
Best 
Available 

Copy 

., 



AD-787   796 

FUNCTIONAL   DOMAINS  OF   APPLICATIVE 
LANGUAGES 

Stephen  A.   Ward 

Massachusetts  Institute  of Technology 

J 

Prepared  for: 

Office  of  Naval   Research 
Advanced  Research   Projects  Agency 

September  1974 

DISTRIBUTED BY: 

\m\ 
National Technical Information Service 
U. S. DEPARTMENT OF  COMMERCE 

- 

—AJ 



BIBLIOGRAPHIC DATA 
SHEET 

1.  Keport No. 

MAC TR-   136 
4.   I ii U  .inJ Suhl itlf 

Functional Domains of Applicative Languages 

7  \lillior(s) 

Stephen A. Ward 
9.  Performing Organization Name and Address 

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY: 

545 Technology Square, Cambridge, Massachusetts 02139 

12.  Sponsonog Orpani/ation Name and Address 

Office of Naval  Research 
Department  of  the  Navy 
Information Systems Program 
Arlington.  Va  22217  

3. jier ipiem 's_A. 

7f7 7'?C 
5.   Report  Date;        Issued 

September  1974 

8.   Performing (txc ii,;/,r 
No- MAC  TR-  136 

10. Project   Task ftork I. \ 

11. Ciontract   (jrant  No. 

NOOO14-7O-A-O362-00O6 
13.  Type ol  Report i: I'er.oi 

Coverco :     Interim 
Scientific   Report 

14. 

15. Supplementary Notes 

16. Abstracts 
The expressive power of a particular applicative language may be characterized by the 
set of abstract directly representable in that language.  The common FJNARG and 
applicative order problems are scrutinized in this way, and the effects of these 
weaknesses are related to the inexpressibility of classes of functions.  Certain 
computable functions which are inexpressible in the lambda calculus are identified, 
and it is established that the interpretation of these functions requires a mechanism 
fundamentally equivalent to multiprocessing.  The EITHER construct is proposed as an 
extension to the lambda calculus, and several theories including this mechanism are 
presented and proved consistent (in the sense that they introduce no new equivalence 
into the lambda calculus).  A syntactic analog to the Scott construction, *-conversion 
is developed in conjunction with these theories; this adjunct allows reduction of 
expressions having no normal forms in the usual lambda calculus to finite normal form 

approximations of the expressions. 
17.  Key Words and Document Analysis.    17o. llescriptors 

17b. Identifiers  Open-Ended Terms 
NATIONAL TECilNlCAL 
INFORMATION SERVICF 

U S Department of Commerce 
Springfield  VA  22151 

D D O 
EffifHME! 

'X   NOV  11 » 0 
Bonnsuj 

17e. C OSATI Field/Group 

18. Availability Statement 

Approved for Public Release; 
Distribution Unlimited 

19. Security Class (This 
Report > 

I:N( i ASSII n-n 
20.  ^ecuriiv Class (This 

Pa» 
üxc i.ASSiin n 

21.  V 

22.  P 
ill 

*s:3tr 
-ORM  N riS-)5   IREV.   3-721 THIS FORM MAY BE REPRODUCF.n 

M 



,2/ 

FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES 

Stephen A. Ward 

September 1974 

• 

. 

\ 
This research was supported by the Advanced 
Research Projects Agency of the Department 
of Defense under ARPA Order No. 2095 which 
was monitored by ONR Contract No. N00014- 

70-A-0362-0006 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

PROJECT MAC 

CAMBRIDGE MASSACHUSETTS 02139 

/I 

, 

<««- . * -<— -  Mfc 



3 

ACKNOWLEDGEMENT 

The author gratefully acknowledges the assistance of his Thesis Committee in 

this work.    Professors Jack Dennis and Joseph Weizenbaum,  his readers, 

provided helpful suggestions and encouragement during the course of the thesis 

research.    The author feels a special indebtedness to his thesis supervisor, 

Professor Michael Dertouzos,   for his essential contributions to the direction, 

motivation,  and technical  content of this work. 

Particular thanks are due  the author's wife, Debbie, whose  constant  support 

and encouragement have thus far been rewarded by a depressingly long period as 

the wife of a student. 

The author is grateful to the Department of Electrical Engineering for the 

Instructorship under which much of this research wai> carried out.    This work 

was also supported in part by Project  MAC,  an M.I.T.    research program 

sponsored  by the Advanced  Research Projects Agency, Department of Defense, 

under Office of Naval Research Contract N0001^-70-A-0362-0006, 

- 

wm 



/ 

.4. 

FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES 

Abstract 

The expressive power of a particular applicative language 
may be characterized by the set of abstract functions di- 
rectly representable in that language.  The common FUNARG 
and applicative order problems are scrutinized in this 
way, and the effects of these weaknesses are related to the 
inexpressibility of classes of functions. 

Certain computable functions which are inexpressible in the 
lambda calculus are identified, and it is established that 
the interpretation of tht^e functions requires a mechanism 
fundamentally equivalent to multiprocessing.  The EITHER 
construct is proposed as an extension to the lambda calculus, 
and several theories including this mechani^.iii are presented 
and proved consistent (in the lense that t'iey introduce no 
new equivalences into the lambda calculus). 

A syntactic analog to the Scott construction, *-conversion, 
is developed in conjunction with these theories; this adjunct 
allows reduction of expressions having no normal forms in 
the usual lambda calculus to finite normal form approximations 
of the expressions.  This leads naturally to a technique for 
proving the extensional equivalence of lambda calculus 
expressions which are not interconvertible. 

*This report reproduces a thesis of the same title submitted 
to the Department of Electrical Engineering, Massachusetts 
Institute of Technology, in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy, June 1974, 
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Chapter   i: 

Introduction 

1.1:     Programming Language Semantics 

The semantics of a programming   language may  be viewed as a theory which 

I iccounts for the benavior of programs written in that  language.     An 

interpreter for a language L is a model  for the semantics of L,   and a language 

whose semantics  is incomplete  (in the sense  of an incomplete  theory) may have 

many  "correct"  interpreters  which behave  differently just as an  incomplete 

theory may  have  disparate models.     We find  that the usual  more specific 

definitions of semantics   (e.g.   "the relation between expressions and the 

objects which  they denote")   make assumptions about the structure of a universe 

cf   "meanings" which are difficult  to  justify  in the general  case, where  side 

effects,   assignment,  and  transfers of control must be accounted for 

semantic ally.    Such considerations motivate  the restriction of the present 

work  to applicative languages. 

Serious concern for formal semantics is not usually an important consideration 

in the architecture of  practical languages.    Typically a language is designed 

largely by pragmatic considerations and the  formal statement  of its semantics 

is either abandoned  entirely or postponed until the more important 

implementation issues are sorted out.     The subsequent semantic  formalir:ation 

/ of  the  language  inevitably  becomes a major task,  and the complexity,   volume, 

and   inscrutability of the  result may constrain its usefulness.     A classic 

example of  such an undertaking  is the description of PL/1   in the Vienna 

Definition Language[24]. 

An alternative  tecrnique of  language design,  exemplified to some extent in 

LISP[26] and its recen*- derivatives,  involves the specification of the 

pragnatics of a language after decisions on some particuJ^r concise semantics 

have  been made.    Unfortunately  languages so designed tend  to have serious 

defects from a practical point  of view and are abandoned ot   complicated by the 

ad Jit ion of ad. hoc. mechanisms  to make them more useful. 

*m 
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The designer of  a language  is thus  confronted with a choice  between concise 

semantics and  practical  usability,   and he justifiably t°nds to opt  for the 

latter alternative.    The extent to which semantic considerations may  be 

reconciled with practical   issues  remains an  important open question,   and  the 

development of  practical   languages with concise,   elegant  semantics  is  the  lonp 

term  goal  of much of Computer Science    esearch.     The problem is being attacked 

from  two discernible directions:     (i)  semantic  formalisms which  deal with the 

mechanisms of  extant practical   languages,   such as  the analysis of 

uninterpreted  schemata[9,8, n, 17,25];     and   (ii)  the adaptation of existing 

formalisms  to  very simple model   languages such as  the lambda 

calculus[2,3,5,15,22].    The    work  reported here falls naturally  into the 

second  category. 

1.2:    Applicative Languages 

Familiar concepts of mathematics provide an informal semantics for many 

aspects of computer languages.    Manuals for most programming languages relate 

various program constructs to such notions as real numbers,  arithmetic,  and 

functions,  with which the reader is  presumed to be acquainted.    Often 

terminology and  notation are borrowed  from mathematics,   implying some informal 

relation between,   say, a FORTRAN  "function" and  the common mathematical  notio^i 

of   function.    Th^s relation is only approximate,   since  for example no 

mathematical  analog has been established  for the FORTRAN function which prints 

its argument on the teletype.     In  order to  formalize the relationship between 

program constructs and mathe^tical  notions,   then, we focus our attention on 

the highly restricted class of applicative languages. 

The semantic  bases of applicative   languages are the theories of mathematical 

functions,   and  the constructs of these  .".anguages are restricted  to  aimpie 

analogs  of  the related mathematical  notions.     Each applicative   language 

provides a syntactic  formalism for the  representation of functions and their 

application to arguments,   and the  semantics of an c-pplicativ«   language is  in 

eeneral  a rule for the association of expressions,  constructad according to 

this  formalism,  with values from an abstract semantic domain  containing 

functions  and  constants.    Formalizing a consistent semantics for an 
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applicative   language appears to be an  easy   first step in purs' ing the  general 

problem  of  programming  language semantics;     since  set theory provides 

satisfactory  semantic  domains,  all that  remains  is  the seemingly simple 

association of  expressions with set theoretic  functions and constants. 

Yet even this simple problem  is plagued with complications,  and   it  is only  in 

recent years  that progress has been  made  in  this area  largely due to 

techniques developed by Dana Scott[5,6,22].     In  fact,  the usual  set theoretic 

characterization of  functions is not  so well adapted to tue semantics  of 

applicative  languages as one might suspect:     type  restrictions,   placed on set 

theoretic   functions  in order to avoid  Rüssel's  Paradox,  are difficult  to 

reconcile with the natural proclivity of applicative  languages for the 

.-^elf-application of  functions.    The work  of Scott justifies our optimism that 

such  problems are tractable,  and  that  the semantics of applicative   languages 

may  be based on the mathematics of  functions.     The extension of the resulting 

semantics  to  non-applicative mechanisms  such as assignment and side effects 

however,   remains an area of grave  uncertainty,   and  it seems  likely that 

theories of  functions will ultimately prove to be inadequate bases  for the 

semantics of  programming  languages in  general.     In the meantime,   however, 

applicative  languages and their functional  semantic domains are  probably the 

closest we have  come  to a successful  programming  language semantics,   and  we 

feel  that there is much insight to be gained  from further exploration of this 

area. 

r be semantics of an applicative  language L,  then, may be viewed as a mapping 

/ between the set of valid expressions  in L  (the domain of discourse of L)  and 

and a semantic  domain of abstract  functions and constants,     A consequence of 

the Turing Universality of L is that this mapping must be many to one;   each 

abstract  semantic  element has,   in general,   infinitely many representations  in 

the language L.     Tne semantic mapping thus  leads naturally to a notion of 

semantic equivalence between expressions  in L,   partitioning the domain of 

discourse of L into equivalence classes  each of which corresponds to a single 

abstract  semantic element. 



-10- 1.3 

1.3:     The Thesis:   Statement  of  the  Problem 

The problem which  this thesis addresses   is   the characterization  of the 

expressive power of an applicative   language   in terms of the structure of its 

abstract   semantic  domain.    This process generally involves  relating specific 

applicative  language   features  to the expressibility of particular classes of 

functions,   e.g.   the solution of the FUNARG problem to the expressibility of 

functions mapping  integers  onto an  infinite range of semantically distinct 

functions. 

This work focuses on a very few specific language mechanisms, with particular 

attention given to an applicative analog of multiprocessing. Partial answers 

are provided to such questions as: 

1) Are there fmctions whose computability depends fundamentally on a notion 

analogous to multiprocessing? 

2) What applicative mechanisms are  necessary for the expression of such 

functions,   and  is the  impact  of these mechanisms on the structure of the 

semantic domain? 

3) What is such relationship between such multiprocessing constructs and 

other issues of applicative   language  evaluation,   such as evaluation 

order? 

The work  presented  here might be characterized as a search for an applicative 

language L which  is functionally complete  in the sense that every computable 

function definable on the semantic domain of L is expressible in L — our 

reluctance to cite this as the principal  goal of the thesis is  probably due to 

our  failure to  find such a language. 

1.1:    Outline of the Thesis 

The organization of  the  remaining chapters  is as  follows: 

Chapter 2 develops the basic  framework  through  the presentation of three 

interpreters for applicative   languages,   designated S (stack environment), 

T  (tree environment),   and  N  (normal order).     Each  interpreter  exemplifies 

 ^ii 
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a typical   language   limitation and each is  used to relate a specific 

language  characteristic  to the expressibility of a particular class of 

functions. 

Chapter 3 demonstrates a particular computable  function which is 

inexpressible both in N and in the  lambda calculus,  and  relates this 

inexpressibility   to  the semantic requirement that  an  expression in  these 

languages have  at most a single value.     Two alternative   language 

extensions are discussed,   each of which solves this specific 

expressibility problem.     The solutions  involve,   respectively,  primitives 

for coding the representation of functions as  integers and a 

multiprocessing  primitive  called EITHER.     Each of these extensions 

requires r   uification of the structure of the semantic domain, with the 

use of coding leading to drastic and undesirable consequences.    For this 

and related reasons,   EITHER  is chosen.     To account  for the semantics of 

EITHER,   the semantic  domain of N is expanded  into a power set and each 

expression X is associated semantically with an  enumerable set containing 

the admissible values of X. 

The formalization of  EITHER-augtnented  languages may procede in several ways, 

differing  in the restrictions placed on evaluation order.     Chapters 4,  5,   6, 

and 7 deal  with certain formal theories,   based  on the lambda calculus,   for the 

reduction of  expressions   involving the  EITHER construct: 

Chapter 4 provides basic  definitions and presents the Either-R Theory,  in 

which lambda conversion is allowed only  in expressions whose arguments 

are in normal form.    This restriction is motivated by the intuitive 

desire to maintain the distributivity of  functions over terms of  an 

EITHER clause,  but it  limits the power of languages based on this theory. 

Chapter 5 develops a theory of «-conversion,  designed to mitigate the 

limitations  imposed by the restricted lambda conversion of the Either-R 

Theory.    The element  • is introduced as a canonical  representation of 

every nonterminating computation,   and  a syntactic mechanism i? provided 

for the reduction of expressions to approximations which are  in normal 

form.    The use of «-conversion provides techniques for proving certain 

relationships in  the conventional lambda calculus.     This chapter presents 

*m 
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results which are of interest  independently of their relation to  the t 

development of the Either theories, i 

Chapter 6 presents the Either-R-* theory, combining the  EITHER mechanism ij 

with •-conversion,  and establishes  its consistency.    While  this system ' 

retains  the restriction on  lambda conversion,   it has  the power of the . 

lambda calculus augmented by the EITHER primitive. Thus, languages based 

on Either-R-* solve the specific expressibility problem raised in Chapter 

3.    Interpreters and semantics for such languages are discussed. 

Chapter 7 presents the Either-K  theory , w^.ich combines the EITHER construct 

with unrestricted lambda conversion.     Significant semantic differences 

between the Either-R and  Either-K  theories are noted,   and  it is 

informally observed that the removal of the restriction on  lambda 

conversion leads to the expressibility of certain functions which are 
I 

inexpressible in the Either-R-*  languages. 

The last chapter summarizes the results of this work and proposes avenues for 

future research. 

1.5:    Functional  Domains 

An underlying assumption of this research  is that the  fundamental semantic 

intent of applicative  languages  is  to provide computational models of 

mathematical  functions.    As a consequence of this assumption, we are  inclined 

to view functions  in an applicative  language as approximations or models of 

abstract mathematical  finctions,  and to treat any disparity between the 

behavior of the computational model and the corresponding mathematical 

function as a "bug" or idiosyncrasy in the language. 

The thrust of this research is aimed at the limitations of particular 

applicative  languages as models of systems of mathematical  functions.    We 

begin by specifying,  in the next section,  criteria which must be obeyed by 

applicative  functions to be intuitively satisfactory as models of mathematical 

functions,  and then distinguish for each applicative  language L that subset of 

the domain of L containing only such intuitively satisfying functions.     We 

call such a subdomain of L a functional domain of L. 

mm 
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1.5.1:     Intuitive Criteria for Functions 

^stricting  our  attention for the moment to unary   (single argument)   functions, 

ue  note that 

1)   A function £ is a mapping  from a domain D    to a range R  .     The 

set-theoretic model of f is a set  of oMered pairs,   {,. .<D. ,R. >, ,.},   such 

that f[Di]=Ri  if and only if <Di.Ri>  is an element  of f. 

1 2)  A  function f may  be partial over domain D,   i.e.,  there may  be elements D. 

in D such  that f[D.]  is undefined;     this corresponds to the practical 

situation of a nonterminating computation or a computation which  results 

in an error condition.    We shall refer to such a computation as 

divergent. 

3)  If f and £ provide the same mapping,  then they are the same  function. 

U) g. is a subset of f  (in the set-theoretic sense)  if and only  if for every 

Di  in  the domain of g., £[D  ]=R    implies f[D ]=R.. 

Given a language L, and a function £,   a principal  intuitive requirement   is  the 

distinction between the function f. and  the various algorithms  (or expressions 

• In L) which may be used to compute f..    A major complication in the semantics 

of  applicative  languages arises from this many-to-one correspondance between 

algorithms and   functions,   particularly  in light of the well known 

undecidability  of equivalences between algorithms. 

| 
/ 

/ 
1.5.2:    Functional  Domain:   Definition 

The intuitive  considerations of the previous section motivate  the  following 

definition: 

Defn   1.1:    A  functional domain F is a set containing the set N of natural 

numbers  and  computable  functions,    along with an equivalence  relation ' 

such that: 

Unless specifically stated,  we shall use  the term function with no implied 
type  restrictions.    Thus functions  include  functionals of arbitrary order, 
consistent with the typeless character of the applicative  languages considered 
her e. 

• 

i — A. .  - -       1 "- 
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1) if x   is  in N or £ is in  N.   then  x~y  if and only  ir x=y' 

2) if neither x nor y. is in  N,   then x~y if and only  if for every z in 

F.  x[z.]~Y.[2.] or both diverge together, 

3) if x~i..  then  for every z in F, z.[x]~z[Y.] or both diverge together. 

Clause  (1)  sl.nply asserts that different numbers,  eg 2 and  3,  are semantically 

different objects.    Clause  (2) asserts that  any object in F that  is not a 

number is a finction,   and moreover that   functions are semantically equivalent 

if and  only  if they  perform equivalent computations for every set of 

arguments.     Clause  (3)  insists that  the application of a function to 

semantically equivalent arguments yield semantically equivalent values. 

An expression z is said to be functional over the domain F if,   for every 

choice of x. -,rid £ in F, x~y_ implies that z.[x]"z.[y.] or both computations 

diverge together.    Thus (3)  is the requirement that every function in a 

functional  domain F be functional over F, 

We note that the equivalence  relation " is not,  in general,  computable. 

Furthermore,   there may  be elements x. and y. in F such that x~y. is not defined, 

that is,   such that neither x'X. «or "(X'Y.)  is derivable from the above 

definition. 

This definition is rather more specific than necessary.    The choice of natural 

numbers  as a basis of semantically distinct constants,  rather than,  say, 

character strings or floating point numbers,   is arbitrary.     In dealing with 

the  lambda  calculus we could make the apparently stronger • jquirement that 

normal form expressions be semantically distinct,  rather than  Just the 

particular normal  form expressions which are numeric constants;    however it 

happens  that the two alternatives are entirely equivalent in the context of 

our model lar^uages,  and our present definition is the less dependent on 

particular syntactic considerations. 

—AJ 
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Chapter  2: 

Interpreter Structure and  Expressive Povter 

In  this chapter several   illustrative  interpreters for applicative   Ian uages 

are presented,   and  compromises in  their  implementation are  related  to  the 

inexpressibility  of  certain functions.     The model  interpreters are  taken from 

Dertouzos[3]  where they are discussed and motivated in greater detail. 

2.1:     Syntax  of  Models 

The essential   components of an applicative language syntax are conventions  for 

the representation and application of functions.     Typical applicative 

languages provide  for the representation of functions by either or" both of  the 

following means: 

1) A set of  reserved symbols  designating primitive functions whose semantics 

are basic  to  the language; 

2) A convention for functional abstraction,  or the definition of new 

functions by means of expressions containing variables. 

The pure lambda  calculus of Church[1]  is illustrative of languages using only 

the abstraction mechanism;   the combinatory calculus of Curry[12]  exemplifies 

the use of  primitives without abstraction.     Curry[12] has demonstrated the 

equivalence of  these mechanisms,  with minor qualifications,  and  the choice 

between them  for our  purposes is  largely a matter of convenience;  we  provide 

/ here syntactic  constructs for both. 

Beyond  these constraints,   the syntactic details of the languages discussed 

• here are not  important.    A  LISP-like syntax has  been chosen for the 

development of tha models and to provide a  definite basis   for examples and 

illustrations,   although  the results and examples may be translated to conform 

to other syntactic conventions which are consistent with these constraints. 

Syntactic characteristics  of our nrodel  languages  include: 

1)  A finite alphabet  including the  alphanumeric characters and the  special 

characters   "("  and   ")"; 

- 
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2) A countably  infinite set of identifiers,   each a finite string of 

alphanumeric characters of which the first is alphabetic; 

3) A set ef numeric constants,  each represented in the language by a finite 

string of digits. 

The elements of the model applicative  languages are the applicative 

expressions  (AE's) whose syntax is given by: 

<AE> 

<identlfier> 

<canbination> 

<AE list> 

<lambda expression> 

<bvl> 

<number> 

<letter> 

<digit> 

:= <identifier> ! <number> I <combination> ! <lamoda 

expre3sion> 

:= <letter> i <identifier><digit> ,
1<identifier> 

<letter> 

= ( <AE list> ) 

= <AE>   1   <AE> <space> <AE list> 

=   (  LAMBDA   (<bvl>)   <AE>) 

= <null>   I   <identifier> <space> <bvl> 

= <digit>  1   <digit> <number> 

=  A   i   B   i   .. <   i   Z 

=   1   I   2   !   ...   i   0 

We assume of these model languages that data  is either numeric or functional, 

that is,  that the value computed  for any applicative expression must be either 

a natural number or a function.1    An expression X is ^omic if X is an 

identifier or a number;   in addition the fallowing syntactic forms have special 

meaning  in our ncdel  languages: 

1)  The syntactic  io.-J of a lambda expression is 

(LAMBDA(a1 a2  ... an)  b) 

1 Our decision to ignore for the present other common data types  (floating 
point numbers,  arrays,  character strings,   lists)  is justified by their 
codability as numbers    so that our results concerning processing of numeric 
data may be extended to the processing of these other data as well. 

*Lm 
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where LAMBDA   is a   reserved   identifier  in  the  language,   the a.   are 

identifiers on the bound variable  list  of  the  lambda  expressions,   and   the 

expression bis the body of  the  lambda expression. 

2)  The syntactic   form  of  the application of  the procedure  (function)   f to 

arguments x.   ...  x    is 

(f x,   ...  x  ) 
I n 

Here f is presumed to be the representation of a functional datum, and 

the x. are representations of arbitrary data which are supplied to the 

function f as arguments. 

There is  in each  language  a small  finite set  of reserved  identifiers used  to 

denote primitive   functions.     Our  initial models will  include the  following 

primitive   function identifiers: 

1) The logic values T and F,  primitive  functions defined  r.uch that  the value 

of  the application 

(T a b) 

is the value of the expression a.,   regardless of whether the value of the 

expression li is defined.    Similarly,  the value of 

(Fab) 

is the value of the expression b. whether or not a has a value, 

2) The function PLUS of 2 arguments,   defined  such that the value of the 

expression 

(PLUS a b) 

is the sum of the values of the expressions a  and b.     The value of the 

application of PLUS  is undefined  if either of the values of a. or J). is 

nonnumeric. 

3) The ftrction GREATER of  2 arguments,   defined such that  the value of the 

expression 

(GREATER   a b) 

. 

♦— -  m* 
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is the primitive  function T if a has  a higher numeric value than  the 

expression b,  and  F  if the value of a  is less than or  equal  to  the value 

of b. 

We  shall often  refer to an identifier which is not a primitive  function symbol 

as a variable.     An occurrence of  the variable j. in the expression X will be 

termed a free occurrence if one of  the  following  applies: 

1) X is identically the variable y;  or 

2) X is of  the  form   (A,   ...  A  )  and  the  occurrence of y is free in one of 
i n 

the A  ;  or 

3) X is of  the  form  (LAMBDA^   ...  aJM).  y does not occur  in  the bound 

variable  list (a    ... a  ),  'and the occurrence of y is free in M. 

An occurrence of the variable y v^ich is not  free is bpymj. 

2.2:    Curried Functions 

The syntactic provision made here for functions of multiple arguments requires 

certain further elaboration.    We may reasonably demand,  for example,  the 

ability to express the function MPLUS defined such that the value of (MPLUS m) 

is the m-ary  faction which returns the sum of its m arguments.    Such 

functions are,   in general, unrepresentable unless some primitive mechanism is 

provided    within the language for the abstraction of multiple argument 

functions.    We might consider the .bstr^tlon primitive ALPHA, defined such 

that the value  (ALPHA F G m)   is the m-ary lambda expression 

(LAMBDA(X^.X  ) (G X     (F  X,   . ..  X     .) )) 1        m m i m-1 

where F and G are presumed to represent  (m-D-ary and binary functions, 

respectively.    We might then define MPLUS so that   (MPLUS 2) returns PLUS,  and 

(MPLUS n)  returns  (ALPHA  (MPLUS n-1)  PLUS n)  for n>2. 

Such a primitive is,  however,  unnecessary  in most languages.    The technique of 

Curried  functions1 may be used to couch multiple-argument  functions in  terms 

named in honor of H.B.  Curry who developed this technique;  see ['2] 
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of  unary  finctions,   whence  the application of F to arguments A,  A.  ...A 
1    2 n 

becomes 

(   ...   ((F A  )   A_)   ...  A   ) 
i      d n 

and  the n-ary  lambda  expression  (LAMBDA(A    A0...A   )M)  becomfis 
12        n 

(LAMBDA (A^ 

(LAMBDA(A2) 

(LAMBDA(A   )M)   ...   )) 
n 

The convention of  Curried   functions simplifies the presentation of proofs and 

interpreters,   as only single argument functions need be considered;    we 

therefore hastily adopt  it for our  present purposes.     The conventional 

multiple argument syntax   is slightly less complicated,   however,  and  tends to 

greater clarity  than the use of Curried  functions;  we consequently allow 

ourselves the informality of switching freely between the two conventions at 

our convenience.    We may then consider instances of the multiple argument 

syntax as an abbreviation for the corresponding Curried syntax, which we take 

as basic. 

An exception must be made in the firaö model language presented,  however,  as 

the FUNARG problem does not interact gracefully with Curried functions;  hence 

in this case the assumption of single argument functions is not made. 

2.3:    The FUNARG  Problem 

We are now in a position to give an example of a functionally incomplete 

language, which we call S. S is an abstraction of the applicative subset of 

LISP and similar stack-oriented languages; it serves to introduce the notion 

of environment, and demonstrates that certain minimal structural constraints 

on environment handling mechanisms are necessary for the expressibility of a 

particular class of  functions. 

_ 

MM 
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2.3.1:    The S model 

An pnvlrrnment  is a  linear sequence of ordered  pairs  (or bindinps)   (x,v), 

where x is an identifier and  v is a value.     Environments are thus  a mechanism 

for the use of  identifiers  as variables,  serving to record the values 

a3sociated with each variable.    We represent the environment which binds the 

variable X1 to the value V^  X2 to V,,,  and so on,  as 

((x1,v1)(x2,v2) ... ) 

The environment structure of the interpreter for S may be viewed as a stack, 

bindings being pushed onto the environment  from the left at the start of the 

application of a lambda expression,  and subsequently being popped  from the 

environment at the completion of that application.    The S interpreter finds 

the current value for a variable X by looking,  in turn,  at each binding 

starting with the leftmost;  when a binding whose first element  is X is 

encountered,  the associated value  (the second element of the binding)  is taken 

as the value of X.    We may describe this operation by defining a primitive 

function lookup of two arguments,  corresponding respectively to the identifier 

to be evaluated and the environment   in which its value is to be found: 

lookup[x;((X1,V1)(X2fV2)...(Xn,Vn))]= 

if x=X1 then V^ 
else lookup[x;((X2,V2)...(Xn,Vn))] 

We now describe the interpreter for S as a  function defined recursively as 

follows: 

S[x;e]   = 
if x is a number,  then x; 
If x is a member of  {T,F,GREATER,PLUS}  then x; 

if x is an identifier then lookup[x,e]; 

if x is a lambda expression then x; 

if x is of the form (T y z) then S[y;e]; 

if x is of the form (F y z) then S[z;e]; 

if x is of the form (GREATER y z) then: 

if S[y;e]>S[z;e] then T; 

else F; 

^i^fc m ,  -- 
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if x is of the form  (PLUS y z)  then S[y;e]+S[z;e]; 

if x is of the  form  ((LAMBDA(s1. . .sn)  b)  yr..yn) where the 

s    are  identifiers,  then 

S[b;(s1,S[yl;e]).,.(sn,S[yn;e])e]; 

If x is of the form  (y z} z2 ... zn) where y is not a lambda 

expression,  then S[(S[y;e] z}  ... zn);e]; 

else undefined 

Thus S[x;e] computes the value of the expression x in the environment e. 

S[x;0]   (where 0 is the empty  enviroruiient) computes the value of x on an S 

evaluator in its initial   'bare" state;    we may refer to this aimpley as the S 

value of x. 

2.3.2:    Arithmetic Completeness of   > 

We refer to a language as arithmetically complete if every computable  first 

order1  function is representable as a procedure of that  language.    We show 

that S is arithmetically complete by showing that  for every first order 

partial  recursive   (hence computable)  function there is a corresponding 

function in S.    The constructior.G of this section are adaptations of those 

appearing in Dertouzos[3] and are included hare primarily for sake of 

* illustration; while each subsequent model language is also arithmetically 

complete,  similar constructions apply in each case and will not be repeated. 

; 
/ As a preliminary step,  we consider the S function given by: 

(LAMBDA(X Y) 

((LAMBDA(X Y  D)(D X Y))  X Y 

(LAMBDA(X  Y)((GREATER X Y) 

(PLUS   1   (D X  (PLUS   1  Y))) 

0))   )) 

which computes the "recursive difference" function 

1 Follow!n* the  terminology of logic,  a first order function contains only 
numbere   i^its ramge and äomain,  and  functions of order J may contain   (in 
addition to numbers)  functions of order less than  j. 

—1J 
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D[x;y]  = if x>y then x-y else 0; 

by the algorithm 

D[x;y]  = if x>y then 1+D[x;y+1]; 

else 0; 

Note that the extra two layers of UMBDA binding serve only to bind the  free 

occurrence of the identifier D within its^wn definition,  and thus to make the 

recursive  function operate properly on S. 

We may  define the predecessor function 

p[x]  = if x<1  then 0 else x-1; 

in S by the expression: 

(LAMBDAUHD X  D) 

where D is the recursive difference function defined above. 

Now we shall demonstrate that every partial recursive  function of first order 

is representable as a function in S.    In the  following,   lower case letters 

represent partial  recursive functions while upper ca^e  letters denote their 

corresponding S functions: 

1) For every pair of natural numbers n and m,  the ra-arrument constant 

function of value n is expressed in S as: 

(LAMBDAU.   ...  X)  n) i m 

2) For every pair of numbers  n and m,  the m-ary prpjeQUpn function which 

returns the value of its nth argument is expressed in S by: 

(LAMBDAU,   ...V  Xn) 

3) The successor function is expressed in S by: 

(LAMBDAU) (PLUS 1 X)) 

1  This is one of »ever^l  "tricks" which ma^ ^ ^«d to Kfi^rS'sftS ' 
The necessity of such bricks stems from the expressive inaaeq    y    ^ 

Äl^oP?1?^ for a general discus5ion 
of recursion on S see DertouzosUJ • 
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4)   (composition)  For every  choice of  numbers  n and m,  m-ary  partial 

recursive   functions  g1   ...  g      and  n-ary  function  f,   the m-ary function  h 

,gn[x1...xm]] 

defined  by 

h[x  ;x   ;...;x]   =  f[g1[x1...x   ] 
it m i      i m 

is expressed in S as 

(LAMBDAU.   ...   X   )(F 
i m 

(G.   X.   ...   X   ) 

...     ^X,   ...   XJ   )) 

where F,  G1   ...  Gn are  the S expressions corresponding to  f and g., 

respectively. 
•v 

5)   (primitive recursion)   If the n-ary  partial   recursive   function g and  the 

(n+2)-ary  primitive  recursive function  f are expressible  in S as G and  F, 

respectively,   then the   (n+1)-ary  function h defined by: 

h[x   , ...x  .0]   = g[x.,...x  ] '1 
h[x1,...,xn,y+1]  = f[x1,,..,xn,y,h[x1t...,xn,y]] 

may  be expressed  in S by 

(LAMBDA(X X    Y n 
((LAMBDA(X1   .. 

(LAMBDA(X 

(F  X 

(0 X 

Xn Y H)(H  X1   ...  Xn Y))  X1 

...  X    Y)((GREATER Y 0) n 

...  X,,   (P  Y)   (H X,   , n i 

... xn)   ))  )) 

X    Y n 

Xn  (P  Y))) 

where P  is the representation of the predecessor function given earlier. 

6)   (mu-recursion)  If the  (n+1)-ary total recursive  function h is expressible 

in S by H,   then the partial recursive function g defined by 

gCx.;...^  ]  = the least y for which 

hCx^, ..xn;y]  = 0 

is represented  in S by 
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(LAMBDA(X1   ...  Xn) 

((LAMBDA(R)(R  0)) 

(LAMBDA(Y)((GREATER  (H X1   ...Xn Y)  0) 

(R   (PLUS   1  Y)) 

Y))   )) 

2.3.2 

Finally, we note that the class of recursive functions is by definition 

exactly that class of functions obtainable through finitely many applications 

of  the above six rules;  hence the S representations given in the rules 

constitute a technique for constructing an S expression which repreaents any 

finction which can be shown to be partial recursive. 

2.3,3:    Functional Incompleteness of S 

Recall that the fmctional completeness of   a language L requires that ever> 

computable function defined on the semantic domain of L be expressible in L. 

Since the natural numbers and   (by the preceding section)  first order functions 

are included in the semantic domain of S,  every second order function is 

definable on the domain of S.     The functional incompleteness of S may then be 

demonstrated by showing that a simple second order function is not expressible 

as an S function.    We begin by observing that 3SES. higher order functions are 

expressible in S,  e.g.  the function & (the "twice" function) given by 

g[f;x]  = f[f[x]l 

is expressible in S as 

(LAMBDA(F X)(F   (F X))) 

hence it cannot be argued that only first order functions are expressible in 
S.    The wetness in S which we will demonstrate involves the inexpressibility 

of certain second order functions,   notably functions which contain free 

variables and which appear as arguments or values (i.e., bodies) of lambda 

expressions:  the so called FUNARG problem. 

1  General awareness of the FUNARG problem (as well as its name) arose
r^9,n^^ 

ea?!? SperilncS "th LISP.    For discussion see Weizenbaum[23], Moses[10] or 
Dertouzo3[3]. 

«M 
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Consider  the mary  function f,   whose domain contains only integers and whose 

range  contains only  first order functions,  defined by 

f[x]  = that function g defined by 

g[yl   = x+y 

The function f is computable;   it may  in fact be expressed  in the lambda 
calculus by 

(LAMBDA(X) (LAMBDA(Y) (PLUS  X Y))) 

To show that f is nqt f»«nr<i»«lh1«i m the  language of S,   the following 

definition is useful: 

Defn 2.1:    We say that the expressic:, a appears as a subexpression of the 

expression b if any of the following are true: 

1) The expressions a and ^ are identical; 

2) b is of the form 

(b, b_  ... b  ) 12 n 
where a appears as a subexpression of one or more of the b  • 

3) b. is of the form 

where a. appears as a subexpression of B. 

(LAMBDA(X,   ...X  )B) 
i n 

/ 

We say infonnally that ^ contains a if a appears as a subexpression of ^. 

The basis of the inexpressibility of f in S is established by the proof of 

Lemma 2.2:    Let A be any applicative  expression and let B be a lambda 

expression appearing neither as a subexpression of A nor in the 

environment e.    Then B does not appear as a subexpression of S[A;e]. 

Proof is by induction on the recursion depth of S[A;e]. 

basis For the following syntactic  classes of A,   the computation of S[A;e] 

involves no recursion: 

Case   1:   A is a number,  a primitive function identifier,  or a  lambda 

expression.     Then S[A;e]=A,   and  the  lemma is trivially satisfied as 

-»■ 
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B is no.   a subexpression of A. 

Case 2:  A is an identifier other than a primitive  function symbol.    Then 

S[A;e]  is lookup[A;e] which cannot contain B since  by assumption the 

environment  e does not contain B. 

induction;  The remaining cases of the  syntax of A follow;     for these we 

assume that the Lemma holds for recursive calls to S. 

Case 3:  A is an application of GREATER or PLUS;   then the value of S[A;el 

is a number or  logic value and does not contain B. 

Case »»:  A is the application of a logic value T or F to arguments A, and 

A .    Neither A    nor A2 can contain B since A does not contain B; 

hence the inductive hypothesis applies to either of the computations 

SU^eJ and S[A2;e] and B cannot appear in S[A;e] which is one of 

these values. 

Case 5:  A is the application of a lambda expression  (LAMBDA^.. .Xn)M)  to 

the arguments A^.A^    By the inductive hypothesis,  B does not 

^pear in any of the values S[A1 ;e].. .S[An;e].  hence the new 

environment  e'=(X1 .StA^e]). ..(XnfS[An;e] )e does not contain B.    As 

a subexpression of A, M cinnot contain B;  thus the inductive 

hypothesis applies  to the value S[M;e'] returned as the value of 

S[A;e]. 

Case 6:  A is the application of Y to the arguments A1...An, where Y is 

neither a lambda expression nor a primitive function symbol.    Y is a 

subexpression of A and by assumption does not contain B as a 

subexpression.     Then the inductive hypothesis applies to the 

computation of S[Y;e]=Y't and Y' does not contain B; a second 

application of the inductive hypothesis reveals that B cannot appear 

as a subexpression of S[(Y' A1.. .An);e]=.S[A;e]. 

These cases are exhaustive,  completing the proof. 

We can now characterize  a major weakness of the language S by 

-<— -  m 
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Thm 2.3:    Every  function expressible in S whose domain contains only numbers 

may  have  at most finitely many functions  in  its  ranpe. 

Proof:   Functional  values  in S must be either primitive  function identifiers 

or lambda  expressions.     As  there are  finitely many primitive  functions, 

we need only show that  each function of numbers  in S has finitely many 

lambda expressions  in  its range.    Implicit in this argument is the fact 

that the number of functions expressed by a set of lambda expressions is 

no greater than the number of lambda expressions in  the set.    Each  lambda 

expression which contains no nontrivial occurrences of  free variables 

represents (though not necessarily uniquely) a single  function;  lambda 

expressions with nontrlvial occurrences of  free variables   (i.e., which 

conpute different  functions  in differing contexts)  do not correspond 

semantically to  functions. 

By   lemma 2.2,   a function of integers can have  lambda expressions in  its 

range only if they appear as subexpressions of the function,  since  for 

any integer n and expression f the expression  (f n)  can contain the 

lambda expression & as a subexpression only if £ is a subexpression of f. 

As the function must be represented by a finite expression in the 

language S,   it may contain only finitely many lambda expressions as 

subexpressions and hence has finitely many  lambda expressions in its 

range. 

Clearly, the faction f defined at the beginning of this section is a function 

of  integers havir« infinitely many functions  in  its range;    we conclude that  f 

is not expressible in S.     The problem may be characterized as  inadequate 

handling by S of lambda expressions containing free variables.    It  is apparent 

chat free variables are evaluated in the environment  in which a function is 

applied,  rather than the environment  in which it   is evV .ated.    Thus lambda 

expressions with fVee variables have the property that  uhe computation which 

they perform depends on values in the environment of their caller;  this 

dependency constitutes an implicit input and Justifies our exclusion of such 

lambda expressions  from the class of functions.    Yet proper S functions may 

include such lambda expressions as subexpressions;  witness the S function 

^At 
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^LAMBDA(X)((LAMBDA(Y)(PLUS   X  Y) )   3)) 

vuch contains  no  {fee variables and hence no implicit inputs.     The variable 

however,  appears   free -'.n the  lambda expression  in its  body;     this innermost 

Lsmbda  expression is not  a function.    The question of the contribution of free 

..i tables to  the  functional  richness of S naturally arises  at  this point:   Are 

unere functions which are expressible in S only through  the use of free 

.■ariablea?    our  suspicions load to the conjecture that  every  function I 

wpresslble in S may  be represented by an expression F in which no lambda 

.pression appearing as a subexpression contains free occurrences of 

-criables.    This conjecture does not completely deny the usefulness of free 

variables on the S nachine.     Indeed,  lambda expressions with free variables 

are moderately well behaved when passed downward.  i.e., as arguments to 

: unctions;    under these circumstances, the principal danger is due to possible 

conflicts with variables bound by the functions to which the lambda 

expressions are passed,    Thoy may, however,  be considered to be "limited 

'unctions" with the qualification that they be applied within the scope of the 

ree variables in their original environment and that they may not be passed 

ix  functions whose bound variable list  includes any of the free variables. 

,ach qualifications seriously  impair the semantic clarity of the language 

imposing them. 

2.k:     Evaluation Order 

"he functional  incompleteness of S was shown to be related to the specific way 

n which S associates values with variables in an interpreted program:  i.e., 

ne environment structure of S.     The remaining sections of this chapter 

.resent model interpreters with alternative  environment  structures, and which 

olve the specific problem demonstrated in S;    however,   they demonstrate 

imilar inadequacies in the organization of control structures,  i.e.  the data 

structure specifying which computations are to be performed and their relative 

equence. 
1 

Thp notion of control structure has never,  to  the author's knowledge,  been 
.ol^tely  fomaflil^ fniFoWiy it is thi bookkeeping mechanism necessary 

o  resolvl algorithms  into seguences of operations — e.g,.  the use of a stack 
o  record the return points of calls to a recursive subroutine. 

/ 

^AJ 
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The  first model to  be  presented  is T,   similar to S except that  its environment 

is structurally a tree rather than a stack.    It  is argued that  T and S share a 

deficiency which stems  from their evaluation order,   in particular,   fVom their 

uniform  evaluation of  arguments regardless of whether the  resulting values are 

essential to the computation.    T is thus functionally incomplete due to 

evaluation order. 

The N model,  discussed  in section 2,*,   is closely related to the normal order 

evaluation of the  lambda  calculus.     It  is superior to T in that  every 

expression having a T value has  an equivalent N value,  while certain 

expressions have N values but not T values. 

2.4.1:    The T Model 

The traditional solution of the environment ?• oblem of S involves a new 

"internal" representation of a function,  called a closure.    A closure 

includes.   In addition to the  information in a lambda expression, a 

specifics>tion of the environment  in which Its free variables are to be 

evaluated.    As the closure mechanism may require the retention of environment 

branches corresponding to functional applications from which control has been 

returned,  the environment becomes a tree rather than the linear stack of S; 

hence we call our new language T.    The difference between T and S is that  in 

T,   the lambda expression 

(LAMBDA(s1...sn)  b) 

is no longer self evaluating.1    Its value,  in environment §.,  is 

(FUNARG(s1...sn)  b e) 

which  is the representation of a closure in T.     We define T as follows: 

T[x;e]  = 

if x is a number,  then x; 

if x is a member of  {T,F,GREATER,PLUS}  then x; 

if x is an identifier then lookup[x;e]; 

1  We say an expression X is self evaluating if the value of X is X. 

—AJ 
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if x is of the form (T y z) then T[y;e]; 

if x is of the fonn (F y z) then T[z;e]; 

if x is of the  form  (GREATER  y z)  then: 

if T[y;e]>T[z;e] then T; 

else F; 

if x is of the form (PLUS y  z)  then Try;e]+T[z;e]; 

if x is of the form 

(LAMBDA(s,...s  ) b) then 
i        n 

(FOMMU....!  ) b e); 
i       n 

if x is of the form 

((FUNARG(s1...sn)  be^  y1...yn)  then 

TCb;(8ltX[yi5tl)  ...  (sn>T[yn;e])+e1]; 

if x is of the form (y s1 s. ... zn) where y is not a 

FUNARG closure,  then 

T[(T[y;e] z^  ... z^ie]; 

else undefined; 

We note that a lambda expression is not applied directly;   it is first 

converted to a closure (by its evaluation), and then applied by the evaluation 

of  its body in an environment  formed by appending the bindings of its bound 

variable list to the closure environment.    T.ius the free variables of a lambda 

expression are evaluated  in the environment in which the lambda expression is 

evaluated.    The reader may verify that the function represented in the lambda 

calculus by 

(LAMBDA(X)(LAMBDA(Y)(PLUS  X Y))) 

which the preceding section showed to be inexpressible in S,   is expressible in 

T   (indeed, by the same  lambda  expression). 

2,U.2:    Functional Incompleteness of T 

Except for the special cases involving the application of the primitives T and 

F,   the T evaluator uniformly evaluates the expressions supplied to an operator 

• a arguments before the operator is applied.    This order of evaluation, which 

has been termed anDliCative QraSL,  has the virtue that each subexpression of 

tm 
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an AE is evaluated at most once, whereas  in the normal order evaluation of the 

lambda  calculus an argument  to a  function may be evaluated many times.     The 

disadvantage of applicative  order evaluation is that arguments may  be 

evaluated   (once) even though  their value is  irrelevant  to the computation; 

this  is not merely a matter  of occasional  inefficiency,  since the  irrelevant 

argument may  not be defined whereby  the entire computation diverges.     Consider 

the case of  the trinary projection  function 

P31[x;y;T]=x 

whi-h  returns  its first argument  regard:ess of whether  its  remaining arguments 

have  defined  values.    The applicative-order counterpart  of P      is represented 

in T by  the expression: 

f     =(LAMBDA(X Y  Z)  X) 

This expression does not  return a value under '-evaluation unless all three 

arguments have defined  values, 

our  decision to distinguish between P^ and f31 in effect  recognizes the 

undefined element.   •,   as a member of  the  functional domains of our applicative 

languages.     Intuitively,  •  represents the "value" of those  computations which 

do not  terminate,  and whose expressibility in each language L is guaranteed by 

the Turing universality  of L. 

We now show that P.. is not  expressible in T: 

„ 

31 

Thm 2.M:    Fo.^ every AE f,   the T value of the expression 

(f 3 *  •) [2-5] 

(where • denotes any expression whose T value is undefined)  is undefined. 

Droof;     we consider exhaustively  the possible T values of the operator f: 

If f is a number or a primitive operator,  then the value of [2.5]   is 

undefined due to an  error  in  functionality,  i.e.   the application of a 

primitive to arguments for which it  is not defined,    may assume that  f is 

either a combination  or a  lambda expression,   in which cases the value of 

the combination is   the value of the application of the T value of f to 

the specified arguments.     If the value of f is a  number or a primitive, 

L— -  ^^—^—-^^ 
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[2.5]   is apain undefined  due   to an  error   in   functionality.     Hence  the 

value of  f must be a  closure.     The computation of the application of a 

closure involves binding the values of each argument onto the 

envi-Timent,  hence  the evaluation of  [2.5] entails evaluation of each 

argument.    Since not  every argument has a defined T value,  the value of 

[2.5]  is undefined. 

Since clearly the projection P^ has the property of f in Theorem 2.4,  T must 

bt>  functionally  incomplete if we are to consider P^ a function. 

2.5:    The N model 

This section introduces an applicative  language whose interpretation involves 

normal order evaluation.    The superiority of N over T derives from this 

revised evaluation order of N, which permits an expression to be evaluated 

even though subexpressions of it may be undefined.    A theorem of Church and 

.Rosser  establishes   that if an AE,  A,  has a value under M£L evaluation order, 

then It has that value under normal order evaluation;  thus in terms of 

evaluation order,  N is optimal. 

The simplest implementations of normal order evaluation involve the 

substitution of argument text in the bodies of lambda expressions,  rather than 

the binding of argument values in environments.    While the explication (and 

implementation) of such substitution algorithms is relatively straightforward, 

evaluation by simple substitution is often inefficient since 

1) It  involves making many copies of program text during execution,  and 

2) It often involves multiple evaluations of the same subexpression. 

for reasons of efficiency,  substitution evaluators are thus primarily of 

theoretical  interest. 

More efficient implementations of normal order evaluation retain the 

.environment structure of the T model,  and introduce additional mechanism to 

indicate which bound expressions have or have not been evaluated.    Since the 

.ovironment implementations of normal order evaluation involve considerable 

^m 
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bookkeeping  machinery and are  hence conceptually much more complex  than  the 

substitution algorithms,   they  will not  be pursued. 

2.5.1:     Axioms   for the Lambda  Calculus 

The primordial  applicative   language  is the lambda calculus,   which has  been  the 

subject  of  much  investigation since  its conception by Alonzo Church  in  the 

19 30s.     The semantic basis of the lambda calculus is  a set  of axioms which 

define an equivalence relation,   =,  on expressions of the  language.     Each axiom 

may  be interpreted as a conversion rule   (or reduction rule)   in the sense that 

it provides a means  for converting   (or reducing) an AE to an equivalent   (under 

= )   AE having  a different  form.     The presentation of the axioms in  this chapter 

is somewhat  informal,   serving primarily as motivation  for the N interpreter; 

the  interested  reader is referred to Curry[12] and Hind ley[21]  for further 

detail.    Related  issues are also covered in greater depth in  later chapters of 

this report. 

The axioms  of  the  litnbda   calculus are of 4 types,   designated alpha 

(equivalence under renaming),   beta  (function application),   delta  (primitive 

function definition),   and,   in some   formulations,  eta.     The delta and eta 

axioms are not  used  in all formulations.    The eta axiom seems to serve no 

important  function in the  evaluation of expressions and will be presented here 

only  in passing.    The delta axioms may  be avoided by well known coding 

techniques which  involve  the  representation of nonfunctional data,   e.g. 

natural  numbers,   as lambda  expressions. 

The formulation which will  be primarily  referred to in subsequent chapters 

comprises the alpha,  beta,   and  delta axioms,  and is often termed the 

beta-delta-calculus in the  literature.    Unless otherwise qualified,  generic 

references to  "the  lambda calculus"  in this  report denote  the beta-delta 

calculus. 

The equivalence relation  = of  interconvertability is generated by a relation 

Many such codings are  possible:   a popular choice represents  0 by  the 
expression  (LAMBDA(X)(LAMBDA(Y)Y) ) and   the  number n+1   by 
(LAMBDA(X)(LAMBDA(Y)((N   X)(X  Y))))  where  N  is  the  representation of the number 
n.     For development  of  such  a  coding,   see  Church[1]. 
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->   of  reducibilitv;   hence  X->Y  implies X=Y which,   in turn,   implies  Y=X. 

Reducibility  is in gpneral  antisymmetric,   however;  thus ->  provides an 

ordering  of  equivalent expressions which has  important  rair.i fications  in  the 

lambda  calculus.    The relation ->  is defined to be a monotone  relation 

meaning that  it has the following properties: 

Reflexivity:   For every  X,   X->X; 

Transitivity:   If X->Y and  Y->Z,   then X->Z; 

Monotonicity:   If X->Y and  B is the  result  of substituting,   in an  expression 

A,   X for an occurrence  of Y,  then B->A. 

^■le relation = is in addition an equivalence  relation;   hence X=Y implies Y=X. 

Central  to the axioms  is the substitution rule.   S,  of  fundamental   importance 

to  the lambda calculus as well as the theories of the following chapters of 

this report.    S is formulated as a three argument function,  such that  the 

meaning of S[X;Y;Z] is roughly  "the result of substituting the expression X 

for free occurrences of the variable Y in the expression Z.    The definition of 

S is further complicated,  however,  by the  requirement that  the operation 

S[X;Y;Z] not  introduce conflicts between free variables  in the expression X 

and  bindings of X within Z.    There is a long history of incorrect algoritms 

for S;  the definition given here  is due to Curry: 

Defn  2.6:     For expressions  X and  Z,  and variable Y,  the expression S[X;Y;Z]  is 

defined  as  follows: 

1) If Z=Y,  then X; 

2) If Z is a primitive,  number,  or identifier other than Y,  then Z; 

3) If Z is of the fonn  (Z1  Z2)  then (SCX;!^] S[X;Y;Z2]); 

U)  If Z is of the form  (LAMBnA(A)M) where Y=A,  then Z; 

5)  If Z is of the form  (LAMBDA(A)M) where Y is different  from A,  then 

(LAMBDA(B)S[X;Y;S[B;A;M]]).    where the variable B is chosen as  follows: 

i)  If Y does not occur   free in M or if A is not  free in  X,  then B=A; 

ii)  Else B is any variable which occurs free neither in M nor in X. 

1  Terminology after Curry[12] 

mi  ' -  ^^—^——^-^^ 
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We  now procede to  the statement  of the axioms: 

Axiom alpha:   If E is a lambda  expression of the form (LAMBDA(X)M)  and  the 

variable Y does not occur   free in M,  then E->(LAMBDA(Y)S[Y;X;M]). 

We say  that expressions A and  B are congruent  if A can be converted to B by 

alpha conversion alone.    Note that  if X->Y by alpha conversion then Y->X by 

alpha conversion;    hence X=Y.     Congruence is thus symmetric and transitive, 

and under most circumstances congruent expressions may be treated as 

identical.    We say that expression X is in normal form if the only reduction 

which can be performed on X is alpha conversion. 

Axiom beta:   If E is an expression of the form  ((LAMBDA(X)M)  A)  then 

E->S[A;X;M]. 

Axiom eta:   If E is an expression of the form  (LAMBDA(X)(M X)) where X does not 

appear free in M and M is a  lambda expression,  then E->M. 

Axiom delta:  If E is an expression of the form (F A. A? ... A  ) where F is a 

primitive  function symbol and each Ai  is in normal  form and contains no 

free variables, then E->f [A.;.. .;A  ] where f is the operation denoted by 

F. 

The following two theorems are of fundamental importance in the lambda 

calculus.    The first is due,     in its initial primitive form,   to Church and 

Rosser and is referred to in the literature as the Church-Rosser Theorem: 

Thm 2.7:    Let X and Y be expressions such that X=Y.    Then there exists an 

expresion,  Z, such that  X->Z and Y->Z. 

proof may be found in Curry[12] or Hindley[21] and elsewhere. 

The Church-Rosser Theorem shows  that the  lambda calculcS is  consistent in the 

sense that the relation =  is nontrivial;     in particular,   X=Y is not true  for 

incongruent expressions X and  Y in normal form.    We can thus  prove that 

expressions X and Y are not   interconvertible by finding normal  forms X' and 

  

This definition is recast  more formally  in the terminology of Chapter 4. 

-«— -  ^ 
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Y',   where X->X'  and   Y->Y',   which  are  incongruent. 

Unfortunately,  not  every expression X   .3 convertable to an expression X' in 

normal   fonn.    For example,   the  important expression 

Y=.(LAMBDA(F) ((LAMBDA (H)(F   (H H))) (LAMBDA (H) (F   (H H))))) 

which  is the "paradoxical  combinator"  of Curry, has no normal  form.     Further 

discussion in this area follows in  Chapters ^ and  5,  along with related 

technical  developments. 

A second  Important theorem, due to Corrado Boehm,  has been proved only Tor 

systems which prohibit delta conversions: 

Thm 2.8: Let X and Y be incongruent expressions in normal form, and let C and 

D be arbitrary expressions. Then there exists and expression Z such that 

C=(Z X) and D=(Z Y), 

proof originally appeared in Boehm[20],  in Italian;  a proof in English 

appears  in Curry[27]. 

Boehm's Theorem guarantees that incongruent normal forms in the beta-eta 

calculus    are semantically distinct;  in particular,  the axiomatic assertion 

that any  two incongruent normal forms are interconvertable results in an 

inconsistency.    The extension of Boehm's Theorem to systems which include 

delta conversions requires that the constants added to the pure lambda 

calculus also be semantically distinct.    We might,  for example,   formulate a 

calculus including the numeric constants without providing any means for 

distinguishing between them:  we could provide the primitive PLUS but not 

GREATER,    While this formulation Is valid In terms of the lambda calculus, 

Boehm's Theorem is clearly inapplicable since there is no expression Z which 

distinguishes,   say, between the normal forms 2 and 3. 

i.e.,  that  formulation including axioms alpha,  beta, and eta,  but excluding 
delta conversions. 

/ 
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2.5.2:     Normal order:   Substitution 

Each  of  the lambda  calculus axioms provides a means by which an applicative 

expression E may  be  reduced  to an equivalent expression E'.     While the axioms 

themselves place certain restrictions on the order in which such reductions 

may  be performed,     the evaluator of an applicative expression has a great deal 

of  fVeedom to choose the order in which to evaluate subexpressions. 

Normal order evaluation specifies that at each evaluation stage,   the  leftmost 

reducible subexpression is to  be converted. 

2.5.2,1:    The N Evaluator 

We define the N value of an AE x as  follows: 

N[x]  = 

if x Is a number,  then x; 

if x is a member of   {PLUS,GREATER}  then x; 

if x Is a lambda expression,  then x; 

if x is of the form  (PLUS ab) where N[a] and N[b]  are 

both Qüfined and numeric,  then N[a]+N[b.]; 

if x is of the form (GREATER ab) where N[a] and N[b] 

are both defined and numeric,  then if N[a]>N[b]  then 

(LAMBDAU  Y)X)  else  (LAMBDA(X Y)Y); 

if x is of the form  ((LAMBDA(a)ö.)c) where a  is an 

identifier and b and c are AE's,  then Ntfe.'] where b' 

is the result of substituting s. for each free 

occurrence of a in b; 

if x is of the form  (a. b.) where a, and J). are AE's and a. 

is not a lambda expression,  then N[(N[a]  b)]; 

else undefined; 

Note that we have  eliminated the primitives T t id F, which are entirely 

equivalent in N to the lambda expressions which replace them as values of 

GREATER. 

Not every expression E containing applications of lambda expressions, for 
example, is beta-reducible. Applications ofaxiom aloha, ie the renaming of 
variables,  may  be required before axiom  beta is applicable. 

^tj 
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2.5.2.2:     Axiomatic  Consistency  of  N 

We  show  in this section that N evaluation is consistent with the semantics or 

the lambda  calculus by demonstrating that N preserves the equivalence  relation 

Thm 2.9:     Let E be any  AE such that N[E]  is defined.    Then E->N[E]  where -> is 

the reduclbility relation defined by the lambda calculus axioms. 

Droof:     by  induction on the level of recursion in the computation of NUJ. 
L    basis:   if E is a number,  a primitive,  or a lambda expression then N[E]=E. 

induction:  we assume that the Theorem holds for recursive calls to N. 

Then the Theorem holds for the remaining syntactic cases of E by the 

monotonicity of ->. 

We note in passing that N[B] is not necessarily a normal form.    Lambda 

expressions,   in particular,  are not reduced by N.  since otherwise the 

evaluation of certain meaningful expressions  (e.g.   the paradoxical combinator 

Y) would not terminate. 

2.6:    Functional Domain of N 

In this section it is shown that the entire domain of N constitutes a 

factional d^in satisfying the intuitive criteria of [1,1].    We  interpret 

the semantic equivalence relation,  ".  on the domain of N as follows: 

For X,Y in DNf  X'Y if and only if 

for every Z in D    and number n, 

(Z X)=n    <=>    (Z Y)=n 

where D    is the domain of N     We now Justify this interpretation of " on N 
N 

thru 

Thrn 2.11:    The domain of N is a functional domain, obeying the criteria of 

[1.1],  wrder the above interpretation of ". 

Dr0of:   The equivalence relation " defined in [2,10] must be shown to obey 

*M 
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the three clauses of  [1.1] over the domain  D    of N.     We treat  the clauses 

individually: 

1)  For numeric constants  X and Y,  we must show that  X"Y <=> X=Y. 

<=:   direct,   by  the equivalence of identical  expressions. 

r>:   Assume  X~Y.     Then by beta-reduction, 

and 

((LAMBDA(a)a)   X)=X 

((LAMBDA(a)a)  Y)=Y 

and thus,   by   [2.10],   X=Y since they are numeric.    By  [2.7]  there exists a 

Z such that X and Y are each reducible to Z;  since X and  Y are not 

reducible,  Y,  Y,  and Z must be identical. 

3)  To show:   X'Y  <=> for all Z in DN, 

(Z X)~(Z Y) or neither defined. 

=>:  Assume  false.    Then for some X"Y there exists a Z^ such that 

(Z1   X)T(Z1  Y) 

where I is the negative of ".    This implies,  by  [2.10],   that there exists 

a Z- such  that 

(Z2 (Z1   X))=n 

for some numeric constant n but not 

(Z2 (Z1  X))=n 

(we are assuming here one of two completely symmetric cases with no loss 

of generality - the other case follows by interchanging the symbols X and 

Y).    Defining Z    by the lambda expression 

Z =.( LAMBDA (a) (Z2  (Z1 a))) 

we note that 

hence by   [2.10]  XtY. 

(Z    X)=n    but    (Z    Y)^n 

im 
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<=:   Assume  that  for all Z in D,,,   (Z  X)-(Z  Y).    Then  (Z  X)=n   (tor numeric 

constant n)  if and only  if (Z Y)=n  by the argument of part   (1).     Hence by 

[2.10]  X-Y. 

2)  It must be shown that X'Y if and only if for all Z in DN,   (X Z)"(Y Z). 

From part   (2)  of this proof,     X'Y <=> for all Z: 

((LAMBDA(a)(A  Z)) X)-((LAMBDA(a)(a Z))  Y) 

hence,  by beta-reduction, 

(x z)-(y Z) 

The significance of Theorem 2.11 is that every element of the domain of N 

corresponds to some element of the abstract semantic domain:  every element of 

D    is intuitively functional.    Thus N  (and the lambda calculus on which it  is 

based)  is a language of "pure" functions.    We shall find in the next chapter 

that this pleasant property costs us something, however.  In terms of 

expressive power. 

2.7:    Summary 

The material  in this chapter is largely  introductory.    The three interpreters 

presented are abstracted  from conventional implementations,  and their scrutiny 

serves to  relate common implementation issues to the expressibility of 

functions.    The major findings were: 

1) Each  language is arithmetically complete,  in the sense that rvery 

conputable  function defined on the natural numbers is expressible. 

2) The FUNARG problem leads to the inexpressibility in S of functions whose 

domain contains integers and whose range contains infinitely many 

functions. 

3) Applicative order evaluation renders inexpressible in T every function 

whose domain includes  »,   the undefined computation.     An example of such a 

firction is the constant  function  (LAMBDA(X)3) of one argument. 

«M 
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'4)  The interpreter N,   based on  the normal order evaluation of expressions by 

substitution,   suffers from neither of these deficiencies.    We can 

construct a functional domain F such that every expression X in the 

domain of the  language  N corresponds to an element  of F;  thus N  is a 

"pure"   language  in the sense  that  every expression corresponds to a 

fircticn or a number.     This is not true,   for example,   in S,  where  lambda 

expressions containing free variables can compute different functions in 

varyi^s contexts. 

We are left with N,  an interpreter whose behavior is intended  to model  the 

lambda calculus;    the remainder of this report,  roughly speaking, deals with a 

particular weakness common to N and the  lambda calculus. 

. • 

r 
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Chapter  3: 

Motivation for a Multi-valued Semantics 

Central  to  this chapter is the argument that  the N model,  and hence the  lambda 

calculus,   is functionally incomplete because of the intxpressibility in N of a 

class of computable  functions on N's domain.    The inadequacies of N leading to 

this weakness are explored, and two new model languages are presented,  each 

curing the problem  in a different manner.    The first model, which has 

provision for encoding representations of functions as integers,  is found to 

be unsatisfactory  for both practical and semantic reasons.    The alternative 

solution proposed  in this chapter involves mechanism for the representation of 

semantic elements with multiple values;   this mechanism,  called EITHER,   is the 

principal  focus of the remainder of the Thesis. 

3.1:    Necessity of non-functions:  WHICHFF 

Consider the family of partial functions,   {FF^ for i ranging over N, which 

satisfy the following conditions:   for each natural number i, 

PP1[,] =    i,  i=x [3*1] 

divergent, i^x 

Thus each FFi has a single element in its domain:  the number i.    For any other 

argument the value of FF^x]  is undefined.    The {PFJ are clearly partial 

functions  in the intuitive sense of Defn  [1.1],  and are computable in each of 

the model languages considered here.    Furthermore,  they are semanticallv 

distinct:   for no numbers  WJ does FF^FFj.    There is then nothing intuitively 

objectionable about a function which maps each FFi to its corresponding i. 

Consider such a function WHICHFF which,   for each natural number i,   has the 

property that: 

WHICHFF[FFi]  = i 13.2] 

Intuitively WHICHFF is a function from  {FF^ onto N;   furthermore  it  is 

demonstrably computable using "dovetailing" or multiprocessing techniques. 

Note in particular that the following definition of WHirHFF satisfies  the 

condition of   [3.2]: 
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WHICHFF[f]   = i such that   f[i]=i, t3-3] 

if such a number i exists; 

else undefined 

We may view the dovetailed evaluation of WHICHFF[f] as the computation of f[0] 

for one second,   the computations of f[0] and f[1] each for two seconds,  and 

similarly tntil  any one of the computations f[i] terminates normally;  the 

value  of this  f[i] would then be taken as the value of WHICHFF[f].    However, 

WHICHFF is not expressible  in N;   this is a result of 

Thm 3.14:    Let L be an arithmetically complete applicative language and let DL 

be the domain of L.    Then no function WHICHFF having the properties of 

[3.31 is functional over DL. 

proof by reduction to the halting problem. Assume that DL contains a 

function WHICHFF having the property given in [3.3]. Then for any 

fmotion £ in DL and any number i, L[ (WHICHFF f)]"! if fTF^ Now 

consider the union of the functions FF1 and FF2, given by: 

FF12[x] » 1, Ux]=1; t3-51 

2,  L[x]=2; 

divergent otherwise 

FF      is clearly a computable first order function, hence it  is 

expressible  in L by the arithmetic completeness of L.    Now L[(WHICHFF 

FF    )] can have as its value at most one of [1,2);  thus either L[(WHICHFF 

FF    )]41  or L[ (WHICHFF FF12)]«.    Assume, with no loss of generality,  the 

former.    Then define the second order function & as follows: 

g[f]  = the function gf, where 

gf[il  =      1.  I'll 
2,  i=2 aM f[0] defined; 

divergent otherwise.    For every    computable 

first order function I,  gf (or equivalently g[f]) is evidently 

computable.    Moreover,  if f[0]  is undefined then gf is identical to the 

finction FF^  otherwise gf is Identical to the function FF12.    We use the 

ability of WHICHFF to distinguish between FF1 and FF12 to determine 

whether f[0]  is defined,  by means of the function fi. given by 

—AJ 
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h[f]   = WHICHFF[g[f]] 

We note finally that  for any  function £ 

ftO]  convergent  => g[f]   - FF12 => h[f]^1; 
and 

f[0] divergent  => g[f]-FFi  => h[f]=1 

Hence h[f]=l  if and only if f[o]  is divergent.    The divergence of f[0]  is 

decidable,  as one of the computations h[f] and f[0] must converge;  thus 

the function h provides a solution to the "halting problem" for first 

order functions,  and is a well known  noncomputable function.    Since h is 

clearly computable in terms of WHICHFF,  we conclude that WHICHFF is not a 

conputable  function over any domain  including the  first order functions. 

Since it was shown  in the last chapter that every: function expressible in N is 

functional  over all of the domain  of N,   it follows that WHICHFF is not 

expressible in N.    This inexpressibility relates  intuitively to two aspects of 

the implementation of the N interpreter: 

1) The interpreter does not admit multiprocessing. If, in the evaluation of 

expression A, N embarks on the evaluation of a subexpression a of A whose 

N value  1$ not defined,   then the N value of A is not defined. 

2) The only mechanism in N by which a function f can recover information 

about its  functional argument Ä is the application of &.    There is no 

means  by which f can discover the algorithm  (or program)  by which £ 

canputes values,  even though  the internal representation of & necessarily 

includes this information.    Hence if f is to make any use of &,  then £ 

must be applied to some argument;    By the constraint  (1) above,  the 

nontemination of this application results in the nontermination of the 
application of £. 

The correction of either of these deficiencies is straightforward in an 

implementational  sense — many extant  languages    boast provisions for 

multiprocessing and/or access to representations of functions.    However, 

neither "correction"  is easily reconoiion , < «-u ..u '  'Cl-0nciled with the semantics of an applicative 

language.    The second  limitation of N seems a  natural consequence of our 

bia 
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distinction between  the notions of a function  f and  any of the algorithms  for 

computing  f  from  its arguments;  a  language which provides mechanism  for 

distinguishing  between algorithms  for computing a  particular function f would 

certainly have  non-functional elements in its domain.    The semantic 

ramifications  of a cure to  the  first problem,  however,  are more subtle and 

will be explored  in detail. 

The following  sections preser L two alternative extensions to N,  each 

corresponding to a "fix" of one of the above limitations.    The function 

WHICHFF is expressible  in each. 

3.2:    Codir« primitives:  The C model 

We noted that a limitation of N,  justifiable by our intuitive respect for the 

semantics of  factions,   is that no information can be recovered about an N 

firction without the application of that  function.    In particular, N provides 

no means  for recovery of information about the pepresentatipn of a function as 

an N expression.    We have thus avoided the "Turing machine tar pit" - the 

argument that any  language as powerful as a Universal Turing Machine has 

exactly the same set of expressible functions. 

The C model presented here has.  in addition to the primitives and structure of 

N.  primitives for the translation of the representation of language elements 

to and   fVcm a tractable form.    Making the fundamental assumption that any 

function defined on a domain F is computable if and only if it is computable 

from  the representations of elements of F, we must conclude that a Univtr.al 

Turing Machine (or its equivalent)    operating on the representations of 

arguments to the computable  function £ can compute representations of the 

values of £.    This is the substance of our claim of functional completeness of 

the language C. 

The interpreter for C is identical to the interpreter for N except for the 

addition of the primitive operators CODE and DECODE.    CODE maps 

representations of the domain of C into the natural numbers: 

CODE:   Dc -> N 

tm 
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and  may   be  viewed as a Goedelization of the character string representing its 

arRument.     The claim we make  for CODE  is that   if  (CODE X) and   (CODE Y)  have 

the same   (numeric)  value then X and  Y are semantically equivalent;     they are 

in fact  represented  in an  identical manner.    We cannot,  of course,  claim that 

in general   X'Y implies  (CODE  X)=(CODE  Y),   as there are many representations of 

each semantic element and the semantic equivalence of the representations is 

effectively undecidable.    The operator DECODE is the inverse of CODE:    given 

the Goedel number of the representation of an element,   it returns the element. 

We thus claim that each expression X is semantically equivalent to   (DECODE 
(CODE X)). 

Our claim for the functional completeness of C is formalized,  to the extent 

possible,   in 

Vhm 3.6:    Let F be a functional  domain of C,  and let 

g:  F -> F 

be a ccmputable function on F.    Then g is expressible in C,  i.e.,  there 

is an expression G in the domain of C such that  for all x,y in F,  g[x]=y 

implies that (G XTY. 

proof;  Since g is computable then so is h defined by: 

h  =. (LAMBDA(Y) (CODE   (g   (DECODE Y)))) 

G ■   (LAMBDA(X)(DECODE   (H  (CODE  X)))) 

It must be recognised that CODE is not functional:   it radically disobeys the 

intuitive  requirements of Defn   1.1.     We  note,   for example,  that CODE might 

return different values for the arguments  (LAMBDA(X)X) and   (LAMBDA(Y)Y)  as 

they have  different representations,   violating our  requirement that 

semantically equivalent arguments produce semantically equivalent  results. 

as it is simply the composition of computable functions.    Furthermore, 

since h is a function from N to N,   it is expressible in C by the 

arithmetic  completeness of C;  let H be the representation in C of h. 

Then the function g is expressible in C by: 

*^ 
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,i-^r,       ThP rporesentation of WHICHFF in C 
WHICHFF example of   the  preceding  section.     The represe 

— no™ ^n «-hp CODEd representations 01   ^ 
involves writing an interpretor,  operating on the P 

expressions,   which simulates the retired  "dovetailing" by computing  1  step of 

(g   1).  2 steps of   (g  2).   2 steps of   (g   D.  etc.     Presentation of actual code 

for WHICHFF on C would be.   at best,  a messy task;, it  is  hoped therefore that 

the  reader will accept  the expressibility of WHICHFF in C on the basis of 

Theorem 3.6 and this informal discussion. 

3.2.1:    The Turing-machine Tar Pit 

The introduction of the specter of coding requires further reflection.    We 

have made the enticing observation that, with the introduction of a simple 

.„echanism allowing the  representations of functions to be accessible as data, 

every computable function becomes expressible.    We have noted corollary 

disadvantages - (I) the semantic confusion resulting from the nonfunctional 

character of CODE,  and  (11) the practical absurdity of having to include the 

code  for intfiTEcetfilia in the definitions of certain functions. 

However,  the inclusion of coding primitives in an applicative language may be 

objected  to on more fundamental grounds than the above.    The stated semantic 

goal  of an applicative  language is the representation of functions.    Thus such 

a language provides a set of rules and conventions for associating expressions 

with abstract  factions; ncreover. the power and consistency of the language 

stem largely fVan the applicability    of these rules and conventions to every 

expression in the language.    In the lambd. calculus,   for example, we are 

assured  that expressions which are interconvertible via the alpha and beta 

axioms are equivalent.    The cost of this assurance  is a corresponding 

constraint on the computations which we might perform:  the alpha axiom 

positively prohibits us fVom writing a function which distinguishes 

(LAMBDA(X)X)  from  (LAMBDA(Y)Y).    We accept this constraint because the 

structure which it imposes  is useful to us; we  recognize that we cannot be 

assured  of a relation and simultaneously be allowed to violate it at will. 

Coding primitives may be viewed as a mechanism for violating the structure 

imposed by an applicative  language.    None of the lambda calculus axioms,   for 

example,  are valid  in the presence of coding,  since "functions" can be written 
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which  distinguish between  interconvertable expressions.     The rules  and 

•onventions   for representing  functions are,   in effect,   abandoned.     The 

proprammer is  thus  freed   from  the  structural  constraints  of the  language,   but 

finds   himself   in a semantic anarchy  — while he may write any  function he 

[leases,   he may  make  no assumptions about the structure or  representation of 

its  arguments. 

3.2.2:    Functionality  of  DECODE 

He may  convincingly defend  the contention that  CODE is not a  function by 

demonstrating  that  it  return"? semantically distinct  integers,   say,   for the 

equivalent arguments   (LAMBDA(X)X)  and   (LAMBDA(Y)Y).     This demonstration does 

not  apply,   however,   to  the  inverse of CODE;     there is nothing inherently 

nonfunctional   in the  fact   that  DECODE returns semantically equivalent 

evpressions   (LAMBDA(X)X)  and   (LAMBDA(Y)Y)  when given semantically  distinct 

integers  as arguments.     It   is the purpose of this section  to demonstrate that 

frictions with the property  of DECODE  (i.e.  mapping a subset of the natural 

numbers  onto  the entire domain of discourse)     re expressible in N and the 

lambda  calculus. 

3.2.2.1:    LAMBDA-free AEs 

It  is convenient  for certain purposes to use the techniques developed 

primarily  by Curry[12] of the calculus of combinators  for the reduction of 

applicative  expressions  to  equivalent  expressions whose use of lambda 

expressions  is highly  restricted.    For our purposes we shall consider the 

combinators   listed  below   (along with their respective  definitions): 

I «   (LAMBDA(X)X) 

K =   (LAMBDA(X)(LAMBDA(Y)X)) 

W =. (LAMBDA(X) (LAMBDA(Y)(X  Y))) 

S =   (LAMBDA(X)(LAMBDA(Y)(LAMBDA(Z)((X  Z)(Y  Z)))) 

G1 «   (LAMBDA(G)(G  G)) 

G =   (LAMBDA(G)(LAMBDA(Y)(Y  G))) 

G     =   (LAMBDA(Y)(LAMBDA(X)((Y  X)   X))) 

tm 
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0.   x   (LAMBDA(G)(LAMBDA(D)(LAMBDA(X)(G   (D  X))))) 

We  stow  in this section that every applicative expression using no lambda 

expressions other than the above combinators;     we begin with 

Lemma  3.7:    Let R be a LAMBDA  free AE in the single argument applicative 

lar^uage L,  and  let R contain occurrences of the variable x.    Then R is 

equivalent  (by alpha and beta axioms) to a LAMBDA free AE of the form (R' 

x) where R' contains no occurrences of the variable x. 

proof is by structural  induction on R. 

basis;   R is atomic  (in particular,   R is not a combination). If r is the 

variable x,  then r' is (I x) = x  (by axiom beta).     If r is not the variable 

JL.  then £ contains no free occurrences of x and r' is ((K r) x)  = 

( (LAMBDA(X)E.)   x)   = r. 

induction;  R is a combination of the form (R1 Rg).    By inductive 

hypothesis,   R=((R1' x)(R2' x)) for some AEs R^ and R2' not involving the 

variable x;   then R'=(((S R,)  R2)  x)  =   ((LAMBDA(Y)(LAMBDA(X)   ((R1  X)(Y 

X)))))  =  ((R1  x)(R2 x)). 

The principal result of this section is the following adaptation from Curry's 

Synthetic Theory of Combinators: 

Thm 3.8;    Let A be an AE in a single-argument applicative  language L whose 

semantic equivalence obeys axioms alpha and beta.    Then A is equivalent 

to a LAMBDA-free expression k* containing only the combinators I,  K,  W, 

S,  G,,  G-, Gv  Gjp  and the primitives and constants of L. 

proof;  we show that,  given any such A which is not LAMBDA-free, we can 

construct an equivalent A' containing fewer LAMBDAs.    Let a. be an 

innermost LAMBDA expression occurring as a subexpression of A,    We then 

construct A' by replacing a as follows: 

Case  1: §. is of the form (LAMBDA(x)x)  for some variable x; we replace a 

by I  (equivalent by axiom alpha). 

■' 
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Case  2:  a  is of the form   (LAMBDA(x)y)  where x and y are different 

variables;  we  replace a. by   (K y). 

Case 3:  a  is of  the  form  (LAMBDA(X)(D X)) where x is a variable and b is 

an AE:  replace a by   (W b)=(LAMBDA(Y)(b Y)) 

Case «I:  a  is of  the  form  (LAMBDA(x)(c d)):    By Lemma  3.7,   the body  (c d) 

is equivalent  to an  AE  (r'  x)  where the variable x  does not appear in 

r'.    Then a=(LAMBDA(x)(r'  x) ) which  is  reducible according to case  3. 

Since each expression A which is not LAMBDA  free is thus equivalent 

to an expression A' containing fewer LAMBfAs,  a finite number of such 

reduotions will reduce each such A to a LAMBDA  free A*.    This completes 

the proof. 

IT,   is a relatively  simple exercise  to show in addition that each of the 

c tnbinators  I,   W, G  ,  G_,  0-,  G^ is in turn equivalent to an expression in K 

and  S,   allowing  us to  simplify Theorem 3.8 by eliminating all but 2 of the 

cmnbinators.    This is unnecessary for our purposes,  however,  so  long as the 

number of combinator:.»  required  is finite.     An important observation to be made 

at this point is that the construction of A§ detailed in Theorem 3.8 is 

effective;   thus we could program a computer to convert AEs  to LAMBDA  free 

form. 

3.2.2.2:    An Enumeration of D 

In this section it  is demonstrated that the domain of every applicative 

language with the power of the N model contains functions which enumerate the 

domain of that language,   ie,  each such language L with domain D    contains a 

function 

f: N -> DL 

such  that for every  finite expression x in D    there is a number n which 

sattsfiM  (f n)=x.    We precede by Goedelizing the LAMBDA free expressions of 

/ 
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Let £air br  a number pairing  function such  that,   for each  i  and  j  in N,   the 

value of  pair[i, j]  is a unique  number P^,   and  let  left  and  ri£ht be  functions 

recovering the components of a pair;   ie,   for every  i and  j,   left[pair[i,j]]=i 

and right[pair[i,j]]=J.    There are many well known such pairing functions; 

since they are all first order computable functions, we may assume that they 

are expressible  in each of our model languages. 

Let us now suppose that we label the  (finitely many)  primitives of the 

language L as p1. P2.   ...  PB.    Note that we include the combinators K,  I, 0^ 

etc.    in this list so that we can enumerate LAMBDA free expressions only.    We 

now specify the coding details:   for each    LAMBDA free expression x, we define 

the Goedelization ß.[x] as follows: 

glx]  = 

if x is a number then pair[0;x]; 

if x is a primitive  p    then pair[1;j]; 

if x is a combination  (a b) then pair[g[a];g[b] ]; 

The function £ is computable  fVcm the representation of x,  but we cannot in 

general  claim that it is computable from the functional properties of x.    The 

function £ is,   in fact,  a satisfactory choice for the CODE function of the C 

model,  assuming  (as we may) that we are content to deal with LAMBDA free 

expressions of C.    If such a function & could be shown to be computable in, 

for example,  the N model, we would have a direct a Eriori demonstration that 

the languages are expressively equivalent.    We must, however,  be content with 

the expressibllty of a semantic inverse of &:  the function £nu defined such 

that,   for every LAMBDA-free expression *, enu[g[x]]=x.    This apparent 

asymmetry can be explained  by the observation that & is not a function,  in the 

sense of Defn [1.1] which prohibits the mapping of semantically equivalent 

expressions into differing numbers.    The fact that enü may map different 

numbers  into semantically equivalent values  is consistent with its 

finctionality.    We label the expresslbility of ena. as 

Thm 3.9:    Let L be an extension of N with primitives 11,   12 In 

(including combinators K and S).    Then there is a function eniL:N->DL such 

that,   for every LAMBDA  free expression x in DL,  there is a number i such 

that enu[i]"x. 

—ij 
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proof is a straightforward  programming job.    Such a   function  for the 

language N would take the form: 

(LAMBDA(N){(GREATER  (LEFT N)   1) 

((ENU   (LEFT   (RIGHT N))) 

(ENU  (RIGHT  (RIGHT N)))   ) 

((GREATER   (LEFT N)  0) 

((GREATER   (RIGHT N)  n-1)   In 

•   • « 

11)...)) 

(RIGHT N)   ))))) 

where li   is the Uh primitive of N,  and LEFT and  RIGHT are the N 

expressions corresponding to the left and  right  functions above. 

3.,:     E model:  Multiprocessing primitives 

An extension to the N intr-preter which is somewhat more palatable than the 

use of coding primitives is the addition of mechanism for multiprocessing:   the 

quasi-simultaneous evaluation of several  expressions.    We consider here the E 

model,  which is the N model of Chapter 2,  augmented by the primitive operator 

EITHER whose interpretation is as  follows: 

For every choice of expressions a. and b., [3.10] 

E[(EITHER a k)]  = 

if E[i.]  is defined but E[b] is not,  then E[a]; 

if E[tJ  is defined but E[a]  is not,  then E[b]; 

if E[a]  and  E[b] are both defined then one of these values; 

else undefined. 

Note that    we do not specify which of the arguments is returned if both have 

defined  values;    we may  consider that this selection is made by some 

nondeterministic process over which we have no control.     EITHER  is evidently 

computable by dovetailing techniques,  eg by evaluation of E[a] and  E[b]  each 

for  1  step,   then each  for 2 steps,   and so on until one evaluation or the other 

returns a value,    EITHER is not,  however,   functional:   in the case where a and 

/ 

/ 
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b each have defined  values  (and their values differ),   then the value of 

(EITHER ab)  is dependent  on the  representation of a and b. and on  details of 

scheduling of the dovetailed computation. 

The power of the either primitive  is demonstrated by the expressibility of 

WHICHFF in E as follows: 

WHICHFF[I]   = g^O] 

where g-foual  = eitheKhCahg^lUn+l ] 

Note that for i>Jf «.[FF ;i] is undefined and hence for i<.j e^FP.;!]«^.    Thus 

for every number J,   E[ (WHICHFF FF )]=J, 

The presentation of the EITHER primitive in this section is  informal,  based 

largely on its intuitive  relation to the implementation mechanism of 

multiprocessing.    The formalization of    this mechanism is a principal topic of 

the remaining chapters.    The remainder of the present chapter explores the 

impact  of EITHER on the semantics of an applicative language. 

3.1:    The Intuitive Paradox 

The reader has doubtless noticed that fundamental questions raised in the 

first section of this chapter demand a more precise characterizatior, of the 

hitherto vauge notion of  functional completeness.    Specifically, Theorem $,H 

shows  that WHICHFF is not  fine*'      "   over the entirety of aiUL functional 

domain which includes all fir. »r functions.    Thus the basic intuitive 

requirements of  [1.1] are inconsistent with the existence of a functional 

domain F which is arithmetically complete and includes every computable 

function f:F->F.    Two alternatives facing us are the following: 

1)  We can deny that WHICHFF is a computable function.    Indeed,  Theorem 3.4 

may be interpreted as a statement that no computable function defined on 

first order functions has the properties of WHICHFF given in  [3.2].    Our 

intuitive claim that WHICHFF is a computable function is based on the 

incomplete specification of its behavior over the entire functional 

domain:    [3.2] merely defines it over the restricted domain of [FF^. 

tm 
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2) We can revise the notion of a functional domain  F  such that,   for every 

function f. in F there  is a domain of specification  over which the 

behavior of f is defined.     The functional criteria of [1.1] are then 

required  to apply only when the arguments of f are drawn from its domain 

of specification,   S . 

3) We can postulate new elements of the functional domain F corresponding to 

the values returned by otherwise nonfunctional  procedures. 

We reject  the  first choice on the grounds that  it     restricts our consideration 

to those finctions  expressible in the lambda calculus,   giving us no way of 

distinguishing between N and  the  intuitively superior E.     The second choice  is 

rejected after brief consideration  (in a following section) partly because of 

the technical  complications   it entails,   but primarily  because it denies the 

serrantic validity  of  the  interesting class of multivalued expressions.    The 

third choice seems  the roost promising from the po'nt of view of rigorous 

analysis,  but requires a  substantial intuitive  leap whose usefulness must be 

carefully scrutinized.     This project is approached  in subsequent sections. 

3.5:    Multi-valued Semantic  Elements 

The domain D^. of language N was shown,  in Chapter 2,   to have the property that 

every element x of D.. corresponds to exactly one element of a functional 
N 

domr in;  thus each expression x. in D.. has,  intuitively,  exactly one semantic 

value or meaning.       In this chapter it was shown that  this graceful property 

of D    is inconsistent with the expressiblity of the function WHICHFF,  a 

demonstrably computable and  intuitively well behaved  function over a 

particular subset of DN,     Our implementation of WHICHFF,  while functional over 

this restricted  domain S,   behaves poorly when given arguments from DN which 

are not  in S;   furthermore,   this annoying defect is characteristiT of every 

implementation of WHICHFF in a language sufficiently powerful as to be 

arithmetically ccmplete.     The problem is evident when WHICHFF is applied to 

the function FF12:  either  of the values 2 or 3 is consistent with the 

It must be recalled  that  we have postulated a semantic element,  •, 
corresponding  to the  "meaninpless" or nonterminating computation: hence a 
possible  semantic  value   for x  is •. 

tm 
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definition of WHICHFF  [3.3],   and  there  is no  implementation of WHICHFF which 

consistently  returns a single value,  eg 2.  when applied to every x in DN 

semantically equivalent to  FF^.    Thus the evaluation of  (WHICHFF FF,,)  leads 

to  exactly the same underdetermined result as the evaluation of  (EITHER  1   2): 

the E values of each expression might be  1 or 2.  depending on circumstances 

which are irrelevent to the semantics of each expression. 

3.5.1:    Domains of Specification 

One means of avoiding such apparently nondeterministic computations is to 

exclude them from our semantic model,  ie, to deny that  (EITHER 1  2) has any 

semantic value.    Under this restriction, we must carefully exclude from our 

consideration any expression having multiple E values,  either by avoiding the 

use of EITHER and reverting to the well behaved domain D,,,  or by assuring 

ourselves,  at each application of EITHER,  that the result is single valued. 

We may note,  pursuant to the latter program,  that for all expressions a and b, 

E[ (EITHER ä.fe)]  is sin8le valued if 

1) §. is single valued and b is meaningless;  or 

2) b is single valued and a is meaningless; or 

3) a and b are both meaningless; or 

4) a and k are each single valued and their values are semantically 

equivalent. 

So  long as the arguments to EITHER satisfy the above criteria,  EITHER is 

intuitively functional.    For each function f whose definition involves EITHER, 

we may  then carefully define a domain of specification Sf such that for 

arguments ^ ^om S     E[(f x)]  is single valued.    We may,  for example, show 

that our definition of WHICHFF in terms of EITHER is functional over a domain 

of  specification including the functions  {FF^. 

This means of avoiding the semantic difficulties of EITHER may raise certain 

aesthetic objections.    First,  it places on us the considerable burden of 

having to construct domains of specification for each of a large class of 

functions,  and the necessity of showing that each such function is well 

behaved over its particular domain of specification.    Second,  it rules out 

1 m* .   1 ^- 
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consideration of  algorithms   for well behaved  functions which have 

multiply-valued subexpressions.     Consider,   for an example of the latter 

liFiitation,   the function £ defined so that 

ftn] = 5, n=1 

5, n=2 

else undefined. 

Now,  since f[1]=5 and  f[2]=5,   it  is intuitively reasonable  to claim that 

£[either[1;2]]=5;  yet we cannot make such a claim unless we are willing to 

assign some semantic value  to either[1;2]. 

3.5.2:    EITHER and  the Lambda  Calculus 

There is an essential   incongruence between EITHER and the axiomatic basis of 

the Lambda Calculus which  precludes the incorporation of the former as a 

primitive with an associated delta rule.      Recalling that  these axioms define 

an equivalence relation,   =,  on the domain of the language,   incorporation of 

EITHER results in the equivalences: 

(EITHER 1   2)=1 

(EITHER  1   2)=2 

and hence 

1=2 

from which it follows,  by the famous logic of Rüssel,  that  "I am the Pope". 

Clearly the relation between  (EITHER   I   2) and   1  is not equivalence,  but rather 

some  irreversible  reducibility  property.     Any evaluator which can yield  1  as 

the value of   (EITHER  1   2)  cannot be claimed to preserve semar.tic equivalence; 

it merely reduces that expression to one of its several  values .md discards, 

in the process,   information about the other values.     This is  the underlying 

reason why N  (and the Lambda  Calculus) are incapaMe of expressing WHICHFF, 

and is basic to the proof of Theorem 3.^. 

Such a delta axiom is formally  ruled out by the requirement that the 
arguments to  primitives be   in  reduced  form,   thus restricting applications of 
EITHER to cases where both arguments have meaningful  E values. 

^m 
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3.6:     The Power Set Domain 

The natural  extension of a  functional  domain F of  single-valued elements to a 

domain F« of multiply-valued elements involves the  interpretation of F« as the 

power set,  or set of subsets,  of F,    Thus the elements 2 and  3 of F correspond 

to the unit subsets  {2}  and  {3),  respectively, in F»,  while the semantic 

element of F» corresponding  to the value of (EITHER 2  3)  is the subset  {2,3) 

of  F containing both 2 and  3.    The meaningless element  • corresponds to the 

empty  subset 0 of F,  having no value.    Other useful relationships which we 

would like to see in F» include the  following: 

1)' If a"b in F then {ai^'a'^ i" Ft« 

2)   (EITHER (f a)(f k))"(I. (EITHER ä.^)),  or equivalently, the elements 

{f[a]ff[b]} and f[i-,bl] in F« are the same. 

3)The natural  interpretation of either on functions leads to the semantic 

equivalence (EITHER f g)-(LAMBDA(X) (EITHER  (f XKf X))).    This allows us 

to propose,  In symmetry with (2),  that: 

4) ((EITHER £.£) a.)   "   (EITHER  (la)   (ää))- 

5) (EITHER a. •)"&,  where ■ is the element corresponding to the undefined 

computation. 

6) If a corresponds to   {a^...^ 1  in F« and ^ corresponds to  {b^...,^}, 

then (EITHER a. k)  corresponds to  (a^...,**,  b^...,^)   in F*.    In 

general,  EITHER of multivalued elements corresponds to the union of the 

respective elements of F1. 

3,7:    Interpretation of F* 

The semantic model being developed  in this chapter demands a certain amount of 

intuitive realignment on the part of the reader.    The attractive  feature of F* 

as a semantic domain is that it allows the preservation of a notion of 

semantic equivalence,  without cost in terms of expressibility of certain 

functions.    Its major disadvantage,  at least from an intuitive standpoint,  is 

that it requires that we postulate certain abstract  semantic elements which 

mi  - -     ^——^—^ 
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are intangible  in practice  — if the expression x. has multiple values,  say 2 

and  3,   then we have  no way  of discerning from the value "3" typed by our E 

interpreter that "2"   is also a value of x.    We could,  of course,  build an 

interpreter which would enumerate  the values of x. by dovetailing computations 

at each EITHER juncture.    However,   as x might have infinitely many values, 

this procers may never terminate;   worse yet,  even for an x with finitely many 

values we cannot tell,   in general,  when all of the values have  been typed. 

There are,  however,   situations where this ambiguity  is unimportant.    We may 

know,   for example,   that x is single valued,   in spite of the dual  values of a 

subexpression £ of x..    Alternatively, we may  recognise that  x has many values, 

but be willing to settle for any one of them. 

3.8:    Computable elements of F* 

If we have a procedure for identifying the computable elements of a single 

valued domain F,  we can characterize the computable elements of the power set 

domain F* as those elements of F* which are effectively enumerable sets of 

computable elements of F.    Given an expression X we c i enumerate the 

components of the F* element representing X; one met-ns of doing so is provided 

in Chapter 6.    Furthermore,  given an expression G for a function which 

enumerates a set S of elements of F, we can construct an expression whose 

representative F* element  is S;   take for example the expression 

((Y  (LAMBDA(H)(LAMBDA(X)(FITHE,n  (G  X) (H   (PLUS   1   X))))))  0) 

where Y is the fixed point operator  (LAMBDA(F)((LAMBDA(G)(F   (G 

G)))(LAMBDA(G)(F   (G G))))).    This expression reduces to an expression of the 

form 

(EITHER (G 0) 

(EITHER  (G   1) 

(EITHER   (G 2) 

(EITHER   (G  3)     )))) 

and  its corresponding element  of F* is exactly the range of G. 

M 
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We may  use as our   action G in the above  expression an  enumerator ENU of the 

entire domain F, constructed by the  techniques of section  3.2.1.2;    this 

expression,   TOP,  corresponds  to the semantic element of F* which is the set F 

itself. 

3.9:    Summary 

This chapter raises the question of the expressibility of a particular 

function,  HHICHFF.    This function is inexpressible in the lambda calculus,  and 

intuitively it requires a mechanism for multiprocessing for its implementation 

in spite of  its applicative  — hence time independent — nature.    Two 

alternative extensions of the N interpreter are proposed,   each of which 

renders WHICHFF expressible: 

1) Prinitives can be added to N which allow coding and decoding of arbitrary 

expressions into and from numbers.    This mechanism allows programs to 

access the representation of functions,  and it is argued that such a 

CODE/DECODE facility exv.ends any arithmetically complete  language to 

ftnctional completeness.    Yet the use of this mechanism is awkward:    the 

specific implementation of WHICHFF,   for example,  requires coding an 

interpreter which simulates the necessary multiprocess^.    Moreover the 

semantic ramifications of CODE are drastic,  involving abandonment of much 

of the applicative structure of any language in which it  is embedded. 

2) A primitive,  EITHER,  can be added to N to implement multiprocessing, 

EITHER renders WHICHFF easily expressible, and it may be justified 

semantically in an applicative  language. 

In connection with (1),   it is noted that although the new primitive CODE is 

radically nonfunctional,  the inverse operation of DECODE  (which maps codings 

into the ftnctions which they represent)  is acceptable as an element of our 

finctional domain.    A conbinatory proof shows that such decoding functions 

are,   in fact,  expressible  in the unmodified N language;  hence we can write in 

the lambda calculi functions which enumerate the entire semantic domain of 

these calculi. 

/ 
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The introduction of EITHER  or equivalent mechanism requires that we modify the 

structure of the semantic  domain and its relation to expressions of a 

language.    In particular,   it seems most natural to associate with each 

expression a set of abstract values,   rather than a unique single value.    We 

thus move  from the domain F of single values to the domain F* whose elements 

are enumerable subsets of the elements of F; we term F* the power set domain. 

The presentation of EITHER in this chapter  is  informal  and relies heavily on 

implementational notions such as multiprocessing.    The following chapters 

formalize    the mechanism in terms of systems of conversion rules,  based on the 

lambda  calculus;  this process both Justifies and refines the rough 

implementation model sketched here. 

tm 
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Chapter H: 

Theories of EITHER-conversion 

While the implementation and  semantic considerations of the previous chapter 

provide a strong  intuitive  basis   for the  interpretation of EITHER,  the  further 

development of  this new mechanism requires something more concrete. 

Specifically,  the incorporation of EITHER  int3 a language E involves syntactic 

manipulations of expressions   in E,   and hence necessitates a formalism which 

distinguishes those syntactic manipulations which are  semantically valid  from 

those which are not.    The relationships developed  in the  last  chapter are 

analogous to the convention that  "(PLUS 2  3)" represents the sum of 2 and  3. 

without a corresponding mechanism for associating this expression with the 

expression "5", 

This chapter begins the project  of developing formalisms,   i.e.  conversion 

axioms,   for the syntactic manipulation of expressions involving EITHER. 

Several  theories  (i.e.,  systems  of axioms) are presented in this and 

subsequent chapters;    each is based on the beta-delta    calculus, with 

additional axioms  for manipulation of the new EITHER construct.    The 

distinction between these theories stems  from an issue of evaluation order, 

discussed  in a following section,  and  reflects alternative interpretations of 

certain expressions involving EITHER, 

A  principal difference between the axiom system presented here and those of 

the lambda calculus is the introduction of a new asymmetry,  In the form of an 

ordering relation >, between expressions of E,    We have seen in previous 

sections that it is futile to require that E interpretation preserve an 

equivalence relation;    such a requirement was shown to lead to an 

inconsistency  in any  language  capable of expressing WHICHFF,   since  (WHICHFF 

FF    )"1 and   (WHICHFF FF,?)'^ together imply that   1*2.     The asymmetry of >, 

hovjver,   allows  the relations   (WHICHFF FF12)>1 and  (WHICHFF FF12)>2 to hold 

without compromising the semantic relation between 1 and  2.    We view the 

relation > as designating EITHER-reducibility,  and may interpret x>y 

informally to mean that the values of y are among the possible values of x. 

No attempt is made to incorporate eta conversion into the systems presented 
here,   although we expect  that no new difficulties would arise in doing so. 
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We  shall use  x»y  to mean that  both x»y and y>x. 

It   is important to distinguish between the  relation > and  the  "reducible to" 

relation,  ->,  of the lambda  calculus.     If the expression X is  reducible to the 

expression Y by means of conventional lambda calculus axioms,   then it will 

follow that X^Y and Y>X;    the reverse,  however,  is not true.     The semantic 

interpretation of X^Y is that every value of Y is also a value of X; i.e., the 

element of F* corresponding  to Y is a subset ol  the element corresponding to 

X. 

4.1:    Prelininary Definitions 

The terminology of this section is adapted  from standard  usage in the lambda 

calculus,  and appears e.g in Curry[12]. 

The relation > defined  in each of the axiom systems presented here is a 

monotone relation,  i.e.   it has  the following properties: 

Reflexivity:   For every X,  X>X. 

Transitivity:   If X>Y and Y>Z,  then X»Z. 

Monotonicity:   If X->Y and B is the result of substituting X for an occurrence 

of Y in expression A,  then B>A.    X for an occurrence of Y,  then B>A. 

The above  properties are assumed to be axioms of each system. 

Certain of the axioms to be presented lead to a distinction between the 

operations of contraction and abstraction;   for example,   the derivation of 

S[A;x;M]1  from  ((LAMBDA(x)M)A),  justified by the beta axiom of the lambda 

calculus, may be termed a beta-contraction.    The inverse operation of 

converting S[A;x;M] to ((LAMBDä^X)M)A) may be termed a beta-abstraction.    An 

expression which is a candidate for contraction is called a redex;  thus 

( (LAMBDA(x)M)A)  is a beta-redex in the lambda calculus.    The result of 

perfonning a contraction on a redex X is termed the contractum of X. 

An expression in a particular calculus is in normal form if i*" contains no 

Recall that S is the substitution operation of the lambda calculus,  Defn 
[2.6]. 

i 
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redex  applicable to that calculus.     We say further that  the expression X  is  in 

beta-normal  fi^tn if X contains  no beta-redex,   and similarly   for the delta,   », 

and  E redexes to  be defined  presently.    The statement that  X is in normal 

form,   without  further qualification,  may  be taken to mean  that  X contains no 

beta-,  delta-,   •-,, or E-redexes. 

We  shall often use the notation X{Y}   to designate an expression X containing a 

particular instance of a subexpression Y;    having identified an expression 

with the notation X{Y},    we shall then use an expression of the form X{Z}   to 

denote the result  of replacing  Y in X{Y}   by the expression Z.     In this 

notation,   the monotonicity of  > is the  implication of X{Y}>X{Z}   by Y>Z. 

A  relationship of the  form A>B is in general derived through a  series of steps 

A1>A2,  A2>A3,  where each A^A^   involves the substitution of an expression Y' 

in Ai  for an occurrence of an  expression Y>Y'.    The monotonicity of » 

justifies each such substitution,   and the  transitivity assures  that the 

validity of the entire series  follows from the validity of the individual 

steps.    We shall use the terminology 

Defn  4.1:    A reduction step in A  from  X to Y,   for expressions  X and  Y and a 

particular axiom system A,  is a proof that X>Y by a single application of 

an axiom of A. 

Defn 4,2:    A reduction sequence  from X    to X    in system A is a series 

X0>X1>-,*>Xn such that  each Xi>Xi+l   is a eduction step  in  A. 

4,2:     The Either-R Theories 

The first axiom,  common to  each of the systems presented,   is taken directly 

from  the lambda calculus: 

Axiom aloha:   (Renaming)  Let E be an expression of thj form  (LAMBDA(X)A) where 

X is any variable and A is an expression, and let Y be any variable not 

occurring  free in A.     Then E-(LAMBDA(Y)S[Y1X;A]). 
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We  say   that expressions  A and  B are congruent   If  A can be  converted  to D  by 

alpha conversion alone.    Congruence  is  thus  reflexive, symmetric  and 

transitive,  and  to  simplify subsequent  proofs we shall often allow ourselves 

to  treat congruent expressions as  identical. 

The next  axiom is a restricted form of the beta axiom of the lambda calculus, 

allowing beta conversion only on a beta-redex whose argument is in normal 

form: 

Axion beta-R;   (lambda conversion) Let E be an expression of the  form 

((LAMBDA(a.)k)£.) where £ is in normal form.    Then E-E', where E' is the 

contractura S[s.;i,;li] of E. 

The followir« axiom provides a paradigm for delta-conversion,  the application 

of  primitive  ftrctions to arguments in normal  form.    A particular calculus 

will have a family of delta rules,  specifying the behavior of each primitive 

-- e.g.   the delta rule for t>e primitive PLUS asserting the equivalence of 

(PLUS n m) to n+m for all integers n and m.    Of interest here  is the general 

form of  such rules: 

Axiom delta:  Let E be an expression of the form (A B) where A is a primitive 

faction symbol and B is a normal form expression containing no free 

variables.    Then E-E',  where E' is the contractum of E derived from B by 

the (here tnspecified) rules associated with A. 

We may  term such an expression E a deiia-redex.  and the conversion of E to E' 

is a ^iM-Sfintrastlon.    Since the relation between E and E' is equivalence, 

the axiom provides also for the delta-abstraction of E' to E. 

We note that axioms alpha,  beta-R,   and delta define a lambda calculus under 

the equivalence relation .;  no use has been made of the    asymmetric relation 

We shall term an expression of the form (EITHER a1 a2), where a1 and a2 are 

arbitrary expressions,  an E-redex.    We treat the E-redex as a new syntactic 

construct,  rather than attempting to classify EITHER as an added primitive 

f met ion whose operation is specified by delta rules.    In particular, we 

regard  the restriction that arguments of primitive functions be in normal for 

tm 
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as unacceptable  to  the process of  EITHER-conversion 

Axiom epsllon:   (EITHER-contraction):   If E is an expression of the  form  (EITHER 

a1  a2)  where a1 and a2 are expressions,   then E^a. and  E>a?. 

Axiom mu:   For every expression E,   E«(EITHER E E). 

Axiom rho: (EITHER-distribution) If E is an expression of the form (f (EITHER 

a b)), where f, a, and b are arbitary expressions, then E-E' where E' is 

the expression  (EITHER (f a)(f b)). 

2 
The conversion of the redex  (EITHER a    a   )  to one of the expressions a    or a 

will be termed an E-contraction.    The conversion of an expression E to (EITHER 

E E) will be called an E-abstractlon. 

4.2.1:    Properties of Either Theories 

The elementary  relationships established  in this section hold  for subequent 

theories as well as  for Either-R.     In addition to their usefulness in  proofs, 

they  provide a preliminary reassurance that  the Either-R axioms are consistent 

with the intuitive  semantics of EITHER. 

Thm 4.3:    X^Y if and only if,  for all Z, 

Y>Z  => X>Z 

Proof;  only if;   by the transitivity  of >. 

if:   Let Z be Y;  then Y^Y by the reflexivity of >, hence X>Y by above 

hypothesis. 

The above  theorem is consistent with the intuitive notion that  X>Y means 

values derivable  from Y are also derivable from X. 

Axiom mu  justifies the trivial  abstraction of an expression E to the 

expression  (EITHER E E);    The following theorem shows that nontrivial  EITHER 

expressions may  be abstracted: 
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Ihm 1.4:     Let X,   A,   and B be expressions  such  that  X^A and X^B,     Then 

X>( EITHER A B). 

Proof;   By  Axiom mu,  XXEITHER X X). 

But since X*A and  X.>B,  (EITHER X  X)>(EITHER A B) by the monotonicity of 

>.     Hence X*(EITHER A B). 

We may apply this theorem,   for example,  to the expression A given by 

A= ((LAMBDA(X)(PLUS  X 3))(PLUS   1  2)) 

By performing single beta and delta contractions,  repectively, on A we dedvcc- 

the relations 

AXPLUS   (PLUS   1   2)  3) 

A>((LAMBDA(X)(PLUS  X 3))  3) 

Application of Thm U.4 yields the result 

AX EITHER  (PLUS  (PLUS   1   2)   3)((LAMBDA(X(PLUS X 3))  3)) 

This demonstrates that the Either-R the ry allows EITHL.<-free expressions 

(such as A above) to be inverted to expressions containing EITHER. 

Thm 4,5:    X«Y if and only if for all Z, X>Z<=>Y>Z. 

proof;  is by two applications of M.3. 

Thm 4.6:    For all f,  g,  and a, 

((EITHER f g) a)>(EITHER  (f a)(g a)) 

oroof:   By Axiom epsilon,   ((EITHER f g) a)Xf a) and  ((EITHER f g) a)Xg a); 

hence,   by Thm U.i»,   ((EITHER f g)  a)>(EITHER  (f a)(g a)). 

The intuitive arguments of the last chapter suggest that the above result 

could be strengthened to full equivalence  (i.e.,  •), and this more powerful 

result may  in fact be a theorem in our Either theories;  however we have not 

pursued this equivalence since it is irrelevent to the subsequent proofs. 

tm 
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4.2.2:     EITHER and  Evaluation Order 

Chapter 2 notes  the distinction between normal and applicative order 

evaluation,   characteristic respectively of the N and  T interpreters. 

Applicative  order evaluation,   in which argutnerts to a function are  evaluated 

prior to  the application of the function,   is shown in that chapter to  lead to 

the inexpressiblity  of certain functions which ignore their arguments.    For 

axample,   the applicative  order evaluation of the expression 

((LAMBDA(X)3)  A) 

does nr.  terminate if the value of A is undefined,  whereas the normal order 

evaluation of that expression yields the value 3. 

The restricted  conversion of the beta-R axiom  is similar to applicative order 

evaluation — in each case,   the argument to a  function must be avaluated 

(reduced   to  normal   form)   before the application of the  function  (beta 

conversion).     The only  distinction between be^-a-R conversion and the 

applicative  order of the T interpreter is  the degree of evaluation required; 

while Either-R requires that arguments bs reduced to normal form,  T requires 

only that they  be reduced to lambda expressions or atoms.    We may thus view 

the restriction on beta conversion as a more serious constraint than the 

applicative order evaluation of T. 

The motivation for this restriction in the Either-R system is our intuitively 

based demand  that the axiom of EITHER-distribution,   rho, hold.    This axiom is 

in fact  inconsistent with the unrestricted beta conversion of the lambda 

calculus;   consider,   for example,  the expressions I,  Z,  and F defined by 

I  =   (LAMBDA(X)X) 

Z .= (LAMBDA(Y)(LAMBDA(X)X)) 

F .=   (LAMBDA(H)(H  H)) 

Using the axioms of Either-R  (notably  EITHER distribution) in conjunction with 

unr-estricted  beta conversion, we may  deduce that  I=Z as follows:     By Axiom  mu, 

I  =. (EITHER I I) 

and by  (restricted)  beta abstraction on  each of the terms of the E-redex, 

T   =   (EITHFR   (F  I)(F  Z)) 

*M 
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since both  (F I)=.I and   (F  Z)=.I.     Then the axiom of EITHER distribution yields 

I   =. (F  (EITHER I   Z)) 

fran which,   using unrestricted beta conversion  (as the argument is an E-redex 

and  hence not   in normal  form)  we deduce that 

I  =. (((EITHER  I  Z) (EITHER I  Z)) 

whence by EITHER contraction 

I  >  (I Z)  =. Z 

Thus we have derived I>Z;  to show Z>1  (and hence I-Z) we make the deductions 

I  > Z 

(I  Z)  > (Z Z) 

Z > I 

using the monctonicity of > and beta-R abstraction. 

It  follows that,  using unrestricted beta conversion in conjunction with the 

Either-R axioms,  we can prove every pair of expressions equivalent — i.e., 

the system is inconsistent.    We avoid this pitfall in Either-R by means of the 

restriction on beta conversion.    The beta-R restriction is not,  however,  the 

only  solution to  this problem,   and  in Chap^r 7 an alternative axiom system -- 

designated the Fither-K theory — is presented. 

It should be noted at this  point that  the restriction on beta conversion is 

expensive  in terms of expressive power.    It prohibits,  for example,  the 

reduction of the expression 

((IAMBDA(X)3)   ((LAMBDA(Y)(Y  Y) )(LAMBDA(Y)(Y  Y))) 

to the value 3,  since the argument  in that expression has no normal form.    A 

more serious drawback is that  it  interferes with the expressibility of 

recursive  functions since recursion requires,  in the lambda calculus,  the 

application of  fmctions to arguments having no normal  forms.     Chapter 5 is 

devoted  to the mechanism of •-conversion, which mitigate these  limitations 

imposed  by the restricted  beta conversion. 
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4.2.3:     Consistency of  Either-R 

For example,   the set  I=.(lambda(x)x),   I'=.(lambda(x)I).   I "=(lambda(x)I '). 
e tc. 

i 

!  ' 

An extension of  the axiomatic  basis  of the Lambda calculus may  lead  to « 

inconsistencies,   e.g.   ehe equivalence of   1  and  2.    Such equivalences  do not 

hold  in the conventional   lambda calculus;     in particular,   the  first Theorem of 

Church  and  Rosser establishes the consistency of the Lambda Calculus axioms by 

showing  that the proposition X=Y is not  provable for any pair of expressions X 

and  Y having  incongruent normal forms.     We are  thereby assured  that  the 

equivalence relation = establishec' by the  lambda calculus does  not place every 

expression in a single equivalence class,   and thus  that the cardinality of the 

domain of  the Lambda Calculus is greater  than   1.    The existence of infinite 

sets of mutually  incongruent normal  forms    shows  that the domain of the lambda 

calculus is infinite.    Moreover,  an important theorem of Boehm[20]  shows that 

any axiomatic  assertion of the form X=Y,   where X and Y are incongruent  normal 

forms,   leads  to  an inconsistency. 

The theorems of  Church-Rosser and Boehm are,  not surpris ngly,  inapplicable to 

the axiomatic extension presented here.     Furthermore,  they probably cannot be 

augmented  in minor ways to argue the consistency of the present  system,   as the 

uniqueness of  normal  forms,   on which they depend,  has been compromised  by our 

extension. 

Accordingly,  is the purpose of this section to establish that the domain of 

the lambda  calculus is a subset of the domain of the Either-R system,  and that 

the new equivalence relation • is consistent with the relation  = of the  lambda 

calculus.    In particular we wish to show that,  for any two either-free 

expressions X and Y,  X=Y if X-Y.    Proof of this assertion establishes that 

1) The domain of the Either-R system includes the domain of the lambda 

calculus,   hence the new system is nontrivial   (having infinite 

cardinality);  and 

2) The semantic equivalence defined by the Either-R calculus, applied to 

EITHER-free expressions, is a subset of the equivalence of the lambda 

calculus. 

/ 
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It  has  been noted  that  in the Either-R  system  there are expressions X anj  Y 

such  that  X=Y but  for which  X«Y is not  provable — a consequence  of the 

restriction on beta conversion which is  explored  further in  the analysis of 

the R-» system in the  following chapter. 

We precede to the consistency proof,   beginning with with the following 
definition: 

Defn 4.7:    The EITHER-frg? expression X' is an e-residue of the expression X 

if and only if X' nay be derived  frca X by replacing every e-redex 

(EITHER x1 x2)  in X by one of the operands x    or x2. 

Thus the expression X' is an e-residue of X if X' is EITHER-free and X>X' may 

be demonstrated solely by means of EITHER-contraction (axiom epsilon). 

Defn 4.8:    The expression X is unitarv if and only if there exists some 

EITHER-free expression Y such that,   for every e-residue X' of X,  X'=Y (in 

the lambda calculus). 

Thus 

(EITHER  (LAMBDA(X)X)   (LAMBDA(Y)Y)) 

is mitary,  since its e-residues (LAMBDA(X)X) and  (LAMBDA(Y)Y) are congruent. 

We note that EITHER-free expressions are unitary, although unitary expressions 

are not necessarily EITHER-free,  as the above example demonstrates. 

Furthermore,  a unitary expression X may contain subexpressions which are not 

unitary; witness the expression 

( (LAMBDA(X) (DIFFERENCE X  X) MEITHER 2  3)) [4.9] 

whose e-residues are 

((LAMBDA(X)(DIFFERENCE X  X)) 2) 
and 

((LAMBDA(X)(DIFFERENCE X X))  3) 

each of which is convertible  to 0 by the rules of the Either-R system.    Hence 

expression [4.9]  is unitary;    it contains,  however, the subexpression 

(EITHER 2   3) 

klM 
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which has e-residues 2 and  3. which are not equivalent under =.     Hence the 

subexpression is not  unitary. 

The proof of  the consistency of Either-R is based on the observation that, 

while EITHER may  be  introduced  into EITHER-free expressions by 

EITHER-abstraction,   the result   is necessarily unitary.    Moreover,   the axioms 

of Either-R preserve  the unitary nature of expressions;  we will thus argue 

that the result  of an Either-R reduction sequence on an EITHER-free expression 

must be unitary.    We now introduce a relation which orders expressions by the 

interconvertability,  in the lambd.   calculus,  of their e-residues: 

Defn U.10:    For any expressions X and Y we  say that  X encloses Y if,   for every 

e-residue Y' of Y,  there is an e-residue X' of X such that  X'=i' in the 

lambda calculus. 

Observe  that enclosure is reflexive and transitive;    the following lemma 

establishes that it is monotonic: 

Lemma  4,11:    Let Y be a subexpression of X{Y}   and  let Y enclose Z.    Then X{Y} 

encloses X{Z}. 

proof:   Each e-residue of X{Z}  is of the form X'{Z'} where Z' is an e-residue 

of Z;  and  for each e-residue Y' of Y there is a corresponding e-residue 

X'{Y'}   of  X{Y}.    Hence for each e-residue X'{Z'}  of X{Z}  there is an 

e-residue X'{Y'}  of X{Y}  such that Y'=Z';  it follows that X'{Y'}=X'{Z'} 

hence X{Y}  encloses X{Z}. 

Corollary 4.12:     If X{Y)   is unitary and Y encloses  Z,  then X{Z}   is unitary and 

every e-residue of  X Z}   is convertible to an e-residue of X{Y}. 

Lemma  4.13:    Let X>Y be a single reduction step  in Either-R.     Then X encloses 
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proof:   Let Ü be the subexpression of  X which  is replaced by an expression W 

in the reduction step X>Y.    By Lemma 4.11,  we need only to  show that  Ü 

encloses W to establish that  X encloses  Y,    We exhaustively examine the 

possible reduction steps from U to W: 

Case  1:  Alpha conversion on U.    Then U and W are congruent, and  for each 

e-residue W' of W there is a congruent e-residue U' of U. 

)nn Case 2:  beta-R conversion on U.    Let P be a beta-redex of the foi 

( (LAMBDA(X)M{X})M where A is in normal  form,   and  let Q be the contractum 

S[A;X;M{X}] of P.    Then every e-residue    P' of P is of the form 

((LAMBDA(X)M'{X})A) where M'U}  is an e-residue of M{X},  and there is one 

such e-residue P' for every e-residue M' of M.    Each e-residue W' of W is 

of the form M'{A}  and there is one such e-residue W for each e-residue M' 

of M.    For each M' the corresponding e-residues of P and Q are 

((LAMBDA(X)M'{X))A) and M'{A}  respectively, >*iich are interconvertible in 

the lambda calculus by a single beta conversion; hence P encloses Q and Q 

encloses P.    W is either a beta-R contraction or a beta-R abstraction of U, 

hence U encloses W, 

Case 3:  delta-conversion on U.    If either U or W is a delta redex,  then both U 

and W are EITfTCR-free and thus U encloses W, 

Case "•  EITHER contraction.    If Ü is an expression of the form  (EITHER A1 ^ 

clearly U encloses both A    and A«;  each e-residue of W is an e-residue of 

A. or of A«. 

Case 5:  EITHER-abstraction.    Then W is of the form (EITHER ü U),  and each 

e-residue of W is an e-residue U' of U. 

Case 6:  EITHER-distribution.    Let P be an expression of the form 

(EITHER   (F  A)(F B)) 

and  let Q be 

(F   (EITHER A B)) 

The e-residues of P consist of all the expressions of the forms  (F' A') and 

(F' B') where F',  A',  and B' are respectively e-residues of F, A,  and B. 

We note chat the e-residues of Q consist of exactly the same set of 

expressions,   hence P encloses Q and Q encloses P.    Thus for a conversion 
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U>W of the  fonns  P>Q or Q>Pf  U encloses W. 

This completes the proof of Lemma  '4.13, 

We present the obvious generalization of this  result as 

Corollary  '».I'«:     Let X and Y be expressions such that  X>Y in the  Either-R 

system.    Then X encloses Y, 

proof follows directly  from Lemma  4,13 and  the transitivity of the enclosure 

relation. 

This corollary shows that the ordering > of the Either-R system implies 

enclosure;  thus the number of distinct  (under = of the lambda calculus) 

e-residues of an expression X can only be decreased by a reduction step in 

Either-R,    While each  reduction step may  introduce new E-redexes  (by 

FITHER-abstract ion),  the terms of each redex so introduced are necessarily 

interconvertable.    The consistency of the Either-R theories is a special case 

of this corollary: 

Thm 4,15:    Let X and Y be EITHER-free expressions such that X>Y in the 

Either-R theories.     Then X=Y in the lambda calculus. 

Proof; By Corollary 4,14, X encloses Y; since X and Y are each EITHER-free, 

X and Y are respectively e-residues of X and Y, Hence X=Y in the lambda 

calculus. 

The above  theorem establishes that the Either-R theories are consistent in the 

sense that they  introduce no new equivalences between expressions which are 

distinct  in the lambda calculus;  and are hence of infinite cardinality.    It  is 

noteworthy at this point  that the above proof,   specifically Lemma  4,13, 

depends on our  restriction on beta conversion,    when unrestricted beta 

conversion is allowed   (as in the Either-K  theories  presented  in Chapter 7)   it 

is not  true  in general  that every beta-redex X encloses its contractum X',   as 

demonstrated by the beta redex 

/ 
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A=.((LAMBDA(X)(PLUS  X  X))(EITHER  2   3)) 

whose e-residues are each convertible to 2 and  3,  respectively, while the 

contractum of  A 

(PLUS   (EITHER 2  3)(EITHER  2  3)) 

has an e-residue  (PLUS 2 3) which is convertible neither to 2 nor to 3. 

1,3!    Summary 

This chapter defines the ground rules for the axiomatization of Either 

theories and  presents the Either-R theory.    While the usefulness of this 

system is limited due to the restriction placed on beta conversion,  it 

develops much of the mechanism to be used in subsequent chapters. 

The prlncip?-]   distinction to be made  between the Either theories lies in the 

circumstances in which beta-conversion is allowed.    The Either-R Theories, 

which prohibit beta-conversion unless the argument to be substituted is in 

normal  form,  allow the distribution of functions over the terms of an 

EITHERexpression - a relationship which we find intuitively gratifying. 

Unfortunately this restricted  beta-conversion results in a very weak theory, a 

problem to which the next chapter is devoted. 

The Either-R theory presented  in this chapter is shown to be consistent in the 

^ense that X->Y,  where > is the ordering defined by the new axioms,   is not a 

«jtology.    The proof is based on the consistency of the lambda calculus; 

specifically,  it is shown that,  for expressions X and Y which are EITHER-free 

(and thus admissible syntactically in the lambda calculus)  X^Y implies the 

interconvertability of X and Y.    This general technique will be followed in 

subsequent consistency proofs as well. 

i —'— 
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Chapter 5: 

•-Conversion 

It was noted  in the previous chapter that the restricted lambda conversion of 

the beta-P axiom,   i.e.   the requirement that the argument of a beta-redex be in 

normal  form before the contraction of that  redex,  severely limits the 

expressive  power of languages based on the Either-R theory.    In particular, 

the inc-pressibiuty of recursive functions constitutes an intolerable 

restriction since it renders such languages functionally incomplete. 

The mechanism of «-conversion,  to be introduced in the present chapter, 

ameliorates this limitation by extending the ordering relation > in a way 

which is consistent with its  function in the Either-R theory.    Although 

•-conversion and EITHER reduction are in an important sense complementary 

operations,   their respective mechanics may be dealt with separately;    thus for 

the purposes of this chapter we temporarily disregard  the axioms of EITHER 

conversion.    In Chapter 6 we combine the two mechanisms. 

The semantic  interpretation of > suggested by the Either-R theory is one of 

inclusion cjf values;   it was noted that X»Y signifies,  in general,  that each 

value of Y is also a value of X,    The corresponding relation in the semantic 

domain F* is set theoretic inclusion.    Thus if x and y are the semantic 

elements of P« corresponding to X and Y,  respectively, then X>Y implies that y 

is a subset of x.    Consistent with the semantic notions of Chapter 3,  the 

expression (EITHER X Y)  corresponds in P» to the union of the elements x and 

y.    It was further suggested that the undefined computation corresponds,  in 

P«,  to the empty set — i.e.,  it has no values whatsoever. 

This chapter develops the syntactic analog of the empty set in P». 

Specifically,  the new syntactic element  • is introduced as the canonical 

normal forai representation of the undefined computation.    The interpretation 

of > as set theoretic inclusion in F* suggests that,  for everv expression X, 

X^  (since every set has the empty subset).    It would seem,  then,  that the 

consummation of the semantics of EITHER reduction requires that  its syntactic 

mechanism reflect  this aspect of the structure of F^ 

I 
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5.1:    The R-*  Theories 

We now focus our attention on «-conversion and its relation to the restricted 

beta conversion. To this end we consider the R-« system whose axioms include 

alpha,  beta-R,  and delta discussed previously, in addition to the following: 

Axiom sigma:   («-contraction):   For every expression E,   E^«. 

Thus « is an expression in the R-« system which is lower, in the sense of >, 

than every other expression. While every expression is reducible to «, « is 

itself only reducible to « (as • is not a beta- or delta-redex, and contains 

no variablss). 

Defh 5.1:    An expression of the form (• A),  where A is an arbitrary 

expression,  is called a JL-red£2L. 

Consistent vith our  previously defined notion of normal forms, we shall 

henceforth require an expression X to contain no «-redexes if it is in normal 

form.    Noting that the only conversion which may be performed on a «-redex 

without resulting in another «-redex is its replacement by «, we shall say 

that the contractum of a  «-redex is •. 

5,1.1:    Significance of normal forms 

The restricted  lambda conversion allowed by the beta-R axiom bears a curious 

resemblance to the lambda-I calculi of Church[1].    In these systems.  Church 

specifically prohibits expressions of the form (LAMBDA(X)M) unless the 

variable X appears  free in the body M;  thus the lambda-I systems exclude,  in 

general,   fmctions which ignore their arguments.    A principal consequence of 

this restriction is the fact that,   for expression X to have a normal  form, 

every subexpression of  X must have a normal  form.    We note, with passing 

interest,   that the normal   form restriction of beta-R allows us to derive any 

normal fonn in the lambda-I calculus which is possible using unrestricted beta 

conversion;    this follows  Vram the observation that in the lambda-I system we 

can always reduce the argument in a beta-redex to normal form before 

contracting the redex. 

^Li 
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Church's preference  for the  lambda-I over the unrestricted  "lambda-K"1 

theories stems   from  the elusive nature of those expressions having no normal 

forms.    The theorem of Boehm assures us  that  exprer     ons having inoongruent 

normal  forms are semantically distinct,  and  the theorems of Church-Rosser 

guarantee that equivalences between expressions having normal forms are 

decidable.    The semantics  of normal  forms is consequently uncomplicatPH: 

every pair of semantically equivalent normal  form expressions is provably 

equivalent,  and  for every pair of incongruent normal  forms we can find a 

context  in which they produce different values. 

The admission of  expressions having no normal  forms compromises this situation 

severely.    The requirement that a semantic equivalence relation be 

extenslonal.   i.e.   that equivalent expressions produce equivalent values in 

identical  contexts,   leads  to a distinction between semantic equivalence and 

the equivalence of  interconvertability under the lambda calculus.    Scott[22], 

for example,  demonstrates an infinite sequence Y  ,  Y^   ...    of fixed  point 

operators which are not convertible to one another despite the fact that they 

produce the same values when embedded in identical contexts.    The problem Oi" 

constructing a functional  domain for the lambda calculus is  fundamentally 

equivalent to the definition of an extenslonal relation of semantic equialence 

over the expressions of that calculus,  a project whose recent success is due 

to Scott.    The technique  used by Scott[5,6,22]  involves the notion of 

successively better approximations to  the abstract  semantic  element 

represented by an expression X,  so that the semantic element associated with X 

becomes the limit of this sequence of approximations.    In the Scott model,  a 

function f approximates every extension f of  f';    more generally,  f' 

approximates  f if and only if for every z,   f'[z]  approximates  f[z].     This 

notion of approximation seems essential to the interpretation of domain 

elements as  functions,   largely because the theories of functions with which we 
2 

are familiar employ type  restrictions ruling out self-application. 

Church[1]  and  Curry[12]    refer to the unrestricted conversions of the 
conventional   lambda  calculus as  lambda-K conversion,  presumably because of th 
admissibility    of  the combinator K=(LAMBDA(X)(LAMBDA(Y)X)) in these systems. 
K is excluded  from  the restricted Tambda-I systems by the non-occurence of tn 
bound variable Y in the body of   (LAMBDA(Y)X). 
2 In.particular,   (LAMBDAU) (X X)) is difficult  to interpret as a function  in 
the usual set-theoretic way.    Hindley[21]  speculates that a theory of 
functions based on combinatory  logic,   rather than set theory, mi^ht 
consistently allow self-application;    while awaiting further developments we 
remain pessimistic. 
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The mechanism of  *-conversion presented  in this  chapter is  reminiscent of the 

Scott construction.    Specifically, we introduce means by which the various 

approximations of an abstract semantic element  can be  represented as 

expressions  in the  language itself,   and  provide  for the syntactic conversion 

of an element X to an approximation X' of X.     We have thus come to view 

•-conversion as a syntactic analog of the Scott construction  in which 

approximations are expressed in the domain of the language rather than in the 

abstract  semantic domain. 

The addition of •-conversion to the  lambda calculus leads to a multiplicity of 

normal  forms  for every expression,    tie shall see,  for example,  that the Y 

operator 

Y=.(LAMBDA(F)((LAMBDA(H/(F(H H))) (LAMBDA(H) (F(H  H))))) 

which has no normal  form in the conventional  lambda calculus, has infinitely 

many normal forms 

i 

(LAMBDA(F)(F   M) 

(LAMBDA(F)(F  (F  •))) 

(LAMBDA(F)(F   (F   (F  •)))) 

when •-conversion is adi.Itted.    Each of these normal forms may be interpreted 

as ar approximation to th-> Y optrator, and in any context where Y gives a 

normal  form value,  one of the above normal forms of Y will give an identical 

value.    Since the semantic element associated with each of these normal forms 

is clear (in the sense that normal forms are semantically distinct) we retain 

something of the semantic simplicity of the lambda-I calculus.    The semantic 

value of a given expression is simply the set of normal form values of that 

expression,  and expressions X and Y are semantically equivalent if and only if 

they have identical  sets of normal forms. 

One of the motivaticns for •-conversion is to enable us to retain the power of 

the unrestricted (lainbda-K) calculus while restricting beta conversion. It is 

intuitively reasonable to expect that one car always find a sufficiently close 

approximation to the argument of a lambda expression that the restriction on 

^AJ 
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beta conversion becomes unimportant where «-conversion is allowed, and much of 

the remainder of this chapter is devoted to the proof that this is in fact the 

case. 

5.1.2:    Theorem on Normal Forms 

The main result of this section sheds  light on the ordering  (under » of the 

normal  forms derivable in R-» from an expression A.    We begin with the 

following definition,  adapted  from Curry[12]: 

Defn 5.2:    Let P be a redex and Q be a subexpression in an expression B, and 

let B' be the result of replacing P by its contt-actum P' in B.    We define 

the residuals of fi wit^h respect to P as subexpressions of B' designated 

as follows: 

Case  1:  P and Q are the 3ame redex in B.    Then Q has no residual with 

respect to P. 

Case 2:  P and Q are non-overlapping subexpressions of B.    Then the 

residual Q' of Q 1". that subexpression in B' which is homologous1  to Q 

in B. 

Case 3:  P is a subexpression of Q.    Then the residual of Q in B' is the 

expression Q' which  18   homologous to Q in B.    We note that the 

occurrence of P in Q has been replaced by P' to make Q'. 

Case 14: P is a beta-rulex ((LAMBDA(X)M)A), and Q is a subexpression of A. 

Then P' is S[A;X;M] and contains n instances of A corresponding to the 

n fV-ee occurrences of the variable X in M; let these instances of A be 

identified as A1 ... /)n. Each Ai contains an instance Qi of the redex 

Q; these n expressions (^ ... Qn are the n residuals of Q in B'. Note 

that n may be zero, in which case we term the contraction of P a 

cancellation and Q has no residuals. 

homologous subexpressions occupy the same relative position in their 
containing expressions;   thus A in  ((X  (W A)  Z)  Y)  is homologous to B in  ((P  (Q 
B)  R)  S)  independently of the structure of the subexpressions X.   W.  Z.   Y    P 
W,   n,   and S. >»»»'» 

_*ij 
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Case 5:   P is a beta-redex   ((LAMBDA(X)M)A)  and  Q is a subexpression of M. 

Then P' is S[A;X;M]  and  the  residual  Q' of Q is the subexpression of 

P' which is homologous to Q in M. 

Case 6:   P is not a beta-redex,  and Q is a subexpression of P.    Then Q has 

no residual in B'. 

Infonnally, a residual of an expression Q is an image of Q after a 

contraction.    Consider,   for example,  the residuals of the subexpression  (PLUS 

3 4)  in the beta-redex 

((LAMBDA(X) (PLUS  X X))(PLUS  3  »0) [5.33 

whose contractum is the expression 

(PLUS  (PLUS 3  «»HPLUS 3  4)) 

We note that the two residuals of the subexpression (PLUS 3 «0 of oxpression 

[5.3] are the occurences of  (PLUS 3  '») In the contractum.    Contraction in the 

delta redex  (PLUS 3 'O in expression [5.33 yields the residual 

('LAMBDA(X)(PLUS X X)) 7) 

We shall occasionally  find it useful to speak of the residual of ar expression 

Q after a series of contractions; we may thus refer to Qn as a residal of Q 

with respect to the sequence of contractions B>B1>...>Bn if there is a 

subexpression Q    , of B -1  such that ()    ..  is a residual of Q and Q    is a r n-1 n n-1 •■ 
residual of Q    ..    Thus consecutive beta- and delta-contractions on expression 

[5.33 yield 

(PLUS 7  (PLUS 3 *)) 

which contains a single residual of the subexpression  (PLUS 3 4).    The 

followii« lemma establishes that the residual of a redex is always a redex: 

Lemma S.U:    Let P and Q be redexes in an expression B, and let Q' be a 

residual of Q with respect to P.    Then Q' is a redex. 

proof;  we consider tha following collectively exhaustive cases: 

—ii 
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Case   1:   P and Q are non-overlapping.1    Then Q'  is the same redex as Q. 

Case 2:   P is a subexpression of ü; we consider the cases of the syntax of 
Q: 

a) Q is a beta-redex of the form  ((LAMBDA(X)M A).     If P is a 

subexpression of M, then Q' is the beta-redex  ((LAMBDA(X)M')A),    If 

P is a subexpression of A,  then Q' is the beta-redex 
((LAMBDA(X)M)A'). 

b) Q is a »-redex of the form  (• M);   then P must be a subexpression of 

M, and Q' is the »-redex  (• M'). 

c) Q cannot be a delta-redex, as It contain P. 

Case 3:  Q is a subexpression of P; we consider cases of the syntax of P: 

a) P cannot be a delta-redex, as it   )ontains the redex P. 

b) P cannot be a  »-reden,  as then U would have no residual. 

c) P is a beta-red^x of the form ((LAMBDA(X)M)A) where Q is a 

subexpression of A.    If Q is cancelled by the contraction of P,  then 

Q has no residual;  hence N must contain  1 or more free occurrences 

of X.    Then each residual of Q is the redex Q itself. 

d) P is a beta-redex  ((LAMBDA(X)M)A) where Q is a subexpression of M. 

We examine syntactic cases of Q: 

i) Q is a delta-redex;  then Q' is identical to Q,  since Q may 

contain no free variables  (in particular,  no free occurrence of 
X). 

11) Q is a »-redex  (• M).    Then Q'  is the »-redex  (» M'). 

iii)  Q is a beta-redex  ((LAMBDA(Y)B)C).    Then Q'  is a beta-redex of 

the form  ((LAMBDAdOB')C'), 

other,eXPreSSi0n3 are non-overlapping IT neither is a subexpression of the 
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The converse of  the above   lemma  is not in general  true,   i.e., the residual  F 

of  P may  be a redex  even  though P is not.    Consider for example the expression 

P   =. ( ((LAMBDA(X)(LAMBDA(Y)Y))   3)   «0 

which is not a redex.     Contraction of the beta-redex in P yields the residual 

P' of P given by 

P'  =   ((LAMBDA(Y)Y)  4) 

which is a beta-redex. 

We should like to distinguish between reduction steps in  R-* which are 

contractions and  those which are abstractions;   for this  distinction the 

following notation is convenient: 

Defn 5.5:    A contraction step A»>B is a single reduction step from A to B 

which  is either a beta-,  delta-,  or «-contraction. 

Defn 5.6:    A contraction sequence A^A^.. .>>An from A0 to An is a reduction 

sequence ft-om A    to An containing only alpha-conversions and contraction 

steps.    The length n of such a sequence is the number of contraction 

steps in the sequence. 

We now examine contraction sequences which terminate  in normal  forms, 

beginning with 

Lemma  5.7:    Let X{Y}   be an expression containing a redex  Y,  and  let 

X{Y}>>.,.>>X' be a contraction sequence of length n, where X' i?  in 

normal  form.     Then there is a contraction sequence  X{Y'}>>...>>X',  where 

I'  is the contractum of Y, of n or fewer steps. 

proof is by  induction on n. 

basis n=l:   X' contains no redex,  hence Y must be either contracted or 

cancelled   (by a beta- or »-contraction).     If Y  is contracted then 

X[Y]>>X' by  the null sequence.     If Y is cancelled  then X[Y']>>X' by the 

same  contraction as  X[Y]>>X'. 
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induction:  We assume  the  lemma  to be true  for sequences containing n or 

fewer steps.     Consider the  "irst contraction step X[Y]>>X    in the 

n+1-step sequence X[Y]». ..»X',  and  let ^...Y    be the j residuals of Y 

in X^    If j=0 then the argument in the basis applies,  as Y is either 

contracted or cancelled  in the first step.    If J>0,   j applications of the 

induction hypothesis establish that  X1'>>.,.>>X' in n-1  or fewer steps, 

where X  '  is the result of contracting each Y.   in X,.     But X[Y']>>X   '  in 
' All 

a single step;    hence  X[Y   ]>>X' in n or fewer steps. 

The significance of    emma  5.7  is that the contraction of a redex Y in 

expression X cannot prolong the reduction of X to normal  form.     Informally, we 

expect  that if the subexpression Y plays a significant  role in the evaluation 

of X,  the contraction of Y will shorten the reduction of X;  if,  however,  Y is 

irrelevent to the value of X then Y may be replaced by an arbitrary expression 

with no effect  on the evaluation of X.    This consideration motivates 

Lemma 5.8:    Let B0>>B1>>...>>Bn be a contraction sequence of length n, and let 

Bn be in normal fonn.     Let P be a redex in B  ,  and let  P' be the 

contractum of P.    Then one of the following applies: 

a) There is a contraction sequence B**>...>>B    of n or  fewer steps, where 

B* is the result of substituting • for P in B.; ££ 

b) There is a contraction sequence B'>>...>>B    containing fewer than n 

contraction steps,  where B' is the result of replacing P in B by P', 

proof is by induction on the length n of the contraction sequence Bn»B . 
On 

basis n=1;  chen B0>>Bn  in a single contraction step.    Let Q be the redex 

contracted  in B0>>Bn,     If Q is the same redex as P,  then B' is identical 

to B      and   (b)  is satisfied.    Otherwise  P must have no residual ir. B  , n n» 
since Bn  is  in normal  form and any residual of P is a redex.    Then P must 

be cancelled by a beta- or •-contraction in B >>B  ,  and   (a) is satisfied. 

induction: n>1. Consider the redex Q contracted in the step B >>B . If 

Q is the same redex as P, then (b) is satisfied as before. Otherwise we 

consider the J residuals  P^.-P. of P in B        If j=0 then P is cancelled 

—AJ 
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in the step B^»,,  and   (a)  applies.     If j>0, we  apply   (by  the inductive 

hypothesis) the lemma to the contraction sequence B1>>..,>>Bn, whose 

length is n-1: 

Case  1:  Each residue Pi   in B1  is convertible to •;   i.e.,   (a) applies to 

each Pi.    Then (a) applies to P in B0, as B»»B1« in a single step, 

where B • is the result of replacing each Pi  in B1 by •, 

Case 2:  Some residue Pi of P in B1  is not convertible to •;   i.e.,   (b) 

applies to  Pi.     By Lemma  5.7,  contracting any Pk in B1  cannot prolong 

the sequence B1»...»Bn;     by the induction hypothesis,  there is at 

least one P    whose contraction shortens the sequence.     Then if B^ is 

the result of contracting each Pk in B1,  there is a contraction 

sequence B >>. ..>>B    in fewer than n-1  steps.    Since B'»B^' in a 

single cont-action step  (of the same kind as B^»,)   (b)  is satisfied. 

This completes the proof of Lemma 5.8. 

The followir« theorem establishes a fundamental property of »-conversion. 

Informally it ensures that,   for any two normal form expressions A,« and kf 

which are each derivable  fVom an expression A,  there is an expression A« in 

nonnal  fonn which is an aszer bound of A/ and kj in the sense that A«^» 

and A*»A2«,  and furthermore that  A»A».    This result is then extended to the 

case of an arbitrarily large  finite set of expressions */...*„ each derivable 

from  A.    The existence of normal  form upper bounds of arbitrary sets of 

expressions derivable from A is essentially equivalent to    the proposition 

that A can be approximated,  to arbitrary accuracy, by normal  forms derivable 

from  A. 

Thm 5.9:    Let A,,« and A2« be normal form expressions and let A be any 

expression such that  A^A^ and A»A2«.    Then there exists an expression 

A« in normal form such that  A>>Afc,  A»»A1»,  and A»>>A2«. 

orocf;  Let P[n;m] be the proposition that Lemma 5.9 is true  for every A, 

A •    and A2« such that: 
(i) A»A • in n    steps and A»A2« in n2 steps, where n^n^n; and 

(ii) A contains m or fewer redexes. 

^Li 



5.1.2 -87- 

Then the lemma is true if and only if P[r;m]  is true for all n and m;  we 

precede in the following steps: 

1) For every n,  P[n;0]  is true  since in these cases A contains no redex 

and is consequently in normal form. 

2) For every m,   P[1;m]  is true since in these cases either AsA^ or 

A.=A •;    hence A must be in normal form and  A#=A. 

3) If for some n and m and for all J P[n,J] and P[n+1 ;m] are true, then 

P[n+1;m+1]  is also true. 

proof;    Let A,  A.»,  and A • be expressions such that the premise', of 

P[n+1;m+1] are satisfied;  then A contains m+1 or fewer redexes, and 

n +n >n+1  where n    and n. are the respective  lengths of the sequences 

A>>A "and A>>A •.     We  now choose an innermost redex Y of A,  i.e.  a 

redex Y which contains no other rede :.    Such a redex Y must exist 

unless A is in normal  form, which is ruled out because m+1>0.    Let 

A{Y) denote    A  (which contains Y ?s a subexpression) and let Y' be the 

contractum of the redex Y.    Then by Lemma 5.8,   me of the following 

applies: 

a) A{»}>>A • in ^ or fewer steps, aM A{*)>>A2« in n2 or fewer 

steps. 

b) A{Y'}»A1» in n^ steps and A{Y'}>A2» in n2' steps, where 

n.'+n-'^.+ng. 

If case (a) applies,  then A{»} has fewer than m+1  redexes, and by 

P[n+1,m] the proposition P[n+1,m+1]  is true.    If (b) applies, then 

P[n+1,m+1]  is true  if P[n;J]  is true (where J is the number of redexes 

contained in A{Y'});  by hypothesis,  P[n;j]  is true for all J, hence 

P[n+1;n+1]  is true. 

4)  If for all j P[n;j] and P[n+1 ;0] are true,  then for all i P[n+1,i]  is 

true. 

proof is by  induction on i.    P[n+1;0]  follows directly from (1); 

P[n+1;i+1]  follows from  (3) and P[p+1;i]. 



-88- 5.1.2 

5)  For every i and  j,   P[i;j]  is true, 

proof Is by  Induction on i. 

basis;  from  (2),  P[1,J]  is true  for ail j. 

induction;  Assume that P[i;J] is true  for all J.    By  (1),  P[i+1;0]  is 

true;  hence by  (4),  P[n+1;J] is trur for all J. 

This completes the proof of Theorem 5.9. 

The proof of Theorem 5.9 involves a succession of steps from the expression A 

to  the normal form A*,  such that the result A    of each step retains the 

property that A >>A • and A.>>A2
f,    The moderate complexity of the proof stems 

from the obscure sense in which each step comes "closer" to A»;  by Lemma 5.8, 

each successive step from A. to A.+^ either: 
i)    Reduces  (by one)  the number of redexes, while keeping t ie total number 

of steps in the contraction sequences A >>A1» and A.^Aj* constant; an 

ii)  reduces the total number of contraction steps, while changing 

(increasing or decreasing) the number of redexes by some arbitrary finite 

amount. 

The proof of Theorem 5.9 is essentially a demonstration that A« can always be 

derived from A by such a sequence in finitely many steps. 

The generalization to arbitrary finite sets of normal forme follows naturally: 

Corollary  5.10:    Let A be any expression and It    ^...A, be expressions in 

normal form such that,   for each i,  A»Ai.    Then there exists an 

expression A« in normal form such that A>>A« and,   for each 1,  A»»Ai. 

proof is by induition on J. 

basis;  F'or J>2,   the corollary  is trivially true;    for  1=2,   it is true by 

direct application of Theorem 5.9. 

Induction;  Assume the corollary  is true  for each set A^.Ak containing 

fewer than J expressions.    By Theorem 5.9,  there is an expression ^2« in 

normal form such that  A12»>>A1 and A12»»A2 and A»A12»;  by the induction 

hypothesis, we can now find an upper bound of the set A^»,  A3,...|A 
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which contains j-1 expressions; let A« be the normal i'orm upper bound of 

this latter set. But, since A*»>A 2«, it follows that A*>>A1 and A»^; 

hence  for each Ai,  A»i»>Ai,   and  A»  is the required upper bound. 

The  final  theurem of  this section establishes that,   for the evaluation of any 

particular expression X{Y)   (i.e.,  the  reduction of that  expression to a normal 

form)   there exists a sufficiently good  approxima t-ion   i» of Y such  that  Y« is 

in normal  form: 

Thm 5.11:    Let X{Y}>>. ..>>X« be a contraction sequence of  length n, where X« 

is in normal form.     Then there exists an expression Y»  in normal   form, 

such that Y»Y« and  X{Y»)»X». 

proof  iS by induction on the length n of the contraction sequence.     If n=0, 

then Y is in normal  form and is the required Y»,    If n>0,  we consider the 

residuals ^...Y    of Y in X,.    By the induction hypothesis each Yi can be 

contracted to a normal form Y •,  and the result  X^ of replacing each Xi 

in X1 by Y,» is such that  X1«»X«.    Since for each i Y^Y^,  by Corollary 

5.10 there is a Y» such that Y>>Yt and for each  i  Y»»^.     Then 

X{Y}»X{Y«}»X1». . .>>X*. 

Wc may  speculate further on the structure of the set S of normal forms of an 

expression A.    The above  theorem shows that any finite subset of S has an 

upper bound in S;     Unce  • is in S,  we may claim further that each finite 

subset in S has a lower bound  in S.     It seems likely that  S forms a  lattice 

ordered  by >, which is to say that each finite subset of S has both a least 

upper bound and a greatest  lower bound.    In general  such a  lattice of normal 

forms  can be complete only  for those expressions which have normal  forms in 

the  lambda calculus. 

c 5.1.3:     Relation to the Lambda Caluilus 

In this section we demonstrate a sense in which the R-* theory  is as powerful 

as the  (unrestricted^   lambda  calculus;   in particular, we show that  any 

expression A which has the normal  form A'  in the  lambda calculus has  the same 
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normal  fonn  in R-1. 

Thm 5.12:    Let A0->Ar>. . .->An be a sequence of beta- and  delta-contractions 

in the Lambda calculus  (possibly intermixed with alpha conversions),  and 

let A    be  In normal  form.     Then A0>>An in R-f. 

proof is by induction on n,  the nmber of contractions  in the sequence 

c n 

basis n=0: then A0 and A arc- identical, and the theorem is trivially 
  o     n 

true, 

induction; n>0; we assume  then that A^^ and must show that A0^>An.    We 

precede by showing ttet A0»A1  for each of the possible contraction steps 

A ->A  .    If the contraction step is an alpha- or delta- conversion, then 

the same contraction can be performed in R-« hence AQ»*,! we thus need 

only consider the case where A^^ L> a beta contraction.    Let P be the 

beta-redex contracted in the step A^A^  then P is of the form 

((LAMBDA(X)M{X})  Y) 

and the contractum ?' of P is of the form M{Y),  containing j  instances 

(residuals) Y^.Y, of tne argument Y.    By Theorem 5.11 each ^ may be 

contracted in R-« to a normal form Y^, such that  kf»^ where A/ is 

the result of replacing each Yi by tf.    By Corollary 5.10 there exists 

an upper bou-   f such that Y»Y« and,  for each i,  Y«»^.    By 

contraction of the subexpression Y of A^Y} we have ^{Y]»^*]', since 

Xi is in normal form,  the beta contraction of the redex P* in A0{Y»} 

((LAMBDA(X)Mm)  Y«) 

yields a contractum M{YM  containing j  instances of Y«.     But each 

instance of Y» may be contracted to the corresponding Y^,  hence 

A   {Y«}»A1*.    Then we have  AQUI^AQU»)»*/»^.   a^  A0»An  in R-«. 

The simplest illustration of the use of »-conversio.. to mitigate the beta-R 

restriction involves the evaluation of the expression A gxven by 

A  =. ((LAMBDA(X)3)  B) 
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The theorems  of   this chapter    may provide tools of general  usefulness in tne 

study of  the conventional   lambda calculus.    Suppose,  for example,  that neither 

of  the expressions X and Y have  normal forms in the beta-delta calculus,  and 

that furthermore they are not interconvertible.    We may  still suspect, 

however,  that they are equivalent in an extensional sense.     In particular we 

may wish to prove that if e,ther of Z{X}  or Z{Y) has a normal form in the 

lambda calculus then Z{X}=Z{Y}. 

The mechanism of «-conversion suggests a technique for constructing such 

proofs.    Suppose we could show that in R-» the expressions X and Y have 

identical sets of normal  forms.1    From Theorem 5.11 it then follows that,  for 

a.ny Z and every Z» in normal form, Z{X}»Z» if and only If Z{Y)»Z»,    But 

Theorem 5,12 extends this extensional equivalence to the  lambda calculus; 

hence for any Z and any normal  form Z»,  Z{X)->Z» If and only if Z{Y}->Z» where 

->  denotes lambda calculus reduction.    We deduce from these observations that 

any two expressions which have interconvertible sets of normal forms are 

eqivalent in this important extensional sense. 

We may apply,  for sake of illustration,  the above technique to the example 

cited by Scott2 of the two fixed point operators 

Y^LAMBDACFXZ Z)) 

and 
Y^YQ  (LAMBDA(Y)(LAMBDA(G)(G (Y G))))) 

where Z is the expression 

(LAMBDA(H)(F  (H H))) 

Y    and Y    are not interconvertible in the lambda calculus,  and neither has a 

normal form.    Noting that Y0 contains the single redex  (Z  Z),  the unique 

single contraction which can be .ade reduces Y0 to the expression 

(LAMBMFHF  (Z  Z))) 

1 Soecifically, we must show only that X>X» implies Y>Y»>X« and conversely, 
where Xf and Y* are any normal form expressions. 
2 Scott[22] credits the example to Corrado Boehm, and acknowledges an 
unpublished proof due to David Park that the expressions Y0 and Y, are 
equivalent in the Scott formalism. 
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whlch again contains the single  redex   (Z  Z).     It becomes clear  from the 

sequence of reductions that this  process leads to the conclusion that the 

normal  forms   (in R-^) of Y    are all of the form 

'LAMBDA(F)(F   (F   (F   (F   ...   (F  •)   ...   ))))) 

and  for every natural number n there is a normal form Y0»    whose body is F 

applied  to • n times. 

We now refer to the definition of Y-.    By Theorem 5.11,   for every normal form 

Y ' of Y {Y0} there is a normal form YQ* such that Y1{Y0*}>>Y1'. Hence every 

normal form of Y1 is a normal form of Y^YQ»") for some for some n. But each 

of  the latter is of the form 

(G  (G  (G  (G  ...   (G •)  ...   )))) 

where G stands  for the expression  (LAMBDA(Y) (LAMBDA(G) (Y G))).     But  (G •) 

reduces to   (LAMBDA(G)(G  (• G)))  from which,   by contraction of its «-redex,  we 

arrive  at Y »liCLAMBDACG) (G •)).     Then V
|»2=.(G Y^l) has as  its maximal normal 

form  (LAMBDA(G)(G (G •)));    and  it becomes clear from this informal argument 

that each R-1 normal form Y^    of Y1  is of the form 

(LAMBDA(G)(G   (G  (G  (G  ...   (G •)...))))) 

whose body contains n applications of G,    Thus each normal  form derivable from 

Y in R-# is derivable from Y^  and conversely. 

Now if,   for some X,  X{Y )=X» in the lambda calculus where X» la in normal 

form,   then by Theorem 5.12 X{Y01>X» in R-».    Then by Ti. .-orem 5.11 there is a 

normal  form Y0«n of YQ such  that  X{Y0«n}»X*;    since Y1  has a  normal form 

Y •m>>Y •",  tht . X{Y1)>>X« hence XfY^rX» by the consistency of R-».    An 

entirely symmetric argument shows  that XfY^zX« implies X{Y0}=X#. 

5.3:    Summary 

The mechanism of «-conversion introduced  in this chapter allows expressions to 

be approximated,  to arbitrary accuracy,  by expressions in normal form.     The 

initial  motivation for «-conversion is the mitigation of the  limitations on 

expressive  power imposed by  the  restricted beta-conversion,   but the techniques 

i 



of  this chapter may  be useful generally  in the  lambda calculus. 

The principal  technical  results of the chapter are: 

1) The introduction of • as a canonical  representation of the undefined 

(nonterminating)  computation,  and  the axiom on star conversion asserting 

that,   for every X,   X>»,    This axiom is motivated by the  interpretation of 

> as denoting set theorrtlc  inclusion in F*;   the empty set,   corresponding 

to  the undefined computation •,   is a subset of every element of F*. 

2) Theorem 5.9 and its corollary establish that  for any set A1«...An« of 

normal  forms derivable from an expression A in R-1,  there exists an 

expression A#  In normal form such that  A^A» and A^Ai  for each i<n. 

3) Theorem 5.11 shows that if expression X{Y}  is reducible to Z»,  a normal 

fo-m  in R-»,  then there exists a normal form Yf such that Y>Y* and 

XfY1}«».    Informally this result  assures us that,  for every expression Y 

and every context X{Y},  there is a sufficiently good normal form 

approximation Y» of Y.    The previous result  (2)then guarantees that,  foi 

any  finite set of approximations of Y, wa can find a normal  form Y# 

which may be used in lieu of any member of the set. 

1)  Theorem 5.12 provides the  final tie to the lambda calculus,  by showing 

that every normal form derivable in the lambda calculus is derivable in 

R-». 

The R-» Theory is thus as powerful,   in an Important sense, as the lambda 

calculus with unrestricted beta conversion.    Furthermore,  the R-# Theories 

suggest a natural  test for extensional  equivalence of expressions:  the 

interconvertabillty of normal forms.    This technique LT applicable to the 

lambda  calculus,  and the extensional equivalence of nonconvertlole fixed point 

operators Y- and Y    is used as an illustration. 

The development of •-conversion in Chapter 5 is independent of the EITHER 

reduction of the previous chapter.    The combination of the two mechanisms is 

the project of the next chapter. 
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Chapter 6: 

The Either-R-# Theories 

The desire for a syntactic basis  for a language E,   incorporating the  EITHER 

mechanism informally described in Chapter  3,   has led to the presentation  (in 

Chapter U) of the Either-R theory.     It was noted that the restricted beta 

conversion of Either-R limits the usefulness of thai theory since,   for 

example,   it prohibits the expression of recursive fu^jtions.    The inadequacy 

of  Either-R as a basis for the language  E motivated the development,   in the 

last ch.-pter,  of »-oonversion.    The present chapter brings these efforts to 

fruition in the form of the Either-R-1 svstem, which consistently combines 

»-conversion with EITHER reduction and pt   -ides a satisfactory basis  for a 

language E. 

Specifically, an Either-R-* theory shall consist of th^ following axioms,  each 

of which is presented in a pre/ious chapter: 

alpha  (Ch.  »0  interconvertabllity  (by  renaming) of congruent expressions -- 

e.g.   (LAMBDA(X)X)  •  (LAMBDA(Y)Y); 

b-ta-R  (Ch.  4)  lambda conversion restricted to  redexes whose arguments are 

in normal form — e.g.   ((LAMBDA(X)X)   3)»3; 

various dsl^a axioms  (Ch.  4) specifying the interpretation of primitive 

functions and constants — e.g.,   (PLUS 3 5) • 8; 

eosilon  (Ch,   4)  contraction of E-redexes— e.g.,   (EITHER A B)>B  (Ch.   4); 

niü (Ch.  4),  abstraction of E-redexes — e.g.  E-(EITHER E E); 

rho  (Ch.  M,  distribution of function application over terms of an  x-redex 

— e.g.   (F   (EITHER A B))»  (EITHER  (F  A)(F B)). 

3igma (Ch.  5)  •-contraction -- A>#  for eve.'y expresion A. 

6.1:    Consistency of Either-R-1 

The consistency of Either-R-* may  be established by techniques closely 

analogous to  the Either-R consistency proof.    Recall that the earlier proof 

involved the notion of enclosure,  and culminated in the implication of 

enclosure by > -- i.e., X*Y in Either-R implies X encloses Y.     Extension of 

/ 
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this technique  to  the present case  requires that  the mechanism of 

•-contraction be accounted for;    accordingly, we  extend the notion of 

enclosure by 

Defn  6.1:     X »-encloses Y if,   for each e-residue    Y' of Y,  there exists an 

e-residue X' of X and an expression X» derived from X by «-contraction 

alone,  such  that X»=Y« in the lambda calculus. 

Note that we admit expressions containing the _lement • in the lambda 

calculus,   treating • simply as a free variable.    It  is clear from the above 

definition that «-enclosure is transitive, and that if X encloses Y then X 

•-encloses Y. 

The following Lemma and  its Corollary confirm that •-contraction introducer, no 

new equivalences in the conventional lambda calculus- 

Lemma  6.2:    Let X and Y be •- and EITHER-f-ee expressions, ?nd let X^ by the 

•-contraction of a subexpression U of X.    If X^=Y in the lambda calculus, 

then X=Y. 

proof;  Noting that X^ contains a single •   (the contractum of U),   treating • 

as a variable in the lambda calculus gives us 

X=( (LAMBDA(•)X^)  U) 

by beta conversion.    But X^=Y,  hence 

X=( (LAMBDA(•)Y)   U) 

and as Y is •-free the contractum of this beta-redex is simply Y.    Hence 

X=Y. 

Corollary  6.3:    If X and Y are •- and EITHER-free and X>X^ by a series of 

•-contractions,   then X^=Y in the  lanbda calculus implies X=Y. 

ppoof is by a simple induction on the number of •-contractions in the 

1  Recall Defn ^.T. 
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reduction sequence  from X to X». 

The above  lemma and  its corollary are hardly counterintuitive in light of the 

developments of Chapter 5.    In pa.ticular,  it is clear that any occu.ence of • 

in X» must be cancelled in the derivation of Y from X,  since Y is »-free 

Hence we may replace such occurences by arbitrary expressions, which are'still 

cancelled  in the derivation of Y; the choice of the homologous subexpressions 
of X yields  X=Y. 

The consistency  proof for Either-R-. follows  the  format of the corresponding 

proof for Either-R,   except that the enclosure relation in the latter proof is 

extended to  .-enclosure in the fonner.    The basis of this extension is given 
by 

Lemma 6.4:    Let X*Y be a single reduction step in Either-R-»,    Then X 
•-enclosec Y. 

üroof:  Lemma 4.13 establishes the lemma  for the reductions allowed in 

Either-R;    hence we  need consider only the case of a »-contraction.    Let 

Ü be the contracted subexpression of X.    For each e-residue Y' of Y, 

there is a corresponding e-residue X' of X such that either X' and Y' are 

identical or Y' is the result of the »-contraction of an e-residue U' of 

0 in X'.    Hence X'W by »-contraction,  and X »-encloses Y. 

The following theorem is the Either-R-» analogy of Theorem 4.15: 

Thm 6.5:    Let X and Y be expressions containing no occurrences of EITHER or » 

and let XM in Either-R-».    Then X=Y in the lambda calculus. 

firoof:  By Lemma  6.4 and the transitivity of »-enclosure.  X »-encloses Y 

Since each of the expressions X and Y is EITHER-free.  each expression is 

its own unique e-residue,  and X*X»-Y where X>X» by »-contraction alone. 
By Corollary 6.3,  X=y in the lambda calculus. 

Thus the consistency of Either-R-» follows  from the consistency of the lambda 
calculus. 
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6.2:     Relation of  •  to EITHER 

We have already noted  that the mechanism of »-contraction leads to the 

interpretation of each expression A as the upper bound,   in the sense of >,  of 

a   family of  expressions  derivable from A,    To formalize the relation between 

su^n a family of expressions, we introduce the terminology of 

Defn 6.6:    Expressions X and Y are consistent in a theory T if and only if 

there is an expression Z such that both Z>X and Z>Y in T. 

Then the R-# theories are partitioned by the consistency relation into 

equivalence classes,   of which there are infinitely many  (since there are 

infinitely many mutually incongruent normal forms).    Then the characteristic 

of R-» which is established by Corollary 5.10 is that any finite set of 

consistent expressions in normal form has an upper bound which is also in 

normal form. 

We note that in R-» the > ordering on the set of expressions derivable from an 

expression A is,   in general, noncrivial.    unless A is the element • the upper 

bound of the set.   A,   is distinct from the lower bound •;   furthermore there may 

be infinitely many expressions A^A^...    in the set such that for no j>i  is 

A >A .    This is certainly not the case in the conventional lambda calculus,  in 

which consistency implies interconvertibility and hence equivalence.    What the 

mechanism of  ^-contraction has added to the lambda calculus is a method of 

derivir«  from an expression A an approximation A» to A which is strictly 

weaker in the sense of >.     We may then view the • mechanism as a method of 

introducing new expressions which are weaker than the conventional lambda 

calculus expressions,   as each expression in R-« is derivable from a »-free 

expression. 

In this light we must  regard  the EITHER construct as a mechanism for 

introducing stronger expressions into the lambda calculus.    While R-»  (and for 

that matter the conventional lambda calculus) contain upper bounds only for 

consistent sets of expressions, we can with EITHER represent the upper bounds 

of arbitrary  (enumerable) sets of expressions.1    Observe further that,  for 

1  Or,  equivalently, we may say that  in the Either theories, fiver* set of 
expressions is consistent. 
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arbitrary expressions X and Y,   the expression  (EITHER X Y)   is the least  upper 

bound of  X and  Y since by  Theorem M,   Z»X and Z>Y implies ZXEITHER X Y). 

This suggests that the ordering of Either-R-» expressions by > forms a 

complete lattice. 

6.3:    Evaluators  for E 

As we have noted,   interpreters  for languzges supporting the EITHER construct 

require a slightly different structure from our previous examples:  the 

reducibility of expressions to multiple values suggests that an evaluator for 

E sh.   'd enumerate the values of the input expression.    Accordingly, we 

formt   ute the evaluator as a function E of 2 arguments,   an expression X to be 

evaluated  and a numeric  index  j specifying which value is to be returned.     The 

evaluator is constructed such  that,  for each X and  j,  E[X;J]  is an expression 

X' in normal  form such that X»X' in Either-ri-».    The value of E[X;j]  is,   in 

general,  not defined  for all values of j;    it may be assumed in particular 

that E[X;j] is undefined  for those cases of X and j not represented in the 

algorithm presented informally below.    We again assume the existence of an 

invertable pairing function,  and use here the notation <n;m> to denote that 

natural number which uniquely encodes the ordered pair of natural numbers 

(n.m).    We make the further assumption that for no n and m is <n;m><2. 

E[X;J3  = 

if j=0 then •; 

if X is atomic    and J=1 then X; 

if X is of the form (LAMBDA(Y)M)  then (LAMBDA(Y)E[M;n]); 

if X is of the form (EITHER A B) and j=<1;n> then E[A;n]; 

if X is of thf;  form (EITHER A B) and j=<2;n> then E[B;n]; 

if X is of the  form (A B) and J  =<<m;n>;p> then 

AP?LY[E[A;m];EtB;n];p]; 

where the algorithm for APPLY is given informlly by 

APPLY[F;X;J]  = 

1  Recall that the atomic expressions are  identifiers  (including primitive 
function symbols and variables) and numeric constants. 

i 
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if F is of the form  (LAMBDA(Y)M)  then EtS[X;Y;M];j]; 

if (F X)  is a delta-redex and  j=1  then F[X]; 

else if J=1  then  (F X); 

We note that E[X;j]  is in normal form where  it exists,  and the value E[X;j]  is 

in each case the result  of an Either-R-» contraction sequence on X.    Although 

we don't claim that the values E[X;j] of X are ordered by > for successively 

higher values of  j,   the  index j specifies,  roughly, which of the 

approximations of X is to be returned. 

We may envision implementations of the E interpreter which make use of massive 

parallelism to compute simultaneously the values of (F X)  for many different 

approximations of X;    such use of redundant computation may serve to minimize 

the real time  required to compute an acceptable value for X.    Such an 

implementation follows,  roughly,  the spirit of fast adder circuitry which 

conputes redundantly the high order portion of a sum simultaneously with the 

low order portion,  and then selects the correct high order portion on the 

basis of some intermediate carry.    These implementational issues are largely 

ignored  in the present work, but present some intriguing possibilities for 

future research. 

6.M:    Summary 

The Either-F-# Theory may be used as the semantic basis for a language,  E, 

which solves the specific expressibility problem demonstrated in Chapter 4. 

The evaluation of expressions in E lends itself naturally to the use of 

multiprocessing techniques which tend to minimize the total real time 

necessary to relize an acceptable evaluation of an expression  (F X) by the 

simultaneous application of F to one approximation of X while computing a 

better approximation.    While the implementation details are not pursued here, 

we  feel that current technological developments make this area worthy of 

further study. 
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Chapter 7: 

The Either-K Theories 

The inconsistency of  EITHER distribution  (Axiom rho) with the unrestricted 

beta conversion of the lambda calculus has motivated the restricted beta-R 

conversion of the systems  presented thus  far.    This chapter explores an 

alternative  formulation,   in which EITHER distributivity is sacrificed in order 

to accommodate the conventional  (unrestricted) beta conversion. 

The    Either-K theories  include the axioms alpha,  delta,  epsilon,  mu,  and the 

(unrestricted)  beta axiom of the lambda calculi: 

Axiom beta;   Let E be an expression of the form ( (LAMBDA(a)ö.)2.).    Then E«E', 

where E' is the contractum S[2.;a;i.]. 

Since Either-K preserves the axioms of the lambda calculi, it is clear that 

the equivalence • in Either-K is a proper extension of the lambda calculus 

equivalence =.    In this sense the Either-K calculi are closer to the 

conventional  lambda calculi  than the Either-R-* theories. 

There is,  however    a fundamental sense in which Either-K is a more radical 

departure fVcm tac lambda calculi than is Either-R-».    In the latter theories 

f met ions are ultimately applied only to normal form operands whose semantics 

are those of the lambda calculi.    The ability,  in Either-K, to apply functions 

to multivalued expressions  (such as E-redexes)  requires that we reinterpret 

the semantics of each  function relative to these new elements of its domain. 

7.1:    K-abstraction 

By the axiom beta of the lambda calculus,  the expressions 

M 

and 

((LAMBDA(x)  M)  A) 

are equivalent when A is an arbitrary expression and M contains no free 

S is the lambda calculus substitution function given in Defn 2.6. 
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occurrences of the variable x.     This fact is consistent with the observation 

that the bound variable,  x,  is ignored in the body of the function applied to 

A;  hence the value of the application is  independent of the value of the 

argument A.    Despite the  intuitive satisfaction with which we accept the above 

equivalence,  the presence of functions which ignore their arguments 

complicates the proof of many otherwise straightforward results in the lambda 

calculus.    Indeed,  Church has argued against the inclusion of such functions 

in his theories,   fearing at one time that they led to inconsistencies. 

The task of proving the consistency of the Either-K theories,  to be attacked 

presently,  is likewise complicated by the inclusion of functions which ignore 

their arguments.    The definitions and results of this section provide the 

mechanism for dealing with the formation of such functions in later proofs. 

We begin with 

Defh 7.1:    A K-redex is an expression of the form 

((LAMBDA(x)M)   A) 

where A is any expression and M is an expression not containing free 

occurrences of the variable x. 

2 
Defn 7.2:    A K-abstractlon is a r duction step    consisting of the replacement 

of a subexpression M by a K-redex of the form 

((LAMBDA(x)M)   A) 

where A is any expression and x is a variable not occurring free in M, 

We new wish to show that the K-abstractions in a reduction sequence can be 

postponed to the end of the sequence.    We introduce a term to describe 

reduction sequences whose K-abstractions follow all other reductions: 

Defn 7.3:    A reduction sequence R is K-normal if no K-abstraction in R 

For discussion and historical insight, see Curry[12],  particularly the 
comment at the end of Ch.   3. 
p 

recall Defh 4.1. 
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precedes a reduction step which is not a K-abstraction. 

Thus a reduction sequence X^x^.. ,>Xn is K_nonnal if there is an i, where 

(Kiln,  such that the reductions X »...X.   are not K-abstractions and the 

reductions X >...>X    are only K-abstractions.    We wish to show that,   for every 

reduction sequence X0>...>X  ,   there exists a K-normal reduction sequence  from 

X    to X .    We begin with sequences of 1ingth  1: 

Ihm 7.1*:    Let X.^X »X- be a two-step reduction sequence  from X. to X«,  where 

the reduction step X^X.  is a K-abstractlon and the reduction step X.^X- 

is not a K-abstraction.    Then there is a K-normal reduction sequence from 

X_ to Xp,  oontaining at most one reduction step which is not a 

K-abstraction. 

proof:  Let U be the subexpression of X   which is replaced in the reduction 

step X^X^    Then U is replaced in this step by U',  an expression of the 

form 

((LAMBDA(y)ü)  A) 

where y is a variable not occurring free in U.    We exhaustively examine 

classes of the reduction step X..>X?: 

Case  1:  The reduction step modifies only the subexpression A of U';  let U 

beccme A' in X-.    Tne K-normal sequence from X. to X_ is then the single 

K-abstraction replacing U by 

((LAMBDA(y)U)  A') 

Case 2:  The reduction step modifies only the subexpression U of U'; then U 

becomes W in X        The K-normal sequence from X0 to Xp is then: 

a) Replace U in X0 by W, yielding X0'; 

b) Replace W in X0' by the K-redex 

((LAMBDA(y)W)  A) 

yielding X2. 

Case 3:  The expression U' in X..  is replaced by U by beta reduction.    Then 

X. and Xp are identical expressions, and the enpty reduction sequence 
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yields X2 from XQ, 

Case 4: The reduction step replaces some subexpression V of X, by the 

expression V, where V is not a subexpression of U' and U' is not a 

subexpression of V,    The K-normal sequence from X0 to X2 is then 

a) The replacement of V In Xg by V, yielding X0'; 

b) The replacement of U in X0' by U',  yielding X2. 

Case 5:  The expression U'  is replaced by the expression 

(EITHER U'  U') 

The K-normal sequence from X0 to X2 is then 

a) The replacement of U in X0 by  (EITHER U U), yielding X0'; 

b) The replacement  of  (EITHER ü Ü)  in X0'  by   (EITHER U'  U')  through  two 

consecutive K-abstract ions. 

Case 6:  The expression U' is replaced by the expression 

(EITHER  ((LAMBDA(y^U)  A1)((LAMBDA(y)U)  Ag) 

by Axiom rho.    The K-normal sequence from XQ to X2 is then 

a) The replacement of U in X0 by  (EITHER U U), yielding X0'; 

b) The replacement of  (EITHER U U) in XQ' by 

(EITHER   ((LAMBDA(y)U)   A1)((LAMBDA(y)U)   A2J) 

through  two consecutive K-abstractions. 

Case 7:  The subexpression U'  is replaced by an expression W of the form 

((LAMBDA(z)U)   A) 

derived from U' by alpha conversion.    Then the variable z does not occur 

free in U,  and XQ may be reduced to X2 by a single K-abstract ion. 

Case 8:  Some subexpression V    containing U' is replaced by an expression 

V'.    Then one of the following applies: 
8a) V is derived from V by alpha conversion.    Then we may apply that 

alpha-conversion to X0, yielding X0'f  and follow with the 

K-abstraction from X0'  to Xg. 
8b)  V contains n occurrences of U', where n  is zero or greater.    Then 

there is a reduction of the same type from X0 to X0', where X0    is 

identical to X2 except for the n occurrences of U in X0' corresponding 

to n occurrences of U'  in X2.    Our K-normal sequence from X0 to X2 

^AJ 
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consists of the reduction of X    to XQ' followed by n K-abstractions 

replacing the occurrences of U by U'. 

This list of cases is exhaustive,  completing the proof. 

Theorem T.**  shows  that every  two-step  sequence of reductions  is  equivalent to 

some  K-normal  reduction sequence.     The generalization of this  result  to 

sequences of n reductions is complicated by the fact that the K-normal 

sequence guaranteed  by Theorem T.1* may be of arbitrary  length,   thus  ruling out 

a simple induction on the length n of the reduction sequence. 

Lemma 7.5:    Let R be a reduction sequence from X. to X    containing exactly  1 

reduction step which is not a K-abstraction.    Then there is a K-normal 

reduction sequence from Xn to X . u n 

proof:  by induction on the length n of the reduction sequence R. 

basis:   Trivi  lly true for n<2;  for n=2,  guaranteed by Theorem 7.4. 

induction:    Let X-^X >...>X    be the reduction sequence R.     If the step 

X »X,  is not a K-abstraction,  then R is K-normal;    hence we may assume 

that X >X    is a K-abstraction.    Then a single step of the subsequence 

X,>...>X    is not a K-abstraction;  by the inductive hypothesis,  there is a 
1 n 

K-normal reduction sequence K.Mt.M^». ..MR of which only the reduction 

step X >Y0 nuy be other than a K-abstraction.    But by Theorem 7.1,  there 

is a K-normal sequence X0>Z0>.,.>Y    equivalent to the sequence X-^X^YQ; 

thus the reduction sequence Xn>Z0>...>Yrt>...»X    is K-normal fromX» to X . U u R u n 

Defn 7.6:    The K-index of a reduction sequence R is the number of 

non-K-abstract ion steps in  R which follow the first K-abstraction in R. 

If R contains no K-abstractions,  then the K-index of R is zero. 

Note that the K-index of ? reduction sequence R is zero if and only if R is 

K-normal.    We shall base the induction in the proof of the next  theorem on the 

K-index of  the reduction sequence  to which  it  is applied. 

^AJ 
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Thra 7.7:    Let R be a reduction sequence  from X0 to Xn.     Then there  is a 

K-normal reduction sequence  from X. to Xn, 

proof is by  induction on the K-index of R. 

basis;   If the K-index of  R is zero,   then R is K-normal. 

induction;  The K-index n of  R is greater than zero.    Let X0>...>Xn denote 

R,   and  let X >X        be the  first K-abstraction in R.    Let xj>Xj+i be the 

first reduction step following X >X    1 in R which is not a K-abstraction; 

the existence of such a  j is assured by the K-index of R.    Then the 

subseauence X >X      >...>X >X        of R contains a single step which is not 

a K-abstraction;    by Lemma 7.5 there is a K-normal sequence 

X >Y >...>X    1  from Xi  to X    1.    Then the sequence R' given by 

XQ»,..^^».,.«.  1>. ..Xn has a K-index of n-1.    By the induction 

hypothesis,  there  is a K-normal sequence from X1 to Xn. 

It  follows  from Theorem 7.7 that every reduction sequence may be reordered in 

such a way that every K-abstraction follows every reduction step which is not 

a K-abstraction.    Curry[12] refers  to expressions as fictitious if they appear 

as  the arguments of K-redexes;  hence A is a fictitious subexpression of B if A 

is cancelled in the evaluation of B.    Theorem 7.7 asserts that the 

introduction of fictitious subexpressions can be postponed to the end of a 

reduction sequence.    Consider the following expressions: 

Z  «  (LAMBDA(X)3) 

A  =   ((LAMBDA(H)(K  H))(LAMBDA(H)(K  H)) 

I  =. (LAMBDA(X)X) 

Then the reduction sequence 

3 > (Z A) > (I  'Z A)) 

is not K-normal,  since the K-abstraction 3>vZ A) precedes the beta abstraction 

(Z A)>(I  (Z A)).    We may,  however,  reorder the sequence so that the fictitious 

subexpression A is introduced in the last reduction st«p;  the resulting 

reduction sequence 

3 > (1 3) > (I (z A)) 

is K-normal. 

tm 
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7.2:     Consistency of  Either-K Theories 

It was noted,   following the proof of the consistency of the Either-R theories, 

that the technique used there was inapplicable to the Either-K axioms since 

unrestricted  beta conversion does not preserve the enclosure relation.    We 

avoid  this difficulty in the corresponding proof for the Either-K theories by 

arranging the reduction sequence of an EITHER-free expression so as to ensure 

that arguments in beta contractions are unitary.    Since the Either-K reduction 

sequence of an EITHER-free expression can introduce non-unitary subexpressions 

only through K-abstraction,  the result of the preceding section provides a 

critical step in the present proof. 

We begin by distinguishing expressions containing only unitary subexpressions: 

Defn 7.8:    An expression X is EUEe if every subexpression of X,  including X 

itself,   is unitary. 

Note in particular that every EITHER-free expression is pure.    We now precede 

to the major task of this section, which is the proof that the reductions 

permitted by our axioms preserve purity of expressions.    We begin with the 

case of beta-contractions: 

Lemma 7.9:    Let Y be EITHER-free and let X be a pure beta-redex of the form 

((LAMBDA(y)B)  A) 

such that for each e-residue X' of X. X'=Y. If Z is the result of lambda 

conversion on X (ie, Z Is the result of substituting A for each free y in 

B),  then for every e-residue Z' of Z, Z =Y. 

proof;  Let Z' be an e-resldue of Z.    Then Z' contains zero or more 

occurrences of A^ A2 An where each ^ is an e-rcxaue of A.    By 

the purity of X, A is unitary, hence each ^ is convertible to A,.    Thus 

Z'=Z" whore Z" is the result of lambda conversion on 

((LAMBDA(y)B')  A^ 

where B' is some e-residue of B.    Hence Z"=Y, and Z'=Y. 

*h tm 
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Lemma 7.10:    Let X,   Y,   Z,  and Z' be as in Lemma 7,9,  above.    Then Z is pure. 

proof;   Let U be an arbitrary subexpression of Z, and let W be the 

corresponding subexpression of B.    If W contains no ocvnrrences of y 

which are free with respect to X,  then W and U are identical,  hence Ü is 

unitary by the purity of X.     If W contains such occurrences of y,  then Ü 

is the result of lambda conversion on 

((LAMBDA(y)W)  A) 

and,  by Lemma 7.9,  U is unitary. 

We next  show that beta abstractions preserve purity,  so long as thev are not 

K-abstractions: 

Lemma 7.11:    Let Z be a pure expression containing  1 or more occurrences of 

the subexpression A,    Let W be a beta-redex of the form 

((LAMBDA(Y)B)   A) 

such that the contractum of W is Z.    Then W is pure and,   for every 

e-residue W' of W there exists an e-residue Z' of Z such that W'=Z'. 

ppoof;   Since A is a subexpression of the pure expression Z, A is unitary; 

let the e-residues A,', A2',...Ak' of A each be convertible to A' in the 

lambda calculus.    For each e-residue B' of B there is a corresponding 

e-residue Z' of Z,  such that Z' contains some Aj' In place of each free 

occurrence of Y in B;    hence Z'=S[A';y;B'].    Each e-residue W is of the 

fonn   ((LA   'MBDA1'(Y)B')A1') where B' is an e-residue of B; but then W is 
convertible to S[A';y;B']=Z'.    Thus each e-residue W of W is convertible 

to an e-residue Z' of Z.    Noting that homologous subexpressions B1 and Z1 

of B and Z, respectively, are either identical or related by 

Z1=S[A';Y;B1],  we deduce by the above argument and the purity of Z that B 

is pure.    Hence W is pure. 

Note that Lemma 7.11  fails to hold for K-abstractions;    consider,   for example, 

the K-abstract ion 

■ —  ^———^—^^ 
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MX (LAMBDA(X)M) (EITHER 2  3)) 

where M contains no free occurrences of the variable X.    Clearly the 

abstraction of M is  impure regardless of the purity of M.    We  now present the 

principal  result  of  this  section,   from which the consistency of the Either-R 

axioms  follows directly: 

Lemma  7.12:    Let X»Y be a single  reduction step other than a K-abstraction in 

Either-K,  and let X be pure.    Then Y is pure and X encloses Y, 

£roof:   The cases where X*Y is a beta conversion follow directly from Lemmas 

7.9,  7.10,  and 7.11;    and if the step is an alpha conversion,  the 

e-residues of Y are clearly congruent to the e-residues of X,  and Y is 

pure.    If X>Y is a delta ccnversion then both X and Y are EITHER-free and 

the lemma  is trivially true.     If X>Y is an EITHER-conversion in either 

direction,  the purity of Y follows fr m the purity of X and the 

e-residues of X and Y are identical. 

The consistency of the Either-K theories is presented as 

Thm 7.13:    Let X and Y be EITHER-free expressions, and let X>Y in Either-K. 

Then X=Y in the lambda calculus. 

firoof-  From Theorem 7.7,  we may assume that there is a K-normal reduction 

sequence fVom X to Y;  let X»,. .»X^YQ». . ,>Y be such a sequence, where the 

subsequence X»...>Y0 contains no K-abstractions and Y >...>Y contains 

only K-abstractions.    Then Y0 must be EITHER-free,  since each of the 

K-abstractions ^»Y^  can only increase the number of EITHER redexes, 

and Y is EITHER-free.    Y0=Y in the lambda calculus since each of the 

conversions Y0>...>Y is a valid beta conversion.    By Lemma 7.12,   X must 

enclose YQ since X is pure;   but each of these expressions is EITHER-free 

and hence is its own  e-residue.    Thus X=Yn=Y. 

Corollary 7.1^:    Let X and  Y be EITHER-free expressions,  and let X-Y in 

Either-K.    Then X=Y in the lambda calculus. 

—ii 
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proof:   Directly   from  Corollary  7.13. 

7.3:    Functional  Domains  of  Either-K 

The semantics  of  the Either-K  Theorlps  bear a superficial   similarity to those 

of  the corresponding Either-R-»  Theories:   in each case a   functional domain F 

of  the Umbda  calculus  is extended  to a domair   F* whose  elements are 

enumerable subsets of  F.     The question of re-frictions on beta  conversion 

seems,   at first glance,   to  be an  issue of evaluation order whose semantic 

ramifications parallel,   say,   those of the applicative/normal  order 

distinction.    While this analogy  can be defended,  as it has  been in earlier 

sections of this thesis,  there  is evidence suggesting that  the distinction 

between the Either-R and  Either-K semant^os  is of a rather more  fundamental 

nature. 

The distributivity  of   function application over EITHER  terms,   sanctioned in 

the Either-R Theories  by  Axiom   rh),  constitutes a limitation on the expressive 

power of languages built  on these  theories.    Consider,   for example,  the 

function f whose informal  definition is 

f[x] = x+x; 

which computes,   in the lambda calculus,  a numeric value which is twice the 

value of its argument x.    Our  experience with conventional applicative 

languages reinforces an intuitive  expectation that  f will have only even 

numbers in its range  (assuming  that the domain of f is  the set of natural 

numbers).    The natural  extension of our intuition to the  Either-R Theories is 

consistent with the range of f there,  containing enumerable sets of even 

numbers.    In the Either-K  Theories,  however, we must realign our intuition. 

The application of  f to  the argument either[2;3],  for example,  is reducible in 

Either-K to any of the numbers  in   {1,5,6}  rather than the   {1,6}   result of 

Either-R.    Thus although   the  semantics of the application of   functions to 

single-valued arguments  remains  consistent with the lambda  calculus,  the 

behavior of fmctions with multivalued arguments differs  between the Either-R 

and  Either-K systems. 

• — - i *-^ 
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A more bizarre demonstration of this difference  is the  function £ defined 
informally by 

g[x]   =        if x>x then   1; 

else 0; 

which,   in the lambda  and  Either-R calculi  is equivalent to the single argument 

constant function which always returns zero.    Yet the Either-K reduction of 

g[either[1;2]] yields the values  {0,1},  even though g[1] and g[2] each 

evaluate to  {0}.    Since the behavior of g in Either-K violates the 

distributivity  axiom of  the Either-R Theories,  we clearly cannot express in 

these theories a function with the properties of g;    yet g appears to be a 

computable function definable on the domain F*. 

7.4:    Summary 

This chapter presents a consistent theory which combines EITHER conversion 

with unrestricted beta conversion.    This combination requires  1) that we 

abandon the distributivity  of  functions over EITHER terms,   and  2) that we 

reinterpret the semantics of EITHER,    The latter reinterpretation is only 

hinted at in this chapter,  and we confess that the semantics of the Either-K 

theories require further study. 
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Chapter 8: 

Summary a.id Conclusions 

There has been a definite tendency,  In the course of the work reported here, 

to provide questions much more frequently than answers.    We regard this 

situation,  perhaps defensively, as a healthy attribute of research in a field 

as theoretically Immature as  the science of programming languages. 

8.1:    Summary 

The general topic of this thesis is the correspondence between the syntactic 

mechanism of an interpreter and the semantic structure of the language It 

Interprets.    The restriction of this study to the class of applicative 

languages is deftnded,  in Chapter  1,  on the grounds that 
1)   Interpretive mecnanism for applicative  languages is simple,  since such 

complications as assignment,  side effects,  and transfers of control are 

avoided; 
ii)  The semantics of applicative languages are independent of the notion of 

time; 
iii)    The theories of mathematical functions may ssrve as a semantic basis 

for applicative languages. 

Expressions of an applicative  language are viewed as representations of 

objects in an abstract semantic functional domain containing  functions   -nd 

constants,  and expressions are semantlcally equivalent if they represent the 

same  abstract element. 

The stack- and tree-environment  interpreters presented in Chapter 2 illustrate 

1   I.e.,  the FUNARG problem. 

semantic limitations Imposed  by typical compromises between efficiency and 

expressive power.    The defect of S    must be viewed as an interpreter "bug" If 

we take matnematical  functions as a semantic basis, since certain expressions 

are interpreted by S in a manner inconsistent with the behavior of functions. 

The T Interpreter of Chapter 2 relates the issue of evaluation order to the 

expressibillty of certain functions.    The applicative order evaluation of T, 

mm 
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in which arguments to a  function are evaluated before the application of the 

function,   is seen to  lead  to the  inexpressibility of  functions which ignore 

the value of their arguments.     This motivates a preference for the normal 

order evaluation of the N model,  in which such functions are expressible.    The 

demonstration in chapter 2 of a functional domain F of N assures us that every 

expression is interpreted by N in a way that  is consistent with our functional 

semantics;   it does not.  however,  estsbli^h that every valid semantic element 

(e.g.,  every computable  function defined on the semantic domain of N) is 

expressible In N. 

Chapter 3 demonstrates a faction,  WHICHFF, which despite its comput ability is 

expressible neither in N nor 1    the lambda calculus.    The expresslblllty of 

WHICHFF jeems to require a mechanism analogous to multiprocessing,  and two 

therapeutic language extensions are considered: 

i)  A "coding" primitive which allows a program access to the representation 

of a faction supplied as Its argument;  and 

11)  A primitive EITHER whose Interpretation Involves the dovetailed 

evaluation of Its arguments. 

The admission of coding essentially abandons all semantic constraints and 

allows  the programmer to  reinterpret expressions as he wishes;  we thus discard 

this alternative as semantic anarchy.    The EITHER primitive may be Justified 

in terms of applicative semantics,  however,  by the expansion of the semantic 

domain F into the power set F»,  each of whose elements Is a subset of F.    Thus 

once EITHER Is Introduced we must semantically associate each expression X 

with an enumerable set of abstract values or "meanings" of X.    Such a 

multivalued semantic domain is necessary to reconcile the function WHICHFF 

with applicative language  semantics. 

The semantic domain P« motivated In Chapter 3 Is suggestive of a compete 

lattice ordered by set  theoretic Inclusion.    The undefined  (or nontermir.atlng) 

computation is naturally associated with the empty set in P«,  and that 

expression TOP whose values Include the entire domain of the lambda calculus 

corresponds to the maximal element of P».    The semantic element associated 

with the expression elther[a;b] becomes the union of the respective F« 

elements corresponding to  the expressions a and b. 

tm 
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In Chapter H our attention  returns  to the subject of interpretive mechanisms. 

In particular we desire a  formaliST  for syntactic manipulation of expressions 

in p.  language  including EITHER,   reflecting the  insight gained through informal 

scrutiny of  the structure of F- in Chapter 3.    The formalisms  introduced in 

Chapters  4-7 are systems of conversion axioms,  similar to  (and based on) the 

lambda  calculus;   each  system   (or theory)  defines an ordering,   >,  corresponding 

to  inclusion in F» — thus,   for example,  either[a;b]>a ard either[a;b]>b in 

each system. 

A complication arising  in Chapter "4 involves the reconciliation of the beta 

reduction1 of the lambda calculus with the intuitive^., -'ated requirement 

that  functions be distributive over EITHER terms -- i.e., that  f [either[a;b] ] 

be equivalent to exther[f[a];f[b] ],    The EITHER-R system presented  in Chapter 

U resolves this difficulty by restricting beta conversion to arguments which 

are reduced to normal  form;  while consistent, tl." resulting theory  is too weak 

to be useful. 

The syntactic mechanism of «-conversion,  presented in Chapter 5,  solves this 

problem of Either-R.    Chapter 5 introduces the expression • as a canonical 

(normal  form)  representation of the undefined computation,  and extends the 

ordering > so that the syntactic significance of •  (A>» for every expression 

A)  reflects the semantic significance of the undefined computation  (the empty 

set is a subset of every element of F«).    The use of »-reduction allows every 

expression,   including the single-valued expressions of the conventional lambda 

calculus,  to be reduced  to multiple normal forms.    The R-« theory developed in 

Chapter 5 reinforces an interpretation of the normal  forms derivr" le from an 

expression X as approximations to X,  and shows that for any context AlX} 

havir«  normal form value A' there exists a sufficiently good  (normal form) 

approximation X« of X such that A{X«} also has the value A'.    This result has 

major semantic consequences;  in particular,  it implies that meaning of an 

expression X is completely characterized by the set of normal  forms derivab 

(in R-») from X.    Moreover the result is shown to carry over to the 

conventional  lambda calculus,  since every normal form derivable in the lambda 

calculus is derivable  in R-».     The extenaional semantic equivalence  relati( Lon 

Informally, beta reduction is the application of a lambda expression 
(user-defined  function)  by substitution of its argument for free occurences of 
the bound variable  in the body of the lambda expression. 

I 
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suggested  by  these findings,   namely the interconvertability of normal   forms 

derivable  in R-*,   is demonstrated  by showing the equivalence of 

non-interconvertable expressions  for the fixed point operator Y. 

The mechanisms of «-conversion and EITHER-reduction are  combined,   in Chapter 

6,   to yield the Either-R-* system.     The respective  functions of the two 

mechanisms are,   in a sense,   complementary;   roughly speaking EITHER allows 

expressions  to be combined to make  "stronger" expressions while »-conversion 

allows expressions to  be  rosolvea  into weaker component expressions.    The 

Either-R-* system is consistent,   retains the power of the lambda calculus, and 

interprets EITHER according  to  ehe semantic notions of Chapter  3.     We thus 

view Either-R-» as a practical  syntactic basis  for the construction of for 

interpreters of languages based on multivalued semantic domains;    such an 

interpreter,  E,  is presented at the end of Chapter 6. 

Chapter 7 explores an alternative  resolution of the conflict between 

unrestricted beta conversion and the distributivity of  functions over EITHER 

teras.    The Elther-K system presented in that chapter sacrifices such 

distributivity in order to allow the unrestricted beta conversion of the 

la-nbda  calcu'tus.    While this combination results in a consistent theory  (as 

demonstrated  in Chapter 7)  it leads to a semantic structure which is 

fundamentally different  from that of the Either-R theories,  in particular 

regarding the application of functions to multivalued arguments. 

8.2:    Conclusions 

The study of applicative  languages from the complementary viewpoints of 

interpretive and semantic  structure leads synergisttcally, we feel,  to a new 

insight in each area.    We have repeatedly found the syntactic mechanisms and 

semantic structures to be mutually illuminating, and view this dual 

perspective as a principal  influence on the direction and motivation of this 

thesis. 

The following are viewed as the principal results of this thesis: 

1)  The motivation and presentation of an applicative model of 

multiprocessing.     The applicative approach to this mechanism has certain 
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technical advantages over conventional  formulations;   notable among these 

is the complete  irrelevance of time as a parameter of language semantics. 

The corollary disadvantage of the applicative model  is  its uselessness in 

the study of time dependent implementation considerations    - such as 

scheduling,  deadlocks,  and synchronj   of processes. 

2) The formulation of the semantic domain F* for multivalued applicative 

languages.    We find  particularly  interesting the potential extension of 

the Scott formalism which F* suggests:  we have added,   to the Scott 

domain,  tnic,"a upper bounds of arbitrary sets of semantically distinct 

elements.    The lack of such upper bounds in the Scott model has been 

conspicuous,  and the EITHER construct presented here seeuis to provide a 

natural  interpretation for them. 

3) The mechanism of •-conversion and the results relating it to the 

conventional  lambda calculus.    These results augment the lambda calculus 

with a syntactic substructure (i.e., tie ordering under >) which bears 

close analogy to the semantic structure developed by Scott.    In addition, 

•-conversion provides a concrete  (syntactic) relation of semantic 

equivalence which may  illuminate the relationship between lambda calculus 

expressions having no normal forms. 

14)  The presentation of consistent theories of EITHER conversion.    The 

analyses of these systems is by no means exhaustive; we have not shown, 

for example, that no axiom is derivable from the remaining axioms. The 

theories do, however, provide sufficiently powerful syntactic mechanism 

that interpreters may realistically be based upon them. 

. 
8.3:    Directions of Future Research 

We recognize that this section constitute^ fertile grounds for an essay strewn 

with universal quantifiers.    Restricting our attention to specific questions 

left unanswered by this work, we find most demanding of further attention: 

1)  The relative expressive  power of EITHER-augmented versus CODE-augmented 

lar^uages.    We conjecture that every computable function defined on the 

single-valued domain of the lambda calculus is expressible in the 

language E,  and have in  fact spent considerable effort in trying 
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(unsucoessfully)   to  prove  this  conjecture.     The discovery  of computable 

functions expressible  (with coding)  in C but inexpressible  (with EITHER) 

in E would be  counterintuitive and somewhat depressing. 

2) The semantics  and expressive power of languages based on  the Either-K 

Theories,    The presence of functions which compute different results for 

a multivalued argument X than for slnglevalued components of X raises new 

fundamental questions:  what  is a computable function on F«?    Are the 

Either-K Theories  functionally complete?    If not  (and we are pessimistic 

on that issue) which functions are not expressible in Either-K? 

3) There appears to be a great deal of room for further development of the 

theories of EITHER conversion.    The extension of these theories to allow 

eta reduction reems  feasible.    Further extensions may make the 

extensional rflation of semantic equivalence tractable by syntactic means 

alone,  e.g.  by axiomatically asserting in Either-R-« the equivalence of 

expressions whose normal forms are interconvertable. 

14)  The area of  interpretive mechanisms  for EITHER-based languages has some 

interesting possibilities.    The techniques of computational complexity 

studies,   for example,  might yield some quantitative bounds on the 

computation time necessary lor the evaluation of classes of applicative 

expressions.    As the cost of computation power continues to plummet, 

methods  for making use of massive parallelism becomes a practical as well 

as academic interest. 

5)  The relationship oetween the mechanisms of EITHER- and «-conversion and 

the semantic constructions of Scott demand more r,erious attention than 

the informal parallels drawn here.    Much of Scott's important work seems 

to bear rather directly on the systems presented here,  and we recognize 

that too little advantage has been taken of this resource. 

It must finally be acknowledged that our quest for a functionally complete 

language  - one whose domain D contains every computable function defined on D 

- has not been an unqualified success.    The lambda calculus, whose functional 

completeness was suspect,  was scrutinized and found to be incapable of 

expressing certain functions  (e,g,  WHICHFF),    To remedy this  inadequacy, the 

lambda calculus was extended via the EITHER construct;  the result  (the Either 

-*ij 
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theories)  is,   Indeed,  capable of expressing WHICHFF.    However,    the new 

systems have additional elements in their domain,  so that the functional 

completeness of the Either theories is again suspect.    The results of this 

thesis,   then,  suggest a similar program of scrutiny and extension to repair 

their inadequacies.    There is an inevitable circularity in this course of 

research,  mitigated by the fact that each cycle allows us to see previous 

cycles more clearly. 

A way a lone a las^ a loved a^ong the/ 
riverrun,  past Sve s and Adam a,   from 
swerve of shore to bend of bay. brings 
us by a commodius vicus or recirculation 
back to Howthe Castle and Environs. 

-Finnegan's Wake, 
last/first lines 
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