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This report summarizes the results of a study
undertaken by Dr. Bernard Budiansky for IMSD
Research, Lockheed Aircraft Corporation. The
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work was performed under Air Force Contract
No. AP-oli(6L47)-181. Dr. Budiansky, consultant
to Lockheed during the sumer of 1959, is
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Associate Professor of Structural Mechanics at
Harvard University.
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ABSTRACT

Theoretical calcuviations are made of the netural modes and frequen-
cies of small-amplitude sloshing of liquids in partially filled
circular canals and spherical tanks. An integral-equation approech
is used to analyze the circular cansl for arbitrary depth of liquid.
A similer approach for the spherical tank provides modes and fre-
quencies for the nearly-full and half-full cases. These results,
together with the known behavior of the nearly-empty tank, are used
in conjunction with the trends established for the circular canel
as a basis for estimating frequencies for arbitrary depth of liquid
in the spherical tank., The dynamic analysis of the contsiner-fiuid
system by means of the mode~superposition approach is Jdiscussed, and ) [
modal parameters required in such analyses are presented.
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NOTATION
geametrical éoo;rdinates (see Fig. 2-1)
g,'g',q nonéimensional coordinates
EX, ! . R canal or sphere radius
a,e,p geometrical parameters related to liquid depth
: E u,v,w velocity distributions in x, y, and z directions, respectively
® oscillation frequency
;: E t  time
= *,9,0 velocity potentials
E ¥ displacement potential
3 g acceleration of free fall relative to container wall
* ‘ [ A frequency parameter: A = waﬁ/g
h liquid depth (varisble)
: E z,” complex variables
: ) ¥ complex potential
. G kernel function {circular canal)
E H kernel function (spherical tenk)
L [ wn mode shape for circular canal
:f n mode shape for spherical tank
{ &(p) 7o 2(p)
l r,y,0 cylindrical coordinate system
2, E nondimensional coordinates
E m /B
5 )
[ K, B complete elliptic integrals of first and second kind, respectively
I
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1
%{ j' N Neumann function for sphere
g - czn,Bn modal parameters
§ B AnBz.CnDn nondimensional modal parameters
§ Mc mess of container
% } Py, density of liquid
% MI. mass of liquid
2 X external transverse force acting on container
§ i F S sloshing force acting on container =
% ; U transverse displacement of container ‘
A square matrix E
| ( T integrating matrix '
P {} column matrix
3 ) [1 row matrix
m,n,j,k,N integers 3
; l A interval of subdivision {A = 1/E) .  3
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Section 1

INTRODUCTION

For sufficiently small amplitudes of motion, the dynamic effects of the
sloshing of & liquid in a partially filled container can be analyzed in terms
of the nstural modes und freguencies of the small, free-s..rface osciliations
cf the liquid. This paper is concerned with the calculation of the modes
and frequencies of partially filled circular canals and spherical tanks,

with a‘'tention restricted to the modes that would be induced by lateral
accelerations of the containers. The usual assumptions of inviscid, in-
campressible flow are wade, and the ccntainer is considered to be rigiad.

The dynamic analysis of the container-fluid system by means of the wode-

superposition apprcach is discussed, and modal parameters required in

such analyses are presented.

The case of the half-full circular canal was considered by Rayleigh (see

Ref. 1, p. 4L4k), who carried out an approximate energy soclution for the
fundamental frequency. Graham (Ref. 2) estimated the fundamental frequency
of the half-full sphere by conceptually dividing the liquid into a collection

of half-diskc and then using Rayleigh's result in an unspecified averaging
process.

The frequency and mode calculations of this paper are based on a rigorous
integral equation approach. 1In the case of the circular canal, the appro-
priate integral equation is formulated explicitly for an arbitrary depth of
liquid, and numerical calculations of the first three pertinent mod~s and

frequencies are performed for a range of depths by means of a matrix

1-1
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approximation to the integral equation., ZFor the spherical tank, rigorous
analyses are made for only the nearly-empty, half-full, and nearly-full

o Toay
fl

tanks; results for the intermediate depths are estimated by interpolation
and by means of the trends established for the circular canal.

LTS

The results for the fundamental frequercy for the spherical tank are compared
with available experimental data.
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Section 2
SLOSHING MODES AND FREQUENCIES

I

o &

2.1 BASIC DIFFERENTIAL EQUATIONS

.ih 4
+

- o ;iﬁe"hifferentia.l equation and boundary conditions governing free-surface
oscillations (Ref. 1, p. 363) will be displayed.

=
,
2 '

W AN SR T RN T £ ARSI S IO %

The 1liguic is supposed to be bounded by a horizontel free surface F and a
- rigld wetted surfece S (see Fig. 2-1), and small, harmonic oscillations

are assumed. The velocicies in the x,y,z directions, respectively, are then 3

U

. .4"

» (x, y, 2) sin at.
v {x, v, =) sin wt.

R (x, v, 2z) sin wt. (2.1) !

'

e

where o 1s the circular frequency.

Y

Since %he flow is irrotaticnal, there exists a velocity potential

; . » - ¢ {x, y, z) sin at.
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The continui-t.y ecuation for incampressible flow is

) Vaomo

"~ (2.3)
The condition of tangential flow at the rigid surface requires that
o=z D20 o 8 (2.4)
‘ nz= g = on “e

vhera E’ is the unit aormal vector to S.

Finally, the condition of constant pressure at the free surface together
with the linearized Bernoulli equation leads to the condition

¢ m2 ;
S'y_" = “é' “ cn F (2.5) )
where g 18 tke acceleration of free fall relative to the sontainer,

Equations (2.3), (2.4), and (2.5) govern the eigenvalue problem for the A
frecuency . Note that {2.1), (2.2), and (2.5) imply that the shape of the o
vertically displaced free surface during oscillation is given by ¢(£, 0, z). .

The analogous two-dimensional problem of transverse sloshing in a unifom
channel is formulated in an obvious fashion by suppressing the z coordinate.

2.2 CIRCULAR CANAL

The geametrical parameters for the partially filled eircular caml'are shown
in Fig. 2-2; the deptk of liquid {s measured by e » which varies fram ~1 for
the empty canal to 1 for the full vessel.

It is clear thet, because of geametrical symmetry, the natural modes involve
free-surface vertical displacements that are either symmetrical or antiayninet—.
rical about the orgin. Since the symmecirical modes would not be induced by

2-2
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transverse motion of the canal, asttention i1s restricted to tue antisymmet.

rical modes,

It 38 convenient to nondimensionalize the problem by introducing

§E = i
(2.6)
n =

2

The normalized geometry is shown in Fig. 2-3; the free-surface condition

becamesa
o
g‘,'!’ = (NB')"i (207‘)
a)aR
where A = —-g-— . The angle 8 shown in Fig. 2-3 is given by
B = arc sin e 7 ’ (2.8):

and varies fram /2 for the full canel to -x/2 for tke empty canal,

The procedure for setting iup av integral equation governing the antisymmet-
rical modes follows, ’

Consider the fluid-filled coniainer consisting of the original wetted boundary
pius its reflection about the ¢ axis (Fig. 2-4). Place a two<dimensional
sink of strength 2w(E)af at 'E and a source of equal strength at -§ , and
_smear out both over a strip of lemgth d . Denote the resulting velodity
potential for the internal flow by

w(E) © (&, q; E) at

Since the velocity potential is, arbitrary to within a constant, it will be
assuned that 0(C, 9; ) = C, and hawse #E, n: %) = - o(-&, ns E). By

= LT S,
Py =, LS -
- PR -
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symmetry, the vertical velocities along n = O veanish evarywhere except
on the strips of length dE at E and -g' » vhere Just below the § axis

| Qe
At

they are w(t) and -w(E) , respectively, It is now possible to construct
the velocity potential for the free-surface oscillation of the éonfiguratim

of Fig. 2-3 by means of a distribution of sources and sinks along the § axis.
It 18 necessary only to satisfy the free-surface condition {Eq. [2.77)

s I relating the vertical velocities along the ¢ axis to the velocity potential
along the § axis., Thus, we require that

i
O

4

1
w(8) = 0a) [0 (8, 0 D w (D) aF (2.9)
o

for 05 &X1; since ¢ (-, 0; €) = - & (&, 0; E), Ea. (2.9) is auto-
X matically satisfied for negative ¢ , with w(-$) = - w($).

* The problem now is to find the kernel function

Piodinis g

-

olg, T = @ (g, 05 E) (2.10)

g

(eI

and this is readily accompiished by conformal mapping. R

] % The successive transformations shown in Fig. 2-5 map the region of Fig. 2-4
into the entire f plane; the resultant transformation is )

L | f{%(i—;ﬁ)]’ (2.11)

2 — -
where 7=m . Now let fla.ndra correspond to z = § and -£ ,

respectively. The complex potential of'a sink at fl and a source at f2’ .
each of strength 2, is %3

1 -1 -

where g 18 an arbltrary function of E.

2-6
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Substituting Eq. (2.11) into Eq. (2.12) gives,in the 2z pisne, the

R R O EER AR
anaret S © 1 B ]
)
D

Gha

W

e

=

corresponding potentigl

H P

_;; F(z)

(1-2)7 (1+%) - (1-2)7 (3-%)

- -'llog

(142)7 (48) - (2-2)7 (2-F)

e} gewed

Finally, G(%, £) = Re F (z) 1s

x !
Jronmrny
Wrreonn g

{1+¢)7(2-8)"- (a-
(148)7(148)- (2-6)7(2-F)7

EERENY

A LA R o el - 4 b
“
{
VAT YT oy

% (s, E) =- % log

Note that G has a logaritimic singularity at & = £ . Noté also that

(&, €) = 6(%, &) = ~ G(-¢, ¥) .

*

To recapitulate, then, the solutions of the hamogeneous (singular) integral
equation

FAMONY

. .
I | w(8) = va) [o(t, Du(® & (2.24)
o

l with G(§, &) given by Eg. (2,13), provide the characteristic free-surface
' shapes w(¢), and the associated eigenvalues of (A2) yield the naturel
L: freguencies. -

2-8
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The mmerical solution of the integral equation {2,14) has been performed for
various depths on the besis of the matrix formulation described in Appendix A.
‘The results are presented in Section 4.

- Special cases. Several special cases for which approximate solutions can easily
be cbtained are of particular interest., For the half-full canal (e = 0), the
kernel becomes )

A one-term Galerkin-type solution for the lowest frequercy can be carried out
- without diffs aulfy for this case,

6(k, B) = - 2 208

From Eq. (2;1&),

1l 11
f (w012 a = () [ [a(e, B w(B) w(e) asak (2.15)
[o] (o o]

Introducing the approximate mode shape w = ¢ into Eq. (2,15) and carrying
out the integrations give, for e = 0, (a = 1) , the zpproximate fundamental

eigenvalue

- 3‘8- ' (2.16)

or

g 1/2
@ = 1.169 (R)

This is precisely the result found by Rayleigh in an entirely different way.
The result is necessarily an upper bound to the exact freguency. Rayleigh
giso obtained an improved approximstion o = 1.164%4 (g_)l/ = .

2-9
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t s B

Also of special interest is the limiting case of the nearly-full canal, where

i

| xa 0 -]
. one

B — -;- and y — 1. The integral equation becomes simply

=t

Denote the criticel values of (Aa) by c, (n=1,2, ... ); then, for e
sufficiently close to 1,

w(E) at (2.17)

1
w(E) = = (ka)f %los
[o]

Sormi iy Py nepns}
By s .. . fgpe— )
(e

[YRv
4
(r]

]

Y

"/1 - e

Thus, the frequencies tend to infinity as the full condition is spproached.

This result, as well as the form of the integral equation (2.17), cculd hsve
been anticipated by consideration of the sloshing of liquid in a half plane

with a rigid boundary having an aperture of length (2aR). (See Fig. 2-6.)

m&eg

P

sink pair, without the need for conformal transformations. A one-term Calerkin

e

solution of Eq. (2.17), asgain with w = § , gives the approximate result

P

c, = 2x/3 = 2.094

so that (2.18)
2.094
7\1 i
l-e
for e —+ 1,

‘.

.

[ Fig. 2-6 ILimiting Case of Nearly-Full Container

i

2-10
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For the nearly-empty canal (e —+-1), y becames infin'te. The asymptotic
results for this case are most readily found by abardoning the integral
equation end exploiting shallow-water theory. (See Ref. 1, p. 291.) The
differential equation for the velocity potentisl may be convenienily deduced

from the varifational principle given by Lawrence, Wang, and Reddy (Ref. 3).
The wvariational equetion 1s

2 a)2 2
5 flv¢| dV--a-gfod.F=0 (2.19)
v F
whsere V denotes the volume of fluid in Fig. 2-1.

As shown .n Ref. 3, Egs. (2.3), (2.4), and (2.5) constitute the Euler equation
and natural boundary conditions of Eq. 2.19.

For the two-dimensional canal of shallow depth variation h(x), it is assumed
that ¢ may be taken independent of y. Then Eq.{2.19) beccmes

a[% fh(x) [%]edx - %Z— fogdx]= c
F P

The Euler equation is

For the nearly empty circular canal, the depth has approximately the paraboliic
variaticn

h{x) = 15 [(a.R)a - xa]

so that Eq.(2.20) becames

O+

fx"[(aR)a - %] +(%)° =0

2-11
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x
or, in tems of § = ;ﬁ,
1 4 2 dae
3 a-g'[(g - 1) -‘i-g-} ~A =0
whence 2
(-1)e"+2¢0* -2 0¢=0 (2.21)

This is esseutially Legendre's differential equation. For the actisymmetrical
modes, ¢(0) = 0; in addition, the condition of finiteness 3t § = 1 13 lwposed.
The solutions of Eq. (2.21) are then the odd-order ILegendre polynamials of

the first kind

Pall‘l (g) n = l, 2, 33: . 0(2022)

with the corresponding eigenvalues

p=® -n n =1, 2 3...2.23)

e s

The polynamials {Eq.{2.221) represent the limiting free-surface shapes of
the patural modes as the depth approaches zero.

The first eigenvalue 1is A’l = 1 , and so the fundamental frequency

A F

is, as could be expected, simply the frequency of & pendulum of length R .

2-12
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'- %e semetrical rarsusters of Figs. 2-2 and 2-3 may be consgidered to a,pply to
the spixertcal tank, " A rigorour analysis was executel for only +%e nearly-
S ﬁxll and balf~-full cases; rigorous results ror tI3 nearly empty case, givea
by lamb (Ref. 1, p. 291), are also available.

P

¢

p:d
&
Vi
z.
5
2
%
XS
W,
v I
iy -
~ N .
- L A
€ RN

\Introduce the c;rlin&rical coordinate system (r, y, é) , Here X = r cos 4,

z = r sin €. The appropriate nondimensional system becomes {p, 7, 6),

vhere p = r/aR, and, as before, q = y/aR. In these nondimensional coordinates,
tixe governing differential equation is:

2 2 2 :
§—f3+-1~ %i-i—'a—%—b-]-'é;-a-%:o (2.24) x3
- p P °C ¥y p 06 o
and. the frea-surface boundary condition remains that given in Eo. (2.7). It
is evident that sclutions for the modes may be written ! the form :
¢ =%p, q) cos k 6 (k=3,2,¢..) (2.25)

Tt will be shown later that only the modes with k = 1 are induced by leteral
accelerations in the ¢ direction. Consequently, attent’on will be restricted

m‘
. [ "
}

%o these cases,

The procedure for setting up an integral eguation analogous to Eg. (2.14) is
aa'_fqllows. Consider the volume of fluid enclosed by tke wetted surface and its
reflaction sbout the originslly free surface 73 = 0. " (See Fig. 2-4.) Kow,

in the plane 1 = 0 (Fig. 2-T), place a dis*ribution of three-dimensional

sinks along the anmulus (E, ; + d;) of st . engthas 2f (E) cos @ per unit

area. lec f(p) g (p, 7, 6; P } o dp Dbe the resulting velocity potential.
Then, since the vertical velocity just below the plane 5 = O 1s, becsuse

of this poterntial, zero everywhere except in the annulus, vhere it is
2-13
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£(p) cos 6, the imposition of the boundary condition Eq. {2.7) at
@ = 0 requiree that

1
2(p) = (ra) j a2 (p, 0, 0; p)p £(p) &p (2:25)
: A

It is convenient to let g(p) = JE' 2(p) 3 then )
N ] 3

&) = (na) [ Hps5) & (5} dp (2.27)
) . :
where
B(p,5) =] op @ (0, 0, 03 P) | (2.29)

The problem now i3 to detemmine H(p, p) .

Flg. 2-F Coordinates in Fre. Surface of i
Spherical Tank . *
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2.3.1 Nearly-Full Tank

- For the resrly-full cese, the symmetrized region is the entire space

(Pig. 2-6), and the potential of & sink in the plane 5 = C 1s ummedified
by the presence of a rigid boundary in this plane. The potential of a sink
of strength 2 &t (¥, 0, @) %=

1 1
chose-pcosa)2+(psine-psina)2+n]172

and so

8 (p, 0, 03 .5)

2n
_:;.__ cos @ daa
2x 2 2 - 31/2
o p

+p -2ppeosozj

; #p, B) = ’E-E’-f!p cos*xﬁa e ;

- ]12
+p -2 pp COB Q&

- - .- P
Clearly, H (p, p) = H(p, p). Consider p < p ,and let xna(%). Then,

=E f _____cosg da (2.29)
ﬁo [ma-ancoaa-fl]m
i a
Ietting B = > yields
3
2 2
2 sir -1
o [1 - g sin ﬁ]
2J m
WEeTe 4= uT
2-15
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This may be evaluated in terms of complete elliptic integrals (Re?. &4, p. )

to.glve

.,.
= - 2
13 ~ ~ <2
H B s i
H B - B o« % .
ii i

1 (a 2 ‘ ;
o= - - - K K - - E . 3
- e S q) (Q) - 5 (q} (2.31) |
A :
-
X - :
i where 3 {
;- K (q) = f
: r q gix 9]1/ 2
by 2
P 2 :
] N 4
L E(a) = | [1 - &€ s1a® 9] as
o
: 3 :
are the complete elliptic Integrals of the first and second kind, respectively. g
- The result (Eq.[2.31]) for H {p, p) may be pu*t into a much more convenient
Mx form by exploiting the landen transformations (Ref, 5)
| 2N - 2
B K (m) = (—1—5/1( (q)
3 i : g" ) .
| ,L E(m)-:-(a/\E(QH - )% (a) 53
"e v&‘-‘ to give, as a final result . o ome L : '
k ) ' -
1 — - 2 ] e -
| % (p, ) = [x (2)- =(2) (2.32)
o iU «f & P s/ ’ .
e Ve
E -
By 2-16
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’ si.xgularity at p = p . -

"thefkernel function can be evaluated on the basis of the known Neumann function
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for- p<p . Bince H(p, p) = H (p, p), the kernel is campletely defined.
This kernel, like the ones for the g.lrcular cane.l , also has a logarithmic

2.3,2 Half-Full Tenk
For the half-full case, the symmatrized volume is a complete sphere, and so

(or Dirichlet function of the second kind) for the sphere. Thus (see Ref, 6)
the function of the position Q (Fig. 2-8) given by

-3 N 2 f
e im (@)@ M (TG R o T

satiefies the following conditions in the unit sphere:
(1) N(Q)} is hammonic.
(2) N(Q) has & sink of strength 2 at P .
(3) The romal derivative of N(Q) has the constant value -\-—-—) at
the aurface of the sphere.

Fig. 2-8 Geometrical Parameters in
Equatorial Flane of Sphere

2.17
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Now let P be the point (p, O, 0) in the equatorial plane of the sphere -
(Fig. 2-7), end iet Q be the point (p, O, ). Then

1 1 1
—— c + "
" ‘pa + "52 - 2pp cos a]lle gpa)a + 1 = 2pp cos dJ 1/2

N(p, o, 0) =

2

+ log

1-p3c03a+[(p3)2+1-2p3cosix} 1/2 ) o
and therefore )
! ,
. x )
3 ﬁ'p_-‘ cosada N coaada;\
c H(p, p) = 5 — B * Ty
[ - 2pp cos & : S [(pp) +1- ?.pp coe O

hida s

radius p , the normal flow at the spherical surface- vanishea,qas’if Qhé!u.d, s
despite the fact that the Neumann function (Eq. [2.33]) for a _1__:@__ etk
produces a constant flux at the surface,

LOCKHEED AIRCRAFT CORPORATION
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- The zvsluation of the first two integrals in Eq. (2.34) follows immediately
.’Trom the results for the neariy-full case; the last integral may be evaluated
a8 follows. let 8 = (pp), and let

- ‘-

DGR Mt o
Ly
s
m s \/
N B
Y GO e
o .
[
S
N
[N !

I (8) afcosalog g 22_ 75 zda

o ) {1 -scosa+ (s +1-28cos a)
3 ‘ < |
| 3 g = -fc“ & log [(1 -5 CcOS Q@) + (32 + 1 - 28 cos a)l/E] dox
3 ° (2.35)
i | .

Fote that I(0) = O ; subtract the zero quantity f (cos &) log & 4 &

1l fron Bq. {2.35), giving o
- b ¢ - 1/2

[ I(s)=-fcosalog{%-cosa+[1.;.-3'5-.2_.5.95_“" ida

q o 8
B @ Then, by differentiation under the integral sign, it is found that

p 8

. 1 cos ad a
I'(8)= 'B' f 5 1/2
g [s +1-2scosal

which (see Eqs. [2.29] and [2.32]) is

T -% [K(s)-E(s)]

8
5 E Hence 6
, E I(s) = f -8% [K(s)-E(s)] ds
)
B 2-19
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vhich gives (Ref. 7, p. 273)
I(s) =-§[E(s) -(1- 82) K (8)}

Then, with m = _E— (p < Z), evaluation of the three integrals in Eq. (2.34) gives:

H(p, p) = i’ {— [I’(v) - E(m)] [K(S) E(e)]

[E(s) -1~ K (si’ }
or, £inally,

H(e, 5) % { 7 E ( ) ()]+° (,,,,,3/2,((9;)} :

for p<p . Agailn, the additional fact that H (p, p) = E (p, p¥ ~ =
(see Eq. [2.34]) completely defines E (p, p).

2
o

J&

48 in the case of the circular canal, the solutions of the integral uquation (2.27),
with the kernels Bq. 2.32 and 2.36, E

vere perfonned on the basis of -
the matrix set-up discussad in Appendix A. The results are given in Bection k.

2.3.3 RNearly-Empty Tank s ‘ R

= - . “
- Y

The nearly-empty ta.n}; ;233' be a.nalyzed in a fas}ifon é.n;iogcrus to % mﬁe‘ trestment - .'1;
of the neamy-anpty circular f-a’*gl by approxime.ting the wetted surface with - gt
the ps,raboloz;r,;:gg ““alur_.;ﬁn aving the depth va;riation

s ;{(1)2-‘1-‘2] ‘

"am

u’
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and using shallow-water theory. The problem of oscillation in such a
. container has been solved by amb (Ref. 1, p. 291); the pertinent parts of
- the solution are repeated here in a convenient form. By assuming
¢ = £ pA) cos 6 (independent of 3), the governing differential equation
for £ can be found from the variational principle (Eg. [2.19]) to be

pos" - 1) 1% 4 p(3p°- 1) £ 4 [1 - (2n 4+ 1) pa]f =0 (2.37)

or
2 1
plp  =1)f j+l=-(n+1)p|f=0 (2.38)
J p
Then, appropriate boundary conditions are that f=0at p=0, and £ is
. finite at p =1 . Note, then, for future use, that Eq. (2.38) implies that
the orthogonality condition
1
fp £ ()t (p)=0 (2.39)
o

Loonend

helds for eigenfunctions fm and fn associated with distinct eigenvalues
A and A .
m n

-{ The solution of Eq. (2.38) for the antisymmetrical modes is
! 5
! £,=) a p2d-t n=1,2, ... (2.%0)
= E =1
;’ where
F ﬂ a, = 1
3 § [E i i [ne . 32]
% : J1 FIEISV B
[
1 oo
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and the corresponding eigenvalues are .
An = 2!1 - 1 n 1,2, e o o (20)‘1) - .

| The fi~st three eigenfinctions, normalized to give fn(l) =1, are

fl = f ‘ -
5.0 .
{ ‘ fa =0p" - 2p - : -
) f3 = mp5 - 1293 + 3 {2,42)
!‘ - T
- As in tkhe case of the circular canal, the lowest eigenvalue is ).1 =1, .

corresponding to the frequency of & pendulum of length R . It is iuteresting
to campare the e.genvalues for the nearly empty cansl and spherical tank;

,,w,w..m,.....,.m‘..._nwm
Lo b

- from Bgs. (2.41) and (2.23):
B
é # ()"n)sphere = ()‘n) canal ¥ (n-1)

;|

AW 1Y
li
H
‘
o

v“a; A

x4

J

[

L

 n—
"(
\
EEA

Pap2
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Section 3
o SLOSHING FORCES AND MOTION B
|
- - - - Buppose that %‘EeNii.gid container shown in Fig. 2-1 is subjected to a dis- -
. placement U(t) 1in the x direction; tunk displacements in the ¥y and
\ 2z direction, as well as rotations of the tank about all axes, ere assumed
E to be fully constrained. Define a displacement potential ¥ for the result- ;
ing fluid displacement relative to the tank, such that the relative displace-~
i E rents are given by i
; ﬁ 9 ¥ oY ] .
b dx ’ oy ’ oz ]
g E " » [5 i
. i
and assume ¥ in the form i

 woomes R mmart

s ag

~where the ¢ 'o - are lhe potentinls associafed with the natural modee of
liquid oscilletion in a stationsry, rigid tank. Lagrange's equations will
be the: basis for ectablishing dirferential equations relating the generalized
coordinates U(t) end a (t) to the external force X on the tank, The
results wiil be used tc calculate the "sloshing" forces of the liquid on the
cozitainer wvall.

(”1.\5‘4’\%

Bin oo o
) ‘W%W'

e S e

™ ‘e.,-,
(1
St |

[

N |
\
w
1
v}
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AU O FERNE 4

| i
3 - i
[ ] ﬁ The potential energy during motion is i
i 5 \
! ‘ %
i -3 f i ar ‘ ‘ ]
PE. =3 ) 8l & T ;
E 2 F . !
| 2 B
{ i 8 aF -
H =2J "1 n 5y } g !
F | I
§§ -~ where PL is the density. ’ - j
l h‘g But (see Eq.[2.5])
- 2
¥ o¢n o
z B . oD,
i 8o that
l? :;i_
- 2 \2 ‘ -
o B0 _ ) -
nn e (;
i P.E. = 3 prg 2, ¢ daF (301) ;;
o 5 .
i . .
b Note, however, that if ‘m and ‘n are rodes corresponding ’to the Py fnct d
RS AR frequercies w_ anmd w_ , ;
) m n i
, i ! $ M ~—
Sl L ‘ fve; *V e dV=|¢ OCW-JQ ¥4+nads
g@ .- m n J B n b I :
i v - v : S L
- e X .é
k S d¢_
» ’ : : B f ‘m ;W_ ax ~ T
N - 3 . : (3.2)
1‘; ’ .
L 3-2
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Also, by Bgs. (2.3) and (2.4), t » first two integrals on the right-nand
side vanish, and 80, by &g. (2.5), the right-hand side becomes

f ? °m ‘n aF (3.3)

But then the left-hand side of Zg. {3.2) is also given by

. ai - . ] » N : h‘
-f -é'- ‘m ‘:n ar ’ {3.4,
¥

and so, for o %w, , the equality of Egs. (3.2) and (3:4) implies that

f ’m On dF = 0 (3.5)
¥
and also
L/‘v¢m -v¢ndv=o (3.6)

v

Hence, the potertial energy (Ey. [2.42]) becomes

P.E.-ngSE N o2 aF
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~ P 7
or, letting o = j ¢n ar, ,
F -
s 2 &
As
I.E. = 5 Xan & Y {(3.7)

The kinetic energy of the container-liquid system is

K.E =1/28_(0)° +%f [‘3 +2 &, 'a‘;% ]2 "[Z;n %]2
v

2 _

Y s %] e

where M is the container mass.

Using Eqs. (3.%) and {3.5), together with the erergy relation for a single mode
(see Ea.f2.19])

) 0 2
f _o.a [ 42 -
J ivonl av = g ¢ 4F
v

n
F
gives
K.E. = 1/2 (M + M) (D)% 4 5= T z% a (8)% + oy Z’Bh s, (3.8)
where ) BQn ‘
By=/| 5zdV (3.9)
v

and ML is the total mass of liquid.

The expression for B, may be transformed as follows:

3¢ o¢ |
an {5‘%(‘ )*%G‘ﬁ)*%(“a‘)}d"f Ve, @

Vet oae \'
n -#
= K ——— v n 4ds
f 34 +f xV ¢4 -
P 8 ’
34
LOCKHEED AIRCRAFT CORPORATION MISSILE SYSTEMS DIVISION




AWITA

+r

s SRR S KN

e e Y T Srdes
'-‘ I.r

S IALUSE ” AL rLu A, Tereeih (bt ¢ oh s’ g o 2
FOPTREIMS AN I e 3
e el P e

'IMSD-5151

(3.10)

" _¥ith'the lagranglen L. =(K.E. - P.E.) determined by Eqs. (3.6) and (3.7),

“Lagrange's equations

5, 4V =- (%)(—2‘;:) i (3.11)
M, +¥) T+ g Zﬁn a, =X (3.12)

The sloshing force FS of the liquid acting on the container in the positive
x direction is

FS = Mc g-X
Therefore, from Eq. (3.12),
Fs=-.MLﬁ'-pLz B & (3.13)

Thege results will be cast in convenlent forms for the circular canal and the

spherical tank.
3-5
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F 5
- 5
- 3.1 CIRCULAR CANAL 2
’ v
. The quantities @ and B in Egs. (3.11)-(3.13} invclve only the )
values of °n at the surface, which are proporiic.al to the eigenfunctions
w, Of the integral equation (2.14). For conve. ience. choose wn(l) = 1;
then
2 1
2w 2
By =) (B JEwlt) at
[o]

1
an=2(aﬁ)f{w(§)}ad§
e]

Introduce, now, the slosh height §n at the right-hand side of the canal
associated with the nth mode:

%
- gn =8, -6-; (aR)

2

= = (a)) % v (1)
" 2

_ 2oh

- I

The total height of slosh at the wall is thenz ¢, Bauations (3.10)-(3.12)

B i may then be wodified to:
3 “4.‘_" b

ak E vt =- 08 20 S CRTS
ot a + n~ - Bn An 3.

|
.
i

G 2 t -
(M, + M) U +20, (aR) Z BL =X (3.15)

E N
:

L. 3_6
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L ‘:‘ T Fg = - nLﬁ - a,L‘(aa)a an ';'n (3.16)
l ) -
‘ | A ._f [w ()12t O (3.a7)
0
Sl _ B ==f tw(t)at (3.18)
- B °

‘
il

Hers, of course, all forces and masses are understood to be per unit length
of the canal.

1

It is dmportent to note that for the circular canal these results are valid
without the restriction imposed in the gener.l development that only recti-

- linear meticn of the tank in the x Jdirection was permitted. Rotation of
the canal about its center produces no sloshing, nor, by symmetry, does
vertical tank motion produce horizontal sloshing force. (In fact, it can
be shown that vertical motion produces no sloshing at all in the circular
canal.) Since all pressures are in a radial direction, the resultant hori-
sontal sloezh force Fs always passes through the center of the canal.

CRTa v
3 S A Pt
U?.V,JH m

(AN LA i
ﬂw qu-i !’ .!'ul»l nl m

3.2 SPHERICAL TAXK

In terms of the sloshing natural modes ¢ = ?n(r,y) cos k 6, the parameter
ﬂn is

i
s s

e A P AN T AL

2 e
ﬁn=§ff r{r cos 8) ?n(r,o) cos kK gdar g @
— ©o o

.,»v
taweit
W
[
-3
FTTPIRTR
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Thus, it follows that g vanishes for all k F1 Justifyiné the restric-

tion previously made to consideration of only the case Xk = 1. The values cf
L ()

¥ ot the free surface are proportionsl to rn(p), vhere tn(p) = 7 sn(p) s

=

I and g (p) 1s an eigenfunction of the integral equation (2.28). Normalize

: £.(p) so that fn(l) = 1. Then, a8 in the circular-canal case, the alosh
| height £ at the vall is & o2/g, and
B B 2 Ll

) B, = (33)3—*/‘1 o% £(p) cos” @ ap

ﬂ. 2 1 "

n

(/1]
% (aR)’ fgn f o2 £(p) ap

&
—
Q

]

1l 2«
3 (aR)? ff ol2 ()12 cos® 6 dp

1
@ [ oif (@)1

o ) - s

Hence, from Egs. (3.11) - (3.13),

i
i
*'; | Eo+alt =-(m)( )
j....,-
I
!
i

(M +ML) U+ﬁpL (aa)3z D g;zx
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1
]
:
d
o ° l 1
\ = [ ol 0= [Ig (11" e (3.22)
N o o
and
1
o= o) % (3.23)
(o]

The force Fs s 2gein, passes through the center of the sphere.

55

Ed
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Section 4
NUMERICAL RESULTS.

"

PR

. 4.1 CIRCULAR CANAL

The first ihree mcdes and frequencies for the circular canal were found for
l, the Values e = l, 008’ 006, o.l", 0.2, O, "002, “Ool"’ °006, aﬂd "0-8’ from
the 20-by-20 matrix formulation described in Appendix A. The values of

i J (Aa) and A_ (n=1,2,3) thus cbtained, together with those found analyti-
I : cally for e = -1, are given in Table 4-1.
i E :
§ * The solid curves in Fig. 4-1 show the variation with e of ¥ A (vhich is
; proportional to freguency) for the first three modes. Worthy of note is the "
& fact that the variation with e of the higher frequencies is not monotonic;
- the minimm “requeuncy of a given higher'mode appears to occur slightly below
f the balf-full ccndition, whereas the fundamental mode has its lowest fre-
' ) quency in the nearly-empty state. This situation is at least partially associ- g
: } ated with the fact that, in general, as depth increases, frequencies of free-
E B surface oscillation tend tc shifi to more closely packed spectra. . Thus, for
F | E example, the ratio )‘2/}‘1 decreases monotonically with increasing e .
: For the nearly-full case (e = 1) tue matrix calculavion provided the result ,
‘}\\ N-;é\, (kla) = 2.018 , as compered with the upper bound of 2.09% obtained from the
3 1 one-term Galerkin solution. The corresponding asymptotic behavior
I s o) . L
- ' (1-e2)M/% |
: is shown ;s.:the dot*ed curve in Fig. 4-1; the asymptotic behaviors for J—)\:
> S ard 7;-5‘—; are similarly indicated.
|
3 § . 4-1 i
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It may be noted that the upper bound A; = 1.367 obtained by Reyleigh
(or by the one-term Galerkin solution of this paper) for the half-full
canal is very close to the value A, = 1.360 found from the matrix cal-
culation. Rayleigh's improved upper bound, corresponding to Ay = 1.356,
ia actually more accurate, but there is little doubt that the results
obtained from the matrix set-up are enfirely satisfactory for practical
application.

The modal parameters A and B defined by Egs. (3.16) and (3.17) are
plotted against e in Fig. 4-2. Except for the nearly-empty case (e = -1),
these parameters were found by numerical integration. For e = -1, the
result (Bq. [2.22] ) for the natursl mode shapes provides:

1

& s
Bn=l/3forn=l
=0 forn >1

The modal parsmeter Bn is closely related to the amount of nth mode
induced by latersl acceieration. - The low values of Bn for n > 1 indicate
that, in general, the higher modes wouié not have a major influence on
sloshing forces.

The mode shapes wn(i) are shown in Fig. h-3 for e =1, 0, and -1, A
point of minor theoretical interest in connection with the mode shapes 1is
that the slope at £ =1 caa be show_n to be given by

t e
wn(l) =<k 8

Thus, the slope is negative for e > 0 and positive for e <0 for e=1,
the slope is infinite. The nature of these slopes is a direct comsequence
of the inclination of the container wall at the free surface.

k-3
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4.2 SPHERICAL TANK T <7 -7

The values of (\a) amd A, %or tie nearly-full (e = 1) and half-full

{e = 0} spherical tank were found, for n * 1, 2, and 3, from the metrix
forruiation daecribed = Appendix 4 eand are glven in Teble 4.2. -Also
presented in this teble sre the values found analyticglly for the pearly
erpty tank {e = -1). From the values of (rg) for e = I, the asymptotic
hehavior of\ﬁ.; near ¢ = 1 is shown ae the dot-dash curres ian Fig. 4-p, and
the values of J'h for e = 0 and e = 1 are shown as the circles in this
figwe. Tue dashed curves represent estimstes of the variation of )'n in

th2 intermediate ranges, based o the presumsbly analogous trends for the
“-eirenlar canal.

The modal varameters C, and L were calculated (by numerical int graticn »
for e =1 amd e =0, ard wanalytically frrm Eq. 2.42 for e = -1) and are
shor, > in Fig. b-L. 'The curves ccnnecting the calculated points in this figure
were estimuted, with the results of Flg.r 4-1 for the canal as & guide.

F3nilly, the mode shapes fn(p) = r-}:—__ gn(p) for the three culculated cases
v P

are given in Fir. 4.5,
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TABLE i+-1 o o g!
E : ‘ - - B
EIGENVALUES FOR CIRCULAR CAMAL B . E

e a )‘18' A8 A8 _}-‘

M 2 Mo

-1.0 0.0 00 0.0 0.0 - I0 60 150 } -
-0.8 0.6 - 0.627 3.23 6.51 .05 5.33  10.85 = 3
-0.6 0.8 0.8679 3.98 7.30 1.099  %.97 9.13

0.k 0.91f 1.068  4.3%  7.63 1.165 h.7%  8.33
-0.2  0.98 .22  h4,56 7.82 1,249 k.65 7.99
0,0 1,0 1.360 470  7.96 1360 k0 N 7.96
0.2 0.980  1.k82 k.81 8.06 1743 4.o1. 8.23 1B
0k 0.917  1.506 k.89 8.5 1.4 5.3 8.89 3 B
0-6 0.8 1.706  b4.97 8.22 213  6.22 -120.28 - :
0.3 0.6 1.822  5.05- 8.30 3.0k B8k 13.8k

l.o 0.0 20018 5-20 80% o« ) ?2/\ - ;‘ - i -0 ‘;
) : o ¥

TABIE 4 2 TR 25
- . LT V?;’.

FIGEAVALUES ¥OR SPHERICAI, TANK EPRORRE 15 .

3 ra A e o e ik

e & 1B A 2 M N My B,
1 G0 0.0 0.0 0.0 1.0 - T 7.2 :

0 1.0 15650  5.3% 8.66 1.565  5.3% 8.6¢
1 0,0 2.78 5.99 3.25
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Section 5
COMPARISON WITH EXPERIMENT

T e

Resonance tests (unpubl’shed) conducted by the Lockheed Missile Systems
DMvision on partially filled sphericsl tanks provided the experimental
resulta for ,fq »which are shown as crosses in Fig. 5-1. The estimated
curve for fs-;" glven in Fig, 4-2 is reproduced in Fig. 5-1 for comperison.
The agreemsnt is generally good, and the agreement of experiment with the
rigorouvsly calculated frequency for the half-full case is excellent.

4
-

\

: 1. A L. 1 .
-6 -8 -0 -04 -02 O 02 04 06 08 1.0
¢

Fig. 5-1 Experimental Frequencies for Spherical Tank
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¥ > CONCLUSIONS )

' The results for the circular canal are sufficiently complete to be used in
. the dynamic analysis of such canals filled to arbitrary depth. Some degree
of caution is evidently required, however, in the use of the estimated

results for the sphericsl tank in the ranges intermediate %o the nearly-
empty, half-full, a.mi_nea.rly;mll cases.
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ii Appendix A : : -
. NUMERICAL SOCLUTION CF INTEGRAL
: EQUATIONS

The general kernel function (Eq. {2.13]) for the circular canal has a
logaritbwic singularity st &=§ >0, For § near £, with £ 41,

6 B ~-Flog|-Fl+n(e) (A1)
|
{.
where
2. -1
;5 1 2y (3-£7)
- p (§) =~ =log { T } (a.2)
= (1+8)%7 - (1-)% :
i
=* Near ¢ =1,
o _
i o, Be-Laogfi-t] vy (A.3)

Note, however, that G(0, £) = G (8, 0) = O , and recall that w(0) =

| Zoncand

1

Then the integral o
§ fe(z, §) wi{g) as
Q
§ ray be spproximated by
N-1 A o

i Zw(w f a(g, B) af « (1) J G{3, &) 4t (A
i i=1 m--a- 2

|

A-1
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Suppose £ = JA ; then
6(t, ¥} 4F = A-6(a, 14) 1 ¥JEN
s A
(e, &) af ~ 3 6(3a, 1) J &N
A
1~3
A _ A
&3 o z
f G(b E)al~ap(a)+ /[ -= 10g |t |at
A A
a3 "3

- ALP{.?A) +2 (1 - 1og g»] J¥ N

1
f a(1, E) dgmg{(glo
1. A
0

g 2) +§- (1~ 1cg g-‘)]

Hence, the integral equation (2.1h) i3 approximated by the matrix equation

AT (W)= (5) tv)

{A.5)

where' {w) is the column vector with elements w (JA) (J =1, 2, . . . N), T is

the "integrating" disgonal matrix

LOCKHEED AIRCRAFT CORPOKATION
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¢ e PRI T
] L

‘m '
- i 3 squere meirix with the general elemest Aj Qefined by: ° o -
ERt A,y = 6(18, 30) 1 % JxN
P ! . .
L 1 A
) =2 () +Z (1 -1y 1 =J4&N
% \
: A z - a - 1
g Tlog2 +o (1 - 208 %) 1 =J=N

o~ oo

Note that, in the absence of a logarithmic singularity, the integratiun scheme 7
would reduce precisely to the conventional trapezoidal rule.

5 b e

. E .
; The orthogonality condition for distinct eigenfunctions v and v = §
5 . . g H
: IEXCEROLTEE | 3
S ) .
: ;‘ -
: is approximated, according to trapezoidal rule, by 4]
3 I B

wlrle)=0 {A.6) : s B
3 i where [wm] is & row matrix and [vn) is a column matrix. ) BE -
{ »

‘ g
i
L.

The orthogonality condition (Eq. A.6) is satisfled exactly by the eigenvectors

¢ . of the matrix equation (A.5), and, for this reason, the present integration
E 3 acheme is considered to be a reasonably appropriate one, »
i e
ﬂ An entirely aralogous scheme is adaptable tu the integral equaticn (2.22) for
: the spherical tank. In the case of the nearly-full tank, the behavior of »
@ ; H(p, p) near p=p is -

p-;i-yi-(logp-l-logB-Z). (A.T)

- 1.
1 (ps p)“-;.wg

ineluding the case p = 1.

po
b

1

J
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~

- l - 1 N
2 (e, a:&'-;loslp-p[+;tlosp&293x(pa)+1038-2l

(A.8)
= Qu. the other hand, H(1, p) near o =1 18

- 2 - 1 )
H(1, p)m-=2og(1-p)+3 (21088 -2) (2.9)

Hence, the matrix formulations for the spherical tank may be made in &
fashion similar to those for the circular canaly the eignevectors are then

proportional to / pf‘n(p) .

- e " Cida i ey = ra
e AR A i LA ST o n
BT AT I vy T LY : R e N T o
v PR I
!W, te iy
N n * v - - <1 T
. RTINS+
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Eigenvalues and eigenvectors of the matrix C = AT (Eq. [A.5]) were found vy
using a Remington Rand 1103AF computer on the basis of 20-by-20 matrix
spproximetion (i.e., N = 20). The highest eigenvalue of C (and hence the
lowest value of A ) and the corresponding gigenvector were fourd by matrix
iteration. ‘The second mode was found from the modified ("swept") matrix

NN ey o s
e W P

¢'=C-C (wl} (wl] T

oo

vhere v, 1s the previously detemmined first eigenvector, normelized according

1
to

e |

[wl] T [w]_} =1

After determining the second eigenvalue and eigenvector, again by iteration,
C' wes similarly swept to provide a matrix C", direct iteration of which gave

gmmq

the third eigenvalue and eigeavector.
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