
Best
Available

Copy

.,

AD-787 796

FUNCTIONAL DOMAINS OF APPLICATIVE
LANGUAGES

Stephen A. Ward

Massachusetts Institute of Technology

J

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

September 1974

DISTRIBUTED BY:

\m\
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

-

—AJ

BIBLIOGRAPHIC DATA
SHEET

1. Keport No.

MAC TR- 136
4. I ii U .inJ Suhl itlf

Functional Domains of Applicative Languages

7 \lillior(s)

Stephen A. Ward
9. Performing Organization Name and Address

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139

12. Sponsonog Orpani/ation Name and Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington. Va 22217

3. jier ipiem 's_A.

7f7 7'?C
5. Report Date; Issued

September 1974

8. Performing (txc ii,;/,r
No- MAC TR- 136

10. Project Task ftork I. \

11. Ciontract (jrant No.

NOOO14-7O-A-O362-00O6
13. Type ol Report i: I'er.oi

Coverco : Interim
Scientific Report

14.

15. Supplementary Notes

16. Abstracts
The expressive power of a particular applicative language may be characterized by the
set of abstract directly representable in that language. The common FJNARG and
applicative order problems are scrutinized in this way, and the effects of these
weaknesses are related to the inexpressibility of classes of functions. Certain
computable functions which are inexpressible in the lambda calculus are identified,
and it is established that the interpretation of these functions requires a mechanism
fundamentally equivalent to multiprocessing. The EITHER construct is proposed as an
extension to the lambda calculus, and several theories including this mechanism are
presented and proved consistent (in the sense that they introduce no new equivalence
into the lambda calculus). A syntactic analog to the Scott construction, *-conversion
is developed in conjunction with these theories; this adjunct allows reduction of
expressions having no normal forms in the usual lambda calculus to finite normal form

approximations of the expressions.
17. Key Words and Document Analysis. 17o. llescriptors

17b. Identifiers Open-Ended Terms
NATIONAL TECilNlCAL
INFORMATION SERVICF

U S Department of Commerce
Springfield VA 22151

D D O
EffifHME!

'X NOV 11 » 0
Bonnsuj

17e. C OSATI Field/Group

18. Availability Statement

Approved for Public Release;
Distribution Unlimited

19. Security Class (This
Report >

I:N(i ASSII n-n
20. ^ecuriiv Class (This

Pa»
üxc i.ASSiin n

21. V

22. P
ill

*s:3tr
-ORM N riS-)5 IREV. 3-721 THIS FORM MAY BE REPRODUCF.n

M

,2/

FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES

Stephen A. Ward

September 1974

•

.

\
This research was supported by the Advanced
Research Projects Agency of the Department
of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N00014-

70-A-0362-0006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

/I

,

<««- . * -<— - Mfc

3

ACKNOWLEDGEMENT

The author gratefully acknowledges the assistance of his Thesis Committee in

this work. Professors Jack Dennis and Joseph Weizenbaum, his readers,

provided helpful suggestions and encouragement during the course of the thesis

research. The author feels a special indebtedness to his thesis supervisor,

Professor Michael Dertouzos, for his essential contributions to the direction,

motivation, and technical content of this work.

Particular thanks are due the author's wife, Debbie, whose constant support

and encouragement have thus far been rewarded by a depressingly long period as

the wife of a student.

The author is grateful to the Department of Electrical Engineering for the

Instructorship under which much of this research wai> carried out. This work

was also supported in part by Project MAC, an M.I.T. research program

sponsored by the Advanced Research Projects Agency, Department of Defense,

under Office of Naval Research Contract N0001^-70-A-0362-0006,

-

wm

/

.4.

FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES

Abstract

The expressive power of a particular applicative language
may be characterized by the set of abstract functions di-
rectly representable in that language. The common FUNARG
and applicative order problems are scrutinized in this
way, and the effects of these weaknesses are related to the
inexpressibility of classes of functions.

Certain computable functions which are inexpressible in the
lambda calculus are identified, and it is established that
the interpretation of tht^e functions requires a mechanism
fundamentally equivalent to multiprocessing. The EITHER
construct is proposed as an extension to the lambda calculus,
and several theories including this mechani^.iii are presented
and proved consistent (in the lense that t'iey introduce no
new equivalences into the lambda calculus).

A syntactic analog to the Scott construction, *-conversion,
is developed in conjunction with these theories; this adjunct
allows reduction of expressions having no normal forms in
the usual lambda calculus to finite normal form approximations
of the expressions. This leads naturally to a technique for
proving the extensional equivalence of lambda calculus
expressions which are not interconvertible.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, June 1974,

/

*m j

-5-

Table of Contents

Table of Contents

: Introduction
1.1: Programming Language Semantics
1.2: Applicative Languages
1,3: The Thesis: Statement of the Problem
1.1: Outline of the Thesis
1.5: Functional Domains

1.5.1: Intuitive Criteria for Functions
1.5.2: Functional Drtnaii;: Definition

: Interpreter Structure and Expressive Power
2.1: Syn tax of Mode Is
2.2: Curried Functions
2.3: The FUNARG Problem

2.3.1: The S model
2.3.2: Arithmetic Completeness of S
2.3.3: Functional Incompleteness of S

2.'»: Evaluation Order
2.4.1: The T Model
2.4.2: Functional Incompleteness of T

2.5: The N model
2.5.1: Axioms for the Lambda Calculus
2.5.2: Nv "mal order: SubstitutJcn

2.5.2.1: The N Evaluator
2,5.2.2: Axiomatic Consistency of N

2.6: Functional Domain of N
2.7: Summary

; Motivation for a Multi-valued Semantics
3.1: Necessity of non-functions: WHICHFF
3,2: Coding primitives: The C model

3.2.1: Trie Turing-machine Tar Pit
3.2,2: Functionality of DECODE

3,2,2,1: LAMBDA-free AEs
*,2,2,2: An Enumeidtion of D

E model: Multiprocessing primitives
The Intuitive Paradox
Multi-valued Semantic Elements

3,5,1: Domains of Specification
3,5,2: EITHER and the Lambda Calculus

3,5: The Power Set Domain
3,7: Interpretation of F*
3,8: Computable elements of F*
3,9: Summary

U: Theories of EITHER-conversion
4,1: Preliminary Definitions
4,2: The Either-R Theories

4,2,1: Properties of Either Theories
4,2,2: EITHER and Evaluation Order
4.2.3: Consistency of Either-R

4.3: Summary

5: "-Conversion
5.1: The R-» Theories

5,1.1: Significance of normal forms
5.1.2: Theorem on Normal Forms
5.1.3: Relation to the Lambda Calculus
5,1,4: Consistency of R-» Theories

5,2: Applications to the Lambda Calculus
5,3: Summary

6: The Either-R-« Theories
6,1: Consistency of Either-R-*
6.2: Relation of • to EITHER
6.3: Evaluators for E
6.4: Summary

3.3:
3.4:
3.5:

^m

Table of Contents -6-

7: The Either-K Theories
7
7.2
7
7

K-abatraction
Consistency of Either-K Theories
Functional Domains of Either-K
Summa ry

8: Summary and Conclusions
8.1: Summary
8.2: Conclusions
8.3: Directions of Future Research

9: References

10: Biographical note

101
101
ir-
11U
111

113

111
117

120

121

-7-

Chapter i:

Introduction

1.1: Programming Language Semantics

The semantics of a programming language may be viewed as a theory which

I iccounts for the benavior of programs written in that language. An

interpreter for a language L is a model for the semantics of L, and a language

whose semantics is incomplete (in the sense of an incomplete theory) may have

many "correct" interpreters which behave differently just as an incomplete

theory may have disparate models. We find that the usual more specific

definitions of semantics (e.g. "the relation between expressions and the

objects which they denote") make assumptions about the structure of a universe

cf "meanings" which are difficult to justify in the general case, where side

effects, assignment, and transfers of control must be accounted for

semantic ally. Such considerations motivate the restriction of the present

work to applicative languages.

Serious concern for formal semantics is not usually an important consideration

in the architecture of practical languages. Typically a language is designed

largely by pragmatic considerations and the formal statement of its semantics

is either abandoned entirely or postponed until the more important

implementation issues are sorted out. The subsequent semantic formalir:ation

/ of the language inevitably becomes a major task, and the complexity, volume,

and inscrutability of the result may constrain its usefulness. A classic

example of such an undertaking is the description of PL/1 in the Vienna

Definition Language[24].

An alternative tecrnique of language design, exemplified to some extent in

LISP[26] and its recen*- derivatives, involves the specification of the

pragnatics of a language after decisions on some particuJ^r concise semantics

have been made. Unfortunately languages so designed tend to have serious

defects from a practical point of view and are abandoned ot complicated by the

ad Jit ion of ad. hoc. mechanisms to make them more useful.

*m

-8- 1,1

The designer of a language is thus confronted with a choice between concise

semantics and practical usability, and he justifiably t°nds to opt for the

latter alternative. The extent to which semantic considerations may be

reconciled with practical issues remains an important open question, and the

development of practical languages with concise, elegant semantics is the lonp

term goal of much of Computer Science esearch. The problem is being attacked

from two discernible directions: (i) semantic formalisms which deal with the

mechanisms of extant practical languages, such as the analysis of

uninterpreted schemata[9,8, n, 17,25]; and (ii) the adaptation of existing

formalisms to very simple model languages such as the lambda

calculus[2,3,5,15,22]. The work reported here falls naturally into the

second category.

1.2: Applicative Languages

Familiar concepts of mathematics provide an informal semantics for many

aspects of computer languages. Manuals for most programming languages relate

various program constructs to such notions as real numbers, arithmetic, and

functions, with which the reader is presumed to be acquainted. Often

terminology and notation are borrowed from mathematics, implying some informal

relation between, say, a FORTRAN "function" and the common mathematical notio^i

of function. Th^s relation is only approximate, since for example no

mathematical analog has been established for the FORTRAN function which prints

its argument on the teletype. In order to formalize the relationship between

program constructs and mathe^tical notions, then, we focus our attention on

the highly restricted class of applicative languages.

The semantic bases of applicative languages are the theories of mathematical

functions, and the constructs of these .".anguages are restricted to aimpie

analogs of the related mathematical notions. Each applicative language

provides a syntactic formalism for the representation of functions and their

application to arguments, and the semantics of an c-pplicativ« language is in

eeneral a rule for the association of expressions, constructad according to

this formalism, with values from an abstract semantic domain containing

functions and constants. Formalizing a consistent semantics for an

1.2 -9-

applicative language appears to be an easy first step in purs' ing the general

problem of programming language semantics; since set theory provides

satisfactory semantic domains, all that remains is the seemingly simple

association of expressions with set theoretic functions and constants.

Yet even this simple problem is plagued with complications, and it is only in

recent years that progress has been made in this area largely due to

techniques developed by Dana Scott[5,6,22]. In fact, the usual set theoretic

characterization of functions is not so well adapted to tue semantics of

applicative languages as one might suspect: type restrictions, placed on set

theoretic functions in order to avoid Rüssel's Paradox, are difficult to

reconcile with the natural proclivity of applicative languages for the

.-^elf-application of functions. The work of Scott justifies our optimism that

such problems are tractable, and that the semantics of applicative languages

may be based on the mathematics of functions. The extension of the resulting

semantics to non-applicative mechanisms such as assignment and side effects

however, remains an area of grave uncertainty, and it seems likely that

theories of functions will ultimately prove to be inadequate bases for the

semantics of programming languages in general. In the meantime, however,

applicative languages and their functional semantic domains are probably the

closest we have come to a successful programming language semantics, and we

feel that there is much insight to be gained from further exploration of this

area.

r be semantics of an applicative language L, then, may be viewed as a mapping

/ between the set of valid expressions in L (the domain of discourse of L) and

and a semantic domain of abstract functions and constants, A consequence of

the Turing Universality of L is that this mapping must be many to one; each

abstract semantic element has, in general, infinitely many representations in

the language L. Tne semantic mapping thus leads naturally to a notion of

semantic equivalence between expressions in L, partitioning the domain of

discourse of L into equivalence classes each of which corresponds to a single

abstract semantic element.

-10- 1.3

1.3: The Thesis: Statement of the Problem

The problem which this thesis addresses is the characterization of the

expressive power of an applicative language in terms of the structure of its

abstract semantic domain. This process generally involves relating specific

applicative language features to the expressibility of particular classes of

functions, e.g. the solution of the FUNARG problem to the expressibility of

functions mapping integers onto an infinite range of semantically distinct

functions.

This work focuses on a very few specific language mechanisms, with particular

attention given to an applicative analog of multiprocessing. Partial answers

are provided to such questions as:

1) Are there fmctions whose computability depends fundamentally on a notion

analogous to multiprocessing?

2) What applicative mechanisms are necessary for the expression of such

functions, and is the impact of these mechanisms on the structure of the

semantic domain?

3) What is such relationship between such multiprocessing constructs and

other issues of applicative language evaluation, such as evaluation

order?

The work presented here might be characterized as a search for an applicative

language L which is functionally complete in the sense that every computable

function definable on the semantic domain of L is expressible in L — our

reluctance to cite this as the principal goal of the thesis is probably due to

our failure to find such a language.

1.1: Outline of the Thesis

The organization of the remaining chapters is as follows:

Chapter 2 develops the basic framework through the presentation of three

interpreters for applicative languages, designated S (stack environment),

T (tree environment), and N (normal order). Each interpreter exemplifies

 ^ii

1.4 -11-

a typical language limitation and each is used to relate a specific

language characteristic to the expressibility of a particular class of

functions.

Chapter 3 demonstrates a particular computable function which is

inexpressible both in N and in the lambda calculus, and relates this

inexpressibility to the semantic requirement that an expression in these

languages have at most a single value. Two alternative language

extensions are discussed, each of which solves this specific

expressibility problem. The solutions involve, respectively, primitives

for coding the representation of functions as integers and a

multiprocessing primitive called EITHER. Each of these extensions

requires r uification of the structure of the semantic domain, with the

use of coding leading to drastic and undesirable consequences. For this

and related reasons, EITHER is chosen. To account for the semantics of

EITHER, the semantic domain of N is expanded into a power set and each

expression X is associated semantically with an enumerable set containing

the admissible values of X.

The formalization of EITHER-augtnented languages may procede in several ways,

differing in the restrictions placed on evaluation order. Chapters 4, 5, 6,

and 7 deal with certain formal theories, based on the lambda calculus, for the

reduction of expressions involving the EITHER construct:

Chapter 4 provides basic definitions and presents the Either-R Theory, in

which lambda conversion is allowed only in expressions whose arguments

are in normal form. This restriction is motivated by the intuitive

desire to maintain the distributivity of functions over terms of an

EITHER clause, but it limits the power of languages based on this theory.

Chapter 5 develops a theory of «-conversion, designed to mitigate the

limitations imposed by the restricted lambda conversion of the Either-R

Theory. The element • is introduced as a canonical representation of

every nonterminating computation, and a syntactic mechanism i? provided

for the reduction of expressions to approximations which are in normal

form. The use of «-conversion provides techniques for proving certain

relationships in the conventional lambda calculus. This chapter presents

*m

I

-1 2- 1. t

results which are of interest independently of their relation to the t

development of the Either theories, i

Chapter 6 presents the Either-R-* theory, combining the EITHER mechanism ij

with •-conversion, and establishes its consistency. While this system '

retains the restriction on lambda conversion, it has the power of the .

lambda calculus augmented by the EITHER primitive. Thus, languages based

on Either-R-* solve the specific expressibility problem raised in Chapter

3. Interpreters and semantics for such languages are discussed.

Chapter 7 presents the Either-K theory , w^.ich combines the EITHER construct

with unrestricted lambda conversion. Significant semantic differences

between the Either-R and Either-K theories are noted, and it is

informally observed that the removal of the restriction on lambda

conversion leads to the expressibility of certain functions which are
I

inexpressible in the Either-R-* languages.

The last chapter summarizes the results of this work and proposes avenues for

future research.

1.5: Functional Domains

An underlying assumption of this research is that the fundamental semantic

intent of applicative languages is to provide computational models of

mathematical functions. As a consequence of this assumption, we are inclined

to view functions in an applicative language as approximations or models of

abstract mathematical finctions, and to treat any disparity between the

behavior of the computational model and the corresponding mathematical

function as a "bug" or idiosyncrasy in the language.

The thrust of this research is aimed at the limitations of particular

applicative languages as models of systems of mathematical functions. We

begin by specifying, in the next section, criteria which must be obeyed by

applicative functions to be intuitively satisfactory as models of mathematical

functions, and then distinguish for each applicative language L that subset of

the domain of L containing only such intuitively satisfying functions. We

call such a subdomain of L a functional domain of L.

mm

1.5.1 -13-

1.5.1: Intuitive Criteria for Functions

^stricting our attention for the moment to unary (single argument) functions,

ue note that

1) A function £ is a mapping from a domain D to a range R . The

set-theoretic model of f is a set of oMered pairs, {,. .<D. ,R. >, ,.}, such

that f[Di]=Ri if and only if <Di.Ri> is an element of f.

1 2) A function f may be partial over domain D, i.e., there may be elements D.

in D such that f[D.] is undefined; this corresponds to the practical

situation of a nonterminating computation or a computation which results

in an error condition. We shall refer to such a computation as

divergent.

3) If f and £ provide the same mapping, then they are the same function.

U) g. is a subset of f (in the set-theoretic sense) if and only if for every

Di in the domain of g., £[D]=R implies f[D]=R..

Given a language L, and a function £, a principal intuitive requirement is the

distinction between the function f. and the various algorithms (or expressions

• In L) which may be used to compute f.. A major complication in the semantics

of applicative languages arises from this many-to-one correspondance between

algorithms and functions, particularly in light of the well known

undecidability of equivalences between algorithms.

|
/

/
1.5.2: Functional Domain: Definition

The intuitive considerations of the previous section motivate the following

definition:

Defn 1.1: A functional domain F is a set containing the set N of natural

numbers and computable functions, along with an equivalence relation '

such that:

Unless specifically stated, we shall use the term function with no implied
type restrictions. Thus functions include functionals of arbitrary order,
consistent with the typeless character of the applicative languages considered
her e.

•

i — A. . - - 1 "-

-14- 1.5.2

1) if x is in N or £ is in N. then x~y if and only ir x=y'

2) if neither x nor y. is in N, then x~y if and only if for every z in

F. x[z.]~Y.[2.] or both diverge together,

3) if x~i.. then for every z in F, z.[x]~z[Y.] or both diverge together.

Clause (1) sl.nply asserts that different numbers, eg 2 and 3, are semantically

different objects. Clause (2) asserts that any object in F that is not a

number is a finction, and moreover that functions are semantically equivalent

if and only if they perform equivalent computations for every set of

arguments. Clause (3) insists that the application of a function to

semantically equivalent arguments yield semantically equivalent values.

An expression z is said to be functional over the domain F if, for every

choice of x. -,rid £ in F, x~y_ implies that z.[x]"z.[y.] or both computations

diverge together. Thus (3) is the requirement that every function in a

functional domain F be functional over F,

We note that the equivalence relation " is not, in general, computable.

Furthermore, there may be elements x. and y. in F such that x~y. is not defined,

that is, such that neither x'X. «or "(X'Y.) is derivable from the above

definition.

This definition is rather more specific than necessary. The choice of natural

numbers as a basis of semantically distinct constants, rather than, say,

character strings or floating point numbers, is arbitrary. In dealing with

the lambda calculus we could make the apparently stronger • jquirement that

normal form expressions be semantically distinct, rather than Just the

particular normal form expressions which are numeric constants; however it

happens that the two alternatives are entirely equivalent in the context of

our model lar^uages, and our present definition is the less dependent on

particular syntactic considerations.

—AJ

2 -15-

Chapter 2:

Interpreter Structure and Expressive Povter

In this chapter several illustrative interpreters for applicative Ian uages

are presented, and compromises in their implementation are related to the

inexpressibility of certain functions. The model interpreters are taken from

Dertouzos[3] where they are discussed and motivated in greater detail.

2.1: Syntax of Models

The essential components of an applicative language syntax are conventions for

the representation and application of functions. Typical applicative

languages provide for the representation of functions by either or" both of the

following means:

1) A set of reserved symbols designating primitive functions whose semantics

are basic to the language;

2) A convention for functional abstraction, or the definition of new

functions by means of expressions containing variables.

The pure lambda calculus of Church[1] is illustrative of languages using only

the abstraction mechanism; the combinatory calculus of Curry[12] exemplifies

the use of primitives without abstraction. Curry[12] has demonstrated the

equivalence of these mechanisms, with minor qualifications, and the choice

between them for our purposes is largely a matter of convenience; we provide

/ here syntactic constructs for both.

Beyond these constraints, the syntactic details of the languages discussed

• here are not important. A LISP-like syntax has been chosen for the

development of tha models and to provide a definite basis for examples and

illustrations, although the results and examples may be translated to conform

to other syntactic conventions which are consistent with these constraints.

Syntactic characteristics of our nrodel languages include:

1) A finite alphabet including the alphanumeric characters and the special

characters "(" and ")";

-

*m^

-16- 2.1

2) A countably infinite set of identifiers, each a finite string of

alphanumeric characters of which the first is alphabetic;

3) A set ef numeric constants, each represented in the language by a finite

string of digits.

The elements of the model applicative languages are the applicative

expressions (AE's) whose syntax is given by:

<AE>

<identlfier>

<canbination>

<AE list>

<lambda expression>

<bvl>

<number>

<letter>

<digit>

:= <identifier> ! <number> I <combination> ! <lamoda

expre3sion>

:= <letter> i <identifier><digit> ,
1<identifier>

<letter>

= (<AE list>)

= <AE> 1 <AE> <space> <AE list>

= (LAMBDA (<bvl>) <AE>)

= <null> I <identifier> <space> <bvl>

= <digit> 1 <digit> <number>

= A i B i .. < i Z

= 1 I 2 ! ... i 0

We assume of these model languages that data is either numeric or functional,

that is, that the value computed for any applicative expression must be either

a natural number or a function.1 An expression X is ^omic if X is an

identifier or a number; in addition the fallowing syntactic forms have special

meaning in our ncdel languages:

1) The syntactic io.-J of a lambda expression is

(LAMBDA(a1 a2 ... an) b)

1 Our decision to ignore for the present other common data types (floating
point numbers, arrays, character strings, lists) is justified by their
codability as numbers so that our results concerning processing of numeric
data may be extended to the processing of these other data as well.

*Lm

/
/

2.1 -17-

where LAMBDA is a reserved identifier in the language, the a. are

identifiers on the bound variable list of the lambda expressions, and the

expression bis the body of the lambda expression.

2) The syntactic form of the application of the procedure (function) f to

arguments x. ... x is

(f x, ... x)
I n

Here f is presumed to be the representation of a functional datum, and

the x. are representations of arbitrary data which are supplied to the

function f as arguments.

There is in each language a small finite set of reserved identifiers used to

denote primitive functions. Our initial models will include the following

primitive function identifiers:

1) The logic values T and F, primitive functions defined r.uch that the value

of the application

(T a b)

is the value of the expression a., regardless of whether the value of the

expression li is defined. Similarly, the value of

(Fab)

is the value of the expression b. whether or not a has a value,

2) The function PLUS of 2 arguments, defined such that the value of the

expression

(PLUS a b)

is the sum of the values of the expressions a and b. The value of the

application of PLUS is undefined if either of the values of a. or J). is

nonnumeric.

3) The ftrction GREATER of 2 arguments, defined such that the value of the

expression

(GREATER a b)

.

♦— - m*

-18- 2-1

is the primitive function T if a has a higher numeric value than the

expression b, and F if the value of a is less than or equal to the value

of b.

We shall often refer to an identifier which is not a primitive function symbol

as a variable. An occurrence of the variable j. in the expression X will be

termed a free occurrence if one of the following applies:

1) X is identically the variable y; or

2) X is of the form (A, ... A) and the occurrence of y is free in one of
i n

the A ; or

3) X is of the form (LAMBDA^ ... aJM). y does not occur in the bound

variable list (a ... a), 'and the occurrence of y is free in M.

An occurrence of the variable y v^ich is not free is bpymj.

2.2: Curried Functions

The syntactic provision made here for functions of multiple arguments requires

certain further elaboration. We may reasonably demand, for example, the

ability to express the function MPLUS defined such that the value of (MPLUS m)

is the m-ary faction which returns the sum of its m arguments. Such

functions are, in general, unrepresentable unless some primitive mechanism is

provided within the language for the abstraction of multiple argument

functions. We might consider the .bstr^tlon primitive ALPHA, defined such

that the value (ALPHA F G m) is the m-ary lambda expression

(LAMBDA(X^.X) (G X (F X, . .. X .))) 1 m m i m-1

where F and G are presumed to represent (m-D-ary and binary functions,

respectively. We might then define MPLUS so that (MPLUS 2) returns PLUS, and

(MPLUS n) returns (ALPHA (MPLUS n-1) PLUS n) for n>2.

Such a primitive is, however, unnecessary in most languages. The technique of

Curried functions1 may be used to couch multiple-argument functions in terms

named in honor of H.B. Curry who developed this technique; see ['2]

/
/

2.2 -19-

of unary finctions, whence the application of F to arguments A, A. ...A
1 2 n

becomes

(... ((F A) A_) ... A)
i d n

and the n-ary lambda expression (LAMBDA(A A0...A)M) becomfis
12 n

(LAMBDA (A^

(LAMBDA(A2)

(LAMBDA(A)M) ...))
n

The convention of Curried functions simplifies the presentation of proofs and

interpreters, as only single argument functions need be considered; we

therefore hastily adopt it for our present purposes. The conventional

multiple argument syntax is slightly less complicated, however, and tends to

greater clarity than the use of Curried functions; we consequently allow

ourselves the informality of switching freely between the two conventions at

our convenience. We may then consider instances of the multiple argument

syntax as an abbreviation for the corresponding Curried syntax, which we take

as basic.

An exception must be made in the firaö model language presented, however, as

the FUNARG problem does not interact gracefully with Curried functions; hence

in this case the assumption of single argument functions is not made.

2.3: The FUNARG Problem

We are now in a position to give an example of a functionally incomplete

language, which we call S. S is an abstraction of the applicative subset of

LISP and similar stack-oriented languages; it serves to introduce the notion

of environment, and demonstrates that certain minimal structural constraints

on environment handling mechanisms are necessary for the expressibility of a

particular class of functions.

_

MM

-20- 2.3.1

2.3.1: The S model

An pnvlrrnment is a linear sequence of ordered pairs (or bindinps) (x,v),

where x is an identifier and v is a value. Environments are thus a mechanism

for the use of identifiers as variables, serving to record the values

a3sociated with each variable. We represent the environment which binds the

variable X1 to the value V^ X2 to V,,, and so on, as

((x1,v1)(x2,v2) ...)

The environment structure of the interpreter for S may be viewed as a stack,

bindings being pushed onto the environment from the left at the start of the

application of a lambda expression, and subsequently being popped from the

environment at the completion of that application. The S interpreter finds

the current value for a variable X by looking, in turn, at each binding

starting with the leftmost; when a binding whose first element is X is

encountered, the associated value (the second element of the binding) is taken

as the value of X. We may describe this operation by defining a primitive

function lookup of two arguments, corresponding respectively to the identifier

to be evaluated and the environment in which its value is to be found:

lookup[x;((X1,V1)(X2fV2)...(Xn,Vn))]=

if x=X1 then V^
else lookup[x;((X2,V2)...(Xn,Vn))]

We now describe the interpreter for S as a function defined recursively as

follows:

S[x;e] =
if x is a number, then x;
If x is a member of {T,F,GREATER,PLUS} then x;

if x is an identifier then lookup[x,e];

if x is a lambda expression then x;

if x is of the form (T y z) then S[y;e];

if x is of the form (F y z) then S[z;e];

if x is of the form (GREATER y z) then:

if S[y;e]>S[z;e] then T;

else F;

^i^fc m , --

2.3.1 -21-

if x is of the form (PLUS y z) then S[y;e]+S[z;e];

if x is of the form ((LAMBDA(s1. . .sn) b) yr..yn) where the

s are identifiers, then

S[b;(s1,S[yl;e]).,.(sn,S[yn;e])e];

If x is of the form (y z} z2 ... zn) where y is not a lambda

expression, then S[(S[y;e] z} ... zn);e];

else undefined

Thus S[x;e] computes the value of the expression x in the environment e.

S[x;0] (where 0 is the empty enviroruiient) computes the value of x on an S

evaluator in its initial 'bare" state; we may refer to this aimpley as the S

value of x.

2.3.2: Arithmetic Completeness of >

We refer to a language as arithmetically complete if every computable first

order1 function is representable as a procedure of that language. We show

that S is arithmetically complete by showing that for every first order

partial recursive (hence computable) function there is a corresponding

function in S. The constructior.G of this section are adaptations of those

appearing in Dertouzos[3] and are included hare primarily for sake of

* illustration; while each subsequent model language is also arithmetically

complete, similar constructions apply in each case and will not be repeated.

;
/ As a preliminary step, we consider the S function given by:

(LAMBDA(X Y)

((LAMBDA(X Y D)(D X Y)) X Y

(LAMBDA(X Y)((GREATER X Y)

(PLUS 1 (D X (PLUS 1 Y)))

0))))

which computes the "recursive difference" function

1 Follow!n* the terminology of logic, a first order function contains only
numbere i^its ramge and äomain, and functions of order J may contain (in
addition to numbers) functions of order less than j.

—1J

-22- 2^-?

D[x;y] = if x>y then x-y else 0;

by the algorithm

D[x;y] = if x>y then 1+D[x;y+1];

else 0;

Note that the extra two layers of UMBDA binding serve only to bind the free

occurrence of the identifier D within its^wn definition, and thus to make the

recursive function operate properly on S.

We may define the predecessor function

p[x] = if x<1 then 0 else x-1;

in S by the expression:

(LAMBDAUHD X D)

where D is the recursive difference function defined above.

Now we shall demonstrate that every partial recursive function of first order

is representable as a function in S. In the following, lower case letters

represent partial recursive functions while upper ca^e letters denote their

corresponding S functions:

1) For every pair of natural numbers n and m, the ra-arrument constant

function of value n is expressed in S as:

(LAMBDAU. ... X) n) i m

2) For every pair of numbers n and m, the m-ary prpjeQUpn function which

returns the value of its nth argument is expressed in S by:

(LAMBDAU, ...V Xn)

3) The successor function is expressed in S by:

(LAMBDAU) (PLUS 1 X))

1 This is one of »ever^l "tricks" which ma^ ^ ^«d to Kfi^rS'sftS '
The necessity of such bricks stems from the expressive inaaeq y ^

Äl^oP?1?^ for a general discus5ion
of recursion on S see DertouzosUJ •

2.3.2 -23-

4) (composition) For every choice of numbers n and m, m-ary partial

recursive functions g1 ... g and n-ary function f, the m-ary function h

,gn[x1...xm]]

defined by

h[x ;x ;...;x] = f[g1[x1...x]
it m i i m

is expressed in S as

(LAMBDAU. ... X)(F
i m

(G. X. ... X)

... ^X, ... XJ))

where F, G1 ... Gn are the S expressions corresponding to f and g.,

respectively.
•v

5) (primitive recursion) If the n-ary partial recursive function g and the

(n+2)-ary primitive recursive function f are expressible in S as G and F,

respectively, then the (n+1)-ary function h defined by:

h[x , ...x .0] = g[x.,...x] '1
h[x1,...,xn,y+1] = f[x1,,..,xn,y,h[x1t...,xn,y]]

may be expressed in S by

(LAMBDA(X X Y n
((LAMBDA(X1 ..

(LAMBDA(X

(F X

(0 X

Xn Y H)(H X1 ... Xn Y)) X1

... X Y)((GREATER Y 0) n

... X,, (P Y) (H X, , n i

... xn)))))

X Y n

Xn (P Y)))

where P is the representation of the predecessor function given earlier.

6) (mu-recursion) If the (n+1)-ary total recursive function h is expressible

in S by H, then the partial recursive function g defined by

gCx.;...^] = the least y for which

hCx^, ..xn;y] = 0

is represented in S by

-21-

(LAMBDA(X1 ... Xn)

((LAMBDA(R)(R 0))

(LAMBDA(Y)((GREATER (H X1 ...Xn Y) 0)

(R (PLUS 1 Y))

Y))))

2.3.2

Finally, we note that the class of recursive functions is by definition

exactly that class of functions obtainable through finitely many applications

of the above six rules; hence the S representations given in the rules

constitute a technique for constructing an S expression which repreaents any

finction which can be shown to be partial recursive.

2.3,3: Functional Incompleteness of S

Recall that the fmctional completeness of a language L requires that ever>

computable function defined on the semantic domain of L be expressible in L.

Since the natural numbers and (by the preceding section) first order functions

are included in the semantic domain of S, every second order function is

definable on the domain of S. The functional incompleteness of S may then be

demonstrated by showing that a simple second order function is not expressible

as an S function. We begin by observing that 3SES. higher order functions are

expressible in S, e.g. the function & (the "twice" function) given by

g[f;x] = f[f[x]l

is expressible in S as

(LAMBDA(F X)(F (F X)))

hence it cannot be argued that only first order functions are expressible in
S. The wetness in S which we will demonstrate involves the inexpressibility

of certain second order functions, notably functions which contain free

variables and which appear as arguments or values (i.e., bodies) of lambda

expressions: the so called FUNARG problem.

1 General awareness of the FUNARG problem (as well as its name) arose
r^9,n^^

ea?!? SperilncS "th LISP. For discussion see Weizenbaum[23], Moses[10] or
Dertouzo3[3].

«M

2.3.3 -25-

Consider the mary function f, whose domain contains only integers and whose

range contains only first order functions, defined by

f[x] = that function g defined by

g[yl = x+y

The function f is computable; it may in fact be expressed in the lambda
calculus by

(LAMBDA(X) (LAMBDA(Y) (PLUS X Y)))

To show that f is nqt f»«nr<i»«lh1«i m the language of S, the following

definition is useful:

Defn 2.1: We say that the expressic:, a appears as a subexpression of the

expression b if any of the following are true:

1) The expressions a and ^ are identical;

2) b is of the form

(b, b_ ... b) 12 n
where a appears as a subexpression of one or more of the b •

3) b. is of the form

where a. appears as a subexpression of B.

(LAMBDA(X, ...X)B)
i n

/

We say infonnally that ^ contains a if a appears as a subexpression of ^.

The basis of the inexpressibility of f in S is established by the proof of

Lemma 2.2: Let A be any applicative expression and let B be a lambda

expression appearing neither as a subexpression of A nor in the

environment e. Then B does not appear as a subexpression of S[A;e].

Proof is by induction on the recursion depth of S[A;e].

basis For the following syntactic classes of A, the computation of S[A;e]

involves no recursion:

Case 1: A is a number, a primitive function identifier, or a lambda

expression. Then S[A;e]=A, and the lemma is trivially satisfied as

-»■

-26- 2-3.3

B is no. a subexpression of A.

Case 2: A is an identifier other than a primitive function symbol. Then

S[A;e] is lookup[A;e] which cannot contain B since by assumption the

environment e does not contain B.

induction; The remaining cases of the syntax of A follow; for these we

assume that the Lemma holds for recursive calls to S.

Case 3: A is an application of GREATER or PLUS; then the value of S[A;el

is a number or logic value and does not contain B.

Case »»: A is the application of a logic value T or F to arguments A, and

A . Neither A nor A2 can contain B since A does not contain B;

hence the inductive hypothesis applies to either of the computations

SU^eJ and S[A2;e] and B cannot appear in S[A;e] which is one of

these values.

Case 5: A is the application of a lambda expression (LAMBDA^.. .Xn)M) to

the arguments A^.A^ By the inductive hypothesis, B does not

^pear in any of the values S[A1 ;e].. .S[An;e]. hence the new

environment e'=(X1 .StA^e]). ..(XnfS[An;e])e does not contain B. As

a subexpression of A, M cinnot contain B; thus the inductive

hypothesis applies to the value S[M;e'] returned as the value of

S[A;e].

Case 6: A is the application of Y to the arguments A1...An, where Y is

neither a lambda expression nor a primitive function symbol. Y is a

subexpression of A and by assumption does not contain B as a

subexpression. Then the inductive hypothesis applies to the

computation of S[Y;e]=Y't and Y' does not contain B; a second

application of the inductive hypothesis reveals that B cannot appear

as a subexpression of S[(Y' A1.. .An);e]=.S[A;e].

These cases are exhaustive, completing the proof.

We can now characterize a major weakness of the language S by

-<— - m

2.3.3 -27-

Thm 2.3: Every function expressible in S whose domain contains only numbers

may have at most finitely many functions in its ranpe.

Proof: Functional values in S must be either primitive function identifiers

or lambda expressions. As there are finitely many primitive functions,

we need only show that each function of numbers in S has finitely many

lambda expressions in its range. Implicit in this argument is the fact

that the number of functions expressed by a set of lambda expressions is

no greater than the number of lambda expressions in the set. Each lambda

expression which contains no nontrivial occurrences of free variables

represents (though not necessarily uniquely) a single function; lambda

expressions with nontrlvial occurrences of free variables (i.e., which

conpute different functions in differing contexts) do not correspond

semantically to functions.

By lemma 2.2, a function of integers can have lambda expressions in its

range only if they appear as subexpressions of the function, since for

any integer n and expression f the expression (f n) can contain the

lambda expression & as a subexpression only if £ is a subexpression of f.

As the function must be represented by a finite expression in the

language S, it may contain only finitely many lambda expressions as

subexpressions and hence has finitely many lambda expressions in its

range.

Clearly, the faction f defined at the beginning of this section is a function

of integers havir« infinitely many functions in its range; we conclude that f

is not expressible in S. The problem may be characterized as inadequate

handling by S of lambda expressions containing free variables. It is apparent

chat free variables are evaluated in the environment in which a function is

applied, rather than the environment in which it is evV .ated. Thus lambda

expressions with fVee variables have the property that uhe computation which

they perform depends on values in the environment of their caller; this

dependency constitutes an implicit input and Justifies our exclusion of such

lambda expressions from the class of functions. Yet proper S functions may

include such lambda expressions as subexpressions; witness the S function

^At

Best Available

Copy
for page 28

•28- .3.3

^LAMBDA(X)((LAMBDA(Y)(PLUS X Y)) 3))

vuch contains no {fee variables and hence no implicit inputs. The variable

however, appears free -'.n the lambda expression in its body; this innermost

Lsmbda expression is not a function. The question of the contribution of free

..i tables to the functional richness of S naturally arises at this point: Are

unere functions which are expressible in S only through the use of free

.■ariablea? our suspicions load to the conjecture that every function I

wpresslble in S may be represented by an expression F in which no lambda

.pression appearing as a subexpression contains free occurrences of

-criables. This conjecture does not completely deny the usefulness of free

variables on the S nachine. Indeed, lambda expressions with free variables

are moderately well behaved when passed downward. i.e., as arguments to

: unctions; under these circumstances, the principal danger is due to possible

conflicts with variables bound by the functions to which the lambda

expressions are passed, Thoy may, however, be considered to be "limited

'unctions" with the qualification that they be applied within the scope of the

ree variables in their original environment and that they may not be passed

ix functions whose bound variable list includes any of the free variables.

,ach qualifications seriously impair the semantic clarity of the language

imposing them.

2.k: Evaluation Order

"he functional incompleteness of S was shown to be related to the specific way

n which S associates values with variables in an interpreted program: i.e.,

ne environment structure of S. The remaining sections of this chapter

.resent model interpreters with alternative environment structures, and which

olve the specific problem demonstrated in S; however, they demonstrate

imilar inadequacies in the organization of control structures, i.e. the data

structure specifying which computations are to be performed and their relative

equence.
1

Thp notion of control structure has never, to the author's knowledge, been
.ol^tely fomaflil^ fniFoWiy it is thi bookkeeping mechanism necessary

o resolvl algorithms into seguences of operations — e.g,. the use of a stack
o record the return points of calls to a recursive subroutine.

/

^AJ

?.n -20-

The first model to be presented is T, similar to S except that its environment

is structurally a tree rather than a stack. It is argued that T and S share a

deficiency which stems from their evaluation order, in particular, fVom their

uniform evaluation of arguments regardless of whether the resulting values are

essential to the computation. T is thus functionally incomplete due to

evaluation order.

The N model, discussed in section 2,*, is closely related to the normal order

evaluation of the lambda calculus. It is superior to T in that every

expression having a T value has an equivalent N value, while certain

expressions have N values but not T values.

2.4.1: The T Model

The traditional solution of the environment ?• oblem of S involves a new

"internal" representation of a function, called a closure. A closure

includes. In addition to the information in a lambda expression, a

specifics>tion of the environment in which Its free variables are to be

evaluated. As the closure mechanism may require the retention of environment

branches corresponding to functional applications from which control has been

returned, the environment becomes a tree rather than the linear stack of S;

hence we call our new language T. The difference between T and S is that in

T, the lambda expression

(LAMBDA(s1...sn) b)

is no longer self evaluating.1 Its value, in environment §., is

(FUNARG(s1...sn) b e)

which is the representation of a closure in T. We define T as follows:

T[x;e] =

if x is a number, then x;

if x is a member of {T,F,GREATER,PLUS} then x;

if x is an identifier then lookup[x;e];

1 We say an expression X is self evaluating if the value of X is X.

—AJ

-30- 2.4.1

if x is of the form (T y z) then T[y;e];

if x is of the fonn (F y z) then T[z;e];

if x is of the form (GREATER y z) then:

if T[y;e]>T[z;e] then T;

else F;

if x is of the form (PLUS y z) then Try;e]+T[z;e];

if x is of the form

(LAMBDA(s,...s) b) then
i n

(FOMMU....!) b e);
i n

if x is of the form

((FUNARG(s1...sn) be^ y1...yn) then

TCb;(8ltX[yi5tl) ... (sn>T[yn;e])+e1];

if x is of the form (y s1 s. ... zn) where y is not a

FUNARG closure, then

T[(T[y;e] z^ ... z^ie];

else undefined;

We note that a lambda expression is not applied directly; it is first

converted to a closure (by its evaluation), and then applied by the evaluation

of its body in an environment formed by appending the bindings of its bound

variable list to the closure environment. T.ius the free variables of a lambda

expression are evaluated in the environment in which the lambda expression is

evaluated. The reader may verify that the function represented in the lambda

calculus by

(LAMBDA(X)(LAMBDA(Y)(PLUS X Y)))

which the preceding section showed to be inexpressible in S, is expressible in

T (indeed, by the same lambda expression).

2,U.2: Functional Incompleteness of T

Except for the special cases involving the application of the primitives T and

F, the T evaluator uniformly evaluates the expressions supplied to an operator

• a arguments before the operator is applied. This order of evaluation, which

has been termed anDliCative QraSL, has the virtue that each subexpression of

tm

2.4.2 -31-

an AE is evaluated at most once, whereas in the normal order evaluation of the

lambda calculus an argument to a function may be evaluated many times. The

disadvantage of applicative order evaluation is that arguments may be

evaluated (once) even though their value is irrelevant to the computation;

this is not merely a matter of occasional inefficiency, since the irrelevant

argument may not be defined whereby the entire computation diverges. Consider

the case of the trinary projection function

P31[x;y;T]=x

whi-h returns its first argument regard:ess of whether its remaining arguments

have defined values. The applicative-order counterpart of P is represented

in T by the expression:

f =(LAMBDA(X Y Z) X)

This expression does not return a value under '-evaluation unless all three

arguments have defined values,

our decision to distinguish between P^ and f31 in effect recognizes the

undefined element. •, as a member of the functional domains of our applicative

languages. Intuitively, • represents the "value" of those computations which

do not terminate, and whose expressibility in each language L is guaranteed by

the Turing universality of L.

We now show that P.. is not expressible in T:

„

31

Thm 2.M: Fo.^ every AE f, the T value of the expression

(f 3 * •) [2-5]

(where • denotes any expression whose T value is undefined) is undefined.

Droof; we consider exhaustively the possible T values of the operator f:

If f is a number or a primitive operator, then the value of [2.5] is

undefined due to an error in functionality, i.e. the application of a

primitive to arguments for which it is not defined, may assume that f is

either a combination or a lambda expression, in which cases the value of

the combination is the value of the application of the T value of f to

the specified arguments. If the value of f is a number or a primitive,

L— - ^^—^—-^^

-32- 2.'».?

[2.5] is apain undefined due to an error in functionality. Hence the

value of f must be a closure. The computation of the application of a

closure involves binding the values of each argument onto the

envi-Timent, hence the evaluation of [2.5] entails evaluation of each

argument. Since not every argument has a defined T value, the value of

[2.5] is undefined.

Since clearly the projection P^ has the property of f in Theorem 2.4, T must

bt> functionally incomplete if we are to consider P^ a function.

2.5: The N model

This section introduces an applicative language whose interpretation involves

normal order evaluation. The superiority of N over T derives from this

revised evaluation order of N, which permits an expression to be evaluated

even though subexpressions of it may be undefined. A theorem of Church and

.Rosser establishes that if an AE, A, has a value under M£L evaluation order,

then It has that value under normal order evaluation; thus in terms of

evaluation order, N is optimal.

The simplest implementations of normal order evaluation involve the

substitution of argument text in the bodies of lambda expressions, rather than

the binding of argument values in environments. While the explication (and

implementation) of such substitution algorithms is relatively straightforward,

evaluation by simple substitution is often inefficient since

1) It involves making many copies of program text during execution, and

2) It often involves multiple evaluations of the same subexpression.

for reasons of efficiency, substitution evaluators are thus primarily of

theoretical interest.

More efficient implementations of normal order evaluation retain the

.environment structure of the T model, and introduce additional mechanism to

indicate which bound expressions have or have not been evaluated. Since the

.ovironment implementations of normal order evaluation involve considerable

^m

2.5 -33-

bookkeeping machinery and are hence conceptually much more complex than the

substitution algorithms, they will not be pursued.

2.5.1: Axioms for the Lambda Calculus

The primordial applicative language is the lambda calculus, which has been the

subject of much investigation since its conception by Alonzo Church in the

19 30s. The semantic basis of the lambda calculus is a set of axioms which

define an equivalence relation, =, on expressions of the language. Each axiom

may be interpreted as a conversion rule (or reduction rule) in the sense that

it provides a means for converting (or reducing) an AE to an equivalent (under

=) AE having a different form. The presentation of the axioms in this chapter

is somewhat informal, serving primarily as motivation for the N interpreter;

the interested reader is referred to Curry[12] and Hind ley[21] for further

detail. Related issues are also covered in greater depth in later chapters of

this report.

The axioms of the litnbda calculus are of 4 types, designated alpha

(equivalence under renaming), beta (function application), delta (primitive

function definition), and, in some formulations, eta. The delta and eta

axioms are not used in all formulations. The eta axiom seems to serve no

important function in the evaluation of expressions and will be presented here

only in passing. The delta axioms may be avoided by well known coding

techniques which involve the representation of nonfunctional data, e.g.

natural numbers, as lambda expressions.

The formulation which will be primarily referred to in subsequent chapters

comprises the alpha, beta, and delta axioms, and is often termed the

beta-delta-calculus in the literature. Unless otherwise qualified, generic

references to "the lambda calculus" in this report denote the beta-delta

calculus.

The equivalence relation = of interconvertability is generated by a relation

Many such codings are possible: a popular choice represents 0 by the
expression (LAMBDA(X)(LAMBDA(Y)Y)) and the number n+1 by
(LAMBDA(X)(LAMBDA(Y)((N X)(X Y)))) where N is the representation of the number
n. For development of such a coding, see Church[1].

_3U- 2.5.1

-> of reducibilitv; hence X->Y implies X=Y which, in turn, implies Y=X.

Reducibility is in gpneral antisymmetric, however; thus -> provides an

ordering of equivalent expressions which has important rair.i fications in the

lambda calculus. The relation -> is defined to be a monotone relation

meaning that it has the following properties:

Reflexivity: For every X, X->X;

Transitivity: If X->Y and Y->Z, then X->Z;

Monotonicity: If X->Y and B is the result of substituting, in an expression

A, X for an occurrence of Y, then B->A.

^■le relation = is in addition an equivalence relation; hence X=Y implies Y=X.

Central to the axioms is the substitution rule. S, of fundamental importance

to the lambda calculus as well as the theories of the following chapters of

this report. S is formulated as a three argument function, such that the

meaning of S[X;Y;Z] is roughly "the result of substituting the expression X

for free occurrences of the variable Y in the expression Z. The definition of

S is further complicated, however, by the requirement that the operation

S[X;Y;Z] not introduce conflicts between free variables in the expression X

and bindings of X within Z. There is a long history of incorrect algoritms

for S; the definition given here is due to Curry:

Defn 2.6: For expressions X and Z, and variable Y, the expression S[X;Y;Z] is

defined as follows:

1) If Z=Y, then X;

2) If Z is a primitive, number, or identifier other than Y, then Z;

3) If Z is of the fonn (Z1 Z2) then (SCX;!^] S[X;Y;Z2]);

U) If Z is of the form (LAMBnA(A)M) where Y=A, then Z;

5) If Z is of the form (LAMBDA(A)M) where Y is different from A, then

(LAMBDA(B)S[X;Y;S[B;A;M]]). where the variable B is chosen as follows:

i) If Y does not occur free in M or if A is not free in X, then B=A;

ii) Else B is any variable which occurs free neither in M nor in X.

1 Terminology after Curry[12]

mi ' - ^^—^——^-^^

2.5.1 -35-

We now procede to the statement of the axioms:

Axiom alpha: If E is a lambda expression of the form (LAMBDA(X)M) and the

variable Y does not occur free in M, then E->(LAMBDA(Y)S[Y;X;M]).

We say that expressions A and B are congruent if A can be converted to B by

alpha conversion alone. Note that if X->Y by alpha conversion then Y->X by

alpha conversion; hence X=Y. Congruence is thus symmetric and transitive,

and under most circumstances congruent expressions may be treated as

identical. We say that expression X is in normal form if the only reduction

which can be performed on X is alpha conversion.

Axiom beta: If E is an expression of the form ((LAMBDA(X)M) A) then

E->S[A;X;M].

Axiom eta: If E is an expression of the form (LAMBDA(X)(M X)) where X does not

appear free in M and M is a lambda expression, then E->M.

Axiom delta: If E is an expression of the form (F A. A? ... A) where F is a

primitive function symbol and each Ai is in normal form and contains no

free variables, then E->f [A.;.. .;A] where f is the operation denoted by

F.

The following two theorems are of fundamental importance in the lambda

calculus. The first is due, in its initial primitive form, to Church and

Rosser and is referred to in the literature as the Church-Rosser Theorem:

Thm 2.7: Let X and Y be expressions such that X=Y. Then there exists an

expresion, Z, such that X->Z and Y->Z.

proof may be found in Curry[12] or Hindley[21] and elsewhere.

The Church-Rosser Theorem shows that the lambda calculcS is consistent in the

sense that the relation = is nontrivial; in particular, X=Y is not true for

incongruent expressions X and Y in normal form. We can thus prove that

expressions X and Y are not interconvertible by finding normal forms X' and

This definition is recast more formally in the terminology of Chapter 4.

-«— - ^

-36- 2.5.1

Y', where X->X' and Y->Y', which are incongruent.

Unfortunately, not every expression X .3 convertable to an expression X' in

normal fonn. For example, the important expression

Y=.(LAMBDA(F) ((LAMBDA (H)(F (H H))) (LAMBDA (H) (F (H H)))))

which is the "paradoxical combinator" of Curry, has no normal form. Further

discussion in this area follows in Chapters ^ and 5, along with related

technical developments.

A second Important theorem, due to Corrado Boehm, has been proved only Tor

systems which prohibit delta conversions:

Thm 2.8: Let X and Y be incongruent expressions in normal form, and let C and

D be arbitrary expressions. Then there exists and expression Z such that

C=(Z X) and D=(Z Y),

proof originally appeared in Boehm[20], in Italian; a proof in English

appears in Curry[27].

Boehm's Theorem guarantees that incongruent normal forms in the beta-eta

calculus are semantically distinct; in particular, the axiomatic assertion

that any two incongruent normal forms are interconvertable results in an

inconsistency. The extension of Boehm's Theorem to systems which include

delta conversions requires that the constants added to the pure lambda

calculus also be semantically distinct. We might, for example, formulate a

calculus including the numeric constants without providing any means for

distinguishing between them: we could provide the primitive PLUS but not

GREATER, While this formulation Is valid In terms of the lambda calculus,

Boehm's Theorem is clearly inapplicable since there is no expression Z which

distinguishes, say, between the normal forms 2 and 3.

i.e., that formulation including axioms alpha, beta, and eta, but excluding
delta conversions.

/

/
/

2.5.2 -37-

2.5.2: Normal order: Substitution

Each of the lambda calculus axioms provides a means by which an applicative

expression E may be reduced to an equivalent expression E'. While the axioms

themselves place certain restrictions on the order in which such reductions

may be performed, the evaluator of an applicative expression has a great deal

of fVeedom to choose the order in which to evaluate subexpressions.

Normal order evaluation specifies that at each evaluation stage, the leftmost

reducible subexpression is to be converted.

2.5.2,1: The N Evaluator

We define the N value of an AE x as follows:

N[x] =

if x Is a number, then x;

if x is a member of {PLUS,GREATER} then x;

if x Is a lambda expression, then x;

if x is of the form (PLUS ab) where N[a] and N[b] are

both Qüfined and numeric, then N[a]+N[b.];

if x is of the form (GREATER ab) where N[a] and N[b]

are both defined and numeric, then if N[a]>N[b] then

(LAMBDAU Y)X) else (LAMBDA(X Y)Y);

if x is of the form ((LAMBDA(a)ö.)c) where a is an

identifier and b and c are AE's, then Ntfe.'] where b'

is the result of substituting s. for each free

occurrence of a in b;

if x is of the form (a. b.) where a, and J). are AE's and a.

is not a lambda expression, then N[(N[a] b)];

else undefined;

Note that we have eliminated the primitives T t id F, which are entirely

equivalent in N to the lambda expressions which replace them as values of

GREATER.

Not every expression E containing applications of lambda expressions, for
example, is beta-reducible. Applications ofaxiom aloha, ie the renaming of
variables, may be required before axiom beta is applicable.

^tj

wmm

-38- 2-5-2-2

2.5.2.2: Axiomatic Consistency of N

We show in this section that N evaluation is consistent with the semantics or

the lambda calculus by demonstrating that N preserves the equivalence relation

Thm 2.9: Let E be any AE such that N[E] is defined. Then E->N[E] where -> is

the reduclbility relation defined by the lambda calculus axioms.

Droof: by induction on the level of recursion in the computation of NUJ.
L basis: if E is a number, a primitive, or a lambda expression then N[E]=E.

induction: we assume that the Theorem holds for recursive calls to N.

Then the Theorem holds for the remaining syntactic cases of E by the

monotonicity of ->.

We note in passing that N[B] is not necessarily a normal form. Lambda

expressions, in particular, are not reduced by N. since otherwise the

evaluation of certain meaningful expressions (e.g. the paradoxical combinator

Y) would not terminate.

2.6: Functional Domain of N

In this section it is shown that the entire domain of N constitutes a

factional d^in satisfying the intuitive criteria of [1,1]. We interpret

the semantic equivalence relation, ". on the domain of N as follows:

For X,Y in DNf X'Y if and only if

for every Z in D and number n,

(Z X)=n <=> (Z Y)=n

where D is the domain of N We now Justify this interpretation of " on N
N

thru

Thrn 2.11: The domain of N is a functional domain, obeying the criteria of

[1.1], wrder the above interpretation of ".

Dr0of: The equivalence relation " defined in [2,10] must be shown to obey

*M

-39-

the three clauses of [1.1] over the domain D of N. We treat the clauses

individually:

1) For numeric constants X and Y, we must show that X"Y <=> X=Y.

<=: direct, by the equivalence of identical expressions.

r>: Assume X~Y. Then by beta-reduction,

and

((LAMBDA(a)a) X)=X

((LAMBDA(a)a) Y)=Y

and thus, by [2.10], X=Y since they are numeric. By [2.7] there exists a

Z such that X and Y are each reducible to Z; since X and Y are not

reducible, Y, Y, and Z must be identical.

3) To show: X'Y <=> for all Z in DN,

(Z X)~(Z Y) or neither defined.

=>: Assume false. Then for some X"Y there exists a Z^ such that

(Z1 X)T(Z1 Y)

where I is the negative of ". This implies, by [2.10], that there exists

a Z- such that

(Z2 (Z1 X))=n

for some numeric constant n but not

(Z2 (Z1 X))=n

(we are assuming here one of two completely symmetric cases with no loss

of generality - the other case follows by interchanging the symbols X and

Y). Defining Z by the lambda expression

Z =.(LAMBDA (a) (Z2 (Z1 a)))

we note that

hence by [2.10] XtY.

(Z X)=n but (Z Y)^n

im

-HO- 2.6

<=: Assume that for all Z in D,,, (Z X)-(Z Y). Then (Z X)=n (tor numeric

constant n) if and only if (Z Y)=n by the argument of part (1). Hence by

[2.10] X-Y.

2) It must be shown that X'Y if and only if for all Z in DN, (X Z)"(Y Z).

From part (2) of this proof, X'Y <=> for all Z:

((LAMBDA(a)(A Z)) X)-((LAMBDA(a)(a Z)) Y)

hence, by beta-reduction,

(x z)-(y Z)

The significance of Theorem 2.11 is that every element of the domain of N

corresponds to some element of the abstract semantic domain: every element of

D is intuitively functional. Thus N (and the lambda calculus on which it is

based) is a language of "pure" functions. We shall find in the next chapter

that this pleasant property costs us something, however. In terms of

expressive power.

2.7: Summary

The material in this chapter is largely introductory. The three interpreters

presented are abstracted from conventional implementations, and their scrutiny

serves to relate common implementation issues to the expressibility of

functions. The major findings were:

1) Each language is arithmetically complete, in the sense that rvery

conputable function defined on the natural numbers is expressible.

2) The FUNARG problem leads to the inexpressibility in S of functions whose

domain contains integers and whose range contains infinitely many

functions.

3) Applicative order evaluation renders inexpressible in T every function

whose domain includes », the undefined computation. An example of such a

firction is the constant function (LAMBDA(X)3) of one argument.

«M

^«^

2.7 -'♦1-

'4) The interpreter N, based on the normal order evaluation of expressions by

substitution, suffers from neither of these deficiencies. We can

construct a functional domain F such that every expression X in the

domain of the language N corresponds to an element of F; thus N is a

"pure" language in the sense that every expression corresponds to a

fircticn or a number. This is not true, for example, in S, where lambda

expressions containing free variables can compute different functions in

varyi^s contexts.

We are left with N, an interpreter whose behavior is intended to model the

lambda calculus; the remainder of this report, roughly speaking, deals with a

particular weakness common to N and the lambda calculus.

. •

r

■J— - —

Preceding page blank

3 -*t3-

Chapter 3:

Motivation for a Multi-valued Semantics

Central to this chapter is the argument that the N model, and hence the lambda

calculus, is functionally incomplete because of the intxpressibility in N of a

class of computable functions on N's domain. The inadequacies of N leading to

this weakness are explored, and two new model languages are presented, each

curing the problem in a different manner. The first model, which has

provision for encoding representations of functions as integers, is found to

be unsatisfactory for both practical and semantic reasons. The alternative

solution proposed in this chapter involves mechanism for the representation of

semantic elements with multiple values; this mechanism, called EITHER, is the

principal focus of the remainder of the Thesis.

3.1: Necessity of non-functions: WHICHFF

Consider the family of partial functions, {FF^ for i ranging over N, which

satisfy the following conditions: for each natural number i,

PP1[,] = i, i=x [3*1]

divergent, i^x

Thus each FFi has a single element in its domain: the number i. For any other

argument the value of FF^x] is undefined. The {PFJ are clearly partial

functions in the intuitive sense of Defn [1.1], and are computable in each of

the model languages considered here. Furthermore, they are semanticallv

distinct: for no numbers WJ does FF^FFj. There is then nothing intuitively

objectionable about a function which maps each FFi to its corresponding i.

Consider such a function WHICHFF which, for each natural number i, has the

property that:

WHICHFF[FFi] = i 13.2]

Intuitively WHICHFF is a function from {FF^ onto N; furthermore it is

demonstrably computable using "dovetailing" or multiprocessing techniques.

Note in particular that the following definition of WHirHFF satisfies the

condition of [3.2]:

m

WHICHFF[f] = i such that f[i]=i, t3-3]

if such a number i exists;

else undefined

We may view the dovetailed evaluation of WHICHFF[f] as the computation of f[0]

for one second, the computations of f[0] and f[1] each for two seconds, and

similarly tntil any one of the computations f[i] terminates normally; the

value of this f[i] would then be taken as the value of WHICHFF[f]. However,

WHICHFF is not expressible in N; this is a result of

Thm 3.14: Let L be an arithmetically complete applicative language and let DL

be the domain of L. Then no function WHICHFF having the properties of

[3.31 is functional over DL.

proof by reduction to the halting problem. Assume that DL contains a

function WHICHFF having the property given in [3.3]. Then for any

fmotion £ in DL and any number i, L[(WHICHFF f)]"! if fTF^ Now

consider the union of the functions FF1 and FF2, given by:

FF12[x] » 1, Ux]=1; t3-51

2, L[x]=2;

divergent otherwise

FF is clearly a computable first order function, hence it is

expressible in L by the arithmetic completeness of L. Now L[(WHICHFF

FF)] can have as its value at most one of [1,2); thus either L[(WHICHFF

FF)]41 or L[(WHICHFF FF12)]«. Assume, with no loss of generality, the

former. Then define the second order function & as follows:

g[f] = the function gf, where

gf[il = 1. I'll
2, i=2 aM f[0] defined;

divergent otherwise. For every computable

first order function I, gf (or equivalently g[f]) is evidently

computable. Moreover, if f[0] is undefined then gf is identical to the

finction FF^ otherwise gf is Identical to the function FF12. We use the

ability of WHICHFF to distinguish between FF1 and FF12 to determine

whether f[0] is defined, by means of the function fi. given by

—AJ

3-1 .45-

h[f] = WHICHFF[g[f]]

We note finally that for any function £

ftO] convergent => g[f] - FF12 => h[f]^1;
and

f[0] divergent => g[f]-FFi => h[f]=1

Hence h[f]=l if and only if f[o] is divergent. The divergence of f[0] is

decidable, as one of the computations h[f] and f[0] must converge; thus

the function h provides a solution to the "halting problem" for first

order functions, and is a well known noncomputable function. Since h is

clearly computable in terms of WHICHFF, we conclude that WHICHFF is not a

conputable function over any domain including the first order functions.

Since it was shown in the last chapter that every: function expressible in N is

functional over all of the domain of N, it follows that WHICHFF is not

expressible in N. This inexpressibility relates intuitively to two aspects of

the implementation of the N interpreter:

1) The interpreter does not admit multiprocessing. If, in the evaluation of

expression A, N embarks on the evaluation of a subexpression a of A whose

N value 1$ not defined, then the N value of A is not defined.

2) The only mechanism in N by which a function f can recover information

about its functional argument Ä is the application of &. There is no

means by which f can discover the algorithm (or program) by which £

canputes values, even though the internal representation of & necessarily

includes this information. Hence if f is to make any use of &, then £

must be applied to some argument; By the constraint (1) above, the

nontemination of this application results in the nontermination of the
application of £.

The correction of either of these deficiencies is straightforward in an

implementational sense — many extant languages boast provisions for

multiprocessing and/or access to representations of functions. However,

neither "correction" is easily reconoiion , < «-u ..u ' 'Cl-0nciled with the semantics of an applicative

language. The second limitation of N seems a natural consequence of our

bia

-146- 3.1

distinction between the notions of a function f and any of the algorithms for

computing f from its arguments; a language which provides mechanism for

distinguishing between algorithms for computing a particular function f would

certainly have non-functional elements in its domain. The semantic

ramifications of a cure to the first problem, however, are more subtle and

will be explored in detail.

The following sections preser L two alternative extensions to N, each

corresponding to a "fix" of one of the above limitations. The function

WHICHFF is expressible in each.

3.2: Codir« primitives: The C model

We noted that a limitation of N, justifiable by our intuitive respect for the

semantics of factions, is that no information can be recovered about an N

firction without the application of that function. In particular, N provides

no means for recovery of information about the pepresentatipn of a function as

an N expression. We have thus avoided the "Turing machine tar pit" - the

argument that any language as powerful as a Universal Turing Machine has

exactly the same set of expressible functions.

The C model presented here has. in addition to the primitives and structure of

N. primitives for the translation of the representation of language elements

to and fVcm a tractable form. Making the fundamental assumption that any

function defined on a domain F is computable if and only if it is computable

from the representations of elements of F, we must conclude that a Univtr.al

Turing Machine (or its equivalent) operating on the representations of

arguments to the computable function £ can compute representations of the

values of £. This is the substance of our claim of functional completeness of

the language C.

The interpreter for C is identical to the interpreter for N except for the

addition of the primitive operators CODE and DECODE. CODE maps

representations of the domain of C into the natural numbers:

CODE: Dc -> N

tm

3.2 -U7-

and may be viewed as a Goedelization of the character string representing its

arRument. The claim we make for CODE is that if (CODE X) and (CODE Y) have

the same (numeric) value then X and Y are semantically equivalent; they are

in fact represented in an identical manner. We cannot, of course, claim that

in general X'Y implies (CODE X)=(CODE Y), as there are many representations of

each semantic element and the semantic equivalence of the representations is

effectively undecidable. The operator DECODE is the inverse of CODE: given

the Goedel number of the representation of an element, it returns the element.

We thus claim that each expression X is semantically equivalent to (DECODE
(CODE X)).

Our claim for the functional completeness of C is formalized, to the extent

possible, in

Vhm 3.6: Let F be a functional domain of C, and let

g: F -> F

be a ccmputable function on F. Then g is expressible in C, i.e., there

is an expression G in the domain of C such that for all x,y in F, g[x]=y

implies that (G XTY.

proof; Since g is computable then so is h defined by:

h =. (LAMBDA(Y) (CODE (g (DECODE Y))))

G ■ (LAMBDA(X)(DECODE (H (CODE X))))

It must be recognised that CODE is not functional: it radically disobeys the

intuitive requirements of Defn 1.1. We note, for example, that CODE might

return different values for the arguments (LAMBDA(X)X) and (LAMBDA(Y)Y) as

they have different representations, violating our requirement that

semantically equivalent arguments produce semantically equivalent results.

as it is simply the composition of computable functions. Furthermore,

since h is a function from N to N, it is expressible in C by the

arithmetic completeness of C; let H be the representation in C of h.

Then the function g is expressible in C by:

*^

.US- 3-2

,i-^r, ThP rporesentation of WHICHFF in C
WHICHFF example of the preceding section. The represe

— no™ ^n «-hp CODEd representations 01 ^
involves writing an interpretor, operating on the P

expressions, which simulates the retired "dovetailing" by computing 1 step of

(g 1). 2 steps of (g 2). 2 steps of (g D. etc. Presentation of actual code

for WHICHFF on C would be. at best, a messy task;, it is hoped therefore that

the reader will accept the expressibility of WHICHFF in C on the basis of

Theorem 3.6 and this informal discussion.

3.2.1: The Turing-machine Tar Pit

The introduction of the specter of coding requires further reflection. We

have made the enticing observation that, with the introduction of a simple

.„echanism allowing the representations of functions to be accessible as data,

every computable function becomes expressible. We have noted corollary

disadvantages - (I) the semantic confusion resulting from the nonfunctional

character of CODE, and (11) the practical absurdity of having to include the

code for intfiTEcetfilia in the definitions of certain functions.

However, the inclusion of coding primitives in an applicative language may be

objected to on more fundamental grounds than the above. The stated semantic

goal of an applicative language is the representation of functions. Thus such

a language provides a set of rules and conventions for associating expressions

with abstract factions; ncreover. the power and consistency of the language

stem largely fVan the applicability of these rules and conventions to every

expression in the language. In the lambd. calculus, for example, we are

assured that expressions which are interconvertible via the alpha and beta

axioms are equivalent. The cost of this assurance is a corresponding

constraint on the computations which we might perform: the alpha axiom

positively prohibits us fVom writing a function which distinguishes

(LAMBDA(X)X) from (LAMBDA(Y)Y). We accept this constraint because the

structure which it imposes is useful to us; we recognize that we cannot be

assured of a relation and simultaneously be allowed to violate it at will.

Coding primitives may be viewed as a mechanism for violating the structure

imposed by an applicative language. None of the lambda calculus axioms, for

example, are valid in the presence of coding, since "functions" can be written

r 3.2.1 -U9-

which distinguish between interconvertable expressions. The rules and

•onventions for representing functions are, in effect, abandoned. The

proprammer is thus freed from the structural constraints of the language, but

finds himself in a semantic anarchy — while he may write any function he

[leases, he may make no assumptions about the structure or representation of

its arguments.

3.2.2: Functionality of DECODE

He may convincingly defend the contention that CODE is not a function by

demonstrating that it return"? semantically distinct integers, say, for the

equivalent arguments (LAMBDA(X)X) and (LAMBDA(Y)Y). This demonstration does

not apply, however, to the inverse of CODE; there is nothing inherently

nonfunctional in the fact that DECODE returns semantically equivalent

evpressions (LAMBDA(X)X) and (LAMBDA(Y)Y) when given semantically distinct

integers as arguments. It is the purpose of this section to demonstrate that

frictions with the property of DECODE (i.e. mapping a subset of the natural

numbers onto the entire domain of discourse) re expressible in N and the

lambda calculus.

3.2.2.1: LAMBDA-free AEs

It is convenient for certain purposes to use the techniques developed

primarily by Curry[12] of the calculus of combinators for the reduction of

applicative expressions to equivalent expressions whose use of lambda

expressions is highly restricted. For our purposes we shall consider the

combinators listed below (along with their respective definitions):

I « (LAMBDA(X)X)

K = (LAMBDA(X)(LAMBDA(Y)X))

W =. (LAMBDA(X) (LAMBDA(Y)(X Y)))

S = (LAMBDA(X)(LAMBDA(Y)(LAMBDA(Z)((X Z)(Y Z))))

G1 « (LAMBDA(G)(G G))

G = (LAMBDA(G)(LAMBDA(Y)(Y G)))

G = (LAMBDA(Y)(LAMBDA(X)((Y X) X)))

tm

-50- 3.2.2.1

0. x (LAMBDA(G)(LAMBDA(D)(LAMBDA(X)(G (D X)))))

We stow in this section that every applicative expression using no lambda

expressions other than the above combinators; we begin with

Lemma 3.7: Let R be a LAMBDA free AE in the single argument applicative

lar^uage L, and let R contain occurrences of the variable x. Then R is

equivalent (by alpha and beta axioms) to a LAMBDA free AE of the form (R'

x) where R' contains no occurrences of the variable x.

proof is by structural induction on R.

basis; R is atomic (in particular, R is not a combination). If r is the

variable x, then r' is (I x) = x (by axiom beta). If r is not the variable

JL. then £ contains no free occurrences of x and r' is ((K r) x) =

((LAMBDA(X)E.) x) = r.

induction; R is a combination of the form (R1 Rg). By inductive

hypothesis, R=((R1' x)(R2' x)) for some AEs R^ and R2' not involving the

variable x; then R'=(((S R,) R2) x) = ((LAMBDA(Y)(LAMBDA(X) ((R1 X)(Y

X))))) = ((R1 x)(R2 x)).

The principal result of this section is the following adaptation from Curry's

Synthetic Theory of Combinators:

Thm 3.8; Let A be an AE in a single-argument applicative language L whose

semantic equivalence obeys axioms alpha and beta. Then A is equivalent

to a LAMBDA-free expression k* containing only the combinators I, K, W,

S, G,, G-, Gv Gjp and the primitives and constants of L.

proof; we show that, given any such A which is not LAMBDA-free, we can

construct an equivalent A' containing fewer LAMBDAs. Let a. be an

innermost LAMBDA expression occurring as a subexpression of A, We then

construct A' by replacing a as follows:

Case 1: §. is of the form (LAMBDA(x)x) for some variable x; we replace a

by I (equivalent by axiom alpha).

■'

3.?.2,1 -51-

Case 2: a is of the form (LAMBDA(x)y) where x and y are different

variables; we replace a. by (K y).

Case 3: a is of the form (LAMBDA(X)(D X)) where x is a variable and b is

an AE: replace a by (W b)=(LAMBDA(Y)(b Y))

Case «I: a is of the form (LAMBDA(x)(c d)): By Lemma 3.7, the body (c d)

is equivalent to an AE (r' x) where the variable x does not appear in

r'. Then a=(LAMBDA(x)(r' x)) which is reducible according to case 3.

Since each expression A which is not LAMBDA free is thus equivalent

to an expression A' containing fewer LAMBfAs, a finite number of such

reduotions will reduce each such A to a LAMBDA free A*. This completes

the proof.

IT, is a relatively simple exercise to show in addition that each of the

c tnbinators I, W, G , G_, 0-, G^ is in turn equivalent to an expression in K

and S, allowing us to simplify Theorem 3.8 by eliminating all but 2 of the

cmnbinators. This is unnecessary for our purposes, however, so long as the

number of combinator:.» required is finite. An important observation to be made

at this point is that the construction of A§ detailed in Theorem 3.8 is

effective; thus we could program a computer to convert AEs to LAMBDA free

form.

3.2.2.2: An Enumeration of D

In this section it is demonstrated that the domain of every applicative

language with the power of the N model contains functions which enumerate the

domain of that language, ie, each such language L with domain D contains a

function

f: N -> DL

such that for every finite expression x in D there is a number n which

sattsfiM (f n)=x. We precede by Goedelizing the LAMBDA free expressions of

/

^±1

*m^

-52- 3.2.2.?

Let £air br a number pairing function such that, for each i and j in N, the

value of pair[i, j] is a unique number P^, and let left and ri£ht be functions

recovering the components of a pair; ie, for every i and j, left[pair[i,j]]=i

and right[pair[i,j]]=J. There are many well known such pairing functions;

since they are all first order computable functions, we may assume that they

are expressible in each of our model languages.

Let us now suppose that we label the (finitely many) primitives of the

language L as p1. P2. ... PB. Note that we include the combinators K, I, 0^

etc. in this list so that we can enumerate LAMBDA free expressions only. We

now specify the coding details: for each LAMBDA free expression x, we define

the Goedelization ß.[x] as follows:

glx] =

if x is a number then pair[0;x];

if x is a primitive p then pair[1;j];

if x is a combination (a b) then pair[g[a];g[b]];

The function £ is computable fVcm the representation of x, but we cannot in

general claim that it is computable from the functional properties of x. The

function £ is, in fact, a satisfactory choice for the CODE function of the C

model, assuming (as we may) that we are content to deal with LAMBDA free

expressions of C. If such a function & could be shown to be computable in,

for example, the N model, we would have a direct a Eriori demonstration that

the languages are expressively equivalent. We must, however, be content with

the expressibllty of a semantic inverse of &: the function £nu defined such

that, for every LAMBDA-free expression *, enu[g[x]]=x. This apparent

asymmetry can be explained by the observation that & is not a function, in the

sense of Defn [1.1] which prohibits the mapping of semantically equivalent

expressions into differing numbers. The fact that enü may map different

numbers into semantically equivalent values is consistent with its

finctionality. We label the expresslbility of ena. as

Thm 3.9: Let L be an extension of N with primitives 11, 12 In

(including combinators K and S). Then there is a function eniL:N->DL such

that, for every LAMBDA free expression x in DL, there is a number i such

that enu[i]"x.

—ij

3.2.2.2 -53-

proof is a straightforward programming job. Such a function for the

language N would take the form:

(LAMBDA(N){(GREATER (LEFT N) 1)

((ENU (LEFT (RIGHT N)))

(ENU (RIGHT (RIGHT N))))

((GREATER (LEFT N) 0)

((GREATER (RIGHT N) n-1) In

• • «

11)...))

(RIGHT N))))))

where li is the Uh primitive of N, and LEFT and RIGHT are the N

expressions corresponding to the left and right functions above.

3.,: E model: Multiprocessing primitives

An extension to the N intr-preter which is somewhat more palatable than the

use of coding primitives is the addition of mechanism for multiprocessing: the

quasi-simultaneous evaluation of several expressions. We consider here the E

model, which is the N model of Chapter 2, augmented by the primitive operator

EITHER whose interpretation is as follows:

For every choice of expressions a. and b., [3.10]

E[(EITHER a k)] =

if E[i.] is defined but E[b] is not, then E[a];

if E[tJ is defined but E[a] is not, then E[b];

if E[a] and E[b] are both defined then one of these values;

else undefined.

Note that we do not specify which of the arguments is returned if both have

defined values; we may consider that this selection is made by some

nondeterministic process over which we have no control. EITHER is evidently

computable by dovetailing techniques, eg by evaluation of E[a] and E[b] each

for 1 step, then each for 2 steps, and so on until one evaluation or the other

returns a value, EITHER is not, however, functional: in the case where a and

/

/

^li «■

-54- 3.3

b each have defined values (and their values differ), then the value of

(EITHER ab) is dependent on the representation of a and b. and on details of

scheduling of the dovetailed computation.

The power of the either primitive is demonstrated by the expressibility of

WHICHFF in E as follows:

WHICHFF[I] = g^O]

where g-foual = eitheKhCahg^lUn+l]

Note that for i>Jf «.[FF ;i] is undefined and hence for i<.j e^FP.;!]«^. Thus

for every number J, E[(WHICHFF FF)]=J,

The presentation of the EITHER primitive in this section is informal, based

largely on its intuitive relation to the implementation mechanism of

multiprocessing. The formalization of this mechanism is a principal topic of

the remaining chapters. The remainder of the present chapter explores the

impact of EITHER on the semantics of an applicative language.

3.1: The Intuitive Paradox

The reader has doubtless noticed that fundamental questions raised in the

first section of this chapter demand a more precise characterizatior, of the

hitherto vauge notion of functional completeness. Specifically, Theorem $,H

shows that WHICHFF is not fine*' " over the entirety of aiUL functional

domain which includes all fir. »r functions. Thus the basic intuitive

requirements of [1.1] are inconsistent with the existence of a functional

domain F which is arithmetically complete and includes every computable

function f:F->F. Two alternatives facing us are the following:

1) We can deny that WHICHFF is a computable function. Indeed, Theorem 3.4

may be interpreted as a statement that no computable function defined on

first order functions has the properties of WHICHFF given in [3.2]. Our

intuitive claim that WHICHFF is a computable function is based on the

incomplete specification of its behavior over the entire functional

domain: [3.2] merely defines it over the restricted domain of [FF^.

tm

3.4 -55-

2) We can revise the notion of a functional domain F such that, for every

function f. in F there is a domain of specification over which the

behavior of f is defined. The functional criteria of [1.1] are then

required to apply only when the arguments of f are drawn from its domain

of specification, S .

3) We can postulate new elements of the functional domain F corresponding to

the values returned by otherwise nonfunctional procedures.

We reject the first choice on the grounds that it restricts our consideration

to those finctions expressible in the lambda calculus, giving us no way of

distinguishing between N and the intuitively superior E. The second choice is

rejected after brief consideration (in a following section) partly because of

the technical complications it entails, but primarily because it denies the

serrantic validity of the interesting class of multivalued expressions. The

third choice seems the roost promising from the po'nt of view of rigorous

analysis, but requires a substantial intuitive leap whose usefulness must be

carefully scrutinized. This project is approached in subsequent sections.

3.5: Multi-valued Semantic Elements

The domain D^. of language N was shown, in Chapter 2, to have the property that

every element x of D.. corresponds to exactly one element of a functional
N

domr in; thus each expression x. in D.. has, intuitively, exactly one semantic

value or meaning. In this chapter it was shown that this graceful property

of D is inconsistent with the expressiblity of the function WHICHFF, a

demonstrably computable and intuitively well behaved function over a

particular subset of DN, Our implementation of WHICHFF, while functional over

this restricted domain S, behaves poorly when given arguments from DN which

are not in S; furthermore, this annoying defect is characteristiT of every

implementation of WHICHFF in a language sufficiently powerful as to be

arithmetically ccmplete. The problem is evident when WHICHFF is applied to

the function FF12: either of the values 2 or 3 is consistent with the

It must be recalled that we have postulated a semantic element, •,
corresponding to the "meaninpless" or nonterminating computation: hence a
possible semantic value for x is •.

tm

-56- 3.5

definition of WHICHFF [3.3], and there is no implementation of WHICHFF which

consistently returns a single value, eg 2. when applied to every x in DN

semantically equivalent to FF^. Thus the evaluation of (WHICHFF FF,,) leads

to exactly the same underdetermined result as the evaluation of (EITHER 1 2):

the E values of each expression might be 1 or 2. depending on circumstances

which are irrelevent to the semantics of each expression.

3.5.1: Domains of Specification

One means of avoiding such apparently nondeterministic computations is to

exclude them from our semantic model, ie, to deny that (EITHER 1 2) has any

semantic value. Under this restriction, we must carefully exclude from our

consideration any expression having multiple E values, either by avoiding the

use of EITHER and reverting to the well behaved domain D,,, or by assuring

ourselves, at each application of EITHER, that the result is single valued.

We may note, pursuant to the latter program, that for all expressions a and b,

E[(EITHER ä.fe)] is sin8le valued if

1) §. is single valued and b is meaningless; or

2) b is single valued and a is meaningless; or

3) a and b are both meaningless; or

4) a and k are each single valued and their values are semantically

equivalent.

So long as the arguments to EITHER satisfy the above criteria, EITHER is

intuitively functional. For each function f whose definition involves EITHER,

we may then carefully define a domain of specification Sf such that for

arguments ^ ^om S E[(f x)] is single valued. We may, for example, show

that our definition of WHICHFF in terms of EITHER is functional over a domain

of specification including the functions {FF^.

This means of avoiding the semantic difficulties of EITHER may raise certain

aesthetic objections. First, it places on us the considerable burden of

having to construct domains of specification for each of a large class of

functions, and the necessity of showing that each such function is well

behaved over its particular domain of specification. Second, it rules out

1 m* . 1 ^-

3.5.1 -57-

consideration of algorithms for well behaved functions which have

multiply-valued subexpressions. Consider, for an example of the latter

liFiitation, the function £ defined so that

ftn] = 5, n=1

5, n=2

else undefined.

Now, since f[1]=5 and f[2]=5, it is intuitively reasonable to claim that

£[either[1;2]]=5; yet we cannot make such a claim unless we are willing to

assign some semantic value to either[1;2].

3.5.2: EITHER and the Lambda Calculus

There is an essential incongruence between EITHER and the axiomatic basis of

the Lambda Calculus which precludes the incorporation of the former as a

primitive with an associated delta rule. Recalling that these axioms define

an equivalence relation, =, on the domain of the language, incorporation of

EITHER results in the equivalences:

(EITHER 1 2)=1

(EITHER 1 2)=2

and hence

1=2

from which it follows, by the famous logic of Rüssel, that "I am the Pope".

Clearly the relation between (EITHER I 2) and 1 is not equivalence, but rather

some irreversible reducibility property. Any evaluator which can yield 1 as

the value of (EITHER 1 2) cannot be claimed to preserve semar.tic equivalence;

it merely reduces that expression to one of its several values .md discards,

in the process, information about the other values. This is the underlying

reason why N (and the Lambda Calculus) are incapaMe of expressing WHICHFF,

and is basic to the proof of Theorem 3.^.

Such a delta axiom is formally ruled out by the requirement that the
arguments to primitives be in reduced form, thus restricting applications of
EITHER to cases where both arguments have meaningful E values.

^m

-58- 3.6

3.6: The Power Set Domain

The natural extension of a functional domain F of single-valued elements to a

domain F« of multiply-valued elements involves the interpretation of F« as the

power set, or set of subsets, of F, Thus the elements 2 and 3 of F correspond

to the unit subsets {2} and {3), respectively, in F», while the semantic

element of F» corresponding to the value of (EITHER 2 3) is the subset {2,3)

of F containing both 2 and 3. The meaningless element • corresponds to the

empty subset 0 of F, having no value. Other useful relationships which we

would like to see in F» include the following:

1)' If a"b in F then {ai^'a'^ i" Ft«

2) (EITHER (f a)(f k))"(I. (EITHER ä.^)), or equivalently, the elements

{f[a]ff[b]} and f[i-,bl] in F« are the same.

3)The natural interpretation of either on functions leads to the semantic

equivalence (EITHER f g)-(LAMBDA(X) (EITHER (f XKf X))). This allows us

to propose, In symmetry with (2), that:

4) ((EITHER £.£) a.) " (EITHER (la) (ää))-

5) (EITHER a. •)"&, where ■ is the element corresponding to the undefined

computation.

6) If a corresponds to {a^...^ 1 in F« and ^ corresponds to {b^...,^},

then (EITHER a. k) corresponds to (a^...,**, b^...,^) in F*. In

general, EITHER of multivalued elements corresponds to the union of the

respective elements of F1.

3,7: Interpretation of F*

The semantic model being developed in this chapter demands a certain amount of

intuitive realignment on the part of the reader. The attractive feature of F*

as a semantic domain is that it allows the preservation of a notion of

semantic equivalence, without cost in terms of expressibility of certain

functions. Its major disadvantage, at least from an intuitive standpoint, is

that it requires that we postulate certain abstract semantic elements which

mi - - ^——^—^

3.7 •59-

are intangible in practice — if the expression x. has multiple values, say 2

and 3, then we have no way of discerning from the value "3" typed by our E

interpreter that "2" is also a value of x. We could, of course, build an

interpreter which would enumerate the values of x. by dovetailing computations

at each EITHER juncture. However, as x might have infinitely many values,

this procers may never terminate; worse yet, even for an x with finitely many

values we cannot tell, in general, when all of the values have been typed.

There are, however, situations where this ambiguity is unimportant. We may

know, for example, that x is single valued, in spite of the dual values of a

subexpression £ of x.. Alternatively, we may recognise that x has many values,

but be willing to settle for any one of them.

3.8: Computable elements of F*

If we have a procedure for identifying the computable elements of a single

valued domain F, we can characterize the computable elements of the power set

domain F* as those elements of F* which are effectively enumerable sets of

computable elements of F. Given an expression X we c i enumerate the

components of the F* element representing X; one met-ns of doing so is provided

in Chapter 6. Furthermore, given an expression G for a function which

enumerates a set S of elements of F, we can construct an expression whose

representative F* element is S; take for example the expression

((Y (LAMBDA(H)(LAMBDA(X)(FITHE,n (G X) (H (PLUS 1 X)))))) 0)

where Y is the fixed point operator (LAMBDA(F)((LAMBDA(G)(F (G

G)))(LAMBDA(G)(F (G G))))). This expression reduces to an expression of the

form

(EITHER (G 0)

(EITHER (G 1)

(EITHER (G 2)

(EITHER (G 3)))))

and its corresponding element of F* is exactly the range of G.

M

-60- 3.8

We may use as our action G in the above expression an enumerator ENU of the

entire domain F, constructed by the techniques of section 3.2.1.2; this

expression, TOP, corresponds to the semantic element of F* which is the set F

itself.

3.9: Summary

This chapter raises the question of the expressibility of a particular

function, HHICHFF. This function is inexpressible in the lambda calculus, and

intuitively it requires a mechanism for multiprocessing for its implementation

in spite of its applicative — hence time independent — nature. Two

alternative extensions of the N interpreter are proposed, each of which

renders WHICHFF expressible:

1) Prinitives can be added to N which allow coding and decoding of arbitrary

expressions into and from numbers. This mechanism allows programs to

access the representation of functions, and it is argued that such a

CODE/DECODE facility exv.ends any arithmetically complete language to

ftnctional completeness. Yet the use of this mechanism is awkward: the

specific implementation of WHICHFF, for example, requires coding an

interpreter which simulates the necessary multiprocess^. Moreover the

semantic ramifications of CODE are drastic, involving abandonment of much

of the applicative structure of any language in which it is embedded.

2) A primitive, EITHER, can be added to N to implement multiprocessing,

EITHER renders WHICHFF easily expressible, and it may be justified

semantically in an applicative language.

In connection with (1), it is noted that although the new primitive CODE is

radically nonfunctional, the inverse operation of DECODE (which maps codings

into the ftnctions which they represent) is acceptable as an element of our

finctional domain. A conbinatory proof shows that such decoding functions

are, in fact, expressible in the unmodified N language; hence we can write in

the lambda calculi functions which enumerate the entire semantic domain of

these calculi.

/

■■

3.9 -61-

The introduction of EITHER or equivalent mechanism requires that we modify the

structure of the semantic domain and its relation to expressions of a

language. In particular, it seems most natural to associate with each

expression a set of abstract values, rather than a unique single value. We

thus move from the domain F of single values to the domain F* whose elements

are enumerable subsets of the elements of F; we term F* the power set domain.

The presentation of EITHER in this chapter is informal and relies heavily on

implementational notions such as multiprocessing. The following chapters

formalize the mechanism in terms of systems of conversion rules, based on the

lambda calculus; this process both Justifies and refines the rough

implementation model sketched here.

tm

Preceding page blank •63-

Chapter H:

Theories of EITHER-conversion

While the implementation and semantic considerations of the previous chapter

provide a strong intuitive basis for the interpretation of EITHER, the further

development of this new mechanism requires something more concrete.

Specifically, the incorporation of EITHER int3 a language E involves syntactic

manipulations of expressions in E, and hence necessitates a formalism which

distinguishes those syntactic manipulations which are semantically valid from

those which are not. The relationships developed in the last chapter are

analogous to the convention that "(PLUS 2 3)" represents the sum of 2 and 3.

without a corresponding mechanism for associating this expression with the

expression "5",

This chapter begins the project of developing formalisms, i.e. conversion

axioms, for the syntactic manipulation of expressions involving EITHER.

Several theories (i.e., systems of axioms) are presented in this and

subsequent chapters; each is based on the beta-delta calculus, with

additional axioms for manipulation of the new EITHER construct. The

distinction between these theories stems from an issue of evaluation order,

discussed in a following section, and reflects alternative interpretations of

certain expressions involving EITHER,

A principal difference between the axiom system presented here and those of

the lambda calculus is the introduction of a new asymmetry, In the form of an

ordering relation >, between expressions of E, We have seen in previous

sections that it is futile to require that E interpretation preserve an

equivalence relation; such a requirement was shown to lead to an

inconsistency in any language capable of expressing WHICHFF, since (WHICHFF

FF)"1 and (WHICHFF FF,?)'^ together imply that 1*2. The asymmetry of >,

hovjver, allows the relations (WHICHFF FF12)>1 and (WHICHFF FF12)>2 to hold

without compromising the semantic relation between 1 and 2. We view the

relation > as designating EITHER-reducibility, and may interpret x>y

informally to mean that the values of y are among the possible values of x.

No attempt is made to incorporate eta conversion into the systems presented
here, although we expect that no new difficulties would arise in doing so.

*mm

-en- «•

We shall use x»y to mean that both x»y and y>x.

It is important to distinguish between the relation > and the "reducible to"

relation, ->, of the lambda calculus. If the expression X is reducible to the

expression Y by means of conventional lambda calculus axioms, then it will

follow that X^Y and Y>X; the reverse, however, is not true. The semantic

interpretation of X^Y is that every value of Y is also a value of X; i.e., the

element of F* corresponding to Y is a subset ol the element corresponding to

X.

4.1: Prelininary Definitions

The terminology of this section is adapted from standard usage in the lambda

calculus, and appears e.g in Curry[12].

The relation > defined in each of the axiom systems presented here is a

monotone relation, i.e. it has the following properties:

Reflexivity: For every X, X>X.

Transitivity: If X>Y and Y>Z, then X»Z.

Monotonicity: If X->Y and B is the result of substituting X for an occurrence

of Y in expression A, then B>A. X for an occurrence of Y, then B>A.

The above properties are assumed to be axioms of each system.

Certain of the axioms to be presented lead to a distinction between the

operations of contraction and abstraction; for example, the derivation of

S[A;x;M]1 from ((LAMBDA(x)M)A), justified by the beta axiom of the lambda

calculus, may be termed a beta-contraction. The inverse operation of

converting S[A;x;M] to ((LAMBDä^X)M)A) may be termed a beta-abstraction. An

expression which is a candidate for contraction is called a redex; thus

((LAMBDA(x)M)A) is a beta-redex in the lambda calculus. The result of

perfonning a contraction on a redex X is termed the contractum of X.

An expression in a particular calculus is in normal form if i*" contains no

Recall that S is the substitution operation of the lambda calculus, Defn
[2.6].

i

«— * , ~—

4.1 -65-

redex applicable to that calculus. We say further that the expression X is in

beta-normal fi^tn if X contains no beta-redex, and similarly for the delta, »,

and E redexes to be defined presently. The statement that X is in normal

form, without further qualification, may be taken to mean that X contains no

beta-, delta-, •-,, or E-redexes.

We shall often use the notation X{Y} to designate an expression X containing a

particular instance of a subexpression Y; having identified an expression

with the notation X{Y}, we shall then use an expression of the form X{Z} to

denote the result of replacing Y in X{Y} by the expression Z. In this

notation, the monotonicity of > is the implication of X{Y}>X{Z} by Y>Z.

A relationship of the form A>B is in general derived through a series of steps

A1>A2, A2>A3, where each A^A^ involves the substitution of an expression Y'

in Ai for an occurrence of an expression Y>Y'. The monotonicity of »

justifies each such substitution, and the transitivity assures that the

validity of the entire series follows from the validity of the individual

steps. We shall use the terminology

Defn 4.1: A reduction step in A from X to Y, for expressions X and Y and a

particular axiom system A, is a proof that X>Y by a single application of

an axiom of A.

Defn 4,2: A reduction sequence from X to X in system A is a series

X0>X1>-,*>Xn such that each Xi>Xi+l is a eduction step in A.

4,2: The Either-R Theories

The first axiom, common to each of the systems presented, is taken directly

from the lambda calculus:

Axiom aloha: (Renaming) Let E be an expression of thj form (LAMBDA(X)A) where

X is any variable and A is an expression, and let Y be any variable not

occurring free in A. Then E-(LAMBDA(Y)S[Y1X;A]).

-66- ".-'1

We say that expressions A and B are congruent If A can be converted to D by

alpha conversion alone. Congruence is thus reflexive, symmetric and

transitive, and to simplify subsequent proofs we shall often allow ourselves

to treat congruent expressions as identical.

The next axiom is a restricted form of the beta axiom of the lambda calculus,

allowing beta conversion only on a beta-redex whose argument is in normal

form:

Axion beta-R; (lambda conversion) Let E be an expression of the form

((LAMBDA(a.)k)£.) where £ is in normal form. Then E-E', where E' is the

contractura S[s.;i,;li] of E.

The followir« axiom provides a paradigm for delta-conversion, the application

of primitive ftrctions to arguments in normal form. A particular calculus

will have a family of delta rules, specifying the behavior of each primitive

-- e.g. the delta rule for t>e primitive PLUS asserting the equivalence of

(PLUS n m) to n+m for all integers n and m. Of interest here is the general

form of such rules:

Axiom delta: Let E be an expression of the form (A B) where A is a primitive

faction symbol and B is a normal form expression containing no free

variables. Then E-E', where E' is the contractum of E derived from B by

the (here tnspecified) rules associated with A.

We may term such an expression E a deiia-redex. and the conversion of E to E'

is a ^iM-Sfintrastlon. Since the relation between E and E' is equivalence,

the axiom provides also for the delta-abstraction of E' to E.

We note that axioms alpha, beta-R, and delta define a lambda calculus under

the equivalence relation .; no use has been made of the asymmetric relation

We shall term an expression of the form (EITHER a1 a2), where a1 and a2 are

arbitrary expressions, an E-redex. We treat the E-redex as a new syntactic

construct, rather than attempting to classify EITHER as an added primitive

f met ion whose operation is specified by delta rules. In particular, we

regard the restriction that arguments of primitive functions be in normal for

tm

"•2 -67-

as unacceptable to the process of EITHER-conversion

Axiom epsllon: (EITHER-contraction): If E is an expression of the form (EITHER

a1 a2) where a1 and a2 are expressions, then E^a. and E>a?.

Axiom mu: For every expression E, E«(EITHER E E).

Axiom rho: (EITHER-distribution) If E is an expression of the form (f (EITHER

a b)), where f, a, and b are arbitary expressions, then E-E' where E' is

the expression (EITHER (f a)(f b)).

2
The conversion of the redex (EITHER a a) to one of the expressions a or a

will be termed an E-contraction. The conversion of an expression E to (EITHER

E E) will be called an E-abstractlon.

4.2.1: Properties of Either Theories

The elementary relationships established in this section hold for subequent

theories as well as for Either-R. In addition to their usefulness in proofs,

they provide a preliminary reassurance that the Either-R axioms are consistent

with the intuitive semantics of EITHER.

Thm 4.3: X^Y if and only if, for all Z,

Y>Z => X>Z

Proof; only if; by the transitivity of >.

if: Let Z be Y; then Y^Y by the reflexivity of >, hence X>Y by above

hypothesis.

The above theorem is consistent with the intuitive notion that X>Y means

values derivable from Y are also derivable from X.

Axiom mu justifies the trivial abstraction of an expression E to the

expression (EITHER E E); The following theorem shows that nontrivial EITHER

expressions may be abstracted:

-68- 14.2.1

Ihm 1.4: Let X, A, and B be expressions such that X^A and X^B, Then

X>(EITHER A B).

Proof; By Axiom mu, XXEITHER X X).

But since X*A and X.>B, (EITHER X X)>(EITHER A B) by the monotonicity of

>. Hence X*(EITHER A B).

We may apply this theorem, for example, to the expression A given by

A= ((LAMBDA(X)(PLUS X 3))(PLUS 1 2))

By performing single beta and delta contractions, repectively, on A we dedvcc-

the relations

AXPLUS (PLUS 1 2) 3)

A>((LAMBDA(X)(PLUS X 3)) 3)

Application of Thm U.4 yields the result

AX EITHER (PLUS (PLUS 1 2) 3)((LAMBDA(X(PLUS X 3)) 3))

This demonstrates that the Either-R the ry allows EITHL.<-free expressions

(such as A above) to be inverted to expressions containing EITHER.

Thm 4,5: X«Y if and only if for all Z, X>Z<=>Y>Z.

proof; is by two applications of M.3.

Thm 4.6: For all f, g, and a,

((EITHER f g) a)>(EITHER (f a)(g a))

oroof: By Axiom epsilon, ((EITHER f g) a)Xf a) and ((EITHER f g) a)Xg a);

hence, by Thm U.i», ((EITHER f g) a)>(EITHER (f a)(g a)).

The intuitive arguments of the last chapter suggest that the above result

could be strengthened to full equivalence (i.e., •), and this more powerful

result may in fact be a theorem in our Either theories; however we have not

pursued this equivalence since it is irrelevent to the subsequent proofs.

tm

1.2.2 -69-

4.2.2: EITHER and Evaluation Order

Chapter 2 notes the distinction between normal and applicative order

evaluation, characteristic respectively of the N and T interpreters.

Applicative order evaluation, in which argutnerts to a function are evaluated

prior to the application of the function, is shown in that chapter to lead to

the inexpressiblity of certain functions which ignore their arguments. For

axample, the applicative order evaluation of the expression

((LAMBDA(X)3) A)

does nr. terminate if the value of A is undefined, whereas the normal order

evaluation of that expression yields the value 3.

The restricted conversion of the beta-R axiom is similar to applicative order

evaluation — in each case, the argument to a function must be avaluated

(reduced to normal form) before the application of the function (beta

conversion). The only distinction between be^-a-R conversion and the

applicative order of the T interpreter is the degree of evaluation required;

while Either-R requires that arguments bs reduced to normal form, T requires

only that they be reduced to lambda expressions or atoms. We may thus view

the restriction on beta conversion as a more serious constraint than the

applicative order evaluation of T.

The motivation for this restriction in the Either-R system is our intuitively

based demand that the axiom of EITHER-distribution, rho, hold. This axiom is

in fact inconsistent with the unrestricted beta conversion of the lambda

calculus; consider, for example, the expressions I, Z, and F defined by

I = (LAMBDA(X)X)

Z .= (LAMBDA(Y)(LAMBDA(X)X))

F .= (LAMBDA(H)(H H))

Using the axioms of Either-R (notably EITHER distribution) in conjunction with

unr-estricted beta conversion, we may deduce that I=Z as follows: By Axiom mu,

I =. (EITHER I I)

and by (restricted) beta abstraction on each of the terms of the E-redex,

T = (EITHFR (F I)(F Z))

*M

-70- '».2.2

since both (F I)=.I and (F Z)=.I. Then the axiom of EITHER distribution yields

I =. (F (EITHER I Z))

fran which, using unrestricted beta conversion (as the argument is an E-redex

and hence not in normal form) we deduce that

I =. (((EITHER I Z) (EITHER I Z))

whence by EITHER contraction

I > (I Z) =. Z

Thus we have derived I>Z; to show Z>1 (and hence I-Z) we make the deductions

I > Z

(I Z) > (Z Z)

Z > I

using the monctonicity of > and beta-R abstraction.

It follows that, using unrestricted beta conversion in conjunction with the

Either-R axioms, we can prove every pair of expressions equivalent — i.e.,

the system is inconsistent. We avoid this pitfall in Either-R by means of the

restriction on beta conversion. The beta-R restriction is not, however, the

only solution to this problem, and in Chap^r 7 an alternative axiom system --

designated the Fither-K theory — is presented.

It should be noted at this point that the restriction on beta conversion is

expensive in terms of expressive power. It prohibits, for example, the

reduction of the expression

((IAMBDA(X)3) ((LAMBDA(Y)(Y Y))(LAMBDA(Y)(Y Y)))

to the value 3, since the argument in that expression has no normal form. A

more serious drawback is that it interferes with the expressibility of

recursive functions since recursion requires, in the lambda calculus, the

application of fmctions to arguments having no normal forms. Chapter 5 is

devoted to the mechanism of •-conversion, which mitigate these limitations

imposed by the restricted beta conversion.

4.2.3 -71-

4.2.3: Consistency of Either-R

For example, the set I=.(lambda(x)x), I'=.(lambda(x)I). I "=(lambda(x)I ').
e tc.

i

! '

An extension of the axiomatic basis of the Lambda calculus may lead to «

inconsistencies, e.g. ehe equivalence of 1 and 2. Such equivalences do not

hold in the conventional lambda calculus; in particular, the first Theorem of

Church and Rosser establishes the consistency of the Lambda Calculus axioms by

showing that the proposition X=Y is not provable for any pair of expressions X

and Y having incongruent normal forms. We are thereby assured that the

equivalence relation = establishec' by the lambda calculus does not place every

expression in a single equivalence class, and thus that the cardinality of the

domain of the Lambda Calculus is greater than 1. The existence of infinite

sets of mutually incongruent normal forms shows that the domain of the lambda

calculus is infinite. Moreover, an important theorem of Boehm[20] shows that

any axiomatic assertion of the form X=Y, where X and Y are incongruent normal

forms, leads to an inconsistency.

The theorems of Church-Rosser and Boehm are, not surpris ngly, inapplicable to

the axiomatic extension presented here. Furthermore, they probably cannot be

augmented in minor ways to argue the consistency of the present system, as the

uniqueness of normal forms, on which they depend, has been compromised by our

extension.

Accordingly, is the purpose of this section to establish that the domain of

the lambda calculus is a subset of the domain of the Either-R system, and that

the new equivalence relation • is consistent with the relation = of the lambda

calculus. In particular we wish to show that, for any two either-free

expressions X and Y, X=Y if X-Y. Proof of this assertion establishes that

1) The domain of the Either-R system includes the domain of the lambda

calculus, hence the new system is nontrivial (having infinite

cardinality); and

2) The semantic equivalence defined by the Either-R calculus, applied to

EITHER-free expressions, is a subset of the equivalence of the lambda

calculus.

/

-72- 4.2.3

It has been noted that in the Either-R system there are expressions X anj Y

such that X=Y but for which X«Y is not provable — a consequence of the

restriction on beta conversion which is explored further in the analysis of

the R-» system in the following chapter.

We precede to the consistency proof, beginning with with the following
definition:

Defn 4.7: The EITHER-frg? expression X' is an e-residue of the expression X

if and only if X' nay be derived frca X by replacing every e-redex

(EITHER x1 x2) in X by one of the operands x or x2.

Thus the expression X' is an e-residue of X if X' is EITHER-free and X>X' may

be demonstrated solely by means of EITHER-contraction (axiom epsilon).

Defn 4.8: The expression X is unitarv if and only if there exists some

EITHER-free expression Y such that, for every e-residue X' of X, X'=Y (in

the lambda calculus).

Thus

(EITHER (LAMBDA(X)X) (LAMBDA(Y)Y))

is mitary, since its e-residues (LAMBDA(X)X) and (LAMBDA(Y)Y) are congruent.

We note that EITHER-free expressions are unitary, although unitary expressions

are not necessarily EITHER-free, as the above example demonstrates.

Furthermore, a unitary expression X may contain subexpressions which are not

unitary; witness the expression

((LAMBDA(X) (DIFFERENCE X X) MEITHER 2 3)) [4.9]

whose e-residues are

((LAMBDA(X)(DIFFERENCE X X)) 2)
and

((LAMBDA(X)(DIFFERENCE X X)) 3)

each of which is convertible to 0 by the rules of the Either-R system. Hence

expression [4.9] is unitary; it contains, however, the subexpression

(EITHER 2 3)

klM

«».2,3 -73-

which has e-residues 2 and 3. which are not equivalent under =. Hence the

subexpression is not unitary.

The proof of the consistency of Either-R is based on the observation that,

while EITHER may be introduced into EITHER-free expressions by

EITHER-abstraction, the result is necessarily unitary. Moreover, the axioms

of Either-R preserve the unitary nature of expressions; we will thus argue

that the result of an Either-R reduction sequence on an EITHER-free expression

must be unitary. We now introduce a relation which orders expressions by the

interconvertability, in the lambd. calculus, of their e-residues:

Defn U.10: For any expressions X and Y we say that X encloses Y if, for every

e-residue Y' of Y, there is an e-residue X' of X such that X'=i' in the

lambda calculus.

Observe that enclosure is reflexive and transitive; the following lemma

establishes that it is monotonic:

Lemma 4,11: Let Y be a subexpression of X{Y} and let Y enclose Z. Then X{Y}

encloses X{Z}.

proof: Each e-residue of X{Z} is of the form X'{Z'} where Z' is an e-residue

of Z; and for each e-residue Y' of Y there is a corresponding e-residue

X'{Y'} of X{Y}. Hence for each e-residue X'{Z'} of X{Z} there is an

e-residue X'{Y'} of X{Y} such that Y'=Z'; it follows that X'{Y'}=X'{Z'}

hence X{Y} encloses X{Z}.

Corollary 4.12: If X{Y) is unitary and Y encloses Z, then X{Z} is unitary and

every e-residue of X Z} is convertible to an e-residue of X{Y}.

Lemma 4.13: Let X>Y be a single reduction step in Either-R. Then X encloses

.-JH. 4.2.3

proof: Let Ü be the subexpression of X which is replaced by an expression W

in the reduction step X>Y. By Lemma 4.11, we need only to show that Ü

encloses W to establish that X encloses Y, We exhaustively examine the

possible reduction steps from U to W:

Case 1: Alpha conversion on U. Then U and W are congruent, and for each

e-residue W' of W there is a congruent e-residue U' of U.

)nn Case 2: beta-R conversion on U. Let P be a beta-redex of the foi

((LAMBDA(X)M{X})M where A is in normal form, and let Q be the contractum

S[A;X;M{X}] of P. Then every e-residue P' of P is of the form

((LAMBDA(X)M'{X})A) where M'U} is an e-residue of M{X}, and there is one

such e-residue P' for every e-residue M' of M. Each e-residue W' of W is

of the form M'{A} and there is one such e-residue W for each e-residue M'

of M. For each M' the corresponding e-residues of P and Q are

((LAMBDA(X)M'{X))A) and M'{A} respectively, >*iich are interconvertible in

the lambda calculus by a single beta conversion; hence P encloses Q and Q

encloses P. W is either a beta-R contraction or a beta-R abstraction of U,

hence U encloses W,

Case 3: delta-conversion on U. If either U or W is a delta redex, then both U

and W are EITfTCR-free and thus U encloses W,

Case "• EITHER contraction. If Ü is an expression of the form (EITHER A1 ^

clearly U encloses both A and A«; each e-residue of W is an e-residue of

A. or of A«.

Case 5: EITHER-abstraction. Then W is of the form (EITHER ü U), and each

e-residue of W is an e-residue U' of U.

Case 6: EITHER-distribution. Let P be an expression of the form

(EITHER (F A)(F B))

and let Q be

(F (EITHER A B))

The e-residues of P consist of all the expressions of the forms (F' A') and

(F' B') where F', A', and B' are respectively e-residues of F, A, and B.

We note chat the e-residues of Q consist of exactly the same set of

expressions, hence P encloses Q and Q encloses P. Thus for a conversion

»».2.3 -75-

U>W of the fonns P>Q or Q>Pf U encloses W.

This completes the proof of Lemma '4.13,

We present the obvious generalization of this result as

Corollary '».I'«: Let X and Y be expressions such that X>Y in the Either-R

system. Then X encloses Y,

proof follows directly from Lemma 4,13 and the transitivity of the enclosure

relation.

This corollary shows that the ordering > of the Either-R system implies

enclosure; thus the number of distinct (under = of the lambda calculus)

e-residues of an expression X can only be decreased by a reduction step in

Either-R, While each reduction step may introduce new E-redexes (by

FITHER-abstract ion), the terms of each redex so introduced are necessarily

interconvertable. The consistency of the Either-R theories is a special case

of this corollary:

Thm 4,15: Let X and Y be EITHER-free expressions such that X>Y in the

Either-R theories. Then X=Y in the lambda calculus.

Proof; By Corollary 4,14, X encloses Y; since X and Y are each EITHER-free,

X and Y are respectively e-residues of X and Y, Hence X=Y in the lambda

calculus.

The above theorem establishes that the Either-R theories are consistent in the

sense that they introduce no new equivalences between expressions which are

distinct in the lambda calculus; and are hence of infinite cardinality. It is

noteworthy at this point that the above proof, specifically Lemma 4,13,

depends on our restriction on beta conversion, when unrestricted beta

conversion is allowed (as in the Either-K theories presented in Chapter 7) it

is not true in general that every beta-redex X encloses its contractum X', as

demonstrated by the beta redex

/

-76- 1.2.3

A=.((LAMBDA(X)(PLUS X X))(EITHER 2 3))

whose e-residues are each convertible to 2 and 3, respectively, while the

contractum of A

(PLUS (EITHER 2 3)(EITHER 2 3))

has an e-residue (PLUS 2 3) which is convertible neither to 2 nor to 3.

1,3! Summary

This chapter defines the ground rules for the axiomatization of Either

theories and presents the Either-R theory. While the usefulness of this

system is limited due to the restriction placed on beta conversion, it

develops much of the mechanism to be used in subsequent chapters.

The prlncip?-] distinction to be made between the Either theories lies in the

circumstances in which beta-conversion is allowed. The Either-R Theories,

which prohibit beta-conversion unless the argument to be substituted is in

normal form, allow the distribution of functions over the terms of an

EITHERexpression - a relationship which we find intuitively gratifying.

Unfortunately this restricted beta-conversion results in a very weak theory, a

problem to which the next chapter is devoted.

The Either-R theory presented in this chapter is shown to be consistent in the

^ense that X->Y, where > is the ordering defined by the new axioms, is not a

«jtology. The proof is based on the consistency of the lambda calculus;

specifically, it is shown that, for expressions X and Y which are EITHER-free

(and thus admissible syntactically in the lambda calculus) X^Y implies the

interconvertability of X and Y. This general technique will be followed in

subsequent consistency proofs as well.

i —'—

5 -77-

Chapter 5:

•-Conversion

It was noted in the previous chapter that the restricted lambda conversion of

the beta-P axiom, i.e. the requirement that the argument of a beta-redex be in

normal form before the contraction of that redex, severely limits the

expressive power of languages based on the Either-R theory. In particular,

the inc-pressibiuty of recursive functions constitutes an intolerable

restriction since it renders such languages functionally incomplete.

The mechanism of «-conversion, to be introduced in the present chapter,

ameliorates this limitation by extending the ordering relation > in a way

which is consistent with its function in the Either-R theory. Although

•-conversion and EITHER reduction are in an important sense complementary

operations, their respective mechanics may be dealt with separately; thus for

the purposes of this chapter we temporarily disregard the axioms of EITHER

conversion. In Chapter 6 we combine the two mechanisms.

The semantic interpretation of > suggested by the Either-R theory is one of

inclusion cjf values; it was noted that X»Y signifies, in general, that each

value of Y is also a value of X, The corresponding relation in the semantic

domain F* is set theoretic inclusion. Thus if x and y are the semantic

elements of P« corresponding to X and Y, respectively, then X>Y implies that y

is a subset of x. Consistent with the semantic notions of Chapter 3, the

expression (EITHER X Y) corresponds in P» to the union of the elements x and

y. It was further suggested that the undefined computation corresponds, in

P«, to the empty set — i.e., it has no values whatsoever.

This chapter develops the syntactic analog of the empty set in P».

Specifically, the new syntactic element • is introduced as the canonical

normal forai representation of the undefined computation. The interpretation

of > as set theoretic inclusion in F* suggests that, for everv expression X,

X^ (since every set has the empty subset). It would seem, then, that the

consummation of the semantics of EITHER reduction requires that its syntactic

mechanism reflect this aspect of the structure of F^

I

-78- 5.1

5.1: The R-* Theories

We now focus our attention on «-conversion and its relation to the restricted

beta conversion. To this end we consider the R-« system whose axioms include

alpha, beta-R, and delta discussed previously, in addition to the following:

Axiom sigma: («-contraction): For every expression E, E^«.

Thus « is an expression in the R-« system which is lower, in the sense of >,

than every other expression. While every expression is reducible to «, « is

itself only reducible to « (as • is not a beta- or delta-redex, and contains

no variablss).

Defh 5.1: An expression of the form (• A), where A is an arbitrary

expression, is called a JL-red£2L.

Consistent vith our previously defined notion of normal forms, we shall

henceforth require an expression X to contain no «-redexes if it is in normal

form. Noting that the only conversion which may be performed on a «-redex

without resulting in another «-redex is its replacement by «, we shall say

that the contractum of a «-redex is •.

5,1.1: Significance of normal forms

The restricted lambda conversion allowed by the beta-R axiom bears a curious

resemblance to the lambda-I calculi of Church[1]. In these systems. Church

specifically prohibits expressions of the form (LAMBDA(X)M) unless the

variable X appears free in the body M; thus the lambda-I systems exclude, in

general, fmctions which ignore their arguments. A principal consequence of

this restriction is the fact that, for expression X to have a normal form,

every subexpression of X must have a normal form. We note, with passing

interest, that the normal form restriction of beta-R allows us to derive any

normal fonn in the lambda-I calculus which is possible using unrestricted beta

conversion; this follows Vram the observation that in the lambda-I system we

can always reduce the argument in a beta-redex to normal form before

contracting the redex.

^Li

5.1.1 -79-

Church's preference for the lambda-I over the unrestricted "lambda-K"1

theories stems from the elusive nature of those expressions having no normal

forms. The theorem of Boehm assures us that exprer ons having inoongruent

normal forms are semantically distinct, and the theorems of Church-Rosser

guarantee that equivalences between expressions having normal forms are

decidable. The semantics of normal forms is consequently uncomplicatPH:

every pair of semantically equivalent normal form expressions is provably

equivalent, and for every pair of incongruent normal forms we can find a

context in which they produce different values.

The admission of expressions having no normal forms compromises this situation

severely. The requirement that a semantic equivalence relation be

extenslonal. i.e. that equivalent expressions produce equivalent values in

identical contexts, leads to a distinction between semantic equivalence and

the equivalence of interconvertability under the lambda calculus. Scott[22],

for example, demonstrates an infinite sequence Y , Y^ ... of fixed point

operators which are not convertible to one another despite the fact that they

produce the same values when embedded in identical contexts. The problem Oi"

constructing a functional domain for the lambda calculus is fundamentally

equivalent to the definition of an extenslonal relation of semantic equialence

over the expressions of that calculus, a project whose recent success is due

to Scott. The technique used by Scott[5,6,22] involves the notion of

successively better approximations to the abstract semantic element

represented by an expression X, so that the semantic element associated with X

becomes the limit of this sequence of approximations. In the Scott model, a

function f approximates every extension f of f'; more generally, f'

approximates f if and only if for every z, f'[z] approximates f[z]. This

notion of approximation seems essential to the interpretation of domain

elements as functions, largely because the theories of functions with which we
2

are familiar employ type restrictions ruling out self-application.

Church[1] and Curry[12] refer to the unrestricted conversions of the
conventional lambda calculus as lambda-K conversion, presumably because of th
admissibility of the combinator K=(LAMBDA(X)(LAMBDA(Y)X)) in these systems.
K is excluded from the restricted Tambda-I systems by the non-occurence of tn
bound variable Y in the body of (LAMBDA(Y)X).
2 In.particular, (LAMBDAU) (X X)) is difficult to interpret as a function in
the usual set-theoretic way. Hindley[21] speculates that a theory of
functions based on combinatory logic, rather than set theory, mi^ht
consistently allow self-application; while awaiting further developments we
remain pessimistic.

-80- 5.1,1

The mechanism of *-conversion presented in this chapter is reminiscent of the

Scott construction. Specifically, we introduce means by which the various

approximations of an abstract semantic element can be represented as

expressions in the language itself, and provide for the syntactic conversion

of an element X to an approximation X' of X. We have thus come to view

•-conversion as a syntactic analog of the Scott construction in which

approximations are expressed in the domain of the language rather than in the

abstract semantic domain.

The addition of •-conversion to the lambda calculus leads to a multiplicity of

normal forms for every expression, tie shall see, for example, that the Y

operator

Y=.(LAMBDA(F)((LAMBDA(H/(F(H H))) (LAMBDA(H) (F(H H)))))

which has no normal form in the conventional lambda calculus, has infinitely

many normal forms

i

(LAMBDA(F)(F M)

(LAMBDA(F)(F (F •)))

(LAMBDA(F)(F (F (F •))))

when •-conversion is adi.Itted. Each of these normal forms may be interpreted

as ar approximation to th-> Y optrator, and in any context where Y gives a

normal form value, one of the above normal forms of Y will give an identical

value. Since the semantic element associated with each of these normal forms

is clear (in the sense that normal forms are semantically distinct) we retain

something of the semantic simplicity of the lambda-I calculus. The semantic

value of a given expression is simply the set of normal form values of that

expression, and expressions X and Y are semantically equivalent if and only if

they have identical sets of normal forms.

One of the motivaticns for •-conversion is to enable us to retain the power of

the unrestricted (lainbda-K) calculus while restricting beta conversion. It is

intuitively reasonable to expect that one car always find a sufficiently close

approximation to the argument of a lambda expression that the restriction on

^AJ

5,1.1 .81-

beta conversion becomes unimportant where «-conversion is allowed, and much of

the remainder of this chapter is devoted to the proof that this is in fact the

case.

5.1.2: Theorem on Normal Forms

The main result of this section sheds light on the ordering (under » of the

normal forms derivable in R-» from an expression A. We begin with the

following definition, adapted from Curry[12]:

Defn 5.2: Let P be a redex and Q be a subexpression in an expression B, and

let B' be the result of replacing P by its contt-actum P' in B. We define

the residuals of fi wit^h respect to P as subexpressions of B' designated

as follows:

Case 1: P and Q are the 3ame redex in B. Then Q has no residual with

respect to P.

Case 2: P and Q are non-overlapping subexpressions of B. Then the

residual Q' of Q 1". that subexpression in B' which is homologous1 to Q

in B.

Case 3: P is a subexpression of Q. Then the residual of Q in B' is the

expression Q' which 18 homologous to Q in B. We note that the

occurrence of P in Q has been replaced by P' to make Q'.

Case 14: P is a beta-rulex ((LAMBDA(X)M)A), and Q is a subexpression of A.

Then P' is S[A;X;M] and contains n instances of A corresponding to the

n fV-ee occurrences of the variable X in M; let these instances of A be

identified as A1 ... /)n. Each Ai contains an instance Qi of the redex

Q; these n expressions (^ ... Qn are the n residuals of Q in B'. Note

that n may be zero, in which case we term the contraction of P a

cancellation and Q has no residuals.

homologous subexpressions occupy the same relative position in their
containing expressions; thus A in ((X (W A) Z) Y) is homologous to B in ((P (Q
B) R) S) independently of the structure of the subexpressions X. W. Z. Y P
W, n, and S. >»»»'»

_*ij

.82- 5.1.2

Case 5: P is a beta-redex ((LAMBDA(X)M)A) and Q is a subexpression of M.

Then P' is S[A;X;M] and the residual Q' of Q is the subexpression of

P' which is homologous to Q in M.

Case 6: P is not a beta-redex, and Q is a subexpression of P. Then Q has

no residual in B'.

Infonnally, a residual of an expression Q is an image of Q after a

contraction. Consider, for example, the residuals of the subexpression (PLUS

3 4) in the beta-redex

((LAMBDA(X) (PLUS X X))(PLUS 3 »0) [5.33

whose contractum is the expression

(PLUS (PLUS 3 «»HPLUS 3 4))

We note that the two residuals of the subexpression (PLUS 3 «0 of oxpression

[5.3] are the occurences of (PLUS 3 '») In the contractum. Contraction in the

delta redex (PLUS 3 'O in expression [5.33 yields the residual

('LAMBDA(X)(PLUS X X)) 7)

We shall occasionally find it useful to speak of the residual of ar expression

Q after a series of contractions; we may thus refer to Qn as a residal of Q

with respect to the sequence of contractions B>B1>...>Bn if there is a

subexpression Q , of B -1 such that () .. is a residual of Q and Q is a r n-1 n n-1 •■
residual of Q .. Thus consecutive beta- and delta-contractions on expression

[5.33 yield

(PLUS 7 (PLUS 3 *))

which contains a single residual of the subexpression (PLUS 3 4). The

followii« lemma establishes that the residual of a redex is always a redex:

Lemma S.U: Let P and Q be redexes in an expression B, and let Q' be a

residual of Q with respect to P. Then Q' is a redex.

proof; we consider tha following collectively exhaustive cases:

—ii

5.1.2 .83-

Case 1: P and Q are non-overlapping.1 Then Q' is the same redex as Q.

Case 2: P is a subexpression of ü; we consider the cases of the syntax of
Q:

a) Q is a beta-redex of the form ((LAMBDA(X)M A). If P is a

subexpression of M, then Q' is the beta-redex ((LAMBDA(X)M')A), If

P is a subexpression of A, then Q' is the beta-redex
((LAMBDA(X)M)A').

b) Q is a »-redex of the form (• M); then P must be a subexpression of

M, and Q' is the »-redex (• M').

c) Q cannot be a delta-redex, as It contain P.

Case 3: Q is a subexpression of P; we consider cases of the syntax of P:

a) P cannot be a delta-redex, as it)ontains the redex P.

b) P cannot be a »-reden, as then U would have no residual.

c) P is a beta-red^x of the form ((LAMBDA(X)M)A) where Q is a

subexpression of A. If Q is cancelled by the contraction of P, then

Q has no residual; hence N must contain 1 or more free occurrences

of X. Then each residual of Q is the redex Q itself.

d) P is a beta-redex ((LAMBDA(X)M)A) where Q is a subexpression of M.

We examine syntactic cases of Q:

i) Q is a delta-redex; then Q' is identical to Q, since Q may

contain no free variables (in particular, no free occurrence of
X).

11) Q is a »-redex (• M). Then Q' is the »-redex (» M').

iii) Q is a beta-redex ((LAMBDA(Y)B)C). Then Q' is a beta-redex of

the form ((LAMBDAdOB')C'),

other,eXPreSSi0n3 are non-overlapping IT neither is a subexpression of the

-84- 5.1.2

The converse of the above lemma is not in general true, i.e., the residual F

of P may be a redex even though P is not. Consider for example the expression

P =. (((LAMBDA(X)(LAMBDA(Y)Y)) 3) «0

which is not a redex. Contraction of the beta-redex in P yields the residual

P' of P given by

P' = ((LAMBDA(Y)Y) 4)

which is a beta-redex.

We should like to distinguish between reduction steps in R-* which are

contractions and those which are abstractions; for this distinction the

following notation is convenient:

Defn 5.5: A contraction step A»>B is a single reduction step from A to B

which is either a beta-, delta-, or «-contraction.

Defn 5.6: A contraction sequence A^A^.. .>>An from A0 to An is a reduction

sequence ft-om A to An containing only alpha-conversions and contraction

steps. The length n of such a sequence is the number of contraction

steps in the sequence.

We now examine contraction sequences which terminate in normal forms,

beginning with

Lemma 5.7: Let X{Y} be an expression containing a redex Y, and let

X{Y}>>.,.>>X' be a contraction sequence of length n, where X' i? in

normal form. Then there is a contraction sequence X{Y'}>>...>>X', where

I' is the contractum of Y, of n or fewer steps.

proof is by induction on n.

basis n=l: X' contains no redex, hence Y must be either contracted or

cancelled (by a beta- or »-contraction). If Y is contracted then

X[Y]>>X' by the null sequence. If Y is cancelled then X[Y']>>X' by the

same contraction as X[Y]>>X'.

w*

5.1.2 _35_

induction: We assume the lemma to be true for sequences containing n or

fewer steps. Consider the "irst contraction step X[Y]>>X in the

n+1-step sequence X[Y]». ..»X', and let ^...Y be the j residuals of Y

in X^ If j=0 then the argument in the basis applies, as Y is either

contracted or cancelled in the first step. If J>0, j applications of the

induction hypothesis establish that X1'>>.,.>>X' in n-1 or fewer steps,

where X ' is the result of contracting each Y. in X,. But X[Y']>>X ' in
' All

a single step; hence X[Y]>>X' in n or fewer steps.

The significance of emma 5.7 is that the contraction of a redex Y in

expression X cannot prolong the reduction of X to normal form. Informally, we

expect that if the subexpression Y plays a significant role in the evaluation

of X, the contraction of Y will shorten the reduction of X; if, however, Y is

irrelevent to the value of X then Y may be replaced by an arbitrary expression

with no effect on the evaluation of X. This consideration motivates

Lemma 5.8: Let B0>>B1>>...>>Bn be a contraction sequence of length n, and let

Bn be in normal fonn. Let P be a redex in B , and let P' be the

contractum of P. Then one of the following applies:

a) There is a contraction sequence B**>...>>B of n or fewer steps, where

B* is the result of substituting • for P in B.; ££

b) There is a contraction sequence B'>>...>>B containing fewer than n

contraction steps, where B' is the result of replacing P in B by P',

proof is by induction on the length n of the contraction sequence Bn»B .
On

basis n=1; chen B0>>Bn in a single contraction step. Let Q be the redex

contracted in B0>>Bn, If Q is the same redex as P, then B' is identical

to B and (b) is satisfied. Otherwise P must have no residual ir. B , n n»
since Bn is in normal form and any residual of P is a redex. Then P must

be cancelled by a beta- or •-contraction in B >>B , and (a) is satisfied.

induction: n>1. Consider the redex Q contracted in the step B >>B . If

Q is the same redex as P, then (b) is satisfied as before. Otherwise we

consider the J residuals P^.-P. of P in B If j=0 then P is cancelled

—AJ

■ 86- 5.1.2

in the step B^»,, and (a) applies. If j>0, we apply (by the inductive

hypothesis) the lemma to the contraction sequence B1>>..,>>Bn, whose

length is n-1:

Case 1: Each residue Pi in B1 is convertible to •; i.e., (a) applies to

each Pi. Then (a) applies to P in B0, as B»»B1« in a single step,

where B • is the result of replacing each Pi in B1 by •,

Case 2: Some residue Pi of P in B1 is not convertible to •; i.e., (b)

applies to Pi. By Lemma 5.7, contracting any Pk in B1 cannot prolong

the sequence B1»...»Bn; by the induction hypothesis, there is at

least one P whose contraction shortens the sequence. Then if B^ is

the result of contracting each Pk in B1, there is a contraction

sequence B >>. ..>>B in fewer than n-1 steps. Since B'»B^' in a

single cont-action step (of the same kind as B^»,) (b) is satisfied.

This completes the proof of Lemma 5.8.

The followir« theorem establishes a fundamental property of »-conversion.

Informally it ensures that, for any two normal form expressions A,« and kf

which are each derivable fVom an expression A, there is an expression A« in

nonnal fonn which is an aszer bound of A/ and kj in the sense that A«^»

and A*»A2«, and furthermore that A»A». This result is then extended to the

case of an arbitrarily large finite set of expressions */...*„ each derivable

from A. The existence of normal form upper bounds of arbitrary sets of

expressions derivable from A is essentially equivalent to the proposition

that A can be approximated, to arbitrary accuracy, by normal forms derivable

from A.

Thm 5.9: Let A,,« and A2« be normal form expressions and let A be any

expression such that A^A^ and A»A2«. Then there exists an expression

A« in normal form such that A>>Afc, A»»A1», and A»>>A2«.

orocf; Let P[n;m] be the proposition that Lemma 5.9 is true for every A,

A • and A2« such that:
(i) A»A • in n steps and A»A2« in n2 steps, where n^n^n; and

(ii) A contains m or fewer redexes.

^Li

5.1.2 -87-

Then the lemma is true if and only if P[r;m] is true for all n and m; we

precede in the following steps:

1) For every n, P[n;0] is true since in these cases A contains no redex

and is consequently in normal form.

2) For every m, P[1;m] is true since in these cases either AsA^ or

A.=A •; hence A must be in normal form and A#=A.

3) If for some n and m and for all J P[n,J] and P[n+1 ;m] are true, then

P[n+1;m+1] is also true.

proof; Let A, A.», and A • be expressions such that the premise', of

P[n+1;m+1] are satisfied; then A contains m+1 or fewer redexes, and

n +n >n+1 where n and n. are the respective lengths of the sequences

A>>A "and A>>A •. We now choose an innermost redex Y of A, i.e. a

redex Y which contains no other rede :. Such a redex Y must exist

unless A is in normal form, which is ruled out because m+1>0. Let

A{Y) denote A (which contains Y ?s a subexpression) and let Y' be the

contractum of the redex Y. Then by Lemma 5.8, me of the following

applies:

a) A{»}>>A • in ^ or fewer steps, aM A{*)>>A2« in n2 or fewer

steps.

b) A{Y'}»A1» in n^ steps and A{Y'}>A2» in n2' steps, where

n.'+n-'^.+ng.

If case (a) applies, then A{»} has fewer than m+1 redexes, and by

P[n+1,m] the proposition P[n+1,m+1] is true. If (b) applies, then

P[n+1,m+1] is true if P[n;J] is true (where J is the number of redexes

contained in A{Y'}); by hypothesis, P[n;j] is true for all J, hence

P[n+1;n+1] is true.

4) If for all j P[n;j] and P[n+1 ;0] are true, then for all i P[n+1,i] is

true.

proof is by induction on i. P[n+1;0] follows directly from (1);

P[n+1;i+1] follows from (3) and P[p+1;i].

-88- 5.1.2

5) For every i and j, P[i;j] is true,

proof Is by Induction on i.

basis; from (2), P[1,J] is true for ail j.

induction; Assume that P[i;J] is true for all J. By (1), P[i+1;0] is

true; hence by (4), P[n+1;J] is trur for all J.

This completes the proof of Theorem 5.9.

The proof of Theorem 5.9 involves a succession of steps from the expression A

to the normal form A*, such that the result A of each step retains the

property that A >>A • and A.>>A2
f, The moderate complexity of the proof stems

from the obscure sense in which each step comes "closer" to A»; by Lemma 5.8,

each successive step from A. to A.+^ either:
i) Reduces (by one) the number of redexes, while keeping t ie total number

of steps in the contraction sequences A >>A1» and A.^Aj* constant; an

ii) reduces the total number of contraction steps, while changing

(increasing or decreasing) the number of redexes by some arbitrary finite

amount.

The proof of Theorem 5.9 is essentially a demonstration that A« can always be

derived from A by such a sequence in finitely many steps.

The generalization to arbitrary finite sets of normal forme follows naturally:

Corollary 5.10: Let A be any expression and It ^...A, be expressions in

normal form such that, for each i, A»Ai. Then there exists an

expression A« in normal form such that A>>A« and, for each 1, A»»Ai.

proof is by induition on J.

basis; F'or J>2, the corollary is trivially true; for 1=2, it is true by

direct application of Theorem 5.9.

Induction; Assume the corollary is true for each set A^.Ak containing

fewer than J expressions. By Theorem 5.9, there is an expression ^2« in

normal form such that A12»>>A1 and A12»»A2 and A»A12»; by the induction

hypothesis, we can now find an upper bound of the set A^», A3,...|A

mm

5.1.2 -89-

which contains j-1 expressions; let A« be the normal i'orm upper bound of

this latter set. But, since A*»>A 2«, it follows that A*>>A1 and A»^;

hence for each Ai, A»i»>Ai, and A» is the required upper bound.

The final theurem of this section establishes that, for the evaluation of any

particular expression X{Y) (i.e., the reduction of that expression to a normal

form) there exists a sufficiently good approxima t-ion i» of Y such that Y« is

in normal form:

Thm 5.11: Let X{Y}>>. ..>>X« be a contraction sequence of length n, where X«

is in normal form. Then there exists an expression Y» in normal form,

such that Y»Y« and X{Y»)»X».

proof iS by induction on the length n of the contraction sequence. If n=0,

then Y is in normal form and is the required Y», If n>0, we consider the

residuals ^...Y of Y in X,. By the induction hypothesis each Yi can be

contracted to a normal form Y •, and the result X^ of replacing each Xi

in X1 by Y,» is such that X1«»X«. Since for each i Y^Y^, by Corollary

5.10 there is a Y» such that Y>>Yt and for each i Y»»^. Then

X{Y}»X{Y«}»X1». . .>>X*.

Wc may speculate further on the structure of the set S of normal forms of an

expression A. The above theorem shows that any finite subset of S has an

upper bound in S; Unce • is in S, we may claim further that each finite

subset in S has a lower bound in S. It seems likely that S forms a lattice

ordered by >, which is to say that each finite subset of S has both a least

upper bound and a greatest lower bound. In general such a lattice of normal

forms can be complete only for those expressions which have normal forms in

the lambda calculus.

c 5.1.3: Relation to the Lambda Caluilus

In this section we demonstrate a sense in which the R-* theory is as powerful

as the (unrestricted^ lambda calculus; in particular, we show that any

expression A which has the normal form A' in the lambda calculus has the same

*h

-90- 5.1.3

normal fonn in R-1.

Thm 5.12: Let A0->Ar>. . .->An be a sequence of beta- and delta-contractions

in the Lambda calculus (possibly intermixed with alpha conversions), and

let A be In normal form. Then A0>>An in R-f.

proof is by induction on n, the nmber of contractions in the sequence

c n

basis n=0: then A0 and A arc- identical, and the theorem is trivially
 o n

true,

induction; n>0; we assume then that A^^ and must show that A0^>An. We

precede by showing ttet A0»A1 for each of the possible contraction steps

A ->A . If the contraction step is an alpha- or delta- conversion, then

the same contraction can be performed in R-« hence AQ»*,! we thus need

only consider the case where A^^ L> a beta contraction. Let P be the

beta-redex contracted in the step A^A^ then P is of the form

((LAMBDA(X)M{X}) Y)

and the contractum ?' of P is of the form M{Y), containing j instances

(residuals) Y^.Y, of tne argument Y. By Theorem 5.11 each ^ may be

contracted in R-« to a normal form Y^, such that kf»^ where A/ is

the result of replacing each Yi by tf. By Corollary 5.10 there exists

an upper bou- f such that Y»Y« and, for each i, Y«»^. By

contraction of the subexpression Y of A^Y} we have ^{Y]»^*]', since

Xi is in normal form, the beta contraction of the redex P* in A0{Y»}

((LAMBDA(X)Mm) Y«)

yields a contractum M{YM containing j instances of Y«. But each

instance of Y» may be contracted to the corresponding Y^, hence

A {Y«}»A1*. Then we have AQUI^AQU»)»*/»^. a^ A0»An in R-«.

The simplest illustration of the use of »-conversio.. to mitigate the beta-R

restriction involves the evaluation of the expression A gxven by

A =. ((LAMBDA(X)3) B)

wmm

•92- 5.2

The theorems of this chapter may provide tools of general usefulness in tne

study of the conventional lambda calculus. Suppose, for example, that neither

of the expressions X and Y have normal forms in the beta-delta calculus, and

that furthermore they are not interconvertible. We may still suspect,

however, that they are equivalent in an extensional sense. In particular we

may wish to prove that if e,ther of Z{X} or Z{Y) has a normal form in the

lambda calculus then Z{X}=Z{Y}.

The mechanism of «-conversion suggests a technique for constructing such

proofs. Suppose we could show that in R-» the expressions X and Y have

identical sets of normal forms.1 From Theorem 5.11 it then follows that, for

a.ny Z and every Z» in normal form, Z{X}»Z» if and only If Z{Y)»Z», But

Theorem 5,12 extends this extensional equivalence to the lambda calculus;

hence for any Z and any normal form Z», Z{X)->Z» If and only if Z{Y}->Z» where

-> denotes lambda calculus reduction. We deduce from these observations that

any two expressions which have interconvertible sets of normal forms are

eqivalent in this important extensional sense.

We may apply, for sake of illustration, the above technique to the example

cited by Scott2 of the two fixed point operators

Y^LAMBDACFXZ Z))

and
Y^YQ (LAMBDA(Y)(LAMBDA(G)(G (Y G)))))

where Z is the expression

(LAMBDA(H)(F (H H)))

Y and Y are not interconvertible in the lambda calculus, and neither has a

normal form. Noting that Y0 contains the single redex (Z Z), the unique

single contraction which can be .ade reduces Y0 to the expression

(LAMBMFHF (Z Z)))

1 Soecifically, we must show only that X>X» implies Y>Y»>X« and conversely,
where Xf and Y* are any normal form expressions.
2 Scott[22] credits the example to Corrado Boehm, and acknowledges an
unpublished proof due to David Park that the expressions Y0 and Y, are
equivalent in the Scott formalism.

-^tj

5.2 -93-

whlch again contains the single redex (Z Z). It becomes clear from the

sequence of reductions that this process leads to the conclusion that the

normal forms (in R-^) of Y are all of the form

'LAMBDA(F)(F (F (F (F ... (F •) ...)))))

and for every natural number n there is a normal form Y0» whose body is F

applied to • n times.

We now refer to the definition of Y-. By Theorem 5.11, for every normal form

Y ' of Y {Y0} there is a normal form YQ* such that Y1{Y0*}>>Y1'. Hence every

normal form of Y1 is a normal form of Y^YQ»") for some for some n. But each

of the latter is of the form

(G (G (G (G ... (G •) ...))))

where G stands for the expression (LAMBDA(Y) (LAMBDA(G) (Y G))). But (G •)

reduces to (LAMBDA(G)(G (• G))) from which, by contraction of its «-redex, we

arrive at Y »liCLAMBDACG) (G •)). Then V
|»2=.(G Y^l) has as its maximal normal

form (LAMBDA(G)(G (G •))); and it becomes clear from this informal argument

that each R-1 normal form Y^ of Y1 is of the form

(LAMBDA(G)(G (G (G (G ... (G •)...)))))

whose body contains n applications of G, Thus each normal form derivable from

Y in R-# is derivable from Y^ and conversely.

Now if, for some X, X{Y)=X» in the lambda calculus where X» la in normal

form, then by Theorem 5.12 X{Y01>X» in R-». Then by Ti. .-orem 5.11 there is a

normal form Y0«n of YQ such that X{Y0«n}»X*; since Y1 has a normal form

Y •m>>Y •", tht . X{Y1)>>X« hence XfY^rX» by the consistency of R-». An

entirely symmetric argument shows that XfY^zX« implies X{Y0}=X#.

5.3: Summary

The mechanism of «-conversion introduced in this chapter allows expressions to

be approximated, to arbitrary accuracy, by expressions in normal form. The

initial motivation for «-conversion is the mitigation of the limitations on

expressive power imposed by the restricted beta-conversion, but the techniques

i

of this chapter may be useful generally in the lambda calculus.

The principal technical results of the chapter are:

1) The introduction of • as a canonical representation of the undefined

(nonterminating) computation, and the axiom on star conversion asserting

that, for every X, X>», This axiom is motivated by the interpretation of

> as denoting set theorrtlc inclusion in F*; the empty set, corresponding

to the undefined computation •, is a subset of every element of F*.

2) Theorem 5.9 and its corollary establish that for any set A1«...An« of

normal forms derivable from an expression A in R-1, there exists an

expression A# In normal form such that A^A» and A^Ai for each i<n.

3) Theorem 5.11 shows that if expression X{Y} is reducible to Z», a normal

fo-m in R-», then there exists a normal form Yf such that Y>Y* and

XfY1}«». Informally this result assures us that, for every expression Y

and every context X{Y}, there is a sufficiently good normal form

approximation Y» of Y. The previous result (2)then guarantees that, foi

any finite set of approximations of Y, wa can find a normal form Y#

which may be used in lieu of any member of the set.

1) Theorem 5.12 provides the final tie to the lambda calculus, by showing

that every normal form derivable in the lambda calculus is derivable in

R-».

The R-» Theory is thus as powerful, in an Important sense, as the lambda

calculus with unrestricted beta conversion. Furthermore, the R-# Theories

suggest a natural test for extensional equivalence of expressions: the

interconvertabillty of normal forms. This technique LT applicable to the

lambda calculus, and the extensional equivalence of nonconvertlole fixed point

operators Y- and Y is used as an illustration.

The development of •-conversion in Chapter 5 is independent of the EITHER

reduction of the previous chapter. The combination of the two mechanisms is

the project of the next chapter.

 -AJ

6 -95-

Chapter 6:

The Either-R-# Theories

The desire for a syntactic basis for a language E, incorporating the EITHER

mechanism informally described in Chapter 3, has led to the presentation (in

Chapter U) of the Either-R theory. It was noted that the restricted beta

conversion of Either-R limits the usefulness of thai theory since, for

example, it prohibits the expression of recursive fu^jtions. The inadequacy

of Either-R as a basis for the language E motivated the development, in the

last ch.-pter, of »-oonversion. The present chapter brings these efforts to

fruition in the form of the Either-R-1 svstem, which consistently combines

»-conversion with EITHER reduction and pt -ides a satisfactory basis for a

language E.

Specifically, an Either-R-* theory shall consist of th^ following axioms, each

of which is presented in a pre/ious chapter:

alpha (Ch. »0 interconvertabllity (by renaming) of congruent expressions --

e.g. (LAMBDA(X)X) • (LAMBDA(Y)Y);

b-ta-R (Ch. 4) lambda conversion restricted to redexes whose arguments are

in normal form — e.g. ((LAMBDA(X)X) 3)»3;

various dsl^a axioms (Ch. 4) specifying the interpretation of primitive

functions and constants — e.g., (PLUS 3 5) • 8;

eosilon (Ch, 4) contraction of E-redexes— e.g., (EITHER A B)>B (Ch. 4);

niü (Ch. 4), abstraction of E-redexes — e.g. E-(EITHER E E);

rho (Ch. M, distribution of function application over terms of an x-redex

— e.g. (F (EITHER A B))» (EITHER (F A)(F B)).

3igma (Ch. 5) •-contraction -- A># for eve.'y expresion A.

6.1: Consistency of Either-R-1

The consistency of Either-R-* may be established by techniques closely

analogous to the Either-R consistency proof. Recall that the earlier proof

involved the notion of enclosure, and culminated in the implication of

enclosure by > -- i.e., X*Y in Either-R implies X encloses Y. Extension of

/

-«'

-96- 6-1

this technique to the present case requires that the mechanism of

•-contraction be accounted for; accordingly, we extend the notion of

enclosure by

Defn 6.1: X »-encloses Y if, for each e-residue Y' of Y, there exists an

e-residue X' of X and an expression X» derived from X by «-contraction

alone, such that X»=Y« in the lambda calculus.

Note that we admit expressions containing the _lement • in the lambda

calculus, treating • simply as a free variable. It is clear from the above

definition that «-enclosure is transitive, and that if X encloses Y then X

•-encloses Y.

The following Lemma and its Corollary confirm that •-contraction introducer, no

new equivalences in the conventional lambda calculus-

Lemma 6.2: Let X and Y be •- and EITHER-f-ee expressions, ?nd let X^ by the

•-contraction of a subexpression U of X. If X^=Y in the lambda calculus,

then X=Y.

proof; Noting that X^ contains a single • (the contractum of U), treating •

as a variable in the lambda calculus gives us

X=((LAMBDA(•)X^) U)

by beta conversion. But X^=Y, hence

X=((LAMBDA(•)Y) U)

and as Y is •-free the contractum of this beta-redex is simply Y. Hence

X=Y.

Corollary 6.3: If X and Y are •- and EITHER-free and X>X^ by a series of

•-contractions, then X^=Y in the lanbda calculus implies X=Y.

ppoof is by a simple induction on the number of •-contractions in the

1 Recall Defn ^.T.

^SJ

-97-

reduction sequence from X to X».

The above lemma and its corollary are hardly counterintuitive in light of the

developments of Chapter 5. In pa.ticular, it is clear that any occu.ence of •

in X» must be cancelled in the derivation of Y from X, since Y is »-free

Hence we may replace such occurences by arbitrary expressions, which are'still

cancelled in the derivation of Y; the choice of the homologous subexpressions
of X yields X=Y.

The consistency proof for Either-R-. follows the format of the corresponding

proof for Either-R, except that the enclosure relation in the latter proof is

extended to .-enclosure in the fonner. The basis of this extension is given
by

Lemma 6.4: Let X*Y be a single reduction step in Either-R-», Then X
•-enclosec Y.

üroof: Lemma 4.13 establishes the lemma for the reductions allowed in

Either-R; hence we need consider only the case of a »-contraction. Let

Ü be the contracted subexpression of X. For each e-residue Y' of Y,

there is a corresponding e-residue X' of X such that either X' and Y' are

identical or Y' is the result of the »-contraction of an e-residue U' of

0 in X'. Hence X'W by »-contraction, and X »-encloses Y.

The following theorem is the Either-R-» analogy of Theorem 4.15:

Thm 6.5: Let X and Y be expressions containing no occurrences of EITHER or »

and let XM in Either-R-». Then X=Y in the lambda calculus.

firoof: By Lemma 6.4 and the transitivity of »-enclosure. X »-encloses Y

Since each of the expressions X and Y is EITHER-free. each expression is

its own unique e-residue, and X*X»-Y where X>X» by »-contraction alone.
By Corollary 6.3, X=y in the lambda calculus.

Thus the consistency of Either-R-» follows from the consistency of the lambda
calculus.

/

• 98- 6,2

6.2: Relation of • to EITHER

We have already noted that the mechanism of »-contraction leads to the

interpretation of each expression A as the upper bound, in the sense of >, of

a family of expressions derivable from A, To formalize the relation between

su^n a family of expressions, we introduce the terminology of

Defn 6.6: Expressions X and Y are consistent in a theory T if and only if

there is an expression Z such that both Z>X and Z>Y in T.

Then the R-# theories are partitioned by the consistency relation into

equivalence classes, of which there are infinitely many (since there are

infinitely many mutually incongruent normal forms). Then the characteristic

of R-» which is established by Corollary 5.10 is that any finite set of

consistent expressions in normal form has an upper bound which is also in

normal form.

We note that in R-» the > ordering on the set of expressions derivable from an

expression A is, in general, noncrivial. unless A is the element • the upper

bound of the set. A, is distinct from the lower bound •; furthermore there may

be infinitely many expressions A^A^... in the set such that for no j>i is

A >A . This is certainly not the case in the conventional lambda calculus, in

which consistency implies interconvertibility and hence equivalence. What the

mechanism of ^-contraction has added to the lambda calculus is a method of

derivir« from an expression A an approximation A» to A which is strictly

weaker in the sense of >. We may then view the • mechanism as a method of

introducing new expressions which are weaker than the conventional lambda

calculus expressions, as each expression in R-« is derivable from a »-free

expression.

In this light we must regard the EITHER construct as a mechanism for

introducing stronger expressions into the lambda calculus. While R-» (and for

that matter the conventional lambda calculus) contain upper bounds only for

consistent sets of expressions, we can with EITHER represent the upper bounds

of arbitrary (enumerable) sets of expressions.1 Observe further that, for

1 Or, equivalently, we may say that in the Either theories, fiver* set of
expressions is consistent.

*m

6.2 -99-

arbitrary expressions X and Y, the expression (EITHER X Y) is the least upper

bound of X and Y since by Theorem M, Z»X and Z>Y implies ZXEITHER X Y).

This suggests that the ordering of Either-R-» expressions by > forms a

complete lattice.

6.3: Evaluators for E

As we have noted, interpreters for languzges supporting the EITHER construct

require a slightly different structure from our previous examples: the

reducibility of expressions to multiple values suggests that an evaluator for

E sh. 'd enumerate the values of the input expression. Accordingly, we

formt ute the evaluator as a function E of 2 arguments, an expression X to be

evaluated and a numeric index j specifying which value is to be returned. The

evaluator is constructed such that, for each X and j, E[X;J] is an expression

X' in normal form such that X»X' in Either-ri-». The value of E[X;j] is, in

general, not defined for all values of j; it may be assumed in particular

that E[X;j] is undefined for those cases of X and j not represented in the

algorithm presented informally below. We again assume the existence of an

invertable pairing function, and use here the notation <n;m> to denote that

natural number which uniquely encodes the ordered pair of natural numbers

(n.m). We make the further assumption that for no n and m is <n;m><2.

E[X;J3 =

if j=0 then •;

if X is atomic and J=1 then X;

if X is of the form (LAMBDA(Y)M) then (LAMBDA(Y)E[M;n]);

if X is of the form (EITHER A B) and j=<1;n> then E[A;n];

if X is of thf; form (EITHER A B) and j=<2;n> then E[B;n];

if X is of the form (A B) and J =<<m;n>;p> then

AP?LY[E[A;m];EtB;n];p];

where the algorithm for APPLY is given informlly by

APPLY[F;X;J] =

1 Recall that the atomic expressions are identifiers (including primitive
function symbols and variables) and numeric constants.

i

I

/

tm

-100- 6-3

if F is of the form (LAMBDA(Y)M) then EtS[X;Y;M];j];

if (F X) is a delta-redex and j=1 then F[X];

else if J=1 then (F X);

We note that E[X;j] is in normal form where it exists, and the value E[X;j] is

in each case the result of an Either-R-» contraction sequence on X. Although

we don't claim that the values E[X;j] of X are ordered by > for successively

higher values of j, the index j specifies, roughly, which of the

approximations of X is to be returned.

We may envision implementations of the E interpreter which make use of massive

parallelism to compute simultaneously the values of (F X) for many different

approximations of X; such use of redundant computation may serve to minimize

the real time required to compute an acceptable value for X. Such an

implementation follows, roughly, the spirit of fast adder circuitry which

conputes redundantly the high order portion of a sum simultaneously with the

low order portion, and then selects the correct high order portion on the

basis of some intermediate carry. These implementational issues are largely

ignored in the present work, but present some intriguing possibilities for

future research.

6.M: Summary

The Either-F-# Theory may be used as the semantic basis for a language, E,

which solves the specific expressibility problem demonstrated in Chapter 4.

The evaluation of expressions in E lends itself naturally to the use of

multiprocessing techniques which tend to minimize the total real time

necessary to relize an acceptable evaluation of an expression (F X) by the

simultaneous application of F to one approximation of X while computing a

better approximation. While the implementation details are not pursued here,

we feel that current technological developments make this area worthy of

further study.

7 -101-

Chapter 7:

The Either-K Theories

The inconsistency of EITHER distribution (Axiom rho) with the unrestricted

beta conversion of the lambda calculus has motivated the restricted beta-R

conversion of the systems presented thus far. This chapter explores an

alternative formulation, in which EITHER distributivity is sacrificed in order

to accommodate the conventional (unrestricted) beta conversion.

The Either-K theories include the axioms alpha, delta, epsilon, mu, and the

(unrestricted) beta axiom of the lambda calculi:

Axiom beta; Let E be an expression of the form ((LAMBDA(a)ö.)2.). Then E«E',

where E' is the contractum S[2.;a;i.].

Since Either-K preserves the axioms of the lambda calculi, it is clear that

the equivalence • in Either-K is a proper extension of the lambda calculus

equivalence =. In this sense the Either-K calculi are closer to the

conventional lambda calculi than the Either-R-* theories.

There is, however a fundamental sense in which Either-K is a more radical

departure fVcm tac lambda calculi than is Either-R-». In the latter theories

f met ions are ultimately applied only to normal form operands whose semantics

are those of the lambda calculi. The ability, in Either-K, to apply functions

to multivalued expressions (such as E-redexes) requires that we reinterpret

the semantics of each function relative to these new elements of its domain.

7.1: K-abstraction

By the axiom beta of the lambda calculus, the expressions

M

and

((LAMBDA(x) M) A)

are equivalent when A is an arbitrary expression and M contains no free

S is the lambda calculus substitution function given in Defn 2.6.

^AJ

-102- 7.1

occurrences of the variable x. This fact is consistent with the observation

that the bound variable, x, is ignored in the body of the function applied to

A; hence the value of the application is independent of the value of the

argument A. Despite the intuitive satisfaction with which we accept the above

equivalence, the presence of functions which ignore their arguments

complicates the proof of many otherwise straightforward results in the lambda

calculus. Indeed, Church has argued against the inclusion of such functions

in his theories, fearing at one time that they led to inconsistencies.

The task of proving the consistency of the Either-K theories, to be attacked

presently, is likewise complicated by the inclusion of functions which ignore

their arguments. The definitions and results of this section provide the

mechanism for dealing with the formation of such functions in later proofs.

We begin with

Defh 7.1: A K-redex is an expression of the form

((LAMBDA(x)M) A)

where A is any expression and M is an expression not containing free

occurrences of the variable x.

2
Defn 7.2: A K-abstractlon is a r duction step consisting of the replacement

of a subexpression M by a K-redex of the form

((LAMBDA(x)M) A)

where A is any expression and x is a variable not occurring free in M,

We new wish to show that the K-abstractions in a reduction sequence can be

postponed to the end of the sequence. We introduce a term to describe

reduction sequences whose K-abstractions follow all other reductions:

Defn 7.3: A reduction sequence R is K-normal if no K-abstraction in R

For discussion and historical insight, see Curry[12], particularly the
comment at the end of Ch. 3.
p

recall Defh 4.1.

7.1 -103-

precedes a reduction step which is not a K-abstraction.

Thus a reduction sequence X^x^.. ,>Xn is K_nonnal if there is an i, where

(Kiln, such that the reductions X »...X. are not K-abstractions and the

reductions X >...>X are only K-abstractions. We wish to show that, for every

reduction sequence X0>...>X , there exists a K-normal reduction sequence from

X to X . We begin with sequences of 1ingth 1:

Ihm 7.1*: Let X.^X »X- be a two-step reduction sequence from X. to X«, where

the reduction step X^X. is a K-abstractlon and the reduction step X.^X-

is not a K-abstraction. Then there is a K-normal reduction sequence from

X_ to Xp, oontaining at most one reduction step which is not a

K-abstraction.

proof: Let U be the subexpression of X which is replaced in the reduction

step X^X^ Then U is replaced in this step by U', an expression of the

form

((LAMBDA(y)ü) A)

where y is a variable not occurring free in U. We exhaustively examine

classes of the reduction step X..>X?:

Case 1: The reduction step modifies only the subexpression A of U'; let U

beccme A' in X-. Tne K-normal sequence from X. to X_ is then the single

K-abstraction replacing U by

((LAMBDA(y)U) A')

Case 2: The reduction step modifies only the subexpression U of U'; then U

becomes W in X The K-normal sequence from X0 to Xp is then:

a) Replace U in X0 by W, yielding X0';

b) Replace W in X0' by the K-redex

((LAMBDA(y)W) A)

yielding X2.

Case 3: The expression U' in X.. is replaced by U by beta reduction. Then

X. and Xp are identical expressions, and the enpty reduction sequence

-10U- 7*1

yields X2 from XQ,

Case 4: The reduction step replaces some subexpression V of X, by the

expression V, where V is not a subexpression of U' and U' is not a

subexpression of V, The K-normal sequence from X0 to X2 is then

a) The replacement of V In Xg by V, yielding X0';

b) The replacement of U in X0' by U', yielding X2.

Case 5: The expression U' is replaced by the expression

(EITHER U' U')

The K-normal sequence from X0 to X2 is then

a) The replacement of U in X0 by (EITHER U U), yielding X0';

b) The replacement of (EITHER ü Ü) in X0' by (EITHER U' U') through two

consecutive K-abstract ions.

Case 6: The expression U' is replaced by the expression

(EITHER ((LAMBDA(y^U) A1)((LAMBDA(y)U) Ag)

by Axiom rho. The K-normal sequence from XQ to X2 is then

a) The replacement of U in X0 by (EITHER U U), yielding X0';

b) The replacement of (EITHER U U) in XQ' by

(EITHER ((LAMBDA(y)U) A1)((LAMBDA(y)U) A2J)

through two consecutive K-abstractions.

Case 7: The subexpression U' is replaced by an expression W of the form

((LAMBDA(z)U) A)

derived from U' by alpha conversion. Then the variable z does not occur

free in U, and XQ may be reduced to X2 by a single K-abstract ion.

Case 8: Some subexpression V containing U' is replaced by an expression

V'. Then one of the following applies:
8a) V is derived from V by alpha conversion. Then we may apply that

alpha-conversion to X0, yielding X0'f and follow with the

K-abstraction from X0' to Xg.
8b) V contains n occurrences of U', where n is zero or greater. Then

there is a reduction of the same type from X0 to X0', where X0 is

identical to X2 except for the n occurrences of U in X0' corresponding

to n occurrences of U' in X2. Our K-normal sequence from X0 to X2

^AJ

7.1 -105-

consists of the reduction of X to XQ' followed by n K-abstractions

replacing the occurrences of U by U'.

This list of cases is exhaustive, completing the proof.

Theorem T.** shows that every two-step sequence of reductions is equivalent to

some K-normal reduction sequence. The generalization of this result to

sequences of n reductions is complicated by the fact that the K-normal

sequence guaranteed by Theorem T.1* may be of arbitrary length, thus ruling out

a simple induction on the length n of the reduction sequence.

Lemma 7.5: Let R be a reduction sequence from X. to X containing exactly 1

reduction step which is not a K-abstraction. Then there is a K-normal

reduction sequence from Xn to X . u n

proof: by induction on the length n of the reduction sequence R.

basis: Trivi lly true for n<2; for n=2, guaranteed by Theorem 7.4.

induction: Let X-^X >...>X be the reduction sequence R. If the step

X »X, is not a K-abstraction, then R is K-normal; hence we may assume

that X >X is a K-abstraction. Then a single step of the subsequence

X,>...>X is not a K-abstraction; by the inductive hypothesis, there is a
1 n

K-normal reduction sequence K.Mt.M^». ..MR of which only the reduction

step X >Y0 nuy be other than a K-abstraction. But by Theorem 7.1, there

is a K-normal sequence X0>Z0>.,.>Y equivalent to the sequence X-^X^YQ;

thus the reduction sequence Xn>Z0>...>Yrt>...»X is K-normal fromX» to X . U u R u n

Defn 7.6: The K-index of a reduction sequence R is the number of

non-K-abstract ion steps in R which follow the first K-abstraction in R.

If R contains no K-abstractions, then the K-index of R is zero.

Note that the K-index of ? reduction sequence R is zero if and only if R is

K-normal. We shall base the induction in the proof of the next theorem on the

K-index of the reduction sequence to which it is applied.

^AJ

-106- 7.1

Thra 7.7: Let R be a reduction sequence from X0 to Xn. Then there is a

K-normal reduction sequence from X. to Xn,

proof is by induction on the K-index of R.

basis; If the K-index of R is zero, then R is K-normal.

induction; The K-index n of R is greater than zero. Let X0>...>Xn denote

R, and let X >X be the first K-abstraction in R. Let xj>Xj+i be the

first reduction step following X >X 1 in R which is not a K-abstraction;

the existence of such a j is assured by the K-index of R. Then the

subseauence X >X >...>X >X of R contains a single step which is not

a K-abstraction; by Lemma 7.5 there is a K-normal sequence

X >Y >...>X 1 from Xi to X 1. Then the sequence R' given by

XQ»,..^^».,.«. 1>. ..Xn has a K-index of n-1. By the induction

hypothesis, there is a K-normal sequence from X1 to Xn.

It follows from Theorem 7.7 that every reduction sequence may be reordered in

such a way that every K-abstraction follows every reduction step which is not

a K-abstraction. Curry[12] refers to expressions as fictitious if they appear

as the arguments of K-redexes; hence A is a fictitious subexpression of B if A

is cancelled in the evaluation of B. Theorem 7.7 asserts that the

introduction of fictitious subexpressions can be postponed to the end of a

reduction sequence. Consider the following expressions:

Z « (LAMBDA(X)3)

A = ((LAMBDA(H)(K H))(LAMBDA(H)(K H))

I =. (LAMBDA(X)X)

Then the reduction sequence

3 > (Z A) > (I 'Z A))

is not K-normal, since the K-abstraction 3>vZ A) precedes the beta abstraction

(Z A)>(I (Z A)). We may, however, reorder the sequence so that the fictitious

subexpression A is introduced in the last reduction st«p; the resulting

reduction sequence

3 > (1 3) > (I (z A))

is K-normal.

tm

7.2 -107-

7.2: Consistency of Either-K Theories

It was noted, following the proof of the consistency of the Either-R theories,

that the technique used there was inapplicable to the Either-K axioms since

unrestricted beta conversion does not preserve the enclosure relation. We

avoid this difficulty in the corresponding proof for the Either-K theories by

arranging the reduction sequence of an EITHER-free expression so as to ensure

that arguments in beta contractions are unitary. Since the Either-K reduction

sequence of an EITHER-free expression can introduce non-unitary subexpressions

only through K-abstraction, the result of the preceding section provides a

critical step in the present proof.

We begin by distinguishing expressions containing only unitary subexpressions:

Defn 7.8: An expression X is EUEe if every subexpression of X, including X

itself, is unitary.

Note in particular that every EITHER-free expression is pure. We now precede

to the major task of this section, which is the proof that the reductions

permitted by our axioms preserve purity of expressions. We begin with the

case of beta-contractions:

Lemma 7.9: Let Y be EITHER-free and let X be a pure beta-redex of the form

((LAMBDA(y)B) A)

such that for each e-residue X' of X. X'=Y. If Z is the result of lambda

conversion on X (ie, Z Is the result of substituting A for each free y in

B), then for every e-residue Z' of Z, Z =Y.

proof; Let Z' be an e-resldue of Z. Then Z' contains zero or more

occurrences of A^ A2 An where each ^ is an e-rcxaue of A. By

the purity of X, A is unitary, hence each ^ is convertible to A,. Thus

Z'=Z" whore Z" is the result of lambda conversion on

((LAMBDA(y)B') A^

where B' is some e-residue of B. Hence Z"=Y, and Z'=Y.

*h tm

.108- ^•2

Lemma 7.10: Let X, Y, Z, and Z' be as in Lemma 7,9, above. Then Z is pure.

proof; Let U be an arbitrary subexpression of Z, and let W be the

corresponding subexpression of B. If W contains no ocvnrrences of y

which are free with respect to X, then W and U are identical, hence Ü is

unitary by the purity of X. If W contains such occurrences of y, then Ü

is the result of lambda conversion on

((LAMBDA(y)W) A)

and, by Lemma 7.9, U is unitary.

We next show that beta abstractions preserve purity, so long as thev are not

K-abstractions:

Lemma 7.11: Let Z be a pure expression containing 1 or more occurrences of

the subexpression A, Let W be a beta-redex of the form

((LAMBDA(Y)B) A)

such that the contractum of W is Z. Then W is pure and, for every

e-residue W' of W there exists an e-residue Z' of Z such that W'=Z'.

ppoof; Since A is a subexpression of the pure expression Z, A is unitary;

let the e-residues A,', A2',...Ak' of A each be convertible to A' in the

lambda calculus. For each e-residue B' of B there is a corresponding

e-residue Z' of Z, such that Z' contains some Aj' In place of each free

occurrence of Y in B; hence Z'=S[A';y;B']. Each e-residue W is of the

fonn ((LA 'MBDA1'(Y)B')A1') where B' is an e-residue of B; but then W is
convertible to S[A';y;B']=Z'. Thus each e-residue W of W is convertible

to an e-residue Z' of Z. Noting that homologous subexpressions B1 and Z1

of B and Z, respectively, are either identical or related by

Z1=S[A';Y;B1], we deduce by the above argument and the purity of Z that B

is pure. Hence W is pure.

Note that Lemma 7.11 fails to hold for K-abstractions; consider, for example,

the K-abstract ion

■ — ^———^—^^

7.2 _109-

MX (LAMBDA(X)M) (EITHER 2 3))

where M contains no free occurrences of the variable X. Clearly the

abstraction of M is impure regardless of the purity of M. We now present the

principal result of this section, from which the consistency of the Either-R

axioms follows directly:

Lemma 7.12: Let X»Y be a single reduction step other than a K-abstraction in

Either-K, and let X be pure. Then Y is pure and X encloses Y,

£roof: The cases where X*Y is a beta conversion follow directly from Lemmas

7.9, 7.10, and 7.11; and if the step is an alpha conversion, the

e-residues of Y are clearly congruent to the e-residues of X, and Y is

pure. If X>Y is a delta ccnversion then both X and Y are EITHER-free and

the lemma is trivially true. If X>Y is an EITHER-conversion in either

direction, the purity of Y follows fr m the purity of X and the

e-residues of X and Y are identical.

The consistency of the Either-K theories is presented as

Thm 7.13: Let X and Y be EITHER-free expressions, and let X>Y in Either-K.

Then X=Y in the lambda calculus.

firoof- From Theorem 7.7, we may assume that there is a K-normal reduction

sequence fVom X to Y; let X»,. .»X^YQ». . ,>Y be such a sequence, where the

subsequence X»...>Y0 contains no K-abstractions and Y >...>Y contains

only K-abstractions. Then Y0 must be EITHER-free, since each of the

K-abstractions ^»Y^ can only increase the number of EITHER redexes,

and Y is EITHER-free. Y0=Y in the lambda calculus since each of the

conversions Y0>...>Y is a valid beta conversion. By Lemma 7.12, X must

enclose YQ since X is pure; but each of these expressions is EITHER-free

and hence is its own e-residue. Thus X=Yn=Y.

Corollary 7.1^: Let X and Y be EITHER-free expressions, and let X-Y in

Either-K. Then X=Y in the lambda calculus.

—ii

-110- 7.2

proof: Directly from Corollary 7.13.

7.3: Functional Domains of Either-K

The semantics of the Either-K Theorlps bear a superficial similarity to those

of the corresponding Either-R-» Theories: in each case a functional domain F

of the Umbda calculus is extended to a domair F* whose elements are

enumerable subsets of F. The question of re-frictions on beta conversion

seems, at first glance, to be an issue of evaluation order whose semantic

ramifications parallel, say, those of the applicative/normal order

distinction. While this analogy can be defended, as it has been in earlier

sections of this thesis, there is evidence suggesting that the distinction

between the Either-R and Either-K semant^os is of a rather more fundamental

nature.

The distributivity of function application over EITHER terms, sanctioned in

the Either-R Theories by Axiom rh), constitutes a limitation on the expressive

power of languages built on these theories. Consider, for example, the

function f whose informal definition is

f[x] = x+x;

which computes, in the lambda calculus, a numeric value which is twice the

value of its argument x. Our experience with conventional applicative

languages reinforces an intuitive expectation that f will have only even

numbers in its range (assuming that the domain of f is the set of natural

numbers). The natural extension of our intuition to the Either-R Theories is

consistent with the range of f there, containing enumerable sets of even

numbers. In the Either-K Theories, however, we must realign our intuition.

The application of f to the argument either[2;3], for example, is reducible in

Either-K to any of the numbers in {1,5,6} rather than the {1,6} result of

Either-R. Thus although the semantics of the application of functions to

single-valued arguments remains consistent with the lambda calculus, the

behavior of fmctions with multivalued arguments differs between the Either-R

and Either-K systems.

• — - i *-^

7.3 -111-

A more bizarre demonstration of this difference is the function £ defined
informally by

g[x] = if x>x then 1;

else 0;

which, in the lambda and Either-R calculi is equivalent to the single argument

constant function which always returns zero. Yet the Either-K reduction of

g[either[1;2]] yields the values {0,1}, even though g[1] and g[2] each

evaluate to {0}. Since the behavior of g in Either-K violates the

distributivity axiom of the Either-R Theories, we clearly cannot express in

these theories a function with the properties of g; yet g appears to be a

computable function definable on the domain F*.

7.4: Summary

This chapter presents a consistent theory which combines EITHER conversion

with unrestricted beta conversion. This combination requires 1) that we

abandon the distributivity of functions over EITHER terms, and 2) that we

reinterpret the semantics of EITHER, The latter reinterpretation is only

hinted at in this chapter, and we confess that the semantics of the Either-K

theories require further study.

Preceding page blank -113-

Chapter 8:

Summary a.id Conclusions

There has been a definite tendency, In the course of the work reported here,

to provide questions much more frequently than answers. We regard this

situation, perhaps defensively, as a healthy attribute of research in a field

as theoretically Immature as the science of programming languages.

8.1: Summary

The general topic of this thesis is the correspondence between the syntactic

mechanism of an interpreter and the semantic structure of the language It

Interprets. The restriction of this study to the class of applicative

languages is deftnded, in Chapter 1, on the grounds that
1) Interpretive mecnanism for applicative languages is simple, since such

complications as assignment, side effects, and transfers of control are

avoided;
ii) The semantics of applicative languages are independent of the notion of

time;
iii) The theories of mathematical functions may ssrve as a semantic basis

for applicative languages.

Expressions of an applicative language are viewed as representations of

objects in an abstract semantic functional domain containing functions -nd

constants, and expressions are semantlcally equivalent if they represent the

same abstract element.

The stack- and tree-environment interpreters presented in Chapter 2 illustrate

1 I.e., the FUNARG problem.

semantic limitations Imposed by typical compromises between efficiency and

expressive power. The defect of S must be viewed as an interpreter "bug" If

we take matnematical functions as a semantic basis, since certain expressions

are interpreted by S in a manner inconsistent with the behavior of functions.

The T Interpreter of Chapter 2 relates the issue of evaluation order to the

expressibillty of certain functions. The applicative order evaluation of T,

mm

-114- 8-1

in which arguments to a function are evaluated before the application of the

function, is seen to lead to the inexpressibility of functions which ignore

the value of their arguments. This motivates a preference for the normal

order evaluation of the N model, in which such functions are expressible. The

demonstration in chapter 2 of a functional domain F of N assures us that every

expression is interpreted by N in a way that is consistent with our functional

semantics; it does not. however, estsbli^h that every valid semantic element

(e.g., every computable function defined on the semantic domain of N) is

expressible In N.

Chapter 3 demonstrates a faction, WHICHFF, which despite its comput ability is

expressible neither in N nor 1 the lambda calculus. The expresslblllty of

WHICHFF jeems to require a mechanism analogous to multiprocessing, and two

therapeutic language extensions are considered:

i) A "coding" primitive which allows a program access to the representation

of a faction supplied as Its argument; and

11) A primitive EITHER whose Interpretation Involves the dovetailed

evaluation of Its arguments.

The admission of coding essentially abandons all semantic constraints and

allows the programmer to reinterpret expressions as he wishes; we thus discard

this alternative as semantic anarchy. The EITHER primitive may be Justified

in terms of applicative semantics, however, by the expansion of the semantic

domain F into the power set F», each of whose elements Is a subset of F. Thus

once EITHER Is Introduced we must semantically associate each expression X

with an enumerable set of abstract values or "meanings" of X. Such a

multivalued semantic domain is necessary to reconcile the function WHICHFF

with applicative language semantics.

The semantic domain P« motivated In Chapter 3 Is suggestive of a compete

lattice ordered by set theoretic Inclusion. The undefined (or nontermir.atlng)

computation is naturally associated with the empty set in P«, and that

expression TOP whose values Include the entire domain of the lambda calculus

corresponds to the maximal element of P». The semantic element associated

with the expression elther[a;b] becomes the union of the respective F«

elements corresponding to the expressions a and b.

tm

8.1 -115-

In Chapter H our attention returns to the subject of interpretive mechanisms.

In particular we desire a formaliST for syntactic manipulation of expressions

in p. language including EITHER, reflecting the insight gained through informal

scrutiny of the structure of F- in Chapter 3. The formalisms introduced in

Chapters 4-7 are systems of conversion axioms, similar to (and based on) the

lambda calculus; each system (or theory) defines an ordering, >, corresponding

to inclusion in F» — thus, for example, either[a;b]>a ard either[a;b]>b in

each system.

A complication arising in Chapter "4 involves the reconciliation of the beta

reduction1 of the lambda calculus with the intuitive^., -'ated requirement

that functions be distributive over EITHER terms -- i.e., that f [either[a;b]]

be equivalent to exther[f[a];f[b]], The EITHER-R system presented in Chapter

U resolves this difficulty by restricting beta conversion to arguments which

are reduced to normal form; while consistent, tl." resulting theory is too weak

to be useful.

The syntactic mechanism of «-conversion, presented in Chapter 5, solves this

problem of Either-R. Chapter 5 introduces the expression • as a canonical

(normal form) representation of the undefined computation, and extends the

ordering > so that the syntactic significance of • (A>» for every expression

A) reflects the semantic significance of the undefined computation (the empty

set is a subset of every element of F«). The use of »-reduction allows every

expression, including the single-valued expressions of the conventional lambda

calculus, to be reduced to multiple normal forms. The R-« theory developed in

Chapter 5 reinforces an interpretation of the normal forms derivr" le from an

expression X as approximations to X, and shows that for any context AlX}

havir« normal form value A' there exists a sufficiently good (normal form)

approximation X« of X such that A{X«} also has the value A'. This result has

major semantic consequences; in particular, it implies that meaning of an

expression X is completely characterized by the set of normal forms derivab

(in R-») from X. Moreover the result is shown to carry over to the

conventional lambda calculus, since every normal form derivable in the lambda

calculus is derivable in R-». The extenaional semantic equivalence relati(Lon

Informally, beta reduction is the application of a lambda expression
(user-defined function) by substitution of its argument for free occurences of
the bound variable in the body of the lambda expression.

I

r
-116- 8.1

suggested by these findings, namely the interconvertability of normal forms

derivable in R-*, is demonstrated by showing the equivalence of

non-interconvertable expressions for the fixed point operator Y.

The mechanisms of «-conversion and EITHER-reduction are combined, in Chapter

6, to yield the Either-R-* system. The respective functions of the two

mechanisms are, in a sense, complementary; roughly speaking EITHER allows

expressions to be combined to make "stronger" expressions while »-conversion

allows expressions to be rosolvea into weaker component expressions. The

Either-R-* system is consistent, retains the power of the lambda calculus, and

interprets EITHER according to ehe semantic notions of Chapter 3. We thus

view Either-R-» as a practical syntactic basis for the construction of for

interpreters of languages based on multivalued semantic domains; such an

interpreter, E, is presented at the end of Chapter 6.

Chapter 7 explores an alternative resolution of the conflict between

unrestricted beta conversion and the distributivity of functions over EITHER

teras. The Elther-K system presented in that chapter sacrifices such

distributivity in order to allow the unrestricted beta conversion of the

la-nbda calcu'tus. While this combination results in a consistent theory (as

demonstrated in Chapter 7) it leads to a semantic structure which is

fundamentally different from that of the Either-R theories, in particular

regarding the application of functions to multivalued arguments.

8.2: Conclusions

The study of applicative languages from the complementary viewpoints of

interpretive and semantic structure leads synergisttcally, we feel, to a new

insight in each area. We have repeatedly found the syntactic mechanisms and

semantic structures to be mutually illuminating, and view this dual

perspective as a principal influence on the direction and motivation of this

thesis.

The following are viewed as the principal results of this thesis:

1) The motivation and presentation of an applicative model of

multiprocessing. The applicative approach to this mechanism has certain

8.2 -117-

technical advantages over conventional formulations; notable among these

is the complete irrelevance of time as a parameter of language semantics.

The corollary disadvantage of the applicative model is its uselessness in

the study of time dependent implementation considerations - such as

scheduling, deadlocks, and synchronj of processes.

2) The formulation of the semantic domain F* for multivalued applicative

languages. We find particularly interesting the potential extension of

the Scott formalism which F* suggests: we have added, to the Scott

domain, tnic,"a upper bounds of arbitrary sets of semantically distinct

elements. The lack of such upper bounds in the Scott model has been

conspicuous, and the EITHER construct presented here seeuis to provide a

natural interpretation for them.

3) The mechanism of •-conversion and the results relating it to the

conventional lambda calculus. These results augment the lambda calculus

with a syntactic substructure (i.e., tie ordering under >) which bears

close analogy to the semantic structure developed by Scott. In addition,

•-conversion provides a concrete (syntactic) relation of semantic

equivalence which may illuminate the relationship between lambda calculus

expressions having no normal forms.

14) The presentation of consistent theories of EITHER conversion. The

analyses of these systems is by no means exhaustive; we have not shown,

for example, that no axiom is derivable from the remaining axioms. The

theories do, however, provide sufficiently powerful syntactic mechanism

that interpreters may realistically be based upon them.

.
8.3: Directions of Future Research

We recognize that this section constitute^ fertile grounds for an essay strewn

with universal quantifiers. Restricting our attention to specific questions

left unanswered by this work, we find most demanding of further attention:

1) The relative expressive power of EITHER-augmented versus CODE-augmented

lar^uages. We conjecture that every computable function defined on the

single-valued domain of the lambda calculus is expressible in the

language E, and have in fact spent considerable effort in trying

-118- 8.3

(unsucoessfully) to prove this conjecture. The discovery of computable

functions expressible (with coding) in C but inexpressible (with EITHER)

in E would be counterintuitive and somewhat depressing.

2) The semantics and expressive power of languages based on the Either-K

Theories, The presence of functions which compute different results for

a multivalued argument X than for slnglevalued components of X raises new

fundamental questions: what is a computable function on F«? Are the

Either-K Theories functionally complete? If not (and we are pessimistic

on that issue) which functions are not expressible in Either-K?

3) There appears to be a great deal of room for further development of the

theories of EITHER conversion. The extension of these theories to allow

eta reduction reems feasible. Further extensions may make the

extensional rflation of semantic equivalence tractable by syntactic means

alone, e.g. by axiomatically asserting in Either-R-« the equivalence of

expressions whose normal forms are interconvertable.

14) The area of interpretive mechanisms for EITHER-based languages has some

interesting possibilities. The techniques of computational complexity

studies, for example, might yield some quantitative bounds on the

computation time necessary lor the evaluation of classes of applicative

expressions. As the cost of computation power continues to plummet,

methods for making use of massive parallelism becomes a practical as well

as academic interest.

5) The relationship oetween the mechanisms of EITHER- and «-conversion and

the semantic constructions of Scott demand more r,erious attention than

the informal parallels drawn here. Much of Scott's important work seems

to bear rather directly on the systems presented here, and we recognize

that too little advantage has been taken of this resource.

It must finally be acknowledged that our quest for a functionally complete

language - one whose domain D contains every computable function defined on D

- has not been an unqualified success. The lambda calculus, whose functional

completeness was suspect, was scrutinized and found to be incapable of

expressing certain functions (e,g, WHICHFF), To remedy this inadequacy, the

lambda calculus was extended via the EITHER construct; the result (the Either

-*ij

8.3 -119-

theories) is, Indeed, capable of expressing WHICHFF. However, the new

systems have additional elements in their domain, so that the functional

completeness of the Either theories is again suspect. The results of this

thesis, then, suggest a similar program of scrutiny and extension to repair

their inadequacies. There is an inevitable circularity in this course of

research, mitigated by the fact that each cycle allows us to see previous

cycles more clearly.

A way a lone a las^ a loved a^ong the/
riverrun, past Sve s and Adam a, from
swerve of shore to bend of bay. brings
us by a commodius vicus or recirculation
back to Howthe Castle and Environs.

-Finnegan's Wake,
last/first lines

References

[1] Church. A., The Calculi of Lambda Conversion. Annals of Mathematics
Studies, PrlncetonnTnl^ersTty Press^gqi.

[2] Landln, P. "A lambda-calculus Approach" in Advances in ProgramminR and
Non-numerical Computation. Permagon Press, New York 19bb.

[3] Dertouzos, M,, Structure and Interpretation of Computer Lansuafies (class
notes for H.I.T. suBject 6.252) Spring, 1973.

[I] Perils, A. J., "The Synthesis of Algorithmic Systems", JACM, January 1967.

[5] Scott, D. , Outline of a Mathematical Theory of Computation. Technical
monograph PRG-7, Oxford University Nov 1970.

[6] Scott. D., The Lattice of Flow Diagrams. Technical monografh PRG-3, Oxford
University November "mo.

[7] Hoare. C. A. R, , "Procedures and Parameters: An Axiomatic Approach"
Lecture Notes in Mathematics 188, Springer-Verlag, Berlin 1971.

[8] Hewitt. C.. Description and Theoretical Analysis (using Schemata) of
^LANNEB; A LapguagFTor Eroving Theorems and^änTpuTätlng Models in
a Robot. R.I.T? ArtiTTcial Inte]ligence Laboratory TR-^bö, April
T97?r^

[9] Cooper.D. C.. "Program Schemes, Progrsms and Logic". Lecture Notes in
Aathematics °88. Springer-Verlaf, Berlin, 1971.

[10] Moses. J.. "The Function of FUNCTION in LISP (or. Why the FUNARG Problem
Liuj "oses^^d ^called the Environment Problem)", SI GS AM Bulletin 15, July

1970.
[II] Rosenbloom, P. C., The Elements of Mathematical Logic. Dover

Publications, flew York I9t>0.

[12] Curry, H. B., and Feys, R. , Combinatorv Logic. Amsterdam, 1958,

[13] Paterson, M.S., "Program Schemata", Machine Intelligence III. Edinburgh
University Press 1968.

[1H] Strachey. C., "Fundamental Concepts in Programming Languages", NATO
Conference, Copenhagen, 1967.

[15] Morris, J. . Lambda-^louius Models of EcagCimlDg Languages. PhD Thesis,
M.I.T, December 1960.

[16] Schwartz, J.T,, "Semantic Definition Methods and the Evolution of
Programming Lamjuages" in Formal Semantics o£ Programming Languages.
Prentice-Hall 1972.

[17] Ershov, A.I., "Theory of Program Schemata", IFIP Congress 71, August
1971.

[18] Landin, P.J., "The Next 700 Programming Languages", CACM March 1966.

[19] Wegner, P., "Programming Language Semantics", in Formal Semantics pf
Programming Languages. Prentice-Hall 1972.

[20] Boehm. C. "Alcune Proprieta Delle Fonne beta-eta-normali nel
iambda-K-calculo," Consigllo nazionale deTTe ricera Roma 696, 1968.

[21] Hindley. J.R. fit ai. Introduction to CorLbinatorv Logic. Cambridge
UniversityPress 1972.

[22] Scott, D. "Lattice Theory, Data Types and Semantics" in Formal Seraantics
Q£ Programming Languages. Prentice-Hall 1972,

I

9 -121-

[23] W^izenbaum. J. "The FUNARG Problem Explained", unpublished memorandum,
MIT 1968.

[2k] Walk, K. et ai, "Abstract Syntax and Interpretation of PL/1, Version
III," IBM Laboratcy, Vienna TR25.098, 1969.

[25] Floyd, R.W, "Assigning Meanings to Programs," Proc. Symposium on Appl.
Math, volume 19, 1967,

[26] McCarthy, J, gi. ai. The LISP 1.5 Programming Manual MIT Press 1965.

[27] Curry, H,B, £t ai, Combinatorv Logic vol. II, Amsterdam, 1972.

tm

