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ABSTRACT 

This document describes DALI (Display Algorithm Language 
Interpreter), a special-purpose programming language for the creation 
and control of changing pictures which exhibit complex static and 
dynamic interactions among their elements. DALI allows complex 
oreanizations of interpolated ("smooth") change, discrete chanfte, and 
change in the structure of a picture to be generated in a modular way, 
in the sense that picture elements determine their own behavior and 
hence aannaf of change. 

In DALI, pictures are composed of elements called picture modules. 
These are analoeous to procedural activations or processes, and contain 
arbitrary event-driven procedures called daemons. Daemons are run under 
the control of global scheduling rules5ased on the functional 
dependence of daemons on one another. These rules result in smooth 
inter-daemon (process) communication and cooperation with no implicit o" 
explicit reference to semaphores or other synchronization primitives In 
user code, while at the same time providing for a high degree ol 
parallelism. Circular inter-daemon functional dependence results in 
iteration or relaxation. The environment structure used is 
predominantly stack-oriented. 
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Dedication 

To a Small Subset of Humanity 

gorged with the patterning rhythms of change 

motion! 

physical,  audible,  visual,  logical 

all responsively guided and guiding 

layered in patterns perceived. 

human! 

borne from the sameness of chaos,  eternally; 

with their shattering rhythms in  flexion 

merging to pattern a word: 

understand. 

• 

11 P.M.,  Friday,  May 5 19W 
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"...the art of programming is the art of 

organizing complexity, of mastering multitude and 

avoiding its bastard chaos as effectively as 

possible." 

• -Edstrer W. Dijkstra, 
Notes on Structured 

""Programming 

I 

/ 
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Chapter   1 

Introduction 

1.1   DALI 

A computer's mechanical ability to mindlessly iterate marginally 

differing calculations, coupled with its speed and ability to control 

other devices, can be used to create and change visual imaees — 

pictures - at a very rapid rate. This capability is the cornerstone of 

the two fields of computer animation and interactive computer graphics. 

Utilization of this naked computational power requires that it be 

organized, grouped and ordered in a way that highlights aspects 

important to human beings, suppresses details they consider unimportant, 

and most of all provides them with an effective means of thinking about 

and describing their intentions. In other words, a "hiRh-level" 

programming  language is needed. 
This document describes such a language. It is called DALI, for 

Display Algorithm Language Interpreter, and is designed for the creation 

and control of changing pictures exhibiting complex inter-element 

interactions. Embodied in DALI is a uniform, hardware-independent 

methodology for the description of a wide class of dynamic pictures. 

A primary characteristic of DALI is modularity, in the sense that 

pictu-e elements themselves define their own manner of behavior. This 

is accomplished by constructine pictures not as assemblages of passive 

data elements, but rather as structures of active elements akin to 

processes. These elements. called picture mooules, can contain 

arbitrary user-written procedures which locally define the behavior of 

the picture element. 
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The capabilities of DALI in comparison to more classical schemes 

for picture manipulation are most readily highlighted by examples. The 

examples used here, and many others in this document, are taken from 

c nputer animation for clarity and dramatic appeal. It should be 

realized at the rmtset, however, that DALI is not 'just" an animation 

language »s that term is normally used, but rather covers the spectrum 

from animation to inter ictive computer graphs.s and may also have 

application in computer  simulation. 

Fig. 1-1a shows a circular image constructible by a program using 

any reasonable computer graphics system. Many graphics systems allow a 

program to vary certain specific parameters of such an image, for 

example, its rotation, translation, and scale. An appropriate program 

can thus change both the rotation and translation parameter» quasi- 

simultaneously in proportions that give the illusion of a rolling ball. 

This is shown in Fig,   1-1b. 

What is not supports' by such systems is the construction of a 

"ball" image in which rotation and translation are inherently coupled. 

Simply "telling" this "ball" to move would cause it to "roll" to the 

designated position, varying its own rotation with its translation in 

the necessary fashion. The creation of such objects is a basic 

capability of DALI. 

nn important aspect of DALI is that objects such as the "ball" are 

defined by arbitrary user-written programs. Thus, the "ball" could 

react in motion to its external environment as shown in Fig. 1-1c. 

There, the only command given the ball was "move". It "knew" that it 

should go over, not through, bumps; that it should squash itself when it 

falls off cliffs; and that U shouldn't step on the daisies. 

Alternatively, the daisies could "know" that they should crush when run 

ovtei- by a ball. 

Another aspect of DALI is implicitly illustrated by Fig. 1-1c: only 

that portion of the DALI "program" needed to move the "ball" is invoked 

when the    "ba]1" moves.    This    is not done    by arbitrarily    dividing the 

/ 
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picture into unchaniring backgro-ind and chanpinp foreground, but rather 

arises naturally out of low-level picture element interrelationships: 

individual changes propagate through the picture, affecting only those 

picture elements  involved  in the change. 

Of course, the image displayed need not be a ball. It could, as in 

Fig. 1-1d, be a stick figure which walks to the desired place when told 

to move -- or runs, or jumps, depending on the amount of time it is 

given. The program giving the command to move can be completely unaware 

of how the command is carried out; the same command can roll a ball, 

walk a man,  drive a car,  etc. 

All of the capabilities illustrated above could, with sufficient 

effort, be programmed in more conventional computer graphics systems, by 

virtue of the fact that they do, indeed, incorporate a Turing machine. 

What DALI provides is a general, systematic way of viewing such 

capabilities, a set of concepts around which to organize one's thinking 

about changing pictures. By this virtue, DALI lays claim to being a 

true high-level p-ogramming language for dynamic computer graphics, the 

art of creating changing pictures which lies in the intersection of 

computer animation and interactive computer graphics. 

1.2 Relation to Other Work 

A great deal of research in computer graphics deals with conqueriiig 

the sheer brute load of computation needed to generate pictures with a 

computer. Examples of this include eliminating hidden lines and 

surfaces; clipping and "boxing"; performing perspective transformations; 

generating smooth curves and surfaces; and actually producing a visual 

image on a cathode-ray tube or other device. Newman and Sproull [New2] 

describe many results in these and adjacent areas. 
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Such research can be vieweo as an attempt to make a computer into a 

"super paintbrush", entirely analogous to the more u^ua. "lew of a 

computer as a "super adding maciine". Even the meaninj of "super" is 

Invariant: fast, accurate, fUribii, and in"xpensive relative to 

competing technologies. This is a necessary goal. Just as 2 computer 

must be a "super adding machine" before issues like process control, 

artificial intelligence, information systems, etc., can be effectively 

addressed, it must be a "super paintbrush" before computer animation and 

interactive  computer graphics can be effectively addressed. 

The research reported here makes the basic assumption that a true 

"super paintbrush" exists. This may or may not be true at the present 

time; qu-te powerful graphics hardware certainly does exist [E4S1,E&S2], 

and currently projected decreases in hardware costs promise to brine 

very powerful  "paintbrushes"  into more  common use.   [Sped] 

Given tha assumption, the question becomes how we make use of such 

"super" capabi.'ities. One place to begin is by adding to the basic 

capabilities more powerful means of control over what is drawn, 

hopefully increasing our effective ability to create changing pictures 

far beyond historical manual capabilities. To achieve this control, an 

ability to describe the picture-which-changes in a co-ip-'tationally 

effective manner must be devised. That is the goal of "ne reported 

work. 

Work directly related to that reported here falls into three areas: 

(1) subroutine packages for general computer graphics, e.g., [E&S1, 

Thol, New2 Chap. 5 and 8, Hull]; (2) programming languages and 

extensions for general computer graphics, e.g., [Hurl, Chrl, SrAI, 

Newl]; and (3) programming languages for computer animation, f.g., 

[Knol, Bael]. All of these have the common aim of creating a visible 

image by communicating data and commands to a display device from a 

program. Many    also      provide    some      mechanisms      for    communicating 

interactive graphical  input    to a program,  but    this aspect will    not be 

/ 
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emphasized    inth^s    research.    Our    invest  is    further    r.strictedto 

those aspects of graphics systems related to changing    created pictures, 

as needed in interactive computer graphics and animation.    In that area, 

nearly all graphics systems share a common aspect  for which    DALI offers 

an alternative,  namely    the use of what    w,   shall call an    instance tree 

(defined    below)    to    represent    the    picture.      Therefore,     rather than 

discuss many    individual ef'orts    in what would    b. a    rather repetitive 

fashion,  the general    raticr.ale behind  instance trees,    their advantages 

and their disadvantages,  will be discussed;   then,  exceptions to    the use 

of instance trees will be covered. 

The almost universal choice as a method for changing a displayed 

image - with some exceptions, including EULER-G [Newl] and SKETCHPAD 

[Sutl], which will be discussed- is to allow the user to modify an 

internal data structure called the disßla* £11*. The display file is a 

complete description of the desired visual image, in the sense that it 

contains all the data scanned to produce the signals which drive the 

visual-image-producing hardware; the scanning process may b« performed 

either by hardware or by software, or by a mixture of t.e two, A result 

of this use of a display file is that from a program's point of view, 

the display file is the picture: changes to the display f le are changes 

to the    picture,  and the    structure of the    display file is    the natural 

structure of the picture. 
There is surprising unanxmity - again, wich a maverick, BEFLIX 

[tool], to be discussed - as to how >he display file shoulc oe 

structured, so much so that the principal differences between structured 

display file systems lie primarily In the choice and syntax of 

primitives, not in the structure itself: The display file is i 'itably 

structured as a reentrant tree, reminiscent of a progran Ath 

subroutines; this is the instance tree mentioned ?.bove. The manner in 

which instance troes are typically used to represent a r.oture is 

described in some detai1   oelow. 
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The visible imape is created from the instance tree in the manner 

of a processor executing a program: the tree is scanned in a depth-first 

manner startine: at the top node, and the immediate descendants of each 

node are "called" like "subroutines" of their Darent node, A criven node 

may have several parent nodes due to re-entrance; such a multiply-used 

node will be "called" several times and thus the "subpicture" it 

represents will appear in the final picture several times. This 

instanoe-tree scan may be performed directly by special-purpose display 

hardware  [E&S1,   E&S2],  or it may be done at  least partly by software. 

The terminal nodes of the instance tree contain data describing one 

or more primitive visible objects, e.R, , dots and lines; these terminal 

nodes are often referred to as items, and are similar to procedures 

which call only primitive (built-in) procedures. The non-terminal nodes 

of an instance tree are often called groups. Grcips oontain only 

references (pointers) to items and to other groups; circular group 

references are diitllowed, since there is no way to terminate the 

implied recur, ion. The references which groups contain are called 

instances of the objects referred to; the object referred to by an 

instance  is called its master. 

The relationship between an instance and its master 's very like 

that between a procedure call and the procedure itself; this analogy is 

made even closer by the fact that instances commonly have parameter 

settings associated with them, somewhat like procedure arguments. 

Unlike general procedure arguments, however, the set of possible 

instance parameters is fixed: the way a given instance parameter can 

affect the display of its master is fixed by the implementation, and 

only those parameters provided by the system as primitives can be used. 

The types of parameters typically provided for use in instances can be 

somewhat arbltrtPlly divided into two e-roups, here called 

transformations and attributes. 

Transformations      are      analytically    definable      two-      or    three- 

dimensional mappings between coordinate systems.    Typically they include 



tm^^^— XJ 

18 

translation, scaling (zooming), rotation, and clipping; the latter is 

the blanking of any part of a visible object which would appear outside 

of a given polygonal area, usually rectangular. Successive 

transformations are concatenated, i.e.: For each use (instance) of an 

item (set of primitive visible objects) there is a distinct directed 

path from the root of the tree to the item, passing through one or more 

instances; the total transformation applied at each use of the data in 

the item is the concatenation of all the transformations along that 

path, performed in the order indicated by the path's di-ection. Since 

several such paths can exist, a given item can simultaneously produce 

several images differing in position, size, orientation, etc. Exactly 

how such concatenations are performed  is described in [New2]. 

Attributes are somewhat less analytically tractable variations on a 

master. They include such things as color, intensity, "auto-blink", 

"hit" sensitivity, etc. The manner in which they are concatenated, if 

they are concatenated,  varies widely. 

Typical operations which can be performed on instance trees 

include: (1) the creation of items, involving the specification of the 

primitive elements to be included in the icem; (2) the destruction of 

items; (3) the creation and destruction of roups; (4) the insertion of 

instances into groups and the removal of instances from groups, 

accompanied by, respectively, the creation and the destruction of the 

instances involved; (5) the modification of instance parameters; and, 

less often, (6) the insertion and removal of primitive elements from 

items. Smith's GPL/I [Smil] is a good example of a language system 

incorporating nearly every feasible primitive; it also has a very nice 

syntax for group and item construction. 

Many minor variations on the above-described instance tree 

structure exist. For example, many subsets of the instance parameters 

listed are used; item data (primitives) can sometimes be included as 

part of a group; and "instance parameters" sometirss appear as part of a 

master rather than as part of an instance, strange though that may seem. 
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Instance tree display file structures are In common use, for 

example In [E&S1, Thol, New2, Bull, Hurl, Sail, Chrl, Bae!]. 

Significantly, this type of structure forms the basis of the recently 

proposed protocol [Spr2] for computer graphics across the ARPA network, 

a communications net connecting many different types of computlnr 

facilities. Furthermore, the only currently published book attempting 

to deal with Interactive graphics as a whole, [New2], refers to an 

instance tree structure as simply a "structured display file". Implying 

that only this one type of structure is worthy of consideration! 

Clearly,  Instance tree structures must have advantages;  what are they? 

In many cases,  a    particular Instance tree structu-e can    be chosen 

that  is extremely close to the 'apabilities of the display    hardware,  so 

that  it can be directly used as hardware  input.    Beln^ able to make such 

a    match is    extremely    valuable,  since    it  has    great    speed advantages 

especially when    refreshed displays    which oontlnutlly    "re-execute" the 

structure    are    used     [E&S1,    E&S2,     Pfil,     w^.J:    the    displayed  image 

immediitely chafes    with changes to    tne structure.      However,  Instance 

trees whim do not match the abilities of   .he aisplay hardware are often 

used,    as must    be the    case with    the ARPA    network protocol.      Not all 

display hardware has subroutining,   for example,  nad general    rotation is 

rather uncommon.    For subroutining,  host computer interrupts can be used 

to simulate more powerful    display hardware,  as in the    system described 

in  [SUVI];   but for rotation and most transformations,  such simulation is 

impossible.   In the  latter    case,  a second transformed display    file must 

be created from the instance t^ee [New2],  containing multiple    copies of 

master- which    are used with    different  instance    transformations.    This 

clearly vitiates the speed advantage,  so there must be other advantages. 

An advantage of instance trees often mentioned is space    saving due 

to    multiple    use    of    instances  [Newl],       This    is    very    close    to the 

argument,    originally made    for includiig    facilities for    subroutine or 

procedure use in hardware and programming languages.    Like the multiple- 

procedure-use argument,    the multiple-instance-use    argument   is    not the 
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full story. The only substantial use of repetition in instance trees is 

at the lowest level - sharing of immediately displayable items, 

particularly characters, furthermore, much spnee-saving of this sort is 

illusory. Especially when many transfonnati-.ns ?re available, instance 

overhead is high enough, and immediate mi.ltlple-line or -dot formats are 

compact enough, to wipe out the prospective space saving. For example, 

it usually does not save space to use an "arrow" instance in both a 

"diode" and a "transistor". Thus space-saving alone would require only 

a one-level tree. Yet trees of depth 4 or 5 are common — seldom more, 

as pictures tend to be much "broader" can they are "deep". 

Furthermore, if a transfo-med display file is necessary, much space 

saving of this sort is intrinsically wipod out by the multiple 

transformed  copies needed.    So another advantage must exist. 

The primary advantage of instance trees,  -x conceptual advantage not 

dependent on hardware,  is this: 

Instances provide loci of control over whole 

sections o: the picture, because change to instance 

parameters propagates down the instance tree    to its 

leaves, 

A single change to a rotation parameter, for example, can causu hundreds 

of changes to individual lines; elements of a group can be moved 

relative to one another, or moved in parallel maintaining relative 

positions, by use of a two-level instance structure. This automatic 

propagation of change is a major conceptual advantage which greatly 

simplifies the control of a changeable picture. Such propagation, and 

not Just the naked ability to create and name groupings of objects, is 

what allows the user to think ir terws of "higher-level entities". 

However, the kinds of changes which can be propagated by instance 

trees are limited to a fixed set of transformations and attributes, and 

the path of propagation is fixed: parameters can depend only on like 

parameters, and only those of the parental node. Thus, for example, it 

is    not    possible to    make    the position    of    text  labelling    part    of a 
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rotating object depend on the object's rotation and shape so as to keep 

the text unobscured. Another example: a sca.'e change cannot cause the 

amount of visible detail to vary; no predefined "level of detail" 

attribute exists  in any instance tree system known to the author. 

Therefore, instance trees cannot fully represent a dynamic picture, 

in the sense that they cannot produce an arbitrary desired picture which 

is fully definable as a function of a set of parameter values. This, it 

must be noted, la a problem distinct from that of represeitins static 

pictures for purposes of display. The latter is a significant problem 

only if the picture is so complex that space is a major issue, or if 

substantial transformations, such as hidden-surface removal, must be 

applied to the pictjre as a whole. 

That an instance tree    cannot  fully  represent a desired    picture is 

clearly not  an    insuperable disadvantage.    Dynamic graphics    systems are 

generally embedded    in general-purpose comoutiuK    systems,   so    a program 

can always    be written to    bludgeon the  instance    tree into    "being"  the 

right picture,  effectively providing the special-purpose    parameters and 

relationships    among picture    elements    which tne    instance    tree cannot 

provide.     To    do this,    a separate    data structure    is needed    to  relate 

elements  of    the instance tree    with each other    and with the    real data 

they are    representing.    Not surprisingly,    such data structures    can be 

extremely complex;    this is    reflected in the    wide literature    on  "data 

structures  in computer  graphics",     e.g.,   [vDal,  vDa2,   Abrl,    Will,  Gral, 

Cotl],  and on the  fact that  computer graphics pioneered the use    of many 

of the most complex types of data structures — e.g.,  rings in SKETCHPAD 

[Sutl]    and CORAL     [Suw2],  and    associative data    bases in    LEAP  [Rovl]. 

This    need    for    complex    data structures    must    be    considered    a major 

problem,   if for no other reason than that  the data structures themselves 

are  considered a major problem. 

One system not using    an instance tree as a    picture representation 

is Knowlton's BEFLIX  [Knol],  one of the  first,  and still one of the most 



22 

successful,   system for producin, co.puter-.enerated movies;  examples of 

movies produced with BEFLIX    include  [Bell.  Kno2].    BEFLIX    conceived of 

the    picture as    a two-dimensional    array of    intensity values    called a 

surrace.    One "fine"   (18^ x    152) or two "coarse"   (92 x    126)  resolution 

surfaces were available,  operated on by a set  of scanners which,    with a 

"scanner  .angua^e".  could    be made to    move around  the    surface(s).  read 

and    change    intensity values,    and    communicate with    one    another.     In 

addition,  a "movie language" actually produce,  film output and performed 

operations on rectangular areas in sur-c.s such as copying other areas, 

dissolving to other areas,  zooming,  ate.    The use of structures    lik. an 

instance tree is actually orthogonal  to BEFLIX's use of surfaces;  a  tree 

of surfaces and    instances of surfaces    could be constructed    to fulfill 

the same needs.  However,  the small number of surfaces available  (two)  - 

further restricted to only one surface  in a more recent    similar system. 

EXPLOR    [Kno3]   -    P-hibits this.      T^e user    must always    consider his 

picture as a pure image, and rot.  e.g., as a collection of independently 

existing but related objects which he can manipulate and alter;  this may 

have    advantages  in    some puroly    artistic endeavors,    but is    a decided 

disadvantage in more general use. 

Another system departing from the instance tree syndrome is 

Newman's EULER-G [Newl]. an extension of EULER [Wirl]. a language -which 

is itself a generalization of ALGO.. In EULER-G. execution of a frame 

DroGedu- , causes immediate construction of a monolithic transformed 

display file which is directly digestible by the display hardware. The 

instance tree actually has    virtual existence during this    execution, as 

described below: 
The EULER-G s>stem interprets primitives su-n as 

line to [x.y] 

which draws a visible line    from the "current" position to    the position 

(x y).   «cording to    the current settings of    transfonnation parameters. 

The      current      transfonnation      can      be      concatenated        with      other 
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trans formations in a dynamic block-structured fashion as part of a call 

to a general EULER procedure; at the return from such a call, the 

transformation in force before the call is restored. Thus, the virtual 

tree of procedure calls performs the functions of an instance tree but 

allows more generality, since an isomorphism is attained between a 

pj^ture element and the arbitrary procedure used to create that picture 

element: The contents and structure of the virtual instance tree are 

controllable in a natural way by the standard EULER mechanisms for 

parameter passing, iteration, and conditional execution. Thus, the 

picture can in fact be an arbitrary function of a set of parameters; 

this is a capability which, as was pointed out above, is practically 

impossible to attain with instance trees — or, indeed, with any other 

passive data structure. However, this ability is obtained at the 

expense of completely re-creating large portions of the picture both in 

order to make changes, and also in order to process pointing inputs from 

graphic input devices. The resultant execution-time overhead is 

significant,  and "smooth" motion is essentially impossible. 

Another general approach to creating changing pictures is what is 

referred to in [New3] as the "viewing algorithm" approach. The term 

viewing process approach will be used here instead, both because 

"viewing algorithm" is used with a different meaning in [New2], and 

because this approach conceptually involves the use of two processors 

sharing a single physical memory. A single physical processor may of 

course be time-shared to achieve the same effect, and so we will speak 

of two processes aa being involved; these will be called the application 

process and the viewing process. 

The application process performs the "real" work involved, 

manipulating the data in the shared memory in the course of whatever 

calculation is being performed. While the application process is 

running, the viewing process simultaneously ac-toes the data being 

manipulated,  repeatedly and continuously    traversing all the data    to be 
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displayed and constructing a picture which represents that data in the 

desired fashion. Since the display process' operations are arbitrarily 

programmable, this method shares with EULER-G the advantage that the 

structure and parameters of the picture can  be very general. 

In a certain sense, the viewing process method is utilized by any 

system which uses a separate process or processor to do the continuous 

re-di3play needed with refreshed image generation hardware. What 

distinguishes the viewing process method is: (1) the lack of an internal 

representation of the picture distinct from the structure the 

application process uses; and (2) tlM fact t^.at the viewing process 

independently accesses the shared data structure to continuously 

regenerate the picture while the shared data is simultaneously being 

altered by the application process. If condition (1) is not met, the 

system is usually closer to an instance tree system; if condition (2) is 

not met,  the system is instead closer to EULER-G. 

Because the viewing process accesses the shared data structure 

while it is being updated, the viewing process method has tne advantage, 

in theory, that the application process need not take note of the fact 

that a picture is being generated; it merely changes its data and the 

picture automatically changes in response. 

In practice, however, a truly formidable amount of inter-process 

synchronization is necessary because changes to the data can leave it in 

a momentarily inconsistent state capable of thoroughly deranging the 

operation of the viewing process. For example, it ?s not possible with 

conventional conputer architectures to add an element to a two-way 

linked list without, at some point in the operation, making the pointer 

relations "incorrect", i.e., at some point the structure is not in fact 

a two-way linked list; if the viewing process depends on the structure's 

always being a two-way  linked  list,  it may  fail. 

Another problem, which this method shares with EULER-G, is that the 

overhead involved in completely regenerating the picture can be quite 

high.    If    a single time-shared    processor is used,    this will    slow the 
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application process considerably. If, on the other hand, two physical 

processors are used, the application process may run too fast for the 

viewinc; process to keep up. This may lead to pictures which are 

inconsistent in the sense that different parts of the picture reflect 

differing successive states of the data; such global inconsistencies may 

also lead to failure of the viewing process if considerable care and 

forethought are not applied. 

The problem of the application process "runnintr too fast" is 

actually r-re se\;re than it might appear at first glance. This is due 

to two factors: First, a data structure which is appropriate tnd 

efficient for the application process may be decidedly inappropriate and 

inefficient for the purpose of generating t\\e desired image. Second, if 

the desired picture is not a straigh forward transformation of the 

application data, the amount of computation required to create the 

desired picture may be quite large. As an extreme example of both of 

these problems, the viewing process may have to construct an 

aesthetically pleasing layout of a graph described only by its 

connectivity matrix. 

Despite these problems, the viewing process approach has been 

successfully used in several applications where the desired picture was 

a simple transformation of the data and a data structure could be chosen 

which was a good compromise between the needs of the application process 

and the needs of the viewing process; examples are [Chrl, Robl, Suf]. 

Of particular note among these is Ivan Sutherland's SKETCHPAD system 

[Sutl],  which will now be discussed at some  length. 

SKETCHPAD is of course the seminal work that pointed out the 

virtues of interacting with a computer by means of pictures; the 

historical effect of this system on the entire field of computer 

graphics would be difficult to over-emphasize. 

In discussinsr SKETCHPAD, it is important to note that this system 

is neither a "graphics package" nor a "graphics  language" as those terms 

/ 
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are    nor mally    used,    but    rather    an    application    program    which    used 

interactive  computer graphics as an aid to  carrying out    its application 

— namely,  the creation of pictures. 
The method used to display the pictures described by SKETCHPAD'S 

application data — i.e., a viewing process -- has already been 

described.     Of interest here are the techniques used in    the application 

itself. 
It must first be pointed out that SKETCHPAD'S application should 

not a priori be overly relevant to the general topic under discussion, 

since that application was the creation of static, not dynamic, 

pictures; the motion of pictures visible in SKETCHPAD was due to the use 

of the display process technique to show succ-issive intermediate stages 

in the construction of the desired static picture. What makes SKETCHPAD 

relevant to this discussion is the fact that the method it uses to 

construct a desired static pictures is modification of a ore-existing, 

and possibly null,  picture;  and such modification is, of course,  change. 

Keeping    this in    mind, we    may note    that    SKETCHPAD'S application 

subsystem,  but not its viewing process display subsystem,  structures the 

picture in two    ways: First,  the picture    is structured as    a re-entrant 

tree composed of instances    of master subpictures;  the    terms "instance" 

and      "master"      originated      with      SKETCHPAD.        Second,      unlike    t' e 

unidirectional    change    propagation    of    the    "instance      tree"    systems 

discussed    earlier, the    SKETCHPAD    picture contains    an    arbitrary non- 

hierarchical non-directed graph composed of multi-way constraints,  i.e., 

N-ary relations between the    coordinate and other values used    to define 

the picture drawn    by the viewing process.      One of the primary    jobs of 

the application    subsystem js to    make every value    used in    the picture 

reflect all    the relations between    values  desired by    the user.      If no 

circularity    exists    a-nong all    the    relations—    i.e.,    no    values are 

defined  in terms of themselves — appropriate values are found    at once; 

otherwise,  every value in the picture is iteratively re-computed,  in the 

manner    of    Gaussian    iteration or    relaxation    [Rail,    Varl],  hopefully 

/ 
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converging to the desired solution. Relaxation was facilitated bv 

defining constraints as functions which, applied to the values 

constrained,  returned an error value. 

SKETCHPAD'S constraint network is more general than unidirectional 

instance tree change propagation in three ways: First, values can be 

functions of other unlike values; for example, a rotation can depend 

upon a displacement. Second, since constraints are not directional and 

relaxation can be used, every value in the system is potentially a locus 

of control over every other value; thus, by inserting a very "hard" 

constraint between a value and an input device such as a knob, direct 

control over any aspect of the picture can be achieved. Third, 

relationships can be used which are not repre^entable hierarchically — 

for example,  parallelism. 

As with instance tree systems, the relationships available in 

SKETCHPAD are fixed in the sense that a user cannot define an arbitrary 

desired constraint without doing programming "behind" the user 

interface. 

However, multi-way constraints appear to be less general than the 

picture/procedure isomorphism available in EULER-G, since structural 

changes to the picture — i.e., the addition and deletion of picture 

elements, including constraints — are not readily expressible in terms 

of error-function constraints. For example, Sutherland states in [Sutl] 

that it is not possible to create a constraint that causes a corner to 

become rounded; the reason for this is that such an operation involves 

the addition of a circular arc and the modification of the constraints 

used to hold visible  lines onto position values. 

The principle disadvantages of SKETCHPAD — or, rather, of a 

progr?'..ming language system which could be derived from SKETCHPAD'S 

command language — are two, and they both involve the use of 

relaxation. 

First, relaxation is a hill-climbing technique, and it is all too 

easy for any    system using such techniques    to become "caught"    at local 
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maxima different from the desired maximum — i.a., to reach states where 

"you c.n't get there from her«". In the interactive situation of 

SKETCHPAD, this is not too bad, since a non-malicious human operator can 

usually help the system over such "humps"; a malicious operator can, of 

course, always bollix such a system easily. Considered as the only 

solution technique available in a programming language, however, the use 

of relaxation is quite  limiting. 

The second disadvantage concerns the efficiency of the system. The 

mott important cunsideration here is that the apparent inefficiency of 

SKETCHPAD is not so much implicit in the system itself as imputed from 

the manner in which it was used. With the exception only of the 

multiple-truss bridge examples, there are no examples in [Sutl] which 

really "need" relaxation. However, constructing many of the examples 

without relational circularity generally requires some forethought, 

planning, and a more detailed knowledge of the system; in general, doing 

this is less convenient for the user, and user convenience was a major 

goal of SKETCHPAD. It must be noted, however, that the forethought and 

planning required are well within the range of that normally required 

for programming, so the "need" for "inefficient" relaxation must not be 

considered a disadvantage in SKETCHPAD considered as a programming 

language. 

In summary, it can be said that SKETCHPAD contains the seeds of a 

graphics programming system that is more powerful and not intrinsically 

less efficient than the vast majority of graphics systems currently in 

use. However, due at least partially to the self-referential nature of 

its application, SKETCHPAD can, if viewed hurriedly, engender much 

confusion over the difference between static and dynamic pictures and 

the nature of non-hierarchical structure in pictures; of course, no such 

issues were issues until SKETCHPAD existed- 

Perhaps surprisingly, the majority of work in computer animation 

impacts only    obliquely on    the work    reported here.      This is    the case 
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because work in computer animation has been confined to two areas which 

are "lower level" — in the sense of "high" and "low" level languages -- 

than the area of the reported research. 

This first of these areas is the creation of a "super paintbrush" 

capable of rapidly producing pictures at least corvarable to those 

produced by conventional animation techniques; Baecker [Bael] discusses 

animation work in this area. As was mentioned earlier in this section, 

a "super paintbrush" of some sort is assumed  in this document. 

The second area of animation research is th retailed synthesis of 

the complex interrelated motions and sequenc:. of structural change 

which are required in animation; examples are [Bael, Burl, Pari], The 

data gathering, functional parameterization, synchronization, etc, 

which are necessary for animation impinges on the reported work only to 

the extent of placing certain general requirements on the system 

developed: (1) it should be possible to make picture parameters 

arbitrary functions of time; (2) temporally parallel changes to many 

parameters should be possible; and (3) facilities for temporal 

synchronization and coordination should exist. All of tnese criteria 

are met in DALI, 

Baecker's proposed "Animation and Picture Processine Language" 

(APPL)  [Bael]  is,  however,   relevant,  and will now be discussed. 

In addition to providing facilities for parallel change, 

synchronization, and the gathering of pictorial and motion data, APPL 

provides e purely hierarchical structure for pictures. This structure is 

extensible in the following sense: Executing an APPL statement such as 

"MOVE picture BY distance" — meaning translate a (sub-) picture by a 

given amount — recursively applies MOVE to all the subpictures of the 

picture until either: (1) a primitive object, e.g., a dot, is found to 

which a built-in MOVE is applicable; or (2) a user-defined "picture 

type" is found for which the user has provided a MO/E primitive. Thus 

change is propagated in a    downward hierarchical manner,  as is    the case 



30 

with instance trees; but more flexibility is available than with 

instance trees, since by defining new picture types, the user can 

arbitrarily vary both the effect of a given command and the manner in 

which it  is hierarchically propagated. 

However, APPL provides no non-hierarchical propaeation of change 

whatsoever: even a "relative line" -■ i.e., a line segment defined by an 

endpoint and a vector distance, and ■•automatically" moved when the 

endpoint is moved — cannot, as Baecker points out, be defined in APPL. 

Why this should be the case, and in what sense it is true, is perhaps 

best explained by example: 

Suppose there is a pictu- e PA containing an endpoint E, and we wish 

an otherwise unrelated picture PB to be centered at E. Initially, PB is 

constructed using E, and shares it with PA. Now, if PA is MOVEd, the 

position of E will -- or at least can — change; but there is no way to 

indicate that since E changed, PB should be MOVEd also. The only way to 

make .'B change whenever E changes is to make PB part of PA. But there 

are situations where this "containment" solution does not work; for 

example, a line which is to Join the centers of two independently moving 

objects cannot be "part of" either object. Maintaining such non- 

hierarchical relationships is referred to as "constraint satisfaction" 

in APPL and considered outside of the domain of the language. 

It  should be noted,  however,  that  none of the examples    p^ivei above 

— the relative  line,  the centered picture,  and the line Joining centers 

— involve circular constraint relationships; the desired picture is 

quickly and easily computable In closed form, without the use of any 

type of "relaxation". The problem is that the lack of any structure 

other than hierarchical structure makes it impossible to express the 

desired behavior of the picture without stepping outside the bounds of 

the formalism which  is provided. 

The problem that purely hierarchical picture description formalisms 

have significant practical limitations also affects instance tree 

systems.      There,    however,    this    problem    is    overshadowed      by    other 
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concurrent limitations, including the necessity of havinr pargrreters 

depend on like parameters and the limited set of parameters available. 

It is also the case that instance tree systems generally provide some 

limited, but useful, non-hierarchical relations, e.P., relative lines. 

Since APPL removes the additional limitations and provides no non- 

hierarchical relations at all, it is an excellent example nf both the 

c-'pabilities and the limitations of purely hierar'.nical picture 

description methods. 

In comparison, a major poal of the work presented here has been to 

desipn a system in which arbitrary user-defined non-hierarchical 

relationships -- as well as hierarchical relationships -- are 

specifiable  in a manner conducive to their efficient  computation. 

1.3 Summary 

Chapter 2 presents a characterization of dynamic computer irraphics 

and the tasic system and lanpuaee organization of DALI. In particular, 

it presents DALl's division i;ito (1) M-DALI, iealinr with chanres that 

occur instantaneously, i.e., at monadic instants of time; and (2) S- 

DALI, a superset of M-DALI, which deals with smooth chanees occurini* 

across temporal  intervals as sequences of monadic  chanrres. 

Chapter 3 presents the basic concepts of M-DALI, including: the 

four basic DALI objects, namely outputs, daemons, picture modules, and 

picture functions; the two structures which fnread through a picture, 

namely the containment tree and the data web; and the manner in which 

DAL... pictures, as programs, are "executed". These are the central 

issues in DALI. Understanding this chapter is absolutely critical in 

understanding DALI. 

Chapter 4 discusses further issues in M-DALI, including coordinate 

system      transformations,       structural      changes       to      picture    clemen , 
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interdependence, deletion, and "hif'-testinp; it also Includes a 

realistically  laree example. 

Chapter 5 considers the problem of circular dependence amonr 

daemons,   leading to iteration and relaxation. 

Chapter 6 then presents S-DALI, and Chapter 7 presents exclusions 

and summary. 

Appendix 1 provides an alphabetized list of the primitive DALI 

procedures and summarizes their actions. Appendix 2 similarly lists the 

objects defined by DALI, their components and purposes. Appendix 3 

presents some details concerninp the possibility of retentive storage 

manacement  — "rarbage  collection" — not covered  in the text. 

i 
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Chapter 2 

A Global  Overview of DALI 

2   1  Static Versus Dynamic Translation 
to Pictorial Form 

At the highest level of abstraction, ail dynamic graphics systems 

including DALI are divisible into two primary components: the driving. 

process and the rraphics system.   (Fig.  2-1a) 

The driving process is the ultimate source of the data on which the 

picture t r-     V-N K^t c* e»" T»-     1 c    the applications    propram ir. 4 ,*        o v ft« 11V 4 « «        2 P. d 

contains in a form which it finds convenient the data which is to be 

interpreted graphically. This data may or may not have explicitly 

graphical romponents. It could be an array of numbers, to be shown as a 

graph; a complex interconnected data structure, to be shown as a circuit 

schematic; the positions and attitudes of characters, a background, and 

a camera angle,  to become one or more  frames of a movie; etc. 

The function of the graphics svstem is to translate selected parts 

of the driving process' data into the desired pictorial format, a 

process which may in general be either static or dynamic. The 

differences between the two types of translation are the primary subject 

of this sec'ion. They are best explained by first dividing the frraphics 

system a bit further into a Picture definition system, a hardware 

display file, and a dl^lay processor (Fig. 2-1b). How this structure 

relates to the systems described in section   1.2 will be discussed at the 

end of this section. 
The picture definition system translates driving process    data into 
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a representation of the desired picture which can be consumed by the 

display hardware. This representation is the hardware display file; it 

is accessed by the (hardware) display processor to produce a visible 

itnape. We are concerned only with the creation and manipulation of the 

hardware display file by the picture definition system. 

In static translation to pictorial form, the picture definition 

system always scans all the drivintr process data needed to produce the 

whole hardware display file. I.e., If the drivmr process changes some 

relevant datum and an updated picture is desired, the picture definition 

system re-scanr all the data for the picture and creates an entirely new 

hardware di .play file which replaces the previous one. This process may 

be viewed as successive retranslation or picture regeneration. 

Thi contrast between static and dynamic translation occurs when the 

driving process changes the data on which an existing picture is based. 

The dynamic method does not create an entire new display file but rather 

alters the existing file to reflect the change?, »ceeasin» only that 

driving process data relevant to the changes. Dynamic translation may 

be viewed as propagating drivine process changes across to the 

corresponding parts of the hardware display file, bearing in mind that 

this propagation is an active process which transforms the nature of the 

change. It may also be viewed as incremental translation or true 

picture change, as opposed to regeneration. 
In the static case, the picture definition component need retain no 

state information; it is simply one or more pure procedures re-applied 

from scratch to the driving process data. In the dynamic case, state 

information must be retained from change to change in order to define 

the mappine from the driving process data to the corresponding elements 

of the hardware display file. 
Dynamic translation potentially requires less computation than 

static translation since full regeneration of the hardware display file 

is unnecessary; the time savings resulting from this can be quite larcre, 

especially when few elements    of the picture move simultaneously,    as is 
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commonly the case. However, there may be significant overhead involved 

in updating the state data and actually using it to find out what to 

change; also, the space needed for the required mapping data may be 

large. 

In addition to a potential saving of computation time, dynamic 

translation is inherently more powerful „han static translation, since 

the former can produce changes to the driving process chansres th,iiselves 

and the latter cannot. For example, suppose that a driving process 

datum which is translated into a bar graph element's height is changed 

from 3.0 to 1,5. All that static translation can do is first show the 

"3.0" height, and then — in the "next" picture — the "'4.5" height; it 

can do nothing else, since the "3,0" height is no longer available when 

the "l\.5n height is generated. In comparison, both the initial and 

final heights are potentially available simultaneously in dynamic 

translation; hence, the sudden change can be converted into a smooth one 

by interpolating the height change into many small successive steps. 

Lest the reader consider this a frivolity, it mould be noted that such 

smootning nas the very significant, effect on the human viewer of 

maintaining the identity of the changed picture element across and 

through picture changes. This can be very important if major changes 

are made in the picture, since it minimizes the problem of discovering 

how the new state of the picture, and hence of the driving program data, 

relates to the previous one. 

Whether dynamic translation has any inherent power over static 

translation beyond smoothing and lower computation cost depends on how 

strictly the line is drawn between the two types of translation. Where 

this line is drawn is often a question of which data belongs to the 

driving process, and which belongs to the picture definition as part of 

its state. For example, the inverse of smoothing, i.e,, updating the 

picture only every Nth driving process data change, requires a modulo N 

counter. If that counter is considered part of the driviner process, 

i.e.,  the driving process    informs the picture definition only    of every 

/ 
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Nth change, then static translation can provide this feature. On the 

other hand, if the counter is part of the picture definition, i.e., the 

driving process infonrs the picture definition of all the changes and 

the picture definition itself chooses when to run, then dynamic 

translation is being used. In general it can be said that dynarric 

translation provides more convenient mechanisms than static translation 

for relating the dynamics of the visual image to the dynamics of the 

driving program, and in keeping purely display-oriented operations 

separated  from the application. 
However, a strict distinction between static and dynamic 

translation is often difficult to make, since for efficiency reasons, 

static translation is seldom found in I completely pure form; usually 

there is some mechanism for maintainine several simultaneously visible 

display files, so that large quantities of static background data do not 

have to be regenerated for every change. From the discussion above, 

this appears to be dynamic translation since only "relevant" parts of 

the picture are changed; but the mapping between the driving process 

data and the elements of the picture is sufficiently crude that the 

overall tone of such as system is really that of static translation. 

EULER-G [Newl] is a good example of system like this. 

The instance tree graphics systems discussed in section 1.2 provide 

for the breakdown of the hardware display file into a lar*e enough 

number of small units to allow true dynamic translation, possibly with 

intervening translation into a transformed display file truly 

corresponding to the hardware display file. 

The detailed relationship between the four-element organization 

presented here - driving process, picture definition, hardware display 

file, and display processor — and the instance tree systems discussed 

in section 1.2 depends on the capabilities of the display processor. If 

the display processor is capable of producing a visible image directly 

from    the instance    tree used,     then the    hardware display    file    is the 
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instance tree, and the picture definition is the combination of (1) the 

utility routines provided for manipulating the instance tree, (2) the 

user programs concerned with manipulating the instance tree, and (3) the 

user data structure used to relate the instance tree with the driving 

process' data. In this case, the user data structure comprises the 

state information of the picture definition. Referring again to the 

display processor, if it is incapable of usinp the instance tree 

directly, then the hardware display file is the transformed display file 

referred to in section 1.2, and the instance tree is an additional part 

of the picture definition's state data. 

The four-element division of this section may be interpreted for 

the viewine process method described in section 1.2 in either of two 

ways: In the first interpretation, the viewi ig process is considered a 

complex display processor; here, the display file and the picture 

definition are intermingled with the driving process' data. As an 

alternative interpretation, tha viewing process itself, including 

whatever temporary internal state data it may have, is the picture 

definition; in this case, the hardware display file has only virtual 

existence as control words and data passed to a simple hardware display 

controller. The first view is usually more appropriate, since some 

elements of picture description are usually necessary in the shared data 

base used by this method. Interestingly, viewing process systems are 

very often static translation systems which — when they work properly 

as in SKETCHPAD — operate very auickly indeed, injecting no dynamics of 

their own but constructing new pictures fast enough to show every twitch 

of the driving process. 
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2.2 The Top-Level Operation of DALI 

DALI fits into the above scheme as a picture definition system for 

dynamic translation of chanprinp data into pictorial form. It composes 

the picture definition out of "process-like" elements, called picture 

modules, and provides for the needed state/mappinp data both through 

state components in the picture modules and through the structure in 

which the picture modules are embedded. 

The notion of dynamic translation as the propagation of computed 

change is deeply embedded into DALI; it is the basis for the transfer of 

control from picture module to picture module and from the drivine 

process to the picture modules. This transfer of control comprises the 

top level operation of DALI, and it proceeds in this manner: 

(1) Initially, control resides in the drivincr process. This troes 

about its business in whatever manner it finds appropriate, 

given its programming and data, until (2) occurs. 

(2) When the drivine process makes a chanee to data which 

determines the current picture, this change is detected by one 

or more picture modules and control leaves the driving process 

and enters the picture definition. 

(3) One at a time, the picture definition's picture modules which 

have detected change are eiven control and perform whatever 

processing they desire. They may directly change the hardware 

display file; or they may make data changes which are detected 

by other picture modules, thus causing the latter to eventually 

obtain control. 

CO When every picture module which has detected chanee has been 

run, control returns to the driving process which then takes up 

where it left off. 

As an example of this process, consider the simple problem, 

mentions^, in the preceding section, of making a bar trraph fclewent'a 
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height follow a datum in the driving process. The type of picture 

desired is shown in Fig. 2-2a, and a possible picture definition is 

diagrammed in Fig. 2-2b. In Fig. 2-2b, small rectangles are "watched" 

data, circles are picture modules, and dashed arrows point from a datum 

to the modules detecting changes in that datum. The elements of the 

picture corresponding to elements of the picture definition have been 

(riven corresponding labels: PI and P2 contain line endpoint data, module 

R constructs a "relative position", and modules LI, L2, and L3 create 

and update lines. 

When the driving process changes the indicated datum to 4.5, the 

following happens: 

(1) Picture module T notices the change to '4.5, gets control, and 

usini? the value 4.5 concocts a new value for PI. This value 

will be used as the new position of the upper left corner of 

the bar. 

(2) Picture module R, seeing the change in PI, gets control and 

generates a new P2, the position of the upper right corner of 

the bar. 

(3) The changes in PI and P2 are noticed by module LI, which 

updates the hardware display file to contain a line correctly 

showing the top of the bar, a line between PI and P2, 

(U) Modules L2 and L3, in a manner similar to LI, update the 

display file to show correct lines on either side of the bar on 

seeing changes made to PI and P2. 

(5) Control returns to the driving process- 

Several points about this example are of interest: 

First, the example is oversimplified in that all the modules 

require data which has not been shown buu which is part of the state 

data. For example, L2 and L3 need the positions of the bottom ends of 

their lines. 

Second, it should be noted that no picture module explicitly 

"calls" another. T, for instance, does not refer to R, LI, and L2; it 

.iust changes PI and leaves sorting out the result to the DALI system. 

/ 
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Third, we conveniently assumed that R would run before LI, thereby 

avoiding running LI twice. In fact, R is guaranteed to run first by 

scheduling rules built into DALI which overaee the transfer of control 

from module to module. 

Fourth, the mechanism for communication among picture modules — 

change a value and let those watching it run -- is the same mechanism 

"sed to communicate from the driving process to the picture definition. 

2.3 Sudden Versus Smooth Change: 
M-DALI,  S-DALI, and Time 

At the normal level of human perception and interest, change to a 

picture, or indeed to anything, can be viewed as belonging to one of two 

categories: instantaneous change, occuring at an indivisible, hence 

monadic, instant of time; and smooth or continuous change which occurs 

across a temporal interval. This division is reflected in DALI, which 

is divided into two parts: M-DALI. which deals solely with changes 

which, though many can occur at once, are all Impressed on the picture 

simultaneously -- at an indivisible, Monadic instant; and S-DALI, an 

extension of M-DALI, which deals with smooth changes that occur across 

temporal intervals by treating such changes as temporal Sequences of 

instantaneous monadic changes. DALI, referred to without any prefixed 

qualifiers, is actually S-DALI specifically considered as an extension 

of M-DALI and therefore containing all M-DALI constructs; the term "S- 

DALI" will often be used to refer to elements of S-DALI which are not in 

M-DALI. 

A primary difference between S-DALI and M-DALI is that M-DALI has 

no notion whatsoever of time: the only way an M-DALI program can change 

the picture is to say "make this change now" — a statement which, since 

the "now" must always exist    and so can be implied,  is    simply shortened 



U3 

to "make this change". S-DALI, on the other hand, contains the notion 

of time as a metric ordering events. Thus an S-DALI program can say 

"make change C1 at time T1, make change C2 and time T2, and make change 

C3 at time T3". This would result in the occurrence of changes C1, C2, 

and C3 in an order defined by the values of T1, T2, and T3; the amount 

of time elapsing between the performance of the changes is also defined 

by  uhe  values cf Tl,  T2,  and T3. 

In the preceding paragraphs of this section, the term "time" has 

actually been used to mean "time as the programmer intends it to pass in 

the picture as perceived )y a viewer", or picture time. This must be 

distinguished from PALI compute time, the time which necessarily passes 

while the computation of changes to the picture is taking place. 

Picture time is always "frozen" during DALI compute time, i.e., 

picture time does not change during the computation of a set of picture 

chanRes: all processing in DALI is Instantaneous wicn respect to piccure 

time.     How this operates in M-DALI may be illustrated as  follows: 

Suppose an M-DALI program is running to update the picture in 

response to some driving process operation. Some picture module says 

"make change C1", and, some period of DALI compute time later, another 

picture module says "make change C2n; to M-DALI, this whole operation 

means "make changes C1 anl C2 simultaneously", where "simultaneously" 

specifically refers to picture time. In terms of a motion picture 

recording of the resultant display, changes C1 and C2 will both be 

performed    during    the interval    between    two successive    frames    of the 

movie. 

In a situation where the display is being directly viewed while 

changes are being computed, the system will attempt to make picture-time 

simultaneous changes appear to be truly simultaneous; but this attempt 

may be unsuccessful if the system is overloaded. 

The numeric values used to indicate times in S-DALI refer to 

picture    times,  and    are    most easily    understood as    referring    to some 
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number of "movie frames" since the system was reset. Arain, if the 

display is beinR directly viewed, an attempt will be made to maintain 

the desired relationship between picture time and real time as perceived 

by the viewer, but it will not always be successful. How picture time 

advances will be explained later in this section; for now. it should be 

noted that picture time remains constant until all the processing 

aff.cti:^ a «üv-n instant of picture time has been completed. 

This strict separation between picture time and DALI compute time 

is made because the amount of time required for computation can vary in 

a manner which is quite difficult to predict; and if aesthetically 

pleasin. dynamics    are to    be created,  picture    time must    be controlled 

accurately. 
There is actually a third    time scale involved in the    operation of 

DALI-    this    is    the    time    the driving    process    takes    to    do    its own 

computation,  and    is called driver    time.    Driver time    is distinguished 

fro«. DALI compute    time because in a    purely M-DALI system it    serves to 

separate and    sequence successive    changes to    the picture:    the driving 

program runs,  then    M-DALI makes a    set of "simultaneous"    changes,  then 

the driving    pro-am runs    again,  etc.     T^is    is something    DALI compute 

time never does;  DALI compute    time is always invisible relative    to the 

separation and sequencing of picture changes.    Driver time has no effect 

on picture time    in S-DALI:  picture time    is "frozen" while    the drivinr 

process is running.    Driver time may, of course,  affect the relationship 

between picture time and real time. 

The manner in which M- and S-DALI interact with the driving process 

„ill now be described, with emphasis on the temporal issues involved. 

At this point it should be recalled that, as mentioned in the previous 

section, the mechanism by which control is passed from the driving 

process to the DALI picture definition, and also from picture module to 

picture module, is by changing some value "watched" by a picture module; 

this is uniformly the case in both M- and S-DALI. 
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The interaction between a  purely M-DALI picture definition    and the 

driving process consists of repetitions of the following sequence: 

(1) The driving process runs for a period of driver time, makine a 

set of changes relevant to the picture. At some point, chosen 

by the driving process, the current set of changes is presented 

to the M-DALI picture definition "in parallel" — i.e., the 

driving process voluntarily suspends its operation and allows 

all the picture modules "watching" all the changes to run. 

(2) Driver time stops advancing, and computation occurs within the 

M-DAL.   : icture definition for a  period of DALI compute time. 

(3) DALI compute time halts, and a set of cnanees are 

simultaneously impressed upon the picture. 

CO Control returns to the driving process, and driver time resumes 

its advance. 

Two successive repetitions of this sequence are shown in Fig. 2-3, which 

illustrates the relationship between driver time. DALI comoute time, and 

"pseudo picture time"; the latter is the sequencing of sets of 

simultaneous picture changes which derives from driver time and DALI 

compute time when only M-DALI is used. Such a system is essentially 

useless for serious animation work due to the circumstantial nature of 

the intervals between picture changes; however, it can be useful in 

interactive graphics since close control over picture time is 

unnecessary in such applications, and the added overhead needed to 

achieve that control is disadvantageous. 

In comparison, the interaction between an S-DALI picture definition 

and the driving process specifically refers to picture time: 

(1) The driving process runs for a period of driver time and 

eventually presents a set of changes to the picture definition 

"in parallel" as in M-DALI. At this point, picture time has 

some value,  initially 0. 

(2) Driver time  stops advancing. 

(2.1) Computation occurs within the picture definition  i„r a 
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period    of DALI    compute  time,     until all    the picture 

modules which  "want"  to run  have been run. 

(2.2) If any previous DALI computation created picture 

changes slated to occur at the current picture time, 

all sue1", changes are simultaneously Impressed on the 

picture. 

(2.3) If any previous DALI computation has scheduled any 

operations — not just picture changes — for a 

picture time in advance of the current picture time, 

picture time is advanced to the earliest such future 

picture time and step (2.1) is re-entered to perform 

the desired operations; otherwise, step (3) is 

entered. 

(3) The driving process continues from where it stopped, and driver 

time  resumes its advance. 

Two repetitions of this interaction are illustrated in Fig. 2-4, 

which has been constructed under the assumption that picture-time 

intervals between picture changes are  to be constant. 

With respect to the precedinp; S-DALI operation sequence, some 

additional explanation is needed concerning the scheduling of operations 

for future picture times which  is  referred  to in step 2.3. 

S-DALI programs in fact have a general ability to say "do this at 

that time", where "that time" is any picture time in advance of the 

current picture time, and "this" is an arbitrary fragment of a program; 

such operations are then performed during an iteration of step 2.1 as 

indicated above. 

An operation which is particularly relevant and simply performed at 

a future time is changing the value of some "watched" datum; this is 

particularly useful since it can call a multitude of other picture 

modules into action. S-DALI therefore contains facilities for 

conveniently performing such "future changes"; in particular, S-DALI 

contains  facilities  for creating,     as units,   finite seouences    of future 
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chanpes to "watched" data. This provides a convenient method of 

interpolatino; values and creatine the visual effect of smooth motion. 

In addition, the ability to create such future chantre seouences provides 

a mechanism for factoring the (picture-)temporal dynamics of pictures 

from time-invariant relationships such as connectivitv, visual 

complexity as a function of scale, etc.: ti^e-invariant operations can 

be dd.e with M-OALI operations performed in response to value chances 

which are created and scheduled for future picture times by completely 

separate S-DALI operations. These M-DALI operations, performed durine 

step 2.1, will of course refer to their eternal "now", i.e., the current 

picture time, and hence will affect the picture at the immediately 

succeeding step 2.2. This utilization of both M- and S-DALI operations 

in a single picture is illustrated in the examole which follows. 

The previous bar eraph example will now be modified to interpolate 

the heieht of the bar, effectively moving it smoothly ir picture time 

from one heitrht to the next. Referring back to Fie. 2-2b, a 

straightforward wiv to accomplish this is by inserting an "interpolator" 

picture module between the driving process' value and the picture module 

T. This is module I in Fig. 2-5, which shows the modified picture 

definition. When I gets control due to a chanee in the driving process' 

value, it will apply a sequence of future changes to a value V, 

interpolating from V's current value to the value provided by the 

driving process. Module T now watches V, and so initiates the 

generation of many marginally different pictures. The total seauence of 

operation goes  like this: 

(1) The driving    process changes     its  internal    value from    3-0 to 

4.5. 

(2) I gets control during S-DALI step 2.1. UsinK V's initial 

value of 3.0, I applies a sequence of future changes to V, 

such as (3.1, 3.2, . . ., 4.5), choosine appropriate picture 

time intervals between the steps. 
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(3) S-DALI step 2.1 terminates, and since I made no changes to 

values  for the current picture time,  S-DALI step 2.2 is null. 

(14) S-DALI step 2.3 finds the change to V to 3-1, advances picture 

time appropriately, and cycles back to S-DALI step 2.1 to 

perform the chanee. 

(5) In S-DALI step 2.1, V is changed to 3.1, then T runs changing 

PI,  then R runs changing P2,  then LI,  L2 and L3 run. 

(6) The picture changes scheduled for "now" by LI, L2, and L3 are 

performed as S-DALI step 2.2. 

(7) S-DALI step 2.3 finds the future change of V to 3.2, advances 

picture time appropriately, and cycles back to S-DALI step 2.1 

to perform the change. 

Ucn  Having  found the change of    " to a.5 at  (M6),  S-DALI    step 2.3 

finds no further outstanding future changes and so proceeds to 

S-DALI step  3- 

(50) Control returns to the driving process. 

The process    described above    is one    way to    smooth out    the bar's 

motion.      There is    at  least    one other:     In S-DALI,     it is    possible to 

create a module replacing T which watches not for immediate changes in V 

but  instead for the application of an entire secuence of    future chants 

to V.    This T' module    can then apply an appropriate sequence    of future 

changes to PI,  an action which    can be detected by an R' which    can then 

apply an appropriate sequence to P2.     Appropriate modules Li',    L2',  and 

L3' can also be constructed to watch for PI  and P2 seauences and produce 

seauences    of    display    file    changes.      With    this    method,       the    only 

repetitive work    that need be    done  is the    final output of    the display 

file sequences. 

In    the    chapters which    follow,    M-DALI will    occupy    most    of our 

I 
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attention. This is not because S-DALI is intrinsically less important 

or less interesting, but because many issues of interest are common to 

both S- and M-DALI and they are best discussed without the added 

comp]ication of picture time. 

2.'» Desiderata 

This section discusses background issues which, while of minor 

inherent importance to the interesting issues of DALl's semantics, art 

necessary to an understanding of the exposition pursued in later 

chapters. 

DALI is defined as a language extensior,. This has been done for 

two reasons: First, it allows the description to concentrate on those 

items which are unique to DALI and ionore irrelevant but necessary 

details such as the syntax of addition. Second, there is simply no 

reason to devise yet another language to express actions which are 

perfectly well expressed by existing languattes, e.g., iteration and 

assitrnment. 

The language of which DALI is an extension will be referred to as 

the base language. Essentially any programming language which is usable 

in practice can be a DALI base language; all that is required is that 

the base language (1) be arithmetically complete, i.e., be a Turing 

machine, and (2) contain some mechanism for defining and applyintr valued 

procedures or functions to arguments. No assumptions are made 

concerning the base language's control or environment structures. 

The fact that many languages can be a DALI base language does not 

mean that creating a DALI extension is simple or even equally difficult 

for all base languages. Major additions to the base language's compiler 

or interpreter    will be neces3ary,    as will the    construction of    a fair 

/ 
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body of run-time support routines. For example, a class of assignment 

and identifier evaluation is defined by DALI, and run-time manaeement of 

"heap" storage is needed. 

Furthermore, not all DALI extensions will be eaually powerful. For 

instance, DALI programs involving unpredictable storage demands will be 

significantly more difficult to write In a FORTRAN-DALI than in    a LISP- 

DALI. 
As a con.-eauence of the fact that DALI is defined as a language 

extension, certain ele-nts of DALI are undefined. In particular its 

syntax is undefined, as are various common elements of its semantics, 

e.g., whether or not it has a GOTO. While in the abstract this causes 

little difficulty, it creates certain expository problems, since 

examples become singularly difficult to present in the absence of a 

well-defined syntax. For this reason, in the chapters which follow the 

description will be couched in terms of a single sample base languaKe, 

namely LISP.     LISP was chosen for these reasons: 

(1) It  is fairly widely known. 

(2) Its syntax is so    simple that syntactic issues    can effectively 

be ignored. 
(3) Since the only operation directly performed by LISP ppo^rama ta 

functional application, the semantics of an extension can be 

defined with relative ease. 

The reader unfamil^ h LISP may consult  [Weisl] or [Mod]. 

The principle seman.u. oddity which this choice forces upon DALI is 

that there are no unvalued procedures, only functions; however, the 

cases where a function returns no relevant value should be clear. 

The fact that LISP uses retentive storage management -- a "crarbajre 

collector" — is utilized in the "user code" of some of the examples; 

however, DALI constructs which are not in the base lansruaee not only do 

not require the use of a garbage collector, but also cannot utilize it. 

This is  further discussed in section 4.3 and Appendix  3- 

Of course,  the syntax of    LISP can be annoying    This    is partially 

i 
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alleviated here by the use of "prefix macro-characters" for certain 

much-used functions. Prefix macro-characters are used in MACLISP, the 

MIT Artificial Intelligence Laboratory's LISP [Mool]. They are sinele 

characters which function as sinrle-arpument textual macros, 

transforming themselves and the single following LISP S-expression into 

a function call with a single argument. For example, one such macro- 

character used  in DALI is comma  (,),   so that: 

,expression 

expands to 

(OVAL expression)   . 

A character used as a macro-character is not usable as an 

identifier   (ATOM)  constituent. 

To underline the fact that DALI should not be considered intimately 

bound to LISP, one example of DALI code is re-coded using a different 

base  lantruace:   EULER.    This example appears in section 3.12. 

Independent of DALI being a language extension, however, it is in a 

real sense incomplete as presented here. Many features needed to ound 

out DALI to its full extent have been left out; there are many further 

additions which could be incorporated, ranging from programmer 

convenience measures to additional constructs needed to make potential 

capabilities actual. For example, the problem of making pictures change 

according to the contents of arrays is nowhere treated, and neither is 

the eauivalent problem concerning LISP lists. This has been done from a 

desire to address only those issues which are considered basic; 

hopefully, additional features can be readily conceived in terms of what 

has described. The reader's indulgence is begged if something of 

importance has  been  inadvertently left out. 

There are  three minor issues which must still be considered: 

The    first    minor    issue    concerns    terminology.      Throughout    this 

document,   the LISP term "ATOM" and the term "identifier" will be used as 

I 



5= a 

55 

synonyms. This is not precisely correct usape, since, for example, a 

number is also an ATOM in LISP. When anything other than "identifier" 

is meant,  some term other than  "ATOM" will be used,  e.c,  "number". 

The second minor issue concerns linguistic meta-syntax. The method 

used to describe the use of new functions is to etive a sample 

application,  such as 

(POS x y) 

and to describe    in the text the    function's arguments, value,    and side 

effects as relevant. 

Within a sample application, lower case items, such as x and y 

above, are syntactic meta-variables. Meta-variables beginning and 

ending with a dash (-) are used to represent multiple objects; otherwise 

each1 one represents a single object.     Thus in the sample application 

(ONS cndtn  (-outs-)   -body-) 

cndtn is a single object,  but    -body- is some number of objects,    and  (- 

outs-)   is a  list of    objects.    Any  limitations or. the number    of objects 

represented by a  "dashed" meta-variable will be specified in the text. 

The third minor issue concerns coordinate arithmetic. For 

convenience in expressing examples which use coordinate arithmetic, a 

very simple prior extension of LISP will be assumed. This extension, 

whose description follows, consists of the addition of a position data 

type and some associated functions. 

Positions are created by the function POS. An application of the 

form 

(POS x y) 

where x and y are    numbers,  creates and returns a  position    which refers 

to the location   (x,y)  in some cartesian coordinate system. 

Positions are examined by the functions X and Y. If p represents 

(POS x y),   then: 

(X p)  returns x, and 

(Y p)  returns y. 

The arithmetic  functions  for addition,     subtraction, multiplication 
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and division (+, -, *, and /) are extended to operate on positions. If 

p is (POS x y), and pi is (POS xl yl), and n is a number, then: 

(+ p pi) returns (POS (+ x xl) (+ y yl)) 

(- p pi) returns (POS (- x xl) (- y yl)) 

(• p n) returns (POS (* x n) (» y n)) 

(/ p n) returns (POS (/ x n) (/ y n)). 

No operations on positions other than the above are defined. 

The fact that positions are here defined to refer to a 2- 

dimensional space is not significant.  DALI is concerned with control 

rather than calculation, and the dimensionality of the images it 

controls is of secondary importance. 

* 
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Chapter  3 

M-DALI:  Basic Issues in Discontinuous Change 

This chapter discusses the basic concepts behind M-DALI, a subset 

of DALI which deals only with discontinuous — i.e., inst?ntaneous or 

temporally Monadic — change to pictures. M-DALI is the foundation of 

DALI,  and the concepts and objects presented here are M-DALI's b?'ie. 

Appendices 1 and 2 provide alphabetized lists and short de^c ."iption 

of all defined objects and  procedures. 

3.1  The Basic Objects: 
Outputc,  Daemons,  Picture Functions,  and  Picture Jtedule: 

As an extension to a base language, here LISP, DALI adds four 

primary types of objects: outputs, daemons, picture modules, and picture 

functions. The ways these four objects can be manipulated by the user, 

and the ways they interact in the DALI system, form the basis of M-DALI. 

This section briefly describes the purpose of each of the four, 

summarizes some of their characteristics, and illustrates how they are 

typically used with a very simple example. 

The purpose of outputs is communication; they are used to hold data 

to be communicated between independent picture modules. 

The purpose of daemons is processine; they are executable 

procedures. 

The purpose of picture nodules is hierarchical organization and 

provision for local storage; they are used as containers of objects, 

including other picture modules. 
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The purpose of picture functions is the creation of picture 

modules. 

An output is an object containing a value. User-writt .1 procedures 

can access outputs' values and replace  them with other values. 

A daemon is a paratneterless procedure executed in response to the 

occurrence of an event. One class of events that can cause daemons to 

rCwporJ is a c^an^e to the value of one or more outputs. By responding 

to output value changes, accessinsr output values, and changing output 

values,  daemons propagate change in the manner mentioned in section 2.2. 

A picture module is an organizational unit containing outputs, 

daemons, other picture modules, and a local environment providing data 

storage  for daemons. 

A picture function is a function, i.e., a valued procedure; it is 

applied to arguments and returns a value. Application of a picture 

function creates, in lieu of a procedural activation, a picture module 

which stays in existence until destroyed by the action of a user program 

(daemon). The value returned by a picture function is always the newly 

created picture module. 

A simple example will now be eiven to illustrate how the four 

primary objects are  typically "ised together. 

The picture function RELP, which appears below, does not create any 

visible objects. Its purpose is to capture the notion of "relative 

position" in this sense: within the module created by applying RELP, a 

daemon is created which maintains the value of an output named SUM as 

the sum of the values of two other outputs. This SUM output can then, 

for example, be used as the endpoint of a line, assuming that the values 

added to obtain SUM's value are  positions. 

RELP can be defined as  follows: 

(DEFPIC RELP   (PI P2 "OUT"  SUM) 
(ONS  (VAL   P1   P2)   (SUM) 

(OUCH SUM  (+  ,P1   ,P2))   )) 
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DEFPIC "declares" HELP to be a picture function takinp two arguments: PI 

and P2; these trust be outputs. Applyincr RELP creates a picture module 

whose local environment holds PI, P2, anJ SUM. The indicator "OUT" 

means that SUM is a local temporary variable initialized to contain a 

null-valued output. The body of RELP, which is evaluated (executed) 

when RELP is applied, contains a single application of the function ONS; 

this application creates a daemon within the created module. This 

daemon runs whenever the value of PI or ^he value of P2 changes; this is 

indicated by (VAL PI P2). When run, this daemon performs a single 

functional application: it applies the function OUCH (for OUtput CHanre) 

to change the value of SUM to the sum of the values of PI  and P2. 

The output which    is  SUM's value can    be obtained  for use    in other 

modules by means of the function OUT.    Evaluating 

(OUT  (RELP A B)) 

first applies RELP  to A and B, which are  both oi .puts;     this application 

returns    the new    module containing    SUM.    Then    OUT is    applied    to the 

module and returns  the SUM    output.    Since such applications of    OUT are 

very common,  a prefixed  exclamation point   (!)   is used as syntactic surar 

for such an application. 

If P is an output which has a position as a value,  and    the outputs 

Dl  and D2 contain positions used as vector displacements,    the following 

code fragment creates a chain of relative displacements of length two: 

(RELP  !(RELP  P Dl)  D2) 

If only D2's value  is changed,  then only the daemon in the    outer module 

is run;   if DI,   P,  or    both change value,  the daemon in the    inner module 

runs and then the daemon in the outer module runs. 

Finally, assume LINE is a picture function creating a    module which 

maintains    a visible    line connecting    two endpoints    defined    by output 

values;  when the endpoint values change,  a daemon in this module chancres 

the nsition of the visible  line appropriately.    Then 

(LINE P  !(RELP  P D)) 

creates a "relative line" from P to P+D which will move appropriately if 

P's value, D's value, or both changes. 
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An LINE picture function with the properties assumed above    will be 

defi .cd in section 3-7. 

3.2 The Operation of M-DALI 

M-DALl's    operation    is      simply    explained    in    terms      of    daemon 

execution. 

There is a single, global daemon queue which holds daemons to be 

executed. A daemon is placed on the queue as soon as its condition — 

which describes the event the daemon responds to -- is satisfied. The 

order of daemons in the queue, and hence the order in which daemons will 

be run, is determined by a set of daemon scneduling rules which will be 

discussed in Section  3-8- 

M-DALl's total operation consists of repeating the sequence below. 

The repetition begins when the driving process starts execution, and 

terminates when the driving process terminates. 

(1) The driving process executes normally until some daemon's 

condition is satisfied, e.g., the driving process chances the 

value of an output watched by a daemon. 

(2) The (bemon(s) whose condition(s) have been satisfied are placed 

on the daemon queue, in an order determined by the scheduling 

rules,  and control leaves the driving process. 

(3) Until the daemon queue is empty, the daemon at the head of the 

queue is removed from the queue and executed. Any daemon whose 

condition is satisfied during such execution is queued; the 

currently running daemon is not interrupted. 

(4) Control returns to the driving process, and step (1) above is 

re-entered. 

Sections    3.8    and    3-9    contain    further    discussion    of    M-DALI's 

operation.     The above,    however,  is all that    M-DALI actually does    on a 
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global level;  everything else is determined by purely local  interactions 

between outputs,  daemons,  picture modules,  and picture functions. 

3.3 Outputs  and Daemons 

An output contains a value,  which „ay  be any DALI or    base  lan^e 

object.    Outputs function with daemons as a mechanism for communication. 

Functions concerned with outputs are: 

create output: (OUTPUT initial-value) 

obtain value: (OVAL output)      or       ,output 

chance value: (OUCH output new-value) 

destroy output: (DELETE output) 

OUTPUT returns the new output, OVAL (Output VALue) returns the value, 

OUCH (OUtput value CHange) returns the new value, and DELETE returns 

NIL.     A    prefixed  comma     (,)is    syntactic sugar    for an    application of 

OVAL. 
DELETE applied to any DALI object, not just an output, destroys 

that object; deletion is a complex operation and will be further 

discussed in section ^.3. 

A daemon is a user-defined parameterless procedure which is 

executed in response to the occurrence of some event. The event a 

daemon responds to is described by its condition. Only certain classes 

of events can cause a daemon to respond;   they will be introduced as they 

become relevant. 
Among the events to which a daemon can respond, a particularly 

important class is a change to the value of one or more outputs. Since 

a daemon can access output values with OVAL and can use OUCH to change 

the value of an output, this class of events provides for the 

propagation of chanee as mentioned  in section 2.2. 
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If a daemon's condition indicates that it is to be run when a 

particular output's value changes, that output is said to be watched by 

that daemon. An output whos* value can be chanred by the direct action 

of a daemon is said to be soeciried by that daemon. Many daemons can 

watch a sinele output, but only one daemon may specify, and hence change 

the    value of,    a  given    output.       A daemon    may  specify    any    number of 

output. 
To facilitate daemon queueing, each output contains (a pointer to) 

a list of the daemons watching it. Each output also contains its 

specifier to facilitate enforcing the "one specifier" rule. Both of 

these elements are null for a newly created output. 

A daemon can be created by the function ONC   (ON Condition)  as in 

(ONC endtn  (-s-outputs-)  -body-)   . 

This returns the    newly created daemon as    a value.     (-s-outputs-)    is a 

list    of    the specified    outputs;     -body- is    the    executable    body, and 

contains one or more    statement   (S-expressions);  endtn is    the daemon's 

condition. 
The function ONS (ON condition and at Startup) takes arguments and 

creates a daemon like ONC, but also runs the daemon's body once just 

before returning the completed daemon; this is extremely useful for 

initialization. 

The condition 

(VAL -outputs-) 

will cause a daemon to  be run whenever the VAUe of any of the -outputs- 

is    changed,     i.e..    when    any of    -outputs-    are    OUCHed.      VAL    is the 

condition used for the daeaon in the preceding RELP example: 

(ONS  (VAL   PI   ?2)   (SUM) 
(OUCH SUM  (+   ,P1   ,P2)))   • 

The daemon created by    this application watches the outputs    assigned to 

PI and P2,  and specifies the output assigned to SUM. 

It   is    often the case    that a daemon    should watch   -ery    output to 

which OVAL is applied    in the daemon's body,    and  it is always    the case 

I 
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that the daemon shculd specify every output OUCHed in the body. 

Separate specification of watched and specified outputs is thus often 

redundant and somewhat error-prone. To alleviate this, two other 

daemon-creatinp functions exist:  CONTIN and AS-NEEDED. 

CONTIN, whose name was chosnn to indicate CONTINUOUS and rhyme with 

beglN.   is defined  in terms of ONS: 

(CONTIN -body-) 

is eouivalent to 

(ONS (VAL -wouts-)   (-souts-)   -body-) 

where -wouts- are all the outputs whose OVAL is explicitly referenced  in 

-body-,   and    -souts- are    all the outputs    explicitly OUCHed    in -body-. 

For example, the HELP daemon above could have been written as: 

(CONTIN  (OUCH SUM  (+  ,P1   ,P2)))   . 

AS-NEEDED is similarly defined  in terms of ONC. 

It should be noted that CONTIN and AS-NEEDED work properly only if 

the arguments to OVAL and OUCH are simple identifiers which are assigned 

at daemon creation time to the outputs which the daemon will always 

reference. This is commonly the case. CONTIN and AS-NEEDED wil be used 

in preference to ONS and ONC whenever they are applicable. 

The use of OUCH to cause daemons to run invokes a Question: Does 

applying OUCH to an output always cause the daemons watching that output 

to be run, or do the daemons run only if the output's new value is not 

"eaual" to its old value? The latter more precisely captures the notion 

of a daemon running in response to a value change, and so will be used. 

However, it involves the perennially thorny Question of defining 

"equality" in the presence of data structures. This question is 

approached    here on    a pragmatic    basis.    The    followinK    defines OUCH's 

action: 
Given an output outp whose current value is curv, the execution of 

(OUCH outp newv) has no effect if any of the following are true: 

(1) curv and newv are both integers or both reals, and curv is 
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algebraically    eaual to    newv within    the    precision beine 

used- 
(2) curv    and newv    are both    positions which    are eletnentwise 

equal according to  (1) above. 

(3) curv and newv are equal according to the simplest equality 

test available  in the base  language. 

othr-wise, the value of outp is changed to newv and any daemons 

watching outp will be run according to the scheduling rules. 

In the majority of languages, test (1) above will be subsumed under test 

(3). Test (1) is explicitly stated here both to make sure it is 

included and to facilitate the definition of test (2), which will 

normally not be Included under test (3). The "simplest equality test 

available" in LISP is EQ [McCI], which, depending on the implementation, 

may or may  not subsume test   (1);  but EQ does not  include test   (2) 

When the phrase  "an output    is OUCHed" is used,  it will    be assumed 

that  the output's value  is changed and daemons are  run. 

To ease later discussion by eliminating a number of    special cases, 

three conventions will be adopted: 

(1) Normal    procedures and    functions,  but    not    picture functions, 

will be considered "pari of" the daemon which invokes them. 

(2) The bodies of picture    functions will be considered    daemons in 

their own right. 

(3) The   driving    program,    the    program    running    in    the    driving 

process, will be considered a daemon. 

The latter two "daemons" - picture function bodies and the driving 

program - are anomalous with respect to how they are scheduled for 

execution. However, they are sufficiently similar to "normal demons" 

in other ways that the above conventions produce fewer special cases 

than considering these "daemons" to be a different type of object. In 

particular, it can now be said that all user-specified processing done 

in DALI is performed by some daemon. 
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3.H The Acyclic Data Web 

The relations of watching and specifyinK between daemons and 

outputs can be diatrrammed as shown in Fig. 3-1. This figure shows the 

watchinp/specifyinp relations assumed in the bar sraph example of 

section 2.3. The convenLions used in this and later similar diagrams 

are: daemons are larjre empty circles; outputs are small empty circles, 

connected to their specifier daemon with a short solid line; ?nd a 

dashed arrow leads from an -»utput to every daemon watchinp that output. 

The daemons and outputs of Fig. 3-1 are labelled to correspond with the 

objects in the less formal,  and  less correct,  diagram of Fip.   2-2. 

The relationships diagrammed in Fig. 3-1 describe the functional 

dependence of daemons upon other daemons, and are important in DALI. 

The collection of such relationships will be called the data web of a 

picture definition, or oicture. While the data web can be comoletelv 

arbitrary, it will initially be forced to contain no cycles, i.e., 

daemons directly or indirectly dependent on themselves. This will be 

enforced by two conditions on ONS and ONC which thus also apply to 

CONTIN and  AS-NEEDED: 

(1) A    daemon    may    not  be    created    specifyint?    an    output already 

specified by another daemon. 

(2) A    daemon may    not be    created watching    an output    not already 

specified by some daemon. 

In the absence of primitives    for making structural changes  to    the data 

web, these conditions prevent the creation of functional circularity via 

daemons and outputs, i.e., data web cycles; the situation is similar to 

a LISP system containing CONS, CAR, and CDR, but neither RPLACA nor 

RPLACD. Data web structural change primitives are introduced in section 

4.4, and cycles are considered in Chapter 5. ONC and ONS, however, will 

always obey the above conditions; another driemon-creatinK primitive is 

introduced  in section 5.4  for the purpose of creating data web cycles. 
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The acyclic condition labelled (2), above, can be inconvenient when 

"constant" outputs, whose values are never to chanpe, are used. To 

alleviate this,  the function NULLSPEC,   ''or NULL SPECifier,  exists: 

(NULLSPEC outp) 

where outp is an output, causes outp's specifier to become a "null" 

daemon which watches no outputs and never runs. This allows daemons to 

be created watching outp, even though outp has no real specifier. This 

is oiler, useful for uniformity, since functions and picture functions 

designed to    use outputs    will not work    correctly if    passed non-outout 

values- 

In addition, an output with no specifier, not even the "null" 

daemon mentioned above, may be OUCHed by anybody. This does no harm, 

since no daemon can watch such an output; and it is occasionally useful 

in initialization. 

3.5 Picture Modules,  the Containment Tree, 
and the Picture Structure 

A picture module, or just module, is an organizational unit 

containing outputs and daemons. A picture module is said to own the 

daemons and outputs it contains. Every daemon or output has one and 

only one owner picture module. The owner of a daemon becomes the owner 

of every daemon or output created by that daemon. 

Fig. 3-2 extends Fig. 3-1 to show ownership of daemons by modules. 

Ownership of outputs will not be diagrammed, simply because do in? so 

would increase the complexity of the diagrams intolerably. A further 

convention is introduced in Fig- 3-2: modules are cross-hatched circles, 

connected to the daemon* they own by dotted lines. Although It does not 

occur  in Fig.   3-2,  a module can own  several or no daemons. 

I 
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Every module also contains a local environment, which is a mapping 

from identifiers to values. The local environment of a nodule is uniaue 

to that module, and does not change in size or structure during 

execution: both the number of identifiers in its domain ("bindings") and 

its  orp;anization are  fixed  at the time the module is created. 

The environment used for daemon execution contains more than just 

the  local environment;   this will be discussed in section  3-11. 

Local environments provide daemons with private storage which is 

retained across separate daemon executions. Ml of the daemons owned by 

a module have access tc all of their owner's local environment, and may 

obtain and change the value of any identifier therein. Normal 

identifier evaluation obtains the value, and no-mal assignment (SET and 

SETQ)  changes  the  value. 

No daemon not owned by a module can chance the value of any 

identifier  in  that module's  local   environment. 

A number of the identifiers in the local environment may be 

designated output identifiers. Daemons not owned by a module can obtain 

the values of    that module's output  identifiers    by use of    the  function 

OUT: 

(OUT picture-module integer) 

returns the   value of the inteeerth output  identifier    of picture-module. 

The  integer is optional and defaults to  1;  if given,   it must    be greater 

than  0.     The manner in which the  implied ordering of    output   identifiers 

is  accomplished is discussed   in section  3-6,   Picture Functions. 

Since    OUT    is    often     used  with    the    default    arpument     of     1,   an 

abbreviation    for    such    an      application    will    be    used:       a    prefixed 

exclamation point   (!).     Thus the  followine all represent the same thinp: 

(OUT somethine   1)      (OUT something)     Isomethin^ 

Neither a module nor its daemons has any control over what daemons 

can obtain output  identifiers'  values by usinp OUT. 

Output  identifiers normally have values which are outputs,  although 
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this is not always the case.     An output which is the value of    an output 

identifier will occasionally be referred to as an  "output of a module". 

In addition to daemons, outputs, and a local environment, a picture 

module can also contain other picture modules. If a picture module A 

contains a picture module B, A is calleo the father of B and B is called 

a ftftn. Of A.    The owner of a daemon creating a picture module becomes the 

new module's   father. 
Father-son relationships form a tree structure called the 

containment tree. The root node of the containment tree is called the 

root module when it  is not being called the driving process. 

Fig. 3-3 adds the ccntalnment tree to the "bar" example, usintr the 

last convention for such figures: solid arrowc point from fathers to 

their sons. A picture module which contains no daemons has been added 

to make the structure shown in Fig. 3-3 a true substructure of that 

generated by the written examples which will follow in section  3-12. 

The primary purpose of the containment tree is to propagate 

deletion: when a module is deleted, its sons are also deleted. This 

must be done if a module is to be considered a unit whose internal 

details of operation, including the creation of sons, are transparent to 

any use of the module, including its deletion. For this same reason, 

all the objects owned by a module, including daemons and outputs in 

addition to sons, are deleted when the module is deleted. Deletion is 

further discussed in section ^.3- 
The union of the containment tree, the data web, and owner 

relations is called the picture structure of a picture definition or 

picture. 
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3.6  Picture Functions 

A picture function is a user-defined function, i.e., a valued 

procedure, of a special type. Applying a picture function to zero or 

more arguments always creates a new picture module and returns that new 

picture module as the value of the application. The arguments applied 

tc a picture function will occasionally be referred to as "inputs" of 

the picture modulr created. 

The characteristics of picture functions are bound up in the 

process of applying them. 

In applying a picture function, the first thing which happens is 

that the new picture module is created. The local environment of the 

new module is defined by the arputnent list ("declarations") of the 

picture function, and the applied arguments are assigned to identifiers 

in that local environment. Then the body of "code" in the picture 

function is executed as a daemon of the new module. Finally, the new 

module is returned as the value of the picture function. 

A picture module la to a picture function as a procedural 

activation is to a procedure; or, in more classical computer graphics 

terms, a picture module is to a picture function as an instance is to a 

master. 

A picture function has an argument list and a body. The argument 

list is described later in this section; the body is one jr more 

executable statements (S-expressions). An unnamed picture function is 

represented as an application of PICTURE,  analogous to LISP's LAMBDA: 

(PICTURE (-argument-list-)  -body-) 

is    a picture    function whose    argument  list    is    (-argument-list-),  and 

whose body  is -body-. 

The function DEFPIC, for DEFine Picture function, is used to 

"declare" an identifier    to be a picture    function.    In the    usable LISP 
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3.6 Picture Functions 

A picture function is a user-defined function, i.e., a valued 

procedure, of a special type. Applying a picture function to zero or 

more arguments always creates a new picture module and returns that new 

picture module as the value of the application. The arguments applied 

to ? p;-!ture runotion will occasionally be referred to as "inputs" of 

the  picture modulo created. 

The characteristics of picture functions are bound up in the 

process of applying them. 

In applying a picture function, the first thing which happens is 

that the new picture module is created. The local environment of the 

new module is defined by the argument list ("declarations") of the 

picture .unction, and the applied arguments are assigned to identifiers 

in that local environment. Then the body of "code" in the picture 

function is executed as a daemon of the new module. Finally, the new 

module is  returned as the value of the picture function. 

A picture module is to a picture function as a procedural 

activation is to a procedure; or, in more classical computer graphics 

terms, a picture module is to a picture function as an instance is to a 

master. 

A picture function has an argument list and a body. The argument 

list is described later in this section: the body is one or more 

executable statements (S-expressions). An unnamed picture function is 

represented as an application of PICTURE,   analogous to LISP's LAMBDA: 

(PICTURE (-argument-list-)   -body-) 

is    a  picture    function whose    argument  list    is    (-argument-list-),  and 

whose body  is -body-. 

The function DEFPIC, for DEFine Picture function, is used to 

"declare" an identifier    to be a picture    function.    In the    usable LISP 
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system assumed here, DEFPIC actually gives some ATOM a FUNCTION property 

which is a picture function. In "canonical" LISP, closer to pure 

lambda-calculus,   less convenient mechanisms are used. 

A DEFPIC application returns NIL,  and  looks like this: 

(DEFPIC name   (-arFument-list-)   -body-)   . 

name is an  ATOM naming the    picture function,  -body- is the body    of the 

picture function,  and  (-argucent-list-)   is the argument  list. 

Returning to our simple R2LP  picture  function: 

(DEFPIC  RELP   (PI P2 "OUT"  SUM) 
(CONTIN   (OUCH SUM  (+   ,P1   ,P2)))) 

declares RELP  to be the picture function 

(PICTURE  (PI   P2  "OUT"  SUM) 
(CONTIN   (OUCH  SUM  (+   ,P1   ,P2)))) 

whose argument   list  is 

(PI P2  "OUT" SUM) 

and whose body  is 

(CONTIN (OUCH SUM (+ ,P1 ,P2))) . 

"OUT" in the argument list signals that SUM is an output identifier 

which, for convenience, is automatically initially assigned to (OUTPUT 

NIL). The body of RELP is a single statement which creates a daemon. 

Since CONTIN, defined in terms of ONS, is used, the body of the daemon 

is run once just after creating the daemon; thus SUM's value is 

conveniently initialized. RELP captures the notion of a "relative 

position" in that it provides an output -- SUM — which is continuously 

maintained as the sum of two other position-valued outputs; one of these 

is the base position, the other is the vector displacement. Applyinp 

RELP creates the picture substructure shown in FiP- 3-4a; RELP's 

graphical effect  is shown in Fig.   3-^b. 

The syntax and semantics of picture function argument lists remains 

to be explained. The syntax used is based on the argument list syntax 

developed   for the MUDDLE language  [Pfi2]  by C.  Reeve of MIT Project MAC. 
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The argument  list of a picture    function is a list of ATOMs    of any 

finite    lenpth    divided    into sections    by    the    designators "EXTERNAL", 
:'A.X",   "AUXO",   "OUT",   and  "OUTU".    An  example: 

(ABC  "AUX"  D E  "EXTERNAL"  QWERT L  ARGLE 
"AUXO"  mO P  "OUTU"   BARGLE   "OUT"   SUM  DIE) 

No ATOM or designator may occur more than once in an argument list, 

and the order in which the designators occur is not significant. All of 

the ATOMs in the argument list, and only those ATOMs, are identifiers in 

the local environment of the moaule oreatea. The effect of the 

designators on the local environment  is the principle issue here. 

The term "ATOMs following XXX" will be used to mean "ATOMs to the 

right of XXX In the argument list, and to the left of either (1) the end 

of the argument list or (2) the first designator to the rieht of XXX, 

whichever comes first." For example, D and E are ATOMs following "AUX" 

in the above example, and ATOMs following the start of that argument 

list are  A,  B,   and C. 

The ATOMs following the start of the argument list are initially 

assigned to the arguments applied to the picture function in the normal 

left-to-right order. The LISP equivalent of call by value is used, 

i.e., the expressions in the application are evaluated and the result 

obtained is actually assigned in the local environment. This is a 

function of the base language used to host a DALI extension, and will 

have some effect on how DALI appears to the user. These "argument" 

ATOMs are used   for initial communication into the picture module. 

The ATOMs following "AUX" are initially assigned to NIL, and the 

ATOMs following "AUXO" are initially assigned to (OUTPUT NIL). These 

ATOMs arc used for purely local internal storage by the picture module. 

The mnemonic value of these two designators  is  "Auxiliary". 

The ATOMs following "OUTU" are initially assigned to NIL, and the 

ATOMs following "OUT" are initially assigned to (OUTPUT NIL). These 

ATOMs are the output identifiers of the picture module, numbered 

startinr with 1 in the order of their left to rieht occurrence in the 

argument    list.    They    are    used  for    communication out    of    the picture 
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module,  since their values cm be obtained  by using the function    OUT as 

described      in    the      previous    section. "OUTU"    stands      for    OUTput 

Uninitialized. 
The new outputs created by "AUXO", for Auxiliary Output, and "OUT", 

for OUlput, are owned by the new picture module. This output creation 

is a convenience measure only; the same effect could be achieved by 

assignments  performed   in the picture function body. 

The    ATOMs following    "EXTERNAL" are    "invisible    arguments".    Each 

such ATOM is    initially assigned to the    v'lue of the identical    ATOM in 

the local environment  "closest" to    the new module on the path    from the 

new module through its father to the root module-     TK* implied search is 

performed    only    once,  namely    vshen    the environment    is    created.    Each 

"EXTERNAL"  ATOM has its own "binding slot"  in the new local environment, 

distinct  from that  ^here its  initial value was found.      Thus,   "EXTERNAL" 

ATOMs are not actually  "free" or "fluid" variables,  since    assignment to 

them    affects    only    the    newly    created    local    environment.      They are 

primarily a mechanism for avoiding argument  lists of unwieldy length and 

passinc    aata across    modi-les not    interested in    that data.      If    it  is 

necessary to dynamically vary the    data passed in this manner,     the data 

can always be encapsulated in an output. 

The five designators discussed above - "EXTERNAL", "AUX", "AUXO", 

"OUT", and "OUTU" — are, for simplicity, the only ones which will be 

defined and used in this document. Many other useful features could be 

added, epitomized by the facilities of MUDDLE [Pfi2]: optional 

arguments, an arbitrary number of arguments, user-specifiable value 

initialization, unevaluated arguments (LISP's equivalent of call by 

name),  etc. 

/ 
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3.7 Examples:    Coding the BAR 

An implementation will now be given for the picture function LINE 

which was used in the relative position examples of section  3.1. 

The characteristics desired of LINE modules are   four:   (1)  they have 

two inputs,  both position-valued outputs,  which dictate the positions of 

the drawn  line's cndpoints;   (?) when a LINE module is  first    created,  an 

associated entry in the hardware display  file  is created by    the picture 

function body and remembered    in trie  local  envi  onment;   (3)    when either 

endpoint    is    changed,     the    entry    in    the    display    file      is    changed 

accordingly    by a    daemon;     CO when    the    module is    deleted,    a daemon 

deletes the entry in the display  file.    LINE can be coded as  follows: 

(DEFPIC LINE   'PI  P2  "AUX"  LINEID) 
(SETQ LINEID  (MAKE-LINE-ENTRY   .PI   .P2)) 

AS-NEEDED   (CHANGE-LINE-ENTRY  LINEID   .PI   .P2) 
(ONC  DELETE   ()   (DESTROY-LINE-ENTRY  LINEID))     ) 

LINEID is used to record some object identifying the hardware display 

file entry created by MAKE-LIKE-ENTRY. This object is passed to CHANGE- 

LINE-ENTRY, along with the new endpoint values, when either endpoint 

changes. LINEID's value is also used to indicate which entry to delete 

when the module is delfted. Neither daemon specifies any outputs; if 

the AS-NEEDED daemon were explicitly coded with ONC, it, like the second 

daemon, would have an empty specifier list. The second daemon utilizes 

the condition DELETE, which causes it to be run just before LINE is 

actually destroyed. This condition is further discussed in section 4.3- 

The picture substruotur« created by an application of LINE is shown 

in Fig.   3-5a,   and the  craphical effect of a LINE is shown in Fig.   3-5b. 

LINE and the previously defined RELP module can be used to create a 

"relative line" picture function. This is RELINE, below. RELP is 

repeated  for convenience. 

/ 
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(DEFPIC  RELINE  (PI  DELTA  "OUTU"  P2) 
(SETQ P2   !(RELP PI  DELTA)) 
(LINE  PI   P2)) 

(DEFPIC  RELP   (PI  P2  "OUT"  SUM) 
(CONTIN  (OUCH SUM  (+   ,P1   ,P2))) 

The inputs to    RELINE,  PI and    DELTA,  are asrain    position-valued outputs 

respectively specifyirp one endpoint and a vector    displacement.     Recall 

that a    prefixed   !     it, syntactic  supar    for an    application of    OUT.     By 

assigning RELP's -utput to P?,   RELINE h^s made  that output    available to 

its own callers;   this will    prove convenient  later.     RELP  is    not called 

with the    values of    PI and    DELTA;   instead    the outputs    themselves are 

passed.    Similarly,    outputs are  passed    directly to LINE.       Thus RELINE 

need contain    no daemons,    since  its    containment tree    sons do    all the 

work.       RELINE    itself serves    cnly    as a    mechanism    for    treating this 

particular construct  as    a unit which is    created,  destroyed,  and    — as 

far as its caller is  concerned  -- operates as a whole. 

FiK.   3-6a shovs the picture substructure created by    an application 

of RELINE,  and Fip.   3-6b shows the resultant picture. 

In RELINE,   the responsibility    for forming a  relative    position and 

for drawing    a  line    was effectively delegated    to RELINE's    sons.    Such 

delegation    of    authority    need    not be    total.      Suppose,    as    a simple 

example,  that  a triancle    is to be drawn    but that one of    its endpoints 

should be restricted to having only a certa;.n ranee ef "safe" values;   if 

an endpoint    ;.'oes out    of the "safe"    range,   "drastic"    action is    to be 

taken.      This    ca" be    done    as    shewn in    WATCHP3    below.      A semicolon 

indicates that the remainder of the   line is a comment. 

(DEFPIC WATCHP'-i   (PI  P2   P3  "AUXO"  FILTER) 
;If P3 is safe,  send  it on via FILTER;  else call DRASTIC. 

(CONTIN   (COND  ((SAFE?   ,P3)   (OUCH  FILTER   ,P3)) 
(T  (DRASTIC))   )) 

;Draw the triangle,   usinp PI,  P2,  and FILTER. 
(LINE PI  P2) 
(LINE  P2  FILTERJ 
(LINE FILTER PI) ) 

WATCHP3 itself responds only when P3's value changes.  It never needs to 

see chances to PI and P2, since its LINE sons take care of them. 
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Now a    picture function    to draw    a bar    of the    bar praph    will be 

presented.     This picture function,     BAR,   will draw  left,  top,     and  rirht 

sides  of    the  bar.     BAR    takes  four  arguments,     all outputs*   (1)     V,   the 

numeric value  to be shown;     (2)  SCL,   the scale  factor    whic   ,  multiplied 

by  V,   crives the  desired  height;     (3)  LL,   the  position of the     lower left 

corner of the bar;  and  CO    WIDTH,  a number Fivinr the desirfd    width of 

the bar.     A coding cf BAR  is: 

(DEFriC  BAR   (V SCL  LL WIDTV "AUXO"  HT WD) 
(CONTIN   lOUCH  HT  (POS 0   (•  ,V   .SCL)))) 
(CONTIN   (OUCH WD   (P03   .WIDTH 0))) 
(LINE   KRäLP LL WD)   !(RELINE   KRELINE LL HT)  WD))   ) 

The two daemons are straightforward. The first places in the HT 

output the real displayed height of the bar, computed from the civen 

value V and the scale factor SCL. The second converts WIDTH into the 

vector displacement desired by RELP and RELINE, placing it in the WD 

output. The last expression is a minor exercise in embedding. The 

outermost picture function, LINE, draws the ri^ht side of the bar. The 

RELP venerates the lower rieht corner. The innermost RELINE draws the 

left side of the bar and provides the upper left corner of the bar as an 

output. The outer RELINE uses this and the width to draw the top of the 

bar, and provides the upper rieht corner as an output so that the LINE 

module can  draw the rierht side. 

Fie. 3-7a shows the picture BAR draws. The lines drawn and the 

position outputs used are labelled, and eraphical interpretations of WD 

and HT are eiven. Fie. 3-?b uses those labels to make part of the 

picture structure created by BAR intellieible: the daemons chaneine LINE 

display file entries are labelled as the correspondine lines, and 

outputs are labelled as named in BAR or as in Fie- 3-7a, and modules are 

labelled with the names of their picture functions. HI daemc.s shewn 

as ownerless are owned by BAR, and all modules shewn as fatherless are 

sons  of BAB. 

More complex examples are  eiven in section  3.12. 

mmm 
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The Acyclic Daemon Scheduling  Rules 
and Their Implenentation 

The daemon schedulinp; rules govern the running of daemons during 

DALI compute time. I.e., the scheduling rules define when and where 

daemons are placed on the daemon queue discussed in section ?.2. The 

.e--<hed''linp rules presented here deal only with daemons which watch 

outputs. Daemons which have other conditions, e.p., Dr,LETE, are 

scheduled as special case exceptions to the dven r'.les; such exceptions 

will be explained when other conditions are covered in detail. The 

rules discussed also ignore deletion, in that they implicitly assume 

that a daemon whose watched outputs are OUCHed will always be run; 

obviously, such a daemon could be destroyed after it is queued but 

before  it  pets  the chance  to  run. 

The schedulintr rules piven in this seci ion deal only with daemons 

in an acyclic data web; this was described in section $.k and will be 

more rigorously defined later in this section. This special case is 

important since it occurs in many situations of interest, can be handled 

simply, and relates to the general case of cyclic data webs discussed in 

Chapter 5. 

Starting with some necessary definitions, the four acyclic daemon 

scheduling rules are presented, followed by discussion of their 

implementation. A later section, 3-10, deals with the related issue of 

interrupts  from external  devices. 

The needed definitions are  these: 

A daemon A is a web father of a daemon B, and B 

is a web son of A, if and only if A specifies an 

output watched  by B. 

A daemon A is a web ancestor of a daemon B, and 

B is a web descendant of A, if and only if there 

exists a sequence of daemons    D(0),D(1)... ,D(n) such 
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that D(0)=A,     D(n)=B, and  for    every i in    the ranee 

0<i<n+1,   D(i-1)  is a web son of D(i). 

A data web is said to be acyclic  if and only if 

it contains no daemon whirh is its own web ancestor. 

The acyclic    daemon scheduling rules    defining the order    of daemon 

execution in  an acyclic data web are: 

Rule 1: (selection) A daemor. will be Tin if and only if one or more 

of its watched outputs has been OUCHed; once run, it does not 

run aeain until such an OUCH occurs aeain. 

Rule 2: (noninterruption) Once a daemon D begins execution, no daemon 

web-ancestrally related to D may run until D terminates of 

its own accord. 

Rule 3:   (ancestors  first)   If daemons A  and B are ..o be run, and    A is 

a web ancestor of B, then A is run before B. 

Rule 4:   (closure)    If twc    daemons are    to be    run and    they    are not 

related by web ancestry,    hey may run  in any order. 

Since the data weo    in acyclic,  no two    daemons can be web    ancestors of 

each other;   thus Rule 3 is deterministic and  Rule 4 does cover all cases 

not covered by Rule 3. 

Implementation of the acyclic daemon schedulinp rules for a sinele 

processor system is relatively simple and efficient when the only data 

web chancres a.-ise from daemon creation and destruction. Modifications 

to the implementation piven here will be discussed when other changes to 

the data web are  introduced  in section 4.4. 

Each daemon is assigned an unchanRintr inteeer priority at its 

creation a^cordinr to the  following rules: 

(1) The priority of the driving program is 0. 

(2) The priority of a daemon is one greater than the largest of its 

web fathers' priorities. 

The web fathers of a daemon can be easily found: they are the 

specifier element of its watched outputs. 
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Whenever an output is OUCHed, each daernon watchinp that output is 

immediately added to the daemon aueue if it is not there already. 

Daemons are queued in order of increasing daemon priority; i.e., the 

daemon at the head of the queue has the lowest priority in the aueue. 

The runninc of daemons, as described in section ?.2, then consists of 

removing the daemon at the head of ,he queue from the queue and runnincr 

it,  repeati-:? this until the queue is emptied. 

The fact that daemons are only queued in response to an OUCH 

satisfies the selection rule. The noninterruption rule is satisfied 

because daemons are always queued before they are run. Orderinr the 

queue by increasing priority satisfies the ancestors first rule, since a 

daemon's   priority must be  greater than that of all its web ancestors. 

The queueiner process can be sped up somewhat in two ways: 

(1) Searching tne data web for already queued daemons can be eliminated 

by including in each daemon a flag set when the daemon is queued and 

reset when it is removed from the queue for running. ^ All the 

daemons watching an output can be queued in a single sort/mer^e throuKh 

the queue if the list of daemons watchinr each output is pre-sorted by 

increasing priority. 

Two already mentioned types of "daemons" are exceptions to the 

acyclic daemons scheduling rules: picture function bodies and the 

driving program. Both are exceptions to Rule 2, noninterruption, and 

both are  daemons only by convention. 

Picture function bodies violate Rule 2 in that they are executed 

embedded in the execution of the daemon callinK them. Delaying their 

execution until their calling daemon returns would result in severe 

initialization problems: the outputs created by the called picture 

function, which are definitely of interest to the caller, would nor 

exist until after  the caller terminated  its execution. 

The drivinp program clearly must violate Rule 2 to allow for the 

execution    of any    other    daemon.    Here    ajrain,  the    execution    of other 
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daemons is strictly ervhedded as if it were an extended subroutine or 

procedure call. Performance of an OUCH in the drivinp program just 

causes daemons to be Queued for execution as usual. Once the desired 

set of changes has been made, the drivinp program calls the 

parameter less procedure UPDATE-DISPLAY; this initiates the normal 

repetitive runninp of queued daemons until the daemon ^ueue is 

exhausted, and then returns back to the drivine program. UPDATE-DISPLAY 

has no effect  if called  f'.cm other thar   the driving program. 

3.9 Goals of the 
Acyclic Daemon Scheduling Rules 

The four acyclic daemon scheduling rules achieve three very 

important goals: (1) daemons are executed a minimal number of times; (2) 

daemons can be considered to define invariant relationships between 

output values; and (3) daemons operate in a stable environment. These 

goals are further explained below, along with the manner in which they 

are achieved  by  the scheduling rules. 

The    first goal,     minimal daemon    execution,   is    guaranteed    in two 

senses: 
First, if it is not necessary that a daemon run — where necessity 

is defined by chances in the values of its watched outputs — the daemon 

will not run at all by virtue of Rule 1, selection. This is achieved on 

a completely local basis, without reference to part of the picture as 

"background"  and  another part as "forefround". 

Second, daemon execution is minimal in that if a daemon does run, 

it is run only once for e?.ch set of changes induced by the driving 

program. This is easily proved: If a daemon D runs twice, then, by Rule 

1,  one    of D's watched    outputs must have    changed  after the    first run. 
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Now, D's watched outputs can only be changed by one of his web fathers. 

Since, by Pule 2, noninterruption, D's running and his father's runnin? 

cannot be embedded in each other, D's father must hav; run after D; but 

this means that Rulr " ancestors first, has been violated. Hence D 

could not have been run  twice. 

There is an exception to the above: a daemon initially run by ONS 

or CONTIN may run a second time. This arises due to the fact that 

picture funcv-loi. body execution violates Rule 2, as discussed in the 

preceding section;   so does ONS. 

The second e;oal, that daemons be considered as defining invariant 

relationships between their watched and specifitd cutouts, is critical 

to making DALI proerrams operate in a comprehensible fashion. It means, 

for example, that whenever and wherever a RELP module is used, that 

module's output can be reliably used In place of the sum of its inputs' 

values. 

This second "relationship" ^oal is primarily achieved by Rule 3, 

ancestors first. This is so because Rule 3 guarantees that a daemon will 

be able to run and adjust its specified outputs in accordance with its 

watched outputs before anyone uses it3 specified outputs. An instance 

of this is illustrated in Fie. 3-Ba: if daemon A runs and OUCHes its 

output. Rule 3 guarantees that daemon B runs before daemon C; thus C can 

rely upon B's maintaininp: some relationship between its output and A's. 

Rule 2, noninterruption, is also needed if daemons are to be 

invariant relaMonships. This is the case because a daemon can specify 

several outputs, holdintr those outputs in some fixed mutual 

r-plationshio, and still take an arbitrarily lorift time between separately 

adjusting their values.     Fig.   3-8b illustrates  this. 

The third poal, that daemons should operate in a stable 

environment, is taken to mean the follcwinr: the only data /alue changes 

affeotinft    a    daemon's    operation    which    occur    durinc      that    daemon s 
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execution are performed by the daemon itself. This is achieved by Pule 

2, noninterruption. This could be called the "sincle instruction 

seauence" goal: it ensures th?.t despite the fact that DALI is a 

multiple-environment, "multiple-process" system, each individual daemon 

body code sequence can be written as if it were running on the simplest 

possible single program counter nachine lacking any form of multiple 

processinK    or    interrupts. Races,    hazards,     deadlocks,      and    other 

synchronization problems are defineu out of existence from the start. 

It should be noted that despite this, Rules 2 and 3 do provide for true 

parallel processing of daemons unrelated in web ancestry. 

In its use of Rule 2, noninterruption, DALI takes an approach to 

the problem of inter-process synchronization which differs from that 

normally taken in, for example, operatinr system desi?n -- e.p., [Dijl, 

Habl]. The normal approach, which is appropriate to the circumstances 

under which it is heir.v used, is to initially assume trulv oarallel 

operation, with the concomitant fact that relativ^ scheduling of 

operations will be arbitrary and generally malicious. Then an attempt 

is made to impose some order on the resultant chaos thro-^h the use of 

simple arbiters, semaphores, and the like. In contra.'c, the somewhat 

more special-purpose nature of DALI allows it to impose from the very 

start an extremely strict organization on when and how separate daemons 

("processes") may run, allowing parallelism only when it manifestly can 

do i.- harm. This dichotomy between DALI and the usual approach has an 

analog in classical finite-state machine design: DALI corresponds to a 

synchronous machine  rather than to an asynchronous machine. 

The last two goals — daemons are relationships and operate in a 

stable environment — contribute heavily to the usability of DALI. It 

has been the author's sad experience that in systems providing pseudo- 

parallel processinfT -- e.g., via non-local GOTOs or inter-process 

RESUMES    --    the    "bugs"    that     (always!)    occur    due    to    inter-process 

/ 
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interactions are severe enough to have a corrosive effect on a 

proKrammer's sanity. Furthermore, this occurs even when the total 

number of processes is very small, like two. A system like DALI, where 

use of literally hundreds of "processes" — modules — is implied, would 

be totally unusable if such "bugs" could occur with their usual 

frequency- No small part of the design of DALI was motivated by a 

desire to crea-e inte.'-element communication and control-switching 

mechanisms whose operation would axlow truly straiehtforward, even 

simpleminded programming- 

3.10 External  Interrupts 

An interesting question which concerns the scheduling rules is how 

to treat, interrupts from externa] devices, including in particular 

buttons, tablets, light pens, etc. Although the reported work is not 

primarily concerned with graphic input, as w*3 stated in section 1.2, 

this  issue is important enough to warrant some discussion. 

In the context of DALI, external input devices are best treated as 

the specifiers of outputs, and Interrupta from such devices are best 

treated as OUCHes of those outputs; e.g., a button has an associated 

output with a boolean value, OüCHed to true when the button is depressed 

and OUCHed to false when the button is released. Such an OUCH will be 

called an external OUCH. It is assumed that a low-level interrupt 

handler for a physical device will. In a manner totally invisible to 

user programs, "really" interrupt the daemon currently running when the 

external interrupt occurs and cause the associated external OUCH, to be 

performed at som? time, not necessarily as an immediate part of handling 

the interrupt. It should be noted that "the daemon currently running" 

does include the driving process. The primary issue is this: exactly 

when is the external OUCH performed? I.e., when is the output's value 

changed and the watching daemons queued? 
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There are only two absolutely safe times for performing external 

OUCHes: just as a drivintr process' call of UPDATE-DISPLAY is entered, 

and just before it is exited; recall that UPDATE-DISPLAY, discussed at 

the end of section 3.8, causes control tc leave the drivino- process and 

enter the picture definition. The reason the entry and exit points of 

UPDATE-DISPLAY are "safe" is that only then are we guaranteed that both 

the data specified by the driving process, and all the output values 

within the picture definition, are in as consistent a state as the user 

has provided for; it is a usefu characteristic of DALI that such "safe" 

times exist at all. 

Performinsr external OUCHes as part of UPDATE-DISPLAY's entry and 

exit is equivalent to considering external interrupts as deriving from 

the driving process' actions, and thereby separating them completely 

from tv" construction of the picture itself; this is a point of view 

which has  previously been espoused  by Newman and Sproull  [New2,   New3]. 

It micht seer that performing external OUCHes only as 2 part of 

UPDATE-DISPLAY would lead to unacceptable delays between user actions 

and responses to them; actually, this is not the case. When interaction 

is actively occurring, the driving process will most usually be in a 

tipht loop, doine little except repetitive UPDATE-DISPLAYs; tliis loop 

need not, of course, be active: an "UPDATE-HANG" could be used to put 

the physical processor into a auieseent state from which i' emerges to 

do UPDATE-DISPLAYs whenever an external OUCH occurs. If the total 

response of the picture definition to an external OUCH takes too long 

for reasonable interaction -- e.H. , the value changes get propagated 

into a daemon which does a fourth-order Runge-Kutta integration before 

returning -- then the programmer has  simply overloaded  the system. 

There is only one other reasonable time to perform external OUCHes: 

between executions of queued daemons. This can cut short the 

calculation of the current crop of display changes by queueing daemons 

of "higher" priority, i.e., of lower numerical daemon priority values as 

defined  in section  3.8.     This    situation can be envisioned as    halting a 



wave of computation which is sweepinp forward through the data web and 

re-startinp the wave at some point which was previously passed. There 

are two cases to be considered here: first, the case where the 

interrupted wave of computation is associated with a previous identical 

interrupt, e.g., two pushes of the same button in short succession; 

second, the case where the interrupted wave of computation did not have 

anything to do with the interrupt, e.?., some large computation is being 

performed and a pen-tracking cross it to be moved. These two cases are 

discussed  below. 

If the initial wave of computation was associated with a previous 

similar interrupt, performing the external OUCH between daemon 

executions is simply useless. This is the case because the demons 

actually changing the display file will usually be found at the outer 

fringes of the data web, and so they will never i-un if this "re-start" 

interruption occurs frequently eiough: despite aU the work beinp done, 

the picture never changes, furthermore, as a result of the interruption 

the outputs internal to the data web may be in such a state that the 

succeeding wave will find fiem inconsistent. Performing external OUCHes 

only on UPDATE-DISPLAY, which amounts to let tine each wave of 

computation finish before starting the next one, may result in slower 

motion in some cases; but at least the display will change, and the 

feedback its speed provides may prompt the operator to slow down to a 

point where the system can track his actions. 

If the interrupted wave of computation was not closelv associated 

with the interaction, the situation is somewhat different and may result 

in an action closer to the classical situation of interrupt handlinK: 

the large wave of computation halts, another smaller wave is begun, 

finishes, and the large wave continues from where it left off. Here we 

effectively have two separate pictures being produced which "just 

happen" to appear on the same display screen. There is no reason why 

this should not be done; but as in the first case, any interaction 

between the two waves may  result  in mutually inconsistent    output values 
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when the larp:e wave starts up aeain. The possibility of such 

inconsistencies can be avoided if the "two pictures" are considered as 

two entirely separate DALI systems, and communicate only through 

mutually external OUCHes that occur for each of them at the times they 

enter and exit their respective  UPDATE-DISPLAYs. 

3.11  The Total Environment 

The local environment is not the only identifier-to-value mapping 

available to a running daemon; for example, the value of the identifier 

"+" must be obtained from somewhere. The complete set of such mappings 

accessible to a daemon is called the total environment, and is described 

in this section. 

The term "body" shall be used below to indicate either a daemon 

body or a  picture function body. 

The total environment for the evaluation of a body is composed of 

four parts: 

(1) the temporary environment 

(2) the local environment 

(3) the global environment 

(14)  the primitive environment. 

The characteristics of these four are summarized in Fie. 3-9, and 

will now be discussed. 

The temporary environment is a purely temporary storage 

environment. It contains, e.g., PROG variables and intermediate 

expression results, and is created as needed by a body. It is empty 

when body evaluation starts, and is emptied when it stops. Each 

temporary environment is unique to a piven body evaluation; it is not, 

retained across separate runs  of a given daemon. 

The local environment    is that element of    a picture module    of the 
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same      name,       and      has    been      previously      described. Its    salient 

characteristics are that (1) it is unique to a given picture module, and 

hence to a given group of daemons; and (2) its contents are retained 

across    body    evaluations.       It  thus    provides    croups    of    daemons with 

private memory. 
The global environment is accessible by bodies according to the 

static block structure of the base in Jage. In LISP, it is an 

undifferentiated whole, totally accessible by every body. Its purpose 

is to provide bodies with a shared pool of memory whose contents may 

vary across programs; in particular, it gives bodies access to user- 

defined picture function definitions. It is unique to a civen program, 

and its structure is fixed through all execution. Its contents may be 

chaneed  by assignment. 

The primitive environment contains the definitions of DALI and base 

language primitives. In most base language systems, but not interpreted 

LISP, it i? by nature read-only. The LISP exception aside, It is unique 

to a given language implementation. 

These four environments may be considered as arranged in a stack, 

as shown in Fig. 3-10. Identifier lookup conceptually follows the stack 

from temporary to primitive environments. 

The total environment structure formed by many picture modules in a 

totally Quiescent state is chus shallow but broad, having a "local 

environment  branch"  for each    picture module.     This is depicted    in Fig. 

3-1 la. 
The situation when DALI execution is in progress is separable, for 

clarity, into two cases: (1) structurally non-additive change, i.e., 

picture functions are not being applied; and (2) structurally additive 

chance,   i.e.,  picture function application  is taking place. 

In both cases, the unique daemon which is the driving program is 

active,  and hence has a temporary environment. 

In the    structurally non-additive case,     shown in Fie.     3-1 lb,  only 

/ 
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one other body will be active, namely that of the daemon currently 

running; and hence only one other temporary environment will exist. 

This is a conseauence of the fact that a daemon's body evaluation is not 

interrupted. 

Several daemon bodies may be active in the structurally additive 

case, but their activity will be strictly nested. This nesting was 

previously mentioned  in section  3.7,   and  is illustrated in Fi(?,   3-11c. 

While the above describes the logical situation, the actual 

situation is simpler from the point of view of storage management: Due 

to the fact that the only multiple activity is nested, all temporary 

environments rmy  be held in G  single stack.     This is shown in Fig.   3-12. 

The organization of the total environment as described is stack- 

oriented, with local environment blocks, each ''ixed in size, held in a 

heap. Identifier evaluation is quite simple and efficient with this 

organization: (1) primitive environment identifiers are effectively 

evaluated at compile time; (2) global identifiers' values are held in 

static memory locations; (3) local environment identifiers' values are 

found by indexing from a "current local environment" state variable; and 

CO temporary environment identifiers values are found by indexing from 

a "current stack top" state variable. The context switching required 

when entering a body thus consists simply of swapping in a new "current 

local environment" state variable. Interpretive implementations, as 

opposed  to compiled ones,  could operate in a similar fashion. 

The temporary environment could be static as would be the case if 

FORTRAN were the base language. This would rule out recursive picture 

functions; but it would not rule out multiple modules from the same 

picture function, since the local nvironment holds the information 

local to each mo. ""e and only one non-picture-function-body daemon is 

runninr at any given time. 

An alternative organization could allow each daemon to retain a 

temporary environment;   in this case,   running a daemon could "resume"  its 
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execution wherever it left off. While the resulting system mipht be 

more flexible for certain cases, much more active use of heap storape 

would be required to record each daemon's temporary environment while 

that daemon was quiescent. 

DALI utilizes a bipartite environment structure, with the 

temporary, elobal, and primitive environments held — for purposes of 

this discussion -- on a stack, and the local environment held in "heap" 

storage. This is a compromise between fully stack-structured conrol and 

environment schemes, epitomized by ALGOL 60, and fully tree-structures 

schemes, as for example used by CONNIVER [McDI], OREGANO [Berl], and 

SIMULA 67 [Dah2]. A comparison of DALl's scheue with the other two is 

interesting and will be pursued  here. 

Relative to stack-structured schemes, or, for that matter, static 

schemes such as FORTRAN'S, DALl's bipartite scheme is less efficient 

because it reauires active use of heap storape. However, use of a heap 

appears to be a requirement of any system aimed at constructinp chantrinp 

pictures;   so this cannot be considered a major disadvantape. 

DALl's distinction between environment layer' that can be reclaimed 

when they are exited — the temporary environment — and environment 

layers that always stay in existence until explicitly destroyed (or 

parbase colleted) -- the local environment — provides more efficiency 

than fully tree-structured schemes, both in execution time and in 

storage space;   however,   it sacrifices some  flexibility. 

The advantage in execution time arises primarily from two sources. 

First, as noted earlier in this section, identifier evaluation can be 

simple in DALI; it never intrinsically involves jearchincr. Second, 

storasre allocation is simple. The latter is true because retained local 

environments, held in the heap, are created and destroyed relatively 

seldom; while the actively varyinp temporary environment is easily 

allocated on a  stack. 

Some    advantage    in    storaee    space    accrues     from    the    fact    that 
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temporary environment layers are known a priori to be stack-allocated, 

and so can generally be simpler than layers destined for retention. 

This also provides some added execution time savings, since less complex 

layers take  less time  to build. 

However,  the    primary spatial    advantage of    DALI over    fully tree- 

structured  schemes arises  from the fact that  no matter how deeply nested 

in temporary environment  layers a retained  layer is,   i.e.,  how    deeply a 

picture function application is  nested,  the entire temporary environment 

is    fully reclaimed    and  its    storage  immediately    re-used.     In    a  fully 

tree-structured scheme,  all the    "temporary"  layers  in which    a retained 

environment    is    nested,     e.g.,    block    entries,     layers    of conditional 

evaluation,   etc.,  are retained along with the "desired"  layer or layers. 

If    the    ability    to    exit    multiple    times    out    of    any already-exited 

procedure is desired,  this global retention  is needed.    But this    is not 

truly necessary if    — as in DALI    daemons,  CONNIVER "methods",     and the 

majority of    the examples  the    author has seen    of SIMULA'? use    of this 

feature -- the desired ace ion is to enter a "saved"  environment,  do some 

local processing,  and    exit to an environment    not that of    the original 

caller.    Of course,   if the    only environmental data available is    in the 

tree-structure,  the  local processing necessarily makes use of the layers 

"above" the currently active one.    This is not the case in DALI;   daemons 

are    "sealed    off"    from    their    containment    tree    ancestors'    retained 

environments    fairly    thoroughly,    a    situation    made    possible    because 

daemons have the global and primitive environments  available. 

Nevertheless, flexibility is sacrificed in DALl's scheme, shown by 

the fact that in the scheme as presented, it <.s not possible for a DALI 

daemon to suspend itself midway through its code and then return to the 

suspension point at the next invocation of that daemon. Use of such an 

ability can, in some cases, result in a simplification of user code; an 

example in which this is true is the interactive drawine program to be 

presented in section 3-12, which could have been written in a somewhat 

simpler fashion    using this    technique.     As was    pointed out    earlier in 
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this section, this capability could be produced by allowirut some form of 

special exit from a daemon which causes the "temporary" environment at 

the time of exit to be retained until the next invocation of the daemon. 

This was not done for three reasons: First, its lack makes DALI a 

somewhat less drastic language extension, and hence easier to implement. 

Second, use of this feature implies much more active and time-consuming 

use of heap storage, "spagetti stacks", or other complex storaee 

allocation schemes. Third, the author could not find any examples where 

such a facility provided a truly substantial advantage. All of these 

reasons are perhaps specious: it may have been the better choice to 

allow retention of daemon's "temporary" environments. This may 

particularly be the case with respect to interactive input, since, on 

the evidence of Newman's finite-state "Reaction Handler" system [New2], 

the problem of parsing operator actions as a "command language" may 

possibly be fruitfully approached as a use of co-routines with the 

operator considered as one of the co-routines. 

But the retention of "temporary" environments is still not a 

completely tree-structured environment system, since distinction is 

still maintained between picture functions and "normal" functions: the 

former build a (containment) tree structure of local environments, and 

the latter can, via some new form of "daemon exit", retain only a single 

control and environment point en each daemon's "temporary" stack. The 

author does not feel that a fully tree-structured control and 

environment scheme is either necessary or desirable, for the reasons 

noted below. 

To some extent, the issue is one of efficiency since, as noted 

above, there seems to be little real use for many of the retained 

enviroment layers in which a particular desired eroup of environment 

layers is nested. It is also an issue of modularity: the sealing off of 

a module from its fathers promotes more conscious consideration of the 

interfaces  between objects. 

The primary issue,     however,   is this: Examples    of code in    which a 
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procedure literally "returns twice" to its original caller, and hence 

makes direct use of all the retained environment and control layers, 

very often appear to be extraordinarily compact expressions of the 

desired action; for example, the author has seen a 12-line "time-sharint? 

system", i.e., a clock-driven process-swapping system, written in 

CONNIVER. But at the same time, these examples uniformly appear to the 

author to be extraordinarily complex, confusing, difficult to follow, 

and hence "bup;-prone". Since one of the ^oals of this work is the 

creation of a system which is as straightforward to use as possible, 

constructs whose effects are difficult to comprehend are to be 

distinctly avoided. 
Such difficulties of comprehension may simply reflect a deficiency 

of the author; but they may be an indication that, not unlike the GOTO, 

constructs such as the ability to "return twice" should be declared 

anathema even at the hish level of sophistication at which they are 

normally used. In fact, the level of sophistication required for the 

use of such constructs is in itself an argument in this direction, since 

it implies that an unwarranted amount of intellectual effort needs to be 

spent on details of implementation. This should not be taken as an 

advocation of the use of DALl's particular scheme in more general 

circumstances; rather, it is an observation that the full generality of 

tree-structured control and environment structures apparently contains a 

source of confusion which does not really seem to be an intrinsic part 

of the capabilities truly desired. 

3.12 More Examples:   Iteration,   DODA,  and  Input 

To complete the example of a bar graph which was oripinally 

mentioned in section 2.3, a picture function BARGRAPH, which draws a 

full bar praph  reflecting the state of a set  of values,   is    friven below. 
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The picture function ONEBAR,  used by BARGRAPH to draw individual bars of 

the graph,   is also given. 

(DEFPIC BARGRAPH   (VALS MAX LB  RT 
"AUXO"  RB SOL WIDTH "AUX"  NVALS) 

(SETQ NVALS   (LENGTH VALS)) 
CONTIN   (OUCH  RB   (POS  (X   ,RT)   (Y   ,LB))) 

OUCH WIDTH  (POS  (/  (-   (X   ,RT)   (X   ,LB       NVALS)   0)) 
(OUCH SCL   (/  (-  (Y   ,RT)   (Y  ,LB))   ,MAX))   ) 

(PROG   (PREV) 
(SETQ PREV LB) 
(MAPC   (LAMBDA   (V) 

(SETQ PREV   !(ONEBAR  V  PREV  SCL WIDTH))) 
VALS) 

(LINE  PREV'  RB))) 

(DEFPIC ONEBAR   (V  PREV  SCL  WD   "OUTU"   RP   "AUXO"  LP) 
(CONTIN   (OUCH LP   (POS  (X   ,PREV)   (•   ,V   ,SCL)))) 
(SETO RP   !(RELINE LP  WD)) 
(LINE PREV LP)) 

Fie. 3-13 illustrates the desired graph for 5 values, and Fio;. 3-1^ 

illustrates  the "subpicture" drawn by each ONEBAR. 

The data web produced by BARGRAPH when graphing tw values is shown 

in Fig.   3-15a,   labelled as  illustrated  in Fif?.   3-15b 

BARGRAPH takes four arguments: (1) VALS, a list of outputs which 

hold the represented values; VALS is not itselr an output, and the 

number of entries in the bar graph is not variable. (?) MAX, the 

maximum expected value, used to establish the appropriate scaling; it is 

an output, but its value will probably not change as often as the 

individual outputs. MAX is not necessarily a running maximum of the 

values presented, although it could be. (3) and (U), LB and RT, 

position-valued outputs specifying the Left Bottom and Right Top of the 

area  in which the graph is to appear. 

BARGRAPH also maintains three "AUXO" outputs: (1) RB, the right- 

bottom corner of the area of the graph used to draw the final rightmost 

edge; (2) SCL, the scale factor used to map values into displayed 

heights; and (3) WIDTH, the width of each BAR. An "AUX" variable, 

NVALS, holds the number of values so that re-computing the length of 

VALS is unnecessary. 

The (MAPC . . .) construction in BARGRAPH's PROG applies the 

unnamed     function     (LAMBDA     (V)     .   .  .)    to    each    element    of    VALS    in 

/ 
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succession. Successive ONEBARs are given a PREV argument which is the 

output of the preceding ONEBAR; this allows appropriate vertical bar 

sides to be drawn. Note that the variable PREV of BARGRAPH's PROG and 

the variable V in the unnamed function are in BARGRAPH's temporary 

environment and hence have values only during the execution of the PROG 

when BARGRAPH is initially called. 

ONEBAR is very similar to the BAR example of Fig. 3.7, but is 

-impler. It only draws the left and top sides of a bar; and it need not 

construct a suitable width vector, as this task is performed by BARGRAPH 

for all the ONEBARs. 

It would appear from Fig. 3-15 that a change in one of the values 

would cause every daemon controlling lines to the ri^ht of that value to 

be ^un; for example, a change in Fig. 3-15*8 VI would cause the running 

of LI through L5 alone with the daemons specifying PI through PH. This 

is not the case. Changing VI, for example, causes PI and P2 to change; 

this is necessary. The P2 chance will cause the daemon specifying P3 to 

also be run. However, the OUCH of P3 will not cause P3's value to 

change, since P3 depends only on P2's X component and a VI change will 

affect only P2's Y component. Thus, by the definition of OUCH in 

section 3.3,  the P3 OUCH has no effect and PU,  LH,  and L5 will not run. 

As an    example of how    DALI mipht be    fit into a more conventional 

infix-oriented    lanruaee,     BARGRAPH    and ONEBAR    are coded    below    in a 

hypothetical PALI    extension of EULER    [Wirl]   (called DEULI?);    EULER is 

itself an extension of ALGOL. 

picfun BARGRAPH  input  VALS.  MAX.  LB,  RT     
^  auxo RB,  StL, WIDTH aux NVALS; 
begin NVALStrlengfETVALSl; 

contin RB:: = lx[.RBl,y.t,LB]}; 
  WIDTH: : = ] x  .frTl-5d,LB])/NVALS,0}; 

SCL: : = (i.[.T?T]-i.[.rB])/NVALS 
end; 
FeFln new PREV,   IX; 

FTTEVrr LB; 
for IX:=1,1,NVALS do 
■L^- PREV:4!ÖNEBAR[mS[IX],PREV,SCL,WIDTH]; 
lineCPREV.RB] 

end; 
end; 
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pic fun ONEBAR  input  V,   PREV,   SCL.  WD outu  RP  auxo LP; 
Eepin contin LP::=lx[.PREV],.V».SCL}   enTT 

RP:=!rellnerL7.WDl! 
linefPREV.LP] 

end; 

Conventions used  in    th ^ above DEULI    code  a^e:   reserved    wo-ds and 

system    functions,   including    line    and reline.    are in    lower    case and 

underlined;   period   (.),   rather    than comma,   indicates an    application of 

OVAL;    braces     ({})    make    their contents    into    a    position;    the infix 

operator  : := does an OUCH of    its left  operand  to the value    computed by 

its  ricrht    operand;   contin  implies    a begin and    must be closed    with an 

end;   and as with DALI in LISP,  a prefixed  exclamation point  indicates an 

application cf O'T. 

Before proceeding on to more examples, the DALI primitive for 

dynamic structural iteration will be described. It is a picture 

function callei DODA, for DO in DAli, a name pronounced as in the sone 

"Camptown Racers". The form of DODA's iteration is suggested by the 

previous BARGRAPH example: it creates a variable-length data web chain 

of picture modules,  as illustrated in Fig.   3-16. 

An application of DODA has this  form: 

(DODA n (-initials-) obj) . 

n is an output whose value, a non-negative integer, is the number of 

modules DODA has chained together at any given time. When n increases, 

modules are created and placed on the end of the chain one by one; when 

n decreases, modules are deleted from the end of the chain, obj is some 

object which returns a picture module when it is evaluated as if it were 

a one-statement daemon owned by the owner of the DODA's caller; such 

evaluation is how DODA creates modules, (-initials-) is used in the 

chaining operation. 

The chain is fortneo by use of the function PREOUT. PRBOUT can be 

applied legally only in the obj argument of a DODA, or any normal 

function or procedure -- not picture function — called by that 

argument. PREOUT takes one argument an integer greater than 0. An 

application of PREOUT, 
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(PREOUT m) 

returns the mth output of the previous menber of the chain.     If there  is 

no previous member  — i.e.,    obj   is beinf? used  to construct    the chain's 

first    member —    the    mth element    of DODA's     (-initials-)     argument  is 

returned instead. 

DODA could be defined as a user-written function in a purely 

interpretive version of DALI, but it would require primitives not 

presented here. In particular, some method of makinp the number of 

module outputs variable at module creation time would be needed. 

Provision would also have to be made for unevaluated arguments, and a 

DALI EVAL function would be necessary. Furthermore, PREOUT must violate 

the normal environment discipllr.e to find the currently operating DODA's 

list of chained outputs. The environment structure existine when DODA 

is creating a module, complete with the "illegal" reference required by 

PREOUT,  is shown in Fig.   3-17. 

A rectangular grid drawing picture function, GRID, will now be 

defined using DODA: 

(DEFPIC GRID  (NX  NY HT WD LL "AUXO" DELX DELY)        v 
:C-NTIN   (OUCH DELY   (POS 0  (/  (Y   .HT)   (-   ,NY  D)) 
CONTIN  (OUCH DELX  (POS (/ (X   ,WD)   (-   ,NX   1))  0))) 
DODA NX   (LL)   (GRIDDLE  (PREOUT  1)  HT DELX)) 

!DODA  NY   (LL)   (GRIDDLE  (PREOUT  1)  WD  DELY))   ) 

(DEFPIC GRIDDLE   (BOTPOS LNTH  DEL  "OUT"  NEXT) 
(CONTIN   (OUCH  NEXT  (+   ,BCTP0S  ,DEL))   ) 
(RELINE  BOTPOS  LNTH)   ) 

GRID's arguments are all outputs, and allow variation in the grid's 

height and width (HT and WD), the number of lines drawn in the X and Y 

directions (NX and NY), and the position of the lower left corner (LL). 

NX and NY have integer values, and the values of HT and WD are assumed 

to be of the form (POS 0 height) and (POS width 0) respectively. LL's 

value is also a position. DELX and DELY are the horizontal and vertical 

vector distances between successive vertical and horizontal lines, 

respectively. 

GRIDDLE is used    to actually draw    the lines.     Each    GRIDDLE module 
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feeds his successor in the chain the position at which the successor 

should start his line. Note that chances to LL result in response only 

by the daemons in GRIDDLE and  its sons. 

The npxt example is a regular polygon whose number of sides, 

radius, and center position can be • aried. This is NGON, below, in 

which N is the number of sides, C is the center, and R is the radius. 

DTHET is an output whose value is held at the change in ancrle between 

two corners. 

(DEFPIC NGON  (NCR "AUXO" DTHET SP) 
(CONTIN  (OUCH DTHET  (/ 6.2832  ,N))) 
(CONTIN   (OUCH SP  (+   ,C (POS  .R 0   ))   ) 
(DODA N   (SP  0)   (CORNER (PREOUT  1)   (PREOUT 2)))   ) 

(DEFPIC CORNER   (PP THET  "EXTERNAL"  R C DTHET 
"OUT"  NP NTHET) 

(CONTIN  (OUCH  NTHET  (+   .THET  .DTHET))) 
CONTIN   (OUCH  NP  (+   ,C  (»  ,R   (POS  (SIN   ,NTHET) 

(CCS  ,NTHET)))))) 
(LINE PP NP)   ) 

Each CORNER uses  the previous corner's  position   (PP) an.-i    the ar.rle 

a    radial    vector to    that    corner    makes with    the    X-axis    (THET).     It 

computes    the    next angle     (NTHET)     for its    successor,    along    with its 

successor's corner position   (NP).    Finally,  it causes a  line to be drawn 

between adjacent corners.     NGON itself creates and updates    the position 

of the initial corner  (SP). 

The final example is a simple interactive drawing program, ORAW, 

whose code is below. We assume here the existence of three external 

outputs of the type discussed in section 3.10; they are Riven to DRAW as 

arguments. The value of the first, PPOS, is the position of some input 

device like a tablet pen. The second, PBUT, has a boolean value 

associated with a switch on the pen; it is true (T) when the switch is 

depressed, and false (NIL) otherwise. The third, RESET, is likewise a 

button boolean. DRAW assumes a very simple driving program loop which 

continuously does UPDATE-DISPLAYs,  as discusssd  in section 3.10. 

When the PBUT switch     is depressed,  DRAW alternately     (1)  remembers 
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the    pen position    and     (2)  creates    a    line drawn    from    the remembered 

position    to    the    current    pen    position.      When    the    RESET    button is 

depressed,  all drawn  lines are    deleted and the DRAW is reset.      We will 

also draw a cursor dot   (zero-length line)  at the position of the pen. 

The final lines    drawn are  static,   so    they will be created    with a 

picture function called STATLINE rather than with LINE.       STATLINE takes 

constant position arguments    rather than outputs    and  lacks a    daemon to 

chanee the display    file entry;   otherwise  it    is identical  to    LINE.     In 

particular,  STATLINE does have LINE's  DELETE daemon. 

(DEFPIC  DRAW   (PPOS PBUT RESET  "AUX"  LASTPT   STATE LINES) 
(SETQ STATE T) initialize  state  flap 
(SETQ  LINES  ()) ;and   list  of  lines. 
(LINE PPOS PPOS) ;Draw the cursor. 

;When the pen button is depressed   (PBUT changes  to true): 
;If in record state,   record  position and switch STATE to NIL. 
otherwise,  add to LINES list and switch STATE to T. 

(ONC   (VAL   PBUT)   () 
(COND  (.PBUT 

(COND  (STATE  (SETQ LASTPT   .PPOS) 
(SETQ STATE NIL)) 

(T  (SETQ LINES 
(CONS  (STATLINE LASTPT   ,PPOS) 

LINES)) 
(SETQ STATE T)))))) 

;Whenever the reset  button is depressed, 
;delete all lines and reset  STATE to T. 

(AS-NEEDED  (COND  (,RESET  (MAPC DELETE LINES) 
(SETQ LINES  ()) 
(SETQ STATE T))))) 

Although the record/draw daemon uses PPOS' value, it should run 

only when the pen button is depressed;   hence AS-NEEDED cannot be used. 

A DRAW providing a rubber-band line could be written, but '.t 

requires primitives not  introduced until section U.U. 

3.13 Concluding Notes on Basic M-DALI 

Before  passing on to more complex issues,  two notes are  in order. 

First,   the only primitives    for producing visible output    which are 

ever used  in    this document  are  LINE,    STATLINE,  and a    picture function 
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TEXT used in section 4, 5 to display a static text string. This has been 

done for purposes of simplicity; it is unreasonable for a working DALI 

system because of its excessive «torage requirements. Some facility 

should exist for constructing compa-' static organizations of lines and 

dots, analogous to instance tree items, and usintr them to create visible 

"instances" as if they were parameterless picture modules. The 

coordinate system transformation scheme presented in section H.2 can be 

used to vary the position, rotation, scale, etc. of such instances. A 

subsystem operating in a manner analogous to EULER-G [Newl] could be 

used  for this purpose. 

Second, it is indeed the case that the driving program must create 

outputs, perform at least one picture function application, and perform 

OUCHes. This is really too bad; in the best of all possible worlds, a 

user should be able to tell some omnipotent graphics monitor "I want to 

see this looking like that." and see it with no modification to the 

application program. The situation IT at least tolerable, however, 

since a single OUCH can inform the picture definition that the display 

is to be updated based on a great bundle of information not contained in 

outputs. 
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Chapter U 

M-DALI: Further Issues 

4.1 Introduction 

Unlike most of the other chapters in this document, this chapter 

lacks a single focus of attention. Instead it deals with five separate 

topics, each of which, while important, is somewhat peripheral to the 

main conceptual thrust of this work.  These topics are: 

(1) How the coordinate trar.'iformation schemes characteristic of 

instance tree systems can be embedded in DALI. 

(2) How deletion is accomplished, and why retentive storage 

management — "garbage collection" — is not used instead. 

(3) What structural change to the data web requires, and what 

daemon conditions provide motivation for such structural 

change. 

(1) A discussion of a realistically large example. 

(5) In what way "hit" detection can be accomplished in DALI; i.e., 

how a DALI program can recognize and utilize the fact that an 

inp-1 device such as a tablet is pointing at a particular 

displayed object. 

These five topics are covered in the order listed above. The level of 

detail in the discussion varies from topic to topic; for example, only 

the general form of the mechanisms for "hit" detection is indicated, 

while coordinate transformations are discussed in detail. 
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4.2 Coordinate Transformations 

Coordinate system transformations — i.e., mappings from the 

coordinate system in which a visible object is defined to the coordinate 

system in which it is visibly displayed — are a basic tool of computer 

craphics. This section describes how such transformations can be 

embedded in DALI, first considering the general problem of embeddin? any 

transformations at all, and then describing the specific set of two- 

dimensional transformations — translation, rotation, scaling, and 

clipping -- which will be assumed in the remainder of this document. 

What were referred to as "attributes" in section 1.2, e.g., color, 

intensity,  etc., can be handled in a  similar  fashion. 

As will be explained in this section, a primary characteristic and 

advantage of DALI in doing coordinate transformations is hardware 

independence: DALI is capable of utilizing whatever transformation 

capabilities the available display hardware offers, and supplying 

whatever capabilities the hsidware does not have; the particular mix of 

hardware and software used can be totally invisible to the user — 

except,  of course,   for the speed with which the  3vstem operates. 

Associated with each picture module is a total transformation, 

abbreviated TT. This is a complete set of transformation parameters 

held as the values of a set of outputs. The TT of a module completely 

describes the mapping from coordinate data used by daemons of the module 

to coordinates on the face of the display device used, including, via 

clipping parameters,  how much of the displayed objects are visible. 

Total transformations are "the real thimr": they alone define how a 

given set of objects will appear on the display device. The main body 

of this section is concerned with how total transformations are (1) 

associated with modules; (2) defined and modified relative to other 

total transformations;   (3)    created;   (U) accessed    by the user;    and  (5) 
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implemented. Of particular note amonp these is the fact that the total 

transformation parameters can be accessed by user-written code; thus, 

for example, a daemon can be created which adds or subtracts visible 

detail  from the image displayed  in accordance with size changes. 

Discussion of each of the five issues listed above follows; as 

mentioned earlier, the particular transformation system chosen for use 

in the remainder of this document is covered after these five have been 

discussed. 

A total transformation (TT) is associated with a module when the 

module is created. This association is permanent; i.e., while the 

parameter values of a given TT — the values of the outputs which define 

the TT — can be changed, the association between a module and its set 

of TT outputs cannot be changed. 

By default, a picture module shares its TT witn its containment 

tree father. Thus, for example, a LINE picture function called by s 

daemon creates a module whose associated TT is that of the daemon's 

owner picture module. 

A TT other than the default is associated with a picture module by 

creating the module using the  function TRANSFORM, as in 

(TRANSFORM "USING"  mod picfun -args-) 

This    applies the    picture function    picfun to    -args-,  and    returns the 

resultant    picture module.      Associated with    the new    module is    the TT 

associated with the module mod. 

TRANSFORM is also used to create new TTs. ThJs will be discussed 

later, alontr with the mechanism behind the associecion of a module with 

a TT. 

Only one TT initially exists; this is the TT associated with the 

one initially existing picture module, the root module. This root TT 

has two unique properties: (1) it cannot be changed; and (2) it is 

absolute,     i.e., not    relative    to some    other    TT.    All    other    TTs are 



120 

relative,   i.e.,  they are the    concatenation of  (1) a base TT,    which may 

be the root TT;  and  (2) an incremental transformation,  or    H,  specified 

by the user. 
An incremental transformation (IT) is a set of outputs containing 

transformation parameters, generally defined by some arbitrary user 

computation. An IT differs from a TT in two ways: (1) It need not be 

complete; e.g., it mieht consist only of a single position-valued output 

used as a translation parameter. (2) An IT can be directly modified by 

the user; i.e., -iser-written daemons can, and usually will, specify the 

outputs which constitute an IT and OUCH them. In contrast to the direct 

user control of an IT, only by varying the IT(s) concatenated to form a 

TT can a TT be modified. 

The TT resulting from concatenating a given base TT and an    IT u   Ll 

be called a resultant TT- 

The concatenation operation required to define the parameter values 

of a TT is conceptually performed by daemons created alonct with each new 

TT. These daemons specify a resultant TT's outputs, and they watch the 

outputs of the base TT and the IT concatenated to produce the desired 

resultant TT. If the available hardware support is minimal, this may 

literally be the case; if, however, the available hardware is capable of 

doing at least part of the job, it can be used. How this is dore will 

be described as part of the description of implementation. 

The function TRANSFORM, given a base TT and an IT, creates a new 

resultant TT. Since, as mentioned, a TT is a set of outputs specified 

by a set of concatenation daemons, TRANSFORM creates a new picture 

module to own those outputs and daemons. Such a module is called a 

transfonn module, and is said to contain the resultant TT whose outputs 

it owns. A transform module becomes the containment tree son of the 

owner of the daemon applying TRANSFORM. 

The mechanism behind the association between a module and a TT can 

now    be given:     (1) a    transform    module is    associated with    the    TT it 
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contains; (2) any nnn-transform module NT is asscciated with the TT 

contained in the transfonri module closest to NT on the containment tree 

path from NT to the ro^o module. The root module is a transfcrm module, 

containincr the  root TT. 

Thus, user access to TT outputs can be achieved via tne "EXTERNAL" 

identifier  lookup mechanism described  in section  3.11. 

The method by which new picture modules are associated with new TTs 

la straightforward: TRANSFORM is piven the picture function and 

arguments to be applied to create the new module, creates the new 

module,  and makes it a  son of an appropriate transform module. 

If siven both (a) the picture function and arguments, and (b) a 

base TT and an IT, TRANSFORM both creates a new t, ansform module as the 

son ot its caller and applies the eiven picture function to create the 

desired module as a son of the new transform module. In this latter 

case, TRANSFORM returns the module whose picture function was supplied; 

if piven only an IT, it returns the new transform module. The latter 

can then be used  ir other TRANSFORM calls to provide a base TT. 

The full syntax of a call to TRANSFORM depends on the particular 

transformations used; one version will be described when the sample 

transformation system to be used here  is described. 

The way in which user code can access and use TT parameters will 

now be discussed. 

For the purpose of examples, we will assume here the use of a 

simple set of transformations: translation, rotation, and a sincle scale 

factor applied to both X and Y coordinates. Given these 

transformations, a TT consists of four parameters: an X translation, a Y 

translation, a scale, and a rotation about the center of the display 

device's coordin?te system. These parameters are the values of 

identifiers bouno in a transform module's local environment; in 

particular, the identifiers are CEN, SCL, and ROT. CEN is bound to a 

position-valued    output    whose    X    and    Y    elements    are    the    X    and    Y 

tm 
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translation; SCL is bound to an cutput containing a real (floating- 

point) ratio between distances under the TT and distances on the display 

device screen; and ROT is bound to an output containing a real 

(floating-point) rotation    in radians    about the    origin of    the display 

device. 
By the previously presented definition of the association of a TT 

with a module, simply making the above ATOMs "EXTERNAL" identifiers 

obtains the parameters appropriate to any given picture module. As an 

example, a LINE module appears below which does its own translation, 

scaling, and rotation, presenting coordinates to the display file which 

are rea-y for immediate display; it should be noted that the AS-NEEDED 

daemon runs if either endpoint changes or if any of the transformation 

parameters changes: 

(DEFPIC LDK (S^l^rcS^iS B0I) 
<SETQ A«™."'  jTR ,M   .Cg  .SCL   .BOTj^ 

(TR  !P2  ,CEN   .SCL   .ROT,)) 
(ONC  DELETE  ()   (DELETE-LINE-ENTRY LINEID))   ) 

The function TR, which    actually does the transformation,  is    defined as 

follows: 

(DE"-<5^t:"|:iippn§l5!!i:i5fii??m,„> 
S))) 

The above code is primarily for illustrative purposes; it may also be 

considered a definition of the way the assumed transformations affect 

the vlslMe image. However, it does not parallel a real implementation, 

both because it uselessly recomputes trigonometric functions and because 

it does not lend itself to utilizintt the available hardware. 

A more reasonable implementation method is presented below; before 

launching that discussion, however, note must be made of the fact that 

especially if hardware support is used, the most convenient internal 

formats of TT parameters will undoubtedly not be formats    reasonable for 
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user perusal. For example, a more internally convenient and efficiently 

usable form for the parameters assumed above is a 3X3 or 3/-? matrix in 

which the scale factor only exists multiplied by rotation parameters 

[New2]. If the user is to obtain access to parameters which are more 

readily usable in his code, the system must create daemons to translate 

internal TT parameters into the appropriate forms; various subterfuges 

can be used to assure that the minimum number of such daemons are 

created. 

A more reasonable implementation of transformations can be 

performed as  follows: 

The transform modules described above are still used, and still 

contain several daemons and outputs which will be described below. 

The display file is segmented, with one segment associated with 

each transfonn module. A segment is created when its corresponding 

transform module is created, and deleted when the transform module is 

deleted; the latter could be done by a DELETE daemon in the transform 

module and the former is readily done by TRANSFORM itself. Appropriate 

pointers to each display file segment are kept in the local environment 

of a segment's associated transfonn module. 

Each display file segment contains data for drawing the visible 

images created under the TT associated with the segment's transform 

module. Each segment also contains display hardware commands to do 

whatever part of the transformation the hardware can manage. If this 

includes transformation concatenation, a segment may also include 

"display subroutine jumps" to the segments of all transform modules 

using as their base TT the segment's TT; this generally facilitates 

concitenation. 

Aside from the display file segment, the elements of a transform 

module — daemons and further auxiliary storage — depend on the 

particular capabilities of the hardware. Three cases of a fairly 

general nature will be discussed here;  other situations can be described 
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in terms of these three. The cases are: (1) the hardware is eminently 

capable of performinp all the transformations desired as well as 

concatenating transformations; (2) the hardware can perform all 

transformations, but cannot do concatenation; (3) the hardware cannot 

perform concatenation and can perform only some of the transformations. 

The case where the hardware is incapable of any transformations seldom 

occurs, and at any rate is a simple extension of the third case. Each 

of these three cases will now be descritad. 

Even if the hardware is omnipotent, one daemon is needed. This 

daemon watches all the IT outputs specified by user code, and when any 

of these change it formats the IT data properly and deposits it in the 

appropriate place(s) in the display file segment. In this case, LINE, 

STATLINE, and similar "display" modules format their own data and place 

them directly in the display  file. 

If the    hardware can    transform but not    concatenate,  at    least one 

output for each TT will    be required to propagate chanees in    TTs.    This 

will be called the change output;   it is changed — perhaps    toggled from 

true  to false and back    again — whenever its associated TT    is changed. 

An  entire  TT need not be passed via the change output since TT    data can 

be accessed without literally watching it in an output.    As was the case 

with very  powerful hardware,  here    there  is one daemon;   in this    case  it 

watchs both    the IT outputs    and the change    output associated    with the 

base TT being used.    This daemon also specifies the change output of its 

own  TT.       When either    the IT    or the    base TT    changes,  the    daemon  (1) 

concatenates  the IT and '.he base TT;   (2)   for the benefit of others using 

this TT as a    base TT, updates the    resultant TT parameters held    in its 

own transform module's local    environment;   (3)  formats the    resultant  TT 

appropriately and places it in its display  file segment;  and     CO OUCHes 

the    chanee    output    to    let    others    know    that    this    TT    has chanced. 

"Display"    —e.g.,    LINE    —modules'    daemons still    place    their data 

directly  in the appropriate display file segment. 

If the hardware    is not only    incapable of doing    concatenation but 
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also cannot perform at least some of the transformations, a buf'er 

separate from the actual display file segment is needed to holl 

untransformed display data produced by "display" modules. This buffer 

is best considered as an array of outputs, each OUCHed by an associated 

"display" module to chanKe its contents; this need not literally be the 

case. This time two daemons are needed. The first is a "concatenation" 

daemon similar to the one used in the preceding case. It watches the IT 

outputs and base TT change output, does the concatenation, places the 

resultant TT in the local environment, OUCHes its own chanee output, and 

possibly formats that portion of the TT of which the display is capable; 

it does not, however, alter the display file segment. The second 

daemon, a "transformation" daerr »n, watches its own TT's change output as 

well as all the "pseudo-outputs" in the untransformed buffer. This 

daemon applies to the buffer entries that part of the TT which is beyond 

the capabilities of the hardware's capabilities, formats the results of 

that operation, and places the formatted results in the display file 

segment. If the "transformation" daemon is running because the TT has 

changed, it should also deposit in the display buffer the formatted 

version of those transformations within the hardware's abilities, 

performing the formatting itself if the "concatenation" daemon has not 

done so. The untransformed buffer must be transformed en masse if the 

TT has changed; if it has not — i.e., the "transfo-mation" daemon is 

running because some LINE-specified "pseudo-outputs" have changed -- 

then only the changed entries need be transformed. These entries can 

perhaps be selected on the basis of a "change bit" associated with each 

entry. 

The reason why two daemons are necessary in the last case, rather 

than just using a single daemon to do everything, derives from the fact 

that the "transforaiation" daemon effectively depends on outputs 

specified by LINE modules and hencr; runs after all those LINE modules 

have run. This is not generally possible for the "concatenation" 

daemon,     since the    LINE    change daemons    may    be web    ancestors    of the 
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"concatenation" daerron; this may occur if the user makes active use of 

TT outputs as described earlier. Making the transformation daemon 

separate avoids potential data web circularity which, aside from beinp 

illepal   in DALI as so far presented,  could lead to a deadlock. 

Now the particular transformations chosen for use here, along with 

a syntax for TRANSFORM, will be described. In order to ease the 

description, some terminology and some characteristics of the 

transformations  to be used will first be  described. 

The coordinate system used by modules associated with a TT A will 

be referred to as A's coordinate system. 

Since the transformations chosen for use here include clipping, it 

will be convenient to define a resultant TT A in terms of a mapping from 

an area in A's coordinate system to an area in the coordinate svstem of 

A's base TT; these areas will be called the master space and the 

instance space, respectively. The master space is the space in which a 

module considers itself operating; presumably the module will draw 

somethinp there. The instance space is the place where a module's 

caller puts the objects which the module draws. The master-instance 

space relationship simultaneously specifies translation, scaling in both 

X and Y, and, as done here, rotation. Other methods could be used, 

perhaps as  optional equivalents to the space  relationships chosen. 

It should be noted that due to concatenation of clippinK 

("boxinp"), a TT actually defines a mapping from some sub-area of the 

master space, commonly called a window, to some sub-area of the display 

screen, commonly called a viewport; however, a TT is locally defined in 

terms of master and instance spaces. 

The master and instance spaces are rectangular areas. Given 

rotation, however, clipping apainst an arbitrary polygon Is necessary; 

this is pointed out in [New2], and can be handled by the techniaues 

mentioned in [Sut2]. However, if polygonal clipping is actually 

available,   there is    little reason to    restrict the master    and instance 
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spaces to beinp rectanp;les; they could be arbitrary polygons which are 

congruent under rotation and separate X and Y coordinate scalinps. 

While a system utilizing master and instance spaces which are arbitrary 

polyeons could be defined, it will not be done here; doinc so would 

increase the complexity of the situation  to no pood explicatory end. 

Initially it will be assumed that all master spaces are identical, 

ranfinsr from -1000 to 1000 in both X and Y. These are arbitrary default 

values; the manner in which they can h.; changed will be described after 

discussion of the call to TRANSFORM,  which  follows. 

An  application of TRANSFORM has  the  followincr form: 

(TRANSFORM  -sptcs- picfun  -artrs-) 

The picfun argument   is a picture function,   and  -args- are    the arguments 

to be applied    to  picfun in creating    a new picture module;     this module 

will be the son of a    new transform module,  as was discussed    earlier  in 

this  section.     Both picfun and -args- are optional. 

The -specs- arguments specify the resultant TT's base TT and the 

instance space portion of the IT. Since there are several such 

arguments, and all are optional, some simple syntax will be used to make 

calls to TRANSFORM legible;   this syntax is described below. 

The -specs- consist of irroups of objects, each starting with a 

designator describing one or two supplied arguments; tht supplied 

arguments immediately follow their designator and terminate the group. 

The order in which groups appear is not significant. There are five 

designators: "USING", "CENTER", "HALFSIZE", "ROTATION", and "CLIP". The 

arguments which follow the designators, the way the arguments are used, 

and  their default values will now be described. 

"USING" is followed by a picture module; the TT associated with 

this module is the base TT to be used. The default is the owner of the 

daemon applying TRANSFORM. 

The remaining designators specify the instance space portion of an 

IT. It should be noted that they all refer to the base TT's coordinate 

system.     This is    a modularity measure    designed to decrease    the amount 

/' 



128 

that needs to te known about a module, in particular the way its 

coordinate  system is arranped. 

"CENTER" is followed by a position-valued output; the position is 

the location in the base TT's coordinate system of the center of the 

instance space. The default is the center of the base TT's master 

space. 

"HALFSIZE" is also followed by a position-valued output; the 

oosition's X and Y values are one-half the width, and one-half the 

height, of the instance space; if the instance space is upright, the 

"HALFSIZE" position is the position of the upper-richt corner of 

instance space relative to the center of the instance space. The 

default values are one-half the heipht and width of the base TT's master 

space. 

Use of only "CENTER" and "HALFSIZE" can result in clipping, since 

the instance space they specify need not lie entirely within the base 

TT's master space. 

"CLIP" is followed by two arguments, both position-valued outputs. 

The first is the center, and the second one-half the heieht and width as 

in "HALFSIZE", of an area in the base TT's coordinate system; this area 

is called :he clipping area. Only within the clipping area are objects 

and parts of objects visible when drawn in the resultant TT. Usually, 

this area will overlap with the space designated by "CENTER" and 

"HALFSIZE", since only within the overlapping area can anything appear. 

The defaults are  the "CENTER" and  "HALFSIZE" arguments. 

The clipping area has no effect on the instance space; its purpcje 

is to allow a user to select for display a particular piece of the image 

produced by a module. It will often be useful to specify the "CLIP" 

arguments by means of a daemon watching the "CENTER" and "HALFSIZIi" 

arguments; for example, doing so is the natural way to make only the 

lower-left Quadrant of the created image visible. 

"ROTATION" is followed by an output containing a real (floating 

point)  number;   this specifies the rotation in  radians.     Rotation poses a 
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problem: exactly what is rotated, and about what position? Here we 

chose to rotate the "CENTER"/"HALFSIZE" and clippinr areas about the 

"CENTER"      argument. The        area      resultintf      from        rotatine      the 

"CENTER"/"HALFSIZE"  area in this manner is  the instance space. 

Doinp rotation in the manner described above produces tilted and 

arbitrarily polytronal areas against wnich clippinp must be done. As 

noted previously, this can be done [Sut2], but it is siftnificantly less 

efficient than clipping against an u^riffht rectar.Rle. However, the 

author knows of no way to incorporate both e;eneral clipping and cteneral 

rotation in the same transformation system without clipping in this 

fashion. 

As an  example of the use    of TRANSFORM,  here is a different    way to 

create the variable-sided polygon of the preceding example: 

(DEFPIC NGON  (NCR "AUXO"  DTHET UR) 
(CONTIN   (OUCH DTHET  (/ 6.2832  ,N))) 
(CONTIN   (OUCH UR   (POS  ,R   .R))) xv     , 
(DODA N   (LIST (NULLSPEC  (OUTPUT  (POS  1000 0)) 0) 

TRANSFORM  "CENTER"  C  "HALFSIZE" UR 
CORNER  (PRE0UT  1)   (PRE0UT 2))   ) 

(DEFPIC CORNER   (PP THET  "EXTERNAL"  DTHET "OUT"  NP  NTHET) 
(CONTIN   (OUCH NTHET  (+   .THET  ,DTHET)) 

(OUCH NP  (•  100Ö  (POS (SIN   ,NTHET 
(COS  .NTHET))))   ) 

(LINE PP NP)   ) 

Here we have used the "CENTER" and  "HALFSIZE"  mechanisms to    do the 

requisite    scaling      and    translation,     eliminating      CORNER'S    explicit 

dependence on C and  R,  and instead hidine it in a transform module. 

The method of specifying the bounds of a master space must still be 

discussed. This operation is performed by using particular reserved 

words, i.e., reserved ATOMs, in the argument list of a picture function; 

these ATOMs are CENTER, HALFSIZE, and ROTATION. They may be used as 

argument, "EXTERNAL", "AUXO", or "OUT" identifiers (section 3.6); but in 

any case, they must be bound to outputs. The values of CENTER, 

HALFSIZE, and ROTATION respectively specify the master space's center, 

halfsize,  and rotation    about the CENTER position    in the manner    of the 

tm 
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"CENTER" "HALFSIZE", and "ROTATION" arguments to TRANSFORM. The values 

of the outputs bound to these ATOMs are special!v initialized if they 

appear as "OUT" or "AUXO" identifiers: CENTER receives the position 

(0,0), HALFSIZE receives the position (1000,1000), and ROTATION receives 

0, If any of these three ATOMs appear as arftuments or as "EXTERNAL" 

identifiers, they are bound in the normal fashion; but CENTER and 

HALFSIZE must be bound to position-valued outputs, and ROTATION must be 

bound  to an output containing a real   (floatinp-point) number. 

A picture function containing any of these ATOMs in its areument 

list is treated in a special way when applied to arguments. If it is 

applied as part of an application of TRANSFORM, the outputs to which 

they are bound are used in the created transform module in defining the 

resultant TT. If such a picture function is not applied usini? 

TRANSFORM, it is treated as if it were applied using a call to TRANSFORM 

in whicti all the other arguments  received default values. 

As an example of how master space manipulation can be used, here is 

yet another receding of NGON: 

(DEFPIC NGON  (NCR "AUXO"  DTHET UR EP CP) 
(CONTIN   (OUCH DTHET  (/ 6.2832  ,N))) 

CONTIN   (OUCH UR   (P0S  ,R   .R)))  _ v   tm^m    „„„^ > ,« , 
CONTIN   (OUCH  EP  (PCS (SII   ,DTHET)   (COS  ,DTHET)))) 
OUCH CP  (P0S 10)) 
NULLSPEC CP) ,„„„,„„„, „^ 
DODA N   (LIST (NULLSPEC  (OUTPUT 0))) 

TRANSFORM "CENTER"  C  "HALFSIZE"  UR 
CORNER  (PREOUT  1))) 

(DEFPIC CORNER   (ROTATE "EXTERNAL"  DTHET EP CP 
"AUXO"  HALFSIZE  "OUT"  NR) 

(OUCH  HALFSIZE  (POS 1   D) 
(NULLSPEC HALFSIZE) m    mfimtmm..   , 
(CONTIN   (OUCH  NR   (+   ,DTHET  .ROTATE))   ) 
(LINE CP EP)   ) 

Here each CORNER operates in a constant space ranging from -1    to 1 

in X and Y,  and is mapped into a square space of side 2R centered    on C; 

this    provides    scaling    and      translation    as    in    the      last    example. 

Furthermore,  each    successive CORNER    master space    is rotated    by DTHET 

from    its    predecessor    by    making    ROTATE    an    input    and appropriately 

controlling    the    NR output.      This    means that    the    numeric positional 

values of every line's endpoints are the same.     That is    taken advantage 

) 
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of by sharinfr these endpoints; one, CP, is constant at (POS 1 0), and 

the other, EP, varies dependinp on N. Note that NULLSPEC is used to 

allow LINE to use an otherwise constant output, Makinc the CORNER 

master space of halfsize (1,1) simply removes the explicit 

multiplicative factor from the computation of EP, and, atrain, hides it 

in a transform module. 

There is a further complication to transfor.i.ationL which must be 

dealt with in DALI, 

In the last NGON example, we utilized the fact that particular 

numeric coordinates, valid in one space, had a meaningful interpretation 

in another. This is not always the case. In general, suppose a module 

A is operating in a space whose total transformation is represented by a 

3x3 matrix TA. Thus the display coordinates of a position (X,Y) in A's 

coordinate system are obtainable from 

[X Y 1] 1 TA, 

where • indicates matrix multiplication. Further suppose that said 

module uses that position as the value of an output, and that another 

module, B, operating under a different TT TB, has that output as an 

input. Clearly, A's literal X and Y values generally represent sheer 

gibberish to B. The intelligible versions of them are some (X',Y') 

expressed in B's coordinate system. These are defined by 

[X Y 1] • TA • TB' = [X' Y' 1] 

where TB' is the inverse of TB. TB' always exists if TB in fact 

represents only concatenated translations, rotations, and scalings; this 

condition also guarantees the unit third element of the result. 

It is a fact that sophisticated users of graphics systems with 

fairly general transformational capabilities quite soon run into the 

necessity of creating TAJ^TB' transformations. This happens, for 

instance, whenever an input device is used for drawing inside a 

transformed section of a display. 

Since an output contains pointers to both its owner and all its 
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dependent modules, we can always find TA and all the TB's, and thus it 

is always possible to provide meaningful coordinates to any module B. 

However, we are dealing here with a potentially enormous amount of 

computation, and it behooves us to treat it as a special case: even 

display hardware which glibly performs transformation concatenations 

isn't pointt to invert TB for us as a regular part of the display refresh 

cycle,    if at    all.       Therefore we    provide a    special    built-in picture 

function  RESPACF: 

(RESPACE outp) 

where outp is a position-valued output. The picture module resulting 

from applying RESPACE has an output which is the position corresponding 

to outp's value under the TT in which RESPACE is applied. Various 

subterfuges can be resorted to for avoiding unnecessary inversions of TB 

w!-en many similar RESPACEs are done. 

1.3 Deletion 

The effect of deletion, performed by the function DELETE, is to 

cause an ob.iect to cease to exist. Deletion can be performed on picture 

modules, daemons, outputs, and several other objects which will be 

mentioned. Deletion serves two purposes: primarily, it removes from the 

picture definition all effects of the object deleted; with that done, 

the storage occupied by the object can be reclaimed and so it is, as the 

secondary purpose. 

The subject of deletion invokes a serious meta-auestion: Why have 

explicit deletion rather than retentive storage management — i.e., 

garbage collection? This question will be discussed before the problems 

and mechanics of deletion are addressed. 

It must initially be stated that the use of explicit deletion is 

L     ^- ^^^^M^ 
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not motivated by questions of efficiency. Deletion in fact has two 

disadvantages which offset any greater efficiency that it may have: 

First, deletion significantly increases the size and complexity of 

nearly every DALI object. This occurs because whenever an object A 

makes use of an object B -- i.e., A contains a pointer to B -- there 

must then be some path by which B can refer back to A so that if B is 

deleted, A can be deleted or appropriately modified. For example, a 

module needs a pointer to its containment tree father in order to 

resolve "EXTERNAL" references; hence the father must point back to all 

his sons so that when the father is deleted, the sons can also be 

deleted. Whether this is accomplished with two-way pointers, rings as 

in SKETCHPAD [Sutl], or some other means, it represents an overhead 

which does not exist when garbage collection is used. 

Second, deletion presents modularity problems: A module may 

contain, in its local environment, pointers to an arbitrarily large and 

complex data structure constructed by the user-written code of that 

module's daemons. If the module is deleted, at least part of that data 

structure must be deleted — and there is no way for the deletion 

procedure to know what part. This problem is solved in DALI with a 

device called a "deletion p-closure", which is described later in this 

section; it is not solution of which the author is fond, as Lt is 

imperfect and embodies significant overhead. 

The reason why deletion is used derives from the fact that the 

internal DALI data structures contain an inherent loop with one 

particularly troublesome pointer: the pointer frorn an output to a daemon 

which is to be queued when the output is OUCHed. The full areument 

establishing the reason why this loop apparently makes garbage 

collection impossible necessarily involves the construction of a 

"gedanken" garbage-collected DALI. Because of its size, thits 

construction has been relegated to Appendix 3; a relatively abstract 

summary of the central part of the argument follows. 

An output contains references to the daemons watchincr it so that 



those daemons can be aueued when the output is OUCHtJ. This could keep 

a daemon — and its owner — from beintr reclaimed unless all its watched 

outputs were reclaimed, leading to the retention of much useless storaKe 

and the running of many useless daemons. Furthermore, it is 

unreasonable to require the user to delete these references by explicit 

programming, since they are constructed by the DALI system itself- 

Instead, the garbage collector can ignore these references, collect the 

uscles«5 daemons, and appropriately modify the sets of pointers contained 

in outputs. Unfortunately, the trarbage collector runs at infreauent 

intervals, and until it runs and changes an output's set of "watching" 

daemons,   the useless daemons will still be queued and run. 

This is an untenable situation. If daemons continue to run for an 

indefinite period after they "should" not exist, it is very likely that 

they will fail catastrophically because output values are in what is, 

for them, an inconsistent configuration. So garbage collection of DALI 

objects must,  regretfully, not   oe used. 

It must be noted, however, that the above discussion says nothing 

about the possibility of garbage collecting user storage, i.e., letting 

the user construct "free" objects and garbage collecting them '..'hen they 

are no longer used. This is quite possible, and will be a convenience; 

however,  given deletion p-closures,   it is not a necessity. 

Now the manner in which deletion is accomplished wi'il be presented. 

Deletion in DALI is akin to the recursive deletion of SKETCHPAD 

[Sutl], in that when an object is deleted, all objeccs which "depend on" 

its existence are also deleted- 

The dependence of an object 0 on a deletable object D can take one 

or both of two  forms: 

(1)0 can be part of D. For example, the daemons and outputs owned 

by a module are part of that module, as are the module's sons. 

This will be called containment dependence, and is expressed by 

the containment tree and ownership relations  (section 3.5). 
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(2) The correct operation of 0 can reauire the existence of D. For 

example, a daemon's accessing the value of a local environment 

identifier is erroneous if that value is an object which has 

been deleted. This will be called operational dependence. 

In the case of containment dependence, deletion of D requires deletion 

of 0 for locical consistency; this is therefore done in DALI. In the 

case of operational dependence, it is often possible and desirable to 

modify the dependent object 0 so as to permit its continued operation. 

For example, rather than being deleted when one of its watched outputs 

is deleted, a daemon mieht be kept in operation by substituting some 

other "default" output for the deleted one. However, the nature of the 

reauired modification depends upon the way the objects are beinp used; 

no sincle uniform procedure will always be correct. DALI therefore 

provides a daemonic mechanism called a deletion p-closure. to be 

discussed later, by which the user can specify his own desired 

modifications under deletion. If a deletion p-closure is not used, or 

i^ used does not remove detectable dependence, Ihe dependent object is 

deleted. 

In the example of operational dependence in ehe definition auove. 

deletion of an object assigned in a local envirupment causes deletion of 

the module containing that local environment, since the latter is no 

longer we'i I-defined. Thus, for example, deletion of either endpoint of 

a LIME causes the LINE to be deleted. 

It should be noted that maintenance of correctness by dependence 

del et inn must be done by the DALI system, because it cannot be done by 

t'pe user without sacrifioin? the modularity afforded by DALI: a module 

dots not -- and should not have to — know what ether modules depend on 

its cutruts. The principle mechanism for maintaining consistency 

through recursive deletion of operationally dependent objects is the s.et. 

of dependents;   this will be discussed in detail  further below. 

It   is    often  the    case that when    an object     Is deleted,     there are 
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certain local "cleaning up" operations that must be done. For example, 

since a LINE module creates and controls an entry in the hardware 

display file, that entry must be deleted if the LINE is deleted. A 

further example concerns a module which has created, and stored in its 

local environment, a list composed of storage cells from a (non.*arbaee- 

collected)  heap.    When the module is deleted,  it must be given    a chance 

to return that  list  to  "free"  storage. 
Such actions must be user-definable on a local,  modular    basis.    To 

permit this,  DALI uses a device called a deletion P-closure    (DPC)-    The 

term    "p-closure"    is    used    to    indicate    an    analog    with    functional 

closures;   the "p-"   indicates that the function is closed with respect to 

a picture module's  local environment. 

A DPC has three elements: 

(1) an owner, which is a picture module 

(2) an undertaker, which is a function of  1  argument 

(3) a corpse,  which  is a deletable object. 

The owner is that picture function which was current when the DPC 

„as created. The undertaker is a user-defined function whose returned 

value is ignored  (a procedure). 

The corpse is that object whose  deletion the D'C "waits lor". 

Just before a DPC's corpse is deleted, the DPC'a undt-taker is 

applied to the corpse as if the undertaker were a daemon of Its owner. 

This is done as part of the deletion of the corpse. When the undertaker 

finishes, the corpse is interred -i.e., it is "really" deleted and its 

storage is reclaimed.     If a corpse has multiple DPCs,   the order in which 

they are run is undefined. 
Thus a    DPC acts very    much like a    daemon dependent on    a mythical 

output which is OUCHed just before deletion of its corpse. 

A DPC is created by execution of 

(ONDELETION corpse undertaker) 

This application returns the newly-created DPC. 

The  (ONC DELETE  )  construction presented previously in    the LINE 

module example is syntactic sugarine for 
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(ONDELETION   (CURRENT-MODULE) 
(LAMBDA   (MODULE)  —)) 

where   (CURRENT-MODULE)  returns the current module. 

A deletion p-closure is, as its name supeests, a particular 

daemonic use of an M-DALI object called a p-closure. a functional 

closure with respect to a module's local environment. While the author 

realizes that a discussion of p-closures in the midst of a discussion of 

deletion is scarcely appropriate, he can think of no other place where 

the motivation  for them sprines from the material under discussion.    So: 

(P-CLOSURE func mod) 

where  func    is a function    and mod    is a module,     creates and    returns a 

closure of func    with respect to mod.      mod is optional and    defaults to 

the owner of the daemon currently executing. 

A p-closure is applied to arguments as if it were the func argument 

of P-CLOSURE. However, in the execution of func's body, the local 

environment of mod is used in place of whatever local environment 

existed when the p-closure application was done. A realistic example 

using p-closures appears  in section 5.9. 

With the addition of p-closures and deletion p-closures, all the 

deletable objects of M-DALI have been introduced: outputs, daemons, 

picture modules, p-closures, and deletion p-closures. S-DALI will add 

two more: sequences and scheduled p-closed actions; these two are 

described  in sections 6.3 and 6.^4. 

Each of these deletable objects has, by virtue of beine deletable, 

three elements which are used only in deletion and have previously been 

unmentioned: 

(1)a mark bit 

(2) a set of deletion p-closures  (DPCs) 

(3) a set  of dependents. 

The mark bit is needed to avoid infinite recursion during deletion 

when circular data webs are used. 
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The purpose of DPCs has been discussed. A DPC is a member of this 

set  if and only  if the object containing this set  is the DPC's corpse. 

The set of dependents contains picture modules: every module M with 

a deletable object D bound to an identifier in M's local environment is 

in D's set of dependents.     Its use is discussed  further below. 

The set of dependents is a mechanism for enforcing; consistency by 

making it difficult for a user to reference storage which has already 

been reclaimed. The enforcement is performed by deleting all the 

dependents of an object when the object is deleted. This operation is 

called implicit dependence deletion; it causes, for example, the 

deletion of a LINE module vhen either of its endpoints  is deleted. 

It is clear that maintenance of the set of dependents can be fairly 

expensive, as it must be done at run time by the operations of bindli.g 

and assignment of local environment identifiers. Since the function of 

this set can be performed by appropriate DPCs, which in many cases will 

be more efficient, it is appropriate to allow a confident user to 

specify a mode of operation or compilation in which assignment does not 

include this overhead. Alternatively, only initial binding of inputs 

could add to the set of dependents. The situation is somewhat similar 

to that of run-time  array bounds checking. 

Furthermore, implicit dependence deletion, as defined, is an 

imperfect protection mechanism: the user can always assign a structure 

containing a deletable object to a local environment identifier, thereby 

bypassing the mechanism. This case could be handled by adding a 

dependent structure set, kept updated by structure creation and 

modification operations. Deletion of an object would then also entail 

renlacing the object in the structure with an "obviously incorrect" 

value, such as 0, thereby allowing validity tests to be made whenever a 

free object is used. Since, however, deletion of objects in structures 

will usually reauire a "cleanup" operation which alters the structure, 

DPCs will normally be used if such deletion is to be feared; hence the 

dependent structure mechanism has not been included. 
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Why only identifiers in local environments need be considered, as 

opposed to temporary environment identifiers also, follows from the 

nature of the deletion process and will be discussed. 

Now the  actual  process of deletion will be described. 

DALI utilizes delayed deletion. On execution in a daemon or 

picture function body of 

(DELETE obj) 

where obj is a deletable object, obj is not immediately destroyed. 

Instead, obj is inserted into a global deletion set. Then, after 

termination of daemon body execution, the members of the deletion set 

are interred, i.e., "really" deleted and removed from the deletion sec. 

The driving program is an exception to this rule, as explained further 

below. 

The purpose of delayed deletion is to wait until the total DALI 

environment is in a known state. When interment occurs, the only 

temporary environment in existence is that of the driving proftram, 

thereby limiting implied dependencies among "real" picture modules to 

the local environments. This is considered adequate because in DALI, as 

opposed to most display systems, the information about the picture held 

in the driving program's  local environment  can be kept  fairly simple. 

Whenever the total environment is in the described minimal state, 

interment is performed on all objects currently in the deletion set. 

This minimal state occurs often and is easily detected: It occurs 

whenever the scheduler has just finished running an entry in the daemon 

queue. It also continuously occurs while the driving program is 

running; hence, deletion when done by the driving program is not 

delayed. 

A further purpose in delaying deletion is to allow objects time to 

get out from under the hanmer of implied dependence deletion. After 

all, it is quite possible that DELETE's argument was the value of a 

local environment  identifier. 



Interment will be described  in a ouasi-programmatic  form. 

A uniform prelude of    three steps begins the interment    process for 

all deletable objects.    For an object 0,   these are: 

(1) Test    the    mark bit    of    0;     if it     is     1,     return immediately. 

Otherwise set  it to   1  and continue. 

(2) Run  and   inter all of 0's deletion p-closures. 

(3) Inter all of 0's dependents. 

In addition, a uniform coda ends the interment process: 0's storage 

is  returned t       he  "free"  storage pool. 

The remainder of the steps differ for each type of object, and are 

detailed below. The general rule they follow is: first inter any 

modules which need it, then any outputs, then any daemons, and only then 

perform the  local  unlinking operations required  for the object. 

Interment of a picture module P: 

(1)  inter  P's  sons 

(5) for each output 0U owned by P, 

(5.1) run  all deletion p-closures of 0U 

(5.2) inttr all modules  in OU's  set of dependent modules 

(5.3) inter all daemons watching 0U 

(5.U)  if 0U has a specifier S,  remove 0U from S 

(6) inter the daemons,  deletion p-closures,  and p-closures owned by 

P 

(7) for    each deletable    object DO    bound  to    an  identifier    in P's 

local  environment,   remove P from DO's  set of dependents. 

(8) remove P from its  father 

Interment of a daemon D: 

(4) make all of D's  specified outputs unspecified 

(5) for each watched output OH of D,   remove D from 0U 

(6) if D  is Queued,  remove it  from the daemon queue. 

(7) remove D from  its owner 

Interment of a deletion p-closure DPC: 

CO remove DPC  from its owner. 

/ 
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This completes the discussion of deletion in M-DALI. Deletion in 

S-DALI is identical, barring the existence of more types of deletable 

objects. 

4.4 Further Daemonology and Data Web Chance 

The basic mechanisms behind the operation of daemons and outputs in 

DALI have been presented. Here some simple but powerful and necessary 

extensions of those mechanisms are presented, leadinsr into structural 

change to the data web. 

The first extension is a means by which a daemon can determine 

which of its watched outputs actually changed. This is done with a new 

type of daemon,  called a named-change daemon,  created by 

(NAMEDONC atm cndtn (-specs-) -body-) . 

cndtn, (-specs-), and -body- are the daemon's condition, specified 

outputs, and body as usual. atm is an ATOM which, just before the 

daemon's body is executed, is bound in the temporary environment to a 

list of all the watched outputs which have changed. The order of the 

outputs in the list is undefined. That list, called the changed-outputs 

list, is held while the daemon is queued in an element of this type of 

daemon.    After running the daemon,  the chanced-outputs  list  is emptied. 

NAMEDONS, with semantics similar to ONS. also exists; when the 

daemon is run at  its creation,   the changed-outputs list  is NIL. 

An example: 

(DEFPIC MERGE   (01   02  "OUT"  EITHER) 
(OUCH EITHER  ,01) rArbitrary  initialization. 
(NAMEDONC-HIM  (VAL  01  02)   (EITHER) 

(OUCH EITHER   ,(0AR HIM))   )) 

If either    01  or 02    changes,   but not    both,  MERGE's output    mirrors the 

most    recent    value of    either.       If both    change    "simultaneously",  the 

output value will be that of one of them,  but which one is undefined. 
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Named-change daemons are a powerful extension; they effectively 

convert daemons from procedures with no areuments to procedures with 

areuments. Moreover, fdven named-chanee daemons, there are several new, 

useful capabilities that can be added to the daemonolojry of DALI. The 

rest of this section describes such additions. 

The first new capability is the ability to make a daemon depend on 

or specify a set (list) of outputs without mentioning all of them by 

name.     This is done  by placing the fragment 

"MEMBERS OF" 1st       , 

where  1st    evaluates  to    a list,     in a    daemon's condition    or specified 

output  list  in place of a sinele output.    For example,  if OUTL    is bound 

to the  list   (ol o2 o3)  and PQ is bound  to o^,   then both of 

(NAMEDONC  HIM  (VAL  PQ "MEMBERS OF" OUTL)   .   .   .) 

(NAMEDONC  HIM  (VAL   "MEMBERS OF" OUTL PQ)   .   .  .) 

have  the same effect,   causing the daemon to watch ol,  o2,  o3,   and ol. 

Similarly, 

(ONC   (VAL   .   .   .)   (PQ "MEMBERS OF" OUTL)   .   .  .) 

causes the daemon to specify ol, o2,  o3 and oM. 

An  example: 

(DEFPIC SWITCH   (SELECTOR LST "AUX"  SELECTED 
"AUXO" DING  "OUT"  SELVAL) 

(OUCH DING T) 
ONS  (VAL  SELECTOR)   (DING) „   xx 

(SETQ SELECTED  (NTH LST  .SELECTOR)) 
(OUCH DING  (NOT  .DING))   ) 

(OUCH SELVAL   ,SELECTED) m _ ,      .   ,__„.,. 
NAMEDONC WHO  (VAL  DING "MEMBERS OF" LST)   (SELVAL) 

(COND  ((OR  (MEMQ DING WHO)   (MEMQ SELECTED WHO)) 
(OUCH SELVAL   ,SELECTED))   ))   ) 

SELECTOR is an output    whose value is an inteRer,     and LST is a    list of 

outputs.    The    LISP  function MEMQ    is a boolean,     returning true    if and 

only if its first argument    is a member of its second    artrument.     SWITCH 

makes its output    "follow" the value of    the SELECTORth element    of LST; 

thus  it corresponds to    a multi-throw electrical  switch.       A  "multi-pole 

switch"    could    be constructed    by    making several    SWITCH    modules with 

disjoint LSTs    share a    common SELECTOR.    DING    is the    sound of    a bell 
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waking up the second daemon when the SWITCH is "thrown", thus assuring 

that SELVAL attains the correct value of the selected output whether or 

not    the    latter    is      OUCHed    along    with    the    selector. The    above 

implementation of SWITCH is rather inefficient, since the second daemon 

is run when any output in LST changes, not just the currently selected 

one.     A better implementation will be presented below. 

The    next extension    provides  for    varyinc a    daemon's    watched and 

specified outputs dynamically. 

A    daemon dem    can be    made to    specify a    set  of    outputs -outs-by 

execution of 

(SPECIFIES dem -outs-) 

where    -outs- is    a number    of outputs    none of    which has    a specifier. 

Similarly, 

(WATCHES dem -outs-) 

makes the daemon dem watch the outputs -outs-. 

The inverses of SPECIFIES and WATCHES are,  respectively 

(UNSPECIFY -outs-) 

(UNWATCH dem -outs-)   . 

A restriction:  UNWATCH may only be applied to named-chanee daemons.    The 

reason is provision  for this feature:  the affected output(s) are removed 

from the    affected daemon's chanced-output    list if they    are on    it;   if 

this empties the list,   the daemon is removed  from the daemon aueue.  Thus 

the sequence 

(WATCHES dem out) 
(OUCH out val) 
(UNWATCH dem out) 

does not cause dem to run. 

As an example of the use    of WATCHES and UNWATCH,  here  is    the more 

efficient switch promised earlier: 
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(DEFPIC SWITCH  (SELECTOR  LST "AUX"  SELECTED POLE 
"AUXO" DING  "OUT"  SELVAL) 

(OUCH DING T) 
SETQ SELECTED   (NTH LST  .SELECTOR)) 

(OUCH SELVAL   .SELECTED) 
(ONC  (VAL  SELECTOR)   (DING) 

(PROG  (SEL) 
(SETQ SEL   (NTH LST  .SELECTOR)) 

;If a new different output is selected, 
:swap outputs for the POLE daemon. 

(COND  ((NOT  (EQ  SELECTED SEL)) 
lUNWATCH POLE SELECTED) 
SETQ SELECTED SEL) 
WATCHES POLE SELECTED) 

[OUCH  DING   (NOT   .DING))   ))   ) 
(SETQ POLE 

(NAMEDONC WHO  (VAL  DING)   (SELVAL) 
(OUCH  SELVAL   .SELECTED)   )) 

(CAN-WATCH POLE LST)   ' ;See following text. 
(WATCHES POLE SELECTED)   )) 

This is more efficient  than the previous SWITCH in that the data-passing 

daemon.  POLE, here  (1) does not    have to search a list  to  find    out what 

to do.  and  (2)    runs a minimum number    of times:  only when    the selected 

output    is    OUCHed    and    when    a    different    output    is    selected.      The 

mysterious function CAN-WATCH is an efficiency measure discussed    at the 

end of this section. 

The functions SPECIFIES and WATCHES, while necessary, pose two 

problems if used in the unrestricted manner implied above: 

First, it is no longer possible to guarantee a lack of cycles in 

the data web without explicitly inspecting it. In fact, arbitrary data 

web formations can be created with the functions in question. Perhaps 

fortunately, the second problem implies a test for web circularity. 

Second, even if execution of SPECIFIES and WATCHES does not create 

circularities, it may necessitate recomputation of the priorities of 

daemons in a swath of the data web. This arises with (WATCHES dem out) 

if the specifier of out has a higher priority than dem, and in 

(SPECIFIES dem out) if a daemon watching out has a lower priority than 

dem. In either case, existing priorities of both the daemons mentioned 

and their web descendants are no longer ciiaranteed to result in a 

correct queueini? order, and    must be recomputed in a    recursive Tachion. 
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This recursion must contain a test for web circularity; otherwise, 

inadvertently created circularity would lead to infinite recursion. The 

"mark bit" needed  for deletion will be used for this test. 

The recursive procedure RE-PRIORITIZE for recomputing priorities is 

described below. It is straightforward, but can be expensive; in the 

worst case, the time needed rises exponentially with the number of 

daemons in the data web. Applied to a daemon DEM, RE-PRIORITIZE does 

the  following: 

(1) if    DEM      is    marked,    call      an    error    routine      to    announce 

circularity. 

(2) let    a    variable    P    he  1    +    (the    maximui,,    priority    of DEM's 

fathers). 

(3) if DEM's  priority is greater than or equal to P,  return. 

(U) set DEM's  priority to P. 

(5) mark DEM. 

(6) recursively call RE-PRIORITIZE on all of DEM's web sons. 

(7) ur.mark DEM and return. 

RE-PRIORITIZE is not a user-callable function; it is automatically 

applied by DALI to a daemon as part of (WATCHES dem -outs-) and to all 

the watchers of all the -outs- as part of (SPECIFIES dem -outs-). 

UNWATCH and UNSPECIFY do not require an analogous procedure, since it is 

unnecessary to ever decrease the priority of a daemon; furthermore, they 

cannot cause circularity. 

The application of RE-PRIORITIZE is actually delayed, like 

deletion, until the currently executing daemon has terminated. This 

requires that WATCHES and SPECIFIES put the daemons they have polluted 

onto a global list, if they are not already there, ;.o that RE-PRIORITIZE 

can find those daemons when daemon body execution has terminated. This 

delay avoids redundant applications of RE-PRIORITIZE when, for example, 

WATCHES is applied more than once to the same daemon by the same daemon. 

The cost of RE-PRIORITIZING can be significantly reduced if the set 

of    outputs which    a daemon    can watch    is known.      Given that    set,   the 
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daemon can be given a priority greater than all its possible web 

ancestors and then RE-PRIORITIZED, thereby causing immediate exit from 

all future RE-PRIORITIZEs at step (3)- This efficiency measure is 

performed  by the function CAN-WATCH,  called as 

(CAN-WATCH dem outl) 

where outl is a list of the outputs dem can watch.    This was used in the 

efficient SWITCH above.    CAN-WATCH    places no limitation on    the outputs 

dem can be made to watch;   it  simply assures that any output  in    outl can 

efficiently be watched. 

4.5 A Large Example: 
The Incredible Plastic Tree 

A fairly substantial example, honefully illustrating the power of 

DALI, will now be presented. It is the display of an n-ary branching 

tree which grows without bound, displayed in an area whose width is 

limited. The action desired in this display, called the "Incredible 

Plastic Tree" (IPT), is illustrated in Fig. H-1. The characteristics 

desired of the IPT will first be described, followed by a discussion of 

a DALI implementation and ending with the code itself. 

The IPT is a display of an n-ary tree which can grow boundlessly. 

The width of the display area available for showing the tree has an a 

priori limit, but the height is assumed to be adequate. The height 

could also be limited, but doing this would increase the complexity of 

the example without increasing its utility as an example of DALI "in 

action". No node on the tree is ever deleted; this restriction could 

also be removed,   eiven the existence of deletion p-closures. 

Each node of the IPT contains text which is to be displayed 

centered within a rectangular box.       Son nodes on the IPT    are connected 
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i,o theit-  father nodes  by lines between the centers of their    boxes which 

are   "clipped" at the boxes' edges  so as not to obscure the text. 

Since the tree can grow boundlessly, it is apt to become too wide 

at any given level to allow all the nodes to remain at an "optimal" size 

for reading the text; so at least some nodes must shrink. Since It is 

most likely to be the case that a viewer is principally interested in 

the most recently added node, that node will be displayed at its 

"optimum" MZC. The algorithm used also has the nice effect of making 

ancestors of the most recently added node  large,   "optimum" at  largest. 

In general terms, what the IPT tries to achieve is this: given a 

quantity of (tree-)structured information too large for comprehensibly 

display in all its detail, the "currently important part" (the most 

recently added node) is shown in full detail, while less important parts 

are shown in less detail; at the same time, the structure in which the 

information is organized is always visible in at least schematic form 

(the whole tree is always displayed, perhaps with some nodes shrunk to 

dots), thus maintaining a display of the relationship between the 

"currently  important part" and  the other parts. 

The action of the algorithm is illustrated in Fig. 1-1; fror KiK. 

4-1a, first node 5 is added to produce Fig. 4-1b; then nod'. 6 is added 

to produce Fig.  U-lc. 

As    might    be    e J,     the    primary    picture    function    used    in 

implementing the IPT is recursive: it calls itself to create the display 

of a new son. This basic picture function is called NODE. Its task is 

to create sons and allocate area for display among its sons; the actual 

display of a node — the box, the text, and the connecting lines — is 

performed  by DRAW-NODE,  a picture function called by NODE. 

NODE allocates area to its sons as follows: when one of its NODE 

sons requests "more area", either because it has just been newly created 

or because one of its sons has requested area, NODE passes the request 

on up to  its NODE father    via an OUCH.    The top NODE starts     the process 
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of re-allocating the available area amonF his sons, passing "area 

changes" back down the whole tree via OUCHes. The resultant data web 

structure is not circular because the NODE daemon reouestine area from 

his father is disjoint from the daemon which accepts area chances and 

allocates them among his sons. 

A fragment of a data subweb used for area control is illustrated in 

Fig. H-2. In that fragment, the daemons labelled MA request More Area 

from their father, and the daemons marked AC meekly accept Area Changes 

from the  father and pass them on to sons. 

Each NODE provides its father with two outputs whose values are 

used to determine equitable allocation of area: the space the NODE 

wants, and the space it needs. The space wanted is the larger of (1) 

what it needs to display its own box and text "optimally", and (2) the 

sum of what its sons want- The space required for "optimal" display is 

obtained as a constant value from DRAW-NODE. The space needed is that 

which the particular son requesting more area needs; a newly created son 

"needs" its optimal area. While processing an area reauest, the More 

Area daemon records which son declared a "need" in a local environment 

identifier;   this value is used    by the Area Change daemon    in allocatine 

area. 

The top NODE, on receiving a new "need", turns around and starts 

allocating area to its sons through outputs specifying the left and 

right boundaries of the area into which each son must fit both itself 

and all its sons. Area is allocated in proportion to the amount each 

son wants, except for that son, if any, who requested a new "need". 

That son gets the larger of his proportional share or his need. 

New sons are generated as follows: In addition to arguments which 

are outputs specifying the area it gets and other data needed for 

display, each NODE is given an output called NEW-SON. NEW-SON initially 

contains the text siring to be displayed; this is put in to display file 

during initialization. Whenever the NEW-SON output changes value, a new 

NODE son    is to be    created.    The    new value of    NEW-SON is    the NEW-SON 
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output to    be passed to    the new NODE.      Thus,  the driving    program just 

pumps new NEW-SON outputs through existing ones to create the display. 

DRAW-NODE is much less interesting than NODE. Its arguments are: 

the text string to be displayed; the center and halfsize of its father 

NODE's box; and the right and left sides of the available area. The 

latter information is passed as the X and Y coordinates of a sineile 

position-valued output. DRAW-NODE uses the picture function BOXTXT to 

actually draw the text and box, using a coordinate transformation to 

scale the drawn box and text to fit in the needed area. The center and 

halfsize used in that scaling are outputs of DRAW-NODE so that NODE can 

pass them to new NODE sons. 

The vertical location of the box is obtained by adding an 

"EXTERNAL" delta Y to the father's center, and the box is kept centered 

in the available area. 

The optimal size of the box is obtained by examining the text 

string with TEXTHEIGHT and TEXTWIDTH, functions which return the optimal 

height and width for a text string; these will not be shown. The actual 

box is made larger than this area by a "fudge factor" BEAUTY, another 

"EXTERNAL"; this is to allow some empty margin. In addition, the box 

will not be shrunk until BEAUTY times the optimum width is no longer 

available; this similarly presides for space between horizontally 

adjacent boxes. Instead of a rrultiplicative factor, a constant margin 

width could have been used. 

The fancy line between boxes is drawn in an interesting way by the 

picture function OUTERLINE. OUTERLINE uses a picture function CLIP, 

which takes four inputs and produces a module with three outputs. The 

inputs are two line endpoints, and positions specifying the center and 

halfsize of a clipping area. The outputs are: (1) A boolean flag which 

is true if and only if at least part of the line lies within the area; 

if this is false, the other outputs are not valid. In this application, 

it    will always    be true.     (2)    A position:    the place    where    the first 
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endpoint winds up after clipping. (3) Another position: the place where 

the sec.ad endpoint winds up after clippinK. CLIP will not be shown; 

[New2] gives an appropriate algorithm, which, while it does not preserve 

knowledge of which input position corresponds to which output position, 

could be easily modified to do so. 

OUTERLINE uses two CLIPs, one for its node's box and one for its 

father's box, and hands each the endpoints of a line connecting the 

boxes' centers. Then one of the outputs of each CLIP is the desired 

endpoint on the edge of the box- 

The code for NODE, DRAW-NODE, BOXTXT, and OUTERLINE, as well as 

several  functions called by NODE,  follows. 
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(DEFPIC NODE  (NEW-SON  I-GET :Area which I  GET. 
PA-CEN PA-HSZ     ;PApa NODE s CENter and  HalfSiZe 

"OUT" I-WANT I-NEED ;Tell pa what want and need. 
"AUX" SONS-WANT SONS-NEED MY-REQUEST ;See below. 

AREA-CHANGE MORE-AREA ;The daemons. See text. 
MY-CEN MY-HSZ ;CENter and HalfSiZe of my box. 
LOCAL-NEED ;Optimal width for mv box. 

"AUXO" DINGS DINGA) ;"Dinf" outputs. 
(SETQ MY-REOUEST 0) ;Flap -- number of son reauestinf or 0. 
(SETQ SONS-WANT ()) ;List of sons'  I-WANT outputs. 
(SETO SONS-NEED  ()) ;List of sons'  I-NEED outputs. 
(PROG  (DRAW-IT) ;Do actual drawing,  save center i   1/2 size. 

[SETQ DRAW-IT  (DRAW-NODE   ,NEW-SON  PA-CEN  PA-HSZ  I-GET)) 
SETQ MY-CEN  (OUT DRAW-IT  ')) 
SETQ MY-HSZ   (OUT DRAW-IT 2)) 

[SETQ LOCAL-NEED  (OUT DRAW-IT 3))) ^'Optimal" area  need. 
;When new son arrives:  start him up w/dummy area, place outputs 
:on appropriate lists,  and make other daemons watch him. 

(ONC   (VAL  NEW-SON)   (DINGS) 
(PROG  (SON-NODE NEW-GET) 

[SETQ NEW-GET (OUTPUT  (POS  (Y  ,I-GET)   (Y  ,I-GET)))) 
SPECIFIES NEW-GET AREA-CHANGE) 
SETO SONS-GET  (CONS NEW-GET SONS-GET)) 
SETQ SON-NODE   (NODE   ,NEW-SON  NEW-GET MY-CEN MY-HSZ)) 

!SET0 SONS-WANT  (CONS   (OUT  SON-NODE   1)  SONS-WANT)) 
(SETQ SONS-NEED   (CONS   (OUT  SON-NODE 2)  SONS-NEED)) 

WATCHES MORE-AREA   (OUT SON-NODE 2)) 
(OUCH DINGS   (CAR  SONS-NEED))   )) 

;When a request  for more area comes  from a son:  change I-WANT to 
;include him,   set request  flae,  and BO to father. 

(SETQ MORE-AREA 
(NAMEDONC HIM  (VAL   DINGS)   (I-NEED I-WANT) 

(OUCH  I-WANT  (MAX  LOCAL-NEED   (SUM-OF SONS-WANT))) 
(PROG   (ISON) 

(SETO ISON   (COND  ((EQ DINGS   (CAR HIM))   ,DINGS) 
(T   (CAR  HIM)))) 

(SETQ MY-REQUEST   (SON-INDEX  ISON  SONS-NEED)) 
(OUCH I-NEED   ,ISON) 
(OUCH  DINGA   (NOT DINGA))   ))) 

;When an area change is imposed  from father,  re-allocate sons 
;"normally" if it's noi-  my request   (MY-REQUEST =0), 
otherwise re-allocate uivipp requesting son all he wants. 

(SETQ AREA-CHANGE 
(ONC   (VAL   I-GET DINGA)   () 

(COND  ((EQ MY-REQUEST 0) 
(NORM-ALLOCATE  ,I-GET SONS-GET SONS-WANT)) 

(T  (SPEC-ALLOCATE MY-REQUEST   ,I-GET 
SONS-GET SONS-WANT SONS-NEED) 

(SETQ MY-REQUEST  0))   )))   ) 
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(DEFINE NORM-ALLOCATE  (IG SG SW^^lAllocat^wUhout^cial^on. 

(PPOG   (TOTW AVAIL LAST)   :TOTal  Wants,   AVAILable area,   LAST Y-edee 
(SETQ  TOTW   (SUM-OF  SW)) 
(SETO AVAIL  (-  (Y IG)   (X IG))) 

MAPC   (LAMBDA   (WG) ^ants.   Gets  -- in prooortion  to want. 
(PROG   (A)   (SETO  A   (- LAST   (•  AVAIL  (/ TÖT0   ,W)))) 

(OUCH G   (POS A  LAST)) 
(SETQ LAST A)   )) 

SW SG)   )) 

(DEFINE SPEC-ALLOCATE  (R IG SG SW SN) 
: Al locate privinp requester his wants. :R-Reciuester's  index,  SN=SONS-NEED;   other irnemonics as above. 
'(PROG  (TOTQ AVAIL RN RW LAST)     Requester Needs,  Requester Wants. 

(SETO TOTW  (SUM-OF  SW)) 
SETQ AVAIL  (-   (Y IG     (X IG))) 

(SETQ  RN   .(NTH SN  R)) 
(SETQ RW    NTH SW R)) „nmi ... 

COND  ((< RN   (• AVAIL  (DIVIDE TOTW   ,RW))) 
(NORM-ALLOCATE IG  SG SW) 
(RETURN))   ) 

(SETQ LAST  (Y IG)) 
MAPC   (LAMBDA   (W G) ,     . .„„ 

<PROG  1.)   (SETQ .   (-    »ST    ^ OTU   

(COND  ((EQ W RW)  RN)   (T 0))   ))) 
(OUCH G   (POS A  LAST)) 
(SETQ LAST A)   )) 

SW  SG)   )) 

rnpPTMR  ^nw-INDEX  (N SN) ;Find index to son on list. (DEFINE  fON^NDEX^N^Nj^^   (MEMQ ^ ^  ^^ 

(DEFINE SUM-OF  (S) ;Add up wants or needs of sons. 
(PROG   (St)«)   (SETQ a^O)     (o)   (SETQ suH  u SUH   i0)))  s) 

RETURN SUM)   )) 
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(DEFPIC  DRAW-NODE   (TXT  PA-CEN PA-HSZ  I-GET 
U "OUT"  MY-CEN MY-HSZ  "OUTU"  OPTWIDTH 

"EXTERNAL"  DELTAY BEAUTY 
"AUX"  MY-Y  PROPOR  INWID INHT) 

{SETQ MY-Y   (+  (Y  ,PA-CEN)  DELTAY))   :Fixed Y coordinate of center. 
SETO INWID  (/  (TEXTWIDTH TXT)  BEAUTY)) ;Width of optimal  box. 
SETQ INHT  (/  (TEXTHEIGHT TXT)  BEAUTY))       ;Heieht of optimal  box. 

[SETQ   PROPOR   (/ INHT INWID)) ;Hei*ht to width proportion. 
(SETQ OPTWIDTH (/ INWID BEAUTY)) ;0ptimal width wanted. 

;The following pets done whenever I-GET changes. 
(C?OUCH MY-CEN  (POS (/  (+  (X   ,I-GET)   (Y  ,I-GET))  2)  MY-Y) 

PROG  (ÜEWWID USEWID) v   , „„.,,.. 
(SETQ NEWWID (-  (Y  , I-GET     (X  ,I-GET))) 

COND  ((< NEWWID OPTWIDTH) 
:If available less than optimum,  scale down. 

(SETQ USEWID  (• NEWWID BEAUTY)) 
;Leave space between boxes. 

(OUCH MY-HSZ  (POS  (• USEWID PROPOR)  USEWID)))   ) 
(T  (OUCH MY-HSZ   (POS INWID INHT)))   )   )   ) 

;Draw the box and the text. 
(TRANSFORM "CENTER" MY-CEN  "HALFSIZE" MY-HSZ 

BOXTXT  TXT BOXHS) 
;Draw the fancy line. 

(OUTERLINE MY-CEN MY-HSZ  PA-CEN PA-HSZ)     ) 

(DEFPIC BOXTXT  (TXT HALFSIZE) *     >   (n n^ 
(TEXT TXT (POS 0  0)) ;Display text centered at  (0,0). 

PROG  (HX  HY)   (SETO HX  (X  .HALFSIZE)) 
(SETQ HY  (Y  .HALFSIZE)) 

POLYGON  \?0h (- HX)     - HY))  (POS    - HX    HY) 
(POS HX HY)   (POS HX  (- HY))))   ) 

;POLYGON is a function using STATLINE to draw closed polygons. 

(DEFPIC OUTERLINE  (C1  HI 02 H2) 
;Draw line between outer edees of boxes. 

(LINE (OUT  (CLIP C1 C2 C1  HI)  v> ;See CLIP discussion  in text. 
(OUT  (CLIP C1 C2 C2 H2)  2))) 

/ 

J 
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H.6 Hit-Testing 

The machinery so far developed in DALI contains no provision for 

pointing inputs from graphic input devices, i.e., no way for a user to 

identify some displayed object by "pointing at it" with a tablet, pen, 

or aher such device. This relates to another deficiency: using DALI as 

so far defined, it is impossible to make a given object move until it 

collides with any other object — not a specific object, but any object 

at all that happens to be visible. Hit-testing in the manner of Sproull 

and Sutherland [Sprl,  New2] suggests itself as a solution to these 

problems. 

Hit-testing is embedded into DALI in the form of daemons which are 

run when the visible image produced by any module enters, or leaves, a 

rectangular area defined by a center position output and a halfsize 

output. For pointing inputs, the center position can be controlled by 

the input device, or, alternatively, the tracking dot (cross, arrow, 

etc.) can be detected by stationary areas. 

This aspect of DALI will not be developed in detail. Just the form 

of DALI-esaue solutions for the problems involved will be presented. 

On the grounds that they provide a crude tactile sense, daemons 

watching a rectangular area, defined by two position-valued outputs as 

mentioned above, will be called tough daemons. Two types of touch 

daemons are needed, one for detecting objects entering an area and one 

for detecting exiting objects; the utility of the latter will be seen 

below. Touch daemons should most generally be a form of named-change 

daemon, receiving a list of all the objects entering (leaving) their 

areas. All touch daemons run after all non-touch daemons have run, but 

the order in which a set of queued touch daemons will run relative to 

each other is undefined. It is necessary that touch daemons run last in 

order to make sure they "feel" every entering (leaving) object, 

especially those in distant, unrelated parts of the picture structure. 
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The objects received by touch daemons are picture modules, selected 

by walkine up the containment tree from the modules actually "hit" until 

a module having the desicrnator "NAME" in its picture function's arfaiment 

list is found. More complex naming schemes could be used, but all must 

produce picture modules to identify "named objects". Only the 

descendants of "NAME" modules need be sensitized to hit testinp, and 

functions to sensitize and de-sensitize subtrees should exist. 

In some cases, obtaining the "NAME" is unnecessary: stationary 

function button ("light button") daemons need only know that they were 

hit, since only the pen module will hit them and their action will 

usually be to send a simple, constant message to the driving proeram by, 

for example, OUCHing an appropriate output. Such daemons need not even 

be the form of named-change daemon mentioned above. 

However, in general a touch daemon wants to know the "NAME" module 

invading its area, presumably to Ret some data from him. For example, 

"light button" testing with a single touch daemon whose area tracks the 

pen requires that the touch daemon find out what message to send to the 

driving program. This can be done by getting the appropriate output 

from the "NAME" module via OUT, getting the output's value with OVAL 

(,), and sendine the value off to the driver as the message. 

Continuing interaction with an invading "NAME" module can be 

achieved by having the touch daemon make a local daemon watch one of the 

"NAME" module's outputs. The interaction can be cut off when the 

invader leaves through the action of a touch daemon detecting exiting 

objects; this is the use of exit detection promised above. 

The computation the invading "NAME" module must perform to provide 

the needed data could be arduous. If the "ships-passing-in-the-night" 

kind of interaction we are considering will not often happen, the 

daemons performing the computation could be activated and deactivated. 

This could be done by daemons whose conditions cause them to run when a 

daemon becomes, or ceases to be, a "watcher" of a given output. Since 

the topic of hit-testinK is not being constJered in full detail, no more 
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will be said about such daemons; they pose no special problem, but 

require more scheduling exceptions and elements in outputs. 

With the touch daemon operation described here, an interesting 

situation can occur.  Suppose two objects are moving across the screen, 

each with its own "bumper" touch daemon area surrounding itself, and 

they simultaneously enter each other's sensitive area. The two touch 

dafcmcnf must be designed to run in either order, of course; but suppose 

that in both cases the purpose of the "bumpers" is to avoid collisions 

by veering around blocking objects. Both touch daemons will attempt to 

"link in" a deviation factor using, for example, center and outer radius 

outputs from their opposite number's "NAME" daemon — and the result 

will be effective data web circularity. However, as will be mentioned 

in section 5.2, it is a type of effective circularity not requiring 

"real" data web circularity.  Instead, a simple S-DALI mechanism 

("future OUCH", see sections 5.2 and 6.2) is appropriate, and can have 

the result that each object veers only part of the distance either alone 

would sro. 

The discussion of hit-testing is essentially concluded; however, it 

implicitly raises two problems. First, all the simultaneously active 

touch daemons and "NAME" modules need to be in agreement on the order 

and meaning of "NAME" module outputs; this is hardly conducive to 

modularity. Second, typically needed outputs, such as the center and 

outer radius mentioned above, contain data difficult to Rather from sons 

in a modular fashion. 

The first problem could be mitigated by referring to outputs by 

"name", i.e., by a mutually agreed-upon arbitrary string, rather than by 

position in the argument list. It was not done due to a possibly 

misguided desire for efficiency; providing this mechanism would do no 

(treat violence to DALI. 

The second problem is significantly more difficult to solve. One 

approach parallels that suggested by Baeker in APPL [Bael], discussed in 
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section 1.2: providine user- or system-defined search and composition 

rv.les applied recursively down the containment tree from the "NAME" 

module. For example, if a module doesn't know his outer radius, ask his 

sons and combine their answers via a daemon specifyine a new radius 

output. System-defined modules, such as LINE, could be defined to 

"know" the answers to many such standard Questions, and could have their 

type (e.c, "LINE") and inputs made available to allow the user to 

define new "questions". In some cases, such as the outer radius, 

answers mipht be most easily concocted as functions of the actual 

display buffers. This is a major extension to DALI, and should be 

approached with some trepiditation. 
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Chapter 5 

Data Web Circularity and Relaxation 

5 1 Introduction: 
The Data \,*b  As a Set of Equations 

Circularity in the data web has heretofore been prohibited. This 

has been accomplished for structurally static data webs by the twin 

constraints that (1) an output can have only one specifier, and only 

that specifier can OUCH it; and (2) a daemon may not be created watchintr 

an unspecified output. For structurally dynamic data webs, circularity 

has been prohibited by testing for its presence while adjusting daemon 

priorities. 

Here, data web circularity is discussed, focussing first on when it 

is really needed, then on what characteristics it should have, and 

finally on how daemons in a circular data web can be scheduled — i.e., 

ordered in their execution. As might be expected, scheduliner is far 

more difficult for cyclic data webs than for acyclic ones. 

Before these topics are considered, however, a prior question must 

be discussed: what is really represented by circularily — or its lack 

— in the data web? 

In discussing this question, it is useful to consider the data web 

as a set of equations. This can be done by: (1) considering each output 

to be a variable — particularly includinp:, but not limited to, outputs 

directly specifying the visible image; and (2) considering each daemon 

as an equation relating its specified output(s) to some expression(s) 

written in terms of its watched outputs. 
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Thus, for example, out simple and familiar RELP picture function 

(DEFPIC RELP (PI P2 "OUT" SUM) 
(CONTIN (OUCH SUM (+ ,P1 ,P2))) ) 

since it creates a daemon, adds to the overall set of equations the 

equation 

SUM = PI + P2 . 

Of course, a complete set of such equations will be difficult to 

write; for example, there are difficulties in representing daemonc which 

either use and alter the values of local environment variables, or add 

new equations (daemons) to the set by calling picture functions. These 

difficulties of representation need not concern us here. 

With the data web considered as a set of equations, we can say that 

what la wanted from a DALI picture defirltion is a simultaneous solution 

to all the equations in the set. 

The requiremoiit that the data web be acyclic can then be 

interpreted a? meaning that the set of equations are in a form such that 

they can be solved by back substitution. I.e.: The cutouts specified by 

the driving program are, when DALI begins running, variables whose 

values are considered known a priori; these outputs may also be 

connidered constants parameterizing the solution desired. The values of 

the^e known variables are substituted into equations written only in 

terms of known variables, a process performed by runninp the appropriate 

daemons. This produces more known variables, since after running a 

daemon its specified outputs can be considered "known". The new known 

variables are similarly substituted and the process continues until the 

values of all variables are known. If at any point before the 

completion of this process we reach a state where no equation is solely 

in terms of known variables, then two or more equations must cyclicly 

determine values used by each other — in other words, the data web 

contains a cycle. 

It is important to note that such cyclic dependence is a function 

of the particular form of the set of eauations, not a function of the 

represented solution set, i.e., of the desired picture. In many cases 

/ 
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of interest, a cyclic set of equations can be re-written in a form which 

is not cyclic. As a simple example, the data web representine the 

equations below is cyclic: 

XI = K1 » X2 + C1 (1) 

X2 = K2 » XI + C2 (2) 

K1, K2, C2, and C2 are "constants", i.e., outputs specified by the 

driving process or by some other web ancestor of both of the above- 

represented daemons. 

Without the constraint prohibiting the creation of daemons watching 

unspecified outputs, these equations correspond to the daemons created 

by 

(ONC (VAL X2 C1 K1) (XI) 
(OUCH XI (+ fC1 (• ,K1 ,X2))) ) 

(ONC (VAL XI C2 K2) (X2) 
(OUCH X2 (+ ,C1 (• ,Ki ,X2))) ) 

This, oi course, would create a data web cycle. But by simple symbolic 

substitution of eq. (2) into eq. (1), we can obtain an alternate form of 

the equations above which involves no circularity; daemons constructed 

according to that form produce the same picture, but do not imply a data 

web cycle. 

The task of reformulating the set of equations so that they can be 

solved by back substitution, if such a reformulation is possible, is the 

job of the DALI programmer. This should not be considered onerous; it 

is part of the normal job of a programmer in nearly all situations. 

What the acyclic daemon scheduling rules of section 3.8 provide is the 

assurance that for any set of equations which have been correctly 

reformulated in thi? manner -- even if elements of this set are added 

and deleted dynamically — DALI will produce the correct solution set by 

substituting (running daemons) in an order which is both correct and 

efficient. 

However, there are situations where it is impossible to reformulate 

the problem in such a way that back substitution can be performed. Such 

situations can arise in two ways: (1) The eauations to be solved are 

■g -— 
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simply too complex to be appropriately reformulated; e.p., the equations 

represent a larpe set of objects, some fixed and some movable, all 

simultaneously interacting via an inverse-sauare law. (2) The eauations 

relatine the variables are unknown until run time;   e.g.,  SKETCHPAD. 

In such situations, the data web may be cyclic; the precise 

situations in which it will or will not be cyclic are discussed in the 

two sections which follow. If the data web is cyclic, then, since the 

eauations involved can be arbitrarily complex and are not represented in 

a symbolically manipulable form, the only route open to DALI in solving 

them  is to use iterative approximation,  or relaxation. 

The manner in which cycles are introduced, as well as the daemon 

scheduling rules involved in relaxation, are the principle topics of 

this chapter. To anticipate a bit, the general method used for daemon 

scheduling in a cyclic data web, discussed fully in sections 5.5, 5.6, 

and  5.7,   is this: 

First, the cycles are identified, and each separate group of 

daemons which are all cyclically related to one another is considered a 

separate composite daemon. When such composite daemons are considered 

sinele daemons, the resulting data *ab is acyclic; so the acyclic daemon 

scheduling rules of section 3.8 are used for global scheduling, i.e., 

decidinp the order in which entire composite sets of daemons are to be 

run. The problem of scheduling the daemons within each composite group 

must then be attacked; unfortunately, it has no uniquely good solution, 

so several  possible alternatives are  presented. 

However, before cyclic daemon schedulinsr is discussed in detail, 

the situations in which it is really needed must be more carefully 

delineated. 
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5.2 When Circularity is Not Needed 

An important situation in which data web circularity is apparently 

needed is in the "feedback control" of moving images. For example, 

consider the problem of moving an object until it touches another 

object. A natural way to do this is to have a "controllinp daemon" C 

OUCH an output used by a "moving daemon" h to indicate a direction and a 

rate. M then moves something along, with the current position of the 

moved object and the current position of the object to be hit watched by 

a "collision watching" daemon W. When W sees a collision, it wishes to 

inform the controller, C, so that C can take appropriate action — e.g., 

by telling M to stop- Since W is a web ancestor of C, circularity is 

apparently needed if W is to send its information to C via an OUCH. 

However, data web circularity of the type which is the subject of 

this chapter is neither needed nor particularly appropriate to the 

situation outlined above. This is the case because when moving imapes 

are considered, we are in the realm of S-DALI, not M-DALI, and, as 

discussed below, the intervention of picture time causes the circularity 

to assume a different form. 

Recall, from section 2.3, that picture time is time as it is 

intended to be experienced by the viewer; and during DALI compute time 

— the time needed to compute each new picture — picture time is 

"frozen", i.e., it does not advance. 

The preceding section considered the data web as a set of eauatio' s 

whose simultaneous solution is sought; the important point here i0 .nat 

the term "simultaneous" refers specifically to picture time. All the 

intermediate stages of back substitution, iteration, or what have you 

are invisible from the point of view of the created picture. The 

"feedback" situation outlined above generally refers to motion in 

picture time, i.e., to the relation of successive "frames" of the 

pluiure to one another; whereas the processes used to "solve" the data 
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tfr.b serve LO define the appearance of each separate "frame" produced, 

and have no intrinsic effect on the relationship of successive "frames" 

to or.' another -- unless, of course, the user has explicitly proKrammed 

In such a t'flationship. 

What makes this difference important in the current context is that 

the mechanisms for relatin? separate "frames" provide the appropriate 

means tor "feeding back" information in the situation outlined at the 

start ot this section. 

As was mentioned in section 2.3, the manner in which separate 

piGture-tine frames are related to one another involves the capability 

of sending messapes "across picture time" by means of a "future OUCH", 

an output value chanee which the DALI system has been told to perform at 

oome future picture time. The details of "future OUCHes" are covered in 

sections 6 2 and 6.3. 

Mow, in thf context of S-DALI, separate picture times, and future 

OUCHes, variables in the equation model of the data web must be 

subscripted to indicate which picture time they refer to. Thus, the 

pair of circular linear equations in section 5.1,  eas. (1) and (2), 

become 

X1(t) = K1 » X2(t) + C1 (3) 

X2(t) = K1 • X1(t) + C2 CO 

Here, K1, K2, C1 and C2 have not been subscripted because they can be 

considered constants. The above equations are circular because the time 

subscript of all uses of XI and X2 is the same. On the other hand, if 

we wish to represent daemons "future OUCHing" outputs for some future 

picture time, the equations become: 

X1(t+i) = K1 • X2(t) ♦ C1 (5) 

X2(t+i) = kl • X1(t) + C1 (6) 

There is no circularity involved in the above eauations because each 

eauation refers to an element of the picture-time sequence different 

from the one which its partner defines. 

In this way, future OUCHes can be used to create effective data web 

; 
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cycles contalninc; a non-zero picture time delay. This delay can be very 

small — down to the resolution limit in the picture time domain — but 

it must exist. 

By virtue of the picture time delay involved, future OUCHes are the 

appropriate means for providing "feedback control" as referred to at the 

start of this section. Referring to that example, the "controller" C 

directly OUCHes outputs watched by the "mover" M, and M directly OUCHes 

outputs watched by the "collioion watcher" W. Hcwc/er, W can "future 

OUCH" an output watched by C to provide the desired feedback, causing 

this OUCH to occur at a picture time before or equal to the next 

incremental move of M. When the "future OUCH" occurs, C will run before 

M since it is M's web ancestor; thus if C directly OUCHes a "halt" order 

to M, motion will stop instantaneously. 

Relaxation can be performed in a similar manner. In this case in 

particular, the non-zero delay restriction has the effect of causing 

intermediate, non-stable states of the relaxation to be visible: the 

viewer watches relaxation in motion. This occurs because at each 

iteration, the entire operation of M-DALI is performed. Hence, for 

example, intermediate OUCHes of the inputs tc LINE modules will cause 

them to change the visible display. This is not always undesirable; it 

is, for example, the mode of operation used by SKETCHPAD. 

It is true that the inherent delays involved in this type of 

feedback can slow convergence and cause instabilities — divergence 

and/or oscillation. However, such instabilities are characteristics of 

the system being simulated rather than characteristics of DALI, since 

the picture time delays involved are fully under the control of the 

user. 
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5.3 When Circularity Is Needed 

When,  then, is true data web circularity really needed?  It is 

needed under three conditions: 

(1) The output values defining a picture are most readily computed 

by some iterative method. 

(2) It is inconvenient or impossible to perform this iteration 

within the body of a single daemon. 

(3) The iteration is performed only for its effect, and thus its 

internal dynamics are not of interest. I.e., it is not 

desirable to have the picture reflect the intermediate states 

of the iteration and show the relaxation in motion. 

The first condition is was discussed in section 5.1.  As mentioned 

there, this situation occurs when the system defined  cannot be 

reformulated to allow back substitution, either because it r* too 

complex or because it is insufficiently defined until run time. 

The second condition alludes to the fact that it is sntirely 

possible to perform iterative operations by looping within a single 

daemon body. In some sense, this is "cheating", since it uses the 

Turing ability of the base language to avoid usincr DALI proper; 

nevertheless if this is most convenient, there is no reason to shy away 

from it.  However, it may be decidedly inconvenient for two reasons: 

In the first place, it is impossible to use previously defined 

picture modules and daemons -- as opposed to previously defined 

functions — to perform part of a loop within a single daemon. This 

follows from two facts: daemon executions are not nested within one 

another, and a daemon cannot exert direct control over the DALI compute 

time at which another daemon runs. 

Second, the iterating daemon must be explicitly written to provide 
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for all the possible cyclic dependence which can exist amone its data. 

This can be particularly difficult when such dependence is to be 

dynamically created,  e.g.,  as in SKETCHPAD. 

The third condition required for web circularity — the fact that 

intermediate states are "uninterestin«" and should not be visible — 

could be achieved with future OUCHes and mechanisms for delaying visible 

changes until the iteration terminates. However, this implies a loss of 

efficiency over what could be attained since many more daemons will 

p-enerally be run per iteration cycle than are actually needed. 

Consider, for example, Fig. 5-1, a graph showing ancestry relations in a 

hypothetical data web containing a loop four daemons long; the square 

box marked L is the special loop daemon, to be described later, which 

effects the loop. If this loop is effected by future OUCHes, all 16 

daemons in the figure will be run on each iteration. If intermediate 

states need to be visible, this is necessary; but if intermediate states 

do not need to be visible, only the four daemons actually takincr part in 

the iteration need be run in each cycle. 

The possibility of much greater efficiency is the interesting issue 

with regard »o cyclic data webs. It should not, therefore, come as a 

great shock that the methods to be introduced for dealing with cyclic 

data webs resemble certain code optimization techniques used in language 

compilation. 

5.4 Introducing Cycles:  Loop Daemons 

To introduce cycles in the data web, the programmer must make use 

of a new type of daemon: the loop daemon. Loop daemons are created and 

returned as the value of 

(L00P0N    endtn    (-specs-)   -body-) 



FIGURE    5-1     INEFFICIENCY   OF " FUTURE  OUCH" FEEDBACK 
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where cndtn is the condition, (-specs-) is a list of specified 

outputs, and -body- is the body of code to be run. A "namedloopon" 

daemon could also exist, but will not be described. Loop daemons with 

conditions which do not watch outputs, e.g., DELETE, do not make any 

sense;   so ' hey are  illegal. 

Loop daemons differ from normal daemons in that when they are 

created, the outputs they watch need not be specified. They may thus be 

used to create aata web cycles. Creation of cyolc; by use of WATCHES 

and DEPENDS is also legal, providing every cycle contains at least one 

loop daemon. This condition will be checked by DALI; the check can be 

performed by an analog of RE-PRIORITIZE, although a more efficient 

method will be presented in section 5.8. 

With loop daemons, the connectivity of the data web is effectively 

arbitrary. In particular, allowinsc more than one daemon to "specify" an 

output is unnecessary. The MERGE module presented in section H.4, which 

OUCHes its output to the value of the most recently OUCHed of its two 

inputs, can be used to create the same effect. Having to create such 

MERGE modules can, however, be highly inconvenient; the ability to 

multiply specify an output should be supplied by a scheme which is 

equivalent to automatic creation of MERGE outputs by DALI. While this 

is straightforward, multiple specifiers will not be assumed since they 

would unnecessarily complicate the upcoming discussion of scheduling. 

The rationale for introducing a special type of daemon for the 

creation of data web cycles, rather than just allowing the creation of 

cycles with WATCHES and DEPENDS,   is twofold: 

First, if loops are created, some mechanism for terminating the 

Implied iteration must be present. No explicit mechanism for this is 

provided by DALI. Instead, since execution is propagated by means of 

OUCHes, one daemon in each loop must perform a test and simply not do a 

critical OUCH if adequate convergence has been achieved. Loop daemons 

provide a convenient and obvious place,  althoueh not a necessary one, to 
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perform convergence testing. Furthernore, since DALI reauires that at 

least one loop daemon be in every loop, the user is guaranteed to have 

enough tests to terminate every loop. In any event, loop daemons serve 

to remind the user  that such tests are necessary. 

The second reason is more interesting. In an acyflie data web, a 

non-loop datmon can be viewed as establishing an invariant relationship 

between its watched outputs and its specified outputs; the acyclic 

scheduling rules were chosen to allow this important interpretation to 

be made, and a scheduling rule will be chosen to keep this 

interpretation valid for non-loop daemons in cyclic data webs. However, 

this interpretation cannot be maintained for all daemons in generally 

cyclic data webs; if it were maintainable, everything would be correct 

on the first pass through and no iteration would be necessary! So, 

since they are already somewhat special, loop daemons are chosen as not 

strictly maintaining relationships between watched and specified 

outpi-ts. Characterizing what they actually do is rather more difficult 

-- they certainly are not approximations to static relationships — and 

will not be attempted. 

5.5 Goals of the Cyclic Daemon Scheduling Rules 

The daemon scheduling rules for a cyclic data web, wh'.ch will be 

presented in section 5.7, are motivated by two goals: acyclic 

compatibility and efficiency. 

Acyclic compatibilitv means that an acyclic subweb is guarjinteed to 

"do the same thinK" whether or not it is embedded in a cycle. This can 

be stated more precisely as follows: Let W be a subweb cf a cyclic data 

web C such that W contains no loop daemons. Then, under any pattern of 

initial OUCHes, W embedded in C must exhibit that behavior guaranteed to 

W    if it    were removed     from C    and run    under the    previously specified 

I 
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acyclic daemon schedulins rules. The term "subweb" is precisely defined 

in the next section. 

Efficiency is piven the following interpretation: if a dap^on D 

watches an output 0, and D is not part of any data web cycle including 

the specifier of 0, then: D must not run until there is no possibility 

of 0's beinp; OUCHed again. Thus, if a daemon uses an output's value and 

does not participate in its specification, it sees only the final, 

converged value of the output. Thus, no relaxation of an output's value 

can affect how efficiently that value is used after it has been fully 

defined. 

"Efficiency" is perhaps the wrong word to use in denotinr what is 

described above, since it has a further, important effect: Entire cyclic 

subwebs, as opposed to individual daemons within cyclic subwebs, can be 

viewed as establishing invariant relations between output values 

"enterinp'" the subweb and output values "leaving" the subweb. 

Furthermore, the process of establishing these relations is invisible to 

a daemon which just uses them. 

5.6 Preliminary Definitions 

Several definitions are needed in the statement of the cyclic 

daemon scheduling rules. The first two were presented in section 3-8, 

and are repeated here  for reference: 

A daemon A is a web father of a daemon B, and B 

is a web son of A, if and only if A specifies an 

output watched  by B. 

A daemon A is a web ancestor of a daemon B, and 

B is a web descendant of A, if and only if there 

exists a seauence of daemons D(0),D(1)...,D(n) such 

that D(0)=A, D(n)=B, and for 0<i<n+1, D(i-1) is a 

web son of D(i). 



In addition, the concepts of acyclic daemon, subweb, and maximal 

stronFlv connected subweb (MCS) arc needed. They are defined as 

follows: 

An acyclic daemon is a daemon which is not its 

own web ancestor. 

A subweb S of a data web W is a set of daemons 

D in W, and a set of web father and web son 

relations R such that R contains all the web father 

- web son relations in W between elementt: of D, and 

only those relations. 

A maximal strongly connected subweb (MCS) is a 

largest subweb containing only daemons who are all 

web anceitors of oach other. 

Daemons in intersecting data web cycles, i.e., cycler with a daemon 

in common, are members of the same MCS; and every daemon is either an 

acyclic daenon or a member of some MCS. 

The concept of an MCS is crucial to cyclic scheduling, in that all 

the elements of an MCS must participate in the "relaxation" of that MCS, 

and no daemons outside an MCS need participate in its "relaxation". 

It is of patticular note that all the daemons in an MCS have 

icentical web ancestral Qualities: a web ancestor (descendant) of any 

daemon in an MCS is a web ancestor (descendant) of every daemon in that 

MCS. This is true by the definition of an MCS above; it is also true of 

any isolated cycle in the data web. 

As a result of the web ancestral qualities of an MCS, it is 

convenient to speak of the web ancestors and descendants of an entire 

MCS, treating it as if it were a single composite daemon. 

The effective data web formed by merging MCSs into single composite 

daemons is acyclic. If it were not, then two daemons or composite 

daemons would exist which are mutual ancestors and not in the same MCS; 

this contradicts the fact that each MCS i3 "largest". 

The creation of an acyclic data web by making MCSs into composite 
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FIGURE   5-2    ACYCLIC  DATA WEB  VIA COMPOSITE   DAEMONS 



176 

daemons is illustrated in Fig. 5-2, which, like Fig. 5-1, shows only 

father-son ancestry relations represents loop daemons as squares. Fig. 

5-2a shows the original, hypothetical data web containing four MCSs; 

Fig. 5-2b shows the acyclic data web resulting from collapsing the MCSs, 

with each composite MCS daemon shown as a diamond. 

A final definition: 

A    daemon A    is an    acyclic web    ancestor    of a 

daemon B if and    only if there exists a    sequence of 

daemons D(0),D(1),...D(n)  such  that    D(0)=A,   D(n)=B, 

for every i  in the range ü<i<n+1   D(i-1)  is a web son 

of D(i),  and for every i  in the range 0<i<n    D(i)   is 

not a loop daemon. 

Note that    no loop    daemon can be    an acyclic    web ancestor    of any 

daemon.     The above definition of an acyclic web ancestor will be used in 

assuring acyclic compatibility. 

5.7 The Cyciic  Daemon Scheduling Rules 

The daemon scheduling rules for the general case of cyciic data 

webs, called the cvclic daemon scheduling rules, are divided into three 

trroups: (1) rules governing the local activities of selection and 

noninterruption; (2) rules achieving the previously stated goals of 

efficiency and acyclic compatibility; and (3) rules governing the 

behavior of loop daemons. 
Whenever the term "daemon" is used below without qualification, it 

refers to both loop and non-loop daemons. 

The first croup of rules is taken unchanged from the acyclic case 

of section  3.8- 
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Rule 1;   (selection) A daemon will be    run  if and only if one    or more 

of its watched outputs has been OUCHed; once run,   it does not 

run again until such an OUCH occurs apain. 

Rule 2:   (noninterruption)  Once a daemon D begins execution,   no daenon 

web-ancestrally related    to D may    run until D    terminates of 

its own accorl. 

The next group of rules consists of cwo rules achievinp the eoals 

of efficiency and acyclic compatibility. 

Rule 3:   (efficiency)    If daemons    A and    B are    to be    run,   A    is run 

before B    if A    is a web    ancestor of    B and B    is not    a web 

ancestor of A. 

Rule 4:   (acyclic compatibility)  If daemons A and B are to be run,  and 

A is an acyclic web ancestor of B,  then  A runs before B. 

By    virtue    cf    the web    ancestral    qualities    of    maximal  stronely 

connected    subwebs    (MCSs),    Rule    3    establishes    an    "ancestors before 

descendants" rule in the acyclic data web formed  by considering    MCSs as 

composite daemons.      In this    way,   Rule 3    guarantees efficiency    in the 

sense discussed previously. 

Rule 4 straightforwardly establishes acyclic compatibility. It 

cannot conflict with Rule 3, since if a daemon A is an acyclic web 

ancestor of a daemon B,  then A must also be a web ancestor of B. 

The first g^oup, Rules 1 and 2, cover aspects of scheduling rfhi.Vi 

^re local, -infecting the operation of individual daemons independ-nt of 

their relationships with other daemons. Rule 3. efficiency, covers 

global aspects of scheduling, ordering the operation of maximal strongly 

connected subwebs (MCS3) and acyclic daemons with respect to one 

HMother. Th^ problem these rules leave is that of o.^derin? th« 

operii;lon of daemons within an MC2 with respect to one another. 

Th^ rules governing the operation of daemons in an MCS are most 

easily comprehended  if MCSs are redrawn in the manner shown in Fig.   5-3, 

, 
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SUBWEB 

FIGURE    5-3        GENERAL    FORM   OF AN   MGS 
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separating loop daerron "feedback paths" from the rest of the daemons in 

the MCS. Since every cycle must contain a loop daemon, the subweb 

remaininp when loop daemons are separated out must be acyclic. As in 

the previous fieures of this chapter, Fig. 5-3 shows only father/son 

ancestry and not the intimate details of the data web. Each of the 

ancestry arrows of Fip. 5-3 can be multiple, as illustrated for a 

hypothetical data web in Ficr.   5-t. 

The daemons in the acyclic data subweb of these figures are the 

province of Rule 1, acyclic compatibility; that rule orders the 

operation of these daemons with respect to each other. Thus, we are 

ultimately left with the problem of schedulinp loop daemons in a friven 

MCS witn respect to one another and with respect to the non-loop daemons 

in  the MCS. 

Three different methods of sc!nedulinp loop daemons will now be 

presented, each of which has advantap^s and disadvantages. The three 

methods are derived from the Ga'iss-Seidel and the Jacobi iterative 

techniques for solviup. systems of equations [Rail, Varl]; the 

applicability of these techniques follows from considering the data web 

as  a set  of equations,   as discussed  in section 5.1. 

The first and third methods are analogous to Gaujs-Seidel 

iteration, sometimes called the method of successive displacements, in 

that only one loop daemon "feedback path" is exercised on each 

iteration. The first is easy to implement, but inefficient in that it 

produces situations where daemons are run without use beinp made of the 

results they produce. This inefficiency does not occur in the tnird 

method;   but the third method  is difficult  to implement. 

The second method     is  analogous to    Jacobi  iteration,   in    that  many 

loop  daemon "feedback paths"  can  be exercised on each  iteration.     Jacob 

iteration     is       also    variously    called       the    method       of    simultaneous 

displacements,   the point  total-step method,  and  the  point  Jacobi  method. 

While  relatively easy  to  implement  and not  inefficient  in  the    manner of 

MM 
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the first Gauss-Seidel method, Jacob! iteration Mil se often converges 

more slowly than Gauss-Seidel, and often does not converge when Gauss- 

Seidel does [Rail, Varl]. This was noted by I. Sutherland in [Sutl], 

and  led  to  the use of Gauss-Seidel iteration,  although not by that  name, 

in SKETCHPAD. 
However,  the question of convergence  is complex.    There are  systems 

f    linear  equstiens    for whicr     Jacobi iteration    converges    and Gauss- 

Seidel does not,  especially when the  linear eauation    system coefficient 

matrix is not positive;  an example can  be  found  in Chapter  3    of  [Varl]. 

SKETCHPAD,   in its use    of linear approximations to constraints,     is much 

closer    to    the classical    case    of iterative    solutions    to    systems of 

approximating    linear    equations    for    which    Gauss-Seidel    Iteration  is 

generally superior;  hence    Gauss-Seic'sl iteration was the    clear choice. 

The eauation system effectively  implemented    by a OALI data web,    on the 

other hand,   need not be  linear or even constant  in time.      DALI programs 

can clearly    be written    which will converge    only if    one or    the other 

method   is used.    Hence,    a choice of a     set  of scheduling rules    that   is 

good  for    all cases    does not appear    possible.    Furthermore,    the rules 

given for "Jacobi"  iteration actually produce Gauss-Seidel    iteration  in 

some circumstances,  as will be pointed out- 

Inefficient    Gauss-Seidel scheduling     (IGS)  is    performed     by these 

rules: 
Rule 51:   (non-loop before    loop)  If    a  non-loop daemon    N and    a loop 

daemon L are to be    run,  and  they are mutual    web ancestors, 

then N runs before L. 

Rule 61:   (loops alternate)  If loop daemons A and B are to be run,  the 

least  recently run of A and  E is run before the other- 

Rule 71;   (closure)  In any cases not otherwise covered,  daemons may  be 

run in any order. 

For the purposes    of Rule 61,     loops alternate,   loop    daemons which 

have    never been    run are    considered    to have    been run    at    random and 

tfS 
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distant past times. This rule simply assures that all the loop daemons 

in an MCS which are involved in the iteration by virtue of Rule 1, 

selection, will affect the iteration in a fairly equitable fashion. 

Since there must be a loop daemon in each loop, this means that all 

loops in an MCS will share in the iteration. 

The effect of Rule 51, non-loop before loop, is to cause only one 

loop daemon to be run for each iteration. This occurs because executing 

a loop daemon under Rule 61 will generally cause come non-loop daemons 

in the acyclic subweb of an MCS to wish to run; and by Rule 51, these 

will take precedence over any other loop daemons. 

The inefficiency of this scheduling method arises from the fact 

that there is no guarantee that the one loop daemon who does run on each 

iteration will use, or can use, all the results wnich the MCS's acyclic 

subweb has generated. As an example, the daemons of the MCS in Fig. 5-1 

will typically run as follows under IGS: 

A,B,C,1,A,B,C,2,A,B,C,1,   .   .   . 

Every other execution of daemon C,  namely    hose runs  followed by running 

loop daemon 1,   is redundant in the sense that whatever values C computed 

are not used before running C again. 

Jacobi    scheduling    (JS)  is    performed    by this    set    of scheduling 

rules: 
Rule 5J.   (feedforward)    As    long    as a    non-loor    daemon    can    be run 

without violating Ru1e 3,  efficiency, no loop daemon is run. 

Rule 6J:   (feedback)    When    no    non-loop    daemon    can    be    run without 

violating    Rule    3,    all    of    the    loop    daemons    which     (a) 

currently wish to    be run,  and  (b)    can be run in    any r .-der 

without violating Rule 3,    are aU run once in    an undefined 

order before running any other daemon. 

Rule 7J:   (closure)  In  any cases not otherwise covered,  daemons may be 

run in any order. 

The    effect    of Rules    5J,     feedforward,  and    6J,     feedback,     is to 
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alternate between (a) runninp all daemons in the acyclic subweb of an 

MCS, and (b) runninp all loop daemons which are to be run as a result of 

(a) or the previous (b). Thus under JS, the MCS of Fig. 5-4 mieht will 

typically run as follows: 

AfB,C,1,2,A,B,C,1,2, . . , 

Clearly, TS does not have the inefficiency ascribed to IGS. 

How^var, ex^mpl'"? vhere JS does not converge and IGS does are easy to 

find; one is presented below. 

Consider for example the simple data web of Fie. 5-5. Suppose 

every daemon in the figure simply copies its watched output into its 

specified output; initially all daemons are queued and the initial 

output values are Asl, B=2, C=3, and D«U. Then, JS would run as shown 

in the following table. In that table, time proceeds vertically 

downwards, values of outputs are shown in the right-hand columns, and 

the daemons JS runs are shown on the left; each daemon utilizes the 

output values shown on the precedinp "value line" and produces the 

output values on the succeeding "value line". 

A B C D 

4 2 2 4 

k n 2 2 

2 k k 2 

2 2 4 4 

i4 2 2 4 

daemons run 

N1 and N2 

LI and L2 

N1 and N2 

LI and L2 

N1 and N2 

(loop to second state) 

The last line is the same as the second, so we have an infinite 

loop — oscillation. Convergence testing anywhere will not help, since 

the initial values can be made different enough to overcome any fixed 

bound. 

Under the same initial conditions, IGS converges.  A possible 

trace, usin« the conventions of the previous table, is: 
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FIGURE   5-5     IGS   CONVERGES, 
JS   OSCILLATES 
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daemons run A B C D T 7 T ¥ 
N1 and N2 

LI 

N1 

L2 
(terminates) 

4 2 2 4 

4 2 ~ 2 

2  2  2  2 

Any reasonable convergence test will halt the process when L2 runs. 

The arbitrary choice of Li as the ilrst loop oaemon run causes the 

equally arbitrary selection of 2 as the final value, rather than >'. 

Either value is a possible solution to the system defined under the 

given initial conditions. If one of the daemons halves the value it 

receives, both schemes converge to A=B=C=D=0; interestingly, in this 

latter case JS requires approximately twice as many daemon executions as 

IGS. 

Use of the term "Jacobi scheduling" to describe the above scheduler 

is not precisely correct, since each loop daemon has access to most 

recently computed values of outputs. This is especially true when one 

loop daemon is a web son of another in the same MCS, with no mtervenine- 

non-loop daemons. If both the "father" and "son" are to be run in the 

same feedback session, and the father happens to run first, the son will 

indeed see most recently computer values and the effective iteration 

will correspond most closely to Gauss-Seidel iteration. However, such 

ordering of daemons is completely providential, and the existence of 

intervening nor.-loop daemons always produces the effects of Jacobi 

iteration. 

Now an "efficient" Gauss-Seidel scheduler (EGS) will be defined 

which only runs one loop daemon per iteration but runs no non-loop 

daemon unnecessarily- Intuitively, we wish to run only those non-loop - 

daemons in the acyclic subweb of an MCS whose operation can effect the 

loop daemon which will nevt be run; those iion-loop daemons are just 

those daemons which are "ancestors" of the target loop daemon, in a 

sense of ancestry which does not propagate through loop daemons. 

To  formalize  these notions,   some  further definitions are  needed. 



186 

A daemon A is a direct ancestor of a daemon B, 

and B is a direct descendant of A, if and only if 

there exists a sequence of daemons D(0),D(1),—D(n) 

such that: D(0)=A and D(n)=E; for each 1 0<i<n D(i) 

is a web father of D(i+1); and for 0<i<n no D(i) is 

a loop daemon. 

Note t.iat in U.s definition of direct ancestor and descendant, both Ä 

and B may be loop daemons; this is the difference between a direct 

descendant and an acyclic descendant. 

The specification of a "target" loop daemon is in terms of a set of 

"target" loop daemons, defined as follows: 

The target set T is ? set of loop daemons such that: 

(a) All members of T are web ancestors of every member of T, 

Ke. , all members of T are in the same MCS. 

(b) The members of T are all direct descendants of some 

daemon(s) which are to be run. 

(c) There is no other possible tareet set T' such that members 

of T' are web ancestors of members of T. 

By virtue of condition (b), T is dependent on the daemons which are 

currently "queued" to be run. In a direct implementation, T would hive 

to be modified whenever a daemon was run or queued. 

T - n be empty. This can occur trivially in an acyclic data web, 

since j contains no loop daemons; it will also occur in a cyclic data 

web when all MCSs have finished their iteration. 

Whenever T is nonempty, there is a target daemon t: 

The target ojemon t is some member of T which 

has least recently been the target daemon. 

A daemon which has never actually been the target daer^on is considered 

to have been the target daemon at some randomly chosen time the remote 

past. 
The rules  for "efficient" Gauss-Seidel scheduling  (EGS) are: 

Rule 5E:   (aim for    target)  If there    is a target    daemon t,    the only 



43 

187 

daemons which may run    are t and non-loop daemons    which are 

direct ancestors of t. 

Rule 6E:   (target last)  If daemons A and B are to be run,  and both can 

be run  by Rule 5E,  and    A is a direct ancestor of B,     then A 

runs before B. 

Rule 7E:   (switch    targets)  If    it exists,     the current    target daemon 

cea?es  to be the target    daemon as soon as either  (a)     it is 

run,  or (b) as a result of Rule 5E,  no daemons can be run. 

Rule 8E:   (closure)  In  any case not otherwise covered,  daemons may run 

in any order. 

Rule 5E,  aim for target,    produces the "efficiency" of EGS.       It   is 

also the reason    why  "efficiency" has been    put  in quotation    marks;   the 

author can conceive of no    way of implementing it in an    even marginally 

efficient fashion. 

Rule 7E, target last, clearly cannot conflict with Rule 3, 

efficiency, or Rule 4, acyclic compatibility. As its name suggests, 

Rule 6E exists only to guarantee that the target daemon is run after dll 

the non-loop daemons affecting its watched outputs are run. 

Clause (b) of Rule 7E, switch targets, is needed to aUow for the 

fact that no datmon need OUCH all its outputs. This can lead to a 

situation where all paths to the target daemon a.^ "blocked" and the 

system is stymied. 

5.8 Implementation of the Cyclic  Daemon Scheduling Rules 

The implementation discussed below is couched in terms of 

implementing the "Inefficient Gauss-Seidel" scheduler (IGS) presented in 

the previous section. Implementation of the "Jacobi" scheduler (JS) is 

very similar; it is discussed as a modification of the IGS 

implementation. Implementation      of      the      "efficient"    Gauss-Seidel 
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scheduler   (EGS)  will not be discussed,  as no    inefficient  implementation 

of EGS has been formulated. 

Implementation of IOS and JS can be done with a oriority scheme 

similar to that used for the acyclic schedulinp; rules. We again have a 

daemon queue contairinp all daemons yet to be run, with daemons queued 

in tne o.der in which they are to be run. Rule 1, selection, and Rule 

2, noninterruption, are satisfied by queueinp a daemon when any of its 

watched outputs are OUCHed. The order of daemons in the queue is 

determined from two priority numbers associated with each daemon: its 

Gv.?lic priority and its acyclic priority. The determination and use of 

these priorities, and the manner in which the daemon queue is used, 

constitutes the implementation. 

The acyclic  priority of a daemon la defined as  follows: 

(1) The acyclic  priority of the driving process is 0. 

(2) The acyclic priority of a loop daemon is Initially -1, and, for 

IGS, is adjusted dovnward during execution; in JS, It remains 

-1   forever. 

(3) The acyclic priority of a normal daernon is 1 if it h?s no 

normal daemon web fathers; otherwise it is at least 1 greater 

than the largest acyclic  priority of its web fathers. 

The acyclic priority of a daemon is easily initially determined at 

the daemon's creation. Structural changes to .he data web, caused by 

SPECIFIES, WATCHES, and the like, (section 4.4) may result in a need to 

adjust non-negative acyclic priorities. This can be done with a RH- 

PRIORITIZE modified to return when it encounters a loop daemon; in this 

way, the test for circularity now assures that at least one loop daemon 

resides in each loop. Another method of re-specifyir? acyclic 

priorities    and    assurinft    that    loops    contain    loop    daemons    will    be 

discussed later. 

In IGS, the acyclic priority of a loop daemon is readjusted to be 

MM 
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the same as the value of a elobal variable LOOPLAST each time the loop 

daemon is run. LOOPLAST is initially -2 and is decremented by 1 every 

time it is used. Positive acyclic priority daemons are queued befor-e 

negative acyclic priority daemons, thereby satisfying Rule 5E, non-loop 

first. By queueind daemons whose acyclic priorities are the same si^n 

in inverse order of the magnitude of their acyclic priorities, Rule 6E, 

loop„ alternate,  and  Rule H,  acyclic compatibility,  are observed. 

In determining cyclic priorities, we wish to establish the 

following situation: 

(1) The cyclic priority of the driving program is 0. 

(2) The cyclic  priority of all daemons in a Riven    maximal stronply 

connected subweb (MCS)  is the same. 

(3) The cyclic  priority of any daemon D is greater than that of any 

of its web ancestors not sharing an MCS with D. 

This causes the cyclic priorities to be analogs of the priorities 

used in the acyclic case, ertablished in the acyclic data web where each 

MCS is considered a single composite daemon. By havinp: cyclic 

priorities override acyclic priorities in the queue ordering. Rule 3, 

efficiency, will be observed. 

Unfortunately, the determination of cyclic priorities as described 

above cannot be done on a purely local basis, as could the determination 

of acyclic priorities. Instead, we must t'tart from the connectivity 

matrix C of the data web: C is a boOicci matrix, anil C(i,j)=1 if and 

only if daemon i is a web father of daemon j. We assume some indexing 

scheme to associate each daemon with its own row and column of C. The 

construction of C can be performed in time linear with the number of 

daemons by the recursive algorithm MAKE-C below. 

MAKE-C is applied  uo a daemon D: 

For each daemon    d dependent on an    output specified by    D,  do 

the following: 

(1)  If row d of C contains any non-zero entries,  set a    flae F 

false;  otherwise set F true. 

I 
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(2) Set C(D,d)  to  1. 

(3) If F is true,  apply MAKE-C to d. 

Applyinp    MAKE-C      to    the    d iving      program    will      construct    C. 

Alternatively, C    can be  incrementally    created and modified    as daemons 

are created    and destroyed,     SPECIFIES is    used,  etc.       An incrementally 

extensible C will require  further spatia1. overhead,  however. 

Having C,  the MCSs of the data web ^an be determined. 

First    the    boolean    reachability matrix    'A    of    C    is constructed: 

R(i,J)s1  if and only  if daemon i     is a web ancestor of daemon j.       R can 

bn    found as    the    limit of    (C+I)"Nas    N    increases,  where    I    is the 

identity    matrix and    •• indicates    exponentiation.       Ramamoorthy  [Rarr.l] 

gives an alternative algorithm    for constructing R which  is    faster than 

direct matrix multiplication;   it will not be discussed. 

Now the symmetric matrix M is constructed, after [Raml]. M is ehe 

elementwise intersection (logical AND) of R and R transpose, the latter 

being the reaching matrix of C. M may as well stand for Magic: every 

row of all zeros corresponds to a daemon not in any loop; every distinct 

non-zero row corresponds to a different MCS; and each non-zero row has a 

1   in each column corresponding to a daemon in that MCS [Raml]. 

Given M, we can mark each daemon with an integer which either 

uniquely identifies its MCS or indicates that it is not in any MCS, 

i.e., it is an acyclic daemon. Then a procedure similar to RE- 

PRIORITIZE can assign cyclic priorities. As was mentioned in section 

4.4, however, the time to RE-PRIORITIZE can rise exponentially with the 

number of daemons. Given C, we can do better than that; the algorithm 

below runs  in time   linear with the number of MCSs and acyclic daemons- 

First,  construct ACT,  the transpose of acyclic    connectivity matrix 

which considers each MCS to be a single composite daemon.     ACT has a row 

and column  for each acyclic daemon and each MCS,  and ACT(j,i)  is: 

if i represents an acyclic daemon p: 

if j represents an acyclic daemon q,   ACT(j,i)  is C(p,q). 

if j represents an MCS m,  ACT(j,i)  is the OR of all C(p,q)  for 

each 0  in m. 
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if i  represents an MCS m: 

if j represents    an acyclic    daemon g,   ACT(j,i)     is the    OR of 

C(p,a)   for each p in m. 

if j  represents    an MCS n,    ACT(j,i)  is the    OR of    C(p,q)  for 

each p in m and q  in n. 

ACT    can    be easily    constructed    by first    constructing    a mappine 

vector from an index of ACT to an   index of C  (for acyrlic daemons) or to 

a list of    indices of C    (for MCSs).    This    same mapping vector    will be 

useful  in the actual  priority assignment below. 

Now priorities are assigned, using an intetrer P and a boolean 

vector X. X has as many elements as each row and column of ACT. P is 

initially 0, and X is initially all 0's. Priority assignment is 

performed by the following three-step seauence, repeated until the test 

in step  (1) signals completion: 

(1) Find a row i of ACT which is all zero such that X(i)=0. If no 

such row exists,   return. 

(2) If i corresponds to an acyclic daemon, give it cyclic priority 

P; if it corresponds to an MCS, give all its members cyclic 

priority P. 

(3) Set column i of ACT to all 0's, set X(i) to 1, and increase P 

by  1. 

This must assign a cyclic priority to a daemon or "CS that is 

greater than the cyclic priorities of its ancestors, since P is ever- 

increasing and a cyclic priority is not assigned to a daemon or MCS 

until after all its ancestors have been assigned cyclic priorities. It 

must initially find a valid i, since the effective data web it operates 

or is acyclic and some node in an acyclic graph must have no ancestors. 

Since removing a daemon from an acyclic data web leaves an acyclic data 

web, the algorithm cannot terminate until it has assiKned a cyclic 

priority to every daemon. 

An identical priority assignment algorithm could be used to assicm 

acyclic priorities by using,   instead of ACT,  the transpose of C with the 
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rows and columns representing loop daemons either deleted or ipnored. 

With Lhia method, the requirement that every loop contain a loop daemon 

can be checked by examining the vector X after the algorithm terminates; 

if X contains any zeros, the daemons corresponding to the zero entries 

constitute one or more loops with no loop daemon. 

The rules for ordering daemons in the daemon queue are: 

Given daemons i and j, with cyclic priorities CPi and CPj and 

acyclic priorities APi and APj, then 

(1) If CPi < CPj, i is queued before j. 

(2) If CPi > CPj, i is queued after j. 

(3) If CPi = CPj, then 

If APi  = APj,   i and j may be queued  in either order. 

If APi  and APj are both positive or both negative,  the one with 

the smallest magnitude AP is queued  before the other. 

Otherwise,  namely    if APi  and    APj differ in    si^n,  the    one of 

positive AP is queued before the other. 

In IGS,   daemons are ordered as stated above and the  first daemon on 

the queue is popped off and executed until the queue  is empty. 

In JS, daemons are also be ordered in the manner stated above; the 

"or both nerativf" clause, however, can be removed from the second 

statenent of  (3). 

JS differs from IGS primarily in the manner in which daemons are 

removed from the queue and executed. The action taken by JS when the 

next daemon is to be executed depends on whether the first daemon in the 

queue is a loop daemon, hence having a negative acyclic priority, or a 

non-loop daemon, hence having a positive acyclic priority. The two 

cases are handled as  follows: 

(1) If the first daemon on the queue has a positive acyclic 

priority,  it is simpiy removed  from the queue and executed as in IGS. 

(2) If the first daemon on the queue has a negative acyclic 

priority,  the aueue    is scanned  from    its start,  placing    daemons passed 



193 

over on a separate list, until a daemon is found which either (a) has a 

positive acyclic priority, or (b) has a cyclic priority different from 

the first daemon on the queup; given the aueueinK order defined above, 

the second test actually subsumes the first. The daemons placed in that 

list are not yet removed from the queue. Then each daemon in the 

separate list is first removed from the queue and then run, in any 

order. When all the daemons in the separate list have been run, the 

first daemon on the queue  is again examined ^nd   (1) or  (2) ensues. 

The fact that loop daemons are que^ i after non-loop daemons 

establishes, with action (1) above. Rule 5J, feedforward. Action (2) 

corresponds to Rule 6J, feedback. Since only daemons with the same 

cyclic priority are run in action (2), they must be in the same MCS and 

can be run in any order according to Rule 3, efficiency- Loop daemons 

are not removed from the queue until after they are run in o-der to 

follow Rule 1, selection: a loop daemon could OUCH an output watched by 

a another  loop daemon which has yet to be run  in action  (2). 

Once the two priorities are established, the process of queueing 

daemons and running them entails relatively little overhead. This is an 

important characteristic, since smooth motion usually entails a great 

many re-executions of an M-DALI data web with relatively little 

structural change. 

However, it is equally clear that the job of establishing cyclic 

priorities is fairly expensive, due to the necessity of construct me or 

maintaining the interconnection matrix C. We can, however, limit the 

number of times C this must be constructed or modified to these two: 

(1) a daemon is created    which specifies an output    already watched 

by a loop daemon 

(2) any structural change is made  to the data web by DEPENDS,  etc. 

If either of these happens, cyclic priorities must be re- 

established, and, in the second case, acyclic priorities must also be 

re-established.     This    must  be     done as    soon as    the current     daemon is 
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finished    executing.     After    priorities are    re-established,     the daemon 

queue will have to be    re-ordered,  and  finally execution of    daemons can 

be continued. 
Simple, unlooped creation of daemons can be handled by giving the 

new daemon a cyclic priority greater than that of any of its ancestors, 

the way acyclic priorities are initially established. Deletion poses no 

problem, even if cycles are broken, thanks to acyclic compatibility: the 

scheduling information conveyed by the two priorities may become 

redundant or overly restrictive, but it is never wrong; i.e., even if 

every loop daemon in a cyclic data web is deleted, daemons will still be 

queued in the right order- 
So the    situation  «d,    perhaps,  not as    bad as    it might    appear at 

first elance. 

5.9 Implementing Multi-Way  Constraints: 
SKETCHPAD Revisited 

Daemons, loop or normal, most closely resemble one-way constraints- 

Although there are cases where daemons can be successfully used to 

directly model apparent multi-way constraints, as used in SKETCHPAD and 

described  in section  1.2,  many such cases are  doomed  to non-convergenee. 

For    example,  the    classic case    of relaxing    several values    to be 

equidistant from two neighbor values can be directly modelled.       In this 

case,  there are n+1  values,  namely A(0) through  kin)',  and each A(i),   for 

i  in the range 0<i<n,   "tri-s" to keep itself midway  between its neighbor 

values A(i-1) and A(i+1).    This can be expressed,  effectively    usinK the 

equation  form of the data web,  as follows: 

A(0)=externally specified 
A(1)=   (A(0)+A(2))/2 

A(i)=(A(i-1)+A(i+1))/2 

A(n-1)=(A(n-1)+A(n))/2 
A(n)=externally specified 
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All    that     is    needed    is n-2    identical    loop    daemons,    each    of which 

specifies one of the output values A(1) through A(n-1),  watches    its two 

neighbors,    and    performs the    obvious    calculation and    OUCH    each time 

either of    its neighbors    changes.     Convergence    tests are    also needed. 

The data web for this  is  shown in Fig.  5-6 for n=6. 

However,    as    Sutherland    points    out    in    [Sutl],    cases    like the 

following cannot be modelled in such a simplistic  fashion: 

A=2»B 
B=2«A 

If this  is done with two daemons — one watching B and  forever OUCHing A 

to 2*B,  the other watchinp A and  forever OUCHing B to 2*A --    the system 

will diverge for any non-zero initial values of A and B.    This    data web 

is    shown    in    Fig.    5-7.       In    comparison,    a    least-mean-square    error 

relaxation such as that of SKETCHPAD will converge to A=B=0,     the stable 

result. 

However, this does not mean that multi-way constraints cannot be 

modelled at all. The problem is simply that the daemons are not doing 

the calculation required to model both of the constraints. For least- 

mean-souare error relaxation, each daemon should utilize the two error 

terms needed to describe both constraints simultaneously, namely 

e1=A-2b      and      e2=2B-A  . 

To find what the daemon for A should do, we uiust take the sum of 

the squares of the error, then take the derivative of that with respect 

to A and equate it to 0 to find the minimum. Solving that equation for 

A yields 

A=B»1/5 

which is the calculation to be done each time that daemon is called. 

Similarly, the B daemon should compute B=A»4/5.  One or the other, of 

course, needs a convergence test. 

The above technique is not directly applicable to the Keneral case, 

since a different daemon would be needed for every possible combination 

of constraints. For the general case, the solution should be split 
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FIGURE    5-6      TWO-WAY    CONSTRAINTS   DIRECTLY 

MODELLED 
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A =2*B 
B = 2*A 

FIGURE   5-7     TWO-V\AY  CONSTRAINTS 

INCORRECTLY   MODELLED 
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between  two    classes of daemons,     ealled arbiter daernons    and constraint 

daemons; 
There    is    one arbiter    daemon    specifying each 

constrained output;   its job    is to find a    value for 

that    output    which    is    least    distasteful    to    the 

constraint daemons specifying, outputs he watches. 

There is    one constraint daemon    per constraint 

and per    output constrained.    These    specify outputs 

which tell    the arbiter    for the    constrained output 

how    to satisfy    the constraint    daemon's particular 

constraint. 
For example,  suppose the method of solution chosen    is least-mean-square 

fit to    linearized  constraints,  as    in SKETCHPAD,     ihen    each constraint 

daemon would feed an arbiter the coefficients m and b of    the linearized 

error term 
m»V*-b 

to constrain the value of the output V. For the two constraints 

(1) A=2*B 

(2) B=2»A 

and  initial values A=1  and B=2,   the arbiter for A would be given 

(1) m=1,  br-U 

(2) m=-2,  b=1 
by constraints (1) and (2) respectively. Solvin. this, in a manner to 

be shown, yields a new A of 1.6. Then B's arbiter would work on 

(1) ,-.=2,  b = -1.6 

(2) m=-1, b=-3.8 
yielding a new B value of 1.28, etc. The data web evolving out of this 

approach is shown in Fig. 5-8, which illustrates two general two-way 

constraints constraining two values. The daemons labelled 1 are 

constraint daemons for constraint 1, and those labelled 2 impose 

constraint 2.    The two loop daamons  labelled arb are arbiters. 



199 

\\VV 
\ 

\ ^-- 

\   v \ -. 

/ /   / 

/ 

\ \ \ 

\ 

\ 
N 

s        / 
/ s 

FIGURE    5-8       GENERAL    DATA WEB   FOR   TWO VALUES 
CONSTRAINED   BY  TWO-WAY 
CONSTRAINTS 
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A general linearized-least-mean-squared error arbiter can easily be 

constructed as a picture module containing a daemon watching a variable 

number    of    m and    b    error    terms-    His    job    is to    select    a    value V 

minimizing the sum over i of 
[m(i)«V+b(i)]"2 

which,  taking the derivative with    respect to V and equating    the result 

with  0,  means OUCHing V to ft\m^n\ 
-m(i )*bu; 
m(l)*^ 

where the numerator and denominator are  separately summed over i. 

A picture function for    a  least-mean-squared error arbiter    is LMS, 

below: 
(DEFPIC LMS   (EPS  "AUX"  MBLIST DEM  "OUT"  V  "OUTU"  ADDIT) 

(SETQ  DEM x   ,   . 
(L00P0N  (VAL  EPS)   (V) 

(PROG    NEW) 
(SETQ NEW   (SOLVE MBLIST)) 

iifTg ^DI^^ctEsSJVlDD-CONSTRAINT)) ) 
In LMS, V is the output whose value is to be constrained; MBLIST is 

a list of (n b) pairs, and the p-closure assigned to ADDIT is used to 

add constraints. EPS is an output defining the allowable error, 

probably shared across a section of the data web. OUCHing EPS to a 

lower value will cause that section of the data web to  "tighten    up" its 

constraints- 
SOLVE,  which    solves for the    least-mean-squared error vnlue    of V, 

is: 

(DEFINE SOLVE  (MBLIST) 
(PROG   (NUM DEN) 

(SETQ NUM  (SETQ DEN  0)) 
(MffiHBDA   (MB)   JSETQ NgJ  j; HUM  jj  ,jCAB MBj   .jCJMMftjjj 

MBLIST) 4   MM..   ,, 
(RETURN   (/  (-  NUM)  DEN))   )) 

While ADD-CONSTRAINT,  which  is used as a  p-closure relative  to LMS' 

local environment,   is: 

/ 

L 
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(DEFINE ADD-CONSTRAINT  (M  B) 
(WATCHES DEM M) 
WATCHES DEM B) 
3ETQ MBLIST  (CONS  (LIST M B)  MBLIST)) 
ON-DELETION M KILLIT) 
ON-DELETION B  KILLIT) 

[RUN DEM) 
T) 

(DEFINE KILLIT  (DEADOUT) 
(PROG   (MB) 

(SETQ MB  (FIND-IN-MBLIST DEADOUT)) 
(COND  (MB  (UNWATCH DEM   (CAR MB)) 

(UNWATCH DEM   (CDR  MB))   )))) 

Basically,  ADD-CONSTRAINT adds a new  (m b)   pair to MBLIST.     It   also 

makes sure that deletion of the constraint does not delete    the arbiter, 

by putting onto M and B a deletion p-closure using KILLIT.      KILLIT uses 

FIND-IN-MBLIST to    find the    (m b)    pair in    MBLIST containing    the dead 

output.     FIND-IN-MBLIST returns  the   (rr b)   pair after splicing it out,   if 

such a pair exists;  otherwise it returns NIL  (=false). 

For the example case of Ar2*B,  B=2«A,   a picture module applying the 

constraint A=2B to two values arbited by modules X and Y would be: 

(DEFPIC X2Y  (X Y  "AUXO"  B1 ) 
(ONS  (VAL   (OUT Y)) 

(OUCH Bl   (»  .(OUT  Y)   -2))) 
(APPLY  (OUT X 2)   (NULLSPEC   (OUTPUT  1))  Bl) 
(APPLY  (OUT Y  2)   (NULLSPEC   (OUTPUT -2))   (OUT X))   ) 

Thereby providing X with the error X-2Y, or m= 1, b = -2»y; and Y with the 

error -2»Y+X, or m=-2, B=X. Deleting such a constraint module will 

remove the constraint eracefully, thanks to the ON-DELETIONs of ADD- 

CONSTRAINT. 

The arbiter and constraint-daemon method of implementing multi^way 

constraints is both more flexible and more efficient than the multi-way 

constraint mechanism of SKETCHPAD. 

It is more efficient than SKETCHPAD in this sense: When SKETCHPAD 

discovers cyclic constraint dependence, it relaxes the entire system on 

each iteration, rieht down to the visible line positions. No attempt is 

made    to isolate    sections of    the picture    which needs    relaxation  from 
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sections which do not. This contrasts with DALl's efficiency criterion 

in cyclic scheduling, which guarantees that only those portions of the 

data web needing relaxation actually participate in the relaxation. 

DALl's    method    of    itrrplementin*    multi-way    constraints       is    more 

flexible because arbiters can    oe written to accommodate a    wide variety 

of approximations to constraints.     For example,  arbiters of second-order 

approximations-    a(1 )«V"2 + a(2)«V    + a(3)  --    can be    written.    More 

generally,    arbiters can    be    viewed as    objects    providing approximate, 

iterating solutions to situations with multiple simultaneous    goals.    It 

might even be possible to design arbiters which operate    on qualitative, 

rather    than    quantitative,    descriptions    of    error.      For    example,  an 

arbiter might handle an "error comment"  from a constraint daemon    of the 

form "This position    value will be    OK  if it's    below that  line,    but it 

would be better    to have the value    in this triangular    region;  however, 

make  sure    you keep it    near that    piece of text,    and whatever    you  do, 

don't  put  it in the upper right-hand corner!" 
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Chapter 6 

S-DALI:   Interpolated  "Smooth" Change 

"Time   is a system for keepine everything 
from happening at once." 

--Anonymous 
(found on the wall of the 
Orson Wells Cinema in 
Cambridge, Mass.) 

6.1 Motivation 

The general purpose of S-DALI is to extend the capabilities of M- 

DALI to the handling of seauences of monadic changes across viewer- 

perceived picture time. By doing so, S-DALI encompasses the generation 

of "smooth" interpolated motion in a general way. This section 

describes and motivates the principal  features of S-DALI. 

It should initially be recalled from section 2.3 that picture time 

is time as it is intended to be perceived by the viewer, as opposed to 

the DALI compute time needed to compute individual "frames" and inter- 

"frame" relationships. 

In the context of M-DALI, change which is to be perceived by the 

viewer as "smooth" is best provided by creating picture-temporal 

sequences of monadic changes to an output. The illusion of continuous 

motion can then be achieved by appropriately choosing sequence elements, 

e.g., by interpolation. In this way the normal operation of M-DALI, 

repeated for each element of the sequence(s) in proeress, can keep 

relationships between picture elements correct during such change. 
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Thus, for example, a "smoothly movinp" visible line can be created 

by applying appropriate sequences of monadic changes to the inputs of 

the LINE picture module defined  in the discussion of M-DALI. 

S-DALI provides such a capability;  but this is not the full purpose 

of  S-DALI. 
S-DALI also allows computation to be performed on entire sequences 

of changes in the way that M-DALI allows computation to be performed on 

individual instcaitaneous changes: entire sequences can be passed through 

the data web, operated on as entities, and propagated further. I.e.: S- 

DALI  is to secuences as M-DALI is to instantaneous values. 

This is more precisely expressed by saying that S-DALI allows 

daemons to    generate temporal    sequences of    monadic changes    to outputs 

such that: 
(1) generated sequences can be functions of other determining 

sequences taken as wholes, not just functions of other 

sequences' elements;  and 

(2) both generated and determining sequences can appear temporally 

simultaneous to the viewer. 

This capability is provided by a new class of daemon conditions 

which "watch for" sequences applied to outputs. Daemons with these 

conditions are run before the occurrence of any of the value changes 

represented by the applied sequences. Thus these daemons can inspect 

entire sequences, using them as data to compute new sequences whose 

changes will occur in parallel with the data sequences. Applying such 

new sequences to outputs can then propagate sequence information through 

a data web just as value changes propagate in M-DALI. All the 

previously created sequences "really" happen, i.e., the picture times 

associated with their elements occur, after such sequence processing has 

taken place. 
The S-DALI data web used for propagating sequence information is 

not intrinsically separate from the M-DALI data web; but the manner in 

which    "sequence    watching"    daemons    are    queued    relative      to    "value 
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watchinp" daemons causes interaction between them to be easily 

comprehended and used. 

Tnat sequences can be functions of other simultaneous seauences, 

i.e., sequence -> sequence functionality exists, is the characteristic 

that distinguishes S-DALI from an M-DALI system with a loopine driving 

program; this characteristic also distinguishes S-DALI from simulation 

systems such as that embedded in SIMULA [Dahl, Dah2]. The motivation 

behind, first, sequence -> sequence functionality, and second, the need 

for simultaneity, will now be discussed. 

Without sequence -> sequence functionality, certain classes of 

behivior are impossible to produce within the picture itself, i.e., 

witnin picture modules. 

A simple example demonstrating this is illustrated in Fig. 6-1. 

There, outputs 01 and 02 specify positions, and 02 is a function of 01. 

02 is to be a vector distance D from 01 when neither are moving. When 

01 moves, 02 js to move in a semi-circular path to its final position, 

as shown. This cannot be done unless information about 01's final 

position is available to 02 before 02 starts to move: 02's initial 

"step" is dependent on 01's final position, since that position 

determines the rciius of 02's semicircular path. 

A slightly more complex example is shown in Fig. 6-2; here 01 and 

02 are again positions, and 02 again depends on 01- When 01 moves, 02 

is to end up in the same position as 01, moving there in a series of 

"hops" normally of length S. If 02 is to land in exactly the right 

position, the final "hop" must be made smaller than S, as shown; thus 

the final position must be known in order to determine the full 

configuration of "hops". The type of cyclic motion shown in this 

example is characteristic of walking figures; final, and, for walking, 

initial motions differ from intermediate motions because standing 

posture differs from posture while walking. Clearly, the final value of 

the determining sequence — here 01's — must be known before a cycle 

can commence. 
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The requirement that computed seauences be able to occur 

simultaneously in picture time with their detirminine sequences is 

Justifiec by the fact that sequence -> sequence functionality can be 

nested to any depth; thus any v'.sible delay caused by such nesting could 

result in arbitrarily bad loss of synchronization. This could in theory 

be compensated for by clever programming, but only at an immerse loss of 

modularity. 

An example showing how such nesting can become rather deep, and 

also giving the intended "flavor" of S-DALI programming, is the action 

of a (hypothetical) program for a human figure as it catches a thrown 

ball: 

A  top-level "human" daemon is passed,  through an output,    an object 

such as this two-element  ]ist: 

(CATCH ball-s) 

where ball-s is the    sequence specifying the ball's motion.      Seeing the 

CATCH token,  this top-level daemon passes ball-s through an output    to a 

"ball catcher" daemon, which    examines the ball's  sequence and    issues a 

sequence specifying an appropriate    hand position and time  for    a catch. 

This causes a "major skeletal coordination" daemon to note,  for example, 

that    the    position    is      near    enough    that    running    and      jumping    is 

unnecessary;   so it just issues a set  of sequences specifying appropriate 

shoulder,    elbow,    and    wrist    motions.      A    specialized    "hand control" 

daemon,  noting the    wrist and J-and position    sequences,  issues a    set  of 

sequences  to orient fingers and palm appropriately and close them at the 

proper    time    for    the    "catch";    this,    in    turn,    mi^ht    set    off more 

specialized daemons,  e.g.,  for thumb movement.    Finally, a set    of "skin 

and    musculature"    daemons reacts    to    all the    skeletal    sequences with 

appropriately    realistic bulges,    throbs,    and wrinkles    in    the vi-   ble 

coverintr of    the  (invisible)    skeleton  [Monl].    Only    after all    this is 

done  in DALI compute time does anything actually start moving in picture 

time. 
All of the above will produce a very strange picture indeed if 
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there is a visible picture-time delay inherent in sequence creation: net 

only will the hand reach its place after the ball — which is a much 

simpler object with less nesting -- but the hand will lap after the 

forearm, and who knows when the thumb will pet there? 

Similarly complex cases can be found in seeminely simpler 

operations, such as movinp: pointers about in a display of the workings 

of an interpreter or compiler; only the skin is missinp. The above 

example Just illustrates the problem more graphically, and, besides, 

it's more fun. 

If sequence -> sequence functionality is to create sequences which 

are to occur in parallel with their determining sequences, knowledge of 

the future is needed -- i.e., the values which an output will take on. 

This information is useful in two ways. 

First, the availability of future data can reduce the total amount 

of computation needed by reducing the need to calculate predictions. 

For instance, in the "catch" example above, the "catcher" daemon could 

have been written in the following fashion: it could wait, recording 

some successive ball positions, and then calculate the trajectory it 

needs to know. With access to the ball's future position, however, at 

least part of that calculation can be avoided. The case is even clearer 

when many objects are "watching" a particular object. The moral of this 

seems to be that the more of the future an object knows, the less 

intelligent it need be. 

Second, there is another interpretation of sucl- sequences: 

determining sequences are orders, i.e., partial specifications of future 

behavior which an object (a picture module) is to satisfy by its own 

methods. Here, the time element of a determininK sequence is considered 

to be a part of the order, specifying when the behavior is to be carried 

out. 

Thus, in the two simple sequence -> sequence examples above, the 

sequence applied to 01 was interpreted as an order to move 02 to a new 
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position,  accomplishing    this action    while 01  was    moving;  the    02 code 

"decided"  to do so by different means  in each case. 

The stratagem of allowing the response to such orders to be the 

same type of object as the orders themselves — sequences -- creates a 

desirable uniformity that allows orders to propagate throueh a picture 

in exactly the same way that monadic changes propagate in M-DALI. 

Making such orders interpretable as M-DALI operations smooths their 

transmittal to the "cannon fodder" M-DALI routines which perform 

operations more easily done without viewing the future. 

The    requirements    of      sequence    ->    sequence      functionality    and 

simultaneity    put    a    significant restriction    on    how    the    elements of 

sequences may  be    generated when they    are  "really" applied    to outputs: 

all the    elements of a    sequence must be    computable before    the picture 

time of the firjt element  is reached.     Thus a sequence generator must be 

a  function of one variable,  namely picture time:   it can have no internal 

state.       I.e.,    the    apparently "natural"    model    of    sequences,  general 

finite-state machines,   is too general;   sequences can at best be modelled 

by    information-lossless    finite-state    machines    which    can    always    be 

"backed  up"    in time.    This    is truly a    significant restriction,    as it 

disallows    many    eKgant,     general    schemes    which    effectively    use co- 

routines as generators of sequences;   such  schemes are,  for example, used 

in PLANNER,  CONNIVER,   and  SIMULA  67  [Hewl,   McDI,   Dahl,   Dah2]. 

To some extent this restriction will be relaxed. For example, in 

the "catcher" example above the trajectory of the ball may be initially 

computed as if no catch were to be made; and a later modification can be 

made when the catch is imminent, appropriately decelerating the ball. 

However, the nature of the facilities of S-DALI militates against 

general seouence generators. 

There are, nevertheless, cases where suitably complex sequences are 

used in situations where only M-DALI daemons need watch the outputs they 

chancre.     Since    the  facilities    of S-DALI    are not    being used    in these 
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cases, "value generators" with state can be us^d, and are allowed. They 

do not, however, constitute or generate true S-DALI sequences, and in 

particular cannot excite "seouence watching" daemons as do true 

seauences. 

6.2 S-DALI Operation and Action Scheduling 

The operation of S-DALI is similar to that of the event-driven 

simulation system embedded in SIMULA [Dahl]. It is based on an agenda, 

which is a linked link of agenda blocks (blocks), each containing two 

elements: 

(1) a picture time 

(2) a set of actions 

There must also be a "next agenda block" entry to define the list; but 

in this discussion  it  is irrelevant. 

The picture time indicates when the set of actions will be 

performed. The agenda is continuously kept sorted in order of 

increasing agenda block picture tine. 

The set of actions essentially contains blocks of executable code 

-- actions — which are to be performed at the block's time. Typical 

actions include OUCHing an output, deleting an object, and starting up a 

sequence. The set of actions has internal structure which defines a 

partial order in which actions are performed; these topics will be 

discussed  in section 6.5. 

S-DALI's total operation consists of removing the first block from 

the agenda and then processing it in a manner to be described, repeating 

this performance until the agenda is empty. This operation is initiated 

when the driving program performs an action which causes the generation 

of an agenda    block  — for example,     by directly applying a    sequence of 
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changes to an output, or by doing an OUCH which causes a daemon to apply 

such a seauence, and then perfortninc; an UPDATE-DISPLAY. S-DALI 

operation, like M-DALI operation, occurs nested within the UPDATE- 

DISPLAY; when the agenda is empty, control acrain returns to the driving 

program. 

The agenda block which is currently being processed is referred to 

as the current agenda block (current block), and its picture time is 

called the current time. A jser can obtain the current time as the 

value of the  function CURT applied  to no areuments. 

Agenda blocks are created by an operation called action scheduling 

(scheduling).  To schedule an action A for a  picture time T, 

(1) If T is the current time, do not actually schedule A; instead 

perform the action immediately exactly as it would be performed 

in normal  block processinp. 

(2) Search the agenda for a block with picture time = T. If such a 

block exists,   insert A into the block's,  set of actions. 

(3) If no such block exists, create a new block with picture time T 

and put A into its action set. Insert the new block into the 

agenda immediately before that block with the smallest time 

greater than T; if no such block exists, put the new block at 

the end of the agenda. 

Rule (1) is not Just a trick to avoid unnecessary agenda block 

creation; it is necessary for "sequence watching" daemons and data web 

to work correctly, since such daemons watch only for actions which are 

scheduled. Furthermore, it cannot be combined with Rule (2) by leaving 

the current block on the agenda. This will be explained later in this 

section. 

Processing of the current block is performed in two sequential 

phases, the first called the initiation phase and the second called the 

follow-up phase: 

tm 
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initiation: the set of actions is performed (in an only partly 

defined order). If there are daemons watching for any of 

these actions, place them on the daertnn queue according to 

the (M-DALI) daemon scheduling rules. If deletion is 

performed during this phase, actual interment is deferred 

until  the start  of follow-up. 

follow-up: Run the queued daemons in accordance with the (M-DALI) 

daemon scheduling rules. 

The division into two phases is what necessitates schedulincr rule 

(1). This rule causes actions which arc scheduled for th? current time 

to be performed immediately, thus possibly performing what otherwise 

would be  initiation phase  activities during in the  follow-up phase. 

Three things distinguish current block processing from the driving 

program/M-DALI interaction described earlier: a wider variety of actions 

can be performed, a new class of daemon conditions can be invoked, and 

one anti-data-web-cycle prohibition -- that only an output's specifier 

may  OUCH an output  -- does not operate during the  initiation phase. 

New actions include: action scheduling, which invokes no daemons; 

initiating a sequence, which invokes daemons with the new class of 

conditions; and continuinp a sequence -- performing an OUCH and re- 

scheduling the continuation -- which invokes normal M-DALI daemons in 

response to the OUCH. These are discussed in detail in a followine 

section. 

Daemons havinsr the new class of conditions, referred to as S-DALI 

daemons as opposed to M-DALI daemons, are distinguished by the fact that 

all M-DALI daemons are queued before any S-DALI daemon. This is clearly 

not the mechanism by which processinp; of time sequences is made to 

precede the processing of monadic events. Among the S-DALI daemons the 

ord^r of queucinr is determined by ancestry in the data web, usinp- the 

same  scheduling rules as M-DALI daemons. 

During the initiation phase, the set of actions performed can 

include    OUCHintr    or    applying    a     sequence    to     any    output  whatsoever. 
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is. If an output is OUCHed more than once, its value remains that siven 

by the last performed OUCH -- recalling that the order in which 

initiation phase actions are performed is not completely defined. The 

reason for allowing such uncontrolled behavior is that the primary 

reason for disallowing it does not exist. Specifiers exist to make a 

true representation of inter-module functional dependence available to 

the scheduling rules so that they can operate with rationality and 

approbrium in propagating change; but change is not being propagated 

during the initiation phase. Rather, change is beincr inserted into the 

picture definition for propagation during the follow-up phase, and in 

that phase all the usual restrictions apply. This is the source of the 

"future OUCH"  mechanism mentioned  in sections  1.6,   5.2 and  2.3- 

If initiation phase activities are performed during the follow-up 

phase due to action schedulintr rule (1), they are subject to the anti- 

circularity "specifier" rule which is suspended durinsr the initiation 

phase; this suspension is associaLed with the phase, not with the 

actions  performed. 

6.3 General Scheduled  Actions 

A straightforward method of causing an action to be explicitly 

scheduled for a given time is to create a scheduled p-closed action 

(SPA) by means of the SCHEDULE function. Doing so does not create a 

true  seauence;   that operation  is  covered  in the next  section. 

An SPA is always a member of some agenda block's set of actions, 

and the action it describes is performed during the initiation phase of 

agenda block processing, except, as mentioned, when it is scheduled for 

the current  time. 

A scheduled  p-closed  action has  three elements: 

(1)  the owner -- a picture module 
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(2) the body -- an s-expression   (block of codp) 

(3) the agenda block 

In    addition,     since an    SPA    is    deletable it    has    the    standard three 

deletion elements. 

The owner of an SPA is the owner of the daemon which created it, 

the body is an arbitrary block of code, and the agenda block is that 

block whose set  of actions  includes the SPA. 

An SPA is performed during the initiation phase of its aeenda 

block's  processing as follows: 

(1) It   is evaluated as if it were one of its owner's daemons. 

(2) If it has not re-schedultd  itself»   it is deleted. 

Re-schedulinc  is covered below;   the test  in  (2)  is quite simple. 

A scheduled p-closed action is created and initially scheduled with 

the SCHEDULE function: 

(SCHEDULE ti -body-) 

where ti is a number which is added to the current time to obtain the 

SPA's scheduling time, and -body-, an arbitrary list of S-expressions, 

becomes the body. The agenda block is obtained in the process of 

scheduling, which occurs as part of SCHEDULE. SCHEDULE returns the new 

SPA as a value. If SCHEDULE is called with ti=0, the -body- is 

immediately executed; this is useful for initialization, and follows 

from the action scheduling rules. 

An already scheduled SPA    can be re-scheduled  f r a    different time 

(RE-SCHEDULE ti spa) 

where spa is the SPA, and ti is again added to the current time to 

obtain the time for (re-)scheduling. RE-SCHEDULE causes the SPA to be 

removed from the set of actions of its agenda block and scheduled arain, 

chanpinp the SPA's agenda block appropriately. The spa argument is 

optional and defaults to the currently running SPA;  thus 

(RE-SCHEDULE  ti) 
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re-schedules the  SPA which executes  it. 

The test  for    whether an  SPA has    been re-scheduled,  needed in the 

processing of    the SPA,     is:   if the    SPA's agenda    block  is    the current 

block,  it    has not    been re-scheduled.      RE-SCHEDULEinp for    the current 

time produces, due to infamous: scheduling rule (1),an odd form of 

iteration which has no intrinsic benefit; therefore, as a safety 

measure,  a 0 ti argument to RE-SCHEDULE is illegal. 

A simple example: 

Assume that MOVER and DELT are id-ntifiers in the environment of 

the module owning the daemon containing the following application, and 

that MOVER is bound  to an output.    Then: 

(SCHEDULE  0   (OUCH MOVER  (+   .MOVER DELT)) 
(RE-SCHEDULE  10)   ) 

creates an SPA which causes MOVER'S output value be be  incremented every 

10 time units by    whatever happens to be    in DELT at the    time,  starting 

immediately.    Note    that this will    go on until    the SPA  is    deleted,  or 

until  its    owner module is    deleted.    The latter    occurs because    when a 

module    is    deleted,    all    the    objects    owned    by    the    module deleted, 

including SPAs. 

6.4 Sequences and Simple Seauences 

A sequence is an object representing a temporal sequence of monadic 

value changes which a single output will undergo. Each such chanpe is 

completely equivalent to an OUCH, and will cause daemons watching for 

value changes to oe executed. Like a scheduled p-closed action, a 

sequence is always a member of some agenda block's set of actions, and 

only does something when it is performed during the initiation phase of 

block processing.    Sequences are    accessed and examined via    the outputs 

/ 
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they control, and only one seouence can control an output at any civen 

virtual time. After their creation, sequences cannot be altered. They 

can, however either be explicitly DELETEd or replaced by other seauences 

and thereby automatically DELETEd. 

This section discusses simple sequences. These are sequences 

containing an explicit ordered set of values to be assumed by an output. 

More complex sequences — path sequences, discussed in a later section 

-- simply substitute a function for this ordered set, and are otherwise 

identical. 

The elements ?  a simple sequence are: 

(1) the chaneee -- an output 

(2) the value set -- an ordered set of objects 

(3) the step index — a positive integer 

(U) the step duration -- a real number 

(5) the agenda block 

Simple sequences also have the standard three deletion elements because 

they are deletable. 

The chaneee is that output which will be changed by this seouence. 

The value set specifies the values the changee will assume, and the 

order in which they will be assumed.  It must have at least one element. 

The step index is incremented by one each time the sequence is 

processed. It counts from 0 to the length of the value set, and is used 

to tell both which element of the value set is next and when the 

sequence is finished. A sequence initially has a step index of 0. 

The step duration is the picture time interval between the 

individual monadic changes. 

The agenda block is the block whose action set contains the 

sequence. 

Simple sequences are created by means of the function SOUCH (for 

Simple sequence of OUCHes), as in 

(SOUCH out vset ftime stime) 
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where: out is the output which becomes the change; vset is a list of 

values, which becomes the value set; ftime and stime are picture times 

specifying, respectively, the finishina; and starting picture times of 

the sequence,    stime  is optional, and defaults to the current time. 

SOUCH creates a new simple sequence, schedules it for stime, and 

returns the sequence as the value of the application. If an uninitiated 

sequence with the same changee output is already scheduled for the same 

time, the old sequence is DELETEd. What happens when a new sequence 

overlaps an old one without starting at the same time will be covered 

below. 

The step duration is 

(finish time)  -  (start time) 
(length of value set; 

Thus the    picture time  tm(i)    of each monadic    chanee  i, where    i ranees 

betweer.  1  and the  length of the value set  inclusive,   is: 

tm(i)   =   (start time)  + i«(step duration) 

This is illustrated in Fig. 6-3. A sequence will be scheduled a^ 

continuing for each tm(i);  this is described below. 

Note that no value change occurs at the start time; this is if 

successive seauences applied to the same output are to dovetail 

appropriately. However, S-DALI daemons watching the changee are run at 

start time;   this is described in the next section. 

6.5 The Starting and Continuation of Sequences 

In describing the processing undergone by sequences during the 

initiation phase of blook processing,  two other  facts become relevant: 

First, outputs gain two more elements in S-DALI: They now have a 

current sequence- element,  containing that continuing    sequence currently 
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controllinR the output. If no such seauence exists, this element 

contains a null value. If a sequence beinp; DELETEd is the current 

seauence of its change when interment rolls around, the changee's 

current sequence is tnaoo null. The other new element is a list of 

dependent S-DALI daemons; the^e are the daemons whose conditions "watch 

for" sequences applied to the output. How such daemons are created will 

bo discussed  in the next section. 

Second, the set of actions of an aRenda block is divided into 3 

parts: 

(1) continuations ••- re-scheduled continuinp sequences 

(2) starters — sequences scheduled  into this block which    have not 

yet begun 

(3) SPAs  — scheduled p-closed actions scheduled into this block. 

The only    reason for separatinc;    starters and SPAs    is  to    ease the 

problem of finding and DELETEing sequences created by redundant SOUCHes. 

Continuations    are    separated  from    starters    so that    they    can be 

performed  first,  as described below. 

The partial ordering of processing in the initiation phase of block 

processing is: 

(1) First,   the continuations are processed in an undefined order. 

(2) Then,     the    starters and    SPAs    are processed    in    an undefined 

order. 

Recall that this entire phase — both of the steps above — proceeds 

uninterrupted by daemon execution and interment. Daemons are queued, 

and interment is deferred, until the follow-up phase which follows 

initiation. 

As Implied above, sequence processing comes in two varieties: start 

processing and continuation processing. While for a given sequence 

start processing always comes first, any continuations in the current 

block's  set of actions are  done before starts. 

For a sequence S,   start  processing consists of the following: 
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(1) If the chansee of S has a current seouence, DELETE that 

sequence. 

(2) Make S the current seauence of its changee. 

(3) Queue the daemons with conditions watching for sequences on 

this output. 

(4) Set S's  step index to   1. 

(5) Re-schedule S as a continuation for the current time plus the 

step duration. 

This same start processing is performed on all sequences, simple or 

otherwise. The DELETE in step (1) defines the ab.judication of 

overlapping sequences: the most recently started sequence always takes 

control of its changee. 

Continuation processing of a simple sequence S proceeds as  follows: 

(1) OUCH S's changee to the (step index)th. element of the value 

set. 

(2) Increment S's  step index by  1. 

(3) If S's step index is greater than the length of its value set, 

DELETE S. Otherwise, re-schedule S as a continuation for the 

current time  plus its time interval. 

Agenda block processing produces an interesting and important 

sequence of occurrences when we find in the same agenda block (1) a 

continuation of an output's current sequence, and (2) an uninitiated 

sequence with that  same output as a changee.    The resultant behavior is: 

(1) The continuation Of/CHes the output to a new value. This causes 

the output's M-DALI daemons to be queued. 

(2) The continuation is re-scheduled or DELETEd; either way, it 

won't last  long,  because 

(3) The start processincr of the new sequence DELETES the 

continuation if it still exists. 

(4) The new sequence becomes the output's current sequence, and its 

S-DÄLI daemons are queued; then the new sequence is re- 

scheduled  for its  first OUCH. 
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At  this point    both sets  of    daemons are aueued,    and the output    has an 

"old" value and a  "new" sequence. 

(5) The M-DALI daemons are  run. 

(6) The S-UALT daemons are  run. 

Thus the value sequences dovetail correctly, includinc; their 

computational descendants via M-DALI daemons. Also, the S~DALI daemonu 

run at a picture time prior to that when the first change of a sequence 

takes place. Thus they run (1) before any M-DALI daemon sees the values 

from their driving sequences, and (2) in time to schedule sequences in 

parallel with their driving sequences. 

6.6 Outputs and the SEQ Daemon Condition 

In S-DAL1, outputs are created in exactly the same way they are In 

M-DALI; however, they now also contain a current sequence and a set of 

dependent  "S-DALI daemons". 

An output's specifier is the only daemon which is allowed to either 

OUCH it or apply a sequence to it. Note, however, that any daemon may 

do either. 

The current sequence is used to allow access to the sequence 

through the output. Functions used to do this are described near the 

end of this sect.ion- 

The set of "S-DALI daemons" are the daemons watching for sequences 

applied to this output. They are queued, as previously described, when 

start processing is performed on the outputs they watch. 

The only difference between an "S-DALI daemon" and any other daemon 

is  its condition: 

(SEQ -wouts-) 

where -wouts- are outputs,   is    a daemon condition causing its    daemon to 

be  run whenever start processing is performed on any of the -wouts-. 
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In addition to ONC and ONS, a new daemon creating routine called 

ONCIF (ON. Condition and 1F_ changing) exists, which, like ONS, is a 

convenience for startup. ONCIF creates a daemon like ONC, but also runs 

its body before returning if any of the watched outputs is currently 

changing,   i.e., any of them has a non-null current  sequence. 

The daemon ancestry relations on which the scheduling rules are 

based are sliehtly extended in S-DALI: a daemon with a SEO condition is 

a web son of the specifiers of the outputs it watches. This means that 

"M-DALI" and "S-DALI'' data webs can be interminpled. Usual program 

structure will normally keep them fairly separate, however, and, in any 

case, it makes no difference. The existence of M-DALI daemons between 

S-DALI daemons does not change the ancestry relations of the S-DALI 

daemons, and vice versa; and the separation of the runnine of S-DALI 

daemons and M-DALI daemons makes their relative ancestry irrelevant. 

The scheduling rules of M-DALI are still used, modified by a new 

selection rule accounting for the SEQ condition, and extended to include 

the fact that all M-DALI daemons are run before any S-DALI daemon. This 

can be implemented either by having different daemon queues for M- and 

S-DALI daemons, or by adding a very large, fixed constant to the 

(inverse) priorities of all S-DALI daemons. The order in which S-DALI 

daemons are run relative to each other is defined by web ancestry using 

the rules of M-DALI. LOOPON can be used with a SEQ condition to create 

cycles  in sequence processing. 

Due to the difficulty of producing any reasonable examples using 

only SOUCH,  examples are  deferred until a sections  6.7 and 6.8. 

A:3 promised, the functions used to obtain data from seauences are 

listed below. These functions can be applied either to the sequenceji 

themselves or to outputs. In the latter case, information is obtained 

about the output's current seiuence;  this is usually the more convenient 
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method.     In    the following    list,   "os"    is used    to  indicate    "output or 

sequence": 

(STEPS os) total number of value steps this  sequence takes 

(STIME os) start  time 

(FTIME os) finish time 

(IVAL os) initial value 

(FVAL os) final value 

(TVAL os ti)      value at  time  ti 

(SVAL  ^s i)        value at step number i 

(CURSTZP os)      current value of step index 

Three other functions also exist: 

(SEQUENCE? out) 

is a boolean returning "true"  if and only if out has a current sequence. 

(SEQUENCE out) 

returns out's current sequence. 

(CONTROLLED seq) 

returns  the output controlled  by the sequence seq. 

6.7  Path Sequences 

The problem of describing arbitrary motion is a difficult one; it 

is equivalent to the problem of describing arbitrary curved lines and 

shapes, and is, strictly speaking, beyond the scope of the research 

presented here. However, SOUCH is clearly an inconvenient method for 

constructing sequences, and it is not difficult to do somewhat belter. 

To that end, this section introduces the notion of a composite 

generalized path (path). a more flexible method of sequence 

specification than SOUCH. It is inspired in part by Baecker's "p- 

curves"   [Pael]. 

Paths are  functions used as value generators  in path    sequences.    A 
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path sequence is identical to a simple sequence except that the value 

se„ is replaced with two new elements: 

(1) a step count 

(2) a path 

The step count is the number of monadic changes to be performed by 

the sequence. 

The path is a function whose domain includes the real interval 

[0,1]. 

In the continuation processing of a path sequence, the chancee 

output is OUCHed to the result of applying the path to the ratio 

step index 
step count 

before the step index is incremented. If, after incrementing the step 

index,  that index is greater than the step count, the sequence is 

DELETEd.  Except for this,  path sequences are processed exactly like 

simple sequences. 

Path sequences can be directly created by the function NPOUCH, 

named for Naked '^ath-defined sequence of OUCHes, which is applied as 

(NPOUCH out pth stepc fin strt) . 

NPOUCH acts exactly like SOUCH, with the pair of pth and stepc - - a path 

and a step count -- replacing the list of values. 

From an abstract point of view, NPOUCH is all that is necessary. 

However, it still suffers from being inconvenient. A better mechanism 

would be one which allowed the notion of shape to be specified 

independent of the notions of position, size, and rate of travel along 

the shape. To that end, the notion of composing a rjath will be pursued 

below. 

The notion of "where in time", which conveys rate, is here 

represented by a time path. A time path tp is a function from i;he real 

interval [0,1] to that same interval, subject to the condition that 

tp(U)=0 and tp(1)=1. 
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"Shape" is represented by a shape path. A shape path sp is a 

function from the real interval [0,1] to any one of R, RxR, or RxPxR 

where R is the reals. A shape path has a dimensionality associated with 

the dimensionality of its range. To ideally separate rate and shape, sp 

should exhibit constant velocity: the distances travelled in its ranpe 

during equal domain intervals are equal. 

The composition sp(tp(t)), t in the interval [0,1], represents 

travelling along a shape, sp, with a possibly variable velocity defined 

by a distance function, tp.  Such a composition will be called a 

gesture. 

To allow such a composition to be "performed" in various positions, 

attitudes, and sizes, the concepts start point and end point are used. 

Basically, a gesture is translated, rotated, and scaled until 

sp(tp(0))=sp(0) coincides with the start point and sp(tp(1))=sp(1) 

coincides with the end point. The result of that transformation is the 

desired path. 

Analytically, the composite path p(t) is a linear transformation of 

sp(tp(t)), determined by solving for the constants T and R in the 

equations 

start point = p(0) = T + R»sp(0) 

finish point = p(1) = T + R^spO ) 

The dimensions of sp, T, R, the start point, and the finish point must 

be compatible; for example, in a two-dimensional application everything 

would be a coordinate pair except R, which would be a 2x2 rotation and 

scaling matrix. If sp(0)=sp(1), the start point must equal the finish 

point;   in this case T=0 and R is the identity matrix. 

The final resultant path is used as the "path" element of a normal 

path sequence as described earlier in this section. 

As an example, the use of the technique of cosine interpolation 

will be described. This technique can be used to make a motion 

gradually accelerate  from    rest and decelerate to    a stop in    a visually 
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pleasant    way,    and    has    the    nice    property    that    concatenated cosine 

interpolations    produce "sine-curve-like"    motion containim?    no visible 

discontinuities.    In comparison,   linear interpolation  is visually ugly. 

Cosine interpolation    along a    1-dimensional straight    line between 

any  start and  finish points  can be done with: 

sp(t)  = t 
tp(t)  =   1  - cos(t)/2 

Other dimensions are handled    by making sp(t) be pos(t,t)    or pos(t,t,t) 

as necessary;  here pos(x,y)  is the same as the LISP  (POS x y). 

Cosine interpolation along    a counterclockwise half    circle between 

any start and  finish points  can be produced with the tp above,  and 

sp(t)  = pos(sin(3-1i*l6»t),cos(3.1ill6«t)) 

The process of composing p(t)   for this example is shown in  Fig.  6-4, 

In    fact,  cosine    interpolation along    any constant-velocity    sp is 

produced with the given tp — which is the whole point. 

The above techniques, while fairly flexible, are still somewhat 

lacking. It would, for instance, be very useful to be able to supply 

extra  parameters to sp and  tp so that,  for example, 

sp(t,x) = pos(sin(x«t),cos(x»t)) 

could,    by choosing    an    appropriate x,    be    used to    move    in arbitrary 

clockwise circular arcs. 

An apparently reasonable way to do this is to allow sp and tp to be 

functional closures — in this context, p-closures (section 4.3). 

Unfortunately, that would leave open the possibility of having the free 

variables in the closures change during the sequence. Not only does 

this violate the canon that sequences should be predictable, but it also 

implies that if the seauence is to end up at the right place -- the 

final point — the T and R constants would have to be re-calculated at 

edch monadic change. 

An alternative is to use a "poor man's closure" — i.e., allow the 

user to specify a set of constants to be applied to sp and tp in 

addition to the t argument.     This    is,  of course,  not a closure    at all, 
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but    rather    a    convenient    method    of    selecting    a    particular desired 

function out of a set  of functions. 

This latter alternative will be used, using a sample application as 

the method for specifying additional parameters. Such a specification 

then  looks  like 

(fun tinr; -params-) 

wher^     fun    is    the    time    or    shape    path    function,    -params-    are the 

parameters,  and  ting is any arbitrary  place holder existing  for mnemonic 

purposes only.    When fun is applied,  the  first argument  is always  t,  and 

the others are  the given parameters  in the order given. 

Thus if we have 

(DEFINE  CIRC+  (T X) 
(POS (SIN  (• T  X))   (COS  (• T X)))   ) 

as a counterclockwise circular shape path,  then a sample application 

(CIRC+  "TIME"   4.712) 

would result  in motion around an arc of approximately 270 degrees. 

At this point, the number of parameters needed to fully specify a 

path sequence has grown enonrous. So, some simple syntax will be called 

to our rescue  in the tradition of TRANSFORM and argument  lists. 

The function used to construct a path sequence and apply it to an 

output  is MOVE.    MOVE is applied as 

(MOVE out -specs-) 

where out is the affected output and -specs- is a sequence of 

designators and values used to specify the parameters of the path. The 

basic designators, the objects which follow each of them, and the 

quality specified are listed below. Each designator may occur only 

once, and the order of their occurrence is arbitrary. A designator in 

the list below which is preceded by an asterisk (•) is optional, and its 

default is given. "samp" is used as an abbreviation for "sample 

application". 
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• "FROM" value initial  value;  default is current OVAL 

"TO" value final value 

• "SHAPE"  samp shape path;  default  is a linear path 

• "TIME" samp time  path;  default  is cosine interpolation 

"STEPS"  integer number of steps 

»    "START-TIME" time start  time;  default is current time 

"FINISH-TIME" time finish time 

Thus, 

(MOVE 05 "TO"   (POS  100   100)   "STEPS"  50 
"SHAPE"   (CIRC+ "T"   3.1416) 
"FINISH-TIME"   (+   (CURT)   100)) 

moves 05's value from wherever it is now to the position  (100,100) alone 

a  cosine-interpolated semi-circular path    in 50 steps,  startine    now and 

endine  100 time units from now. 

In addition to the above, several convenience features exist to 

allow more compact  specification of paths. 

First, an output with a current sequence may be placed after any 

designator. If this is done, the corresponding element of the output's 

current sequence is used. For example, if "FROM" is followed by an 

output, the final value used is the final value of the given output's 

current sequence; similarly, "TO" followed by an output uses that 

output's  final value. 

Second, several other designators exist. They are listed below, 

along with their effects. 

"FOR" 

"RELTO" 

"WITH" out 

"FOLLOWING"  out 

deltime      makes    the    finish time    the    current    time plus 

deltime. 

delvalue    makes    the    final value    the    current    OVAL plus 

delvalue. 

makes the start time, finish ^ime, and number of 

steps optional, defaulting to the corresponding 

parameter values of out's current sequence, 

makes aU, parameters optional, defaultinp to the 

corresponding parameter values of out's current 

sequence. 
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The primary difference between "WITH" and "FOLLOWING" is that when 

"WITH" is used, the standard defaults for "FROM", "SHAPE", and "TIME" 

are in force; whereas "FOLLOWING" changes these defaults. "DELTIME" and 

"RELTO" cannot be followed by outputs. 

A third convenience measure will often be appropriate. It is often 

the case, particularly when movies are to be created, that the number of 

steps per u.iit time is fixed by the equivalent of a natural law to some 

standard frame rate. This also implies that virtual time has a natural 

quantization at the level of "frames". In this case, either the number 

of steps or the time duration of a sequence is a complete description of 

both duration and step count; hence either alone is sufficient. This 

will not be assumed in the examples which follow in the next section. 

6.8 Examples 

The first example is the simple one first mentioned in section 6.1 

and illustrated in Fig. 6-1: motion along *    semi-circular path, 

beginning and ending a distance D from the initial and final values 

assumed in the motion of a driving output.  The code, which is 

expectedly simple, follows: 

(DEFPIC SEMIMOVE (01 D "OUT" 02) 
(OUCH 02 (+ ,01 D)) ;Set up initial value. 
(ONCIF (SEQ 02) (01)      ^  v 

(MOVE 02 "TO" (+ FVAL 01) D) 
"SHAPE" (CIRC- "T" 3.1^16) 
"WITH" 01) )) 

(DEFINE CIRC- (T X) v  i% /o^ ,, . ^  .... 
(POS (SIN (• (- T) X)) (COS (• (-T) X)))) 

The "WITH" causes 02's motion to occur in synchrony with 01's, 

while using the standard cosine interpolation time path default for 02's 

motion.  A new shape path, CIRC-, was needed to produce the clockwise 

circle shown in Fi^. 6-1; CIRC+, defined in the previous section, 

produces counterclockwise motion. 

I 
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The next example, which is also simple, produces damped oscillatory 

motion in response to a step function input.  In other words, when a 

"forcing input", FI, changes from some initial to some final value over 

a period of time, the damped output DAMPO will, in the same time period, 

move from FI's initial value out past FI's final value, swing back to 

less than FI's final value, swing forward but less than the first time, 

back again, etc., oscillating about FI's final value but converging to 

that value and stopping at exactly the right point at the end of the 

specified time period- The speed of convergence is an input parameter, 

DAMP, as is CYC, the number of cycles performed.  The code for the 

DAMPER picture module producing this behavior is: 

(DEFPIC DAMPER (FI CYC DAMP "OUT" DAMPO) 
(OUCH DAMPO FI) 

'"Ä'SAWWK? G" FI "TIME" (LINEAR "T") 
K "SHAPE" (DAMPIT "T" CYC DAMP)) )) 

(TT(DMEXP [I  f.Vffi))) :EXPonentiation to the base e. 
(COS (• T CYC 6.283))))) 

(DEFINE LINEAR (T) T) 

The MOVE of DAMPO "follows" FI, using Fl's initial and final values 

and occuring in synchrony with Fl's motion. The time path is made 

linear, since the DAMPIT shape path itself contains the velocity changes 

desired. DAMPIT itself simply implements an equation of a familiar 

form: exponentially damped oscillation. 

DAMPER operates on a one-dimensional value. Its output could be 

used directly to specify a rotation, or indirectly to specify a size. 

Two coupled DAMPER outputs, one for X and one for Y, could be used to 

create damped two-dimensional motion which spirals in to the desired 

position. 

Now, the second example of section 6.1 will be coded: an output 

moving from an initial position to a final position in a series of semi- 

circular hops. All but the last hop will cover a given constant lemrtn, 

HOPL, and the last hop will be truncated to land in the correct spot. 
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Intermediate hops will bepin and    end on a straieht line    connecting the 

initial and    final two-dimensional    values.    The    code for    this picture 

function,   HOPPER,   follows. 

(DEFPIC  HOPPER  (SO HOPL  "OUT  HOPO 
"AUX"  HOPTIM HOPIX  HOPDIST HOPSTEPS) 

(OUCH  HOPO   .SO) 
(ONCIF   (SEQ SO)   (HOPO) 

(SETQ HOPIX  (/  (DISTANCE   (IVAL  SO)   (FVAL SO))  HOPL)) 
:Number of hops yet to be done. 

(SETQ HOPTIM  (/  (-   (FTIME SO)   ^TIME  SO))  hOPIX)) 
:Time per hop. 

(SETQ HOPDIST  (» HOPL  (ANGLPT   (IVAL  SO)   (FVAL SO)))) 
;Vector distance per hop.  See text. 

(SETQ HOPSTEPS   (/  (STEPS SO)   HOPIX)) 
;Number of steps per hop. 

(SCHEDULE 0 
(COND ((> HOPIX 0) ;More than one hop to ETO. 

(MOVE  HOPO  "RELTO"  HOPDIST  "STEPS"  HOPSTEPS 
"SHAPE"   (CIRC-  "T"   3.1M16)   "FOR"  HOPTIM) 

(SETQ HOPIX  (- HOPIX  1)) 
(RE-SCHEDULE HOPTIM)) 

(T  (MOVE  HOPO  "FINISH"   SO "SHAPE"   (CIRC-  "T"   3-1^16) 
"TO"  SCSTEPS"   (-   (STEPS  SO)   (CURSTEP SO)))))))) 

Hopper uses SCHEDULE to    concatenate the hops,   "waking up"    just as 

each hop has  been completed.    Various state variables are    initially set 

up    to    decrease    the    computation    needed    at    each    wakeup;    most    are 

straightforward.    HOPDIST,  the vector distance between hop start and end 

points,   is computed using ANGLPT,     for ANGle PoinT,  which is    not shown. 

ANGLPT returns a unit vector  (position)  whose angle is that    between two 

position arguments.      Multiplied by the    scalar HOPL,  this    produces the 

HOPDIST. 

The final example creates spiral motion cycling around an arbitrary 

ourved path, as illustrated in Fig. o-5. This is done by using a full 

circular motion creating picture function C1RCL which is rather similar 

to HOPPER above; it produces circular cycles starting and finishing at 

the origin and centered at a point on the X-axis. CIRCL's coordinate 

system is then transformed by an M-DALI ("VAL") daemon to center it at 

the current position on the input path and rotate it so that its X-axis 

is tangent to the path at that position. RESPACE, discussed in section 

4.2, is then used to translate CIRCL's output intc a meaningful position 

which    performs the    spiral.       The diameter    of the    circle    produced by 

/ 
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CIRCL, which is the diameter of the spiral,  is parameterized  as SIZ;  and 

the distance travelled forward during each  full spiral    is parameterized 

as DIST.     The outer picture function,  SPIRAL,  and CIRCL itself follow. 

(DEFPIC SPIRAL  (SO DIST SIZ  "OUTU"  SPIRO "AUXO"  ROT) 
fOUCH ROT 0) 

(6ETQ SPIRO 
!(RffTRANSFORM  "CENTER"  SO "ROTATION"  ROT 

CIRCL SO DIST SIZ)))) 

(DEFPIC CIRCL  (SO DIST SIZ  "OUT"  CIRCO  "AUX"  CYCTIM CYCIX  CYCSTEP) 
(OUCH CIRCO  (POS 0  0)) 
^(SETQ^Y'cifi/^PAmENGTH SO)   DIST)) :see followin* text 

SETQ CYC™     /  (-  (FTIME SO)'(STIME  SO)) CY^IX)) 
SETQ CYCSTEP   (/  (STEPS SO)   CYCIX)) 

(SCHEDULE 0 
(COND  («CJCIX  jU       BRBLT0B  0  „SHAPE,,   (CIR+  "T"  SIZ) 

^MUVt UABWU  nnoRft   CYCTIM  „STEpS„  CYCSTEP) 

(SETQ CYCIX   (-  CYCIX   D) 

(T    A^-SffSS^  "SHAPE"   (CIR+ "T"  SIZ) 
"FTNT^H"   SO 
"STEPS"   (-   (STEPS SO)   (CURSTEP SO))))) 

))) 

(DEFINE CIR+  (T  SIZ) r» T fi  9«ttnn (•SIZ  (POS j^SIZ^^SIN^T 6.2831))) 

The above uses four    functions which will not be    explicitly coded: 

PRESTEP returns the value a    sequenced output had on its    previous value 

step;  if there was no such    step,  i.e., the step index is 1,     it returns 

the output's OVAL.    POSTSTEP is similar,  returning the next step    or the 

OVAL.     ANGLE returns the angle  in radians a vector between two positions 

makes with the X-axis;  if   the positions coincide, it returns    0.    These 

three are used to compute an appropriate rotation.      Finally,  PATHLENGTH 

does a simple integration    of the distance a two-dimensional    value will 

travel according    to its    current sequence.      This integration    does not 

have to be extremely accurate,  since the  final MOVE of CIRCL works on an 

absolute    basis    guaranteed to    reach    the correct    final    value    at the 

precisely right time. 
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Chapter 7 

Conclusion 

7.1  Summary and Conclusions 

This document    has described    DALI,  an    extension to    a proerammin^ 

language's    control    and    environment structures    which    makes    the host 

language more suitable    for controlling changing pictures.      The prob: em 

was approached by    considering not Just    change,  but the    propagation of 

computed changes through the    structure of the picture.    Change    with no 

temporal structure,    that  is,    change occuring at    a monadic    instant of 

time, was considered first and rather exhaustively.    This was dealt with 

by the subset    of DALI called    M-DALI,  whose description    include DALl's 

four primary    types of    objects —    picture modules,    picture functions, 

outputs,  and daemons — their organization into a containment tree and a 

data web,  the environment structure used, and scheduling rules providing 

efficient operation    and simple inter-"process"    cooperation.    Deletion, 

structural    change,  and    functional circularity    (relaxation)    in M-DALI 

were then discussed.      Change extending over a    period of time    was then 

considered in    S-DALI,  a    superset  of M-DALI,    as temporal    sequences of 

monadic changes. 

At its core, DALI consists of the application of two techniques to 

the problem of describing charging pictures in a manner allowing their 

effective  computation.    These  two techniques are: 

(1) the use of user-written event-driven procedures — daemons — 

as an intrinsic part of the picture itself; 



238 

(2) the analysis of the functional  relationships amonR those 

procedures — the data web, analyzed by the daemon scheduling 

rules — for the purpose of ensuring efficient and harmonious 

interaction between elements of the picture. 

The remainder of M-DALI,  i.e. , picture modules,  local environments, 

outputs,  etc.. exists primarily to  fully exploit the  above two 

techniques and simplify their utilization as far as possible;  and, once 

the distinction is made between "compute time" and "picture time", S- 

DALI is a fairly str? -itforward extension of M-DALl's mechanisms to the 

problem of describing and organizing  (picture-) temporal sequences of 

pictures. 

By its use of the above two core techniques, DALI provides several 

substantial advantages over methods of picture description currently in 

use. 
The first advantage is flexibility. The majority of existing 

systems, e.g., instance tree systems (section 1.2), support only a 

small, fixed set of relationships between picture elements. In 

comparison, the set of inter-element relationships supported by DALI is 

essentially infinite, because those relationships are represented in the 

picture itself by arbitrary user-written procedures. Viewing process 

systems theoretically also have this capability, but it is effectively 

cancelled out by problems uf synchronization, mentioned in section 1.2, 

which DALI does not have. 

Another advantage is modularity. By exploitation of the first core 

technique, the embedding of user procedures in the picture, every DALI 

picture module can support arbitrary computation with local memory; so 

every module is fully capable of "taking care of itself", and hence the 

caller of a picture function need not be concerned with how the 

resultant picture module carries out its endeavors. The same degree of 

modularity is very difficult to achieve with more limited systems, since 

to support complex picture change they require the mutual organization 
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of (1) a picture description, (2) a program to make up the descriptive 

deficiencies of the picture description, and (3) an often complex data 

structure to relate the picture description and the program; combining 

these  three in a modular fashion presents major difficulties. 

The second core technique, the analysis of the data web by the 

scheduling rules, is also a critical element in providing modularity. 

It is primarily the scheduling rules which assure that the separate 

"procrsses" — daemons — contained in a picture module Mil not only 

work as expected, but also will not interact destructively with other 

"processes" external to the module. That such smooth inter^'process" 

communication and cooperation is achievable with straightforward, even 

simpleminded programming containing no reference to semaphores, locks, 

and the like is as much a virtue of DALI as it is a necessity: since the 

use of literally hundreds of separate "processes" is implied, DALI would 

be utterly unusable if this were not the case. 

Closely allied to modularity is the fact that DALI provides the 

graphics programmer with a greatly increased ability to organize and 

build pictures — and hence programs — as a hierarchy of abstractions; 

this is an ability at least partially available to the general 

proerammer in the form of programmably arbitrary procedures with 

arbitrary arguments. In comparison, most current systems for dynamic 

graphics provide only an analog of procedures which can contain no 

conditional expressions and can take only a fixed set of parameters. 

Newman's EULER-G system is an exception to this, but it is limited to 

static graphics. 

DALI's increased flexibility and modularity combine to produce 

extensibility and hardware independence, in the sense that a DALI 

programmer need not be aware of whether a «iven picture function was 

written by another user, was provided by the DALI system in software, or 

was directly  implemented in hardware. 

In the    light of all    the above,   it    seems somewhat    extravagant to 
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claim that DALI is also a fairly efficient system to run on conventional 

hardware; but that is the case. Admittedly, there may be spatial 

overhead, as will be discussed later in this section; but the excess 

computational overhead is not very large. To establish this, we must 

ask what DALI doos which would not have to be done in any case. For 

example, if the user really wants 752 logarithmic spirals dancing across 

the Rocky Mountains, coiling and uncoiling in time with Ravel's Bolero, 

well, the computation must be done somewhere, and doing it in daemons — 

which can be partly or wholly hardware — is no more intrinsically 

inefficient than doing it elsewhere. 

The primary computational overhead involved in using DALI is found 

in only two places: (1) each daemon is effectively called as a procedure 

of one argument, it's owner's local environment, rather than beinf? 

straight-line code; and (2) daemons must be sorted by priority in the 

daemon aueue. Both of these operations — procedure calling and sorting 

— have a long-established importance outside of the realm of DALI; so 

currently available techniques can be used to keep this overhead 

minimal. The time required to establish daemon priorities in a cyclic 

data web, while it may be substantial, cannot be counted as "overhead"; 

in this case, DALI is performing an operation which the programmer 

cannot perform himself, as noted in section 5.1. Furthermore, once the 

priorities are established, then repetitive calculations using a cyclic 

data web involves only the two sources of overhead mentioned above. 

The efficiency attributed to DMLI arises from two sources. The 

first is the use of the second core technique mentioned above, the 

analysis of the data web, since it provides the needed scheduling 

information in the form of easily-used numeric priorities. This can 

only be done because DALI has available, in the data web, a great deal 

of information concerning the topology of functional relationships 

between picture elements. That this information can be provided by the 

programmer in a manner that is both efficient and not exceptionally 

arduous is perhap? another advantage of DALI. 

/ 



■zr 

241 

DALl's    second    source    of efficiency    is    its    primarily bipartite 

environment structure,  with part of the environment held in a    stack and 

part    in    heap    storage.       This is    a    compromise    between    fully stack- 

structured control and environment schemes,  epitomized by ALGOL    60,  and 

fully tree-structured    schemes,  as    are,   for    example,  used    in CONNIVER 

[McDI],  OREGANO [Berl],   and    SIMULA 67 [Dah2].    DALl's  scheme    retains a 

much of    the efficiency    of stacks while    providing a    good part    of the 

useful    flexibility    of trees.      As    was pointed    out    in    section 3.11, 

however,  a    modification to    DALl's  scheme —    involving retention    of a 

daemon's  temporary environment across separate executions of that daemon 

-- may be    desireable to provide capabilities    closer to those    of fully 

tree-structured schemes.    This modification would,  however,    also entail 

a    decrease  in    efficiency, oweing    to far    greater problems    of storaee 

allocation.     The full facilities    of a complete control    and environment 

tree would still    not be provided    under this modification;    however, as 

was also  pointed out  in section 3.11,  it is not clear that the abilities 

left out are  necessary or even desirable. 

At  the same time,  DALI is not without disadvantages. 

First, as mentioned above, there is a certain amount of overhead in 

storage space which a DALI program incurs over a system specialized to 

the program's application. To some extent this must be true of any 

general system. In the case of DALI, the primary source of this 

overhead is the complexity of outputs, which are nowhere near as small 

as the author would like. 
Second, the overhead involved in changing functional relationships 

between daemons, i.e., in making structural change to the data web and 

adding cycles, can be quite hieh. It is unclear at the present time 

exactly how much of a disadvantage this is. 

Third, the use of deletion as opposed to garbage collection, which 

is forced as described In section 4.3 and Appendix 3, is a disadvantage, 

in that    it has    two demonstrably    bad effects    which were    discussed in 
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section 4.3: First, deletion nearly doubles the number of system- 

maintained references (pointers) needed in each element, since nearly 

every necessary reference requires a corresponding reference in the 

other direction so that the needed reference can be spliced out if the 

object referred to is deleted. Second, deletion reauires, or at any 

rate inspires, the use of "implicit dependence deletion" to establish 

the aesired semantics and protect the user from inadvertently accessing 

storage which has been returned to the "free" pool. About the most 

charitable thing that can be said of "implicit dependence deletion" is 

that it sometimes does approximately the right job. Its overhead is 

high, proportional to the degree of user protection provided, and in 

general it is decidedly inelegant. However, the author has not auite 

given up on garbage collection. 

7.2 Implementation Issues 

Like any other programming language, DALI cannot be considered 

truly "tested" until it has been applied by users to a body of specific 

applications. Unfortunately, no usable implementation exists at this 

writing. 

An experimental implementation of a larete subset of M-DALI and S- 

DALI, not including circular data webs or structural change, has been 

performed usinj? the MIT Project MAC Programmine Technoloey Group's 

Digital Equipment Corp. PDP-10. The base language used was MUDDLE 

[Pfi2], a LISP-like language. The purpose of this implementation was to 

make sure that all ehe parts of DALI fit together in a reasonable way, 

and to obtain some idea of the size of the run-time system needed. The 

latter was trratifyinply small, amounting to approximately 6500 words of 

rather "loose" PDP-10 program. It included creation of picture 

functions,    picture    modules,    daemons,    and    outputs;       run-time    local 
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environment accessing; daemon aueueins and runnin/z;; OUCH; and a 

simplified MOVE. However, this implementation was an interpreter 

written in an interpreter (MUDDLE), and compares favorably in speed only 

with    continental    drift. Recent    attempts    at    compiling      the    DALI 

interpreter, however, tend to confirm the comments made in the previous 

section concerning DALl's efficiency. 

At the preösnt time, an implementation is in progress for the MIT 

Project MAC Control Robotics Group's Digital Equipment Corp. PDP-11/45. 

It is intended that this implementation be used to create educational 

films illustrating the operation of complex software such as assemblers, 

interpreters, and compilers. This implet^entation will be an extension 

of ALGOL, hence compiled, and will hopefully provide good feedback on 

the usability of DALI. 

In connection with this implementation, a Master's thesis by C. 

Terman is exploring the possibility of usin^ the data web as input to 

modified program optimization techniaues. The intent is to eliminate 

the need for explicitly queueine daemons in structurally static data 

webs, and in addition allowing the replacement of intermediate outputs 

with simple value cells which may be dynamically allocated  from a stack. 

7.3 Directions for Future Research 

Various subjects closely gathered 'round about the work presented 

bear closer investigation. Three examples come to mind immediately: 

daemon scheduling in cyclic data webs, arbitrary user-definable 

coordinate transformations, and a true multiple processor implementation 

of DALI. 

Cyclic scheduling is simply a rather difficult problem whose depths 

have assuredly not been plumbed here. In particular, it would seem that 

there should    be some    method of describing    cycles  in    the data    web -- 
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e.g. , an analog of a "while" loop — that would both permit more facile 

control over iteration and permit the DALI system to find out the 

topology of cycles in a more direct manner. The latter, in particular, 

would reduce the necessity for the connectivity matrix computations 

required in the present scheme. The problems here lie in interaction 

amone such loops, particularly in allowing them to intersect one another 

and ensuring that such multiply-intersecting loop^ ?.re relaxed as a 

whole. 

Since coordinate transformations and their concatenation are at 

least conceptually defined in DALI in terms of daemon execution, the 

possibility exists for allowing the daemons involved to be written by 

the user. This would open the door to a truly spectacular increase in 

flexibility; for example, a system might be defined which uses Schwartz- 

Christoffel transformations [Arfl] to "bend" a half-plane around 

multiple corners, etc. However, allowing arbitrary user transformations 

raises severe problems of operating speed, since arbitrary 

transformations cannot in ateneral be concatenated into a single 

transformation- 

A multiple-processor implementation which took advantage of the 

parallelism which the scheduling rules allow could produce impressive 

gains in speed, especially if very local parallel processing were 

possible — for example, the equivalent of one (micro-) processor per 

picture module, possibly shared among daemons and picture modules which 

necessarily run sequentially relative to one another. 

Intercommunication is, as usual, a primary problem; another is 

scheduling for cyclic data webs. 

However, there are other issues to be considered: in what direction 

does DALI lead? 

One possible direction is that of making picture elements more 

intelligent. DALI just barely begins to provide picture elements with 

the basic necessities for this: the ability to obtain data from "the 
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outside world", the ability to "reason" about such data via arbitrary 

procedures, and the ability to affect "the outside world" in turn. It 

i ! clear that the abilities provided by DALI are not joiner, to pet us 

vtry far in this direction; but at the same time, they can be useful. 

As a «rraphic example, suppose an object is "commanded" to cross a 

veritable Maginot Line of obstacles. The task of plotting a path which 

avo^s disaster is clearly out of the realm of DALI-esque techniques, 

and squarely in areas normally assigned to artificial intelligence; but 

once the path is plotted, DALI can perhaps help in performing locomotor 

functions, keeping the moving object a coherent whole, and perhaps 

guarding against bruised  shins and other minor pitfalls- 

But how does one think about and describe such spatial reasoning 

problems? To paraphrase a statement made at the start of Chapter 1: In 

what way can the spatial relationships in a picture, as opposed to the 

internal structures used to generate a picture, be organized, grouped 

and ordered in a way that highlights aspects important to the picture- 

creating proeram, supresses details not important to that proeram, and 

provides the program with an effective means of computing the visual 

effects which are so easily conceived — but not so easily described 

verbally — by the programmer? 

These are questions more normally ascribed to artificial 

intelligence. But to the extent that computer graphics solves its basic 

problem of creating a "super paintbrush" and begins to consider in a 

more serious, sophisticated manner the problems involved in actually 

usinjj this medium in new productive ways, they are questions which must 

be  dealt with. 
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Appendix  1: 
DALI Functions 

Conventions used: 

H soii.ple application is provided for each function. Lower-case names 

are meta-variables, and lower-case names beeinninp and endin»? with a 

hyphen  (-)   indicate 0 or more objects. 

.object 
syntactic sugar for  (OVAL object). 

!obJect 
syntactic sugar for (OUT object). 

(AS-NEEDED -body-) 
create and return a new daemon; the new daemon has body -body-, 
specifies all outputs explicitly OUCHed in -body-, and watches with 
a (VAL -outs-) all outputs whose OVALs (,) are explicitly 
referenced  in -body-. 

(CAN-WATCH dem   (-outs-)) 
efficiency measure to avoid excess calls on RE-PRIORITIZE. Makes 
the priority of dem greater then the largest priority of all 
specifiers of -outs-. 

(CONTIN -body-) 
create and return a now daemon, running its body once before 
returning; the new daemon Lns body -body-, specifies all outputs 
explicitly OUCHed in -body-, and watches with a (VAL -outs-) all 
outputs whose OVALs (,) are explicitly referenced in -body-. 

(CONTROLLED seq) 
returns the output controlled by sequence seq. 

(CURSTEP out-or-seq) 
returns the step index of a sequence; out-or-seq can b3 either a 
sequence or an ^output with a current sequence, and in the latter 
case the output's current sequence is used. 

(DEFPIC atm  (arg-list)  -body-) 
"declares" the ATOM atm to be a picture function with argument lic^ 
(arg-list) and body -body-. 

(DELETE obj) 
destroy obj and any object which is either part of obj or requires 
obj for its correct operation. 

(DODA n (inits) obj) 
create a data web chain of modules; new modules are obtained by 
evaluating obj, (inits) are the objects to start the chain, and n 
is an output containing the number of objects to be in the chain. 
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(FVAL  out-or-seq) 
return the final value of a seauence; out-or-seq can be either a 
sequence or an ^utput with a current sequence, and in the latter 
case the output s current sequence is used. 

(IVAI, out-or-seq) 
return the initial value of a seauence; out-nr-seq can be either a 
sequence or an ^output with a current sequence, and in the latter 
case the output's current sequence is used. 

(LOOPON cndtn  (-specs-)  -body-) 
create and return a loop daemon; cndtn is its condition, (-specs-) 
a'"? its  soecified outputs,  and -body- is its body. 

(MOVE out -specs-) 
create and return a  path sequence,  applying it to out. 

(NAMEDONC name cndtn  (-specs-)   -body-) 
create and return a named-change daemon; name is an atom bound in 
the temporary environment to a list of the watched outputs whose 
change was the cause of an execution; (-specs-) are the specified 
outputs,  and  -body- is the body. 

(NPOUCH out pth stime  ftime  steps) 
create a "naked" path sequence and apply it to output out; pth is 
the path, stime is the start time, ftime is the finish time, and 
steps is the number of steps. 

(NULLSPEC out) 
give out the "null" daemon as a specifier: this daemon never runs, 
and is equivalent to the driving program in w^b ancestry. 

(ONC cndtn (-specs-)  -body-) 
create and return a daemon; cndtn is its condit jn, (-specs-) are 
its specified outputs,  and -body- is its body. 

(ONDELETION obj  fun) 
create and return a deletion p-closure; obj is the object whose 
deletion will cause it to run, and fun is the function applied to 
obj, 

(ONS cndtn  (-specs-)  -body-) 
create and return a daemon, running its body once before returning; 
cndtn is its condition, (-specs-) are its specified outputs, and 
-body- is its body. 

(OUCH out newval) 
change the value of out to newval and return newval; causes all 
VAL-condition daemons watching out to run. 

(OUT mod n) 
return the nth output of mod; n is optional and defaults to 1: an 
application oT OUT with one argument is abbreviated by a prefixed 
exclamation point   (!). 

(OUTPUT ival) 
create and return a new output with initial value ival, 

(OVAL out) 
return the value of output out; abbreviated by a prefixed comma 
(,). 
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(P-CLOSURE fun mod) m M           ....                                  ..    ,i^.1 create and return a p-closure of fun    with respect to    mod s ^ocal 
environment;    mod is    optional    and defaults    to the    owner    of  the 
daemon executing. 

(PIC™?eaterand1Sretürn an unnamed picture function with argument list 
(anf-list) and body -body-. 

^ PR ROUT   i nt-per© r*) 
" return the integerth output of the previous module on a DODA chain; 

applicable only  inThe obj argument of a DODA. 

(RE-PRIORITIZE dem)                                                        ,,       .   _,            ,     . -   .öm, 
re-calculate the priority    of dem and    all web descendants of dem, 
not a user-callable function, but is rather called by DALI as part 
of WATCHES and  SPECIFIES. 

(RELINE pos^de function which creates a module drawine a line from pos 
to pos+delt; both arguments are outputs, and the one output is 
pos+delt. 

p?cture function; create a module whose one output is maintained at 
the sum of the values of pi  and p2. 

fRESPACE out) 
picture function; create a module whose one output is a P9sition: 
the value of out, transformed from its definition space into the 
space in which the RESPACE is applied. 

lSCHESÄ5teit"SehJdiled p-closed action (SPA) and schedule it for the 
current time  plus ti;  -body- is the body. 

not a"function, but a daemon condition; causes its daemon to be run 
whenever a sequence applied to any of the -outs- is  initialized. 

(SEQUENCE out) 
return the current sequence of out. 

(SEQlJbSolL?!Returns true if and only if out has a non-null current 
sequence. 

(SOUCH out vals stime  ftime)                     . .^ -.     4 „    4.^« ^„HQH0H 
create a simple sequence and    apply it to out;  vals  is    the ordered 
set of values, stime is the start time, and ftime is the finish 
time. 

makes dem become the specifier of out;  out must have no specifier. 

return the number of steps of a sequence; out-or-seq can be either 
a sequence or an output with a current sequence, and in the latter 
case the output's current sequence is used. 

returr^the^start time of a sequence; out-or-seq can be either a 
sequence or an output with a current seauence, and in the latter 
case the output's current sequence is used. 
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(SVAL  out-or-seq  integer) 
return the value which will be used by a sequence at its integerth 
step; out-or-seq can be either a sequence or an output with a 
current sequence, and in the latter case the output's current 
sequence is used. 

(TRANSFORM -specs- pf -ares-) 
apply the picture function pf, to -args- and return the result; 
visible output created by pf's module will appear in the area 
defined by -specs-. 

(TVAL out-or-seq  ti) 
return the value which a sequence will assume at time ti; out-or- 
seo can be either a sequence or arj output with a current sequence, 
and  in the latter case the output s current sequence is used. 

(UNSPECIFY out) 
cause out to become unspecified. 

(UNWATCH  dem out) 
cause dem to cease watching out. 

(VAL  -outs-) 
not a function, but a daemon condition; causes its daemon to be run 
whenever any or  -outs- is OUCHed. 

• (WATCHES dem out) 
cause dem to watch out  for OUCHes. 

| 

i 

L J 
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Appendix 2: 
DALI Objects 

This appendix contains an alphabetized list of all the objects 

defined by DALI and their component parts, with a short description of 

each. For the sake of simplicity, direct two-way pointers are assumed, 

rather  than ring structures. 

agenda block a set of actions  to be performed at a given picture time 

time the picture time at which the actions are  to be performed 

next agenda block    pointer  to    the agenda    b^ock with    the smallest 
time  greater than this one s 

action set the actions  to be performed 

continuation all sequences of output changes which^perform one 
of their changes at this agenda block's time 

starters    all    sequences of    output    changes which    are    to be 
initialized at this agenda block s time 

scheduled p-closed actions        arbitrary        user-chosen        code 
sequences    tg be    executed    at this 
agenda block s time 

daemon    a parameterless    procedure to    be executed    in response    to some 
event 

owner the picture module whose local environment this daemon uses; 
also, the picture module owning the daemon which created this 
daemon 

type  the type of daemon this is,   i.e.,  plain,   loop,  or named-change 

condition the event whose occurrence causes this daemon to run 

condition type the type of output change this daemon responds 
to; this can be an instantaneous value change 
or the application of a sequence of such value 
changes 

watched outputs changes to    these outputs cause this    demon to 
run 
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body the body of code  to be executed when this daemon is  run 

specified outputs the outputs whose values this daemon changes 

cyclic priority used to determine when this daemon runs relative to 
other  daemons;   see section 5-8 

acyclic  priority used  to    determine when this daemon    runs  relative 
to other daemons;   see section 5.8 

deletion triad defined elsewhere  in this appendix 

changed-outputs  list  this    element exists only    if the daemon    is a 
named-chanpe daemon: it is a list of those 
watched outputs whose values have changed 
since the daemon was last  run 

name-identifier this element exists only if system is interpretive 
and this daemon is a named-change daemon: it is the 
identifier to be bound to the watched-outputs list 
just before the daemon is run 

deletion triad this is not a  separate object,  but rather    three elements 
present in all deletable objects 

mark bit    used    to prevent    infinite    recursion    when  "recursively" 
deleting in cyclic data webs 

deletion p-closures actions to be performed just before    the object 
  containing    them    is    finally    destroyed,  i.e., 

interred 

dependent modules modules containing a reference to this object in 
their local environments: unless these modules 
remove such references (via deletion p-closures) 
they will be deleted when this module is deleted 

deletion p-cloi ire an action    to be performed    just before an    object is 
deleted 

corpse    the    object    whose  deletion    triggers    performance    of this 
action 

p-closure the action performed consists of applying    this p-closure 
to the corpse 

deletion triad deletion p-closured can be deleted,  too 

module an organizational    unit  providing looal storage    and hierarchical 
structure 

father the picture module    containing this one,  i.e.,  the    owner of 
the daemon which created this picture module 

sons the picture modules created by daemons owned by this module 

local environment    local    storage    for thp    daemons    ov...dd    by this 
module 
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output  identifiers bindings for those  identifiers whose  values 
üiUiHy can be accesse(j  from outside this module by 

use of OUT 

nther  Identifiers all other bindings in this  local environment 

owned  obiects all the    daemons,  outputs,  deletion    p-closures,  path ovfned  objects aii^^^^    scheduled    p-closed    actions,    and  simple 
sequences owned by this module 

deletion triad defined elsewhere  in this appendix 

output a place to put data such that daemons can detect changes    in that 
data 

owner the module owning this output 

value the data in this output 

specifier the daemon allowed to change this output 

current sequence    the    (S-DALI)    sequence    of    value    chances which 
current ae^  currently controls this output s value,  if    such a 

sequence exists 

S-watchers    the    daemons    watching for    the    application    of entire 
~ sequences of changes  to this output 

M-watchers the daemons watchine for instantaneous value    changes  to 
this output 

deletion triad defined elsewhere in this appendix 

p-closure DALI equivalent of a functional closure 

owner the module which    owns this p-closure; also the    module whose 
2iirmn local environment will be used when the p-closure    is applied 

to arguments 

function the function of which this is a closure 

deletion triad defined elsewhere  in this appendix 

nath seauence a sequence of chances  to be applied to an    output,  defined 
^atn sequence |s

3^^comp03ition of a transformed  shape path and    a time 
path 

owner the picture module owning this path sequence 

changee the output controlled by this path sequence 

path the composite function defining the sequence of values to be 
assumed by the changee 

time path function specifying the rate of travel along the 
shape path 

function the function to be applied to a r^lJ^er 
—  between 0 and 1 and to other constant arguments 
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to obtain another number between 0 and 1 to 
which the shape path function is applied 

extra data the constant arguments mentioned above 

shapb path the function defining the spatial path of the 
sequence 

function the function to be applied to the output of the 
time path and other constant arguments to obtain 
a spatial position 

extra data the constant arguments mentioned above 

translation the translation to be applied to the output 
of the shape oath function to obtain the 
desired positioi 

rotation the rotation to be rpplied to the output of the 
shape path function to obtain tne desired 
position 

step, count the number of incremental value steps this path will 
produce 

st§£ index an integer indicating which of the incremental value 
steps this path will next produce 

step, duration the  picture time  interval to  elapse between 
successive incremental value steps 

.ngenda block the agenda block containing this path sequence, either 
as a starter or as a continuation 

deletion triad defined elsewhere in this appendix 

picture function a function which, when applied to areuments, creates 
and returns a new picture module 

argument list defines the number of arguments the picture function 
takes and also defines the local environment of the 
resultant picture module 

body the bodv of code to be executed when this picture function is 
applied 

scheduled p-closed action an  arbitrary user-defined action  to be 
performed at a specific picture time 

owner the module which owns this scheduled p-closed action; also 
the module whose local environment will be used during the 
performance of the action 

body the body of code evaluated (executed) to perform the action 

agenda block the agenda block containing this action in its action 
set 

deletion triad defined elsewhere in this appendix 
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simple sequence    a sequence    of    values  to    be    taken on    by    an output, 
  defined by simply  listing those values 

owner  the picture module owning this  simple sequence 

changee    the    output    whose  values    are    specified    by    this  simple 
sequence 

value  set  the    ordered list  of    values which this    sequences causes 
the changee to assume 

step index an integer    indicating which of    the set  of    values  this 
simple sequence will next  produce 

step duration    the      picture    time      interval    to      elapse    between 
successive value changes 

agenda block the agenda block containing this path sequence,  either 
as a starter or as a continuation 

deletion triad defined elsewhere  in this appendix 
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Appendix  3: 
Garbage Collection in DALI 

The purpose of this appendix is to frive further details of the 

garbage collection (retentive storage management) scheme assumed in 

section 4.3, where it is stated that DALI is incompatible with garbage 

collection. 

The principle property we wish a retentive storage management 

scheme to have is: 

If a  reference    to an object is    not explicitly 

retained    by    a    program     ^daemon),     that    object is 

reclaimable as garbage. 

Only the reclamation of storage  is    to be taken over by the    system;  the 

user    must    have    full      control    over    the    generated      picture,     e.g., 

controlling the visibility    of the picture    by varying the    intensity of 

not-yet-garbage collected objects. 

As    an  illustration    of    what  is    meant by    an    explicitly retained 

reference,    note    that    this picture    function    for    a    triangle drawing 

picture module will not work with  garbage collection: 

(DEFPIC TRIDELETE  (PI   P2  P3) v   , ,    «.** 
(LINE   ,P1   ,P2)   (LINE   ,P2   ,P3)   (LINE  ,?3   ,P1)) 

Since no references are explicitly    retained to the LINEs,  they    will be 

garbage-collected at the    first opportunity.     Under    garbage collection, 

such  a module must be written as 

(DEFPIC  TRIGARBCOL  (PI   P2 P3   "AUX"  EDGES) 
(SETQ  EDGES  (LIST K   i v   x,, 

(LINE  ,P1   ,P2)   (LINE   ,P2   ,P3)   (LINE  ,P3   ,P1)   ))) 

thereby  retaining    references to    the LINEs    in a    list bound    to EDGES. 

Such a  retention will keep the LINEs  from being garbage-collected unless 

the entire TRIGARBCOL module is garbage-collected, which is  fair enough. 
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The LINEs of the above example brinK to the fore an important 

aspect of garbage collection in DALI which does not appear in most 

garbage-colleeted systems: the need to keep a separate memory space 

congruent      with      garbaee-collected      space. Specifically,       garbage 

collection of a LINE module must somehow cause the LINE's entry in the 

hardware display  file  to be destroyed. 

If the hardware display file occupies the same logical memory as 

the rest of DALI storage, it is conceivab1e that it could be earbage 

collected in conjunction with garbage collection of the "normal" storage 

space. But the complexities of doing so are auite large, and in any 

case    this    cannot readily    be    done  if    the    physical    display hardware 

storage  is  remote- 
To solve this problem, garbage-collection p-closures (GCPCs) are 

used. These are analogous to the deletion p-closures (DPCs) mentioned 

in seetlcn 4.3. A GCPC has, like a DPC, a corpse which refers to it, an 

owner, and a body. The body is run just before the storage of the 

corpse is to be reclaimed, and can thereby cause the external storage 

associated with the corpse to be reclaimed. 

The correct operation of GCPCs requires several things: 

(1) All GCPCs for a given garbage collection must be run before arvL 

storage is actually reclaimed, since reclamation generally 

entails modifying the contents of reclaimed storage in order to 

thread it onto a "free list", and GCPCs will often need those 

contents -- e.g., the environment of a reclaimable LINE module. 

This means that there must be a separate phase of garbage 

collection for GCPC operation, placed between the traditional 

mark and sweep phases which, respectively, identify non- 

reclaimable storage and reclaim everything else. 

(2) Obviously, a GCPC cannot utilize heap ("free") storage; it 

must, however, be allowed to use some storage — e.g., FIFO 

stack storage also used by the garbage collector itself. 

(3) The    garbage    collector must    know    when it    is    reclaiming the 
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storape  of an object which    has a GCPC.    This is no^    a trivial 

reouirement,  since    garbage collectors usually    do not    need  to 

examine    reclaimable    storage;  after    all,     it's    garbage.     The 

reauired examination can  be a part of the extra phase mentioned 

in item  (1) above. 

User-definable    GCPCs    are    not    a    necessity.      Since    there    will 

generally be    a small,     fixed  number    of objects    like LINE    (e.R.,  DOT, 

CURVE,     SURFACE,    etc.) which    use    non-garbage-collected    storage,  they 

could be specially constructed    and  their GCPC's effectively    built  into 

the garbage  collector proper.       Here,  as in deletion,  the    more  flexible 

and device-independent solution    has been chosen.     However,     since GCPCs 

are actually needed only  in special cases,   it is reasonable    to restrict 

the types  of objects which can have GCPCs  to picture modules. 

The strict lack of a need for user-definable GCPCs under garbage 

collection is in contrast with the analogous role of DPCs in "delete" 

DALI: deletion p-closures are strictly necessary In order to obtain 

modularity, since without garbace collection of user-created structures, 

something must be done to reclaim such storage and the system cannot do 

it. 

With the above problem solved,   the question of modifications to the 

previously      presented      DALI    structure      must      be      addressed.      This 

modification consists principally of removing references which    are only 

needed  for deletion, while    retaining all references needed    for correct 

operation.       The modification    will bo    presented by    walking    through a 

simple example:   the relative  position module RELP  introduced    in section 

3.1.    The RELP  picture function  is  repeated here  for convenience: 

(DEFPIC  RELP   (PT DISP  "OUT"  SUM) 
(ONS  (VAL   PT DISP)   (SUM) 

(OUCH SUM  (+   ,PT   ,DISP))   )) 

The minimal    structure now    needed  is    illust'-ated in    Fie.  Ap-1.1. 

The reason for each reference  is: 

(1)  The    watched outputs    must    refer to    the daemon,    so    that  the 

daemon can be oueued  to  run on output changes. 
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(2) The daemon must refer to the module's local environment to 

define  its running environment. 

(3) The local environment must refer to the watched outputs so that 

the daemon can access their values. 

(U) The (faemon must refer to its specified output, at least through 

the local environment as shown, so that it can change the 

output's value. 

(5) The specified output must refer back to Its specifying daemon 

to establish the data web. 

(6) The module must refer to its father, so that "EXTERNAL" inputs 

of created sons can be looked up. (In the specific case of 

RELP,   this  is unnecessary since  it creates no sons.) 

(7) The module must refer to its GCPC, so that reclamation of non- 

garbage-collected storage can be done. (In the specific case of 

RELP,   this  is aRain unnecessary.) 

The necessary references cataloged above contain a circular path: 

watched output to daemon to environment to the same watched output. If 

this were followed by the garbage collector, it would keep a daemon (and 

its owner, its specified output, its owner's father, etc.) from being 

reclaimed  until all its watched outputs were reclaimed. 

This is untenable. Using this circular path, a path can be always 

traced from the driving program — never garbage-collected — to every 

output and daemon ever created; thus nothing is ever reclaimed. 

Furthermore, the user cannoi break such links himself without detailed 

knowledge of how other modules are constructed, implying a substantial 

loss of modularity. The system cannot help him without maintaining the 

equivalent of all the references deletion requires, thereby compounding 

the difficulty by introducing further circularities. So this 

circularity must not be followed by the garbage collector. Where should 

it be  broken? 

The environment should    not be  reclaimed    unless the daemon    is,  or 

the daemon cannot run. 
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The environment must refer to the output itself, not just to its 

value, since the daemon must be able to pass the output to others via, 

for example, applying picture functions. If the output is reclaimed 

without the daemon epine too,  this cannot  be  done. 

That leaves the link from output to daemon. Happily, the daemon is 

unnecessary for the watched output's continued operation, so we break it 

there, if ao ref-ences but those of outputs' dependent daemons exist 

for a  daemon,   it should be reclaimed. 
So,    the garbage    collector must    not  follow    the references    in an 

output'1 list of    dependent daemons;  the    list itself,  as    distinct from 

its    members,     should,    however,    be marked     if    the    output    is marked. 

Further,    the  list    must    be updated     (and  some    elements    reclaimed)   if 

daemons  in  it are  reclaimed.    This can be  cone correctly by means    of an 

implicit GCPC on every daemon,  provided we add to daemons    references to 

their watched outputs so that  the appropriate sets can be    found.    These 

latter    back references    are    followed in    the    mark phase,    as    are all 

references except  those  in an output's list of dependent daemons. 

This sets the stage for the argument of section U.3: Since daemons 

are not removed from their watched outputs' dependent daemon sets until 

the garbage collector runs - which is hopefully an infrequent 

occurrence - they will will be Queued and run after the user has done 

everything feasible to destroy them. Since this can *o on for a long 

period,  the daemons can encounter  (and produce) anomalous conditions and 

possibly err catastrophically. 
Further problems could be raised, for example: (1) Should not a 

daemon be reclaimed if the only reference to him is an entry on the 

daemon queue?  (2) Whac about the S-DALI agenda? 
These latter problems are at least potentially solvable. However, 

given the unsolved problem of making sure daemons are not run when they 

have been cast off,  further discussion of other problems is useless. 
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