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THE THEORY OF THE SOUND FIELD NEAR A CAUSTIC 

PRECIS 

1. The linear wave equation haß an exact solution in terms of impulse functions. 

The resulting expressions bear a strong resemblance to those used in 'geometric' 

acoustics, and are computed from conventional ray tracing techniques, but involve 
certain constants which may be used to generate the solution in situations where 
geometric acoustics break down, such as convergence and shadow zones. From these 

'impulse* solutions the pressure field from a point source of any form is given 

by a simple convolution. 

2. This theory, applied to a convergence zone, shows that the field near a con 

vergence zone is essentially an interference pattern formed by two nearly 
coincident 'rays'j at the caustic itself the two rays coalesce, following iden¬ 

tical paths, and must therefore be added coherently. One of these rays has been 

tangential to the caustic at an earlier point in its path; from the physical 
condition that the intensity remains finite at the caustic, it is shown that the 

contribution from this ray is to be computed as if it were phase—inverted on 
passing the caustic. As a result, although the intensity for either component 
ray tends to infinity at the caustic, the resultant is well-behaved. The caustic 

itself is, in fact, a region of low intensity, a peak value occurring some dis¬ 

tance away. 

3. The interference pattern, at sonar frequencies, is closely spaced, the 

interference fringes being parallel to the caustic itself. There is a focussing 
zone, extending, at sonar frequencies, only a few hundred metres from the caustic. 

The mean intensity in this zone falls off from the peak as the square root of the 
distance from the caustic. The 'fine structure' about the mean level is dominated 

by the form of source signal. 

4. The analysis leads naturally to a useful approximation holding over the 
focussing region of the convergence zone. For a stratified medium the only com¬ 

puted parameter other than those computed in a normal ray-tracing programme is 

the curvature of the range/initial grazing angle plot. 

5. The approximate expression for the pressure field is:— 

Cot d o 
P 

X >/ 2yr L. 0 

where A 

Sin oo (2r)3//2 

T = t - T - r Cos a /C o os 

Subscript o refers to a point on the caustic at the same depth as the field 

point - termed the 'caustic point' in the following definitions: 

p is pressure at the field point 

a is the initial grazing angle of the ray passing through the 
o ., . , 

caustic point 
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is sound speed at source

is horizontal range from caustic to field points 

is horizontal range fi*om source to caustic point 

is time

is travel time along range to the caustic point

is the curvature of the (x,a) plot at the caustic point, i.e. it is 

da‘(S)
OMs expression holds for sonar frecuencies from a few hundred Hertz upwards.

coT:gLusio::c aiu) iiecol^-siqations

^ plausible account of the
^ ^ solution of the wave

7. The phenomenon is essentially one of coherent interference between two 

A srnplo and practical transition fomu..a for the field reauirln/»

14. It is recommended that a crucial experimental test of the theorv he n»<ia

ITHClKtSSIglKD ?TMT.TTl»T'?t?->. 
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tttoroduction 

1 c The computation of the acoustic sound field in the vicinity of a caustic 
1^# me eumpu •Tniliirp nf *rav acoustics1, since this 
is commonly quoted as an example Panotic itself. To -rs: of the 

onya «odifîed raJ theory 

in essence defined as the normals to surfaces f.constan^ . ^ey ^ 
rays are not coincident with the rays of geometric acoustics (o-dthough they 
nSly so over a wide band of frequencies of interest), but in the neighbour 
hood of a caustic they have some disconcerting properties, which make them 
physically°difficult to interpret, aM introduce computational complexities. 

16 The analysis in this paper sets out a different approach to the solution 
of'thl wa^'SaUon, thatTs, the use of the elementary impulse 
source. It will be shown that this method enables us to retain ,he nays 
geometric acoustics oni to produce a useful transition function v.-hich holds 
Sght up to the caustic, for a rather generally specified sound speed profi . 
It also gi- as the solution in a form which is readily calculaole. 

17. For convenience, a resume of the principal factures of the impulse solution 

prefaces the main analyis. 

THE IMPULSE SOLUTION 

18. In the impulse technique the solution of the linear wave equation 

v2^ = J-£± , „here * is velocity potential, C the sound speed at the field 

point, aM fis time, is found for an elementary source function H(t), where H 
is the Heaviside unit function (zero for t < 0, -unity for „ 

1Q It can be shown that, using this technique, the general solution for an 
arbitrary pressure source function So(t) is given an the follovung way. 

on The solution is closely linked to the Huyghens wave fronts, that is, 
surf anee ?“h ?he travel time t from the source 
rav tracing, is constant. Such surfaces always exist and aru computable 
principle everywhere in the field (even, for example, m shad™ 8^ilarlyt 
+hf»m ravs mav be defined as the orthogonal family of curves, .uid these, similar y, 
always exist. These rays are identical with those of conventiona geome no 

acoustics (where the latter can be drawn). 

21. The wavefronts move according to Huyghen's Principle, that is, orthogonally 
to themselves at the local sound speed 0. In terms of travel time t along a ray, 
this is equivalent to saying that the vector grad T, which is normal 

wave-eurfece, has magnitude i. | Grad t|, Vt . ? is the general form of Snell'e 

Law. 

22 It should be noted that these results are derived from the linear wave 
eLtionf aTJTe exact. They (and the results to follow, except where other¬ 
wise specified) are true for any acoustic field in a medium of any kind, 
orovided only that we may assume the linear form of the wave equa ion i . 
They are valid, for example, even if the sound speed vanes irregularly, 

it has discontinuities. 

trwnT.ASSTFIED UHLIMITED 
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23. It can be deduced that the pressure field from ? point source So(t) is 

given at any point by an expression of the form 

P = Pt + pd 

where p is termed the transport field .and pd the dispersive field. We con. 
X 

eider each of these separately. 

Transport Field 

24. The transport field p^ = SQ(t - t) . Aq(x). SQ(t - t; i~ a time 

retarded replica of the source function and Aq is a function of the spatial 

coord mates only. It is the equivalent of the spherical spreading term - for 

a point sop me in a uniform medium, and can be expressed in a form closely 

relrted to the »geometric intensity* function of ray acoustics. 

2ri If v.-e consider a ray tube emanating from the source, at which it subtends 

solid angle dft, rnd if icr is the normal cross-sectional area of the ray tu e a 

the field point, then 

where p -nd G ore density and sound speed ;-t the fmld point and K is a con¬ 

stant for a .riven ray. The term ¿1, is, of course, the ratio used in 

• . dn conventionrl Vay—tracing* • 

26 TV factor K needs explanation. It is introduced because this is a general 

solution, which will apply anywhere in the field, even if there 
tinuity or singularity of some kind. There may oe, for example, a discontmui y 

<*r 
30 

may in p or C (in extreme cases this may be a rigid boundary); or the term 

•blow up*. Two examples of the latter are that may pass through zero, when 

A becomes infinite at the singular point or surface, or rß may diverge to 

infinity, when Aq will become zero. The first of these defines a caustic - 

the situation to°be studied. The second defines the point of entry into a 

shadow zone. When passing through such a singularity it is necessary P 

the generalised form for Aq in the new spatial domain, and to determine 

appropriate value of K by applying the staxxlard boundary conditions for pressure 

and normal particle velocity. 

27. Provided, however, that the wave front has not massed through such a 
singularity between soiree aM field point, the value of K for a point source 

is determinate as ■ ■ . where p. and C 

(W 
s 

are the values of p and C at the 

source. This will 
higher derivatives 

adopt a new value 

hold even if P arxL C have discontinuities in gradient or in 

; only a discontinuous change in magnitude will require us to 

of K. 

UNCLASSIFIED UNLIMITED 
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20. The computation of the traneport neU therefone follow^.cU^the^ 

linee of conventions^ray acouetios, aid the result 

by the factor /f , -»ich for practical eituations an the sea as not 

PB 8 

significant (a fraction of 1 dB at moat). 

Disperaive Field 

29. The dispersive field pd is given by the convolutaon antcgr'l 

Pd . „ J" S0(t - 6) If (*. e) dS »here e(7, 0) as a solution of the 

equation A - this oontains a n^her of constats of integration 

c ae 
_j ^ .»opri to crxry soinxion 

which are determinable for a th^s f'ield ori,jinetes fron multiple 
aerees singularities. It can be shownthat ^^e;^8cnts .;h.t happens behind 

scattering by the variations in me^h ’ ^ the‘ transport field represents 
the wave-front for an impulse source, Pereas tne 
what happens at the wave-front itself. 

the disoersive field has an asymptotic expansion 
30. For a GW source, exp(iu>t;, ™e aispersiv 

of the form 

h ll . __j_ + + 
i (i) .2 2 à 

10) 10) 

exp(ioJt) , 

showing that pt is, as might be expected, the high-frequency Uniting field. 

« esn be .hoi that Pd »1U he significan! as comp-rod io :,. only ! ^ 

ranges and 1c» frequencies, or in and near a shadov aono (in »hach p i -r , 

For the convergence zone situations with which we shall ;>e dealing 

contribution will arise from pt» 

Stratified Medium 

. % 14-1 ifr I — “ T'GciiiCCis to SîlG 1 i. 3 i-i ^ f 
known that in such a medium the result |7t| - c reduce 

eos e/0 - constant along the ray - cos a/c,, where e is the 1 * 
the field point, a the initial grasing angle, and 0^ the sound speed at 

source. 
X xu- a-rtoi +v iß everywhere constant. In this case 

32. We shall assume that the density is everywn 
the transport field is easily shown to be 

... (1) 
SQ(t - x) . K(a) 

cot 0 

xU) 

UNCLASSIFIED UNLIMITED 
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where K(a), the undetermined constant, is a function of initial grazing angle 
only, and equals unity for a ray which has not passed through a singularity; 
this ray will be termed a direct ray. 

33. It is convenient at this point to deduce relationships between t , the 
travel time along a ray, x, the horizontal range, and z, the depth. 

34. We have the analytical relationship 

- 3t > 
But (“)_ is the x-component of the vector grad t, which we know to have 

magnitude ^ and to be in the direction 0 with respect to the x-axis. It follows 

that (J—) 
'Sx'z 

cos Q cos a 
, by Snell’s Law. Hence, at every point in the 

field, 

(ÈL) 
'9o/z 

cos a ,dx\ 
“c— 

s 
... (2) 

Similarly, it can be shown that 

/3-c -, _ sin 6 /dz\ 
'So/x “ C ^3o/x (3) 

THE FIELD NEAR A CAUSTIC IN A STRATIFIED MEDIUM 

35. For convenience the analysis will be carried out with reference to a. 
conventional first convergence zone. It will be seen, however, that the result 
is a general one which will apply to p. large class of caustics, such as multiple 
convergence zones or from a deep source. 

35. Figure 1 shows the normal ray representation of a convergence zone. Rays 
refracted upwards at a depth below the sound speed minimum cross rays which 
have been refracted at still greater depths. The envelope of these crossings 
generates a caustic surface, characterised by the property that all rays in a 
pencil lie on one side of the caustic only. If we fix attention on a particular 
depth there is a limiting ray of minimum horizontal range, as shown in Figure 2. 
This limiting ray is tangential to the caustic. Rays launched at initial 
grazing angles either greater or less than that of the limiting ray reach the 
given depth at a range greater than the minimum. 

37. The caustic is thus defined, at a particular depth, by the equation 

<£>* = 0, where a is the initial grazing angle. This implies that, on the 

caustic, the value of the transport field p^ is apparently infinite (equation 1). 

This is physically unacceptable, and is often held to indicate that ’ray theory* 
fails near a caustic. 

38. The resolution of this difficulty is apparent once it is realised that a 
’ray’ at the caustic is not a single ray, but two coincident rays; and that in 
the vicinity of the caustic there are two rays which have traversed nearly 
identical paths. We are dealing, in fact, with an interference pattern. 

UNCLASSI FI ED. UNLIMITED 
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39. The situation can be clearly visualised by considering not rays, but 

wavefronts. Figure 3 shows a selection of progressive wavefronts. Because 

of the positive sound-speed gradient at depth the lower part of the wavefront 
overtakes the upper, forming a loop with a pair of cusps, as shown. The ousps 

trace out a pair of caustics. The full development of this wavefront will occur 
only if there re no boundaries to the medium; in a real ocean the sea surface 

and the sea bed will modify the wavefront picture, and either or both of the 
cusps may be suppressed. This does not affect the analysis; in which it is 
postulated that a caustic is found. 

40. The crux of the argument is that near the caustic the wavefronts and the 
associated ray paths are almost coincident, and thus in this region the pressure 

fields associated with each of the contributary rays must be added coherently. 
The succeeding analysis demonstrates that this not only resolves the difficulty 
of the breakdown of 'ray acoustics', but in the process yields a useful 
approximation for the field near the caustic. 

The Taylor Series Approximation 

41. Since = 0 at the caustic, a Taylor series expansion about the caustic 

along the line z = constant suggests itself. Figure 4 shows the essential 
elements in the expansion. At the caustic the range is xo, and the limiting 

ray has grazing angle eQ, n initial launching angle ao, and travel time t Q. 

At a short distance r in the x-direction from the caustic there are two rays. 

For each of these rays x = xq + r. One of these rays, in this instance the one 

of greater launching angle a, greater grazing angle 6, and shorter travel time t, 
is a 'direct* ray as previously defined; the other ray, whose parameters will 

be denoted by primes (O', a' and t') is one which has already passed through 

the caustic; it will be termed the 'caustic' ray. For the convergence zone 

under discussion the relations 6 > 0 >0' and a > a > a' hold; this is not 
o o ’ 

necessarily the case for other types of caustic, but it will always be true 
that a lies between a and a', 

o 

4?. As we desire an expansion about the caustic we shall write a = a + e, 
o 

a* = aQ + s', etc. It is clear that s and s' will have different signs. The 

quantities r, e, and e' are shown in Figure 2. 

43. It is now straightfor- ard to write down expressions for the transport 
pressures arising from the direct ray (p^ ) and from the ray which has already 

passed through the caustic (p^). By the arguments of Section II, we may use 
equation (l) to give 

S (t 
o ' 

- T ) 
cot 0 

x(f£) 
'9a z 

S (t 
o 

- t ' ) K (a ' ) J 
cot 

x^)1 
V0a z 

(4) 

UNCLASSIFIED UNLIMITED 
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44. A Taylor series expansion of x in terms of a about the point on the 

caustic yields immediately 

r '-S2 x - x = r = ¿e 
o 

a2x 

8a2 /z 

e3 
+ T 

93x 

9a3 /z 
+ • • • • 

Writing 
A 

1 

3 jc . 

3a2 /z 

- y and 
33x 

\ -3 da /z 

= ß the following 

equations follow immediately. 

rye2 + ^ ße3 + O(e^) 
(5) 

fdX) _ (ÈL) = YE +iße2+o(e3) 
'9a 'z ~ 'de'z 

... (6) 

4% We may also find an expansion for travel time x, by the use °f equation (2). 
Successive differentiation with respect to a, keeping z constant, yields 

(¾) 9a 'z 
cos Q /3x\ 

C _ '3a 'z 

32x 

\ 

da^ ¡z 

sin a /3x\ cos 9-. Í 9 x- 
G (Ba}z Cs 

3 ^ 
I 
\ 3a3 ,z 
\ / 

a / 33¾ cos a /3x \ 2 sin a / ¿JÇ | co£— — 

(~L' n 1 3a2 L °s U2/, C Kda'z 
B 

Substituting the velues of [(f^U etc, a Taylor series for T yields: 

cos a 
X = X + —7T o ' L_ 

, ß cne ci 2y sin a \ , / 
2 1 / P_o _o 1 . e3 + 0(e4) 

YE 
... (7) 

s 

46. Equations (5), (6) and (?) may now be used to express (—)z and x in 

cos a 
terns of r. In the first place, subtracting times equation (5) from 

equation (7) yields 

r cos a 
= x + o 

Y sin a^ , . 
£ i —-—2 . eJ t 0(4) 

- 3 
... (8) 

Again, from equation (5)» 

E = + (2r/Y); r1 + 0(r' )1 
... (9) 

UNCLASSIFIj^ UNLIMITLI) 
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where the posi.tive sign belongs to the direct ray, the negative to the 

•caustic* ray. 

47. Substituting in equations (6) and (3); 

(¾) = + (2rr)* [1 + 0(r*) ] 
'So/z — 

r cos a Ysina , 3/2 
, , T + „ -* i i.-— irr) 0(^)1 

S Cs Y 

3/2 

Writing T = t - t - 

r cos a Y sin a ? 
£ and A = *-?- (TT) > v:e ^ 

s C3 Y 

substitute from (9), (10) arri (11) into equations (4), yielding 

... (10) 

... (H) 

cot 6_ 

Pt + Pt X v2ÿr 

{ Sq(T + A ) [ 1 + 0(^)1 

+ K(ao) So(T - A* ) [1 + 0(^) 1 ! 

as 
But S^(T + A) = Sn(T) + A (T) + higher order terns, and so 

cot 6 

pt + Pt 

[iow as r U xms expresBiun - oo -->/ ■ • o' 
therefore, is the necessary and sufficient condition that we require, 
this result applies to any depth, it amounts to postulating that K^aj — 
for any ray which has passed throu^i a caustic. The sign of pt is c ge, 

a condensation becomes a rarefaction and vice versa. Physically this is 
plausible; an elementary ray tube contracts to a point at the crustic and 
transport of energy is barred: this is equivtlent to the generation of -n . - 
source of opposite sign, as in reflection at +he vertex of a conical tube. 

48. Formally, therefore, we have a complete solution for the transport field 

beyond a caustic, viz: 

v2yr 
Í So(T) [1 + K(ao) ] + 0(^) ï 

0 this expression -»unless, and only unless, K(aQ) = - 1. Thlf5» 
m MM* JL   3U XI V'Qi'TI 1 1 T* _ 2 X TXC G 

S0(t - t) 
cot 6 

/0X\ 
-S0(t - e) 

cot 0’ 
,axv' 

(12) 

UNCLASSIFIED UNLIMITED 
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where the quantities involved are calculated by normal ray-tracing for the 
•direct* and »caustic* rays respectively. It will be rarely the esse, however, 
that this exact calculation is worthwhile. As pointed out earlier, in practical 
situations the field remote from the caustic is modified by the boundaries of 
the sea, and may well be a shadow zone. In any cane the average field pressure 

falls off as r”"* (as is shown by the value of in equation (10)), and there is 

therefore a focussing effect near the caustic. On both coun.s the field in the 
vicinity of the caustic is that of most interest. However ixi this region 
equation (12) gives the solution as the difference of two very large quantities - 
a form unsuitable for numerical calculation. 

A"). V/e may, nevertheless, use the results of the preceding analysis to trans¬ 
form equation (12) into an approximate form which will hold in the 'focussing* 
region near the convergence zone with adequate accuracy. Write 6 - o* — 0^, 
and (from (10)) 

9x _ I3x I 
ôa ! 9a i 

V 2yr . 

t - T 
O 

r cos a o 
C 

s 
T 

Then, with 

sin aQ 3/2 
and A = -¿X —c 

s 
as before, the total 

/ cot 6 . 
field P = / -- [S (T + A) - S (T - A) ] ... (13) 

^ x(2rr)"' 

hO. The justification for neglecting the differences in the amplitudes under 
the square root sign is as follows. Depending on the nature of the input 
signal 0 (t ) the convergence zone field will show fluctuations in magnitude, and 

it is only when So(T + A) - So(T - A) is not small that p will be of practically 

significant magnitude. But in this situation the small difference between the 
A terms will be of little importance. In other words, equation (13) v/ill oe 

0 
significantly in error only when p is small. But, if the transport field is small, 
the approximation breaks down in any case, because the dispersive field can no 
longer be neglected. This argument is perhaps easier to follow in the particular 
examples that will now be discussed. 

THE GW SOURCE 

51. For a source So = exp(iiüt) equation ('3) becomes 

j cot 0 
p = / -r exp(iayr) . 2i sin (oA) . 

V x(2yr)~ 

(14) 

The factor i indicates the well-known result that there is a phase change of ^ 

at a caustic of this type. 

52. Equation (14) shows that, as a function o'' range r from the caustic, the 
amplitude of p is a^modulated decaying function of r. The envelope of this is 
dominated by the r"4 term; the intenference bands ere governed by the sin (ujA) 
term, since A is proportional to (equation (13)). 



IINCLASSIFIKD UNLIMITED 11.

53. We may usefully consider the mean square pressure at any point (the 
conventional 'intensity'). This is

< P^>
cot 6

:V2rr

® . 4 sin^
(0 sin o^ (2r)

3C Vy
5

3/2-

(15)

and has the form shown in Figure 5.

54. The transport intensity is zero at the caustic itself (as is true for all 
types of source). It consists of a series of peaks, of which the first is the 
largest. The positions of these peaks are given, to sufficient accuracy, by

fo sin (2r)^/^

— » (2n + 1) ^ , where n is an integer. This gives e

cot 0_

setting

3«s^

series of ranges r^, the corresponding peak values of I being
V2YT

55. The dotted line in Figure 5 represents, schematically, the dispersive
field that has so far been neglected. We assume that the frequency is hi^ enough 
for the asymptotic terms in oo (Section II) to be small compared v;ith the trans­

port term A . This implies that the dispersive field is small compared to the 
peaks of thS interference pattern in the transport field. There will also be a 
dispersive field on the near side of the caustic (a shadow region as far as this 
part of the wave front is concerned), and this will be continuous across the 
caustic, as indicated. The effect of this field will be to fill in the trouts 
of the interference pattern, but to leave the peaks almost unaffected,

56. In addition there are the errors introduced by assuming that

0 = e* = and ^^) = ^^) . The effects of both approximations are

shown graq>hically in Figure 6, in which the two components p^ and p* are depicted
as vectors in amplitude/phase space. The two solid lines represent the transport 
field vectors; the small circle represents tne contribution of unkno;vn phase 
arising from the dispersive term. The dotted line represents the resultant.
On the ri^t hand side of the figure is given the vector diagram assuxaing that 
the two vectors are each equal to the mean value. These sketches illustrate the 
point made earlier; the error in magnitude is negligible except v;hen the vectors 
are nearly in anti-phase and the resultant field therefore very small, and 
therefore uniiqwrtant.

57. Returning to Figure 5» a line is drawn showing the 'spherical spreading' 
prediction of intensity for a unit source; defined here as 20 log x, where x is 
the horisontal range. The focussing effect near the caustic is clearly shown.
The wurri imim excess of intensity over spherical spreading occurs at the first 
peak of the interference pattern.

58. To give some feeling for the orders of magnitude involved Figure 5 ie 
based upon a representative situation - a bilinear profile resembling those 
fouM in the major oceans. The derivation of these numerical results is given 
in Appendix I.

A
i_
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"fa 
3 f rkni of 60 to from the eouroe. Interference peeke occur at ranges of 

(2n ♦ 1)* X 100 metres from the caustic. At the first and major peak, 100 metres 

from the caustic, the excess over spherical epreading is 23 dB, (ignoring 

Srt oïÂÂ1: -Yfg rlLfr hS'S distance from the 

caustic. 

ESiSiEic^r=ir--=: =.'S“.£S“ 
this result may be significant. 

61, In the second place a fine-grained ^.^Clew'^ri- 
of the order of 100 metres or less, is predicted by this theory, i^ow i * 
mental investigations have sampled sufficiently closely to reveal a regul 

intervafwoulfbe fnTr“'tfYlYaY the^ld 

Ifcc^er sr-mÄ-ÄaS i^iÍ fÂ/v^ng field. 

—Yïh rfchÄ 
futile. The effect on the ueer will unfortunately, on either 
flineafor'lcgarithmifscale îhfetatietical distributior^of^inteneity is^rery^ 

^^e=U eSrnÄ- toto intÄ 

rrÄ'Äh standard 

deviation 3 dB. 

HIGH RESOT,bTION SONARS 

ii.r rrn Tr,:s=cr,:Âv.™r.S’,ïi" 
Or e cl The echo may be formed by a pulse going and returning along the seme 

path” or by one following a mixed path. The received ai^al 
consist of a central echo corresponding to range Ci0 flanke y gn 

range differences of e 06 . Tt is 

resolved^echoes "noî bfcõbjê" to the fluctation, previously discussed. 

64 Typical high resolution sonars employ f - m signals (centre frequency fQ, 

r^LÄ^f ^rr^irti: =5 rx 
duration. In both sonrrs the effective range discrimination is 
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¿¡c^ jf -the echoes are to be resolved, we must therefore heve — < CA. But, 

from equation (14), the m’th null in the interference pattern from the caustic 

The condition for resolution is thus a m 
is given by ooqA = mr , or a = 

m> y . This may be written as m > Q, where Q is the *Q-factor* of the sonar. 

Now in practice it is difficult to obtain in an active sonar a value of Q of less 

than about 3 or 4. It follows that there is little hope of eliminatm the 
interference pattern over the high-focussing region of tne convergence zone. I. 

the numerical example quoted even a Q of 3 would produce no improvement out to 

a range of about 320 metres from the caustic, .and a more realistic Q of 7 would 

correspond to a range imm the caustic of 600 m. 

66. There is thus no great advantage to be gained in this respect oy the use 

of high-resolution sonars; their other advantages, such as discrimination 

against reverberation, of course remain. 

WIPE-BAND NOISE SOURCE 

67. Where passive sonar detection is concerned, or if we can ^ ^ 
broad-bani noise source for an active sonar (eg, explosives), ^ 
of the previous discussion are considerably relaxed, and it is not difficult 

employ baniwidths of an octave or even greater. We should expect such a 
to^smooth out the interference field, and so to reduce the apparent vanabili y. 

60. To illustrate this, consider a unit strength noise source of iniform spectr -1 

density with central angular frequency and u and width (expressed m terras of 

angular frequency) B. 

Writing equation (15) in form 

I = Ar" sin i2 ^ (where A « r3/2), the total field become: 

J ° 
B 

sin u>A d'u 
B 

V“ 

or IN = ¿-Ar 's [l - cos 2u> A . o 
sin n (BA) 1 

BA -I 
... (16) 

^ „ sin (BÛ ) 
69< « ince necessarily B < «>ol the second term in (16) consists of a 

envelo.'e modulating the cos (2<doA) sinusoidal variation. If B = 0 we reproduce 

equation (15)« 

70. An illustrative plot of equation (16) is given in 7* now 
no null b in the field (except at the oauetic iteelf), aM the effect of the 

sin (BA) factor iB on the whole to reduce the amplitude of fluctuations as the 

range increases. The variance about the mean is thus a decreasing function of 

range. 
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71. A crude of the Stuart ““ 

- nfAr ^ St^r- - —r fron 
the caustic is approximately 

/ ro \ 
»■ . 1.44(f) 43 

"o fa . ani r ie the range to the firet peek, 
where = “ = 6f ’ 0 

»•—ssrr^-as; ::= 
X. u «K (Ï2.V'2 = 4 , and therefore o’ ,, = 0*7<i* 

first null, for which * ’ nuli 

75'thererr^Uld^reS^whi^ÍÕÒk faSiSe/Tf^exp^BrihriTaitÖrtn 

Sr^ ff octavea it i. eany to produce the fcllowtng! 

Banivjidth in octaves 

equivalent Q 

cr at first peak 

o- at first null 

è 

4.33 3.0 

4.2 

2.1 

1 

1.5 

2.1 

1.0 

0.5 

1.0 

0.5 

The column headed arises from the limit 

2N + 1 

2N - 1 

* . It cannot be token very aeriouely, except in that it 

,., + that for a very wide bandwidth the variance becomes 
predicts, as we should expeït, that for a very 

negligible. 

74. Compering the reauite of ^^“eviatifr^abfut^.l^nee^the 
.action - that for a CW pulae the atand the uaeful concluaicn 
peak, end 3 dB at grea^ r«ge» - J conv.rg.noe acne ia concerned, 

Xí „“iU^“. in vSiKice for bandwidth, exce^ing on.- 

third octave. 

75. por uae in operational ««sarnenta we «ght perhap. offer the following 

rules - albeit with considerable reservatio s. 

a. The mean intensity follows a - 5 l°e r rul®« ro y}/2 

b. The ctaniard deviation about thi. «an may he computed aa 1.4 4 (— ) 

or 3 dB, whichever is the less. 

focuaa^g «Ä th^rSife"««:0^ tÄ^vilucnt 
0.7Q or 3.3 dB, whichever is the less. 
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76 Theae rules are offered tentatively, on the grounds that they are simple 
to'use, are not unrealistic, and have at least a slender theoretical backing. 

FXPLOSIVE source 

77. A. » extreme example of a „ide-W noi.e aouree^we me, apply 
to an exponential source function exp(— (it) • m J. _ 3TP 
charge the time constant of the exponential is about 100 micro-seconds, 

ie. 10^ 

78. It should be made clear at the outset that this simple source is, in fact 
physically unrealisable. The source pressure has a discontinuous jump . 
ffich no equipment could accept nor the medium sustain. The ^^idth of 
source, intact, is infinite. However, the energy ^ ^he ^fia 

2F3r.iL“ • 
levels must be carefully considered before acceptance. 

79. 
A direct application cf equation (13) to this aignal gives immediately 

/, °0t e°| exp(- pT) [exp(-pA) H(T + ft ) - exp(pA) H(T - 4)1 
V x(2Yr)1? 

(17) 

Pn inart from the amplitude term, the signal consists of a replica of the 
f^rei SnS followed at a time-interval of 2Ä by a phaee-revereod replica. 
Sr4Ät i. ahown in figure 3(a). It ooneiets of a »”s^ced 

oniVe tenia to infinity. Thie physical implaueibility is the outcome ol our 
Xice of en SnîfÂ .ignaï; it need canee no concern, however, eince ooth 

sensible observed signals shown. 

81. The quantity of practical interest is the total energy 
it is easy to show that 

2 H J 
2 cot 6 .- 

p2dT = ^2. [1 _ exp(- 2 pA) ] 

From equation (1? 

... (13) 

:(2Yr) 

(The factor 2P i. introduced to normalice the total source enerar to unity). 

Since 6 . r3/2, equation (13) has the form 

E = 
Ah - exp(-u) ] where u = 2|iA .... (19) 
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p,? its shape is shown in Figure 9 which has been computed for 
the same profile as for the GW signal. There is a single peak, the position 

which can readily be found by netting f - 0. This yields the transcendental 

equation exp(u) • 1 ♦ 3u, the solution of which is u - 1.904, or 4 . 0.95/p. 

Rp This for the particular situation considered, gives the peak at 120 metres 
from th^caustic, and^a focussing gain of 20 dB (ignoring attenuation). Beyond 

the peak, since the term e*p(-2,b>) < e"2, the variation of intensity with range 

becomes dominated by the r“* term of equation (l9); .as for the GW signal there 

is r*. - 5 log r 1™* 

THE VERTICAL FIELD PROFILE ILuAR A CAUSTIC 

8/1 It has been shown that there is an interference pattern extending horizontally 
fíôn each point on the caustic. Since the horizontal range of the caustic itself 
vrrios v.’ith depth we should expect a similar pattern to be shown if we make - 
vertical section through the field, ie, keeping the horizontal range x constant. 
A quantitative development field of this field will now be deduced, usin0 the 
similar method of analysis to that employed previously. 

9C. We start with the standard relationship 

(dzs /¿ox ,ax\ = _ 1 

Wx Wz '£z wi 

which since (5¾ = t-.n 6, the slope of a r 7, may be written as 
v0x'a 

6 & ‘9a 'z 
... (20) 

Since, at the caustic, (¾ - 0, and 6 . 0<j (t f), etpiation (20) shows that 

= 0. and thus a Taylor Series expansion is suggested, as 
V9a/x 

2 j 
/ JLiL \ - y ( — ^ = 0,. at the caustic; it is 

oefore. Writing z = z , Ir ) " Y1’ l . 3 ) 1’ 
'9a x da x 

easily shown that 

h = + ^> 0^ + ••... 
... (21) 

<i>* ■ Yi£ * ‘ '2 + 

... (22) 

where h = z - zq. 

v0a * 

For the variation in travel time t, we use equation (3), 

(—) NA« /-V 

^9t ^ sin 9_ /dz 
da 'x 

... (3) 

Also, from the Snell's Law equation 
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coa 8 
“ C 

cos a it is easy to show that 

,30 
(¾ . cot e [ten a - X (ffxlflj ... (23) 

86, By repeated differentiation of (3), using (23), inserting the values of 
02 

etc, at the caustic, and substituting in the Taylor series expansion for 1, 

we can show, in just the same way as previously, that, approximately, 

(It) 0-,=+ V2Y.h 
da 'x — 1 

t - T = T + A 
1 

h sin 6 
where T t - t - 

Bin a cot e„ (2h)i/2 

' " 3C0 Y1 y“v2 ’ 

where the upper sirn refers to the direct ray and the lower to the 
,caustio ray*. 

87# Again, from equation (12), using the relationships just deducou, and mekiny 
the same approximations as were used in producing equation (13) from equation ( 1' 
we have 

/--- I S (T - A.) - S (T + Aj] 
/ X /2^h 1 0 1 0 1 J 

... (24) 

88, Vie may nov; deduce the relationship between equations (13) and (24), 
starting from the standard differential relationship 

_3_ 
da 

(|i) 
voa'z 

J z 
3a 

3 
+ ^T (—) ^3a^z 

-i a 
(—) '3a'z 

32 
whence, from (20), and remembering that ^ ^ \ = Y 

3a '2 

Y = - ^ (cot 0 (||)x ) + cot 0 (|f)x ¿ ['cot 0 (¾) 

89. On performing these differentiations, noting that 
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-L [(^.) 1 = JL \(&L) I 
dx L'aa'xJa 0a L'ätx'a J 

[tan 0j , end inserting values at the 
0a * 

caustic, it can be shown that 

Y = - Y, cot l o ••• (25) 

90. Equation (25) shows that, for positive Y, Y^ and hence h are both 

negative. If we therefore redefine H = - h = depth below the caustic, and 

Y2 = - y1 3 Y "tan 9 = " ( I » it is easily seen that (24) becomes 
0 ' da 

1 [3 (T, ta,) - s (T, - a,)] 
X ÆÏÏ ' 2 2' o' 2 21 

o 2 

... (26) 

Bina cat eo (2h)3/2 
v.'here ^ . -%- . 

H sin 0 

T2 - t “ % + ~C“ 

11. Now equations (13) and (2o) are very similar in form, differing only in 
the constants involved. This difference corresponds essentially to a change in 
scale of distance, as may be se» n from the following considerations. First, 
for a CW source of frequency o>, A and A^ each define a system of interference 

fringes. For a given fringe A = A^. Then, from equations (13) and (26) 

cot 6 . H3/2 
o 

or, since Yo = Y tan 9 ’ 12 0 

H = r tan e0 • ••• (27) 

It follows that the spacing of the fringes in the vertical plane is reduced by 
the factor tan 0q. In the bilinear example already used tan ~0.1, so that 

the first peak is at 10 metres, the second at 21 metres, etc. The intensity at 

^ cot 0 
the first peak, from (26), is — = 1 ..... , as would be expected. 

X v2y~H X Vlyr 
o 2 0 
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y®rt^cal Pattern, therefore, h?a exactly the same form as in Figure 5. 
but with the distance scale reduced by the factor trn The sane comment will 

be true for any other type of source, such as the exponential source depicted 
in Figure 9» 

II' P*®!"6 implications about the use of vertical directivity in this result. 
From Section IV^ the horizontal range of the n»th interference fringe is 

rn 3 ^n + ^ x r0* where rQ is the distance to the first peak, and therefore 

at range r^ the vertical distance from the caustic is H = r tan 6 . The 

vertical spacing of interference fringes at this range is 

2 = tan 0 fcr 
n on tan 0 r 

o o 
3(2. + 1 

(putting 6 = 1), or 
n 

3/2 

6 H ~ § t an 0 
n o 

the Alinea*; example, at a range of 1,000 m from the caustic, since 
rQ = 100 m and tan 0q ~ 0.1, 6Hn ~ 2 metres. 

!^íent thatLat this ran«e af«1 beyond, the use of a transducer of 
vertical height approaching 2 metres requires careful consideration by 
designe r*s • 

THE SHAPE OF A CONVERGENCE ZONE 

96. The two evaluations of the field already considered may be combined to give 
a visualisation of the convergence zone field, by deducing the location of the 
interference fringe pattern with respect to the caustic. 

97. In Figure 10, consider a point Pq on the caustic at a point where the slope 

of the tangential ray, and hence the slope of the caustic, is 0q. If we consider 

a particular interference fringe which is at a horizontal distance r from P , 

then the preceding analysis shows that there will oe a point P2 on the same 

fringe at a depth H = r tan 0q vertically below Pq. From the geometry of 

Figure 10 it is apparent that the element P P of the fringe has slope© , and 
this is parallel to the caustic. ' ^ o 

98. The closest fringe spacing is therefore in the direction of the normal to 
the caustic. If d is a distance measured in the direction of the normal, the 

relationships r = d cosec 0q, H = d sec 0^ will hold. It is easily seen that 

the fieid variation in the direction of the normal to the caustic will be given 
by the eauationn; 6 0,1 
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COB 6 
p = / -7===- [ S (T + à ) - S (T 

y 2Y d 0 0 0 ° 0 Äo)' ... (23) 

0 o 

where Y = Y sin 0 Y- cos 6 
1 o 

T 
o = t T 

O 
+ 

O 

A 
o 

sin a 

3Co 
cosec 6 

o 

?9» Equations (23) give, as before, a scaled replica of the fields described 
by equations (13) and (26). 

100. The picture of the field thus assumes a remarkably simple form. The 
interference fringes form a set of curves parallel to the caustic, the peak 
intensity following a — 5 log d. law from the first peak. From the expression 
for Tq in equations (23), which represents the *retarded time1 of the mean 
ai-rival, we can picture a transmission from the source arriving at the point P 

after travel time tq, and then generating a disturbance which travels out 

normally to the caustic at the local sound speed C (ie, the term in T). 
O \j 

0 

101. The picture we may form of the 'convergence zone* is thus of a band below 
the caustic (Figure 11). Some idea of the width of this band may be obtained if 
we arbitrarily define the remote edge of the convergence zone as that for which 
the peak intensity is 6 dB below that of the first maximum. Using the — 5 log r 
law, this gives r = 17 r (and hence d = 17 r sin 0 : H = 17 r tan 0 ). 

o o o o o' 
For the bilinear example 

r = 1,700 metres, d ~ H ~ 170 metres. 

102. A horizontal width of 1,700 metres is not unrealistic for a first convergence 
zone. It will be noticed that this corresponds to a normal distance from the caus¬ 
tic of only 170 metres. The 'convergence zone' is thus a very thin strip; only the 
fact that it is nearly horizontal gives a horizontal width as great as 1,700 metres. 

NUMERICAL ANALYSIS 

103» The exact solution of equation (12), v/hich holds anywhere in the field, 
requires the computation of grazing angle 0, travel time t, end horizontal ray 

spacing (g^)z* These are all quantities which are computed in a normal 'ray- 

tracing' programme. The only new feature is that crossing rays are added 
coherently. 

104. From the analysis this procedure will be adequate except within a short 
distance (typically a few hundred metres) from the caustic. As pointed out 
earlier the solution then becomes the difference between two large but nearly 
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equal quantities, and the process becomes less and less efficient as the caustic 
is approached. In this region, therefore, it will be more practical to use the 
approximation of equation (13) - which will improve the nearer the caustic ve 
approach. 

10b. i'or^this computation, the only new parameter to be estimated is 

Y " (tt) nt thG GBustic. This presents few difficulties. If the sound 

epeed profile is given in analytically suitable form y may be computed explicitly 
(as with the oilmear profile of Appendix l). Otherwise y may be estimated 
numerically. The most elementary way is to use the x/a plot of Firure 2- y is 

he curvature at the vertex. With modern computer techniques finite difference 

methods are the obvious choice. In this situation is computed anyway at the 

Xn+1 “ xn 1 ^ 
point xn (eg, as 2 6a ’ Khere 6a is "the chosen increment of initial 

2 
gracing angle). Little extra computation is required to evaluate 

xn+1 - 2xn + x 1 ^ 
** ) in the vicinity of the caustic and to interpolate 

for the value at x . 
0 

problemsPrÍnCÍPle’ therefore' numericel application of thi-- theory presents few 

TH5 EFFECT OF HORIZONTAL VARIABILITY 

107. For convenience and ease of understanding the theory has been developed 
for a stratified medium. It is, however, not difficult to generalise for - 
much more general type of medium. A rigorous development will not be given here, 
but the following arguments are plausible. 

IOS. Assume that the sound speed is specified at every point in the field, and 
that there is a computational scheme which enables us to evaluate along any ray 
its slope (6), travel time (x), and spreading factor (the Aq term, where 

Further, let us suppose that this computation has disclosed 

a caustic, whose position may therefore be taken as known. 

I01! ®vi<Jent that the general result obtained for the stratified medium 
st stiil hoid, viz: at a field point near the caustic there will be two rays, 

one direct and the other »caustic*; the total transport field will always be 
0 0' ' “ 0 ‘V* ” T '» where Primed quantities refer to the caustic ray. 

I^infinÎ+rÏÏ Íh °ff^red v;ithout rigorous proof, but clearly must be true if 
i-n infinite field at the caustic is to be avoided. 

110. A solution »in principle' is therefore to hand, but, as before, is of little 
practical use in the important region near the caustic; once again we need to 

^ T !í¡r°Llmf6 tran8ition formula. The suggestion is no^made that, with 
slight modification, the approximation of equation (13) may still be us^i. 
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111. Vie make the usual assumption tha¿ the effect of horizontal variability is 
predominantly in the x-direction, that is, that the ray path will still lie 
nearly in the same vertical plane throughout. This follows il we assert that 
the sound speed varies much less rapidly in the horizontal plane than in the 
vertical. 

112. Now equation (13) is based on a Taylor series expansion about a field point 
on the caustic, and is used essentially to estimate the field only over a 
relatively short distance (eg, the 17Ù metres normal distance of the example 

quoted). As far as the coefficients for expanding x and — are concerned, they 
OCX 

are computed to the accuracy desired at the origin of the expansion; there is no 
controversy about their values. 

11 3. The coefficients of the expansion for travel time t were derived in the case 

of the stratified medium from the equations |grai t| = 77 and Snell's Law. But 

both of these equations (provided Snell's Lav; is given its generalised form) 
hold for the general case. It can be shown, in fact that in general, if 1, m, 
n, are the direction cosines of ray, the equations 

(I \ 1 3C 
9t ''C; + C 0x » 

replace Snell's Law, and the equations ^ 

hold generally. 

1 or o 
C 5 3y - C 

dr n 
3z ~ C 

lid. The resultant expansion of r can be shown to resolve, with the limitations 
quoted, into essentially the forms yielding equation (13), provided that 0q and 

a ■'ïre redefined so that they are measured, not from the x-direction, but from 
the local direction of the contours of C, that is, normal to the direction of 
grad G. This is equivalent to saying that, at the relevant field point, v/e 
treat the medium as a stratified medium, but one in which the stratification is 
not necessarily horizontal. Very often, in practice, this is a refinement of 
little quantitative significance. 

DISCUSSION 

115. It is worth reiterating that the theory presented here is based on a 
solution of the wave equation which is as valid as, say, a normal mode treatment. 
Basically, it differs from the latter only in that, while both are in the form 
of asymptotic solutions, which are most useful only when the leading term is 

dominant, the impulse solution is an asymptotic series in —, the normal mode 
1 IJ> 

treatment in They are therefore complementary, holding, for any given 

situation, in a high-frequency and a low-frequency domain of validity respectively. 

116. There are also the approaches of conventional 'ray theory' and the recent 
development of 'modified ray theory'. The first of these may be dismissed 
immediately; the impulse theory contains the whole of'ray theory' as an 
approximation, but one in which information on coherence has been lost. 
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117. The Modified ray' method and the impulse approach are in many v.ays cimil 

and ’./hen applicable to the same problem give the same first order asymptotic 
approximation. The difference lies essentially in the fact that the modified 
rny• technique is based on a steady state (CW) solution of the wave equation, 

vhile the impulse technique starts from a 6-function input - an infinite 
bandwidth. There will therefore be occasions when one technique is more 

appropriate. 

HO. in many practical situations such as the convergence zone problem studied 

here, the impulse technique offers some positive advantages:- 

a. The impulse technique gives a solution which is much easier to picture 
in physical terms. Wave fronts defined by travel time are easier to 
appreciate than equiphase surfaces (particularly for complex signals;, 

and the ’impulse' rays are well-behaved. Again, for the field in the 
convergence zone, the mechanism of formation by two rays of opposite 

phase is readily understandable. 

b. The analysis in the impulse technique is simple and uses generally 
only elementary functions. Compare, for example, the analysis 
study with that for the 'modified ray* approach, which involves finding 

an asymptotic approximation to an Airy function. 

c. The solution for signals of complex form involves an inverse Fourier 
transform in the CW method; the corresponding problem with the impulse 

technique is trivial, since the 5-function inverse of a function is 
just the function itself. 

d. The impulse solution is flexible in that it can handle added comploxitie 

with comparative ease. For example, it is simple to estimate the 
effect of a sea-bed which is partially obstructing the formation of the 

convergence zone: at some limiting range from the caustic the 'direct 

ray will be obstructed, leaving only the caustic ray, whose range- 

dependence lav; we know. 

e. The impulse technique has something in common with the Laplace 
transform; it has the same knack of picking out a basic feature of the 
problem which leads directly to a solution. In the convergence zone, 

for example, the critical feature is the recognition that the r3^B 
forming the convergence zone have travelled by almost identical paths, 

anl must therefore be combined coherently. 

f. Finally, the close relationship between conventional ray theory and the 

impulse theory, as far as numerical calculations are concerned, is 

clearly a great practical advantage. 

119. The convergence zone solution presented here has two major features of 

interest. 

120. In the first place, the generality of the solution deserves c-mment. The 
form of the solution is not dependent on the details of the sound speeu teld, 
to derive it all that is needed is the assumption that a Taylor senes expansion 
exists in the neighbourhood of the caustic. The detailed profile de ermines 

only the length scale of the solution. This is an elegant and useful feature. 
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121. In the second place the theory, for a band-limited signal, n the 
fine-grained variation of intensity with range, the spacing being closer than 
spatial resolution of many measurements of oceanic convergence zones. 

122 These two results together cast doubt upon some of the attempts that have lliñ madejo explain the oïeerved structure of convergence tones by 1^1^ 
detail in the sou»i speed profile: the observations are insufficient and the 
suggested explanation both inadequate and unnecessary. 

H“h ^ Ä ÄÄr;n 
the accuracy with which this theory represents reality. 
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APPENDIX I: CONVERGENCE ZONE FDR A BILINEAR PROFILE 

1. The bilinear sound speed profile is shown in Figure 12. The minimum sound 
speed is denoted by Cy. The source is at height Zs above the minimum depth, the 

sound-speed gradient in this region being - » so that the sound speed at the 

source, Cr., has the value Cy + g.,^. Below the minimum is a positive gradient 

2. A typical ray leaves the source at an angle of depression a, crosses the 
minimum at grazing angle 0, turns at a vertex below the minimum and returns to 
the near surface as shovm. We take the field point height Zp, the sound speed 

at this point being Cp = Cy + ani* the grazing angle of the ray 0. 

From Snell’s Lav; 

cos 9 
C 

cos 
C, 

cos a 
C„ ... (29) 

P ~V S 

and from equation (l) it is easily shown that 

(—) = tan a cot 0 ; (4^) = tana cot $ 
'da'z '0a z 

... (30) 

From the normal ray-tracing equations the total range x is given by:- 

11 ^P 
x = 2C„(— + —) tan 0 - — tan a - — tan 0 

V'gl g2‘ g 1 g 
... (31) 

1 

Differentiating (31 ) twice with respect toa, using equations (29) and (30), 

it can be shown that (—) = 0 gives the relationship 
oa z 

/ ®1 \ 
2 ( 1 + —* ) cosec 0 = cosec a + cosec 0 

\ ) 0 0 c 
... (32) 

v.-hich, with equations (29) determines the values of 0, a, and 0 at the caustic. 
It can also be shown that at the caustic the values of 

9^x x and —rr are then given bys- 
da 

x =-- sec a (cosec a + cosec 0 )(sin 0 - sin a sin 6 ) 
o g* 0 0 00 0 

(33) 

(Ù.) 

l0a2 >0 

2 
— sec a tan a (cosec a + cosec 6 ) 

0 0 0 

2 2 2 
(cosec a - cosec a cosec 0 + cosec 0 - cosec 0 ) 

o 000 
(34) 
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1 For the particular case »here source arel field-point are at the same 
d¡pth, a . 6, and (32), (33), aM (34) hecome, with some manipulation, 

sin ¢. = (-¾) 
sin a 

*2 / 

2Cs I e' \ 

- 17t2nao (2t% ) 

2 2 
y - (Z-í\ = X sec a cosec ¢ 
Y ' ^ 3a2 'o ° “ 

Por the particular numerical example, parameter values are:- 

-1 

cs = Gp 3 1530 me 

Gv = UTO ms 

Z = 15OO m 

-1 

01 = 0.04 b“1 ; g2 = 0.02 s 
-1 

With these values, 

sin 6 = sin a = 0.0975 
o ° 

e = 5*6 
o 

sin ¢, O.2925 ¿ = 17.O 
0 

X = 6 X 10 m 
0 

= 7 X 10^ m 

liquation (13) then becomes 

|p| . Pr^ (30(T t fi) - So(T -1)) 

1 . qrV2 

_4 
where P = 3*78 x 10 

(¾ = 7.2 X IO-3 

GW Source 

4. liquation (15). expressed in dB, yields 

(35) 
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I(dB) = - 62.4 + 20 log |sin (4.52 x 10“7 f r3^2)| ••• (¾6) 

- 5 log r 

where f 1b the frequency in Hertz, and the argument of the sin term is in 

radians. 

<3. por a frequency of 3.25 kHz, the first peak occurB when the argument of 

the Bine term = |. This yields rQ = 104 metres, the corresponding value of I 

being - 72.5 dB." At a range of 6 x 104 m the »spherical spreading» loss is 
95.6, so that the peak focussing gain is 23 dB. (Attenuation has 
in this calculation; it would reduce the level by about 6 dB, bo that the 
predicted level would be 1? dB above spherical). 

(' A plot of equation (36) iß shown in Figure 5* 

Fhcplosive Source 

7. For the explosive source, with p = 104, equation (l3) expressed in dB 

becomes 

H(dB) = - 65.4 - 5 log r + 10 log [l - exp(l.44 x 10-3 r3/2)! ... (37) 

P The pea’v value, for which the argument of the exponential term is 1.904, 
jccurs at range r = 120 m, with S - - 75.3, corresponding to a focussing gain 

(neglecting attenuation) of 19-3 dB. (Once again, absorption has been neglected). 

Equation (37) is plotted in Figure 9. 

9. The similarity of the two peak ranges rQ is to some extent fortuitous; 

it arises from the fact that the cut-off frequency for the expiosive charge 
(1.5 kHz) is not too far removed from the adopted frequency of 3.25 

CW situation. 

10. It is, in fact, easy to deduce that, for a .given environment and a given 

type of source, the peak range rQ * f^, while the peak intensity increases with 

frequency according to a 3.3 log f law. 
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APPENDIX II; FLUCTUATIONS IN A CONVERGENCE ZONE 

1. If we sample fluctuating fields such as those shown in Figures 5 and 7 
usine ranoe r as the independent sompline variable it is evident that the 

" °f 1"tensity* in either linear or logarithmic form, will be 

, °?e Way °f aPProximritine such a distribution would be to use 

skeS^1^ T>+hbrïi1+îy furlctlon‘ Thi8 would certainly have the right form of 
skewness, although the actual fit would probably be poor. 

2. However, this type of approach has been abandoned in favour of the wildlv 
incorrect choice of a normal Gaussian distribution. The reason for this 

about^he^meanatalth^ essentially Pragmatic. If we compute a variance 
out the mean, although this does not necessarily relate to a Gaussian 

d" îribuîîen’ J nevertheless have a meaning with respect to the actual 

bou^b ! 6 he leaet use Tschebychev's inequality to establish 
eff^t’o? in0thi variance eive8 * yardstick from which to sense the 
eiiect or - in this case - increasing the baixlwidth. For this nuroose the 
results are not intended to be used in computation. Purpose, the 

3. On the other hand, as a purely practical measure, there are those who 

!°r value8’ n° matter h0w crude* »Hich can be used in -broad- 
brush studies (such as operational assessments). For such use accuracy in 

’rlnllZ, Zl ^portant than ea8e of application combined with an overall 
reasonableness' of the result. It can be argued that such applications will 

probaoly involve the combination of a number of BtatisticallyPill-<iescribed factor- 

PC ‘T íhe °0Mr!ã T»—■>» v:ould smooth Ü 1L e ’ 
footaros of sny one factor. The basic criterion ie one of utility, rrri the 
addition of variances is an attractively simple technique. 

CW Source 

/1. We may write equation (15) as 

I = A r~^ sin1 (A) 

v/here A = kr^'^ 

... (33) 

To investigate the distribution in the neighbourhood of some range r. consider 
the behaviour of I over the peak defined by « 4 « TTÏTit. ^ 0^- c^e 

approximation we shall neglect the variation of the r^' term over the range an 
also use A as the independent variable instep of r. 

Thus T - A r“* sin2 A - 

and I2 ~ A2r“1 sin^ A - J- A2r~1 

whence c2 = 1^ _ (Y)2 = -^(T)2 

This is in linear terms. If we write 

u = 10 iog10l = 4.34 log e I, then 6u * 4.34 y- , which (provided the 
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. . 4.34 , 
va^i^tion is not too great) can be used to deduce cr(dB) = ““ 3. 

- v2 
The mean, I, is - 3 dB from the peek value. 

5. This result, that the mean level is 3 dB below the peak level, vfith a 
standard deviation of 3 dB, will be not unreasonable at relatively large 
dirt anees from the caustic. However, major interest will, of course, concentrate 
on the region near the caustic, and for this reason the first peak has been 
treated somewhat differently. The distribution of 10 log10 I as a function of 

range has been computed over the first peak (it, to range rQ). The results, 

showing the proportion of range for which I exceeds a given level (measured in 
dB from the peak value) is given in the Table. 

Distribution of 1 over the first peak 

I (dB from peak) 0 -1 -2 -3 -4 -5 -6 -7 -8 

Proportion of range for 
which intensity > I 

0 0.23 0.39 0.47 0.52 0.57 0.62 0.66 0.69 

f,. The "SO;" point is about - 4 dB, and about 0.63,- lie within the range 0 
to - 7.7 dB; the "staniard deviation" is therefore taken as half this, ie, 
- 3.3 dB. It is these figures that ore quoted in Section IV. 

Band-Limited Source 

7, The field from this source is discussed in Section VI. 

3. It is clear from equation (16) and Figure 7 that there is a variation 
about a mean level following a - 5 log r law. This variation has a relatively 
rapid component arising from the cos 2 u>o A term of equation (16) together with 

a fluctuating, but on the whole decreasing, envelope modulation due to the 

B^-n factor. The greater the bandwidth is, the smaller the amplitude of the 
BA 

fluctuations becomes, and the more reasonable it seems to use the Gaussian 
approximation. 

9. We start with equation (16) 

I = '/ Ar-a [l - cos 2 dqA ^ 

1. 

,nd, as before, treat the r*^ and BA terms as constant, 
independent variable. 

10. Averaging over a cycle of the BA term, we have I = 

and use A as the 

~ At"*2 , and thus 
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I - I 
T cos 2'o A sin (BA) o 

BÛ 

2 ?\2 I2 i v;hence o’ = - I; = ? ? • « 
B b 

a«i, using as before the approximate relationship 

er (dB) = 4.34 ” 
T 

2 17 
v;e have o’ (dB) = ^ 

But, if A = kr^2, v;e have, for the first peak 

a u 3/2 n a) A = a) kr = ^ oo o o ¿ 

vjhence A = . (—•) 
o o 

3/2 

and thus 

r 3/2 u> r 
(dB) = 1.4 (-£) . X = 1*4Q (“r} 

r0,3/2 
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FIGURE 2. RANGE VS INITIAL GRAZING ANGLE
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(A) INFINITE BANDWIDTH 

(B) HIGH FREQUENCY CUT -OFF (FINITE RESPONSE TIME) 

FIGURE 8. SIGNAL FROM EXPLOSIVE SOURCE. 

\ 



-7
0

 

FIG.9 

IN
T

tN
S

IT
Y
 

V
S
 

R
A

N
G

E
 

E
X

P
L

O
S

IV
E
 

S
O

U
R

C
E

 



FIG .10 

A. 



FIG.II. 



FIG.12 

i 

i 

i 

/ 




