair of observer measurements.   This is done in Appendix E. 

The significant features are: 

If (7   = standard deviation of timing errors encountered at each observer 
station 

T A = exact true TOA at station A A 

TB = exact true TOA at station B 

The probability density function of timing errors at A and B are 
,.  .,   .2T 

fGjj) = 
i exp 

and the density function for the pair is 

1 

[• 
[■ 

^ - V 

f(x) = 
a /STF 
x 

exp 

2C2 

»B-TB>21 
2a2 J 

L ™2 J 

(19) 

C20) 

(21) 

where 

x   = % or 

M  =  TA-TB 

tB"tC 

or  TB " T( 

a   = -PLQ x 

This also defines the important quantity crx . 

For convenience and reduction of terms, th3 quantity M-X and the quantities AtD 

and Atm as used in Appendix A and elsewhere are the same.   Thus, to clarify and 
standardize nomenclature, the density functions for each pair are written 

^A-V  = 
cr /ST 
x 

exp 
r   A    2 **-m 

20 
x   J 

(22) 

19 
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or 

/   =  —r   exp 
ät 

f (tD - tc> 

Beferring again to Appendix A, and recalling that 

v r 

2a x J 

r =       p 
n      2C8in B 

(23) 

(24) 

therefore 

v r 
r =       m 

m     2C8in 6 
m 

(25) 

n     =   rnAt„ n     n 

m  = T At m    m 

(26) 

(27) 

v        K is «gain emphasized that this engineering simplification degrades rapidly in 
' accuracy as the distances rD and rm become less than 2C and/or as the angles % 

and 9m approach 0° or 180°. 

Consider the special value 

\ 

giving the special value 

At    =   a n x 

r a 
n  x 

(28) 

(29) 

Using standard notation for the normal density function for variations in the value of 
n gives 

Substitution gives 

f(n) 

f(oJ 

1 
exp 

2 I n 

2a 2J L       n -' an^ 
• 

i 
exp 

' r2a2 
n    x 

anm 2a2 

n 

(30) 

(31) 
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If üQ is Interpreted as that value of n which makes f (n) = 0.242/an , i. e., the one 
sigma value, then 

r2a 2  = a 2 (32) 
n    x n 

and we have the important relationships 

a    = T a 
n        n  x 

(33) 

a   = r   a 
m       m   x 

(34) 

A formula which gives a closer approximation for values of rn or rm < 2C is 
obtained from Dr. E. A. Lewis10 and B.W, Sitterly* 

a    = m 
TAB-V       . „ 
B. -B„ x 

2 sin 
JB 2 sin 

BA-BB 
(33 a) 

:\ 

where 

"TAB is ^e standard deviation of the errors in time-difference measurement 
made by stations A and B, " and is therefore equivalent to ax .   BA and Bß are the 

^'^"Vespective bearings of the lines AP and BP measured with respect to the true north 
vector at P.   Thus BA - Bß is the base line angle APB subtended at P. 

In fact, if we consider the earth spherical and can measure BA and 
BJJ more readily and/or accuratsly than r and 6 , this computation of am and on 
where 

a    = n 

a  v x 

2 sin 
Br - B^ (34a) 

may be preferred to the gradient rn/m for 

a ,     = a  T , n/m        x   n/m 

used in this study. 

Loran, MIT Radiation Laboratory Series, Vol 4, McGraw-Hill, New York, 1947. 
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A more general proof ot the validity of this concept foilov/s.   Using the probability 
theorem that if 

we have 

or 

v « f(u) 

P(v)  = P^|i| 

n  = f(Atn) 

n  = T At 
n     n 

(35) 

At    =  ^(n)  = JJ- 
xn 

(36) 

hence 

^n - Hi (3V) 

but 

dn        r 
d2S n a 

so 

and, if 

p(At )  =  exp 
n       a Vlir [-är" 

P(At ) = 

^ n    ny 

-   exp 
r At a       n 

20 
n     J 

\ 

P(A^  = 
*   (V1^ 

exp 
At 

2a 2/r2 
n '   n J 

a 
T   - -i 

(38) 

(39) 
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t    ■;■-:-■       =- 

thia becomes the identity 

p(At ) 5 — 
At 

20 
m 

By syinme*ry 
a 

a   =    ™ 
x      ^ 

(41) 

Another relationship which introduces the important parameter, ß , is 

Further 

a r a r n 
a 

_   n  x n    -a 
m m(Tx m 

v r - ' 
n 

r 2c sin B r   sine 
n n n        m 
^ m r    sind 

2c sin 8 m          a 

<42) 

(43) 

m 
K 

If g and h are the vertical components of rn and rm onto the ba^6 lines and if 
rn — rm t*1611 ^0' a quick approximation 

E 

m 

r n 

m 
(44) 

This approximation is valid for the geometry of both the three and four observers, and 
should complete the basic model of the system probability/geometry. 
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V.    DETERMINATION OF QUASI-CIRCULAR ERROR PROBABILITY FOR THE CASE 
OF FOUR OBSERVERS 

From Figure8 2aüd3, calculate -he probability that a given Bet of time measure- 
ments will result in a fix which is displaced from its true position P to P1.    P' is 
measured in the oblique coordinate system m, n as the distance to the vertical 
projections of P' on n and m.   This   is also representative of the displacements of 
the hyperbolic LOP's from the true LOP's. 

At this point the QCEP analysis must separate into t^o branches; as will be 
shown, there is significant difference between the probabilities, and hence radii, 
for the case of fou^ versus three observers. 

The case of four observers is treated first because of the simplification that the 
paired differences of time readings are independent of each other, whereas such is 
not the case for three observatious. 

If p(n) and p(m) represent the respective probabilities of displacements of mag- 
nitude n and m, and if the environment and readings of A and B are entire!yr independ- 
ent of C and D, then 

f(n,m) = f(n) xf(m) (45) 

Also, for normal probability density distribution, we may utilize from standard 
probability notation, tb.- following: 

f(n) 
a S2n n 

f(m)  - 
a  /25r m 

exp 

exp 

2a 

m 

20 m 

(46) 

(47) 

I 

i 

or. 

f(n,m) = - a a   2Tr n   m 
exp 

2 2 
n      +    m 

12a 2      2a  2 

n m / j 

The asaociated probabilities for incremental regions An and Am then become 

pfn)   = —-— exp i-'^^-rriAn 

p(m) 

1               r    n2l  — exp     -rr 
anm l2ani 

1               [      m2]  —  exp T\ 

(48) 

(49) 

(50) 
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Consider now the region A (which shall become a circle) and all the various combina- 
tions of unique points n, m and their probabilities of occurrence.   Since these are 
mutually exclusive events, the total (collectively exhaustive) probability for the 
region A Is given by 

a = 2   X fW xf<m> AmAn <5i) 
m    n 

or, by well-known use of the Integral calculus for the continuous case, 

For the special (QCSP) case of the region A bounded by a circle of radius R 

R   f2W      r      2   T r        2 

-al 'dmdn 
2ff   " I (52) m J ^   ' 

0 = "2» a ^iLr^]"^]^   ™ 
where 

fjOa) = n cc« 9   - y?-n2 sin 6 

f0(n) = n cos fi  +VR2-n2 sin ö « x    * X 

A close approximation for small values of R sin d* was found to be 

2 
"   . .      .\        \     l 

a = 

(54) 

(55) 

i^-   /[f (nH (n)]|expr-^l + expj-i-^ 
n  m _R    ^ (       L   2aTn J L 2am  J J 

(56) 

exp s-     dn 

A more exact expression developed in Appendix C, which is good for all d   up to the 
practical limit of 90°, is given by x 

a  =     -J—      n*,^)-* (JC)] exp   --^     dx (57) 

26 



^•here 

♦,w = *|^LL eccote+Zi-x2). 
(VTK 

*2« = *|^i- (xcote 2 1/^ 
-7r7)j 

(58) 

(59) 

ard the symmetry of results is such that solutlor^ can be nuide in terms of that 
variable whose standard deviation is the greater.   Tb^ tabulated results follow. 

TABLE! 

NOTATION AND VALUES OF &>CEP VAJEUABLES 

If 

n      m 
a   > a 

m      n     i 

X    = n/R m/R         i 

ß = a /a 
n   m Van 

K = »B2/» ^           1 
Figure 5 represents the results of the use of these equations to determine the 

circle R versus the required probability, a .   Hie line drawn through the curves at 
a = 50% gives the required values of R, in terms of on or cmt for the speclr1 QCEP 
equivalency case. 

Note that ß, ÖQ, and &x appear related in some complex manner.   If this is true, 
one of the parameters   ß or 9X  could possibly be eliminated thereby reducing the 
number of curves necessary to describe the system under these conditions.   The 
fact, however, that ß and 0X are not entirely independent of each other  does not in- 
validate their use as parameters.   Values for these curves wore computed on the 
CDC 1604B computer.   Both formulas were used for small values of R sin Ö with 
very good result comparison.   To obtain values of the error functions for *i and *2. 
a program was successfully written based on the infinite series given in Jahnke and 
Emde which resulted in good cr better accuracy than the values in their table. 

27 

t ■    | vt**«* mmmmm 



.000» 
joo^-, 

K and  QCEP RADIUS R 

SAMPLE   SCALE   FOR R 

Figure 5(a).   QCEP Radii Versus Probability a for the Case of Four Observers 
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Figure 5(b).   QCEP Radii Versus Probability a for the Case of Four Observers 
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K and  QCEP    RADIUS- R 

Figure 5(0).   QCEP Radii Versus Probability a for the Case of Four Observers 
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F%ure 5(d).   QCEP RadU Versus Probability ot for the Case of Four Observers 
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VI. DETERMINATION OF THE QCEP FOR THE CASE OF THREE OBSERVERS 

Compere the case of four observers vith that oi the three observers in Figure 2 
where, in effect, observers Bland D are merged into one.   The slioation with respect 
to the independence of pairs of time differences is now changed; they are no longer 
independent.   In terms of a Coefficient of correlation, or correlation factor, consider 
two theoretical extremes to help visualize the situation.   First consider B to be 
errorless, with all of the Gaussian distributed errors committed at A and C.   This 
would again represent an independent situation or one of zero correlation factor. 
Next consider A and C to be errorless, and assume all of the errors to be committed 
by B.   This would represent a one-to-one dependency with a correlation factor of 
one.   The fact that the three observers create errors with equal distribution makes 
the actual correlation coefficient of 0.5 seem intuitively feasible.   The proof of 
p = 0.5 is given in Appendix J. 

Also from Appendix J (Equation J-32), the joint probability density function in 
the time domain is given by 

f(ATN, ATM) = -^— exp 
cr    ffva 
x 

-2/3 
ATN2+ATM2-ATMATN 

T m 

For comparison in the space domain with the case of four observers, make the 
following conversion.   If increntv ats in the space domain are related to increments 
in the time domain by a constant, then 

f(n,m)dA8 = f(Atn, Atffi)dAt 

where dAs and dAt are the respective two-dimensional increments, 
referred to are: 

"he constants 

Then 

ATN = n 
i dATN 

dn 

ATM- 
m 

> dATM 
dm 

a   = 
X 

a 
n r 
n 

a 
m 

dA 
s 

= dndm 

dA    = dATj^dAT M 
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£3d by substitution into Equation (60): 

r r 
f(n.ro)dAa =      P   S 

n   rr. 

exp 
/     2 

♦ n    x 

m am 

r 2a2   r   r a2 
m    x        n      m   x 

ilis.   ds. 
m 

or 

f(n,m) = 

n   m 

exp 
/    2 2 2 f n m        nm_ 

3L2 n2' a a \o Of n   m n        m 

(61) 

is the probability density function in the space domain, comparable to equation (48) 
for the case of four observers.   Further, in comparison, the results of Appendix D are 
as follows: 

a  - 
2ß. 

i       +1 r   2 1 1        /KW-^Wjexp  --£-_ 
ÜTK        .i 2 L  2K(rJ 

dx (62) 

However, 
sin 6 

*1(x)  = 
V372 

sin Ö 

1 Jzl2K 

m a    r r 
—^-(xcot e+y (x cot 0 +V1 - x4) 

2ß/372KJ 

l[(x cot e-yi-x ) 
2ß/372K 

(63) 

(64) 

and the symmetry prevails such that the conditions and values of Table I apply directly 
tc this analysis. 

Figure 6 presents the results of these equations to determine the oircle R versus 
the required probability Q- . 

Referring to the curves of both Figures 5 and 6, the abscissae are K and as 
where (Ts represents crj^ if OjJOx^ > 1 and also represents an if o-^/a^ > i, provided 
either ratio is equal to the value of the ß for the curves. 
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Figure 6(c).   QCEP Radii Versus Probability a for the Case of Three Observers 
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Figure 6(d).   QCEP Radii Versus Probability a for the Case of Three Obaervers 
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VII. COMPARiSON OF RESULTS OF FOUR OBSERVERS WITH THREE OBSERVERS 

A comparison will now be made of three to four observers I    If the cor- 
responding ß curves of probability for four observers are placed on top of the curves 
for three observers, there is a nearly constant shift of the former to the left or to 
greater radii.   Table II gives a spectrum sampling and comparison of values through- 
out the systems of curves.   A fairly constant ratio of R4/R3 is obtained for a given ß 
The averages decrease with Increased ß with some indication of approaching 1.0 
as ß—*- *> .    No effort was made to deduce or prove this theory. 

TABLE II 

COMPARISON OF QCEP RADII FOR THREE AND FOUR OBSERVERS 

QCEP RADIUS RATIO 

Four Three 
ß e 

X 
Observers Observers VR3 Average      | 

1° 52. 38.8 1.3 
2° 26.4 20.0 1.32 

1 4° 13.4 9.75 1.37 1.32 
8° 6.86 5.00 1,37 

16° 3.56 2.65 1.34 
32° 1.8 1.58 1.20 

1° 83.6 67.8 1.23 
2° 41.8 33.2 1.2S 

2 4° 21.4 16.7 1.28 1.25         ! 
8° 10.8 8.50 1.27 

16° 5.48 4.36 1.26 
32° 2.93 2.49 1.18 

1° ■»»—•» —,«._•_ _»_» 
2° 54.8 50.0 1.10 

3 4° 29.2 25.3 1.15 1.13         j 
8° 14.65 12.8 1.14 

16° 7.22 6.48 1.12 
32° 4.0 3.54 1.12 

1°     

2° >><»■>« — — _u tmmmm 

4 4° 39.1 35.4 1.10 
8° 20.0 17.6 1.14 1.12 

16° 10.0 8.85 I          1'13 

32° 5.25 4.75 i      1.10 

1° 
nO 

5 4° *-— — «■ »»0» _a»_a* 

8° 24.7 22.1 1          1.12 
16° 12.4 i           11-2 1.10 i         1.11         1 
32° 6.5 5.9 1.10 
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VIII. COMPARISON OF QCEP's TO THE UNIFORM PROBABILITY OF ERROR 

Another interesting comparison results with reference to Equations (16), (17), 
and (18).   While these referred to a somewhat academic situation of uniform or equal 
probability of error magnitude, the following analysis indicates that these formulas 
may have more value than passing academic interest. 

Since in Equations (16), (17), and (18) the value of e is indeterminate, or at least 
somewhat arbitrary, a very feasible value to assign would be that derived from a 
timing error equal to the standard deviation of Gaussian timing errors.   Thus, 
assuming 

e = v(yx (65) 

immediately forms a common bond between the two systems of measure.     To continue 
this translation in Equation (16) 

v a     / r   r n   m 
'27r sin y  sin ö    sin ö 

n m x 

i. v r v r 
FiCT ^Cstoö   axX2C8toö   ffx 

(66) 
x n n 

V f 2. a r a r a TT sin ö    m   x   n  x 
x 

R ^rair CTman (67) 

Also, using 

a     = ß a 
m      r   n 

nf TT 
M inrlR <*,<%] (68) 

Similarly, translation of Equation (17) gives 
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and for Equation (18) 

H ßl 
2aixi   6 

+ 4    fa <a   < Rl 
m (70) 

These formulas are also adjusted to the condition, a requirement for consistency, that, 

a   >a 
m -   n 

Doing this makes it possible to look up QCEP's from Figures 5 and 6 for the same 
Ox and ß as used in the above equations.   This was done for the set of points öx, ß 
given in Table in.   Since reading the curves of Figure 5(f) and Figure 6(f) above 32° 
results in significant Inaccuracies and since formulas (16), (17), and (18) incorporate 
approximations, the final tabulated results should be viewed with a grain of salt. 
However, looking at the ratio of QCEP's of three Gaussian observers to the hard 
limited equal probability error makers (RSG/RU) there is a strong indication that for 
rapid calculation the use of 

R 3G 1.3 R 

would give figures within 10% error.   Ru would have to be calculated in accordance 
with Equations (68), (69), and (70).   Another relationship resulting from the above 
substitutions is 

AS   - 2 a 
n n 

AS 
m 

2 a m 

The criteria for the use of Equations (68), (6S), or (70) have been added in terms of 
an and om as shown. 
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TABLE ID 

COMPARISON OF QCSP HADU FOR GAUSSIAN AND 
UNIFORM ERROR DISTRIBUTION 

Ru 

QCEP RADIUS (C   = I Ml.) 

Gaussian RG RATIO 

Four Three 
e 

X ß Uniform Observer Observer Equation R3G/RU 

2° 1 14.3   mi. 27.5 19.5 70 1.36 
8° 1 3.7   mi. 6.8 5.0 70 1.35 

40° 1 . 99 mi. 1.6 1.38 68 1.38 
64° 1 . 84 mi. 1.15 1.14 68 l,v>6 
2° 3 43.0   mi. 57.0 51.0 70 .. 19 
8° 3 10.7   mi. 15.4 13.0 70 1.22 

40° 3 2.3  mi. 3.4 3.0 69 1.28 
64° 3 1,67 ml. 2.5 2.32 69 1.40 
2° 5 71.5   mi. 95.0 94.5 70 1.32 
8° 5 18.1   mi. 24,5 22.3 70 1.23 

40° 5 3.9   mi. 5.3 5.0 69 1.28 
64° 5 2.78 mi. i            4.0 3.76 69 1.35 
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EX.   AN EXAMPLE OF QCEP RADIUS DETERMINATION 

The following example is provided to lie some of these things together in an 
application.   Assume an electromagnetic phenomenon as the system medium. 
Further assumptions: 

1. The base lines = 200 miles -- 2C 

2. L.B =   130° (Fig. 5) 

3. ^e   =   25° (Fig. 5) 

4. /.f   =  25° (Fig. 5) 

5. A's clock reads 3.29459025 sec. 

6. B's clock reads 3. 2968855 sec. 

7. C's cloc-c reads 3.29337755 sec. 

The first calculation is to obtain the line, d, connecting base line centers 

c IHil . loo sln 5o0 
181.1 miles sin e sin 25° 

Next using Equations (5) and (6), the angles ön and 9m are determined as follows; 

t, tp    =   901.7 usec. 

tB - tc    =   311.0 usec. 

Q cos 

v =  velocity of light   -  0.186 x 10 

^A -1 tB) 
2C 

cos 
1 0. 186 x 106 x 902 x io"6 

200 

Ö    -   cos-1 0.8386   =   33° n 

6    = cos' 
m 

^B - ^ 
2C cos 

-1 0.186 x io6 X3ii x io"6 

200 

Ö     =   cos"1 0.2588   =   75° 
m 

Then, from Equation (8) 

0,   =   180°+ 33° - (130° + 75°) 
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Equations (10) and (ii) give   ^ 

r    = m 

vrt 

d sin (9    - e) 

sln^ 

181.1 sin 500 

sin 8° 

d sin (ön + f) 

sine 
X 

181.1 sin 58° 

- =  1000 miles 

sin 8 o 1107 miles 

From Equations (24) and (25) 

v r r = a_ 
n       2C sin 

F    .  0.186X10   xiooo   ^   1<706xl06milesper^CODd 
n 200 sin 33° 

v r 
r   = m 

m      "2C sin & m 

r    =  0,
o

1
ft

8
A

6 X
4
1107 -   1.065 > io8 miles per second m 200 sin 

As a final supposition, assume that statistical data available supports a figure of 
a= 0.7C7 microsecond per observer, 

or 

then 

a    = v'li a =  1 usec. per pair 

cr    = F    O    =1.706 miles n n    x 

a   - T   a    =  i.065 miles m m   x 
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And the last gyslem parameter ß Is 

r 
m 

1.708 
1,065 =   1.603 

If the;! we wish to determine the QCEP for three observers for a = 0.5, reading 
from Figure 6(f) by interpolating between ß = 1 and /3 - 2 we get 

R =   /"Soa 7.07 a     = 
s m 

R = 7. 53 miles 

7.07 x j.065 

as the radus of the circle which contains the true point of emission with a probability 
of 0. 5. 

To summarize, if we are given the fix position computed from a data set of time 
differences and can calculate the system standard deviations (an, Cm\ and crossing 
angle   öx, the formulas given heretofore or the set curves of Figures 5 and 6 can be 
utilized to obtain the size of the circle of error for any given probability of error. 
Conversely, If one is speculating about a particular clrc-e, the probability of a true 
fix being within that circle can also be read from these   arves.   While sufficient data 
has not yet been analyzed to establish practical limits, it Is believed that for 

10° < 6   and Ö    < 170° 
n m 

r   and r    > 2C n m 

This proceso will not result in errors greater than 5% in the calculation of er/ors. 

■ 
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DETERMINATION OF THE ELLIPTICAL ERROR PROBABILITY SURFACE 
FOR FOUR OBSERVERS 

To continue with the analysis of error distribution, we will analyze the proba- 
'ilitles associated with areas bounded by ai? ellipse.   Since, as shown in Appendix F, 

an ellipse has been found tor which all points on the ellipse represent an equal 
probabülty density of fix error, this figure may be very Important to systems applica- 
tions.   In Appendix F the complete development of the time domain to space domain 
transformation is given.   As in the case of the QCEP, we will deal first with a four- 
rbserver system.   The significant results are: 

1.    Given the circle which considers the probability of making timing errors 
of magnitude, 

AT   "+ &T m n 
^ 2        „2 (71) 

whijh results in the spatial ellipse 

n m 

a2l2r2      2 r x   \   n m 

(72) 

where 

vr n 
n 

m    r 

n 

m 

m 

by 
The probability of a fix being anywhere on or within this ellipse Is given 

2 2 
a   : who-   //**? A n   m 

n m 

? 12a 2      2 a 
n m 

dmdn 

a 1-e -\
c 

(73) 

where 

\T a 
(74) 
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For example, for the "natural ellipse" 

X  =  1 , s2 2 <J 

and 

a 1-e"1 =  63.22% 

As a more geueral example, to find th* elliptical constants for a given probability 
of error for the following case 

0     = 
X 

1 usec 

CB = 100 miles 

r    = 
n 1000 miles 

r    ~ 
m 1107 miles 

e  = 33° 

e   = 
m 75° 

a 0.5 

results in the same rn, rm as in the previous example, i. e,, 

,6 T   =   1.706 x 10 n 

F    =   1. 065 x io 
m 

6 

As shown in Appendix E, the general elliptical equation is given by 

i  I n  m 

\2a 2r2     2(T2r 2 

x    n x     m 

In terms of thß major, minor axis concept, if 

a2 

b2 

-2X2a2r2 

x    n 

= 2X2 a 2 r 2 

x     m 

\ -/logT1:. 

= 1 (75) 

a. 
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giving 

'Vi^iS 0.834 

The ellipse would be 

n jm 

b 
=   1 

with 

a  -   0.834 x 1.434 x io"6 x i, 706 x 106 = 2. 012 miles 

b   =  0.834 x 1.414 x io'6 x i. 065 x io6 = 1.256 miles 

and the ellipse becomes 

m 

(2.012)        (1.256) 

These are the parameters of a coaformal ellipse drawn to orthogonal axea.   To see 
the true spatial ellipse however, either a graphic projection onto the oblique axes will 
have to be performed or mathematical analysis using a, b, and öx to obtain an a' , b' 
and axes shift angle rp . 

This section is devoted to a complete analysis and discussion of the true spatial 
ellipse as it exists on the true axes, m and n. The details of this analysis are given 
in Appendix H with significant reeults factored out here. 

Figure 7 is presented as a . example of a graphical analysis, 
elliptical appearance, it was decided to assume a 

To emphasise the 

r n r m 
of 2 

rather than carry through the previous numerical example„   The assumed ellipse 
plotted on the orthogonal set n, z is 

m =  1 

Graphic transformation to the oblique axis set n, m is then performed as shown for 
the sample point, o.   The Jtz values of z are both used to show the two resulting 
transformed points, o'.   The transformation is accomplished by projecting o onto z, 
then equilaterally from z onto m, thus making rn equal to the z value, then perpendicu- 
larly down from m until it intersects the n value of o which is also a perpendicular 
drop from the n axis.   While this solution was no", performed with any great accuracy, 

i 
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'. 

Figure 7.   Transform of an EU^se from Ortbogonal to Oblique Axes 
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it is intended to display the signtficance and concept of the true ellipse on the oblique 
axes, and to provide approximate confirmation to the analytic equations.   Measure- 
ments show the transformed major and minor axes to be approximately 

a»  -  7.3 

b1 = i. ;i 

with an axis shift of approximately 

* =  60° 

If we then let x and y represent the axes which contain a' and b' , we have the 
quantitavive relationship 

2 2 2 2 
+ i _  =   _^_   + _£_^  =    1 

(7.2)2      (1.85)2       (af)2       f)')2 

This then represents a complete descriptinn of a particular elliptical contour of 
constant probability.   It can be made at» accurate as the measurements of data 
(At, F) and graphical solution will allow. 

The inconvenience, if not inaccuracy, of this method strongly Indicated that a 
complete analytical solutioi would certainly be well worthwhile.   The results of tne 
analysis given in Appendix H are the following set of transforms from the orthogonal 
to the true oblique axes. 

n2 

Max/Min " gin2 
x 
MT^^T^Tir^l 

where 
(76) 

l-b2/a2     =  a/b-b/a 
Üb/a cos 0 2~cös B 

X X 

Vl X (7  T 
x   n 

VTX a  T x   m 

Thus when    a > b 

Max    2 sin 
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Min 

snd when b > a 

1        i„2/      f.       1   \.K2/1,   f.       r~\    2abco8 e] (78) 

^    2^1 

R^ Min 

<80) 

Assoctetion of the quantities RMax» RMin^ a', and b' with the axes x and y is 
somewhat arbitrary.   In general with m and n oriented as shown in Figure 7, there 
will be an axis of transformation which lies in the quadrant defined by n and its 
orthogonal LOP,  If we call this the x axis, then it will be the major axis regardless 
of whether a was longer or shorter than b, and the value of Rmax would be applied 
to tills asd«; this x aids will always lie on oi between the LOP's.   Perhaps the previous 
formula would carry more general significance if It were worded 

2 2 

15   ■    R"^ 
"Max Mln 

(81) 

The angle of shift ^ of the pseudomajor axis to the true major axis is given by 
2i 

cos   »//   = 
(82) 

-ifaYl+--A_ \+b2 A ._JL_\ .Zaba OS 0 

2 

which can also be written for a > b) 

sin2 e 

COS    l^   = 
ra 

i^A      1    ^AXTIIZVgb/acose 
If      l+x2    a2 \     If      l-bc2  /    ^"T 

(83) 
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and for b > a 

2 , 
^eH-^ 

cos   ty - 
2 /       r— 

(84) 

whereas in terms of the major axis transform 

cos   \}/ - 

i+yi 
]-hc 

2 
(85) 

2 (Major Axis Xforro) 
Figure 8 presents a few of the curves for these functions. The curves are pre- 
sented mostly to get a feel for the positioning of the axes of the true ellipse. 
The number of curves calculated and number of points per curve are not consid- 
ered adequate in this report for good engineering accuracy. The equations are 
accurate, however. 

As with most all special cases where certain results are invitingly ob- 
vious, it is interesting to note, as proven in Appendix H, that when 0   » 90°, 
i.e., the true ellipse and the original ellipse are one and the same.,    solu- 
tion of the above equation gives ^ =» o0.    This result corroborates that no 
shift is necessary. 

Also derived in Appendix H are transformation formulas for the major and minor 
axes. If R'Max is considered the transformed, or major axis value, then R'Max <*» 
be determined readily from 

'R' Max ^Max) 
R Max 2 sin   Ö \-f^^-<fi) 

| 2b/a cos g 

/ Hx ! 

(77a) 

where a > b.   This is a major axis transformadou formula.   For b > a we consider 
b and b' ^he major axes, and 

^Ma-P 
2 kin5 0 iSl'-iRSHflS) 2a/b cos 0 

/ Hx 

(79a) 
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Y 

90 f 

«0 

eo 

40 

e' 90* 

a/b or b/o>i 

Figure 8.   Major Axis Shift (Four Observers) 

Similarly, the minor axis transformation is given by a > b 

•"W 1 

~V~" 2 sin2 9 

or, for b > a 

"".../ 1 

a2 2 sin2 9 

^(■V^H^)-^! (78a) 

1 + f^-V^)- 27aL£Qs g 

1+x 
(80a) 
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Figures 8, 10 present some of these curves of major and minor axes transformation. 
The transformed minor axis values approach 1 as a limit, Ue., the ellipse neve 
gets any wider than its original value.   The transformed major axis values, however, 
apprüach(a or b^sln 9X as their limit, meaning that as the crossing angle vanishes. 
the true spatial error ellipse becomes infinitely elongated.   The choice of rhsclssa 
value wes purely arbitrary, and whichever ratio was greater than one was selected. 
It is noted that for a/b, or ß, greater than 5, th3 transforms are virtually at their 
limits.   In fact, (a or b^sin 0X Is a good approximation for ^ > 2 . 

a • »o» 
i.o 

o.s 

e 
g 

0.6 

0.4 

0.2- 

a/b or b/a >\ 

Figure 9.   Minor Axis Transforms (Four Obaervera) 
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20 

ce 10 

2 3 
a/b?i  or  b/o»! 

Figure 10.   Major Axis Transforms (Four observers) 
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XI,   DETERMINATION OF THE EEP SURFACE FOR THREE OBSERVERS 

Derivation of the true ellipse transforms for three observers appears in 
Appendix 1, with the following results.   The general lormula for the major and 
minor axis is 

sin2 B 

2 .2 
3 b 

4 ab 

and the transforms are obtained from 

2lC08üx 
(86) 

f ■ M^f^YA'f^¥Hk'fi)k*fti) CCS d 

(87) 

depending on the relative sizes of a and b in accordance with the following table: 

FORMULA for 

COB 6 

(88) 

If XFMaxis XFMlnis 

a>b R/a (87) R/b (88) 

b>a R/b (88) R/a (37) 

| and J are given by 

I 
(2-2gcos^-ff 

3(a2/b2-2|co8öV 

(2 ~ 2b/a cos 0x - h
2/J\ 

al/Va2 r^ cos öY 
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The rotation of the major axLe, from it« pseudo to true position is given by 

[b>a] 

&**~imm 

XI? Max [a>b] 

(89) 

(90) 

whers in Equation (89);// is mrasured fro:n the m axis and in Equation (90) t// is 
measured fron the n axis. 

Ccntrary tc the case of four observers where the resolved major axis always lies 
between the LüF's, the three observers case results in a resolved major axis which 
will, for the most part, lie outside the region defined by the LOr**:.   The only 
exception to this is when 

i< ß<2COB e 

9  <60u 

x 

Thlc suggests, depending on the cost of a fifth observer, chat a üve»observer system 
rrilght produce an Intersection of ellipses such that the area of uncertainty is plgnlfi- 
ca Jtlv reduced. 

Determination of the values of a and b requires a derivation similar to the case 
of four observers.   In Appendix G the relationship between the size of the (concentric) 
ellipse and the probability of containment Is given by 

a = l-e -S
2 

(91) 

Since this formula and Equation (73) are numerically the same for given values of X 
or S, Figure 11 is presented a« a quick reference of related values. 

The CDC 1604B computer was again utilized to obtain the sample curves of 
Figures 12 and 13 showing the transform values as a function of a/b or ß .   Compari- 
son of these figures with Figure 1-2 shows that for 6 < 60° the maxima of the minor 
axis transforms ard the minima of the major axis transforms coincide with the 
maxima for the curves of Figure 1-2.   Further, the contours of the minor axis trans- 
forms follow the contour of the quantity 

V^ T or 
i+r        '    i+r 

whiche'/er contains the quantity a/b or b/a greatei ihan unity. 
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Figure 11.   Probability vs. Concentric Ratio Factor of Ellipses 
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Figure 13.   Major Axis Transforms (Three Observers) 

As in the case of four observers, the curves in Figures 12 and 13 are not sufficient 
to provtde general engineering calculations, although they are reasonably accurate for 
the values of 0K chosenv 
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Xu.   COMPARISON OF EEP SURFACES FOR FOUT. VERSUS THREE OBSERVERS 

The subject comparison Is not quite as straightforward as that of QCEP.   To 
equate the iv/o evstems, the followlj^ s^rcach was vaken.   Given the acceptable 
unt-ertatoty or ^y-criaablllty Of we have 

r~ 

This determines the time- or space-limited configuration 

(92) 

AT   2 + AT 2 

m n_ 

2a2 

AT.,2 +ATT
2 -AT    AT, M M      N 

3/2 

or, 

2 2 m     J    n 

2CT  2     2a 2 

m n 

4 OBS 

M 

3 OBS 

+ — N2 MN 

4 OBS 
3/2 CT 

2    vv a2     3/2 a   a 
m r m   n 3 DBS (93) 

where upper case (M, N) is ust^ to distinguish values from m,n and which in terms 
of the nontransformed ellipses is, 

2 2 m_ .  n 
.2 2 
b. su 

where 

M2   L N2 

v  2         2 
4    ^3       a3 

MN 

"b3a3 
=   1 

3 

a4 = ^ X a^ 

\-nx VA 

a3^ 3/2 sa 

(94) 

b„  - /372 S a d m.» 
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To recall the fwmetrlc elgaiflc«nce of this wc have 

T^refore, t^, as In the case of the QCEP, it is assumed that the systems are such 
that on an avjrage or median, or a«> other basis 

Then 

(7 r 
m4 _    tn4 

Ö' . f . 
n4 i34 \  -  0 

m3 

n3 

m3 

n3 
= 13. 

b4 JT 

3/2 
=   1.13 (95) 

This advantage for türee observers is not the final conclusion since tne fin?.i trans- 
formed axis vdues r .: the conclusive factors.   To derive equal ß'a the ratio desired 
is 

Major Axis (3 OBS) 
Major Axis (4 OBS) 

XF Max. 

1.15   XF Max. (96) 

Minor Axis (3 OBSV 1 XF Minn 

Minor Axis (4 OBS)        1.15   XF Min, (97) 

Figure 14 gives the results of such a ratio comparison for two values of 0X ^oo and 
90 ).   Jt can be shown that these curves do a fllp-fiop at the critical angle of 9% = 60°. 
It is again claimed that in systemfe ^plications the greatest concern is for 0» < 60° 
as covering the majority of practical cases.   Further, it la the elongation of the 
major axis which is the worat offender of, or produces the most damaging effect in 
finding eomething or somebody.   Thus, speaking of curves A and E, whüe the ellipse 
for three observers is a little fatter than for four, the major airis shows a considerable 
improvement for three observers. 
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Figure 14.   Comparison of Ellipses for Three and Four Ctserwrs 

Returning to the example used lor QCEP, 

a 
n = 1.706 miles 

a m 
s 1.065 miles 

ß = 1.603 

e 
X 

= 8° 

and for threo observers 

R    =7.53 n.Ües c 
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We now wish to d»t«rmia€ the elUpae for a - 0.5 ia «rd«r fttt ulrect eomparlgons 
can be made with QCEP.   From Equation (?2) 

8 * V^iS * ^ 834 

tad 

& «  ZsTiSa    • /äTi" 0.8M xi.706  =  1.74 mües 

b  « \/372 S a    • /372 f.834 x 1.065  « 1.09 mües 
ID 

Then for the major axis of the true ellipse 

and for the minor axis 

giviBg 

max max 

Rmln = bXFmin = LO^LH 

P«,«» =  iZ.S miles max 

^min s 1*24 mile8 

For which, as discussed below 

1.24<7.53< 12.5 

or 

R   .  <R <R min       c       max 

Thus we have a complete engineering description of the true spatial elliptical codtour 
of a constant error probability.   The position of the point P in question with respect 
to the,system base line gives rise to the an, crm and öx of the system, and the desired 
reliability of measurements, a , gives rise to the peeudo-elllptical quar^ties a and b. 
From these, the true ellipse of the probability a , the position of its major and minor 
axes, the lvalues of these axes, and, if we wish, a complete sketch or plot of any 
desired ellipse can be described. 

TheH is a somewhat crude yet interesting link between the QCEP and EEP which 
may be valuable for making system estimates.   Observing Figure 15, it is apparent 
that ther# is a circle of radius R and an ellipse of major axis Rmax ^Q minor axle 
Rmln» which by virtue erf their respective areas of consideration will produce the 
same probability of fix. 



Figure 15.   An EEP/QCEP Linkage 

Thus we have the linkage 

R   ,   <H   <R min       c       max (93) 

Since it is believed that the elliptical constants are more meaningful and more readily 
calculated than the circle» if the EEP is known, the circle R with the same probability 
can be estimated from the above limits.   Actually, if one wished to pursue this further, 
a much closer (weighted) estimate could be developed such as 

where 

R   - kR c max 

max 

min 

Sitterly. in "LORAN" (see rei..on p.21) has proposed for the QCEP case, when 
converted to the notation of this mode, that 

0.775 a     / -, 
[a <"   1 1 n      mJ 
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Xm. CONSIDERATION OF UTILIZING A SINGLE SET OF DATA 

As a closiag observation on this model, & was felt that a converse situation 
concerning the use of a single data set should be discussed briefly. 

Figure 16,   Effect of a Single Data Set and Ellipse Correction 

Consider Figure 16.   We have established a model which enables us to calculate 
that a signal originating at the Point P will be locRted by the s/atem within or on the 
a = X ellipse with a probability of X.   Or, succinctly, i! ias signal (or experiment) 
were repeated from P, say a million tim^s, then 500,000 of the measured points 
would be within the ellipse a = 0.5. 

Suppose we are faced with a converse situation.   The system receives a particiar 
signal, and, with errors, locates it at Pj,   If it Is important to describe an area which 
will contain the true point P with a certain probability, « , what shall we do?  Since 
we presumably have no other Information available, the   first impulse is to treat Pj 
as a true point and construct» in the manner of this study, the ellipse for a = X as 
indicated in Figure 16.   Another rationalization for this is that (a priori) it is just 
as likely that we have committed errors in one direction as in another, or there 
would appear to be no bias error. 
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TIMSS sqppoAe aaolubtr one of thet« 500,000 point« appears to be at Pg.   This may 
be oontidsred in eqolly probable situatioa because the probability density function on 
the periphery of the a " X ell^se 1ü a coastaat.   Agtiin, we wish to describe the area 
which will ooutain P with a probability of a e X, and proceed as for Pi .   Hote that 
ti» ellipse about Pg actually contains the trje point while the ellipse about Pi does not. 
Is this a paradox? 

One possible answer would be to search for all possible true points P whose 
ellipse« would contain Pi as one of its (assume 500,000) measured points.  A sample 
scattering of such true points or ellipse centers is shown.   The outer limit of such 
d gathering would be the egg-shaped curve (shown dotted).   This curve, it is suggested, 
comes more nearly describing the (converse) areas based on one ggggig measure- 
msot (Pi) which would contain the true point P with probability a .   Similarly th© 
ncimal a = X ell^ee about Po would be weighted by Joining centers of ellipses which 
otnuin Pg as a peripheral point. 

The mechanics for establishing this type of an inverse function and performing 
its solixtlon are beyond the scope ol this study.   Suffice it to give one word of caution 
againel proceeding along the lines of a singular, discrete, point solution.   It must be 
remembered that the probability of getting precisely the point Pi, given P, is an 
Inlinitesimally small number which becomes zero when ihe point Pi consumes zero 
dimensions.   Thus a discussion or calculation of the conditional probability, p (Pi/P), 
appears to be meaningless.   Likewise, given a measurement Pi, calculating the 
probability p (P/Pi) that a particular P is a true point   is equally meaningless. 
Hence we are apparently igbbed of an opportunity to analyse such expressions as, 

P (P. . P) p «V* ~ -^r 
P (P. P.) 

p (P/P.) = -    J v PC^) 

or to apply Bayes or any other theorem.   Even if we did not have this handicap, there 
is no a posteriori knowledge of the distribution of p(P) or p(Pj) unless some sort of 
specific <say, target) information were available. 

Fortunately the modifying or egg-shaping factor (if this be the answer to such a 
requirement) is a relatively small percentage of the major axis of the ellipse. 
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XIV. DIVERGENCE FACTOR OF THE TRUE OBLIQUE COORDINATE SYSTEM 

Another  and perhflps more plausible explanation  lies in the basic premise 
or in simpItficaUou of the m. Jel.   As pointed out in Appendix A Equation (A-12)= 

v r    At 
_ _       m    m 
m " 2c sind n 

The errors encountered in m, n are n"t (within limits prescribed for rjn, ör:, rn, ÖQ) 
the cause of this so-celled paradox.   Further, the elliptical relationship (for three 
observers, Equation (G-SO), Appendix G) 

m mn 

3/2 a 2   3/2 a2    3/2a a 
m n n   m 

=  S2 

using such calculations of m, n, is perfectly valid.   However, this approximation is 
apparently overshadowing another assumption about which very little has been said. 
The grid work for the coordinates of Appendix I, Equation (LA), (1-2), Figure 1-1, 
etc., assumes uniform parallel lines which are directed by the LOP's or direction 
of the hyperbolas at the assumed true point. 

As Figure 17 shows, the coordinate grid systems derived from actual conditions 
of At>n and Atn do not contain this ideal uniiormity.   Introduction of a true or non- 
constant grid about point P, i. e,, one whic^ follows the LOP's or hyperbolas about 
P causes a variation of 6X „   Looking at Figure 17, the significant change in the 
mechanics of finding R Is that the true R Is PP" whereas the model in using 9Xi m, and 
n derive?} PP*.   In terms of formulas then, PP" is 

R2   = 4 [ (m1)2 + (n1)2 - Zm'n' cos ö' 1 
* at X sin   9 

(89) 

Determination of the elliptical transformß therefore requires finding the maximum 
and minimum of 

dm'      Mm ' n '   x ^ (100) 

where 

^   = 0(m', n') 

As an (engineering) alternative to this complex problem, it is suggested that ihe 
following procediue will give a very good approximation of the true major axis values. 
It can be shown (Appendix K) for a given true point P and displaced LOP's that the 
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Figure 17.   Compartean of Assumed and True Oblique Coordinate Systems 
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polata P', P,f, P, etc., til lie <» a straight liae.   The correction factors of the 
original major axis ate given by (see Figure K-l), 

Ö 
c/a = |j^ 

x 

Q 

d/c = / 

d/a -/ 

where c Is the major axle value obtained from application of the transforms, and a 
and d are as shown below. 

Finally, as per Appendix K, this becomes 

c/a 

d/e 

d/a - 

ZAP     +    iA 
m 0  -^ +m 

x    r     r 
n     m 

d 
X 

X 

X 

e . n - ra 
x    r      r 

n      m 

0  +
a   + m 

^      m 
0   .n _ m 

n      m 

where n and m are the required coordinate values for Umax-   The chaiige in the 
nr inor axis value will not be significant. 

This modification or correction factor i«, of course, applicable to the basic model 
irrespective of the so-called converse probletr, i.e., it is applicable to the area about 
the true point P. 
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XV. DISCUSSION OF SYSTEMS APPUCAHOM WITH A DEEP SPACE FIXING EXAMPLE 

While another book could be vrittea on the applicfttion» of thii basic 
»oäel, cooments here vill be limited to iotroductory general obseryations. 

With regard to the number of observers (stations) to be employed« the cost of 
a fourth obseirer must be weighed agaiMsi the improvement in crossing angle (öx). 
Included in the cost factor Is the problem of ocmmunicattng data from the four 
observers over greater distances, and the inherent: reaction in accuracy of four 
versus three observers for base lines of equal or similar length.   The Fand hence t/ 
factors will not, as a rule, decKmstrate any significant differences over a given area 
of concern. 

The phenomenology at the transmission of the signaftire of the event, whether 
longitudinal (seismic) ortransv«rse(light, sound, heat, radio, etc.) requires only 
that the velocity be known and that it be either a constant or vary with the path in a 
manner which is known. 

One example of a sound or loogitudinal wave application is the SOFÄP, system 
which locates shrrp disturbances, such as the boilers exploring of a ship sinking in 
the sea.   Standard deviation values of o were on the order of 1.0 to 4,0 seconds 
depending on the ranges trader consideration (up to 2,500 miles) with accuracy on 
the order of one sqaare mile. 

The time resolution or sharpness of the sfgnature of the event, as stated before 
hus direct bearing on the accuracy, e. g., At, cr, aad ax, of the system.   la a refined 
model attention must be paid to these quantities varying as a function of rarge.   The 
state of the art in generating snd/or measuring particular amplitude/time or 
frequency/time characteristics has improved tremendously over f 3 last two to three 
decades.   In the realm of electromagnetic disturbances, systems have been developed 
which obtain a cr on the nrder of one microsecond. 

Th?; signature musi be recognized and distinguished from other (Sateattaaal or 
Otherwiae) similar signals.   This challenge Is certainly not peculiar to positio»- 
fixhig sjfstems. 

The observers must use timing devices which are precisely synchronized with 
each other or which have Imown time displacements with respect to each other. 
Deviations from such conditions are charged directly to o^ and At.  With the develop- 
ment of atomic clocks with drifts of 1 par^ in 10^, it is possible even without syn- 
chi'onizing communications, to stay within % of 1.0 jüsec. 

Communications must be available to transmit timing data to a common point of 
intelligence. This must be done reliably and fast enough to keep qp with the average 
rate of occurrence of events. 

As an ultimate in application, this model places as in a position to make direct 
comparisons with position-fixing systems, such as tracking space vehicles oi 
missiler.   These apparently utilize a single station radar D/F-ing principle to 
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r-oajtifeetlru wi& raüi&täikm correlation tenantquss.   it 1« the belief of the «tuthor 
fest TOA 83W*»m« will isltlmfit^ly replacs soaia P/F systems wltii an ordsr of magni- 
t»^a imPttfzm*-» ^ mmnzy.  Tise Afx Foroe today has systems which show TOA 
te be dsllBifsly t&r ,  n t& D/F. 

As «a «stan^pld, «^poss we wishfrd to reach out into deep space and measure 
tmm eftrih die poditk)^ of a «pace »hip such as Mariner where accuracy in extremely 
important.   Suppose fuither that we have implemented the following synchronous 
syitetn of focr s&^Uites where 1 and 2 are in the eqia. -pial plane and A and B are in 

The four coaxial states of existence which occur overy alx hours are 

Bf       ^ 

I 
(0000) 
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If each station is acting as aa analog relay with tnuistt time to earth known to within 
0.1 micros eccnd, the four ot&iions shown repreaent an orthogoriily oriented three- 
oimensional measuring system.   GeomvArical factors for one of these states might 
appear as, 

Assume, roughly, a mige of 1 million miles and a very oonHervative estimate of 
10 microseconds for c*.   If we settle for an tmcertaiaty factor of 5C%, we have the 
following parameters 

2C - 23,000 mfles 

a - 10 x 10-6 

a = 50% 

rn 
at rm =  iO6 

Obviously, &m a^d 0^ would depend up<m the relative orientation of the system to the 
ship.   Howevej, angles of 600 and 113° are fatr representations.   To estimate the 
error magnitude in the plane of 1-A-ship 

r     r 0.186 x 10q * 10°       ,n1 1    e* 1        =   ——— -—     at  10 
n      m 23 x 10   x 0.366 

and 

a <* a    = 10 x io"6 x l(«7 = 100 miles 
n      m 

ß   =  1 

83 



:H 
Since ^x Is ft critical p& ■ameter, a close estimate is obtained by 

9    =   ?3fQ00^8000)sln60" ^^^ 

106 

o. S    =  lü30 

Lockig vsp R for tha QCEP on Figure 8(f) gives 

R = 25.5 a    = 25.5 x 100 = 2,550 mÜes 
3 

The elliptical conateüts in tMs plane were determined in conjunction with the 
trrasforms as 

R major = 3,150 miles 

R minor =  100 miles 

To compare with the following crude yet fundamental D/F system assume antenna 

rLYING 
OBJECT 

deviations from the irue line of propagation are of Gaussian probability density 
that a standard deviation of 0.1° is representative, or 

«« - 0.1° 

From this point on we can readily equate the two systems to the same model by 

an " cr0ra
= 0.00175 * io6 = ;,.75; 103 miles 

a    = a s* r  = 0.00175 x 106 = 1.75 x 10° mi'es m        r  m 

with a crossing angle of 

&    = Mo» != 28 minutes 
x        106 
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Since the function of antenna A should be completely independent of antenna B, this 
system is similar to a four-observer TOA system; as a best estimate from the curves 
in Figure 5(f) for the plane of A-B-Shlp, theQCEP is given by 

300 a =  1,74 x io3 x 300 = 5.25 x io5 miles 

This figure seems unbelievable at first glance, like looking in front of our noses for 
the traveler.   However, when we examine the facts that #x is less than 0.5 degree 
and that the beam uncertainty la <J0 - 0,1°, a total collinear error of 1.0 million 
miles (2R) has some meaning. 

If a correction cf the collinear error value of R between the earth and the ship 
is effected in accordance with determinatkm of 6y   (see Appendix K),we obtain a 
value of 

A0 
6   = 
y 

R'  = 

m 
A9 

+ _^.=0.5O + 0.5O =  1.5° 

1750. 
2 tan 0/2 

1750. = 88,000 miles 0.0262 

finally, if we wish to correct the major axle of th« TOA ellipse, as per Appendix K 

a/c = 

d/c = 

e 
—zrr 
x      2 

A0 

0.0282 

m 

Ad 
m 

T 

0.02G2 +2 xiig 

0.0262 - 0.00012 

=  0.995 

0.Ü262 

d/c =   1.005 

Thus we have observed an improvement in accuracy of approximately two to three 
orders of magnitude.   How much better this approach would be than today's refined 
space tracking D/F systems which may superimpose radar •■•aoge or integrated CW 
type of data, the author has not had sufficient information to determine.   There is 
also the additional factor that atmospheric refraction rrrors affect the D/F astenaas 
but do not affect the TOA system. 
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APPENDIX A 

MATHEMATICS OF BASIC GEOMETRIC ELEMENTS 

This appendix 1B concerned with providing derivations of some of the more minor 
relationships used thsooghout the study. 

1.    Discussion of 

m = T   £t m    zn (A-l) 

In Figure A-l, C is the radius of the circle and rm the distance OP.   m is the devia- 
tion of the m üxis or m coordinate of the displacement of the trie point P due to an 
error Ad.   a is the base line intercept of the hyperbola through P.   An error in the 
time difference of observations at A and B results in the base line error ot e . 

m is precisely given by 

m = r    tan AS 
m (A-2) 

For A 6 < i  we can write with negligible error 

tan A6 = ^L 
(A-3) 

Then 

m  - r m C CA-4) 

In order to get ef in terms of € another engineering approximation is made, with very 
small error, that 

T =   9 
m (A-5) 

Then 

C (A-6) 

and 

ef = eC (A.7) 

hence 

m = r 
r   e m 

m E      TTilnF 
m 

(A-8) 
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Figure A-l,   Geometry of Determinism m or n 

Retumii^ to the hyperbolic algebra, If ATm is the net timing error made by A and B 
after subtraction, then 

2^) = v(rA»TB+Atm) (A-9) 

88 



Also, for perfect time readings 

2a = V^A - TB> (A~10) 

Subtracting Eqaatk>n (A~10) from Equation (A-9) gives 

€  = 1 At 2      m 
(A-ll) 

Again substituting 
r    v At 

m       m m - äciEir 
m 

iA-12) 

If we choose to call 
T     V m 

m      2C sin 8 m 

(A-13) 

the final result is 

m = T   At 
m    m 

(A-14) 

The accuracy of Equation (A-5) and hence Equation <A-12) dissolves rapidly for 
Va<10ooröir/n>170O. 

2.    To obtain 

6     = cos -i 
2C 

(A-15) 

As discussed in the text of tills study, it may be necessary to determine @m and ^n as 
closely as possible to either approximate a fix or analyze the error characteristics of 
a potential fix point.   In the latter case, Bm and ^ would most likely be geographically 
measured.   In the case of the former, we would be working with a given set of time 
measurements.   In Figure A-l 

cos $ 
m a/c {A-16) 

From the hyperbolic algebra 

2a = v ̂ A-V (A-17) 

thus 

9     - cos m 
-1 **A " ^ 

■~2Ü~™- 
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Since tA sad tß are «abject to the errors dieciesed elsewhere, the true pictere is 
gtvenby 

S.    To show 

B2 • —y— (m2 + n2 - 2am oo« B^ 
«In* Ö 

(A.19) 

Tfeia dertvaöoB doe« not oecegaarlly s^jly to the general problem of evaluating a 
pofett P its aa otdSqa© axis system.   It may be ooasldered a special case of an affine 
öradÄfoTTsattos in ^rhich the LOP dl^lacemeota from the true LOP's y and z are 
defined to be parallel to y and %. 

From Figure A-2 the general equatlon for the value of m is 

m = m   + a sin c o x {A-20) 

Further ft can be seen that 

and 

m    = n cos Ö o x 

m = n cos B  + z sin Ö 
X X 

(A-21) 

Solving for z 
m - a oos Ö 

(A-22) 

Also from Figure A-2 

R2  =a
2
+z2 CA-23) 

but from Equation <A-22) 

2 ~— (m2-2mn oos S   + a2 cos2 B ) 
ein2 B 

sad, substituting in Equation (A~23) 

R2  = -_1— iß2 gin2 $  +mZ +n2 cos2 B~2mn cos B )  (A-24) 
„i-4 a * ax sin" 6 x 

9:': 
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Figure A-2.   Geometry of Determfajlng R 

or, fiimliy 

R2  =       l       (m2 + n2 - 2nm cos 0J 
sin2 9 

(A-25) 
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APPEND11 B 

QCEP CALCULATIONS FOE UNIFORM ERBO» pmiBABILTTY EÖTRIBüTJON 

Tills is an aealyjis of areas since the prdssbility of a fix occun-ißg in a g.-ven 
area is directly proportional to thai area.   Figoxes B-l, B-2, and B-3 illustrate the 
three possible cases.   Quantitatively stated these are: 

CASE I    2R< AS <AS 
S     OS 

CASE 11   AS < 2R < AS n      m 

CASE m   AS <Ag <2R n   m 
The difficulty ia this analysis lies in fcrmulating that portion of the (QCEP) circle 

which lies within the error quadrangle» 

Case I is tiie simplest siac^ all of the circle is contained witMa the quadrr^le. 
Assuming ASQ < As^ for the ar$s of the cpsidrangle 

AS  AS n     m 
sin^ (B-l) 

For the circle 

Than for a QCEP of 5( 

-  VIC 

A-   '^   1/2 A« (B-2) 

,   AS   AS 

2     sin B^ (B-3) 

Solving for R 

R f 2f i 

AS n (B-4) 

Since 

assume 

where 

AS  <AS n -     m 

AS    = yAS 

= 1 

syr^ 
27 sin 9 V (B-5) 
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Fteure B-l.   OCEP Circle - Case 1 

Figure B-2.   QCEP Circle    Case n 

Figure B~3.   QCEP Circle - Case TLl 
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But £ ince we have the requirement 

AS 

the result, Is the re<j»iirement 

V^v11 
(B-6) 

or 

^ ^'/2 

Tu is resulta li. the limits 

{ r ^  1 and 
0>3S'35I 

y<i.57 

90° 

Returning to Equation (B-4) and from Appennix A 

3y substiiution 

For Case ü 

V, € 

^i - riAei= üitaF, 
i 

R " ^27r sin F X C sin 
         ^      m 
süTtT ' C sin (T* 

x n m 

R^V 2Flin 9  sin ö  aia ET" 
x        n        m 

AS  <2R<ASw 

A2«2RASn = ^ 

AS   AS 

n      2 sin ^ 

AS 
■D  - m R " TsTTT 

A 

(B-7) 

(B-«) 

(8-9) 

(E 

ß-11) 

(B-12) 
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CASE m 

R  = 4C sia ?  Bin d x n 
(B-13) 

AS  < ^S«, < 2R n m 

This is ai interest because It embrftces crossiog augles of less than 39° which Is 
geoerally an area of fix points with range on the order of 1.8 bace lines and beyond. 

As observed is Figure B-3, a close approximation to the enclosed area is given 
by the area contained in the rectangle 

As *i 4E2-^2 
Q 

ß-14) 

or 

and since A2 =  -s- 

h -tejm*^ '-AS,0 

n 

 5 5"      AS  AS 
4RZ - AS 2   -  ^-4-^ n 2 sin a (B-15) 

Solving for R 

»4V 
By äubstltutioa via Equation (B-8) 

I    A-   ' AS 
 i*L_+AS 'd 

4 Bin   6 n 

e   J 'in' n 
T 

4 sin   Ö   sin'5 0 ain   0 x m u 

(B-16) 

(3-17) 
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APPFNDK C 

QCEP DEPJVATIONS FOR A NORMAL PP.OBABILITY DISTRIBUTION OF 
ERRORS FOR FOUR OBSERVERS 

As stated in the text, the probability of a point P' lying within a circle of 
radius R is given by 

a  = Zu a v 
n  m 

J    I ^ 
20 

n    J 

exp 
m 

m J dmdn (C-l) 

where A is the circle of radius R.   'Jn and ff^ are system standard deviations as 
defined elsewhere. 

The Immediate problem in performing the indicated double integration is that we 
are not dealing with orthogonal axes in which one variable can be held constant at some 
known value while summation is performed throughout the range of the other variable. 
In order to utilize this accepted method of performing double integration one of the 
variables must be reduced to a component which is orthogonal to the oth^r variable. 

In Figure C-l assume the circle R provided tne desired probability a and let z 
be an axis at right angles to n .   Asy point p on a line parallel to z will have a 
constant value of n, such as 

ü - 
^ 

It v/as shown in Appendix A that the relationship between the quantities n, m, ard 
Ö   is given by 

m = n cos ö   + ^ s:ta 9 
x x 

If this substitution Is made for m in Equation (A-l) and n Is chosen as some 
constant value, e.g., UK, then variations in m become a function of variations in z 
alone, which in turn satisfies the OTthogoaal requirement for integration, i. e. 

m = nT. cos 6   + z sin 9 
K x J 

(C-2) 

and 

dm = dz sin 9 (C~S) 

Substituting in Equation (C-l) gives 

1 
a 21! G  a 

n  m 
/ /   exp 

A 20! 
s-   exp 

2 
-{a^ cos 9   + z sin 0 ) 

20 m 

dndx sin B 
x 

(C-4) 

S? 



Figure C-l.   Elements of QCEP Geometry 

It can be aeen further from Figure C-l thst the limits of integration are 

-R<IlK< + R 

- /B--^
2
 < z < + /R2.nK

2 

Since we are now performing the Integration first with respect to z and then wif,n 
respect to n, the subscript K can be dropped. 

a 
sin 6 

R   +7?^? 
2Tt 

n  u e-       r 
O^OT" j j   f-y- n   m   «R    .TR^In2 

exp ~n 

2a 
exp -to cos 0 + z sin ^) 

m 

dz dn 
(C-5) 
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For verification purposes it is convenient to rewrite the last term AS 

j -aln^ötocotÖ+z)2 

exp 

L 2a 
m 

and 

a = 2ir a m n -RT?^? 
exp -n 

2a_ 
ezp ' 2 

2a m 

dz da   (C-6) 

To prove the correctness of this analysis, It is necessary that for an infinite circle 
ail possibilities are covered and 

a =  1 

But Equation (C-6) becomes 

sin 9 a  = zn a 
.      r    r        \-n2 

—  J    J  exP 
n   m —"o  -« 2a 

n 

exp [ -sin2 e(n cot 6 + z)2 

L 2a 
m 

dz an = 1      (C-7) 

Since these two int^rations are to be performed independently, In any order, 
and since it is easily shown that 

2ff 
-n 

1? dn = 1 

it Is also necessary that 

sin 6 r —..__ j    exp 
VÜTf a _oc m 

-sin2 0 (n cot g -t- z)2 

2a 2 " 
IE 

dz = 1 

To check, let 

2 2 v    = (n cot Ö + z) 

d-   = dz 

when 

(C-6) 

(C-9) 

z  = « ,   v = " 

and Equation (C-9) becomes 

sine 
SO 

_0(S / sin-e m m 
2a m 

m 



Tfcus "he necessary ocaditlkm la met, 

Another way off stattsg this proposition, which is more general than Equation (C-6), 
Is to oonskfer that every N^, m its shown in Figure C-l) traverses the values from 
Mi to M«, asd to step from the idea of an orthogonal component to erne of summing 
all the probabilities associated with combinationfi of mj by n^ as m^ goes from Mj to 
M2, I.e. 

a = 
W%0m 

R    M2 

I I ' 
J-             -1 r 

2 2 
-n -m 

2 exp 2 
20 * 2a Ä 

n L   ^ J 

s-   dndm (C-10) 

wh^re 

Mj = fj^) = i^ coe 0X - z sin Öx 

M2 = f20i) = ^ COB fix + z sin ex 

or fdrqppk« the subscript) 

f1<n) = n cos öx ys7 sind 

f2W 

and 

n cos 6 

R 

+ /~R2.n2 sin 9 

a = 27r 
f2(n) 

n  m -R      f,(n) 

"-n2 

exp -m2 

2%2 m 

dmdn   (C-ll) 

which Is the formula quoted in the text. 

Since this concept deals with the well-known Error Function or Fehleriategral 
for which there is no antiderivative, and since from a system aspect we may be 
dealing with small values of ^ It is desirable from an engineering standpoint to try 
to reduce this to a single integral even if only for limited 90Editions.   One way of 
performing such an approximation is to consider the integration of f(m) first, e.g. 

t   = 
TTn Q 

f 
t2m 

exp 
fjCa) 

-m 

2a 
m 

dm (C-12) 

Referring to the normsl probability curve of Figure C~2, the values of f i(n) and 
fyfa) are represented as Mj and M2.   Since performing Equation (C~12) is equivalent 
to finding the prescribed area under this curve, | Is equivalent to the shaded area 
between Mj and M2.   This «urea can be >approximated in various ways such as per- 
forming a series expansion about the point (Mg + Mi)/2.   ThiSthowever, tends to 
complicate the situation.   Therefore, it was decided that for small values of R sin 6X 

100 



Figure C-2.   A Normal Distribution Merpretation 

a reasonable approximation is obtained by assuming the straight line between p{Mi) 
and p(M2).    The area Is then the rectangle 

r    2 -V (Mg-M^exp 
2a 

L    m J 

plus the area of the triangle 

- (M2 - Mj) I exp 
-M, 

L2V J 
- e^) 

-M„ 

2a. m   J i 

\ 

I 
and Equation (C-12) becomes 

|   = g^or      (M -M ) e^) 
m 

-M, 1.. 
2a 

L   n   J 

+ 2<M2"M1) *exp ■Ml -exp "M2 

2a 
m j 

)! 

Expanding and collecting terms 

-M, 

m   j 

+ exp 
-M, 21\ 

a j / 
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MbttiMOag into EcpAiioz (C-ll) and replacing M 

B 
a 

2* ^«^ n   tn 
/ if^-fjCn)!     exp 

-R I 

\-t*m 
+ exp -f22<»> 1 

L     m   J 

which is tbe formula quoted in the text. 

The limitiag value of R uln ^ is somewhat arbitrary.   It can be seen from 
Figure« C-l and C-2 that the worst er?or is committed in the region of m = 0 for 
here 

Mg - Mj « 2R sin d 

If it is desired to bold this value to, e. g., 

M2~Ml = bam 

da 

(C-13) 

tittt 
ba 

Haine_<__B (C-14) 

While this engineering limit has not been fully explored in this study, it appears 
from the computer rsms that good confirmation with the general formula is obtained 
up to a ^m of at least one sigma or b = I. 

Returning to Equation (C-ll) and a more general evaluation of a which is rigorous 
for all 9X, we proceed by using the formula (C-6) as followg.   It is first desired to 
evaluate 

dn X =     /         exp -sin2 6 (n cot 0 + z)2 

L                m .U-j 
Let 

u2 = (n cot 6 + z)2 

du » dz 

For Ihn its 

when z = u - 

JtW n cot 6 - yR2-n2 

jR2-a
2 n cot e ■>■ /R2

-ü
2 



and A becomes 

6 +h2 -2 
n cot 6 +yR -n 

X  =       f exp 

ncote./OKJ 

.in2 6 ß 
2ü m 

du 

which can also be written 

n cot 6 + 7R2-n2 

o 

exp sin2 9 a2 

tn 

du 

n cot 6- ^E"-n 

/ 
o 

exp 
• 2 a   2 sin   u u 

m 

du 

Another substitution 

2       sin   0 .2 v   = 
2a m 

du dv 
^a ro 

V 
fs?l isrs dv 

2a 
m 

and for limits 

u 

acote+VR2-? 

n«X)t ?? -VR2-!!2 

st^f 
/la 

(ncot 9 + 7ir-i?) -  V. 

in 

MlBi   ^ cot e - yR2^2) = V9 
/2a 2 

and we again rewrite X aa 

/fa V„ 
X =      ^'g       /esp[-v ] dv-  J exp[-v ] dvj (C-15) 
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ff t&« eo^floieafc la rewritten &s 

/J a /^f a pn   _    *   v m 
"üsir    ^■XTS5T- 

By deflsttk» tt» Error Integra! or FeUeriztagnl is given ty 

(C-16) 

♦ <s> - ^-    / «qp[-t2]   dt (C-17) 

Ther^fdrs 
V5?s?_ 

XiE TiO [*^i)-*M <C-18) 

Flaeliy, returning to Equation rC-6) 

R 

a - --~    / [♦^i» " ♦M exP 
2/2f a n    -R 

-n 
2a n 

dn 

Since this is not U a form compatible with graphical or computer solution, the 
following calculationa are made. 

Recall that 

1      ^%l ; 

Factoring out an R give J 

V,  = R_sia£ 

Via 
nj 

Cn _ a . /T    " /^.2 \ 
« CO«, i/Tryi-pVK)     i (w-20) 

Let 

a  2 - KE2 

m 
x = n^'R 
dn = Rdx 
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then 

SimÜarly 

then 

1     /IT V / 

V9  = *J*J* Loots.JZ?) 

?- fxoote^v^j  = «^^ 
1 /TK 

and 
\ 

Using ß aa previously defined, ß = «W^m. we can alieo write 

ezp 
2 a n -* 

esp 

= <J3qp 

and Equation (C-19) becomes 

L'^C' 

2KjS2. 

= exp 
2ß2R2K 

a = 
2/5f a 

/L*jW-*2Wj«ap 
n   -1 2K^2J 

dx 

(C-21) 

(C-2S) 

Substitution of C7S, ^ /3 am and ajn/Ja = /I? into tb!a coefficient oompiet©« tfao 
transfonnation and 

a = 
2/3 

i r   -2  1 
VTtT^      1 2 I   2K02J 

dx (C»24) 

This is the formula quoted in the terU 
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/- 

A word or- symmetry,   if, ia the original solution of a, the teitial Integration iad 
beige pesformed for the v irlable n instead ol is, &d result would have been 

iff   /ff 
In 

+1 
J&. 

2ff  '/R 
« 

-*fe(f-s-v^)] dm (C-25) 

If the choice had bees mads to let 

x = m/B 

K= aW n 

/S = a /cr 
m   n 

the result would have been 

ff = / e^P 
2/3/2?T „!        L 2^   K; 

2 
« 

4 

L/ITR: \ / 

[i^i (Loot ^71^)1 dx (C-26) 

Comparing this with the results of Equations (C-21), (22), ^J), and (24), it la 
readily seen that if the values of K and ^ In the first solution are equal to the parameters 
K and ß fa the second solution, identlcrJ values of a will result.   Thus we have a 
choice, siiowü In the table in the text, which permits eliminating the plotting of any 
/9 < 1. 

The abscissae are double scaled to give a versus both K and R where R is in 
terms of whichever o is the lesser, },e. 

R = <78//Y 

For example, if 

n      m'   s 
cr 
m 

It ig hoped that enough da£a is presented in the curves of Figure 5 to permit good 
engineering estimates for any system requiring tie QCEP method of procedure. 
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APPENDIX D 

QCEP DERIVATIONS FOR A ^)RMAL PROBABILITY DISTRIBUTK)N OF 
EBROR FOR THREE OBSERVERS 

It Is shown In Appendix J tb£it the joint probability density iuü^tlon for ihree 
observers is 

f(n,nj) = 

n   m 

exp h( 2 2 
n       m       _jyL 

TT    „ 2'a"ff ao n  mj n        m 

(D-l) 

The total summation of the probabilities associated with each point m, n is the value 
of a given by 

R   inr 

a 1 /   /    eW 

^ff Vm  -Rml 

m en 

i{.V2)a 2    (3/2)c 2  (3/2)a   a m in   Hi 

dmdn 

(L-2) 

wnere 

/y   2 R'-n   sin Ö 
ii- x x 

. ._     *     rf».\   -    *-.    ^Ä„    u       *     /TV 

«6 X 
•  /•o2 _2   .   « T- ■» « -u   sm t? 

(D»3) 

rD-4^ 

Let 

2        n u   = — 
(3/2}</ 

2 
v    = 

m 

(3/2)a m 

Since we can start the process by holding n constant at some value, e.g., nK 

R'    v„ 

a 
■JT n o  a 

n  m  -R'  v. 

f     f exp [ -(u" + v   - uv)] x(3/2)a a   du dv 
J      j n   m 

(0-5) 

where 
m. 

s/JTZo 
m 

mr 

/§72a m 
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..,.■ - -^ 

or R 

dudv {D-6) 

l^wefore, holding u constsnt 

R» 

-R' 

/   exp[-^2-av>] e3q>[-u ] dv 

To avaluate the first Integral 

v«> 
X =  J exp[-iy -uv)] dv 

v. 

(D-7) 

P-8) 

proceed by complatlag square 

V2 „ 2 2 
X = /   ejqp [-(v^-uv+^L-. " )]   ^ 

vl ' 

2        vg 2 
= e:*p[ + T]   / exp[-f -H) ]    dv 

P-9) 

Let 

y
2=(v-H; 

dy = dv 

2        y2 
X = ejq) [ + ^ ]   /   exp [ -y2]   dy (D-iO) 

Returning to at and rewriting 

a  = .Z    I       /   |^[-y2]dy   exp[-|u2] 
4V      -R'   [  yl 

du (D-ll) 
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which by definition of ♦ (y) i» 

(D-12) 

Reverslog the substitution process 

R» a = fVf /f*^-^-*^!"!^ ^f-^4"2!du      <D-i3> 
-R' 

r~2—5 ,, tocos ö+VR -a" sin Ö) v„ = in„  = 

m 

v   = —I—_ (n oos Ö - /R^I? gin B 

m 

R»     / ^ 
a  = iVI  / [*<-——(D cos Ö+VK2 gin 9)^5 

-R'      v m ' 

. $ ) 1__ (Q cos 0 - /?!? sin 9) - ~ > e^)[ -e/4)u2l du 

And, a'^ain for u, 

iJtplQ 
« = Ilfl    f      *    " (n cos 6+/?!? sine) 

_J—-(nc09e_yi^2sinöj S .1   ^[.3-^1 
/372 a   \ I    2/372 a I  4(3/2)a 2 

m n^ "■ n j 

n -«       (D-15) 

dn 
4(3/2)g/l>'37Ia 

n «» n 

R 
a  =       J * 

2/2? a      _R n       ** 
  (n cos e+J}i2-n2ain $) - —%— 
/372 a    V /    2-/3/2 a 

* —^—- (a cos 6 - TR^I? sin 0] ^ 
/572am \ /    2/S7 7372a nj 

2-/3/ "^J 

exp   -■ 

L. 

a2   1 
2a2 

(D-i6) 
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let 
A« ia tiie ear« of four Indepeadeixt obMrvatloa«, and reAiciag to computer size, 

x » n/R 

/3   = oja 
m 

Tfe« PeMerlaSegrml formfct becoiaes 

/ V 

--—-(xcoaSi/l^) gin 9- 
2/^7n?ß. 

P-17) 

2/2? a 
becomes 

exp 
.2    1 

2cr 

and 
n  -» 

2/3Rv'2inr 

becomes    exp x2 

2 2 K/r' _ 

dn = Rdx 

The whole expression is then 

+1 
1 

Of   - 
2ßyfWK 

J * -    (x cos e + Til? sin e 1 - -   x   —1 
/WK" V /     2 *W2Kß J 

| —j; (x coa 9. ^7? «in el-i--^—. 
LV172K   \ /     2^72K^ 

exp x 1 
(D-18) 

dx 
L 2K/rj 

To consider the symmetry, had we reversed tae order of solution, using 

r.   = L(m) = m cos Ö  - VR^-m2 sin 0 ■^        -i x x 

a0  =• f0(m) = m cos ö  +VR2-m2alnÖ 
b tt X X 

ne 

msm^amm^sm»- w* ■■"- 



and held v constant while solving for u- a direct reversal «rf m for n and tt for m 
would have resulted as 

i—   r  L [__!___ (m cos e WR2-m2 sin e) - —^ 1 

f m cos 0 - itf-m   sin el - 
/§75a ^^STä a ] 

ITS. 

2 
(D-ie) 

dm 

If 

n 

x   - m/R 

m   r 

the final result would be precisely the same as ^qu&tloa P-18).   Thus this solution 
demonstrates the same symmetrical aspect as ♦ .e solution for four independent 
observers; values of a need only be calculated for ß> 1 . 
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APPENDIX E 

PROBABILITY DISTRIBUTION OF TIMING ERRORS FOR A PAIR OF 
STATION OBSERVATIONS 

The problem Is to fin; the joint probability effect of a pair of time o? aervatlcns 
where each observation is independent of the other and each has a normal distribution 
of error. 

The two stations Sj and S2 are measuring the time of arri'      I the signature of 
event, E.   Assume the measurements are ti and t2 at Si and P     -spectively.   Assume 
the difference between these two readings is 

x   =   tg-tj (E-l) 

The probability distributions can then be expressed in terms of 

p(t2)andp(t2-x) 

We wish to find the most probable value of x and, more generally, the probability 
distribution of x with respect to t .   These two events are assurmjd to be entirely in- 
dependent of each other.   Hence we are concerned with the product 

P(t2)p(t2-x) 

Since errors in measurements can be expressed as 

^ =  Tl +  *1 

'2   =:   T2 +   At2 

(E-2) 

(E-3) 

(E-4) 

where Ti and T2 are the exact values at Sj and S2 respectively, ti and (ti-x) can take 
on all values within their error spectrum. 

Since we are dealing with the subtraction of tlwae time readings, what is the 
probability of subtracting a particular tj (tu) from a particular t2$2l) resulting in 

1 ^i ' Hi 
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Tb* product & tbe profcubiliiie» of oooiarrenoe of tji aad tu , oatrely, 
P^2i) P#li)i <w> Pta) * P(i2l) x P(t2i - XJ) It the uuwer.   But there ftre many 
poMfbflitiM or comöiz»tiosa or readisge t2i and tu Tsrhich will give this same exact 
sj.   Since UM occurrence of any one comblaation exdudea the others, the total of all 
poMfbflitiefl and total probabilities ia a summation process and the total 

p^) = EP V^i'V (E-5) 

where i takef m all possible values that will result in a partlciuar time difference, Xj. 

Using a well^x^wTi theorem of probability, this csa be generalized for all i by 
thecoprMskm 

PW =   / p (t) r (t2-x) dt (E-6) 

To define the Inr" riduai station probabiltty densities let 

P <t2
) = ~"^=~"  ^ 

p (t -x) = —-—   e*p 2 atft 

r ^2-T2)2I 

^    J 
(t2-x- 

(E-7) 

(E-8) 

It is arjumed there is no reason why instrumentation, human engineering, etc., 
should result in (7 differing from oun station to the next. 

Then 
90 

p(x) «   /   —~ exp 
-«   2n cr 

"    ^2 " T2)2 " ^2 - X " Tl)2 

^2 
(E-9) 

To evaluate this integral let 

a =  TP 

Then 

b = T   + x 

p(x} = —g-   / exp 
(i2-a)   - (t2-b) 

20* 
dt2      (E-10) 
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To simplify tho osponent (and drop the subscript), 

-ff-a)2 -Jt-b)2- -t2 •»• 2 at - a2 . t2 -t- 2 bt - b2 

-2t2 +2 tM?) - (a2 + b2) 

1 t2 ,. a^b ,    a2 + b2 

 1   + —jr t - 
o2 V       20* 
_t2    a*..s2+l 

and 

2ff (T   io 
exp ■^■^y) 

This can ba evaluated from the lategrai form 

T?7 dt        (E-ll) 

/e3q)[.(Ax2 + 2Bx + C)]   & ^ ^f       ' "2    "^ 6}q> B'-AC      r. .  nl —5—J  iA>o] 
Let (E>12) 

A = -j      [ hence A is > o] 

B =  - a+b 

C = a   +b 

202 

2
+b2 

27 
Then the integral equation (£-42) becomes 

V5 OXp 

V^2     1   a2 + 
^O2/    "?    202 

i/o2 
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N^P*- 
• 

To »Impf tly tit* e^pooant. 

2     J*.b2 fHhV    a"* 
iTa)   -—J 0s j a2 •» 2«b •>• b2 _ a2 + b2 

4cr4 2? 

-i» fa2 + 2ab + b2 - 2R2 - 2b2) 
4(r 

- —~- (a   - 2ab + b ) 
4or 

= -(2a) 

and the Integral equation (£-12) becomes 

crVF exp 

then, 

[■(^l • 

2tr or 

Replacing a and b gives, 

PCO 
2a-/? 

exp 

[■ m\ 
(T, - T   « xf 

£ J. 

U we sow define terms such that 

M =  Tg-Tj 

a2 = 2er2 

x 

PW = 
a Jzif 

exp > ^w ■ .»iw-m 

.2 PCt^V 

(E~13) 

(E-14) 

(E-15) 

(E-16) 

(E-17) 
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thersfof s( tha most probable vslue of x ic x « M fo? which p(x) im glvaa a 

M'  T2"T1 (E-18) 

with & standard cbvifttioQ 

a   = VTcr x 

This f'inctloii is depicted in Figure E-l b^ow.   Nate that wbll© the symhal pfe) is 
uaed, the function (E-17) is a prcfeabllüy dens% faaotion for whi^ to« 
current treod is to me the Botsticn f (x). 

Plx) 

Figure E-l.   Graphical Results of p(x) 
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APPENDIX F 

EEP (ELLIPTICAL EB*OR 1'BOBABILITY) 
CALCULATIONS FOR A NORMAL ERROR PROBABILITY DISTRIBUTION 

FOR FOUR OBSERVERS 

As stated In the text, there is nothing inherently natural In this type of system 
about a circular area of probable occurrenc2; and, as further rfated, if v/e can break 
free of QCEP compatibility requiremi-nts, we can enjoy distinct advantages in inherent 
elliptical contours of error. 

To determine what the inherent contours really are, we shall pursue the educated 
guess that it is possible to deter nine the probability of error directly from the time 
domain. 

As shown in Appendix E, 

PW   =    a 277 
x 

exp (M -x)2 

2a2 

L             X        -J 

For the pair of statior s whose timing error would result in deviations or 
displacements in n, it is convenient to first let 

(F-l) 

i 
AT    -   M-x 

n (F-2) 

i^ 
and 

P^Tn) 

x 

exp 
AT 

? a 
(F-3) 

Likewise, displacements in m would result from 

F(AT   )  = r      m a /W 
exp 

AT 
m 

2 a " 
L       x 

(F-4) 

Recall from the text that 

a   -    f f  p(m) p(n) dm dn (F-5) 

Since it was also shown in the text that 

n = T At 
n    n 

m -  T    At 
m     m 

(F-6) 

F-7) 

119 

. .......s.aftisw*** *■>'-■ 1. »■^WfH*C».*>S,iW,^ ;.%«Ä.,fc:fj»i 



it caa be stated from the principal 

p (m) = p(At   ) 
dAt 

m 
m'   dm (F-3) 

that 

p (m) dm = P^) dAt^ 

p (n) dn - p(Ata) dAtQ 

(F-9) 

(F-10) 

Hence 

a  -    / / p(m) p(n) dm dn =  //T P(At
m) P^V dAtmdAtn 

A 
(F-ll) 

but substituting Equations (F-3) and (F-4) 

a = 
o    2ir x 

f (   exp 
T      L 

[    (V^O 
2 a m       n (F-12) 

Atm and Atn are independent of each other and can represent variables in the usual 
orthogonal relationship for purposes of geometric analysis. 

Consider Figure F-l and the results of letting the magnitude of timing errors 
from 0 to At^ and 0 to A^ be represented by 

At   2 + At 2  =  S2 

m n (F-13) 

At, 

Figure F-l.   An Element of EEP Analysis in the Time Domain (Four Observers) 
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Thb «ill convert Equation (F-12) to 

1 
Of  = -- 

2V a 
f f     exp 

A 
2a 

x     -J 

dA 

where A is bounded by the circle of radius S, 

The element of avea can be considered the ring (for the first integration) 

dA   =   ■JTT s d s 

whence 

a  = 
277 a 

s 
/ exp 

a = - 

x      o 

S 

/   exP 

/      2   \ 
exp |- 

2 a 
x   -i 

27r s d s 

- 0 
S 

2a2 

X 

d(. 
2a 

ttvr-h 2a 
,.,] 

ß   =   1 - exp 
,2   1 

2a 
x   -* 

(F-14) 

(F-15) 

This is the prcbability of a fix lying within the area resulting from the probability 
of error measuresnents of Atjj and At^ in the t?me domain and LOP errors of n and m 
in the space domain.   To pursue this further a is also related to the probability of 
making LOP errors of 

n  = T At. 
n    n 

m -  r At m    m 

Recalling from Equation (C-l) Appendix C, *hat 

rx 
f     %                  2   1 

1          r r               a       .ml, 
- - exp fr + ~' f   dmdn 

21; a a 
n m 

2a2 
1     n 

a 
a» 

(F- 16) 
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and that 

m 

tr   r 
x    n 

o  r 
x    m 

then 

a   = 
2Jr r T  a ' 

n  m  x 

//  exp 
A 

dmdn    (F-i7) 

since 
2 2 B m 

2r2 2r 2 

n m 

2 9 
AT AT „2 _rn        _n^ _ S__ 

2 2 2 (F-18) 

We have- established that taking the points Atn and Atm from the circle S In the 
time domain rssults in an elliptical figure in the space domain which is characterized 
by the quantity 

m or + — m 

2T 2T m 
2 2 

2a       20 
n m 

cr 

It must be remembered that a is the probability of making any combination of 
timing errors,   Atn and At^, up to and including S.   This results in a spatial ellipse 
with the same probability of a fix being anywhere within or on this ellipse.   The fact 
that n and m are oblique has had nothing to do with the analysis thus far.   By letting 

Max n 

m,. Max 

the probability or associated with any ellipse 

Max 

r S m 

(F-19) 

(F-20) 

m Max =  1 
2o 20 m 

can be determined.   However, in plotting this ellipse, n end m must be the true non- 
orthogonal axes.   Sample curves are presented in Figure F-2. 
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S - ir. U ?»c 

Figure F-2.   Sample Curves cf 1 - exp 
20 

x J 

Thus far we have not placed any constraints or special significance oa the quantity 
S itself, other than in Equation (F-18).   But this represents a specific — one might 
say natural — ellipse.   Can we make concentric expansions and contractions to this 
ellipse?   To answer, it may help to introduce the idea of S0 forthiß "natural" ellipse 
such that 

S    =   /2a o x (F-21) 

I      2 2 representing that limit of vAtM   + ^t^   which is also the limit, or boundary, of the 
ellipse n m 

2 
n + m 

20 2       20   Z 

n m 

=   1 

To change to a different ellipse of 

n m 

^„2 
^m2 

equivalent to the time domain change of 

(F-22) 
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and Introducing this idea Into a gives 

Q?  =    1 - exp 
X2S2 

o 

20 
x   J 

27r fair / / exP 
A n m 

2 2 

?U2    2a  2i n 

but for the ''natural" ellipse X  =   1 and 

c 2 2a 

a  =   1-e 

resulting in the general formula 

-] 
0.6322 

a   =   1-e' 

with the spatial elliptical relations 

where 

m 

dmdn 

(F-23) 

(F-24) 

n2        «2 
J^ + HL   = i 
o2       K2 a     b 

a=Xa     =X/2a    =  X/2 a  T 
o n x   n 

b = Xb    = X-f2 a    = X/2 a   T 
o m x   m 

a/b or b/a = y^ or TJT^ ß   [ßyi] 

(F-25) 

(F-26) 

(F-27) 

(F-28) 

(F~29) 

Again note that these are pseudo- or orthogonal-elliptical quantities which must be 
converted in accordance with the discipliner discussed in Appendix H to get the true 
spatial picture. 
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APPENDIX G 

EEP CALCULATIONS FOR A NORMAL ERROR PROBABILITY DISTRIBUTION FO& 
THREE OBSERVERS 

To determine what the inherent elliptical contours of error are, we shall pursue 
the determination of error directly in the time domain.   For the pair of stations whose 
timing error would res;:lt in deviations or dlspiacetnents in n it was shown in Appendix 
E that 

m = 
a Vürf 

x 

exp (M-x)2"1 

2a2 

x    -» 

(G-l) 

Further, for this pair of stations let 

At    = M-x  =  At,  +At 
L,        c (G-2) 

as a simpler representation of the net error for the time difference of a particular 
pair of stations.   Then 

f(At )  =  •—    exp    -—V (G-3) n' a vr27r 
x x    . 

Likewise, displacements in m would result from Atj^ with probability density 

At 
f(At   )  = m 

.ffi 
exp m 

20 
(G-4) 

where 

At 
m 

M-y  =  At    + At 
B (G-5) 

As shown in Appendix J, the joint probability density function is given by, 

1 f(At , At   )   = 
^    n       nr exp 

VTSTT a 

2/3(At 2 + At   2 - At At 
n m n    m (G-6) 

and the summation of points within the ellipse 

At 
11 

At 
m 

At    At 
m    n 

2 (3/2X7 2      (3/2)0 2    (3/2)a 
XXX 

(G~7) 
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gives a probability of joint error for 

0<At   <At 
—    n —      N 

^SnS^M ) 

which is given by 

P(Atn. Atm) - « 

/TTra 2        t 

f/exp- 
fAt  2 At    2     At    At   ^ 

m m    n 

(3/2)ax
2   (3/2)a2   (3/2)a 2 

dAt dAt 
n       m 

To evaluate this integral refer to Figure G-l which may be considered a sketch of 
Equation (G~7),   It can be shown algebraically that this is equivalent to a skewed 
ellipse onto axes Atjj' and A^' whose equation is given by 

(G-9) 

a2 +~J~~^ 
The major and minor axes a and b can be determined by 

(G-10) 

2 2 
_L =   cos    0  +  8in_j£_ sin 0 cos 0 

a2      13/2)0 2    {3/2)0 9 (3/2)a 2 

XX X 

1       1 - sin <b cos 0 

i f3/2)a.. 
(G-ll) 

Similarly, 

$ is determined by 

f3/2? 

b2   . 

1 - sin 0 cou 0 

(3/^CT2 

"l + sin 0 cos ^ (G~12) 

</> =  arc tan /3"2 1^ r» Vd^-t'x2)- 
=   45 

arc tan 1 
o 
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at,T. 

-   Eiementol Area, dA 

Figure G-l.   An Element of EEP Analysis in the Time Domain 
(Three Observers) 

Thus 

b"   = 

3 ^ 
0 a X 

1 
j "   0 

a 

3 ?. 
0 

2 X 

l+i 
ü 

3 a 
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Returning to Equation (G-10), the skewed ellipse becomes 

(At')2       (At')2 

3(7 
2 (G-10) 

Using ff ab for the area of an ellipse, the elemental area dA of the skewed ellipse 
on axes M^' , A^' is determined by 

dA   =   TT At^At^-^At^-dAt^XAt^-dAt^) 

dA  =  IT (At." dAt    ' + At^'dA t  ' _dAt   ' dAt    ') v     > m M n n m 

(Cr-U) 

To reduce the Imegration from 9 double to a single summation, we evaluate, in effect, 

a  - —-—   j [   exp 
VjTra2        t' 

Vt')2       (At   ')' 
L m 

3ff a ^ 
dAt ! dAt   ' 

n        m 
(G-15) 

for 

0<V<AtN' 

0<%'<AtM' 
(G-16) 

The exponent of e is the constant value of any point on the elliptical ring dA as 
dAtjj' and dAt^' approach zero.   But the total area, and its associated joint density 
function, can be considered a concentric series of such rings; as the maxima At^' 
and Atj^' move from zero to A and B.   For example, we have the relationship 

At   ' 
N A 

This permits us to generalize Eqaation (G-14) 

dA = JT 4 At»»ldAt  : +-rAtM' dAt  ' .dAt ' dAt    <) ^BM IAN        n n m' 

But from Equation (G-13) 

1 A rs-    B 
F "  v3'Ä 

(G-17) 

(G-18) 

yfl 
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giving 

d.A       7T (NTA^,,- dAi_  + T-T Ät^' dAt^' - dAtJ dAt^'j \ M        m     /§     N        n n        m 

The integral has now become 

Let 

a   = /exp 
[ {At '}2       (At   •)' v    n ' m 

■fl It O A 
x 

3(7 
dA 

a 
7T 

X 

/ exp 
(AV)_     jAV) 

3a 2 a 2 ' 
_      x x 

(^ÄtM,dAt
m

,+^AV dAt   ' - dAt   ' dAt m m        n ) 

  +      __        _        & 

30 * a * 

(G-19) 

(G-20) 

(G-21) 

be a general ellipse whose value is constant for any given ellipse.   Since it will not 
matter whereon any given ellipse an evaluation is performed, i.e., At ' = At  ' 
At   ' = 0, and At ' = 0, At   ' = At,-' are valid maximum points on the ellipse is and m ..        n m M ' we may write 

a 
vTa 

/exp 

x 

21 

3a 
x 

At  ' 
x —i^-dAt '+   f/Sexp 

V o 

.,2 

2        1 
M '  Max 

A^' dAt 
m 

■ f exp [-Soldat ' dAt   ' 

(G~22) 

The last term may also be written 
f 

/exp 
(V dAt   '     dAt ' 

m    i       n 

It is obvious that the expression in the bracket is a finite integral.   Hence in the limit 

lim 
dAtN' ■—► 0      /exp - ^M') 

a 
x     J 

dAt   ' m 
dAt ' =  o n (G-23) 
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the evaluation of a proceeds as follows 

l    i r    3 a = (   — exp 
V3     o   2Vf 

(AtN^ 
Max 

3 a 

At ,2 

d    - 
3 a 

(At,,')' 
Max d i - -V 

The limits a* and b' of Ätj^' and At,,1  are discussed later.   Then 

a - 2 exP I " 
^Vj Max 

3a2 
^ejq) l- ^W   Mas 

G-24) 

(G-25) 

Of  = gfl-exp -J£L 
SO2 

x 

+ ^|l-exp j- [-fl 
I f        r   (a»)2 

a       1 -T-I exp ' --i—1„ exp 

L »x J; 
(G-2e) 

It Is Interesting to note that for special cases of a zero ellipse, and an all-inclusive 
infinite ellipse, the limits and probability would be 

a1  = b' =  0,  a   = 0 

a' = b' = «, a  =  1 

which checks our knowledge of boundary conditions. 

Since, as has been pointed out for the joint probability density functions of this 
system. 

we have finally 

(a')2  = 3(b')2 

1 ~ exp [. (a'L2! 
a2 

L.       x   -J 

=  1 - exp 
3a2J 

I-        x -» 

(G-27) 
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or, more generally, for any point on the general ellipse S where 

(^t ')2     (At   ')2     At 2 At„2      At_ At_ 
S2   = 1-5-'   + '    m n m m     n 

3a er 2        3/2a^    3/2cr2   3/2a 2 

a  =  1-e -S
- 

(G-28) 

and the points a' and b' are the special "max" values of   At  ' and AL.' which give 
the values of S. 

When S is unity we have the natural standard deviation ellipse.   The probability 
that the position fix lies within or on this ellipse ia then 

ry   -   1 -e"1  =   63.22% 

For concentric ellipses for other values of S, the elliptical equation can be considered 
as 

At   ^        At     At 
m m      D (G-29) 

(At ")2        (At   ")2       At 2 

.  = ;   n ;    + 
v    m ' _        n   . 

s23a2      s2a2      s23/2a2      s23/2a2    s23/2a2 

X X X X X 

wnere 

At " = SAt ' n n 

At   "= SAt   ' m m 

and the unpi-imed Atn, At m are also changed by the factor S .   Thus we may consider 
any size S ellipse we wish. 

To relate this situation to the space domain it is recalled that 

n  = At   T n   n 

m - At    T 
m   m 

a   = T  a n        n   x 

a    = r  a 
m      m  x 

Utilizing these quantities in Equation (G-29) gives the result 

m mn 

3/2 a2 3/2 0  2      3/2 0   O 
n m m n 

(G-30) 
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The values of a and b wrJch were used in Appendix I to derJve the transforms are 
then given by 

a  -  S T/ITS. 0 

b  = SJW20 
m 

Ü 

These are pseudo- or orthogonal-elliptical quantities which must he transformed in 
accordance with Appendix I to get the true spatial picture. 
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APPENDIX H 

DERIVATION OF THE TBUE ELLIPSE TRANSFORMS FOR FOUR OBSERVERS 

The general problem is to derive an expression for the true ellipse in terme of 
its oblique axes such that a complete picture of the spatial probability contours is 
obtained. 

It is shown in Appendix A that the vali'? of the distance R from a fix point F to any 
displaced point ?' is given by 

R" 1 

sin2e 

2       2 (m   + n   - 2 mn cos 9 ) x x' (H-l) 

where 

8    -  crossing angle of the LOP's 

m error or displacement of the LOP for the station pair AB 
measured along the line m at right angle to rm . 

n    =  error displacement of the LOP for the statior pair BC 
measured along the line n at right angles to r^ . 

It is also shown in Appendix F, Equation {F~26), that there exists an elliptical 
mathematical relation of a constant contour of probability such that 

m =    1 (H-2) 

The question is:  "Whei the values of n and m which gatiefy this equation are 
substituted into equation H-l, can we obtain the "max" and "min" of the resulting. R, 
and what are these values?" 

To answer the first part of the question, the variations of R are studied in an 
example. 

First m is replaced in Equation (H-2) by 

giving 

m = b%l - V' 
T 

R- 
sin2 e 

n  +b 
\     a / 'a 

0 cos 6 2 x 

(H-3) 

(H-4) 
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R  * -fi-p- J n2a - b2/a2) + b2 - 2cn /l - n2/a2 COB ö 

For the example chosen 

{H~5) 

e = so 
a2=  8 

b2=2 

and 

R = 7 3n2 - 9, 8n 7 1 V/S + 8 

The results of this calculation are shown in Figure H-l.   This demonstrates that 
there Is a value '"f R = f (n) which in the usual orthogonal sense will contain a maximum 
and minimum. 

Figure H-l.   A Plot of an Example of Calculating R 
to a Point on the (Oblique) Ellipse 
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To derive the general expression for all maximum and minimum, we return to 
Equation (H-4).   By inspt ctlon of the ellipse of Equation (H-2) projected onto the 
oblique system n, m (as "n Figure 6) it is seen that Rmax anf' Rmln a*« obtained when 
dR = 0.   But since dn is ^dependent of dR, if dR Is zero 

dR =   0 

From equation (H-5), 

dR 
da 

1 
iiTF 

1 f 2 _ 2 /,     n\ 
1-1/2 

2Qb%l - ^ cos öx 
b 

2a - 2-^ n - 2b 
a If-4 v a7    J 

Equating to zero and solving for n  proceeds as follows 

b2       b     n2 

n - -sr n + - --r cos 9 -h 
a V'-'i cos Ö =  0 

f? 
cos Ö   »b%l-^  cos 0=0 

J x      f     a2 

46-4)^ a    \     a /        a 

cos 9=0 x 

^- cos on   -b cos 9=0 

= b cog Ö - 2 b(- a cos 6 n 

135 



.»■—.-—-—«. .. -^ -,- . I   " Wl I 

•• I r "T "iir-TBTMl n' i m r i pwir f 

Lquariog both sides 

■■(-fl (■■»■■ 
2fl.b2       2fl2,b2       2ä4 cos   a - 4 -jCOB   on   + 4 -j cos   P n 

a 

cos   Ö B   + b   cos    Ö 

A b2V\ a4 /'. b2^ . b2 _2 fl 4 . b2 2/12^.2 2 fl U-~jl "T I Ti =
^~J

C08
 

ei1 -4-oCOs on +b cos 8 
V   » /      »    \    a / a a' 

^b'  2 4 -ycos -MHV-H?-2- 4 ^~ cos
2 Ö n2 + b2 cos2 6=0 

a 

cos Ö + {'-S)lf[ -. b2  2 0.. 4 -g- cos P + H: 2-1 

n2 + b2 cos2 0 = 0 

*[ 4 ~ cos2 e + 4^cr^0 + 
. a H)] 9   9   9 

n + b" cos"2 9=0 

Solving for n   using the binomial theorem 

r 

1    4 
E2   1                ^ 00S2 e                          "    0 2 n   " 2                  /                V 

4 ^ cog2 Q+L     b2/a2 j 

n2 

1 t*/l              4 b2/a:? C012 ^ 
f       4bVa2 cod2 0 + (1 - b2/a2)2 

0 

2/a2 

n 
T a 

4 b2/a2 cos2 Ö 

(H~6) 
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For computation purposes, let 

Then 

- 1 - b2/a2 a/b - b/a 
x   '   2 b/a cos Ö '    Tcos ö 

S-K-iFS) 
but from Equation (H-2) 

and 

m 

m    _  .    n_ 
.2  "    l'   2 D a 

= 1 

(H-7) 

(H-8) 

(H-9) 

From Equations (H-8 and H-9). the /aiues of m and n which give Hmax aD^ Rmin 
are 

/2 V1^ 1 +x 

m = ± 
/2 

VI + */1 i- 
'         1 + 

(H-10) 

(H-ll) 

Insertion of these quantities into Equation (H-l) presents a problem in the 
selection of polarity for the term mn cos Bx,   This has been solved by graphical 
analysis which shows that in the determination of Umax» m and n are always of opposite 
polarity regardless of whether the pseudo-ellipse is plotted with its mfMor «xis alcag' 
m or n.   Similarly, graphical analysis shows that for the point on the true ellipse 
which represents Rmin m ^d n are of the same polarity. 

*•(' 
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. 
Further aaalysis with regard to the selection of polarity shows that when a > b, 

^max is obtained from the combination of 

i3 2 m 
TST    2 

Conversely when b > a, Rmax ^ obtained from the combination of 

a \     '       1+x / 

TTiys the formulas for the true major and minor axes become: 

For a > b 

FT 
max      2 sin2 B 

{ 

T-   { a 

Simplification of the last term reduces to 

R^ max   7^i?7 
a (rv^H-v^s) 

2 ab cos B 
(H-12) 

41 +: 
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Shniiarly, for a > b 

R- 
2 sin   t? 

\.J7 ^^(-f^) 
2ab cos ^ 

7177 
and for b > a 

max       2 sin" 6 

1       )   2 
^5—     a (-V^)+bi+iF=5) 

mln       2 sin2 0 

2aL cos 9 

/TT? 

2ab cos d 

/l+x2 

rH-i3^ 

(H-i4) 

(H-15) 

If the angle of shift of the pseuao-major axis is ^' which is measured from that 
axis, m or n, to the true major x-axis, this ai^Ie can be calculated from the above 
information.   Basically we are dealing with: for a > b. 

The n value of R 
cos l//   = max 

(H-16) 
max 

„ 2 
COS     (// 

^^f-TTl) 

2 sin Ö 

which reduces to 

2 , cos   y/ 

f 1 + 
V 

(H-17) 
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Süßüariy for b > a 

2 
«to2 Ö 

(H-ifc; 

Briefly, r^irdii^ syrometry, if we h«d started the origisÄi solsillon In terms of 

the resulting solution would have given 

1 

f ^/'-TTZ^ 
Then let 

which would become 

From thla 

s-cos" 6   + (l -a /o 1 

1 - a2/b2     _   b/a • a/b 

2 a/b cos Ö 2 cos Ö 

2 m ^H7^?) 
=  1 

a ^-H^v^) 
but we also have the dR/da = 0 derivation that 

a
2  2V V !+!!v 
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TherciOre 

K'Y-^^^v7^ 
Coutiauii^ this derivation gives 

x = ±y 

which for x~-y s^ubstaatMes the cooditicm obtained in the derivations 

1 

2 cc« Ö 
|a/b - b/a) 

-- 

« -       1        /b   av „ T55iir cf -b/a) 

It is desirable to provMe trangforms for the major and minor axes such that, 
given values a, b, am! 6^, thä true values of the major and rctoor axes sod the 
orientation of these axes can be determined directly and simply.   Such a transform 
would be the ratio of values of the true major axis to the pseudomajor axis a or b. 
Since the original maximum axis value could ha a or b, wo will call this Hgjjm, and 
the true value, R'msx»   T^e transform (squared) then becomes 

for a > b 

\2      (R1   „ V2 
max i    _ ^ max- 

max a 2sinZ S (      1       l+x^     iT  \   f       1+xy 

and f or b > a 

{«»19) 

2b/a cos 6 

/ i + x 

\2      (R'       )s 

max ^     _ v   max' 
1— 

msx b 2 sin2 6 SC'-iF^H^ 
. 2a/b cos 0 

/l+x? 

ai-20) 
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It en be ceea by inapectlon of these fontmüas that if the b/a of Equation (H-19) 
e«nul8 the s/b erf Equation (H-20), then the x of Equation (K-20) will be the negative 
of the x of Equation (H-lf), bat the squares dl these two will be equal 

.2 2 

Hence the transform functions are equal for given values of a/b, b/a, and dg.   It is 
most convenient in visualizing these transformations to picture the pseudoellipse as 
havtssg its major axis coincident with the corresponding axis in the oblique system m, 
a,   Tlkaa ß a > b, we would draw the ellipse to be transformed with n as the major 
axis,   likewise if b > a, m would be considered the major axis of the pseudoellipse. 
By similar development the square of die minor axis transforms becomes 

/a i R min 

min 
/ b2 2 sin^ 0 j b2 ^   >        i + x2/       \ 1       1 + x2 

2 a/b cos 91 
(H.-21) 

and for b > a 

01 w 
a 2 sin2 0 

2b/a cos 0 

Vl+x2 

{H-22) 

ai'd since the same conditions prevail with respect to the x   values, the symmetrical 
«quality of these two equations is also established. 

Returning to the determination oi \p , it can be seen by comparing E^aations 
(H-17) and (H-19) that 

And finally, 

cos   ^  = 

cos 

1 +Jl - "I 
l+x2 

2 (Major 
2 

Axis XFrm) 

VU1 r-^] 

(H-23) 

(H-24) 

XF. ma:c 
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APPENDIX I 

DERIVATION OF THE TRUE ELLIPSE TRANSFORMS FOR THREE OBSERVERS 
• 

As in the case of four observers, this derivation starts with the value of R as 
given by equation (F-26) 

R2 = —| (m   + n   - 2mn cos 0^) 
sin   6 x 

(1-1) 

It is shown in Appendix J that there exists an elliptical, mathematical relationship of 
a constant contour of probability 

i 

■i 

2       2 n_ . m_    mn _ - 
2    .2 ' ah a      o 

n-2) 

that is 

n2 = -^ (m ± V4b2 - 3m2 (1-3) 

giving, by substitution, 

R2=      1 

• 2 n sm   0 
m + ^ fm ±^4b2 - 3m2Y - m| fin i^b2 - 3m2jC (1-4) 

where 

C = cos 9 

R = ■W sin 4b^ V 
^4? - 3m2|   -m|fm±V4b2-3x^)0 a-5) 

Again proceeding as in the case of independent obESi'vers, Rmax and Hmin s** 
obtained when dR = 0.   Since dn or dm is independent of dR, we are also solving for 

dR 
dm = 0 

2m + --^ x 2(m + ^h2 - 3m2) (l - 
4bZ \ 

6m ^ 
2'/4b2 - Sm2^ 

mf 1+- 
32 - 3my       b \ JÄJ2^ 

^b2 - 3m21 
a-6) 
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Soivixäg for m proceeds «a followp. 

To roctac« repetitfa-i, let x = v4b   - Sm 

Tinwi, from equation (1-6), 

.2 
2m 

2m + 

(1-7) 

(m + x)C = C 

2mx+(x-3m)  ^ (m + x) - m-C |-~ C(mx + x^ 0 

^^^^Va^^^^^^^^^^^^^ 
20' 

2mx+^InX + ^x2_aCir5_|^m2_3a?mx + 3aCm2 
2b' 2b' 2b2 

1 r w    a ^   2 
bCmX-bCx    = 0 

^m^m-lcm.f^.lc^.^ji   aA 

xm 2 - 2 I 
a5 
t5-fc)+^f3ic-K|.o b' w 

xm 2 - 2 

('-'i'-^-^-ff' 
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Replacing x   gives 

(■ 
^^-•c-^y-^-e^g-icj-o 

xm(2-2|c-S5)-.=m
2-2b2, 8-^c) a-8) 

v 

Squaring gives 

2   2L    „a 
b x m   2-2rC .S'...-^...cy (1-9) 

Again replacing x 

{4h2 - 3m2) 
/ 2 
(2-2|C-^ 
\ b        b^ 

2 2 
'        2 _ .^2     0   2 

m {2b   - 3m ) (H<)' a-^) 

2 2 2        U-^Q-K 
(2b2 - 3mZ)     _   i__b____5? 

2 2     2 ~        2 
{4b   ~ 3m )m        \ §_ _ 2 5 r 

\; 
2    "b 

a-n) 

Let 

(1-12) 

v = nn. 

^hen 
2., ^2 

{2b^ - 3vr = k v(4b" - 3v) (1-13) 
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"     -'■' 

4b4 - 12b2v + 9v2 = 4k2b2v - 3k2^2 

3(3 + k2)v2 - 4b2(3 + k2)v + 4b4 = 0 

3v2,4b2v+^b. 0 

3 + k'2 

4b2 ± 

v = m 

2     2.2 m   ^b 

1 3-t-k 

(1-14) 

Finally to get this into a form comparable to the four-observer case, let 

A 2 

(■ 
io - 2 - r - —-1 

s  «■!   \   b   il §        3 /2 \ 2 

giving 

2 m   = 

{4-fc) 

ibt^ 

(1-15) 

(1-16) 

as the coordinates of points on the true ellipse which are the end pomts of the major 
and minor axes. 

The n coordinates are obtained directly from cousiderations of symmetry.   If 
initial substitution in equation (1-6) had been made lor m instead of n, and the equation 

dn = 0 

solved for n, the resulting equations are the same as those above if, also, the following 
replacements are made 

m—3» n 

n—*m 

a —■*► b 

b -~»a 
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Then 

n    =3a ^^S) (1-17) 

where 

► 

^Hc^ 
e-^y 

a-i8) 

For a quick demonstration of the correctness of these equations, consider the special 
case of 

d = 90° (i.e., orthogonal axes) 

a = b 

2 _ (2 - 0 - I)2 = 1 r = 
3(1 - 0/ 

and 

2      2 . 2 .„ ^ 1, 
m    = gb (lig) 

m = ± — and ib 
V3 

n = ± — and ±a 

Remembering that when a = b. 

2       2 m       n_    nrn      , 
K2 ^   2 " ab "' l' b       a 

is a skewed ellipse of 45° given by 

h 
': 

2 2 
lb')       (a1) 

(1-19) 
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(b')2 1 

COB2 450 

b2 

1 

cos2 45° 

b2 

sin 

a,2 

450ccfl 

b2 

45° 

2bZ    2^ 

1 

2b2 

a-20) 

b' = V^b (1-21) 

and 

/n'^2 =  ^  = - b2 
(a; 1.1.1       3 D 

+ —■>— + 

2a2    2a2    2a2 

(1-22) 

a'^a a-23) 

These values are shown on the following sketch which illustrates and verifies the 
special case. 

Another, more typical, example was worked out analytically and then checked with 
graphical solution.' The parameters selected were 

«J    = 0.25 n 

a   = 0.6 m 

s  = 1 
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giving 

= •$% -0-306 

'•^%- 
0.735 

We then wish to find the locus of the points 

m mn 

{0.735)2    (0.306)2    (0.735X0.306) 
- = 1 

onto the oblique axes m, n, B~.  The graphical solution is shown in Figure I 
plotted values were obtained from the relationship 

n = -^ (m i^b2 - 3m2) 

The coordinates from this graph for the terminus of R   .   and R. are 0 min max 

forR       :   m = 0.780, n = 0.043 
max 

forR   . :   m = 0.325, n = 0.348 

To solve for the coordinates analytically 

| = 0.416, 

-1.   The 

Co8 2Öo-0u94 

t  = 2-2 X0.4i6X 0.94- 0.173 ?..71 

^(0.173-2X0.416X0.94) ^ 

|2 = 0.975 

m -\J\^ V^i^^i^v *•.'»», 

Likewise, for n 

m - 1.063b, 0.445b 

m « 0.782, 0.327 

*      2-2X2.4x0.94-5.76 „ QO g       3 . _ ~     -     -J.öZ 

h (5.76- 2X2.4X0.94) 

At 
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Figare 1-1.  An Example of an EEP Problem on the Oblique Axis 
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t    = 14.6 

I^V1-!^) = |XÖ.3062(1 +0.968) 

a = 0.146a. 1.145a 

o = 0.044?, 0.35Ö 

And the coordinates become 

R       :   m = 0.782, n = 0.0447 max 

R      •   m - 0.327, n = 0.350 min 

Therefore, we are dealing with something less than 2% error, including graphical 
and analytical calculations, and the formulas are verified for thie sxample. 

Providing transforms for the true values of the major and minor axes is more 
complicated than for the previous case,   first, -the quantities a, b no longer represent 
the major and minor axes of the pseudo-orthogonal ellipse.  They still, ho^e?9r, 
represent convenient quantities for determining the desired transforms. 

Returning to the general form of the radial vector to the true ellipse, and substi- 
tuting the derived values for the true coordinctes m, n, givps 

R2 = 2.2 
3b 

±|ab VRrfS)HfT5H 

* 

Defining the transforms 

XFMax=f^>b)=f<b>a) 

XFM^=:f<a>b>=f^>a) 

The neede 1 relationships R/a and R/b are determined from 

(1-24) 

(I~25) 

(1-26) 
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£3 A Zr 
Since the key factors to these solutions are the qua'-'titles 

(1-28) 

sod 
1 + 1* 

'1- 
1+i2 ' 

and since one abscissa e§ß provide eltbar a/o of 4 o.t b/a of i, Figure 1-2 is a 
representation of either radical.  The selection of the parameter 0X gitres samples 
through the crossing aagla spectrm». 

The maxima (of unity value) are obtained for 

b/a or a/b = 2C (2 cos 9j 

The minima (of zero valu«) are obtained for 

b/a or a/b « -C + V?TT 

The case for Ö * 60° is very interestiflg and perhaps eveu snomaloits. The full sig- 
nificance of this curve has not been explored for this document excect that it passed 
a*! validity or application tests developed during this OTiting. 

The next task is that of making the various polarity decisions associated with the 
radicals.   There are two distinct decisions to be made;   (1) the polarity of the radical 
in determining the value of the coordinates, and (2) the relative value of the coordinates 
themselves with respect to each other.   This is a much more difficult task than for the 
independent case of only one radical value per a. b, c. 

The tools ard criteria lor making these decisions were 

a.    Figure 1-3 
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a—a« 

Cot«   K 

_ a=b 
(m2-»- n2-mn = a2 ) 

Cannot   Contain Rmon 
For 6 > 60° 

Figure 1-3.   Geometrical Polarity Decision Criteria 
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2 2 m n_    mn _ . 
2 . 2 ' ab a b 

c.    Some trial and error 

The results are tabulated in Taue 1-1 which seemed to be about the best, though 
by no means the only, way of depicting these polarity decisions.  Since the quantities 

2C and -C+1f?+2 

can both be greater or less than one, all possible cases are cherted.   The idea used 
in deriving the chart was to find a starting point for which all the factors were known 
and then reason what must happen from then on.   (The author is sure there is a    irer 
mathematical or classical way of doing this, but the idea was successful.) The starting 
point used is b = a.   Examination of the elliptical equation shows that the choice of 
radical polarities is limited to the extent that they must be the same for m and n at 
b = a.   The next significant factor, obtained by examining Table 1-1, is that 9X = %(P 
is a dividing poim for these polarities and the cases of $x > 60° must be examined 
separately from t'x < 60°.   Finally, the separation of m and n for XFMax and XFMin 
is obtained by almost any test points within the regions specified. 

Having thus obtained a complete initial set of poiarltiee for the radicals at b = a, 
the rest is the intelligent guess that as 

i T 
1 + {£2 or S2) 

goes through zero at 

-C + i c^n 
the polarity associated with the radical must reverse as a/b and b/a are varied 
through their interlocked values. 

The significant factor in determining the polarities of m and n relative to each 
other is the value 2C, for at a/b or b/a = 2C, m or n are, respectively, zero.   This 
would be intuitively the point at which a coordinate's polarity would change.  Verifica- 
tion of this change, and determination of the manner in which the polarities changed, 
were accomplished by graphical analysis, with the results shown in Table 1-2.   It 
should be remembered that as far as the transform formulas are concerned, we need 
know only whether the relative polarities are the same or opposite. 

Determination of the ang'a of major axis shift ty is performed in a manner similar 
to the analysis for four observers.   It proceeds as follows 
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For b > a 

„        [value of m(for R^.J' 
co62^ =  

^ax 

2/3 b' HES) 
2 2 

b  XFM« 

,/,(, ^^Xf) 

XF Max 

or 

COS rp 
Max 

where the polarity of the radical is determiaed in the same manner (using Table 1-1) 
as for the XFMax«   T*16 angle ^ would then be measured from the m axis. 

Similarly, for a > b 

cos \}/ = r'^V^T? 
XF Max 

and i// would be measured from the n axis. 
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TABLE I-i 

POLARITY DECISION CRITERIA FOR THE RADICAL 

DETERMINATION OF RADICAL POLARITY 

/x = -C+tc2 + 2 j 

5^ 

fl<soc 

i-FS) <l-f^) 

k& 

f/77^) 
S3" 

iö) 

üZsT 

(-V^> 
(-V^) 

ES" 

f^i) (■•Fr?3 
u. 

"EsT 

f^ ̂ - 

I       ini rf i + «V 

ibAj 

tES 

lÄT 

9>60o 

X 

t'ASJ 

■("f^) 

■(-/^)s 

■('-^^)- 

(VE^ 
(■•V^ ~±£S> 

fv77^) 
(-f7^) 

-(WE^-r 

IbAf 

i^5lz: 
|»/b 
  (l +, 

_L_1_.JJL1 
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APPENDDC J 

DERIVATTON OF THE JOINT PROBABILITY DENSITY FUNCTION 
FOR THREE OBSERVERS 

i > 

The basic problem is to find the true degree of dependency or correlation between 
the time difference pairs which have one observer in common.  Suppose observer B 
were the center or common obaarver.   Further, for notation, let the errors or devia- 
tions from true time readings be 

TA-'A^A 

^'^-^ 

Tc - tc - At , 

(J-l) 

(J-2) 

{J-3) 

where T^, Tp and TQ are the true instantaneous values of time of arrival and t^, 
tg, tc are the observed instantaneous values. 

Figure J-l presents on« example of a possible time configuration with probability 
density functions sketched for each observer.   The probability that A has made an 
error of magnitude between At^ and äT^+dät^ is 

p(AtA) = —  exr 
c. V27r 

A 

AT A 

2a 
A    J 

dAt, (J-4) 

Similarly, 

P^) 
aB V2? 

exp - 

P(Atc) = 
ffc V2ir 

exp  - 

.'T   !?> 

(J-6) 

Defining the quantities At„ and A^ as 

'"N^A-V^A-V 

AtM = ^B " V " ^ " V 

(J-7) 

(J-8) 

the goal of this derivation is to determine the joint probability function fCAL., At^.). 
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Figure J-i.  An Example of Probability Distributions for Three Observers 

Subatltut jag from equations (J-l) and (J-2) 

*N = At. - ^ 

and, finally, 

AtM=^B-AtC 

(J-9) 

(J-IO) 

(J-ll) 

(J-12) 

Considerable confus'on and discussion can arise on the relative polarities of these 
quantitiea and, as indicated in Figure J-l, the possibilities include all combinations 
of polarities of the three quantities.  Since we are concerned only with AtA2 and Ate2, 
thf ääe combinations can all be reduced to two:  AtB is either aiding or opposing the 
c. entities At^. At^j. 

The next important probabilistic concept is, that to obtain a specific AtN and AtMf 
we must also obtain specific values for At^, Atg, and Atc.   The probability of doing 
this is the probability of obtaining these three errors simultaneously, ana 

p(AtN, At^ = p(AtA) pCAtg) p(Atc) (J-13) 

where At*, Atg and At^ represent those quantities necessary to obtain a desired 
Atp^ and At^ 

Siübstituting from equations (J-4), (J-5), and (J-6) 

p<AtN' AtM) 

VBV
2
"* 

3^exp 

/At, 
**■ 

At. 

2a. 
2 2 

2crB      2(7C 

dA^dAtg dAt, (J-14) 
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It is assumed at this point that characteristics cf the three observers are so nearty 
alike that 

and 

P(AtN' AtM> = 7^372 eXp 

aA ^ aB = ffC ^ ^ 

? ? 9 n 
(A^^ + Atg^ + At^) ' 

20 
dAt,d dAtgdAt, (J-15) 

Now, substituting for At. and At«, 

P(ÄtN' AtM) S 7^3^ eXP " 
Atg2 + {AtN * Atg)2 + (Atj^ ± Atg)2 ] 

2a 
JdAt^AtßdA^ 

(J-18) 

To obtain the total probability for the occurrence of a given Atj^ and Atj^, we must 
add the probabilitiee for all the mutually exclusive collectively exhaustive wiys in 
which these Atj^, Atj^ can be obtained.   This is done by allowing Atjj to successively 
take on all possible values from ~<x> to +<». 

Thus 

dAtAdAtc     «o 

P(AtN( At^ = ^372  /„ exp 
rAtB2 + (AtN * AtB)2 + (ÄtM * AtB)2 

20 
dAtg  (J-17) 

Since At^, Atg and At^ are independent and since, for example, At^ i-^d Atg are 
kept separated by Atj^, 

^TA 

-*|AtN   K 
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-r-m 

v*^*^2*^*^2" dAtg (J-18) 

If we then define the joint probability density function as 

P{ÄtN' ^W 

the result is 

f<*N' ÄtM> = -J ejqs - 
a (2ir) ^.00 

f AtB2 + <AtN * AtB> + <AtM * AtB)5 

L 2 
dAtg (J-20) 

For those interested in a more classical verification of this relationship, the problem 
is one of 

given   P(K, y, z) 

\ find      P'fu, v) 

where x, y, and z are independent variables and u and v are some functions as 

u = u(x, y, z) and v = v(x> y, z) (J-21) 

For any particular u, v there is a curve in x, y, z space.   The probability of being 
in the incremental area (u + du - u) by (v + dv - v) is also the probability of being ia 
the volume x, y, z which is formed by the locus cf u(x, y, z) and v(x, y, z) for each 
given u, v.   If the curve is single-valued with respect to the z axis,for example, we 
can integrate over z to find the total probability of being in the volume.   To find these 
curves as a function of z, the equation (J-21) must be solved to give 

x = x(u, v, s) 

y = y(u, v, z) 

(J-22) 

{J-23) 

f* 
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Then 

P'dudv = 
Al 

T   P[x(u, v, E). y(u, v, z), z]dA 
iz 

(.-24) 

where, using vectc T notation, 

dA = ^\+ljIv)x(l?^+^ V dw3v (J-25) 

and jx^, Ji^, v^, vt are unit vectors.   When tfce cross product is performed, this 
reduces to 

dA'- 8x 8v    8x 8y 

Therefore 

P' - /l{x(u, v. z), y(u, v. z). z] |s|l.|5|z|ds (j.26) 

where P' is the desired probability density function. 

For the example at hand 

where 

Evaluating 

1 «J /o exp 
f    2^   2 ^   2 x   + y   + z 

2^ 

x = ^T + 
N1"^ 

y = AtM + ÄtB 

Z      =      Atg 

9x     8^ + Atg) 8x 

15 15 tjj ■^ = ».sf-i.U-« 
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gives 

and 

«6 

pi = "T~~T75   f   SXP 

which is precisely the same as equation (J-20). 

(Aij, ± Atg)2 + (A^ ± Atg)2 + dtg2 

20 
dAtg     {J-27) 

Continuing with the solution of aquation (J-20), when the expocent is expanded and 
coiiected, it can be written in the form 

-2- itJ + % 
202     ^ 

t <AtN: ^iL , AtN2+^ 

from the integral tables which ^tate 

j   expl - (Ax  +Bx  +C)|dx^^^e^) B2-AC (J-28) 

Substituting 

1 r     —        i 

f{M,., At^) = -T^l J ö   exP N      ^       (2 7r)3/V 13/202 

(AtN'AV2       3      ÄtN2 + ÄtI^ 
40 ^ 3/20 

(J-29) 

when the coefficient and exponent are simplified 

f(ÄtN' ^=-^rexp 
2/3

<AtN2 + AtM2 " ^W 
20^ 

(J-3Ö) 

and using the standard deviation per pair of statioiAß, as noted in Appendix Ef b.g., 

{3-31} a2 = 2(? 

f(AtN, Atj^) 
orirVs 

exp 
2/3^^ - At^)' 

u 

{J-32) 

which is the formula discussed in the main text. 
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It is Interesting to note the direct comparisor between this result and the result 
of Gausßian noise adder eircuita.   Ji we have three Gaussian noiae Inputs, x, y, z 
with standard deviation a for each, and ufte an adder (or subtracter) circuit element 
for x, y and z, the situation symbolically looks ilfee 

J2± 
JhJL 
.Ä. 

The density function for this condition, given in aumerous texts, is 

! 
f(u,V)  =               m. ■  ©xp 1 

"2 

"2                   2' 
- 2rx, + v 

. (1-PV   . 
where p is the correlation coefficient obtained from 

U   V 

However 

uv = (y - x) (y - z) = y" - xy - j-z + X2 

uv = y2 

and 

hence 

?.172 + yW 

uv »a2 

It can also be shown 

u      v 

(J-33) 
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0* 

V2oV2a 

Ana, for tM» value of p, 

•^"to2 
exp 2/3 

1 
2 

(a  *Y   - avy 

^ 1 
r which, (kfKin, 1« ideEtical to the derived formula. 

f«l 
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APPENDIX K 

MODIFICATION OF ELLIPTICAL TRANSFORMS FOR A DIVERGING, 
OBLIQUE COORDINATE SYSTEM 

As stated la the main text the true cocrdinate system about the point P is cot a 
grldwcrk of lines parallel to the LOP;s at the assumed true point P.  Rather, each 
set of points m, n which satisfy the error conditions Atm, At^, He on the hyperbolas 
associated with £%■,, &£ SO that the angles between the m and n axes and the hyper- 
bolae are right angles. 

If we (see Figure K-l) also construct the intersections of im, «Q in the usual 
manner on lines parallel to the LOP'e, then these point, and the points described 
above, for example m' and n', and the t- ue point P all lie in a straight line.  It is 
then desired to determine the change or adjustment of the values, called R (or C) in 
the text, into the values d and a.   This is accomplished with engineering approxima- 
tions in the following manner. 

In addition to Figure K-i, consider the following enlargements of the regions 
5   and 6 . 

x        y 
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\ 

figure K~l.   G'sometry of the True DivergiDg Oblique Axis System 
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^ = A + B. Oy« E+D (K-l) 

Tben by trigonometry 

ai« A = I_ Sin B = -        C' - c 

aln A = 1 
sinB     h 

(K-2) 

and 

itol'iilax' slnA " sin 80 

iSD'^lnVsfrB     Bia90 

ainE _ S51SJE 
sin D     h sin M 

-e then exercise the engineering approximation that 

llS-*« i 
slnM 

(K-3) 

(K-4) 

and 

sinE _ ä 
sinD     h 

(K-5) 

Further 

sinA« A, sinB « B, etc. 

Therefore 

A ÄÄ   E      * 
B     h' D      h 

B      D 

(K-6) 

(K-7) 

or 

+ B      E_+D 
B    "     D 

B  „ D 

(K»8) 

(K-9) 
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ESS 
SI 
A 

IP 

11\ 

Ffrtber, by tfeo Uw of sines. 

but by equatioB {K-7) 

Therefore 

sis x     »in £ 

aia 90      am A 

«in E 
a sis A SÜt X 

c 
a « ~ (sla x « 1) 

D 
E ■1 

^ K E 
£ 

B + A 
A 

I D + E 
B+A 

D + E 
/a     B + A     F 

Likewise in the other two triangles involving 0Z j>nd the other Sx, we have 

(K-10) 

(K-ll) 

(K-12) 

(K-13) 

(K-14) 
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X 

however, as before, 

sin 9ö     sin D' 

siar       sinB' 

d     slnP' Büty ^ D: 
c"      sinB' B' 

D' + E' = 9 

A' + B' = 0 

(K-16) 

(K-16) 

(K-l?) 

(K-18) 

(K-i9> 

and 

d _D1 
c " B' 

« (K-20) 

FinaUy 

d = cxd.?zA 
a     a    c     9„    »- x     « 

d 
a =? (K-21) 

To convert this to other system parameters consider 

Ö   + x + M + f = 360[f = 180 - 6 ] 
y x 

or 

and 

Further 

©   = 180 + 0   - (x + M) 
y x 

5    = X + M + 0V " 180 

4J 
^ = 90 - x 

M_ n = 90-M 

{K-22) 

(K-23) 

<K"24) 

(K-25) 
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Otvijg 

IE & 

fB*m*A0\ 
im2     nJ »^ + M) 

" 180 - (x ■»• f*) 

180 

Equatioa« (K-14), (K~20) and (£-21) cm be rewritten 

»   » ^^ 

x x 

d 0_ 

W. X 

x     m      m-     Q fx'"2~   "1" 

(K-26) 

{K-27) 

(K-2S) 

(K~2S) 

sad 

i d     gx^   2    ^2 
a' M      % 

a       m        n 
dx'   2    "2 

Finally, to a very close approximaüon, 

M m       . -1  m     Imj jjss « gin    — » -—- 

äß. ini 

n 

and (with 9S given in radiaBs) 

d       x     fn     rm 

x     r       r n       m 

(K-30) 

(K-31) 

and so forth. 
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