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Abstract

The expressive power of a particular applicative language
may be characterized by the set of abstract functions di-
rectly representable in that language. The common FUNARG
and applicative order problems are scrutinized in this

way, and the effects of these weaknesses are related to the
inexpressibility of classes of functions.

Certain computable functions which are inexpressible in the
lambda calculus are identified, and it is established that
the interpretation of these functions requires a mechanism
fundamentally equivalent to multiprocessing. The EITHER
construct is proposed as an extension to the lambda calculus,
and several theories including this mechanisii are presented
and proved consistent (in the sense that tliey introduce no
new equivalences into the lambda calculus).

A syntactic analog to the Scott construction, *-conversion,

is developed in conjunction with these theories; this adjunct
allows reduction of expressions having no normal forms in

the usual lambda calculus to finite normal form approximations
of the expressions. This leads naturally to a technique for
proving the extensional equivalence of lambda calculus
expressions which are not interconvertible.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, June 1974,




5=

Table of Contents

Table of Contents

¢ Introduction
1.1: Programming Language Semantics
1.2: Applicative Languages
1.3 The Thesis: Statement of the Problem
) Outline of the Thesis
1.5: Functional Domains
1.5.1: Intuitive Criteria for Functions
1.5.2: Functional Dcmain: Defini*ion

..
L |

NN ENDNNDWN =D

Syntax of Models
Curried Functions

e FUNARG Problem

The S model

Arithmetic Completeness of S
Functional Incompleteness of S
luation Order
¢ The T Model
: Functional Incompleteness of T
e N model
Axioms for the Lambda Calculus
Nxfmal order: Substitutica

1: The N Evaluator

2: Axiomatic Consistency of N
: Functional Domain of N
¢ Summary

6
7
: Motivation for a Multi-valued Semantics
g.l: Necessity of non-functions: WHICHFF
ol Codigﬁ primitives: The C model
e Turinf-machine Tar Pit
% 2.2: Functiona ity of DECODE
W2 LAMBDA-free AEs
2.2. An Enumeration of 0,
3.3: E model: MultiBrocessing pr¥mitives
3.4: The Intuitive Paradox
3.5: Multi-valued Semantic Elements

nNPON
L .

ro
L]
NN 8 wWow

n
L
e o LN ) L]
=T8I BN

\J'l\J'lN—l

3.5.1: Domains of Specification
2.5.2: EITHER and the Lambda Calculus
3.6: The Power Set Domain
3.3: Interpretation of F#
3.8: Computable elements of F#
3.9: Summary

: Theories of EITHER-conversion

1: Preliminary Definitions

2: The Either-R Theories

y.2.1: erties of Either Theories
4.2,2: EIT ER and Evaluation Order
4,2.3: Consistency of Either-R
3: Summary

#.Conversion
: The R-* Theories

1' Significance of normal forms
.2: Theorem on Normal Forms

.a Relation to the Lambda Calculus
" Consistency of R-%* Theories
: Applications to the Lambda Calculus
¢ Summary

Either-R-#* Theories
Consistency of Either-R-#
Relation of # to EITHER

: Evaluators for E

: Summary

U'\
.

i
o o
; LAJNU'IU'IU'\U’I.;
[¢:] . e o o o
— ek ek

s o
2N =

.e
OO

— b d b b

terpreter Structure and Expressive Power

OWOWOONN W20 =W~ N=0O-INEW OWOO~ION NEW—=OWOROUWW O3 -AWNOW D L = DL R WO O 00~

OO OOV~ ~1-1OOOVOVOY VNN NNV N S e o EUOUHILRILI R P PO PO M) o = s

—




Table of Contents -6-

7: The Either-K Theories

7.1: K-aktstraction
7.2: Consistency of Either-K Theories
7.3: Funct ional” Domains of Either-K
7.4: Summary

8: Summary and Conclusions
.1: Summary
8.2: Conclusions
.3: Directions of Future Research
9: References

10: Biographical note

NN
—_— 200
F

-

— et —a
—— e
b o) UVION}




1 n

Chapter 1i:

Introduction

1.1: Programming Language Semantics

The semantics of a programming language may be viewed as a theory which
iccounts for the behavior of programs written in that language. An
interpreter for a language L is a model for the semantics of L, and a language
vhose semantics is incomplete (in the sense of an incomplete theory) may have
many "correct" interpreters which behave differently just as an incomplete
~heory may have disparate models. We find that the usual more specific
definitions of semantics (e.g. "the relation between expressions and the
cbjects which they denote") make assumptions about the structure of a universe
of "meanings" which are difficult to Justify in the general case, where side
effects, assignment, and transfers of control must be accounted for
semantically. Such considerations motivate the restriction of the present

work to applicative languages.

Serious concern for formal semantics is not usually an important consideration
in the architecture of practical languages. ‘ypically a language is designed

'apgely by pragmatic considerations and the formal statement of its semantics
is either abandoned entirely or postponed until the more important

implementation issues are sorted out. The subsequent semantic formalization
of the language inevitably becomes a major task, and the complexity, volume,
and inscrutability of the result may constrain its usefulness. A classic
example of such an undertaking is the description of PL/1 in the Vienna
Definition Language[24].

An alternative tecinique of language design, exemplified to some extent in
LISP[26] and its recen® derivatives, involves the specification of the
pragmatics of a language after decisions on some particul 'r concise semantics
have been made. Unfortunately languages so designed tend to have serious

defects from a practical point of view and are abandoned or complicated by the

adJdition of ad hoc mechanisms to make them more useful.
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The designer of a language is thus confronted with a choice between concise
semantics and practical usability, and he justifiably tends to opt for the
latter alternative. The extent to which semantic considerations may be
reconciled with practical issues remains an important open question, and the
development of practical languages with concise, elegant semantics is the lonyg
term goal of much of Computer Science esearch. The problem is being attacked
from two discernible directions: (i) semantic formalisms which deal with the
mechanisms of extant practical languages, such as the analysis of
uninterpreted schemata(9,8,13,17,25]; and (ii) the adaptation of existing
formalisms to very simple model languages such as the lambda
calculus(2,3,5,15,22]. The work reported here falls naturally into the
second category.

1.2: Applicative Languages

Familiar concepts of mathematics provide an informal semantics for many
aspects of computer languages. Manuals for most programming languages relate
various program constructs to such notions as real numbers, arithmetic, and
funct ions, with which the reader is presumed to be acquainted. Often
terminology and notation are borrowed from mathematics, implying some informal
relation between, say, a FORTRAN ”function" and the common mathematical notion
of function., This relation is only approximate, since for example no
mathematical analog has been established for the FORTRAN fuvnction which prints

its argument on the teletype. In order to formalize the relationship between

program constructs and matheratical notions, then, we focus our attention on
the highly restricted class of applicative languages.

The semantic bases of applicative languazes are the theories of mathematical
functions, and the constructs of these anguages are restricted to simple

analogs of the related mathematical notions. Each applicative ianguage
provides a syntactic formalism for the representation of functions and their
application to arguments, and the semantics of an wapplicative language is in
general a rule for the association of expressions, constructed according to

this formalism, with values from an abstract semantic domain containing

funct ions and constants, Formalizing a consistent semantics for an
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applicative language appears to be an easy first step in pursuing the general
problem of programming language semantics; since set theory provides
satisfactory semantic domains, all that remains is the seemingly simple

association of expressions with set theoretic functions and constants.

Yet even this simple problem is plagued with complications, and it is only in
recent years that progress has been made in this area largely due to
techniques developed by Dana Scott(5,6,22]. In fact, the usual set theoretic
characterization of functions is not so well adapted to tue semantics of
applicative languages as one might suspect: type restrictions, placed on set
theoretic functions in order to avoid Russel ‘s Paradox, are difficult to
reconcile with the natural proclivity of applicative languages for the
self-application of functions. The work of Scott justifies our optimism that
such problems are tractable, and that the semantics of applicative languages
may be based on the mathematics of functions. The extension of the resulting
semantics to non-applicative mechanisms such as assignment and side effects
however, remains an area of grave uncertainty, and it seems likely that
theories of functions will ultimately prove to be inadequate bases for the
semantics of programming languages in general. In the meantime, however,
applicative languages and their functional semantic domains are probably the
closest we have come to a successful programming language semantics, and we
feel that there is much insight to be gained from further exploration of this

area.

The semantics of an applicative language L, then, may be viewed as a mapping
between the set of valid expressions in L (the domain of discourse of L) and
and a semantic domain of abstract functions and constants. A consequence of
the Turing Universality of L is that this mapping must be many to one; each
abstract semantic element has, in general, infinitely many representations in
the language L. Tae semantic mapping thus leads naturally to a notion of
semantic equivalence between expressions in L, partitioning the domain of

di scourse of L into equivalence classes each of which corresponds to a single

abstract semantic element.
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1.3: The Thesis: Statement of the Problem

The problem which this thesis addresses is the characterization of the
expressive power of an applicative language in terms of the structure of its
abstract semantic domain. This process generally involves relating specific
applicative language features to the expressibility of particular classes of
functions, e.g. the solution of the FUNARG problem to the expressibility of

funct ions mapping integers onto an infinite range of semantically distinct
functions.

This work focuses on a very few specific language mechanisms, with particular
attention given to an applicative analog of mult iprocessing. Partial answers

are provided to such questions as:

1) Are there functions whose computability depends fundamentally on a notion

analogous to multiprocessing?

2) What applicative mechanisms are necessary for the expression of such
funct ions, and is the impact of these mechanisms on the structure of the

semantic domain?

3) What is such relationship between such multiprocessing constructs and
other issues of applicative language evaluation, such as evaluation

order?

The work presented here might be characterized as a search for an applicative
language L which is functionally complete in the sense that every computable
function definable on the semantic domain of L is expressible in L -- our
reluctance to cite this as the principal goal of the thesis is probably due to

our failure to find such a language.

1.4: Outline of the Thesis
The organization of the remaining chapters is as follows:

Chapter 2 develops the basic framework through the presentation of three
interpreters for applicative languagess, designated S (stack environment),

T (tree environment), and N (normal order). Each interpreter exemplifies
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a typical language limitation and each is used to relate a specific ;

language characteristic to the expressibility of a particular class of

funct ions.

Chapter 3 demonstrates a particular computable function which is
inexpressible both in N and in the lambda calculus, and relates this
inexpressibility to the semantic requirement that an expression in these

languages have at most a single value. Two alternative language

extensions are discussed, each of which solves this specific
expressibility problem. The solutions involve, respectively, primitives
for coding the representation of functions as integers and a
multiprocessing primitive called EITEER. Each of these extensions
requires r: uification of the structure of the semantic domain, with the
use of coding leading to drastic and undesirable consequences. For this
t and related reasons, EITHER is chosen. To account for the semantics of
EITHER, the semantic domain of N is expanded into a power set and each

expression X is associated semantically Wwith an enumerable set containing

the admissible values of X.

The formalization of EITHER-augmented languages may procede in several ways,
differing in the restrictions placed on evaluation order. Chapters 4, 5, 6,
and 7 deal with certain formal theories, based on the lambda calculus, for the

reduction of expressions involving the EITHER construct:

Chapter 4 provides basic definitions and presents the Either-R Theory, in
which lambda conversion is allowed only in expressions whose arguments
are in normal form. This restriction is motivated by the intuitive

decsire to maintain the distributivity of functions over terms of an
y EITHER clause, but it limits the power of languages based on this theory.

Chapter 5 develops a theory of %*-conversion, designed to mitigate the
limitations imposed by the restricted lambda conversion of the Either-R
Theory. The element * is introduced as a canonical representation of
every nonterminating computation, and a syntactic mechanism is provided
for the reduction of expressions to approximations which are in normal
form. The use of *-conversion provides techniques for proving certain

relationships in the conventional lambda calculus. This chapter presents




-12-

results which are of interest independently of their relation to the

development of the Either theories.

Chapter 6 presents the Either-R-%* theory, combining the EITHER mechanism
with ®*-conversion, and establishes its consistency. While this system
retains the restriction on lambda conversion, it has the power of the
lambda calculus augmented by the EITHER primitive. Thus, languages based
on Either-R-* solve the specific expressibility problem raised in Chapter

3. Interpreters and semantics for such languages are discussed.

Chapter 7 presents the Either-K theory, which combines the EITHER construct
with unrestricted lambda conversion. Significant semantic differences
between the Either-R and Either-K theories are noted, and it is
informally observed that the removal of the restriction on lambda
conversion leads to the expressibility of certain functions which are

inexpressible in the Either-R-* languages.

The last chapter summarizes the results of this work and proposes avenues for

future research.

1.5: Functional Domains

An underlying assumption of this research is that the fundamental semantic
intent of applicative languages is to provide computational models of
mathematical functions. As a consequence of this assumption, we are inclined
to view functions in an applicative language as approximations or models of
abstract mathematical functions, and to treat any disparity between the
behavior of the computational model and the corresponding mathematical

function as a "bug" or idiosyncrasy in the language.

The thrust of this research is aimed at the limitations of particular
applicative languages as models of systems of mathematical functions. We

begin by specifying, in the next section, criteria which must be obeyed by

applicative functions to be intuitively satisfactory as models of mathematical

funct ions, and then distinguish for each applicative language L that subset of
the domain of L containing only such intuitively satisfying functions. We
call such a subdomain of L a functional domain of L.
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1.5.1: Intuitive Criteria for Functions

#ostricting our attention for the moment to unary (single argument) functions,
we note that
1) A function f is a mapping from a domain Df to a range Rf. The
set-theoretic model of £ is a set of ordered pairs, {...<Di,Ri>...}, such

that‘g_[Di]=Ri if and only if <D, ,R,> is an element of f.

1"

2) A function f may be partial over domain D, i.e., there may be elements Di
in T such that L[Di] is undefined; this corresponds to the practical
situation of a nonterminating computation or a computation which results
in an error condition. We shall refer to such a computation as

divergent.

3) If £ and g provide the same mapping, then they are the same function.

4) g is a subset of £ (in the set-theoretic sense) if and only if for every
Di in the domain of g, g[Di]zﬂi implies L[Dilzﬂi.

Given a language L and a function f, a principal intuitive requirement is the
distinct ion between the function f and the various algorithms (or expressions

+in L) which may be used to compute f. A major complication in the semantics
of applicative languages arises from this many-to-one correspondance between
algorithms and functions, particularly in light of the well known

undecidability of equivalences between algorithms.

1.5.2: Functionai Domain: Definition

The intuitive considerations of the previous section motivate the following
definition:

Defn 1.1: A functional domain F is a set containing the set N of natural
numbers and computable f‘unctions,1 along with an equivalence relation ~
such that:

! Unless specifically stated, we shall use the term function with no implied
type restrictions. ¥hus funct ions include functionals of arbitrary order,

consistent with the typeless character of the applicative languages considered
here.
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1) if x is in N or y is in N, then x7y if and only if x=y.

2) if neither x nor y is in N, then x"y if and only if for every z in

F, x[z1~y[z] or both diverge together.

3) if x~y, then for every z in F, z[x]"z[y] or both diverge together.

Clause (1) sinply asserts that different numbers, eg 2 and 3, are semantically

di fferent objects. Clause (2) asserts that any object in F that is not a
number is a function, and moreover that functions are semantically equivalent
if and only if they perform equivalent computations for every set of
arguments. Clause (3) insists that the application of a function to

semantically equivalent arguments yield semantically equivalent values.

An expression z is said to be functional over the domain F if, for every
choice of x 2nd y in F, x"y implies that z[x]-z[y] or both computations

diverge together. Thus (3) is the requirement that every function in a

functional domain F be functional over F.

We note that the equivalence relation is not, in general, computable.
Furthermore, there may be elements x and y in F such that x“y is not defined,
that is, such that neither x~y nor “(x"y) is derivable from the above

definition.

This definition is rather more specific than necessary. The choice of natural
numbers as a basis of semantically distinct constants, rather than, say,

character strings or floating point numbers, is arbitrary. In dealing with

the lambda calculus we could make the apparently stronger - :quirement that
normal form expressions be semantically distinct, rather than just the
particular normal form expressions which are numeric constants; however it
happens that the two alternatives are entirely equivalent in the context of
our model languages, and our present definition is the less dependent on

particular syntactic considerations.
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Chapter 2:

Interpreter Structure and Expressive Power

In this chapter several illustrative interpreters for applicative lan‘uages
are presented, and compromises in their implementation are related tu the
inexpressibility of certain functions. The model interpreters are taken from

Dertouzos[3] where they are discussed and motivated in greater detail,

2.1: Syntax of Models

The essential components of an applicative language syntax are conventions for
the representation and application of functions. Typical applicative
languages provide for the representation of functions by either of both of the

following means:

1) A set of reserved symbols designating primitive functions whose semantics
are basic to the language;
2) A convention for functional abstraction, or the definition of new

funct ions by means of expressions containing variables.

The pure lambda calculus of Church[1] is illustrative of languages using only
the abstraction mechanism; the combinatory calculus of Curry[12] exemplifies
the use of primitives without abstraction. Curry[12] has demonstrated the
equivalence of these mechanisms, with minor qualifications, and the choice
between them for our purposes is largely a matter of convenience; we provide

here syntactic constructs for both.

Beyond these constraints, the syntactic details of the languages discus<ed
here are not important. A LISP-like syntax has been chosen for the
development of thes models and to provide a definite basis for examples and
illustrations, although the results and examples may be translated to conform
to other syntactic conventions which are consistent with these constraints.

Syntactic characteristics of our model languages include:

1) A finite alphabet including the alphanumeric characters and the special

characters "(” and ")";
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2) A countably infinite set of identifiers, each a finite string of

alphamumeric characters of which the first is alphabetic;

3) A set o© numeric constants, each represented in the language by a finite

string of digits.

The elements of the model applicative languages are the applicative
expressions (AE’s) whose syntax is given by:

<AE> .= <identifier> | <number> ! <combination> | <lamoda
expression>

<identifier> «= Cletterd> ! <identifier><digit> i<identifier>
{letter>

<combination> = ( <AE list> )

<AE list> <AE> | <AE> <space> <AE list>

( LAMBDA (<bvl>) <AE>)

<lambda expression> :

<bvl> = <null> | <identifier> <space> <bvl>
<number> = <digit> | <digit> <number>
<letter> ti=AJB ! ... 12

<digit> e Bl 20 see 0

We assume of these model languages that data is either numeric or functional,
that is, that the yalue computed for any applicative expression must be either
a natural mumber or a f‘unction.1 An expression X is atomic if X is an
identifier or a number; in addition the focllowing syntactic forms have special

meaning in our model languages:

1) The syntactic ivita of a lambda expression is

(LAMBDA(a1 al, cae an) b)

2

1
Our decision to ignore for the present other common data types (floating
point numbers, arrays, character strings, lists) is justified by their

codabilit{ as numbers
data may be

so that our results concerning processing of numeric
extended to the processing of these other data as well.
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where LAMBDA is a reserved identifier in the language, the ai are
identifiers on the bound variable list of the lambda expressions, and the

expression b is the body of the lambda expression.

The syntactic form of the application of the procedure (function) f to
arguments x1 <X xn is
(f X, «oo x)
1 n

Here f is presumed to be the representation of a functional datum, and

the xi are representations of arbitrary data which are supplied to the

funct ion f as arguments.

There is in each language a small finite set of reserved identifiers used to

denote primitive functions. Our initial models will include the following

primitive function identifiers:

1)

2)

3)

The logic values T and F, primitive functions defined such that the value
of the application

(T a b)

is the value of the expression a, regardless of whether the value of the

expression b is defined. Similarly, the value of

(F ab)
is the value of the expression b whether or not a has a value.

The function PLUS of 2 arguments, defined such that the value of the

expression
(PLUS a b)

is the sum of the values of the expressions a and b. The value of the

application of PLUS is undefined if either of the values of g or b is

nonnumeric.

The function GREATER of 2 arguments, defined such that the value of the

expression

(GREATER a b)
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is the primitive function T if a has a higher numeric value than the
expression b, and F if the value of a is less than or equal to the value
of b.

We shall often refer to an identifier which is not a primitive function symbol

as a variable. An occurrence of the variable y in the expression X will be

termed a free occurrence if one of the following applies:
1) X is identically the variable y; or

2) X is of the form (A1 e An) and the occurrence of y is free in one of

t he Ai; or

3) X is of the form (LAMBDA(a1 5 (o1 aJ)M), y does not occur in the bound

variable list (a1 ... a,), und the occurrence of y is free in M.

J

An occurrence of the variable y which is not free is bound.

2.2: Curried Functions

The syntactic provision made here for functions of multiple arguments requires
certain further elaboration. We may reasonably demand, for example, the
ability to express the function MPLUS defined such that the value of (MPLUS m)

i{s the m=ary function which returns the sum of its m arguments. Such

funct ions are, in general, unrepresentable unless some primitive mechanism is

provided within the language for the abstraction of multiple argument

functions. We might consider the abstr- ~tion primitive ALPHA, defined such

that the value (ALPHA F G m) is the m-ary lambda expression
AMBDA (X
(LAMBDA(X . ..X ) (G X (F X, «oo X 4)))

where F and G are presumed to represent (m=-1)-ary and binary functions,
respectively. We might then define MPLUS so that (MPLUS 2) returns PLUS, and
(MPLUS n) returns (ALPHA (MPLUS n-1) PLUS n) for n>2.

Such a primitive is, however, unnecessary in most languages. The technique of

Curried t‘unctions1 may be used to couch multiple-argument functions in terms

! named in honor of H.B. Curry who developed this technique; see [-2]
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of unary functions, whence the application of F to arguments A1 A2 ...An ﬂ
becomes '

|
(oo (FAD A ..o A) g

and the n-ary lambhda expression (LAMBDA(A1 A ...An)M) become:s

2

(LAMBDA(A1)
(LAMBDA (A,)

(LAMBDA(An)M) auz oY

The convention of Curried functions simplifies the presentation of proofs and
interpreters, as only single argument functions need be considered; we

‘ herefore hastily adopt it for our present purposes. The conventional
multiple argument syntax is slightly less complicated, however, and tends to
greater clarity than the use of Curried functions; we consequently allow
ourselves the informality of switching freely between the two conventions at
cur convenience. We may then consider instances of the multiple argument
syntax as an abbreviation for the corresponding Curried syntax, which we take

as basic.

An exception must be made in the firs: model language presented, however, as
the FUNARG problem does not interact gracefully with Curried functions; hence

in this case the assumption of single argument functions is not made.

2.3: The FUNARG Problem

We are now in a position to give an example of a functionally incomplete

language, which we call S, S is an abstraction of the applicative subset of
LISP and similar stack-oriented languages; it serves to introduce the notion
of environment, and demonstrates that certain minimal structural constraints
on environment handling mechanisms are necessary for the expressibility of a

particular class of functions.
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2.3.1: The S model

An envircnment is a linear sequence of ordered pairs (or bindings) (x,v),
where x is an identifier and v is a value. Environments are thus a mechanism
for the use of identifiers as variables, serving to record the values
associated with each variable. We represent. the environment which binds the

variable X1 to the value V1, X2 to V2, and so on, as

((X1,V1)(X2,V2) S, )

The enviromment structure of the interpreter for S may be viewed as a stack,
bindings being pushed onto the environment from the left at the start of the
application of a lambda expression, and subsequently being popped from the
enviromment at the completion of that application. The S interpreter finds
the current value for a variable X by looking, in turn, at each binding
starting with the leftmost; when a binding whose first element is X is
encountered, the associated value (the second element of the binding) is taken
as the value of X. We may describe this operation by defining a primitive
funct ion lookup of two arguments, corresponding respectively to the identifier
to be evaluated and the environment in which its value is to be found:

lookup[x;((X1,V1)(X2,V2)...(Xn,Vn))]=
if x=X1 then V1;
else lookup[x;((Xz,Vz)...(Xn,Vn))]

We now describe the interpreter for S as a funciion defined recursively as

follows:
S[x;el =

if x is a number, then x;
if x is a member of {T,F,GREATER,PLUS} then x;
{f x is an identifier then lookuplx,el;
if x is a lambda expression then x;
if x is of the form (T y z) then Sly;el;
if x is of the form (F y z) then S(z;el;
if x is of the form (GREATER y 2z) then:

if S{y;el>S[z;e] then T;

else F;
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if x is of the form (PLUS y z) then S[y;el+S[z;el;

if x is of the form ((LAMBDA(s1...sn) b) y1...yn) where the
si are identifiers, then
S[b;(s1,s[y1;e])...(sn,S[yn;e])e];

if x is of the form (y z, z, ... z ) where y is not a lambda

expression, then S[(S[y;e] Zy .. zn);e];

elsc undefined

Thus S[x;e] computes the value of the expression X in the environment e.
S[x;0] (where @ is the empty environment) computes the value of x on an S

evaluator in its initial ‘bare" state; we may refer to this simpley as the S

value of x.

2.3.2: Arithmetic Completeness of 3

We refer to a language as arithmetically complete if every computable first
order1 function is representable as a procedure of that language. We show
that S is arithmetically complete by showing that for every first order
partial recursive (hence computable) function there is a corresponding
function in S. The constructions of this section are adaptations of those
appearing in Dertouzos[3] and are included here primarily for sake of
illustration; while each subsequent model language is also arithmetically

complete, similar constructions apply in each case and will not be repeated.
As 5 prelimirary step, we consider the S function given by:

(LAMBDA(X Y)
((LAMBDA(X Y D)(D X Y)) X Y
(LAMBDA(X Y) ((GREATER X Y)
(PLUS 1 (D X (PLUS 1 Y)))
0)) ))

which computes the "recursive difference" function

! Following the terminology of logic, a firsc order function contains only
numbers in its range and domain, and functions of order j may contain (in
addition to numbers) functions of order less than j
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D[x;y] = if x>y then x-y else 0;

by the algorithm

Dix;y] = Lf x>y then 1+DIx;y+1];

else 0;

Note that the extra two layers of LAMBDA binding serve only to bind the free
occurrence of the identifier D within its own definition, and thus to make the

recursive function operate properly on S.
We may define the predecessor funct ion
P{x] = if x<1 then 0 else x-1;
in S by the expression:
(LAMBDA(X) (D X 1))
where D is the recursive difference function defined above.

Now we shall demonstrate that every partial recursive function of first order
is representable as a function in S. In the following, lower case letters
represent partial recursive functions while upper case letters denote their

corresponding S functions:

1) For every pair of natural numbers n and m, the m-argument constant

function of value n is expressed in S as:
(LAMBDA(X1 apers Xm) n)

2) For every pair of numbers n and m, the m-ary projection function which
returns the value of its nth argument is expressed in S by:

(LAMBDA (X, ...Xp) X,)
3) The successor function is expressed in S by:

(LAMBDA(X) (PLUS 1 X))

L This is one of several nt ricks" which may be used to ferform recursion on S.
The necessity of such tricks stems from the expressive 1nadequacy og S: the
or

Landin{2]; for a general discussion

scussion o , see Rosenbloom

X , Y, isn 11ixpressible as a function of S,
of recursion on S see Dertouzosr
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4) (composition) For every choice of numbers n and m, m-ary partial

5)

6)

recursive functions gy oo LA and n-ary function f, the m-ary functior h

defingd by
h[x1;x2;...;xm] = f[g1[x1...xm], me ,gn[x1...xm]]
is expressed in S as

(LAMBDA(X1 cos Xm)(F
(G1 X1 coe Xm)
(Gy Xy oev X))

where F, G1 . Gn are the S expressions corresponding to f and B+ oBp»
respectively.

(primitive recursion) If the n-ary partial recursive function g and the

(n+2)-ary primitive recursive function f are expressible in S as G and F,

respectively, then the (n+1)-ary function h defined by:

h[x1,...xn,0] = g[x1,...xn]

h[x1,...,xn,y+1] = f[x1,...,xn,y,h[x1,...,xn,y]]
may be expressed in S by

(LAMBDA(X1 M. Xn Y)
((LAMBDA()(.I .o Xn Y H)(H )(.I .ee Xn Y)) X1 “es Xn Y
(LAMBDA(X1 ves Xn Y) ((GREATER Y 0)
(F X, ... Xn (P Y) (H X, ... Xn (P Y)))

1
G x, ... XN

where P is the representation of the predecessor function given earlier.

(mu-recursion) If the (n+1)-ary total recursive function h is expressible

in S by H, then the partial recursive function g defined by

g[x1;...;xn] = the least y for which
h[x1;...xn;y] =0

is represented in S by
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(LAMBDA(X1 coc Xn)
( (LAMBDA(R) (R 0))
(LAMBDA(Y) ((GREATER (H X1 ...Xn Y) 0)
(R (PLUS 1 Y))
1)) )

Finally, we note that the class of recursive functions is by definition
exactly that class of functions obtainable through finitely many applicaticns
of the above six rules; hence the S representations given in the rules
constitute a technique for constructing an S expreasion which represents any

funct ion which can be shown to be partial recursive.

2.3.3: Functional Incompleteness of S

Recall that the functional completeness of a language L requires that every
computable function defined on the semantic domain of L bte expressible in L.
Since the natural numbers and (by the preceding section) first order functions
are included in the semantic domain of S, every second order function is
definable on the domain of S. The functional incompleteness of S may then be
demonstrated by showing that a simple second order function is not expressible
as an S function. We begin by observing that some higher order functions are
expressible in S, e.g. the function g (the "twice" function) given by

glf;x] = flflx]]
is expressible in S as
(LAMBDA(F X)(F (F X)))

hence it cannot be argued that only first order functions are expressible in
S. The weakness in S which we will demonstrate involves the inexpressibility

of certain second order funct ions, notably functions which contain free
variables and which appear as arguments or values (i.e., bodies) of lambda

expressions: the so called FUNARG problem.1

! General awareness of the FUNARG Yroblem (as well as its name) arose from
Sar%y expfg%ence with LISP. For discussion see Weizenbaum[23], Moses[10] or
ertouzos(3].
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Consider the wnary function f; whose domain contains only integers and whose

range contains only first order functions, defined by

f[x] = that function g defined by
gly] = x+y

The function f is computable; it may in fact be expressed in the lambda
calculus by

(LAMBDA (X) (LAMBDA(Y) (PLUS X ¥)))

To show that f is pot 2xpressible in the language of S, the following
definition is useful:

Defn 2.1: We say that the expressicn a appears as a subexpression of the
expression b if any of the following are true:
1) The expressions a and b are identical;
2) b is of the form
(b1 b2 3o C bn)
where a appears as a subexpression of one or more of the bt
3) b is of the form

i
(LAMBDA(X1 ...Xn)B)
where g appears as a subexpression of B.
We say informally that b contains a if a appears as a subexpression of b.
The basis of the inexpressibility of f in S is established by the proof of
Lemma 2.2: Let A be any applicative expression and let B be a lambda

expression appearing neither as a subexpression of A nor in the

environment e. Then B does not appear as a subexpression of S[A;e].
proof is by induction on the recursion depth of S[A;e].

basis For the following syntactic classes of A, the computation of S[A;e]

involves no recursion:

Case 1: A is a number, a primitive function identifier, or a lambda

expression. Then S[A;e]=A, and the lemma is trivially satisfied as
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B is noc a subexpression of A.

Case 2: A is an identifier other than a primitive function symbol. Then

S[Ase] is lookup[A;e] which cannot contain B since by assumption the

environment e does not contain B.

induction: The remaining cases of the syntax of A follow; for these we

assume that the Lemma holds for recursive calls to S.

' Case 3: A is an application of GREATER or PLUS; then the value of S[Aje]

is a number or logic value and does not contain B.

Case U: A is the application of a logic value T or F to arguments A1 and
Az. Neither A1 nor A2 can contain B since A does not contain B;
hence the inductive hypothesis applies to either of the computations

S[A1;e] and S[Az;e] and B cannot appear in S[A;e] which is one of

these vaiues.

the arguments A1"'An' By the inductive hypothesis, B does not
appear in any of the values S[A1;e]...S[An;e], hence the new
environment e'g(X1,S[A1;e])...(Xn,S[An;e])e does not contain B. As
a subexpression of A, M cannot contain B; thus the inductive

hypothesis applies to tre value S[M;e’] returned as the value of

Y
|
Case 5: A is the application of a lambda expression (LAMBDA(X,...X )M) to
. S[A;el.
Case 6: A is the application of Y to the arguments A1"'An’ where Y is
’ neither a lambda expression nor a primitive function symbol. Y is a
subexpression of A and by assumption does not contain B as a
subexpression. Then the inductive hypothesis applies to the

computation of S[Y;el=Y", and Y’ does not contain B; a second
application of the inductive hypothesis reveals that B cannot appear

as a subexpression of S[(Y’ A1---An);e]ES[A3e]-

These cases are exhaustive, completing the proof.

We can now characterize a major weakness of the language S by
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Thm 2.3: Every function expressible in S whose domain contains only numbers

may have at most finitely many functions in its range.

Proof: Functional values in S must be either primitive function identifiers
¢ lambda expressions. As there are finitely many primitive functions,
we need only show that each function of numbers in S has finitely many
lambda expressions in its range. Implicit in this argument is the fact
that the number of functions expressed by a set of lambda expressions is
no greater than the number of lambda expressions in the set. Each lambda
expression which contains no nontrivial occurrences of free variables
represents (though not necessarily uniquely) a single function; lambda
expressions with nontrivial occurrences of free variables (i.e., which
canpute di fferent functions in differing contexts) do not e¢-rrespond

semantically to functions.

By lemma 2.2, a function of integers can have lambda expressions in its
range only if they appear as subexpressions of the function, since for
any integer n and expression f the expression (f n) can contain the
lambda expression g as a subexpression only if g is a subexpression of f.
As the function must be represented by a finite expression in the
language S, it may contain only finitely many lambda expressions as
subexpressions and hence has finitely many lambda expressions in its

range.

Clearly, the function f defined at the beginning of this section is a function
of integers having infinitely many furctions in its range; we conclude that f
is not expressible in S. The problem may be characterized as inadequate
handling by S of lambda expressions containing free variables. It is apparent
“hat free variables are evaluated in the environment in which a function is
applied, rather than the environment in which it is eva 1ated. Thus lambda
expressions with free variables have the property that che computation which
they perform depends on values in the environment of their caller; this
dependency constitutes an implieit input and justifies our exclusion of such
lambda expressions from the class of functions. Yet proper S functions may
include such lambda expressions as subexpressions; witness the S function
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.3.3
(LAMBDA (X) ( (LAMBDA (Y) (PLUS X Y)) 3))

.1Jch contains no free variables and hence no implicit inputs. The variable
rowever, appears free ‘n the lambda expression in its body; this innermost
1zrbda expression is not a function. The question of the contribution of free
.1ciables to the functional richness of S naturally arises at this point: Are
_nere functions which are expressible in S only through the use of free
;ariabics? uvur suspicions lead to the conjecture that every function f
-.pressible in S may be represented by an expression F in which no lambda
wpression appearing as a subexpression contains free occurrences of
variables. This conjecture does not completely deny the usefulness of free
vsariables on the S machine. Indeed, lambda expressions with free variables
are moderately well behaved when passed downward, i.e., as arguments to
unctions; under these circumstances, the prinecipal danger is due to possible
~onfliects with variables bound by the functions to which the lambda
:xpressions are passed. They may, however, be considered to be "limited
“uynct ions" with the qualification that they be applied within the scope of the
ree variables in their original environment and that they may not be passed
‘¢ functions whose bound variable list includes any of the free variables.
.uch qualifications seriously impair the semantic clarity of the language
imposing them.

2.4: Evaluation Order

“ne functional incompleteness of S was shown to be related to the specific way
‘n which S associates values with variables in an interpreted program: i.e.,
ne enviromment structure of S. The remaining sections of this chapter

~esent model interpreters with alternative environment structures, and which
~olve the specific problem demonstrated in S; however, they demonstrate

. imilar inadequacies in the organization of control structures, i.e. the data

=tructure specifying which computations are to be performed and-their relative

requence.1

" The notion of %ongrol ture has never, to the author’s knowledge, been

:oequately formallized. nformally it is the bookkeeping mechanism necessary
‘0 resolve algorithms into se?uences of operations -- e.g., the use of a stack
o record the return points o

calls to a recursive subrouéine.
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The first model to be presented is T, similar to S except that its environment
is structurally a tree rather than a stack. It is argued that T and S share a
deficiency which stems from their evaluation order, in particular, from their
uniform evaluation of arguments regardless of whether the resulting values are
essential to the computation. T is thus functionally incomplete due to

evaluation order.

The N model, discussed in section 2.%, is closely related to the normal order
evaluation of the lambda calculus. It is superior to T in that every
expression having a T value has an equivalent N value, while certain

expressions have N values but not T values.

2.4.1: The T Model

The traditional solution of the environment p-oblem of S involves a new
"internal” representation of a function, called a closure. A closurc
includes, in addition to the information in a lambda expression, a
specification of the environment in which its free variables are to be
evaluated. As the closure mechanism may require the retention of environment
branches corresponding to functional applications from which control has been
returned, the environment becomes a tree rather than the linear stack of S;
hence we call nur new language T. The difference between T and S is that in
T, the lambda expression

(LAMBDA(S1...sn) b)

is no longer self evaluating.1 Its value, in environment e, is

(FUNARG(s1...sn) b e)
which is the representation of a closure in T. We define T as follows:

Tlx;el =
if x is a number, then x;
if x is a member of {T,F,GREATER,PLUS} then x;
if x is an identifier then lookup[x;el;

! We say an expression X is self evaluating if the value of X is X.
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if x is of the form (T y z) then Tly;el;
if x is of the form (F y z) then T[z;e];
if x is of the form (GREATER y z) then:
if T(y;el>T(z;e] then T;
else F;
if x is of the form (PLUS y 7, then Tly;el)+T[z;el;
if x is of the form
(LAMBDA(s1...sn) b) then
(FUNARG(s1...sn) be);
if x is of the form
((FUNARG(s1...sn) b e1) y1...yn) then
T(b;(s,,¥(y15e]) ... (sn,T[yn;e])+e1];
if x is of the form (y 2y 2y oen zn) where y is not a
FUNARG closure, then
T[(Tly;el z, ... z )iel;
else undefined;

We note that a lambda expression is not applied directly; it is first
converted to a closure (by its evaluation), and then applied by the evaluation
of its body in an environment formed by appending the bindings of its bound
variable list to the closure environment. Tius the free variables of a lambda
expression are evaluated in the environment ‘n which the lambda expression is

evaluated. The reader may verify that the function represented in the lambda

calculus by
(LAMBDA (X) (LAMBDA (Y) (PLUS X Y)))

which the preceding section showed to be inexpressible in S, is expressible in
T (indeed, by the same lambda expression).

2.4.2: Functional Incompleteness of T

£xcept for the special cases involving the application of the primitives T and

F, the T evaluator wniformly evaluates the expressions supplied to an operator

as arguments before the operator is applied. This order oS evaluation, which
has been termed applicative order, has the virtue that each subexpression of
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an AE is evaluated at most once, whereas in the normal order evaluation of the
1ambda calculus an argument to a function may be evaluated many times. The

di sadvantape of applicative order evaluation is that arguments may be
evaluated (once) even though their value is irrelevant to the computation;
this is not merely a matter of occasional inefficlency, since the irrelevant
argument may not be defined whereby the entire computation diverges. Consider

the case of the trinary projection function

P31[x;y:Z]=x

whi~h returns its first argument regardless of whether its remaining arguments
have defined values. The applicative-order counterpart of P31 is represented

in T by the expression:

f31=(LAMBDA(X YZ)X)

This expression does not return a value under "-evaluation unless all three

arguments have defined values.

Jur decision to distinguish between P31 and f3] in effect recognizes tone
undafined element, ®*, as a member of the functional domains of our applicative
languages. Intuitively, % pepresents the "value” of those computations which

do not terminate, and whose expressibility in each language L is guaranteed by

the Turing universality of L.

We now show that P31 is not expressible in T:

Thm 2.4: For every AE £, the T value of the expression

(£3%% [2.5]

(where * denotes any expression whose T value is undefined) is undefined.

proof: We consider exhaustively the possible T values of the operator f:
If £ is a number or a primitive operator, then the value of [2.5] is

undefined due to an error in functionality, i.e. the application of a
primitive to arguments for which it is not defined. may assume that f is

either a combination or a lambda expression, in which cases the value of

the combination is the value of the application of the T value of f to

the specified arguments. If the value of £ is a number or a primitive,
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[2.5) is again undefined due to an error in functionality. Hence the
value of f must be a closure. The computation of the application of a
closure involves binding the values of each argument onto the
envi~~nment, hence the evaluation of [2.5] entails evaluation of each
argument. Since not every argument has a defined T value, the value of

[2.5] is undefined.

Since clearly the projection P31 has the property of f in Theorem 2.4, T must

ve functionally incomplete if we are to consider P31 a function.

2.5: The N model

This section introduces an applicative language whose interpretation involves
normal order evaluation. The superiority of N over T derives from this
revised evaluation order of N, which permits an expression to be evaluated
even though subexpressions of it may be undefined. A theorem of Church and
Rosser establishes that if an AE, A, has a value under any evaluation order,

then it has that value under normal order evaluation; thus in terms of

evaluation order, N is optimal.

The simplest implementations of normal order evaluation involve the
substitution of argument text in the bodies of lambda expressions, rather than
the binding of argument values in environments. While the explication (and
implementation) of such substitution algorithms is relatively straightforward,
evaluation by simple substitution is often inefficient since

1) It involves making many copies of program text during execution, and
2) It often involves multiple evaluations of the same subexpression.

For reasons of efficiency, substitution evaluators are thus primarily of

theoretical interest.

More efficient implementations of normal order evaluation retain the
»nviromment structure of the T model, and introduce additional mechanism to
indicate which bound expressions have or have not been evaluated. Since the

~rvironment implementations of normal order evaluation involve considerable
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bookkeeping machinery and are hence conceptually much more complex than the

subst.itution algorithms, they will not be pursued.

2.5.1: Axioms for the Lambda Calcuius

The primordial applicative language is the lambda calculus, which has been the
sub ject of much investigation since its conception by Alonzo Church in the
1930s, The semantic basis of the lambda calculus is a set of axioms which
define an equivalence relation, =, on expressions of the language. Each axiom
may be interpreted as a conversion rule (or reduction rule) in the sense that
it provides a means for converting (or reducing) an AE to an equivalent (under
=) AE having a different form. The presentation of the axioms in this chapter
is somewhat informal, serving primarily as motivation for the N interpreter;
the interested reader is referred to Curry[12]) and Hindley[21] for further
detail. Related issues are also covered in greater depth in later chapters of

this report.

The axioms of the lembda calculus are of 4 types, designated alpha
(equivalence under renaming), beta (function application), delta (primitive
funct ion definition), and, in some formulations, eta. The delta and eta
axioms are not used in all formulations. The eta axiom seems to serve no
important function in the evaluation of expressions and will be presented here
only in passing. The delta axioms may be avoided by well known coding
techniques which involve the representation of nonfunctional data, e.g.

natural numbers, as lambda expressions.1

The formulation which will be primarily referred to in subsequent chapters
comprises the alpha, beta, and delta axioms, and is often termed the

beta-delta-calculus in the literature. Unless otherwise qualified, generic

references to "the lambda calculus" in this report denote the beta-delta

calculus.

The equivalence relation = of interconvertability is generated by a relation

1 Many such codings are possible; a popular choice represen:s 0 by the
expression (LAMBDA(X)(LAMBDA(Y)YS) and the number n+1 by

(LAMBDA (X) (LAMBDA(Y) ((N X)(X Y)))) where N is the representation of the number
n. For development of such a coding, see Church{ 1].
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-> of reducibility; hence X->Y implies X=Y which, in turn, implies Y=X.
Reducibility is in general antisymmetric, however; thus -> provides an
ordering of equivalent expressions which has important ramifications in the
lambda calculus. The relation -> is defined to be a monotone relation1

meaning that it has the following properties:

Reflexivity: For every X, X->X;
Transitivity: If X->Y and Y->Z, then X->Z;
Monotonicity: If X->Y and B is the result of substituting, in an expression

A, X for an occurrence of Y, then B->A,

Ti,e relation = is in addition an equivalence relation; hence X=Y implies Y:=X.

Central to the axioms is the substitution rule, S, of fundamental importance
to the lambda calculus as well as the theories of the following chapters of
this report. S is formulated as a three areument function, such that the
meaning of S[X;Y;Z) is roughly "the result of substituting the expression X
for free occurrences of the variable Y in the expression Z. The definition of
S is further complicated, however, by the requirement that the operation
S[X;Y;Z) not introduce conflicts between free variables in the expression X
and bindings of X within Z. There is a long history of incorrect algoritms
for S; the definition given here is due to Curry:

Defn 2.6: For expressions X and Z, and variable Y, the expression S[X;Y;Z] is

defined as follows:

1) If Z=Y, then X;

2) If Z is a primitive, number, or identifier other than Y, then Z;
3) If Z is of the form (Z1 22) then (S[X;Y;Z1] S[X;Y;Zzl);

4) If Z is of the form (LAMBNDA(A)M) where YzA, then Z;

5) If Z is of the form (LAMBDA(A)M) where Y is different from A, then

(LAMBDA (B)S[X;Y;S[B;A;M]]). where the variable B is chosen as follows:
i) If Y does not occur free in M or if A is not free in X, then BzA;
1i) Else B is any variable which occurs free neither in M nor in X.

! Terminology after Curry[12]
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We now procede to the statement of the axioms:

Axiom alpha: If E is a lambda expression of the form (LAMBDA(X)M) and the
variable Y does not occur free in M, then E->(LAMBDA(Y)S[Y;X;M]).

We say that expressions A and B are congruent if A can be converted to B by
alpha conversion alone. Note that if X=->Y by alpha conversion then Y->X by
alpha conversion; hence X=Y. Congruence is thus symmetric and transitive,
and under most circumstances congruent expressions may be treated as
identical. We say that expression X is in normal form if the only reduction

which can be performed on X is alpha conversion.1

Axiom beta: If E is an expression of the form ((LAMBDA(X)M) A) then
E->S[A; X;M].

Axiom eta: If E is an expression of the form (LAMBDA(X)(M X)) where X does not
appear free in M and M is a lambda expression, then E->M.

Axiom delta: If E is an expression of the form (F A1 A% ogere An) where F is a

primitive function symbol and each Ai is in normaf form and contains no
free variables, then E->f[A1;...;An] where f is the operation denoted by
F.
The following two theorems are of fundamental importance in the lambda
calculus. The first is due, in its initial primitive form, to Church and

Rosser and is referred to in the literature as the Church-Rosser Theorem:

Thm 2.7: Let X and Y be expressions such that X=Y. Then there exists an
expresion, Z, such that X->Z and Y->Z,

proof may be found in Curry(12) or Hindley[21] and elsewhere.

The Church-Rosser Theorem shows that the lambda calculus is consistent in the
sense that the relation = is nontrivial; in particular, X=Y is not true for
incongruent expressions X and Y in normal form. We can thus prove that

expressions X and Y are not interconvertible by finding normal forms X° and

1

This definition is recast more formally in the terminology of Chapter 4,
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Y, where X->X " and Y->Y’, whicn are incongruent.

Unfortunately, not every expression X is convertable to an expression X’ in

normal form. For example, the important expression
Y=(LAMBDA(F) ((LAMBDA(H)(F (H H)))(LAMBDA(H)(F (H H))))) !

which is the "paradoxical combinator" of Curry, has no normal form. Further
discussion in this area follows in Chapters 4 and 5, along with related

technical developments.

A second important theorem, due to Corrado Boehm, has been proved only ior

systems which prohibit delta conversions: {

Thm 2.8: Let X and Y be incongruent expressions in normal form, and let C and
D be arbitrary expressions. Then there exists and expression Z such that
C=(Z X) and D=(Z Y).

proof originally appeared in Boehm[20], in Italian; a proof in English
appears in Curry(27].

Boehm ‘s Theorem guarantees that incongruent normal forms in the beta-eta

calculus1 are semantically distinct; in particular, the axiomatic assertion

that any two incongruent normal forms are interconvertable results in an

inconsistency. The extension of Boehm’s Theorem to systems which include

delta conversions requires that the constants added to the pure lambda

calculus also he semantically distinct. We might, for example, formulate a .

calculus including the numeric constants without providing any means for
distinguishing between them: we could provide the primitive PLUS but not
GREATER. While this formulation is valid in terms of the lambda calculus,

Boehm’s Theorem is clearly inapplicable since there is no expression Z which
distinguishes, say, between the normal forms 2 and 3.

! i.e., that formulation including axioms alpha, beta, and eta, but excluding
delta conversions.
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2.5.2: Nommal order: Substitution

Each of the lambda calculus axioms provides a means by which an applicative

expression E may be reduced to an equivalent expression E°. While the axioms
themselves place certain restrictions on the order in which such reductions
may be perf’or‘med,1 the evaluator of an applicative expression has a great deal
of freedam to choose the order in which to evaluate subexpressions.

Normal order evaluation specifies that at each evaluation stage, the leftmost
reducible subexpression is to be converted.

2.5.2.1: The N Evaluator
We define the N value of an AE x as follows:

N[x] =

if x is a number, then x;

if x is a member of ({PLUS,GREATER} then x;

if x is a lambda expression, then x;

if x is of the form (PLUS a b) where N[a] and N[b] are
both aefined and numeric, then N[al+N[b];

if x is of the form (GREATER a b) where N[a] and N[b]
are both defined and numeric, then if N[a]>N[b] then
(LAMBDA(X Y)X) else (LAMBDA(X Y)Y);

if x is of the form ((LAMBDA(a)b)c) where a is an
identifier and b and ¢ are AE’s, then N[b’"] where b’
is the result of substituting ¢ for each free
occurrence of a in b; .

if x is of the form (a b) where a and b are AE’s and a
is not a lambda expression, then N[(N[a] b)];

else undefined;

Note that we have eliminated the primitives T +.d F, which are entirely
equivalent in N to the lambda expressions which replace them as values of
GREATER.

! Not every expression E containing applications of lambda expressions, for
example, is beta-reducible. Applications ofaxiom alfhaslie the renaming of
cable,

variables, may be required before axiom beta is appl
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2.5.2.2: Axiomatic Consistency of N

We show in this section that N evaluation is consistent with the semant ics of ]

the lambda calculus by demonstrating that N preserves the equivalence relation

none
{

Thm 2.9: Let E be any AE such that N{E] is defined. Then E->N[E] where -> is

the reducibility relatica defined by the lambda calculus axioms.

by induction on the ievel of recursion in the computation of N[E].

proof':
basis: if E is a number, a primitive, or a lambda expression then N[E]zE.
induction: we assume that the Theorem holds for recursive calls to N.

Then the Theorem holds for the remaining syntactic cases of E by the

monotonicity of =>.

is not necessarily a normal form. Lambda
are not reduced by N, since otherwise the

1 expressions (e.g. the paradoxical combinator

We note in passing that N(E]
expressions, in particular,
evaluation of certain meaningfu

Y) would not terminatce.

2.6: Functional Domain of N

the entire domain of N constitutes a

funct ional domain satisfying the intuitive criteria of [1.1]. We interpret
~, on the domain of N as follows:

In this section it is shown that

the semantic equivalence relation,

For X,Y in Dy, XY if and only if (2.10]

for every Z in DN and number n,
(2 X)=n <=> (Z Y)=n

where DN is the domain of N We now justify this interpretation of -~ on N

thru

Thm 2.11: The domain of N is a functional domain, obeying the criteria of

[1.1], under the above interpretation of ~.

proof: The equivalence relation ~ defined in [2.10] must be shown to obey




2.6

-39-

the three clauses of [1.1] over the domain DN of N. We treat the clauses

individually:

1) For mumeric constants X and Y, we must show that X7Y <=> X=Y.
¢z: direct, by the equivalence of identical expressicns.

=>: Assume X~Y. Then by bveta-reduction,

((LAMBDA(a)a) X)=X

and
((LAMBDA(a)a) Y)=Y

and thus, by [2.10], X=Y since they are numeric. By [2.7] there exists a
Z such that X and Y are each reducible to Z; since X and Y are not
reducible, Y, Y, and Z must be identical.

3) To show: X“Y <=> for all Z in DN'
(Z X)™(Z Y) or neithrer defined.

=>: Assume false. Then for some X~Y there exists a Z1 such that
Q
(2, INZ, V)

where T is the negative of ~. This implies, by [2.10], that there exists

a Z2 such that

(Z2 (Z1 X))=n
for some mumeric constant n but not
(Z2 (Z1 X))=n

(we are assuming here one of two completely symmetric cases with no loss
of generality - the other case follows by interchanging the symbols X and

Y). Defining Z, by the lambda expression

3

ZBE(LAMBDA(a)(Z2 (Z, a)))

we note that

(Z3 X)=n but (Z3 Y)#n

hence by [2.10] XTY.
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<=: Assume that for all Z in DN' (Z X)~(Z Y). Then (Z X)=n (for numeric
constant n) if and only if (2 Y)=n by the argument of part (1). Hence by

[2.10] X°Y.

2) It must be shown that XY if and only if for all Z in DN’ (x 2)~(Y 2).
From part (2) of this proof, X7Y <=> for all Z:

( (LAMBDA (a) (A Z)) X)~((LAMBDA(a)(a 2)) Y)
hence, by beta-reduction,

(X 2)~(Y 2)

The significance of Theorem 2.11 is that every element of the domain of N
corresponds to some element of the abstract semantic domain: every element of
DN is intuitively functional. Thus N (and the lambda calculus on which it is
basgd) is a language of "pure" functions. We shall find in the next chapter

that this pleasant property costs us something, however, in terms of

expressive power,

2.7: Summary

The material in this chapter is largely introductory. The three interpreters
presented are abstracted from conventional implementations, and their scrutiny

serves to relate common implementation issues to the expressibility of

functions. The major findings were:

1) Each language is arithmetically complete, in the sense that every

canputable function defined on the natural numbers is expressible.

2) The FUNARG problem leads to the inexpressibility in S of functions whose

domain contains integers and whose range contains infinitely many

funct ions.

2) Applicative order evaluation renders inexpressible in T every function

whose domain includes %, the undefined computation. An example of such a

function is the constant function (LAMBDA(X)3) of one argument.
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4) The interpreter N, based on the normal order evaluation of expressions by
substitution, suffers from neither of these deficiencies. We can

construct a functional domain F such that every expression X in the

domain of the language N corresponds to an element of F; thus N is a
"pure" language in the sense that every expression corresponds to a
funct ion or a number. This is not true, for example, in S, where lambda

expressions containing free variables can compute different functions in

varyl~z contexts.

We are left with N, an interpreter whose behavior is intended to model the
lambda calculus; the remainder of this report, roughly speaking, deals with a

particular weakness common to N and the lambda calculus.
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Chapter 3:

Motivation for a Multi-valued Semantics

Central to this chapter is the argument that the N nodel, and hence the lambda
calculus, is functionally incomplete because of the inexpressibility in N of a
class of computable functions on N’s domain. The inadequacies of N leading to
this weakness are explored, and two new model languages are presented, each
curing the problem in a different manner. The first model, which has
provision for encoding representations of functions as integers, is found to
be unsatisfactory for both practical and semantic reasons. The alternative
solution proposed in this chapter involves mechanism for the representation of
semantic elements with multiple values; this mechanism, called EITHER, is the
principal focus of the remainder of the Thesis.,

3.1: Necessity of non-functions: WHICHFF

Consider the family of partial functions, {FFi} for i ranging over N, which

satisfy the following conditions: for each natural number i,

FFi[x] = i, i=x [3.1]
divergent, i#x

Thus each FFi has a single element in its domain: the number i. For any other
argument the value of FFi[x] is undefined. The {FFi} are clearly partial
funct ions in the intuitive sense of Defn [1.1], and are computable in each of
the model languages considered here. Furthermore, they are semantically
distinct: for no numbers 1£J does FFi"FFJ. There is then nothing intuitively

objectionable about a function which maps each FFi to its corresponding 1i.
Consider such a function WHICHFF which, for each natural number i, has the

property that:
WHICHFF(FF,] = 1 [3.2]

Intuitively WHICHFF is a function from {FFi} onto N; furthermore it is
demonstrably computable using ndovetailing” or multiprocessing techniques.
Note in particular that the following definition of WHICHFF satisfies the
condition of [3.2]:
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WHICHFF[f] = i such that f[i]=i, (3.3)
if such a number i exists;

else undefined

We may view the dovetailed evaluation of WHICHFF[f] as the computation of r{o]
for one second, the computations of £f(0] and f[1] each for two seconds, and
similarly wntil any one of the computations f[i] terminates normally; the

value of this f[i] would then be taken as the value of WHICHFF(f]. However,
WHICHFF is not expressible in N; this is a result of

Thm 3.4: Let L be an arithmetically complete applicative language and let DL
be the domain of L, Then no function WHICHFF having the properties of
{3.3] is functional over DL.

proof by reduction to the haltirg problem. Assume that DL contains a
funct ion WHICHFF having the property given in [3.3]. Then for any
function £ in DL and any number i, L{(WHICHFF f)]°i if L"FFi. Now
consider the union of the functions FF1 and FFZ’ given by:

FF12[x] = 1, Llx]=1; (3.5]
2, Llx]=2;
divergent otherwlse

FF12 is clearly a computable first order function, hence it is
expressible in L by the arithmetic completeness of L. Now L[ (WHICHFF
FF12)] can have as its value at most one of {1,2)}; thus either L[ (WHICHFF
FF12)]£1 or L[ (WHICHFF FF12)]£2. Assume, with no loss of generality, the

former. Then define the second order function g as follows:

glf] = the function g., where
gf[i] = 1, 1=1;
2, i=2 and f[0] defined;
divergent otherwise. For every computable
first order function f, g (or equivalently g(f]) is evidently
computable. Moreover, if (0] is undefined then gr is identical to the

function FF1; otherwi se ¢ is _dentical to the function FF12. We use the

ability of WHICHFF to distinguish between FF1 and FF12 to determine
whether f[0] is defined, bty means of the function h given by
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h(f] = WHICHFF[g[f]]
We note finally that for any function f ¢

f{C] convergent => g[f] - FF12 => h(f]£1;
and

£(0] divergent => gLf1°FF, => h[f]=1 '

Hence h(f]=1 if and only if f[0] is divergent. The divergence of f(0] is

decidable, as one of the computations h(f]) and f[0] must converge; thus
the function h provides a solution to the "halting problem" for first

f order functions, and is a well known noncomputable function. Since h is

clearly camputable in terms of WHICHFF, we conclude that WHICHFF is not a

camputable function over any domain including the first order functions.

Since it was shown in the last chapter that every function expressible in N is
functional over all of the domain of N, it follows that WHICHFF is not

9 expressible in N, This inexpressibility relates intuitively to two aspects of
] the implementation of the N interpreter:

1) The interpreter does not admit multiprocessing. If, in the evaluation of
expression A, N embarks on the evaluation of a subexpression a of A whose
N value is not defined, then the N value of A is not defined.

2) The only mechanism in N by which a function f can recover information
about its functional argument E is the application of g. There is no
means by which f can discover the algorithm (or program) by which J-4

e .

camputes values, even though the internal representation of g necessarily
} : includes this information. Hence if f is to make any use of E, then g
must be applied to some argument; By the constraint (1) above, the

nontermination of this application results in the nontermination of the
application of f.

The correction of either of these deficiencies is straightforward in an
implementational sense -- many extant languages boast provisions for

mult iprocessing and/or access to representations of functions. However,
neither

"correction” is easily reconciled with the semantics of an applicative

language. The second limitation of N seems a natural consequence of our
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distinction between the notions of a function f and any of the algorithms for
computing £ from its arguments; a language which provides mechanism for

di stirguishing between algorithms for computing a particular function f would
certainly have non-functional elements in its domain. The semant ic

rami fications of a cure to the first problem, however, are more subtle and

will be explored in detail.

The following sections presert two alternative extensions to N, each

corresponding to a "fix" of one of the above limitations. The function

WHICHFF is expressible in each.

3.2: Coding primitives: The C model

We noted that a limitation of N, justifiable by our intuitive respect for the
semantics of functions, is that no information can be recovered about an N
funct ion without the application of that function. In particular, N provides
no means for recovery of information about the representation of a funct ion as
an N expression. We have thus avoided the "Turing machine tar pit" -- the
argument that any language as powerful as a Universal Turing Machine has

exactly the same set of expressible functions.

The C model presented here has, in addition to the primitives and structure of
N, primitives for the translation of the representation of language elements
to and from a tractable form. Making the fundamental assumption that any
function defined on a domain F is computable if and only if it is computable
from the representations of elements of F, we must conclude that a Universal
Turing Machine (or its equivalent) operating on the representations of
arguments to the computable function f can compute representations of the

values of £. This is the substance of our claim of functional completeness of

the language C.

The interpreter for C is jdentical to the interpreter for N except for the
addition of the primitive operators CODE and DECODE. CODE maps

representations of the domain of C into the natural numbers:

CODE: DC -> N
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and may be viewed as a Goedelization of the character string representing its
argument. The claim we make for CODE is that if (CODE X) and (CODE Y) have
the same (numeric) value then X and Y are semantically equivalent; they are
in fact represented in an identical manner. We cannot, of course, claim that
in general X°Y implies (CODE X)=(CODE Y), as there are many representations of
each semantic element and the semantic equivalence of the representations is
effectively undecidable. The operator DECODE is the inverse of CODE: given
the Goedel number of the representation of an element, it returns the element.

We thus claim that each expression X is semantically equivalent to (DECODE
(CODE X)).

Our claim for the functional completeness of C is formalized, to the extent
possible, in

Thm 3.6: Let F be a functional domain of C, and let
g: F =>F

be a computable function on F. Then g is expressible in C, i.e., there
is an expression G in the domain of C such that for all x,y in F, glx]=y
implies that (G X)-Y.

proof: Since g is computable then so is h defined by:

h = (LAMBDA(Y) (CODE (g (DECODE Y))))

as it is simply the composition of computable functions. Furthermore,
since h is a function from N to N, it is expressible in C by the
arithmetic completeness of C; let H be the representation in C of h,
Then the function g is expressible in C by :

G = (LAMBDA(X)(DECODE (H (CODE X))))

It must be recognised that CODE is not functional: it radically disobeys the
intuitive requirements of Defn 1.1. We note, for example, that CODE might
return different values for the arguments (LAMBDA(X)X) and (LAMBDA(Y)Y) as
they have different representations, violating our requirement that

semantically equivalent arguments producz semantically equivalent results.
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WHICHFF example of the preceding gection., The representation of WHICHFF in C

involves writing an interpretor, operatine on the CODEd representations of C
expressions, which simulates the required "dovetailing" by computing 1 step of
(g 1), 2 steps of (g 2), 2 steps of (g 1), etc. Presentation of actual code
for WHICHFF on C would be, at best, a messy task;.it is hoped therefore that
the reader will accept the expressibility of WHICHFF in C on the basis of

Theorem 3.6 and this informal di scussion.

3.2.1: The Turing-machine Tar Pit

The introduction of the specter of coding requires further reflection. We
have made the enticing observation that, with the introduction of a simple
mechanism allowing the representations of functions to be accessible as data,
every camputable funct ion becomes expressible. We have noted corollary

di sadvantages -- (i) the semantic confusion resulting from the nonfunctional

character of OODE, and (i1) the practical absurdity of having to include the
code for interpreters in the definitions of certain functions.

However, the inclusion of coding primitives in an applicative language may be
objected to on more fundamental grounds than the above. The stated semantic
goal of an applicative language is the representation of functions. Thus such
a language provides a set of rules and conventions for associating expressions
with abstract functions; moreover, the power and consistency of the language
stem largely from the applicability of these rules and conventions to every
expression in the language. In the lambda calculus, for example, we are
assured that expressions which are interconvertible via the alpha and beta
axioms are equivalent. The cost of this assurance is a corresponding
constraint on the computations which we might perform: the alpha axiom
positively prohibits us from writing a function which distinguishes

(LAMBDA (X)X) from (LAMBDA(Y)Y). We accept this constraint because the
structure which it imposes is useful to us; we recognize that we cannot be

assured of a relation and simultaneously be allowed to violate it at will.

Coding primitives may be viewed as a mechanism for violating the structure

imposed by an applicative language. None of the lambda calculus axioms, for

example, are valid in the presence of coding, since nfunctions" can be written
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which distinguish between interconvertable expressions. The rules and
‘onventions for representing functions are, in effect, abandoned. The
rreprammer is thus freed from the structural constraints of the language, but
finds himself in a semantic anarchy -- while he may write any function he
j'leases, he may make no assumptions about the structure or representation of

its arguments.

3.2.2: Functionality of DECODE

We may convincingly defend the contention that CODE is not a function by
demonstrating that it returns semantically distinct integers, say, for the
ejuivalent arguments (LAMBDA(X)X) and (LAMBDA(Y)Y). This demonstration does
not apply, however, to the inverse of CODE; there is nothing inherently
nonfunctional in the fact that DECODE returns semantically equivalent
evpressions (LAMBDA(X)X) and (LAMBDA(Y)Y) when uiven semantically distinct
integers as arguments. It is the purpose of this section to demonstrate that
functions with the property of DECODE (i.e. mapping a subset of the natural

numbers onto the entire domain of discourse) ~re expressible in N and the

lambda calculus.

3.2.2.1: LAMBDA-free AEs

It is convenient for certain purposes to use the techniques developed
primarily by Curry(12] of the calculus of combinators for the reduction of
applicative expressions to equivalent expressions whose use of lambda
expressions is highly restricted. For our purposes we shall consider the

combinators listed below (along with their respective definitions):

I = (LAMBDA(X)X)

K = (LAMBDA(X) (LAMBDA(Y)X))

W = (LAMBDA(X)(LAMBDA(Y)(X Y)))

S = (LAMBDA(X)(LAMBDA(Y)(LAMBDA(Z)((X Z)(Y Z))))
G, = (LAMBDA(G) (G G))

G, = (LAMBDA(G) (LAMBDA(Y) (Y G)))

G (LAMBDA (Y) (LAMBDA (X) ((Y X) X)))

3 £
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Gu = (LAMBDA (G) (LAMBDA (D) (LAMBDA(X) (G (D X)))))

We show in this section that every applicative expression using no lambda

expressions other than the above combinators; we begin with

Lemma 3.7: Let R be a LAMBDA free AE in the single argument applicative
language L, and let R contain occurrences of the variable x. Then R is
equivalent (by alpha and beta axioms) to a LAMBDA free AE of the form (R’

x) where R’ contains no occurrences of the variable x.

proof is by structural induction on R.

basis: R is atomic (in particular, R is not a combination). If r is the
variable x, then r’ is (I x)=x (by axiom beta). If r is not the variable
X, then r contains no free occurrences of x and r’ is ((K r) x) =
((LAMBDA(X)p) x) = r.

induction: R is a combination of the form (R1 RZ)' By inductive

hypothesis, R:((R1' x)(RZ' x)) for some AFs R1' and RZ' not involving the
variable x; then R =(((S R1) RZ) x) = ((LAMBDA (Y) (LAMBDA (X) ((R1 X) (Y

XN = (R, x)(R, x)).

The principal result of this section is the following adaptation from Curry’s
Synthetic Theory of Combinators:

Thm 3.8: Let A be an AE in a single-argument applicative language L whose
semantic equivalence obeys axioms alpha and beta. Then A is equivalent
to a LAMBDA-free expression A® containing only the combinators I, K, W,

S, G,, G Gy, and the primitives and constants of L.

2! G3v

proof: We show that, given any such A which is not LAMBDA-free, we can
construct an equivalent A’ containing fewer LAMBDAs. Let a be an
innermost LAMBDA expression occurring as a subexpression of A. We then

construct A’ by replacing a as follows:

Case 1: a is of the form (LAMBDA(x)x) for some variable x; we replace a

by I (equivalent by axiom alpha).
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Case 2: a is of the form (LAMBDA(x)y) where x and y are different

variables; we replace a by (K y).

Case 3: a is of the form (LAMBDA(x)(b x)) where x is a variable and b is
an AE: replace a by (W b)=(LAMBDA(Y)(b Y))

Case 4: a is of the form (LAMBDA(x)(c d)): By Lemma 3.7, the body (c d)
is equivalent to an AE (r’ x) where the variable x does not appear in

r’. Then a=(LAMBDA(x)(r’ x)) which is reducible according to case 3.

1Y Since each expression A which is not LAMBDA free is thus equivalent
to an expression A" containing fewer LAMBLAs, a finite number of such
reductions will reduce each such A to a LAMBDA free A®*, This completes

the p~oof.

lt is a relatively simple exercise to show in addition that each of the

1 ¢ mbinators I, W, G1, GZ’ G3, Gu is in turn equivalent to an expression in K
and S, allowing us to simplify Theorem 3.8 by eliminating all but 2 of the
cumbinators. This is unnecessary for our purposes, however, so long as the

| number of cambinators required is finite. An important observation to be made
at this point is that the construction of A® detailed in Theorem 3.8 is
effective; thus we could program a computer to convert AEs to LAMBDA free

form,

3.2.2.2: An Enumeration of DN

} /, In this section it is demonstrated that the domain of every applicative
language with the power of the N model contains functions which enumerate the

domain of that language, ie, each such language L with domain DL contains a

2 function

f: N => DL

such that for every finite expression x in D, there is a number n which

L
’ satisfies (f n)=x. We procede by Goedelizing the LAMBDA free expressions of

| D, .
| L
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Let pair be a number pairing function such that, for each i and j in N, the
value of pair[i,j] is a unique number Pij’ and let left and right be functions
recovering the components of a pair; ie, for every i and j, left[pair[i,jl]=i
and right[pair(i,jl]=j. There are many well known such pairing functions;
since they are all first order computable functions, we may assume that they

are expressible in each of our model languages.

Let us now suppose that we label the (finitely many) primitives of the
language L as Pys Por oeo Py Note that we include the combinators K, I, G1,
etc. in this list so that we can enumerate LAMBDA free expressions only. We
now specify the coding details: for each LAMBDA free expression x, we define
the Goedelization g[x) as follows:

glx]
if x is a number then pair[0;x];
if x is a primitive pJ then pair([1;3);
if x is a combination (a b) then pair(glal;glbl];

The function g is computable from the representation of x, but we cannot in
general claim that it is computabie from the functional properties of x. The
function g is, in fact, a satisfactory choice for the CODE function of the C
model, assuming (as we may) that we are content to deal with LAMBDA free
expressions of C. If such a function g could be shown to be computable in,
for example, the N model, we would have a direct a priori demonstration that
t he languages are expressively equivalent. We must, however, be content with
the expressiblity of a semantic inverse of g: the function enu defined such
that, for every LAMBDA-free expression x, enul[g[x))=x. This apparent
asymmetry can be explained by the observation that g is not a function, in the
sense of Defn [1.1] which prohibits the mapping of semantically equivalent
expressions into di ffering numbers. The fact that enu may map di fferent
numbers into semantically equivalent values is consistent with its

funct ionality. We label the expressibility of enu as

Thm 3.9: Let L be an extension of N with primitives 11, 12, ..., 1n
(including combinators K and S). Then there is a function gnu:N-)DL such

that, for every LAMBDA free expression x in DL’ there is a number i such

that enu[i]"x.
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proof is a straightforward programming job. Such a function for the {
language N would take the fgrm:

(LAMBDA(N) ((GREATER (LEFT N) 1)
((ENU (LEFT (RIGHT N)))
(ENU (RIGHT (RIGHT N))) ) E
((GREATER (LEFT N) 0) :
((GREATER (RIGHT N) n-1) 1n )
11)...))
{RIGHT N) )))))

where 1li is the jth primitive of N, and LEFT and RIGHT are the N
expressions corresponding to the left and right functions above.

2

3. E model: Multiprocessing primitives

An extension to the N intc - preter which is somewhat more palatable than the
use of coding primitives is the addition of mechanism for multiprocessing: the
quasi-simultaneous evaluation of several expressions. We consider here the E
model, which is the N model of Chapter 2, augmented by the primitive operator
EITHER whose interpretation is as follows:

For every choice of expressions a and b, [3.10]
E[(EITHER a b)) =
if E(a) is defined but E[b] is not, then E[a);
if E[b) is defined but E[a) is not, then E[b];

if E[a) and E[b) are both defined then one of these values;
else undefined.

Note that we do not specify which of the arguments is returned if both have
defined values; we may consider that this selection is made by some

nondeterministic process over which we have no control. EITHER is evidently
computable by dovetailing techniques, eg by evaluation of E[a) and E[b] each

for 1 step, then each for 2 steps, and so on until one evaluation or the other

returns a value. EITHER is not, however, functional: in the case where a and
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b each have defined values (and their values differ), then the value of
(EITHER a b) is dependent on the representation of a and b and on details of
scheduling of the dovetailed computation.

The power of the either primitive is demonstrated by the expressibility of
WHICHFF in E as follows:

WHICHFF(f] = g1[£;0]
where g1[h3g] = either[g[g];g1[njnf1]

Note that for i>j, 51[FFJ;1] is undefined and hence for i<] g1[FFJ;i]=j. Thus
for every number j, E[ (WHICHFF FFJ)]=J.

The presentation of the EITHER primitive in this section is informal, based
largely on its intuitive relation to the implementation mechanism of

mult iprocessing. The formalization of this mechanism is a principal topic of
the remaining chapters. The remainder of the present chapter explores the
impact of EITHER on the semantics of an applicative language.

3.4: The Intuitive Paradox

The reader has doubtless noticed that fundamental questions raised in the
first section of this chapter demand a more precise characterizatior of’ the
hitherto vauge notion of functional completeness. Specifically, Theorem 3.4
shows that WHICHFF is not funct’ > over the entirety of any funct.ionil
domain which includes all fir. :r functions. Thus the basic intuitive
requirements of [1.1] are inconsistent with the existence of a functional
domain F which is arithmetically complete and includes every computable
function f:F->F. Two alternatives facing us are the following:

1) We can deny that WHICHFF is a computable function. Indeed, Theorem 3.4
may be interpreted as a statement that no computable function defined on
first order functions has the properties of WHICHFF given in [3.2]. Our
intuitive claim that WHICHFF is a computable function is based on the
incomplete specification of its behavior over the entire functional
domain: [3.2] merely defines it over the restricted domain of {FFi}.
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2) We can revise the notion of a functional domain F such that, for every
function f in F there is a domain of specification over which the
behavior of f is defined. The functional criteria c¢f [1.1] are then
required to apply only when the arguments of f are drawn from its domain
of specification, Sf..

3) We can postulate new elements of the functional domain F corresponding to

the values returned by otherwise nonfunctional procedures.

We reject the first choice on the grounds that it restricts our consideration
to those funct ions expressible in the lambda calculus, giving us no way of
distinguishing between N and the intuitively superior E. The Second choice is
rejected after brief consideration (in a following section) partly because of
the technical complications it entails, but primarily because it denies the
serantic validity of the interesting class of multivalued expressions. The
third choice seems the most promising from the point of view of rigorous
analysis, but requires a substantial intuitive leap whose usefulness must be

carefully scrutinized. This project is approached in subsequent sections.

3.5: Multi-valued Semantic Elements

The domain DN of language N was shown, in Chapter 2, to have the property that
every element x of DN corresponds to exactly one element of a functional
domzin; thus each expression x in DN has, intuitively, exactly one semantic

value or meanin[;.1 In this chapter it was shown that this graceful property

of DN is inconsistent with the expressiblity of the function WHICHFF, a
demonstrably computable and intuitively well behaved function over a
particular subset of DN' Our implementation of WHICHFF, while functional over
this restricted domain S, behaves poorly when given arguments from DN which
are not in S; furthermore, this annoying defect is characteristi~ of every
implementation of WHICHFF in a language sufficiently powerful as to be
arithmetically complete. The problem is evident when WHICHFF is applied to
the function FF12: either of the values 2 or 3 is consistent with the

It must be recalled that we have postulated a semantic element, %,

corresponding to the "meaningless"” or nonterminating computation; hence a
possible semantic value for x is #,
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definition of WHICHFF [{3.3], and there is no implementation of WHICHFF which

consistently returns a single value, eg 2, when applied to every X in DN

semantically equivalent to FF12. Thus the evaluation of (WHICHFF FF12) leads

to exactly the same underdetermined result as the evaluation of (EITHER 1 2):

the E values of each expression might be 1 or 2, depending on circumstances

which are irrelevent to the semantics of each expression.

3.5.1: Domains of Specification

One means of avoiding such apparently nondeterministic computations is to
exclude them from our semantic model, ie, to deny that (EITHER 1 2) has any
semantic value. Under this restriction, we must carefully exclude from our
consideration any expression having multiple E values, either by avoiding the
use of EITHER ard reverting to the well behaved domain DN’ or by assuring
ourselves, at each application of EITHER, that the result is single valued.

We may note, pursuant to the latter program, that for all expressions a and b,
E[(EITHER a b)] is single valued if

1) is single valued and b is meaningless; or
2) b is single valued and a is meaningless; or
3) a and b are both meaningless; or

u) each single valued and their values are semantically

equivalent.

So long as the arguments to EITHER satisfy the above criteria, EITHER is
intuitively functional. For each function f whose definition involves EITHER,
we may then carefully define a domain of specification Sr such that for

arguments x from Sr, E((f x)] is single valued. We may, for example, show
that our definition of WHICHFF in terms of EITHER is funct ional over a domain

of specification including the functions {FFi}'

This means of avoiding the semantic difficulties of EITHER may raise certain
aesthetic objections. First, it places on us the considerable burden of
having to construct domains of specification for each of a large class of
funct ions, and the necessity of showing that each such function is well

behaved over its particular domain of specification. Second, it rules out
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consideration of algorithms for well behaved functions which have
multiply-valued subexpressions. Consider, for an example of the latter

limitation, the function f defined so that

f[n] = 5, n=1
5, n=2

else undefined.

Now, since f[1]=5 and f[2]=5, it is intuitively reasonable to claim that
fleither[1;2]1]=5; yet we cannot make such a claim unless we are willing to

assign some semantic value to either[1;2].

3.5.2: EITHER and the Lambda Calculus

There is an essential incongruence between EITHER and the axiomatic basis of
the Lambda Calculus which precludes the incorporation of the former as a
primitive with an associated delta rule.1 Recalling that these axioms define
an equivalence relation, =, on the domain of the language, incorporation of

EITHER results in the equivalences:

(EITHER 1 2)=1
(EITHER 1 2)=2

and hence

1=2

from which it follows, by the famous logic of Russel, that "I am the Pope".
Clearly the relation between (EITHER | 2) and 1 is not equivalence, but rather
some irreversible reducibility property. Any evaluator which can yield 1 as
the value of (EITHER 1 2) cannot be claimed to preserve semarn.ic equivalence;
it merely reduces that expression to one of its several values and discards,
in the process, information about the other values. This is the underlying
reason why N (and the Lambda Calculus) are incapable of expressing WHICHFF,
and is basic to the proof of Theorem 3.4,

! Such a delta axiom is formally ruled out by the requirement that the
ar%uments to primitives be in reduced form, thus restricting applications of
EITHER to cases where both arguments have meaningful E values.




3.6: The Power Set Domain

The natural extension of a functional domain F of single-valued elements to a

domain F* of multiply-valued elements involves the interpretation of F* as the
power set, or set of subsets, of F. Thus the elements 2 and 3 of F correspond
to the unit subsets {2} and {3}, respectively, in F*, while tke semantic
element of F* corresponding to the value of (EITHER 2 3) is the subset {2,3}
of F containing bath 2 and 3. The meaningless element * corresponds to the
empty subset @ of F, having no value. Other useful relationships which we
would like to see in F# include the following:

1) If ab in F then {a,b}~a"b in F*.

2) (EITHER (£ a)(£ b))~(f (EITHER a b)), or equivalently, the elements
{f(a),f[b]} and f[:iz,b}] in F* are the same.

3)The natural interpretation of either on functions leads to the semantic
equivalence (EITHER f g) (LAMBDA(X) (EITHER (f X){# X))). This allows us
to propose, in symmetry with (2), that:

4) ((EITHER £ g) a) ~ (EITHER (f a) (g a)).

5) (EITHER a *)"a, where * is the element corresponding to the undefined

camputation.

6) If a corresponds to {a1,...,aJ} in F* and b corresponds to {bl""’bk}’
then (EITHER a b) corresponds to {al,...,aj, bl""’bk} in F&, 1In
general, EITHER of multivalued elements corresponds to the union of the

respective elements of F¥.

3.7: Interpretation of F#

The semantic model being developed in this chapter demands a certain amount of
i{ntuitive realignment on the part of the reader. The attractive feature of F*
as a semantic domain is that it allows the preservation of a notion of

semantic equivalence, without cost in terms of expressibility of certain

functions. Its major disadvantage, at least from an intuitive standpoint, is

that it requires that we postulate certain abstract semantic elements which
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are intangible in practice -- if the expression x has multiple values, say 2
and 3, then we have no way of discerning from the value ”3" typed by our E

interpreter that "2" is also a value of x. We could, of course, build an

interpreter which would enumerate the values of x by dovetailing computations
at each EITHER juncture. However, as x might have infinitely many values,
this process may never terminate; worse yet, even for an x with finitely many

values we cannot tell, in general, when all of the valu:s have been typed.

There are, however, situations where this ambiguity is unimportant. We may
know, for example, that x is single valued, in spite of the dual values of a
subexpression y of x. Alternatively, we may recognise that x has many values,

but be willing to settle for any one of them.

3.8: Computable elements of F#¥

If we have a procedure for identifying the computable elements of a single
valued domain F, we can characterize the computable elements of the power set
domain F* as those elements of F¥* which are effectively enumerable sets of
computable elements of F. Given an expression X we c¢: 1 enumerate the
components of the F* element representing X; one mewus of doing so is provided
in Chapter 6. Furthermore, given an expression G for a function which
enumerates a set S of elements of F, we can construct an expressicn whose

representative F* element is S; take for example the expression

((Y (LAMBDA(H) (LAMBDA(X) (FITHER (G X)(H (PLUS 1 X)))))) 0)

where Y is the fixed point operator (LAMBDA(F) ((LAMBDA(G)(F (G

G)))(LAMBDA(G) (F (G G))))). This expression reduces to an expression of the

form

(EITHER (G 0)
(EITHER (G 1)
(EITHER (G 2)
(EITHER (G 3) ---))))

and its corresponding element of F* is exactly the range of G.
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We may use as our Tunction G in the above expression an enumerator ENU of the
entire domain F, constructed by the techniques of section 3.2.1.2; this
expression, TOP, corresponds to the semantic element of F®* which is the set F
itself.

3.9: Summary

This chapter raises the question of the expressibility of a particular
function, WHICHFF. This function is inexpressible in the lambda calculus, and
intuitively it requires a mechanism for multiprocessing for its implementation
in spite of its applicative -- hence time independent -- nature. Two
alternative extensions of the N interpreter are proposed, each of which
renders WHICHFF expressible:

1) Primitives can be added to N which allow coding and decoding of arbitrary
expressions into and from numbers. This mechanism allows programs to
access the representation of functions, and it is argued that such a
CODE/DECODE facility exvends any arithmetically complete language to
functional completeness. Yet the use of this mechanism is awkward: the
specific implementation of WHICHFF, for example, requires coding an
interpreter which simulates the necessary multiprocessinz. Moreover the
semantic ramifications of CODE are drastic, involving abandonment of much

of the applicative structure of any language in which it is embedded.

2) A primitive, EITHER, can be added to N to implement multiprocessing.
EITHER renders WHICHFF easily expressible, and it may be justified
semantically in an applicative language.

In connection with (1), it is noted that although the new primitive CODE is
r~dically nonfunctional, the inverse operation of DECODE (which maps codings
into the functions which they represent) is acceptable as an element of our
functional domain. A combinatory proof shows that such decoding functions
are, in fact, expressible in the unmodified N language; hence we can write in
the lambda calculi functions which enumerate the entire semantic domain of

these calculi.
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The introduction of EITHER or equivalent mechanism requires that we modify the
structure of the semantic domain and its relation to expressions of a

language. In particular, it seems most natural to associate with each

expression a set of abstract values, rather than a unique single value. We
thus move from the domain F of single values to the domain F* whose elemants

are enumerable subsets of the elements of F; we term F* the power set domain.

The presentation of EITHER in this chapter is informal and relies heavily on
implementational notions such as multiprocessing. The following chapters
formalize the mechanism in terms of systems of conversion rules, based on the
lambda calculus; this process both justifies and refines the rough

implementation model sketched here.
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Chapter 4:

Theories of EITHER-conversion

While the implementation and semantic considerations of the previous chapter
provide a strong intuitive basis for the interpretation of EITHER, the further
development of this new mechanism requires something more concrete.
Specifically, the incorporation of EITHER int> a language E involves syntactic
manipulations of expressions in E, and hence necessitates a formalism which
distinguishes those syntactic manipulations which are semantically valid from
those which are not. The relationships developed in the last chapter are
analogous to the convention that "(PLUS 2 3)” represents the sum of 2 and 3,
without a corresponding mechanism for associating this expression with the

expression "5",

This chapter begins the project of developing formalisms, i.e. conversion
axioms, for the syntactic manipulation of exp.-essions involving EITHER.
Several theories (i.e., systems of axioms) are presented in this and
subsequent chapters; each is based on the beta-delta1 calculus, with
additional axioms for manipulation of the new EITHER construct. The

di stinction between these theories stems from an issue of evaluation order,
discussed in a following section, and reflects alternative interpretations of

certain expressions involving EITHER.

A principal difference between the axiom systens presented here and those of
the lambda calculus is the introduction of a new asymmetry, in the form of an
ordering relation », between expressions of E. We have seen in previous
sections that it is futile to require that E interpretation preserve an
equivalence relation; such a requirement was shown to lead to an
inconsistency in any language capable of expressing WHICHFF, since (WHICHFF
FF12)'1 and (WHICHFF FF12)'2 together imply that 172. The asymmetry of »,
hov:ver, allows the relations (WHICHFF FF12)>1 and (WHICHFF pp1z)>2 to hold
without compromising the semantic relation between 1 and 2. We view the
relation » as designating EITHER-reducibility, and may interpret x»y

informally to mean that the values of y are among the possible values of x.

1 No attempt is made to incorporate eta conversion into the systems presented
here, although we expect that no new difficulties would arise in doing so.
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We shall use xey to mean that both x»y and y»x.

It is important to distinguish between the relation » and the "reducible to" N

relation, ->, of the lambda calculus., If the expression X is reducible to the

expression Y by means of conventional lambda calculus axioms, then it will

follow that X»Y and ¥»X; the reverse, however, is not true. The semantic !
interpretation of X»Y is that every value of Y is also a value of X; i.e., the .
element of F® corresponding to Y is a subset of the element corresponding to '
X.

4.1: Preliminary Definitions

The terminology of this section is adapted from standard usage in the lambda
calculus, and appears e.g in Curry(12].

The relation » defined in each of the axiom systems presented here is a

monotone relation, i.e. it has the following properties:

Reflexivity: For every X, X»X.
Transitivity: If XY and Y»Z, then X>Z.
Monotonicity: If X»>Y and B is the result of substituting X for an occurrence

of Y in expression A, then B»A, X for an occurrence of Y, then B»A,
The above properties are assumed to be axioms of each system.

Certain of the axioms to be presented lead to a distinction between the
operations of contraction and abstraction; for example, the derivation of
S[A;x;M]1 from ((LAMBDA(x)M)A), justified by the beta axiom of the lambda
calculus, may be termed a beta-yontraction. The inverse operation of
converting S[A;x;M]) to ((LAMBDA{(x)M)A) may be termed a beta-abstraction. An
expression which is a candidate for contraction is called a redex; thus

( (LAMBDA(x)M)A) is a peta-redex in the lambda calculus. The result of
performing a contraction on a redex X is termed the contractum of X. 4

An expression in a particular calculus is in pormal form if i* contains no

EZRg$a11 that S is the substitution operation of the lambda calculus, Defn
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redex applicable to that calculus. We say further that the expression X is in
beta-normal f:-m if X contains no beta-redex, and similarly for the delta, #*,
and E redexes to be defined presently. The statement that X is in normal

form, without further qualification, may be taken to mean that X contains no

beta-, delta-, ¥-,, or E-redexes.

We shall often use the notation X{Y)} to designate an expression X containing a
particular instance of a subexpression Y; having identified an expression
with the notation X{Y}, we shall then use an expression of the form X{Z} to
denote the result of replacing Y in X{Y) by the expression Z. In this
notation, the monotonicity of » is the implication of X{Y}>X{Z} by Y>Z.

A relationship of the form A®B is in general derived through a series of steps
A1>A2, A2>A3, where each A1>Ai+1 involves the substitution of an expression Y°
in Ai for an occurrence of an expression Y»Y’'. The monotonicity of »
Justifies each such substitution, and the transitivity assures that the
validity of the entire series follows from the validity of the individual
steps. We shall use the terminology

Defn 4.1: A reduction step in A from X to Y, for expressions X and Y and a
particular axiom system A, is a proof that X»Y by a single application of

an axiom of A,

Defn 4.2: A reduction sequence from Xo to xn in system A is a series
X0>X1>...>Xn such that each Xi>xi+1 is a reduction step in A.

4.2: The Either-R Theories

The first axiom, common to each of the systems presented, is taken directly
from the lambda calculus:

Axiom alpha: (Renaming) Let E be an expression of the form (LAMBDA(X)A) where
X is any variable and A is an expression, and let Y be any variable not

occurring free in A, Then E«(LAMBDA(Y)S[Y;X:4)).
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We say that expressions A and B are congruent if A can be converted to B by
alpha conversion alone. Congruence is thus reflexive, symmetric and
transitive, and to simplify subsequent proofs we shall often allow ourselves

to treat congruent expressions as identical.

The next axiom is a restricted form of the beta axiom of the lambda calculus,
allowing beta conversion only on a beta-redex whose argument is in normal

form:

Axiom beta-R: (lambda conversion) Let E be an expression of the form
( (LAMBDA(3)b)g) where ¢ is in normal form, Then EeE’, where E’ is the

contractum S(g;a;b] of E.

The following axiom provides a paradigm for delta-conversion, the application
of primitive functions to arguments in normal form. A particular calculus
will have a family of delta rules, specifying the behavior of each primitive
-- e.g. the delta rule for thre primitive PLUS asserting the equivalence of
(PLUS n m) to nem for all integers n and m. Of interest here is the general

form of such rules:

Axiom delta: Let E be an expression of the form (A B) where A is a primitive
function symbol and B is a normal form expression containing no free

variables. Then EeE’, where E’ is the contractum of E derived from B by
the (here unspecified) rules associated with A,

We may term such an expression E a delta-redex, and the conversion of E to E’
is a delta-contraction. Since the relation between E and E° is equivalence,

the axiom provides also for the delta-abstraction of E° to E.

We note that axioms alpha, beta-R, and delta define a lambda calculus under
the equivalence relation e; no use has been made of the asymmetric relation

>.

We shall term an expression of the form (EITHER a, az), where a, and a, are
arbitrary expressions, an E-redex. We treat the E-redex as a new syntactic
construct, rather than attempting to classify EITHER as an added primitive

funct ion whose operation is specified by delta rules. In particular, we

regard the restriction that arguments of primitive functions be in normal form
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as unacceptable to the process of EITHER-conversion

Axiom epsilon: (EITHER-contraction): If E is an expression of the form (EITHER

a1 a2) where a, and a, are expressions, then E»a, and E»a.,.

1 2
Axiom mu: For every expression E, E«(EITHER E E).

Axiom rho: (EITHER-distribution) If E is an expression of the form (f (EITHER

a b)), where f, a, and b are arbitary expressions, then EeE’ where E’ is
the expression (EITHER (f a)(f b)).

The conversion of the redex (EITHER a1 aé) to one of the expressions a1 or a2
will be termed au E-contraction. The conversion of an expression E to (EITHER

E E) will be called an E-abstraction.

4.2.7: Properties of Either Theories

The elementary relationships established in this section hold for subequent
theories as well as for Either-R. In addition to their usefulness in proofs,
they provide a preliminary reassurance that the Either-R axioms are consistent

with the intuitive semantics of EITHER.

Thm 4.3: X>Y if and only if, for all Z,
Y»Z => X»2Z

proof: only if: by the transitivity of ».

if: Let Z be Y; then Y>Y by the reflexivity of », hence X»>Y by above
hypothesis.

The above theorem is consistent with the intuitive notion that X»Y means
values derivable from Y are also derivable from X.

Axiom mu justifies the trivial abstraction of an expression E to the
expression (EITHER E E); The following theorem shows that nontrivial EITHER

expressions may be abstracted:




-68- 4h.2.1

Thm 4.4: Let X, A, and B be expressions such that X»A and X>B. Then
X>(EITHER A B),

proof: By Axiom mu, X>(EITHER X X).
But since X»A and X»B, (EITHER X X)>(EITHER A B) by the monotonicity of
». Hence X>(EITHER A B).

We may apply this theorem, for example, to the expression A given by
A= ((LAMBDA(X) (PLUS X 3))(PLUS 1 2))
By performing single beta and delta contractions, repectively, on A we ded'::
the relations
A>(PLUS (PLUS 1 2) 3)
A>( (LAMBDA (X) (PLUS X 3)) 3)
Application of Thm 4.4 yields the result
A>(EITHER (PLUS (PLUS 1 2) 3)((LAMTDA(X(PLUS X 3)) 3))
This demonstrates that the Either-R theory allows EITHL.i-free expressions

(such as A above) to be cunverted to eapressions containing EITHER.

Thm 4.5: XaY if and only if for all Z, X»Z<=>Y»>Z.

proof: is by two applications of U4.3.

Thm 4.6: For all f, g, and a,
((EITHER £ g) a)»(EITHER (f a)(g a))

proof: By Axiom epsilon, ((EITHER f g) a)>(f a) and ((EITHER f g) a)»(g a);
hence, by Thm 4.4, ((EITHER f g) a)>»(EITHER (f a)(g a)).

The intuitive arguments of the last chapter suggest that the above result
could be strengthened to full equivalence (i.e., =), and this more powerful
result may in fact be a theorem in our Either theories; however we have not

pursued this equivalence since it is irrelevent to the siubsequent proofs.
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4,2,2: EITHER and Evaluation Order

Chapter 2 notes the distinction between normal and applicative order
evaluation, characteristic respectively of the N and T interpreters.
Applicative order evaluation, in which argumerts to a function are evaluated
prior to the application of the function, is shown in that chapter to lead to
the inexpressiblity of certain functions which ignore their arguments. For
2xample, the applicative order evaluation of the expression

((LAMBDA(X)3) A)
does nr. terminate if the value of A is undef!ned, whereas the normal order

evaluacion of that expression yields the value 3.

The restricted conversion of the beta-R axiom is similar to applicative order
evaluation -- in each case, the argument to a function must be avaluated
(reduced to normal form) before the application of the function (beta
conversion). The only distinction between beta-R conversion and the
applicative order of the T interpreter is the degree of evaluation required;
while Either-R requires that arguments be reduced to normal form, T requires
only that they be reduced to lambda expressions or atoms. We may thus view

the restriction on beta conversion as a more serious constraint than the

applicative order evaluation of T.

The motivation for this restriction in the Either-R system is our intuitively
based demand that the axiom of EITHER-distribution, rho, hold. This axiom is

in fact inconsistent with the unrestricted beta conversion of the lambda

calculus; consider, for example, the expressions I, Z, and F defined by

I = (LAMBDA(X)X)
Z = (LAMBDA(Y) (LAMBDA (X)X))
F = (LAMBDA(H)(H H))

Using the axioms of Either-R (notably EITHER distribution) in conjunction with

unrestricted beta conversion, we may deduce that I=Z as follows: By Axiom mu,
I = (EITHER I I)
and by (restricted) beta abstraction on each of the terms of the E-redex,

T = (FITHFR (F I)(F 2))
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since both (F I)zI and (F 2Z)zI. Then the axiom of EITHER distribution yields

1 = (F (EITHERI 2))

fraan which, using unrestricted beta conversion (as the argument is an E-redex b

and hence not in normal form) we deduce that !
I = (((EITHER I Z)(EITHER I Z))
whence by EITHER contraction
I»(12)=12
Thus we have derived I»Z; to show 7.»I (and hence IeZ) we make the deductions

I1»2
(2)»(Z 2)
Z»1

using the monotonicity of » and beta-R abstraction.

It follows that, using unrestricted beta conversion in conjunction with the
Either-R axioms, we can prove every pair of expressions equivalent -- i.e.,
the system is inconsistent. We avoid this pitfall in Either-R by means of the
restriction on beta conversion. The beta-R restriction is not, however, the
only solution to this problem, and in Chap.zr 7 an alternative axiom system --

designated the Fither-K theory -- is presented.

It should be noted at this point that the restriction on beta conversion is
expensive in terms of expressive power. It prohibits, for example, the

reduction of the expression
((LAMBDA(X)3) ((LAMBDA(Y)(Y Y))(LAMBDA(Y)(Y Y)))

to the value 3, since the argument in that expression has no normal form. A
more serious drawback is that it interferes with the expressibility of
recursive functions since recursion requires, in the lambda calculus, the
application of functions to arguments having no normal forms. Chapter 5 is

devoted to the mechanism of ®-conversion, which mitigate these limitations

imposed by the restricted beta conversion.
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4.2.3: Consistency of Either-R

An extension of the axiomatic basis of the Lambda calculus may lead to

inconsistencies, e.g. the equivalence of 1 and 2. Such equivalences do not
hold in the conventional lambda calculus; in particular, the first Theorem of
Church and Rosser establishes the consistency of the Lambda Calculus axioms by
showing that the proposition XzY is not provable for any pair of expressions X
and Y having incongruent normal forms. We are thereby assured that the
equivalence relation = established by the lambda calculus does not place every
expression in a single equivalence class, and thus that the cardinality of the
domain of the Lambda Calculus is greater than 1. The existence of infinite
sets of mutually incongruent normal f‘orms1 shows that the domain of the lambda
calculus is infinite. Moreover, an irportant theorem of Boehm[20] shows that
any axiomatic assertion of the form X=Y, where X and Y are incongruent normal

forms, leads to an inconsistency.

The theorems of Church-Rosser and Boehm are, not surpris ngly, inapplicable to
the axiomatic extension presented here. Furthermore, they probably cannot be
augmented in minor ways to argue the consistency of the present system, as the
uniqueness of normal forms, on which they depend, has been compromised by our

extension.

Accordingly, is the purpose of this section to establish that the domain of
the lambda calculus is a subset of the domain of the Either-R system, and that
the new equivalence relation s is consistent with the relation = of the lambda
calculus. In particular we wish to show that, for any two either-free

expressions X and Y, X=Y if XaY. Proof of this assertion establishes that

1) The domain of the Either-R system includes the domain of the lambda

calculus, hence the new system is nontrivial (having infinite

cardinality); and

2) The semantic equivalence defined by the Either-R calculus, applied to
EITHER-free expressions, is a subset of the equivalence of the lambda

calculus.

L For example, the set I=(lambda(x)x), I =(lambda(x)I), I”’=(lambda(x)I’),
ete.
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It has been noted that in the Either-R system there are expressions X ani Y
such that X=Y but for which X«Y is not provable -- a consequence of the i
restriction on beta conversion which is explored further in the analysis of A

the R-* system in the following chapter.

We procede to the consistency proof, beginning with with the following
definition: '

Defn 4.7: The EITHER-free expression X’ is an e-residue of the expression X
if and only if X° may be derived from X by replacing every e-redex

(EITHER X, x2) in X by one of the operands X, or x,.

2

Thus the expression X° is an e-residue of X if X’ is EITHER-free and X>X' may
be demonstrated solely by means of EITHER-contraction (axiom epsilon).

Defn 4.8: The expression X is unitary if and only if there exists some
EITHER-free expression Y such that, for every e-residue X’ of X, X'=Y (in
the lambda calculus).

Thus

(EITHER (LAMBDA(X)X) (LAMBDA(Y)Y))
is wnitary, since its e-residues (LAMBDA(X)X) and (LAMBDA(Y)Y) are congruent,
We note that EITHER-free expressions are unitary, although unitary expressions
are not necessarily EITHER-free, as the above example demonstrates.
Furthermore, a unitary expression X may contain subexpressions which are not

unitary; witness the expression
( (LAMBDA (X) (DIFFERENCE X X) )(EITHER 2 3)) [4.9]
whose e-residues are

((LAMBDA(X) (DIFFERENCE X X)) 2)

and
((LAMBDA (X) (DIFFERENCE X X)) 3)

each of which is convertible to O by the rules of the Either-R system. Hence

expression [4.9] is unitary; it contains, however, the subexpression
(EITHER 2 3)
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which has e-residues 2 and 3, which are not equivalent under =. Hence the

subexpression is not unitary.

The proof of the consistency of Either-R is based on the observation that,
while EITHER may be introduced into EITHER-free expressions by
EITHER-abstraction, the result is necessarily unitary. Moreover, the axioms
of Either-R preserve the unitary nature of expressions; we will thus argue
that the result of an Either-R reduction sequence on an EITHER-free expression
must be unitary. We now introduce a relation which orders expressions by the

interconvertability, in the lambd:' calculus, of their e-residues:

Defn 4.10: For any expressions X and Y we say that X encloses Y if, for every
e-residue Y’ of Y, there is an e-residue X  of X such that X =i  in the

lambda calculus.

Observe that enclosure is reflexive and transitive; the following lemma
establishes that it is monotonic:

Lemma 4.11: Let Y be a subexpression of X{Y} and let Y enclose Z. Then X{Y}
encloses X{Z}.

proof: Each e-residue of X{Z} is of the form X'{Z°} where Z° is an e-residue
of Z; and for each e-residue Y  of Y there is a corresponding e-residue
X“{Y’} of X{Y}. Hence for each e-residue X°{Z°} of X{Z} there is an
e-residue X {Y'} of X{Y}'such that Y =Z°; it follows that X ' {Y }=X"{Z"}
hence X{Y} encloses X{Z}.

Corollary 4.,12: If X{Y} is unitary and Y encloses Z, then X{Z} is unitary and

every e-residue of X:Z} is convertible to an e-residue of X{Y}.

Lemma 4.13: Let X»Y be a single reduction step in Either-R. Then X encloses
Y‘
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proof: Let U be the subexpression of X which is replaced by an expression W
in the reduction step XY, By Lemma 4,11, we need only to show that U .

encloses W to establish that X encloses Y. We exhaustively examine the

possible reduction steps from U to W:

Case 1: Alpha conversion on U. Then U and W are congruent, and for each

e-residue W’ of W there is a congruent e-residue U’ of U. .

Case 2: beta-R conversion on U. Let P be a beta-redex of the form
( (LAMBDA (X)M{X})?) where A is in normal form, and let Q be the contractum
S[A;X;M{X}] of P. Then every e-residue P° of P is of the form ﬂ
( (LAMBDA (X)M’ {X})A) where M’ {X} is an e-residue of M{X}, and there is one
such e-residue P° for every e-residue M’ of M. Each e-residue W’ of W is

of the form M {A} and there is one such e-residue W’ for each e-residue M’
of M. For each M’ the corresponding e-residues of P and Q are

( (LAMBDA(X)M“{X})A) and M"{A} respectively, which are interconvertible in

the lambda calculus by a single beta conversion; hence P encloses Q and Q

encloses P. W is either a beta-R contraction or a beta-R abstraction of U,

hence U encloses W.

Case 3: delta-conversion on U, If either Uor Wis a delta redex, then toth U

and W are EITHRER-free and thus U encloses W.

Case ": EITHER contraction. If U is an expression of the form (EITHER A1 Az)'
clearly U encloses both A1 and A2; each e-residue of W is an e-residue of
A1 or of A2.

Case 5: EITHER-abstraction. Then W is of the form (EITHER U U), and each

e-residue of W is an e-residue U’ of U.

Case 6: EITHER-distribution. Let P be an expression of the form
(EITHER (F A)(F B))

and let Q be

(F (EITHER A B))
The e-residues of P consist of all the expressions of the forms (F° A") and
(F° B’) where F°, A", and B’ are respectively e-residues of F, A, and B.

We note ithat the e-residues of Q consist of exactly the same set of

expressions, hence P encloses Q and Q encloses P. Thus for a conversion
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U>W of the forms P»Q or Q»P, U encloses W. f

This completes the proof of Lemma 4,13,

We present the obvious generalization of this result as A{

Corollary U4.14: Let X and Y be expressions such that X»Y in the Either-R ’

system. Then X encloses Y. \

proof follows directly from Lemma 4.13 and the transitivity of the enclosure

relation. !

This corollary shows that the ordering » of the Either-R system implies
enclosure; thus the number of distinet (under = of the lambda calculus)
e-residues of an expression X can only be decreased by a reduction step in
Either-R. While each reduction step may intruduce new E-redexes (by
FITHER-abstraction), the terms of each redex so introduced are necessarily
interconvertable. The consistency of the Either-R theories is a special case
of this corollary:
Thm 4.15: Let X and Y be EITHER-free expressions such that X»Y in the
Either-R theories. Then X=Y in the lambda calculus.

proof: By Corollary U4.14, X encloses Y; since X and Y are each EITHER-free,
X and Y are respectively e-residues of X and Y. Hence X=Y in the lambda

calculus.

The above theorem establishes that the Either-R theories are consistent in the
sense that they introduce no new equivélences between expressions which are
distinet in the lambda calculus; and are hence of infinite cardinality. It is
noteworthy at this point that the above proof, specifically Lemma 4.13,
depends on our restriction on beta conversion. when unrestricted beta

conversion is allowed (as in the Either-K Lheories presented in Chapter 7) it

is not true in general that every beta-redex X encloses its contractum X°, as

demonstrated by the beta redex
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Az ((LAMBDA(X) (PLUS X X))(EITHER 2 3})

whose e-residues are each convertible to 2 and 3, respectively, while the

contractum of A
(PLUS (EITHER 2 3)(EITHER 2 3)) t

has an e-residue (PLUS 2 3) which is convertible neither to 2 nor to 3. :

4.,3: Summary

This chapter defines the ground rules for the axiomatization of Either
theories and presents the Either-R theory. While the usefulness of this
system is limited due to the restriction placed on beta conversion, it
develops much of the mechanism to be used in subsequent chapters,

The principal distinction to be made between the Either theories lies in the
circumstances in which beta-conversion is allowed. The Either-R Theories,
which prohibit beta-conversion unless the argument to be substituted is in
normal form, allow the distribution of functions over the terms of an
EITHERexpression - a relationship which we find intuitively gratifying.
Unfortunately this restricted beta-conversion results in a very weak theory, a

problem to which the next chapter is devoted.

The Either-R theory presented in this chapter is shown to be consistenf in the
Sense that X»Y, where » is the ordering defined by the new axioms, is not a

autology. The proof is based on the consistency of the lambda calculus;
specifically, it is shown that, for expressions X and Y which are EITHER-free
(and thus admissible syntactically in the lambda calculus) X»Y implies the
interconvertability of X and Y. This general technique will be followed in
subsequent consistency proofs as well.

ot RSN TN Y, S W R—, 4—*———4
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Chapter 5:

%_Conversion

It was noted in the previous chapter that the restricted lambda conversion of ﬁ
the beta-R axiom, i.e. the requirement that the argument of a beta-redex be in “
normal form before the contraction of that redex, severely limits the
expressive power of languages based on the Either-R theory. In particular, t
the incrpressibi'ity of recursive functicns constitutes an intolerable !

restriction since it renders such languages functionally incomplete.

The mechanism of %-conversion, to be introduced in the present chapter, &
ameliorates this limitation by extending the ordering relation » in a way
which is consistent with its function in the Either-R theory. Although
#_conversion and EITHER reduction are in an important sense complementary
operations, their respective mechanics may be dealt with separately; thus for
the purposes of this chapter we temporarily disregard the axioms of EITHER
conversion. In Chapter 6 we combine the two mechanisms,

inclusion Qf values; it was noted that X»Y signifies, in general, that each
value of Y is aiso a value of X. The corresponding relation in the semantic
domain F* is set theoretic inclusion. Thus if x and y are the semantic
elements of F* corresponding to X and Y, respectively, then X»Y impliés that y
is a subset of x. Consistent with the semantic notions of Chapter 3, the

expression (EITHER X Y) corresponds in F* to the union of the elements x and

y. It was further suggested that the undefined computation corresponds, in R’

L The semantic interpretation of » suggested by the Either-R theory is one of
} F#, to the empty set -- i.e., it has no values whatsoever.

This chapter develops the syntactic analog of the empty set in F#,

Specifically, the new syntactic element * is.introduced as the canonical

normal form representation of the undefined computation. The interpretation

of » as set theopetic inclusion in F* suggests that, for every expression X,
| X>* (since every set has the empty subset). It would seenm, then, that the

{
consummation of the semantics of EITHER reduction requires that its syntactic
mechanism reflect this aspect of the structure of F*,
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5.1 The R-% Theories

We now focus our attention on #_conversion and its relation to the restricted

beta conversion. To this end we consider the R-%* system whose axioms include

alpha, beta-R, and delta discussed previously, in addition to the following:
Axiom sigma: (®-contraction): For every expression E, E>%,

Thus * is an expression in the R-* system which is lower, in the sense of »,
than every other expression. While every expression is reducible to *, * is
itseli only reducible to * (as * is not a beta- or delta-redex, and contains

no variablas).

Defn 5.1: An expression of the form (* A), where A is an arbitrary

expression, is called a %*-redex.

Consistent vith our previously defined notion of normal forms, we shall
henceforth require an expression X to contain no #-redexes if it is in normal
form. Noting that the only conversion which may be performed on a #-redex
without resulting in another ®*-redex is its replacement by %, we shall say

that the contractum of a ®-redex is *.

5.1.1: Significance of normal forms

The restricted lambda conversion allowed by the beta-R axiom bears a curious
resemblance to the lambda-I calculi of Church[1). 1In these systems, Church
specifically prohibits expressions of the form (LAMBDA(X)M) unless the
variable X appears free in the body M; thus the lambda-I systems exclude, in
general, functions which ignore their arguments. A principal consequence of
this restriction is the fact that, for expression X to have a normal form,
every subexpression of X must have a normal form. We note, with passing
interest, that the normal form restriction of beta-R allows us to derive any
normal form in the lambda-I calculvs which is possible using unrestricted beta
conversion; this follows from the observation that in the lambda-I system we

can always reduce the argument in a beta-redex to normal form before

contracting the redex.
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Church’s preference for the lambda-I over the unrestricted "lambda-K" '
theories stems from the elusive nature of those expressions having no normal
forms. The theorem of Boehm assures us that expre: ons having incongruent
normal forms are semantically distinct, and the theorems of Church-Rosser
guarantee that equivalernces between expressions having normal forms are
decidable. The semantics of normal forms is consequently uncomplicated:
every pair of semantically equivalent normal form expressions is provably
equivalent, and for every pair of incongruent normal forms we can find a

context in which they produce different values,

The admission of expressions having no normal forms compromises this situation
severely. The requirement that a semantic equivalence relation be
extensional, i.e. that equivalent expressions produce equivalent values in
jdentical contexts, leads to a distinction between semantic equivalence and
the equivalence of interconvertability under the lambda calculus. Scott{22],
for example, demonstrates an infinite sequerce YO’ Y1, «.. of fixed point
operators which are not convertible to one another despite the fact that they
produce the same values when embedded in identical contexts. The problem o
constructing a functional domain for the lambda calculus is fundamentally
equivalent to the definition of an extensional relation of semantic equialence
over the expressions of that calculus, a project whose recent success is due
to Scott. The téchnique used by Scott[5,6,22] involves the notion of
successively better approximations to the abstract semantic element
rep}esented by an expression X, so that the semantic element associated with X
becomes the limit of this sequence of approximations. In the Scott model, a
function f° approximates every extension f of f°; more generally, £’
approximates f if and only if for every z, f’[z] approximates f(z]. This
notion of épproximation seems essential to the interpretation of domain
elements as functions, largely because the theories of functions with which we

are familiar employ type restrictions ruling out self‘-application.2

! Church{1] und Curry[12] refer to the unrestricted conversions of the
conventional lambda calculus as lambda-K conversion gresumabl{ because of the
admissibility of the combinator K:(LAMBDA(X)(LAMBDA( X)) in these systems.

K is excluded from the restricted Iambda-I systems by the non-occurence of tne
bound variable Y in the body of (LAMBDA(Y)X).

2 In.particular, (LAMBDA(X)(X X)) is difficult to interpret as a function in
the usual set-theoretic way. Hindley[21] speculates that a theor% of

funct ions based on combinatory logic, rather than set theory, might
consistently allow self-application; while awaiting further developments we
remain pessimistic.
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The mechanism of #-conversion presented in this chapter is reminiscent of the
Scott construction. Specifically, we introduce means by which the various
approximations of an abstract semantic element can be represented as
expressions in the language itself, and provide for the syntactic conversion
of an element X to an approximation X of X. We have thus come to view
#®_conversion as a syntactic analog of the Scott construction in which
approximations are expressed in the domain of the language rather than in the

abstract semantic domain.

The addition of %*-conversion to the lambda calculus leads to a multiplicity of
normal forms for every expression. wWe shall see, for example, that the Y

operator
Y= (LAMBDA(F) ( (LAMBDA(4, (F(H H)))(LAMBDA(H) (F(H H)))))

which has no normal form in the conventional lambda calculus, has infinitely

many normal forms

(LAMBDA(F)(F %))
(LAMBDA(F)(F (F %)))
(LAMBDA(F)(F (F (F %))))

when %-—conversion is adiitted. Each of these normal forms may be interpreted
as an approximation to th2 Y operator, and in any context where Y gives a

normal form value, one of the above normal forms of Y will give an identical

value. Since the semantic element associated with each of these normal forms
is clear (in the sense that normal forms are semantically distinct) we retain
something of the semantic simplicity of the lambda-I calculus. The semantic
value of a given expression is simply the set of normal form values of that

expression, and expressions X and Y are semantically equivalent if and only if

they have identical sets of normal forms.

One of the motivaticns for #-conversion is to enable us to retain the power of
the wnrestricted (lambda-K) calculus while restricting beta conversion. It is
intuitively reasonablie to expect that one car always find a sufficiently close

approximation to the argument of a lambda expression that the restriction on
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conversion becomes unimportant where *-conversion is allowed, and much of

the remainder of this chapter is devoted to the proof that this is in fact the

case.

5.1.2

¢ Theorem on Normal Forms

The main result of this section sheds light on the ordering (under ») of the

normal forms derivable in R-#* from an expression A. We begin with the
following definition, adapted from Curry[12]:

Defn

5.2: Let P be a redex and Q be a subexpression in an expression B, and
let B’ be the resulic of replacing P by its contractum P’ in B. We define
the residuals of Q with respect to P as subexpressions of B’ designated

as follows:

Case 1: P and Q are the same redex in B. Then Q has no residual with

respect to P.

Case 2: P and Q are non-overlapping subexpressions of B. Then the
résidual Q" of Q i< that subexpression in B’ which is homologous' to Q
in B.

Case 3: P is a subexpression of Q. Then the residual of Q in B’ is the
expression Q° which is homologous to Q in B. We note that the

occurrence of P in Q has been replaced by P° to make Q.

Case U: P is a beta-rcdex ((LAMBDA(X)M)A), and Q is a subexpression of A.
Then P° is S[A;X;M) and contains n instances of A corresponding to the
n free occurrences of the variable X in M; let these instances of A be
identified as A1 oo An’ Each Ai contains an instance Qi of the redex
Q; these n expressions Q ... Q, are the n residuals of Q in B’. Note

that n may be zerc, in which case we term the contraction of P a
cancellation and Q has no residuals.

! hoﬁologous subexpressions occupy the same relative position in their
containing expressions; thus A in ({X (W A) Z) Y) is homologous to B in ((P (Q
8) g) S) independently of the structure of the subexpressions X, W, Z, Y, P,

4 ?

and S.
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Case 5: P is a beta-redex ((LAMBDA(X)M)A) and Q is a subexpression of M.
Then P° is S[A;X;M] and the residual Q" of Q is the subexpression of

' P’ which is homologous to Q in I.
I

Case 6: P is not a beta-redex, and Q is a subexpression of P. Then Q has

no residual in B°,
!

Informally, a residual of an expression Q is an image of Q after a

. contraction. Consider, for example, the residuals of the subexpression (PLUS

3 4) in the beta-redex
( (LAMBDA(X) (PLUS X X))(PLUS 3 4)) (5.3]
whose contractum is the expression
(PLUS (PLUS 3 4)(PLUS 3 4))

L Wle note that the two residuals of the subexpression (PLUS 3 4) of expression
[{5.3] are the occurences of (PLUS 3 4) in the contractum. Contraction in the

P—

delta redex (PLUS 3 4) in expression [5.3] yields the residual
( ‘LAMBDA(X) (PLUS X X)) 7)

We shall occasionally find it useful to speak of the residual of ar expression

Q after a series of contractions; we may thus refer to Qn as a residal of Q
with respect to the sequence of contractions B>B1>...>Bn if there is a
subexpression Qn-1 of Bn-1 such that Qn-1 is a residual of Q and Qn is a
residual of Qn- Thus consecutive beta- and delta-contractions on expression

[5.3] yield

10

..

(PLUS 7 (PLUS 3 4))

which contains a single residual of the subexpression (PLUS 3 4). The

following lemma establishes that the residual of a redex is always a redex:

Lemma 5.4: Let P and Q be redexes in an expression B, and let Q° be a

residual of Q with respect to P. Then Q° is a redex.

proof: We consider the following collectively exhaustive cases:
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Case 1: P and Q are non-over'lapping.1 Then Q° is the same redex as Q.

Case 2: P is a subexpression of Q; we consider the cases of the syntax of

Q:

a) Q is a beta-redex of the form ((LAMBDA(X)M A). If P is a
subexpression of M, then Q" is the beta-redex ((LAMBDA(X)M*)A). If

P is a subexpression of A, then Q° is the beta-redex
((LAMBDA (X)M)A "),

b) Q is a *-redex of the form (* M); then P must be a sulexpression of
M, and 0° is the ®-redex (% M),

¢) Q cannot be a delta-redex, as it contain P.

Case 3: Q is a subexpression of P; we consider cases of the syntax of P:

a) P cannot be a delta-redex, as it :ontains the redex P

b) P cannot be a ®-redex, as then ¢ would have no residual.

c) P is a beta-redex of the form ((LAMBDA(X)M)A) where Q is a

, subexpression of A, If Q is cancelled by the contraction of P, then

Q has no residual; hence M must contain 1 or more free occurrences
of X. Then each residual of Q is the redex Q itself,

d) P is a beta-redex ((LAMBDA(X)M)A) where Q is a subexpression of M.
We examine syntactic cases of Q:

1) Q is a delta-redex; then Q° is identical to Q, since Q may

contain no free variables (in particular, no free occurrence of
X).

i1) Q is a *-redex (* M). Then Q' is the ®*-redex (* M),

1ii) Q is a beta-redex ((LAMBDA(Y)B)C). Then Q° is a beta-redex of
the form ((LAMBDA(Y)B )C’).

tE”wo expressions are non-overlapping if neither is a subexpression of the
ot her.
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The converse of the above lemma is not in general true, i.e., the residual P’

of P my be a redex even though P is not. Consider for example the expression
P = ( ((LAMBDA(X)(LAMBDA(Y)Y)) 3) 4)

which is not a redex. Contraction of the beta-redex in P yields the residual

P’ of P given by
P° = ((LAMBDA(Y)Y) 4)
which is a beta-redex.

We should like to distinguish between reduction steps in R-%* which are
contractions and those which are abstractions; for this distinction the

following notation is convenient:

Defn 5.5: A contraction step A»>B is a single reduction step from A to B
which is either a beta-, delta-, or ®*-contraction.

Defn 5.6: A contraction sequence Aj»>A,3>...3>A from A to Ay is a reduction
sequence from AO to A, containing only aipha-conversions and contraction

steps. The length n of such a sequence is the number of contraction

steps in the sequence.

We now examine contraction sequences which terminate in normal forms,

beginning with

Lemma 5.7: Let X{Y} be an expression containing a redex Y, and let
X{Y}5>...>>X" be a contraction sequence of length n, where X' is in
normal form. Then there is a contraction sequence X{Y'}»>...3>X", where

Y’ is the contractum of Y, of n or fewer steps.

proof is by induction on n.

basis n=1: X’ contains no redex, hence Y must be either contracted or
cancelled (by a beta- or #-contraction). If Y is contracted then
X[Y 1>X° by the null sequence. If Y is cancelled then X[Y )»>X by the

same contraction as X[YJ]»>X~.
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induction: We assume the lemma to be true for sequences containing n or
Tewer steps. Consider the first contraction step X[Y]))X1 in the
n+1-step sequence X{Y]»>...»X", and let YI"'YJ be the j residuals of Y
in X1. If j=0 then the argument in the basis applies, as Y is either
contracted or cancelled in the first step. If j>0, j applications of the
induction hypothesis establish that X1'>>...>>X' in n-1 or fewer steps,
where X1' is the result of contracting each Y, in X,. But X[Y']>>X1' in

a single step; hence X[Y ]»>X’ in n or fewer steps.

The significance of emma 5.7 is that the contraction of a redex Y in

expression X cannot prolong the reduction of X to normal form. Informally, we
expect that if the subexpression Y plays a significant role in the evaluation
of X, the contraction of Y will shorten the reduction of X; if, however, Y is
irrelevent to the value of X then Y may be replaced by an arbitrary expression

with no effect on the evaluation of X. This consideration motivates

Lemma 5.8: Let Bo>>B1>>...>>Bn be a contraction sequence of length n, and let
B be in normal form. Let P be a redex in By, and let P’ be the
contractum of P. Then one of the following applies:

a) There is a contraction sequence B'>>...>>Bn of n or fewer steps, where

B® is the result of svbostituting ®* for P in Bo; or

b) There is a contraction sequence B'>>...>>Bn containing fewer than n

contraction steps, where B is the result of replacing P in B by P’.

proof is by induction on the length n of the contraction Sequence B >>Bn.

0

basis n=1; then Bo>>Bn in a single contraction step. Let Q be the redex
contracted in Bo>>Bn. If Q is the same redex as P, then B’ is identical
to B , and (b) is satisfied. Otherwise P must have no residual in B,
since Bn is in normal form and any residual of P is a redex. Then P must

be cancelled by a beta- or %-contraction in Bo>>Bp, and (a) is satisfied.

induction: n>1. Consider the redex Q contracted in the step Bo>>B1, If

Q is the same redex as P, then (b) is satisfied as before. Otherwise we

consider the j residuals P1...PJ of P in B1. If j=0 then P is cancelled

{
!
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in the step Bo>>B1, and (a) applies. If j>0, we apply (by the inductive
hy pothesis) the lemma to the contraction sequence B1>>...>>Bn, whose

length is n-1:

Case 1: Each residue Pi in B1 is convertible to #*; i.e., (a) applies to
each Pi. Then (a) applies to P in Bo, as B'>>B1' in a single step,
where B1' is the result of replacing each Pi in B1 by *.

Case 2: Some residue Pi of P in B1 is not convertible to #; i.e., (b)
applies to Pi. By Lemma 5.7, contracting 2ny Pk in B1 cannot prolong
the sequence B1>>...>>Bn; by the induction hypothesis, there is at
least one Pk whose contraction shortens the sequence. Then if B1’ is

the result of contracting each Pk in B1, there is a contraction

’

sequence B1>>...>>Bn in fewer than n-1 steps. Since B'>>B1 in a
single contraction step (of the same kind as Bo>>B1) (b) is satisfied.

This completes the proof of Lemma 5.8.

The following theorem establishes a fundamental property of #*-conversion.

Informally it ensures that, for any two normal form expressions A1' and A2'

which are each derivable from an expression A, there is an expression A* in

normal form which is an upper bound of A1' and A2' in the sense that A'>>A1'

and A%»>A_ % and furthermore that A>>A®. This result is then extended to the
case of an arbitrarily large finite set of expressions A1'...An each derivable
from A. The existence of normal form upper bounds of arbitrary sets of

expressions derivable from A is essentially equivalent to the proposition
that A can be approximated, to arbitrary accuracy, by normal forms derivable

from A,

Thm 5.9: Let A1' and Az' be normal form expressions and let A be any
expression such that A>>A1' and A))AZ'. Then there exists an expression

A% in normal form such that A»>A¥%, A'>>A1', and A'>>A2'.

procf: Let P(n;m] be the proposition that Lemma 5.9 is true for every A,

A% and A2' such that:

1 ?
] ] .
(1) A>>A1 in n, steps and A>>A2 in n, steps, where n1+n2<n, and

(11) A contzins m or fewer redexes.
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Then the lemma is true if and only if Plr;m] is true for all n and m; we

procede in the following steps:

For every n, P[n;0] is true since in these cases A contains no redex

and is consequently in normal form.

For every m, P[1;m] is true since in these cases either A5A1! or

AEAZ'; hence A must be in normal form and A%zA.

If for some n and m and for all j P[n,j) and P[n+1;m] are true, then

P(n+1;m+1] is also true.

proof: Let A, A1', and Az' be expressions such that the premise: of

P(n+1:m+1] are satisfied; then A contains m+1 or fewer redexes, and

n1+n22p+1 where n1

A>>A1' and A>>A2'. We now choose an innermost redex Y of A, i.e. a

redex Y which contains no other rede:. Such a redex Y must exist

and n, are the respective lengths of the sequences

unless A is in normal form, which is ruled out because m+1>0. Let
A{Y) denote A (which contains Y 2s a subexpression) and let Y’ be the
contractum of the redex Y. Then by Lemma 5.8, »ne of the following

applies:

a) A{'}>>A1' in n

steps.

q or fewer steps, and A{'}>>A2' in n, or fewer

b) A{Y'}>>A1' in n1' steps and A{Y'}>A2' in n2' steps, where

n1'+n2'<n1+n2.
If case (a) applies, then A{*} has fewer than m+1 redexes, and by
P(n+1,m] the proposition P(n+1,m+1] is true. If (b) applies, then
P[n+1,m+1] is true if P(n;j] is true (where J is the number of redexes
contained in A{Y’}); by hypothesis, P[n;j] is true for all J, hence

P(n+1;n+1] is true.

If for all j P[n;Jj] and P[n+1;0] are true, then for all i P{n+1,i] is

true.

proof is by induction on i. P[n+1;0] follows directly from (1);
P[n+1;i+1] follows from (3) and P(r+1;i].
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5) For every i and j, P[i;j] is true.

proof is by induction on 1.

basis: from (2), P[1,j] is true for all j.

induction: Assume that P[i;j] is true for all Jj. By (1), P[1+1;0] is
true; hence by (4), P[n+1;3] is true for all J.

This completes the proof of Theorem 5.9.

The proof of Theorem 5.9 involves a succession of steps from the expression A
to the normal form A%, such that the result AJ of each step retains the
property that AJ>>A1' and AJ>>A2'. The moderate complexity of the proof stems

from the obscure sense in which each step comes "closer" to A%*; by Lemma 5.8,

each successive step from AJ to AJ+1 either:
i) Reduces (by one) the number of redexes, while keeping t e total number

of steps in the contraction sequences AJ>>A1' and AJ>>A2' constant; or
11) reduces the total number of contraction steps, while changing
(increasing or decreasing) the number of redexes by some arbitrary finite

amount.

The proof of Theorem 5.9 is essentially a demonstraticn that A% can always be

agerived from A by such a sequence in finitely many steps.

The generalization to arbitrary finite sets of normal formc follows naturally:

Corollary 5.10: Let A be any expression and le A1...AJ be expressions in
normal form such that, for each i, A»>Ai. Then there exists an
expression A* in normal form such that A»>A% and, for each 1, A#3DAi.

proof is by induction on J.

basis: For 3§>2, the corollary is trivially true; for j=2, it is true by
direct application of Theorem 5.9.

induction: Assume the corollary is trus for each set A1...Ak containing

fewer than j expressions. By Theorem 5.9, there is an expression A12ﬁ in
normal form such that A12'>>A1 and A12'>>A2 and A>>A12'; by the induction
hypothesis, we can now find an upper bound of the set A12', A3,...,AJ
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which contains j-1 expressions; let A* be the normal form upper bound of
this latter set. But, since A'>>A12!, it follows that A'>>A1 and A3>A,;

hence for each Ai, A%#>>Ai, and A®* is the required upper bound.

The final theurem of this section estuhlishes that, for the evaluation of any
particular expression X{Y} (i.e., the reduction of that expression to a normal
form) there exists a sufficiently good approximation I¥ of Y such that Y% is

in normal form:

Thm S.11: Let X{Y}»>...»>X* be a contraction sequence of length n, where ) &
is in normal form. Then there exists an expression Y®* in normal form,

such that Y»>>Y®* and X{Y®}>>X%,

proof is by induction on the length n of the contraction sequence. If n=0,
then Y is in normal form and is the requir~d Y®*, If n>0, we consider the
residuals Y1...YJ of Y in x1. By the induction hypothesis each Yi can be
contracted to a normal form Yi', and the result X1' of replacing each Yi
in )(1 by Y1“ is such that x1'>>x'. Since for each i Y»>Y *, by Corollary

5.10 there is a Y* such that Y»>Y® and for each i Y.»Yi' Then
X{Y}))X{Y'}>>x1>>...))X'.

We may speculate further on the structure of the set S of normal forms of an
expression A. The above theorem shows that any finite subset of S has an
upper bound in S; 3ince % isin S, we may claim further that each finite
subset in S has a lower bound in S. It seems likely that S forms a lattice

ordered by », which is to say that each finite subset of S has both a least
upper bound and a greatest lower bound. 1In general such a lattice of normal
forms can be complete only for those expressions which have normal forms in
the lambda calculus.

5.1.3: Relation to the Lambda Calculus

In this section we demonstrate a sense in which the R-* theory is as powerful

as the (unrestricted) lambda calculus; in particular, we show that any

expression A which has the normal form A’ in the lambda calculus has the same




normal form in R-%,

Thm 5.12: Let A0->A1->...->An be a sequence of beta- and delta-contractions
in the Lambda calculus (possibly intermixed with alpha conversions), and

let An be in normal form. Then A0)>An in R-%,

proof is by induction on n, the ramber of contractions in the sequence

AO->...->An.

basis n=0; then Ao and An arz identical, and the theorem is trivially

true,

induction: n>0; we assume then that A1>>An and must show that A0)>An. We
procede by showing that A0)>A1 for each of the possible contraction steps
A0->A1. If the contraction step is an alpha- or delta- conversion, then
the same contraction can be performed in R-#* hence A0)>A1; we thus need
only consider the case where A ->A, by a beta contraction. Let P be the
beta-redex contracted in the step A0->A1; then P is of the form

( (LAMBDA(X)M{X}) Y)

and the contractum P° of P is of the form M{Y}, containing j instances
(residuals) Yl"'Yj of the argument Y. By Theorem 5.11 each Yi may be
contracted in R-* to a normal form Y.®, such that A1')>An where A1' is
the result of replacing each Yi by Yi'. By Corollary 5.10 there exists
an upper bourc {* such that Y»>Y* and, for each i, Y'>>Yi. By
contraction of the subexpression Y of AO{Y} we have AO{Y})>A0{Y'}; since

Y* is in normal form, the beta contractinn of the redex P* in AO{YG}
( (LAMBDA(X)M{X}) Y*)

yields a contractum M{Y*} containing j instances of Y®. But each
instance of Y* may be contracted to the corresponding Yi', hence

. ' ' ' _t
AO{Y }))A1 . Then we have AO{Y})>A0{Y }>>A1 )>An, and A0)>An in R-%,

The simplest illustration of the use of #-conversion to mitigate the beta-R
restriction involves the evaluation of the expression A given by
A = ((LAMBDA(X)3) B)




("

5.,1.3 «01=

where

B = ((LAMBDA(H) (H H) )(LAMBDA(H)(H H))
‘ince B has no normal form in the conventional lambda calculus (or, as a
consequence, in Either-R) the beta-redex A cannot be contracted under beta-R.
iicnce A has no normal form in Either-R; in R-®, however, ®-contraction on the
subexpression B of A ylelds

A > ((LAMBDA(X) 3) ®)

which may be contracted, under beta-R, to the value 3. We thus can derive the
value 3 from the expression A, despite the restriction on beta conversion. We
may of course derive other normal form values of A which involve the element
8. these may be interpreted as "approximations” of the value of A in the sense
that they retain partial information concerning the value of A. In this light
the expression ® itself is a particularly bad approximation of A, as it gives
no clue about the value of A. The expression 3 (which is, significantly,
®_free) is a perfect approximation of A since it contains all of the
information necessary to derive the value of A -- i.e., A=3 in the lambda

calculus.

5.1.4: Consistency of R-® Theories

We observe, at this point, that the addition of the ®-conversion axiom to the
12mbda calculus does not lead to inconsistency; specifically, if X and Y are
% free and XY in an R-® Theory, then X=Y in the corresponding Lambda
calculus. The intuitive justification for this claim stems from the
unidirectional nature of ®-contraction - there is rno corresponding abstraction
operation. Thus if the reduction X»Y involves the ®-contraction of a
subexpression U, then U must be cancelled since Y is ®-free.

The consistency of the R-® Theories follows as' a special case of the
consistency of the Either-R-® Theories, which is proved in the next chapter;
consequently no proof is given here.

5.2: Applications to the Lambda Calculus
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The theorems of this chapter may provide tools of general usefulness in the
study of the conventional lambda calculus. Suppose, for example, that neither
of the expressions X and Y have normal forms in the beta-delta calculus, and
that furthermore they are not interconvertible. We may still suspect,
however, that they are equivalent in an extensional sense. In particular we
may wish to prove that if e.ther of Z{X} or Z{Y} has a normal form in the
lambda calculus then Z{X}=Z{Y}.

The mechanism of ®-conversion suggests a techniqu: for constructing such
proofs. Suppose we could show that in R-* the expressions X and Y have
identical sets of normal f‘orms.1 From Theorem 5.11 it then follows that, for
any Z and every Z* in normal form, Z{X}»>Z* if and only if Z{Y}>>Z*. But
Theorem 5.12 extends this extensional equivalence to the lambda calculus;
hence for any Z and any normal form Z%, Z{X}->Z* if and only if Z{Y}->Z* where
-> denotes lambda calculus reduction. We deduce from these observations that
any two expressions which have interconvertible sets of normal forms are

eqivalent in this important extensional sense.

We may apply, for sake of illustration, the above technique to the example

cited by Scott2 of the two fixed point operators

YOE(LAMBDA(F)(Z 2))

and
Y151Y0 (LAMBDA(Y) (LAMBDA(G) (G (Y G)))))

where Z is the expression
(LAMBDA(H) (F (H H)))

YO and Y1 are not interconvertible in the lambda calculus, and neither has a
normal form. Noting that YO contains the single redex (Z Z), the unique

single contraction which can be ade reduces Yo to the expression

(LAMBDA(F) (F (Z 2)))

1 Specifically, we must show only that X»X* implies Y>Y#3X® and conversely,
where X* and ¥‘ are any normal form expressions.

: Scott[22) credits the examgle to Corrado Boehm, and acknowledges an
unpublished proof due to Dav d Park that the expressions Yo and Y1 are

equivalent in the Scott formalism.




5.2 -93-

which again contains the single redex (7 Z). It becomes clear from the
sequence of reductions that this process leads to the conclusion that the

normal forms (in R-%) of Yo are all of the form

'LAMBDA(F)(F (F (F (F ... (F %) ... )))))

and for every natural number n there is a normal form Yo'n whose body is F

applied to #* n times.

We now refer to the definition of Y1. By Theorem 5.11, ifor every normal form
Y1' of Y1{Y0} there is a normal form Y * such that Y1{Y0’}>>Y1'. Hence every
normal form of Y1 is a normal fcrm of Y1{Y0’n} for some for some n. But each

of the latter is of the form
(G (G (G (G ... (G®) ...))))

where G stands for the expression (LAMBDA(Y)(LAMBDA(G)(Y G))). But (G %)
reduces to (LAMBDA(G)(G (®* G))) from which, by contraction of its %_redex, we
arrive at Y1'15(LAMBDA(G)(G %)), Then YI’ZE(G Y1’1) has as its maximal normal
form (LAMBDA(G)(G (G #))); and it becomes clear from this informal argument

that each R-%* normal form Y1’n of Y1 is of the form
(LAMBDA(G) (G (G (G (G ... (G %) ... )))))

whose body contains n applications of G. Thus each normal form derivable t'rom

Yo in R-%* is derivable from Y1, and conversely.

Now if, for some X, X{Y0}=X’ in the lambda calculus where X* is in normal
form, then by Theorem 5.12 X{Y0}>X’ in R-%*., Then by Ti.:orem 5.11 there is a
normal form Y *" of Y_such that X{Yo’n}»x’; since Y1 has a normal form

0 0

Y1’m>>Y00n, the.. X{Y }>>X* hence X{Y,}=X® by the consistency of R-%*, An

entirely symmetric argument shows that X{Y1}=x' implies X{Y0}=x’.

5.3: Summary

The mechanism of ®%-conversion introduced in this chapter allows expressions to
be approximated, to arbitrary accuracy, by expressions in normal form. The
initial motivation for ®-conversion is the mitigation of the limitations on

expressive power imposed by the restricted beta-conversion, but the techniques
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of this chapter may be useful generally in the lambda calculus.
The principal technical results of the chapter are:

1) The introduction of * as a canonical representation of the undefined
(nonterminating) computation, and the axiom on star conversion asserting
that, for every X, X>*, This axiom is motivated by the interpretation of
> as denoting set theoretic inclusion in F#*; the empty set, corresponding

to the undefined computation #, is a subset of every element of F#,

2) Theorem 5.9 and its corollary establish that for any set A1'.,,Anl of
normal forms derivable from an expression A in R-#, there exists an

expression A* in normal form such that A>A* and A*>Ai for each i<n.

3) Theorem 5.11 shows that if expression X{Y} is reducible to Z*, a normal
form in R-#, then there exists a normal form Y* such that Y»Y* and
L X{Y*}>Z*, Informally this result assures us that, for every expression Y
and every context X{Y}, there is a sufficiently good normal form
approximation Y* of Y. The previous result (2)then guarantees that, for
any finite set of approximations of Y, we can find a normal form Y

which may be used in lieu of any member of the set.

4) Theorem 5.12 provides the final tie to the lambda ~alculus, by showing

that every normal form derivable in the lambda calculus is derivable in

R"' .

The R-* Theory is thus as powerful, in an important sense, as the lambda
calculus with unrestricted beta conversion. Furthermore, the R-#* Theories
suggest a natural test for extensional caquivalence of expressions: the
interconvertability of normal forms. This technique ia applicable to the
lambda calculus, and the extensional equivalence of nonconvert ible fixed point

operaters Yo and Y1 is used as an illustration.

The development of #-:onversion in Chapter 5 is independent of the EITHER

reduction of the previous chapter. The combination of the two mechanisms is

the project of the next chapter.
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Chapter 6:
The Either-R-® Theories

The desire for a syntactic basis for a language E, incorporating the EITHER
mechanism informally described in Chapter 3, has led to the presentation (in
Chapter 4) of the Either-R theory. It was noted that the restricted beta
conversion of Either-R limits the usefulness of thal theory since, for
example, it prohibits the expression of recursive fur:tions. The inadequacy
of Either-R as a basis for the language E motivated the develoupment, in the
last ch:pter, of ®-conversion. The present chapter brings these efforts to
fruition in the form of the Either-R-%* svstem, which consistently combines
#_conversion with EITHER reduction and pr wrides a satisfactory basis for a
language E.

Speci fically, an Either-R-* theory shall consist of th. following axioms, each
of which is presented in a prerious chapter:

alpha (Ch. 4) interconvertability (by renaming) of congruent expressions =--
e.¢. (LAMBDA(X)X) = (LAMBDA(Y)Y);

bcta-R (Ch. U4) lambda conversion restricted to redexes whose arguments are
in normal form -- e.g. ((LAMBDA(X)X) 3)e3;

various delta axioms (Ch. 4) specifying the interpretation of primitive
functions and constants -- e.g., (PLUS 3 5) =« §;

epsilon (Ch. U4) contraction of E-redexes-- e.g., (EITHER A B)»B (Ch. 4);

mu (Ch. 4), abstraction of E-redexes -- e.g. Ee(EITHER E E);

rho (Ch. U4), distribution of function application over terms of an “-redex
-- e.g. (F (EITHER A B))» (EITHER (F A)(F B)).

sigma (Ch. 5) ®*-contraction -- A»* for every expresion A.

6.1: Consistency of Either-R-#

The consistency of Either-R-%* may be established by techniques closely
analogous to the Either-R consistency proof. Recall that the earlier proof

involved the notion of enclogure, and culminated in the implication of

enclosure by » -- i.e., X»Y in Either-R implies X encloses Y. Extension of
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this technique to the present case requires that the mechanism of

%#_contraction be accounted for; accordingly, we extend the notion of 1

enclosure by

Defn 6.1: X ®-encloses Y if, for each e-residue1 Y’ of Y, there exists an {

e-residue X~ of X and an expressior X* derived from X by ®*-contraction

alone, such that X#=Y® in the lambda calculus.

Note that we admit expressions containing the clement % in the lambda
calculus, treating ® simply as a free variable. It is clear from the above

definition that ®-enclosure is transitive, and that if X encloses Y then X ;

%_encloses Y.

The following Lemma and its Corollary confirm that #*-contraction introduces vro

new equivalences in the conventional lambda caleculus:

Let X and Y be #- and EITHER-f “ee expressions, and let X>X® by the
If X®=Y in the lambda calculus,

Lemma 6.2:
#_contraction of a subexpression U of X.

then X=Y.

proof: Noting that X* contains a single * (the contractum of U), treating *
as a variable in the lambda calculus gives us

X=( (LAMBDA (#)X#*) U)
by beta conversion. But X®*=Y, hence
X=( (LAMBDA( #)Y) U)

and as Y is ®-free the contractum of this beta-redex is simply Y. Hence

X=Y.

Corollary 6.3: If X and Y are *- and EITHER-free and X>X* by a series of

#_contractions, then X*zY in the lambda calculus implies X=Y.

proof is by a simple induction on the number of *-contractions in the

! Recall Defn 4.7.
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reduction sequence from X to Xe,

The above lemma and its corollary are hardly counterintuitive in light of the

developments of Chapter 5. 1In paiticular, it is clear that any occurence of #

in X* must be cancelled in the derivation of Y from X, since Y is ®*-free,

Hence we may replace such occurences by arbitrary expressions, which are still
cancelled in the derivation of Yo

of X ylelds X=Y.

the choice of the homo logous subexp:essions

The consistency proof for Either-R-

® follows the format of the corresponding
proof for Either-R,

except that the enclosure relation in the latter proof is
extended to ®*-enclosure in the former,

The basis of this extension is given
| by

Lemma 6.4: Let X>Y be a single reduction step in Either-R-#, Then X
®_enclose: Y.

\ |

proof: Lemma 4,13 establishes the lemma for the reductions allowed in

Either-R; hence we need consider only the case of a ®_.contraction. Let

U be the contracted subexpression of X. For each e-residue Y’ of Y,
there is a corresponding e-residue X’ of X such that either X° and Y’ are

identical or Y’ is the result of the #-contraction of an e-residue U’ of

Uin X°. Hence X'»Y° by ®-contraction, and X ®_encloses Y,

F The following theorem is the Either-R-# analogy of Theorem 4.15:

Thm 6.5: Let X and Y be expressions containing no occurrences of EITHER or *,

and let X»Y in Either-R-*%, Then X=Y in the lambda calculus.

| proof: By Lemma 6.4 and the transitivity of ®-enclosure, X #-encloses Y.

Since each of the expressions X and Y is EITHER-free, each expression is

its own unique e-residue, and X>X®*=Y where X»X*® by #*-contraction alone.
By Corollary 6.3, X=Y in the lambda calculus.

Thus the consistency of Either-R-# follows from the consistency of the lambda

calculus.

-




6.2: Relation of * to EITHER

We have already noted that the mechanism of %¥_contraction leads to the
interpretation of each expression A as the upper bound, in the sense of », of
a family of expressions derivable from A. To formalize the relation between

su.n a family of expressions, we introduce the terminology of

Defn 6.6: Expressions X and Y are gonsistent in a theory T if and only if
there is an expression Z such that both Z>X and Z»Y in T,

Then the R-* theories are partitioned by the consistency relation into
equivalence classes, of which there are infinitely many (since there are
infinitely many mutually incongruent normal forms). Then the characteristic
of R-* which is established by Corollary 5.10 is that any finite set of
consistent expressions in normal form has an upper bound which is also in

normal form.

We note that in R-%* the » ordering on the set of expressions derivable from an
expression A is, in general, noncrivial. Unless A is the element * the upper
bound of the set, A, is distinct from the lower bound #; furthermore there may
be infinitely many expressions A1>A2>... in the set such that for no j>1 is
AJ>A1. This is certainly not the case in the conventional lambda calculus, in
which consistency implies interconvertibility and hence equivalence. What the
mechanism of ®*-contraction has added to the lambda calculus is a method of
deriving fram an expression A an approximation A®* to A which is strictly
weaker in the sense of ». We may then view the ® mechanism as a method of
introducing new expressions which are weaker than the conventional lambda

calculus expressions, as each expression in R-* is derivable from a *-free

expression.

In this light we must regard the EITHER construct as a mechanism for
introducing stronger expressions into the lambda calculus. While R-* (and for
that matter the conventional lambda calculus) contain upper bounds only for
consistent sets of expressions, we can with EITHER represent the upper bounds

of arbitrary (enumerable) sets of expressions.1 Observe further that, for

1 Or, equivalently, we may say that in the Either theories, every set of
expressions is consistent.
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arbitrary expressions X and Y, the expression (EITHER X Y) is the least upper

bound of X and Y since by Theorem 4,4, Z>X and Z>Y implies Z>(EITHER X Y).

This suggests that the ordering of Either-R-%* expressions by » forms a

complete lattice.

6.3: Evaluators for E

As we have noted, interpreters for languages supporting the EITHER construct
require a slightly different structure from our previous examples: the
reducibility of expressions to multiple values suggests that an evaluator for
E sh .'d enumerate the values of the input expressicn. Accordingly, we

form: ste the evaluator as a function E of 2 arguments, an expression X to be
evaluated and a numeric index j specifying which value is to be returned. The
evaluator is constructed such that, for each X and j, E[X;j] is an expression
X° in normal form such that X»>X’ in Either-n-®. The value of E[X;j] is, in
general, not defined for all values of j; it may be assumed in particular
that E[X;j] is undefined for those cases of X and j not represented in the
algorithm presented informally below. We again assume the existence of an
invertable pairing function, and use here the notation <n;m> to denote that
natural number which uniquely encodes the ordered pair of natural numbers

(n,m). We make the further assumption that for no n and m is <n;m><2.

E[X;3) =
if j=0 then ®;
if X is atomic1 and j=1 then X;
if X is of the form (LAMBDA(Y)M) then (LAMBDA(Y)E[M;n]);
if X is of the form (EITHER A B) and j=<1;n> then E[A;n];
{f X is of the form (EITHER A B) and j=<2;n> then E[B;nl;
{f X is of the form (A B) and j =<<m;n>;p> then

APPLY[E[A;m];E[B;nl);p);
where the algorithm for APPLY is given informlly by

APPLY[F;X;J]) =

! Recall that the atomic expressions are identifiers (including primitive
function symbols and variab es) and numeric constants.
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if F is of the form (LAMBDA(Y)M) then E{S[X;Y;M);3);
if (F X) is a delta-redex and j=1 then F[X];
else if j=1 then (F X);

We note that E[X;j) is in normal form where it exists, and the value E[X;]) is
in each case the result of an Either-R-* contraction sequence on X. Although
we don’t claim that the values E[X;j) of X are ordered by » for successively
higher values of j, the index j specifies, roughly, which of the
approximations of X is to be returncd.

We may envision implementations of the E interpreter which make use of massive
parallelism to compute simultaneously the values of (F X) for many different
approximations of X; such use of redundant computation may serve to minimize
the real time required to compute an acceptable value for X. Such an
implementation follows, roughly, the spirit of fast adder circuitry which
computes redundantly the high order portion of a sum simultaneously with the
low order portion, and then selects the correct high order portion on the
basis of some intermediate carry. These implementational issues are largely
ignored in the present work, but present some intriguing possibilities for

future research,

6.4: Summary

The Either-R-* Theory may be used as the semantic basis for a language, E,
which solves the specific expressibility problem demonstrated in Chapter U4,
The evaluation of expressions in E lends itself naturally to the use of
multiprocessing techniques which tend to minimize the total real time
necessary to relize an acceptable evaluation of an expression (T X) by the
simultaneous application of F to one approximation of X while computing a
better approximation. While the implementation details are not pursued here,

we feel that current technological developments make this area worthy of

further study.
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Chapter T7:
The Either-K Theories

The inconsistency of EITHER distribution (Axiom rho) with the unrestricted
beta conversion of the lambda calculus has motivated the restricted beta-R
conversion of the systems presented thus far. This chapter explores an
alternative formulation, in which EITHER distributivity is sacrificed in order

to accommodate the conventional (unrestricted) beta conversion.

The Either-K theories include the axioms alpha, delta, epsilon, mu, and the
(unrestricted) beta axiom of the lambda calculi:

Axiom beta: Let E be an expression of the form ((LAMBDA(a)b)e). Then EeE’,
where E° is the contractum S[gjg;g].1

Since Either-K preserves the axioms of the lamhda calculi, it is clear that
the equivalence » in Either-K is a proper extension of the lambda calculus
equivalence =. In this sense the Either-K calculi are closer to the
conventional lambda calculi than the Either-R-#* theories,

There is, however, a fundamental sense in which Either-K is a more radical
departure from tre lambda calculi than is Either-R-*, 1In the latter theories
functions are ultimately applied only to normal form operands whose semantics
are those of the lambda calculi. The ability, in Either-K, to apply functions
to multivalued expressions (such as E-redexes) requires that we reinterpret

the semantics of each function rclative to these new elements of its domain.

7.1: K-abstraction
By the axiom beta of the lambda calculus, the expressions

M
and

((LAMBDA(x) M) A)

are equivalent when A is an arbitrary expression and M contains no free

! S is the lambda calculus substitution function given in Defn 2.6.
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occurrences of the variable x. This fact is consistent with the observation
that the bouad variable, x, is ignored in the body of the function applied to
A; hence the value of the application is independent of the value of the
argument A, Despite the intuitive satisfaction with which we accept the above
equivalence, the presence of functions which ignore their arguments
camplicates the proof of many otherwise straightforward results in the lambda
calculus. Indeed, Church has argued against the inclusion of such functions

in his theories, fearing at one time that they led to inconsistencies.1

The task of proving the consistency of the Either-K theories, to be attacked
presently, is likewise ~omplicated by the inclusion of functions which ignore
their arguments. The definitions and results of this section provide the
mechanism for dealing with the formation of such functions in later proofs.
We begin with

Defn 7.1: A K-redex is an expression of the form

((LAMBDA(x)M) A)

where A is any expression and M is an expression not containing free

occurrences of the variable x.

Defn 7.2: A K-abstractjion is a r duction step2 consisting of the replacement

of a subexpression M by a K-redex of the form
( (LAMBDA(x)M) A)

where A is ary expression and x is a variable not occurring free in M.
We now wish to show that the K-abstractions in a reduction sequence can be
postponed to the end of the sequence. We introduce a term to describe

reduction sequences whose K-abstractions follow all other reductions:

Defn 7.3: A reduction sequence R is K-pormal if no K-abstraction in R

! For discussion and historical insight, see Curry[12], particularly the
camment at the end of Ch. 3,

2 recall Defn 4.1,
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precedes a reduction step which is not a K-abstraction.

Thus a reduction sequence X0>X1>...>Xn is K_normal if there is an i, where
0<i<n, such that the reductions X0>...Xi are not K-abstractions and the
reductions x1>...>xn are only K-abstractions. We wish to show that, for every
reduction sequence X0>...>Xn, there exists a K-normal reduction sequence from

X0 to Xn. We begin with sequences of 1:ngth 1:

| Thm 7.4: Let X0>X1>X2

the reduction step X

be a two-step reduction sequence from XO to X2, where

0>X1 is a K-abstraction and the reduction step X1>X2

' is not a K-abstraction. Then there is a K-normal reduction sequence from

0 2' -

’ X toX 2ontaining at most one reduction step which is not a
K-abstract ion.

proof: Let U be the subexpression of X which is replaced in the reduction

0
step x0>x1. Then U is replaced in this step by U°, an expression of the

form
l
( (LAMBDA(y)U) A)
where y is a variable not occurring free in U. We exhaustively examine
classes of the reduction steg X1>X2:
Case 1: The reduction step modifies only the subexpression A of U’; let U
% beccme A in X2. Tne K-normal sequence from XO to X2 is then the single
K-abstraction replacing U by
} ( (LAMBDA(y)U) &)

Case 2: The reduction step modifies only the subexpression U of U’; then U

. becomes W in X2. The K-normal sequence from XO to X, is then:

a) Replace U in X, by W, yielding xo';
b) Replace W in XO' by the K-redex
((LAMBDA(y)W) A)

yielding X2.

Case 3: The expression U’ in X1 is replaced by U by beta reduction. Then

XO and X, are identical expressions, and the empty reduction sequence

2




yields X2 from Xo.

Case U: The reduction step replaces some subexpression V of X1 by the

expression V', where V is not a subexpression of U’ and U" is not a

subexpression of V. The K-normal sequence from X0 to X2 is then

a) The replacement of V in X, by V', yielding Xo';
b) The replacement of U in Xo' by U, yielding X,

Case 5: The expression U’ is replaced by the expression
(EITHER U° U")

The K-normal sequence from Xo to X2 is then
a) The replacement of U in Xo by (EITHER U U), yielding Xo';
b) The replacement of (EITHER U U) in Xo' by (EITHER U° U°) through two

consecutive K-abstractions.

Case 6: The expression U’ is replaced by the expression
(EITHER ((LAMBDA(y)U) A1)((LAMBDA(y)U) A2)
by Axiom rho. The K-normal sequence from Xo to x2 is then
a) The replacement of U in X, by (EITHER U U), yielding XO';
b) The replacement of (EITHER U U) in Xo' by
(EITHER ( (LAMBDA(y)U) A1)((LAMBDA(y)U) Ay))

through two consecutive K-abstractions.

Case 7: The subexpression U’ is replaced by an expression W of the form
( (LAMBDA(z)U) A)
derived fram U’ by alpha conversion. Then the variable z does not occur

free in U, and X, may be reduced to X2 by a single K-abstraction.

0
Case 8: Some subexpression V containing U’ is replaced by an expression

V’. Then one of the following applies:

8a) V' is derived from V by alpha conversion. Then we may apply that
alpha-conversion to X,, yielding Xo', and follow with the

K-abstraction from Xo' to X,.
8b) V° contains n occurrences of U’, where n is zero or greater. Then
there is a reduction of the same type from X, to Xo', where Xo' is

identical to X2 except for the n occurrences of U in Xo' corresponding

to n occurrences of U’ in X2. Our K-normal sequence from Xo to X2
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4

consists of the reduction of X to X,  followed by n K-abstractions

0 0
replacing the occurrences of U by U’.

This 1list of cases is exhaustive, completing the proof.

Theorem 7.4 shows that every two-step sequence of reductions is equivalent to
some K-normal reduction sequence. The generalization of this result to
sequences of n reductions is complicated by the fact that the K-normal
sequence guaranteed by Theorem 7.4 may be of arbitrary length, thus ruling out

a simple induction on the length n of the reduction sequence.

Lemma 7.5: Let R be a reduction sequence from X. to xn containing exactly 1

0
reduction step which is not a K-abstraction. Then there is a K-normal

reduction sequence from Xo to Xn.
proof: by induction on the length n of the reduction sequence R,
basis: Trivially true for n<2; for n=2, guaranteed by Theorem 7.4.

nd ion: Let xo>x1>...>xn be the reduction sequence R. If the step
X0>X1 is not a K-abstraction, then R is K-normal; hence we may assume
that X0>X1 is a K-abstraction, Then a single step of the subsequence
x1>...>xn is not a K-abstraction; by the inductive hypothesis, there is a
K-normal reduction sequence X1>Y0>Y1>...>Xn of which only the reduction
step X1>Y0 m.y be other than a K-abstraction. But by Theorem 7.4, there
is a K-normal sequence XO>ZO>...>Y0 equivalent to the sequence x0>x1>yo;

thus the reduction sequer.ce X0>ZO>...>Y >...>xn is K-normal fromxo to xn.

0

Defn 7.6: The K-index of a reduction sequence R is the number of
non-K-abstraction steps in R which follow the first K-abstraction in R.
If R contains no K-abstractions, then the K-index of R is zero.

Note that the K-index of a reduction sequence R is zero if and only if R is
K-normal. We shall base the induction in the proof of the next theorem on the

K-index of the reduction sequence to which it is applied.
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Thm 7.7: Let R be a reducticn sequence from Xo to xn, Then there is a

K-normal reduction sequence from XO to Xn.
proof is by induction on the K-index of R.
basis: If the K-index of R is zero, then R is K-normal.

induction: The K-index n of R is greater than zero. Let X0>...>Xn denote

R, and let )(i>)(i+.| be the first K-abstraction in R. Let XJ>XJ+1 be the
first reduction step following X1>Xi+1 in R which is not a K-abstraction;
the existence of such a j is assured by the K-index of R. Then the
subsequence xi>xi+1>...>xj>xj+1 of R contains a single step which is not
a K-abstraction; by Lemma 7.5 there is a K-normal sequence

X, »Y »...»X
i"7°0 j+1
X ». ..2X, >»Y >...>XJ+11...Xn has a K-index of n-1. By the induction

0 i770
hypothesis, there is a K-normal sequence from X1 to Xn.

from X, to XJ+1. Then the sequence R’ given by

It follows from Theorem 7.7 that every reduction sequence may be reordered in
such a way that every K-abstraction follows every reduction step which is not
a K-abstraction. Curry[12] refers to expressions as fictitious if they appear
ac the arguments of K-redexes; hence A is a fictitious subexpression of B if A
is cancelled in the evaluation of B. Theorem 7.7 asserts that the
introduction of fictitious subexpressions can be postponed to the end of a
reduction sequence. Consider the following expressions:
Z = (LAMBDA(X)3)
A = ((LAMBDA(H)(H H))(LAMBDA(H)(E H))
I = (LAMBDA(X)X)
Then the reduction sequence
3> (2A) > (1724
i3 not K-normal, since the K-abstraction 3»\2 A) precedes the beta abstraction
(z A)»(I (Z A)). We may, however, reorder the sequence so that the fictitious
subexpression A is introduced in the last reduction step; the resulting
reduction sequence
3> (I 3)» (I (Z24))

is K-normal.




7.2 -107-

7.2: Consistency of Either-K Theories -

It was noted, following tne proof of the consistency of the Either-R theories,

that the technique used there was inapplicable to the Either-K axioms since
unrestricted beta conversion does not preserve the eaclosure relation. We
avoid this difficulty in the corresponding proof for the Either-K theories by
arranging the reduction sequence of an EITHER-free expression so as to ensure
that arguments in beta contractions are unitary. Since the Either-K reduction
sequence of an EITHER-free expression can introduce non-unitary subexpressions
only through K-abstraction, the result of the preceding section provides a
critical step in the present proof.

We begin by distinguishing expressions containing only unitary subexpressions:

Defn 7.8: An expression X is pure if every subexpression of X, including X
itself, is unitary.

Note in particular that every EITHER-free expression is pure. We now procede
to the major task of this section, which is the proof that the reductions
permitted by our axioms preserve purity of expressions. We begin with the

case of beta-contractions:

Lemma 7.9: Let Y be EITHER-free and let X be a pure beta-redex of the form
( (LAMBDA(y)B) A)

such that for each e-residue X’ of X, X'=Y. If Z is the result of lambda

conversion on X (ie, Z is the result of substituting A for each free y in

B), then for every e-residue Z° of Z, Z° =Y.

proof: Let Z° be an e-residue of Z. Then 7’ contains zero or more

occurrences of A,, A,, ..., A, where each A; 1is an e-rcsiaue of A, By
the purity of X, A is unitary, hence each Ai is convertible to A1. Thus

2°22°° where Z°° is the result of lambda conversion on

( (LAMBDA(y)B ") A1)

where B’ is some e-residue of B. Hence Z =Y, and Z°=Y.




Lemma 7.10: Let X, Y, Z, and Z° be as in Lemma 7.9, above. Then Z is pure.

proof: Let U be an arbitrary subexpression of Z, and let W be the
corresponding subexpression of B. If W contains no occurrences of y
which are free with respect to X, then W and U are identical, hence U is
unitary by the purity of X. If W contains such occurrences of y, then U

is the result of lambda conversion on
( (LAMBDA(y)W) A)

and, by Lemma 7.9, U is unitary.

We next show that beta abstractions preserve purity, so long as they are not

K-abstractions:

Lemma 7.11: Let Z be a pure expression containing 1 or more occurrences of

the subexpression A. Let W be a beta-redex of the form
((LAMBDA(Y)B) A)

such that the contractum of W is Z. Then W is pure and, for every

e-residue W’ of W there exists an e-residue Z° of Z such that W'=Z°.

proof: Since A is a subexpression of the pure expression Z, A is unitary;
let the e-residues A1', AZ',...Ak' of A each be convertible to A° in the
lambda calculus. For each e-residue B’ of B there is a corresponding

e-residue Z° of Z, such that Z° contains some A ‘ in place of each free

occurrence of Y in B; hence Z°=S[A’;y;B°). Each e-residue W’ is of the

form ((LAi'MBDAi'(Y)B')Ai') where B’ is an e-residue of B; but then W' is
convertible to S[A‘;y;B°]=2°. Thus each e-residue W’ of W is convertible

to an e-residue Z° of Z. Noting that homologous subexpressions B1 and 21
of B and Z, respectively, are either identical or related by
Z1=S[A°;Y;B1], we deduce by the above argument and the purity of Z that B

is pure. Hence W is pure.

Note that Lemma 7.1% fails to hold for K-abstractions; consider, for example,

the K-abstraction
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M>( (LAMBDA(X)M) (EITHER 2 3))

where M contains no free occurrences of the variable X. Clearly the
abstraction of M is impure regardless of the purity of M. We now present the
principal result of this section, from which the consistency of the Either-R

axioms follows directly:

Lemma 7.12: Let X»>Y be a single reduction step other than a K-abstraction in
Either-K, and let X be pure. Then Y is pure and X encloses Y.

proof: The cases where X»Y is a beta conversion follow directly from Lemmas
7.9, 7.10, and 7.11; and if the step is an alpha conversion, the
e-residues of Y are clearly congruent to the e-residues of X, and Y is
pure. If XY is a delta ccnversion then both X and Y are EITHER-free and
the lemma is trivially true. If X»>Y is an EITHER-conversion in either
di rection, the purity of Y follows fr'm the purity of X and the

e-residues of X and Y are idenﬁical.
The consistency of the Either-K theories is presented as

Thm 7.13: Let X and Y be EITHER-free expressions, and let X»Y in Either-K.
Ther X=Y in the lambda calculus.

proof: From Theorem 7.7, we may assume that there is a K-normal reduction

sequence from X to Y; let Xé...>X1>Y0>...>Y be such a sequence, where the

subsequence Xé...)YO contains no K-abstractions and Y0>...>Y contains
only K-abstractions. Then YO must be EITHER-free, since each of the
K-abstractions Y1>Yi+1 can only increase the number of EITHER redexes,
and Y is EITHER-free, Y0=Y in the lambda calculus since each of the
conversions Y0>...>Y is a valid beta conversion. By Lemma 7.12, X must
enclose YO since X is pure; but each of these expressions is EITHER-free

and hence is its own e-residue. Thus X=Y0=Y.

Corollary 7.14: Let X and Y be EITHER-free expressions, and let XaY in
Either-K. Then XzY in the lambda calculus.
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proof: Directly from Corollary 7.13.

7.3: Functional Domains of Either-K

The semantics of the Either-K Theories bear a superficial similarity to those
of the corresponding Either-R-# Theories: in each case a functional domain F
of the lambda calculus is extended to a domair F* whose elements are
enumerable subsets of F. The question of restrictions on beta conversion
sSeems, at first glance, to be an issue of evaluation order whose semantic
ramifications parallel, say, those of the applicative/normal order
distinction. While this analogy can be defended, as it has been in earlier
sections of this thesis, there is evidence suggesting that the distinction
between the Either-R and Either-K semantics is of a rather more fundamental

nature.

The distributivity of function application over EITHER terms, sanctioned in
the Either-R Theories by Axiom rh>, constitutes a limitation on the expressive
oower of languages built on these theories. Consider, for example, the
function f whose informal definition is

flx] = x+x;

which computes, in the lambda calculus, a numeric value which is twice the
value of its argument x. Our experience with conventional applicative

languages reinforces an intuitive expe-.cation that f will have only even

numbers in its range (assuming that the domain of f is the set of natural
numbers). The natural extension of our intuition to the Either-R Theories is
consistent with the range of f there, containing enumerable sets of even
numbers. In the Either-K Theories, however, we must realign our intuition.
The application of f to the argument either[2;3], for example, is reducible in
Either-K to any of the numbers in {4,5,6} rather than the {4,6} result of
Either-R. Thus although the semantics of the application of functions to
single-valued arguments remains consistent with the lambda calculus, the

behavior of functions with multivalued arguments differs between the Either-R

and Either-K systems.
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A more bizarre demonstration of this difference is the function £ defined

informally by

glx] = if x>x then 1;

else 0;

which, in the lambda and Either-R calculi is equivalent to the single argument
constant function which always returns zero. Yet the Either-K reduction of
gleither[1;2])]) yields the values {0,1}, even though g{1] and g[2] each
evaluate to {0}. Since the behavior of g in Either-K violates the
distributivity axiom of the Either-R Theories, we clearly cannot express in
these theories a function with the properties of g; yet g appears to be a

canputable function definable on the domain ~#%,

7.4: Summary

This chapter presents a consistent theory which combines EITHER conversion
with unrestricted beta conversion., This combination requires 1) that we
abandon the distributivity of functions over EITHER terms, and 2) that we
reinterpret the semantics of EITHER. The latter reinterpretation is only
hinted at in this chapter, and we confess that the semantics of the Either-g

theories require further study.
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Chapter 8:

Summary aad Conclusions

There has been a definite tendency, in the course of the work reported here,
to provide questions much more frequently than answers. We regard this
situation, perhaps'defensively, as a healthy attribute of research in a field

as theoretically immature as the science of programming languages.

8.1: Summary

The general topic of this thesis is the correspondence between the syntactic
mechanism of an interpreter and the semantic structure of the language it
interprets. The restriction of this study to the class of applicative
languages is defended, in Chapter 1, on the grounds that
i) Interpretive mechanism for applicative languages is simple, since such
complications as assignment, side effects, and transfers of control are
avoided;
ii) The semantics of applicative languages are independent of the notion of

t ime;
1ii) The theories of mathematical functions may serve as a semantic basis

for.applicative languages.

Expressions of an applicative language are viewed as representations of
objects in an abstract semantic functional domain containing functions .nd
constants, and expressions are semantically equivalent if they represent the

same abstract element.

The stack- and tree-environment interpreters nresented in Chapter 2 illustrate
semantic limitations imposed by typical compromises between efficiency and
expressive power. The defect of S1 must be viewed as an interpreter "bug" if
we take mathematical functions as a semantic basis, since certain expressions

are interpreted by S in a manner inconsistent with the behavior of functions.

The T interpreter of Chapter 2 relates the issue of evaluation order to the
expressibility of certain functions. The applicative order evaluation of T,

1

i.e., the FUNARG problem.
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in which arguments to a funct ion are evaluated pefore the application of the

function, is seen to lead to the inexpressibility of funct ions which ignore

the value of their arguments. This motivates a preference for the normal
order evaluation of the N model, in which such functions are expressib’ 2, The
demonstration in chapter 2 of a functional domain F of N assures us that every
expression is interpreted by N in a way that is consistent with our functional
semantics; it does not, however, establish that every valid semantic element

(e.g., every camputable funct ion defined on the semantic domain of N) is

expressible in N.

Chapter 3 demonstrates a function, WHICHFF, which despite its comput .bility is
expressible neither in N nor i, “he lambda calculus. The expressibility of
WHICHFF seems to require a mechanism analogous to multiprocessing, and two
therapeutic language extensions are considered:
1) A "coding” primitive which allows a program access to the representation
of a function supplied as its argument; and
11) A primitive EITHER whose interpretation involves the dovetailed
evaluation of its arguments.
The admission of coding essentially abandons all semantic constraints and
allows the programmer to reinterpret expressions as he wishes; we thus discard
this alternative as semantic anarchy. The EITHER primitive may be justified
in terms of applicative semantics, however, by the expansion of the semantic
domain F into the power set F*, each of whose elements is a subset of F. Thus
once EITHER is introduced we must semantically associate each expression X
with an emumerable set of abstract values or "meanings” of X. Such a

mult ivalued semantic domain is necessary to reconcile the function WHICHFF

with applicative language semantics.

The semantic domain F* motivated in Chapter 3 is suggestive of a compirete
lattice ordered by set theoretic inclusion. The undefined (or nonterminating)

computation is naturally associated with the empty set in F*, and that
expression TOP whose values include the entire domain of the lambda calculus
corresponds to the maximal element of F*, The semantic element associated
with the expression either[a;b] becames the union of the respective F*¥*

elements corresponding to the expressions a and b.
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In Chapter 4 our attention returns to the subject of interpretive mechanisms.
In particular we desire a formalism for syntactic manipulation of expressions

in 2 language including EITHER, reflecting the insight gained through informal

scrutiny of the structure of F* in Chapter 3. The formalisms introduced in
Chapters 4-7 are systems of conversion axioms, similar to (and based on) the
lambda calculus; each system (or theory) defines an ordering, », corresponding
to inclusion in F* -- thus, for example, either[a;b]»a ard either[a;b]>b in

each system.

A complication arising in Chapter 4 involves the reconciliation of the beta
reduction1 of the lambda calculus with the intuitive.y - .’vated requirement
that functions be distributive over EITHER terms -- i.e., that f(either(a;b]]
be equivalent to either[f{al;f[b]]. The EITHER-R system presented in Chapter
4 resolves this difficulty by restricting beta conversion to arguments which
are reduced to normal form; while consistent, L.e resulting theory is too weak

to be useful.

The syntactic mechanism of ®*-conversion, presented in Chapter 5, solves this
problem of Either-R. Chapter 5 introduces the expression * as a canonical
(normal form) representation of the undefined computation, and extends the
ordering » so that the syntactic significance of * (A>®* for every expression
A) reflects the semantic significance of the undefined computation (the empty
set is a subset of every element of F#), The use of *-reduction allows every
expression, including the single-valued expressions of the conventional lambda
calculus, to be reduced to multiple normal forms. The R-®* theory developed in
Chapter 5 reinforces an interpretation of the normal forms derive'.le from an
expression X as approximations to X, and shows that for any context A{X}
having normal form value A’ there exists a sufficiently good (normal form)
approximation X* of X such that A{X®*} also has the value A°. This result has
major semantic consequences; in particular) it implies that meaning of an
expression X'is completely characterized by the set of normal forms derivab
(in R-%*) from X. Mcrecver the result is shown to carry over to the
conventional lambda calculus, since every normal form derivable in the lambda

calculus is derivable in R-#*, The extensional semantic equivalence relation

L Informally, beta reduction is the application of a lambda expression
(user-defined function) by substitution of its argument for free occurences of
the bound variable in the body of the lambda expression,
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suggested by these findings, namely the interconvertability of normal forms
derivable in R-*, is demonstrated by showing the equivalence of

non-interconvertable expressions for the fixed point opgrator Y.

The mechanisms of ®-conversion and EITHER-reduction are combined, in Chapter
6, to yleld the Either-R-* system. The respective functions of the two
mechanisms are, in a sense, complementary; roughly speaking EITHER allows
expressions to be combined to make "stronger" expressions while ®_conversion
allows expressions to be rcsolvea inlo weaker component expressions. The
Either-R-* system is consistent, retains the power of the lambda calculus, and
interprets EITHER according to che semantic notions of Chapter 3. We thus
view Either-R-* as a practical syntactic basis for the construction of for
interpreters of languages based on multivalued semantic domains; such an

interpreter, E, is presented at the end of Chapter 6.

Chapter T explores an alternative resolution of the conflict between
unrestricted beta conversion and the distributivity of functions over EITHER
terms. The Either-K system presented in that chapter sacrifices such
distributivity in order to allow the unrestricted beta conversion of the
lambda calcuius. While this combination results in a consistent theory (as
demonstrated in Chapter T) it leads to a semantic structure which is
fundamentally different from that of the Either-R theories, in particular
regarding the application of functions to multivalued arguments.

8.2: Conclusions

The study of applicative languages from the complementary viewpoints of
interpretive and semantic structure leads synergistically, we feel, to a new
insight in each area. We have repeatedly found the syntactic mechanisms and
semantic structures to be mutually illuminating, and view this dual
perspective as a principal influence on the direction and motivation of this
thesis.

The following are viewed as the principal results of this thesis:

1) The motivation and presentation of an appiicative model of

mult iprocessing. The applicative approach to this mechanism has certain
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technical advantages over conventional formulations; notable among these
is the complete irrelevance of time as a parameter of language semantics. ‘

The corollary disadvantage of the applicative model is its uselessness in

the study of time dependent implementation considerations .- such as

scheduling, deadlocks, and synchrony >f processes.

2) The formulation of the s2mantic domain F#* foé multivalued applicative
languages. We find particularly interesting the potential extension of
the Scott formalism which F® suggests: we have added, to the Scott
domain, uniqve upper bounds of arbitrary sets of semantically distinct

elements. The lack of such upper bounds in the Scott model has been
conspicuous, and the EITHER construct presented here seems to provide a
natural interpretation for them.

3) The mechanism of ®*-conversion and the results relating it to the
conventional lambda calculus. These results augment the lambda calculus
with a syntactic substructure (i.e., tae ordering under ») which bears
close analogy to the semantic structure developed by Scott. In addition,
®_conversion provides a concrete (syntactic) relation of semantic
equivalence which may illuminate the relationship between lambda calculus

expressions having no normal forms.

4) The presentation of consistent theories of EITHER conversion. The
analyses of these systems is by no means exhaustivé; we have not shown,

for example, that no axiom is derivable from the remaining axioms. The

theories do, however, provide sufficiently powerful syntactic mechanism

that interpreters may realistically be based upon them.

8.3: Directions of Future Research

We recognize that this section constitutes fertile grounds for an essay strewn
with universal quantifiers. Restricting our attention to specific questions
left unanswered by this work, we find most demanding of further attention:

1) The relative expressive power of EITHER-augmented versus CODE-augmented
languages. We conjecture that every computable function defined on the
single-valued domain of the lambda calculus is expressible in the
language E, and have in fact spent considerable effort in trying
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(unsuccessfully) to prove this conjecture. The discovery of computable
functions expressible (with coding) in C but inexpressible (with EITHER)

in E would be counterintuitive and somewhat depressing. ‘

2) The semantics and expressive power of languages based on the Either-K
Theories. The presence of functions which compute different results for
a multivalued argument X than for singlevalued components of X raises new
fundamental quecstions: what is a computable function on F#? Are the i
Either-K Theories functionally complete? If not (and we are pessimistic

on that issue) which functions are not expressible in Either-K?

3) There appears to be a great deal of room for furth¢r development of the
theories of EITYER conversion. The extension of these theories to allow
eta reduction seems feasible. Further extensions may make the
extensional relation of semantic equivalence tractable by syntactic means
alone, ¢.g. by axiomatically asserting in Either-R-* the equivalence of

expressions whose normal forms are interconvertable.

4) The area of interpretive mechanisms for EITHER-based languages has some
interesting possibilities. The techniques of computational complexity
studies, for example, might yield some quantitative bounds on the
computation time necessary ior tne evaluation of classes of applicative
expressions. As the cost of computation power continues to plummet,
methods for making use of massive parallelism becomes a practical as well

as academic interest.

5) The relationship between the mechanisms of EITHER- and *-conversion and
the semantic constructions of Scott demand more rerious attention than
the informal parallels drawn here. Much of Scott’s important work seems
to bear rather directly on the systems presented here, and we recognize

that too little advantage has been taken of this resource.

It must finally be acknowledged that our quest for a functionally complete
language -- one whose domain D contains every computable function defined on D
-- has not been an unqualified success. The lambda calculus, whose funct ional
completeness was suspect, was scrutinized and found to be incapable of

expressing certain functions (e.g. WHICHFF). To remedy this inadequacy, the

lambda calculus was extended via the EITHER construct; the result (the Either
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theories) is, indeed, capable of expressing WHICHFF. However, the new
systems have additional elements in their domain, so that the functional
completeness of the Either theories is again suspect. The results of this
thesis, then, suggest a similar program of scrutiny and extension to repair
their inadequacies. There is an inevitable circularity in this course of
research, mitigated by the fact that each cycle allows us to see previous
cycles more clearly.

A way a lone a last a loved along the/

riverrun, past Eve’s and Adam's, from

swerve of shore to bend of bay, brings

us by a commodius vicus of rec{rculation

back to Howthe Castle and Environs.

-Finnegan’s Wake,
last/first lines
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