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SI FOREWORD

This report summarize. the results of a study

undertaken by Dr. Bernard Budiansky for I4SD

Research, Lockheed Aircraft Corporation. The

work was performed under Air Force Contract

No. AF-o4(647)-181. Dr. Budiansky, consultant

to Lockheed during the summer of 1953, is

Associate Professor of Structural Mechanics at

Harvard University.
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ABSTRACT

Theoretical calculations arc made of the natural modes and frequen-

cies of small-amplitude sloshing of liquids in partially filled

circular canals and spherical tanks. An integral-equation approach

is used to analyze the circular canal for arbitrary depth of liquid.

A similar approach for the spherical t~a.i provides modes and fre-

•- quencies for the nearly-full and half-full cases. These results,

i. together with the known behavior of the nearly-empty tank, are used

in conjunction with the trends established for the circular canal

as a basis for estimating frequencies for arbitrary depth of liquid

in the spherical tank, The dynamic analysis of the container-fiuid

system by means of the mode-superposition approach is discussed, and

modal parameters required in such analyses are presented.
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.3 NOTATION

I zsytz geom~etrical coordinates (see Fig. 2-1)

nondlimensional coordinates

P1 canal or sphere radius

a~e.0 geometrical parameters related to liquid depth

uj'Vj' velocity distributions in x, yand z directions, respectively

w oscillation frequency

t tim~e

020$0 velocity potentials

T displacement potential

9 acceleration of free fall1 relative to container wall

X. frequency paremeter: A/9

11 liquid depth (variable)

ZI complex variables
F comnplex potential[G kernel function (circular canal)

riH kernel3 function (spherical tank)

V mode shape for circular canal
n

f mode shape for spherical tank

g(P) rp 9F7P)

r~y.* e cylindrical coordinate systemn
P.; p nondimensional coordinates

m P/p-
5 pp[K$ E complete elliptic integrals of first and second ki~nd., respectively

vi
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SN Neumann functiort for sphere

a modal parameters

SAn B C D nondimensional modal parameters

M mass of container

IPL density of liquid

ML mass of liquid

X external transverse force acting on container

FS sloshing force acting on container

U transverse displacement of container
•: •A square matrix

!T integrating matrix

"(1 )column matrix

([ ]row matrix

m,n,j,k,N integers

"1 A interval of subdivision (A = O/N)

L
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Sectien 1

INTRODUCTION

For zufficiently small amplitudes of motion, the dynamic effects of the
sloshing of a liquid in a partially filled container can be analyzed in terms

of the natural modes and frequencies of the small, free-s.rface oscillations

of the liquid. This paper is concerned with the calculation of the modes

and frequencies of partially filled circular canals and spherical tanks,

with aý,tention restricted to the modes that would be induced by lateral

accelerations of the containers. The usual assumptions of inviscid, in-

compressible flow are made, and the container is considered to be rigid.

The dynamic analysis of the container-fluid system by means of the mode-

superposition approach is discussed, and modal parameters required in

such analyses are presented.

The case of the half-fuil circular canal was considered by Rayleigh (see
Ref. 1, p. 444), who carried out an approximate energy solution for the

fundamental frequency. Graham (Ref. 2) estimated the fundamental frequency

of the half-full sphere by conceptually dividing the liquid into a collection

of half-disko and then using Rayleigh's result in an unspecified averaging

process.

The frequency and mode calculations of this paper are based on a rigorous

integral equation approach. in the case of the circular canal, the appro-

priate integral equation is formulated explicitly for an arbitrary depth of

liquid, and numerical calculations of the first three pertinent modý.a andl frequencies are performed for a range of depths by means of a matrix

III 1-1
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approximation to the integral equation. For the spherical tank, rigorous

analyses are made for only the nearly-empty, half-full, and nearly-full

tanks; results fur the intermediate depths are estimated by interpolation

and by means of the trends established for the circular canal.

The results for the fundamental frequency for the spherical tank are compared

with available experimental data.

11
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Section 2

SLOSH!NG MODES AND FREQUENCIES

5 2.1 BASIC D)IF ENTIAL EQUATIONS

j -Ii�e-differential equation and boundary conditions governing free-surface

Sscillations (Aef. 1 p. 363) will be displayed.

The liquid is supposed to be bounded by a horizontal free surface F and a

rigid wetted surface S (see Fig. 2-1), and small, harmonic oscillations

are assumed. The velocities in the x,y,z directions, respectively, are then

Su (x, y, z) sin mt.

v (x, y$, z) sin mt.

13f (x, y, z) sin wt. (2.1)

Swhere P is the circular frequency.

Since thC flow is irrotational, there exists a velocity potential

*(x, y, z) sin aWt.

£ suchi lbut

UU : •* (2.2)

ii az

1 2-1
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~ H The continuity equation for incompressible flow is

v24 = o (2.3)

The condition of tangential flow at the rigid surface requires that

V# n 0 on S (.+
i -4

whore n is the unit normal vector to S.

Finally, the condition of constant pressure at the free surface together

with the linearized Bernoulli equation leads to the conditioni

where g is the acceleration of free fall relative to the 2ontainer.

Equations (2.3), (2.4), and (2.5) govern the eigenvalue problem for the

freciuency co. Note that (2.1), (2.2), and (2.5) imply that the shape of the

vertically displaced free surface during oscillation is given by (xF 0, Z).

The analogous tU--d~imensional problem of transverse sloshing in a uniform

channel is formulated in an obvious fashion by suppressing the z coordinate.

2.2 CflEUIAR CANAL

The geometrical parameters for the partially filled circular canal are shown

in Fig. 2-2; the depth of liquid is measured by e , which varies from .I for

the empty canal to 1 for the full vessel.

It is clear that, because of geometrical symmetry, the natural modes involve

free-surface vertical displacements that are either symmetrical or antisymuet--:

rical about the orgin. Since the symmetrical modes would not be induced by

IL 2-2
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II Fig, 2-1 Container Partially Filled With Liqluld
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transverse motion of the canal, attention is restricted to the antisymmet-

rical modes.

It I s convenient to nondimensionalize the problem ,y introducing

X

I (2.6)

The normalized geometry is shown in Fig. 2-3; the free-surface condition

becomes

c02R-
where -= . The angle shown in Fig. 2-3 is given by

"1-. B = arc sine (2.5)

and varies from n/2 for the full canal to -%/2 for the empty canal.

The procedure for setting up an integral equation governing the antisyxmet-

rical modes follows.

SConsider the fluid-filled container consisting of the original wetted boundary

pins its reflection about the I Lxis (Fig. 2-4). Place a two.dimensional

-smear out both over a strip of length di . Denote the resulting velodity

potential for the internal flay by

u(j) * 0 i;I d~i

L• Since the velocity potential is, arbitrary to within a constant, it will be

I assumed that *(0 i; C, and h; 'By

I2-
L 2-4 --
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Pig. 2-3 INondimnensional Geometrical Parametera
and Coordinates for Circular Canal
and S'pherical Tank

Fig. 2-4f Location of Source-Sink Pair in
Symmietrized Domain

NE 2-5
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Ssymmetry, the vertical velocities along 1 = 0 vanish everywhere except
on the strips of length dt at t and -g where Just below the t axis

[ they are w(9) and -w(j) , respectively. It is now possible to construct

the velocity potential for the free-surface oscillation of the configuration

of Fig. 2-3 by means of a distribution of sources and sinks along the I axis.

It is necessary only to satisfy the free-surface condition (Eq. 12.71)
relating the vertical velocities along the g axis to the velocity potential

along the g axis. Thus, we require that

L1
Sw(t) = (a)f. (1, O, w (1) d) (2.9)

0

for 0: < :1; since 0 (-1, 0; 0) = - * (9, 0; 1), Eq. (2.9) is auto-

matically satisfied for negative • , with w(-4) = - w(|).

"The problem now is to find the kernel function

G(•, j) -= * (t, O; ) (2.10)

and this is readily accomplished by conformal mapping.

The successive transformations shovn in Fig. 2-5 map the region of Fig. 2-41
into the entire f plane; the resultant transformation is

f = [ ( ) (2.11)

where + 2 - Now let f andf 2  corresp~ndto z - and-',

-respectively. The complex potential of-a sink at fl and a source at fis

each of strength 2., is -A

log + g (2.12)

where g is an arbitrary finction of 1. 1

2-6
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E, Fig. 2-5 Conformal. Mapping Sequence
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Substituting Eq. (2.11) into Eq. (2.12) gives,in the z piane the

' I •corresponding potential

l-z 
i7 

"317SNow choose g so that F(O) =O; then

llog ((l-z)7 (I+ - l- ( 7-l) (1-T)Y "

(1+z)1 (14) 7  (..-z)7 (1-.) 7

p ~ ~Finally., Gf,)=Re F (z) is
1 1+log

¢-(i+-1)(,-) 7- (--l)og;) 7  (213)

Note that G has a logaritbmic singularity at f = f . Note also that

To recapitulate. then, the solutions'of the hcmogeneoas (singular) intgepal

equation i

I
~t2 v(~) = *\a) fG(f, ) )d~ 2.k

0

with G(g, •) given by Eq. (2.13), provide the cbaacteristic free-surface
shapes w(g), and the-associated eigenvalues of (%a) yield the-natural

l frequencies.LI2-8

jL LOCKHEED AIRCRAYT CORPORATION mISwLE sY5r" D4VISIOI4

- - W ow-



I \_
LM ISD-51I1 I

I The numerical solution of the integral equation (2.14) has been performed for

various depths on the basis of the matrix formulation described in Appendix A.

-The results are presented in Section 4.

Special cases. Several special cases for which approximate solutions can easily

be obtained are of particular interest. For the half-full canal (e = 0), the

Ii kernel becomes

A one-term Galerkin-type solution for the lowent frequency can be carried out

without difflaulty for this case.

[wI) dt (%a) ff G(g j w(j) w(g) dgd~g (2.15)

0 00

IntrodLncing the approximate mode shape w = § into Eq. (2.15) and. carrying

out the integrations give, for e = 0, (a = i) , the approximate fundamental

eigenvalue

Xl " 2 =1 1."367 (2.16)
or1/

o r wl -(D 1 . 1 6 9 ( 9) ./

[ This is precisely the result found by Rayleigh in an entirely different way,

The result is necessarily an upper bound to the exact frequency. Rayleigh

also obtaived an improved approximation a) 1.1644 (1)i/2

U 2-9
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Also of special interest is the limiting case of the nearly-full canal, where

-. - and 1 -. 1. The integral equation becomes simply
2

Denote the critical values of (%a) by cn (n- 1., 2, . . . the, for e

nj ~~ sufficiently close to 1, n

{-n a

; cn

L Thus, the frequencies tend to infinity as the full conditfon is approached.

This result, as vell as the form of the integral equation (2.17), could have

been anticipated by consideration of the sloshing of liquid in a balf plane

-with a rigid boundary having an aperture of length (aR). (See Fig. 2-6.)

The kernel fnintion for this case can be written directly in termo of a source-

- sink pair, without the need for conformal tmrnsformatizns. A one-term Calerkin

solution of Eq. (2,17), again with = , gives the approximate result

C 2x/3 =2. 094

so that12. (2.18)

for e -*1.

L Fig. 2-6 Limiting Case of Nearly-Full Container

2-10
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P L
SFor the nearly-empty canal (e -+-I), 7 becomes infin'.te. The asymptotic

results for this case are most readily found by abandon-Ing the integral

equation and exploiting shallow-water theory. (See Ref. I, p. 291.) The

differential equation for the velocity potential may be conveniently deduced

from the variational principle given by Lawrence, Wang, and Reddy (Ref. 3).

bhe variational equation is

6U IV.I' dV - f (2.19)

V F

wbere V denotes the volume of fluid iv Fig. 2-1.I
As shown .n Ref. 3, Eqs. (2.3), (2.4), and (2.5) constitute the Euler equation

and natural boundary conditions of Eq. 2.19.

For the two-dimensional canal of shallow depth variation h(x), it is assumed

that * may be taken independent of y. Then Eq. (2.19) becomes

)[ fh(x) [! dx - mj._ =

F F

The Euler equation is

[h -- 0 (2.20)

For the nearly empty circular canal, the depth has approximately the parabolic

variation

h(x) = )2 x

so that Eq.(2.20) becnmes

2-1l
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ii
or, in terms of t =

whence 2

This is essentially Legendre's differential equation. For the antisymmetrical

modes, #(0) 0; in addition, the condition of finiteness it 1 1 is Imposed.

The solutions of Eq. (2.21) are then the odd-order Legeadre polynomials of

the first kind
-.

P-l (W) n = 1, 2, 3,. .(2422)

- with the corresponding eigenvalues

2• 2 -n n= l, 2, 3,. .(2.23)

The polyncmials (Eq.[2.22]) represent the limiting free-surface shapes of

the natural modes as the depth approaches zero.

The first eigenvalue is XI 1, and so the fundamental frequency

19

is, as could be expected, simply the frequency of pendulum of length

2-12

I I LOCKCHEED AIRCRAFT CORPORATION MISSLE SYSTEMS DIVISION

7~71I74 ~ ~ A;



M) -0TU I
2I'vm

Sgecoetri~al parautraqte- of Figs. 2-2 and 2-3 may be considered to4 aqp~ly to

* the ýpertvcal tank., A rigorous analysis was execute-A. for only t'e nearly-

-" full ,and half-full cases; rigorous results tor tf.. nearly empty ca.e, given

by Lamb (Ref. 1, p. 291), are also available.

Introduce the cylindrical coordinate system (r, y, 0), we~re x = r cos 0,

I z = r sin 6. The appropriate nondimensional system becomes (p, 2, G),

where p = r/aR, and, as before, i = y/aR. In these nondimensional coordinates,

the governing differential equation is:

ef ++ t + eoL (.42P 2 ýn 2 P 2

and. the freQ-surface boundary condition remains that given in 1q. (2.7). It

is evident-that solutions for the modes may be written . the form

S p, q) cos k e (k (2;25)

It ill be shown later that only the modes with k I are induced by lateral

[ accelerations in the • direction. Consequently, attentf.on will be restricted

to these cases.I
The procedure for setting up an integral equation analogous to Eq. (2.14) is

3 as follows. Consider the volume of fluid enclosed by the wetted surface and its

reflet!.on about the originally free surface q = 0 . (See Fig. 2-•4.) Now,

in the plane n = 0 (Fig. 2-7), place a dis4ribution of three-dimensional

sinks along the annulus (p, + + d) of st,._engths 2f (p) cos a per unit

area. Let f(P) 0 (p, i•;, 6, p ) dp b-e the resulting velocity potential.

Then, since the vertical vel ocity just below the plane i = 0 is, because

of this potential, Lero e-erywhere exept in the annulus, where it is

[j LOCKHEED AARCRAFT CORPORATION M'SSIL! SYSTEMS DJYJSION



f (p) cos 0, the imposition of the boundary condition Eq. (2.7) at

0 = 0 requires that1~I] 1
'(p) = (%) p, 0, 0o 0; p .f(-) dý (2-26)

It is convnwenie to let g(P) f J (p) then

Ll

Ih cwhere
H (P,)-) Pý- a; (o, o, 0; )(2.28)

The problem now is to determine H(p•).,

l f0

-F.g. 2-7 Coordinates in Pre-% Surface of

Spherical Tank

E 2-14-
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2.3, i Nearly-FUll Tank

-For the nearly-full case, the symnetrized region is the entire apace

5 ~(Fig. 2-6)., and the potential of a stak in the plane '1=0 is unmod~ified

by the presence of a rigid boundary in this plane. The potential of a sink

of strength 2 &t( 0 )i

2 1 T

D and s o o )+-( sin -psict+

fj P + 2 cos a'

ii~p2 1)r9 2 -- =7
Ef 0 ~p + p -2 PPcos a

llClearly, H (p,,) H(-p, p). Consi~der p -: p ,and let & P Then,,

Im f [2m co +1/ (2.29)

Letting = Yields

H~f (2 sir. 13ld (2.30)

'I wh~vere q 2'm~l0 [~ i 1
2-15
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SThis may be evaluated in terms of complete elliptic integrals (Rlef. 1., p. 73)

to. give

K- (-q) E (q) (231)• • - x q q

whe•e

and. 1
2 2

E(q)= -q.sin d•9

0

are the complete elliptic integrals of the first and second kind., respectively.

The result (Eq.[231) for H 1(P. p) may be =t Into a much more convenient
form by exploiting the Landen tmrnsfomations (Ref. 5)

IL K (mn) K 9.
I Er - qai)+E q) + K (q)

to give, as a final result

H ( PI 2 [K( ) (2.32)

[L
2-16
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for- p < _p Since H (p, p) - H (p, p), the kernel is completely defined.

This kernel, like the ones-for the circular canal, also has a logarithmic
i• singularity at p =P.

2.3.2 Half-Pull Tiank

For the half-fUll case, the symmetrized volume is a complete sphere, and so

-"the•kernel function c be evaluated on the the known Neumann function
S~(or Dirlchlet function of the second kind) for the sphere. Thus (see Ref. 6)

the function of the position Q (Fig. 2-8) given by

"" ()(') - ) Cos 7 + (O)

satisfies the following conditions in the unit sphere:I ~(1) NMQ is harmonic.

(2) N(Q)has a sink of strength 2 at P .

(3) %de normal derivative of N(Q) has the constant value - at

the surface of the sphere.

Ii ii

r Fig. 2-8 Geometrical Parameters in
Equatorial. Plane of Sphere

S•2 -1 7

QMeSY!

OP!
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Now let P be the point (P., 0,$ 0) in the equatorial- plane of the sphere

(Fig. 2-7)., and. let Q be the point (,0, ax). Then

[I N(p.,OO= 1, 021 0) +[2J/

23[ __2_+_-______co _1/2 __+_I_______co

21
+log -P Cos a + [.....2 +1- 2ýp Cos 4] 1/2j

and therefore

ItH p~ 1  f cos a d-a +cos -dr .
R'' -P, f+ 2p2F csa lI +- -~2 % co l

2

+YpJ~cosa 109

'(2.k

Note that., because of the c~osine variation of local -sink~ sttregth -11th1

radius p, the normal flow at the spherical surface vanimbeq, -'ait-shu-,-

despite the fact that the Neumann function (Zq. [2.331 for, a im
produces a constant flux at the surfaue.

L 2-18
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The evaluation of the first two integrals in Eq. (2.34) followrs iiwnediately

-am the results for the nearly-full case; the last integral may be evaluated

at ýfo11ovs. let Am p-),-and let

m. )f Cos a og 2l -cos da ~2 ~7

E- co 0 4 + 1 2s coo x)

f coJalog[lS.cos CO+ (s 2+ .2s cos a) 1/]d.
0 (2.55)

Note that 1(0) = 0 ; subtract the zero quan~tity f(cos ax) log s d a

'I]from E~q. (2.35)0 giving 0

0W Co o 1+[ 2 cos a Jda
0

0 Then., by differentiation under the integral sign., it is found that

cos ad a

0 [ s +l 1 csx~f

[I which (see Bqa. (2.291 and (2.32]) is

7 ~ K( a) -E( s)

K(s E( s)]do 0

Ii 2-19
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which gives (Ref. 7, p. 273)

B(s) (Ci- 2) K (S

SThen, with m = (p <p ), evaluation of the three integrals in Eq. (2.34) gives:P

+, ( -(- s K (s

Eli

i H¢p, ;) = 7 {: "ja E(" +2 (2.¢6)

trp <p. Again., the a4ditional fact that H(,)=H(

SU (see Eq. [2.-3]) completely defines R (p, ).

At in the case of the circular canal, the solutions of the integral uquation (2.7),
with the kernels Rq., 2. 3 and 2. 36, were performed on the basis of °"

jj the matrix set-up discussed in Appendix A. She result's hre ýgiv in ftetion 4..

__ -p2.3.3 Nearly-Hploty Tank

Vie nearly-empty tank -may be analyzed in a fashion analogaos to the treatment

of the neariy-empty cireP 7ar _nal by approximatins the wetted surface with
*17 l the paraboloid-i$ •-oiut•--n 1,.;_ug the depth variation

h~- (r)r2rr
2-20
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and using shallw-water theory. The problem of oscillation in such a

container has been solved by Iamb (Ref. 1, p. 291); the pertinent parts of

the solution are repeated here in a convenient form. By assuming

# - f(p) cos 8 (independent of .1), the governing differential equation3 for f can be found from the variational principle (Eq, [2.19]) to be

E 2 (P 2 1) P', + P(OP2 - 1) f, + 1- (2% + 1) p2]f = 0 (2.37)

oor [(P2 _-) f +R - (2% + 1)p f =0 (2.38)[ P -
Then, appropriate boundary conditions are that f = 0 at p = 0 . and f is

finite at p = 1 . Note, then, for future use, that Eq. (2.38) implies that

the orthogonality condition
1

M n(P) f (P = 0 (2.39)
0*

holds for eigenfUnctions f and f associated with distinct eigenvalues

X and X

The solution of Eq. (2.38) for the antisymmetrical modes is

II n

J=l

where

a1,=

aJ+1 " IlJU+1)'J ,

• 2-21
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and the corresponding eigenvalues are

Mhe fi-st three eigenfructions, normalized to give f (1) = 1 , are:

fi

f 3p' 2p
f2

f = 5 3-

f- = 1oP -l2p + 3P (2.42)

i U-! As in the case of the circular canalz the lowest elgevaue is ?1 =I,

7- corresponding to the frequency of a pendulum of length R . It is interesting

to ccnpare the e~.genvalues for theb nearly empty canal and spherical tank;

from Eqs. (2.41) and (2.23);

L
Snsphere n canal

• ~ LOCI(HEM AIRCRAFT CORPORATION MISSLIE SYSTEFMS DIVISION :
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1t~ Section 3

SLOSHING FORCES AND MOTION

Srp~osc that twe-rigid container shown in Fig. 2-1 is subjected to a dis-

placement U(t) in the x direction; tank displacements in t%- y ana

9 direction, as well as rotations of the tank about all axes, are assumed

to be fully constrained. Define a dis ement potential T for the result-

Ing fluid displacement relative to the tank, such that the relative displace-

iJ ments are given by

Sandassume T in the for

'L an # n (x, y, z)

- -,e tb * 'a - are th e pot-enti& _Sl associated rit h the natural m ode, of

liquid oscillation in a stationary, rigid tank. Lagrane's equations will

E• •be the basis for establishing differential equations relating the generalized

coordinates U(t) and an(t) to the external force X on the, tank. The

results vill be used to calculate the "sloshing" forces of the liquid on the

container wall.

3-1
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rll

The potential energy during motion is

P. E. - fpLg[fl dF

aP n ;!
F 

[4a!

where PL is the density. - 4
IBut (see Eq1.2.51)

2
iin n

S • y g n

so that

Note, however, that if m and * are modes corresponding to the diatinct-

mfrequeiiAes w and vn

" n" m --
V V - v4V dYVJ. V2 . dV -J 4V0 i ~* d

SV V S -

-j L (3.2)

ft 3-2
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-V As�o, by Eqn. (k.3) t- !.4), " • first two integrals on the right-band

side vanish, and no, by .4. (2.5), the right-ba.Ad side becomes

2

-J Mn dF (3-)
| F

But then the left-hand side of Eq. (3.2) is also given by

2

" 0-- # n dn (3.41

F

and so, for cDm A n, the equality of Eqs. (3.-3 and (3.4) implies that

I
rr

L and also

J V# mVndV=0 (3.6)z V
Hence, the potential energy (Eq. (2.42]) becomes

PL r' Y 2 4 2 F
r 3j n n fn
F

3-3
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or, letting a j ,2 dF,

2g n n

SrF

K.E. = 1/2 M 2 + n +I L[ ,I o

aZ n dV

where M is the container mass.

Using Fqs. (5.4) and (3.5), together with the energy relation for a single made

(see Eq.[2.19])
'on f'2

fJnJd 2gJ n
I. F

gives

K.E. =1/2 (M~ + M)()+ X a(n2 L (3.8)

c 2g

I -. ~where p~
pn f ndV (3.9)

V

and ML is the total mass of liquid.

SThe expression for 13n may be transformed as foflows:

x~ f~hl +j x -- (
V. I V+

F 8

3-4-
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Finally,*
1 ndP (3. 1o)

-With-the Iiagraxigian L= (K.E. - .E.) determined by Eqs. (3.6) and (3.7),.
Iagrange a equations

a. ýL 6L

a )L a 0

yield the differential equa~tions

113

(M+M~U+ Z~an X (3.12)

[rThe sloshing force F S of the liquid, acting on the container in the positive

~' x direction is
69

FS = C

Therefore, from Eq. (3.10),

U a n 8  (3.13)

These results will be cast in con:renient forms for the circular canal and. the

~3-5
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Ii 3. 1 CIRCUIAR CANAL

The quantities Of and P in Eqs. (3.1l)-(3.13) invclve only then n
values of on at the surface, which are propo;iAo,,. to the eigenfunctions

iwn of the integral equation (2.14). For conve.. i.t::e; choose wn(l) = 1;

then

2O

0

1

a = 2(eR) f (WW)1 2

0

Introduce, now, the slosh height n at the right-band side of the canal

associated with the nth mode:

L a) 2fR
Kn n

i-
-. 3 ma thn be-o'fle to

a,%-

l9

+ A) n (3-14)

n

l3-
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2 BnE (3.16)

where

A~ uf Vn(ft) ]2 dif (3.17)
0

BI 1 -v~ (3.18)

0

He".. of course., all forces and masses are understood to be per unit length

I of the canal.

It. Is important to note that for the circular canal these results are valid

without the restriction imposed in the generl developmnent that only recti-

linear motion of the tank in the x direction vas permitted* Rotation ofI the canal about its center produces no sloshing,, nor,, by syzmetryý, does

vetcltn oinpouehrzna lsigfre I ati a

3-2 MMMAL TAB
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Thus, it follows that vanishes for all k p~1,, justifying the restric-

tion previously made to consideration of only the case k = 1. The values Cf
Li ~at the free surface are proportional to f W), whero f (P) = ýP~rn n O

adg~p) is an eigenfunction of the integral equation (2.0). Nornulize

f()so that f (1) 1. Then, as in the circular-wcanal case, the slosh

2 1 22

=1(R)'o fJ 2 f(p) coo2 0
0 0

1]2 1

It 0

= n(a) 00 2w () 2 coos2 8 d

-0 0

liiHence, fromD Eqs. (-11 (3-13),

j(m~ + ML) (aR) D ~~o ;X

IL4  3-8
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~~i - ~vhere 112(.2

[f f(fp)]2 dp f [g.(p)]2 djp

0 0

~ j and

D f JP) dp (3.23)
0

The force F, 9, gain., passes through the center of the sphere.

PY

3-
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L Section 4

NUMERICAL RESULTS-

4.1 CIRCULoR CANAL

The first three modes and frequencies for the circular canal were found for

the values e = 1, 0.-, 0.6, 0.4, 0.2, 0, -0.2, -0.4, -0.6, and -0.8, from
the 20-by-20 matrix formulation described in Appendix A. The values of

c anya) and N (n = 1,2,3) thus obtained, together with those found analyti-
I [ • cally for e = -i, are given in Table 4-1.

The solid curves In Fig. 4-1 show the variation with e of -rZ" (which is
"" proportional to frequency) for the first three modes. Worthy of note is the

"L fact that tVe variation with e of the higher frequencies is not monotonic;
-. the minimum •requency of a given higher mode appears to occur slightly below

the half-full condition, whereas the fundamental mode has its lowest fre-
quency in the nearly-empty state. This situation is at least partially associ-

Sated with the fact that, in general, as depth increases, frequencies of free-
surface oscillation tend tc shift to more closely packed spectra. Thus, for
example, the ratio %2/kI decreases monotonically with increasing e •

t • For the nearly-full case (e = I) tue matrix calculation provided the result
(Xa) = 2.018 , as compared with the upper bound of 2.094 obtauied from the

one-term Galerkin solution. The corresponding asymptotic behavior
I L

S(i-e2)1/4

is shown as.2the dotted curve in Fig. 4-1; the asymptotic behaviors for TrT
are similarly indicated.

4-1 !-D
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Fig. 4i-1 Frequencies for Circular Can~al
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it may be noted that the upper bound = 1. 367 obtained by RByleigh

(or by the one-term Galerkin solution of this paper) for the half-full

L canal is very close to the value XI = 1.360 found from the matrix cal-

culation. Rayleigh's improved upper bound, corresponding to X1 = 1.356,

f i q actually more accurate, but there is little doubt that the results

obtained from the matrix set-up are entirely satisfactory for practical
I application.

The modal parameters An and Bn defined by Eqs. (3.16) and (3.17) are

plotted against e in Fig. 4-2. Except for the nearly-empty case (e = -I)

these parameters were found by numerical integration. For e = -I, the

[1 result (Eq. [2.22] ) for the natural mode shapes provides:

AT nI- An = •:n--

Bn =/3 forn=l

= 0 for n > 1

th
The modal parameter B is closely related to the amount of n modeS~n

induced by latera! acceleration. The low values of B for n > 1 indicate
n

that, in general, the higher modes would not have a major influence on

i ~ sloshing forces.

[j Thc mode shapes Wn(f) are shown in Fig. 4-3 for e = , O, and -1. A

point of minor theoretical interest in connection with the mode shapes is

that the slope at 1 caa be shown to be given by

wn(l) Xn- e Oio e l

Thus, the slope is negative for e > 0 and positive for e < 0 for e 1$

the slope is infinite. The nature of these slopes is a direct consequence

of the inclination of the container wall at the free surface.

U 4-3
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)+ .z~ 8PiBh~IAL TANK -f

The values of a d n ?or t nearly-full (e i) and half-r.Wl

e ) spherical tank were found, for _n 1 , 2, and 3, from the matrix -

formulation dreccribed n., Appendix A and are given in Table 4.2. Also

presented in this table are the values found analytically for the nearly

ewpty tank (e = -1). From the values of (ka) fox e = , #be asymptotic
behavior of/ near e = 1 is shown as the dot-dash curres in Fig. 4 -,. and

the values of for e = 0 and e = I are shown as the circles in this

figuwe. T~we dashed curves represent estimates of the variation of X n in

[tha intermediate ranges, based on the presumably analogous trends for the

ccirctdar canal.

The- modal varameters C ane D were calculated (by numerical int ,gration

for e 1 and e = 0, aA .analytically from Eq. 2.•_ for e = -1) and are

-sho%, i Tn Fig. 4-4. The curves ccnneeting the calculated points in this figure 1 -

were esti-nated, with the results of Fig. 4-1 for the canal as a guide.

Fin-".lly, the mode shapes fn(P) -I- gn(p) for the three cuicalated cases

are given in F. 4-5- J

4-6
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TABLE 4.- 1

It EIGEVAIAJES FOR CIRCULA-R M&LL
- ,2/.- ~

-1.0 0.0 0.0 0.0 0.0 1.0 60o 1r.0

-0.8 o.6 0.6.&7 3.23 6.51 1.045 5.38 10.85

-o.6 0.8 0.879 3.98 7.30 1.099 w..97 9.-.13

-o.4 091'( i.o68 4,34 7.63 1.165 4.74- 8.33

-0.2 0.98o 1.224 4.56 7.% 1.249 4.65 7.99

0.0 1.0 14.3 4.7o 7.96 1.360 4.70 7 7.90
0.2 0.980 1.4& -,.81 8.06 1.-U3 4.91 8.23

0.4 o0917 1-596 4.89 8.15 1.742 5.34 8.89

o.6 o.8 1.7o6 4.97 8.22 2.13 6.22 -2.0.28 -

0.8 o,6 1.822 5,05 8.30 3.04 8.42 13.84

v 1.0 0.0 2.018 5.2o0 8.44

-1l 0.0 0.0 0.0 0.0 1.0 7.0 17.0
% o z~ z.6.• 53: 8.6 1.565 5-34 8.66

1 0.0 2.78 5.-99 9.25 " :4-7
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Section 5

COMPARISON WITH EXPERIMENT
I

Resonance tests (unpubi_ shed) conducted by the Lockheed Missile Systems

Division on partially filled spherical tanks provided the , experimental

repnats for which are shown as crosses in Fig. 5-1. Mhe estimatedE em-.e for [%7. given in Figs 4-,2 is reproduced in Fig. 5-1 for comparison.
Mhe agreement is generally good, and the agreement of experiment with the

rlgorously calculated frequency for the half-full case is excellent.

-&0 

-

7 7

-L a -0 .8 -0 .! -0 .4 - 0 2 0 .2 0 :4 0. 6 -0.8- 5.0
S E Fig. 5-1 Experimental Frequencies for Spherical Tank

5-1
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Section 6

L CONCLUSIONS

The results for the circular canal are sufficiently complete to be ueed. In

the dynamic analysis of such canals filled to arbitrary depth. Some degme

of caution is evidently required, however, in the use of the estimated

results for the spherical tank in the ranges intermediate to the nearly-

empty, half-full, and nearly-full cases.

16-
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~ L Apendixc A
NUMERICAL SOLUTION OF INTEGRAL

EQUATIONS

The general kernel function (Eq ('2.13)) for the circular canal has a

lowiarthbmc singularity at E = >0 For t near wi • 1th,

(~ log +A.2

Slog ( (A-.2)

Near =i,

( -, j) logl. 1 + og2 (A3)

N ote, however, that G(o, ) = a (j, 0) = , and recall that w(0) = 0.

Then the-integral

iT mayg be approx1mated, by

N-1 ~ *

~cniiA) G(go)dt -jl) /G(~,)1f.f
i~l £2

l A-1
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f where A=j. Suppose g= Aithen

2

- -

J G(., ) A--.G( , 1A) N
2

-ent rdt ao(aA,a1) otN

f2

A

c A T + = I I w.

where"] is the column vector with eleents w (J) (j = 2, . . N), T is

the integrating" diagonal matrix [ 1 , and A is the syrn~tricalS~[ii]'
0 A-2

[- -

Log2) A (I- lfA 2 L
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square mnat.rix with the general el~ement Aj defined by:

- l

[ A G(it, JA) +f N J4

JA) +- ( - log i j4N

2. log 2 + (1- log± J'=N
2

Note that, in the absence of a logarithmic singularity, the Integratic scheme

would reduce precisely to the conventional trapezoidal rule.

The orthogonality condition for distinct eigenfunctions w and vm n

-+ IJ v (J) vi~ ft) dt =0

0

is approximated, according to trapezoidal rule, by

I' (w) (A.6)1 0:--, [~~ ~w)]• = c(,)

where [wv] is a row matrix and (w ) is a column matrix.
M n

I[ •The orthogonality condition (Eq. A.6) is satisfied exactly by the elgenvectors
of the matrix equation (A.5*, and, for this reason, the present integration

scheme is considered to be a reasonably appropriate one.

An entirely analogous scheme is adaptable tv the integral equation (2.22) for

the spherical tank. In the case of the nearly-full tank, the behavior of

H(, )near p = p is

H (P, l)og o - (log p + log 8 2). (A.7)

1% iincluding the case p=

LOCKHEE AIRCRAR CORPOAATION MMME SY$M OWSION
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Fo healf-full tank., for ýp mear p -. iith p 1,m

E(Ps l-; ogj (log p 2p K(p + log 1 8 21

1* the otber band, H(lj, -)neer 1 10

P 210 ( (2 10g 8 - 2) -(A .9)

Hence, the matrix formulations for the spherical tank may be made in a

fashion similar to those for the circular canal; the eignevectors are then

proportional to/Pf(P)

Rigenvalues and eigenvectors of the matrix C = AT (Eq. [ A. 5 I) were found by

using a mnington Rand 1103AF computer on the basis of 20-by-20 matrix

[ approxietion (i.e., N = 20). The highest eigenvalue of C (and hence the

lowest value of X ) and the corresponding eigenvector were fourd by matrix

Siteration. -The second mode was found from the modified ("swept") matrix

Cc, = C - C(•T 1

where v is the previously determined first eigenvector, normalized according

IL to

[v11 T (wi) I1

After determining the second eigenvalue and eigenvector, again by iteration.,

C1 was simil'arly wept to provide a matrix C", direct iteration of which gave

the third eigenvalue and eigenvector.

A-4
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