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ABSTRACT

This document describes  DALI (Disglay Algorithm Language
Interpreter), a special-purpose programming anguage for the creation
and roatrol of changing pictures which ~exhibit complex static and
dynamic interactions amon% their elements. DALI allows complex
organizations of interpolated ("smooth") change, discrete change, and
change in the structure of a icture to be generated in a modular way,
in the sense that picture elements determine their own behavior and
nenc2 maaner of change.

In DALI, pictures are composed of elements called picture modules.
These are analogous to procedural activations or processes, and contain
arbitrary event-driven procedures called daemons. Daemons are run under
the control of globa schedulin rules based on the functional
dependence of daemons on one another. These rules result in smootbh
inter-daemon (process) communication and cooperation with no implicit or
explieit reference to semaphores or other synchronization primitives in
user code, while at the same time providing for a high degree of
parallelism. Circular inter-daemon furcticnal dependence results in
iteration or relaxation. The environment structure used is
predominantly stack-oriented.
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Dedication

To a Small Subset of Humanity

gorged with the patterning rhythms of change -
motion!

physical, audible, visual, logical

all responsively guided and guiding

layered in patterns perceived.

human!
borne from the sameness of chaos, eternally;
with their shattering rhythms in flexion
merging to pattern a word:

understand.

11 P.M., Friday, May 5 1974




w...the art of programming is the art of

organizing complexity, of mastering muititude and
avoiding 1its bastard chaos as effectively as

possible."

--Edsger W. Dijkstra,
Notes on Stru e
rrogramming




Chapter 1
Introduct ion

1.1 DALI

A computer’s mechanical ability to mindlessly iterate mareinally
differing calculations, coupled with its speed and ability to control
other devices, can be used to create and change visual images --
pictures == at a very rapid rate. This capability is the cornerstone of
the two fields of computer animation and interactive computer graphics.
Utilization of this naked computatioral power requires that it be
organized, grouped and ordered in a way that highlights aspects
important to human beings, suppresses details they consider unimportant,
and most of all provides them with an effective means of thinking about
and describing their intentions. In other words, a "high-level"
programming language is needed.

This document describes such a language. It is called DALI, for
Display Algorithm Language Interpreter, and is designed for the creation
and control of changing pictures exhibiting complex inter-element
interactions. Embodied in DALI is a uniform, hardware-independent
methodology for the description of a wide class of dynamic pictures.

A primary characteristic of DALI is modularity, in the sense that
picture elements themselves define their own manner of behavior. This
is accomplished by constructing pictures not as assemblages of passive
data elements, but rather as structures of active elements akin to
processes. These elements, called picture moaules, can contain

arbitrary user-written procedures which locally define the behavior of

the picture element.
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The capabilities of DALI in comparison to more classical schemes
for picture manipulation are most readily highlighted by examples. The
examples used here, and many others in this document, are taken from
crnputer animation for clarity and dramatic appeal. It should be
realized at the outset, however, that DALI is not "just" an an.mation
language .% that term is normally used, but rather covers the spectrum
from animation to interictive computer graphi.s and may also have
application in computer simulation.

Fig. 1-1a shows a circular image constructible by a program using
any reasonable computer graphicvs system. Many graphicc systems allow a
program to vary certain specific parameters of such an image, for
example, its rotation, translation, and scale. An appropriate program
can thus change both the rotation and translation parameters quasi-
simultaneously in proportions that give the illusion of a rolling ball.
This is shown in Fig. 1-1b.

What is not supporte¢ by such systems is the construction of a
"ball" image in which rotation and translation are inherently coupled.
Simply "telling" this "ball" to move would cause it to "roll" to the
designated position, varying its own rotation with its translation in
the necessary fashion. The creation of such objects is a basie
capability of DALI.

an important aspect of DALI is that objects such as the "ball" are
defined by arbitrary user-written programs. Thus, the "ball" could
react in motion to its external environment as shown in Fig. 1-1c.
There, the only command given the ball was "move". It "knew" that it
should go over, not through, bumps; that it should squash itself when it
falls off ¢liffs; and that it shouldn’t step on the daisies.

Alternatively, the daisies could "know" that they should crush when run
over by a ball.

Another aspect of DALI is implicitly illustrated by Fig. 1-1e: only
that pcrtion of the DALI "program" needed to move the "ball" is invoked
when the "ball" moves. This is not done by arbitrarily dividing the
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picture into unchanging background and changing foreeround, but rather
arises naturally out of low-level picture element interrelationships:
individual changes propagate through the picture, affecting only those
picture elements involved in the change.

Of course, the image displayed need not be a ball. It could, as in
Fig. 1-1d, be a stick figure which walks to the desired place when told
to move =-- or runs, or jumps, depending on the amount of time it is
given. The program giving the command to move can be completely unaware
of how the command is carried out; the same command can roll a ball,

walk a man, drive a car, etc.

All of the capabilities illustrated above could, with sufficient
effort, be programmed in more conventional computer graphics systems, by
virtue o° the fact that they do, indeed, incorporate a Turing machine.
What DALI provides is a g°neral, systematic way of viewing such
capabilities, a set of concepts around which to organize one ‘s thinking
about changing pictures. By this virtue, DALI lays claim to being a
true high-level programming lang:age for dynamic computer raphics, the
art of creating changing pictures which lies in the intersection of

computer animation and interactive computer graphics.

1.2 Relation to Other Work

A great deal of research in computer graphics deals with conquering
the sheer brute load of computation needed to ggnerate pictures with a
computer. Examples of this include eliminating hidden 1lines and
surfaces; clipping and "boxing”; performing perspective transformations;
generating smooth curves and surfaces; and actually producing a visual
image on a cathode-ray tube or other device. Newman and Sproull [New2]

describe many results in these and adjacent areas.
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Such research -an be vieweu is an attempt to make a computer into a
"super paintbrush", entirely analogous to the more usua. view of a
computer as a "super adding machine". Even the meanins® of "suver" is
invariant: fast, accurate, fleritl:, and inexpensive relative Lo
competing technologies. This is a necessary goal. Just as 2 computer
must be a "super adding machine" before issues like process control,
artificial intelligence, information systems, etc., can be effectively
addressed, it must be a "super paintbrush” before computer anim~tion and
interactive computer graphics can be effectively addressed.

The research reported here makes the basic assumption that 2 true
"super paintbrush"” exists. This may or may not be true at the present
time; qufte powerful graphics hardware certainly does exist (E%S1,E&S2],
and currently projected decreases in hardware costs promise to bring
very powerful "paintbrushes” into more common use. [(Spec1]

Given tha" assumption, the question becomes how we make use of such
"super" capabilities. One place to begin is by adding to the basic
capabilities more powerful means of control over what 1is drawn,
hopefully increasing our effective ability to create changing pictures
far beyond historical manual capabilities. To achieve this control, an
ability to describe the picture-which-changes in a conprtationally
effective manner must be devised. That is the goal of ‘'"ne reported

work.

Work directly related to that reported here falls into three areas:
(1) subroutine packages for general computer graphics, e€.g., [E&S1,
Thol, New2 Chap. 5 and 8, Rull]; (2) programming languages and
extensions for general computer graphics, e.g., {Hur1, Chri1, Snil,
New1l: and (3) programming languages for computer animation, €.g.,
[(Kno1, Bael]l. All of these have the common aim of creating a visible
image by communicating data and commands to a display device from a

program. Many also provide some mechanisms for communicating

interactive graphical input to a program, but this aspect will not be
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emphasized in this research. Our interest is further restricted to

those aspects of graphics systems related to changing created pictures,

as needed in interactive computer graphics and animation. In that area,

nearly all graphics systems share a common aspect Inr which DALI offers

an alternative, narely the use of what we shall call an instance tree

(defined below) to represent the picture. Therefore, rather than
discuss many individual efforts in what would b« a rather repetitive
fashion, the general raticrale behind instance trees, their advantages

and their disadvantages, will be discussed; then, exceptions to the use

of instance trees will be covered.

The almost universal choice as a method for changing a displayed
image -- with some exceptions, including EULER-G [New1] and SKETCHPAD

(Sut1), which will be discussed -- is to allow the user to modify an
internal data structure called the display file. The display file 1is a
complete description of the desired visual image, in the sense that it
contains all the data scanned to produce the signals which drive the
visual-image-producing hardware; the scanning precess may be performed
either by hardware or by software, or by a mixture of the two. A result
of this use of a display file is that from a program's point of view,
the display file is the picture: changes to the dicplay f‘le are changes
to the picture, and the structure of tne display file is the natural
structure of the picture.

There is surprising unanimity -- again, with a maverick, BEFLIX
[Kno1], to be discussed -- as to how the display file shoulc be
structured, so much so that the principal differences between structured
display file systems lie primarily in the choice and syntax of
primitives, rot in the structure itself: The display file is 1 'itably

structured as a reentrant tree, reminiscent of a progran 4ith

subroutines; this is the instance tree ment ioned 2bove. The manner in

which instance trees are typically used to represent a r.cture is

described in some detail pelow.

-




v e

17

The visible image is created from the instance tree in the manner
of a processor executing a program: the tree is scanned in a depth-first
manner starting at the top node, and the immediate descendants of each
node are "called" like "subroutines" of their jarent node. A riven node
may have several parent nodes due to re-entrance; such a multiply-used
node will be "called" several times and thus the "subpicture" it
represents will appear in the final picture several times. This
instance-tree scan may be performed directly by special-purpose display
hardware [E&S1, E&S2]}, or it may be done at least partly by software.

The terminal nodes of the instance tree contain data describing one
or more primitive visible objects, e.g., dots and lines; these terminal
nodes are often referred to as items, and are similar to procedures
which call only primitive (built-in) procedures. The non-terminal nodes
of an instance tree are often called groups. Grcups «<ontain only
references (pointe~s) to items and to other groups; circular group
references are disallowed, since there 1is no way to terminate the

implied recur. ion. The references which groups contain are called

instances of the objects referred to; the object referred to Dby an

instance is called its master.

The relationship between an instance and its master is very like
that between a procedure call and the procedure itself; this analogy is
made even closer by the fact that instances commonly have parameter
settings associated with them, somewhat 1like procedure arguments.
Unlike general procedure arguments, however, the set of possible
instance parameters is fixed: the way a given instance parameter can
affect the display of its master is fixed by the implementation, and
only those parameters provided by the system as primitives can be used.
The types of parameters typically provided for use in instances can be
somewhat arbitrarily divided into two Kroups, here called

transformations and attributes.

Transformations are analytically definable two- or three-

dimensional mappings between coordinate systems. Typically they include

{
|
;_—___——_‘——-—~-———————n~-—4i
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translation, scaling (zooming), rotation, and clipping; the latter is
the blanking of any part of a visible object which would appear outside
of a given polygonal area, usually rectangular. Successive
transformations are concatenated, i.e.: For each use (instance) of an
item (set of primitive visible objects) there is a distinct directed
path from tke root of the tree to the item, passing through one or more
instances; the total transformation applied at each use of the data in
the item is the concatenation of all the transformations along that
path, performed in the order indicated by the path’s direction. Since
several such paths can exist, a given jtem can simultaneously produce
several images differing in position, size, orientation, etc. Exactly
how such concatenations are performed is described in [New2].

Attributes are somewhat less analytically tractable variations on a
master. They include such things as color, intensity, "auto-blink",
nnhit” sensitivity, etc. The manner in which they are concatenated, if
they are corcatenated, varies widely.

Typical operations which can be performed on instance trees
include: (1) the creation of items, involving the specification of the
primitive elements to be included in the 1icem; (2) the destruction of
items; (3) the creation and destruction of «roups; (4) the insertion of
instances into groups and the removal of instances from groups,
accompanied by, respectively, the creation and the destruction of the
instances involved; (5) the modification of instance parameters; and,
less often, (6) the insertion and removal of primitive elements from
jtems. Smith’s GPL/I [Smi1] is a good example of a language system
incorporating nearly every feasible primitive; it also has a very nice
syntax for group and item construction.

Many minor variations on the above-described instance tree
structure exist. For example, many subsets of the instance parameters
listed are used; item data (primitives) can sometimes be included as

part of a group; and "instance parameters” sometires appear as part of a

master rather than as part of an instance, strange though that may seem.
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Instance tree display file structures are in common use, for
example in  (E&S1, Thol, New2, Rul1l, Hur1, Smi1, Chri, Baell.
Significantly, this type of structure forms the basis of the recently
proposed protocol (Spr2] for computer graphics across the ARPA network,
a communications net connecting many different types of computing
facilities. Furthermore, the only currently published book attempting
to deal with interactive graphics as a whole, [New2], refers to an
instance tree structure as simply a nstpuctured display file", implying
that ouly this one type of structure is worthy of consideration!
Clearly, instance tree structures must have advantages; what are they?

In many cases, a particular instance tree structure can be chosen
that is extremely close tc the ~apabilities of the display hardware, soO
that it can be directly used as hardware input. Being able to make such
a match is extremely valuable, since it has pgrcat speed advantages
especially when refreshed displays which sontinually "re-execute” the
structure are used [(E&S1, E&S2, Pfi1, wati): the displayed image
immediately changes with changes to tne stiucture. However, instance
trees whicn do not match the abilities of “he display hardware are often
used, as must be the case with the AREA network protocol. Not all
display hardware has subroutining, for example, #nd general rotation is
rather uncommon. For subroutining, host computer interrupts can be used
to simulate more powerful display hardware, as in the system described
in [SUV¥1]; but for rotation and most transformations, such simulation is
impossible. In the latter case, a second transformed display file must
be created from the instance tree [New2], containing multiple copies of
master~ which are used with different instance transformations. This
clearly vitiates the speed advantage, so there must be other advantages.

An advantage of instance trees often mentioned is space saving due
to multiple use of instances [New1]. This is very close to the
arguments originally made for including facilities for subroutine or

procedure use in hardware and programming languages. Like the multiple-

procedure-use argument, the multiple-instance-use argument is not the
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full story. The only substantial use of repetition in instance trees is
at the lowest lcvel -- sharing of immediately displayable items,
particularly characters. furthermore, much space-saving of this sort is
illusory. Especially when many transformaticns a2re available, instance
overhead is high enough, and {nmediate multiole-line or -dot formats are
compact enough, to wipe out the prospective space saving. For example,
it usuwally does not save space to use an "arrow" instance in both a
n"diode" and a "transistor". Thus space-saving alone would require only
a one-level tree. Yet trees of depth 4 or 5 are common -~ Seldom more,
as plctures tend to be much "broader" cuan they are "deep".
Furthermore, 1if a transformed display file is necessary, much space
saving of this sort |is intrinsically wiped out by the multiple
transformed copies needed. So another advantage must exist.
The primary advantage of instance trees, a conceptual advantage not

dependent on hardware, 1is this:

Instances provide loci of control over whole

sections o. the picture, because change to instance

parameters propagates down the instance tree to its

leaves.
A single change to a rotation parameter, for example, can caus® hundreds
of changes to individual lines; elements of a group can be moved
relative to one another, or moved in paralle) maintaining relative
positions, by use of a two-level instance structure. This automatic
propagation of change is a major conceptual advantage which greatly
simplifies the control of a changeable picture. Such propagation, and
not just the naked ability to create and name groupings of objects, is
what allows the user to think in terms of "higher-level entities".

However, the kinds of changes which can be propagated by instance

trees are limited to a fixed set of transformations and attributes, and
the path of propagation is fixed: parameters can depend only on like
parameters, and only those of the parental node. Thus, for example, it

is not possible to make the position of ‘text labelling part of a
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rotating object depend on the object’s rotation and shape so as to ke ep
the text unobscured. Another example: a sca'e change cannot cause the
amount of visible detail to vary; no predefined "level of detail"
attribute exists in any instance tree system known to the author.

Therefore, instance trees cannot fully represent a dynamic picture,
in the sense that they cannot produce an arbitrary desired pi~ture which
is fully definable as a function of a set of parameter values. This, it
must be noted, i3 a problem distinct from that of represeiting static
pictures for purposes of display. The latter is a significant problem
only if the picture is so complex that space is a major issue, or if
substantial transformations, such as hidden-surface removal, must be
applied to the picture as a whole.

That an instance tree cannot fully represent a desired picture is
clearly not an insuperable disadvantage. Dynamic graphics systems are
generally embedded in general-purpose comoutiiy, systems, so a program
can always be written to bludgeon the instance tree into "being" the
right picture, effectively providing the special-purpose parameters and
relationships among picture elements which the instance tree cannot
provide. To do this, a separate data structure is needed to relate
elements of the instance tree with each other and with the real data
they are represeating. Not surprisingly, such data structures can be
extremely complex; this is reflected in the wide literature on "data
structures in computer graphiecs", e.g., (vDal, vDa2, Abrl, Will, Gral,
Cot1], and on the fact that computer graphics pioneered tlie use of many
of the most complex types of data structures -- e.g., rings in SKETCHPAD
fSut1] and CORAL [Suw2], and associative data bases in LEAP [Rov1].
This need for complex data structures must Dbe considered a major
problem, i{ for no other reason than that the data structures themselves

are considered a major problem.

One system not using an instance tree as a picture representation

is Knowlton's BEFLIX [Knol], one of the first, and still one of the most
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successful, systems for producing computer-generated movies; examples of
movies produced with BEFLIX include [Bell, Kno2]. BEFLIX conceived of
the picture as a two-dimensional array of intensity values called a
surface. One "fine” (184 x 152) or two "coarse® (92 x 126) resolution
surfaces were available, operated on by a set of scanners which, with a
wscanner language", could be made to move around the surface(s), read
and change intensity values, and communicate with one another. In
addition, a "movie language" actually produceu film output and rerformed
operations on rectangular areas in surfioces such as copying other areas,
dissolving to nther areas, zooming, et~. The use of structures like an
instance tree is actually orthogonal to BEFLIX s use of surfaces; a tree
of surfaces and instances of surfaces could be constructed to fulfill
the same needs. However, the small number of surfaces available (two) ==
further restricted to only one surface in a more recent similar system,
EXPLOR [Kno3] -- prohibits this.  The user must always consider his
picture as a pure image, and not, e.g., as a collection of independently
existing but related objects which he can manipulate and alter; this may

have advantages in some purely artistic endeavors, but is a decided

disadvantage in more general use.

Another system departing from the instance tree syndrome is
Newman’s EULER-G [New1], an ertension of EULER (Wwir1], a language which
is itself a generalization of ALGOL. In EULER-G, execution of a frame
procedur s causes immediate construction of a monolithic transformed
display file which is directly digestible by the display hardware. The
instance tree actually has virtual existence during this execution, as
described below:

The EULER-G system interprets primitives sura as

line to [x,y]
which draws a visible line from the ncurrent" position to the position
(x,y), according to the current settings of transformation parameters.

The current transformation can be concatenated with other
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transformations in a dynamic block-structured fashion as part of a call
to a general EULER procedure; at the return from such a call, the
transformation in force before the call is restored. Thus, the virtual
tree of procedure calls performs the functions of an instance tree but
allows more generality, since an isomorphism is attained between a
pinture element and the arbitrary procedure used to create that picture
element: The contents and structure of the virtual instance tree are
controllable in a natural way by the standard EULER mechanisms for
parameter passing, iteration, and conditional execution. Thus, the
picture can in fact be an arbitrary function of a set of parameters;
this is a capability which, as was pointed out above, is practically
impossible to attain with instance trees -- or, indeed, with any cther
passive data structure, However, this ability 1is o¢htained at the
expense of cqmpletely re-creating large portions of the picture both in
order to make changes, and also in order to process pointing inputs from
graphic input devices. The resultant execution-time overhead 1is

significant, and "smooth” motion is essentially impossible.

Another general approach to creating changing pictures is what is
referred to in [New3] as the "viewing algorithm” approach. The term
viewing process approach will be used here instead, both because
"viewing algorithm” is used with a different meaning in [New2], and
because this approach conceptually involves the use of two processors
sharing a single physical memory. A single physical processor may of
course be time-shared to achieve the same effect, and so we will speak
of two processes as being involved; these will be called the application
process and the viewing process.

The application process performs the "real" work involved,
manipulating the data in the shared memory in the course of whatever
calculation is being performed. While the aprlication process is
running, the viewing process simultaneously acrecses the data being

manipulated, repeatedly and continuously traversing all the data to be
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displayed and constructing a picture which represents that data 1in the
desired fashion. Since the display process operations are arbitrarily
programmable, this method shares with EULER-G the advantage that the
structure and parameters of the picture can be very general.

In a certain sense, the viewing process method is utilized by any
system which uses a separate process or processor to do the continuous
re-display needed with refreshed image generation hardware. What
distinguishes the viewing process methced is: (1) the lack of an internal
representation of the picture distinct from the structure the
application process uses; and (2) the fact tkat the viewing process
independently accesses the shared data structure to continuously
regenerate the picture while the shared data is simultaneously being
altered by the application process. If condition (1) is not met, the
system is usually closer to an instance tree system; if condition (2) is
not rnet, the system is instead closer to EULER-G.

Because the viewing process accesses the shared data structure
while it is being updated, the viewing process method has the advantage,
in theory, that the application process need not take note of the fact
that a picture is being generated; it merely changes its data and the
picture automatically changes in response.

In practice, however, a truly formidable amount of inter-process
synchronization is necessary because changes to the data can leave it in
a momentarily inconsistent state capable of thoroughly deranging the
operation of the viewing process. For example, it ¥s not possible with
conventional computer architectures to add an ~lement to a two-way
linked 1ist without, at some point in the opeiation, making the pointer
relations "incorrect", i.e., at some point the structure is not in fact
a two-way linked list; if the viewing process depends on the structure’s
always being a two-way linked list, it may fail.

Another problem, which this method shares with EULER-G, is that the

overhead involved in completely regenerating the picture can be quite

high. If a single time-shared processor is used, this will slow the
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application process considerably. If, on the other hand, two physical
processors are used, the application process may run too fast for the
viewing process to keep up. This may lead to pictures which are
inconsistent in the sense that different parts of the picture reflect
differing successive states of the data; such global inconsistencies may
also lead to failure of the viewing process if considerable care and
forethought are not applied.

The problem of the application process "running too fast" is
actually r~re se.:re than it might appear at first glance. This 1is due
to twe factors: First, a data structure which 1is appropriate anid
efficient for the application process may be decidedly inappropriate and
inefficient for the purpose of generating tlie desired image. Second, if
the desired picture is not a straighiforward transformation of the
application data, the amount of computation required to create the
desired picture may be quite large. As an extreme example of both of
these problems, the viewing process may have to construct an
aesthetically pleasing layout of 2 graph described only by its
connectivity matrix,

Despite these problems, the viewing prwcess approach has been
successfully used in several applications where the desired picture was
a simple transformation of the data and a data structure could be chosen
which was a good compromise between the needs of the application process
and the needs of the viewing process; examples are [Chr1, Robl, Sut1].
Of particular note among these is Ivan Sutherland’s SKETCHPAD system
[Sut1], which will now be discussed at some length.

SKETCHPAD is of course the seminal work that pointed out the
virtues of interacting with a computer by means of pictures; the
historical effect of this system on the entire field of computer
graphics would be difficult to over-emphasize.

In discussing SKETCHPAD, it is important to note that this system

is neither a "graphics package" nor a "graphics language” as those terms
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are nor mally used, but rather an application program which wused
interactive computer graphics as an aid to carrying out its application
-- namely, the creation of pictures.

The method used to display the pictures described by SKETCHPAD “s
application data =-- i.e., a viewing process -- has already been
described. Of interest here are the techniques used in the application
itself.

It must first be pointed out that SKETCHPAD ‘s application should
not a priori be overly relevant to the general topic under discussion,
since that application was the creation of static, not dynamic,
pictures; the motion of pictures visible in SKETCHPAD was due to the use
of the display process technique to show succnssive intermediate stages
in the construction of the desired static picture. What makes SKETCHPAD
relevant to this discussion is the fact that the method it wuses to
construct a desired static pictures is modification of a pre-existing,
and possibly null, picture; and such modification is, of course, change.

Keeping this in mind, we may note that SKETCHPAD ‘s application
subsystem, but not its viewing process display subsystem, structures the
picture in two ways: First, the picture is structured as a re-entrant
tree composed of instances of master subpictures; the terms "initance"
and "master” originated with  SKETCHPAD. Second, unlike t'e
unidirectional change propagation of the *instance tree" systems
discussed earlier, the SKETCHPAD picture contains an arbitrary non-
hierarchical non-directed graph composed of multi-way constraints, i.e.,
M-ary relations between the coordinate and other values used to define

the picture drawn by the viewing process. One of the primary Jjobs of
the application subsystem is to make every value used in the picture
reflect all the relations between values desired by the user. If no
circularity exists among all the relations -- i.e., no values are
defined in terms of themselves -- appropriate values are found at once;
otherwise, every value in the picture is iteratively re-computed, in the

manner of Gaussian 1iteration or relaxation [Rall, Vari], hopefully
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converging to the desired solution. Relaxation was facilitated by

defining constraints as functions which, applied to the values

constrained, returned an error value. ]
SKETCHPAD “s constraint network is more general than unidirectional 14

instance tree change propagation in three ways: First, values can be .

functions of other unlike values; for example, a rotation can depend
upon a displacement. Second, since constraints are not directional and
relaxation can be used, every value in the system is potentially a locus
of control over every other value; thus, by inserting a very "hard"
constraint between a value and an input device such as a knob, direct
| control over any aspect of the picture can be achieved. Third,
relationships can be used which are not repre.entable hierarchically --
for example, parallelism.
J As with instance tree systems, the relationships available in
3 SKETCHPAD are fixed in the sense that a user cannot define an «rbitrary
desired constraint without doing programming "behind” the user
interface.

However, multi-way constraints appear to be less general than the
picture/procedure isomorphism available in EULER-G, since structural
changes to the picture -- i.e., the addition and deletion of picture
elements, including constraints -- are not readily expressible in terms
of error-function constraints. For example, Sutherland states in [Sut1]
that it is not possible to create a constraint that causes a corner to
become rounded; the reason for this is that such an operation involves

the addition of a circular arc and the modification of the constraints

The principle disadvantages of SKETCHPAD -- or, rather, of a

} used to hold visible lines onto position values.

J

w ’
| progrzmming language system which could be derived from SKETCHPAD 's
P

command language -- are two, and they both involve the use of

relaxation.
r First, relaxation is a hill-climbing technique, and it is all too
1
1

easy for any system using such techniques to become "caught” at local
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maxima different from the desired maximum -- i.2., to reach states where
"you cin’t get there from here”. In the interactive =ituation of
SKETCHPAD, this is not too bad, since a non-malicious human operator can
usually help the system over svch "humps”; a malicious operator can, of
course, always bollix such a system easily. Considered as the only
solution technique available in a programming language, however, the use
of relaxation is quite limiting.

The second disadvantage concerns the efficiency of the system. The
most important consideration here is that the apparent inefficiency of
SKETCHPAD is not so much implicit in the system itself as imputed from
the manner in which it was used. With the exception only of the
multiple-truss bridge exanples, there are no examples in [Sut1] which
really "need” relaxation. However, constructing many of the examples
without relational circularity generally requires some forethought,
planning, and a more detailed knowledge of the system; in general, doing
this is less convenient for the user, and user convenience was a major
goal of SKETCHPAD. It must be noted, however, that the forethought and
planning required are well within the range of that normally required
for programming, so the "need" for "inefficient” relaxation must not be
considered a disadvantage in SKETCHPAD considered as a programming
language.

In summary, it can be said that SKETCHPAD contains the seeds of a
graphics programming system that is more powerful and not intrinsically
less efficient than the vast majority of graphics systems currently in
use. However, due at least partially to the self-referential nature of
its application, SKETCHPAD can, if viewed hurriedly, engender much
confusion over the difference between static and dynamic pictures and
the nature of non-hierarchical structure in pictures; of course, no such

issues were issues until SKETCHPAD existed.

Perhaps surprisingly, the majority of work in computer animation

impacts only obliquely on the work reported here. This is the case
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because work in computer animation has been confined to two areas which
are "lower level" -- in the sense of "hich" and "low" level languages --
than the area of the reported research.

This first of these areas 1is the creation of a "super paintbrush"
capable of rapidly producing pictures at least comparable to those
produced by conventional animation techniques; Baecker [Bael] discusses
anization work in this area. As was mentioned earlier in this section,
a "super paintbrush" of some sort is assumed in this document.

The second area of animation research is th <Jetailed synthesis of
the complex interrelated motions and sequence of structural change
which are required in animation; examples are [Bael, Burl, Pari]. The
data gathering, functional parameterization, synchronization, etec.,
which are necessary for animation impinges on the reported work only to
the extent of placing certain general requirements on the system
developed: (1) it should be possible to make picture rarameters
arcitrary functions of time; (2) temporally parallel changes to many
parameters should be possible; and (3) facilities for temporal
synchronization and coordination should exist. All of these criteria
are met in DALI.

Baecker’s proposed "Animation and Picture Processing Language"

(APPL) [Bae1] is, however, relevant, and will now be discussed.

In addition to providing facilities for parallel change,
synchronization, and the gathering of pictorial and motion data, APPL
provides a purely hierarchical structure for pictures. This structure is
extensible in the following sense: Executing an APPL statement such as
"MOVE picture BY distance" -- meaning translate a (sub-) picture by a
given amount -- recursively applies MOVE to all the subpictures of the
picture until either: (1) a primitive object, e.r., a dot, is found to
which a built-in MOVE is applicable; or (2) a user-defined "picture
type" is found for which the user has provided a MOVE gprimitive. Thus

change is propagated in a downward hierarchical mariner, as is the case
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with 1instance trees; but more flexibility 1is available than with
instance trees, since by defining new picture types, the user can
arbitrarily vary both the effect of a given command and the manner in
wnich it is hierarchically propagated.

However, APPL provides no non-hierarchical propagation of change
whatsoever: even a "relative line” -. i.e., a line segment defined by an
endpoint and a vector distance, and "automatically” moved when the
endpoint is moved -- cannot, as Baecker points out, be defined in APPL.
Why this should be the case, and in what sense it is true, is perhaps
best explained by example:

Suppose there is a picture PA containing an endpoint E, and we wish
an otherwise unrelated picture PB to be centered at E. Initially, PB is
constructed using E, and shares it with PA. Now, if PA is MOVEd, the
position of E will -- or at least can -- change; but there is no way to
indicate that since E changed, PB should be MOVEd also. The only way to
make °B change whenever E changes is to make "B part of PA. But there
are 3ituations where this "containment" solution does not work; for
example, a line which is to join the centers of two independently moving
objects cannot be "part of" either object. Maintaining such non-
hierarchical relationships is referred to as "constraint satisfaction"
in APPL and considered outside of the domain of the language.

It should be noted, however, that none of the examples gziven above
-- the relative line, the centered picture, and the line joining centers
-- involve circular constraint relationships; the desired picture is
quickly and easily computable in closed form, without the use of any
type of "relaxation". The problem is that the 1lack of any structure
other than hierarchical structure makes it impossible to express the
desired behavior of the picture without stepping outside the bcunds of
the formalism which is provided.

The nroblem that purely hierarchical picture description formalisms

have significant [ractical 1limitations 2also affects instance tree

systems. There, however, this problem 1is overshadowed by other
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concurrent limitations, including the necessity of havine parameters
depend on like parameters and the limited set of parameters available.
It is also the case that instance tree systems generally provide some
limited, but useful, non-hierarchical relations, e.r., relative lines.
Since APPL removes the additional 1limitations and provides no non-
hierarchical relations at all, it is an excellent example ri both the
c~pabilities and the limitations of purely hierarz.aical picture
description methods.

In comparison, a major goal of the work presented here has been to
design a system in which arbitrary user-defined non-hierarchical
relationships -- as well as hierarchical relatioaships -- are

specifiable in a manner conducive to their efficient computation.

1.3 Summary

Chapter 2 presents a characterization of dynamic computer graphies
and the tasic system and language organization of DALI. In particular,
it presents DALI’s division into (1) M-DALI, Jdealine with chanres that
occur instantaneously, i.e., at monadic instants of time; and (2) S-
DALI, a superset of M-DALI, which deals with smooth changes occuring
across temporal intervals as sequences of monadic chanmes.

Chapter 3 presents the basic concepts of M-DALI, including: the
four basic DALI objects, namely outputs, daemons, picture modules, and
picture functions; the two structures whizh twread throueh a picture,
namely the containment tree and the data web; and the manner in which
DAL. pictures, as programs, are "executed”. These are the central
issues in DALI. Understanding this chapter is absolutelv critical in
understanding DALI.

Chapter U4 discusses further issues in M-DALI, including coordinate

system transformations, structural changes to picture «lemen®.
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interdependence, deletion, and "hit"-testing; it also includes a
realistically laree example.

Chapter 5 considers the problem of circular dependence among
daemons, leading to iteration and relaxation.

Chapter 6 then presents S-DALI, and Chapter 7 presents conclusions
and summary.

Appendix 1 provides an alphabetized 1list of the primitive DALI
procedures and summarizes their actions. Appendix 2 similarly lists the
objects defined by DALI, their components and purposes. Appendix 3

presents some details concerning the possibility of retentive storage

management -- "earbage collection" -- not covered in the text.




Chapter 2
A Global Overview of DALI

2.1 Static Versus Dynamic Translation
to Pictorial Form

At the highest level of abstraction, ail dynamic graphics systems
including DALI are divisible into two primary components: the driving
process and the graphics system. (Fig. 2-1a)

The driving process is the ultimate source of the data on which the
picture ic based. T+ is the applications progran in ewecuticn, and
contains in a form which it finds convenient the data which is to be
interpreted graphically. This data may or may not have explicitly
graphical romponents. It could be an array of numbers, to be shown as a
graph; a complex interconnected data structure, to be shown as a circuit
schematic; the positions and attitudes of characters, a backeround, and
a camera angle, to become one «r more frames of a movie; etc.

The function of the graphics system is to translate selected parts
of the driving process’ data into the desired pictorial format, a

process which may 1in general be either static or dynamic. The

differences between the two types of translation are the primary subject
of this sec ion. They are best explained by first dividing the graphics

system a bit further into a picture definition system, a hardware

display file, and a display processor (Fig. 2-1b). How this structure
relates to the systems described in section 1.2 will be discussed at the
end of this section.

The picture definition system translates drivine process data into
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a representation of the desired picture which can be consumed by the
display hardware. This representation is the hardware display file; it
is accessed by the (hardware) display processor to produce a visible
image. We are concerned only with the creation and manipulation of the
hardware display file by the picture definition system.

In static translation to pictorial form, the picture definition
system always scans all the drivine process data needed to produce the
whole hardware display file. I.e., il the drivin~ process chanzes some
relevant datnm and an updated picture is desired, the picture definition
system re-scan: all the data for the picture and creates an entirely new
hardware di.play file which replaces the previous one. This process may
be viewed as successive retranslation or picture regeneration.

Th: o-ntrast between static and dynamic translation occurs when the
driving process changes the data on which an existing picture is based.
The dynamic method does not create an entire new display file but rather
alters the existing file to reflect the changes, accessine onlv that
driving process data relevant to the chanzes. Dynamic translation may
be viewed as propagating driving process changes across to the
corresponding parts of the hardware display file, bearing in mind that
this propagation is an active process which transforms the nature of the
change. It may also be viewed as incremental translation or true
picture change, as opposed to regeneration.

In the static case, the picture definition component need retain o
state information; it is simply one or more pure procedures re-applied
from scratch to the driving process data. In the dynamic case, state
information must be retained from change to change in order to define
the mapping from the driving process data to the corresponding elements
of the hardware display file.

Dynamic translation potentially requires less computation than
static translation since full regeneration of the hardware display file

is unnecessary; the time savings resulting from this can be quite laree,

especially when few elements of the picture move simultaneously, as is
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commonly the case. However, there may be significant overhead involved
in updating the state data and actually using it to find out what to
change; also, the space needed for the required mapping data may be
large.

In addition to a potential saving of computation time, dynamic
translation is inherently more powerful than static translaticn, since
the former can produce changes to the driving process chanees th:mselves
and the latter cannot. For example, suppose that a driving process
datum which is translated into a bar graph element’s height is chaneed
from 3.0 to 4.5. All that static translation can do is first show the
"3.0" height, and then -- in the "next" picture -- the "H.5" height; it
can do nothing else, since the "3.0" height is no longer available when
the "4.5" height is generated. In comparison, both the initial and
final heights are potentially available simultaneously in dynamic
translation; hence, the sudden change can be converted into a smooth one
by interpolating the height change into many small successive steps.
Lest the reader consider this a frivolity, it rnould be noted that such
smoothing nas the very significant effect on the numan viewer of
maintaining the identity of the changed picture element across and
through picture changes. This can be very important if major changes
are made in the picture, since it minimizes the problem of discovering
how the new state of the picture, and hence of the driving program data,
relates to the previous one.

Whether dynamic translation has any inherent power over static
translation beyond smoothing and 1lower computation cost depends on how
strictly the line is drawn between the two types of translation. Where
this line is drawn is cften a question of which data belongs to the
driving process, and which belongs to the picture definition as part of
its state. For example, the inverse of smoothing, i.e., updating the
picture only every Nth driving process data change, requires a modulo N
counter. If that counter 1is considered part of the drivine process,

i.e., the driving process informs the picture definition only of every
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Nth change, then static translation can provide this feature. On the
other hand, if the counter is part of the picture definition, 1i.e., the
driving process informs the picture definition of all the changes and
the picture definition itself chooses when to run, then dynamic
translation is being used. In general it can be said that dynamic
translation provides more convenient mechanisms than static translation
for relating the dynamics of the visual image to the dynamics of the
driving program, and in keeping purely display-oriented operations
separated from the application.

However, a strict distinction between static and dynamic
translation is often difficult to make, since for efficiency reasons,
static translation is seldom found in =2 completely pure form; usually
there is some mechanism for maintaining several simuitaneously visible
display files, so that large quantities of static background data do not
have to bLe regenerated for every change. From the discussion above,
this appears to be dynamic translation since only "relevant” parts of
the picture are changed; but the mapping between the driving process
data and the elements of the picture is sufficiently crude that the
overall tone of such as system is really that of static translation.
EULER-G [New1) is a good example of system like this.

The instance tree graphics systems discussed in section 1.2 provide
for the breakdown of the hardware display file into a large enough
number of small units to allow true dynamic translation, possibly with
intervening translation into a transformed display file truly

corresponding to the hardware display file.

The detailed relationship between the four-element organization
presented here -~ driving process, picture definition, hardware display
file, and display processor --= and the instance tree systems discussed
in section 1.2 depends on the capabilities of the display processor. If
the display processor is capable of producing a visible image directly

from the instance tree used, then the hardware display file is the
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instance tree, and the picture definition is the combination of (1) the
utility routines provided for manipulating the instance tree, (2) the
user programs concerned with manipulating the instance tree, and (3) the
user data structure used to relate the instance tree with the driving
process’ data. In this case, the user data structure comprises the
state information of the picture definition. Referring again to the
display processor, if it 1is incapable of using the instance tree
directly, then the hardware display file is the transformed display file
referred to in section 1.2, and the instance tree is an additional part
of the picture definition’s state data.

The four-element division of this section may be interpreted for
the viewing process method described in section 1.2 in either of two
ways: In the first interpretation, the viewi.g process is considered a
complex display processor; here, the display file ancd the picture
definition are intermingled with the driving process” data. As an
alternative interpretation, the viewing process itself, 1including
whatever temporary internal state data it may have, 1is the picture
definition; in this case, the hardware display file has only virtual
existence as control words and data passed to a simple hardware display
controller. The first view is wusually more appropriate, since some
elements of picture description are usually necessary in the shared data
base used by this method. Interestingly, viewing process systems are
very often static translation systems which -- when they work properly
as in SKETCHPAD -- operate very aquickly indeed, injecting no dynamics of
their own but constructing new pictures fast enough to show every twitch

of the driving process.
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2.2 The Top-Level Operation of DALI

DALI fits into the above scheme as a picture definition system for !
dynamic translation of changing data intc pictorial form. It composes
the picture definition out of "process-like" elements, called picture
modules, and provides for the needed state/mapping data both throurh
state components in the picture modules and through the structure in
which the picture modules are embedded.
The notion of dynamic translation as the proparation of computed
change is deeply embedded into DALI; it is the basis for the transfer of
control from picture module to picture module and from the drivine

process to the picture modules. This transfer of control comprises the

top level operation of DALI, and it proceeds in this manner:

(1) Initially, control resides 1in the drivine process. This eoes
about its business in whatever manner it finds appropriate,
given its programming and data, until (2) occurs.

(2) When the driving process makes a chanege to data which
determines the current picture, this change is detected by one
or more picture modules and control leaves the driving process
and enters the picture definition.

(3) One at a time, the picture definition’s picture modules which
have detected change are given control and perform whatever
processing they desire. They may directly change the hardware
disnlay file; or they may make data changes which are detected
by other picture modules, thus causing the latter to eventually
obtain control.

(4) Wnen every picture module which has detected chansge has been
run, control returns to the driving process which then takes up
where it left off.

As an example of this process, consider the simple problem,

mentioned in the preceding section, of making a bar eraph ¢ lerent’s
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height follow a datum in the driving process. The type of picture
desired is shown in Fig. 2-2a, and a possible picture definition is
diagrammed in Fig. 2-2b. In Fig. 2-2b, small rectangles are "watched"
data, circles are picture modules, and dashed arrows point from a datum
to the modules detecting changes in that datum. The elements of the
picture corresponding to elements of the picture definition have been
given corresponding labels: P1 and P2 contain line endpoint data, module
R constructs a "relative position", and modules L1, L2, and L3 create
and update lines.

When the driving process changes the indicated datum to 4.5, the
following happens:

(1) Picture module T notices the change to 4.5, rets control, and
usine the value 4.5 concocts a new value for P1. This value
will be used as the new position of the upper left corner of
the bar.

(2) Picture module R, seeing the change in P1, gets control and
generates a new P2, the position of the upper right corner of
the bar.

(3) The changes in P1 and P2 are noticed by module L1, which
updates the hardware display file to contain a 1line correctly
showing the top of the bar, a line between P1 and P2.

(4) Modules L2 and L3, in a manner similar to L1, update the
display file to show correct lines on either side of the bar on
seeing changes made to P1 and P2.

(5) Control returns to the driving process.

Several points about this example are of interest:

First, the example is oversimplified in that all the modules
require data which has not been shown buil which is part of the state
data. For example, L2 and L3 need the positions of the bottom ends of
their lines.

Second, it should be noted that no picture module explicitly

"calls" another. T, for instance, does not refer to R, L1, and L2; it

just changes P1 and leaves sorting out the result to the DALI system.
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Third, we conveniently assumed that R would run before L1, thereby
avoiding running L1 twice. In fact, R is guaranteed to run first by
scheduling rules built into DALI which oversee the transfer of control
from module to module.

Fourth, the mechanism for communication among picture modules --
change a value and let those watching it run -- is the sam2 mechanism

nsed to communicate from the driving process to the picture definition.

2.3 Sudden Versus Smooth Change:
M-DALI, S-DALI, and Time

At the normal level of human perception and interest, change to a
picture, or indeed to anything, can be viewed as belonging to one of two
categories: instantaneous change, occuring at an 1indivisible, hence
monadic, instant of time; and smooth or continuous change which occurs
across a temporal interval. This division is reflected in DALI, which
is divided into two parts: M=DALI, which deals solely with changes
which, though many can occur at once, are all impressed on the picture
simultaneously -- at an indivisible, Monadic instant; and S=DALI, an
extension of M-DALI, which deals with smooth changes that occur across
temporal intervals by treating such changes as temporal Seguences of
instantaneous monadic changes. DALI, referred to without any prefixed
qualifiers, is actually S-DALI specifically considered as an extension
of M=DALI and therefore containing all M-DALI constructs; the term "S-
DALI” will often be used to refer to elements of S-DALI which are not in
M-DALI.

A primary difference between S-DALI and M-DALI is that M-DALI has
no notion whatsoever of time: the only way an M-DALI program can change

the picture is to say "make this change now” -- a statement which, since

the "now” must always exist and so can be implied, is simply shortened
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to "mke this change". S-DALI, on the other hand, contains the notion
of time as a metric ordering events. Thus an S-DALI program can say
"make chanre C1 at time T1, make change C2 and time T2, and make change
C3 at time T3". This would result in the occurrence of changes C1, C2,
and C3 in an order defined by the values of T1, T2, and T3; the amount
of time elapsing between the performance of the changes is also defined

by the values cf T1, T2, and T3.

In the preceding paragraphs of this section, the term "time" has
actually been used to mean "time as the programmer intends it to pass in
the picture as perceived by a viewer", or picture time. This must be
distinguished from DALI compute time, the time which necessarily passes
while the computation of changes to the picture is taking place.

Picture time is always "frozen" during DALI compute time, i.e.,
picture time does not change during the computaticn of a set of picture
changes: all processing in DALI is instantaneous with respect to piccure
time. How this operates in M-DALI may be illustrated as follows:

Suppose an M-DALI program is running to update the picture in
response to some driving process operation. Some picture module says
"make change C1", and, some period of DALI compute time later, another
picture module says "make change C2"; to M-DALI, this whole operation
means "make changes C1 and C2 simultaneously", where "simultaneously"
specifically refers to picture time. In terms of a motion picture
recording of the resultant display, changes C1 and €2 will both be
performed during the interval between two successive frames of the
movie.

In a situation where the display is being directly viewed while
changes are being computed, the system will attempt to make picture-time
simultaneous changes appear to be truly simultaneous; but this attempt
may be unsuccessful if the system is overloaded.

The numeric values used to indicate times in S-DALI refer to

picture times, and are most easily understood as referring to some
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number of "movie frames" since the system was reset. Again, if the
display is being directly viewed, an attempt will be made to maintain
the desired relationship between picture time and real time as perceived
by the viewer, but it will not always be successful. How picture time
advances will be explained later in this section; for now, it should be
noted that picture time remains constant until all the processing
affcectinz a given instant of picture time has been completed.

This strict separation between picture time and DALI compute time
is made because the amount of time required for computation can vary in
a manner which 1is aquite difficult to predict; and if aesthetically
pleasing dynamics are to be created, picture time must be controlled
accurately.

There is actually a third time scale involved in the operation of
DALI: this is the time the driving process takes to do its own
computation, and 1is called driver time. Driver time 1is distinguished
from DALI compute time because in a purely M-DALI system it serves to
separate and sequence successive changes to the picture: the driving
program runs, then M-DALI makes a set of nsimultaneous" changes, then
the driving program runs again, etc. This s something DALI compute
time never does; DALI compute time is always invisible relative to the
separation and sequencing of picture changes. Driver time has no effect
on picture time 1in S-DALI: picture time 1is nfpozen" while the driving
process is running. Driver time may, of course, affect the relationship

between picture time and real time.

The manner in which M- and S-DALI interact with the drivine process
will now be described, with emphasis on the temporal 1issues involved.
At this point it should be recalled that, as mentioned in the previous
section, the mechanism by which control is passed from the driving

process to the DALI picture definition, and also from picture module to

picture module, is by changing some value "watched" by a picture module;
this is uniformly the case in both M- and S-DALI.
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The interaction between a purely M=DALI picture definition and the

driving process consists of repetitions of the following sequence:

(1) The driving process runs for a period of driver time, making 2
set of changes relevant to the picture. At some point, chosen
by the driving process, the current set of chanres is presented
to the M-DALI picture definition "in parallel” -- i.e., the
driving process voluntarily suspends its operation and allows
all the picture modules "watching”" all the changes to run.

(2) Driver time stops advancing, and computation occurs within the
M-DAL. -icture definition for a period of DALI compute time.

(3) DALI  compute time halts, and a set of cnhanges are
simultaneously impressed upon the picture.

(4) Control returns to the drivine process, and driver time resumes
its advance.

Two succes3sive repetitions of this sequence are shown in Fig. 2-3, which
illustrates the relationship between driver time. DALI compute time, and
"pseudo picture time"; the latter is the sequencing of sets of
simultaneous picture changes which derives from driver time and DALI
compute time when only M-DALI is used. Such a system is essentially
useless for serious animation work due to the circumstantial nature of
the intervals between picture changes; however, it can be wuseful in
interactive graphies since close control over picture time is
unnecessary in such applications, and the added overhead needed to
achieve that control is disadvantageous.

In comparison, the interaction between an S-DALI picture definition

and the driving process specifically refers to picture time:

(1) The driving process runs for a period of driver time and
eventually presents a set of changes to the picture definition
"in parallel" as in M-DALI. At this point, picture time has
some value, initially O.

(2) Driver time stops advancing.

(2.1) Computation occurs within the picture definition i1.r a
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period of DALI compute time, wuntil all the picture
modules which "want" to run have been run.

(2.2) If any previous DALI computation created picture
changes slated to occur at the current picture time,
all suc* changes are simultaneously impressed on the
picture.

(2.3) If any previous DALI computation has scheduled any
operations -- not Jjust picture changes -- for a
picture time in advance of the current picture time,
picture time is advanced to the earliest such future
picture time and step (2.1) is re-entered to perform
the desired operations; otherwise, step (3) 1is
entered.

(3) The driving process continues from where it stopped, and driver

time resumes its advance.

Two repetitions of this interaction are illustrated in Fig. 2-4,
which has been constructed under the assumption that picture-time
intervals between picture changes are to be constant.

With respect to the preceding S-DALI operation sequence, some
additional explanation is needed concerning the scheduling of operations
for future picture times which is referred to in step 2.3.

S-DALI programs in fact have a general ability to say "do this at
that time", where "that time" is any picture time in advance of the
current picture time, and "this" is an arbitrary fragment of a program;
such operations are then performed during an iteration of step 2.1 as
indicated above.

An operation which is particularly relevant and simply performed at
a future time is changing the value of some "watched" datum; this is
particularly wuseful since it can call a multitude of other picture
modules into  action. S-DALI  therefore contains facilities for
converiently performing such "future chanses"; in particular, S-DALI

contains facilities for creating, as units, finite sequences of future
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changes to ‘"watched" data. This provides a convenient method of
interpolatineg values and creatine the visual effect of smooth motion.
In addition, the ability to create such future change secuences provides
a mechanism for factorine the (picture-)temporal dynamics of pictures
from time-invariant relationships such as connectivitv, visual
complexity as a function of scale, etc.: time-invariant operations can
Le dcue with M-DALI operations performed in response to value chanees
which are created and scheduled for future picture times by completely
separate S-DALI operations. These M-DALI operations, performed durine
step 2.1, will of course refer to their eternal "now", i.e., the current
picture time, and hence will affect the picture at the immediately
succeeding step 2.2. This utilization of both M- and S-DALI operations

in a single picture is illustrated in the example which follows.

The previous bar graph example will now be modified to interpolate
the height of the bar, effectively moving it smoothly in nioture time
from one height to the next. Referring back to Fig. 2-2h, a
straightforward way to accomplish this is by inserting an "interpolator"
picture module between the driving process’ value and the picture module
T This is module I in Fig. 2-5, which shows the modified picture
definition. When I gets control due to a change in the driving process’
value, it will apply a sequence of future changes to a value V,
interpolating from V’s current value to the value provided by the
driving process. Module T now watches V, and so initiates the
generation of many marginally different pictures. The total seauence of
operation goes like this:

(1) The driving process changes its internal value from 3.0 to

4.s5.

(2) 1 gets control during S-DALI step 2.1. Using V’'s initial

value of 3.0, I applies a sequence of future changes to v,

such as (3.1, 3.2, . . ., 4.5), choosing appropriate picture

time intervals between the steps.
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(3) S-DALI step 2.1 terminates, and since I made no changes to
values for the current picture time, S-DALI step 2.2 is null.

(4) S-DALI step 2.3 finds the change to V to 3.1, advances picture
time appropriately, and cycles back to S-DALI step 2.1 to
perform the chanege.

(5) In S-DALI step 2.1, V is changed to 3.1, then T runs changing
P1, tlien R runs chaneging P2, then L1, L2 and L3 run.

(6) The picture changes scheduled for "now" by L1, L2, and L3 are
performed as S-DALI step 2.2.

(7) S-DALI step 2.3 finds the future change of V to 3.2, advances
picture time appropriately, and cycles back to S-DALI step 2.1
tc pertorm the change.

(4Q) Having found the change of * to 4.5 at (46), S-DALI step 2.3
finds no further outstanding future changes and so proceeds to
S-DALI step 3.

(50) Control returns to the drivineg process.

The process described above is one way to smooth out the bar’s
mot ion. There is at least one other: 1In S-DALI, it is possible to
create a module replacing T which watches not for immediate changes in V
but instead for the application of an entire seauence of future chanees
to V. This T " module can then apply an appropriate sequence of future
changes to P1, an action which can be detected by an R’ which can then
apply an appropriate sequence to P2. Appropriate modules L1°, L2°, and
L3 can also be constructed to watch for P1 and P2 sequences and produce
sequences of display file changes. With this method, the only
repetitive work that need be done is the final output of the display

file sequences.

In the chapters which follow, M-DALI will occupy most of our
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attention. This is not because S-DALI is intrinsically less important
or less interesting, but because many issues of interest are common to
both S- and M-DALI and they are best discussed without the added

complication of picture time.

2.4 Desiderata

This section discusses background issues which, while of minor
inherent importance to the interesting issues of DALI’s semantics, are
necessary to an understanding of the exposition pursued in later

chapters.

DALI is de*ined as a language extensior. This has been done for
two reasons: First, it allows the description to concentrate on those
items which are unique to DALI and ignore irrelevant but necessary
details such as the syntax of addition. Second, there is simply no
reason to devise yet another language to express actions which are
perfectly well expressed by existing languages, e.g., iteration and
assignment.

The language of which DALI is an extension will be referred to as
the base language. Essentially any programming langua<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>