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ABSTRACT

An engineering model is developed of the error contours encountered in

position fixing using synchronous time of arrival data. Normal distribution is
emphasized. Probabilities of fixes occurring within circles and ellipses are
determined using the natural oblique coordinates associsted with the measuring
system, Comparisons are made of three-observer and four-observer configuraticns.
Examples are provided and applications are discussed.
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I. INTRODUCTION

In general, any event generating a signal which is sharpiy defined in time, and
which is propagated with known velocity to three or more fixed observers, has a
spatial position which can be calculated. Conversely, from the reception at a single
point (observer) of three or more sharply defined time signals emanating from syn-
chronized fixed stations, a spatial position can be determined (i.e., LORAN).

The determination of the position fix is accomplished by ccmmunicating the
synchronous time of arrival (TOA) data to some corimon point of intelligence where
the lines of position and their intersection can be calculated.

The accuracy of calculations is, in general, directly proportional to the sharpness
of the time signature and the separation (in space) of the observers or the stations.

There have been numerous treatments (references 1, 2, 3, 4, 5, 6, and 7) of
the physical systems which provide measurements for calculating a position fix. Most
of these also discuss the mathematics of calculation of the fix, as well as the various
error factors encountered and their causes. Analyses of the impact of errors on the
spatial fix geometry has, however, for the most part been treated as incidental to
these other objectives.

Therefore, this effort was undertaken in response to an apparent need for the
derivation of a model of the geometric analysis of errors. The prime purpose was to
make this model thorough enough to explain the various factors and parameters and
provide derivations of all functions and quantities necessary for understanding and
using such ¢ model. In the following ~escriptisn of the method of attack, most of the
analyses and results obtained did not appear tc be available today, as indicated by
research of the references and many other sirailar documents.

Engineering s'mpliii:ations are used for greater insight, provided the end resuits
are not co' taminated by inore than 5% error. Following a review of the fundamentals,
a new tool of error geomzatry resuiting from a unifcrm or constant error density is
furnished as a means of making comparisons with other density functions. Calcula-
tions and curves are provided for the Quasi-Circular Error Probability (QCEP)
radius for all values of probability in addition to the usual probable error of o = 50%.
Determination is made of the Elliptical Error Probability (EEP) ellipse in terms of
the probability of error, ratio of (space to time) gradients of the base lines, and the
standard deviation of spatial displacement per base line. A comparison is then made
of QCEP's and EEP's.

Since both the QCEP and EEP analysis is performed for dependent (three observers)
and independent (four observers) lines of position, a2 comparison shows that, contrary
to intuition, the three observers emerge superior to four.

Derivation and application of elliptical transforms from a rectangular to an
oblique coordinate system is provided. Probabilistic/gecmetrical aspects of inter-
preting single data sets (versus the usual distribution cf large samples) are discussed.

"There is, in effect, a correction factor, which is derived, for the true divergence of

the oblique coordinate system about the fix pcint. Examples are also given of applying
this model including a possible deep space application.
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II. FUNDAMENTALS

The most fundamentel tool involved is the locus of points of a given time difference,
f.e., difference in distance from a fixed pair of observers. This locus, as shown in
Figure 1, is a hyperbola.

The mathematics involved In thig vital system component are quite simpie. K
the propagation from peint P to chservers A and B is in a straight line at a velocity
V, then, for a given hyperbola,

D, - Dy =v(t, - tp) = constant )

wher= t A and tp are the respective times of arrival (TOA's) measured to the same
(synchronous) reference, and the distances DA and DB are also straight-iine measure-
ments. )

I is important to note, for the sake of generalization, that we are not restricted
to any plane of action. Drawing the two hyperbolas in the plane of the paper wase
purely arbitrary. The total loci of points are the surfaces of revolution obtained by
revolving the hyperbolas, as shown in Figure 2, around the line A-B as an axis. K
we wish to confine our interest to aay particular surface, which suppose&dly contaius
the position fix, we may limit the loci to those of the lines of intersection of the
particular surface and of the hyperboloid of revoluticn. The major part of this report
is limited to a plane representation of the earth, or space, as such a particular
suriace.

I the psths of propagation are not straight lines, but have known radii of curva-
ture, the loci surfaces may still be defined and will, in general, be hyperbolic in
nature. For example, in the case of an assumed sphere such 28 the earth, the radius
of curvature is the radius of the earth and the propagation paths are (assumed) great
circles. The hyperbolic surfaces will, accordingly, have to be 1aodified. In effect,
they would be generated from a plane hyperbolic figure whose distances Dy and Dp
represent great circle arc distances instead of plane struight line distances.

While the development of this concept might be of considerable future benefit,
it is not an objective of this report. Suffice it to say that the change in the difference
of path lengths is not linear and is given by

A@D, ~Dy) = R(6, - 6,) - 2R(sin 02/2 - sin 6,/2) @)

where

R = radius of the earth

A"andD

91 and 9? represent the great circle distances of D B

i
3
]

ol




0,-

e

Df Constant

Figure 1.

Asymptote

Fundamental Hyperbolic Geometry

s —




Figure 2. Basic Error Geometry (Three Cbservers)
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or, perhaps more simply, starting with the originai hyperbolic lines, the constants
of difference would be obtained from

DA—D

B = R(G2 = 91) = constant @)
It can be shown that these modified hyperbolic surfaces will intersect the earth in
such a manner as to form civsed curves which are ellipses, if four observers form
two base lines which are conjugates of each other. The extension of such hyperbolas
into ellipses on a spherical surface has been noted by Dr. E.A. Lewis of AFCRL. 1

The various formulas which have been developed for the direct calculation of
position from two or more pairs of time differences are quite complicated. None of
these appears to offer the accuracy required for most applications. One of the most
promising methods currently in use to obtain accuracy is: obtair an approximation of
poaition using a relatively simple formula, calculate or look up the time difierences
which would occur if this were the true fix, and then compare these time differences
with the data sets. The resulting so-called space/time error could be reduced to as
small a value as desired by moving the position a small amount in an indicated direc-
tion and continuing iterations indefinitely. There is usually, however, a practical
limit to the number of such iterations allowable.

Unfortunately, the error encountered in this caiculation is not the only or worst
error. I is the TOA measurement itself which is more fundamental.

What are the error distributions and how do they affect system engineering and
total system accuracy? For a given timing error or timing error distribution,
calculate geometrical areas which contain the measured point with a given probability.

Figurcs 2 and 3 relate the basic elemerts of the geometry involved. For a first
order of accuracy and simplification of the model, it is assumed that we are dealing
only with the plane surface representation of the total hyperbolic loci and that the
propagations are straight lines in that plane.

The observers are A, B, C and A, B, C, D for the three- and four-observer
configurations, respectively. Also the lines AB, BC and AB, CD, respectively, are
the base lines of the three- and four-obaerver configurations.

The dashed curves represent the hyperbolas of a constant difference of time (or
distance) as measured by these observers, and selected to include the point P, The

lE. A. Lewis, Grometry and First-Order Error Statistics for Three- and Four-
Station Hyperbolic Fixes on a Sph:rical Earth, AFCRL-64-461, June 1964.
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asymptotes to these curves are represencea as the straight lines from the center cf
each bege line through the point P, thus introducing a small, negligible error in the
argles, Om n. The exact construction of the asymptote is accomplished as follows:

a. The base intercept of the hyperbola ie obtained from
2a = v (T, -Tp) 4)

b. A semicircle is drawn about each base line as a diameter, i.e., AB, BC,

c. A vertical line is erected from the base line <t uoint a to the semicircle
(Figure 2).

d. A line is drawn from the base line center to this vertical intercept of the
semicircle, and then extended out as the asymptote.

The concept of the base line error, €, is that the quantity tp - t3, will have
errors +At associated with it, also associated at the base line is a quantity, ¢,

given by
v At

€ = erommm—

2

¥, then, the asymptotes rm, Om and rn, Oy have associated with them the errors
A6y, A0 which result from errors €p, and €3, the crosshatched area would repre-
sent the area of uncertainty for given error limits. The equal division or statistical
centering of A0 about the true asymptotes is implied only for the sake of deriving

a correction factor (see Appendix K). K A6y, and A 6, represented error limits, the
crosshatched area would represent the area of uncertainty for those limits. In the
gections to follow, except for one portion which actually deals with such a hard
limited case, the size of §, and hence A0, is assumed to follow a normal probability
distribution. Another assumption made is that, for purposes of engineering accuracy,
the crosshatched area is a parallelogram bounded by four displaced hyperbolic LOP's
(lines of position).

In order to measure cr evaluate these LOP cisplacements, the oblique coordinate
system m, n is established at right angles to ry, and rp, respectively, since it is
assumed the LOP's are parallel to the respective rm or rp.

Comparing the use of this oblique coordinate system to the usual orthogonal,
rectaugular coordinate system is believed o be unique in that it appears to be the
first time that the complete analysis has been performed on the natural ccordinates
of the system. Secondly, it offers a certain advantage in eliminating the necessity
for understanding, defining, and computing, variances, standard deviation, correla-
tion coefficient, etc., required for the use of rectangular coordinates. Tc be more
analytic, assume tha® we are dealing with the rectanguiar coordinate system x, y
such that for a true fix point and given LOP displacements, for exemple m and n, we
would have,

n

<
i

mecesc O+n cot 6

»
]
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TRUE LOP

.

It then becomes necessary to establish a correlation coefficient between x and y. First
establish the variance in x and variance in y. For the case of in and n, independent of
each other, the situation is not too bad, with,

e

02=02 /

y N y

2 2 2 2 2
ox = ¢8C Bam + cot flon

and correiation coefficient pxy given by

COVix,y) _ E@y) - Ex) E(y)
oo o0
Xy X'y
which turns out to be
COT 6 orn

A -

Xy .
{csc2 90 2+cor? oo’
m n




Having determined these fundamental reciangular parameters, the next step of
comparison would be tu integrate the probability density expression

] exp |- X xi_zxypxy ,,_s'_;
0 0o
”cxcy /l-pxyf 2(1-pxy) Ox Xy oy _

over the area of interest. Setting the exponent equal to a ¢onstant, such as CZ,
results in the aresa being an ellipse with prcoability '

it

a = l1l-e
whkich agrees with the results obtained using the oblique system. =

At this point perhaps the most significant difference is in determining the size of
the ellipses for a given probability; the most significant advantage of the rectangular
coordinates is that examination of the equstion of the ellipse can provide the orienta-
tion and size of ellipse. By comparison, using oblique coordinates. a differential
max/min determination must be made to obtain the true spatial description of the
ellipses, '

Referring to the rectangular parameters, when the quantitics m and n are not
independent (three observers), the determination of variance x and the resulting
, are considerably more complicated, resulting in much more compliex expressions
for the ellipses.

By comparison, measurement and analysis in the oblique system virtually
eliminate the requirement for establishing these statistical parameters in the space
domain., As shown in this report, once the correlation factor of errors in the pairea
time differences (Atp and Aty,) is determined, and the density function, f(At,, Aty,),
is known the conversion to the spatial representatior fullows without further statistical
anslysis.

Before comparing the difficulties of determining a circular area which contains
the point with 2 probability o, a Quasi-Circular Error Probability (QCEP) is defined.
A circular area of rvadius, R, regardless of the coordinate system, oblique or other-
wise, which contzins the point in question with a probability a@ is determined. This
differs from the classical definition of CEP3 in two respects. First, values of R for
all values of @ from 0 to i are obtained, rather than the special case of @ = 0.5 only.
Second, . ates, whether x,y coordinates or m,n coordinates, are not equal nor
does R=v'mZ+n ; hence, there may or may rot be a Rayleigh function involved, so it
is 50% probable that R exceeds 1. 177 of some equivalent 0 . Nonetheless, a joint
probability function throughout a circle is integrated avnd the results are abbreviated
QCEP.

3B_eference Data for Radio Engineers, International Telephone and Telegraph
Corporation, 4th Edition.
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Contrary to calculations of the QCEP in the obiique system {Appendices C and D)
complication rather thax simplification results from utilizing a rectangular coordinate z

system, 3
In tae case of four observers, the rectangular coordinate system requires a
solution of $
R
- 2
a = fl(ax,ay, 8) [R{o[fz(n,ax,ay, Ox)] -b[f3(n,ax,ay,0x)]}exp[-f 4@ ,ax,ay,ex)]dn
where
£ = 1
L p
40 0 _¢/l-p
Xy Xy §
. 4
sn i
I, =33 * AR xi
_Dn
! f3 = 3a - AR
. D .2
f, = (A -—=)n
4 4A2
and
H A = - 2
20 0 (1-
T ; Oy -Py)
p
D = _-LZ—
Uxay(l-p )
£
g =0
y = % f
3
5 o =‘/CSCZB<72+COT20 o 2
X X m X Dn
. COT 0x o
Xy

V/cscze o 2+cor? 9 a?
X m A N

11
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whereas, in the oblique system, the ca'culation

. R 2
1 n
- J— . 4 - - dn
a < —2— [ o] ‘{vzl)exp[ 20,_]
n -R n

where
sin 0

b4 2

(noot9x+ Rz-n)

m

shh 0
v, = 2
Y2 o

m

(@ cot Bx = Rz-nz)'

For the case of three observers, the ratio of complexity of rectangular over
oblique systems iz considerably greater. Both systems will add a term to the &
functions, hut for the rectangular coordinates there is, in effect, a correlation
factor within a correlation factor, which modifies the parameters as follows

2 2 2 2 2
Ux = ¢8C Bx o, +cot 6 0" +csc Bx cot Bx 0.0

1

- 2 2
3 csc Gx 2.0 * cot Bx o,

Pry =

2

ov'_ 2 2 2
cse 8 0 “+cot”" 8 0 “+c8c B cotf 0 0O
n o x'm X n x X mn

whereas, for the oblique system, the functions are changed only by the addition of a

minus n/v3/2 0, term.

As shown in Appendix A, the angles which form the asymptotes tc the hyperbolas

are given by

0 - gl B

, = cos | ———
2C

0 1| Vs - tp)

m = €08 ——rar—
' 2C

®) -

(6)

For all points beyond a distance of one base line, these asymptotes are a very good

approximation to the hyperbolas themselves, e.g.,
e

L and rm> 2C

12

™




I greater accuracy is required for fixes which are closer, either more precise
formulas must be used or solutjon by construction can be performed. The latter
may be performed by referring to a preconstructed system of hyperbolas, provided
the incremental steps in time differences per Lyperbola are fine enough. Paren -
thetically, and as & philosophic rationalizatica, it is stated that the utility of this
mode! is proportional in some manner to the range. That is, it is difficult to
visualize applications where ry or rpy, are less than 2C. One probably encounters
such things as: ‘'l can see the guy with my naked eye, "or, " K the person or the
event is that close to home, who needs a system to measure its lucation? "

Vhen 6y and 6, have been determined, these and the crossing angle 6k are
related by

_ 0

ex = 180 +0n-(¢+0m) 8)
where ¢ is the angle between the base lines. Perhaps the simplest way to determine
the distances rp and ryy is by construction on the piane representation of the base line
system.

If direct calculation is preferred, it may be obtained as follows:

In Figure 4, since the line d joining the centers of the fixed base lines is iixed,
the angles e and f are also fixed. Then using the law of sines

T r
S 0. = 5@ (9)
sin 6 sin (180-f-0 ) sin (0_ -e)
p 4 n m
sin (180-f-0 )
r =d —2 (10)
1L gin 8
X
sin (6_ -e)
r, = d —n (11)
gin@_ -
X

These relations are equally applicable to either the case of three observers sr four
observers. Thus we have performed either a calculation or graphical solution, or
combination, for all the geometric variables asscciated with a given set of fix data

Regarding accuracy in the use of plane geometry, using the spherical surface
of the earth, either a scaled sphere or globe or a plane map frojection of the earth
may ve used for the construction and measurement of the geometric factors. The
former is apt to be quite inconvenient. Concerning the latter, if the map were
distortionless, and straight lines drawn on the map were the true representation of
great circle segments of the giobe, then the base lines and asymptotes would be true,
and the plane model would be without error.
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Figure 4. Geometry of Angles Involved

Since a Lambert conformal conic projection contains a distance measurement
maximum error of about 1% to 2% for the ranges of concern herein, and since we are
for most cases utilizing the asymptotes as LOP's (lines of position), the errors
should be negligible, This is particularly true if the crossing angle, 6, is calculated
directly in terms of Lat.-Long. and spherical angles. An enabling factor is the axiom
that the tangent to the hyperbola at the point P bisects the angle subtended by the base
line, such as APB. Thus, if we are seeking a statistical analysis for some assumed
point, P, i. is relatively simple to establish the angle, 6) and 82 (see Figure 3) of
the true hyperbolas and then obtain b

Ox = 91+92+OBD

where, for three observers, fgp = 0

14




The details ard derivation of such quantities as n, m, 6y, 6, R and Fare
given in Appendix A. As seen in Figure A-1, determination of these quantities is
independent of the number of observers involved since we are dealing with only one
given pair of readings at a time. In resume, the formulas fcr these quantities

follow:

n="0LAt ;m=T_at ' (12)
6 - cog-lZ(B_TC)
n 2C (13)
R? - ; (m2 +1n% - 2mn cos Gx) (14)
sin Gx

where, in addition to the quantities previously defined, Aty is the net timing error
made by A and B after subtraction, and Aty, ie the error of B and C, or C and D.

l"n is a time to space gradient whose value is given by
r v

_ n
L= wcemy 49

0% is the crossing angle formed by the intersecting hyperbolas or their asymptotes.

R is the distance in the oblique axis system m, n to any point P' from the origin P.

C is the base lin~ radius or one-half of the base line.

This concludes the essential geometry of the fix system.

15/16

pheatl T ISR AT

o

AR X




III. DISCUSSION OF UNIFORM PROBABILITY OF ERROR GEOMETRY

The probability of committing an error of any magr.i‘ude has not yet been
mentioned. Of the many possible distributions of errors, this discussion shall be
limited to two:

1. Equal or uniform probability,
2. Normal distribution of errcr.

The first case will be dealt with rather briefly. While such a distribution may never
occur, its analysis has academic value if for no other reason than to provide a
comparison or check against results of the second case or, for that matter, any other
distribution. The details of this analysis are given in Appendix B. The important
_result to be noted is that for given limits of error of € the radius of a circie which
. would contain one-half of all the measured fixes, i.e., the QCEP (quasi-circular
error probability) is closely approximated by the following expressions:

CASE RADIUS R

2R< AS_< AS R = ¢/C /_ "n'm 16
n m / 3 27 sin 0 sin & sin 0 (16)

X n m

rn

A8 <2R<AS R = €/C ICshm fxsm gn (17)

p3 p3

€ rm rn

a8 < A3 < 2R R = 55 53— +t—3 (18)

sin“ 6

4 sin Bx sin 0m

The QCEP, for the cos exp & = 50%, means that there i: a 50% probability that
any one particular calculation using data which contains errsrs will produce a point P
which lies within this same circle. It can be seen from Figures 2 and 3, and from the
previous discussion, that there is nothing inherently natural abow* a circular area of
fix points. Infact, if a contiruous smooth curve of equal error probability were re-
quired to approximate this arca, it would be inclined to be an ellipse. The inherent
benef t of elliptical contours will be seen in the second case of normal distribution
of error. Meanwhile, we are faced with a necessity of at least being able to compute
QCEP’s in order to be compatible with other systems which cause the event P to occur,
where the probability of cause is inherently circular.

Since the second case of a normally distributed probebility of committing an
error € is believed to be more representative of this system, it will be treated in
considerably more detail. One example of a component of timing which may depart
from the normal distribution of variance is the velocity of propagation of the event.
Actually, throughout this study, the velocity is assumed to be constant, i.e., given
no distribution whatsoever. However, if the magnitude of variance, with different
paths, is significant, it is believed that its distribution is more apt to be Rayleigh
than normal.
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IV. DETERMINATION OF STANDARD DEVIATIONS OF LINES OF PGSITION
DISPLACEMENTS

—

This section discusses the determination of On and O, the standard deviations
of the statistical displacements of P' as measured along the axes, n, m.

The first step is to establish the probability density distribution of the timing i
errors for a pair of observer measurements. This is done in Appendix E.

The significant features are: {
!
If 0 = standard deviation of timing errors encountered at each observer 5
station
T A- exact true TOA at station A
Tg= exact true TOA at station B
i
The probability density function of timing errors at A and B are
[ty - T2
1 A A -
iy = oxp |- —5—— (19)
ovZn i 2c? |
S fEy) = - exp F— -—'————-(tB -4 20)
B o |
and the density function for the pair is
2
1 M-
fix) = exp |- 1AL 3
o Vom 20
X X
whers
X = tA'tB or tB-tC
M = TA“TB or TB-TC
¢ =V2c0
X

This also defines the important quantity Oy .

For convenience and reduction of terms, th2 quantity M-X and the quantities Atp
and Aty as used in Appendix A and elsewhere are the same. Thus, to clarify and
standardize nomenclature, the density functions for each pair are written

. ! Al
ta-tp) = ——ew|-=5 22)
X

B == TR SIS IR e
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or

exp

-

Referring again to Appendix A, and recalling that

therefore

y- It i8 ngain emphasized chat this e
" accuracy as the distances r
and 8y, approach 0° or 180°.

vr
n

L= "2'ch‘9’n

vy
m

l-'rn - 2C sin Bm

m

Consider the special value

)

{

giving the specisal value

[y

l"n At

l"mAt

n

m

(23)

(26)

27

ngineering simplification degrades rapidly in
n and ry become less than 2C and/or as the angles 6n

(28)

29)

Using standard notation for the normal density function for variations in the value of

2]
LU

202,
n 4

n gives

Substitution gives

f(n) =

20

(30)

31)




P

If ng is interpreted as that value of n which makes f(n) = 0.242/0, , i.e., the one
sigma value, then

r2e¢?-¢2 (32)
n X n
and we have the important relationships
o =T o (33)
n n x _
o =T 0 (34)

A formula which gives a closer approximation for valﬁes of rpor r;; < 2C is
obtained Zrom Dr. E.A. Lewis'®and 5. W, Sitterly *

T XV

- <l g — YV
U, B B, B, 0, B, B, (33a)
2 sin 2B 2 sin 2B,

\
where -

"TAB is the standard deviation »f the errors in time-difference measurement -
-made by stations A and B, " and is therefore equivalent to 0y . Bp and Bp are the
espective bearings of the lires AP and BP measured with respect to the true nurth
vector at P. Thus BA - BB is the base line angle APB subtended at P.

In fact, if we consider the earth spherical and can measure B, and
Bp more readily and/or accurataly than r and 8, this computation of Oy, and 0y
where

X UXV
On = B -8B (34a)
251!1-—32 =2

may be preferred to the gradient I,/ for

On/m = % 1-‘!11/m
used in this study.

Loran, MIT Radiation Laboratory Series, Vol 4, Mc Graw-Hill, New York, 1947.
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A more general proof of the validity of this concep: foilows. Using the probsbility
thecrem that if

we have

or

hence

but

80

and, if

v = f)
pv) = p)| 3]

n = f(At-n)

n = PnAtn
_ _n
at = $am) = r;

n
l"zAtnz
pAat) = —i— -2 —
b
(on/l"n}. o7 l_ 20
\ 2
B 1 [ Atn
p(At)) = exp | - —5—3
(on/l‘ on l_ 20 /I‘n_]
o
o - o)
x I,
22
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Pom pie. S SIS £ XS ¢ Pl

this becomes the identity

: at®
PlAL) = ——— exp | - —5 )
o Voir 2¢
X X
By symme‘ry
]
n
@“n
T
Another reiationship which introduces the *mportant parameter, 8, is
an I‘n ax I‘n
o x - D _g 42)
% Tmo I -
X
Further ¢ e, _ .
vr, o T J
r 2¢c sin @ r_ gin 6 .
n _ n_ n m @3)
rr-n Vim T, sin Gn _
2¢ gin Em
If g and h are the vertical components of ry and ry, onto the; bagé lines and if
I'n & 'y then fo:' a quick approximation
L)
o r » )
n n :
-6— = F_ = % = ﬁ (44)
m “m _

This approximation is valid for the geomeiry of both the three and four observére, and
should complete the iasic model of the system probability/gecmetry.
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V. DETERMINATION OF QUASI-CIRCULAR ERROR PROBABILITY FOR THE CASE
OF FOUR OBSERVERS

From Figures 2 aud 3, calculate the probability that a given set of time measure-
ments will result in a fix which is displaced from its true position P to P'. P' is
measnured in the oblique coordinate system m, n as the distance to the vertical
projections of P' on n and m. This is alsc representative of the displacements of
the hyperbolic LOP's from the true LOP's.

At this point the QCEP analysis must separate into tv:o branches; as will be
shown, there is significant difference between the probabilities, and hence radii,
for the case of four versus three observers.

The case of four observers is treated first because of the simplification that the
paired differences of time readings are independent of each other, wh2rezsa such is
not the case for three observations.

If p(n) and p(m) represent the respective probabilities of displacements of mag- b
‘ nitude n and m, and if the environment and readings of A and B are entirely independ-
ent of C and D, then
fa, m) = f{) Xf(m) (45)

Also, for normal probability density distribution, we may utilize from standard
probability notation, tirz following:

p 2 ‘1
1 n
f(n) = exp | - 5 (46)
on\/'é'ﬂ 20
- -
q 2
f(m) = expl - 2 5 47)
o271 20
! B i
or,
f SYN S n’_, m’ 48
: o m on 0m211 P 20 2 20 2 “9)
n m

The associated probabilities for incremental regions &n and Am then become

il .\ e

2
pn) = 1 exp ——9-2- An 49)
o J2r 20
n n
! 2 %
pim) = —— exp| -2 |Am (50
] o _Vim 20 >
m -
:
25 3
%
8

e ——— T T E——— - S———— - —




Consider now the region A (which shall become a circle) and all the various combina-
tions of anique points n, m and their probabilities of occurrence. Since these 2re
mutually exclusive events, the total (collectively exhaustive) ; robability for the

region A is given by

a = ), 7 fe) Xf(m) Am Ao 61)

m I

or, by well-known use of the integral calculus for the continuous case,

For the special (QCEP) case of the 1region A bounded by a circle of radius R

R f2(0) 2 2
am e [ ) o R e EC
-R { (n) n %m
where
f,n) = ncce Bx - Vnz-nz sin ex (54)

2
£,@) = ncos 6 +¢R2-n stn §_ (55)

A close approximation for small values of R sin 6; was found to be

2 2!
f, @ f, ()
- m— f[f @)-f (n)]{ [ z]*exp[--g“r]}
m 20

2 (56)
|27 -
20

o

a

A more exact expression developed in Appendix C, which is goed for all 9 up tn the
practical limit of 909, is given by

1
2EV2TK

R
]

+1 2
(¢, &) - &_x) exp[- X ] dx 7
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where

¢.&) =
V2K
&, ) = @{sine
vVZK

é{sme (x cot 0+J1-x§)=

(xcotO-Jl-x)}

4 ST IIN

(8)

©9)

and the symmetry of results is such that solutior.s can be miide in terma of that
variable whose standard deviation is the greater. The tabulited results foilow,

NOTATION AND VALUES OF G CEP VARIABRLES

TABLE I

i
e > o o > o
X = /R m/R
B = on/om am/an
K = o %R o %/R

Figure 5 represcnts the results of the use of these equations to determine the
circle R versus the required probability, o . The line drawn through the curves at
o = 50% gives the required velues of R, in terms of On or Cp,, for the specia! QCEP

equivalency case.

Note that B, 6n, and 6% appear related in some complex manner. K this is true,
one of the parameters B or 6; could possibly be eliminated thereby reducing the
number of curves necessary to describe the system under these coaditicns. The
fact, however, that B and 6y are not entirely independent of each other does not in-
Values for these curves wore computed on the
CDC 1604B computer. Both formulas were used for small values of R sin 6 with
very good result comparison. To cbtain values of the error functions for #; and ®g2,
a program was successfully written based on the infinite series given in Jahnke and
Emde which resulted in gsod or better accuracy than the values in their table,

validate their use as parameters.
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V1. DETERMINATION OF THE QCEP FOR THE CASE OF THREE OBSERVERS

Comnere the case of four observers with that ¢f the three obgervers in Figure 2
where, in effect, observers B and D arve merged into one. The sitaation with respect
to the independence of pairs :'cf’ time differences iz now changed; they are no longer
independent. In terms of a cuefficient of correlation, or correlation factor, consider
two theoretical extremes to help visualize the situation. First consider B to be
errorless, with all of the Gaussian distributed errors committed at A and C, This
would again represent an independent situation or cne of zero correlation factor,

Next consider A and C to be errorless, and assume a!l of the errors to be committed
by B. This would represent a one-to-one dependency with a correlation factor of
one. The fact that the three observers create errors with equel distribution makes
the actual correlation coefficient of 0.5 seem intuitively feasible., The prouf of

p = 0.5 is given in Appendix J.

Also from Appendix J (Equai'tion J-32), the joint probabiiity density function in
the time domain is giver by

2 2
AT, 2 +AT, 2 - AT,, AT
f(ATy, ATy) = —— exp| -2/3—F o M_NI o)
o V3 o

For comparison in the space domain with the case of four observers, make the
following conversion. K increm: ats in the space domain are related to increments
in the time domain by a constant, then

f@,m) dAg = £(At , At )dA,

where dAg and dA¢ are the respective two-dimersionsl increments. The constants
referred to are:

_n _dn
My =y » 48Ty =y
n n
dm

ar, =& . dar,, =
M T, M

Then

S &
e g
Sog
%
z'-i
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sud by substitution intc Equstion (60):

r‘nr‘m 2 n2 m2 nm
f@,mydA, = ———— exp|-3 ¢ -
8 o0 73 A\r2y r¢e?2 r r o

n m \ X m x m x
dm dn
rﬂl rn

or
2 nz m2 nm
f@,m) = — exp |l-5|l—5 +—5 -5 (€1)
o wVv3 3\c? ¢° % %m
nm n m

is the probability density function in the space domain, comparable to equation (48)
for the case of four observers., Further, in comparison, the results of Appendix D are
as follows:

+1

) :
1 X
a = —— [e.0) -2 (x)]exp[-———] dx (62)
BVEK fl e 2Kp”
However, .
sin
¢ ) - Jf—_kx cot 6 +¥ 1 -xz)-—x——] (63)
V372K 28v372K
sin 0
%, (x) = x_[(xcot@- 1-x2)-———’i—] (64)
V372K 28V37/2K

and the symmetry prevails such that the conditions and values of Table I apply directly
tc this analysis.

Figure 6 presents the results of these equations to determine the circle R versus
the required probability ¢ .

Referring to the curves of both Figures 5 and 6, the abscissae are K and 0,
where Og represents Oy, if 0n/0m > 1 and also represerts 0y if 0y,/0n > 1, provided
either ratio is equal to the value of the 8 for the curves.
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VII, COMPARISON OF RESULTS OF FOUR OBSERVERS WITH THREE OBSERVERS

A comperison will now be made of three to four observers! If the cor-
responding £ curves of probability for four chservers are placed on top of the curves
for three observers, there is a nearly constant shift of the former to the left or to
greater radii. Table II gives a spectrum sampling and comparison of values through-
out the systems of curves. A fairly constant ratio of R4/R3 is obtained for a given 8 .
The averages decrease with increased B with some indication of approaching 1.0
as B—+ o , No effort was made to deduce or prove this theory.

TABLE 11
COMPARISON OF QCEP RADII FOR THREE AND FOUR OBSERVERS
QCEP RADIUS RATIO
Four Three
B Bx Observers Observers R 4/ RS Average
1° 52, 38.8 1.3
2° 26.4 20,0 1.32
1 4° 13.4 9,75 1.37 1,32
8° 6.86 5.00 1,37
16° 3.56 2,65 1,34
32° 1.S 1,58 1.20
1° 83.6 67.8 1.23
2° 41,8 33.2 1.26
2 4° 21,4 16,7 1.28 1.25
8° 10,8 8.50 1.27
16° 5,48 4,36 1.26
32° 2.93 2,49 1.18
- 1° —e e .
2° 54,8 50,0 1,10
3 4° 29,2 25,3 1,15 1,13
8° 14, 65 12.8 1,14
16° 7.22 6.48 1,12
32° 4,0 3,54 1,12
1° — ——— ——
2° —— —— —
4 4° 39.1 35,4 1,10
8° 20,9 17.6 1,14 1.12
16° 10,0 8,85 1,13
32° 5,25 4,75 1,10
1° ———— c——— ———
o° ——— ——— ——
5 4° ——— —— ——
8° 24,7 22,1 1,12
16° 12,4 11,2 1.10 1,11
52° 6.5 5.9 1,10
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VIIl, COMPARISON OF QCEP's TO THE UNIFORM PROBABILITY OF ERROR

Another interesting comparison results with reference to Equatious (16), (17),
and (18), While these referred to a somewhat academic situation of uniform or equal’
probability of error magnitude, the following analysis indicaies that these formulas
may have more value than passing academic interest.

Since in Equations (16), (17), and (18) the value of € is indeterminzate, or at least
somewhat arbitrary, a very feasible value to assign would be that derived from a
timing error equal to the standard deviation of Gausslan timing errors. Thus,
assuming

€ =vO0O (65)

immediately forms a common bond between the two systems of measure. To continue
this translation in Equation (16)

vQo T T
C 2mn sin & sin ¥ _ sin ¥
n m X

9 vr o, v rn
= X X
Vi 7 *2Csm ¥, % “ZCem o, % (66)
= 2 " oo
7 sin Bx m x n X
R = 2 o O 67
7 sin yx m n (67)
Also, using
om =B on

2 ,
SR on‘ FE%UX[R <0,< om] (68)

Similar!y, translation of Equation (17) gives

y o,,
| R = s=ino~ [°n<R<°m] (69)

X
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and for Equation (18)

o
R = —‘3‘/—_-_2—_3 +4 [0 <0 _<R (70)
2 23m26x [n m ]

These formulas are also adjusted to the condition, a requirement for consistency, that,

om > On
Doing this makes it possiblz to look up QCEP's from Figures 5 and 6 for the same

Bk and B as used in the above equations. This was done for the set of points 6y, 8
given in Table III, Since reading the curves of Figure 5() and Figure 6{; ahove 32°
results in significant inaccuracies and since formulas (16), (17), and (18) incorpcrate
approximaticns, the final tabulated reauits should be viewed with a grain of salt.
However, looking at the ratio of QCEP's of three Gaussian observers to the hard
limited equal probability error makers (R3G/Ru) there {s a strong indication that for
rapid calculation the use of

R3G = 1.8 Ru

would give figures within 10% error. Ry would have to be calculated in accordance
with Equations (68), (69), and (70). Another relationship resulting from the sbove
substitutions is

AS = 20
) {1 n
AS =20
m m

The criteria for the use of Equations (68), (6S), or (70} have been added in terms of
Op and Oy, as shown,
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TABLE II

COMPARISON OF QCiEP RADII FOR GAUSSIAN AND
UNIFORM ERROR DISTRIBUTION

QCEP RADIUS (0, = 1 Mi.)
RU Gaussian RG RATIO
Four Three

Gx B Uniform Chserver | Observer | Eguation R3G/ Ry
2° 1 14.3 mi, 27.5 19.5 70 1.36
8° 1 3.7 mi, 6.8 5.0 70 1,35
40° 1 .99 mi, 1.6 1.38 68 1.38
64° 1 .84 mi, 1.15 1,14 68 1. 38
2° 3 43,0 mi. 57.0 51,0 70 .18
8° 3 10.7 mi. 15.4 13.0 70 1,22
40° 3 2.3 mi. 3.4 3.0 89 1.28
64° 3 1,67 mi. 2.5 2,32 69 1.40
2° 5 71.5 mi. 95,9 94,5 70 1,32
8° 5 18.1 mi, 24.5 22.3 70 1.23
40° 5 3.9 mi, 5.3 5.0 69 1.28
64° 5 2,78 mi. 4,0 3.76 69 1.35
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IX., AN EXAMPLE OF QCEP RADIUS DETERMINATION
The following example is provided to tie some of these ihings together in an
application, Assume an electromagnetic phenomenon as the system medium.
Further assumptions:
1. The base lines = 200 miles = ZC
2, 26 = 1300 (Fig. 5)
3, ce = 25% (Fig, 5)
4, +f = 259 (Fig. 9)
5. A's ciock reads 3.29459025 sec,
6. B's clock reads 3,2968855 sec.
7. C's clock reads 3.29337755 sec.

The first calculation is to obtzin the line, d, connecting base line centers

_ sind sin 500 _ i
d = C-s—jr-l——e-— = 10051"11—'25-6 = 181,1 miles

Next using Equations (5) and (6), tne angles Gn and 9 are determined as follows:

tA = tB = 901.7 usec,
tB - tC = 3.1, 0 usec.
v = velocity of light = 0,186 X 10°
6 = cos™} Y(t_A;t_B_) = cog~ ) 0. 186 X 10 x 902 x 1978
n 2C ’ 200
9n = cos™! 0.8386 = 33°
- \ -

8 = cos”t vep ) | cog™1 0:186 X 10 x 311 % 1078
m - 2C 300

=1
6 = cos ~ 0.2588 = 75°
m

Then, from Equation (8)

= 180° +33° - (130° + 75°)

6
X
6 o}

-8
X
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Equations {10} and (i1) give ~ g
Z
] =dstn(f?m-e) %&’
n sin 0 3
x j
n = ;“_?j.'_.l_il%io.?. = 1000 mnes .
sin 8
_ d sfa (9n + f) i
™'m ™ sin 0
X
181. 1 sin 58°
r_ = ——- 809 _ 1107 miles
m . o0
sin 8
From Equations (24) and (25)
vr
I = I
n 2C sin 9n
0.186 X 106 x 1000 6
I"n = -2 5 = 1,706 X 10" miles per second
200 sin 33
VT
r =. B
m 2C gin Em
0.186 < 1107 BN
- = X
I"m 500 sin 1,065 ¥ 10" miles per second
As a final supposition, assume that statistical data available supports a figure of
0= 0,707 microsecond per ohserver,
or ’
0. = V2 0 = 1 usec. per pair
then
o =T 06 = 1,706 niles
n n x
o =T o = 1.065 miles
m m X
50
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And the last gysteni parameter 3 is

—r;——-l—'-ﬁ'é—s-=1.603

If then we wish to determine the QCEP for three observers for o = 0.5, reading
from Figure 6 () by interpolating between 8 = i and 3 = 2 we get

R= V500 =17.070_ = 7,07 X 1,85
g m

R =17.53 miles

as the radiis of the circle which contains the true point of 2n:ission with a probability
of 0.5.

To summarize, if we are given the fix position computed frorm a data set of time
differences and can calculate the system standarc deviations (0y, Cm) and crossing
angle 0y, the formulas given heretofore or the set curves of Figures & and 6 can be
utilized to obtain the size oi the circle of error for any given probability of error,
Conversely, if one is speculating about a particular circ.2, the prokability of a true
fix being within that circle can alsc be read from these . urves, While rufficient data
has not yet beer analyzed to establish practical limits, i’ is believed that for

0 n Q
n -~
10 \dnand 9m< 170
rn and rm > 2C

This process wili not result in errors greater than 5% in the caiculation of ersors.

51/52

o I e IUF

Ay




X, DETEBMINATION OF THE ELLIPTICAL ERROR PROBABILITY SURFACE
FOR FOUR OBSERVERS

Tc continue with the analysis of error distribution, we will analyze the proha-
{lities associated with areas bounded by ar ellipse. Since, as shown in Appendix F,
an ellipse has keen found for which all points on the ellipse represent su equal
probabiiity deasity of fix errox, this figure may be very important %> systems applica-
tions, Iu Appendix F the compiete development of the time domain to space domain
transformation is given., As in the case of the QCEP, we will deal first with a four-
cbserver system. The significant resuils are:

1, Given the circle which considers the probability of making timing errors
of magnitude,

2 2 Z
A & =
Tm + 'I‘174 S (71)
whi_h regults in the spatial ellipse
1 4 2
n m
5 + =1 72)
o%ler? or?
X n m
where A
o _ D 3
.,.rn = f.;. <
g
AT = B 2
m Iy
2. The probability of a fix being anywhere on or within this ellipse is given ?
b
' 1 1 2 ;
G n m
O = —————— f exp | - + s dmdn
2m %, Om J‘A )_\? 202 20 °
n ¢
(73)
where

(74)
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For example, for the "natural ellipse"

f)
7\?—'1,82:20“ L
X 31
and J
a = 1€} = 83.22%
8

As a more geveral example, 1o find the eiliptical constants for a2 given probability
of error for the fnllowing case

0 = 1user |
X
CB = 100 miles {
r_ = 1000 miles
n l
rrn = 1107 miles '
6 = 33°
6 = 15°
m
a = 0,5

results in the same Iy, I'y, as in the previous example, i.e,,

Fn = 1,706 ><106

I' = 1.065 ><106
m

As shown in Appendix E, the general clliptical equation is given by

i n2 'm2
e =1 {5)
B ]
;Z 2021‘2 2021" “
X n X m
In terms of tha major, minor axis concept, if
)
a2 = 2)\2 o 2 r~
X n q
2 _ .2 2 2
b" = 2 ox rm | . ‘
- ] 4 )
A= ‘/-log T :
54
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giving
- 1 .
A =9¢log 05 0.834
The ellipse would be
. .
©oom
2 7
a b
with
a = 0.83% X1,414 x10~° x1,706 x 10% = 2,012 miles
8 6

b = 0.834 X1,414 X110~ X 1,065 X10 = 1,256 miles

and the ellipse becomes

2 p/
o n + m = 1

@.012)°  (i.250\°

Thesz are the parameters of 2 conformal ellipge drawn to orthogonal axes. To see
the true spatial ellipse however, either a graphic projection onto the oblique axes will
have to be performed or mathematical analysis using a, n, and 6x to obtain an a', b!
and axes shift angle { .

This section is devoted to a complete axnalysis and discussion of the true spatial
ellipse as it exists on the true axes, m and n, The details of this anzlysis are given
in Appendix H with significant resuits factored out here,

Figure 7 is prezented as 2'. example of a graphical analysis. To emphasize the
elliptical appearance, it was cdecided to agssume a

B =1-§ of 2
m

rziber than carry through the previous numerical example. The assumed ellipse
plotted on the orthogonal set n, z is

m_

Graphic transformation to the oblique axis set n, m is then performed as shown for
the sample peint, o, The +z values of z are both vsed to show the two resulting
transformed points, o'. The transformation is accomplished by projecting ¢ onto z,
then equilaterally from = onto m, thus making 10 equal! to the z value, then perpendicu-
larly down from m until it intersects the n value of o which is also a perpendicular
drop from the n axis. While this solution was nc! performed with any great accuracy,
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it ie intended to display the signtficance and concept of the true ellipse or the obligue
axeg, and to provide approximate confirmetion to the analytic equations. Measure-
ments show the transformed major and minor axes to be approximately

at = 7,3

bt

[}
iy
!
ot

with an axis shift of approximately

If we then let x and y represent the axes which contain a' and b' , we have the
quantitaiive relationship
2 % 2 2
A ¥ =X _ 4+ ¥ -
&

@2 185’ @)% ol

This then represents a complete descriptirn of a particular eliiptical contour of
constant probaktility, It can be made as accurate as the measurements of data
(At, T’y and graphical solution wiil allow,

The inconvenience, if not inaccuracy, of this method strongly indicated that a
complete analytical solutio:. would certainly be wzll worthwhile. The results of the
analysis given ir Appendix h are the following set of transforms from the orthogonsal
to the true oblique axes.

9
2 1 a X \ b~ (-— X ) ab
R = — {14 +— 11+ % coe 8
Mex/Min - gyn? GX{Z( chf) 2\ Vix?) Vil x}
(76)
where

1-b°/a®> _ a/b-b/a
2b/a cos Gx 2 cos Hx

1

a \/'2)«0'1“
x'n

b

NE»3 o, I‘m

Thug when a>b

RZMax=__lz_ {a2(1+ ,1---1_2-)+b2 (1_ 1.1 2) . 2ab cos 6 an
2 sin” 6 \ 14 1+x 2

i +x
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and when b > a
2 1 2 \ 2f B! 2ab cos 7
A = - a -all - b1 4[] - = — ap cos
s {0 ) ) e
V1+x" Do)
Rsz=.._1..2_. {32(;+vl___§_1) +b26- /1_ 12\__23bc059
2sin 6 !\ 1+x 1+x) Jie?
(80)

Associstion of tae quartities RMax, RMin. a', and b' with the axes x and y ie
somewhat arbitrary. Ingeneral with m and n oriented as shown in Figure 7, there
will be an axis of transformation which lies in the quadrant defized by n and its
orthogonal LOP, If we call this the x axis, thea it will be the msajor axis regardless
of whether a was longer or shorter than b, and the value of Ry a5 would be applied
to this axias; this x axis will always lie on or between the LOP's. Perhaps the previous
formula would carry more genersl significance if it were worded

5+ =t = 1 (81)

The angle of shift { of the pseudomajor axis to the truc major axis is given by

1 T—‘-—
'\ v ) e
cos2 Y = .=
___Ié__ 1 +—= 4+ 2ab cos ]
8in / _ﬁ( 2 1 +x2
which can also be written @or a > b)
sinz 6 ( ‘ﬁ )
cos2 ¥ = (83)

1+‘jl_ 12 ( ’ 4+ 2b/a cos 6
1+ [ \/_IFx
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S — e i s P, P I s b S i =

foro>a
9 i A
ain” 6 1+‘/1___7)
2 14x"
cos” Y = 84)
2/ - .
%kl —‘/1- 12>+1+‘/1.,_.].'5+2 /b cos 0

whereas in terms of the major axis transform
——
1 +4/1 - —"1—12-
14x
2 (Major Axis Xform)2
Figure 8 presents a few of the curves for these functions. The curves are pre-
sented mostly to get a feei for the positicning of the axes of the true ellipse.
The number of curves calculated and number of poiats par curve are not consid-

er2d adequate in this report for good engineering accuracy. The equations are
accurate, however.

cos? Y = (85)

As with most all special cases where certain results are invitingly ob-
vious, it is interesting to note, as proven ir Appendix H, that when Q@_ = 90°,
i.e., the true ellipse and the original ellipse are one and the game. “solu-
tion of the above equaticn gives ¢ = 0°, This result corroborates that no
shift is necessary.

Algo derived in Appendix H are transformatioo formulas for the mejor and minor
axes, If R'Max s considered the transformed, or major axis vaiue, then R'pMax can
be determined readily from

2

2 ——————
R Max R’ May) 1 T b 1
=] 5 = 2 1+ 1-._._—2. +__2_ 1 - 1_.._.._2.
Rptax a 2ain” 6 1 1+x 8" \ 14+x

b
+2/acosﬁ}

(172}

P

1+x

where a > b, This is a major axis transformaiion formula, For b > a we consider
b and b’ *he msajor axes, and

H 2 2
® Masd 1 a 1 + 1 +z'4/b cos €
2 - 2 T l-4l-—=)* "3
b 2 sin” 6 b 1+x 14% 1+x2

(794a)
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Figure 8. Major Axis Shift (Four Observers)

Similarly, the minor axis transformation is givenby a > b

®, ) 2 —_—N g
Min’ _ 1 a R I R A 2°/b cos 6
T P E A W V T = 8
b 2 8in 14 (782)

or, forb> a

2

'y g L4 S A ) 2%ac
3 3 Ttz ll-yi-—3]-
a 2 sin” § 1+4+x a 1+x 1+x

60
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Figures 8, 10 present some of these curves of major and minor axes transformatioz.
The transformed minor axis values approach 1 as & limit, i.e., the ellipse neve
gets any wider than its original value. The transformed major axis vaiues, however,
approach(a or bYsin Oy as their 1imit, meaning that as the crossing angle vanishes, :
the true spatial error ellipse becomes infinitely elongated, The choice of rbscissa §
value wes purely arbitrary, and whichever ratio was greater than one was selected.
It i noted that for a/b, or B, greater than 5, tha transforms are virtually at their
limits. In fact, (a2 or h¥sin 6 is a good approximation for £ > 2,

10 4
o ——————————apeenaacam

0.4

0.2

(2]
P S

2
a’b or b/a >!

Figure 9, Minor Axis Transforms (Four Observers)
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XI, DETERMINATION CF THE EEP SURFACE FOR THREE OBSERVERS

Derivation of the true eilipse transforms for three observers appears in
Appendix 1, with the following results. The general formula for the major and

minor axis is
%—bzlt l--—;:-— + a2 £ /1 12
1+€ 1+¢

4 i 1
4= ab i+ 4f1 - i+ J1 - cos 8 (86)
’ J( IT£§>( 1+c2) "t

and the transforms are obtained from

L ST B e | i o

R = —3
sin“ 6
X

RH)

R _ 1 2 a2 4a J 1
= = 1+ f1 - et 1 - +=< {1 - ——1Ytcos 8
b sm'FJ 1‘%2) 3b2( 3JJ z.+c2)

(88)

depending on the relative sizes of a and b in accordance with the following table:

FORMULA for
I XFMax is i XFMinis
a>b R/a (87) R/b (38)
b>a R/b (88) R/a 37)

£ sand ¢ are given by
2\2
a a
£2= 2 -25005 Gx '52)
3(az/lo2 - 22 cos ex)z
AV
s \2- 2P/8 cos 6 - b2/a°)
t%e =
36/2/9.2 - Zb/a cos Bx)z
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The retaiion of the major axie, from ita pseudo to true position is given by

VZ/a(I* b O )
wlz/a(u‘[l_:_

008 § = —pEp—1" ‘ [a>1] (90)

[b>a] (89)

cony =

where in Equation (89} y is mvasured fro:n the m axis and in Equation (80) ¢ is
measured from the n axis,

Contrary tc the case of four observers where the resolved major axis always lies
between the LOP's, the three observers case reeults in a resolved major axis which
will, for the most part, lie sutside the region defined by the LOT™x, The only
exception to this iz when

1< B<20059x

_ onO
Gx\60

Thiz suggests, deperding ca the cost of a fifth observer, that a five-observer system
ri1ight produce an intersection of ellipses such that the area of uncertainty is =ignifi-
cartly reduced.

Detarmination of the values of a and b requires a derivation similar tv the case
of four observers. In Appendix C the relati>nshi{p between the size of the (concentric)
ellipse and the probability of containment is given by

2
a = 1> (1)

Since this formuls and Equation (73) are numerically the same for given values of A
or S, Figure 11 is prescnted &1 a quick reference of related values.

The CDC 1604B computer was again utilized to obtain the sample curves of
Figures 12 and 13 showing the transform values as a function of a/b or 8 . Compari-
son of these figures with Figure 1-2 skows that for § < 600 the maxima of the miuor
axis transforms ard the minima of the major axis transforms coincide w'th the
maxima for the curves of Figure I-2, Further, the contours of the ininor axis trans-
forms follow the contours of the quantity

{“"_I’" 1
1- 5 or 1- 3
i+ & 1+ ¢

whichever contains the quantity a/b or b/a greatei than uaity,
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As in the case of four observers, the curves in Figures 12 and 13 are not sufficient

to provide general engineering calculations, although they are reasonably accurate for
the values of €, chosen.
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XII. CGMPARISON QF EEP SUURFACES ¥OR FOUIL. VERSUS THREE OBSERVERS

The subject comparison is not quite as straight’orward as that of QCEP. To
equeie the wo gvstems, the following annrcach was vaken., Given the acceptable
uncertainty or Lroubability o we have

[ 1
7\=S=V10g (92)

1-&

This determines the time- ox space-limited configuration

2 2 | . 2 2
AT _“+AT i _ AT," + AT, - ATy AT
20 2 3/2 c,,z
* |4 0OBS 3 OBS
or,
w® | o’ M, MN U
P ) = E 7 - =5 = A
20 20 3/2 O /99, 3/2¢0 o, (93
m 1 14 0Bs : = 2 OBS )

where upper case (M, N) is usc. to distinguish values from m,n and which in terms
of the nontransformed ellipses is,

n
m? o' | M ¥ MN ., o)
b2 az b2 2 b3a3
4 "y |4 3 B3 3
where
8, = Ve x 04
by = V) O st
= 2
a3 JSLSUm
b3 = \/37280‘m3
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To recsall the gzometric eignificance of this we have

N

Taerefore, {f, as in the case of the QCEP, it is assumed that the gystems are such
that on aa avorage or median, or any other bas:s

?Ei:f,m_"=5=.o_m.3=rm3=3
Oad ‘nd 4 a3 n3 E
Then
a b ,
4 J3
S s 2 e L1 (95)
3 3 0372

This advantage for three observers is not the final conzlusion since the finel trans-
formed axis valuea r. - the conclusive factors. To derive equal 8's the ratic desired

is
Major Axis (3 OBS) _ 1  XF Max o6
Major Axls (4 0BS) ~ T.15 XF Max, e
Mior Axis @ OBS) _ 1 XF Min, o7
Minor Axis 4 0BS) ~ 1.15 XF Mia, (80

Figure 14 gives the results of such & ratio comparisor for two values of 6 300 and
£0%). It can be shown that theae curves do a flip-fiop at the critical angle of & = 600,
It is again claimed that in systems applications the greatest concern is for Oy < 60°

as covering the majority of practical cases. Further, it iz the elongation of the

major axis which is the worst offender of, or produces the most damaging etffect in,
finding something or somebady. Thus, speaking of curves A and B, while tke ellipse
for three observers is a little fatter than for four, the major axis shows a considerable
improvement for ‘hree obsarvers.
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Returning to the example used for QCEP,

on = 1,706 miles
om = 1,085 miles
B = 1.603
8 = g°
x
and for threr. observers
Rc = 7,53 nilles

a
E
£




We now wish to determina the ellipse for o = 0.5 in-order (hs¢ Givect comparieons
can be made witt QCEP. From Equation /22)

B = ‘Jlogi-:(—’ = 0.834

e = J3/2 SOn = V3/20.854 X1,706 = 1,74 miles

b = \‘3728(1!m = V3/2 0,834 X1,085 = 1,09 miles

Then for the major axis of the true ellipse

R ooy = 3KF 00 = 1.74 X7 2
and for the minor axis

len = bXme = 1,09 X1,14
giving

Rohax = 12.5 miles

Rin = 1-24 miles

For which, as discussed below “
1,24 < 7.58< 12,5
or

Rmin < Rc < Rn'.:ax

Thus we have a complete engineering description of the tiue spatial elliptical contour
of a conatant error probability. The position of the point P in question with respect
to the system base line gives rise to the Oy, Opy and Ox of the system, and the desired
reliability of measurements, a , gives rise to the pseudo-elliptical quartities a and b,
From these, the true ellipse of the probability o , the position of its major and minor
axes, the values of these axes, and, if we wish, a complete skatch or plot of any
desired ejlipse can be described.

There is 8 somewhat crude yet interesting link between the QCEP and EEP which
may be vgluable for making system estimates. Observing Figure 15, it is apparent
that ther# is a circle of radins R and an ellipse of major axis Rmax 2na minor axis
Rmin, which by virtue of their respective areas of consideration wiil produce the
game probability of fix.
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Figure 15. An EEP/QCEP Linkage
Thus we have the linkage

R <R <R_ (98}

ax
Since it is believed that the elliptical constants are more meaningful and more readily
calculated than the circle, if the EEP is known, the circle R with the same probability
can be estimated from the above limits, Actually, if one wished to pursue this further,
a much closer (weighted) estimate could be developed such as

RC N kRmax

whezre

*Sitterly, in "LORAN" (see rev..on p.21) has proposed for the QCEP case, when
converted to the notation of this mcde, that

0.775 C
- n |
R sin yx J;ﬁ [on<"mj
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XIII, CONSIDERATICON OF UTILIZING A SINGLE S8ET OF DATA

As 8 closing observation on this medel, # was felt that a converse situation
concerning the use of a aingle dats set should be discussed briefly.

P SR

Figure 16, Effect of a Single Dsta Set and Eilipse Cozrection

Consider Figure 16, We have estabiished a model which enables us to caiculate
that a signal originating at the Point P will be locsted by the system within or on the
o = X ellipse with a probability of X. Or, succinctly, it ize signal {(or experiment)
were repeated from P, say a million timas, then 500, 000 of the measured points
would be within the ellipgse @ = 0, 5.

Suppuse we are faced with a converse situation. The aystem receives a particuiar
signal, and, with errors, locates it at Py, If it is important to describe an area which
will contain the true point P with a certain probability, & , what ghall we de? OSfnce
we presumabiy have no other information available, the first impulse is te treat Py
as a true point and construct, in the manner of this study, the ellipse fora@ = X as
indicated in Figure 16, Another rationalization for this is that (a priori) it is just
as likely that we have committed errors in one direction as in another, or there
would appear to be no bias error,
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Then suppose another one of thesa 500, 0600 points appears to be at Py, This may
be considared an equally probebls situstion becsuse the probability density function on

i the periphery of the o = X cllipse 1o u constant. Agein, we wish to descrils the area
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