
*■■»■

AD-7 87 7 95

THE COMPUTER CONTROL OF CHANGING
PICTURES

Gregory F. P £ i B t e r

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

September 1974

DISTRIBUTED BY:

mn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

BIBLIOGRAPHIC DATA
SHEET

1. Kcpon No.

MAC TR- 135

The Computer Control of Changing Pictures

7. WII.TI i
Gregory F. Pfister

9. IVrlurminj; Organization Name anj AJdrtbs

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 0Z139

3. Recipient's Ai i • uj. ■ •. .

78 7 79.
5. R?p&rt Date; Issued

September 1974

8- Pcrlormmn (Jr)i,tiii/.a< i n !■ i [t.
N"- MAC TR- 135

10. ProjeLi Task \k .rk i

12. Sponsoring Organization Namt' and Address

Office of Naval Research
Department of the Navy
Information ^ystems Program
Arlington. Va 22217

11. Contrac i dram \ i.

N00014-70-A-0362-0006
13. fype of Kti ..r: \ i'c-t ■•

(ovetec : Interim
Scientific Report

14.

15. Supplementary Note;

Ph.D. Thesis, M.I.T. Department of Electrical Engineering. August 9. 1974
16. AHstratts

This document describes DALI (Display Algorithm Language Interpreter), a
special-purpose programming language for the creation and control of changing
pictures which exhibit complex static and dynamic interactions am^ng their elements.
DALI allows complex organizations if interpolated ("smooth") change, discrete change,
and change in the structure of a picture to be generated in a modular way, in the
sense that picture elements determine their own behavior and hence manner of change.

17. Key Words and Document Analysis. 17a. Descriptors D D O^ '

U-J NOT 5 1974 j

JlklSKü ül5li!i
c

17b. Identifiers'Open-Knded Terms

NATIONAr TFCHNICAI
INFORMATION SFRVICE

' "■"'"■'■"» of Commerce
Sprin^fu-ld VA ??ISI

17c. < OSATI Field/Group

18. Availability Statement

Approved for Public Release;
Distribution Unlimited

19. V , untv ('as- (This
Report 1

I V l.AsSllll.D

21 N

20. s,., 1,,,r\ I las- I I'll
fa,»

i \(i \ssiniii

j^y

/S~0
OHM N nsoa IBEV I- Til FORM MAY BE RtPRODUCFD

^^^r-

THE COMPUTER CONTROL OF CHANGING PICTURES

Gregory F. Pfister

This research was supported by the Advanced Research

Projects Agency of the Department of Defense under

ARPA Order No. 2095 which was monitored by ONR

Contract No. N00014-70-A-0362-0006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

= ia WA

The Computer Control of Chanffino: Pictures

by

Gregory F. Pfister

Submitted to the Department of Electrical Engineering
on August 9. 1971* in partial fulfillment of

the reauirements for the Degree of Doctor of Philosophy

ABSTRACT

This document describes DALI (Display Algorithm Language
Interpreter), a special-purpose programming language for the creation
and control of changing pictures which exhibit complex static and
dynamic interactions among their elements. DALI allows complex
oreanizations of interpolated ("smooth") change, discrete chanfte, and
change in the structure of a picture to be generated in a modular way,
in the sense that picture elements determine their own behavior and
hence aannaf of change.

In DALI, pictures are composed of elements called picture modules.
These are analoeous to procedural activations or processes, and contain
arbitrary event-driven procedures called daemons. Daemons are run under
the control of global scheduling rules5ased on the functional
dependence of daemons on one another. These rules result in smooth
inter-daemon (process) communication and cooperation with no implicit o"
explicit reference to semaphores or other synchronization primitives In
user code, while at the same time providing for a high degree ol
parallelism. Circular inter-daemon functional dependence results in
iteration or relaxation. The environment structure used is
predominantly stack-oriented.

THESIS SUPERVISOR: Michael L. Dertouzos

TITLE: Professor of Electrical Engineering

Acknowledgments

As is the case with any task the size of a doctoral dissertation,

there are many persons who provided help and encouragement during the

course of this work.

First and foremost among these is Professor Michael Pert ouzos, -nv

thesis alvi'.or and chairman of my thesis committee. Without his

continuinp; interest both in my research topic and in me personally, it

is certain that the reported work would not have been as successful as

it was. Professor Dertouzos was particularly helpful in the task of -e-

organizing my snarl of ideas for comprehensible exposition, a process

which considerably increased my o\m comprehension of the issues involved

and thus led to a better treatment of many topics.

A debt of thanks is also due to Professor J. C_. R. Licklider, a

member of my thesis committee, for his patience and support of my

presence in his research group through a two-year fallow period during

which I did not really know whnt I was doing, where I was going, or how

I mijrht marage to Ret there. This period was quite valuable in that it

provided an opportunity for turning a fair amount of "book learninp"

into usable skills, attitudes, and ways of looking at problems.

Professor Licklider also provided the computer facilities for an

experimental implementation of DALI and for the seemingly infinite

amount of editing this dissertation required.

Professor Carl Hewitt, the th rd member of my thesis committee,

must be thanked frP ■ large number of rambling conversations on topics

as vague and Re-ieral as "the nature of computation", conversations which

helped crystallize several of my more fuzzy ideas to the point where

they could be effectively used in this work.

Particular thanks must also be given to D. Austin Kende.rson, Jr. , a

■r^-* »^

ü

i'ellow graduate student, fellow computer' graphioist, and fellow charter

member of The Oldest Permanently Established Floating Bull Session In

Project MAC. Computer graphics was not, shall we say, the hottest topic

going in Project MAC while 1 was there; and so I am doubly grateful to

Austin for providing technical companionship in his understanding of the

computer graphical and linguistic issues I was trying to face,

especially during -he onny periods of difficulty ...nd discoui-agement that

quite naturally occured in the course of thia work,

Maiiy other denizens of Project MAC are also to be thanked, both for

technical aid and for simple companionslup. Clearly included among

these are the members of U.e Control Robotios Group, my official "home",

espedaily Chi is Tenman and Steve Ward (new Profe33or Wart'). The

MSbers and ex-members of tht Programming Technology Group must also be

mentioned, especially the chief implementors of the language MUDDLE:

Chrii; Reeve, Dave Cressey, and Bruce Daniels.

In addition, I would also like to thank Professor Gerald Sussman

and Allen Brown of the M.I.T. Artificial Intelligence Laboratory for

technical discussion and encouragement.

And of course I must thank my parents, who I think had nearly given

up hope that I would ever grow up and finish school.

Artificial academic distinctions to the contrary, a task such as

this dissertation is never really "finished"; it is eventually abandoned

to stand on its own feet if it can. But 1 can never abandon '<nat I owe

to the persons mentioned above, as weil as many others who must go

unmentioned for lack of space.

This work was supported in part by Project MAC, an M,I,T, research

program sponsored by the Advanced Research Projects Agency of the

Department of Dex-ense under Office of Naval Research Contract N0001»»-,\-

0362-0006.

/

w^

Table of Contents

. .2 Abstract

7
Acknowledgements J

Table of Contents

, . 9 Dedication

Chapter 1: Intrcx'action

1.1 DALI 11

1.2 Rel? von to Other Work 1U

■^1 1.3 Su'Mary

Chapter 2: A Global Overview of DALI

2.1 Static Versus Dynamic Translation to Pictorial Form 33

2.2 The Top-Level Operation of DALI 39

2.3 Sudden Versus Smooth Change: M-DALI, 5 JALI, and Time 42

2.M Desiderata 52

Chapter 3: M-DALI: Basic Issues in Discontinuous Change

3.1 The Basic Objects: Outputs, Daemons, Picture Functions,
and Picture V:dules z"

3.2 The Operation of M-DALI 60

3.3 Outputs and Daemons &1

3.U The Acyclic Data Web ^

3.5 Picture Modules, the Containment Tree, and the Picture
Structure

4J

6

3.6 Picture Functions 72

3.7 Examples: Coding the BAR 77

3.8 The Acyclic Daemon Scheduling Rules and Their
I.Tiplementaticn • ö

J

3.9 Goals of the Acyclic Daemon Scheduling Rules 86

3.10 External Interrupts .90

3.11 The "oLal Environment 93

3.12 More Examples: Iteration, DODA, and Input 103

3.13 Concluding Notes on Basic M-DALI Ill

Chapter 4: M-DALI: Further Issues

4.1 Introduction 11'''

4.2 Coordinate Transformations 118

4.3 Deletion 132

4.4 Further Daemonology and Data Web Change 141

4.5 A Large Example: The Incredible Plastic Tree 146

4.6 riit-Testing 156

Chapter 5: Data Web Circularity and Relaxation

5.1 Introduction: The Data Web As a Set of Equations 161

5.2 When Circularity is Not Needed 165

5.3 When Circularity Is Needed 168

5.4 Introducing Cycles: Loop Daemons 169

5.5 Goals of the Cyclic Daemon Scheduling Rules 172

5.6 Preliminary Definitions 173

5.7 The Cyclic Daemon Scheduling Rules 176

5.8 Implementation of the Cyclic Daemon Scheduling Rules ... 187

5.9 Impieinenting Multi-Way Constraints: SKETCHPAD Revisited . . 194

7

Chapter 6: S-DALI: Interpolated "Smooth" Change

. 203 6.1 Motivation

6.2 S-DALI Operation and Action Scheduling 211

6.3 General Scheduled Actions 21

6.U Sequences and Simple Sequences

6.5 The Starting and Continuation of Sequences 218

6.6 Outputs and the SEQ Daemon Condition 222

. . 224
6.7 Path Sequences

231
6.8 Examples

Chapter 7: Conclusion
237 7.1 Summary and Conclusions
242 7.2 Implementation Issues

7.3 Directions for F- lure Research 2 3

 247
Bibliography

251 Appendix 1: DALI Functions

255 Appendix 2: DALI Objects

?61 Appendix 3: Garbage Collection in DALI

... 267 Biographical Note

/

_J

Preceding page blank

Dedication

To a Small Subset of Humanity

gorged with the patterning rhythms of change

motion!

physical, audible, visual, logical

all responsively guided and guiding

layered in patterns perceived.

human!

borne from the sameness of chaos, eternally;

with their shattering rhythms in flexion

merging to pattern a word:

understand.

•

11 P.M., Friday, May 5 19W

-ZT—ZT

10

"...the art of programming is the art of

organizing complexity, of mastering multitude and

avoiding its bastard chaos as effectively as

possible."

• -Edstrer W. Dijkstra,
Notes on Structured

""Programming

I

/

.

11

Chapter 1

Introduction

1.1 DALI

A computer's mechanical ability to mindlessly iterate marginally

differing calculations, coupled with its speed and ability to control

other devices, can be used to create and change visual imaees —

pictures - at a very rapid rate. This capability is the cornerstone of

the two fields of computer animation and interactive computer graphics.

Utilization of this naked computational power requires that it be

organized, grouped and ordered in a way that highlights aspects

important to human beings, suppresses details they consider unimportant,

and most of all provides them with an effective means of thinking about

and describing their intentions. In other words, a "hiRh-level"

programming language is needed.
This document describes such a language. It is called DALI, for

Display Algorithm Language Interpreter, and is designed for the creation

and control of changing pictures exhibiting complex inter-element

interactions. Embodied in DALI is a uniform, hardware-independent

methodology for the description of a wide class of dynamic pictures.

A primary characteristic of DALI is modularity, in the sense that

pictu-e elements themselves define their own manner of behavior. This

is accomplished by constructine pictures not as assemblages of passive

data elements, but rather as structures of active elements akin to

processes. These elements. called picture mooules, can contain

arbitrary user-written procedures which locally define the behavior of

the picture element.

12

The capabilities of DALI in comparison to more classical schemes

for picture manipulation are most readily highlighted by examples. The

examples used here, and many others in this document, are taken from

c nputer animation for clarity and dramatic appeal. It should be

realized at the rmtset, however, that DALI is not 'just" an animation

language »s that term is normally used, but rather covers the spectrum

from animation to inter ictive computer graphs.s and may also have

application in computer simulation.

Fig. 1-1a shows a circular image constructible by a program using

any reasonable computer graphics system. Many graphics systems allow a

program to vary certain specific parameters of such an image, for

example, its rotation, translation, and scale. An appropriate program

can thus change both the rotation and translation parameter» quasi-

simultaneously in proportions that give the illusion of a rolling ball.

This is shown in Fig, 1-1b.

What is not supports' by such systems is the construction of a

"ball" image in which rotation and translation are inherently coupled.

Simply "telling" this "ball" to move would cause it to "roll" to the

designated position, varying its own rotation with its translation in

the necessary fashion. The creation of such objects is a basic

capability of DALI.

nn important aspect of DALI is that objects such as the "ball" are

defined by arbitrary user-written programs. Thus, the "ball" could

react in motion to its external environment as shown in Fig. 1-1c.

There, the only command given the ball was "move". It "knew" that it

should go over, not through, bumps; that it should squash itself when it

falls off cliffs; and that U shouldn't step on the daisies.

Alternatively, the daisies could "know" that they should crush when run

ovtei- by a ball.

Another aspect of DALI is implicitly illustrated by Fig. 1-1c: only

that portion of the DALI "program" needed to move the "ball" is invoked

when the "ba]1" moves. This is not done by arbitrarily dividing the

/

13 ROTATE

0
TRANSLATE

0
A

0

FIGURE I- I

14

picture into unchaniring backgro-ind and chanpinp foreground, but rather

arises naturally out of low-level picture element interrelationships:

individual changes propagate through the picture, affecting only those

picture elements involved in the change.

Of course, the image displayed need not be a ball. It could, as in

Fig. 1-1d, be a stick figure which walks to the desired place when told

to move -- or runs, or jumps, depending on the amount of time it is

given. The program giving the command to move can be completely unaware

of how the command is carried out; the same command can roll a ball,

walk a man, drive a car, etc.

All of the capabilities illustrated above could, with sufficient

effort, be programmed in more conventional computer graphics systems, by

virtue of the fact that they do, indeed, incorporate a Turing machine.

What DALI provides is a general, systematic way of viewing such

capabilities, a set of concepts around which to organize one's thinking

about changing pictures. By this virtue, DALI lays claim to being a

true high-level p-ogramming language for dynamic computer graphics, the

art of creating changing pictures which lies in the intersection of

computer animation and interactive computer graphics.

1.2 Relation to Other Work

A great deal of research in computer graphics deals with conqueriiig

the sheer brute load of computation needed to generate pictures with a

computer. Examples of this include eliminating hidden lines and

surfaces; clipping and "boxing"; performing perspective transformations;

generating smooth curves and surfaces; and actually producing a visual

image on a cathode-ray tube or other device. Newman and Sproull [New2]

describe many results in these and adjacent areas.

7

I

15 *

Such research can be vieweo as an attempt to make a computer into a

"super paintbrush", entirely analogous to the more u^ua. "lew of a

computer as a "super adding maciine". Even the meaninj of "super" is

Invariant: fast, accurate, fUribii, and in"xpensive relative to

competing technologies. This is a necessary goal. Just as 2 computer

must be a "super adding machine" before issues like process control,

artificial intelligence, information systems, etc., can be effectively

addressed, it must be a "super paintbrush" before computer animation and

interactive computer graphics can be effectively addressed.

The research reported here makes the basic assumption that a true

"super paintbrush" exists. This may or may not be true at the present

time; qu-te powerful graphics hardware certainly does exist [E4S1,E&S2],

and currently projected decreases in hardware costs promise to brine

very powerful "paintbrushes" into more common use. [Sped]

Given tha assumption, the question becomes how we make use of such

"super" capabi.'ities. One place to begin is by adding to the basic

capabilities more powerful means of control over what is drawn,

hopefully increasing our effective ability to create changing pictures

far beyond historical manual capabilities. To achieve this control, an

ability to describe the picture-which-changes in a co-ip-'tationally

effective manner must be devised. That is the goal of "ne reported

work.

Work directly related to that reported here falls into three areas:

(1) subroutine packages for general computer graphics, e.g., [E&S1,

Thol, New2 Chap. 5 and 8, Hull]; (2) programming languages and

extensions for general computer graphics, e.g., [Hurl, Chrl, SrAI,

Newl]; and (3) programming languages for computer animation, f.g.,

[Knol, Bael]. All of these have the common aim of creating a visible

image by communicating data and commands to a display device from a

program. Many also provide some mechanisms for communicating

interactive graphical input to a program, but this aspect will not be

/

J

TT

16

emphasized inth^s research. Our invest is further r.strictedto

those aspects of graphics systems related to changing created pictures,

as needed in interactive computer graphics and animation. In that area,

nearly all graphics systems share a common aspect for which DALI offers

an alternative, namely the use of what w, shall call an instance tree

(defined below) to represent the picture. Therefore, rather than

discuss many individual ef'orts in what would b. a rather repetitive

fashion, the general raticr.ale behind instance trees, their advantages

and their disadvantages, will be discussed; then, exceptions to the use

of instance trees will be covered.

The almost universal choice as a method for changing a displayed

image - with some exceptions, including EULER-G [Newl] and SKETCHPAD

[Sutl], which will be discussed- is to allow the user to modify an

internal data structure called the disßla* £11*. The display file is a

complete description of the desired visual image, in the sense that it

contains all the data scanned to produce the signals which drive the

visual-image-producing hardware; the scanning process may b« performed

either by hardware or by software, or by a mixture of t.e two, A result

of this use of a display file is that from a program's point of view,

the display file is the picture: changes to the display f le are changes

to the picture, and the structure of the display file is the natural

structure of the picture.
There is surprising unanxmity - again, wich a maverick, BEFLIX

[tool], to be discussed - as to how >he display file shoulc oe

structured, so much so that the principal differences between structured

display file systems lie primarily In the choice and syntax of

primitives, not in the structure itself: The display file is i 'itably

structured as a reentrant tree, reminiscent of a progran Ath

subroutines; this is the instance tree mentioned ?.bove. The manner in

which instance troes are typically used to represent a r.oture is

described in some detai1 oelow.

TT

17

The visible imape is created from the instance tree in the manner

of a processor executing a program: the tree is scanned in a depth-first

manner startine: at the top node, and the immediate descendants of each

node are "called" like "subroutines" of their Darent node, A criven node

may have several parent nodes due to re-entrance; such a multiply-used

node will be "called" several times and thus the "subpicture" it

represents will appear in the final picture several times. This

instanoe-tree scan may be performed directly by special-purpose display

hardware [E&S1, E&S2], or it may be done at least partly by software.

The terminal nodes of the instance tree contain data describing one

or more primitive visible objects, e.R, , dots and lines; these terminal

nodes are often referred to as items, and are similar to procedures

which call only primitive (built-in) procedures. The non-terminal nodes

of an instance tree are often called groups. Grcips oontain only

references (pointers) to items and to other groups; circular group

references are diitllowed, since there is no way to terminate the

implied recur, ion. The references which groups contain are called

instances of the objects referred to; the object referred to by an

instance is called its master.

The relationship between an instance and its master 's very like

that between a procedure call and the procedure itself; this analogy is

made even closer by the fact that instances commonly have parameter

settings associated with them, somewhat like procedure arguments.

Unlike general procedure arguments, however, the set of possible

instance parameters is fixed: the way a given instance parameter can

affect the display of its master is fixed by the implementation, and

only those parameters provided by the system as primitives can be used.

The types of parameters typically provided for use in instances can be

somewhat arbltrtPlly divided into two e-roups, here called

transformations and attributes.

Transformations are analytically definable two- or three-

dimensional mappings between coordinate systems. Typically they include

tm^^^— XJ

18

translation, scaling (zooming), rotation, and clipping; the latter is

the blanking of any part of a visible object which would appear outside

of a given polygonal area, usually rectangular. Successive

transformations are concatenated, i.e.: For each use (instance) of an

item (set of primitive visible objects) there is a distinct directed

path from the root of the tree to the item, passing through one or more

instances; the total transformation applied at each use of the data in

the item is the concatenation of all the transformations along that

path, performed in the order indicated by the path's di-ection. Since

several such paths can exist, a given item can simultaneously produce

several images differing in position, size, orientation, etc. Exactly

how such concatenations are performed is described in [New2].

Attributes are somewhat less analytically tractable variations on a

master. They include such things as color, intensity, "auto-blink",

"hit" sensitivity, etc. The manner in which they are concatenated, if

they are concatenated, varies widely.

Typical operations which can be performed on instance trees

include: (1) the creation of items, involving the specification of the

primitive elements to be included in the icem; (2) the destruction of

items; (3) the creation and destruction of roups; (4) the insertion of

instances into groups and the removal of instances from groups,

accompanied by, respectively, the creation and the destruction of the

instances involved; (5) the modification of instance parameters; and,

less often, (6) the insertion and removal of primitive elements from

items. Smith's GPL/I [Smil] is a good example of a language system

incorporating nearly every feasible primitive; it also has a very nice

syntax for group and item construction.

Many minor variations on the above-described instance tree

structure exist. For example, many subsets of the instance parameters

listed are used; item data (primitives) can sometimes be included as

part of a group; and "instance parameters" sometirss appear as part of a

master rather than as part of an instance, strange though that may seem.

Tu"

19

Instance tree display file structures are In common use, for

example In [E&S1, Thol, New2, Bull, Hurl, Sail, Chrl, Bae!].

Significantly, this type of structure forms the basis of the recently

proposed protocol [Spr2] for computer graphics across the ARPA network,

a communications net connecting many different types of computlnr

facilities. Furthermore, the only currently published book attempting

to deal with Interactive graphics as a whole, [New2], refers to an

instance tree structure as simply a "structured display file". Implying

that only this one type of structure is worthy of consideration!

Clearly, Instance tree structures must have advantages; what are they?

In many cases, a particular Instance tree structu-e can be chosen

that is extremely close to the 'apabilities of the display hardware, so

that it can be directly used as hardware input. Beln^ able to make such

a match is extremely valuable, since it has great speed advantages

especially when refreshed displays which oontlnutlly "re-execute" the

structure are used [E&S1, E&S2, Pfil, w^.J: the displayed image

immediitely chafes with changes to tne structure. However, Instance

trees whim do not match the abilities of .he aisplay hardware are often

used, as must be the case with the ARPA network protocol. Not all

display hardware has subroutining, for example, nad general rotation is

rather uncommon. For subroutining, host computer interrupts can be used

to simulate more powerful display hardware, as in the system described

in [SUVI]; but for rotation and most transformations, such simulation is

impossible. In the latter case, a second transformed display file must

be created from the instance t^ee [New2], containing multiple copies of

master- which are used with different instance transformations. This

clearly vitiates the speed advantage, so there must be other advantages.

An advantage of instance trees often mentioned is space saving due

to multiple use of instances [Newl], This is very close to the

argument, originally made for includiig facilities for subroutine or

procedure use in hardware and programming languages. Like the multiple-

procedure-use argument, the multiple-instance-use argument is not the

^^^^

20

full story. The only substantial use of repetition in instance trees is

at the lowest level - sharing of immediately displayable items,

particularly characters, furthermore, much spnee-saving of this sort is

illusory. Especially when many transfonnati-.ns ?re available, instance

overhead is high enough, and immediate mi.ltlple-line or -dot formats are

compact enough, to wipe out the prospective space saving. For example,

it usually does not save space to use an "arrow" instance in both a

"diode" and a "transistor". Thus space-saving alone would require only

a one-level tree. Yet trees of depth 4 or 5 are common — seldom more,

as pictures tend to be much "broader" can they are "deep".

Furthermore, if a transfo-med display file is necessary, much space

saving of this sort is intrinsically wipod out by the multiple

transformed copies needed. So another advantage must exist.

The primary advantage of instance trees, -x conceptual advantage not

dependent on hardware, is this:

Instances provide loci of control over whole

sections o: the picture, because change to instance

parameters propagates down the instance tree to its

leaves,

A single change to a rotation parameter, for example, can causu hundreds

of changes to individual lines; elements of a group can be moved

relative to one another, or moved in parallel maintaining relative

positions, by use of a two-level instance structure. This automatic

propagation of change is a major conceptual advantage which greatly

simplifies the control of a changeable picture. Such propagation, and

not Just the naked ability to create and name groupings of objects, is

what allows the user to think ir terws of "higher-level entities".

However, the kinds of changes which can be propagated by instance

trees are limited to a fixed set of transformations and attributes, and

the path of propagation is fixed: parameters can depend only on like

parameters, and only those of the parental node. Thus, for example, it

is not possible to make the position of text labelling part of a

21

rotating object depend on the object's rotation and shape so as to keep

the text unobscured. Another example: a sca.'e change cannot cause the

amount of visible detail to vary; no predefined "level of detail"

attribute exists in any instance tree system known to the author.

Therefore, instance trees cannot fully represent a dynamic picture,

in the sense that they cannot produce an arbitrary desired picture which

is fully definable as a function of a set of parameter values. This, it

must be noted, la a problem distinct from that of represeitins static

pictures for purposes of display. The latter is a significant problem

only if the picture is so complex that space is a major issue, or if

substantial transformations, such as hidden-surface removal, must be

applied to the pictjre as a whole.

That an instance tree cannot fully represent a desired picture is

clearly not an insuperable disadvantage. Dynamic graphics systems are

generally embedded in general-purpose comoutiuK systems, so a program

can always be written to bludgeon the instance tree into "being" the

right picture, effectively providing the special-purpose parameters and

relationships among picture elements which tne instance tree cannot

provide. To do this, a separate data structure is needed to relate

elements of the instance tree with each other and with the real data

they are representing. Not surprisingly, such data structures can be

extremely complex; this is reflected in the wide literature on "data

structures in computer graphics", e.g., [vDal, vDa2, Abrl, Will, Gral,

Cotl], and on the fact that computer graphics pioneered the use of many

of the most complex types of data structures — e.g., rings in SKETCHPAD

[Sutl] and CORAL [Suw2], and associative data bases in LEAP [Rovl].

This need for complex data structures must be considered a major

problem, if for no other reason than that the data structures themselves

are considered a major problem.

One system not using an instance tree as a picture representation

is Knowlton's BEFLIX [Knol], one of the first, and still one of the most

22

successful, system for producin, co.puter-.enerated movies; examples of

movies produced with BEFLIX include [Bell. Kno2]. BEFLIX conceived of

the picture as a two-dimensional array of intensity values called a

surrace. One "fine" (18^ x 152) or two "coarse" (92 x 126) resolution

surfaces were available, operated on by a set of scanners which, with a

"scanner .angua^e". could be made to move around the surface(s). read

and change intensity values, and communicate with one another. In

addition, a "movie language" actually produce, film output and performed

operations on rectangular areas in sur-c.s such as copying other areas,

dissolving to other areas, zooming, ate. The use of structures lik. an

instance tree is actually orthogonal to BEFLIX's use of surfaces; a tree

of surfaces and instances of surfaces could be constructed to fulfill

the same needs. However, the small number of surfaces available (two) -

further restricted to only one surface in a more recent similar system.

EXPLOR [Kno3] - P-hibits this. T^e user must always consider his

picture as a pure image, and rot. e.g., as a collection of independently

existing but related objects which he can manipulate and alter; this may

have advantages in some puroly artistic endeavors, but is a decided

disadvantage in more general use.

Another system departing from the instance tree syndrome is

Newman's EULER-G [Newl]. an extension of EULER [Wirl]. a language -which

is itself a generalization of ALGO.. In EULER-G. execution of a frame

DroGedu- , causes immediate construction of a monolithic transformed

display file which is directly digestible by the display hardware. The

instance tree actually has virtual existence during this execution, as

described below:
The EULER-G s>stem interprets primitives su-n as

line to [x.y]

which draws a visible line from the "current" position to the position

(x y). «cording to the current settings of transfonnation parameters.

The current transfonnation can be concatenated with other

IV

23

trans formations in a dynamic block-structured fashion as part of a call

to a general EULER procedure; at the return from such a call, the

transformation in force before the call is restored. Thus, the virtual

tree of procedure calls performs the functions of an instance tree but

allows more generality, since an isomorphism is attained between a

pj^ture element and the arbitrary procedure used to create that picture

element: The contents and structure of the virtual instance tree are

controllable in a natural way by the standard EULER mechanisms for

parameter passing, iteration, and conditional execution. Thus, the

picture can in fact be an arbitrary function of a set of parameters;

this is a capability which, as was pointed out above, is practically

impossible to attain with instance trees — or, indeed, with any other

passive data structure. However, this ability is obtained at the

expense of completely re-creating large portions of the picture both in

order to make changes, and also in order to process pointing inputs from

graphic input devices. The resultant execution-time overhead is

significant, and "smooth" motion is essentially impossible.

Another general approach to creating changing pictures is what is

referred to in [New3] as the "viewing algorithm" approach. The term

viewing process approach will be used here instead, both because

"viewing algorithm" is used with a different meaning in [New2], and

because this approach conceptually involves the use of two processors

sharing a single physical memory. A single physical processor may of

course be time-shared to achieve the same effect, and so we will speak

of two processes aa being involved; these will be called the application

process and the viewing process.

The application process performs the "real" work involved,

manipulating the data in the shared memory in the course of whatever

calculation is being performed. While the application process is

running, the viewing process simultaneously ac-toes the data being

manipulated, repeatedly and continuously traversing all the data to be

24

displayed and constructing a picture which represents that data in the

desired fashion. Since the display process' operations are arbitrarily

programmable, this method shares with EULER-G the advantage that the

structure and parameters of the picture can be very general.

In a certain sense, the viewing process method is utilized by any

system which uses a separate process or processor to do the continuous

re-di3play needed with refreshed image generation hardware. What

distinguishes the viewing process method is: (1) the lack of an internal

representation of the picture distinct from the structure the

application process uses; and (2) tlM fact t^.at the viewing process

independently accesses the shared data structure to continuously

regenerate the picture while the shared data is simultaneously being

altered by the application process. If condition (1) is not met, the

system is usually closer to an instance tree system; if condition (2) is

not met, the system is instead closer to EULER-G.

Because the viewing process accesses the shared data structure

while it is being updated, the viewing process method has tne advantage,

in theory, that the application process need not take note of the fact

that a picture is being generated; it merely changes its data and the

picture automatically changes in response.

In practice, however, a truly formidable amount of inter-process

synchronization is necessary because changes to the data can leave it in

a momentarily inconsistent state capable of thoroughly deranging the

operation of the viewing process. For example, it ?s not possible with

conventional conputer architectures to add an element to a two-way

linked list without, at some point in the operation, making the pointer

relations "incorrect", i.e., at some point the structure is not in fact

a two-way linked list; if the viewing process depends on the structure's

always being a two-way linked list, it may fail.

Another problem, which this method shares with EULER-G, is that the

overhead involved in completely regenerating the picture can be quite

high. If a single time-shared processor is used, this will slow the

^

25

application process considerably. If, on the other hand, two physical

processors are used, the application process may run too fast for the

viewinc; process to keep up. This may lead to pictures which are

inconsistent in the sense that different parts of the picture reflect

differing successive states of the data; such global inconsistencies may

also lead to failure of the viewing process if considerable care and

forethought are not applied.

The problem of the application process "runnintr too fast" is

actually r-re se\;re than it might appear at first glance. This is due

to two factors: First, a data structure which is appropriate tnd

efficient for the application process may be decidedly inappropriate and

inefficient for the purpose of generating t\\e desired image. Second, if

the desired picture is not a straigh forward transformation of the

application data, the amount of computation required to create the

desired picture may be quite large. As an extreme example of both of

these problems, the viewing process may have to construct an

aesthetically pleasing layout of a graph described only by its

connectivity matrix.

Despite these problems, the viewing process approach has been

successfully used in several applications where the desired picture was

a simple transformation of the data and a data structure could be chosen

which was a good compromise between the needs of the application process

and the needs of the viewing process; examples are [Chrl, Robl, Suf].

Of particular note among these is Ivan Sutherland's SKETCHPAD system

[Sutl], which will now be discussed at some length.

SKETCHPAD is of course the seminal work that pointed out the

virtues of interacting with a computer by means of pictures; the

historical effect of this system on the entire field of computer

graphics would be difficult to over-emphasize.

In discussinsr SKETCHPAD, it is important to note that this system

is neither a "graphics package" nor a "graphics language" as those terms

/

I

26

are nor mally used, but rather an application program which used

interactive computer graphics as an aid to carrying out its application

— namely, the creation of pictures.
The method used to display the pictures described by SKETCHPAD'S

application data — i.e., a viewing process -- has already been

described. Of interest here are the techniques used in the application

itself.
It must first be pointed out that SKETCHPAD'S application should

not a priori be overly relevant to the general topic under discussion,

since that application was the creation of static, not dynamic,

pictures; the motion of pictures visible in SKETCHPAD was due to the use

of the display process technique to show succ-issive intermediate stages

in the construction of the desired static picture. What makes SKETCHPAD

relevant to this discussion is the fact that the method it uses to

construct a desired static pictures is modification of a ore-existing,

and possibly null, picture; and such modification is, of course, change.

Keeping this in mind, we may note that SKETCHPAD'S application

subsystem, but not its viewing process display subsystem, structures the

picture in two ways: First, the picture is structured as a re-entrant

tree composed of instances of master subpictures; the terms "instance"

and "master" originated with SKETCHPAD. Second, unlike t' e

unidirectional change propagation of the "instance tree" systems

discussed earlier, the SKETCHPAD picture contains an arbitrary non-

hierarchical non-directed graph composed of multi-way constraints, i.e.,

N-ary relations between the coordinate and other values used to define

the picture drawn by the viewing process. One of the primary jobs of

the application subsystem js to make every value used in the picture

reflect all the relations between values desired by the user. If no

circularity exists a-nong all the relations— i.e., no values are

defined in terms of themselves — appropriate values are found at once;

otherwise, every value in the picture is iteratively re-computed, in the

manner of Gaussian iteration or relaxation [Rail, Varl], hopefully

/

27

converging to the desired solution. Relaxation was facilitated bv

defining constraints as functions which, applied to the values

constrained, returned an error value.

SKETCHPAD'S constraint network is more general than unidirectional

instance tree change propagation in three ways: First, values can be

functions of other unlike values; for example, a rotation can depend

upon a displacement. Second, since constraints are not directional and

relaxation can be used, every value in the system is potentially a locus

of control over every other value; thus, by inserting a very "hard"

constraint between a value and an input device such as a knob, direct

control over any aspect of the picture can be achieved. Third,

relationships can be used which are not repre^entable hierarchically —

for example, parallelism.

As with instance tree systems, the relationships available in

SKETCHPAD are fixed in the sense that a user cannot define an arbitrary

desired constraint without doing programming "behind" the user

interface.

However, multi-way constraints appear to be less general than the

picture/procedure isomorphism available in EULER-G, since structural

changes to the picture — i.e., the addition and deletion of picture

elements, including constraints — are not readily expressible in terms

of error-function constraints. For example, Sutherland states in [Sutl]

that it is not possible to create a constraint that causes a corner to

become rounded; the reason for this is that such an operation involves

the addition of a circular arc and the modification of the constraints

used to hold visible lines onto position values.

The principle disadvantages of SKETCHPAD — or, rather, of a

progr?'..ming language system which could be derived from SKETCHPAD'S

command language — are two, and they both involve the use of

relaxation.

First, relaxation is a hill-climbing technique, and it is all too

easy for any system using such techniques to become "caught" at local

28

maxima different from the desired maximum — i.a., to reach states where

"you c.n't get there from her«". In the interactive situation of

SKETCHPAD, this is not too bad, since a non-malicious human operator can

usually help the system over such "humps"; a malicious operator can, of

course, always bollix such a system easily. Considered as the only

solution technique available in a programming language, however, the use

of relaxation is quite limiting.

The second disadvantage concerns the efficiency of the system. The

mott important cunsideration here is that the apparent inefficiency of

SKETCHPAD is not so much implicit in the system itself as imputed from

the manner in which it was used. With the exception only of the

multiple-truss bridge examples, there are no examples in [Sutl] which

really "need" relaxation. However, constructing many of the examples

without relational circularity generally requires some forethought,

planning, and a more detailed knowledge of the system; in general, doing

this is less convenient for the user, and user convenience was a major

goal of SKETCHPAD. It must be noted, however, that the forethought and

planning required are well within the range of that normally required

for programming, so the "need" for "inefficient" relaxation must not be

considered a disadvantage in SKETCHPAD considered as a programming

language.

In summary, it can be said that SKETCHPAD contains the seeds of a

graphics programming system that is more powerful and not intrinsically

less efficient than the vast majority of graphics systems currently in

use. However, due at least partially to the self-referential nature of

its application, SKETCHPAD can, if viewed hurriedly, engender much

confusion over the difference between static and dynamic pictures and

the nature of non-hierarchical structure in pictures; of course, no such

issues were issues until SKETCHPAD existed-

Perhaps surprisingly, the majority of work in computer animation

impacts only obliquely on the work reported here. This is the case

29

because work in computer animation has been confined to two areas which

are "lower level" — in the sense of "high" and "low" level languages --

than the area of the reported research.

This first of these areas is the creation of a "super paintbrush"

capable of rapidly producing pictures at least corvarable to those

produced by conventional animation techniques; Baecker [Bael] discusses

animation work in this area. As was mentioned earlier in this section,

a "super paintbrush" of some sort is assumed in this document.

The second area of animation research is th retailed synthesis of

the complex interrelated motions and sequenc:. of structural change

which are required in animation; examples are [Bael, Burl, Pari], The

data gathering, functional parameterization, synchronization, etc,

which are necessary for animation impinges on the reported work only to

the extent of placing certain general requirements on the system

developed: (1) it should be possible to make picture parameters

arbitrary functions of time; (2) temporally parallel changes to many

parameters should be possible; and (3) facilities for temporal

synchronization and coordination should exist. All of tnese criteria

are met in DALI,

Baecker's proposed "Animation and Picture Processine Language"

(APPL) [Bael] is, however, relevant, and will now be discussed.

In addition to providing facilities for parallel change,

synchronization, and the gathering of pictorial and motion data, APPL

provides e purely hierarchical structure for pictures. This structure is

extensible in the following sense: Executing an APPL statement such as

"MOVE picture BY distance" — meaning translate a (sub-) picture by a

given amount — recursively applies MOVE to all the subpictures of the

picture until either: (1) a primitive object, e.g., a dot, is found to

which a built-in MOVE is applicable; or (2) a user-defined "picture

type" is found for which the user has provided a MO/E primitive. Thus

change is propagated in a downward hierarchical manner, as is the case

30

with instance trees; but more flexibility is available than with

instance trees, since by defining new picture types, the user can

arbitrarily vary both the effect of a given command and the manner in

which it is hierarchically propagated.

However, APPL provides no non-hierarchical propaeation of change

whatsoever: even a "relative line" -■ i.e., a line segment defined by an

endpoint and a vector distance, and ■•automatically" moved when the

endpoint is moved — cannot, as Baecker points out, be defined in APPL.

Why this should be the case, and in what sense it is true, is perhaps

best explained by example:

Suppose there is a pictu- e PA containing an endpoint E, and we wish

an otherwise unrelated picture PB to be centered at E. Initially, PB is

constructed using E, and shares it with PA. Now, if PA is MOVEd, the

position of E will -- or at least can — change; but there is no way to

indicate that since E changed, PB should be MOVEd also. The only way to

make .'B change whenever E changes is to make PB part of PA. But there

are situations where this "containment" solution does not work; for

example, a line which is to Join the centers of two independently moving

objects cannot be "part of" either object. Maintaining such non-

hierarchical relationships is referred to as "constraint satisfaction"

in APPL and considered outside of the domain of the language.

It should be noted, however, that none of the examples p^ivei above

— the relative line, the centered picture, and the line Joining centers

— involve circular constraint relationships; the desired picture is

quickly and easily computable In closed form, without the use of any

type of "relaxation". The problem is that the lack of any structure

other than hierarchical structure makes it impossible to express the

desired behavior of the picture without stepping outside the bounds of

the formalism which is provided.

The problem that purely hierarchical picture description formalisms

have significant practical limitations also affects instance tree

systems. There, however, this problem is overshadowed by other

31

concurrent limitations, including the necessity of havinr pargrreters

depend on like parameters and the limited set of parameters available.

It is also the case that instance tree systems generally provide some

limited, but useful, non-hierarchical relations, e.P., relative lines.

Since APPL removes the additional limitations and provides no non-

hierarchical relations at all, it is an excellent example nf both the

c-'pabilities and the limitations of purely hierar'.nical picture

description methods.

In comparison, a major poal of the work presented here has been to

desipn a system in which arbitrary user-defined non-hierarchical

relationships -- as well as hierarchical relationships -- are

specifiable in a manner conducive to their efficient computation.

1.3 Summary

Chapter 2 presents a characterization of dynamic computer irraphics

and the tasic system and lanpuaee organization of DALI. In particular,

it presents DALl's division i;ito (1) M-DALI, iealinr with chanres that

occur instantaneously, i.e., at monadic instants of time; and (2) S-

DALI, a superset of M-DALI, which deals with smooth chanees occurini*

across temporal intervals as sequences of monadic chanrres.

Chapter 3 presents the basic concepts of M-DALI, including: the

four basic DALI objects, namely outputs, daemons, picture modules, and

picture functions; the two structures which fnread through a picture,

namely the containment tree and the data web; and the manner in which

DAL... pictures, as programs, are "executed". These are the central

issues in DALI. Understanding this chapter is absolutely critical in

understanding DALI.

Chapter 4 discusses further issues in M-DALI, including coordinate

system transformations, structural changes to picture clemen ,

32

interdependence, deletion, and "hif'-testinp; it also Includes a

realistically laree example.

Chapter 5 considers the problem of circular dependence amonr

daemons, leading to iteration and relaxation.

Chapter 6 then presents S-DALI, and Chapter 7 presents exclusions

and summary.

Appendix 1 provides an alphabetized list of the primitive DALI

procedures and summarizes their actions. Appendix 2 similarly lists the

objects defined by DALI, their components and purposes. Appendix 3

presents some details concerninp the possibility of retentive storage

manacement — "rarbage collection" — not covered in the text.

i

33

Chapter 2

A Global Overview of DALI

2 1 Static Versus Dynamic Translation
to Pictorial Form

At the highest level of abstraction, ail dynamic graphics systems

including DALI are divisible into two primary components: the driving.

process and the rraphics system. (Fig. 2-1a)

The driving process is the ultimate source of the data on which the

picture t r- V-N K^t c* e»" T»- 1 c the applications propram ir. 4 ,* o v ft« 11V 4 « « 2 P. d

contains in a form which it finds convenient the data which is to be

interpreted graphically. This data may or may not have explicitly

graphical romponents. It could be an array of numbers, to be shown as a

graph; a complex interconnected data structure, to be shown as a circuit

schematic; the positions and attitudes of characters, a background, and

a camera angle, to become one or more frames of a movie; etc.

The function of the graphics svstem is to translate selected parts

of the driving process' data into the desired pictorial format, a

process which may in general be either static or dynamic. The

differences between the two types of translation are the primary subject

of this sec'ion. They are best explained by first dividing the frraphics

system a bit further into a Picture definition system, a hardware

display file, and a dl^lay processor (Fig. 2-1b). How this structure

relates to the systems described in section 1.2 will be discussed at the

end of this section.
The picture definition system translates driving process data into

1
314

0
1 \

G
R

A
P

H
IC

S

S
Y

S
T

E
M

i i

D
R

IV
IN

G

P
R

O
C

E
S

S

-1 4i

UJUJ

w2

a CD

2
UJ
H
tn

£
<

o

I

U-

I

35

a representation of the desired picture which can be consumed by the

display hardware. This representation is the hardware display file; it

is accessed by the (hardware) display processor to produce a visible

itnape. We are concerned only with the creation and manipulation of the

hardware display file by the picture definition system.

In static translation to pictorial form, the picture definition

system always scans all the drivintr process data needed to produce the

whole hardware display file. I.e., If the drivmr process changes some

relevant datum and an updated picture is desired, the picture definition

system re-scanr all the data for the picture and creates an entirely new

hardware di .play file which replaces the previous one. This process may

be viewed as successive retranslation or picture regeneration.

Thi contrast between static and dynamic translation occurs when the

driving process changes the data on which an existing picture is based.

The dynamic method does not create an entire new display file but rather

alters the existing file to reflect the change?, »ceeasin» only that

driving process data relevant to the changes. Dynamic translation may

be viewed as propagating drivine process changes across to the

corresponding parts of the hardware display file, bearing in mind that

this propagation is an active process which transforms the nature of the

change. It may also be viewed as incremental translation or true

picture change, as opposed to regeneration.
In the static case, the picture definition component need retain no

state information; it is simply one or more pure procedures re-applied

from scratch to the driving process data. In the dynamic case, state

information must be retained from change to change in order to define

the mappine from the driving process data to the corresponding elements

of the hardware display file.
Dynamic translation potentially requires less computation than

static translation since full regeneration of the hardware display file

is unnecessary; the time savings resulting from this can be quite larcre,

especially when few elements of the picture move simultaneously, as is

36

commonly the case. However, there may be significant overhead involved

in updating the state data and actually using it to find out what to

change; also, the space needed for the required mapping data may be

large.

In addition to a potential saving of computation time, dynamic

translation is inherently more powerful „han static translation, since

the former can produce changes to the driving process chansres th,iiselves

and the latter cannot. For example, suppose that a driving process

datum which is translated into a bar graph element's height is changed

from 3.0 to 1,5. All that static translation can do is first show the

"3.0" height, and then — in the "next" picture — the "'4.5" height; it

can do nothing else, since the "3,0" height is no longer available when

the "l\.5n height is generated. In comparison, both the initial and

final heights are potentially available simultaneously in dynamic

translation; hence, the sudden change can be converted into a smooth one

by interpolating the height change into many small successive steps.

Lest the reader consider this a frivolity, it mould be noted that such

smootning nas the very significant, effect on the human viewer of

maintaining the identity of the changed picture element across and

through picture changes. This can be very important if major changes

are made in the picture, since it minimizes the problem of discovering

how the new state of the picture, and hence of the driving program data,

relates to the previous one.

Whether dynamic translation has any inherent power over static

translation beyond smoothing and lower computation cost depends on how

strictly the line is drawn between the two types of translation. Where

this line is drawn is often a question of which data belongs to the

driving process, and which belongs to the picture definition as part of

its state. For example, the inverse of smoothing, i.e,, updating the

picture only every Nth driving process data change, requires a modulo N

counter. If that counter is considered part of the driviner process,

i.e., the driving process informs the picture definition only of every

/

4J

/

37

Nth change, then static translation can provide this feature. On the

other hand, if the counter is part of the picture definition, i.e., the

driving process infonrs the picture definition of all the changes and

the picture definition itself chooses when to run, then dynamic

translation is being used. In general it can be said that dynarric

translation provides more convenient mechanisms than static translation

for relating the dynamics of the visual image to the dynamics of the

driving program, and in keeping purely display-oriented operations

separated from the application.
However, a strict distinction between static and dynamic

translation is often difficult to make, since for efficiency reasons,

static translation is seldom found in I completely pure form; usually

there is some mechanism for maintainine several simultaneously visible

display files, so that large quantities of static background data do not

have to be regenerated for every change. From the discussion above,

this appears to be dynamic translation since only "relevant" parts of

the picture are changed; but the mapping between the driving process

data and the elements of the picture is sufficiently crude that the

overall tone of such as system is really that of static translation.

EULER-G [Newl] is a good example of system like this.

The instance tree graphics systems discussed in section 1.2 provide

for the breakdown of the hardware display file into a lar*e enough

number of small units to allow true dynamic translation, possibly with

intervening translation into a transformed display file truly

corresponding to the hardware display file.

The detailed relationship between the four-element organization

presented here - driving process, picture definition, hardware display

file, and display processor — and the instance tree systems discussed

in section 1.2 depends on the capabilities of the display processor. If

the display processor is capable of producing a visible image directly

from the instance tree used, then the hardware display file is the

38

instance tree, and the picture definition is the combination of (1) the

utility routines provided for manipulating the instance tree, (2) the

user programs concerned with manipulating the instance tree, and (3) the

user data structure used to relate the instance tree with the driving

process' data. In this case, the user data structure comprises the

state information of the picture definition. Referring again to the

display processor, if it is incapable of usinp the instance tree

directly, then the hardware display file is the transformed display file

referred to in section 1.2, and the instance tree is an additional part

of the picture definition's state data.

The four-element division of this section may be interpreted for

the viewine process method described in section 1.2 in either of two

ways: In the first interpretation, the viewi ig process is considered a

complex display processor; here, the display file and the picture

definition are intermingled with the driving process' data. As an

alternative interpretation, tha viewing process itself, including

whatever temporary internal state data it may have, is the picture

definition; in this case, the hardware display file has only virtual

existence as control words and data passed to a simple hardware display

controller. The first view is usually more appropriate, since some

elements of picture description are usually necessary in the shared data

base used by this method. Interestingly, viewing process systems are

very often static translation systems which — when they work properly

as in SKETCHPAD — operate very auickly indeed, injecting no dynamics of

their own but constructing new pictures fast enough to show every twitch

of the driving process.

I
/

39

2.2 The Top-Level Operation of DALI

DALI fits into the above scheme as a picture definition system for

dynamic translation of chanprinp data into pictorial form. It composes

the picture definition out of "process-like" elements, called picture

modules, and provides for the needed state/mappinp data both through

state components in the picture modules and through the structure in

which the picture modules are embedded.

The notion of dynamic translation as the propagation of computed

change is deeply embedded into DALI; it is the basis for the transfer of

control from picture module to picture module and from the drivine

process to the picture modules. This transfer of control comprises the

top level operation of DALI, and it proceeds in this manner:

(1) Initially, control resides in the drivincr process. This troes

about its business in whatever manner it finds appropriate,

given its programming and data, until (2) occurs.

(2) When the drivine process makes a chanee to data which

determines the current picture, this change is detected by one

or more picture modules and control leaves the driving process

and enters the picture definition.

(3) One at a time, the picture definition's picture modules which

have detected change are eiven control and perform whatever

processing they desire. They may directly change the hardware

display file; or they may make data changes which are detected

by other picture modules, thus causing the latter to eventually

obtain control.

CO When every picture module which has detected chanee has been

run, control returns to the driving process which then takes up

where it left off.

As an example of this process, consider the simple problem,

mentions^, in the preceding section, of making a bar trraph fclewent'a

wmm

J40

height follow a datum in the driving process. The type of picture

desired is shown in Fig. 2-2a, and a possible picture definition is

diagrammed in Fig. 2-2b. In Fig. 2-2b, small rectangles are "watched"

data, circles are picture modules, and dashed arrows point from a datum

to the modules detecting changes in that datum. The elements of the

picture corresponding to elements of the picture definition have been

(riven corresponding labels: PI and P2 contain line endpoint data, module

R constructs a "relative position", and modules LI, L2, and L3 create

and update lines.

When the driving process changes the indicated datum to 4.5, the

following happens:

(1) Picture module T notices the change to '4.5, gets control, and

usini? the value 4.5 concocts a new value for PI. This value

will be used as the new position of the upper left corner of

the bar.

(2) Picture module R, seeing the change in PI, gets control and

generates a new P2, the position of the upper right corner of

the bar.

(3) The changes in PI and P2 are noticed by module LI, which

updates the hardware display file to contain a line correctly

showing the top of the bar, a line between PI and P2,

(U) Modules L2 and L3, in a manner similar to LI, update the

display file to show correct lines on either side of the bar on

seeing changes made to PI and P2.

(5) Control returns to the driving process-

Several points about this example are of interest:

First, the example is oversimplified in that all the modules

require data which has not been shown buu which is part of the state

data. For example, L2 and L3 need the positions of the bottom ends of

their lines.

Second, it should be noted that no picture module explicitly

"calls" another. T, for instance, does not refer to R, LI, and L2; it

.iust changes PI and leaves sorting out the result to the DALI system.

/

'4 1

PI LI

5.0 ■ 2 \ n

P2

4.0 L V ̂ ~U^-'L3

3.0

HARDWARE1

DISPLAY
FILE

B

DRIVING
PROCESS

PICTURE
DEFINITION

FIGURE 2-2 EXAMPLE OF PICTURE CHANGE

*^p

42

Third, we conveniently assumed that R would run before LI, thereby

avoiding running LI twice. In fact, R is guaranteed to run first by

scheduling rules built into DALI which overaee the transfer of control

from module to module.

Fourth, the mechanism for communication among picture modules —

change a value and let those watching it run -- is the same mechanism

"sed to communicate from the driving process to the picture definition.

2.3 Sudden Versus Smooth Change:
M-DALI, S-DALI, and Time

At the normal level of human perception and interest, change to a

picture, or indeed to anything, can be viewed as belonging to one of two

categories: instantaneous change, occuring at an indivisible, hence

monadic, instant of time; and smooth or continuous change which occurs

across a temporal interval. This division is reflected in DALI, which

is divided into two parts: M-DALI. which deals solely with changes

which, though many can occur at once, are all Impressed on the picture

simultaneously -- at an indivisible, Monadic instant; and S-DALI, an

extension of M-DALI, which deals with smooth changes that occur across

temporal intervals by treating such changes as temporal Sequences of

instantaneous monadic changes. DALI, referred to without any prefixed

qualifiers, is actually S-DALI specifically considered as an extension

of M-DALI and therefore containing all M-DALI constructs; the term "S-

DALI" will often be used to refer to elements of S-DALI which are not in

M-DALI.

A primary difference between S-DALI and M-DALI is that M-DALI has

no notion whatsoever of time: the only way an M-DALI program can change

the picture is to say "make this change now" — a statement which, since

the "now" must always exist and so can be implied, is simply shortened

U3

to "make this change". S-DALI, on the other hand, contains the notion

of time as a metric ordering events. Thus an S-DALI program can say

"make change C1 at time T1, make change C2 and time T2, and make change

C3 at time T3". This would result in the occurrence of changes C1, C2,

and C3 in an order defined by the values of T1, T2, and T3; the amount

of time elapsing between the performance of the changes is also defined

by uhe values cf Tl, T2, and T3.

In the preceding paragraphs of this section, the term "time" has

actually been used to mean "time as the programmer intends it to pass in

the picture as perceived)y a viewer", or picture time. This must be

distinguished from PALI compute time, the time which necessarily passes

while the computation of changes to the picture is taking place.

Picture time is always "frozen" during DALI compute time, i.e.,

picture time does not change during the computation of a set of picture

chanRes: all processing in DALI is Instantaneous wicn respect to piccure

time. How this operates in M-DALI may be illustrated as follows:

Suppose an M-DALI program is running to update the picture in

response to some driving process operation. Some picture module says

"make change C1", and, some period of DALI compute time later, another

picture module says "make change C2n; to M-DALI, this whole operation

means "make changes C1 anl C2 simultaneously", where "simultaneously"

specifically refers to picture time. In terms of a motion picture

recording of the resultant display, changes C1 and C2 will both be

performed during the interval between two successive frames of the

movie.

In a situation where the display is being directly viewed while

changes are being computed, the system will attempt to make picture-time

simultaneous changes appear to be truly simultaneous; but this attempt

may be unsuccessful if the system is overloaded.

The numeric values used to indicate times in S-DALI refer to

picture times, and are most easily understood as referring to some

I^^-

44

number of "movie frames" since the system was reset. Arain, if the

display is beinR directly viewed, an attempt will be made to maintain

the desired relationship between picture time and real time as perceived

by the viewer, but it will not always be successful. How picture time

advances will be explained later in this section; for now. it should be

noted that picture time remains constant until all the processing

aff.cti:^ a «üv-n instant of picture time has been completed.

This strict separation between picture time and DALI compute time

is made because the amount of time required for computation can vary in

a manner which is quite difficult to predict; and if aesthetically

pleasin. dynamics are to be created, picture time must be controlled

accurately.
There is actually a third time scale involved in the operation of

DALI- this is the time the driving process takes to do its own

computation, and is called driver time. Driver time is distinguished

fro«. DALI compute time because in a purely M-DALI system it serves to

separate and sequence successive changes to the picture: the driving

program runs, then M-DALI makes a set of "simultaneous" changes, then

the driving pro-am runs again, etc. T^is is something DALI compute

time never does; DALI compute time is always invisible relative to the

separation and sequencing of picture changes. Driver time has no effect

on picture time in S-DALI: picture time is "frozen" while the drivinr

process is running. Driver time may, of course, affect the relationship

between picture time and real time.

The manner in which M- and S-DALI interact with the driving process

„ill now be described, with emphasis on the temporal issues involved.

At this point it should be recalled that, as mentioned in the previous

section, the mechanism by which control is passed from the driving

process to the DALI picture definition, and also from picture module to

picture module, is by changing some value "watched" by a picture module;

this is uniformly the case in both M- and S-DALI.

1

The interaction between a purely M-DALI picture definition and the

driving process consists of repetitions of the following sequence:

(1) The driving process runs for a period of driver time, makine a

set of changes relevant to the picture. At some point, chosen

by the driving process, the current set of changes is presented

to the M-DALI picture definition "in parallel" — i.e., the

driving process voluntarily suspends its operation and allows

all the picture modules "watching" all the changes to run.

(2) Driver time stops advancing, and computation occurs within the

M-DAL. : icture definition for a period of DALI compute time.

(3) DALI compute time halts, and a set of cnanees are

simultaneously impressed upon the picture.

CO Control returns to the driving process, and driver time resumes

its advance.

Two successive repetitions of this sequence are shown in Fig. 2-3, which

illustrates the relationship between driver time. DALI comoute time, and

"pseudo picture time"; the latter is the sequencing of sets of

simultaneous picture changes which derives from driver time and DALI

compute time when only M-DALI is used. Such a system is essentially

useless for serious animation work due to the circumstantial nature of

the intervals between picture changes; however, it can be useful in

interactive graphics since close control over picture time is

unnecessary in such applications, and the added overhead needed to

achieve that control is disadvantageous.

In comparison, the interaction between an S-DALI picture definition

and the driving process specifically refers to picture time:

(1) The driving process runs for a period of driver time and

eventually presents a set of changes to the picture definition

"in parallel" as in M-DALI. At this point, picture time has

some value, initially 0.

(2) Driver time stops advancing.

(2.1) Computation occurs within the picture definition i„r a

*^p

tl6

DRIVER
TIME

DALI
COMPUTE

TIME

VISIBLE
PICTURE
CHANGES

PSEUDO
PICTURE

TIME

FIGURE 2-3 M-DALI OPERATION

L mm

"ZT

47

period of DALI compute time, until all the picture

modules which "want" to run have been run.

(2.2) If any previous DALI computation created picture

changes slated to occur at the current picture time,

all sue1", changes are simultaneously Impressed on the

picture.

(2.3) If any previous DALI computation has scheduled any

operations — not just picture changes — for a

picture time in advance of the current picture time,

picture time is advanced to the earliest such future

picture time and step (2.1) is re-entered to perform

the desired operations; otherwise, step (3) is

entered.

(3) The driving process continues from where it stopped, and driver

time resumes its advance.

Two repetitions of this interaction are illustrated in Fig. 2-4,

which has been constructed under the assumption that picture-time

intervals between picture changes are to be constant.

With respect to the precedinp; S-DALI operation sequence, some

additional explanation is needed concerning the scheduling of operations

for future picture times which is referred to in step 2.3.

S-DALI programs in fact have a general ability to say "do this at

that time", where "that time" is any picture time in advance of the

current picture time, and "this" is an arbitrary fragment of a program;

such operations are then performed during an iteration of step 2.1 as

indicated above.

An operation which is particularly relevant and simply performed at

a future time is changing the value of some "watched" datum; this is

particularly useful since it can call a multitude of other picture

modules into action. S-DALI therefore contains facilities for

conveniently performing such "future changes"; in particular, S-DALI

contains facilities for creating, as units, finite seouences of future

il

iJ8

4

' 11--
s

y

S

—Ä

,-®

,4»

-^

,-<?>

.-■••

_-—--<f

DRIVER
TIME

>l

DALI
COMPUTE

TIME

PICTURE
TIME

FIGURE 2-4 S-DALI OPERATION

/'

40

chanpes to "watched" data. This provides a convenient method of

interpolatino; values and creatine the visual effect of smooth motion.

In addition, the ability to create such future chantre seouences provides

a mechanism for factoring the (picture-)temporal dynamics of pictures

from time-invariant relationships such as connectivitv, visual

complexity as a function of scale, etc.: ti^e-invariant operations can

be dd.e with M-OALI operations performed in response to value chances

which are created and scheduled for future picture times by completely

separate S-DALI operations. These M-DALI operations, performed durine

step 2.1, will of course refer to their eternal "now", i.e., the current

picture time, and hence will affect the picture at the immediately

succeeding step 2.2. This utilization of both M- and S-DALI operations

in a single picture is illustrated in the examole which follows.

The previous bar eraph example will now be modified to interpolate

the heieht of the bar, effectively moving it smoothly ir picture time

from one heitrht to the next. Referring back to Fie. 2-2b, a

straightforward wiv to accomplish this is by inserting an "interpolator"

picture module between the driving process' value and the picture module

T. This is module I in Fig. 2-5, which shows the modified picture

definition. When I gets control due to a chanee in the driving process'

value, it will apply a sequence of future changes to a value V,

interpolating from V's current value to the value provided by the

driving process. Module T now watches V, and so initiates the

generation of many marginally different pictures. The total seauence of

operation goes like this:

(1) The driving process changes its internal value from 3-0 to

4.5.

(2) I gets control during S-DALI step 2.1. UsinK V's initial

value of 3.0, I applies a sequence of future changes to V,

such as (3.1, 3.2, . . ., 4.5), choosine appropriate picture

time intervals between the steps.

so

N / x /

UJO
CL —
3»-

UJ
Q

«a
true
QQ.

UJ
o
z
<
X
o
UJ
oc

h-
o
Q.

X

O

r

i
CO

3
O

/

J

51

(3) S-DALI step 2.1 terminates, and since I made no changes to

values for the current picture time, S-DALI step 2.2 is null.

(14) S-DALI step 2.3 finds the change to V to 3-1, advances picture

time appropriately, and cycles back to S-DALI step 2.1 to

perform the chanee.

(5) In S-DALI step 2.1, V is changed to 3.1, then T runs changing

PI, then R runs changing P2, then LI, L2 and L3 run.

(6) The picture changes scheduled for "now" by LI, L2, and L3 are

performed as S-DALI step 2.2.

(7) S-DALI step 2.3 finds the future change of V to 3.2, advances

picture time appropriately, and cycles back to S-DALI step 2.1

to perform the change.

Ucn Having found the change of " to a.5 at (M6), S-DALI step 2.3

finds no further outstanding future changes and so proceeds to

S-DALI step 3-

(50) Control returns to the driving process.

The process described above is one way to smooth out the bar's

motion. There is at least one other: In S-DALI, it is possible to

create a module replacing T which watches not for immediate changes in V

but instead for the application of an entire secuence of future chants

to V. This T' module can then apply an appropriate sequence of future

changes to PI, an action which can be detected by an R' which can then

apply an appropriate sequence to P2. Appropriate modules Li', L2', and

L3' can also be constructed to watch for PI and P2 seauences and produce

seauences of display file changes. With this method, the only

repetitive work that need be done is the final output of the display

file sequences.

In the chapters which follow, M-DALI will occupy most of our

I

J

52

attention. This is not because S-DALI is intrinsically less important

or less interesting, but because many issues of interest are common to

both S- and M-DALI and they are best discussed without the added

comp]ication of picture time.

2.'» Desiderata

This section discusses background issues which, while of minor

inherent importance to the interesting issues of DALl's semantics, art

necessary to an understanding of the exposition pursued in later

chapters.

DALI is defined as a language extensior,. This has been done for

two reasons: First, it allows the description to concentrate on those

items which are unique to DALI and ionore irrelevant but necessary

details such as the syntax of addition. Second, there is simply no

reason to devise yet another language to express actions which are

perfectly well expressed by existing languattes, e.g., iteration and

assitrnment.

The language of which DALI is an extension will be referred to as

the base language. Essentially any programming language which is usable

in practice can be a DALI base language; all that is required is that

the base language (1) be arithmetically complete, i.e., be a Turing

machine, and (2) contain some mechanism for defining and applyintr valued

procedures or functions to arguments. No assumptions are made

concerning the base language's control or environment structures.

The fact that many languages can be a DALI base language does not

mean that creating a DALI extension is simple or even equally difficult

for all base languages. Major additions to the base language's compiler

or interpreter will be neces3ary, as will the construction of a fair

/

53

body of run-time support routines. For example, a class of assignment

and identifier evaluation is defined by DALI, and run-time manaeement of

"heap" storage is needed.

Furthermore, not all DALI extensions will be eaually powerful. For

instance, DALI programs involving unpredictable storage demands will be

significantly more difficult to write In a FORTRAN-DALI than in a LISP-

DALI.
As a con.-eauence of the fact that DALI is defined as a language

extension, certain ele-nts of DALI are undefined. In particular its

syntax is undefined, as are various common elements of its semantics,

e.g., whether or not it has a GOTO. While in the abstract this causes

little difficulty, it creates certain expository problems, since

examples become singularly difficult to present in the absence of a

well-defined syntax. For this reason, in the chapters which follow the

description will be couched in terms of a single sample base languaKe,

namely LISP. LISP was chosen for these reasons:

(1) It is fairly widely known.

(2) Its syntax is so simple that syntactic issues can effectively

be ignored.
(3) Since the only operation directly performed by LISP ppo^rama ta

functional application, the semantics of an extension can be

defined with relative ease.

The reader unfamil^ h LISP may consult [Weisl] or [Mod].

The principle seman.u. oddity which this choice forces upon DALI is

that there are no unvalued procedures, only functions; however, the

cases where a function returns no relevant value should be clear.

The fact that LISP uses retentive storage management -- a "crarbajre

collector" — is utilized in the "user code" of some of the examples;

however, DALI constructs which are not in the base lansruaee not only do

not require the use of a garbage collector, but also cannot utilize it.

This is further discussed in section 4.3 and Appendix 3-

Of course, the syntax of LISP can be annoying This is partially

i

I

mm^ A

alleviated here by the use of "prefix macro-characters" for certain

much-used functions. Prefix macro-characters are used in MACLISP, the

MIT Artificial Intelligence Laboratory's LISP [Mool]. They are sinele

characters which function as sinrle-arpument textual macros,

transforming themselves and the single following LISP S-expression into

a function call with a single argument. For example, one such macro-

character used in DALI is comma (,), so that:

,expression

expands to

(OVAL expression) .

A character used as a macro-character is not usable as an

identifier (ATOM) constituent.

To underline the fact that DALI should not be considered intimately

bound to LISP, one example of DALI code is re-coded using a different

base lantruace: EULER. This example appears in section 3.12.

Independent of DALI being a language extension, however, it is in a

real sense incomplete as presented here. Many features needed to ound

out DALI to its full extent have been left out; there are many further

additions which could be incorporated, ranging from programmer

convenience measures to additional constructs needed to make potential

capabilities actual. For example, the problem of making pictures change

according to the contents of arrays is nowhere treated, and neither is

the eauivalent problem concerning LISP lists. This has been done from a

desire to address only those issues which are considered basic;

hopefully, additional features can be readily conceived in terms of what

has described. The reader's indulgence is begged if something of

importance has been inadvertently left out.

There are three minor issues which must still be considered:

The first minor issue concerns terminology. Throughout this

document, the LISP term "ATOM" and the term "identifier" will be used as

I

5= a

55

synonyms. This is not precisely correct usape, since, for example, a

number is also an ATOM in LISP. When anything other than "identifier"

is meant, some term other than "ATOM" will be used, e.c, "number".

The second minor issue concerns linguistic meta-syntax. The method

used to describe the use of new functions is to etive a sample

application, such as

(POS x y)

and to describe in the text the function's arguments, value, and side

effects as relevant.

Within a sample application, lower case items, such as x and y

above, are syntactic meta-variables. Meta-variables beginning and

ending with a dash (-) are used to represent multiple objects; otherwise

each1 one represents a single object. Thus in the sample application

(ONS cndtn (-outs-) -body-)

cndtn is a single object, but -body- is some number of objects, and (-

outs-) is a list of objects. Any limitations or. the number of objects

represented by a "dashed" meta-variable will be specified in the text.

The third minor issue concerns coordinate arithmetic. For

convenience in expressing examples which use coordinate arithmetic, a

very simple prior extension of LISP will be assumed. This extension,

whose description follows, consists of the addition of a position data

type and some associated functions.

Positions are created by the function POS. An application of the

form

(POS x y)

where x and y are numbers, creates and returns a position which refers

to the location (x,y) in some cartesian coordinate system.

Positions are examined by the functions X and Y. If p represents

(POS x y), then:

(X p) returns x, and

(Y p) returns y.

The arithmetic functions for addition, subtraction, multiplication

56

and division (+, -, *, and /) are extended to operate on positions. If

p is (POS x y), and pi is (POS xl yl), and n is a number, then:

(+ p pi) returns (POS (+ x xl) (+ y yl))

(- p pi) returns (POS (- x xl) (- y yl))

(• p n) returns (POS (* x n) (» y n))

(/ p n) returns (POS (/ x n) (/ y n)).

No operations on positions other than the above are defined.

The fact that positions are here defined to refer to a 2-

dimensional space is not significant. DALI is concerned with control

rather than calculation, and the dimensionality of the images it

controls is of secondary importance.

*

/

J

57

Chapter 3

M-DALI: Basic Issues in Discontinuous Change

This chapter discusses the basic concepts behind M-DALI, a subset

of DALI which deals only with discontinuous — i.e., inst?ntaneous or

temporally Monadic — change to pictures. M-DALI is the foundation of

DALI, and the concepts and objects presented here are M-DALI's b?'ie.

Appendices 1 and 2 provide alphabetized lists and short de^c ."iption

of all defined objects and procedures.

3.1 The Basic Objects:
Outputc, Daemons, Picture Functions, and Picture Jtedule:

As an extension to a base language, here LISP, DALI adds four

primary types of objects: outputs, daemons, picture modules, and picture

functions. The ways these four objects can be manipulated by the user,

and the ways they interact in the DALI system, form the basis of M-DALI.

This section briefly describes the purpose of each of the four,

summarizes some of their characteristics, and illustrates how they are

typically used with a very simple example.

The purpose of outputs is communication; they are used to hold data

to be communicated between independent picture modules.

The purpose of daemons is processine; they are executable

procedures.

The purpose of picture nodules is hierarchical organization and

provision for local storage; they are used as containers of objects,

including other picture modules.

58

The purpose of picture functions is the creation of picture

modules.

An output is an object containing a value. User-writt .1 procedures

can access outputs' values and replace them with other values.

A daemon is a paratneterless procedure executed in response to the

occurrence of an event. One class of events that can cause daemons to

rCwporJ is a c^an^e to the value of one or more outputs. By responding

to output value changes, accessinsr output values, and changing output

values, daemons propagate change in the manner mentioned in section 2.2.

A picture module is an organizational unit containing outputs,

daemons, other picture modules, and a local environment providing data

storage for daemons.

A picture function is a function, i.e., a valued procedure; it is

applied to arguments and returns a value. Application of a picture

function creates, in lieu of a procedural activation, a picture module

which stays in existence until destroyed by the action of a user program

(daemon). The value returned by a picture function is always the newly

created picture module.

A simple example will now be eiven to illustrate how the four

primary objects are typically "ised together.

The picture function RELP, which appears below, does not create any

visible objects. Its purpose is to capture the notion of "relative

position" in this sense: within the module created by applying RELP, a

daemon is created which maintains the value of an output named SUM as

the sum of the values of two other outputs. This SUM output can then,

for example, be used as the endpoint of a line, assuming that the values

added to obtain SUM's value are positions.

RELP can be defined as follows:

(DEFPIC RELP (PI P2 "OUT" SUM)
(ONS (VAL P1 P2) (SUM)

(OUCH SUM (+ ,P1 ,P2))))

59

DEFPIC "declares" HELP to be a picture function takinp two arguments: PI

and P2; these trust be outputs. Applyincr RELP creates a picture module

whose local environment holds PI, P2, anJ SUM. The indicator "OUT"

means that SUM is a local temporary variable initialized to contain a

null-valued output. The body of RELP, which is evaluated (executed)

when RELP is applied, contains a single application of the function ONS;

this application creates a daemon within the created module. This

daemon runs whenever the value of PI or ^he value of P2 changes; this is

indicated by (VAL PI P2). When run, this daemon performs a single

functional application: it applies the function OUCH (for OUtput CHanre)

to change the value of SUM to the sum of the values of PI and P2.

The output which is SUM's value can be obtained for use in other

modules by means of the function OUT. Evaluating

(OUT (RELP A B))

first applies RELP to A and B, which are both oi .puts; this application

returns the new module containing SUM. Then OUT is applied to the

module and returns the SUM output. Since such applications of OUT are

very common, a prefixed exclamation point (!) is used as syntactic surar

for such an application.

If P is an output which has a position as a value, and the outputs

Dl and D2 contain positions used as vector displacements, the following

code fragment creates a chain of relative displacements of length two:

(RELP !(RELP P Dl) D2)

If only D2's value is changed, then only the daemon in the outer module

is run; if DI, P, or both change value, the daemon in the inner module

runs and then the daemon in the outer module runs.

Finally, assume LINE is a picture function creating a module which

maintains a visible line connecting two endpoints defined by output

values; when the endpoint values change, a daemon in this module chancres

the nsition of the visible line appropriately. Then

(LINE P !(RELP P D))

creates a "relative line" from P to P+D which will move appropriately if

P's value, D's value, or both changes.

60

An LINE picture function with the properties assumed above will be

defi .cd in section 3-7.

3.2 The Operation of M-DALI

M-DALl's operation is simply explained in terms of daemon

execution.

There is a single, global daemon queue which holds daemons to be

executed. A daemon is placed on the queue as soon as its condition —

which describes the event the daemon responds to -- is satisfied. The

order of daemons in the queue, and hence the order in which daemons will

be run, is determined by a set of daemon scneduling rules which will be

discussed in Section 3-8-

M-DALl's total operation consists of repeating the sequence below.

The repetition begins when the driving process starts execution, and

terminates when the driving process terminates.

(1) The driving process executes normally until some daemon's

condition is satisfied, e.g., the driving process chances the

value of an output watched by a daemon.

(2) The (bemon(s) whose condition(s) have been satisfied are placed

on the daemon queue, in an order determined by the scheduling

rules, and control leaves the driving process.

(3) Until the daemon queue is empty, the daemon at the head of the

queue is removed from the queue and executed. Any daemon whose

condition is satisfied during such execution is queued; the

currently running daemon is not interrupted.

(4) Control returns to the driving process, and step (1) above is

re-entered.

Sections 3.8 and 3-9 contain further discussion of M-DALI's

operation. The above, however, is all that M-DALI actually does on a

61

global level; everything else is determined by purely local interactions

between outputs, daemons, picture modules, and picture functions.

3.3 Outputs and Daemons

An output contains a value, which „ay be any DALI or base lan^e

object. Outputs function with daemons as a mechanism for communication.

Functions concerned with outputs are:

create output: (OUTPUT initial-value)

obtain value: (OVAL output) or ,output

chance value: (OUCH output new-value)

destroy output: (DELETE output)

OUTPUT returns the new output, OVAL (Output VALue) returns the value,

OUCH (OUtput value CHange) returns the new value, and DELETE returns

NIL. A prefixed comma (,)is syntactic sugar for an application of

OVAL.
DELETE applied to any DALI object, not just an output, destroys

that object; deletion is a complex operation and will be further

discussed in section ^.3.

A daemon is a user-defined parameterless procedure which is

executed in response to the occurrence of some event. The event a

daemon responds to is described by its condition. Only certain classes

of events can cause a daemon to respond; they will be introduced as they

become relevant.
Among the events to which a daemon can respond, a particularly

important class is a change to the value of one or more outputs. Since

a daemon can access output values with OVAL and can use OUCH to change

the value of an output, this class of events provides for the

propagation of chanee as mentioned in section 2.2.

62

If a daemon's condition indicates that it is to be run when a

particular output's value changes, that output is said to be watched by

that daemon. An output whos* value can be chanred by the direct action

of a daemon is said to be soeciried by that daemon. Many daemons can

watch a sinele output, but only one daemon may specify, and hence change

the value of, a given output. A daemon may specify any number of

output.
To facilitate daemon queueing, each output contains (a pointer to)

a list of the daemons watching it. Each output also contains its

specifier to facilitate enforcing the "one specifier" rule. Both of

these elements are null for a newly created output.

A daemon can be created by the function ONC (ON Condition) as in

(ONC endtn (-s-outputs-) -body-) .

This returns the newly created daemon as a value. (-s-outputs-) is a

list of the specified outputs; -body- is the executable body, and

contains one or more statement (S-expressions); endtn is the daemon's

condition.
The function ONS (ON condition and at Startup) takes arguments and

creates a daemon like ONC, but also runs the daemon's body once just

before returning the completed daemon; this is extremely useful for

initialization.

The condition

(VAL -outputs-)

will cause a daemon to be run whenever the VAUe of any of the -outputs-

is changed, i.e.. when any of -outputs- are OUCHed. VAL is the

condition used for the daeaon in the preceding RELP example:

(ONS (VAL PI ?2) (SUM)
(OUCH SUM (+ ,P1 ,P2))) •

The daemon created by this application watches the outputs assigned to

PI and P2, and specifies the output assigned to SUM.

It is often the case that a daemon should watch -ery output to

which OVAL is applied in the daemon's body, and it is always the case

I

63

that the daemon shculd specify every output OUCHed in the body.

Separate specification of watched and specified outputs is thus often

redundant and somewhat error-prone. To alleviate this, two other

daemon-creatinp functions exist: CONTIN and AS-NEEDED.

CONTIN, whose name was chosnn to indicate CONTINUOUS and rhyme with

beglN. is defined in terms of ONS:

(CONTIN -body-)

is eouivalent to

(ONS (VAL -wouts-) (-souts-) -body-)

where -wouts- are all the outputs whose OVAL is explicitly referenced in

-body-, and -souts- are all the outputs explicitly OUCHed in -body-.

For example, the HELP daemon above could have been written as:

(CONTIN (OUCH SUM (+ ,P1 ,P2))) .

AS-NEEDED is similarly defined in terms of ONC.

It should be noted that CONTIN and AS-NEEDED work properly only if

the arguments to OVAL and OUCH are simple identifiers which are assigned

at daemon creation time to the outputs which the daemon will always

reference. This is commonly the case. CONTIN and AS-NEEDED wil be used

in preference to ONS and ONC whenever they are applicable.

The use of OUCH to cause daemons to run invokes a Question: Does

applying OUCH to an output always cause the daemons watching that output

to be run, or do the daemons run only if the output's new value is not

"eaual" to its old value? The latter more precisely captures the notion

of a daemon running in response to a value change, and so will be used.

However, it involves the perennially thorny Question of defining

"equality" in the presence of data structures. This question is

approached here on a pragmatic basis. The followinK defines OUCH's

action:
Given an output outp whose current value is curv, the execution of

(OUCH outp newv) has no effect if any of the following are true:

(1) curv and newv are both integers or both reals, and curv is

6M

algebraically eaual to newv within the precision beine

used-
(2) curv and newv are both positions which are eletnentwise

equal according to (1) above.

(3) curv and newv are equal according to the simplest equality

test available in the base language.

othr-wise, the value of outp is changed to newv and any daemons

watching outp will be run according to the scheduling rules.

In the majority of languages, test (1) above will be subsumed under test

(3). Test (1) is explicitly stated here both to make sure it is

included and to facilitate the definition of test (2), which will

normally not be Included under test (3). The "simplest equality test

available" in LISP is EQ [McCI], which, depending on the implementation,

may or may not subsume test (1); but EQ does not include test (2)

When the phrase "an output is OUCHed" is used, it will be assumed

that the output's value is changed and daemons are run.

To ease later discussion by eliminating a number of special cases,

three conventions will be adopted:

(1) Normal procedures and functions, but not picture functions,

will be considered "pari of" the daemon which invokes them.

(2) The bodies of picture functions will be considered daemons in

their own right.

(3) The driving program, the program running in the driving

process, will be considered a daemon.

The latter two "daemons" - picture function bodies and the driving

program - are anomalous with respect to how they are scheduled for

execution. However, they are sufficiently similar to "normal demons"

in other ways that the above conventions produce fewer special cases

than considering these "daemons" to be a different type of object. In

particular, it can now be said that all user-specified processing done

in DALI is performed by some daemon.

/

65

3.H The Acyclic Data Web

The relations of watching and specifyinK between daemons and

outputs can be diatrrammed as shown in Fig. 3-1. This figure shows the

watchinp/specifyinp relations assumed in the bar sraph example of

section 2.3. The convenLions used in this and later similar diagrams

are: daemons are larjre empty circles; outputs are small empty circles,

connected to their specifier daemon with a short solid line; ?nd a

dashed arrow leads from an -»utput to every daemon watchinp that output.

The daemons and outputs of Fig. 3-1 are labelled to correspond with the

objects in the less formal, and less correct, diagram of Fip. 2-2.

The relationships diagrammed in Fig. 3-1 describe the functional

dependence of daemons upon other daemons, and are important in DALI.

The collection of such relationships will be called the data web of a

picture definition, or oicture. While the data web can be comoletelv

arbitrary, it will initially be forced to contain no cycles, i.e.,

daemons directly or indirectly dependent on themselves. This will be

enforced by two conditions on ONS and ONC which thus also apply to

CONTIN and AS-NEEDED:

(1) A daemon may not be created specifyint? an output already

specified by another daemon.

(2) A daemon may not be created watching an output not already

specified by some daemon.

In the absence of primitives for making structural changes to the data

web, these conditions prevent the creation of functional circularity via

daemons and outputs, i.e., data web cycles; the situation is similar to

a LISP system containing CONS, CAR, and CDR, but neither RPLACA nor

RPLACD. Data web structural change primitives are introduced in section

4.4, and cycles are considered in Chapter 5. ONC and ONS, however, will

always obey the above conditions; another driemon-creatinK primitive is

introduced in section 5.4 for the purpose of creating data web cycles.

^r ^^w

66

DRIVING ,
PROGRAM

ON 4.5

HARDWARl
DISPLAY

FILE

FIGURE 3-1 DATA WEB FCT? THE BAR

nr

67

The acyclic condition labelled (2), above, can be inconvenient when

"constant" outputs, whose values are never to chanpe, are used. To

alleviate this, the function NULLSPEC, ''or NULL SPECifier, exists:

(NULLSPEC outp)

where outp is an output, causes outp's specifier to become a "null"

daemon which watches no outputs and never runs. This allows daemons to

be created watching outp, even though outp has no real specifier. This

is oiler, useful for uniformity, since functions and picture functions

designed to use outputs will not work correctly if passed non-outout

values-

In addition, an output with no specifier, not even the "null"

daemon mentioned above, may be OUCHed by anybody. This does no harm,

since no daemon can watch such an output; and it is occasionally useful

in initialization.

3.5 Picture Modules, the Containment Tree,
and the Picture Structure

A picture module, or just module, is an organizational unit

containing outputs and daemons. A picture module is said to own the

daemons and outputs it contains. Every daemon or output has one and

only one owner picture module. The owner of a daemon becomes the owner

of every daemon or output created by that daemon.

Fig. 3-2 extends Fig. 3-1 to show ownership of daemons by modules.

Ownership of outputs will not be diagrammed, simply because do in? so

would increase the complexity of the diagrams intolerably. A further

convention is introduced in Fig- 3-2: modules are cross-hatched circles,

connected to the daemon* they own by dotted lines. Although It does not

occur in Fig. 3-2, a module can own several or no daemons.

I

68

o~>

HARDWARE'
DISPLAY

FILE

FIGURE 3-2 DAEMON OWNERSHIP IN THE BAR

mm

69

Every module also contains a local environment, which is a mapping

from identifiers to values. The local environment of a nodule is uniaue

to that module, and does not change in size or structure during

execution: both the number of identifiers in its domain ("bindings") and

its orp;anization are fixed at the time the module is created.

The environment used for daemon execution contains more than just

the local environment; this will be discussed in section 3-11.

Local environments provide daemons with private storage which is

retained across separate daemon executions. Ml of the daemons owned by

a module have access tc all of their owner's local environment, and may

obtain and change the value of any identifier therein. Normal

identifier evaluation obtains the value, and no-mal assignment (SET and

SETQ) changes the value.

No daemon not owned by a module can chance the value of any

identifier in that module's local environment.

A number of the identifiers in the local environment may be

designated output identifiers. Daemons not owned by a module can obtain

the values of that module's output identifiers by use of the function

OUT:

(OUT picture-module integer)

returns the value of the inteeerth output identifier of picture-module.

The integer is optional and defaults to 1; if given, it must be greater

than 0. The manner in which the implied ordering of output identifiers

is accomplished is discussed in section 3-6, Picture Functions.

Since OUT is often used with the default arpument of 1, an

abbreviation for such an application will be used: a prefixed

exclamation point (!). Thus the followine all represent the same thinp:

(OUT somethine 1) (OUT something) Isomethin^

Neither a module nor its daemons has any control over what daemons

can obtain output identifiers' values by usinp OUT.

Output identifiers normally have values which are outputs, although

70

this is not always the case. An output which is the value of an output

identifier will occasionally be referred to as an "output of a module".

In addition to daemons, outputs, and a local environment, a picture

module can also contain other picture modules. If a picture module A

contains a picture module B, A is calleo the father of B and B is called

a ftftn. Of A. The owner of a daemon creating a picture module becomes the

new module's father.
Father-son relationships form a tree structure called the

containment tree. The root node of the containment tree is called the

root module when it is not being called the driving process.

Fig. 3-3 adds the ccntalnment tree to the "bar" example, usintr the

last convention for such figures: solid arrowc point from fathers to

their sons. A picture module which contains no daemons has been added

to make the structure shown in Fig. 3-3 a true substructure of that

generated by the written examples which will follow in section 3-12.

The primary purpose of the containment tree is to propagate

deletion: when a module is deleted, its sons are also deleted. This

must be done if a module is to be considered a unit whose internal

details of operation, including the creation of sons, are transparent to

any use of the module, including its deletion. For this same reason,

all the objects owned by a module, including daemons and outputs in

addition to sons, are deleted when the module is deleted. Deletion is

further discussed in section ^.3-
The union of the containment tree, the data web, and owner

relations is called the picture structure of a picture definition or

picture.

71

rJ-,

HARDWARE'
DISPLAY

FILE

FIGURE 3-3 PICTURE STRUCTURE OF THE BAR

12

3.6 Picture Functions

A picture function is a user-defined function, i.e., a valued

procedure, of a special type. Applying a picture function to zero or

more arguments always creates a new picture module and returns that new

picture module as the value of the application. The arguments applied

tc a picture function will occasionally be referred to as "inputs" of

the picture modulr created.

The characteristics of picture functions are bound up in the

process of applying them.

In applying a picture function, the first thing which happens is

that the new picture module is created. The local environment of the

new module is defined by the arputnent list ("declarations") of the

picture function, and the applied arguments are assigned to identifiers

in that local environment. Then the body of "code" in the picture

function is executed as a daemon of the new module. Finally, the new

module is returned as the value of the picture function.

A picture module la to a picture function as a procedural

activation is to a procedure; or, in more classical computer graphics

terms, a picture module is to a picture function as an instance is to a

master.

A picture function has an argument list and a body. The argument

list is described later in this section; the body is one jr more

executable statements (S-expressions). An unnamed picture function is

represented as an application of PICTURE, analogous to LISP's LAMBDA:

(PICTURE (-argument-list-) -body-)

is a picture function whose argument list is (-argument-list-), and

whose body is -body-.

The function DEFPIC, for DEFine Picture function, is used to

"declare" an identifier to be a picture function. In the usable LISP

71

^T

HARDWARE
DISPLAY

FILE

FIGURE 3-3 PICTURE STRUCTURE OF THE BAR

72

3.6 Picture Functions

A picture function is a user-defined function, i.e., a valued

procedure, of a special type. Applying a picture function to zero or

more arguments always creates a new picture module and returns that new

picture module as the value of the application. The arguments applied

to ? p;-!ture runotion will occasionally be referred to as "inputs" of

the picture modulo created.

The characteristics of picture functions are bound up in the

process of applying them.

In applying a picture function, the first thing which happens is

that the new picture module is created. The local environment of the

new module is defined by the argument list ("declarations") of the

picture .unction, and the applied arguments are assigned to identifiers

in that local environment. Then the body of "code" in the picture

function is executed as a daemon of the new module. Finally, the new

module is returned as the value of the picture function.

A picture module is to a picture function as a procedural

activation is to a procedure; or, in more classical computer graphics

terms, a picture module is to a picture function as an instance is to a

master.

A picture function has an argument list and a body. The argument

list is described later in this section: the body is one or more

executable statements (S-expressions). An unnamed picture function is

represented as an application of PICTURE, analogous to LISP's LAMBDA:

(PICTURE (-argument-list-) -body-)

is a picture function whose argument list is (-argument-list-), and

whose body is -body-.

The function DEFPIC, for DEFine Picture function, is used to

"declare" an identifier to be a picture function. In the usable LISP

/

73

system assumed here, DEFPIC actually gives some ATOM a FUNCTION property

which is a picture function. In "canonical" LISP, closer to pure

lambda-calculus, less convenient mechanisms are used.

A DEFPIC application returns NIL, and looks like this:

(DEFPIC name (-arFument-list-) -body-) .

name is an ATOM naming the picture function, -body- is the body of the

picture function, and (-argucent-list-) is the argument list.

Returning to our simple R2LP picture function:

(DEFPIC RELP (PI P2 "OUT" SUM)
(CONTIN (OUCH SUM (+ ,P1 ,P2))))

declares RELP to be the picture function

(PICTURE (PI P2 "OUT" SUM)
(CONTIN (OUCH SUM (+ ,P1 ,P2))))

whose argument list is

(PI P2 "OUT" SUM)

and whose body is

(CONTIN (OUCH SUM (+ ,P1 ,P2))) .

"OUT" in the argument list signals that SUM is an output identifier

which, for convenience, is automatically initially assigned to (OUTPUT

NIL). The body of RELP is a single statement which creates a daemon.

Since CONTIN, defined in terms of ONS, is used, the body of the daemon

is run once just after creating the daemon; thus SUM's value is

conveniently initialized. RELP captures the notion of a "relative

position" in that it provides an output -- SUM — which is continuously

maintained as the sum of two other position-valued outputs; one of these

is the base position, the other is the vector displacement. Applyinp

RELP creates the picture substructure shown in FiP- 3-4a; RELP's

graphical effect is shown in Fig. 3-^b.

The syntax and semantics of picture function argument lists remains

to be explained. The syntax used is based on the argument list syntax

developed for the MUDDLE language [Pfi2] by C. Reeve of MIT Project MAC.

74

PI

FROM
FMHER

P 2 - _ ^50*SUM

SUM

> (Y, P2)

(X, P2)

B

FIGURE 3-4 RELP

/

75

The argument list of a picture function is a list of ATOMs of any

finite lenpth divided into sections by the designators "EXTERNAL",
:'A.X", "AUXO", "OUT", and "OUTU". An example:

(ABC "AUX" D E "EXTERNAL" QWERT L ARGLE
"AUXO" mO P "OUTU" BARGLE "OUT" SUM DIE)

No ATOM or designator may occur more than once in an argument list,

and the order in which the designators occur is not significant. All of

the ATOMs in the argument list, and only those ATOMs, are identifiers in

the local environment of the moaule oreatea. The effect of the

designators on the local environment is the principle issue here.

The term "ATOMs following XXX" will be used to mean "ATOMs to the

right of XXX In the argument list, and to the left of either (1) the end

of the argument list or (2) the first designator to the rieht of XXX,

whichever comes first." For example, D and E are ATOMs following "AUX"

in the above example, and ATOMs following the start of that argument

list are A, B, and C.

The ATOMs following the start of the argument list are initially

assigned to the arguments applied to the picture function in the normal

left-to-right order. The LISP equivalent of call by value is used,

i.e., the expressions in the application are evaluated and the result

obtained is actually assigned in the local environment. This is a

function of the base language used to host a DALI extension, and will

have some effect on how DALI appears to the user. These "argument"

ATOMs are used for initial communication into the picture module.

The ATOMs following "AUX" are initially assigned to NIL, and the

ATOMs following "AUXO" are initially assigned to (OUTPUT NIL). These

ATOMs arc used for purely local internal storage by the picture module.

The mnemonic value of these two designators is "Auxiliary".

The ATOMs following "OUTU" are initially assigned to NIL, and the

ATOMs following "OUT" are initially assigned to (OUTPUT NIL). These

ATOMs are the output identifiers of the picture module, numbered

startinr with 1 in the order of their left to rieht occurrence in the

argument list. They are used for communication out of the picture

76

module, since their values cm be obtained by using the function OUT as

described in the previous section. "OUTU" stands for OUTput

Uninitialized.
The new outputs created by "AUXO", for Auxiliary Output, and "OUT",

for OUlput, are owned by the new picture module. This output creation

is a convenience measure only; the same effect could be achieved by

assignments performed in the picture function body.

The ATOMs following "EXTERNAL" are "invisible arguments". Each

such ATOM is initially assigned to the v'lue of the identical ATOM in

the local environment "closest" to the new module on the path from the

new module through its father to the root module- TK* implied search is

performed only once, namely vshen the environment is created. Each

"EXTERNAL" ATOM has its own "binding slot" in the new local environment,

distinct from that ^here its initial value was found. Thus, "EXTERNAL"

ATOMs are not actually "free" or "fluid" variables, since assignment to

them affects only the newly created local environment. They are

primarily a mechanism for avoiding argument lists of unwieldy length and

passinc aata across modi-les not interested in that data. If it is

necessary to dynamically vary the data passed in this manner, the data

can always be encapsulated in an output.

The five designators discussed above - "EXTERNAL", "AUX", "AUXO",

"OUT", and "OUTU" — are, for simplicity, the only ones which will be

defined and used in this document. Many other useful features could be

added, epitomized by the facilities of MUDDLE [Pfi2]: optional

arguments, an arbitrary number of arguments, user-specifiable value

initialization, unevaluated arguments (LISP's equivalent of call by

name), etc.

/

77

3.7 Examples: Coding the BAR

An implementation will now be given for the picture function LINE

which was used in the relative position examples of section 3.1.

The characteristics desired of LINE modules are four: (1) they have

two inputs, both position-valued outputs, which dictate the positions of

the drawn line's cndpoints; (?) when a LINE module is first created, an

associated entry in the hardware display file is created by the picture

function body and remembered in trie local envi onment; (3) when either

endpoint is changed, the entry in the display file is changed

accordingly by a daemon; CO when the module is deleted, a daemon

deletes the entry in the display file. LINE can be coded as follows:

(DEFPIC LINE 'PI P2 "AUX" LINEID)
(SETQ LINEID (MAKE-LINE-ENTRY .PI .P2))

AS-NEEDED (CHANGE-LINE-ENTRY LINEID .PI .P2)
(ONC DELETE () (DESTROY-LINE-ENTRY LINEID)))

LINEID is used to record some object identifying the hardware display

file entry created by MAKE-LIKE-ENTRY. This object is passed to CHANGE-

LINE-ENTRY, along with the new endpoint values, when either endpoint

changes. LINEID's value is also used to indicate which entry to delete

when the module is delfted. Neither daemon specifies any outputs; if

the AS-NEEDED daemon were explicitly coded with ONC, it, like the second

daemon, would have an empty specifier list. The second daemon utilizes

the condition DELETE, which causes it to be run just before LINE is

actually destroyed. This condition is further discussed in section 4.3-

The picture substruotur« created by an application of LINE is shown

in Fig. 3-5a, and the craphical effect of a LINE is shown in Fig. 3-5b.

LINE and the previously defined RELP module can be used to create a

"relative line" picture function. This is RELINE, below. RELP is

repeated for convenience.

/

78

FROM FATHER

I^ÖÖ

B

FIGURE 3-5 LINE

79

(DEFPIC RELINE (PI DELTA "OUTU" P2)
(SETQ P2 !(RELP PI DELTA))
(LINE PI P2))

(DEFPIC RELP (PI P2 "OUT" SUM)
(CONTIN (OUCH SUM (+ ,P1 ,P2)))

The inputs to RELINE, PI and DELTA, are asrain position-valued outputs

respectively specifyirp one endpoint and a vector displacement. Recall

that a prefixed ! it, syntactic supar for an application of OUT. By

assigning RELP's -utput to P?, RELINE h^s made that output available to

its own callers; this will prove convenient later. RELP is not called

with the values of PI and DELTA; instead the outputs themselves are

passed. Similarly, outputs are passed directly to LINE. Thus RELINE

need contain no daemons, since its containment tree sons do all the

work. RELINE itself serves cnly as a mechanism for treating this

particular construct as a unit which is created, destroyed, and — as

far as its caller is concerned -- operates as a whole.

FiK. 3-6a shovs the picture substructure created by an application

of RELINE, and Fip. 3-6b shows the resultant picture.

In RELINE, the responsibility for forming a relative position and

for drawing a line was effectively delegated to RELINE's sons. Such

delegation of authority need not be total. Suppose, as a simple

example, that a triancle is to be drawn but that one of its endpoints

should be restricted to having only a certa;.n ranee ef "safe" values; if

an endpoint ;.'oes out of the "safe" range, "drastic" action is to be

taken. This ca" be done as shewn in WATCHP3 below. A semicolon

indicates that the remainder of the line is a comment.

(DEFPIC WATCHP'-i (PI P2 P3 "AUXO" FILTER)
;If P3 is safe, send it on via FILTER; else call DRASTIC.

(CONTIN (COND ((SAFE? ,P3) (OUCH FILTER ,P3))
(T (DRASTIC))))

;Draw the triangle, usinp PI, P2, and FILTER.
(LINE PI P2)
(LINE P2 FILTERJ
(LINE FILTER PI))

WATCHP3 itself responds only when P3's value changes. It never needs to

see chances to PI and P2, since its LINE sons take care of them.

^^^^

80

DELTA

FROM FATHER

LINE

»—-p Ö
o*- 0

>(Y,DELTA)

B

(X,DELTA)

FIGURE 3-6 RELINE

^»

81

Now a picture function to draw a bar of the bar praph will be

presented. This picture function, BAR, will draw left, top, and rirht

sides of the bar. BAR takes four arguments, all outputs* (1) V, the

numeric value to be shown; (2) SCL, the scale factor whic , multiplied

by V, crives the desired height; (3) LL, the position of the lower left

corner of the bar; and CO WIDTH, a number Fivinr the desirfd width of

the bar. A coding cf BAR is:

(DEFriC BAR (V SCL LL WIDTV "AUXO" HT WD)
(CONTIN lOUCH HT (POS 0 (• ,V .SCL))))
(CONTIN (OUCH WD (P03 .WIDTH 0)))
(LINE KRäLP LL WD) !(RELINE KRELINE LL HT) WD)))

The two daemons are straightforward. The first places in the HT

output the real displayed height of the bar, computed from the civen

value V and the scale factor SCL. The second converts WIDTH into the

vector displacement desired by RELP and RELINE, placing it in the WD

output. The last expression is a minor exercise in embedding. The

outermost picture function, LINE, draws the ri^ht side of the bar. The

RELP venerates the lower rieht corner. The innermost RELINE draws the

left side of the bar and provides the upper left corner of the bar as an

output. The outer RELINE uses this and the width to draw the top of the

bar, and provides the upper rieht corner as an output so that the LINE

module can draw the rierht side.

Fie. 3-7a shows the picture BAR draws. The lines drawn and the

position outputs used are labelled, and eraphical interpretations of WD

and HT are eiven. Fie. 3-?b uses those labels to make part of the

picture structure created by BAR intellieible: the daemons chaneine LINE

display file entries are labelled as the correspondine lines, and

outputs are labelled as named in BAR or as in Fie- 3-7a, and modules are

labelled with the names of their picture functions. HI daemc.s shewn

as ownerless are owned by BAR, and all modules shewn as fatherless are

sons of BAB.

More complex examples are eiven in section 3.12.

mmm

HT

82

WD
I **

UL UR

9 Li 9

L2 L3

A
LL

6
LR

....:*—-A"
SCL

P^T -^"\
RELP^./

RELINE

o
/

I
\ /

x LINE y(

#0 ^ "" ^^ WIDTH

o
)RELP

LR 0

FIGURE 3-7 BAR

~ - il

The Acyclic Daemon Scheduling Rules
and Their Implenentation

The daemon schedulinp; rules govern the running of daemons during

DALI compute time. I.e., the scheduling rules define when and where

daemons are placed on the daemon queue discussed in section ?.2. The

.e--<hed''linp rules presented here deal only with daemons which watch

outputs. Daemons which have other conditions, e.p., Dr,LETE, are

scheduled as special case exceptions to the dven r'.les; such exceptions

will be explained when other conditions are covered in detail. The

rules discussed also ignore deletion, in that they implicitly assume

that a daemon whose watched outputs are OUCHed will always be run;

obviously, such a daemon could be destroyed after it is queued but

before it pets the chance to run.

The schedulintr rules piven in this seci ion deal only with daemons

in an acyclic data web; this was described in section $.k and will be

more rigorously defined later in this section. This special case is

important since it occurs in many situations of interest, can be handled

simply, and relates to the general case of cyclic data webs discussed in

Chapter 5.

Starting with some necessary definitions, the four acyclic daemon

scheduling rules are presented, followed by discussion of their

implementation. A later section, 3-10, deals with the related issue of

interrupts from external devices.

The needed definitions are these:

A daemon A is a web father of a daemon B, and B

is a web son of A, if and only if A specifies an

output watched by B.

A daemon A is a web ancestor of a daemon B, and

B is a web descendant of A, if and only if there

exists a sequence of daemons D(0),D(1)... ,D(n) such

= B

84

that D(0)=A, D(n)=B, and for every i in the ranee

0<i<n+1, D(i-1) is a web son of D(i).

A data web is said to be acyclic if and only if

it contains no daemon whirh is its own web ancestor.

The acyclic daemon scheduling rules defining the order of daemon

execution in an acyclic data web are:

Rule 1: (selection) A daemor. will be Tin if and only if one or more

of its watched outputs has been OUCHed; once run, it does not

run aeain until such an OUCH occurs aeain.

Rule 2: (noninterruption) Once a daemon D begins execution, no daemon

web-ancestrally related to D may run until D terminates of

its own accord.

Rule 3: (ancestors first) If daemons A and B are ..o be run, and A is

a web ancestor of B, then A is run before B.

Rule 4: (closure) If twc daemons are to be run and they are not

related by web ancestry, hey may run in any order.

Since the data weo in acyclic, no two daemons can be web ancestors of

each other; thus Rule 3 is deterministic and Rule 4 does cover all cases

not covered by Rule 3.

Implementation of the acyclic daemon schedulinp rules for a sinele

processor system is relatively simple and efficient when the only data

web chancres a.-ise from daemon creation and destruction. Modifications

to the implementation piven here will be discussed when other changes to

the data web are introduced in section 4.4.

Each daemon is assigned an unchanRintr inteeer priority at its

creation a^cordinr to the following rules:

(1) The priority of the driving program is 0.

(2) The priority of a daemon is one greater than the largest of its

web fathers' priorities.

The web fathers of a daemon can be easily found: they are the

specifier element of its watched outputs.

8S

Whenever an output is OUCHed, each daernon watchinp that output is

immediately added to the daemon aueue if it is not there already.

Daemons are queued in order of increasing daemon priority; i.e., the

daemon at the head of the queue has the lowest priority in the aueue.

The runninc of daemons, as described in section ?.2, then consists of

removing the daemon at the head of ,he queue from the queue and runnincr

it, repeati-:? this until the queue is emptied.

The fact that daemons are only queued in response to an OUCH

satisfies the selection rule. The noninterruption rule is satisfied

because daemons are always queued before they are run. Orderinr the

queue by increasing priority satisfies the ancestors first rule, since a

daemon's priority must be greater than that of all its web ancestors.

The queueiner process can be sped up somewhat in two ways:

(1) Searching tne data web for already queued daemons can be eliminated

by including in each daemon a flag set when the daemon is queued and

reset when it is removed from the queue for running. ^ All the

daemons watching an output can be queued in a single sort/mer^e throuKh

the queue if the list of daemons watchinr each output is pre-sorted by

increasing priority.

Two already mentioned types of "daemons" are exceptions to the

acyclic daemons scheduling rules: picture function bodies and the

driving program. Both are exceptions to Rule 2, noninterruption, and

both are daemons only by convention.

Picture function bodies violate Rule 2 in that they are executed

embedded in the execution of the daemon callinK them. Delaying their

execution until their calling daemon returns would result in severe

initialization problems: the outputs created by the called picture

function, which are definitely of interest to the caller, would nor

exist until after the caller terminated its execution.

The drivinp program clearly must violate Rule 2 to allow for the

execution of any other daemon. Here ajrain, the execution of other

86

daemons is strictly ervhedded as if it were an extended subroutine or

procedure call. Performance of an OUCH in the drivinp program just

causes daemons to be Queued for execution as usual. Once the desired

set of changes has been made, the drivinp program calls the

parameter less procedure UPDATE-DISPLAY; this initiates the normal

repetitive runninp of queued daemons until the daemon ^ueue is

exhausted, and then returns back to the drivine program. UPDATE-DISPLAY

has no effect if called f'.cm other thar the driving program.

3.9 Goals of the
Acyclic Daemon Scheduling Rules

The four acyclic daemon scheduling rules achieve three very

important goals: (1) daemons are executed a minimal number of times; (2)

daemons can be considered to define invariant relationships between

output values; and (3) daemons operate in a stable environment. These

goals are further explained below, along with the manner in which they

are achieved by the scheduling rules.

The first goal, minimal daemon execution, is guaranteed in two

senses:
First, if it is not necessary that a daemon run — where necessity

is defined by chances in the values of its watched outputs — the daemon

will not run at all by virtue of Rule 1, selection. This is achieved on

a completely local basis, without reference to part of the picture as

"background" and another part as "forefround".

Second, daemon execution is minimal in that if a daemon does run,

it is run only once for e?.ch set of changes induced by the driving

program. This is easily proved: If a daemon D runs twice, then, by Rule

1, one of D's watched outputs must have changed after the first run.

87

Now, D's watched outputs can only be changed by one of his web fathers.

Since, by Pule 2, noninterruption, D's running and his father's runnin?

cannot be embedded in each other, D's father must hav; run after D; but

this means that Rulr " ancestors first, has been violated. Hence D

could not have been run twice.

There is an exception to the above: a daemon initially run by ONS

or CONTIN may run a second time. This arises due to the fact that

picture funcv-loi. body execution violates Rule 2, as discussed in the

preceding section; so does ONS.

The second e;oal, that daemons be considered as defining invariant

relationships between their watched and specifitd cutouts, is critical

to making DALI proerrams operate in a comprehensible fashion. It means,

for example, that whenever and wherever a RELP module is used, that

module's output can be reliably used In place of the sum of its inputs'

values.

This second "relationship" ^oal is primarily achieved by Rule 3,

ancestors first. This is so because Rule 3 guarantees that a daemon will

be able to run and adjust its specified outputs in accordance with its

watched outputs before anyone uses it3 specified outputs. An instance

of this is illustrated in Fie. 3-Ba: if daemon A runs and OUCHes its

output. Rule 3 guarantees that daemon B runs before daemon C; thus C can

rely upon B's maintaininp: some relationship between its output and A's.

Rule 2, noninterruption, is also needed if daemons are to be

invariant relaMonships. This is the case because a daemon can specify

several outputs, holdintr those outputs in some fixed mutual

r-plationshio, and still take an arbitrarily lorift time between separately

adjusting their values. Fig. 3-8b illustrates this.

The third poal, that daemons should operate in a stable

environment, is taken to mean the follcwinr: the only data /alue changes

affeotinft a daemon's operation which occur durinc that daemon s

^KN

(Kyi ^

- -K D 5® B

FIGURE 3-8 MODULES AS RELATIONSHIPS

/

■Ü

execution are performed by the daemon itself. This is achieved by Pule

2, noninterruption. This could be called the "sincle instruction

seauence" goal: it ensures th?.t despite the fact that DALI is a

multiple-environment, "multiple-process" system, each individual daemon

body code sequence can be written as if it were running on the simplest

possible single program counter nachine lacking any form of multiple

processinK or interrupts. Races, hazards, deadlocks, and other

synchronization problems are defineu out of existence from the start.

It should be noted that despite this, Rules 2 and 3 do provide for true

parallel processing of daemons unrelated in web ancestry.

In its use of Rule 2, noninterruption, DALI takes an approach to

the problem of inter-process synchronization which differs from that

normally taken in, for example, operatinr system desi?n -- e.p., [Dijl,

Habl]. The normal approach, which is appropriate to the circumstances

under which it is heir.v used, is to initially assume trulv oarallel

operation, with the concomitant fact that relativ^ scheduling of

operations will be arbitrary and generally malicious. Then an attempt

is made to impose some order on the resultant chaos thro-^h the use of

simple arbiters, semaphores, and the like. In contra.'c, the somewhat

more special-purpose nature of DALI allows it to impose from the very

start an extremely strict organization on when and how separate daemons

("processes") may run, allowing parallelism only when it manifestly can

do i.- harm. This dichotomy between DALI and the usual approach has an

analog in classical finite-state machine design: DALI corresponds to a

synchronous machine rather than to an asynchronous machine.

The last two goals — daemons are relationships and operate in a

stable environment — contribute heavily to the usability of DALI. It

has been the author's sad experience that in systems providing pseudo-

parallel processinfT -- e.g., via non-local GOTOs or inter-process

RESUMES -- the "bugs" that (always!) occur due to inter-process

/

90

interactions are severe enough to have a corrosive effect on a

proKrammer's sanity. Furthermore, this occurs even when the total

number of processes is very small, like two. A system like DALI, where

use of literally hundreds of "processes" — modules — is implied, would

be totally unusable if such "bugs" could occur with their usual

frequency- No small part of the design of DALI was motivated by a

desire to crea-e inte.'-element communication and control-switching

mechanisms whose operation would axlow truly straiehtforward, even

simpleminded programming-

3.10 External Interrupts

An interesting question which concerns the scheduling rules is how

to treat, interrupts from externa] devices, including in particular

buttons, tablets, light pens, etc. Although the reported work is not

primarily concerned with graphic input, as w*3 stated in section 1.2,

this issue is important enough to warrant some discussion.

In the context of DALI, external input devices are best treated as

the specifiers of outputs, and Interrupta from such devices are best

treated as OUCHes of those outputs; e.g., a button has an associated

output with a boolean value, OüCHed to true when the button is depressed

and OUCHed to false when the button is released. Such an OUCH will be

called an external OUCH. It is assumed that a low-level interrupt

handler for a physical device will. In a manner totally invisible to

user programs, "really" interrupt the daemon currently running when the

external interrupt occurs and cause the associated external OUCH, to be

performed at som? time, not necessarily as an immediate part of handling

the interrupt. It should be noted that "the daemon currently running"

does include the driving process. The primary issue is this: exactly

when is the external OUCH performed? I.e., when is the output's value

changed and the watching daemons queued?

91

There are only two absolutely safe times for performing external

OUCHes: just as a drivintr process' call of UPDATE-DISPLAY is entered,

and just before it is exited; recall that UPDATE-DISPLAY, discussed at

the end of section 3.8, causes control tc leave the drivino- process and

enter the picture definition. The reason the entry and exit points of

UPDATE-DISPLAY are "safe" is that only then are we guaranteed that both

the data specified by the driving process, and all the output values

within the picture definition, are in as consistent a state as the user

has provided for; it is a usefu characteristic of DALI that such "safe"

times exist at all.

Performinsr external OUCHes as part of UPDATE-DISPLAY's entry and

exit is equivalent to considering external interrupts as deriving from

the driving process' actions, and thereby separating them completely

from tv" construction of the picture itself; this is a point of view

which has previously been espoused by Newman and Sproull [New2, New3].

It micht seer that performing external OUCHes only as 2 part of

UPDATE-DISPLAY would lead to unacceptable delays between user actions

and responses to them; actually, this is not the case. When interaction

is actively occurring, the driving process will most usually be in a

tipht loop, doine little except repetitive UPDATE-DISPLAYs; tliis loop

need not, of course, be active: an "UPDATE-HANG" could be used to put

the physical processor into a auieseent state from which i' emerges to

do UPDATE-DISPLAYs whenever an external OUCH occurs. If the total

response of the picture definition to an external OUCH takes too long

for reasonable interaction -- e.H. , the value changes get propagated

into a daemon which does a fourth-order Runge-Kutta integration before

returning -- then the programmer has simply overloaded the system.

There is only one other reasonable time to perform external OUCHes:

between executions of queued daemons. This can cut short the

calculation of the current crop of display changes by queueing daemons

of "higher" priority, i.e., of lower numerical daemon priority values as

defined in section 3.8. This situation can be envisioned as halting a

wave of computation which is sweepinp forward through the data web and

re-startinp the wave at some point which was previously passed. There

are two cases to be considered here: first, the case where the

interrupted wave of computation is associated with a previous identical

interrupt, e.g., two pushes of the same button in short succession;

second, the case where the interrupted wave of computation did not have

anything to do with the interrupt, e.?., some large computation is being

performed and a pen-tracking cross it to be moved. These two cases are

discussed below.

If the initial wave of computation was associated with a previous

similar interrupt, performing the external OUCH between daemon

executions is simply useless. This is the case because the demons

actually changing the display file will usually be found at the outer

fringes of the data web, and so they will never i-un if this "re-start"

interruption occurs frequently eiough: despite aU the work beinp done,

the picture never changes, furthermore, as a result of the interruption

the outputs internal to the data web may be in such a state that the

succeeding wave will find fiem inconsistent. Performing external OUCHes

only on UPDATE-DISPLAY, which amounts to let tine each wave of

computation finish before starting the next one, may result in slower

motion in some cases; but at least the display will change, and the

feedback its speed provides may prompt the operator to slow down to a

point where the system can track his actions.

If the interrupted wave of computation was not closelv associated

with the interaction, the situation is somewhat different and may result

in an action closer to the classical situation of interrupt handlinK:

the large wave of computation halts, another smaller wave is begun,

finishes, and the large wave continues from where it left off. Here we

effectively have two separate pictures being produced which "just

happen" to appear on the same display screen. There is no reason why

this should not be done; but as in the first case, any interaction

between the two waves may result in mutually inconsistent output values

4J

93

when the larp:e wave starts up aeain. The possibility of such

inconsistencies can be avoided if the "two pictures" are considered as

two entirely separate DALI systems, and communicate only through

mutually external OUCHes that occur for each of them at the times they

enter and exit their respective UPDATE-DISPLAYs.

3.11 The Total Environment

The local environment is not the only identifier-to-value mapping

available to a running daemon; for example, the value of the identifier

"+" must be obtained from somewhere. The complete set of such mappings

accessible to a daemon is called the total environment, and is described

in this section.

The term "body" shall be used below to indicate either a daemon

body or a picture function body.

The total environment for the evaluation of a body is composed of

four parts:

(1) the temporary environment

(2) the local environment

(3) the global environment

(14) the primitive environment.

The characteristics of these four are summarized in Fie. 3-9, and

will now be discussed.

The temporary environment is a purely temporary storage

environment. It contains, e.g., PROG variables and intermediate

expression results, and is created as needed by a body. It is empty

when body evaluation starts, and is emptied when it stops. Each

temporary environment is unique to a piven body evaluation; it is not,

retained across separate runs of a given daemon.

The local environment is that element of a picture module of the

9«»

(^
Lü
_l m
< f/)

UI
h; >■

s

U

h-
UJ
oc _
Q- ■; cr ^
ui UJ
\- >■

a.

CO
o
t-

ü:
UJ
h- o
<
a:
<
x o

UJ

o
oc
> z
UJ

1

1

to

UJ
o:
3
O

/

^m^

1\

95

same name, and has been previously described. Its salient

characteristics are that (1) it is unique to a given picture module, and

hence to a given group of daemons; and (2) its contents are retained

across body evaluations. It thus provides croups of daemons with

private memory.
The global environment is accessible by bodies according to the

static block structure of the base in Jage. In LISP, it is an

undifferentiated whole, totally accessible by every body. Its purpose

is to provide bodies with a shared pool of memory whose contents may

vary across programs; in particular, it gives bodies access to user-

defined picture function definitions. It is unique to a civen program,

and its structure is fixed through all execution. Its contents may be

chaneed by assignment.

The primitive environment contains the definitions of DALI and base

language primitives. In most base language systems, but not interpreted

LISP, it i? by nature read-only. The LISP exception aside, It is unique

to a given language implementation.

These four environments may be considered as arranged in a stack,

as shown in Fig. 3-10. Identifier lookup conceptually follows the stack

from temporary to primitive environments.

The total environment structure formed by many picture modules in a

totally Quiescent state is chus shallow but broad, having a "local

environment branch" for each picture module. This is depicted in Fig.

3-1 la.
The situation when DALI execution is in progress is separable, for

clarity, into two cases: (1) structurally non-additive change, i.e.,

picture functions are not being applied; and (2) structurally additive

chance, i.e., picture function application is taking place.

In both cases, the unique daemon which is the driving program is

active, and hence has a temporary environment.

In the structurally non-additive case, shown in Fie. 3-1 lb, only

/

96

LOCAL

— TEMPORARY —

AAAAAAAAAA/I

DIRECTION OF
IDENTIFIER LOOKUP

FIGURE 3-10 ENVIRONMENT FOR BODY EVALUATION

r
Q7

A QUIESCENT STATE

DRIVING
PROGRAM

CURRENT MODULE

B NON -ADDITIVE CHANGE

CURRENT MODULE

DRIVING PROGRAM

C ADDITIVE CHANGE
INDICATE
NESTING

FIGURE 3-11 LOGICAL ENVIRONMENT STRUCTURE

/

L

98

one other body will be active, namely that of the daemon currently

running; and hence only one other temporary environment will exist.

This is a conseauence of the fact that a daemon's body evaluation is not

interrupted.

Several daemon bodies may be active in the structurally additive

case, but their activity will be strictly nested. This nesting was

previously mentioned in section 3.7, and is illustrated in Fi(?, 3-11c.

While the above describes the logical situation, the actual

situation is simpler from the point of view of storage management: Due

to the fact that the only multiple activity is nested, all temporary

environments rmy be held in G single stack. This is shown in Fig. 3-12.

The organization of the total environment as described is stack-

oriented, with local environment blocks, each ''ixed in size, held in a

heap. Identifier evaluation is quite simple and efficient with this

organization: (1) primitive environment identifiers are effectively

evaluated at compile time; (2) global identifiers' values are held in

static memory locations; (3) local environment identifiers' values are

found by indexing from a "current local environment" state variable; and

CO temporary environment identifiers values are found by indexing from

a "current stack top" state variable. The context switching required

when entering a body thus consists simply of swapping in a new "current

local environment" state variable. Interpretive implementations, as

opposed to compiled ones, could operate in a similar fashion.

The temporary environment could be static as would be the case if

FORTRAN were the base language. This would rule out recursive picture

functions; but it would not rule out multiple modules from the same

picture function, since the local nvironment holds the information

local to each mo. ""e and only one non-picture-function-body daemon is

runninr at any given time.

An alternative organization could allow each daemon to retain a

temporary environment; in this case, running a daemon could "resume" its

QQ

DRIVING
PROGRAM

CURRENT
MODULE

-TEMPORARY ENVIRONMENT STACK

FIGURE 3-12 STACKED STORAGE OF TEMPORARY
ENVIRONMENTS

/

^^^

TOO

execution wherever it left off. While the resulting system mipht be

more flexible for certain cases, much more active use of heap storape

would be required to record each daemon's temporary environment while

that daemon was quiescent.

DALI utilizes a bipartite environment structure, with the

temporary, elobal, and primitive environments held — for purposes of

this discussion -- on a stack, and the local environment held in "heap"

storage. This is a compromise between fully stack-structured conrol and

environment schemes, epitomized by ALGOL 60, and fully tree-structures

schemes, as for example used by CONNIVER [McDI], OREGANO [Berl], and

SIMULA 67 [Dah2]. A comparison of DALl's scheue with the other two is

interesting and will be pursued here.

Relative to stack-structured schemes, or, for that matter, static

schemes such as FORTRAN'S, DALl's bipartite scheme is less efficient

because it reauires active use of heap storape. However, use of a heap

appears to be a requirement of any system aimed at constructinp chantrinp

pictures; so this cannot be considered a major disadvantape.

DALl's distinction between environment layer' that can be reclaimed

when they are exited — the temporary environment — and environment

layers that always stay in existence until explicitly destroyed (or

parbase colleted) -- the local environment — provides more efficiency

than fully tree-structured schemes, both in execution time and in

storage space; however, it sacrifices some flexibility.

The advantage in execution time arises primarily from two sources.

First, as noted earlier in this section, identifier evaluation can be

simple in DALI; it never intrinsically involves jearchincr. Second,

storasre allocation is simple. The latter is true because retained local

environments, held in the heap, are created and destroyed relatively

seldom; while the actively varyinp temporary environment is easily

allocated on a stack.

Some advantage in storaee space accrues from the fact that

101

temporary environment layers are known a priori to be stack-allocated,

and so can generally be simpler than layers destined for retention.

This also provides some added execution time savings, since less complex

layers take less time to build.

However, the primary spatial advantage of DALI over fully tree-

structured schemes arises from the fact that no matter how deeply nested

in temporary environment layers a retained layer is, i.e., how deeply a

picture function application is nested, the entire temporary environment

is fully reclaimed and its storage immediately re-used. In a fully

tree-structured scheme, all the "temporary" layers in which a retained

environment is nested, e.g., block entries, layers of conditional

evaluation, etc., are retained along with the "desired" layer or layers.

If the ability to exit multiple times out of any already-exited

procedure is desired, this global retention is needed. But this is not

truly necessary if — as in DALI daemons, CONNIVER "methods", and the

majority of the examples the author has seen of SIMULA'? use of this

feature -- the desired ace ion is to enter a "saved" environment, do some

local processing, and exit to an environment not that of the original

caller. Of course, if the only environmental data available is in the

tree-structure, the local processing necessarily makes use of the layers

"above" the currently active one. This is not the case in DALI; daemons

are "sealed off" from their containment tree ancestors' retained

environments fairly thoroughly, a situation made possible because

daemons have the global and primitive environments available.

Nevertheless, flexibility is sacrificed in DALl's scheme, shown by

the fact that in the scheme as presented, it <.s not possible for a DALI

daemon to suspend itself midway through its code and then return to the

suspension point at the next invocation of that daemon. Use of such an

ability can, in some cases, result in a simplification of user code; an

example in which this is true is the interactive drawine program to be

presented in section 3-12, which could have been written in a somewhat

simpler fashion using this technique. As was pointed out earlier in

B= B mmm

102

this section, this capability could be produced by allowirut some form of

special exit from a daemon which causes the "temporary" environment at

the time of exit to be retained until the next invocation of the daemon.

This was not done for three reasons: First, its lack makes DALI a

somewhat less drastic language extension, and hence easier to implement.

Second, use of this feature implies much more active and time-consuming

use of heap storage, "spagetti stacks", or other complex storaee

allocation schemes. Third, the author could not find any examples where

such a facility provided a truly substantial advantage. All of these

reasons are perhaps specious: it may have been the better choice to

allow retention of daemon's "temporary" environments. This may

particularly be the case with respect to interactive input, since, on

the evidence of Newman's finite-state "Reaction Handler" system [New2],

the problem of parsing operator actions as a "command language" may

possibly be fruitfully approached as a use of co-routines with the

operator considered as one of the co-routines.

But the retention of "temporary" environments is still not a

completely tree-structured environment system, since distinction is

still maintained between picture functions and "normal" functions: the

former build a (containment) tree structure of local environments, and

the latter can, via some new form of "daemon exit", retain only a single

control and environment point en each daemon's "temporary" stack. The

author does not feel that a fully tree-structured control and

environment scheme is either necessary or desirable, for the reasons

noted below.

To some extent, the issue is one of efficiency since, as noted

above, there seems to be little real use for many of the retained

enviroment layers in which a particular desired eroup of environment

layers is nested. It is also an issue of modularity: the sealing off of

a module from its fathers promotes more conscious consideration of the

interfaces between objects.

The primary issue, however, is this: Examples of code in which a

immm*

103

procedure literally "returns twice" to its original caller, and hence

makes direct use of all the retained environment and control layers,

very often appear to be extraordinarily compact expressions of the

desired action; for example, the author has seen a 12-line "time-sharint?

system", i.e., a clock-driven process-swapping system, written in

CONNIVER. But at the same time, these examples uniformly appear to the

author to be extraordinarily complex, confusing, difficult to follow,

and hence "bup;-prone". Since one of the ^oals of this work is the

creation of a system which is as straightforward to use as possible,

constructs whose effects are difficult to comprehend are to be

distinctly avoided.
Such difficulties of comprehension may simply reflect a deficiency

of the author; but they may be an indication that, not unlike the GOTO,

constructs such as the ability to "return twice" should be declared

anathema even at the hish level of sophistication at which they are

normally used. In fact, the level of sophistication required for the

use of such constructs is in itself an argument in this direction, since

it implies that an unwarranted amount of intellectual effort needs to be

spent on details of implementation. This should not be taken as an

advocation of the use of DALl's particular scheme in more general

circumstances; rather, it is an observation that the full generality of

tree-structured control and environment structures apparently contains a

source of confusion which does not really seem to be an intrinsic part

of the capabilities truly desired.

3.12 More Examples: Iteration, DODA, and Input

To complete the example of a bar graph which was oripinally

mentioned in section 2.3, a picture function BARGRAPH, which draws a

full bar praph reflecting the state of a set of values, is friven below.

ion

The picture function ONEBAR, used by BARGRAPH to draw individual bars of

the graph, is also given.

(DEFPIC BARGRAPH (VALS MAX LB RT
"AUXO" RB SOL WIDTH "AUX" NVALS)

(SETQ NVALS (LENGTH VALS))
CONTIN (OUCH RB (POS (X ,RT) (Y ,LB)))

OUCH WIDTH (POS (/ (- (X ,RT) (X ,LB NVALS) 0))
(OUCH SCL (/ (- (Y ,RT) (Y ,LB)) ,MAX)))

(PROG (PREV)
(SETQ PREV LB)
(MAPC (LAMBDA (V)

(SETQ PREV !(ONEBAR V PREV SCL WIDTH)))
VALS)

(LINE PREV' RB)))

(DEFPIC ONEBAR (V PREV SCL WD "OUTU" RP "AUXO" LP)
(CONTIN (OUCH LP (POS (X ,PREV) (• ,V ,SCL))))
(SETO RP !(RELINE LP WD))
(LINE PREV LP))

Fie. 3-13 illustrates the desired graph for 5 values, and Fio;. 3-1^

illustrates the "subpicture" drawn by each ONEBAR.

The data web produced by BARGRAPH when graphing tw values is shown

in Fig. 3-15a, labelled as illustrated in Fif?. 3-15b

BARGRAPH takes four arguments: (1) VALS, a list of outputs which

hold the represented values; VALS is not itselr an output, and the

number of entries in the bar graph is not variable. (?) MAX, the

maximum expected value, used to establish the appropriate scaling; it is

an output, but its value will probably not change as often as the

individual outputs. MAX is not necessarily a running maximum of the

values presented, although it could be. (3) and (U), LB and RT,

position-valued outputs specifying the Left Bottom and Right Top of the

area in which the graph is to appear.

BARGRAPH also maintains three "AUXO" outputs: (1) RB, the right-

bottom corner of the area of the graph used to draw the final rightmost

edge; (2) SCL, the scale factor used to map values into displayed

heights; and (3) WIDTH, the width of each BAR. An "AUX" variable,

NVALS, holds the number of values so that re-computing the length of

VALS is unnecessary.

The (MAPC . . .) construction in BARGRAPH's PROG applies the

unnamed function (LAMBDA (V) . . .) to each element of VALS in

/

wm

105

WIDTH

6
LB

RT
O

6
RB

SCL»MAX

FIGURE 3-13 DESIRED BAR GRAPH

■M^^^^^M

^^—I-

106

WD
I *

LP Q ORP

PREV

FIGURE 3-14 ONEBAR VARIABLES

107

9 RT
1 WIDTH

'^w ^
♦ TRB \ 9vi

i v ■

\
I N
I \

! \ ?V2

I \ !
I

i
LB t--.----^--A-2--^--^ P4

'v ♦©♦

V2*SCL

WIDTH
H

QRT

P'ö
L 2

LI

VI«SCL

ÖP2

L3

P3 L4

P4

L5

LB
6
RB

B

SCL*MAX

FIGURE 3-15 PARGRAPH

mm]

108

succession. Successive ONEBARs are given a PREV argument which is the

output of the preceding ONEBAR; this allows appropriate vertical bar

sides to be drawn. Note that the variable PREV of BARGRAPH's PROG and

the variable V in the unnamed function are in BARGRAPH's temporary

environment and hence have values only during the execution of the PROG

when BARGRAPH is initially called.

ONEBAR is very similar to the BAR example of Fig. 3.7, but is

-impler. It only draws the left and top sides of a bar; and it need not

construct a suitable width vector, as this task is performed by BARGRAPH

for all the ONEBARs.

It would appear from Fig. 3-15 that a change in one of the values

would cause every daemon controlling lines to the ri^ht of that value to

be ^un; for example, a change in Fig. 3-15*8 VI would cause the running

of LI through L5 alone with the daemons specifying PI through PH. This

is not the case. Changing VI, for example, causes PI and P2 to change;

this is necessary. The P2 chance will cause the daemon specifying P3 to

also be run. However, the OUCH of P3 will not cause P3's value to

change, since P3 depends only on P2's X component and a VI change will

affect only P2's Y component. Thus, by the definition of OUCH in

section 3.3, the P3 OUCH has no effect and PU, LH, and L5 will not run.

As an example of how DALI mipht be fit into a more conventional

infix-oriented lanruaee, BARGRAPH and ONEBAR are coded below in a

hypothetical PALI extension of EULER [Wirl] (called DEULI?); EULER is

itself an extension of ALGOL.

picfun BARGRAPH input VALS. MAX. LB, RT
^ auxo RB, StL, WIDTH aux NVALS;
begin NVALStrlengfETVALSl;

contin RB:: = lx[.RBl,y.t,LB]};
 WIDTH: : =] x .frTl-5d,LB])/NVALS,0};

SCL: : = (i.[.T?T]-i.[.rB])/NVALS
end;
FeFln new PREV, IX;

FTTEVrr LB;
for IX:=1,1,NVALS do
■L^- PREV:4!ÖNEBAR[mS[IX],PREV,SCL,WIDTH];
lineCPREV.RB]

end;
end;

109

pic fun ONEBAR input V, PREV, SCL. WD outu RP auxo LP;
Eepin contin LP::=lx[.PREV],.V».SCL} enTT

RP:=!rellnerL7.WDl!
linefPREV.LP]

end;

Conventions used in th ^ above DEULI code a^e: reserved wo-ds and

system functions, including line and reline. are in lower case and

underlined; period (.), rather than comma, indicates an application of

OVAL; braces ({}) make their contents into a position; the infix

operator : := does an OUCH of its left operand to the value computed by

its ricrht operand; contin implies a begin and must be closed with an

end; and as with DALI in LISP, a prefixed exclamation point indicates an

application cf O'T.

Before proceeding on to more examples, the DALI primitive for

dynamic structural iteration will be described. It is a picture

function callei DODA, for DO in DAli, a name pronounced as in the sone

"Camptown Racers". The form of DODA's iteration is suggested by the

previous BARGRAPH example: it creates a variable-length data web chain

of picture modules, as illustrated in Fig. 3-16.

An application of DODA has this form:

(DODA n (-initials-) obj) .

n is an output whose value, a non-negative integer, is the number of

modules DODA has chained together at any given time. When n increases,

modules are created and placed on the end of the chain one by one; when

n decreases, modules are deleted from the end of the chain, obj is some

object which returns a picture module when it is evaluated as if it were

a one-statement daemon owned by the owner of the DODA's caller; such

evaluation is how DODA creates modules, (-initials-) is used in the

chaining operation.

The chain is fortneo by use of the function PREOUT. PRBOUT can be

applied legally only in the obj argument of a DODA, or any normal

function or procedure -- not picture function — called by that

argument. PREOUT takes one argument an integer greater than 0. An

application of PREOUT,

110

DODA MODULE

NITS c::.:^::^:::^:: :^
.-•

OTHER
ARGUMENTS

FIGURE 3-16 DODA PICTURE STRUCTURE

TT ^"w

in

(PREOUT m)

returns the mth output of the previous menber of the chain. If there is

no previous member — i.e., obj is beinf? used to construct the chain's

first member — the mth element of DODA's (-initials-) argument is

returned instead.

DODA could be defined as a user-written function in a purely

interpretive version of DALI, but it would require primitives not

presented here. In particular, some method of makinp the number of

module outputs variable at module creation time would be needed.

Provision would also have to be made for unevaluated arguments, and a

DALI EVAL function would be necessary. Furthermore, PREOUT must violate

the normal environment discipllr.e to find the currently operating DODA's

list of chained outputs. The environment structure existine when DODA

is creating a module, complete with the "illegal" reference required by

PREOUT, is shown in Fig. 3-17.

A rectangular grid drawing picture function, GRID, will now be

defined using DODA:

(DEFPIC GRID (NX NY HT WD LL "AUXO" DELX DELY) v
:C-NTIN (OUCH DELY (POS 0 (/ (Y .HT) (- ,NY D))
CONTIN (OUCH DELX (POS (/ (X ,WD) (- ,NX 1)) 0)))
DODA NX (LL) (GRIDDLE (PREOUT 1) HT DELX))

!DODA NY (LL) (GRIDDLE (PREOUT 1) WD DELY)))

(DEFPIC GRIDDLE (BOTPOS LNTH DEL "OUT" NEXT)
(CONTIN (OUCH NEXT (+ ,BCTP0S ,DEL)))
(RELINE BOTPOS LNTH))

GRID's arguments are all outputs, and allow variation in the grid's

height and width (HT and WD), the number of lines drawn in the X and Y

directions (NX and NY), and the position of the lower left corner (LL).

NX and NY have integer values, and the values of HT and WD are assumed

to be of the form (POS 0 height) and (POS width 0) respectively. LL's

value is also a position. DELX and DELY are the horizontal and vertical

vector distances between successive vertical and horizontal lines,

respectively.

GRIDDLE is used to actually draw the lines. Each GRIDDLE module

112

DRIVING
PROGRAM

DODA \ p

DAEMON^

CALL TO
PREOUT

DODA'S
FATHER

CAUSED BY EVALUATION
OF DODA "OBJ" ARGUMENT
IN DODA'S FATHER'S
ENVIRONMENT

REFERENCE NEEDED TO OBTAIN
LIST OF MODULES AND "(-INITS-)"

ARGUMENT OF DODA

FIGURE 3-17 DODA CREATING A MODULE

113

feeds his successor in the chain the position at which the successor

should start his line. Note that chances to LL result in response only

by the daemons in GRIDDLE and its sons.

The npxt example is a regular polygon whose number of sides,

radius, and center position can be • aried. This is NGON, below, in

which N is the number of sides, C is the center, and R is the radius.

DTHET is an output whose value is held at the change in ancrle between

two corners.

(DEFPIC NGON (NCR "AUXO" DTHET SP)
(CONTIN (OUCH DTHET (/ 6.2832 ,N)))
(CONTIN (OUCH SP (+ ,C (POS .R 0)))
(DODA N (SP 0) (CORNER (PREOUT 1) (PREOUT 2))))

(DEFPIC CORNER (PP THET "EXTERNAL" R C DTHET
"OUT" NP NTHET)

(CONTIN (OUCH NTHET (+ .THET .DTHET)))
CONTIN (OUCH NP (+ ,C (» ,R (POS (SIN ,NTHET)

(CCS ,NTHET))))))
(LINE PP NP))

Each CORNER uses the previous corner's position (PP) an.-i the ar.rle

a radial vector to that corner makes with the X-axis (THET). It

computes the next angle (NTHET) for its successor, along with its

successor's corner position (NP). Finally, it causes a line to be drawn

between adjacent corners. NGON itself creates and updates the position

of the initial corner (SP).

The final example is a simple interactive drawing program, ORAW,

whose code is below. We assume here the existence of three external

outputs of the type discussed in section 3.10; they are Riven to DRAW as

arguments. The value of the first, PPOS, is the position of some input

device like a tablet pen. The second, PBUT, has a boolean value

associated with a switch on the pen; it is true (T) when the switch is

depressed, and false (NIL) otherwise. The third, RESET, is likewise a

button boolean. DRAW assumes a very simple driving program loop which

continuously does UPDATE-DISPLAYs, as discusssd in section 3.10.

When the PBUT switch is depressed, DRAW alternately (1) remembers

im

the pen position and (2) creates a line drawn from the remembered

position to the current pen position. When the RESET button is

depressed, all drawn lines are deleted and the DRAW is reset. We will

also draw a cursor dot (zero-length line) at the position of the pen.

The final lines drawn are static, so they will be created with a

picture function called STATLINE rather than with LINE. STATLINE takes

constant position arguments rather than outputs and lacks a daemon to

chanee the display file entry; otherwise it is identical to LINE. In

particular, STATLINE does have LINE's DELETE daemon.

(DEFPIC DRAW (PPOS PBUT RESET "AUX" LASTPT STATE LINES)
(SETQ STATE T) initialize state flap
(SETQ LINES ()) ;and list of lines.
(LINE PPOS PPOS) ;Draw the cursor.

;When the pen button is depressed (PBUT changes to true):
;If in record state, record position and switch STATE to NIL.
otherwise, add to LINES list and switch STATE to T.

(ONC (VAL PBUT) ()
(COND (.PBUT

(COND (STATE (SETQ LASTPT .PPOS)
(SETQ STATE NIL))

(T (SETQ LINES
(CONS (STATLINE LASTPT ,PPOS)

LINES))
(SETQ STATE T))))))

;Whenever the reset button is depressed,
;delete all lines and reset STATE to T.

(AS-NEEDED (COND (,RESET (MAPC DELETE LINES)
(SETQ LINES ())
(SETQ STATE T)))))

Although the record/draw daemon uses PPOS' value, it should run

only when the pen button is depressed; hence AS-NEEDED cannot be used.

A DRAW providing a rubber-band line could be written, but '.t

requires primitives not introduced until section U.U.

3.13 Concluding Notes on Basic M-DALI

Before passing on to more complex issues, two notes are in order.

First, the only primitives for producing visible output which are

ever used in this document are LINE, STATLINE, and a picture function

115

TEXT used in section 4, 5 to display a static text string. This has been

done for purposes of simplicity; it is unreasonable for a working DALI

system because of its excessive «torage requirements. Some facility

should exist for constructing compa-' static organizations of lines and

dots, analogous to instance tree items, and usintr them to create visible

"instances" as if they were parameterless picture modules. The

coordinate system transformation scheme presented in section H.2 can be

used to vary the position, rotation, scale, etc. of such instances. A

subsystem operating in a manner analogous to EULER-G [Newl] could be

used for this purpose.

Second, it is indeed the case that the driving program must create

outputs, perform at least one picture function application, and perform

OUCHes. This is really too bad; in the best of all possible worlds, a

user should be able to tell some omnipotent graphics monitor "I want to

see this looking like that." and see it with no modification to the

application program. The situation IT at least tolerable, however,

since a single OUCH can inform the picture definition that the display

is to be updated based on a great bundle of information not contained in

outputs.

-ZT

Preceding page blank 117

Chapter U

M-DALI: Further Issues

4.1 Introduction

Unlike most of the other chapters in this document, this chapter

lacks a single focus of attention. Instead it deals with five separate

topics, each of which, while important, is somewhat peripheral to the

main conceptual thrust of this work. These topics are:

(1) How the coordinate trar.'iformation schemes characteristic of

instance tree systems can be embedded in DALI.

(2) How deletion is accomplished, and why retentive storage

management — "garbage collection" — is not used instead.

(3) What structural change to the data web requires, and what

daemon conditions provide motivation for such structural

change.

(1) A discussion of a realistically large example.

(5) In what way "hit" detection can be accomplished in DALI; i.e.,

how a DALI program can recognize and utilize the fact that an

inp-1 device such as a tablet is pointing at a particular

displayed object.

These five topics are covered in the order listed above. The level of

detail in the discussion varies from topic to topic; for example, only

the general form of the mechanisms for "hit" detection is indicated,

while coordinate transformations are discussed in detail.

118

4.2 Coordinate Transformations

Coordinate system transformations — i.e., mappings from the

coordinate system in which a visible object is defined to the coordinate

system in which it is visibly displayed — are a basic tool of computer

craphics. This section describes how such transformations can be

embedded in DALI, first considering the general problem of embeddin? any

transformations at all, and then describing the specific set of two-

dimensional transformations — translation, rotation, scaling, and

clipping -- which will be assumed in the remainder of this document.

What were referred to as "attributes" in section 1.2, e.g., color,

intensity, etc., can be handled in a similar fashion.

As will be explained in this section, a primary characteristic and

advantage of DALI in doing coordinate transformations is hardware

independence: DALI is capable of utilizing whatever transformation

capabilities the available display hardware offers, and supplying

whatever capabilities the hsidware does not have; the particular mix of

hardware and software used can be totally invisible to the user —

except, of course, for the speed with which the 3vstem operates.

Associated with each picture module is a total transformation,

abbreviated TT. This is a complete set of transformation parameters

held as the values of a set of outputs. The TT of a module completely

describes the mapping from coordinate data used by daemons of the module

to coordinates on the face of the display device used, including, via

clipping parameters, how much of the displayed objects are visible.

Total transformations are "the real thimr": they alone define how a

given set of objects will appear on the display device. The main body

of this section is concerned with how total transformations are (1)

associated with modules; (2) defined and modified relative to other

total transformations; (3) created; (U) accessed by the user; and (5)

119

implemented. Of particular note amonp these is the fact that the total

transformation parameters can be accessed by user-written code; thus,

for example, a daemon can be created which adds or subtracts visible

detail from the image displayed in accordance with size changes.

Discussion of each of the five issues listed above follows; as

mentioned earlier, the particular transformation system chosen for use

in the remainder of this document is covered after these five have been

discussed.

A total transformation (TT) is associated with a module when the

module is created. This association is permanent; i.e., while the

parameter values of a given TT — the values of the outputs which define

the TT — can be changed, the association between a module and its set

of TT outputs cannot be changed.

By default, a picture module shares its TT witn its containment

tree father. Thus, for example, a LINE picture function called by s

daemon creates a module whose associated TT is that of the daemon's

owner picture module.

A TT other than the default is associated with a picture module by

creating the module using the function TRANSFORM, as in

(TRANSFORM "USING" mod picfun -args-)

This applies the picture function picfun to -args-, and returns the

resultant picture module. Associated with the new module is the TT

associated with the module mod.

TRANSFORM is also used to create new TTs. ThJs will be discussed

later, alontr with the mechanism behind the associecion of a module with

a TT.

Only one TT initially exists; this is the TT associated with the

one initially existing picture module, the root module. This root TT

has two unique properties: (1) it cannot be changed; and (2) it is

absolute, i.e., not relative to some other TT. All other TTs are

120

relative, i.e., they are the concatenation of (1) a base TT, which may

be the root TT; and (2) an incremental transformation, or H, specified

by the user.
An incremental transformation (IT) is a set of outputs containing

transformation parameters, generally defined by some arbitrary user

computation. An IT differs from a TT in two ways: (1) It need not be

complete; e.g., it mieht consist only of a single position-valued output

used as a translation parameter. (2) An IT can be directly modified by

the user; i.e., -iser-written daemons can, and usually will, specify the

outputs which constitute an IT and OUCH them. In contrast to the direct

user control of an IT, only by varying the IT(s) concatenated to form a

TT can a TT be modified.

The TT resulting from concatenating a given base TT and an IT u Ll

be called a resultant TT-

The concatenation operation required to define the parameter values

of a TT is conceptually performed by daemons created alonct with each new

TT. These daemons specify a resultant TT's outputs, and they watch the

outputs of the base TT and the IT concatenated to produce the desired

resultant TT. If the available hardware support is minimal, this may

literally be the case; if, however, the available hardware is capable of

doing at least part of the job, it can be used. How this is dore will

be described as part of the description of implementation.

The function TRANSFORM, given a base TT and an IT, creates a new

resultant TT. Since, as mentioned, a TT is a set of outputs specified

by a set of concatenation daemons, TRANSFORM creates a new picture

module to own those outputs and daemons. Such a module is called a

transfonn module, and is said to contain the resultant TT whose outputs

it owns. A transform module becomes the containment tree son of the

owner of the daemon applying TRANSFORM.

The mechanism behind the association between a module and a TT can

now be given: (1) a transform module is associated with the TT it

'21

contains; (2) any nnn-transform module NT is asscciated with the TT

contained in the transfonri module closest to NT on the containment tree

path from NT to the ro^o module. The root module is a transfcrm module,

containincr the root TT.

Thus, user access to TT outputs can be achieved via tne "EXTERNAL"

identifier lookup mechanism described in section 3.11.

The method by which new picture modules are associated with new TTs

la straightforward: TRANSFORM is piven the picture function and

arguments to be applied to create the new module, creates the new

module, and makes it a son of an appropriate transform module.

If siven both (a) the picture function and arguments, and (b) a

base TT and an IT, TRANSFORM both creates a new t, ansform module as the

son ot its caller and applies the eiven picture function to create the

desired module as a son of the new transform module. In this latter

case, TRANSFORM returns the module whose picture function was supplied;

if piven only an IT, it returns the new transform module. The latter

can then be used ir other TRANSFORM calls to provide a base TT.

The full syntax of a call to TRANSFORM depends on the particular

transformations used; one version will be described when the sample

transformation system to be used here is described.

The way in which user code can access and use TT parameters will

now be discussed.

For the purpose of examples, we will assume here the use of a

simple set of transformations: translation, rotation, and a sincle scale

factor applied to both X and Y coordinates. Given these

transformations, a TT consists of four parameters: an X translation, a Y

translation, a scale, and a rotation about the center of the display

device's coordin?te system. These parameters are the values of

identifiers bouno in a transform module's local environment; in

particular, the identifiers are CEN, SCL, and ROT. CEN is bound to a

position-valued output whose X and Y elements are the X and Y

tm

"TT

122

translation; SCL is bound to an cutput containing a real (floating-

point) ratio between distances under the TT and distances on the display

device screen; and ROT is bound to an output containing a real

(floating-point) rotation in radians about the origin of the display

device.
By the previously presented definition of the association of a TT

with a module, simply making the above ATOMs "EXTERNAL" identifiers

obtains the parameters appropriate to any given picture module. As an

example, a LINE module appears below which does its own translation,

scaling, and rotation, presenting coordinates to the display file which

are rea-y for immediate display; it should be noted that the AS-NEEDED

daemon runs if either endpoint changes or if any of the transformation

parameters changes:

(DEFPIC LDK (S^l^rcS^iS B0I)
<SETQ A«™."' jTR ,M .Cg .SCL .BOTj^

(TR !P2 ,CEN .SCL .ROT,))
(ONC DELETE () (DELETE-LINE-ENTRY LINEID)))

The function TR, which actually does the transformation, is defined as

follows:

(DE"-<5^t:"|:iippn§l5!!i:i5fii??m,„>
S)))

The above code is primarily for illustrative purposes; it may also be

considered a definition of the way the assumed transformations affect

the vlslMe image. However, it does not parallel a real implementation,

both because it uselessly recomputes trigonometric functions and because

it does not lend itself to utilizintt the available hardware.

A more reasonable implementation method is presented below; before

launching that discussion, however, note must be made of the fact that

especially if hardware support is used, the most convenient internal

formats of TT parameters will undoubtedly not be formats reasonable for

^r

123

user perusal. For example, a more internally convenient and efficiently

usable form for the parameters assumed above is a 3X3 or 3/-? matrix in

which the scale factor only exists multiplied by rotation parameters

[New2]. If the user is to obtain access to parameters which are more

readily usable in his code, the system must create daemons to translate

internal TT parameters into the appropriate forms; various subterfuges

can be used to assure that the minimum number of such daemons are

created.

A more reasonable implementation of transformations can be

performed as follows:

The transform modules described above are still used, and still

contain several daemons and outputs which will be described below.

The display file is segmented, with one segment associated with

each transfonn module. A segment is created when its corresponding

transform module is created, and deleted when the transform module is

deleted; the latter could be done by a DELETE daemon in the transform

module and the former is readily done by TRANSFORM itself. Appropriate

pointers to each display file segment are kept in the local environment

of a segment's associated transfonn module.

Each display file segment contains data for drawing the visible

images created under the TT associated with the segment's transform

module. Each segment also contains display hardware commands to do

whatever part of the transformation the hardware can manage. If this

includes transformation concatenation, a segment may also include

"display subroutine jumps" to the segments of all transform modules

using as their base TT the segment's TT; this generally facilitates

concitenation.

Aside from the display file segment, the elements of a transform

module — daemons and further auxiliary storage — depend on the

particular capabilities of the hardware. Three cases of a fairly

general nature will be discussed here; other situations can be described

124

in terms of these three. The cases are: (1) the hardware is eminently

capable of performinp all the transformations desired as well as

concatenating transformations; (2) the hardware can perform all

transformations, but cannot do concatenation; (3) the hardware cannot

perform concatenation and can perform only some of the transformations.

The case where the hardware is incapable of any transformations seldom

occurs, and at any rate is a simple extension of the third case. Each

of these three cases will now be descritad.

Even if the hardware is omnipotent, one daemon is needed. This

daemon watches all the IT outputs specified by user code, and when any

of these change it formats the IT data properly and deposits it in the

appropriate place(s) in the display file segment. In this case, LINE,

STATLINE, and similar "display" modules format their own data and place

them directly in the display file.

If the hardware can transform but not concatenate, at least one

output for each TT will be required to propagate chanees in TTs. This

will be called the change output; it is changed — perhaps toggled from

true to false and back again — whenever its associated TT is changed.

An entire TT need not be passed via the change output since TT data can

be accessed without literally watching it in an output. As was the case

with very powerful hardware, here there is one daemon; in this case it

watchs both the IT outputs and the change output associated with the

base TT being used. This daemon also specifies the change output of its

own TT. When either the IT or the base TT changes, the daemon (1)

concatenates the IT and '.he base TT; (2) for the benefit of others using

this TT as a base TT, updates the resultant TT parameters held in its

own transform module's local environment; (3) formats the resultant TT

appropriately and places it in its display file segment; and CO OUCHes

the chanee output to let others know that this TT has chanced.

"Display" —e.g., LINE —modules' daemons still place their data

directly in the appropriate display file segment.

If the hardware is not only incapable of doing concatenation but

TT

125

also cannot perform at least some of the transformations, a buf'er

separate from the actual display file segment is needed to holl

untransformed display data produced by "display" modules. This buffer

is best considered as an array of outputs, each OUCHed by an associated

"display" module to chanKe its contents; this need not literally be the

case. This time two daemons are needed. The first is a "concatenation"

daemon similar to the one used in the preceding case. It watches the IT

outputs and base TT change output, does the concatenation, places the

resultant TT in the local environment, OUCHes its own chanee output, and

possibly formats that portion of the TT of which the display is capable;

it does not, however, alter the display file segment. The second

daemon, a "transformation" daerr »n, watches its own TT's change output as

well as all the "pseudo-outputs" in the untransformed buffer. This

daemon applies to the buffer entries that part of the TT which is beyond

the capabilities of the hardware's capabilities, formats the results of

that operation, and places the formatted results in the display file

segment. If the "transformation" daemon is running because the TT has

changed, it should also deposit in the display buffer the formatted

version of those transformations within the hardware's abilities,

performing the formatting itself if the "concatenation" daemon has not

done so. The untransformed buffer must be transformed en masse if the

TT has changed; if it has not — i.e., the "transfo-mation" daemon is

running because some LINE-specified "pseudo-outputs" have changed --

then only the changed entries need be transformed. These entries can

perhaps be selected on the basis of a "change bit" associated with each

entry.

The reason why two daemons are necessary in the last case, rather

than just using a single daemon to do everything, derives from the fact

that the "transforaiation" daemon effectively depends on outputs

specified by LINE modules and hencr; runs after all those LINE modules

have run. This is not generally possible for the "concatenation"

daemon, since the LINE change daemons may be web ancestors of the

126

"concatenation" daerron; this may occur if the user makes active use of

TT outputs as described earlier. Making the transformation daemon

separate avoids potential data web circularity which, aside from beinp

illepal in DALI as so far presented, could lead to a deadlock.

Now the particular transformations chosen for use here, along with

a syntax for TRANSFORM, will be described. In order to ease the

description, some terminology and some characteristics of the

transformations to be used will first be described.

The coordinate system used by modules associated with a TT A will

be referred to as A's coordinate system.

Since the transformations chosen for use here include clipping, it

will be convenient to define a resultant TT A in terms of a mapping from

an area in A's coordinate system to an area in the coordinate svstem of

A's base TT; these areas will be called the master space and the

instance space, respectively. The master space is the space in which a

module considers itself operating; presumably the module will draw

somethinp there. The instance space is the place where a module's

caller puts the objects which the module draws. The master-instance

space relationship simultaneously specifies translation, scaling in both

X and Y, and, as done here, rotation. Other methods could be used,

perhaps as optional equivalents to the space relationships chosen.

It should be noted that due to concatenation of clippinK

("boxinp"), a TT actually defines a mapping from some sub-area of the

master space, commonly called a window, to some sub-area of the display

screen, commonly called a viewport; however, a TT is locally defined in

terms of master and instance spaces.

The master and instance spaces are rectangular areas. Given

rotation, however, clipping apainst an arbitrary polygon Is necessary;

this is pointed out in [New2], and can be handled by the techniaues

mentioned in [Sut2]. However, if polygonal clipping is actually

available, there is little reason to restrict the master and instance

1

127

spaces to beinp rectanp;les; they could be arbitrary polygons which are

congruent under rotation and separate X and Y coordinate scalinps.

While a system utilizing master and instance spaces which are arbitrary

polyeons could be defined, it will not be done here; doinc so would

increase the complexity of the situation to no pood explicatory end.

Initially it will be assumed that all master spaces are identical,

ranfinsr from -1000 to 1000 in both X and Y. These are arbitrary default

values; the manner in which they can h.; changed will be described after

discussion of the call to TRANSFORM, which follows.

An application of TRANSFORM has the followincr form:

(TRANSFORM -sptcs- picfun -artrs-)

The picfun argument is a picture function, and -args- are the arguments

to be applied to picfun in creating a new picture module; this module

will be the son of a new transform module, as was discussed earlier in

this section. Both picfun and -args- are optional.

The -specs- arguments specify the resultant TT's base TT and the

instance space portion of the IT. Since there are several such

arguments, and all are optional, some simple syntax will be used to make

calls to TRANSFORM legible; this syntax is described below.

The -specs- consist of irroups of objects, each starting with a

designator describing one or two supplied arguments; tht supplied

arguments immediately follow their designator and terminate the group.

The order in which groups appear is not significant. There are five

designators: "USING", "CENTER", "HALFSIZE", "ROTATION", and "CLIP". The

arguments which follow the designators, the way the arguments are used,

and their default values will now be described.

"USING" is followed by a picture module; the TT associated with

this module is the base TT to be used. The default is the owner of the

daemon applying TRANSFORM.

The remaining designators specify the instance space portion of an

IT. It should be noted that they all refer to the base TT's coordinate

system. This is a modularity measure designed to decrease the amount

/'

128

that needs to te known about a module, in particular the way its

coordinate system is arranped.

"CENTER" is followed by a position-valued output; the position is

the location in the base TT's coordinate system of the center of the

instance space. The default is the center of the base TT's master

space.

"HALFSIZE" is also followed by a position-valued output; the

oosition's X and Y values are one-half the width, and one-half the

height, of the instance space; if the instance space is upright, the

"HALFSIZE" position is the position of the upper-richt corner of

instance space relative to the center of the instance space. The

default values are one-half the heipht and width of the base TT's master

space.

Use of only "CENTER" and "HALFSIZE" can result in clipping, since

the instance space they specify need not lie entirely within the base

TT's master space.

"CLIP" is followed by two arguments, both position-valued outputs.

The first is the center, and the second one-half the heieht and width as

in "HALFSIZE", of an area in the base TT's coordinate system; this area

is called :he clipping area. Only within the clipping area are objects

and parts of objects visible when drawn in the resultant TT. Usually,

this area will overlap with the space designated by "CENTER" and

"HALFSIZE", since only within the overlapping area can anything appear.

The defaults are the "CENTER" and "HALFSIZE" arguments.

The clipping area has no effect on the instance space; its purpcje

is to allow a user to select for display a particular piece of the image

produced by a module. It will often be useful to specify the "CLIP"

arguments by means of a daemon watching the "CENTER" and "HALFSIZIi"

arguments; for example, doing so is the natural way to make only the

lower-left Quadrant of the created image visible.

"ROTATION" is followed by an output containing a real (floating

point) number; this specifies the rotation in radians. Rotation poses a

TT

129

problem: exactly what is rotated, and about what position? Here we

chose to rotate the "CENTER"/"HALFSIZE" and clippinr areas about the

"CENTER" argument. The area resultintf from rotatine the

"CENTER"/"HALFSIZE" area in this manner is the instance space.

Doinp rotation in the manner described above produces tilted and

arbitrarily polytronal areas against wnich clippinp must be done. As

noted previously, this can be done [Sut2], but it is siftnificantly less

efficient than clipping against an u^riffht rectar.Rle. However, the

author knows of no way to incorporate both e;eneral clipping and cteneral

rotation in the same transformation system without clipping in this

fashion.

As an example of the use of TRANSFORM, here is a different way to

create the variable-sided polygon of the preceding example:

(DEFPIC NGON (NCR "AUXO" DTHET UR)
(CONTIN (OUCH DTHET (/ 6.2832 ,N)))
(CONTIN (OUCH UR (POS ,R .R))) xv ,
(DODA N (LIST (NULLSPEC (OUTPUT (POS 1000 0)) 0)

TRANSFORM "CENTER" C "HALFSIZE" UR
CORNER (PRE0UT 1) (PRE0UT 2)))

(DEFPIC CORNER (PP THET "EXTERNAL" DTHET "OUT" NP NTHET)
(CONTIN (OUCH NTHET (+ .THET ,DTHET))

(OUCH NP (• 100Ö (POS (SIN ,NTHET
(COS .NTHET)))))

(LINE PP NP))

Here we have used the "CENTER" and "HALFSIZE" mechanisms to do the

requisite scaling and translation, eliminating CORNER'S explicit

dependence on C and R, and instead hidine it in a transform module.

The method of specifying the bounds of a master space must still be

discussed. This operation is performed by using particular reserved

words, i.e., reserved ATOMs, in the argument list of a picture function;

these ATOMs are CENTER, HALFSIZE, and ROTATION. They may be used as

argument, "EXTERNAL", "AUXO", or "OUT" identifiers (section 3.6); but in

any case, they must be bound to outputs. The values of CENTER,

HALFSIZE, and ROTATION respectively specify the master space's center,

halfsize, and rotation about the CENTER position in the manner of the

tm

130

"CENTER" "HALFSIZE", and "ROTATION" arguments to TRANSFORM. The values

of the outputs bound to these ATOMs are special!v initialized if they

appear as "OUT" or "AUXO" identifiers: CENTER receives the position

(0,0), HALFSIZE receives the position (1000,1000), and ROTATION receives

0, If any of these three ATOMs appear as arftuments or as "EXTERNAL"

identifiers, they are bound in the normal fashion; but CENTER and

HALFSIZE must be bound to position-valued outputs, and ROTATION must be

bound to an output containing a real (floatinp-point) number.

A picture function containing any of these ATOMs in its areument

list is treated in a special way when applied to arguments. If it is

applied as part of an application of TRANSFORM, the outputs to which

they are bound are used in the created transform module in defining the

resultant TT. If such a picture function is not applied usini?

TRANSFORM, it is treated as if it were applied using a call to TRANSFORM

in whicti all the other arguments received default values.

As an example of how master space manipulation can be used, here is

yet another receding of NGON:

(DEFPIC NGON (NCR "AUXO" DTHET UR EP CP)
(CONTIN (OUCH DTHET (/ 6.2832 ,N)))

CONTIN (OUCH UR (P0S ,R .R))) _ v tm^m „„„^ > ,« ,
CONTIN (OUCH EP (PCS (SII ,DTHET) (COS ,DTHET))))
OUCH CP (P0S 10))
NULLSPEC CP) ,„„„,„„„, „^
DODA N (LIST (NULLSPEC (OUTPUT 0)))

TRANSFORM "CENTER" C "HALFSIZE" UR
CORNER (PREOUT 1)))

(DEFPIC CORNER (ROTATE "EXTERNAL" DTHET EP CP
"AUXO" HALFSIZE "OUT" NR)

(OUCH HALFSIZE (POS 1 D)
(NULLSPEC HALFSIZE) m mfimtmm.. ,
(CONTIN (OUCH NR (+ ,DTHET .ROTATE)))
(LINE CP EP))

Here each CORNER operates in a constant space ranging from -1 to 1

in X and Y, and is mapped into a square space of side 2R centered on C;

this provides scaling and translation as in the last example.

Furthermore, each successive CORNER master space is rotated by DTHET

from its predecessor by making ROTATE an input and appropriately

controlling the NR output. This means that the numeric positional

values of every line's endpoints are the same. That is taken advantage

)

TT

131

of by sharinfr these endpoints; one, CP, is constant at (POS 1 0), and

the other, EP, varies dependinp on N. Note that NULLSPEC is used to

allow LINE to use an otherwise constant output, Makinc the CORNER

master space of halfsize (1,1) simply removes the explicit

multiplicative factor from the computation of EP, and, atrain, hides it

in a transform module.

There is a further complication to transfor.i.ationL which must be

dealt with in DALI,

In the last NGON example, we utilized the fact that particular

numeric coordinates, valid in one space, had a meaningful interpretation

in another. This is not always the case. In general, suppose a module

A is operating in a space whose total transformation is represented by a

3x3 matrix TA. Thus the display coordinates of a position (X,Y) in A's

coordinate system are obtainable from

[X Y 1] 1 TA,

where • indicates matrix multiplication. Further suppose that said

module uses that position as the value of an output, and that another

module, B, operating under a different TT TB, has that output as an

input. Clearly, A's literal X and Y values generally represent sheer

gibberish to B. The intelligible versions of them are some (X',Y')

expressed in B's coordinate system. These are defined by

[X Y 1] • TA • TB' = [X' Y' 1]

where TB' is the inverse of TB. TB' always exists if TB in fact

represents only concatenated translations, rotations, and scalings; this

condition also guarantees the unit third element of the result.

It is a fact that sophisticated users of graphics systems with

fairly general transformational capabilities quite soon run into the

necessity of creating TAJ^TB' transformations. This happens, for

instance, whenever an input device is used for drawing inside a

transformed section of a display.

Since an output contains pointers to both its owner and all its

132

dependent modules, we can always find TA and all the TB's, and thus it

is always possible to provide meaningful coordinates to any module B.

However, we are dealing here with a potentially enormous amount of

computation, and it behooves us to treat it as a special case: even

display hardware which glibly performs transformation concatenations

isn't pointt to invert TB for us as a regular part of the display refresh

cycle, if at all. Therefore we provide a special built-in picture

function RESPACF:

(RESPACE outp)

where outp is a position-valued output. The picture module resulting

from applying RESPACE has an output which is the position corresponding

to outp's value under the TT in which RESPACE is applied. Various

subterfuges can be resorted to for avoiding unnecessary inversions of TB

w!-en many similar RESPACEs are done.

1.3 Deletion

The effect of deletion, performed by the function DELETE, is to

cause an ob.iect to cease to exist. Deletion can be performed on picture

modules, daemons, outputs, and several other objects which will be

mentioned. Deletion serves two purposes: primarily, it removes from the

picture definition all effects of the object deleted; with that done,

the storage occupied by the object can be reclaimed and so it is, as the

secondary purpose.

The subject of deletion invokes a serious meta-auestion: Why have

explicit deletion rather than retentive storage management — i.e.,

garbage collection? This question will be discussed before the problems

and mechanics of deletion are addressed.

It must initially be stated that the use of explicit deletion is

L ^- ^^^^M^

133

not motivated by questions of efficiency. Deletion in fact has two

disadvantages which offset any greater efficiency that it may have:

First, deletion significantly increases the size and complexity of

nearly every DALI object. This occurs because whenever an object A

makes use of an object B -- i.e., A contains a pointer to B -- there

must then be some path by which B can refer back to A so that if B is

deleted, A can be deleted or appropriately modified. For example, a

module needs a pointer to its containment tree father in order to

resolve "EXTERNAL" references; hence the father must point back to all

his sons so that when the father is deleted, the sons can also be

deleted. Whether this is accomplished with two-way pointers, rings as

in SKETCHPAD [Sutl], or some other means, it represents an overhead

which does not exist when garbage collection is used.

Second, deletion presents modularity problems: A module may

contain, in its local environment, pointers to an arbitrarily large and

complex data structure constructed by the user-written code of that

module's daemons. If the module is deleted, at least part of that data

structure must be deleted — and there is no way for the deletion

procedure to know what part. This problem is solved in DALI with a

device called a "deletion p-closure", which is described later in this

section; it is not solution of which the author is fond, as Lt is

imperfect and embodies significant overhead.

The reason why deletion is used derives from the fact that the

internal DALI data structures contain an inherent loop with one

particularly troublesome pointer: the pointer frorn an output to a daemon

which is to be queued when the output is OUCHed. The full areument

establishing the reason why this loop apparently makes garbage

collection impossible necessarily involves the construction of a

"gedanken" garbage-collected DALI. Because of its size, thits

construction has been relegated to Appendix 3; a relatively abstract

summary of the central part of the argument follows.

An output contains references to the daemons watchincr it so that

those daemons can be aueued when the output is OUCHtJ. This could keep

a daemon — and its owner — from beintr reclaimed unless all its watched

outputs were reclaimed, leading to the retention of much useless storaKe

and the running of many useless daemons. Furthermore, it is

unreasonable to require the user to delete these references by explicit

programming, since they are constructed by the DALI system itself-

Instead, the garbage collector can ignore these references, collect the

uscles«5 daemons, and appropriately modify the sets of pointers contained

in outputs. Unfortunately, the trarbage collector runs at infreauent

intervals, and until it runs and changes an output's set of "watching"

daemons, the useless daemons will still be queued and run.

This is an untenable situation. If daemons continue to run for an

indefinite period after they "should" not exist, it is very likely that

they will fail catastrophically because output values are in what is,

for them, an inconsistent configuration. So garbage collection of DALI

objects must, regretfully, not oe used.

It must be noted, however, that the above discussion says nothing

about the possibility of garbage collecting user storage, i.e., letting

the user construct "free" objects and garbage collecting them '..'hen they

are no longer used. This is quite possible, and will be a convenience;

however, given deletion p-closures, it is not a necessity.

Now the manner in which deletion is accomplished wi'il be presented.

Deletion in DALI is akin to the recursive deletion of SKETCHPAD

[Sutl], in that when an object is deleted, all objeccs which "depend on"

its existence are also deleted-

The dependence of an object 0 on a deletable object D can take one

or both of two forms:

(1)0 can be part of D. For example, the daemons and outputs owned

by a module are part of that module, as are the module's sons.

This will be called containment dependence, and is expressed by

the containment tree and ownership relations (section 3.5).

^r

135

(2) The correct operation of 0 can reauire the existence of D. For

example, a daemon's accessing the value of a local environment

identifier is erroneous if that value is an object which has

been deleted. This will be called operational dependence.

In the case of containment dependence, deletion of D requires deletion

of 0 for locical consistency; this is therefore done in DALI. In the

case of operational dependence, it is often possible and desirable to

modify the dependent object 0 so as to permit its continued operation.

For example, rather than being deleted when one of its watched outputs

is deleted, a daemon mieht be kept in operation by substituting some

other "default" output for the deleted one. However, the nature of the

reauired modification depends upon the way the objects are beinp used;

no sincle uniform procedure will always be correct. DALI therefore

provides a daemonic mechanism called a deletion p-closure. to be

discussed later, by which the user can specify his own desired

modifications under deletion. If a deletion p-closure is not used, or

i^ used does not remove detectable dependence, Ihe dependent object is

deleted.

In the example of operational dependence in ehe definition auove.

deletion of an object assigned in a local envirupment causes deletion of

the module containing that local environment, since the latter is no

longer we'i I-defined. Thus, for example, deletion of either endpoint of

a LIME causes the LINE to be deleted.

It should be noted that maintenance of correctness by dependence

del et inn must be done by the DALI system, because it cannot be done by

t'pe user without sacrifioin? the modularity afforded by DALI: a module

dots not -- and should not have to — know what ether modules depend on

its cutruts. The principle mechanism for maintaining consistency

through recursive deletion of operationally dependent objects is the s.et.

of dependents; this will be discussed in detail further below.

It is often the case that when an object Is deleted, there are

136

certain local "cleaning up" operations that must be done. For example,

since a LINE module creates and controls an entry in the hardware

display file, that entry must be deleted if the LINE is deleted. A

further example concerns a module which has created, and stored in its

local environment, a list composed of storage cells from a (non.*arbaee-

collected) heap. When the module is deleted, it must be given a chance

to return that list to "free" storage.
Such actions must be user-definable on a local, modular basis. To

permit this, DALI uses a device called a deletion P-closure (DPC)- The

term "p-closure" is used to indicate an analog with functional

closures; the "p-" indicates that the function is closed with respect to

a picture module's local environment.

A DPC has three elements:

(1) an owner, which is a picture module

(2) an undertaker, which is a function of 1 argument

(3) a corpse, which is a deletable object.

The owner is that picture function which was current when the DPC

„as created. The undertaker is a user-defined function whose returned

value is ignored (a procedure).

The corpse is that object whose deletion the D'C "waits lor".

Just before a DPC's corpse is deleted, the DPC'a undt-taker is

applied to the corpse as if the undertaker were a daemon of Its owner.

This is done as part of the deletion of the corpse. When the undertaker

finishes, the corpse is interred -i.e., it is "really" deleted and its

storage is reclaimed. If a corpse has multiple DPCs, the order in which

they are run is undefined.
Thus a DPC acts very much like a daemon dependent on a mythical

output which is OUCHed just before deletion of its corpse.

A DPC is created by execution of

(ONDELETION corpse undertaker)

This application returns the newly-created DPC.

The (ONC DELETE) construction presented previously in the LINE

module example is syntactic sugarine for

= Tl

137

(ONDELETION (CURRENT-MODULE)
(LAMBDA (MODULE) —))

where (CURRENT-MODULE) returns the current module.

A deletion p-closure is, as its name supeests, a particular

daemonic use of an M-DALI object called a p-closure. a functional

closure with respect to a module's local environment. While the author

realizes that a discussion of p-closures in the midst of a discussion of

deletion is scarcely appropriate, he can think of no other place where

the motivation for them sprines from the material under discussion. So:

(P-CLOSURE func mod)

where func is a function and mod is a module, creates and returns a

closure of func with respect to mod. mod is optional and defaults to

the owner of the daemon currently executing.

A p-closure is applied to arguments as if it were the func argument

of P-CLOSURE. However, in the execution of func's body, the local

environment of mod is used in place of whatever local environment

existed when the p-closure application was done. A realistic example

using p-closures appears in section 5.9.

With the addition of p-closures and deletion p-closures, all the

deletable objects of M-DALI have been introduced: outputs, daemons,

picture modules, p-closures, and deletion p-closures. S-DALI will add

two more: sequences and scheduled p-closed actions; these two are

described in sections 6.3 and 6.^4.

Each of these deletable objects has, by virtue of beine deletable,

three elements which are used only in deletion and have previously been

unmentioned:

(1)a mark bit

(2) a set of deletion p-closures (DPCs)

(3) a set of dependents.

The mark bit is needed to avoid infinite recursion during deletion

when circular data webs are used.

138

The purpose of DPCs has been discussed. A DPC is a member of this

set if and only if the object containing this set is the DPC's corpse.

The set of dependents contains picture modules: every module M with

a deletable object D bound to an identifier in M's local environment is

in D's set of dependents. Its use is discussed further below.

The set of dependents is a mechanism for enforcing; consistency by

making it difficult for a user to reference storage which has already

been reclaimed. The enforcement is performed by deleting all the

dependents of an object when the object is deleted. This operation is

called implicit dependence deletion; it causes, for example, the

deletion of a LINE module vhen either of its endpoints is deleted.

It is clear that maintenance of the set of dependents can be fairly

expensive, as it must be done at run time by the operations of bindli.g

and assignment of local environment identifiers. Since the function of

this set can be performed by appropriate DPCs, which in many cases will

be more efficient, it is appropriate to allow a confident user to

specify a mode of operation or compilation in which assignment does not

include this overhead. Alternatively, only initial binding of inputs

could add to the set of dependents. The situation is somewhat similar

to that of run-time array bounds checking.

Furthermore, implicit dependence deletion, as defined, is an

imperfect protection mechanism: the user can always assign a structure

containing a deletable object to a local environment identifier, thereby

bypassing the mechanism. This case could be handled by adding a

dependent structure set, kept updated by structure creation and

modification operations. Deletion of an object would then also entail

renlacing the object in the structure with an "obviously incorrect"

value, such as 0, thereby allowing validity tests to be made whenever a

free object is used. Since, however, deletion of objects in structures

will usually reauire a "cleanup" operation which alters the structure,

DPCs will normally be used if such deletion is to be feared; hence the

dependent structure mechanism has not been included.

TT

139

Why only identifiers in local environments need be considered, as

opposed to temporary environment identifiers also, follows from the

nature of the deletion process and will be discussed.

Now the actual process of deletion will be described.

DALI utilizes delayed deletion. On execution in a daemon or

picture function body of

(DELETE obj)

where obj is a deletable object, obj is not immediately destroyed.

Instead, obj is inserted into a global deletion set. Then, after

termination of daemon body execution, the members of the deletion set

are interred, i.e., "really" deleted and removed from the deletion sec.

The driving program is an exception to this rule, as explained further

below.

The purpose of delayed deletion is to wait until the total DALI

environment is in a known state. When interment occurs, the only

temporary environment in existence is that of the driving proftram,

thereby limiting implied dependencies among "real" picture modules to

the local environments. This is considered adequate because in DALI, as

opposed to most display systems, the information about the picture held

in the driving program's local environment can be kept fairly simple.

Whenever the total environment is in the described minimal state,

interment is performed on all objects currently in the deletion set.

This minimal state occurs often and is easily detected: It occurs

whenever the scheduler has just finished running an entry in the daemon

queue. It also continuously occurs while the driving program is

running; hence, deletion when done by the driving program is not

delayed.

A further purpose in delaying deletion is to allow objects time to

get out from under the hanmer of implied dependence deletion. After

all, it is quite possible that DELETE's argument was the value of a

local environment identifier.

Interment will be described in a ouasi-programmatic form.

A uniform prelude of three steps begins the interment process for

all deletable objects. For an object 0, these are:

(1) Test the mark bit of 0; if it is 1, return immediately.

Otherwise set it to 1 and continue.

(2) Run and inter all of 0's deletion p-closures.

(3) Inter all of 0's dependents.

In addition, a uniform coda ends the interment process: 0's storage

is returned t he "free" storage pool.

The remainder of the steps differ for each type of object, and are

detailed below. The general rule they follow is: first inter any

modules which need it, then any outputs, then any daemons, and only then

perform the local unlinking operations required for the object.

Interment of a picture module P:

(1) inter P's sons

(5) for each output 0U owned by P,

(5.1) run all deletion p-closures of 0U

(5.2) inttr all modules in OU's set of dependent modules

(5.3) inter all daemons watching 0U

(5.U) if 0U has a specifier S, remove 0U from S

(6) inter the daemons, deletion p-closures, and p-closures owned by

P

(7) for each deletable object DO bound to an identifier in P's

local environment, remove P from DO's set of dependents.

(8) remove P from its father

Interment of a daemon D:

(4) make all of D's specified outputs unspecified

(5) for each watched output OH of D, remove D from 0U

(6) if D is Queued, remove it from the daemon queue.

(7) remove D from its owner

Interment of a deletion p-closure DPC:

CO remove DPC from its owner.

/

141

This completes the discussion of deletion in M-DALI. Deletion in

S-DALI is identical, barring the existence of more types of deletable

objects.

4.4 Further Daemonology and Data Web Chance

The basic mechanisms behind the operation of daemons and outputs in

DALI have been presented. Here some simple but powerful and necessary

extensions of those mechanisms are presented, leadinsr into structural

change to the data web.

The first extension is a means by which a daemon can determine

which of its watched outputs actually changed. This is done with a new

type of daemon, called a named-change daemon, created by

(NAMEDONC atm cndtn (-specs-) -body-) .

cndtn, (-specs-), and -body- are the daemon's condition, specified

outputs, and body as usual. atm is an ATOM which, just before the

daemon's body is executed, is bound in the temporary environment to a

list of all the watched outputs which have changed. The order of the

outputs in the list is undefined. That list, called the changed-outputs

list, is held while the daemon is queued in an element of this type of

daemon. After running the daemon, the chanced-outputs list is emptied.

NAMEDONS, with semantics similar to ONS. also exists; when the

daemon is run at its creation, the changed-outputs list is NIL.

An example:

(DEFPIC MERGE (01 02 "OUT" EITHER)
(OUCH EITHER ,01) rArbitrary initialization.
(NAMEDONC-HIM (VAL 01 02) (EITHER)

(OUCH EITHER ,(0AR HIM))))

If either 01 or 02 changes, but not both, MERGE's output mirrors the

most recent value of either. If both change "simultaneously", the

output value will be that of one of them, but which one is undefined.

1112

Named-change daemons are a powerful extension; they effectively

convert daemons from procedures with no areuments to procedures with

areuments. Moreover, fdven named-chanee daemons, there are several new,

useful capabilities that can be added to the daemonolojry of DALI. The

rest of this section describes such additions.

The first new capability is the ability to make a daemon depend on

or specify a set (list) of outputs without mentioning all of them by

name. This is done by placing the fragment

"MEMBERS OF" 1st ,

where 1st evaluates to a list, in a daemon's condition or specified

output list in place of a sinele output. For example, if OUTL is bound

to the list (ol o2 o3) and PQ is bound to o^, then both of

(NAMEDONC HIM (VAL PQ "MEMBERS OF" OUTL) . . .)

(NAMEDONC HIM (VAL "MEMBERS OF" OUTL PQ) . . .)

have the same effect, causing the daemon to watch ol, o2, o3, and ol.

Similarly,

(ONC (VAL . . .) (PQ "MEMBERS OF" OUTL) . . .)

causes the daemon to specify ol, o2, o3 and oM.

An example:

(DEFPIC SWITCH (SELECTOR LST "AUX" SELECTED
"AUXO" DING "OUT" SELVAL)

(OUCH DING T)
ONS (VAL SELECTOR) (DING) „ xx

(SETQ SELECTED (NTH LST .SELECTOR))
(OUCH DING (NOT .DING)))

(OUCH SELVAL ,SELECTED) m _ , . ,__„.,.
NAMEDONC WHO (VAL DING "MEMBERS OF" LST) (SELVAL)

(COND ((OR (MEMQ DING WHO) (MEMQ SELECTED WHO))
(OUCH SELVAL ,SELECTED)))))

SELECTOR is an output whose value is an inteRer, and LST is a list of

outputs. The LISP function MEMQ is a boolean, returning true if and

only if its first argument is a member of its second artrument. SWITCH

makes its output "follow" the value of the SELECTORth element of LST;

thus it corresponds to a multi-throw electrical switch. A "multi-pole

switch" could be constructed by making several SWITCH modules with

disjoint LSTs share a common SELECTOR. DING is the sound of a bell

143

waking up the second daemon when the SWITCH is "thrown", thus assuring

that SELVAL attains the correct value of the selected output whether or

not the latter is OUCHed along with the selector. The above

implementation of SWITCH is rather inefficient, since the second daemon

is run when any output in LST changes, not just the currently selected

one. A better implementation will be presented below.

The next extension provides for varyinc a daemon's watched and

specified outputs dynamically.

A daemon dem can be made to specify a set of outputs -outs-by

execution of

(SPECIFIES dem -outs-)

where -outs- is a number of outputs none of which has a specifier.

Similarly,

(WATCHES dem -outs-)

makes the daemon dem watch the outputs -outs-.

The inverses of SPECIFIES and WATCHES are, respectively

(UNSPECIFY -outs-)

(UNWATCH dem -outs-) .

A restriction: UNWATCH may only be applied to named-chanee daemons. The

reason is provision for this feature: the affected output(s) are removed

from the affected daemon's chanced-output list if they are on it; if

this empties the list, the daemon is removed from the daemon aueue. Thus

the sequence

(WATCHES dem out)
(OUCH out val)
(UNWATCH dem out)

does not cause dem to run.

As an example of the use of WATCHES and UNWATCH, here is the more

efficient switch promised earlier:

141

(DEFPIC SWITCH (SELECTOR LST "AUX" SELECTED POLE
"AUXO" DING "OUT" SELVAL)

(OUCH DING T)
SETQ SELECTED (NTH LST .SELECTOR))

(OUCH SELVAL .SELECTED)
(ONC (VAL SELECTOR) (DING)

(PROG (SEL)
(SETQ SEL (NTH LST .SELECTOR))

;If a new different output is selected,
:swap outputs for the POLE daemon.

(COND ((NOT (EQ SELECTED SEL))
lUNWATCH POLE SELECTED)
SETQ SELECTED SEL)
WATCHES POLE SELECTED)

[OUCH DING (NOT .DING)))))
(SETQ POLE

(NAMEDONC WHO (VAL DING) (SELVAL)
(OUCH SELVAL .SELECTED)))

(CAN-WATCH POLE LST) ' ;See following text.
(WATCHES POLE SELECTED)))

This is more efficient than the previous SWITCH in that the data-passing

daemon. POLE, here (1) does not have to search a list to find out what

to do. and (2) runs a minimum number of times: only when the selected

output is OUCHed and when a different output is selected. The

mysterious function CAN-WATCH is an efficiency measure discussed at the

end of this section.

The functions SPECIFIES and WATCHES, while necessary, pose two

problems if used in the unrestricted manner implied above:

First, it is no longer possible to guarantee a lack of cycles in

the data web without explicitly inspecting it. In fact, arbitrary data

web formations can be created with the functions in question. Perhaps

fortunately, the second problem implies a test for web circularity.

Second, even if execution of SPECIFIES and WATCHES does not create

circularities, it may necessitate recomputation of the priorities of

daemons in a swath of the data web. This arises with (WATCHES dem out)

if the specifier of out has a higher priority than dem, and in

(SPECIFIES dem out) if a daemon watching out has a lower priority than

dem. In either case, existing priorities of both the daemons mentioned

and their web descendants are no longer ciiaranteed to result in a

correct queueini? order, and must be recomputed in a recursive Tachion.

145

This recursion must contain a test for web circularity; otherwise,

inadvertently created circularity would lead to infinite recursion. The

"mark bit" needed for deletion will be used for this test.

The recursive procedure RE-PRIORITIZE for recomputing priorities is

described below. It is straightforward, but can be expensive; in the

worst case, the time needed rises exponentially with the number of

daemons in the data web. Applied to a daemon DEM, RE-PRIORITIZE does

the following:

(1) if DEM is marked, call an error routine to announce

circularity.

(2) let a variable P he 1 + (the maximui,, priority of DEM's

fathers).

(3) if DEM's priority is greater than or equal to P, return.

(U) set DEM's priority to P.

(5) mark DEM.

(6) recursively call RE-PRIORITIZE on all of DEM's web sons.

(7) ur.mark DEM and return.

RE-PRIORITIZE is not a user-callable function; it is automatically

applied by DALI to a daemon as part of (WATCHES dem -outs-) and to all

the watchers of all the -outs- as part of (SPECIFIES dem -outs-).

UNWATCH and UNSPECIFY do not require an analogous procedure, since it is

unnecessary to ever decrease the priority of a daemon; furthermore, they

cannot cause circularity.

The application of RE-PRIORITIZE is actually delayed, like

deletion, until the currently executing daemon has terminated. This

requires that WATCHES and SPECIFIES put the daemons they have polluted

onto a global list, if they are not already there, ;.o that RE-PRIORITIZE

can find those daemons when daemon body execution has terminated. This

delay avoids redundant applications of RE-PRIORITIZE when, for example,

WATCHES is applied more than once to the same daemon by the same daemon.

The cost of RE-PRIORITIZING can be significantly reduced if the set

of outputs which a daemon can watch is known. Given that set, the

146

daemon can be given a priority greater than all its possible web

ancestors and then RE-PRIORITIZED, thereby causing immediate exit from

all future RE-PRIORITIZEs at step (3)- This efficiency measure is

performed by the function CAN-WATCH, called as

(CAN-WATCH dem outl)

where outl is a list of the outputs dem can watch. This was used in the

efficient SWITCH above. CAN-WATCH places no limitation on the outputs

dem can be made to watch; it simply assures that any output in outl can

efficiently be watched.

4.5 A Large Example:
The Incredible Plastic Tree

A fairly substantial example, honefully illustrating the power of

DALI, will now be presented. It is the display of an n-ary branching

tree which grows without bound, displayed in an area whose width is

limited. The action desired in this display, called the "Incredible

Plastic Tree" (IPT), is illustrated in Fig. H-1. The characteristics

desired of the IPT will first be described, followed by a discussion of

a DALI implementation and ending with the code itself.

The IPT is a display of an n-ary tree which can grow boundlessly.

The width of the display area available for showing the tree has an a

priori limit, but the height is assumed to be adequate. The height

could also be limited, but doing this would increase the complexity of

the example without increasing its utility as an example of DALI "in

action". No node on the tree is ever deleted; this restriction could

also be removed, eiven the existence of deletion p-closures.

Each node of the IPT contains text which is to be displayed

centered within a rectangular box. Son nodes on the IPT are connected

E
I 2

3 4

m

B
FIG. 4-1

WRITHINGS OF
THE IPT

E

148

i,o theit- father nodes by lines between the centers of their boxes which

are "clipped" at the boxes' edges so as not to obscure the text.

Since the tree can grow boundlessly, it is apt to become too wide

at any given level to allow all the nodes to remain at an "optimal" size

for reading the text; so at least some nodes must shrink. Since It is

most likely to be the case that a viewer is principally interested in

the most recently added node, that node will be displayed at its

"optimum" MZC. The algorithm used also has the nice effect of making

ancestors of the most recently added node large, "optimum" at largest.

In general terms, what the IPT tries to achieve is this: given a

quantity of (tree-)structured information too large for comprehensibly

display in all its detail, the "currently important part" (the most

recently added node) is shown in full detail, while less important parts

are shown in less detail; at the same time, the structure in which the

information is organized is always visible in at least schematic form

(the whole tree is always displayed, perhaps with some nodes shrunk to

dots), thus maintaining a display of the relationship between the

"currently important part" and the other parts.

The action of the algorithm is illustrated in Fig. 1-1; fror KiK.

4-1a, first node 5 is added to produce Fig. 4-1b; then nod'. 6 is added

to produce Fig. U-lc.

As might be e J, the primary picture function used in

implementing the IPT is recursive: it calls itself to create the display

of a new son. This basic picture function is called NODE. Its task is

to create sons and allocate area for display among its sons; the actual

display of a node — the box, the text, and the connecting lines — is

performed by DRAW-NODE, a picture function called by NODE.

NODE allocates area to its sons as follows: when one of its NODE

sons requests "more area", either because it has just been newly created

or because one of its sons has requested area, NODE passes the request

on up to its NODE father via an OUCH. The top NODE starts the process

mg

of re-allocating the available area amonF his sons, passing "area

changes" back down the whole tree via OUCHes. The resultant data web

structure is not circular because the NODE daemon reouestine area from

his father is disjoint from the daemon which accepts area chances and

allocates them among his sons.

A fragment of a data subweb used for area control is illustrated in

Fig. H-2. In that fragment, the daemons labelled MA request More Area

from their father, and the daemons marked AC meekly accept Area Changes

from the father and pass them on to sons.

Each NODE provides its father with two outputs whose values are

used to determine equitable allocation of area: the space the NODE

wants, and the space it needs. The space wanted is the larger of (1)

what it needs to display its own box and text "optimally", and (2) the

sum of what its sons want- The space required for "optimal" display is

obtained as a constant value from DRAW-NODE. The space needed is that

which the particular son requesting more area needs; a newly created son

"needs" its optimal area. While processing an area reauest, the More

Area daemon records which son declared a "need" in a local environment

identifier; this value is used by the Area Change daemon in allocatine

area.

The top NODE, on receiving a new "need", turns around and starts

allocating area to its sons through outputs specifying the left and

right boundaries of the area into which each son must fit both itself

and all its sons. Area is allocated in proportion to the amount each

son wants, except for that son, if any, who requested a new "need".

That son gets the larger of his proportional share or his need.

New sons are generated as follows: In addition to arguments which

are outputs specifying the area it gets and other data needed for

display, each NODE is given an output called NEW-SON. NEW-SON initially

contains the text siring to be displayed; this is put in to display file

during initialization. Whenever the NEW-SON output changes value, a new

NODE son is to be created. The new value of NEW-SON is the NEW-SON

150

b- •©; /
A

\

I \

i
I

CO

GL

O
Ü-

CD
UJ

O
O

<
UJ

<

I

LU
cr.

V)

151

output to be passed to the new NODE. Thus, the driving program just

pumps new NEW-SON outputs through existing ones to create the display.

DRAW-NODE is much less interesting than NODE. Its arguments are:

the text string to be displayed; the center and halfsize of its father

NODE's box; and the right and left sides of the available area. The

latter information is passed as the X and Y coordinates of a sineile

position-valued output. DRAW-NODE uses the picture function BOXTXT to

actually draw the text and box, using a coordinate transformation to

scale the drawn box and text to fit in the needed area. The center and

halfsize used in that scaling are outputs of DRAW-NODE so that NODE can

pass them to new NODE sons.

The vertical location of the box is obtained by adding an

"EXTERNAL" delta Y to the father's center, and the box is kept centered

in the available area.

The optimal size of the box is obtained by examining the text

string with TEXTHEIGHT and TEXTWIDTH, functions which return the optimal

height and width for a text string; these will not be shown. The actual

box is made larger than this area by a "fudge factor" BEAUTY, another

"EXTERNAL"; this is to allow some empty margin. In addition, the box

will not be shrunk until BEAUTY times the optimum width is no longer

available; this similarly presides for space between horizontally

adjacent boxes. Instead of a rrultiplicative factor, a constant margin

width could have been used.

The fancy line between boxes is drawn in an interesting way by the

picture function OUTERLINE. OUTERLINE uses a picture function CLIP,

which takes four inputs and produces a module with three outputs. The

inputs are two line endpoints, and positions specifying the center and

halfsize of a clipping area. The outputs are: (1) A boolean flag which

is true if and only if at least part of the line lies within the area;

if this is false, the other outputs are not valid. In this application,

it will always be true. (2) A position: the place where the first

152

endpoint winds up after clipping. (3) Another position: the place where

the sec.ad endpoint winds up after clippinK. CLIP will not be shown;

[New2] gives an appropriate algorithm, which, while it does not preserve

knowledge of which input position corresponds to which output position,

could be easily modified to do so.

OUTERLINE uses two CLIPs, one for its node's box and one for its

father's box, and hands each the endpoints of a line connecting the

boxes' centers. Then one of the outputs of each CLIP is the desired

endpoint on the edge of the box-

The code for NODE, DRAW-NODE, BOXTXT, and OUTERLINE, as well as

several functions called by NODE, follows.

153

(DEFPIC NODE (NEW-SON I-GET :Area which I GET.
PA-CEN PA-HSZ ;PApa NODE s CENter and HalfSiZe

"OUT" I-WANT I-NEED ;Tell pa what want and need.
"AUX" SONS-WANT SONS-NEED MY-REQUEST ;See below.

AREA-CHANGE MORE-AREA ;The daemons. See text.
MY-CEN MY-HSZ ;CENter and HalfSiZe of my box.
LOCAL-NEED ;Optimal width for mv box.

"AUXO" DINGS DINGA) ;"Dinf" outputs.
(SETQ MY-REOUEST 0) ;Flap -- number of son reauestinf or 0.
(SETQ SONS-WANT ()) ;List of sons' I-WANT outputs.
(SETO SONS-NEED ()) ;List of sons' I-NEED outputs.
(PROG (DRAW-IT) ;Do actual drawing, save center i 1/2 size.

[SETQ DRAW-IT (DRAW-NODE ,NEW-SON PA-CEN PA-HSZ I-GET))
SETQ MY-CEN (OUT DRAW-IT '))
SETQ MY-HSZ (OUT DRAW-IT 2))

[SETQ LOCAL-NEED (OUT DRAW-IT 3))) ^'Optimal" area need.
;When new son arrives: start him up w/dummy area, place outputs
:on appropriate lists, and make other daemons watch him.

(ONC (VAL NEW-SON) (DINGS)
(PROG (SON-NODE NEW-GET)

[SETQ NEW-GET (OUTPUT (POS (Y ,I-GET) (Y ,I-GET))))
SPECIFIES NEW-GET AREA-CHANGE)
SETO SONS-GET (CONS NEW-GET SONS-GET))
SETQ SON-NODE (NODE ,NEW-SON NEW-GET MY-CEN MY-HSZ))

!SET0 SONS-WANT (CONS (OUT SON-NODE 1) SONS-WANT))
(SETQ SONS-NEED (CONS (OUT SON-NODE 2) SONS-NEED))

WATCHES MORE-AREA (OUT SON-NODE 2))
(OUCH DINGS (CAR SONS-NEED))))

;When a request for more area comes from a son: change I-WANT to
;include him, set request flae, and BO to father.

(SETQ MORE-AREA
(NAMEDONC HIM (VAL DINGS) (I-NEED I-WANT)

(OUCH I-WANT (MAX LOCAL-NEED (SUM-OF SONS-WANT)))
(PROG (ISON)

(SETO ISON (COND ((EQ DINGS (CAR HIM)) ,DINGS)
(T (CAR HIM))))

(SETQ MY-REQUEST (SON-INDEX ISON SONS-NEED))
(OUCH I-NEED ,ISON)
(OUCH DINGA (NOT DINGA)))))

;When an area change is imposed from father, re-allocate sons
;"normally" if it's noi- my request (MY-REQUEST =0),
otherwise re-allocate uivipp requesting son all he wants.

(SETQ AREA-CHANGE
(ONC (VAL I-GET DINGA) ()

(COND ((EQ MY-REQUEST 0)
(NORM-ALLOCATE ,I-GET SONS-GET SONS-WANT))

(T (SPEC-ALLOCATE MY-REQUEST ,I-GET
SONS-GET SONS-WANT SONS-NEED)

(SETQ MY-REQUEST 0))))))

15*1

(DEFINE NORM-ALLOCATE (IG SG SW^^lAllocat^wUhout^cial^on.

(PPOG (TOTW AVAIL LAST) :TOTal Wants, AVAILable area, LAST Y-edee
(SETQ TOTW (SUM-OF SW))
(SETO AVAIL (- (Y IG) (X IG)))

MAPC (LAMBDA (WG) ^ants. Gets -- in prooortion to want.
(PROG (A) (SETO A (- LAST (• AVAIL (/ TÖT0 ,W))))

(OUCH G (POS A LAST))
(SETQ LAST A)))

SW SG)))

(DEFINE SPEC-ALLOCATE (R IG SG SW SN)
: Al locate privinp requester his wants. :R-Reciuester's index, SN=SONS-NEED; other irnemonics as above.
'(PROG (TOTQ AVAIL RN RW LAST) Requester Needs, Requester Wants.

(SETO TOTW (SUM-OF SW))
SETQ AVAIL (- (Y IG (X IG)))

(SETQ RN .(NTH SN R))
(SETQ RW NTH SW R)) „nmi ...

COND ((< RN (• AVAIL (DIVIDE TOTW ,RW)))
(NORM-ALLOCATE IG SG SW)
(RETURN)))

(SETQ LAST (Y IG))
MAPC (LAMBDA (W G) , . .„„

<PROG 1.) (SETQ . (- »ST ^ OTU

(COND ((EQ W RW) RN) (T 0)))))
(OUCH G (POS A LAST))
(SETQ LAST A)))

SW SG)))

rnpPTMR ^nw-INDEX (N SN) ;Find index to son on list. (DEFINE fON^NDEX^N^Nj^^ (MEMQ ^ ^ ^^

(DEFINE SUM-OF (S) ;Add up wants or needs of sons.
(PROG (St)«) (SETQ a^O) (o) (SETQ suH u SUH i0))) s)

RETURN SUM)))

155

(DEFPIC DRAW-NODE (TXT PA-CEN PA-HSZ I-GET
U "OUT" MY-CEN MY-HSZ "OUTU" OPTWIDTH

"EXTERNAL" DELTAY BEAUTY
"AUX" MY-Y PROPOR INWID INHT)

{SETQ MY-Y (+ (Y ,PA-CEN) DELTAY)) :Fixed Y coordinate of center.
SETO INWID (/ (TEXTWIDTH TXT) BEAUTY)) ;Width of optimal box.
SETQ INHT (/ (TEXTHEIGHT TXT) BEAUTY)) ;Heieht of optimal box.

[SETQ PROPOR (/ INHT INWID)) ;Hei*ht to width proportion.
(SETQ OPTWIDTH (/ INWID BEAUTY)) ;0ptimal width wanted.

;The following pets done whenever I-GET changes.
(C?OUCH MY-CEN (POS (/ (+ (X ,I-GET) (Y ,I-GET)) 2) MY-Y)

PROG (ÜEWWID USEWID) v , „„.,,..
(SETQ NEWWID (- (Y , I-GET (X ,I-GET)))

COND ((< NEWWID OPTWIDTH)
:If available less than optimum, scale down.

(SETQ USEWID (• NEWWID BEAUTY))
;Leave space between boxes.

(OUCH MY-HSZ (POS (• USEWID PROPOR) USEWID))))
(T (OUCH MY-HSZ (POS INWID INHT))))))

;Draw the box and the text.
(TRANSFORM "CENTER" MY-CEN "HALFSIZE" MY-HSZ

BOXTXT TXT BOXHS)
;Draw the fancy line.

(OUTERLINE MY-CEN MY-HSZ PA-CEN PA-HSZ))

(DEFPIC BOXTXT (TXT HALFSIZE) * > (n n^
(TEXT TXT (POS 0 0)) ;Display text centered at (0,0).

PROG (HX HY) (SETO HX (X .HALFSIZE))
(SETQ HY (Y .HALFSIZE))

POLYGON \?0h (- HX) - HY)) (POS - HX HY)
(POS HX HY) (POS HX (- HY)))))

;POLYGON is a function using STATLINE to draw closed polygons.

(DEFPIC OUTERLINE (C1 HI 02 H2)
;Draw line between outer edees of boxes.

(LINE (OUT (CLIP C1 C2 C1 HI) v> ;See CLIP discussion in text.
(OUT (CLIP C1 C2 C2 H2) 2)))

/

J

156

H.6 Hit-Testing

The machinery so far developed in DALI contains no provision for

pointing inputs from graphic input devices, i.e., no way for a user to

identify some displayed object by "pointing at it" with a tablet, pen,

or aher such device. This relates to another deficiency: using DALI as

so far defined, it is impossible to make a given object move until it

collides with any other object — not a specific object, but any object

at all that happens to be visible. Hit-testing in the manner of Sproull

and Sutherland [Sprl, New2] suggests itself as a solution to these

problems.

Hit-testing is embedded into DALI in the form of daemons which are

run when the visible image produced by any module enters, or leaves, a

rectangular area defined by a center position output and a halfsize

output. For pointing inputs, the center position can be controlled by

the input device, or, alternatively, the tracking dot (cross, arrow,

etc.) can be detected by stationary areas.

This aspect of DALI will not be developed in detail. Just the form

of DALI-esaue solutions for the problems involved will be presented.

On the grounds that they provide a crude tactile sense, daemons

watching a rectangular area, defined by two position-valued outputs as

mentioned above, will be called tough daemons. Two types of touch

daemons are needed, one for detecting objects entering an area and one

for detecting exiting objects; the utility of the latter will be seen

below. Touch daemons should most generally be a form of named-change

daemon, receiving a list of all the objects entering (leaving) their

areas. All touch daemons run after all non-touch daemons have run, but

the order in which a set of queued touch daemons will run relative to

each other is undefined. It is necessary that touch daemons run last in

order to make sure they "feel" every entering (leaving) object,

especially those in distant, unrelated parts of the picture structure.

157

The objects received by touch daemons are picture modules, selected

by walkine up the containment tree from the modules actually "hit" until

a module having the desicrnator "NAME" in its picture function's arfaiment

list is found. More complex naming schemes could be used, but all must

produce picture modules to identify "named objects". Only the

descendants of "NAME" modules need be sensitized to hit testinp, and

functions to sensitize and de-sensitize subtrees should exist.

In some cases, obtaining the "NAME" is unnecessary: stationary

function button ("light button") daemons need only know that they were

hit, since only the pen module will hit them and their action will

usually be to send a simple, constant message to the driving proeram by,

for example, OUCHing an appropriate output. Such daemons need not even

be the form of named-change daemon mentioned above.

However, in general a touch daemon wants to know the "NAME" module

invading its area, presumably to Ret some data from him. For example,

"light button" testing with a single touch daemon whose area tracks the

pen requires that the touch daemon find out what message to send to the

driving program. This can be done by getting the appropriate output

from the "NAME" module via OUT, getting the output's value with OVAL

(,), and sendine the value off to the driver as the message.

Continuing interaction with an invading "NAME" module can be

achieved by having the touch daemon make a local daemon watch one of the

"NAME" module's outputs. The interaction can be cut off when the

invader leaves through the action of a touch daemon detecting exiting

objects; this is the use of exit detection promised above.

The computation the invading "NAME" module must perform to provide

the needed data could be arduous. If the "ships-passing-in-the-night"

kind of interaction we are considering will not often happen, the

daemons performing the computation could be activated and deactivated.

This could be done by daemons whose conditions cause them to run when a

daemon becomes, or ceases to be, a "watcher" of a given output. Since

the topic of hit-testinK is not being constJered in full detail, no more

158

will be said about such daemons; they pose no special problem, but

require more scheduling exceptions and elements in outputs.

With the touch daemon operation described here, an interesting

situation can occur. Suppose two objects are moving across the screen,

each with its own "bumper" touch daemon area surrounding itself, and

they simultaneously enter each other's sensitive area. The two touch

dafcmcnf must be designed to run in either order, of course; but suppose

that in both cases the purpose of the "bumpers" is to avoid collisions

by veering around blocking objects. Both touch daemons will attempt to

"link in" a deviation factor using, for example, center and outer radius

outputs from their opposite number's "NAME" daemon — and the result

will be effective data web circularity. However, as will be mentioned

in section 5.2, it is a type of effective circularity not requiring

"real" data web circularity. Instead, a simple S-DALI mechanism

("future OUCH", see sections 5.2 and 6.2) is appropriate, and can have

the result that each object veers only part of the distance either alone

would sro.

The discussion of hit-testing is essentially concluded; however, it

implicitly raises two problems. First, all the simultaneously active

touch daemons and "NAME" modules need to be in agreement on the order

and meaning of "NAME" module outputs; this is hardly conducive to

modularity. Second, typically needed outputs, such as the center and

outer radius mentioned above, contain data difficult to Rather from sons

in a modular fashion.

The first problem could be mitigated by referring to outputs by

"name", i.e., by a mutually agreed-upon arbitrary string, rather than by

position in the argument list. It was not done due to a possibly

misguided desire for efficiency; providing this mechanism would do no

(treat violence to DALI.

The second problem is significantly more difficult to solve. One

approach parallels that suggested by Baeker in APPL [Bael], discussed in

159

section 1.2: providine user- or system-defined search and composition

rv.les applied recursively down the containment tree from the "NAME"

module. For example, if a module doesn't know his outer radius, ask his

sons and combine their answers via a daemon specifyine a new radius

output. System-defined modules, such as LINE, could be defined to

"know" the answers to many such standard Questions, and could have their

type (e.c, "LINE") and inputs made available to allow the user to

define new "questions". In some cases, such as the outer radius,

answers mipht be most easily concocted as functions of the actual

display buffers. This is a major extension to DALI, and should be

approached with some trepiditation.

Preceding page blank 161

Chapter 5

Data Web Circularity and Relaxation

5 1 Introduction:
The Data \,*b As a Set of Equations

Circularity in the data web has heretofore been prohibited. This

has been accomplished for structurally static data webs by the twin

constraints that (1) an output can have only one specifier, and only

that specifier can OUCH it; and (2) a daemon may not be created watchintr

an unspecified output. For structurally dynamic data webs, circularity

has been prohibited by testing for its presence while adjusting daemon

priorities.

Here, data web circularity is discussed, focussing first on when it

is really needed, then on what characteristics it should have, and

finally on how daemons in a circular data web can be scheduled — i.e.,

ordered in their execution. As might be expected, scheduliner is far

more difficult for cyclic data webs than for acyclic ones.

Before these topics are considered, however, a prior question must

be discussed: what is really represented by circularily — or its lack

— in the data web?

In discussing this question, it is useful to consider the data web

as a set of equations. This can be done by: (1) considering each output

to be a variable — particularly includinp:, but not limited to, outputs

directly specifying the visible image; and (2) considering each daemon

as an equation relating its specified output(s) to some expression(s)

written in terms of its watched outputs.

162

Thus, for example, out simple and familiar RELP picture function

(DEFPIC RELP (PI P2 "OUT" SUM)
(CONTIN (OUCH SUM (+ ,P1 ,P2))))

since it creates a daemon, adds to the overall set of equations the

equation

SUM = PI + P2 .

Of course, a complete set of such equations will be difficult to

write; for example, there are difficulties in representing daemonc which

either use and alter the values of local environment variables, or add

new equations (daemons) to the set by calling picture functions. These

difficulties of representation need not concern us here.

With the data web considered as a set of equations, we can say that

what la wanted from a DALI picture defirltion is a simultaneous solution

to all the equations in the set.

The requiremoiit that the data web be acyclic can then be

interpreted a? meaning that the set of equations are in a form such that

they can be solved by back substitution. I.e.: The cutouts specified by

the driving program are, when DALI begins running, variables whose

values are considered known a priori; these outputs may also be

connidered constants parameterizing the solution desired. The values of

the^e known variables are substituted into equations written only in

terms of known variables, a process performed by runninp the appropriate

daemons. This produces more known variables, since after running a

daemon its specified outputs can be considered "known". The new known

variables are similarly substituted and the process continues until the

values of all variables are known. If at any point before the

completion of this process we reach a state where no equation is solely

in terms of known variables, then two or more equations must cyclicly

determine values used by each other — in other words, the data web

contains a cycle.

It is important to note that such cyclic dependence is a function

of the particular form of the set of eauations, not a function of the

represented solution set, i.e., of the desired picture. In many cases

/

163

of interest, a cyclic set of equations can be re-written in a form which

is not cyclic. As a simple example, the data web representine the

equations below is cyclic:

XI = K1 » X2 + C1 (1)

X2 = K2 » XI + C2 (2)

K1, K2, C2, and C2 are "constants", i.e., outputs specified by the

driving process or by some other web ancestor of both of the above-

represented daemons.

Without the constraint prohibiting the creation of daemons watching

unspecified outputs, these equations correspond to the daemons created

by

(ONC (VAL X2 C1 K1) (XI)
(OUCH XI (+ fC1 (• ,K1 ,X2))))

(ONC (VAL XI C2 K2) (X2)
(OUCH X2 (+ ,C1 (• ,Ki ,X2))))

This, oi course, would create a data web cycle. But by simple symbolic

substitution of eq. (2) into eq. (1), we can obtain an alternate form of

the equations above which involves no circularity; daemons constructed

according to that form produce the same picture, but do not imply a data

web cycle.

The task of reformulating the set of equations so that they can be

solved by back substitution, if such a reformulation is possible, is the

job of the DALI programmer. This should not be considered onerous; it

is part of the normal job of a programmer in nearly all situations.

What the acyclic daemon scheduling rules of section 3.8 provide is the

assurance that for any set of equations which have been correctly

reformulated in thi? manner -- even if elements of this set are added

and deleted dynamically — DALI will produce the correct solution set by

substituting (running daemons) in an order which is both correct and

efficient.

However, there are situations where it is impossible to reformulate

the problem in such a way that back substitution can be performed. Such

situations can arise in two ways: (1) The eauations to be solved are

■g -—

161

simply too complex to be appropriately reformulated; e.p., the equations

represent a larpe set of objects, some fixed and some movable, all

simultaneously interacting via an inverse-sauare law. (2) The eauations

relatine the variables are unknown until run time; e.g., SKETCHPAD.

In such situations, the data web may be cyclic; the precise

situations in which it will or will not be cyclic are discussed in the

two sections which follow. If the data web is cyclic, then, since the

eauations involved can be arbitrarily complex and are not represented in

a symbolically manipulable form, the only route open to DALI in solving

them is to use iterative approximation, or relaxation.

The manner in which cycles are introduced, as well as the daemon

scheduling rules involved in relaxation, are the principle topics of

this chapter. To anticipate a bit, the general method used for daemon

scheduling in a cyclic data web, discussed fully in sections 5.5, 5.6,

and 5.7, is this:

First, the cycles are identified, and each separate group of

daemons which are all cyclically related to one another is considered a

separate composite daemon. When such composite daemons are considered

sinele daemons, the resulting data *ab is acyclic; so the acyclic daemon

scheduling rules of section 3.8 are used for global scheduling, i.e.,

decidinp the order in which entire composite sets of daemons are to be

run. The problem of scheduling the daemons within each composite group

must then be attacked; unfortunately, it has no uniquely good solution,

so several possible alternatives are presented.

However, before cyclic daemon schedulinsr is discussed in detail,

the situations in which it is really needed must be more carefully

delineated.

165

5.2 When Circularity is Not Needed

An important situation in which data web circularity is apparently

needed is in the "feedback control" of moving images. For example,

consider the problem of moving an object until it touches another

object. A natural way to do this is to have a "controllinp daemon" C

OUCH an output used by a "moving daemon" h to indicate a direction and a

rate. M then moves something along, with the current position of the

moved object and the current position of the object to be hit watched by

a "collision watching" daemon W. When W sees a collision, it wishes to

inform the controller, C, so that C can take appropriate action — e.g.,

by telling M to stop- Since W is a web ancestor of C, circularity is

apparently needed if W is to send its information to C via an OUCH.

However, data web circularity of the type which is the subject of

this chapter is neither needed nor particularly appropriate to the

situation outlined above. This is the case because when moving imapes

are considered, we are in the realm of S-DALI, not M-DALI, and, as

discussed below, the intervention of picture time causes the circularity

to assume a different form.

Recall, from section 2.3, that picture time is time as it is

intended to be experienced by the viewer; and during DALI compute time

— the time needed to compute each new picture — picture time is

"frozen", i.e., it does not advance.

The preceding section considered the data web as a set of eauatio' s

whose simultaneous solution is sought; the important point here i0 .nat

the term "simultaneous" refers specifically to picture time. All the

intermediate stages of back substitution, iteration, or what have you

are invisible from the point of view of the created picture. The

"feedback" situation outlined above generally refers to motion in

picture time, i.e., to the relation of successive "frames" of the

pluiure to one another; whereas the processes used to "solve" the data

166

tfr.b serve LO define the appearance of each separate "frame" produced,

and have no intrinsic effect on the relationship of successive "frames"

to or.' another -- unless, of course, the user has explicitly proKrammed

In such a t'flationship.

What makes this difference important in the current context is that

the mechanisms for relatin? separate "frames" provide the appropriate

means tor "feeding back" information in the situation outlined at the

start ot this section.

As was mentioned in section 2.3, the manner in which separate

piGture-tine frames are related to one another involves the capability

of sending messapes "across picture time" by means of a "future OUCH",

an output value chanee which the DALI system has been told to perform at

oome future picture time. The details of "future OUCHes" are covered in

sections 6 2 and 6.3.

Mow, in thf context of S-DALI, separate picture times, and future

OUCHes, variables in the equation model of the data web must be

subscripted to indicate which picture time they refer to. Thus, the

pair of circular linear equations in section 5.1, eas. (1) and (2),

become

X1(t) = K1 » X2(t) + C1 (3)

X2(t) = K1 • X1(t) + C2 CO

Here, K1, K2, C1 and C2 have not been subscripted because they can be

considered constants. The above equations are circular because the time

subscript of all uses of XI and X2 is the same. On the other hand, if

we wish to represent daemons "future OUCHing" outputs for some future

picture time, the equations become:

X1(t+i) = K1 • X2(t) ♦ C1 (5)

X2(t+i) = kl • X1(t) + C1 (6)

There is no circularity involved in the above eauations because each

eauation refers to an element of the picture-time sequence different

from the one which its partner defines.

In this way, future OUCHes can be used to create effective data web

;

167

cycles contalninc; a non-zero picture time delay. This delay can be very

small — down to the resolution limit in the picture time domain — but

it must exist.

By virtue of the picture time delay involved, future OUCHes are the

appropriate means for providing "feedback control" as referred to at the

start of this section. Referring to that example, the "controller" C

directly OUCHes outputs watched by the "mover" M, and M directly OUCHes

outputs watched by the "collioion watcher" W. Hcwc/er, W can "future

OUCH" an output watched by C to provide the desired feedback, causing

this OUCH to occur at a picture time before or equal to the next

incremental move of M. When the "future OUCH" occurs, C will run before

M since it is M's web ancestor; thus if C directly OUCHes a "halt" order

to M, motion will stop instantaneously.

Relaxation can be performed in a similar manner. In this case in

particular, the non-zero delay restriction has the effect of causing

intermediate, non-stable states of the relaxation to be visible: the

viewer watches relaxation in motion. This occurs because at each

iteration, the entire operation of M-DALI is performed. Hence, for

example, intermediate OUCHes of the inputs tc LINE modules will cause

them to change the visible display. This is not always undesirable; it

is, for example, the mode of operation used by SKETCHPAD.

It is true that the inherent delays involved in this type of

feedback can slow convergence and cause instabilities — divergence

and/or oscillation. However, such instabilities are characteristics of

the system being simulated rather than characteristics of DALI, since

the picture time delays involved are fully under the control of the

user.

168

5.3 When Circularity Is Needed

When, then, is true data web circularity really needed? It is

needed under three conditions:

(1) The output values defining a picture are most readily computed

by some iterative method.

(2) It is inconvenient or impossible to perform this iteration

within the body of a single daemon.

(3) The iteration is performed only for its effect, and thus its

internal dynamics are not of interest. I.e., it is not

desirable to have the picture reflect the intermediate states

of the iteration and show the relaxation in motion.

The first condition is was discussed in section 5.1. As mentioned

there, this situation occurs when the system defined cannot be

reformulated to allow back substitution, either because it r* too

complex or because it is insufficiently defined until run time.

The second condition alludes to the fact that it is sntirely

possible to perform iterative operations by looping within a single

daemon body. In some sense, this is "cheating", since it uses the

Turing ability of the base language to avoid usincr DALI proper;

nevertheless if this is most convenient, there is no reason to shy away

from it. However, it may be decidedly inconvenient for two reasons:

In the first place, it is impossible to use previously defined

picture modules and daemons -- as opposed to previously defined

functions — to perform part of a loop within a single daemon. This

follows from two facts: daemon executions are not nested within one

another, and a daemon cannot exert direct control over the DALI compute

time at which another daemon runs.

Second, the iterating daemon must be explicitly written to provide

169

for all the possible cyclic dependence which can exist amone its data.

This can be particularly difficult when such dependence is to be

dynamically created, e.g., as in SKETCHPAD.

The third condition required for web circularity — the fact that

intermediate states are "uninterestin«" and should not be visible —

could be achieved with future OUCHes and mechanisms for delaying visible

changes until the iteration terminates. However, this implies a loss of

efficiency over what could be attained since many more daemons will

p-enerally be run per iteration cycle than are actually needed.

Consider, for example, Fig. 5-1, a graph showing ancestry relations in a

hypothetical data web containing a loop four daemons long; the square

box marked L is the special loop daemon, to be described later, which

effects the loop. If this loop is effected by future OUCHes, all 16

daemons in the figure will be run on each iteration. If intermediate

states need to be visible, this is necessary; but if intermediate states

do not need to be visible, only the four daemons actually takincr part in

the iteration need be run in each cycle.

The possibility of much greater efficiency is the interesting issue

with regard »o cyclic data webs. It should not, therefore, come as a

great shock that the methods to be introduced for dealing with cyclic

data webs resemble certain code optimization techniques used in language

compilation.

5.4 Introducing Cycles: Loop Daemons

To introduce cycles in the data web, the programmer must make use

of a new type of daemon: the loop daemon. Loop daemons are created and

returned as the value of

(L00P0N endtn (-specs-) -body-)

FIGURE 5-1 INEFFICIENCY OF " FUTURE OUCH" FEEDBACK

171

where cndtn is the condition, (-specs-) is a list of specified

outputs, and -body- is the body of code to be run. A "namedloopon"

daemon could also exist, but will not be described. Loop daemons with

conditions which do not watch outputs, e.g., DELETE, do not make any

sense; so ' hey are illegal.

Loop daemons differ from normal daemons in that when they are

created, the outputs they watch need not be specified. They may thus be

used to create aata web cycles. Creation of cyolc; by use of WATCHES

and DEPENDS is also legal, providing every cycle contains at least one

loop daemon. This condition will be checked by DALI; the check can be

performed by an analog of RE-PRIORITIZE, although a more efficient

method will be presented in section 5.8.

With loop daemons, the connectivity of the data web is effectively

arbitrary. In particular, allowinsc more than one daemon to "specify" an

output is unnecessary. The MERGE module presented in section H.4, which

OUCHes its output to the value of the most recently OUCHed of its two

inputs, can be used to create the same effect. Having to create such

MERGE modules can, however, be highly inconvenient; the ability to

multiply specify an output should be supplied by a scheme which is

equivalent to automatic creation of MERGE outputs by DALI. While this

is straightforward, multiple specifiers will not be assumed since they

would unnecessarily complicate the upcoming discussion of scheduling.

The rationale for introducing a special type of daemon for the

creation of data web cycles, rather than just allowing the creation of

cycles with WATCHES and DEPENDS, is twofold:

First, if loops are created, some mechanism for terminating the

Implied iteration must be present. No explicit mechanism for this is

provided by DALI. Instead, since execution is propagated by means of

OUCHes, one daemon in each loop must perform a test and simply not do a

critical OUCH if adequate convergence has been achieved. Loop daemons

provide a convenient and obvious place, althoueh not a necessary one, to

172

perform convergence testing. Furthernore, since DALI reauires that at

least one loop daemon be in every loop, the user is guaranteed to have

enough tests to terminate every loop. In any event, loop daemons serve

to remind the user that such tests are necessary.

The second reason is more interesting. In an acyflie data web, a

non-loop datmon can be viewed as establishing an invariant relationship

between its watched outputs and its specified outputs; the acyclic

scheduling rules were chosen to allow this important interpretation to

be made, and a scheduling rule will be chosen to keep this

interpretation valid for non-loop daemons in cyclic data webs. However,

this interpretation cannot be maintained for all daemons in generally

cyclic data webs; if it were maintainable, everything would be correct

on the first pass through and no iteration would be necessary! So,

since they are already somewhat special, loop daemons are chosen as not

strictly maintaining relationships between watched and specified

outpi-ts. Characterizing what they actually do is rather more difficult

-- they certainly are not approximations to static relationships — and

will not be attempted.

5.5 Goals of the Cyclic Daemon Scheduling Rules

The daemon scheduling rules for a cyclic data web, wh'.ch will be

presented in section 5.7, are motivated by two goals: acyclic

compatibility and efficiency.

Acyclic compatibilitv means that an acyclic subweb is guarjinteed to

"do the same thinK" whether or not it is embedded in a cycle. This can

be stated more precisely as follows: Let W be a subweb cf a cyclic data

web C such that W contains no loop daemons. Then, under any pattern of

initial OUCHes, W embedded in C must exhibit that behavior guaranteed to

W if it were removed from C and run under the previously specified

I

173

acyclic daemon schedulins rules. The term "subweb" is precisely defined

in the next section.

Efficiency is piven the following interpretation: if a dap^on D

watches an output 0, and D is not part of any data web cycle including

the specifier of 0, then: D must not run until there is no possibility

of 0's beinp; OUCHed again. Thus, if a daemon uses an output's value and

does not participate in its specification, it sees only the final,

converged value of the output. Thus, no relaxation of an output's value

can affect how efficiently that value is used after it has been fully

defined.

"Efficiency" is perhaps the wrong word to use in denotinr what is

described above, since it has a further, important effect: Entire cyclic

subwebs, as opposed to individual daemons within cyclic subwebs, can be

viewed as establishing invariant relations between output values

"enterinp'" the subweb and output values "leaving" the subweb.

Furthermore, the process of establishing these relations is invisible to

a daemon which just uses them.

5.6 Preliminary Definitions

Several definitions are needed in the statement of the cyclic

daemon scheduling rules. The first two were presented in section 3-8,

and are repeated here for reference:

A daemon A is a web father of a daemon B, and B

is a web son of A, if and only if A specifies an

output watched by B.

A daemon A is a web ancestor of a daemon B, and

B is a web descendant of A, if and only if there

exists a seauence of daemons D(0),D(1)...,D(n) such

that D(0)=A, D(n)=B, and for 0<i<n+1, D(i-1) is a

web son of D(i).

In addition, the concepts of acyclic daemon, subweb, and maximal

stronFlv connected subweb (MCS) arc needed. They are defined as

follows:

An acyclic daemon is a daemon which is not its

own web ancestor.

A subweb S of a data web W is a set of daemons

D in W, and a set of web father and web son

relations R such that R contains all the web father

- web son relations in W between elementt: of D, and

only those relations.

A maximal strongly connected subweb (MCS) is a

largest subweb containing only daemons who are all

web anceitors of oach other.

Daemons in intersecting data web cycles, i.e., cycler with a daemon

in common, are members of the same MCS; and every daemon is either an

acyclic daenon or a member of some MCS.

The concept of an MCS is crucial to cyclic scheduling, in that all

the elements of an MCS must participate in the "relaxation" of that MCS,

and no daemons outside an MCS need participate in its "relaxation".

It is of patticular note that all the daemons in an MCS have

icentical web ancestral Qualities: a web ancestor (descendant) of any

daemon in an MCS is a web ancestor (descendant) of every daemon in that

MCS. This is true by the definition of an MCS above; it is also true of

any isolated cycle in the data web.

As a result of the web ancestral qualities of an MCS, it is

convenient to speak of the web ancestors and descendants of an entire

MCS, treating it as if it were a single composite daemon.

The effective data web formed by merging MCSs into single composite

daemons is acyclic. If it were not, then two daemons or composite

daemons would exist which are mutual ancestors and not in the same MCS;

this contradicts the fact that each MCS i3 "largest".

The creation of an acyclic data web by making MCSs into composite

M*

B

FIGURE 5-2 ACYCLIC DATA WEB VIA COMPOSITE DAEMONS

176

daemons is illustrated in Fig. 5-2, which, like Fig. 5-1, shows only

father-son ancestry relations represents loop daemons as squares. Fig.

5-2a shows the original, hypothetical data web containing four MCSs;

Fig. 5-2b shows the acyclic data web resulting from collapsing the MCSs,

with each composite MCS daemon shown as a diamond.

A final definition:

A daemon A is an acyclic web ancestor of a

daemon B if and only if there exists a sequence of

daemons D(0),D(1),...D(n) such that D(0)=A, D(n)=B,

for every i in the range ü<i<n+1 D(i-1) is a web son

of D(i), and for every i in the range 0<i<n D(i) is

not a loop daemon.

Note that no loop daemon can be an acyclic web ancestor of any

daemon. The above definition of an acyclic web ancestor will be used in

assuring acyclic compatibility.

5.7 The Cyciic Daemon Scheduling Rules

The daemon scheduling rules for the general case of cyciic data

webs, called the cvclic daemon scheduling rules, are divided into three

trroups: (1) rules governing the local activities of selection and

noninterruption; (2) rules achieving the previously stated goals of

efficiency and acyclic compatibility; and (3) rules governing the

behavior of loop daemons.
Whenever the term "daemon" is used below without qualification, it

refers to both loop and non-loop daemons.

The first croup of rules is taken unchanged from the acyclic case

of section 3.8-

177

Rule 1; (selection) A daemon will be run if and only if one or more

of its watched outputs has been OUCHed; once run, it does not

run again until such an OUCH occurs apain.

Rule 2: (noninterruption) Once a daemon D begins execution, no daenon

web-ancestrally related to D may run until D terminates of

its own accorl.

The next group of rules consists of cwo rules achievinp the eoals

of efficiency and acyclic compatibility.

Rule 3: (efficiency) If daemons A and B are to be run, A is run

before B if A is a web ancestor of B and B is not a web

ancestor of A.

Rule 4: (acyclic compatibility) If daemons A and B are to be run, and

A is an acyclic web ancestor of B, then A runs before B.

By virtue cf the web ancestral qualities of maximal stronely

connected subwebs (MCSs), Rule 3 establishes an "ancestors before

descendants" rule in the acyclic data web formed by considering MCSs as

composite daemons. In this way, Rule 3 guarantees efficiency in the

sense discussed previously.

Rule 4 straightforwardly establishes acyclic compatibility. It

cannot conflict with Rule 3, since if a daemon A is an acyclic web

ancestor of a daemon B, then A must also be a web ancestor of B.

The first g^oup, Rules 1 and 2, cover aspects of scheduling rfhi.Vi

^re local, -infecting the operation of individual daemons independ-nt of

their relationships with other daemons. Rule 3. efficiency, covers

global aspects of scheduling, ordering the operation of maximal strongly

connected subwebs (MCS3) and acyclic daemons with respect to one

HMother. Th^ problem these rules leave is that of o.^derin? th«

operii;lon of daemons within an MC2 with respect to one another.

Th^ rules governing the operation of daemons in an MCS are most

easily comprehended if MCSs are redrawn in the manner shown in Fig. 5-3,

,

178

ACYCLIC

SUBWEB

FIGURE 5-3 GENERAL FORM OF AN MGS

179

separating loop daerron "feedback paths" from the rest of the daemons in

the MCS. Since every cycle must contain a loop daemon, the subweb

remaininp when loop daemons are separated out must be acyclic. As in

the previous fieures of this chapter, Fig. 5-3 shows only father/son

ancestry and not the intimate details of the data web. Each of the

ancestry arrows of Fip. 5-3 can be multiple, as illustrated for a

hypothetical data web in Ficr. 5-t.

The daemons in the acyclic data subweb of these figures are the

province of Rule 1, acyclic compatibility; that rule orders the

operation of these daemons with respect to each other. Thus, we are

ultimately left with the problem of schedulinp loop daemons in a friven

MCS witn respect to one another and with respect to the non-loop daemons

in the MCS.

Three different methods of sc!nedulinp loop daemons will now be

presented, each of which has advantap^s and disadvantages. The three

methods are derived from the Ga'iss-Seidel and the Jacobi iterative

techniques for solviup. systems of equations [Rail, Varl]; the

applicability of these techniques follows from considering the data web

as a set of equations, as discussed in section 5.1.

The first and third methods are analogous to Gaujs-Seidel

iteration, sometimes called the method of successive displacements, in

that only one loop daemon "feedback path" is exercised on each

iteration. The first is easy to implement, but inefficient in that it

produces situations where daemons are run without use beinp made of the

results they produce. This inefficiency does not occur in the tnird

method; but the third method is difficult to implement.

The second method is analogous to Jacobi iteration, in that many

loop daemon "feedback paths" can be exercised on each iteration. Jacob

iteration is also variously called the method of simultaneous

displacements, the point total-step method, and the point Jacobi method.

While relatively easy to implement and not inefficient in the manner of

MM

■^^■^

I 1

FIGURE 5-4 REDRAWING IN GENERAL FORM

mm

181

o

the first Gauss-Seidel method, Jacob! iteration Mil se often converges

more slowly than Gauss-Seidel, and often does not converge when Gauss-

Seidel does [Rail, Varl]. This was noted by I. Sutherland in [Sutl],

and led to the use of Gauss-Seidel iteration, although not by that name,

in SKETCHPAD.
However, the question of convergence is complex. There are systems

f linear equstiens for whicr Jacobi iteration converges and Gauss-

Seidel does not, especially when the linear eauation system coefficient

matrix is not positive; an example can be found in Chapter 3 of [Varl].

SKETCHPAD, in its use of linear approximations to constraints, is much

closer to the classical case of iterative solutions to systems of

approximating linear equations for which Gauss-Seidel Iteration is

generally superior; hence Gauss-Seic'sl iteration was the clear choice.

The eauation system effectively implemented by a OALI data web, on the

other hand, need not be linear or even constant in time. DALI programs

can clearly be written which will converge only if one or the other

method is used. Hence, a choice of a set of scheduling rules that is

good for all cases does not appear possible. Furthermore, the rules

given for "Jacobi" iteration actually produce Gauss-Seidel iteration in

some circumstances, as will be pointed out-

Inefficient Gauss-Seidel scheduling (IGS) is performed by these

rules:
Rule 51: (non-loop before loop) If a non-loop daemon N and a loop

daemon L are to be run, and they are mutual web ancestors,

then N runs before L.

Rule 61: (loops alternate) If loop daemons A and B are to be run, the

least recently run of A and E is run before the other-

Rule 71; (closure) In any cases not otherwise covered, daemons may be

run in any order.

For the purposes of Rule 61, loops alternate, loop daemons which

have never been run are considered to have been run at random and

tfS

182

distant past times. This rule simply assures that all the loop daemons

in an MCS which are involved in the iteration by virtue of Rule 1,

selection, will affect the iteration in a fairly equitable fashion.

Since there must be a loop daemon in each loop, this means that all

loops in an MCS will share in the iteration.

The effect of Rule 51, non-loop before loop, is to cause only one

loop daemon to be run for each iteration. This occurs because executing

a loop daemon under Rule 61 will generally cause come non-loop daemons

in the acyclic subweb of an MCS to wish to run; and by Rule 51, these

will take precedence over any other loop daemons.

The inefficiency of this scheduling method arises from the fact

that there is no guarantee that the one loop daemon who does run on each

iteration will use, or can use, all the results wnich the MCS's acyclic

subweb has generated. As an example, the daemons of the MCS in Fig. 5-1

will typically run as follows under IGS:

A,B,C,1,A,B,C,2,A,B,C,1, . . .

Every other execution of daemon C, namely hose runs followed by running

loop daemon 1, is redundant in the sense that whatever values C computed

are not used before running C again.

Jacobi scheduling (JS) is performed by this set of scheduling

rules:
Rule 5J. (feedforward) As long as a non-loor daemon can be run

without violating Ru1e 3, efficiency, no loop daemon is run.

Rule 6J: (feedback) When no non-loop daemon can be run without

violating Rule 3, all of the loop daemons which (a)

currently wish to be run, and (b) can be run in any r .-der

without violating Rule 3, are aU run once in an undefined

order before running any other daemon.

Rule 7J: (closure) In any cases not otherwise covered, daemons may be

run in any order.

The effect of Rules 5J, feedforward, and 6J, feedback, is to

183

alternate between (a) runninp all daemons in the acyclic subweb of an

MCS, and (b) runninp all loop daemons which are to be run as a result of

(a) or the previous (b). Thus under JS, the MCS of Fig. 5-4 mieht will

typically run as follows:

AfB,C,1,2,A,B,C,1,2, . . ,

Clearly, TS does not have the inefficiency ascribed to IGS.

How^var, ex^mpl'"? vhere JS does not converge and IGS does are easy to

find; one is presented below.

Consider for example the simple data web of Fie. 5-5. Suppose

every daemon in the figure simply copies its watched output into its

specified output; initially all daemons are queued and the initial

output values are Asl, B=2, C=3, and D«U. Then, JS would run as shown

in the following table. In that table, time proceeds vertically

downwards, values of outputs are shown in the right-hand columns, and

the daemons JS runs are shown on the left; each daemon utilizes the

output values shown on the precedinp "value line" and produces the

output values on the succeeding "value line".

A B C D

4 2 2 4

k n 2 2

2 k k 2

2 2 4 4

i4 2 2 4

daemons run

N1 and N2

LI and L2

N1 and N2

LI and L2

N1 and N2

(loop to second state)

The last line is the same as the second, so we have an infinite

loop — oscillation. Convergence testing anywhere will not help, since

the initial values can be made different enough to overcome any fixed

bound.

Under the same initial conditions, IGS converges. A possible

trace, usin« the conventions of the previous table, is:

184

/
/

\

FIGURE 5-5 IGS CONVERGES,
JS OSCILLATES

ttm

185

daemons run A B C D T 7 T ¥
N1 and N2

LI

N1

L2
(terminates)

4 2 2 4

4 2 ~ 2

2 2 2 2

Any reasonable convergence test will halt the process when L2 runs.

The arbitrary choice of Li as the ilrst loop oaemon run causes the

equally arbitrary selection of 2 as the final value, rather than >'.

Either value is a possible solution to the system defined under the

given initial conditions. If one of the daemons halves the value it

receives, both schemes converge to A=B=C=D=0; interestingly, in this

latter case JS requires approximately twice as many daemon executions as

IGS.

Use of the term "Jacobi scheduling" to describe the above scheduler

is not precisely correct, since each loop daemon has access to most

recently computed values of outputs. This is especially true when one

loop daemon is a web son of another in the same MCS, with no mtervenine-

non-loop daemons. If both the "father" and "son" are to be run in the

same feedback session, and the father happens to run first, the son will

indeed see most recently computer values and the effective iteration

will correspond most closely to Gauss-Seidel iteration. However, such

ordering of daemons is completely providential, and the existence of

intervening nor.-loop daemons always produces the effects of Jacobi

iteration.

Now an "efficient" Gauss-Seidel scheduler (EGS) will be defined

which only runs one loop daemon per iteration but runs no non-loop

daemon unnecessarily- Intuitively, we wish to run only those non-loop -

daemons in the acyclic subweb of an MCS whose operation can effect the

loop daemon which will nevt be run; those iion-loop daemons are just

those daemons which are "ancestors" of the target loop daemon, in a

sense of ancestry which does not propagate through loop daemons.

To formalize these notions, some further definitions are needed.

186

A daemon A is a direct ancestor of a daemon B,

and B is a direct descendant of A, if and only if

there exists a sequence of daemons D(0),D(1),—D(n)

such that: D(0)=A and D(n)=E; for each 1 0<i<n D(i)

is a web father of D(i+1); and for 0<i<n no D(i) is

a loop daemon.

Note t.iat in U.s definition of direct ancestor and descendant, both Ä

and B may be loop daemons; this is the difference between a direct

descendant and an acyclic descendant.

The specification of a "target" loop daemon is in terms of a set of

"target" loop daemons, defined as follows:

The target set T is ? set of loop daemons such that:

(a) All members of T are web ancestors of every member of T,

Ke. , all members of T are in the same MCS.

(b) The members of T are all direct descendants of some

daemon(s) which are to be run.

(c) There is no other possible tareet set T' such that members

of T' are web ancestors of members of T.

By virtue of condition (b), T is dependent on the daemons which are

currently "queued" to be run. In a direct implementation, T would hive

to be modified whenever a daemon was run or queued.

T - n be empty. This can occur trivially in an acyclic data web,

since j contains no loop daemons; it will also occur in a cyclic data

web when all MCSs have finished their iteration.

Whenever T is nonempty, there is a target daemon t:

The target ojemon t is some member of T which

has least recently been the target daemon.

A daemon which has never actually been the target daer^on is considered

to have been the target daemon at some randomly chosen time the remote

past.
The rules for "efficient" Gauss-Seidel scheduling (EGS) are:

Rule 5E: (aim for target) If there is a target daemon t, the only

43

187

daemons which may run are t and non-loop daemons which are

direct ancestors of t.

Rule 6E: (target last) If daemons A and B are to be run, and both can

be run by Rule 5E, and A is a direct ancestor of B, then A

runs before B.

Rule 7E: (switch targets) If it exists, the current target daemon

cea?es to be the target daemon as soon as either (a) it is

run, or (b) as a result of Rule 5E, no daemons can be run.

Rule 8E: (closure) In any case not otherwise covered, daemons may run

in any order.

Rule 5E, aim for target, produces the "efficiency" of EGS. It is

also the reason why "efficiency" has been put in quotation marks; the

author can conceive of no way of implementing it in an even marginally

efficient fashion.

Rule 7E, target last, clearly cannot conflict with Rule 3,

efficiency, or Rule 4, acyclic compatibility. As its name suggests,

Rule 6E exists only to guarantee that the target daemon is run after dll

the non-loop daemons affecting its watched outputs are run.

Clause (b) of Rule 7E, switch targets, is needed to aUow for the

fact that no datmon need OUCH all its outputs. This can lead to a

situation where all paths to the target daemon a.^ "blocked" and the

system is stymied.

5.8 Implementation of the Cyclic Daemon Scheduling Rules

The implementation discussed below is couched in terms of

implementing the "Inefficient Gauss-Seidel" scheduler (IGS) presented in

the previous section. Implementation of the "Jacobi" scheduler (JS) is

very similar; it is discussed as a modification of the IGS

implementation. Implementation of the "efficient" Gauss-Seidel

188

scheduler (EGS) will not be discussed, as no inefficient implementation

of EGS has been formulated.

Implementation of IOS and JS can be done with a oriority scheme

similar to that used for the acyclic schedulinp; rules. We again have a

daemon queue contairinp all daemons yet to be run, with daemons queued

in tne o.der in which they are to be run. Rule 1, selection, and Rule

2, noninterruption, are satisfied by queueinp a daemon when any of its

watched outputs are OUCHed. The order of daemons in the queue is

determined from two priority numbers associated with each daemon: its

Gv.?lic priority and its acyclic priority. The determination and use of

these priorities, and the manner in which the daemon queue is used,

constitutes the implementation.

The acyclic priority of a daemon la defined as follows:

(1) The acyclic priority of the driving process is 0.

(2) The acyclic priority of a loop daemon is Initially -1, and, for

IGS, is adjusted dovnward during execution; in JS, It remains

-1 forever.

(3) The acyclic priority of a normal daernon is 1 if it h?s no

normal daemon web fathers; otherwise it is at least 1 greater

than the largest acyclic priority of its web fathers.

The acyclic priority of a daemon is easily initially determined at

the daemon's creation. Structural changes to .he data web, caused by

SPECIFIES, WATCHES, and the like, (section 4.4) may result in a need to

adjust non-negative acyclic priorities. This can be done with a RH-

PRIORITIZE modified to return when it encounters a loop daemon; in this

way, the test for circularity now assures that at least one loop daemon

resides in each loop. Another method of re-specifyir? acyclic

priorities and assurinft that loops contain loop daemons will be

discussed later.

In IGS, the acyclic priority of a loop daemon is readjusted to be

MM

189

the same as the value of a elobal variable LOOPLAST each time the loop

daemon is run. LOOPLAST is initially -2 and is decremented by 1 every

time it is used. Positive acyclic priority daemons are queued befor-e

negative acyclic priority daemons, thereby satisfying Rule 5E, non-loop

first. By queueind daemons whose acyclic priorities are the same si^n

in inverse order of the magnitude of their acyclic priorities, Rule 6E,

loop„ alternate, and Rule H, acyclic compatibility, are observed.

In determining cyclic priorities, we wish to establish the

following situation:

(1) The cyclic priority of the driving program is 0.

(2) The cyclic priority of all daemons in a Riven maximal stronply

connected subweb (MCS) is the same.

(3) The cyclic priority of any daemon D is greater than that of any

of its web ancestors not sharing an MCS with D.

This causes the cyclic priorities to be analogs of the priorities

used in the acyclic case, ertablished in the acyclic data web where each

MCS is considered a single composite daemon. By havinp: cyclic

priorities override acyclic priorities in the queue ordering. Rule 3,

efficiency, will be observed.

Unfortunately, the determination of cyclic priorities as described

above cannot be done on a purely local basis, as could the determination

of acyclic priorities. Instead, we must t'tart from the connectivity

matrix C of the data web: C is a boOicci matrix, anil C(i,j)=1 if and

only if daemon i is a web father of daemon j. We assume some indexing

scheme to associate each daemon with its own row and column of C. The

construction of C can be performed in time linear with the number of

daemons by the recursive algorithm MAKE-C below.

MAKE-C is applied uo a daemon D:

For each daemon d dependent on an output specified by D, do

the following:

(1) If row d of C contains any non-zero entries, set a flae F

false; otherwise set F true.

I

mm

190

(2) Set C(D,d) to 1.

(3) If F is true, apply MAKE-C to d.

Applyinp MAKE-C to the d iving program will construct C.

Alternatively, C can be incrementally created and modified as daemons

are created and destroyed, SPECIFIES is used, etc. An incrementally

extensible C will require further spatia1. overhead, however.

Having C, the MCSs of the data web ^an be determined.

First the boolean reachability matrix 'A of C is constructed:

R(i,J)s1 if and only if daemon i is a web ancestor of daemon j. R can

bn found as the limit of (C+I)"Nas N increases, where I is the

identity matrix and •• indicates exponentiation. Ramamoorthy [Rarr.l]

gives an alternative algorithm for constructing R which is faster than

direct matrix multiplication; it will not be discussed.

Now the symmetric matrix M is constructed, after [Raml]. M is ehe

elementwise intersection (logical AND) of R and R transpose, the latter

being the reaching matrix of C. M may as well stand for Magic: every

row of all zeros corresponds to a daemon not in any loop; every distinct

non-zero row corresponds to a different MCS; and each non-zero row has a

1 in each column corresponding to a daemon in that MCS [Raml].

Given M, we can mark each daemon with an integer which either

uniquely identifies its MCS or indicates that it is not in any MCS,

i.e., it is an acyclic daemon. Then a procedure similar to RE-

PRIORITIZE can assign cyclic priorities. As was mentioned in section

4.4, however, the time to RE-PRIORITIZE can rise exponentially with the

number of daemons. Given C, we can do better than that; the algorithm

below runs in time linear with the number of MCSs and acyclic daemons-

First, construct ACT, the transpose of acyclic connectivity matrix

which considers each MCS to be a single composite daemon. ACT has a row

and column for each acyclic daemon and each MCS, and ACT(j,i) is:

if i represents an acyclic daemon p:

if j represents an acyclic daemon q, ACT(j,i) is C(p,q).

if j represents an MCS m, ACT(j,i) is the OR of all C(p,q) for

each 0 in m.

191

if i represents an MCS m:

if j represents an acyclic daemon g, ACT(j,i) is the OR of

C(p,a) for each p in m.

if j represents an MCS n, ACT(j,i) is the OR of C(p,q) for

each p in m and q in n.

ACT can be easily constructed by first constructing a mappine

vector from an index of ACT to an index of C (for acyrlic daemons) or to

a list of indices of C (for MCSs). This same mapping vector will be

useful in the actual priority assignment below.

Now priorities are assigned, using an intetrer P and a boolean

vector X. X has as many elements as each row and column of ACT. P is

initially 0, and X is initially all 0's. Priority assignment is

performed by the following three-step seauence, repeated until the test

in step (1) signals completion:

(1) Find a row i of ACT which is all zero such that X(i)=0. If no

such row exists, return.

(2) If i corresponds to an acyclic daemon, give it cyclic priority

P; if it corresponds to an MCS, give all its members cyclic

priority P.

(3) Set column i of ACT to all 0's, set X(i) to 1, and increase P

by 1.

This must assign a cyclic priority to a daemon or "CS that is

greater than the cyclic priorities of its ancestors, since P is ever-

increasing and a cyclic priority is not assigned to a daemon or MCS

until after all its ancestors have been assigned cyclic priorities. It

must initially find a valid i, since the effective data web it operates

or is acyclic and some node in an acyclic graph must have no ancestors.

Since removing a daemon from an acyclic data web leaves an acyclic data

web, the algorithm cannot terminate until it has assiKned a cyclic

priority to every daemon.

An identical priority assignment algorithm could be used to assicm

acyclic priorities by using, instead of ACT, the transpose of C with the

192

rows and columns representing loop daemons either deleted or ipnored.

With Lhia method, the requirement that every loop contain a loop daemon

can be checked by examining the vector X after the algorithm terminates;

if X contains any zeros, the daemons corresponding to the zero entries

constitute one or more loops with no loop daemon.

The rules for ordering daemons in the daemon queue are:

Given daemons i and j, with cyclic priorities CPi and CPj and

acyclic priorities APi and APj, then

(1) If CPi < CPj, i is queued before j.

(2) If CPi > CPj, i is queued after j.

(3) If CPi = CPj, then

If APi = APj, i and j may be queued in either order.

If APi and APj are both positive or both negative, the one with

the smallest magnitude AP is queued before the other.

Otherwise, namely if APi and APj differ in si^n, the one of

positive AP is queued before the other.

In IGS, daemons are ordered as stated above and the first daemon on

the queue is popped off and executed until the queue is empty.

In JS, daemons are also be ordered in the manner stated above; the

"or both nerativf" clause, however, can be removed from the second

statenent of (3).

JS differs from IGS primarily in the manner in which daemons are

removed from the queue and executed. The action taken by JS when the

next daemon is to be executed depends on whether the first daemon in the

queue is a loop daemon, hence having a negative acyclic priority, or a

non-loop daemon, hence having a positive acyclic priority. The two

cases are handled as follows:

(1) If the first daemon on the queue has a positive acyclic

priority, it is simpiy removed from the queue and executed as in IGS.

(2) If the first daemon on the queue has a negative acyclic

priority, the aueue is scanned from its start, placing daemons passed

193

over on a separate list, until a daemon is found which either (a) has a

positive acyclic priority, or (b) has a cyclic priority different from

the first daemon on the queup; given the aueueinK order defined above,

the second test actually subsumes the first. The daemons placed in that

list are not yet removed from the queue. Then each daemon in the

separate list is first removed from the queue and then run, in any

order. When all the daemons in the separate list have been run, the

first daemon on the queue is again examined ^nd (1) or (2) ensues.

The fact that loop daemons are que^ i after non-loop daemons

establishes, with action (1) above. Rule 5J, feedforward. Action (2)

corresponds to Rule 6J, feedback. Since only daemons with the same

cyclic priority are run in action (2), they must be in the same MCS and

can be run in any order according to Rule 3, efficiency- Loop daemons

are not removed from the queue until after they are run in o-der to

follow Rule 1, selection: a loop daemon could OUCH an output watched by

a another loop daemon which has yet to be run in action (2).

Once the two priorities are established, the process of queueing

daemons and running them entails relatively little overhead. This is an

important characteristic, since smooth motion usually entails a great

many re-executions of an M-DALI data web with relatively little

structural change.

However, it is equally clear that the job of establishing cyclic

priorities is fairly expensive, due to the necessity of construct me or

maintaining the interconnection matrix C. We can, however, limit the

number of times C this must be constructed or modified to these two:

(1) a daemon is created which specifies an output already watched

by a loop daemon

(2) any structural change is made to the data web by DEPENDS, etc.

If either of these happens, cyclic priorities must be re-

established, and, in the second case, acyclic priorities must also be

re-established. This must be done as soon as the current daemon is

mm^

finished executing. After priorities are re-established, the daemon

queue will have to be re-ordered, and finally execution of daemons can

be continued.
Simple, unlooped creation of daemons can be handled by giving the

new daemon a cyclic priority greater than that of any of its ancestors,

the way acyclic priorities are initially established. Deletion poses no

problem, even if cycles are broken, thanks to acyclic compatibility: the

scheduling information conveyed by the two priorities may become

redundant or overly restrictive, but it is never wrong; i.e., even if

every loop daemon in a cyclic data web is deleted, daemons will still be

queued in the right order-
So the situation «d, perhaps, not as bad as it might appear at

first elance.

5.9 Implementing Multi-Way Constraints:
SKETCHPAD Revisited

Daemons, loop or normal, most closely resemble one-way constraints-

Although there are cases where daemons can be successfully used to

directly model apparent multi-way constraints, as used in SKETCHPAD and

described in section 1.2, many such cases are doomed to non-convergenee.

For example, the classic case of relaxing several values to be

equidistant from two neighbor values can be directly modelled. In this

case, there are n+1 values, namely A(0) through kin)', and each A(i), for

i in the range 0<i<n, "tri-s" to keep itself midway between its neighbor

values A(i-1) and A(i+1). This can be expressed, effectively usinK the

equation form of the data web, as follows:

A(0)=externally specified
A(1)= (A(0)+A(2))/2

A(i)=(A(i-1)+A(i+1))/2

A(n-1)=(A(n-1)+A(n))/2
A(n)=externally specified

195

All that is needed is n-2 identical loop daemons, each of which

specifies one of the output values A(1) through A(n-1), watches its two

neighbors, and performs the obvious calculation and OUCH each time

either of its neighbors changes. Convergence tests are also needed.

The data web for this is shown in Fig. 5-6 for n=6.

However, as Sutherland points out in [Sutl], cases like the

following cannot be modelled in such a simplistic fashion:

A=2»B
B=2«A

If this is done with two daemons — one watching B and forever OUCHing A

to 2*B, the other watchinp A and forever OUCHing B to 2*A -- the system

will diverge for any non-zero initial values of A and B. This data web

is shown in Fig. 5-7. In comparison, a least-mean-square error

relaxation such as that of SKETCHPAD will converge to A=B=0, the stable

result.

However, this does not mean that multi-way constraints cannot be

modelled at all. The problem is simply that the daemons are not doing

the calculation required to model both of the constraints. For least-

mean-souare error relaxation, each daemon should utilize the two error

terms needed to describe both constraints simultaneously, namely

e1=A-2b and e2=2B-A .

To find what the daemon for A should do, we uiust take the sum of

the squares of the error, then take the derivative of that with respect

to A and equate it to 0 to find the minimum. Solving that equation for

A yields

A=B»1/5

which is the calculation to be done each time that daemon is called.

Similarly, the B daemon should compute B=A»4/5. One or the other, of

course, needs a convergence test.

The above technique is not directly applicable to the Keneral case,

since a different daemon would be needed for every possible combination

of constraints. For the general case, the solution should be split

196

• \

1 M i X i
6 A(lft A(2)Y A(3)A A(4)? A{5)V A(^ A(IT\

L_ s /\

\

A(6)

/
y

FIGURE 5-6 TWO-WAY CONSTRAINTS DIRECTLY

MODELLED

197

A =2*B
B = 2*A

FIGURE 5-7 TWO-V\AY CONSTRAINTS

INCORRECTLY MODELLED

198

between two classes of daemons, ealled arbiter daernons and constraint

daemons;
There is one arbiter daemon specifying each

constrained output; its job is to find a value for

that output which is least distasteful to the

constraint daemons specifying, outputs he watches.

There is one constraint daemon per constraint

and per output constrained. These specify outputs

which tell the arbiter for the constrained output

how to satisfy the constraint daemon's particular

constraint.
For example, suppose the method of solution chosen is least-mean-square

fit to linearized constraints, as in SKETCHPAD, ihen each constraint

daemon would feed an arbiter the coefficients m and b of the linearized

error term
m»V*-b

to constrain the value of the output V. For the two constraints

(1) A=2*B

(2) B=2»A

and initial values A=1 and B=2, the arbiter for A would be given

(1) m=1, br-U

(2) m=-2, b=1
by constraints (1) and (2) respectively. Solvin. this, in a manner to

be shown, yields a new A of 1.6. Then B's arbiter would work on

(1) ,-.=2, b = -1.6

(2) m=-1, b=-3.8
yielding a new B value of 1.28, etc. The data web evolving out of this

approach is shown in Fig. 5-8, which illustrates two general two-way

constraints constraining two values. The daemons labelled 1 are

constraint daemons for constraint 1, and those labelled 2 impose

constraint 2. The two loop daamons labelled arb are arbiters.

199

\\VV
\

\ ^--

\ v \ -.

/ / /

/

\ \ \

\

\
N

s /
/ s

FIGURE 5-8 GENERAL DATA WEB FOR TWO VALUES
CONSTRAINED BY TWO-WAY
CONSTRAINTS

20ö

A general linearized-least-mean-squared error arbiter can easily be

constructed as a picture module containing a daemon watching a variable

number of m and b error terms- His job is to select a value V

minimizing the sum over i of
[m(i)«V+b(i)]"2

which, taking the derivative with respect to V and equating the result

with 0, means OUCHing V to ft\m^n\
-m(i)*bu;
m(l)*^

where the numerator and denominator are separately summed over i.

A picture function for a least-mean-squared error arbiter is LMS,

below:
(DEFPIC LMS (EPS "AUX" MBLIST DEM "OUT" V "OUTU" ADDIT)

(SETQ DEM x , .
(L00P0N (VAL EPS) (V)

(PROG NEW)
(SETQ NEW (SOLVE MBLIST))

iifTg ^DI^^ctEsSJVlDD-CONSTRAINT)))
In LMS, V is the output whose value is to be constrained; MBLIST is

a list of (n b) pairs, and the p-closure assigned to ADDIT is used to

add constraints. EPS is an output defining the allowable error,

probably shared across a section of the data web. OUCHing EPS to a

lower value will cause that section of the data web to "tighten up" its

constraints-
SOLVE, which solves for the least-mean-squared error vnlue of V,

is:

(DEFINE SOLVE (MBLIST)
(PROG (NUM DEN)

(SETQ NUM (SETQ DEN 0))
(MffiHBDA (MB) JSETQ NgJ j; HUM jj ,jCAB MBj .jCJMMftjjj

MBLIST) 4 MM.. ,,
(RETURN (/ (- NUM) DEN))))

While ADD-CONSTRAINT, which is used as a p-closure relative to LMS'

local environment, is:

/

L

^^^»■

P01

(DEFINE ADD-CONSTRAINT (M B)
(WATCHES DEM M)
WATCHES DEM B)
3ETQ MBLIST (CONS (LIST M B) MBLIST))
ON-DELETION M KILLIT)
ON-DELETION B KILLIT)

[RUN DEM)
T)

(DEFINE KILLIT (DEADOUT)
(PROG (MB)

(SETQ MB (FIND-IN-MBLIST DEADOUT))
(COND (MB (UNWATCH DEM (CAR MB))

(UNWATCH DEM (CDR MB))))))

Basically, ADD-CONSTRAINT adds a new (m b) pair to MBLIST. It also

makes sure that deletion of the constraint does not delete the arbiter,

by putting onto M and B a deletion p-closure using KILLIT. KILLIT uses

FIND-IN-MBLIST to find the (m b) pair in MBLIST containing the dead

output. FIND-IN-MBLIST returns the (rr b) pair after splicing it out, if

such a pair exists; otherwise it returns NIL (=false).

For the example case of Ar2*B, B=2«A, a picture module applying the

constraint A=2B to two values arbited by modules X and Y would be:

(DEFPIC X2Y (X Y "AUXO" B1)
(ONS (VAL (OUT Y))

(OUCH Bl (» .(OUT Y) -2)))
(APPLY (OUT X 2) (NULLSPEC (OUTPUT 1)) Bl)
(APPLY (OUT Y 2) (NULLSPEC (OUTPUT -2)) (OUT X)))

Thereby providing X with the error X-2Y, or m= 1, b = -2»y; and Y with the

error -2»Y+X, or m=-2, B=X. Deleting such a constraint module will

remove the constraint eracefully, thanks to the ON-DELETIONs of ADD-

CONSTRAINT.

The arbiter and constraint-daemon method of implementing multi^way

constraints is both more flexible and more efficient than the multi-way

constraint mechanism of SKETCHPAD.

It is more efficient than SKETCHPAD in this sense: When SKETCHPAD

discovers cyclic constraint dependence, it relaxes the entire system on

each iteration, rieht down to the visible line positions. No attempt is

made to isolate sections of the picture which needs relaxation from

202

sections which do not. This contrasts with DALl's efficiency criterion

in cyclic scheduling, which guarantees that only those portions of the

data web needing relaxation actually participate in the relaxation.

DALl's method of itrrplementin* multi-way constraints is more

flexible because arbiters can oe written to accommodate a wide variety

of approximations to constraints. For example, arbiters of second-order

approximations- a(1)«V"2 + a(2)«V + a(3) -- can be written. More

generally, arbiters can be viewed as objects providing approximate,

iterating solutions to situations with multiple simultaneous goals. It

might even be possible to design arbiters which operate on qualitative,

rather than quantitative, descriptions of error. For example, an

arbiter might handle an "error comment" from a constraint daemon of the

form "This position value will be OK if it's below that line, but it

would be better to have the value in this triangular region; however,

make sure you keep it near that piece of text, and whatever you do,

don't put it in the upper right-hand corner!"

203

Chapter 6

S-DALI: Interpolated "Smooth" Change

"Time is a system for keepine everything
from happening at once."

--Anonymous
(found on the wall of the
Orson Wells Cinema in
Cambridge, Mass.)

6.1 Motivation

The general purpose of S-DALI is to extend the capabilities of M-

DALI to the handling of seauences of monadic changes across viewer-

perceived picture time. By doing so, S-DALI encompasses the generation

of "smooth" interpolated motion in a general way. This section

describes and motivates the principal features of S-DALI.

It should initially be recalled from section 2.3 that picture time

is time as it is intended to be perceived by the viewer, as opposed to

the DALI compute time needed to compute individual "frames" and inter-

"frame" relationships.

In the context of M-DALI, change which is to be perceived by the

viewer as "smooth" is best provided by creating picture-temporal

sequences of monadic changes to an output. The illusion of continuous

motion can then be achieved by appropriately choosing sequence elements,

e.g., by interpolation. In this way the normal operation of M-DALI,

repeated for each element of the sequence(s) in proeress, can keep

relationships between picture elements correct during such change.

204

Thus, for example, a "smoothly movinp" visible line can be created

by applying appropriate sequences of monadic changes to the inputs of

the LINE picture module defined in the discussion of M-DALI.

S-DALI provides such a capability; but this is not the full purpose

of S-DALI.
S-DALI also allows computation to be performed on entire sequences

of changes in the way that M-DALI allows computation to be performed on

individual instcaitaneous changes: entire sequences can be passed through

the data web, operated on as entities, and propagated further. I.e.: S-

DALI is to secuences as M-DALI is to instantaneous values.

This is more precisely expressed by saying that S-DALI allows

daemons to generate temporal sequences of monadic changes to outputs

such that:
(1) generated sequences can be functions of other determining

sequences taken as wholes, not just functions of other

sequences' elements; and

(2) both generated and determining sequences can appear temporally

simultaneous to the viewer.

This capability is provided by a new class of daemon conditions

which "watch for" sequences applied to outputs. Daemons with these

conditions are run before the occurrence of any of the value changes

represented by the applied sequences. Thus these daemons can inspect

entire sequences, using them as data to compute new sequences whose

changes will occur in parallel with the data sequences. Applying such

new sequences to outputs can then propagate sequence information through

a data web just as value changes propagate in M-DALI. All the

previously created sequences "really" happen, i.e., the picture times

associated with their elements occur, after such sequence processing has

taken place.
The S-DALI data web used for propagating sequence information is

not intrinsically separate from the M-DALI data web; but the manner in

which "sequence watching" daemons are queued relative to "value

205

watchinp" daemons causes interaction between them to be easily

comprehended and used.

Tnat sequences can be functions of other simultaneous seauences,

i.e., sequence -> sequence functionality exists, is the characteristic

that distinguishes S-DALI from an M-DALI system with a loopine driving

program; this characteristic also distinguishes S-DALI from simulation

systems such as that embedded in SIMULA [Dahl, Dah2]. The motivation

behind, first, sequence -> sequence functionality, and second, the need

for simultaneity, will now be discussed.

Without sequence -> sequence functionality, certain classes of

behivior are impossible to produce within the picture itself, i.e.,

witnin picture modules.

A simple example demonstrating this is illustrated in Fig. 6-1.

There, outputs 01 and 02 specify positions, and 02 is a function of 01.

02 is to be a vector distance D from 01 when neither are moving. When

01 moves, 02 js to move in a semi-circular path to its final position,

as shown. This cannot be done unless information about 01's final

position is available to 02 before 02 starts to move: 02's initial

"step" is dependent on 01's final position, since that position

determines the rciius of 02's semicircular path.

A slightly more complex example is shown in Fig. 6-2; here 01 and

02 are again positions, and 02 again depends on 01- When 01 moves, 02

is to end up in the same position as 01, moving there in a series of

"hops" normally of length S. If 02 is to land in exactly the right

position, the final "hop" must be made smaller than S, as shown; thus

the final position must be known in order to determine the full

configuration of "hops". The type of cyclic motion shown in this

example is characteristic of walking figures; final, and, for walking,

initial motions differ from intermediate motions because standing

posture differs from posture while walking. Clearly, the final value of

the determining sequence — here 01's — must be known before a cycle

can commence.

^■^

206

DESIRED PATH
FOR 02_

/
/

/

/

\

\

s
^

• 02

/
/ +•01

/
/

\
02

/
/

01

^ /

PATH OF 01

FIGURE 6-1

207

DESIRED PATH
OF 02

/ i (\ \ \
02 02

-H
CHANGE IN 01

FIGURE 6-2

208

The requirement that computed seauences be able to occur

simultaneously in picture time with their detirminine sequences is

Justifiec by the fact that sequence -> sequence functionality can be

nested to any depth; thus any v'.sible delay caused by such nesting could

result in arbitrarily bad loss of synchronization. This could in theory

be compensated for by clever programming, but only at an immerse loss of

modularity.

An example showing how such nesting can become rather deep, and

also giving the intended "flavor" of S-DALI programming, is the action

of a (hypothetical) program for a human figure as it catches a thrown

ball:

A top-level "human" daemon is passed, through an output, an object

such as this two-element]ist:

(CATCH ball-s)

where ball-s is the sequence specifying the ball's motion. Seeing the

CATCH token, this top-level daemon passes ball-s through an output to a

"ball catcher" daemon, which examines the ball's sequence and issues a

sequence specifying an appropriate hand position and time for a catch.

This causes a "major skeletal coordination" daemon to note, for example,

that the position is near enough that running and jumping is

unnecessary; so it just issues a set of sequences specifying appropriate

shoulder, elbow, and wrist motions. A specialized "hand control"

daemon, noting the wrist and J-and position sequences, issues a set of

sequences to orient fingers and palm appropriately and close them at the

proper time for the "catch"; this, in turn, mi^ht set off more

specialized daemons, e.g., for thumb movement. Finally, a set of "skin

and musculature" daemons reacts to all the skeletal sequences with

appropriately realistic bulges, throbs, and wrinkles in the vi- ble

coverintr of the (invisible) skeleton [Monl]. Only after all this is

done in DALI compute time does anything actually start moving in picture

time.
All of the above will produce a very strange picture indeed if

209

there is a visible picture-time delay inherent in sequence creation: net

only will the hand reach its place after the ball — which is a much

simpler object with less nesting -- but the hand will lap after the

forearm, and who knows when the thumb will pet there?

Similarly complex cases can be found in seeminely simpler

operations, such as movinp: pointers about in a display of the workings

of an interpreter or compiler; only the skin is missinp. The above

example Just illustrates the problem more graphically, and, besides,

it's more fun.

If sequence -> sequence functionality is to create sequences which

are to occur in parallel with their determining sequences, knowledge of

the future is needed -- i.e., the values which an output will take on.

This information is useful in two ways.

First, the availability of future data can reduce the total amount

of computation needed by reducing the need to calculate predictions.

For instance, in the "catch" example above, the "catcher" daemon could

have been written in the following fashion: it could wait, recording

some successive ball positions, and then calculate the trajectory it

needs to know. With access to the ball's future position, however, at

least part of that calculation can be avoided. The case is even clearer

when many objects are "watching" a particular object. The moral of this

seems to be that the more of the future an object knows, the less

intelligent it need be.

Second, there is another interpretation of sucl- sequences:

determining sequences are orders, i.e., partial specifications of future

behavior which an object (a picture module) is to satisfy by its own

methods. Here, the time element of a determininK sequence is considered

to be a part of the order, specifying when the behavior is to be carried

out.

Thus, in the two simple sequence -> sequence examples above, the

sequence applied to 01 was interpreted as an order to move 02 to a new

210

position, accomplishing this action while 01 was moving; the 02 code

"decided" to do so by different means in each case.

The stratagem of allowing the response to such orders to be the

same type of object as the orders themselves — sequences -- creates a

desirable uniformity that allows orders to propagate throueh a picture

in exactly the same way that monadic changes propagate in M-DALI.

Making such orders interpretable as M-DALI operations smooths their

transmittal to the "cannon fodder" M-DALI routines which perform

operations more easily done without viewing the future.

The requirements of sequence -> sequence functionality and

simultaneity put a significant restriction on how the elements of

sequences may be generated when they are "really" applied to outputs:

all the elements of a sequence must be computable before the picture

time of the firjt element is reached. Thus a sequence generator must be

a function of one variable, namely picture time: it can have no internal

state. I.e., the apparently "natural" model of sequences, general

finite-state machines, is too general; sequences can at best be modelled

by information-lossless finite-state machines which can always be

"backed up" in time. This is truly a significant restriction, as it

disallows many eKgant, general schemes which effectively use co-

routines as generators of sequences; such schemes are, for example, used

in PLANNER, CONNIVER, and SIMULA 67 [Hewl, McDI, Dahl, Dah2].

To some extent this restriction will be relaxed. For example, in

the "catcher" example above the trajectory of the ball may be initially

computed as if no catch were to be made; and a later modification can be

made when the catch is imminent, appropriately decelerating the ball.

However, the nature of the facilities of S-DALI militates against

general seouence generators.

There are, nevertheless, cases where suitably complex sequences are

used in situations where only M-DALI daemons need watch the outputs they

chancre. Since the facilities of S-DALI are not being used in these

211

cases, "value generators" with state can be us^d, and are allowed. They

do not, however, constitute or generate true S-DALI sequences, and in

particular cannot excite "seouence watching" daemons as do true

seauences.

6.2 S-DALI Operation and Action Scheduling

The operation of S-DALI is similar to that of the event-driven

simulation system embedded in SIMULA [Dahl]. It is based on an agenda,

which is a linked link of agenda blocks (blocks), each containing two

elements:

(1) a picture time

(2) a set of actions

There must also be a "next agenda block" entry to define the list; but

in this discussion it is irrelevant.

The picture time indicates when the set of actions will be

performed. The agenda is continuously kept sorted in order of

increasing agenda block picture tine.

The set of actions essentially contains blocks of executable code

-- actions — which are to be performed at the block's time. Typical

actions include OUCHing an output, deleting an object, and starting up a

sequence. The set of actions has internal structure which defines a

partial order in which actions are performed; these topics will be

discussed in section 6.5.

S-DALI's total operation consists of removing the first block from

the agenda and then processing it in a manner to be described, repeating

this performance until the agenda is empty. This operation is initiated

when the driving program performs an action which causes the generation

of an agenda block — for example, by directly applying a sequence of

212

changes to an output, or by doing an OUCH which causes a daemon to apply

such a seauence, and then perfortninc; an UPDATE-DISPLAY. S-DALI

operation, like M-DALI operation, occurs nested within the UPDATE-

DISPLAY; when the agenda is empty, control acrain returns to the driving

program.

The agenda block which is currently being processed is referred to

as the current agenda block (current block), and its picture time is

called the current time. A jser can obtain the current time as the

value of the function CURT applied to no areuments.

Agenda blocks are created by an operation called action scheduling

(scheduling). To schedule an action A for a picture time T,

(1) If T is the current time, do not actually schedule A; instead

perform the action immediately exactly as it would be performed

in normal block processinp.

(2) Search the agenda for a block with picture time = T. If such a

block exists, insert A into the block's, set of actions.

(3) If no such block exists, create a new block with picture time T

and put A into its action set. Insert the new block into the

agenda immediately before that block with the smallest time

greater than T; if no such block exists, put the new block at

the end of the agenda.

Rule (1) is not Just a trick to avoid unnecessary agenda block

creation; it is necessary for "sequence watching" daemons and data web

to work correctly, since such daemons watch only for actions which are

scheduled. Furthermore, it cannot be combined with Rule (2) by leaving

the current block on the agenda. This will be explained later in this

section.

Processing of the current block is performed in two sequential

phases, the first called the initiation phase and the second called the

follow-up phase:

tm

213

initiation: the set of actions is performed (in an only partly

defined order). If there are daemons watching for any of

these actions, place them on the daertnn queue according to

the (M-DALI) daemon scheduling rules. If deletion is

performed during this phase, actual interment is deferred

until the start of follow-up.

follow-up: Run the queued daemons in accordance with the (M-DALI)

daemon scheduling rules.

The division into two phases is what necessitates schedulincr rule

(1). This rule causes actions which arc scheduled for th? current time

to be performed immediately, thus possibly performing what otherwise

would be initiation phase activities during in the follow-up phase.

Three things distinguish current block processing from the driving

program/M-DALI interaction described earlier: a wider variety of actions

can be performed, a new class of daemon conditions can be invoked, and

one anti-data-web-cycle prohibition -- that only an output's specifier

may OUCH an output -- does not operate during the initiation phase.

New actions include: action scheduling, which invokes no daemons;

initiating a sequence, which invokes daemons with the new class of

conditions; and continuinp a sequence -- performing an OUCH and re-

scheduling the continuation -- which invokes normal M-DALI daemons in

response to the OUCH. These are discussed in detail in a followine

section.

Daemons havinsr the new class of conditions, referred to as S-DALI

daemons as opposed to M-DALI daemons, are distinguished by the fact that

all M-DALI daemons are queued before any S-DALI daemon. This is clearly

not the mechanism by which processinp; of time sequences is made to

precede the processing of monadic events. Among the S-DALI daemons the

ord^r of queucinr is determined by ancestry in the data web, usinp- the

same scheduling rules as M-DALI daemons.

During the initiation phase, the set of actions performed can

include OUCHintr or applying a sequence to any output whatsoever.

independent of whether the output has a specifier or what that specifier

is. If an output is OUCHed more than once, its value remains that siven

by the last performed OUCH -- recalling that the order in which

initiation phase actions are performed is not completely defined. The

reason for allowing such uncontrolled behavior is that the primary

reason for disallowing it does not exist. Specifiers exist to make a

true representation of inter-module functional dependence available to

the scheduling rules so that they can operate with rationality and

approbrium in propagating change; but change is not being propagated

during the initiation phase. Rather, change is beincr inserted into the

picture definition for propagation during the follow-up phase, and in

that phase all the usual restrictions apply. This is the source of the

"future OUCH" mechanism mentioned in sections 1.6, 5.2 and 2.3-

If initiation phase activities are performed during the follow-up

phase due to action schedulintr rule (1), they are subject to the anti-

circularity "specifier" rule which is suspended durinsr the initiation

phase; this suspension is associaLed with the phase, not with the

actions performed.

6.3 General Scheduled Actions

A straightforward method of causing an action to be explicitly

scheduled for a given time is to create a scheduled p-closed action

(SPA) by means of the SCHEDULE function. Doing so does not create a

true seauence; that operation is covered in the next section.

An SPA is always a member of some agenda block's set of actions,

and the action it describes is performed during the initiation phase of

agenda block processing, except, as mentioned, when it is scheduled for

the current time.

A scheduled p-closed action has three elements:

(1) the owner -- a picture module

215

(2) the body -- an s-expression (block of codp)

(3) the agenda block

In addition, since an SPA is deletable it has the standard three

deletion elements.

The owner of an SPA is the owner of the daemon which created it,

the body is an arbitrary block of code, and the agenda block is that

block whose set of actions includes the SPA.

An SPA is performed during the initiation phase of its aeenda

block's processing as follows:

(1) It is evaluated as if it were one of its owner's daemons.

(2) If it has not re-schedultd itself» it is deleted.

Re-schedulinc is covered below; the test in (2) is quite simple.

A scheduled p-closed action is created and initially scheduled with

the SCHEDULE function:

(SCHEDULE ti -body-)

where ti is a number which is added to the current time to obtain the

SPA's scheduling time, and -body-, an arbitrary list of S-expressions,

becomes the body. The agenda block is obtained in the process of

scheduling, which occurs as part of SCHEDULE. SCHEDULE returns the new

SPA as a value. If SCHEDULE is called with ti=0, the -body- is

immediately executed; this is useful for initialization, and follows

from the action scheduling rules.

An already scheduled SPA can be re-scheduled f r a different time

(RE-SCHEDULE ti spa)

where spa is the SPA, and ti is again added to the current time to

obtain the time for (re-)scheduling. RE-SCHEDULE causes the SPA to be

removed from the set of actions of its agenda block and scheduled arain,

chanpinp the SPA's agenda block appropriately. The spa argument is

optional and defaults to the currently running SPA; thus

(RE-SCHEDULE ti)

216

re-schedules the SPA which executes it.

The test for whether an SPA has been re-scheduled, needed in the

processing of the SPA, is: if the SPA's agenda block is the current

block, it has not been re-scheduled. RE-SCHEDULEinp for the current

time produces, due to infamous: scheduling rule (1),an odd form of

iteration which has no intrinsic benefit; therefore, as a safety

measure, a 0 ti argument to RE-SCHEDULE is illegal.

A simple example:

Assume that MOVER and DELT are id-ntifiers in the environment of

the module owning the daemon containing the following application, and

that MOVER is bound to an output. Then:

(SCHEDULE 0 (OUCH MOVER (+ .MOVER DELT))
(RE-SCHEDULE 10))

creates an SPA which causes MOVER'S output value be be incremented every

10 time units by whatever happens to be in DELT at the time, starting

immediately. Note that this will go on until the SPA is deleted, or

until its owner module is deleted. The latter occurs because when a

module is deleted, all the objects owned by the module deleted,

including SPAs.

6.4 Sequences and Simple Seauences

A sequence is an object representing a temporal sequence of monadic

value changes which a single output will undergo. Each such chanpe is

completely equivalent to an OUCH, and will cause daemons watching for

value changes to oe executed. Like a scheduled p-closed action, a

sequence is always a member of some agenda block's set of actions, and

only does something when it is performed during the initiation phase of

block processing. Sequences are accessed and examined via the outputs

/

217

they control, and only one seouence can control an output at any civen

virtual time. After their creation, sequences cannot be altered. They

can, however either be explicitly DELETEd or replaced by other seauences

and thereby automatically DELETEd.

This section discusses simple sequences. These are sequences

containing an explicit ordered set of values to be assumed by an output.

More complex sequences — path sequences, discussed in a later section

-- simply substitute a function for this ordered set, and are otherwise

identical.

The elements ? a simple sequence are:

(1) the chaneee -- an output

(2) the value set -- an ordered set of objects

(3) the step index — a positive integer

(U) the step duration -- a real number

(5) the agenda block

Simple sequences also have the standard three deletion elements because

they are deletable.

The chaneee is that output which will be changed by this seouence.

The value set specifies the values the changee will assume, and the

order in which they will be assumed. It must have at least one element.

The step index is incremented by one each time the sequence is

processed. It counts from 0 to the length of the value set, and is used

to tell both which element of the value set is next and when the

sequence is finished. A sequence initially has a step index of 0.

The step duration is the picture time interval between the

individual monadic changes.

The agenda block is the block whose action set contains the

sequence.

Simple sequences are created by means of the function SOUCH (for

Simple sequence of OUCHes), as in

(SOUCH out vset ftime stime)

218

where: out is the output which becomes the change; vset is a list of

values, which becomes the value set; ftime and stime are picture times

specifying, respectively, the finishina; and starting picture times of

the sequence, stime is optional, and defaults to the current time.

SOUCH creates a new simple sequence, schedules it for stime, and

returns the sequence as the value of the application. If an uninitiated

sequence with the same changee output is already scheduled for the same

time, the old sequence is DELETEd. What happens when a new sequence

overlaps an old one without starting at the same time will be covered

below.

The step duration is

(finish time) - (start time)
(length of value set;

Thus the picture time tm(i) of each monadic chanee i, where i ranees

betweer. 1 and the length of the value set inclusive, is:

tm(i) = (start time) + i«(step duration)

This is illustrated in Fig. 6-3. A sequence will be scheduled a^

continuing for each tm(i); this is described below.

Note that no value change occurs at the start time; this is if

successive seauences applied to the same output are to dovetail

appropriately. However, S-DALI daemons watching the changee are run at

start time; this is described in the next section.

6.5 The Starting and Continuation of Sequences

In describing the processing undergone by sequences during the

initiation phase of blook processing, two other facts become relevant:

First, outputs gain two more elements in S-DALI: They now have a

current sequence- element, containing that continuing sequence currently

219

Q

LU
O

(0
UJ
O z
UJ
Z)
O
UJ
V)

o
2
Q.

<
_l
»r
UJ
> o
to

CD

UJ
a:
3

/

|

J

220

controllinR the output. If no such seauence exists, this element

contains a null value. If a sequence beinp; DELETEd is the current

seauence of its change when interment rolls around, the changee's

current sequence is tnaoo null. The other new element is a list of

dependent S-DALI daemons; the^e are the daemons whose conditions "watch

for" sequences applied to the output. How such daemons are created will

bo discussed in the next section.

Second, the set of actions of an aRenda block is divided into 3

parts:

(1) continuations ••- re-scheduled continuinp sequences

(2) starters — sequences scheduled into this block which have not

yet begun

(3) SPAs — scheduled p-closed actions scheduled into this block.

The only reason for separatinc; starters and SPAs is to ease the

problem of finding and DELETEing sequences created by redundant SOUCHes.

Continuations are separated from starters so that they can be

performed first, as described below.

The partial ordering of processing in the initiation phase of block

processing is:

(1) First, the continuations are processed in an undefined order.

(2) Then, the starters and SPAs are processed in an undefined

order.

Recall that this entire phase — both of the steps above — proceeds

uninterrupted by daemon execution and interment. Daemons are queued,

and interment is deferred, until the follow-up phase which follows

initiation.

As Implied above, sequence processing comes in two varieties: start

processing and continuation processing. While for a given sequence

start processing always comes first, any continuations in the current

block's set of actions are done before starts.

For a sequence S, start processing consists of the following:

221

(1) If the chansee of S has a current seouence, DELETE that

sequence.

(2) Make S the current seauence of its changee.

(3) Queue the daemons with conditions watching for sequences on

this output.

(4) Set S's step index to 1.

(5) Re-schedule S as a continuation for the current time plus the

step duration.

This same start processing is performed on all sequences, simple or

otherwise. The DELETE in step (1) defines the ab.judication of

overlapping sequences: the most recently started sequence always takes

control of its changee.

Continuation processing of a simple sequence S proceeds as follows:

(1) OUCH S's changee to the (step index)th. element of the value

set.

(2) Increment S's step index by 1.

(3) If S's step index is greater than the length of its value set,

DELETE S. Otherwise, re-schedule S as a continuation for the

current time plus its time interval.

Agenda block processing produces an interesting and important

sequence of occurrences when we find in the same agenda block (1) a

continuation of an output's current sequence, and (2) an uninitiated

sequence with that same output as a changee. The resultant behavior is:

(1) The continuation Of/CHes the output to a new value. This causes

the output's M-DALI daemons to be queued.

(2) The continuation is re-scheduled or DELETEd; either way, it

won't last long, because

(3) The start processincr of the new sequence DELETES the

continuation if it still exists.

(4) The new sequence becomes the output's current sequence, and its

S-DÄLI daemons are queued; then the new sequence is re-

scheduled for its first OUCH.

222

At this point both sets of daemons are aueued, and the output has an

"old" value and a "new" sequence.

(5) The M-DALI daemons are run.

(6) The S-UALT daemons are run.

Thus the value sequences dovetail correctly, includinc; their

computational descendants via M-DALI daemons. Also, the S~DALI daemonu

run at a picture time prior to that when the first change of a sequence

takes place. Thus they run (1) before any M-DALI daemon sees the values

from their driving sequences, and (2) in time to schedule sequences in

parallel with their driving sequences.

6.6 Outputs and the SEQ Daemon Condition

In S-DAL1, outputs are created in exactly the same way they are In

M-DALI; however, they now also contain a current sequence and a set of

dependent "S-DALI daemons".

An output's specifier is the only daemon which is allowed to either

OUCH it or apply a sequence to it. Note, however, that any daemon may

do either.

The current sequence is used to allow access to the sequence

through the output. Functions used to do this are described near the

end of this sect.ion-

The set of "S-DALI daemons" are the daemons watching for sequences

applied to this output. They are queued, as previously described, when

start processing is performed on the outputs they watch.

The only difference between an "S-DALI daemon" and any other daemon

is its condition:

(SEQ -wouts-)

where -wouts- are outputs, is a daemon condition causing its daemon to

be run whenever start processing is performed on any of the -wouts-.

223

In addition to ONC and ONS, a new daemon creating routine called

ONCIF (ON. Condition and 1F_ changing) exists, which, like ONS, is a

convenience for startup. ONCIF creates a daemon like ONC, but also runs

its body before returning if any of the watched outputs is currently

changing, i.e., any of them has a non-null current sequence.

The daemon ancestry relations on which the scheduling rules are

based are sliehtly extended in S-DALI: a daemon with a SEO condition is

a web son of the specifiers of the outputs it watches. This means that

"M-DALI" and "S-DALI'' data webs can be interminpled. Usual program

structure will normally keep them fairly separate, however, and, in any

case, it makes no difference. The existence of M-DALI daemons between

S-DALI daemons does not change the ancestry relations of the S-DALI

daemons, and vice versa; and the separation of the runnine of S-DALI

daemons and M-DALI daemons makes their relative ancestry irrelevant.

The scheduling rules of M-DALI are still used, modified by a new

selection rule accounting for the SEQ condition, and extended to include

the fact that all M-DALI daemons are run before any S-DALI daemon. This

can be implemented either by having different daemon queues for M- and

S-DALI daemons, or by adding a very large, fixed constant to the

(inverse) priorities of all S-DALI daemons. The order in which S-DALI

daemons are run relative to each other is defined by web ancestry using

the rules of M-DALI. LOOPON can be used with a SEQ condition to create

cycles in sequence processing.

Due to the difficulty of producing any reasonable examples using

only SOUCH, examples are deferred until a sections 6.7 and 6.8.

A:3 promised, the functions used to obtain data from seauences are

listed below. These functions can be applied either to the sequenceji

themselves or to outputs. In the latter case, information is obtained

about the output's current seiuence; this is usually the more convenient

22U

method. In the following list, "os" is used to indicate "output or

sequence":

(STEPS os) total number of value steps this sequence takes

(STIME os) start time

(FTIME os) finish time

(IVAL os) initial value

(FVAL os) final value

(TVAL os ti) value at time ti

(SVAL ^s i) value at step number i

(CURSTZP os) current value of step index

Three other functions also exist:

(SEQUENCE? out)

is a boolean returning "true" if and only if out has a current sequence.

(SEQUENCE out)

returns out's current sequence.

(CONTROLLED seq)

returns the output controlled by the sequence seq.

6.7 Path Sequences

The problem of describing arbitrary motion is a difficult one; it

is equivalent to the problem of describing arbitrary curved lines and

shapes, and is, strictly speaking, beyond the scope of the research

presented here. However, SOUCH is clearly an inconvenient method for

constructing sequences, and it is not difficult to do somewhat belter.

To that end, this section introduces the notion of a composite

generalized path (path). a more flexible method of sequence

specification than SOUCH. It is inspired in part by Baecker's "p-

curves" [Pael].

Paths are functions used as value generators in path sequences. A

225

path sequence is identical to a simple sequence except that the value

se„ is replaced with two new elements:

(1) a step count

(2) a path

The step count is the number of monadic changes to be performed by

the sequence.

The path is a function whose domain includes the real interval

[0,1].

In the continuation processing of a path sequence, the chancee

output is OUCHed to the result of applying the path to the ratio

step index
step count

before the step index is incremented. If, after incrementing the step

index, that index is greater than the step count, the sequence is

DELETEd. Except for this, path sequences are processed exactly like

simple sequences.

Path sequences can be directly created by the function NPOUCH,

named for Naked '^ath-defined sequence of OUCHes, which is applied as

(NPOUCH out pth stepc fin strt) .

NPOUCH acts exactly like SOUCH, with the pair of pth and stepc - - a path

and a step count -- replacing the list of values.

From an abstract point of view, NPOUCH is all that is necessary.

However, it still suffers from being inconvenient. A better mechanism

would be one which allowed the notion of shape to be specified

independent of the notions of position, size, and rate of travel along

the shape. To that end, the notion of composing a rjath will be pursued

below.

The notion of "where in time", which conveys rate, is here

represented by a time path. A time path tp is a function from i;he real

interval [0,1] to that same interval, subject to the condition that

tp(U)=0 and tp(1)=1.

226

"Shape" is represented by a shape path. A shape path sp is a

function from the real interval [0,1] to any one of R, RxR, or RxPxR

where R is the reals. A shape path has a dimensionality associated with

the dimensionality of its range. To ideally separate rate and shape, sp

should exhibit constant velocity: the distances travelled in its ranpe

during equal domain intervals are equal.

The composition sp(tp(t)), t in the interval [0,1], represents

travelling along a shape, sp, with a possibly variable velocity defined

by a distance function, tp. Such a composition will be called a

gesture.

To allow such a composition to be "performed" in various positions,

attitudes, and sizes, the concepts start point and end point are used.

Basically, a gesture is translated, rotated, and scaled until

sp(tp(0))=sp(0) coincides with the start point and sp(tp(1))=sp(1)

coincides with the end point. The result of that transformation is the

desired path.

Analytically, the composite path p(t) is a linear transformation of

sp(tp(t)), determined by solving for the constants T and R in the

equations

start point = p(0) = T + R»sp(0)

finish point = p(1) = T + R^spO)

The dimensions of sp, T, R, the start point, and the finish point must

be compatible; for example, in a two-dimensional application everything

would be a coordinate pair except R, which would be a 2x2 rotation and

scaling matrix. If sp(0)=sp(1), the start point must equal the finish

point; in this case T=0 and R is the identity matrix.

The final resultant path is used as the "path" element of a normal

path sequence as described earlier in this section.

As an example, the use of the technique of cosine interpolation

will be described. This technique can be used to make a motion

gradually accelerate from rest and decelerate to a stop in a visually

227

pleasant way, and has the nice property that concatenated cosine

interpolations produce "sine-curve-like" motion containim? no visible

discontinuities. In comparison, linear interpolation is visually ugly.

Cosine interpolation along a 1-dimensional straight line between

any start and finish points can be done with:

sp(t) = t
tp(t) = 1 - cos(t)/2

Other dimensions are handled by making sp(t) be pos(t,t) or pos(t,t,t)

as necessary; here pos(x,y) is the same as the LISP (POS x y).

Cosine interpolation along a counterclockwise half circle between

any start and finish points can be produced with the tp above, and

sp(t) = pos(sin(3-1i*l6»t),cos(3.1ill6«t))

The process of composing p(t) for this example is shown in Fig. 6-4,

In fact, cosine interpolation along any constant-velocity sp is

produced with the given tp — which is the whole point.

The above techniques, while fairly flexible, are still somewhat

lacking. It would, for instance, be very useful to be able to supply

extra parameters to sp and tp so that, for example,

sp(t,x) = pos(sin(x«t),cos(x»t))

could, by choosing an appropriate x, be used to move in arbitrary

clockwise circular arcs.

An apparently reasonable way to do this is to allow sp and tp to be

functional closures — in this context, p-closures (section 4.3).

Unfortunately, that would leave open the possibility of having the free

variables in the closures change during the sequence. Not only does

this violate the canon that sequences should be predictable, but it also

implies that if the seauence is to end up at the right place -- the

final point — the T and R constants would have to be re-calculated at

edch monadic change.

An alternative is to use a "poor man's closure" — i.e., allow the

user to specify a set of constants to be applied to sp and tp in

addition to the t argument. This is, of course, not a closure at all,

228

X
FINISH

X START

sp{4>)Ch~
sp (.25)

SP

sp(l)
sp(.75)

tp(t)

TP

-►X

p(t) =T + R* sp (tp (t))

FIGURE 6-4 PATH COMPOSITION

229

but rather a convenient method of selecting a particular desired

function out of a set of functions.

This latter alternative will be used, using a sample application as

the method for specifying additional parameters. Such a specification

then looks like

(fun tinr; -params-)

wher^ fun is the time or shape path function, -params- are the

parameters, and ting is any arbitrary place holder existing for mnemonic

purposes only. When fun is applied, the first argument is always t, and

the others are the given parameters in the order given.

Thus if we have

(DEFINE CIRC+ (T X)
(POS (SIN (• T X)) (COS (• T X))))

as a counterclockwise circular shape path, then a sample application

(CIRC+ "TIME" 4.712)

would result in motion around an arc of approximately 270 degrees.

At this point, the number of parameters needed to fully specify a

path sequence has grown enonrous. So, some simple syntax will be called

to our rescue in the tradition of TRANSFORM and argument lists.

The function used to construct a path sequence and apply it to an

output is MOVE. MOVE is applied as

(MOVE out -specs-)

where out is the affected output and -specs- is a sequence of

designators and values used to specify the parameters of the path. The

basic designators, the objects which follow each of them, and the

quality specified are listed below. Each designator may occur only

once, and the order of their occurrence is arbitrary. A designator in

the list below which is preceded by an asterisk (•) is optional, and its

default is given. "samp" is used as an abbreviation for "sample

application".

230

• "FROM" value initial value; default is current OVAL

"TO" value final value

• "SHAPE" samp shape path; default is a linear path

• "TIME" samp time path; default is cosine interpolation

"STEPS" integer number of steps

» "START-TIME" time start time; default is current time

"FINISH-TIME" time finish time

Thus,

(MOVE 05 "TO" (POS 100 100) "STEPS" 50
"SHAPE" (CIRC+ "T" 3.1416)
"FINISH-TIME" (+ (CURT) 100))

moves 05's value from wherever it is now to the position (100,100) alone

a cosine-interpolated semi-circular path in 50 steps, startine now and

endine 100 time units from now.

In addition to the above, several convenience features exist to

allow more compact specification of paths.

First, an output with a current sequence may be placed after any

designator. If this is done, the corresponding element of the output's

current sequence is used. For example, if "FROM" is followed by an

output, the final value used is the final value of the given output's

current sequence; similarly, "TO" followed by an output uses that

output's final value.

Second, several other designators exist. They are listed below,

along with their effects.

"FOR"

"RELTO"

"WITH" out

"FOLLOWING" out

deltime makes the finish time the current time plus

deltime.

delvalue makes the final value the current OVAL plus

delvalue.

makes the start time, finish ^ime, and number of

steps optional, defaulting to the corresponding

parameter values of out's current sequence,

makes aU, parameters optional, defaultinp to the

corresponding parameter values of out's current

sequence.

231

The primary difference between "WITH" and "FOLLOWING" is that when

"WITH" is used, the standard defaults for "FROM", "SHAPE", and "TIME"

are in force; whereas "FOLLOWING" changes these defaults. "DELTIME" and

"RELTO" cannot be followed by outputs.

A third convenience measure will often be appropriate. It is often

the case, particularly when movies are to be created, that the number of

steps per u.iit time is fixed by the equivalent of a natural law to some

standard frame rate. This also implies that virtual time has a natural

quantization at the level of "frames". In this case, either the number

of steps or the time duration of a sequence is a complete description of

both duration and step count; hence either alone is sufficient. This

will not be assumed in the examples which follow in the next section.

6.8 Examples

The first example is the simple one first mentioned in section 6.1

and illustrated in Fig. 6-1: motion along * semi-circular path,

beginning and ending a distance D from the initial and final values

assumed in the motion of a driving output. The code, which is

expectedly simple, follows:

(DEFPIC SEMIMOVE (01 D "OUT" 02)
(OUCH 02 (+ ,01 D)) ;Set up initial value.
(ONCIF (SEQ 02) (01) ^ v

(MOVE 02 "TO" (+ FVAL 01) D)
"SHAPE" (CIRC- "T" 3.1^16)
"WITH" 01)))

(DEFINE CIRC- (T X) v i% /o^ ,, . ^
(POS (SIN (• (- T) X)) (COS (• (-T) X))))

The "WITH" causes 02's motion to occur in synchrony with 01's,

while using the standard cosine interpolation time path default for 02's

motion. A new shape path, CIRC-, was needed to produce the clockwise

circle shown in Fi^. 6-1; CIRC+, defined in the previous section,

produces counterclockwise motion.

I

232

The next example, which is also simple, produces damped oscillatory

motion in response to a step function input. In other words, when a

"forcing input", FI, changes from some initial to some final value over

a period of time, the damped output DAMPO will, in the same time period,

move from FI's initial value out past FI's final value, swing back to

less than FI's final value, swing forward but less than the first time,

back again, etc., oscillating about FI's final value but converging to

that value and stopping at exactly the right point at the end of the

specified time period- The speed of convergence is an input parameter,

DAMP, as is CYC, the number of cycles performed. The code for the

DAMPER picture module producing this behavior is:

(DEFPIC DAMPER (FI CYC DAMP "OUT" DAMPO)
(OUCH DAMPO FI)

'"Ä'SAWWK? G" FI "TIME" (LINEAR "T")
K "SHAPE" (DAMPIT "T" CYC DAMP))))

(TT(DMEXP [I f.Vffi))) :EXPonentiation to the base e.
(COS (• T CYC 6.283)))))

(DEFINE LINEAR (T) T)

The MOVE of DAMPO "follows" FI, using Fl's initial and final values

and occuring in synchrony with Fl's motion. The time path is made

linear, since the DAMPIT shape path itself contains the velocity changes

desired. DAMPIT itself simply implements an equation of a familiar

form: exponentially damped oscillation.

DAMPER operates on a one-dimensional value. Its output could be

used directly to specify a rotation, or indirectly to specify a size.

Two coupled DAMPER outputs, one for X and one for Y, could be used to

create damped two-dimensional motion which spirals in to the desired

position.

Now, the second example of section 6.1 will be coded: an output

moving from an initial position to a final position in a series of semi-

circular hops. All but the last hop will cover a given constant lemrtn,

HOPL, and the last hop will be truncated to land in the correct spot.

233

Intermediate hops will bepin and end on a straieht line connecting the

initial and final two-dimensional values. The code for this picture

function, HOPPER, follows.

(DEFPIC HOPPER (SO HOPL "OUT HOPO
"AUX" HOPTIM HOPIX HOPDIST HOPSTEPS)

(OUCH HOPO .SO)
(ONCIF (SEQ SO) (HOPO)

(SETQ HOPIX (/ (DISTANCE (IVAL SO) (FVAL SO)) HOPL))
:Number of hops yet to be done.

(SETQ HOPTIM (/ (- (FTIME SO) ^TIME SO)) hOPIX))
:Time per hop.

(SETQ HOPDIST (» HOPL (ANGLPT (IVAL SO) (FVAL SO))))
;Vector distance per hop. See text.

(SETQ HOPSTEPS (/ (STEPS SO) HOPIX))
;Number of steps per hop.

(SCHEDULE 0
(COND ((> HOPIX 0) ;More than one hop to ETO.

(MOVE HOPO "RELTO" HOPDIST "STEPS" HOPSTEPS
"SHAPE" (CIRC- "T" 3.1M16) "FOR" HOPTIM)

(SETQ HOPIX (- HOPIX 1))
(RE-SCHEDULE HOPTIM))

(T (MOVE HOPO "FINISH" SO "SHAPE" (CIRC- "T" 3-1^16)
"TO" SCSTEPS" (- (STEPS SO) (CURSTEP SO))))))))

Hopper uses SCHEDULE to concatenate the hops, "waking up" just as

each hop has been completed. Various state variables are initially set

up to decrease the computation needed at each wakeup; most are

straightforward. HOPDIST, the vector distance between hop start and end

points, is computed using ANGLPT, for ANGle PoinT, which is not shown.

ANGLPT returns a unit vector (position) whose angle is that between two

position arguments. Multiplied by the scalar HOPL, this produces the

HOPDIST.

The final example creates spiral motion cycling around an arbitrary

ourved path, as illustrated in Fig. o-5. This is done by using a full

circular motion creating picture function C1RCL which is rather similar

to HOPPER above; it produces circular cycles starting and finishing at

the origin and centered at a point on the X-axis. CIRCL's coordinate

system is then transformed by an M-DALI ("VAL") daemon to center it at

the current position on the input path and rotate it so that its X-axis

is tangent to the path at that position. RESPACE, discussed in section

4.2, is then used to translate CIRCL's output intc a meaningful position

which performs the spiral. The diameter of the circle produced by

/

Preceüing page Wank 235

CIRCL, which is the diameter of the spiral, is parameterized as SIZ; and

the distance travelled forward during each full spiral is parameterized

as DIST. The outer picture function, SPIRAL, and CIRCL itself follow.

(DEFPIC SPIRAL (SO DIST SIZ "OUTU" SPIRO "AUXO" ROT)
fOUCH ROT 0)

(6ETQ SPIRO
!(RffTRANSFORM "CENTER" SO "ROTATION" ROT

CIRCL SO DIST SIZ))))

(DEFPIC CIRCL (SO DIST SIZ "OUT" CIRCO "AUX" CYCTIM CYCIX CYCSTEP)
(OUCH CIRCO (POS 0 0))
^(SETQ^Y'cifi/^PAmENGTH SO) DIST)) :see followin* text

SETQ CYC™ / (- (FTIME SO)'(STIME SO)) CY^IX))
SETQ CYCSTEP (/ (STEPS SO) CYCIX))

(SCHEDULE 0
(COND («CJCIX jU BRBLT0B 0 „SHAPE,, (CIR+ "T" SIZ)

^MUVt UABWU nnoRft CYCTIM „STEpS„ CYCSTEP)

(SETQ CYCIX (- CYCIX D)

(T A^-SffSS^ "SHAPE" (CIR+ "T" SIZ)
"FTNT^H" SO
"STEPS" (- (STEPS SO) (CURSTEP SO)))))

)))

(DEFINE CIR+ (T SIZ) r» T fi 9«ttnn (•SIZ (POS j^SIZ^^SIN^T 6.2831)))

The above uses four functions which will not be explicitly coded:

PRESTEP returns the value a sequenced output had on its previous value

step; if there was no such step, i.e., the step index is 1, it returns

the output's OVAL. POSTSTEP is similar, returning the next step or the

OVAL. ANGLE returns the angle in radians a vector between two positions

makes with the X-axis; if the positions coincide, it returns 0. These

three are used to compute an appropriate rotation. Finally, PATHLENGTH

does a simple integration of the distance a two-dimensional value will

travel according to its current sequence. This integration does not

have to be extremely accurate, since the final MOVE of CIRCL works on an

absolute basis guaranteed to reach the correct final value at the

precisely right time.

236

 ►- INPUT PATH

OUTPUT PATH

FIGURE 6-5 PATH PRODUCED BY SPIRAL

I

237

Chapter 7

Conclusion

7.1 Summary and Conclusions

This document has described DALI, an extension to a proerammin^

language's control and environment structures which makes the host

language more suitable for controlling changing pictures. The prob: em

was approached by considering not Just change, but the propagation of

computed changes through the structure of the picture. Change with no

temporal structure, that is, change occuring at a monadic instant of

time, was considered first and rather exhaustively. This was dealt with

by the subset of DALI called M-DALI, whose description include DALl's

four primary types of objects — picture modules, picture functions,

outputs, and daemons — their organization into a containment tree and a

data web, the environment structure used, and scheduling rules providing

efficient operation and simple inter-"process" cooperation. Deletion,

structural change, and functional circularity (relaxation) in M-DALI

were then discussed. Change extending over a period of time was then

considered in S-DALI, a superset of M-DALI, as temporal sequences of

monadic changes.

At its core, DALI consists of the application of two techniques to

the problem of describing charging pictures in a manner allowing their

effective computation. These two techniques are:

(1) the use of user-written event-driven procedures — daemons —

as an intrinsic part of the picture itself;

238

(2) the analysis of the functional relationships amonR those

procedures — the data web, analyzed by the daemon scheduling

rules — for the purpose of ensuring efficient and harmonious

interaction between elements of the picture.

The remainder of M-DALI, i.e. , picture modules, local environments,

outputs, etc.. exists primarily to fully exploit the above two

techniques and simplify their utilization as far as possible; and, once

the distinction is made between "compute time" and "picture time", S-

DALI is a fairly str? -itforward extension of M-DALl's mechanisms to the

problem of describing and organizing (picture-) temporal sequences of

pictures.

By its use of the above two core techniques, DALI provides several

substantial advantages over methods of picture description currently in

use.
The first advantage is flexibility. The majority of existing

systems, e.g., instance tree systems (section 1.2), support only a

small, fixed set of relationships between picture elements. In

comparison, the set of inter-element relationships supported by DALI is

essentially infinite, because those relationships are represented in the

picture itself by arbitrary user-written procedures. Viewing process

systems theoretically also have this capability, but it is effectively

cancelled out by problems uf synchronization, mentioned in section 1.2,

which DALI does not have.

Another advantage is modularity. By exploitation of the first core

technique, the embedding of user procedures in the picture, every DALI

picture module can support arbitrary computation with local memory; so

every module is fully capable of "taking care of itself", and hence the

caller of a picture function need not be concerned with how the

resultant picture module carries out its endeavors. The same degree of

modularity is very difficult to achieve with more limited systems, since

to support complex picture change they require the mutual organization

239

of (1) a picture description, (2) a program to make up the descriptive

deficiencies of the picture description, and (3) an often complex data

structure to relate the picture description and the program; combining

these three in a modular fashion presents major difficulties.

The second core technique, the analysis of the data web by the

scheduling rules, is also a critical element in providing modularity.

It is primarily the scheduling rules which assure that the separate

"procrsses" — daemons — contained in a picture module Mil not only

work as expected, but also will not interact destructively with other

"processes" external to the module. That such smooth inter^'process"

communication and cooperation is achievable with straightforward, even

simpleminded programming containing no reference to semaphores, locks,

and the like is as much a virtue of DALI as it is a necessity: since the

use of literally hundreds of separate "processes" is implied, DALI would

be utterly unusable if this were not the case.

Closely allied to modularity is the fact that DALI provides the

graphics programmer with a greatly increased ability to organize and

build pictures — and hence programs — as a hierarchy of abstractions;

this is an ability at least partially available to the general

proerammer in the form of programmably arbitrary procedures with

arbitrary arguments. In comparison, most current systems for dynamic

graphics provide only an analog of procedures which can contain no

conditional expressions and can take only a fixed set of parameters.

Newman's EULER-G system is an exception to this, but it is limited to

static graphics.

DALI's increased flexibility and modularity combine to produce

extensibility and hardware independence, in the sense that a DALI

programmer need not be aware of whether a «iven picture function was

written by another user, was provided by the DALI system in software, or

was directly implemented in hardware.

In the light of all the above, it seems somewhat extravagant to

240

claim that DALI is also a fairly efficient system to run on conventional

hardware; but that is the case. Admittedly, there may be spatial

overhead, as will be discussed later in this section; but the excess

computational overhead is not very large. To establish this, we must

ask what DALI doos which would not have to be done in any case. For

example, if the user really wants 752 logarithmic spirals dancing across

the Rocky Mountains, coiling and uncoiling in time with Ravel's Bolero,

well, the computation must be done somewhere, and doing it in daemons —

which can be partly or wholly hardware — is no more intrinsically

inefficient than doing it elsewhere.

The primary computational overhead involved in using DALI is found

in only two places: (1) each daemon is effectively called as a procedure

of one argument, it's owner's local environment, rather than beinf?

straight-line code; and (2) daemons must be sorted by priority in the

daemon aueue. Both of these operations — procedure calling and sorting

— have a long-established importance outside of the realm of DALI; so

currently available techniques can be used to keep this overhead

minimal. The time required to establish daemon priorities in a cyclic

data web, while it may be substantial, cannot be counted as "overhead";

in this case, DALI is performing an operation which the programmer

cannot perform himself, as noted in section 5.1. Furthermore, once the

priorities are established, then repetitive calculations using a cyclic

data web involves only the two sources of overhead mentioned above.

The efficiency attributed to DMLI arises from two sources. The

first is the use of the second core technique mentioned above, the

analysis of the data web, since it provides the needed scheduling

information in the form of easily-used numeric priorities. This can

only be done because DALI has available, in the data web, a great deal

of information concerning the topology of functional relationships

between picture elements. That this information can be provided by the

programmer in a manner that is both efficient and not exceptionally

arduous is perhap? another advantage of DALI.

/

■zr

241

DALl's second source of efficiency is its primarily bipartite

environment structure, with part of the environment held in a stack and

part in heap storage. This is a compromise between fully stack-

structured control and environment schemes, epitomized by ALGOL 60, and

fully tree-structured schemes, as are, for example, used in CONNIVER

[McDI], OREGANO [Berl], and SIMULA 67 [Dah2]. DALl's scheme retains a

much of the efficiency of stacks while providing a good part of the

useful flexibility of trees. As was pointed out in section 3.11,

however, a modification to DALl's scheme — involving retention of a

daemon's temporary environment across separate executions of that daemon

-- may be desireable to provide capabilities closer to those of fully

tree-structured schemes. This modification would, however, also entail

a decrease in efficiency, oweing to far greater problems of storaee

allocation. The full facilities of a complete control and environment

tree would still not be provided under this modification; however, as

was also pointed out in section 3.11, it is not clear that the abilities

left out are necessary or even desirable.

At the same time, DALI is not without disadvantages.

First, as mentioned above, there is a certain amount of overhead in

storage space which a DALI program incurs over a system specialized to

the program's application. To some extent this must be true of any

general system. In the case of DALI, the primary source of this

overhead is the complexity of outputs, which are nowhere near as small

as the author would like.
Second, the overhead involved in changing functional relationships

between daemons, i.e., in making structural change to the data web and

adding cycles, can be quite hieh. It is unclear at the present time

exactly how much of a disadvantage this is.

Third, the use of deletion as opposed to garbage collection, which

is forced as described In section 4.3 and Appendix 3, is a disadvantage,

in that it has two demonstrably bad effects which were discussed in

2U2

section 4.3: First, deletion nearly doubles the number of system-

maintained references (pointers) needed in each element, since nearly

every necessary reference requires a corresponding reference in the

other direction so that the needed reference can be spliced out if the

object referred to is deleted. Second, deletion reauires, or at any

rate inspires, the use of "implicit dependence deletion" to establish

the aesired semantics and protect the user from inadvertently accessing

storage which has been returned to the "free" pool. About the most

charitable thing that can be said of "implicit dependence deletion" is

that it sometimes does approximately the right job. Its overhead is

high, proportional to the degree of user protection provided, and in

general it is decidedly inelegant. However, the author has not auite

given up on garbage collection.

7.2 Implementation Issues

Like any other programming language, DALI cannot be considered

truly "tested" until it has been applied by users to a body of specific

applications. Unfortunately, no usable implementation exists at this

writing.

An experimental implementation of a larete subset of M-DALI and S-

DALI, not including circular data webs or structural change, has been

performed usinj? the MIT Project MAC Programmine Technoloey Group's

Digital Equipment Corp. PDP-10. The base language used was MUDDLE

[Pfi2], a LISP-like language. The purpose of this implementation was to

make sure that all ehe parts of DALI fit together in a reasonable way,

and to obtain some idea of the size of the run-time system needed. The

latter was trratifyinply small, amounting to approximately 6500 words of

rather "loose" PDP-10 program. It included creation of picture

functions, picture modules, daemons, and outputs; run-time local

243

environment accessing; daemon aueueins and runnin/z;; OUCH; and a

simplified MOVE. However, this implementation was an interpreter

written in an interpreter (MUDDLE), and compares favorably in speed only

with continental drift. Recent attempts at compiling the DALI

interpreter, however, tend to confirm the comments made in the previous

section concerning DALl's efficiency.

At the preösnt time, an implementation is in progress for the MIT

Project MAC Control Robotics Group's Digital Equipment Corp. PDP-11/45.

It is intended that this implementation be used to create educational

films illustrating the operation of complex software such as assemblers,

interpreters, and compilers. This implet^entation will be an extension

of ALGOL, hence compiled, and will hopefully provide good feedback on

the usability of DALI.

In connection with this implementation, a Master's thesis by C.

Terman is exploring the possibility of usin^ the data web as input to

modified program optimization techniaues. The intent is to eliminate

the need for explicitly queueine daemons in structurally static data

webs, and in addition allowing the replacement of intermediate outputs

with simple value cells which may be dynamically allocated from a stack.

7.3 Directions for Future Research

Various subjects closely gathered 'round about the work presented

bear closer investigation. Three examples come to mind immediately:

daemon scheduling in cyclic data webs, arbitrary user-definable

coordinate transformations, and a true multiple processor implementation

of DALI.

Cyclic scheduling is simply a rather difficult problem whose depths

have assuredly not been plumbed here. In particular, it would seem that

there should be some method of describing cycles in the data web --

2HH

e.g. , an analog of a "while" loop — that would both permit more facile

control over iteration and permit the DALI system to find out the

topology of cycles in a more direct manner. The latter, in particular,

would reduce the necessity for the connectivity matrix computations

required in the present scheme. The problems here lie in interaction

amone such loops, particularly in allowing them to intersect one another

and ensuring that such multiply-intersecting loop^ ?.re relaxed as a

whole.

Since coordinate transformations and their concatenation are at

least conceptually defined in DALI in terms of daemon execution, the

possibility exists for allowing the daemons involved to be written by

the user. This would open the door to a truly spectacular increase in

flexibility; for example, a system might be defined which uses Schwartz-

Christoffel transformations [Arfl] to "bend" a half-plane around

multiple corners, etc. However, allowing arbitrary user transformations

raises severe problems of operating speed, since arbitrary

transformations cannot in ateneral be concatenated into a single

transformation-

A multiple-processor implementation which took advantage of the

parallelism which the scheduling rules allow could produce impressive

gains in speed, especially if very local parallel processing were

possible — for example, the equivalent of one (micro-) processor per

picture module, possibly shared among daemons and picture modules which

necessarily run sequentially relative to one another.

Intercommunication is, as usual, a primary problem; another is

scheduling for cyclic data webs.

However, there are other issues to be considered: in what direction

does DALI lead?

One possible direction is that of making picture elements more

intelligent. DALI just barely begins to provide picture elements with

the basic necessities for this: the ability to obtain data from "the

245

outside world", the ability to "reason" about such data via arbitrary

procedures, and the ability to affect "the outside world" in turn. It

i ! clear that the abilities provided by DALI are not joiner, to pet us

vtry far in this direction; but at the same time, they can be useful.

As a «rraphic example, suppose an object is "commanded" to cross a

veritable Maginot Line of obstacles. The task of plotting a path which

avo^s disaster is clearly out of the realm of DALI-esque techniques,

and squarely in areas normally assigned to artificial intelligence; but

once the path is plotted, DALI can perhaps help in performing locomotor

functions, keeping the moving object a coherent whole, and perhaps

guarding against bruised shins and other minor pitfalls-

But how does one think about and describe such spatial reasoning

problems? To paraphrase a statement made at the start of Chapter 1: In

what way can the spatial relationships in a picture, as opposed to the

internal structures used to generate a picture, be organized, grouped

and ordered in a way that highlights aspects important to the picture-

creating proeram, supresses details not important to that proeram, and

provides the program with an effective means of computing the visual

effects which are so easily conceived — but not so easily described

verbally — by the programmer?

These are questions more normally ascribed to artificial

intelligence. But to the extent that computer graphics solves its basic

problem of creating a "super paintbrush" and begins to consider in a

more serious, sophisticated manner the problems involved in actually

usinjj this medium in new productive ways, they are questions which must

be dealt with.

Preceding page blank 2U7

Bibliography

Abbreviations

HCM Association for Computintr Machinery

CACM Communications of the ACM

FJCC nnnn Proceedings of the nnnn Fall Joint Computer Conference

IEEE Institute of Electrical and Electronics Engineers

SJCC nnnn Proceedings of the nnnn Spring Joint Computer Conference

[Abrl] Abrams, M. D. , "Data Structures for Computer Graphics",
Proceedings of a Symposium on Data Structures in Programming
Languages?"ACfTsroPOM Notices7^öT7~6. No.2. Feb. l^TT

[Arfl] Arfken. G., Mathematical Methods for Physicists. Academic Press,
Inc., London, 1970

[Bael] Baecker, R. M.. Interactive Computer-Mediated Animation. MAC-TR-
61, Project MAC, MIT, Cambridge, Mass., 19b9

[Bell] (film) Incredible Machine (1969), available from FixBi
Library, Bell Telephone Laboratories, Murray Hill, NJ 07974

[Berl] Berry, D. M., "Introduction to OREGANO", Proceeding.. of a
Symposium on Data Structures in Programming Langua^.g. ACM.
5IGPLAN NotIces~rFeb. 1971) Vol. FUo. 2? PP- 171-190

[Burl] Burton. R. P., Re-' '-ne Measurement of Multiplt ThrgC-
Dimensional Position- T-CSc-72-1^, Computer Science ;ept.,
University of Utah, . ake City, Utah 84112, (June 1973)

[Chrl] Christensen, C,, Pinson, E. N., "Multi-Function Graphics for a
Large Computer System", FJCC 1967, Thompson Books, Washington, D.
C, pp. 697 ff.

[Cot'] Cotton, I. W., Greatorex, F. S. Jr.. "Data Structures and
Techniques for Remote Computer Graphics", FJCC 19Dö, Thompson
Books, Washington, D. C, pp. 533 ff-

[Dahl] Dahl, 0.-J., Nygaard. K, "SIMULA - An ALGOL-Based Simulation
Language", CACM Vol. 9, No. 9 (Sept. 1966) pp. 671-D82.

[Dah2] Dahl, 0.-J., Myhrhaug, B., and Nygaard, K., Common Base Language.
Publication No. S-22, Norwegian Computing Center, Forakningsveien
1 B, Oslo 3, Norway, Oct. 1970

[Dili] Dykjstra, E. W., "The Structure of THE Multiprogramming System",
J CÄCfl Vol! 11, No. 5 (May 1968) pp. 341-346

P43

[E4S1] . Lint; Drawing System Model 1 Reference Manual, U0800-1-1,
Nov. 1"^ T97Ö; Evans and Sutherland Computer Corp. , 3 Research
Rd., Salt Lake City, Utah.

[E&S2] . Line Drawing System Model 2 Reference Manual, 901002-100,
Aug. 1, f971: Evans and Sutherland Computer Corp. , 3 Research
Rd., Salt Lake City, Utah.

[Grail Gray. J- C, "Compound Data Structures for Computer Aided Design:
A Survey", proceedings of the ACM Twentieth National Conference,
Thompson Books, Washington, D. CT, (1967), pp. 355 ff.

[Habll Habermann, A. N., "Prevention of System Deadlocks", CACM Vol. 12,
NO. 7 (July 1969J PP- 373-377, 385

[Hewl] Hewitt, C.. Description and Theoretical Analysis of PLANNER, AI-
TR-258I Artificial Intelligence Laboratory, MIT, Cambridge, Mass,
April 1971.

[Hurl] Hurwitz, A., Citron, J. P.. and Yeaton, J.P., "GRAF: Graphic
Additions to FORTRAN*, SJCC 1967, pp. 553 - 557

[Knol] Knowlton, K. C. "A Computer Techniaue for Producing Animated
Movies", SJCC 1964, Spartan Books, Baltimore, Md., pp. 67-07.

[Kno2] Knowlton, K. C. (film) A Computer Technique for the Produriton
of Animated Movies, available from Technical InformaTion Library,
Bill Laboratories, Murray Hill, NJ 0797U

[Kno3] Knowlton, K. C, "EXPL0R - A Generator of Images from Explicit
Patterns, Local Operations, and Randomness", Proceedings of the
Ninth Annual UAIDE Meeting (1970), Miami Beach, Fla.,pp. 543-
5S3

[Kull] Kulsrud, H. E. , "A General Purpose Graphical Language", CACM Vol.
11, No. 1 (April 1968) pp. 247-254

[Lid] Licklider, J.C.R., "A Picture is Worth a Thousand Words - and It
Costs ...A 1969 SJCC. pp. 617 - 621

[Meyl] Meyer, T. H. , and Sutherland, I. E. , "On the Design of Display
Processors", CACM, Vol. 11, No. 6, pp. 410-414.

[McCI] McCarthy, John et al., LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Mass., January 19ob

[McDI] McDermott, D., and Sussman, G.J., The Cpnniver Reference Manual,
MIT Artificial Intelligence Laboralory Memo?59, May 1972

[Monl] Money, J. , and Eberhardt, T. , Man and Woman, Boy. andinGi£i. The
Johns Hopkins University Press,Baltimore and London, 1972

[Mool] Moon, D. A., MACLISP Reference Manual. Project MAC, MIT,
Cambridge, MA, 02139 (April fWT

[Newl] Newman, W. R., "Display Procedures", CACM. Vol. 14, No. 10,
October 1971

[New2] Newman, U. R. . and Sproull, R. F., Principles of Interactive
Computer Graphics. McGraw-Hill Book Co~ Inc., New York, N.Y., omp

[New3] Newman, W. M., and Sproull, R. F. "Ar Approach to Graphics
System Design", Proceedings of the IEEE. Vol. 62, No. 4 (April
1974), pp. 471-4HT7"

/

219

[Pari

[Pfil

[Pf 12

[Pfi3

[Raml

[Robl

[Rovl

[Ron

[Rull

[Smil

[Spei

[Sprl

[Spr2

[Sutl

[Sut2

[SuWI

[SuW2

[Thol

[vDal

Parke, F. I., Computer Generated Animation of Faces. UTEC-CSc-72-
120. Computer Science Dept. , University of UTah, Salt Lake City.
Utah 84112, (June 1972)

Pfister, Gregory F., A Display Processor for Biological Imape
Processing. MIT Master s Thesis, June 19b9.

Pfister, Gregory F-, A MUDDLE Primer. Proj. MAC Programming
Technology Division document SYS. 11.01, Dec. 15, 1972. Proiect
MAC, MIT, Cambridge, Mass. . . J

Pfister, Gregory F., "Review of IJewman and Sproull's 'Principles
Ca Interactive Computer Graphics ". Information and Control. Vol.
24, No. 3, (March 1974) pp. 299 - 301

Ramamoorthy, C. V., "Analysis of Graphs by Connectivity
Considerations" Journal of the ACM Vol. 13 No.2 (April 1966) pp.

Roberts, L. G., "Graphical Communication and Control Languages",
Second Congress on the Information System Sciences. Spartan
Books, New York, 1^5

Rovner, P. D. , and Feldman, J. A.. "The LEAP Language and Data
Stn- ture". Proceedings of the 1968 IFIP Congress. Vol. 1, North-
Holland, Amsterdam, pp. ^79^5%5

Ross, D. T., "The AED Approach to Generalized Computer-Aided
Design", Proceedings of the 1967 ACM National Conference.
Thompson Books, Washington, D7 C., pp.-JE7 fT^ '

Rully, A. D., "A Subroutine Package for FORTRAN", IBM Systems
Journal, Vol 7, Nos. 3 and 4, p. 248, 1968

Smith, D. N., "GPL/I - A PL/I Extension for Computer Graphics".
AFIPS Proceedings. Vol. 38, Spring 1971 pp. 511-528.

 IEEE Spectrum. Vol. 11, No. 2 (Feb. 1974) ("Computer
Speciaj." Issue;

Sproull, R.F., and Sutherland, I.E., "A Clipping Divider", FJCC
1968

ARPA Network Sproull, R. F., Proposed Network Graphics Protocol. ARPA Nei
Infonnation Center NIC No. 19933, NGG Mo. 5, (Oct. 10, 1973)

Sutherland, I. E.. "SKETCHPAD: A Man-Machine Graphical
Communication System'', AFIPS Proceedings. Vol. 23, Fall 1963,
Spartan Books, N.Y., pp. 329-34^ —

Sutherland, I and Hodgman, G, W. "Reentrant Polygon
Clipping", CACM Vol. 17, No. r(Jan. 1974) pp. 32-42

Sutherland, W. R., Forgie, J. W., and Morello, M. V.. "Graphics
in Time-Sharing; A Summary of the TX-2 Experience" SJCC 1969

Sutherland, W. R., "The CORAL Language and Data Structure",
Computer Display Review. Keydata Corp., Watertown, Mass.

Thomas, E. L.. TENEX E&S Display Software. Bolt,
Newman Inc., 50 Moulton St., Cambridge, Mass.

Beranek and

van Dam, A., and Evans, D., Data Structure Programming System,
IFIP Congress. Booklet G, 1968.

-" —

250

[vDa2] van Dam, A., "Data and Storaee Structures for Interactive
Graphics", Proceedings of a Symposium on Data Structures in
Programming Languages. AÜT SlGPLAN Notices. Vol. 6^ No.2, Feb7
197T

[Watl] Watson, R.W., et al.,
Proceedings Vol. 35, pp.

"A Display Processor
200-272, Fall 1969

Design", AFIPS

for Computer Graphics
1 (March 1971), pp. 1

[Will] Williams, R., "A Survey of Data Structures
Systems", Computing. Surveys. Vol. 3, No.
ff.

[W^rl] Wirth, N., and Weber, H. , "EULER: A Generalization of
Its Formal Definition", Pt. 1 CACM Vol. 9. No. 1 (Jan.
13-23; Pt. 2 CACM Vol. 9, No. TT^eb. 1966) pp. 89-99

ALGOL and
1966) pp.

/

251

Appendix 1:
DALI Functions

Conventions used:

H soii.ple application is provided for each function. Lower-case names

are meta-variables, and lower-case names beeinninp and endin»? with a

hyphen (-) indicate 0 or more objects.

.object
syntactic sugar for (OVAL object).

!obJect
syntactic sugar for (OUT object).

(AS-NEEDED -body-)
create and return a new daemon; the new daemon has body -body-,
specifies all outputs explicitly OUCHed in -body-, and watches with
a (VAL -outs-) all outputs whose OVALs (,) are explicitly
referenced in -body-.

(CAN-WATCH dem (-outs-))
efficiency measure to avoid excess calls on RE-PRIORITIZE. Makes
the priority of dem greater then the largest priority of all
specifiers of -outs-.

(CONTIN -body-)
create and return a now daemon, running its body once before
returning; the new daemon Lns body -body-, specifies all outputs
explicitly OUCHed in -body-, and watches with a (VAL -outs-) all
outputs whose OVALs (,) are explicitly referenced in -body-.

(CONTROLLED seq)
returns the output controlled by sequence seq.

(CURSTEP out-or-seq)
returns the step index of a sequence; out-or-seq can b3 either a
sequence or an ^output with a current sequence, and in the latter
case the output's current sequence is used.

(DEFPIC atm (arg-list) -body-)
"declares" the ATOM atm to be a picture function with argument lic^
(arg-list) and body -body-.

(DELETE obj)
destroy obj and any object which is either part of obj or requires
obj for its correct operation.

(DODA n (inits) obj)
create a data web chain of modules; new modules are obtained by
evaluating obj, (inits) are the objects to start the chain, and n
is an output containing the number of objects to be in the chain.

TT

252

(FVAL out-or-seq)
return the final value of a seauence; out-or-seq can be either a
sequence or an ^utput with a current sequence, and in the latter
case the output s current sequence is used.

(IVAI, out-or-seq)
return the initial value of a seauence; out-nr-seq can be either a
sequence or an ^output with a current sequence, and in the latter
case the output's current sequence is used.

(LOOPON cndtn (-specs-) -body-)
create and return a loop daemon; cndtn is its condition, (-specs-)
a'"? its soecified outputs, and -body- is its body.

(MOVE out -specs-)
create and return a path sequence, applying it to out.

(NAMEDONC name cndtn (-specs-) -body-)
create and return a named-change daemon; name is an atom bound in
the temporary environment to a list of the watched outputs whose
change was the cause of an execution; (-specs-) are the specified
outputs, and -body- is the body.

(NPOUCH out pth stime ftime steps)
create a "naked" path sequence and apply it to output out; pth is
the path, stime is the start time, ftime is the finish time, and
steps is the number of steps.

(NULLSPEC out)
give out the "null" daemon as a specifier: this daemon never runs,
and is equivalent to the driving program in w^b ancestry.

(ONC cndtn (-specs-) -body-)
create and return a daemon; cndtn is its condit jn, (-specs-) are
its specified outputs, and -body- is its body.

(ONDELETION obj fun)
create and return a deletion p-closure; obj is the object whose
deletion will cause it to run, and fun is the function applied to
obj,

(ONS cndtn (-specs-) -body-)
create and return a daemon, running its body once before returning;
cndtn is its condition, (-specs-) are its specified outputs, and
-body- is its body.

(OUCH out newval)
change the value of out to newval and return newval; causes all
VAL-condition daemons watching out to run.

(OUT mod n)
return the nth output of mod; n is optional and defaults to 1: an
application oT OUT with one argument is abbreviated by a prefixed
exclamation point (!).

(OUTPUT ival)
create and return a new output with initial value ival,

(OVAL out)
return the value of output out; abbreviated by a prefixed comma
(,).

253

(P-CLOSURE fun mod) m M ,i^.1 create and return a p-closure of fun with respect to mod s ^ocal
environment; mod is optional and defaults to the owner of the
daemon executing.

(PIC™?eaterand1Sretürn an unnamed picture function with argument list
(anf-list) and body -body-.

^ PR ROUT i nt-per© r*)
" return the integerth output of the previous module on a DODA chain;

applicable only inThe obj argument of a DODA.

(RE-PRIORITIZE dem) ,, . _, , . - .öm,
re-calculate the priority of dem and all web descendants of dem,
not a user-callable function, but is rather called by DALI as part
of WATCHES and SPECIFIES.

(RELINE pos^de function which creates a module drawine a line from pos
to pos+delt; both arguments are outputs, and the one output is
pos+delt.

p?cture function; create a module whose one output is maintained at
the sum of the values of pi and p2.

fRESPACE out)
picture function; create a module whose one output is a P9sition:
the value of out, transformed from its definition space into the
space in which the RESPACE is applied.

lSCHESÄ5teit"SehJdiled p-closed action (SPA) and schedule it for the
current time plus ti; -body- is the body.

not a"function, but a daemon condition; causes its daemon to be run
whenever a sequence applied to any of the -outs- is initialized.

(SEQUENCE out)
return the current sequence of out.

(SEQlJbSolL?!Returns true if and only if out has a non-null current
sequence.

(SOUCH out vals stime ftime) . .^ -. 4 „ 4.^« ^„HQH0H
create a simple sequence and apply it to out; vals is the ordered
set of values, stime is the start time, and ftime is the finish
time.

makes dem become the specifier of out; out must have no specifier.

return the number of steps of a sequence; out-or-seq can be either
a sequence or an output with a current sequence, and in the latter
case the output's current sequence is used.

returr^the^start time of a sequence; out-or-seq can be either a
sequence or an output with a current seauence, and in the latter
case the output's current sequence is used.

^sr

254

(SVAL out-or-seq integer)
return the value which will be used by a sequence at its integerth
step; out-or-seq can be either a sequence or an output with a
current sequence, and in the latter case the output's current
sequence is used.

(TRANSFORM -specs- pf -ares-)
apply the picture function pf, to -args- and return the result;
visible output created by pf's module will appear in the area
defined by -specs-.

(TVAL out-or-seq ti)
return the value which a sequence will assume at time ti; out-or-
seo can be either a sequence or arj output with a current sequence,
and in the latter case the output s current sequence is used.

(UNSPECIFY out)
cause out to become unspecified.

(UNWATCH dem out)
cause dem to cease watching out.

(VAL -outs-)
not a function, but a daemon condition; causes its daemon to be run
whenever any or -outs- is OUCHed.

• (WATCHES dem out)
cause dem to watch out for OUCHes.

|

i

L J

TT

255

Appendix 2:
DALI Objects

This appendix contains an alphabetized list of all the objects

defined by DALI and their component parts, with a short description of

each. For the sake of simplicity, direct two-way pointers are assumed,

rather than ring structures.

agenda block a set of actions to be performed at a given picture time

time the picture time at which the actions are to be performed

next agenda block pointer to the agenda b^ock with the smallest
time greater than this one s

action set the actions to be performed

continuation all sequences of output changes which^perform one
of their changes at this agenda block's time

starters all sequences of output changes which are to be
initialized at this agenda block s time

scheduled p-closed actions arbitrary user-chosen code
sequences tg be executed at this
agenda block s time

daemon a parameterless procedure to be executed in response to some
event

owner the picture module whose local environment this daemon uses;
also, the picture module owning the daemon which created this
daemon

type the type of daemon this is, i.e., plain, loop, or named-change

condition the event whose occurrence causes this daemon to run

condition type the type of output change this daemon responds
to; this can be an instantaneous value change
or the application of a sequence of such value
changes

watched outputs changes to these outputs cause this demon to
run

256

body the body of code to be executed when this daemon is run

specified outputs the outputs whose values this daemon changes

cyclic priority used to determine when this daemon runs relative to
other daemons; see section 5-8

acyclic priority used to determine when this daemon runs relative
to other daemons; see section 5.8

deletion triad defined elsewhere in this appendix

changed-outputs list this element exists only if the daemon is a
named-chanpe daemon: it is a list of those
watched outputs whose values have changed
since the daemon was last run

name-identifier this element exists only if system is interpretive
and this daemon is a named-change daemon: it is the
identifier to be bound to the watched-outputs list
just before the daemon is run

deletion triad this is not a separate object, but rather three elements
present in all deletable objects

mark bit used to prevent infinite recursion when "recursively"
deleting in cyclic data webs

deletion p-closures actions to be performed just before the object
 containing them is finally destroyed, i.e.,

interred

dependent modules modules containing a reference to this object in
their local environments: unless these modules
remove such references (via deletion p-closures)
they will be deleted when this module is deleted

deletion p-cloi ire an action to be performed just before an object is
deleted

corpse the object whose deletion triggers performance of this
action

p-closure the action performed consists of applying this p-closure
to the corpse

deletion triad deletion p-closured can be deleted, too

module an organizational unit providing looal storage and hierarchical
structure

father the picture module containing this one, i.e., the owner of
the daemon which created this picture module

sons the picture modules created by daemons owned by this module

local environment local storage for thp daemons ov...dd by this
module

TT

257

output identifiers bindings for those identifiers whose values
üiUiHy can be accesse(j from outside this module by

use of OUT

nther Identifiers all other bindings in this local environment

owned obiects all the daemons, outputs, deletion p-closures, path ovfned objects aii^^^^ scheduled p-closed actions, and simple
sequences owned by this module

deletion triad defined elsewhere in this appendix

output a place to put data such that daemons can detect changes in that
data

owner the module owning this output

value the data in this output

specifier the daemon allowed to change this output

current sequence the (S-DALI) sequence of value chances which
current ae^ currently controls this output s value, if such a

sequence exists

S-watchers the daemons watching for the application of entire
~ sequences of changes to this output

M-watchers the daemons watchine for instantaneous value changes to
this output

deletion triad defined elsewhere in this appendix

p-closure DALI equivalent of a functional closure

owner the module which owns this p-closure; also the module whose
2iirmn local environment will be used when the p-closure is applied

to arguments

function the function of which this is a closure

deletion triad defined elsewhere in this appendix

nath seauence a sequence of chances to be applied to an output, defined
^atn sequence |s

3^^comp03ition of a transformed shape path and a time
path

owner the picture module owning this path sequence

changee the output controlled by this path sequence

path the composite function defining the sequence of values to be
assumed by the changee

time path function specifying the rate of travel along the
shape path

function the function to be applied to a r^lJ^er
— between 0 and 1 and to other constant arguments

258

to obtain another number between 0 and 1 to
which the shape path function is applied

extra data the constant arguments mentioned above

shapb path the function defining the spatial path of the
sequence

function the function to be applied to the output of the
time path and other constant arguments to obtain
a spatial position

extra data the constant arguments mentioned above

translation the translation to be applied to the output
of the shape oath function to obtain the
desired positioi

rotation the rotation to be rpplied to the output of the
shape path function to obtain tne desired
position

step, count the number of incremental value steps this path will
produce

st§£ index an integer indicating which of the incremental value
steps this path will next produce

step, duration the picture time interval to elapse between
successive incremental value steps

.ngenda block the agenda block containing this path sequence, either
as a starter or as a continuation

deletion triad defined elsewhere in this appendix

picture function a function which, when applied to areuments, creates
and returns a new picture module

argument list defines the number of arguments the picture function
takes and also defines the local environment of the
resultant picture module

body the bodv of code to be executed when this picture function is
applied

scheduled p-closed action an arbitrary user-defined action to be
performed at a specific picture time

owner the module which owns this scheduled p-closed action; also
the module whose local environment will be used during the
performance of the action

body the body of code evaluated (executed) to perform the action

agenda block the agenda block containing this action in its action
set

deletion triad defined elsewhere in this appendix

259

simple sequence a sequence of values to be taken on by an output,
 defined by simply listing those values

owner the picture module owning this simple sequence

changee the output whose values are specified by this simple
sequence

value set the ordered list of values which this sequences causes
the changee to assume

step index an integer indicating which of the set of values this
simple sequence will next produce

step duration the picture time interval to elapse between
successive value changes

agenda block the agenda block containing this path sequence, either
as a starter or as a continuation

deletion triad defined elsewhere in this appendix

Preceding page blank 261

Appendix 3:
Garbage Collection in DALI

The purpose of this appendix is to frive further details of the

garbage collection (retentive storage management) scheme assumed in

section 4.3, where it is stated that DALI is incompatible with garbage

collection.

The principle property we wish a retentive storage management

scheme to have is:

If a reference to an object is not explicitly

retained by a program ^daemon), that object is

reclaimable as garbage.

Only the reclamation of storage is to be taken over by the system; the

user must have full control over the generated picture, e.g.,

controlling the visibility of the picture by varying the intensity of

not-yet-garbage collected objects.

As an illustration of what is meant by an explicitly retained

reference, note that this picture function for a triangle drawing

picture module will not work with garbage collection:

(DEFPIC TRIDELETE (PI P2 P3) v , , «.**
(LINE ,P1 ,P2) (LINE ,P2 ,P3) (LINE ,?3 ,P1))

Since no references are explicitly retained to the LINEs, they will be

garbage-collected at the first opportunity. Under garbage collection,

such a module must be written as

(DEFPIC TRIGARBCOL (PI P2 P3 "AUX" EDGES)
(SETQ EDGES (LIST K i v x,,

(LINE ,P1 ,P2) (LINE ,P2 ,P3) (LINE ,P3 ,P1))))

thereby retaining references to the LINEs in a list bound to EDGES.

Such a retention will keep the LINEs from being garbage-collected unless

the entire TRIGARBCOL module is garbage-collected, which is fair enough.

IT

262

The LINEs of the above example brinK to the fore an important

aspect of garbage collection in DALI which does not appear in most

garbage-colleeted systems: the need to keep a separate memory space

congruent with garbaee-collected space. Specifically, garbage

collection of a LINE module must somehow cause the LINE's entry in the

hardware display file to be destroyed.

If the hardware display file occupies the same logical memory as

the rest of DALI storage, it is conceivab1e that it could be earbage

collected in conjunction with garbage collection of the "normal" storage

space. But the complexities of doing so are auite large, and in any

case this cannot readily be done if the physical display hardware

storage is remote-
To solve this problem, garbage-collection p-closures (GCPCs) are

used. These are analogous to the deletion p-closures (DPCs) mentioned

in seetlcn 4.3. A GCPC has, like a DPC, a corpse which refers to it, an

owner, and a body. The body is run just before the storage of the

corpse is to be reclaimed, and can thereby cause the external storage

associated with the corpse to be reclaimed.

The correct operation of GCPCs requires several things:

(1) All GCPCs for a given garbage collection must be run before arvL

storage is actually reclaimed, since reclamation generally

entails modifying the contents of reclaimed storage in order to

thread it onto a "free list", and GCPCs will often need those

contents -- e.g., the environment of a reclaimable LINE module.

This means that there must be a separate phase of garbage

collection for GCPC operation, placed between the traditional

mark and sweep phases which, respectively, identify non-

reclaimable storage and reclaim everything else.

(2) Obviously, a GCPC cannot utilize heap ("free") storage; it

must, however, be allowed to use some storage — e.g., FIFO

stack storage also used by the garbage collector itself.

(3) The garbage collector must know when it is reclaiming the

263

storape of an object which has a GCPC. This is no^ a trivial

reouirement, since garbage collectors usually do not need to

examine reclaimable storage; after all, it's garbage. The

reauired examination can be a part of the extra phase mentioned

in item (1) above.

User-definable GCPCs are not a necessity. Since there will

generally be a small, fixed number of objects like LINE (e.R., DOT,

CURVE, SURFACE, etc.) which use non-garbage-collected storage, they

could be specially constructed and their GCPC's effectively built into

the garbage collector proper. Here, as in deletion, the more flexible

and device-independent solution has been chosen. However, since GCPCs

are actually needed only in special cases, it is reasonable to restrict

the types of objects which can have GCPCs to picture modules.

The strict lack of a need for user-definable GCPCs under garbage

collection is in contrast with the analogous role of DPCs in "delete"

DALI: deletion p-closures are strictly necessary In order to obtain

modularity, since without garbace collection of user-created structures,

something must be done to reclaim such storage and the system cannot do

it.

With the above problem solved, the question of modifications to the

previously presented DALI structure must be addressed. This

modification consists principally of removing references which are only

needed for deletion, while retaining all references needed for correct

operation. The modification will bo presented by walking through a

simple example: the relative position module RELP introduced in section

3.1. The RELP picture function is repeated here for convenience:

(DEFPIC RELP (PT DISP "OUT" SUM)
(ONS (VAL PT DISP) (SUM)

(OUCH SUM (+ ,PT ,DISP))))

The minimal structure now needed is illust'-ated in Fie. Ap-1.1.

The reason for each reference is:

(1) The watched outputs must refer to the daemon, so that the

daemon can be oueued to run on output changes.

264

TO FATHER
TO FROM SPECIFIER'S
SPECIFIER LOCAL ENVIRONMENT

FROM
TO SPECIFIER'S
SPECIFIER LOCAL ENV

t

WATCHED
OUTPUT

WATCHED
OUTPUT

DAEMON

SPECIFIED
OUTPUT

TO WATCHERS

L
0
C
A
L

E
N
V
I
R
0
N
M
E
N
T

T
i
I
I
I

T
I
I
I
I

FROM SONS

FIGURE AP3-I REFERENTIAL STRUCTURE OF
A RELP MODULE

265

(2) The daemon must refer to the module's local environment to

define its running environment.

(3) The local environment must refer to the watched outputs so that

the daemon can access their values.

(U) The (faemon must refer to its specified output, at least through

the local environment as shown, so that it can change the

output's value.

(5) The specified output must refer back to Its specifying daemon

to establish the data web.

(6) The module must refer to its father, so that "EXTERNAL" inputs

of created sons can be looked up. (In the specific case of

RELP, this is unnecessary since it creates no sons.)

(7) The module must refer to its GCPC, so that reclamation of non-

garbage-collected storage can be done. (In the specific case of

RELP, this is aRain unnecessary.)

The necessary references cataloged above contain a circular path:

watched output to daemon to environment to the same watched output. If

this were followed by the garbage collector, it would keep a daemon (and

its owner, its specified output, its owner's father, etc.) from being

reclaimed until all its watched outputs were reclaimed.

This is untenable. Using this circular path, a path can be always

traced from the driving program — never garbage-collected — to every

output and daemon ever created; thus nothing is ever reclaimed.

Furthermore, the user cannoi break such links himself without detailed

knowledge of how other modules are constructed, implying a substantial

loss of modularity. The system cannot help him without maintaining the

equivalent of all the references deletion requires, thereby compounding

the difficulty by introducing further circularities. So this

circularity must not be followed by the garbage collector. Where should

it be broken?

The environment should not be reclaimed unless the daemon is, or

the daemon cannot run.

266

The environment must refer to the output itself, not just to its

value, since the daemon must be able to pass the output to others via,

for example, applying picture functions. If the output is reclaimed

without the daemon epine too, this cannot be done.

That leaves the link from output to daemon. Happily, the daemon is

unnecessary for the watched output's continued operation, so we break it

there, if ao ref-ences but those of outputs' dependent daemons exist

for a daemon, it should be reclaimed.
So, the garbage collector must not follow the references in an

output'1 list of dependent daemons; the list itself, as distinct from

its members, should, however, be marked if the output is marked.

Further, the list must be updated (and some elements reclaimed) if

daemons in it are reclaimed. This can be cone correctly by means of an

implicit GCPC on every daemon, provided we add to daemons references to

their watched outputs so that the appropriate sets can be found. These

latter back references are followed in the mark phase, as are all

references except those in an output's list of dependent daemons.

This sets the stage for the argument of section U.3: Since daemons

are not removed from their watched outputs' dependent daemon sets until

the garbage collector runs - which is hopefully an infrequent

occurrence - they will will be Queued and run after the user has done

everything feasible to destroy them. Since this can *o on for a long

period, the daemons can encounter (and produce) anomalous conditions and

possibly err catastrophically.
Further problems could be raised, for example: (1) Should not a

daemon be reclaimed if the only reference to him is an entry on the

daemon queue? (2) Whac about the S-DALI agenda?
These latter problems are at least potentially solvable. However,

given the unsolved problem of making sure daemons are not run when they

have been cast off, further discussion of other problems is useless.

267

Biographical Note

Gregory Francis Pfister was born on November 29, 19^5, in Detroit,

MichxK.an. He gr?v up in Manhasset, Long Island, New York, and attended

St. Mary's Grammar School and St, Mary's High School in Manhasset. In

1963, he received a Grumman Aerospace Corp. four-year full-tuition

college scholarship (competitive). In September, 1963, he entered

Massachusetts Institute of Technology, obtaining the degree of Bachelor

of Science in Electrical Engineering in June, 1967. He was co-recipient

of the first annual MIT Levin Award (best Junior laboratory project) in

1966.
In September, 1967, he entered Graduate School at Massachusetts

Institute of Technology, obtaining the degree of Master of Science in

Electrical Engineering in June, 1969; at that time he became an

Instructor in the MIT Electrical Engineering Department. Between then

and 197H he taught courses in logic design and programming llnBUistics

at MIT, and worked (summers) at the MIT Lincoln Laboratories Digital

Computers Group (TX-2) in Concord, Mass., and at Evans and Sutherland

Computer Corp. in Salt Lake City, Utah.
In September, 1974, he received the degree of Doctor of Philosophy

in Computer Science at MIT.
At present (1974-1975) he is employed at the IBM Advanced Systems

Development Division in Mohansic, N.Y. while on a one-year leave of

absence from the University of California at Berkeley, which he will

join in the fall of 1975 as an Assistant Professor.

He has been elected to membership in Eta Kappa Nu, Tau Beta Pi, and

Sigma Xi.
He has also published a review of Newman and Sproull's Principles

of Interactive Computer Graphics [Pfi3], and A MUDDLE Primer [Pfi2].

