AD-787 631
THE SEMANTICS OF PASCAL IN LCF

Luigia Aiello, et al

Stanford University

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

August 1974

DISTRIBUTED 8Y:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

et Tiys TRTSSERT PRSI W TR, e S oo r S QU RN e om s e e e — B TR —— AT TN - e R ey’ R em—

i R ST T ST - -~ e I % /'
Unclassified e !
SECU?ITY CLASSIF!ICATION OF THIS PAGE (When Data Entered) 7’7
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE e READ INSTRUCTIONS '
. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECI®PIENT'S CATALOG NUMBER
STAN-CS-7k-b47
4. TITLE (and Subtitle) S. TYPE OF REPORT & “ERIOD COVERED
THE SEMANTICS OF PASCAL IN LCF technical, August 1974
—u. PERFORMING ORC. REPORT NUMBER
STAN-CS-T4-L47
7. AUTKOR(s) R. CONTRACT OR GRANT NUMBER(s)
L. Aiello, M. Aiello, and k. W. Weyhrauch DAHC 15-73-C-0435
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

N N AREA & WORK UNIT NUMBERS
Stanford University

Computer Science Department
Stanford, California 94305

e . A

11. CONTROLLING OFFICE NAME AND ADCRESS 12. REPORT DATE
ARPA/IPT, Attn: §S. D. Crocker August, 197h4
1406 Wilson Rlvd., Arlington, Va. 22209 13. NUMBER OF PAGES

38~ 30

T4, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 1S. SECURITY CLASS. (of this tepor.)

ONR Representative: Philip Surra

Durand Aeronautics Bldg., Rm. 165 Unclassified
Stanford University 1Se. gggéé\ailgucnlowDowncmomc
Stanford, California 94305 = t

16, DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on disseminsation.

?. DISTRIBUTION STATEMENT (of the ebatreci entered in Block 20, if difterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il neceasary end identify by biock number)

eproduced b
“PUATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of G mmer e
Springfield VA 22151

20. ABSTRACT (Continue on reverse side if necessery end identify by block number)

We define a semantics for the arithmetic part of PASCAL by giving it
an interpretation in LCF, a languzge based on the typed A -calculus,
Programs are represented in terms of their abstract syntax. We show
sample proofs, using LCF, of some general properties of PASCAL and the
correctness of some particular programs. A program implementing the
McCarthy Airline reservation system is proved correct.

\

30

SN W P Sty ——————

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entesr.d)

wU 7ORM 1473 E0ITION OF 1 NOV 6515 OBSOLETE Unclassified
1 JAN 73 {

e e L S s e -

ARTIFICIAL INTELLIGENCE LABORATORY AUGUST 1974
MEMO AIM No.221

COMPUTER SCIENCE DEPARTMENT
REPORT No.447 :

The Semantics of PASCAL in LCF

by
Luigia Aiello
Maric Aiello
and
Richard W. Weyhrauch

Abstract:

We define a semantics for the arithmetic part of PASCAL by giving it an

interpretation in LCF, a language based on the typed X-calculus. Programs are i
represented in terms of their abstract syntax. We show sample proofs, nsing LCF, of

some general properties of PASCAL and the correctness of some particular prograins,

A program implemnenting the McCarthy Airline reservation system is prover' correct.

Authors® addresses
L. Aiclln, Istituto di Elaborazione dell'lnformazione, via S. Maria 46, 56100 Pisa, haly;
M. Aiello, Istitato di Seienze dell'Informazione, Universita® di Pisa, corso ltalia 40, 56100 Pisa, l1aly;

R. Wayhranch, Al lah, Computer Seicnee Dept, Stanford University, Stanford, California 94305. or
Weyhranch @SU-Al

This rescarch is supported (in part) by the Advanced Rescarch Projects Ageney of the Office of the
Secretary of Defense (DAHG 15-73-C-0435).

The views and conclucions contained in this decument are those of the anthors and shonld not he interpreted
as necessarily representing the offieial policies, cither cxpressed or implied, of the Advanced Rescarch
Projects Agency, or the TLS. Government.

Reprodueed in VSA. Available from the National Technical Information Service, Springficld, Virginia 22151,

o

t3

The Semantics of PASCAL in LCF

TABLE OF CONTENTS

INTRODUCTION
THE, SEMANTICS OF PASCAL
2.1 Description of the semantics
2.2 Top level functions
DESCRIPTION OF THE LANGUAGE
3.1 Declaration paArl
311 Data Type Deflinitions
3.1.2 Variable Declarations
3.1.3 Procedure and Function Declarations
3.2 FExpressions
321 rithmetie Fxpressions
3.2.1.1 Fvaluation of Constants and Fxpressions
3.2.1.2 Fvaluatian of Variahles
3.2.1.3 Function Designators
3.2.2 Boalcan Kxpressions
3.3 Statement Part
331 Simple Statements
13.1.1 Goto Stateinent
3.3.1.2 Assignment Statement
31.3.1.3 Proecedure Statement
33.1.4 Read Sta ement
3315 Write Statement
3.3.2 Structured Sta +ients

3.3.2.1 Conditional Statement

L= JE - B~ A -

10
n
13
14
14
15.
15
16
18
19
19

19

The Semantics of PASCAL in LCF

3322 Whilc and Repcat Statements
3.3.2.3 For Statemcut
4 PROPERTIES OF THE SEMANTICS
41 The strictness of MS on the store
4.2 Propertics of MS for goto-free programs
43 An equivalent meaning function for goto-free programs
4.4 FKquivalences for repetitive statements
45 Misccllancous thcorems on MDEC, MDEF, MS
5 EXAMPLES
5.1 The factorial program
5.2 The McCarthy Airline Reservation System
6 CONCLU.SlON
Appendix 1 A BRIFF DESCRIPTION OF L.CF
Appendix 2 THE ABSTRACT SYNTAX
2.1 Syntax for Statemcents
2.2 Syntax for Kxpressions
2.3 Predicates for the Identification of Syntactic Constructs
2.4 Auxiliary Predicates and Functions
Appendix 3 THE SEMANTICS
3.1 Top Level Functions
3.2 Declaration Part
33 Definition of MS
3.4 Axioms for Statements
3.5 Binding Mechanisia
3.6 Evaluation of Expressions

3.1 Variables

54
55
56

51

58

The Semantics of PASCAL in LCF

3.8 The Lookup of the Store

3.9 Updating anit Miscellancous Axioms 60
Appendix 4 Proof of the equivalence involving WHILE for goto-frec programs 61
41 List of L.CF commands 61
4.2 Printont of the proof 62
Appendix 5 Proof of the cquivalence involving REPEAT for goto-free programs 63
5.1 List of LCF commands 63
5.2 Printout of the proof 64
Appendix 6 Proof of the egnivalence involving FORTO for goto-free programs 65
6.1 List of LCF commands 65
6.2 Printout of the proof - 66
Appendix T Proof of the goto-free faciorial program 61
1.1 list of 1.CF commands . 61
1.2 Printont of the proof . 68
Appendix 8 Proof of the McCarthy Airline Reservation System I 69
8.1 List of LCF commanils 69
8.2 Printout of the proof 0
References : 12

The Semantics of PASCAL in LCF

SECTION | INTRODUCTION

This paper 1s an attempt to dete/mine the order of magnitude of the problem of giving an axiomatic
treatment, in LCF, of an established programming language with a sizable user community. We
wanted to include such features as declarations, 1/0, different types of parameter bindings and
control structures. For this purpose we chose the integer arithmetic part of PASCAL, which we will
refer to as PASCAL. It seemed to us a reasonable choice in that:

1) it satisfies the above criterion, thus it is not a toy language.
2) it is powerful enough to compute any partial recursive function on sequences of integers.

3) the existence of VCGEN (Igarashi, London and Luckham 1973) and FOL. (Weyhrauch and
Thomas 1974) will eventually give us th> ability to compare the effectiveness of Hoare's
axiomatic definition of PASCAL, McCarthy's style of first order axiomatization (McCarthy
and Painter 1966) and the Scott style of assigning extensional meanings to programs.

One pleasant result of our work was the discovery that the task seems more manageable than we
had originally thought. Most discouraging was realizing exactly how inadequate even careful
descriptions of programming languages actually are.

LCF 1s both a logical calculus and a proof-checker for a suspected proof in the logic. it could be
described 3s an equation calculus based on terms in the typed A-cal.ulus, whose most powerful rule
of inference is ICleene’s first recursion theorem stated as a rule (see Kleene 19452). Using this

language i the mathematical theory of computation was first suggested by Dana Scott. Its formal
properties are described in Milner 1972a, 1972b. Also see Milner and Weyhrauch 1972, Weyhrauch
and Milner 1972, Newey 1973, 1974, Aiello and Asello 1974 for other applications. A short
description of LCF syntax is given in appendix |

Initially cur intent was to present a semaniics for the description of PASCAL given in Wirth 1971,
1972 and Wirth and Hoare 1973. As a result of our attempts to give what we ccnsider a complete
desciiption, we found many ambiguities and places where the literal interpreiation of Wirth's
descriptions led to a semantics having undesirable properties (see 3.32.3 for a discussion of the for
statement). We have described a language which has a fairly smooth seniantics, and whose formal
propetties are more clearly appatent. All the differences are documented in the text.

We think of our axiomatization as characterizing properties of the whole PASCAL and not as a
description of properties of individual statements. In section 4.2, for instance, we prove that, if two
programs P and Q don't contain goto statements, we can represent the function computed by the
program consisting of P appended to Q) as the composition of the function computed by P with that
computed by Q, This theorem and others 1n section 4 simply cannot be expressed or used in
formalisms like Floyd's method of attaching assertions to programs or in Hoare's axiomatic
approach. We consider this a major difficulty with those techniques. Both consider programs
individually. 1t 1s our belief that the feasibihty of checking (or generaumg) large formal proofs
depends on our ability to prove general properties of classes of programs. A description of the
entire [ogramming language 1s required in order to mention these classes.

Characteriz’'ng an entire language m this way means thai confhets arising out of putting different

The Semantics of PASCAL in LCF 2

programming features together must be resolved, or at least describable in the formalism. The
discussion of function activations wn section 32.1.3 is a typical example of the difficulty one
encounters when trying to characterize the behavior of an enure language. Unusual programs
rannot be ignored or left unmentioned. In actual programming languages the ability to decide if a
prugram is well formed is in general too costly and many "ill formed" programs are usually accepted
by the parser. An example of such a difficult case is found in section 3.3.2.3. on the for statement.

In section 2 we describe the axiomatization of the euvironment in which PASCAL programs are
executed.

A special word is needed here to make clear an abuse of language that appears throughout the
report. We frequently speak about a combinator being executed and then explain what it does.
Strictly speaking this is not correct. Combinators don't do anything. The functions we mention are
to be irterpreted extensionally. It means that the only properties of LCF functions that can be
mentioned are properties of their raphs. Thus, when I~oking at

Fe [kN.(isnlmo(N)-0(isRichard(N)-’Good,Bld),FF)]

we may say informally that F is a function which checks if N is a name. If it is not then its value is
FF otherwise it returns Good or Bad depending on whether that name is Richard or not. This
description is in the style of an interpreter. More correctly we should say, F is a three valued
function whose value is FF on arguments which are not names, and otherwise has the value Good or
Bad depending on whether that name is Richard. How the function is computed 1s transparent to
LCF. This point is very important so that there is no confusion about the nature of the semantics
defined here. To each program is assigned a function, nof a computation procedure. LCF terms
also have interpretations as computation procedures, but it is not this interpretation that concerns us

here.

Section 3 describes all the control structures and statements relevant to the arithmetic part of
) PASCAL. They include

1) type definitions

2) variable and array declarations,

8) procedure declarations and procedure activations,

4) function declarations and function evaluations,

5) assignment, conditional, while, repeat, for-to,for-downto and goto statements,
6) input/output instructions.

We do not consider constant definitions, jabel declarations (Wirth 1972), case or with statements, or
records and files (except INP and OUT). These are either easily addable or are not relevant to the
arithmetic part of PASCAL.

Although LCF uses the typed J-calculus, a natural semantics may be given to goto's and to
procedures having therselves as actual parameters without introducing type conflicts. This is
explained in section 3.3.1.3. :

Examples of general theorems about PASCAL are presented in section 4. Most of the work to date
on the correctness and equivalence of programs, has actually only dealt with the extensional

i
|
|
|
|

The Semantics of PASCAL in LCF 3

properties of algorithms. Input/output or the effects of declarations cannot be ignored in zny theory
of correctness which hopes to be practical. As soon as we ask whether a program will run or not, or
whether 1t will compile or not, then the question "do we have the correct algorithm?" is a minimal
criterion for correctness. In addition, the distribution and consumption of resources during the
execution of a program, involves both what has been declared and how bindings are made to
parameters. The correctness of programs which input data incrementally, must know how these
inputs are treated.

We have set out here a description of a large but stable core for any interesting prozramming
fanguage. We wanted to establish a base from which further work could be done towards a practical
system for proving properties of programs within this core. Some example are the theorems of
section 4.

Section 5 gives partial correctness proofs for some programs. The much overworked factorial
program is again discussed. We incluced it to show some of the flexibility in our approach to
program correctness as well as illustrate points made in other parts of the report. A proof of the
correctness of a progrim implementing the McCarthy Anline reservation system is given. This is
new In that it treats an interactive program which has a potentially infinite number of inputs. The
details are in 5.2.

The appendices contain a short description of the LCF syntax, the list of all the LCF axioms
describing the syntax and semantics of PASCAL, and the actuai LCF printouts of the proofs of
theorems mentioned in the text.

Some familiarity with the papers Wirth 1971, 1972 and Wirth and Hoare 1973 is recommended to
better understand this memo.

L T T T EE— L e T

The Semantics of PASCAL in LCT

SECTION 2 THE SEMANTICS OF PASCAL

Section 2.1 Description of the semantics

In this version of PASCAL we restrict our attention to programs whose inputs are sequences of
integers. The meaning (or interpretation) we assign to a program is thus a function from sequences
of integers into sequences of integers.

Programs, on the other hand, map memories onto memories. In order to describe the effects of
procedures and function activations more clearly we introduce the notion of a store. A store divides
the memory into frames or environments. Frames are specified by a framepointer. Thus we think of
programs as mapping storés onto stores, and stores are functions from framepointers to frames.

store: framepointer - frame
A frame is a function from locctions to values.
frame: location - value

A store describes abstractly additional structure of a memory without knowing how it is realized in
any particular implementation. The execution of a program, p, starts with the creation of the initial
store. This is done by FRAMEB (see next section). It contains the locations fileloc INP and fileloc OUT
for the input and output files respectively, and a location textloc where the text of the program is
stored. T his store has only one frame called 8.

Type definitions are then made in this frame. Each frame represents an environment in which the
current declarations and variable bindings are found.

The effect of declaring a variable, v, in a frame is to create a location typeloe v, which contains the
type of v. Thus we can tell if a variable has been declared in a frame s(f) by checking if

s(f,typeloc v)sUNDEF,

The execution of a procedure or a function creates a new frame. It is set up by the combinator
MAKFRAME defined in aj.pendix 3.9. The new framepointer is just the successor of the current one,
namely that pointing to the frame where the procedure or function has been activated. This
imposes a stack discipline on procedure and function activations. The binding of free variables are
made in the style of ALGOL. The pcution of the variable declaration in the program text
determines the binding frame. FETCHV is the function which looks up the value currently bound to
a variable.

The combinators FRAME® and MAKFRAME build stores with the following property. If f 15 a
framepointer corresponding to a non activated frame, then s(f):UU, otherwise for any legal location
loc, s(f,loc) is either a value or is UNDEF. The value of a variable is stored 1n a location which
depends on its name. This is slightly complicated in PASCAL, because both identifiers and array
element names (eg. Al1)) are considered variables. Section 3.2.1.2 describes the combinators which
allow us to treat them uniformly.

The Semantics of PASCAL in LCF 5

Both FRAMEB and MAKFRAME store the body of statements to be evaluated into a location of the
frame they are defining. The effect of procedure and function declarations is to add new locations
to the store.

The statement part of a program, procedure or function, is interpreted in the store where the
corresponding declaration part has been evaluated. Statements are evaluated in sequential order,
unless a goto statement is encountered. Where to go is determined by the function segm, which takes
a text and a label, and returns a text, i.e. it tells you where to jump. The new text is evaluated in
the same frame as you jumped from. Thus you cannot jump out of a procedure activation. This
follows Wirth 1971. The effects of the other statements are pretty much as you might expect. They
are defined by MS in section 3.3.

The stack discipline imposed on procedure and function activations and the discipline imposed on
goto's are not intrinsic to this approach to the description of the semantics of programming
languages. We impose them because we wanted to correspond to Wirth 1971.

Programs are written in abstract syntactic form. Each syntactic construct is assembled by a
constructor and its components are selected by a selector. The list of all the axioms about the syntactic
constructors and selectors are given in appencices 2.1 and 22. Each construct is identified by
associating a type to it. A predicate 1s defined which is satisfied only by objects of that type (see
appendix 2.3). The equality of identifiers denoting types of syntactic constructs and of location

names 1s denoted by "=" in the formulas through the text and 1s detecte by LCF itself.

Section 2.2 Top level functions
The function FUNCT:
FUNCT = [Ap o.[Ai.(INPUT®PASCAL(p,0)®0UTPUT)(i)]] .

where @[t g x.g(f(x))] is the composition function and i, o are sequences of integers, represents the
"inteiface” between functions which compute on integers and programs which compute on stores.

Wirth 1971 describes a program as a PASCAL procedure which has an input and an output file as
parameters. The combinator PASCAL :

PASCAL = [Ap.[r0 iMP(p,8 FRAMEB(p,0,1))]]

when applied to a program, p, is a function which takes as arguments two sequences of integers o
and i (representing the initialization of the ontput and input files respectively) and returns a
function from stores to stores. The definition of PASCAL imitates explicitly the bindings which a
procedure would make when executed as part of a program. FRAMEB(p) applied to o and i creates a
store containing a single frame, called 8, with these bindings and then applies MP to the program p
in frame B and this store.

FRAMED = [Ap.[Ao ifAf. (i=B) =
[\loc.(loc=tileloc !NP)= INTERWALREP(i),
{loc=fileloc OUT)- INTERNALREP({o),
{locstextloc)— statmof(p),UNDEF],UV]]),

The Semantics of PASCAL in LCF 6

PASCAL programs read sequences of numerals supplied by some input device into the buffer fileloc
INP and write outputs into the buffer fileloc OUT. INPUT is just the identity function. The write
statement puts numerals in the output buffer, thus OUTPUT maps sequences of numerals, onto
sequences of integers. INTERNALREP is a function which takes sequences of integers and returns
sequences of numerals. The definitions are found in appendix 2.1.

Programs in PASCAL have two parts: a declaration part and a statement part.
The interpretation of a program in some frame specified by the framepointer f:

MP = [Ap 1.MD({declof 1,1)@MS (statmof 1,1)]

is just the interpretation of definitions MD composed with that of statements MS. These are
described in the next section.

The Semantigs of PASCAL in LCF 7

SECTION 3 DESCRIPTION OF THE LANGUAGE

This section contains the Jdescription of all the instructions included in our version of PASCAL and
the description of their semantics in LCF. Each text (it may be a program, a procedure or a function
text) consists of two parts: declaration part and statement part. The semantics of a text depends on
the frame in which such text is executed, for this reason a framepointer is specified as parameter in
every semantic function.

Section 3.1 Declaration part

The declaration part includes type definitions and the declaration of all the variables, functinns and
procedures local to that text. Its semantics is defined by:

MD = [Ad {.MDEF(d,f)®MDEC(d,!)},

MDEF = [ecF.[Ad {.
isemptyst d = ID,
istypedef d — CREAT(f,namof d,typof d),
iscmpnd d = F(fstof d,f)@F (rmdof d,{),ID]],

MDEC 2 [ocF.[Nd 1.
isemptyst d = D,
isvardecl d = CREAV(f,namof d,typof d,f),
isprocdec! 4 =~ CREAP(f,namof d,prspof df),
isfundec! d - CREAF(f,namof d,fnspof dtypeof d,f),
iscmpnd d = F(fstof d,f)@F(rmdof d,{),iD]].

MD is the composition of MDEF, which defines the semantics of type definitions and MDEC, which
defines the semantics of variable, procedure and function declarations. Every identifier appearing in
a declaration statement is a name so it must satisfy the predicate isname. Consequently, whenever
some property of a PASCAL program is to be proved in 1.CF, for each identifier appearing in that
program, axioms stating that it is a name are to be added. The predicates for the identification of
syntactic constructs are given in appendix 2.3.

3.1.1 Data Type Definitions

Since we are dealing with the integer arithmetic part of PASCAL. the scalar data types we have
introduced are the integer type INT and its subranges. A subrange is an interval of integers and is
defined by specifying its lower and upper bounds. The structured data types included in our
language are the array types. An array may have any number ¢! indices (each ranging in a subrange
type) and its elements are all of the same scalar type.

Each type may be assigned a name In a type defini.ion. The semantics of a type definition is CREAT:

CREAT = [\ n ty s.CREALOC({,s,lypidioc,n,ty)).

CREALOC = [Af s loc n val. ISPRESENT(n,s(f))-UU,STORE(f,s,loc n,val)]

The Semantics of PASCAL in LCF 8

CREALOC is used by CREAT. It dectares a name n to be a synonym for the type.ty in the frame sif),
by storing ty in a new location typidloc n. The result of CREALOC is undefinec 1f n doesn't satisfy the
predicate isname or if it nas been already declared in the current frame. This is tested by ISPRESENT
Modification of the stoi< is done by the combinator STORE. Their definitions are in appendix 3.9.

In the definitions of MDEF and CREAT no 2ssumptiot is made on the order of the type definitions. If
all the type identifiers satisfy the predicale isname and are different from each other, the result of
MDEF on a frame, in which they don't appear, doesn't depend on their order in the text (see theorems
in 4.5

3.1.2 Variable Declarations

Each variable occurring in a text must be assigned a type which specifies the range of values that
variable may assume during the execution of the statement part of the text. The semantics of a
variable declaration is defined by CREAV:

CREAV = [Af n ty fl s CREALOC(f,s,typeloc,n,TYPEVAL(ty,fl;s))).

CREAV creates a location in the current frame s(f), whose name is typeloc n, provided n is a name and
no other location with the same name already exists 1n that frame. The content of that location is
the type associated with n. Such type is evaluated by TYPEVAL (see 3.3.1.3). Each type identifier
possibly appearing in it is removed and its definition is substituted for it. The evaluation is made in
the frame specified by the framepointer fi. When a variable is declared fl coincides with f, so at the
moment there is no point in introducing another parameter in CREAV. We have introduced this
extra parameter since CREAV is also used when binding value parameters in a procedure or {unction
activation. On that occasion the two framepointers f and fl (the one in which the new location is
crezied and the one in which the type evaluation starts) do not coincide.

3.1.3 Procedure and Function Declarations
The semantics of a procedure declaration is defined by CREAP:

CREAP = [\t n ps {l s STORE(f,CREALOC(f,s,acclnk,n,fl),procloc n,ps)),

The result of CREAP is undefined 1f n 1s not a hame or somethitig with the same name has already
been declared. Otiverwise two locations are created. One of them, whose name is procloc n contains
the formal 71 ument list and the text associated to that procedure declaation, the other one, whcse
name is accl ¢ n contains the frame pointer specifying the frame where the procedure has been
declared, i.e. the environment where its free variables are bound. As for variable declarations, when
a procedure is declared the two framepointers f and f{l are the same, but the combinator CREAP is
also used when binding procedure parameters in a procedure or function activation, and in that case
the two framepointers differ.

The semantics of a function declaration 1s CREAF:

CREAF = [xf nfs ty ft fl 5.
STORE(f,STORE(f,CREALOC(f,5,accink,n,fl),typeloc n,TYPEVAL(ty,ft,s)),funcloc n,fs)].

e el Sk Gl S L PRI TG 1 ST c PR e el SRR

The Semantics of PASCAL in LCF 9

CREAF is similar to CREAP. The only difference is that, in additton to funloc n and acclnk n, a location
typeloc n is created, whose content is the type of the result of that function.

From the definition of MDEC and the others LCF combinators describing the semantics of the
declarations it follows that the order in which declarations are made is not relevant. If the identifiers
being declared are different and no other locations have been declared with these names the same
store is obtained, independently of the order (see theorems in 4.5). Tnis is slightly more general than
the definition of PASCAL in Wirth 1971, which requices that all the variable declarations must
appear before the function and procedure declarations.

Section 3.2 Expressions

An LCF function can either evaluate to an object or to a truth value, but not both. For this reason
we could not introduce a unique evaluation function for arithmetic and boolean exprezsions. So we
have divided expressions into arithmetic and boolean (this distinction is absent in Wirth 1971) and
introcduced two evaluation functions. Furthermore, we have introduced a finer distinction Letween
the types of operators in order to avoid funny situations like the prefix adding operator "or" which
is allowed in the syntax given in Wirth 197, 1972 but whose meaning is not defined there.

3.2.1 Arithmetic Expressions
Arithmetic expressions are written in abstract syntactic form and are evaluated by MEXPR:

MEXPR = [«cF.[e f 5.
isconst @ = MCONST e,
isexpr e —disunary(opot e) = MOP1(opof e,F(arglof e fs)),
isbinary(opof @)= MOP2(opof e,F(arglof e,i,s),F(arg2of e,,s)),
isvariable @ = FETCHV(e,f,s),
isfundes @ - RETURN(succ 1,MF(namof e,actargof e,i,s)),UU,UU]].

3.2.1.1 Evaluation of Constants and Expressions

The abstract syntactic representation of numbers is defined by the combinator mknumconst. If n is a
number, mknumconst n is the corresponding numeral and it sausfies the predicate isconst (see
appendix 2.3). Numerals are evaluated by the semantic combinator MCONST, which returns the
corresponding number.

MCONST = [Ax.isconst x = numof x,UU].

Arithmetic operator symbols appear explicitly in expressions and sausfy the predicate isunary or
isbinary according to the number of arguments the corresponding operator expects (see definitions in
appendix 2.4). When evaluating arithmetic expressions MEXPR checks whether the operator symbol
is unary or binary, then MOP| or MOP2 evaluates them and applies the corresponding valuc wo the
argument(s) evaluated recursively.

MOP1 = [Ax.x=pplus=Ax.x,x=pminus=2Ax.{B-x),x=plus| =succ,x=minus | ~pred,ul].

The Semantics of PASCAL in LCF

MOP2 = [Ax.xsplus—1e,xsminus=+!=x=times—%,xsdiv=1/,xsrmdr-mod,ul}.

MOP1 evaluates unary operator symbols and MOP2 evaluates binary «perator symbols to fne
corresponding functions. For example, the meaning of the symbol plus is the LCI functien +. Mote
that, due to the LCF syntax, infix operators, when written withcu: argurents, are prefixed by ™"
An LCF axiomatization of arithmetic is given in Newey 1973.

As an example, if:
mkexpr2(plus,mkexprl (plusi,n! },mkexpr2(fimes,mknumconst 2,mkexpr1(minus1,n2)))

is evaluated in a frame where e location nl contains the value 3 and the location n? contains the
value 7, its result is 16, i.e. suce(3)e(2%pred(7)).

3.2.1.2 Evaluation of Variables

If the expression to be evaluated 1s a variable, then the corresponding value is fetched by the
FETCHV combinator.

FETCHV = [«F[Anfs.
ISLOCAL(ty peloc NAMOFVAR(n),s(f))=ISLOCAL(NAMOFVAR(n),s(t))=s(t,LOCOFVAR(n,f,s)),UU,
istopf(f)-UU,F(VARBNDTO(n,{,s),NEWFP(n,f,s),5)]).

The fetching mechanism is very simple. The variable to be fetched may be an entire variable of a
scalar type or an array element. In both cases a test 1s done (by ISLOCAL) to see whether or not that
variable name has been declared n the current frame. If this 1s the case, the corresponding value is
fetched in the current frame (it will be undefined if the variable has been declared, but no value has
been assigned to that location). If the variable name has not been declared in the current frame and
the current frame is not the top one (ie if the fetching 1s done during a procedure or function
activation), the binding list is checked. In fact the variable to be fetched may be a formal parameter
passed by name (see 3.3.1.3 for details on the binding mechanism). In this case FETCHV applies
recursively to the corresponding actual parameter in the preceding frame. If that variable name 1s
not found in the binding list, the variable is free for that procedure or function activation, hence
FETCHV applies recursively to the same variable in the frame specified by the result o; NEWFP, ie. the
frame where the procedure or function In execution has been declared, hence where its free
variables are bound.

The definitions of the auxiliary combinators used in FETCHV may be found n appendix 2.7,-9.
ISLOCAL performs a test to ser whether a given name has been declared or not n a frame.
NAMOFVAR applies to a variable n, and gives as result its name: it coincides with n 1f n is an entire
variahle of scalar type, or it is the name part of nif nis an array element. Analogously LOCOFVAR
returns the location of n. As above, the location of n might be n itself, or an array location. varbndfo
is the function which accesses the list of parameter bindings. If the variable n appears in it, then n
(or its name-part) is a formal name parameter and the corresponding actua! parameter is the result
of varbndte. If n1s not a name parameter, then n tself is the result of varbndto. In this case n is a
free variahle for the function or procedure in execution. NEWFP evaluates to pred f or to the content
of the alnk location of the current frame, according to whether n 1s a formal parameter or a free
variable. The alnk location is set up when a new frame i1s created for a procedure (function)
activation, it contains the pointer to the frame where the activated procedure (function) has been
declared.

The Semantics of PASCAL in LCF tl

From the definitton of NAMOFVA? given in appendix 3.7 we see that its result 1s undefined if it is
apphed to FUNV. As explained in 32.1.3 and 3.3.1.2 FUNV s the locatton where the valuc of a
function 1s stored. Since NAMOFVAR 15 undefined on FUNV, the result of FETCHV Is undefined if it
appiies to FUNV. So it is impossible to "read” the value of a function with the usual fetching
combinator.

3.2.L.3 Function Designators

If the expression to be evaluated is a function designator, then a new frame is set up. The function
is evaluated by MF and its value is retricved by the RETURN combinator in a special location named
FUNV.

RETURN = [Af sISLOCAL(FUNV,s(f))=s(t,FUNV),UU],

The semantics of a function activation ts very similar to that of a procedure activation (see 2.2.1.3).
Starting from a given store, a new frame s created by the combinator MFB and then the semantic
function MP (described in section 2.2) is applied to the text of the function. The current frame is
changed by incrementing the frame pointer by 1.

MF = [An a {. MFB(FUNCFAL(n,f),a,f,n)oMP(FUNCODEF (n,1),suce 1)).

FUNCFAL and FUNCOEF are the two functions which fetch from the <tore the formatl argument list
and the text of the function being activated. Their defimition 1s given in appendix 3.8. They use the
FETCH combinator which, like FETCHY, returns the content of a location from the frame where it has
been created.

The activation of a new frame and the binding of parameters is done by MFB:

MFB = [Afa aa { n s.BIND(fa,aa,suce {,CREALOC (succ f,typeloc FUNV,TYPEDEF (n(,s),
MAKFRAME(FUNCBODY(n,f,s),PFLNK(n,f,s),succ f,s)))).

It riot only binds the formal parameters to the actual parameters (the binding function BIND will be
fully explained in 3.2.1.2), but it also creates a new frame. The frame in which the function is
evaluated 15 set up by MAKFRAME (sce appendix 2.9). It creates a location textloc where the statement
part of the text is stored, and a location alnk whose content 1s a pointer to the frame where the
function has been declared. Moreover, a location typeloc FUNV 1s created, whose content 1s the type of
the function being evaluate’ A location named FUNV will eventually contamn the value of the
function. in fact Wirth 1971, 1972 says that the function hame must appear at least ¢ 2 in the
function text at the left hand side of an assicnment statement. The value of the function in
execution s stored in the FUNV locaiton by the combinator ASSIGN. From its defimition in 2.2.1.2 we
see that the result of a function can only be assighed to FUNV in its funztion irame. This means that
tf the name of the function in execution appears at the left hand side of an assignment statement in
the text of a procedure where such identifier has not bzen declared, it is interpreted as a free
variable, not the nam? of the function in execution.

As noted in 3.2.1.2 the FETCHV combinator returns an undefined value if applied to FUNV. This
implies that a variable namec FUNV cannot be declared even in a frame different from that set up
by a function activation. We have prevented this by considering FUNV a "reserved” iclentifier which

——

The Semantics of PASCAL in LCF 12

doesn't satisfy the predicate isname, so it cannot be used in declarations (the axiom isname FUNV=FF is
included in appendix 24).

We assume that the translator from concrete to abstract syntax nas substituted FUNV for all the
occurrences of the function name on the left hand side of assighment statements within the function
text. If there are no such occurrences, the function activation returns an undefined result. |f there
are several, the last executed determines the value of the function. If a variable identifier equal to
the naine of the function in execution occurs on the rigth hand side of an assignment staternent,
then either that vaiiable has been declared within the function execution or it is considered a free
variable of that iunction. When a variable has been declared with the same name as tie function in
execution, 1ts value 15 undefined durmg the function exec “1on. In fact, it cannot be assigned a value
since FUNV has replaced it on the left hand side of any assignment statement. It cannot be inputed
since the read statement cannot be executed within a function acuvation (see the following
paragraphs for a discussion on side effects).

The declaration of a variable with the same name as the function in execution is not forbidden by
Wirth 1971, 1972, but we do not see any reasonable semantics for i1t. In addition Warth 1971, 1972

says thau

"QOccurrence of the function identifier in a function designator within its declaration
implies recursive execution of the function”. .

This sentence doesn't specify what happens if within a function another function is declared with
the same name. Our semantics allows such declarations - why not? In such case the "outermos.”
function cannot be executed recursively. This is also the case if a function has a formal parameter
with the same name (this is not forbidcen i Wirth 1971, 1972). In this case the corresponding
actual parameter is executed.

PASCAL allows functions to have themselves as actual parameters. Even though LCF 1s a typed
logic, the semani'c combinators we have defined avoid type conflicts by passing the text of the
function and not the function itself as a parameter. This 1s also true for procedures having
themselves as parameters.

Haberman 1973 1s very critical of the PASCAL's notion of function. He says that, while the aim of a
PASCAL function 1s that of not having side effects, this 1s not true since a function may cati a
procedure which may have side effects. Our semantics deals with this situation 1n a different way.
Statements which change the content of a location and hence cause side effects are oily the
assignment, iead, write and for statements.

The read and write statements modify the content of the nput and output buffers so they cannot be
executed during a function activation. We forbid this by the test ISFUNFP which is performed
whenever a read/write statement is executed. It ckecks if any frame between the current one and the
top one has been set up by a function activation (see 3.3.1.4.-5). The test on whether a frame has
been created for a function activation or for a procedure activation is dune by checking in the frame
whether typeloc FUNV 15 defined or not.

An assignment statement may cause side effects by assigning a value to a free variable. Whenever
the variable to be assigned is a frze variable for tne current frame, the ASSIGN combinator (see

13

The Semantics of PASCAL in LCF

2.3.1.2), checks whether betveen the current frame and that where the variable is bound (hence
where the modification of the store actually takes place) a function has beer activated.

The for statement may cause a side effect if its control variable is free in a function activation.
Wirth 1971, 1972 doesn't say that the control variable must be local to the frame where the for
statement is executed. In our semantic definition of PASCAL, the for statement cannot cause sicle
effects in a function activation since its definition relies on the combinator ASSIGN for updating the

control variable (see 3.3.2.3).

We mcluded the above checks in our semantics so that ill-formed programs return an undefined
store. It turns out, hewever, that in our formahism no function can cause sicle effects. This 1s because
MEXFR simply returns a value from a function acuvation The checks done in our semantic
combinators amount to checking for side effects "at run time”. Thus some programs which would be
rejected by a PASCAL compiler will sull have well defined meaning for us if the statements
producing side effects are never executed.

Finally, we want to pomnt out that our semantics allows parameters of a function to be passed by
name, but guarantees that those parameters can only be “read” during the function execution. This
contrasts with Hoare’s opinion (private communication) that PASCAL functions must not have
parameters passed by name. Wirth 1971, 1972 says nothing about it. In Wirth 1971 the assignment
to nonlocal variables is explicitly forbidden. Nothing s said about this in Wirth 1972,

3.2.2 Boolean Expressions

The evaluation of boolean expressions is very similar to that of arithmetic expressions (see 3.2.1 and
subsections). It is performed by MBEXPR:

MBEXPR = [ecF.[Ne@ f 5.
(estrue)=TT,
(e=talse)-FF,
isbexpr @ —isbunary(bopof) = MBOP I (bopof e,F (barglof efs),
isbbinary (bopot @)= MBOP2(bopot e,F(barglot e,f,s),F(barg2of e,i,5)),
isrelop(bopof @) — RELOP(bopet o,MEXPR(arg]of e,f,5),MEXPR(arg2ot e,f,5)),UU,UU]).

true and false are the abstract syntactic representations of the boolean constants true and false. If the
expression to be evaluated 15 the constant true, then it evaluates to TT, if 1t 1s the constant false, it
evaluates to FF. Boolean expressions containing unary and binary uperator symbols are evaluated
like arithmetic ones. Relation operators take mtegers as arguments, so the meaning of a relation
symbol 1s applied to its arguments evaluated by MEXPR. The meaning of unary and binary boolean
operators and that of refation operators 1s defined by MBOP1, MBOP2 and RELOP:

MBOP1 = [Ax.x=nol=+,UU],
MBOP2 = [Ax.x=and-'Axzor-!v,UU],
RELOP = [Xx.x=lsoq-9!5.x=greq-¢!2,x=|1-»!<,x=g34!).x=oq-9!=.x=neq-»ﬂ,UU].
For example in the frame specified by the frame ponter and i the store s

mrbexpr | (not,mkbexpr2 (or,mkrel,it,a,mknumconst 0),mkrel(gt,a,mknumconst 1)))

The Semantics of PASCAL n LCF

evaluates 1o ‘{

~((MEXPR(a,!,s)<B)v(MEXPR(a,f,sD1)).

An LCF axiomatization for the boolean operators is given in Newey 1973,

Section 3.3 Statement Part
The semantics of the statement part of the program is defined by MS.

MS=[ocF .[Ast 1.
isempfyst st = ID,
isecmpnd sf -
isemptyst(istof st)= F(rmdof st,f),
islabstat(isfof st)= F(mkecmpnd(statmof(isfof st),rmdof st),t),
isgoto(fstof st) — GOTO(F,labelof(fstof st),f),
isass (fstof st) = ASSIGN(Ihsof(tstot st) MEXPR(rhsof(fstot st),t),)0F (rmcot st,f),
isproccall{fstof st)-s[xs. MPB(PROCFAL (namof(fsfof st),f,s),actargof(fsiof st),f,s,namof(tstof st)))®
[xs. MD(PROCDECL (namof(fstof st),1,s),suce 1,5)]®
[xs.F(PROCBODY (namof(fstof st),f,s),succ f,5)J®CLEAR(suce 1)@F (rmdot st,f),
isread(istof st) - READ(namof(fstof st),i)®F (rmdof st,f),
iswrita(fstof st) —» WRITE(namot(fstot st),1)@F (rmdof si,f),
iscond(istof st) - COND(MBEXPR(tostof(fstdf st) 1),
F(append(thenof(isfof st),rmdot st),f),F(append(elseot(fstof st),rmdot st),f)),
iswhile{(fstof st) - COND(MBEXPR(testof(fstof st),f),
F(append(bodyoi(fstof st),st),f),F (rmdof st,f)),
isrepeat(‘stof st) = F(append(bodyot(fstot st),mkempnd(mkcond(mkbexprl (not,
fesfof(fstof sf)),istof st,ES),rmdof st)) 1),
isforfo(fsfof sf) — COND(MBEXPR(fortesf(isfof sf),f),
KSSIGN(indexof(fstof st),MEXPR(Ibof(fstof st),i),1)®
F (append(bodyof(fstof st),forfoup sf),f),F(rmdof st,f)),
isfordn(tstof st) —» COND(MBEXPR(forfest(fstof sf),f),
ASSIGN(indexof(fstof 51),MEXPR(ubof(fstot st),f),f)®
F(append(bodyof(istof st),fordnup s1)f),F(rmdof sf,)),UU,UU]).

The definition of MS has the form of a nested conditional, each branch corresponds to one
instruction of the language. Note that MS 1s defined only on the empty statement ES, whose semantics
1s the idenuty IDz[Axx], and on compound statements. In fact, the abstract syntactic form of a
program 15 a hst of instructions assembled by the constructor mkempnd and ending with the empty
statement ES. When the first argument of MS 15 a compoun- statement a test is done on its first
element. Except for the labeled statements, whose semantics 15 simply that the corresponding
unlabeled statement, the detailed description of the semantic functions defining the meaning of each
instruction will be given in the following sections,

3.31 Simple Statements

We have defined the semantics of all the simple statements of PASCAL, i1e. goto statement,
assignment statement, and procedure statement. Furthermoie, we have defined the semantics of an
instruction for reading input data from the input buffer INP and of an instruction which writes
output data into the output buffer OUT.

The Semantics of PASCAL in LCF

3.3.1.1 Goto Statement

The semantics of the goto statement 15 defined by the GOTO combinator.

GOTO = [AF.[An {. F(segm(n,TEXT(1)),N]),

It applies the semantic function MS recur:ively to the text returned by the segm combinator:

segm = [«F.{AN st

isemplyst st = UU,

iscmpnd st—

isemptyst(fstof st) —F (n,rmdof st),

islabstat(fstof st)=(n=labelof st)- st,F(n,mkempnd(statmot(fstof st),rmdot st)),

issingle(fstof st) =F(n,rmdof st),

iscond(fsto! st) —occurs(n,thenof(fstot st))=appond(F (n,thanot(stof st)),rmdof st),
occurs(n,elsect (fsto! st))=append(F (n,elseot(fstof st)),rmdot st),
F(n,rmdot st),

isrepwhifstof st) —occurs(n,bodyof(fstof st))—append(F (n,bodyof(fstof st)),st),
F(n,rmdof st),

istortolfstof st) —occurs{n,bodyof(fstot st))-

append(F (n,bodyof(fstof st)) fortoup(st)),F (n,rmdot st),

isforda(fstof st) —roccurs{n,bodyof(istof st))-

- append(F (n,bodyof(fstof st)),fordnup(st)),F(n,rmdot st),UU,UU]].

segm applies to a label, and the text st which 1s retrieved from the store by the TEXT combinator,
and returns the piece of text starting from the first occurrerice of the label. If the label is not found
in the text the result of segm 1s undefined. The behaviour of PASCAL programs when several
identical labels appear in it is another example of ambiguity in Wirth 1971, 1972. An accurate
description of a language must say if this is a well-formed program or not.

in our semantics. no restriction 15 imposed on where the label may appear in the text. This means
that jumps into (or out from) the body of a repetitive statement are allowed. The behavior of segm
in such case will be described in theiwr respective sections.

According to Wirth 1971 we do not allow jumps into a procedure body, but, contrary to Wirth 1972
we do not allow jumps out of a procedure activation, 1e. jimps cannot cause the change of the
current frame. For this reason we have not introduced the label declaration statement of Wirth 1972
since the notion of scope for a label 1s meaningless to our semantics.

Lockhood Morris and others have suggested the notion of continuation as a possible way of defining
the semantics of programming languages with the goto instruction. It cannot be used in LCF 10 a
straightforward way since a type confhict arises. On the contrary in our semantics no type canflict is
introduced by the goto, in fact its semantics simply reduces to changing the first argumeiit of MS.
The text tc pe executed next is replaced by the text evaluated by the segm function.

3.3.1.2 Assignment Statement

The semantics of the assignment statement is defined by the combinator ASSIGN:

The Semantics of PASCAL in LCF 16

ASSIGN = [tF[An v i,
neFUNV-ISADMISVAL(s(f,typeloc FUNV),v(s))=>STORE(f,s,FUNV v(s)),UU,
ISINTYPE(n,v,{,5)*STORE(f,s,LOCOFVAR(n,f,s),v(s)),
istopf(f)=UU,
ISFUNFR(f,s, NEWFP(n,f,5))-F(VARBNDTO(n,f,s),v,NEWF P(n,f,s),s),UU]}.

First of all a test is done :n see whether the location to be assigned is FUNV, 1e. if we are assigning
! the value to a function identifier in a function »ctivation (see 3.2.1.3). In this case 1f the typeloc FUNV
is prezent in the current frame and the value v 1vatches with its content, the combinator STORE stores
v(s) in FUNV (see appendix 2.9). Otherwise ASSIGN returns the undefined store. 1f n is not FUNV,
then the current frame is checked. If n has Leen declared in 1t ind the value v matches with its type
then the assignment takes place. A type mismatch maies the assignment to return the undefined
store. If n is not local to the current frame, it may be a name parameter or a free variable for that
frame. In both cases ASSIGN applies recursively with a mechanism quite similar to FETCHV (see
3.2.1.2). The only difference is thai here a test is done by ISFUNFR to see if the assignment may cause
a side effect in a function activation.

; ISFUNFR s [oF.[\ s nf. ISLOCAL(FUNV,s(f))= FF,pred f=nf = TT,F(pred f,s,nf)]].

ISFUNFR checks if any frame between those pointed to by f and nf is a function frame, i.e. if FUNV is
local to it.

T he auxiliary combinator ISINTYPE:
ISINTYPE = [Av val f s1SLOCAL(typeloc NAMOFVAR(v),s(1))=ISADMISVAL(TYPOFVAR(v,f,8),val(s)),FF].

l evaluates to true if the variable v is local to the frame s(f) and the value val is compatible with its
type. It evalvates to false if v is not local to s(f) and to undefined if 2 type mismatch occurs. The
definition of the combinators used in ISINTYPE may be found in appendix 3.7,-9.

3.3.1.3 Procedure Statement

When a procedure is activated, its formal arguments are bound to the actual arguments in a new
frame obtained by increasing the current frame pointer by I. In such frame a location textloc is
created whose content is the statement part of the activated procedure, and a locaticn alnk is created
containing the pointer to the frame where the procedure has been declared.

l By looking at the definition of MS given in 3.3 we see that, when a procedure statement is executed,
| the auxiliary combinators PROCFAL, PROCBODY, PROCDECL are used. They are defined in appendix
2.8 and are used for fetching th: formal argument list, the declaration part and the statement part of
the activated procedure.

{
‘ The set up of the new frame and the binding of the parameters is done by MPB.
MPB = [Afa aa { s n.BIND(fa,aa,succ {,MAKFRAME(PROCBODY (n,f,s),PFLNK(n,f,s),succ f,5))].
i MAKFRAME sets up a new frame and creates the locations textloc and alnk in it. At the end of the
! procedure activation such frame is deleted by CLEAR:

CLEAR = [Af s f1.(f1=f)=-UU,s(f1)]

The Semantics of PASCAL in LCF

CLEAR makes it explicit that the local variables of the procedure frame are no longer in the store.

The bindings of the parameters in a procedure activation is the same as that of a function
activation. It is defined by:

BIND = [ocF [Afa 22 fs.
iseof fa = (isaof aa = s,UU),
isparameter(fstof fa) =F (rmdof fa,rmdof aa,f{, MKBINDING(fs'of fafstot aa,f,5)),UV]].

Corresponding parameters in the two lLists are bound by MKBINDING. If the two hsts have different
length the binding results in an undefined store. PASCAL allows procedures without parameters. In
such case the abstract syntax for the two parameter lists 1s the empty list EOF.

The MKBINDING combinator is defined as:

MKBINDING = [Afa aafs.
isvarp(fa) » TYMATCH(fa,typeloc,aa,f,s) = ‘
CREALOC(f,s,bindloc,namof fa,EXPRFORV (aa)),UU,
isvalp(fa) = ASSIGN(namof faMEXPR(aa,f),f,
CREAV(f,namof fa,lypof fa,CRNTF(f,s),s)),
isfunp(fa) = TYMATCH(fa,typfunloc,aa f,s) =
CREAF (f,namof fa,FUNCDEF (ea,f,s),typof fa,CRNTF(f,s),PFLINK(aa,f,s),s),UU,
isprocp(fa)-» CREAP(f,namof fa,PROCDEF (aa,f,s),PFLINK(aa,f,s),s),UU).

If the formal parameter fa is a variable parametei (ie. a parameter passed by name) then, if its type

matches the type of the actual parameter aa, a binding location bindloc (namof fa) is created. Its
content is the EXPRFORV(aa). If aa has subscripts they must be evaluated when the binding takes
place (sce Wirth 1971). This evaluation is performed by EXPRFORV which substitutes a numeral for
the value of each subscript.

The test on the type matching between formal and actual parameters is done by TYMATCH:

TYMATCH = [Afa loc aa f s.TYPEVAL(lypof fa,CRNTF(f,s),s)=TYPEDEF (loc aa,pred f,s)].

The type identifier associated with the formal argument 1s evaluated (by TYPEVAL) in the frame
where the procedure has been declared. The pomter to 1t 1s retrieved by CRNTF. We have in fact
chosen to evaluate the type associated with the formal arguments of a procedure when it is activated
and not when 1t 1s declared. The type of the actual argument 1s fetched from the store by the
TYPEDEF combinator in the location typeloc aa or typfunioc aa depending on whether fa 15 a variable
or function parameter. All these auxiliary combinators are defined in appendix 3.8. Hare we only
describe TYPEVAL:

TYPEVAL = [«F[Ants.
isbasetype n = n,
isarspec n = mkarspec(F{arlimof n,f,s),F(typelof n,f,s)),
istyppart n =@ iseof n = n,
ispair n = mkpair(F{fstof nf,s),F(rmdof n,f,5)),UU,
ISLOCAL(typeloc n,s(f))=F (s(f,typeloc n),f,s),
istopt f = UU,F(n,CRNTF(f,5),5)]).

If the type n being evaluated 1s a Lase type, ie integer or subrange, then TYPEVAL evaluates to 1t. If

The Semantics of PASCAL in LCF 18

n is an array specification, then both the types of its subscripts and the type of its elements are
recursively evaluated. The types of the subscripts of an array are given as a list of subranges. This
list satisfies the predicate istyppart, so each one of its elements 1s recursively eveluated. Finally, if the
type being evaluated is a type identifier defined in the current frame, then TYPEVAL applies
recursively to its definition. 1f the type definition is not found in the current frame, then the
appropriate frame is searched.

If a formal parameter fc is passed by value, then a variable fa is declared in the current frame by
CREAV (see 3.1.2). Its type is evaluated by TYPEVAL in the appropriate frame and stored into the
lccation typeloc fa. The value of the actual parameter aa is then computed by MEXPR and assigned to
fa. ASSIGN checks whether or not the types of fa and aa are compatible (see 3.3.1.2).

If the formal parameter fa is a function parameter and the type of fa matches with tha! of aa, a
function fa is declared in the current frame by the combinator CREAF (see 3.1.3). The type of this
function is the type of fa evaluated by TYPEVAL in the appropriate frame. In its accink location the
content of the accink location of aa is stored. The text of the actual argument is retrieved by
FUNCDEF, its accink by PFLINK and its type is evaluated by TYPEVAL in the usual way.

If the formal parameter fa is a procedure parameter a procedure ' is declared in the current frame
by CREAP. In the accink of such procedure the content of the accink location of the actual parameter is
stored.

Since the combinators used for binding formal and actual parameters are those used in declarations

(see 2.1.2,-3), an undefined store 1s returned 1If the reserved identifier FUNV is used as formal

parameter (see 3.2.1.3 for a discussion on the use of FUNV). Fiom the definition of MKBINDING it is
| Also evident that FUNV cannot be used as an actual parameter since both EXPRFORV and MEXPR
return an undefined result if applied to FUNV. The auxiliary combinators used by MKBINDING test,
by ISPRESENT, the presence of idenufiers in a frame. It follows that an identifier cannot appear twice
as formal parameter and in the declaration part of a procedure.

Procedures, as well as functions (see 32.1.3), cannot be executed recursively If they declare a
procedure or have a formal procedure parameter with the same name.

As noted for functions, a procedure may also have itself as actual argument. Even though LCF is a
typed logic, we avoid type conflicts by passing texts, and not functions as parameters.

| 3.3.1.4 Read Statement

PASCAL has no read and write statements. We have introduced them for defining the semantics of
the input and output. In Wirth 1972 a standard procedures, read and write, are introduced for
handling the input and output.

As said in 2.2 the data to be inputed is stored into the fileloc INP location of the store by the PASCAL
function. Whenever the value of a variable has to be inputed, it i1s read from the buffer INP by the
READ function:

READ s [An { s.ISFUNFR(1,5,8)~ASSIGN(n,MEXPR({stot(IBUFFER s),1){,
STORE(8,s.fileloc INP,rmdof(IBUFFER s))),ul].

The Semantics of PASCAL in 1CF 19

A test is done to see If the read statement is executed during a function a<tivation, in this case the
result of READ is undefined. Otherwise its result 1s a new store where the first element of the .nput
buffer has been removed and its value has been assigned to the variable being read.

3.3.1.5 Write Statement

The results produced by a program are stored into the fileloc OUT location, where they are eventually
retrieved by the OUTPUT combinator (see 2.2). The write statement puts into the buffer the numeral
of the value of the variable to be outputed.

WRITE = [An f s.ISFUNFR(f,5,8)2STORE(8,s5,fileloc OUT,mkpair(mknumconst(FETCHV(n.,f,s)),
OBUFFER s)),uu)).

As with the read statement, it is forbidden to wriie during a function activation.

3.3.2 Structured S‘atements

The structured statements included in our version of PASCAL are:
i) the conditional statement in its two forms: if-then and if-then-else,
2) the repztition statements while and repeat,
1) the for statement in its two forms: for-te and for-dowuto.

| We have not included the case and the with statements defined in Warth 1971, 1972 sice they do
not seem very relevant to the tnteger anthmetic part of PASCAL. In Wirth 1971, 1972 the
compound statement 1s also mcluded in the hst of structured statements. In our description of
PASCAL the compound statement cdoes not appear since the hegin, end delimiters are not present in
the abstract syntactic form of a program. The compound statement in its abstract syntactic form is a
list of statements assembled by the syntactic constructor mkempad and ending with the symbol ES.
The semantics of the compound statement 15 defined by MS whicl cstablisaes the flow of the control
' through the statement part of the program text.

3.3.2.1 Conditional Statement

f The conditional statement in PASCAL has two forms: if-then and if-then-else. In the abstract
{ syntactic form the conditional statement always has an else part, possibly it reduces to the empty
statement ES.

The semantics of the conditional statement is defined by the combinator COND:

COND = [A\q f g s.(q(s)-*f(s),g(s))]).

The test of the conditional is evaluated in the store where the conditional statement is executed. The
conditional returns the then-part or the else-part evaluated in this store, depending on the value of
the test.

Going back to the definition of MS given n 2.3, we see that if the first statement of the text In
execution is a condiiional, its test 1s evaluated by the MBEXPR combinator and then MS applies

T R W — 0, g W T TR T

The Semantics of PASCAL in LCF 20

recursively to the text resulting from appending the then-part or ‘he else-part of the conduional to
the remaining statements. The appond function, defined in appendix 2.5 corresponds to the ordinary
appending function for lists.

If a goto statement is executed within a branch of a conditional, then the execution goes on with the
text furnished by the segm function. If a jump into a branch of a conditional 1s done, then the text
to be executed next consists of all the statements between the first occurrence of the label to jump to
and the end of the branch of the conditional, appended to the rest of the program. This text is the
result of the se, - runction defined in 3.3.1.1.

3.3.2.2 While and Repeat Statements
The while statement is a repetition statement whore abstract syntax is:

mkwhile (test,body).

body 1s repeatedly executed until test becomes ‘alse. The semantics of the while statement as given in
MS (see 3.3) can be explained as follows: test is evaluated, if its result is true, then MS applies
recursively to body appended to the while siatement itself and to the remaining statements in
execution. If the test fails, MS applies to the remaining statements.

Wirth 1971 says that in PASCAL, for aill ¢ and § the two statements

while e do S
and

if ¢ then hegin S; while ¢ do § end
are equivalent. We prove this true for our semantics (see 4.4).
The repeat statement is similar to the while statement. The only difference is in that the repeat first
executes its body and then performs the test to sce whether to go on or stop. The semantics of the
repeat statement is defined mn MS (see 3.3). MS applies recursively to the body of the repeat,
appended to a conditional (specifying whether or not the repeat must be executed again), appended

to the remaining statements 1 execution.

We have also proved the equivalence described in Wirth 1971 for the repeat statement, i.e. for all ¢
and S the two following statements are equivalent:

repeat S until ¢
and
hegin S; if ~¢ then repeat S nniil ¢ end

In Weyhrauch and Milner 1972 and in Asello and Aiello 1974 a WHILE combinator wi's intioduced
for defining the semantics of the while statement:

|
|
|

The Semantics of PASCAL in LCF

WHILE = [ecF [At b.COND(t,b&F (1,b),ID)]).

It cannot be used here since a goto statement can stop the execution of the body of the while. We
can prove that the definition of the semantics for the while statement given in MS reduces to the
above semantic combinator when the body of the while is goto free (sce 4.3).

The language described in Weyhrauch, Milner 1972 had no repeat staiement. The semantics for the
repeat statement was described in Aiello, Aiello 1974 by the combina.wr REPEAT:

REPEAT = [o<F.[Ab 1. b®COND(L,F (b,1),D)]).

It is similar to the WHILE combinator described above and the same considerations concerning the
presence of goto's hold for it.

If a goto statement is executed within the body of a while or repeat statement, then the execution of
the repeution statement is stopped and the text to be executed next is furnished by the segm
combinator. From the definition of segm given in 3.3.1, we see that when a goto statement jumps
into the dody ot a repeat (while) statement the piece of body starting from the first occurrence of the
label 1s appended to the text starting from that repeat (while) statement. This means that the part of
body from the label to the end is executed and then a test is dcne to see whether or not the
execution of the repetition statement must be stopped or goes on.

3.3.2.3 For Statement

In PASCAL the for statement has two forms:
for i:=el to €2 do b;

and
Jor i:=el downto ¢2 do b;

In both cases b is the body of statements which is repeatedly executed, and i is the variable which
controls the loop. In the for-to statement it is increased by | each time b is executed In the for-
downto statement 1t is decremented by 1. The two expressions e/ and e2 will be referred to as the
initial and final values of the control variable.

The abstract syntax for the two forms of for statements is defined by:
mkforto(i,el,e2,b),
mkfordn(i,el,e2,b).

Their semantics is defined in MS. A test is done to check if the value of the control variable i is
equal to the final value e2. The test is:

fortest = [Ax .istorto(x)*mkrel(lseq,Ibof(x),ubof(x)),isfordn(x)->mkrel(greq,ubof(x),Ibof(x)),UU).

If fortest evaluates to TT, the initial value el i1s assigned to the control variable i, then the meaning

I S——————— D

The Semantics of PASCAL in LCF 22

function MS applies w0 tae body of the for statement appended to the text assembled by the
combinator fortoup (fordnup):

fortoup = [Ax .mkempnd(mkforto(indexot(fstof(x)),mkexpr| (plus1,indexof(fsict(x))),
ubof(fstot(x)),bodyof(tstof (x))),rmdof(x))},

fordnup s [Ax .mkcmpnd(mkfordn(indoxoi(fstof(x)),mkoxprl(minusl,indoxof(istof(x))),
Ibof(fstof(x)),bodyat{¢stof(x))),rmdof(x)))].

fortoup (fordnup) updates the initial value of the for loop by substituting i+l (i-1) for i.

We have chosen to def ne the for in terms of the algorithmic equivalences given in Wirth 1971, i.e.
for all i, el, €2 and S the statement:

for i=el to e2 do S
is equivalent to

if el<e2 then
begin i=el;S;

Jor i=succ(i) 1o e2 do S
end

and the statement
for i:=el downto €2 do S
is equivalent to

if elze2 then
begin i:=el.S;
Jor i:=pred(i) 10 e2 do S

end

We have imposed no restrictions on the fact that the values of i, ¢l and ¢2 are changed by S or by
the for statement itself, or on the jumps into or out from the body of a for statement. The value of
the control variable at completion of the for has the last value assumed, namely the value it had
after the last execution of S. This interpretation of the for statement is different from the description
of the FASCAL for statement as given in Wirth 1971, 1372 and in Hoare and Wirth 1972, The
definitions given in these three papers are indeed different from each other. Our choice has been
motivated by the fact that we wanted the semantics of the for statement to be as smooth as possible
and, at the same time, we wanted to make it less ambiguous then Wirth 1972. The definition of the
for, given in terms of the above algorithmic equivalences in Wirth 1971, was changed in Wirth
1972, following (ne suggestions made n Hoare 1972. In order to leave the implementer more
freedom, the following equivalences are required in Wirth 1972:

fort=el to e2 do S

is equivalent to

B T i = ST LY

The Semantics of PASCAL in LCF

imel; S, imsuce(i); S; .. i=e2; S
and
Jor i=¢l downto €2 da S
is equivalent to
imel; S;i=pred(i); S; .. i=e2; S
These definitions seem ambiguous to us: what happens if ¢/>¢2 in the for-to statement?

The third definition of the PASCAL for statement is given in Hoare and Wirth 1973, This is
closer to that given in Wirth 1972, but not the same. It is given in axiomatic form:

(asx<h) A P(la.x)) {3} P{la.x]))

P([)) {for x:za 10 b do S} P(la.b))
(agxgh) A P((x.0)) {S} P([x.b))
P(()) {for x:=b downto a do S) P([a.b])

It 15 written in the formahsm proposed by Hoare 1964, where P{QJR means that if P and R are
predicates and P s true before the evecution of the bocdy of statements Q, and) terminates, then R
is true after the execution of Q. ~] denotes the interval {x|asxsh}, [ab) denotes the inteival
{xJazx<b}, and so on. This rule was uzed in Hoare 1972 for characterizing the correctness of the for
statement. Apart from the fac 1at the description of the rule given in Hoare 1972 and that given in
Hoare and Wirth 1973 are ' >rent, we do not agree with it. In fact it leaves unspecified what
happens when the for-to sta = 1 nt is executed with the inmual value greater then the final value. It
seems to us that any definiuon which leaves this ambiguous cannot serve as a satisfactory
specification of the meaning of the for statement. In particular it cannot be used to prove general
theorers about the for statement. Consider for example an implementation of PASCAL in which if
b<a in one of the above for statements, then the body of statements S is executed 14 times! This
implementation satisfies the above axioms, but 1s certainly strange.

In Wirth 1971, 1972 nothing 1s said about the behavior of the gotos with respect to the for
statement. Hoare and Wirth 1972 do not deal with goto's. In our semantic definition, if a goto
statement 1s executed within the body of a for statement, then the execution of the repetition
statement 1s stopped and the text returned by segm 1s executed next. From the definition of segm we
see that if a jump info the body of a for statement 1s executed, then segm returns the piece of body
starting from the first occurrence of the label to jump to, appended to the piece of abstract syntax
returned by the fortoup or fordnup combinators.

If a jump into the body of a for statement 1s executed we distinguish between two cases: 1) tne jump
1s from one point to another point of the body of the same for statement. In this case the
computation goes on with the control vanable having the curient value. 2) the jump 1s from a point
of the program outside the for statement. In such case the computation may result in the undefined

The Semantics of PASCAL in LCF 24

swore accordingly to whether or not the control variable has been assigned a value prior to the
execution of the jump. In fact the updaing combinators fortoup and fordnup replace i+1 and i-1 for
el 1n the for statement, so it evaluates to UU if the control variable has not yet been assigned a

value.

Haberman 1973 dislikes the possibility of jumping into a for statement. We have allowed such
jumps, thus a for loop may be initialized from outside and started by a jump. This seems reasonable
since PASCAL has no block structure, so the control variable of a for statement has to be declared
in the declaration part of the text and may be given a value indepen-iently of the for statement.
Furthermore, since the control variable 1s not local to the for statement, we do not see any reason for
leaving it undefined after the execution of the for statement, as required in Wirth 1972. Nothing is
said at this regard in Wirth 1971 and in Hoare and Wirth 1973. We do not agree that a perfectly
behaved statement should leave an undefined value in a location which has been declared and
assigned a value. It also leaves ambiguous what happens to the control variabl2 if a goto stops the
execution of the for loop.

Qur semantics doesn't check to see if the control variable, the initial value or the final value are
modified during the execution of the for statement. This makes our for statement sim:lar to the
while statement. Since the control variable is not a dummy variable of the loop there is no reason
for it to be treated differently from any other variable. Wirth 197§, 1972 and Hoare and Wirth
1973 are discordant about the requirements on such modifications. Moreover it is our opinion that
checking for them is very difficult and is unlikely to be done in any current implementations of
PASCAL. Consider for example a program where an integer variable i is declared which also
declares the following procedure:

procedure A(jkinteger)

for izjta k do
if ie3 then A(kelj)
else A(jolk);

Note that in this, program the control variable is changed by the recursion of the procedure A, not
by an assignment statement.

\

A final point regarding our semantics: as with the while and repeat statements, if a text is goto-free
the semantics of the for statement can be defined by the following two combinators:

FORTO s [F.[Ni @] @2 b f. COND(MBEXPR(mkrel(lseq,e1,02),1),ASSIGN(i,MEXPR(el f),f}2b®
F(i,mkexpr | {plus1,i),e2,b,1),iD)]));

FORDN = [ocF.[Ai @] @2 b f. COND(MBEXPR(mkrel(greq,el,62),f),ASSIGN(i,MEXPR(e! f),f)@b®
F(i,mkexpr! (minusl,i),e2,b,1),iD)]};)

The equivalence, in the goto-free case, between the definition of the semantics of the for statement
given 1n MS and that given by the two above combinators, can be proved easily (see 4.3).

The Semanrtics of PASCAL in LCF

SECTION 4 PROPERTIES OF THE SEMANTICS

In this section we discuss some general properties of the interpretation of PASCAL in LCF. We
have proved :

1) the meaning function MS is strict on the store, i.e. for any staiement st and any frameposnter f,
M5 (st,f,UU)=UU,

2) for goto-free progrims, MS 1s a homomorphism with respect to the constructor mkempnd, i.e.
V§.MS (mkempnd(a,b),f)=MS(a,)@MS(b,1).

3) MS reduces to a simpler function for goto-free programs. New combinators defining the
semantics of the 'epetition statements are given.

4) all the equivalences about repetition statements given in Wirth 1971 hold in our semantics.

%) some miscellaneous theorems ahout MDEC, MDEF, MS

Section 4.1 The strictness of MS on the store
The main theorem of this section is

Vst £.MS(st,f,UU)=UU.

We co not show the proof here as it is a single LCF simphfication using the lemma
vt a b.(t=a,b)(UU)=(t=a(UU),5(UL))

The main theorem should not be regarded as trivial however, as it requires 208 substitutions.
Without the LCF simplifier, this proof would have been over 1000 steps long. This is an important
theorem because it shows that our Interpretation of statements behaves correctly with respect to the
termination of computations.

Consider the following program

var ninteger
bhegin
I: gote I,
n:=|l;
end

This program fails to ternunate. To us it seems that the only reasonable nterpretation of this
program must be the undefined function. If the meaning function 1s not strict, st may happen that
the assignment of | to n builds up a store in which n has value |. Suppose we were to choose the
most obvious interpretation of assignment, ie if the above program is being executed in a store s,
and a frame whose framepomter 15 f then the meaming of the assignment statement 1n the example is
a new store sl:

A~ Ve et e

The Semantics of PASCAL in LCF 26

sl 3 [Mrfrat=[Am.men=1,s(f,m));s(fr,m)),
50
s1(f) = [Am.msn=>1,s(f,m)].

This new store has the unfortunate property that even if s£UU, we still have sl{f,n)2l. It is thus not
undefined.

The desire for the interpretation of a program to be an extensionally given function on the store
and composition of these functions to correspond to executing one program after another, means that
an interpretation which is strict on the store is the only one that makes sense. In Hoare's axiomatic
treatraent this problem goes away but the price 1s that every statement that you can prove about a
program is conditional on 1ts termination. In the above case one proves the sentence, “If the
program terminates then n=1".

Because, as already said, the proof is a single step we do not give it here. Instead we will explain
why for our semantics ASSIGN 1s strict on the store. The ":::" represent some arbitrary combinator.

ASSIGN s [An v { £.n=FUNV=ISADMISVAL(s(f,lypeloc FUNV),v(s))= xxx,ISINTYPE(n,vf,5)-~ ¥k, kKK)
So
ASSIGN(n,v,{,UU) = nsFUNV=ISADMISVAL(UUv(UUY)= xx%,UU,ISINTYPE(n,v f,UU)= RRK KKK)

ISADMISVAL asks if a value is of an admissible 1ype. UU is not even a type, no less admissible, so
ISADMISV AL returns UU.

ISINTYPE(v,val,f,UU)sISLOCAL (typeloc NAMOFVAR(v),UU))-ISADMISVAL(TYPOFVAR(v,{,UU),val{UU)),FF]
ISLOCAL (loc,UU) = UUsUNDEF =FF,TT

But for any X, UU=X is just UU so ISLOCAL (loc,u)=UU. This is the central point of the entire strictness
proof. Looking u» a location in a defined store in an existing frame is not undefined if that
location has not been created. Stores are constructed in such a way that we can test if it is defined
and no assignment is made if it 1sn’t. This check is done by ISLOCAL, which returns UU if the frame
is undefined. The proof is completed by making the correct substitutions.

Other theorems about strictness appear in section 4.5.

Section 4.2 Properties of MS for goto-free programs

A goto-free program is defined by the following predicate :

isgototree = [ecF.[A 5. .
isgoto s = FF,
issingle s = TT,
islabstat ¢ = F(statmof s),
isiter s -» F(bodyof s),

(AL Db 7

The Semantics of PASCAL in LCF 27

iscond s = F(thenof s) A Flelseof 5).
iscmpnd s - F(fstof s) A F(rmdof s),Ul]],

where issingle and isiter are predicates satisfied by the simple and the repetition statements
respectively (see appendix 2.4). The main theorem about goto-free programs is:

Vv S P tisgotofree(S)::isgotoiree(P):: MS(append(S,P),f) = MS(S,f) @ MS(P,f).

It states that if § 2nd P are texts without any goto statement, then the result of the apphication of M$S
to the concatenation of them is the same as the functional composition of the application of MS to
each of them. The proof of this theorem 15 based on a case analysis on the first element of S. We
have not included it in the paper as it is rather long even if very simple. We didn't find any proof
by induction on isgotofree, so we proved it by induction on MS. To do this the two following lemmas
are to be proved:

VS P l.isgotofreo(s)::isgotofree(P)::MS(append(S,P),1)=MS(S,f)oMS(P,f)
VS P I.isgoiofroo(s)::isgotofree(P)::MS(S.i);:ms.‘.”,l)'-r.iS(append(S.P),f)

In section 4.1 it has been noted that the proof of the strictness of MS on the store depends on a
theorem about conditional expiessions. For proving the above lemmas with a similar proof we
needed the following theorem about condiiional expressions:

Vi.(t=a,b) € (1=d,f) ASSUME acd, bet.

Unfortunately the current version of the LCF conditional simplifier doesn’t handle sentences of the
form AcB as simplification rules, even though in this case no specific property of the symbol < is
involved.

The above homomorphism theorem 1s analogous to the Hoare's composition rule for statements,
valid for goto-free programs. This theorem, as well as Hoare's rule is not valid in general. Consider
the following example:

a:=l:

gota |;

a:=3;
1: a:=asl;

the corresponding abstract syntax is:

P = mkempnd(mkass(a,mknumconst 1),
mkempnd(mkgoto 1),
mkempnd(mkass (a,mknumconst 3),
mkempnd(mklabstat(l,mkass(a,mkbexpr (plusi,a)),ES))))

The meaning of this program in the frame specified by the frame pointer f is defined by MS(P,f).
The validity of the composition rule would imply the following equivalence:

MS(P,f) = MS(mkempnd(mkass(a,mknumconst 1),ES)f)®
MS(mkcmpnd(mkgoto(l),ES).f)e
MS (mkempnd(mkass(a,mknumconst 3),ES).f)@

;:;—;-_w__._1

IR E T

. ——

f’.

The Semantics of PASCAL in LCF

MS (mkempnd(mklabstat(},mkass(a,mkbexprt (plust,a))),ES)f),

which 1s false: starting from a store where a 1s declared in the current frame, MS(P{) returns a store
where, 1n the current frame, a has value 2, while the .ight hand side evaluates to a store where, in
the current frame, a as value 4. The night hand side i1s wrong, since by mterpreting each statement
separately, it 1s impossible to skip a piece of text as required by a goto.

In the next section we consider how the semantics of a PASCAL statement part is simplified when 1t
1s goto-free. Our semantics deals also with programs where the composition rule is not vahd. Hoare
axiomatic approach to the defintion of the semantics of a programming language relies on the
vahdity of the composition rule, so it cannot easily treat programs with goto's. Hoare and Wirth
1972 axiomatization of PASCAL, for mnstance, doesn't define the goto statement. The Igarashi,
London and Luckham 1973 VCGEN, based on this approach, deals only with backwards goto's and
preserves the vahdity of the composition rule by considening indivisible the piece of program
between the label to jump to and the goto.

Section 4.3 An equivalent meaning function for goto-free programs

As noted n the description of repetition statements (see 2.2.2.2.-3), if the body of the repetition
statement 1s goto-free, new combinators may be defined for describing their semantics. In this case
the semantics defined by MS 1s the same as that defined by the new combinators.

The pioofs of the first four equivalences are quite sumilar; they are cairied out by subgoahing to the
two goals with the logical symhols 3, e respectively. All these pioofs are standard and could be
automated by enriching the features of the current LCF system. In appendices 4,56 we have
included the commands and the printouts of the proof of one half of each of the fust three
equivalences. The fourth is analogous to the third one.

The proof of the equivalence between MS and MSGTFR 1s carried out by proving the lemmas with <,
> respectively, and using the above equivalences for repetition statements. A long case analysis on §
1s performed, analogous to that discussed 1n 4.2. Even in this case the proof could beconie very short
by impioving shghtly the LCF conditional simphfier.

1) VS t { .isgotofree(S):: MS(mkempnd(mkwhile(,5),ES),f) = WHILE(MBEXPR(1,{),MS(S,1))
where WHILE = [ocF.[AM b.COND(t,b®F(t,b),10))]

2) VS t {. isgotofree(S):: MS(mkempnd(mkrepeal(S,1),ES),f) ¢ REPEAT(MS(S,f),MBEXPR(mkbexpr I (not,1),f))
where REPEAT = [oF [Ab {.b&COND(!,F(b,1),iD)))

3) VS i el o2 f .isgotofree(S):: MS(mkempnd(mkiorto(iel,02,5),ES),f) = FORTO(,e1,02,MS(S 1))

where FORTQ = [«F.[\i o} €2 b {. COND(MBEXPR(mkrel(lzeq,el,02),f),ASSIGN(i,MEXPR{e1 {),f)
@b&F{i,mkexprl (plust,i)e2,b,,D)]};

4) VS i el 2 f .isgotoiree(S):: MS(mkempnd(mkfordn(i,et,e2,5),ES)f) = FORDN(i,el,e2,MS(S,f)f)

where FORDN & [o«F.[\i @} 82 b {. COND(MBEXPR(mkrel(greq,el,02),f),ASSIGN(i, MEXPR(el {),f)

The Semantics of PASCAL in LCF

@beF (i,mkexpr1(minus] 1),02,6,0,1007);
5) VS {. isgotofree(S): MS(S,1) = MSGTFR(S,f)

where
MSGTFR=[ocF.[Ast 1.
isemptyst st = 1D,
iscmpnd st -»
isemptyst(fstof st)= F(rmdot st,f),
islabstat{fstof st}= F(statmot(fstof st),1)OF (rmdot st,f),
isread(fstof st) — READ(namof(fstot st),)8F (rmdot st f),
iswrite(fstof st) — WRITE(namof(fstot st),)®F (rmdof st,f),
isass (fstof st) = ASSIGN(Ihsof(tstof st),MEXPR(rhsof(fstof st),t),}@F (rmdot st.f),
isproccall(fstof st)-[\s.MPB(PROCFAL (namof(fstof st),1,8),
actargof(fstot st).f,s,namof(fstot st)))e
[xs MD(PROCDECL (namof(tstof st) f,5),suce £,5)]@
{xs.F(PROCBODY (namot(fstof st}) suce 1,8)J@CLEAR(suce {)OF (rmdot st 1),
iscond(fstof st) = COND(MBEXPR (testof(fstof st),f),
F(thenof(fstof st),1)F (elseot(fstot st),{))eF (rmdot st f),
iswhile(fstof st) = WHILE (MBEXPR (testof(tstot st),f),F (bodyof(tstof st),1))GF (rmdot st,f),
isrepeat(fstof st) = REPEAT(bodyot(fstof st),MEXPR(mkboxpr 1 (not,testot(fstot st)),1))@F (rmdot
isforto(fstot st) = FORTO(indexof(fstot st),Ibot(fstot st),
ubof{fstof si),bodyof(fstot st),f)oF (rmdot st,f),
isfordn(tstof st) = FORDI(indexof(fstof st),ubot(tstof st),
Ibof(fstot st),bodyot(istot st),f)eF (rmdot YEIRVIVAVIV))

The defimition of MSGTFR shows how our semantics simphifies for goto-free programs. No
manipulation of the text is required, every statement can be treated independently of the others,
some combinators as fortest, fortoup, fordnup, append are no longer necessary. The semantic
combinators for repetition statements not only simphfy the form of MS$ but also the proofs of
properties of goto-free programs. In fact, in the general case proofs by induction on the repetition
statement must be done by inducting on MS. For goto-free programs the induction can be directly
done on the appropriate semantic combinator. Hence, only properties of the body of the repetition
statements and not of the whole program are involved. The struciure of the program reflects
directly on the structure of the proof since allows to factorize it into easier lemmas.

In section 5.1 two different programs which compute the factorial function are compaied. In the first
one the tteration is performed by a while statement, In the seconc one by a backwards goto. The
proofs of their correctness are different, the goto-free case is more straightferward. The proof of the
correctness of the goto program may be reducid :o that of the goto-free program by showing that, in
general, a while loop 15 equivalent to an appropriate loop controlled by a conditional goto. This
example shows the advantaze of a formahsm which allows to prove general properties of the
language and the neccssity of creating the right environment of theorems about the programming
language to greately simplify the proofs of properties of programs.

Section 4.4 Equivalences for repetitive statenents

In giving an nterpretation of PASCAL 1n LCF our aim was to be as close as possible to the
informal description given in Wirth 1971. For this reason we proved most of the preperties of the
statements that are mentioned in that paper. The LCF theorems stating the equivalences for
repetition statements given in Wirth 1971 are:

T he Semantics of PASCAL in LCF 30

Yo $. MS(mkempnd{(mkwhile(e,S),ES)) ¢
MS(mkcmpnd(mkcond(o,append(S,mkcmpnd(mkwhilo(o,S),ES)).ES).ES)).

Ve S f. MS(mkempnd(mkrepeat(S,e),ES),f) &
MS (append(S,mkempnd (mkcond(mkbexpr | (not,e),mkempnd(mkrepeal(S,e),ES),ES),ES))H),

Vi ol 02 S f. MS(mkempnd(mkfortoliel,e2,5),ES),f) ®
MS (mkempnd(mkcond(mkrel(iseq,e] ,02),
mkempnd(mkass (i e 1),append(S,mkempnd(mkforto(i,mkexpr| (plusl,i),e2,5),E$)),ES),ES)T),

Vi ol @2 S f. MS{mkcmpnd{mkfordn(i,el,e2,5),ES)f)
MS (mkempnd(mkcond(mkrel{greqg,el e2),
mkempnd(mkass(i,el),append(S,mkempnd(mkfordn{i,mkexpr 1 (minus| ji),02,5),ES))),ES),ES)H),

All the proofs of the above siatements are one step proofs. In fact, we have defined the semantics of
the repetition statements directly in terms of the equivalence described in Wirth 1971

| Section 4.5 Miscellaneous theorems on MDEC, MDEF, MS

! Our aim in this section is not to give an exhaustive list of the properties of PASC AL, but rather to
show some typical example of theorems which have been used In the proofs presented in this report.

! Firt of all we want to state that type definitions and declarations are independent of the order. The

r theorem proved for type definitions is:

{ Vnl n2 tyl ty2 fs.

' isname(nl):sisname(n2)::nl gn2::ISABSENT(nl ${)::ISABSENT (n2,s(f)) =

I MOEF (mkempnd(mkiypedef(nl ty |),mkempnd(mkiypede! (n2,ly2),ES)),f,s) 3
MDEF(mk_cmpnd(mkiypodo((nz,iyz),mkcmpnd(mkiypodcf(nl dy1)ES)) f8);

l This theorem states that if nl and n2 are different names and they do not appear in the store, then

i the order of type definitions using these names as type identifiers is irrelevant. The predicates

appearing in 1t have an obvious meaning: / is the negation of =, ISABSENT is the negation of
l ISPRESENT. The proof of this theorem has not been included in the report since it is a very simple
| proof done by simphfication and using some properties of conditional expressions. Analogously the
I following theorems can be proved. They slate that declarations are independent of the order.

Vnl n2 tyl ty2 {s.

isname(nl):zisname(n2)::nl gn2 ::ISABSENT(n] S(1))::ISABSENT(n2,s(f))::
MDEC (mkcmpnd(mkvardeci(n} tyl),mkcrapnd(mkvardeci(n2,ty2),ES)),f,s) &
MDEC(mkcmpnd(mkvardocl(nz,ty2),mkcmpnd(mkvardecl(nl Ay DES),f,8);

Vnl n2 tyl ty2fs2 fs.
isname(nl)::isnamo(nZ)::nl/n2::ISABSENT(nl,s(())::ISABSENT(nZ,s(())::
MDEC (mkcmpnd(mkvardecl(nl tyl),mkcmpnd(mkfundeci(n2,52,ly2),ES)),{,s) ®
] MDEC(mkcmpnd(mkfundocl(n2,(:2,1)'2),mkcmpnd(mkvardecl(nl ftyl J,ES))f8);

Vnl n2 tyl ty2 fsl fs2 s .

isname(nl):isname(n2)::nl fn2::1SABSENT(nI ,8(1))2:ISABSENT (n2,s(f))s:

MDEC {mkempnd(mkfundecl{nl fs} tyl),mkempnd(mkfundeci(n2,1s2,ty2),ES)),f,5)*
MDEC (mkempnd(mkfundecl(n2,fs2,ty 2),mkempnd(imkfundeci(nl fs| Ay 1),ES)) fs);

LI TR e e - L

The Semantics of PASCAL in LCF

¥nl n2 tyl fs] ps2{s.
isname(nl):sisname(n2)::nl An2::1SABSENT(nl s(1))2:1ISABSENT(n2,s(f))::

MDEC (mkempnd(mkfundecl(nl fsl ty |),mkempnd(mkprocdecl(n2,ps2),ES)),f,s)
MDEC(mkcmpnd(mkprocdecl(nZ,psZ),mkcmpnd(mkfundocl(nl sl ty D,ESHLs);

Vnl n2 tyl ps2 fs.
isname(n!):tisname(n2)::nl Fn2:ISABSENT(nl S(£)):ISABSENT (n2,s(f))::

MDEC (mkcmpnd(mkvardecl(nl tyl),mkempnd(mkprocdeci(n2,ps2),ES)),f.5)
MDEC(mkcmpnd(mkprocdecl(n2,p52),mkcmpnd(mkvardacl(n| Ay 1)ESNfs);

V¥nl n2 psl ps2ts.
isname(n])::isname(n2)::nl #n2 ::ISABSENT(nl S(1)::ISABSENT (n2,s(f))z2

MDEC (mkempnd(mkprocdeci(nl ps|),mkempnd(mkprocdecl(n2,ps2),ES))f,s) =
MDEC (mkcmpnd(mkprocdecl{n2,ps2),mkempnd(mkprocdect(nl psi LESH s)

Some theorems describing properties of MDEF and MDEC are now listed. Each of them has been
proved in one step.

V¥ x y f. MDEF (mkempnd(x,y),£)-MDEF (x,{)®MDEF iy {);

V x y 1. MDEF(mkvardecl(x,y),f)= iD;

Vxyz { MDEF (mkfundecl(x,y,z){)z ID;

Varyf MDEF (mkprocdeci(x,y),{)= iD;
V x y {. MDEF (mniypedef(x,y),f)= CREAT(f,x,y);

vt. MDEF (ES,1)=ID;

V¥ x y {. MDEC(mkcmpnd(x,y),f)=MDEC(x,{)®MDEC(y,};
V x y {. MDEC(mkvardecl(x,y),{): CREAV(f,x,y,{);
¥ x y z f.MDEC(mkfundeci(x,y,2),f)= CREAF (f,x,y,2,f,1);
V x y f. MDEC(mkprocdecl(x,y),f): CREAP(t,x,y)3
vi. MDEC(ES,1)=1D;
In the following we present some of the theorems dealing with M, the combmators defining the

semantics of statements and some predicates used by the semantic combinators. The proofs of these
theorems are very simple (one stefy), however they were useful in proving programs as well as

properties of MS.
v MS(ES,f)=10;
Vx y £.MS(mkempnd(mkread x,y),{)=READ(x,)@MS(y f);
¥x y {.MS(mkcmpnd(mkwrite x,y),f)-WRITE(x,1)eMS(y,{);
Vxl x2 y 1.MS(mkcmpnd(mkass(xl,x2),y),1)5ASSIGN(xl,MEXPR(xZ,i),f)@MS(y,i);

The Semantics of PASCAL in LCF 12

vn f sASSlGN(n,UU,(,s)!UU';
Vn e {.ASSIGN(n,e,f,UU)=Ul;
Vn . WRITE(n,f,UU)zUY;

Vn 1. READ(n,{,UU)=zUU;
MEXPR(UU)=UU;
BIND(UU)=UU;

MPB (UU)=UU;

V1 f.FETCH(,f,UU)=UU;

Vn {.PROCDEF (n,f,UU):UU;
Yn £ PROCFAL (n,f,UU)=UU;
MD(UU)=UU;

¥n £ PROCTXT(n,f,UU):UU;
Vn {. PROCDECL(n,f,Ul)=UU;
Y{.CLEAR(f,UU)=UU;
Vioc.ISLOCAL (loc,UU)=UU;
ISINBOUND(UU)=UU;

vty ISADMISVAL (ty,UU)=UU;
Vv { sISINTYPE(v,UUf,s)=UU;
Vp e LISINTYPE(v,e,f,UU):UU;

V{.1SPROCFRAME(f,UU)=UU;

e

i e T e o

e

- — il =

The Semantics of PASCAL in LCF 33

SECTION 5 EXAMPLES

In this section we want to discuss how to prove PASCAL programs in LCF. Two examples will be
fully described:

1) the factorial program,
2) the McCarthy Airline reservation system.

We have also proved correct a PASCAL program for the computation of the GCD of two positive
integers with the euchdean alzorithm and a PASCAL program for the computation of the norm of a
vector. These proofs have been executed using an earlier versicn of the LCF axiomatization of
PASCAL and are described in Aiello and Aiello 197t We have not rerun them on the final
version of the axioms because, even though many detai's have been changed, the underlying ideas
have not been modified, so the proofs would remain very sinilar.

Section 5.1 The factorial program

The partial correctness of a program for the computaion of the factorial function has been alieady
proved in LCF and discussed in Weykrauch and Milner 1972. The proof presented here is very
similar to that one. We have included it because the factorial program is a very simple and familiar
example, so it 1s easy to go through the proof of its correctness. By comparing the proof given here
and that given in Weyhrauch and Miiner 1972 1t may be seen that even though the programming
language described here is much richer, the proof 1sn't more complex.

A PASCAL program which computes the factorial function 1s the following:

var nln2: integer
hegin
read{(nl);
read(n2),
while n278 do
hepin nl:=nln2n2:=n2-1; end;
write(nl),
end;

If the input consists of two nonnegative integers x and n this program computes x:n/. The factorial
function 1s obtained If x equals |.

in this program the repetition 15 performed by a while statement, hence we will call it while-program.
An analogous program for the computation of the factorial function may be also written using a
goto statement (it will be called goto-program):

var nln2: integer
hegin
read(nl);
read(n2),

1:if n2#8 then

S, MR T Ty et PR RO SN e

The Semantics of PASCAL in LCF

begin nl.=nlin2m2:=n2-1;20t0 1; end;
write(nl);
end;
In LCF both programs are provable correct with respect to the function FACT:
FACT = [«F.[A\n x.n=8 = x,F(pred n,nkx}]},

FACT applies to two arguments n and x and evaluates to xxn!.

In the following, the LCF proof of the while-program is described in details. This program has no
goto's, s0 the theorems described in 4.2 for goto-free programs can be used, making the proof much
simpler. The proof of the sccond form of factorial program will only be sketched.

The abstract syntactic form of the while-program is:
FACTORIAL = mitext(GP,SP),

DP = mkempnd(mkvardect(n] INT),mkempnd(mkvardecl(n2,INT),ES)),

SP s mkempnd(mkread(n2),mkempnd(mkread(nl),
mkempnd(mkwhile(test,body),mkempnd(mkwrite(n1),ES)))),

test = mkbexpr 1 (not,mkrel(eq,n2,mknumeonst(B))),

body = mkempnd(mkass(nl,mkexpr2(times,nl .n25).mkcmpnd(mkass(nz,mkoxprl {minus1,n2)),ES)).

The form of the LCF theorem to be proved 1s:
Vn x.isnat(n):sisnat(x)::APPLY{FACTORIAL,n,x)cFACT(n,x).

Informally, it says that the evaluation of the program FACTORIAL on the data n and X f it
terminates, gives the same result as the computation of the function FACT on n and x. APPLY 1s the
following combinator:

APPLY = [\ p x y.fstof(FUNCT(p,EQF LIST(x,y))],

LIST =[x x y. mkpair(x,mkpair(y,EOF))].

As said in section 2, FUNCT maps sequences of integers into sequences of integers. Given a program p
and two input numbers x and y, APPLY applies the combinator FUNCT to the sequence LIST(x,y) and
then takes the first element of the output sequence.

The method used to p.rove the partial correctness of the while-program is quite standurd for proving
programs with a while loop. All the combinators appearing on the term at the left hand side are
substituted by their definition. After some simplification (automatically done by LCF) the goal to be
proved is:

The Semantics of PASCAL in LCF 35

Vn x . isnat{n) :: isnat(x) ::
RESULT(WRITE(n} ,8,WHILE(MBEXPR(les!,8),MS (body,8),READ(nl ,0,READ(n2,8,
CREAV(8,n2,INT,8,CREAV(B,nl JINT,8,F RAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF))))) FACT(n)x).

where RESULT 1s defined as Vx.RESULT x = fstof(QUTPUT x). The theorem on the while statement
given n section 4.2 for goto-free programs has been used in achieving the above goal. The
semantics of the loop is expressed m terms of the WHILE combinator. As it can be seen from the
printout in appendix 7.2 the proof is done by induction on the WHILE combittator. The base case is
trivially proved. The induction step is proved by cases on the predicate which controls the loop, ie.
<(nzB). If ~(n=8) is false then the result easily follows, if ~(n=B) is undefined a contradiction arises
because n 1s a natural number. If ~(n=8) is true, the goal 1s proved by a proper instantiation of the
induction hypothesis. It 1s instantiated for pred n and x¥n. Usually, in programs for the computation
of the factorial of 2 natural number the variable nl is not nputed a value, but it 15 initialized to 1.
The imtialization of nl to x results in a strengthening of the induction hypothesis. In fact the
variable x appears universally quantified in the statement of the theorem to be proved and can be
properly instantiated. Actually the proved theorem is stranger than the desired one. The factorial
program is obtained by giving the value | to x in the above theorem.

The proof given in appendix 72 1s generated by the list of commands given in appendix 71. We
want again to point out that LCF 1s not an automatic theorem prover. It has only a subgoaling
mechanism and a sophisticated simplification algorithm which converts terms and simplifies them by
using the axioms and theorems put (by the user) into a "simphfication set”.

In the simplification set there are all the syntactic constructors and selectrs, plus the semantic
combinators appearing in the furst line of the list of commands. Note that LCF labels are prefixed
by a ".", each axiom has been labeled with an identfier equal to the combinator being defined, and
INDUCT is the label of the induction hypothesis. The modifications done to the simplification set after
the proof is started (SS+/=something) are done only to increase the readability of the goals. In
addition, to inciease the readability of the proof, a combinator FRAMEI is introduced to describe an
intermediate store:

FRAME] = [At n x.[Af.f=0-

[Aloc.locz=n2 —n,
loc=nl =,
loc=typeloc n2 = INT,
loc=typeloc nl = INT,
loc=fileloc INP- EOQF,
loc=fileloc QUT- EOF,
loc=textloc = {,UNDEF],UU]].

In the printout of the proof each step appears with its "reason”, namely the tactic used in achieving
it, as well as the step numbers of the axioms and the names of the theorems involved in the
simplifications. The theorems THI, Tif2.. are general theorems about the semantics, they are some of
the theorems listed in section 4.3 and 4.5. Theorems named ARITHI, ARITH2.. deal with the
arithmetic, they are taken from Newey 1973, Theorems named LMI, LM2... are specific lemmas about
this program. All of them have been proved in the same environment as the mam theorem and their
proofs are very simple. Often the proof reduces to a one step simplification. They are:

The Semantics of PASCAL in LCF %6

READ(n1,8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(8,nl INT,8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EQF)))))2FRAMEL (SP,nx)

ASSUME isnat x & TT, itnat n = TT

which implicitly defines the frame FRAME],
MS (body,8,FRAME! (SP,nx))s FRAMEI(SP,pred nx¥n) ASSUME isnat x ® TT, ~(n=8)=TT.

It specifies the effect of the meaning function MS on the body of the while statement. Moreover
MBEXPR(test,8,FRAME! (SP,nx))z ~(n=8) ASSUME isnat n aTT, isnat x=TT

evaluates the test appearing in the while, and finally

RESULT(WRITE(n],0,FRAME] (SP,nx)))=FACT(n,x) ASSUME ~(nsB)=FF, isnat(x)sTT;
asserts that, when the loop is over, the value of the varible nl is FACT(nx).

As already noted the proof s fearly standaid and could be almost completely automated by
increasing the proving capabilities of LCF. The case of the goto program the proof is standard as
well, but much longer. In fact the theorem presented in 4.3 no longer applies, so the goal .o be
proved, after the first simplification is:

Vn x . isnat(n) s iznat(x) 22
RESULT(MS(m,..mpnd(r labstat(l ,mkeond(test,
mkempnd{mkass(n1,mkexpr2(times,nl ,n2)),
mkempnd(mkass(n2,mkexpr 1 (minusl n2)),
mkempnd(mkgoto(1},ES))),ES)),mkempnd{mkwrite(n!),ES)),8,
READ(nl ,B,READ(nZ,B,CREAV(B,nZ,INT,ﬁ,CREAV(B,nl JNTD,
FRAMEB(FACTORIAL,IWPUT(LIST(n,x)),EOF NN & FACT(nx).

In order to prove it bv induction on MS a possibility is that of proving the above goal in parallel
with the following 3 goals:

Vn x . isnat{n) 22 isnat(x) 22
RESULT([\s.COND(MBEXPR(tost,8,s),

MS (mkempnd(mkass(n1,mkexpr2(times,nl ,n2)),
mkempnd(mkass(n2,mkexpr 1 {minus|,n2)),
mkempnd(mkgoto(1),mkempnd(mkwrite(n]),ES))),8,5),

WRITE(n1,8,5))

READ(n],8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(B,n1 INT 8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF)))))) & FACT(nx).

¥n x . isnat(n) :: isnat(x)
RESULT{[\s.COND(MBEXPR(test,8,s),
ASSIGN(n] ,MEXPR(mkexpr2(times,nl,n2),8),5)®
MS{mkempnd(mkass(n2,mkexpr ! (rainusl,n2)),
mkempnd(mkgoto (]),mkempnd(mkwrite(nl),ES)))),8,5),
WRITE(n1,8,5)]
READ(n1,8,READ(n2,0,CREAV(8,n2,INT,0,CREAV(B,nl INT,8,

The Semantics of PASCAL in LCF 37

FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF)))))) € FACT(nx).

Vn x . istat(n) 22 isnat(x)
RESULT([xs.COND(MBEXPR(tes!,8,s),
ASSIGN(n]1 ,MEXPR(mkapr2(times,nt,n2),0),s)®
ASSIGN(n2, MEXPR(mkexpr] (minust ,n2)),8),5)®
MS(mkempnd(mkgoto(l),mkempnd{mkwrite(nl),ES)))),0,5),
WRITE(n1,8.5))
READ(n1,8,READ(n2,8,CREAV(A,n2,INT,8,CREAV(B,n1,INT 8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF)))))) € FACT(n,x).

In this way there are four induction hypotheses to be instantiated and 1t can be seen that each of
them serves to prove the next goal in the above order. Even this tricky way 1s standard. It can be
applied whenever in a program a backward goto 1s encountered. In addition, such tactic could also
be implemented in a PASCAL orieiited version of LCF, so the user is relieved from the task of
generating all the parallel goals.

Section 5.2 The McCarthy Airline Reservation System

John McCarthy suggested the problem of proving the correctness of a program for the reservation
system of the McCarthy Adirline Company. Such company has one plane, with only one seat. The
plane never flies' There are two customers, each one sometimes makes a reservation and then, tired
of waiting for the departure of the plane he cancels. Later on he may try again.

Proving the correctness of a program for the McCarthy Airline reservation sysiem Is interesting
since it presents some characteristics absent in the programs so far proved correct. A program which
realizes a reservation system rxnist deal with a potentially infite stream of input data “read” at
successive instants of tume. Each ume a request 1s mputed, an output datum is produced. The
correctness of incremental computations cannot be dealt with in a system where the input and output
operations aren't mentioned.

Usually, in the existing systems for program venfication, 1/Q 1s completely ignored. It is not
considered to influence the "meaning” of a program. In fact, existing systems deal with algorithms,
rather than programs, even though such algorithms are expressed in the syntax of a programming
language.

Our axiomatization of PASCAL includes the operations of inputing data from an mput file into
locations of the store and outputing data from the store into an outnut file. The length of these files
isn't fixed a priori, even for a particular progrsm.

In our formalism we may express and prove a statement of the correctness of a PASCAL program
for the McCarthy Airline reservation system. Such statement asserts that, no matter what the
sequence of requests has been, the seat at any instant of time is reserved for the right person.

Let
st denote the seat,
w! denote the waiting hist,
rq denote the request and
ps denote the passenger.

The Semantics ¢f PASCAL in LCF 38)

The variable st may assume the values 8, | or 2 meaning free, reserved for passenger | or 2. The
vagiable wl assumes the values 8, | and 2 with the same meaning. rg may assume the value 8 and |
for cancellation and reservation, respectively. ps assumes the values | or 2, denoting the two

passengers.

A PASCAL program realizing the McCarthy Airline reservation system is the following:

b ‘ hegin
var st,wl,ps,rq: integer;
read{w!),
read(st);
repeat
hegin
read(rq);
if rqe3
then begin
read(ps);
if rq=1
then if st=8 v st=ps
then st:=ps else wl:=ps;
else if st=B v stéps
then wl:=8 else hegin st.=wl end
write(st)
end
until rq=3
end

The program consists of an initialization part, in which the initial status of the seat and the waiting
list (presumably both 8) are inputed, and of a repeat loop. The body of the loup consists in reading
new data, updating the status of the seat and the waiting list and then writing the status of the seat
into the output buffer. An extraneous value in the input sequence, in this case the number 3, stops

the repetition.

This program doesn’t make any azsumption on the behavior of the passenger or about the kind of
requests it receives. Each request it accepted and the program behaves correctly even if, for instance,
two cancellations in a row are done by the same person.

The abstract syntax for the above program is:

McCARTHY = mktext(DP,SP),

DP = mkempnd(mkvardec!(wl,INT),mkempnd(mkvardecl(st,INT),
r mkcmpnd(mkvardocl(rq,INT),mkcmpnd(mkvardecl(ps,lNT),ES)))),

SP = mkempnd(mkread(wl),mkempnd(mkread(st),
mkempnd(mkrepeat(BODY,mkrel(eq,rq,mknumeonst(3))),ES))),

BODY = mkempnd(mkread rq,mkempnd(mkeond(mkrel(eq,rq,mknumconst(3)),ES,
mkempnd(mkread ps,SEATUPDATE)),ES)),

SEATUPDATE:

g
|
f

The Semantics of PASCAL in LCF 39

mkecmpnd(mkcond(mkrel(eq,rq,mknumconst 1),
mkecmpnd(mkcond(mkbexpr2(or,mkrel(cq,st,mknumconst 8),mkrel(eq,st,ps)),
mkempnd(mkass(st,ps),L5),mkempnd(mkass(wl,ps),ES)),ES),
mkempnd(mkeond{mkbexpr2(or,mkrel(eq,st,mknumconst B),mkbexpr! (not,mkrel(eq,st,ps))),
mkempnd (mkass{wl,mknumconst B,ES),
mkcmpnd(mkass(st,wl),mkempnd(mkass (wl,mknumcon: * 8,ES))),ES)),
mkecmpnd(mkwrile st, ES)),

The statement of the partial correctness of the McCARTHY program is:

Visq 0sq p q.iswisqlisq):iiswlos(osq):sisint(p):tisint(q)::
APPLY(McCARTHY,p,q,isq,05q)<BOOKING(p,q,isq,05q),

where: isq denotes the input sequence, osq denotes the initialization of the output buffer, namely the
output sequence, p and q are the initial values of the waiting list and the seat.

The predicate iswisq (is-well-formed-sequence) is defined as:

iswisq = [«F.[Asq. (ell(sq)= 3)=4TT,iseof sy 2UU,isrgst(ell sq)aisprsn(el2 sq)-F(taill sq),FF]],
where ell, el2, taill, isrqst (1srequest) and isprsn (1sperson) are defined as follows:

ell = [Ax. fstof x],

el2 = [Ax. ell (rmdot x)],

taill = [Ax. rmdof(rmdof x)],

isrqst = [Ax.(x=8)v(x=1)],
isprsn & [Ax.(x=1)v(x=2)]).

The predicate iswfos (is-well-formed-output-sequence) is:

iswfos & [ecF.[N0s.ise0f os = TT,isini(fstof os)=F(rmdof os),FF]],
and must be satisfied by the ob ject, presumably EOF, that initializes the output buffer.
The combinator APPLY appearing in the definition of the goal is:

APPLY = [x p x y is 0s. FUNCT(p,0s,LIST(x,y,is))),

LIST = [Ax y is. mkpair(x,mkpair(y,is))),

FUNCT, the combinator which "interprets” a program p in the frame where the input and output
buffers have been initialized, 15 described in section 2.

The fact that, at each moment, the seat is reserved for the right person, is expressed in LCF by the
function BOOKING:

e had e o o SRl A

The Semantics of PASCAL in LCF 40

BOOKING s [ocF.[\ st wl 5q 0s.
iseof sq = UU,
(etl sq=3) - os,
F (taitl sq,stupdt(sq,st,wl),wlupdt(sq,st,wl),mkpair(slupdt(sq,st,wl),os))]],

where stupdt (seatupdate) and wlupdt (waiting-listupdate) are defined as:
stupdtz[Asq st wl.(el]l sqz1)=(st=B)v(st=el2 sq)-rel2 sq,st,(stsB)v ~(stzel2 sq) = st,wl),
wlupdtz[Asq st wl.(ell sqsl)=(st=B)v(st=el2 sq)-wi,ei2 $q,8).

We express the fact that, at each instant of time the program “answers” in the right way, by stating

that it behave: correctly on input sequences of any length. Being extensional our semantics cannot
express the concept of elapsation of time, but, by talking of sequences of any length we give an
adequate extensional representation of a continuing process.

The list of LCF commands and the printout of the proof of the partial correctness of the McCARTHY
program with respect to the BOOKING function is given in appendix 8. The goal to be proved, after
the first simptification is:

Visq 0sq p q . iswisqlisq) :: iswfos(osq) :: isint(p) :: isint(q) ::
OUTPUT(~(MEXPR(rq,8,MS(BODY,8,READ(st 8,READ(wI,8,FRAMEt (p,q, 56,059)))))=3)=
REPEAT(MS(BODY,B),MBEXPR(mkbexpr | (not,mkrei(eq,rq,mknume:nst(3))),8),8,

MS (BODY,B,READ(st,8,READ(wI,B,FRAME | (p,q,isq,05q))))),
MS(BODY,8,READ(st,B,READ(wI,B,FRAME | (p,q,i5q,05q))))) & BOOKING(p,q,isq,059)

In achieving this goal the theorem on the repeat statement, given in section 4.3 has been used. The
combinator FRAME! 1s introduced to increase the readabihity of the goal. It describes the store after
the dectarations are done.

FRAME!L = [Ax y sq os. [Af.(f=8)=[\loc.
loc=ty peloc ps=»INT,
locstypeloc rqiNT,
loc=typeloc »:=INT,
locstypeloc w!=INT,
loc=tileloc INP=INTERNALREP(LIST(x,y,sq)},
loczfileloc QUT-INTERNALREP os,
locstextioc =SP,UNDEF],uU).

The proof of the McCARTHY program differs from that of the factorial program mainty for two
reasons: 1) the while and the repeat statements behave differently, having the test performed at
different places. 9) here an initialization is done within the body of the repetition statement. I fact,
the two values of rq and ps are read within the loop. For this reason the loop must be executea once
in order to create a location named rq and one named ps, before doing an induction on the
combinator REPEAT. The goal 1s proved by cases on the test which controts the repeat loop. The
onty nontrivial case is that in which the mput sequence 1s not yet over, namely rqf3. In this case the
repeat loop goes on, so an induction 1s needed for completing the proof. The base case of this
induction 1s triviai. The induction step 1s proved by domng agam cases on the test which estabhshes
the exit conditions {rom the loop. If the loop is completed a lemma is used to state the result, if it
goes on the goal i1s proved by an appropriate instantiat,on of the induction hypothesis.

The Semantics of PASCAL in LCF 41 1

As in the proof of the factortal program the theorems used in the proof have been divided nto THs,
ARITHs and LMs. THs state facts about the semantics, one of them is the above mentioned theorem
about the semantics of the repeat statement for goto-free programs. They are shown in 4.2 and 4.5.
ARITHs are theorems dealing with the anthmetic and properties derived from the above axioms on
the well forivedness of input and output sequences. LMs are specific lemmas regarding this program.
The hist of these lemmas follows.

Vsq os x| x2. MD(DP,8,F RAMES (McCARTHY,INPUT(LIST{x1,x2,5q)),INTFRNALREP(0s)))=
] FRAME (x] ,x2,sq,08);

] is an implicit definition of FRAMEL. It defines the store after the declarations are done.

READ(st,8,READ(w!,8,FRAMEI (x] x2,5q,0s)))=FRAME2(x1,x2,5q,05)
ASSUME iswfsq(sq)=TT, iswfos(os):TT, isint(x])eTT, isint(x2)sTT

This statement is an implicit defini.ion of FRAME.. It describes the store after wi and st are
initialized.

FRAME2 = [Ax] x2 sq os. [Af.(fzB)=[xloc.
locsst %2,
loczwl -1,
loc=typeloc ps—=INT,
loc=typeloc rq=INT,
loc=typeloc si=INT,
loc=typcloc wi=INT,
loczfileloc INP=INTERNALREP(sq),
loc=fileloc QUT—INTERNALREP(cs),
locztextloc —+SP,UNDEF],UU),

The next theorem:
OUTPUT(MS(BODY,B,FRAME2(x1,x2,5q,05))):BOOKING{x1,x2,5q,0s)
ASSUME ~(el] sq = 3)=FF,iswisq 5q3TT,iswios 0s=TT,isint x1£TT,isint x2sTT

states that, when the input sequence 1s ov:r, the content of the output file after ihe exccntion of
BODY in the store described by FRAME2, equals the value of the function BOOKING.

BOOKINb(stupdt(sq,x.y).wlupdt(sq,x,y),taill sq,mkpair(stupdt(sq,x,y),08))2 BOOKING(x,y,sq,0s)
ASSUME iswfsq sq =TT iswfos os = TT isint x # TT, isint y & TT,~(e!] 5q=3)2TT

“ states a simple property of the function BOOKING.

MS(BODY,B,FRAME3(x,y,5q,05))
ASSUME iswfsq sq =TT,iswfos os = TT,isint x 2 TT, isint y # TT,~(ell sq=3) TT;

MS(BODY,B,FRAME 2(stupdt(sq,x,y),wlupdt{sq,x,y)taill sq,mkpair(stupdt{sq,x,y),08)))=
{ MS(BODY,B,FRAME2(x,y,sq,05))= FRAME3(x,y,sq,0s)
N

The Semantics of PASCAL in LCF

ASSUME iswisq sq #TT,iswfos os = TT,isint x = TT, isint y = TT,~(ell sqs3)- TT;
The two above theorems use the combinator FRAMES to describe an intermediate store

FRAME3 = [Ax1 x2 sq os. [\f.(f=8)-[\loc.
loc=ps =~el2 sq,
loczrq —ell sq,
locsst =stupdt(sq,x} x2),
locz=wl -wlupdt(sq,x1,x2),
locstypeloc ps=INT
locstypeloc rq-#INT,
loc=typoloc st-INT,
loc=typeloc wi=INT,
loc=filaloc INP-»taill (INTERNALREP sq),
loc=fileloc QUT=smkpair(mknumconst stupdt(sq,x1,x2),INTERNALREP os),
locstextloc —=SP,UNDEF],UU);

FRAME3 is the description of the store after the Lody of the loop has been executed once.

MEXPR(rq,8,MS(BODY,8,FRAME3(x,y,59,05))): el3 sq

ASSUME iswisq sq =TT iswfos os = TT,isint x = TT,isint y 5 TT,~(eil sq=3) = TT

MBEXPR (mkbexpr 1 (not,mkrel(eq,rq,mknumconst(3))),8,M$ (BODY,8,FRAME3 (x,y,5q,05)))= ~(el3 sq = 3)
ASSUME iswfsq sq =TT,iswfos 0s = TT,izint x & TTisint y = TT,~(ell 5q=3)= TT
MEXPR(rq,8,MS(BODY,8,FRAME2(x,y,5q,05))i7el] sq

ASSUME iswfsq sq=TT,iswfos os eTT,isint x=TT,isint y=TT.

The three above lemmas are introduced to abbreviate the evaluation of expressions.

The Semantics of PASCAL in LCF 43

SECTION & CONCLUSION

The most important aspect of this memo relates to our attempt to axiomatize all of the arithmetic
part of PASCAL. This s interesting for two reasons. First we are able to describe in LCF chifferent
programming language features and show how they interact. Secondly we can express property of
classes of programs and use them as lemmas in proofs of theorems about particular programs. A
typical example 1s the theorem about goto-free programs in section 42 1tis used n section 5.2 to
simphify the first proof of the correctness of the factorial program. When interpreted hterally, it
proves that for goto-free programs the composition rule in Hoare 1969 is valid. By formulating the
validity of this rule as a theorem we can discuss, in LCF, the relative merits of various programming
features. This has not previously been accessible to 2 formal treatraent, and 15 important if the
mathematical theory of computation is ever to have an effect on language design.

Our desire to axiomatize all aspects of a programming language is not simply a matter of choice of
availab'e formalisms but represents a philosophy about what kinds of questions the mathematical
theory of computation should ask. The method of attaching inductive assertions to programs treats
programs onhe at a time. We do not think general theories about programs can be developed n this
way. Of course using inductive assertions is not a waste of time, but formalisms which use them
should be expanded to include more general apphcability.

The kind of questions about programs we have in mind include: will 1t run at all, even if its
algonithm 1s correct? Will 1t compile? Does some other coding or "optimization” compute the same
function? We believe that LCF 1s capable of expressing these notions. Furthermore, any formalism
for describing a programming language could reasonably be expected to have this property.

We criticize the original description of PASCAL, not because Wirth didn't have philosophically
reasonable ideas of what various features of a programming language should do, but rather he
lacked a formalism which was strong enough to describe the effect of putting together features,
which although separately make clear sense, cause problems when combined. The example of the
procedure in the discussion of the for statement is a case in point. It is not a PASCAL procedure as
the value of the index variable of the for statement is changed in its body. This fact, however is
hard to detect and 1s certain to be mussed by most comptlers. The difficulty arises out of the desire
not to make the index of a for statement local to that statement, to have the limits of the for loop
variable determined once and for all and to have recursive procedures in the same language.
Features when combined in arbitrary ways make even the recognition of well formed programs
complicated. ~ Further evidence of this difficulty 1s fuund n the large number of restrictions
Igarashy, London and Luckham 1973 have put on the application of their rules. The onl example
of a procedure given in Hoare and Wirth 1973 cantiot oe treated n their system. It does not seem
obvious to us how to extend their style of axiomatization ' all of PASCAL. We do not impose any
of their restrictions, but describe the full generality allowi by Wirth. The expressive power of LCF
permits Us to represent their restrictions and to prove that rules similar to theirs are vahd for the
subset of PASCAL they treat.

The above should reflect on language design. One overwhelming feeling of all three authors after
doing this work was that we know large amounts more about how to describe a languape to make
proving theorems about it reasonable. We believe that the ability to describe programming features
and demonstrate by proving theorems that a language has certain properties represents a
particularly satisfying way to describe a language. Furthermore we propose this as a stanclard for
acceptable descriptions.

A Ao S R YR o SISy . — e TR RN

The Semantics of PASCAL in LCF 44

QOne possible idea for future work 1s designing a programming language using the more precise
description of this paper. Only small medifications to PASCAL are necessary to give a similar
language a demonstrably smoother semantics. Thus, by starting wth 4 more detailed description,
some properties of the language, which could only be informallv described before would now be
made exphicit as statements in LCF. One could then begin to amass a collection of theorems that
could be used to prove properties of particular programs. We could then integrate everything into
an LCF-PASCAL "machine” which took a concrete PASCAL syntax and generated the LCF
abstract syntactic representation. Of course the new language would have to include more features
than those discussed here. Obvious candidates are real arithmetic, file manipulation and more
complicated data structures. 1f we wanted to abandon the ALGOL like control structures it would
be possible to choose either that of LISP or even the more aggressive control structures of Bobrow
and Wegbreit or the Landin] operator. It would be an interesting project to describe them all and
see what theorems hold when you allow them to exist simultaneously.

We chose to work out the McCarthy airline reservation system as an example because we believe
the treatment of interactive programs is another area which a vital mathematical theory of
computation must consider. Our idea for how 'o treat the correctness of continously interactive
programs was to consider them as functions from sequences of inputs to sequences of outputs. If the
processes you are considering are continous, that is, some initial sequence of outputs Is completely
determined after some fixed number of inputs, then cquivalently we can consider the correctness of
finite output sequences given fimte input sequences. Basically this idea has been used in
intuitionistic theories of free choice sequence as developed by Brouwer and Kleene (see I<leene and
Vesley 1965).

We end this memo with some comments about LCF. A major difficulty involved in using LCF as
the language for interpreting programnung languages is that descriptions of the data being
manipulated (in our case integers) 1s awkwaia. The axiomatization of arithmetic in LCF although
adequate 1s both non standard and frequently hard to use. It is partially the fault of LCF as it does
not implement such nice user criented features as arbitrary structural inductions. It forces you to use
computation induction 1n its primitive form. Unfortunately the implementation cannot be blamed
for everything. A proof of Wilson's theorem, for example, would be virtually impossible even by
mathematical induction. LCF terms not only have interpretations as functions, but can also be
interpreted As computation rules. Although this duality has not been fully exploited it is the
essential reason that the simplification mechanism of LCF is so successful.

The Semantics of PASCAL in LCF 45

APPENDIX |

A BDRIEF DESCRIPTION OF LCF

The syntax of LCF sentences is described in detail in Milner 1972a. Here we only give an informal
description of the language, its interpietation and enough of the abbreviation conventions to make
the formulas in this repoit intelligible to those not familiar with LCF.

There are two kinds of bise variables and constants in LCF. Those that range over individuals
and those that range over truth values. Each term has an associated type. If {15 a term and @ its
associated type symbol we wiite t0. IND and TV are type symbols. If ¢ and 7 are type symbols

then so is (0-7). We write x:IND and x:TV for x of type individual and truth values respectively.
There are variables and constants for each different type symbol. The variable symbols of different
types are supposed to be disjont. “here are three constants of type TV. They are TT for true, FF
for false, and UU for undefined.

Terms are formed as follows: 1If x.0 15 a variable and .7 then [AxAJ(¢=7) is a term whose
interpretation 1s a function from things of type @ onto things of type 7. In LCF [Ax.[Ayd]] 1s

abbreviated by [Ax yt). If ri{e—7) and s:@ then r{s):T. We mterpret r(s) as the result of applying the
function r to the argument s. We frequently write this r s, thus

a bc=ab)e)={alb)){c)=alb,c).

Note that if 7 is TV then r s a predicate. Conditional expressions are formed as (p=q,r), where
pTV and q, r are of the same type. On the undefined truth value the conditional is undefined, i.e.

for all q and r, (UU=q,r)=UU. Terms are also built up using the least fixed point operator . If x:0
1s a variable and s:0-+0 then [ecx:s] is a term representing the least fixed point of the functional s.

Atomic well formed formulas (or AWFFs) are formed by joining two terms using = or <, ie. if r and
s are terms then rzs and res are AWFFs. rss means that the functions denoted by r and s are the
same. [1, a full description of the theory there is also a partial order between terms of the same type.
This 1s represented using <.

The more usual definition of the factonal function fuct(n) « if x=0 then I else n:fact(n-1) becomes
in LCF

FACT = [e<f [An.(n=0=1,n%f{n=1)]].
LCF also allows two other abbreviations.
Vx.fzg 18 the same as [Ax.f)=[Ax.g].
Because terms are interpreted as extensionally given functions, this definition makes sense.

P::Q=R 1s the same as (P=Q,UU)z(P-R,UU)

Inturtively this is read as: If P 1s true then Q=R, otherwise I don't know anything.

The Semantics of PASCAL in LCF

APPENDIX 2

THE ABSTRACT SYNTAX

2.1 Syntax for Statements

AXIOM SYNAXS:

V d s. type(mktext d s) = T,
v d s. declof(mktext d s) = d,
Vv d 5. statmof(mktext d 8) ® 8,

| d2. type(mkempnd d1 d2) * CM,
1 d2. tstof(mkempnd dl d2) = dl,
| d2. rmdof(mkempnd d1 d2) = d2,

n ty. type(mktypedet n ty) = _TD,
n ty. namot(mktypedef n ty) e n,
n ty. typof(mktypedet n ty) = ty,

v
v
v
v
v
v

V nl n2. type(mksublim nl n2) = St,
¥ nl n2. Ibof(mksublim nl n2) & nl,
¥ nl n2. ubof(mksublim nl n2) = n2,

V ai ty. type(mkarspec al ty) = _AS,
V al ty. arlimot(mkarspec al ty) = @,
V al ty. typelof(mkarspec al ty) = ty,

¥ il i2. type(mkpair il i2)2 _PA,
Vil i2. tstof(mkpair il i2)x il,
V il i2. rmdof(mkpair il i2)2 i2,

V n ty. type(mkvardec! n ty) Vo,
¥ n ty. namof(mkvardec! n ty) z n,
¥V n ty. typot(mkvardec! n ty) = ty,

V n ps. type(mkprocdeci n ps) £ _PD,
V¥ n ps. namof(mkprocdecl n ps) En,
V n ps. prspof(mkprocdeci n ps) = ps,

¥V n fs ty. type(mktundecl n fs ty) = _FD,
V¥ n fs ty. namof(mkfundec! n fs ty) = n,
¥ n fs ty. fnspof(mktundecl n fs ty) = is,
¥ n ts ty. typoof(mkfundecl n s ty) = ty,

Vv t Ltype(mkprocspec f 1) = _PS,
V t tfargof(mkprocspec f 1) = f,
¥ { t.textot(mkprocspec f 1) = t,

Vv f tiype(mkiunspec f t) = _fS,
V f tfargot(mkiunspec f t) =,
v { t.textot(mkfunspec f t) 3 ¢,

E
|
|

The Semantics of PASCAL in LCF

V x ty. type(mkvarp x ty) = _YRP,
¥ x ty. namof(mkvarp x ty) = x,
V x ty. typof(mkvarp x ty) s ty,

¥ x ty. type(mkvaip x ty) = _VLP,
V x ty. namof(mkvalp x ty) & x,
¥ x ty. typof(mkvalp x ty) s ly,

Y x ty. type(mkiunp x ty) = _FP,
V x ty. namof{mkfunp x ty) £ x,
¥ x ty. typof(mkfunp x ty) = ty,

¥ x. type(mkprocp x) = _PP,
Y x. namof(mkprocp x) = x,

V | s. type{mkiabstat | s) = _LS,
Y | 5. labelof(mklabstat | 5) = |,
V | s. statmof(mkiabstat | s) = s,

VY n. type(mkread n) = _RD,
V n. namof(mkread n) & n,

¥ n. type(mkwrite n) = _WT,
Y n. namof(mkwrite n) = n,

Vn. type(mkgoto n) = _G,
Vn. labelof(mkgoto n) = n,

Vn e. type(mkass n e) = _A,
Vn e. lhsof(mkass ne) =2 n,
Vn e. rhsof(mkass ne) = @,

Y n a. type(mkproccall n a) = _PC,
VY n a. namof(mkproccall na) = n,
V n a. actargof(mkproccall n a) = a,

Vbe pi p2. type(mkcond be p!l p2) = C,
Yhao pt p2. testof(mkeond be pt p2) = be,
»l p2. thenof(mkeond be pt p2) = pt,

pl p2. elsoof(mkeond e pl p2) = p2,

vt b. type(mkwhile { b) = _W,
Vi b. testof(mkwhile t b) = t ,
Vi b. bodyof{mkwhile t b) = b,

Vb {. type{mkrepeat b t) = _R,
Vb t. bodyof(mkrepeat b t) = b,
Vb {. testof(mkrepoat b t) = t,

Vi ol 02 b. typo(mkforto i et e2 b)z_FT,
Vi et 02 b. indaxof(mktorto i el e2 b): i,
Vi el e2 b. Ibof(mkforto i et e2 b): el,

Vi el 02 b. ubof(mkiorto i et e2 b)= 2,
Vi el e2 b. bodyof(mkiorto i el e2 b)= b,

17

P T T

The Semantics of PASCAL in LCF 48

Vi el €2 b. lype(mtfordn i el e2 b)=_FD,
Vi el e2 b. indexoi(mkfordn i el 32 b)z |,
Vi el 2 b. ubof(mkiordn i el e2 b): el,
Vi el @2 b. lbof(mkfordn i el e2 b)= e2,

Vi el @2 b. bodyoi(mkiordn i el e2 b)z b,

type UU = UU,
type ES = _ES,
type EOF = _EOF;

2.2 Syntax for Expressions

AXIOM EXPRAX:

Vo el. type(mkexprl o el) = _E,
Vo el. opof(mkexprl o ol) = o,
Vo el. arglof(mkexpr]l o el) = el,

VYbo bel. lype(mkbexprl bo bel) = _BE,
Vbo bel. bopof(mkbexprl bo bel) = bo,
VYbo bel. barglof(mkbexprl bo bel) = bel,

Vo el e2. lype{mkexpr2 o el e2) = _E,
Vo el 02. opof(mkexpr2 o el e2) = o,
Yo el e2. arglot(mkexpr2 o el e2) = el,
Vo el e2. arg2of(mkexpr2 o el e2) = e2,

VYbo bel be2. type(mkbexpr2 bo bel be2) = _BE,
Vbo bel be2. bopof(mkbexpr2 * 202) & bo,
Vbo bel bes. barglui(mkbexp | ~e2) £ bel,
Vbo bel be2. barg2of(mkbexpr: . o=l be2) = be2,

VYbo el e2. lype(mkre! bo el e2) = _BE,
Vbo el e2. bopot(mkrel bo el e2) = bo,
Vbo el 2. arglof(mkrel bo el e2) = el,
Ybo el e2. arg2of(mkrei bo el €2) = @2,

V ni type(mmkae n i) = _AE,
V ni. namot(mkae ni) = n,
V ni. subof(mkae n i) = i,

V n a. lype(mkfundes n a) 5 _FA,
V n a. namof(mkfundes n a) = n,
V n a. aclargof(mkfundes n a) = a,

V n. type(mknumconst n) = _NC,
V n. numot{mknumconst n) = n;

2.3 Predicates for the Identification of Syntactic Constructs

The Semantics of PASCAL in LCF

AXIOM PREDAX:

Y.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.

Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.

Vx.
Yx.

Vx.
Yx.
Vx.
Vx.
Yx.
Vx.
Vx.

istext x = type x = _T,
iscmpnd x = type x = _CM,
istypedef x = type x = _TD,
issublim x = type x = _SL,
isarspac x £ type x s _AS,
ispair x & type x = _PA,
isvardecl x = type x = _VD,
isprocdecl x = type x » _PD,
isfundecl x = type x = _FD,
isprocspec x = type x = _PS,
isfunspec x = typa x = _FS,
isvarp x = type x = _VRP,
isvalp x = type x = _VLP,
isfunp x = type x = _FP,
isprocp x = type x = _PP,

islabstat x = type x = _LS,
isread x = typa x = _RD,
iswrite x = type x = _WT,
isgoto x = type x = _G,
isass ¥ = type x = _A,
isproccall x = type x = _PC,
iscond x = type x = _C,
iswhile x = type x = _W,
isrepeat x = type x = _R,
isforto x = type x = _FT,
isfordn x = type x = _FD,

isemptyst x = type x = _ES ,
iseof x = type x = _EOF,

isconst x = type x = _NC,
isname x = type x = _N,
isexpr x = type x = _E,
isbexpr x = type x = _BE,
isrel x z type x = _BE,
isao x = type x = _AE,
isfundes x = type x = _FA;

49

e o

s The Semantics of PASCAL in LCF 50

2.4 Auxiliary Predicates and Fuactions

AXIOM AUXSYN :

isname FUNV = FF,

fstof EOF = UU,

rmdot EOF = UU;

issingle = [Ast. (isread st)v(iswrite st)v(issimple st)v(isemptyst 1)),

issimple = [Asl. (isgolo st)v(isass st)v{isproccall st)),

fortest = [Ax .isforto(x)-*mkrel(lsaq,lbof(x),ubot(x)},isfordn({x)->mkrel(greq,ubof(x),ibof(x})),ul] ,

fortoup - [Ax .mkempnd(mkforio(indexof(fstof(x)),mkexpr] (plus! indexof (fsiof(x))), .
ubof(fstof(x)),bodyot(fstot(x))),r mdof(x))),

fordnup = [Ax .mkempnd(mkfordn(indexof(fstof(x)),mkexpr! (minus] indexof(tstof(x))),
Ibof{fstof(x)),bodyof(istof(x))),rmdof(x))],

isrepwh = [\sl. (isrepeat st)v(iswhile si)),

isiter = [Ast. (isforto st)v(istordn st)v(isrepwh st);,

isparameter = [Ax. (isvarp x)v(isvalp x)v(isprocp x)v(istunp x)}, 3
isbasetype = [An (n=INT)v(lype(n)=_SL)}}, .
istyppart = [An.ispair(n)viseof(n)),

occurs ® [oF.[An st.
isemplyst st -4 UL,
iscmpna st = 7 (n,{erof st)vF(n,rincet gt),
islabstat st = (n=labelof s!)=TT F(n,rmdof st),
issinale st = Fr,
isiter st - F(n,bodyof st),
iscond st = F(n,thenot st)vF(n,elseof st),UU]],

append = [ock [X st] st2.
. isemplyst sil = st2,
isecmpnd st1 = mkempnd(fstof sti, F(rmdof stl,st2)),UU]],

segm = [ocF.[An st
isemplyst st = UU,
iscmpnd st
isemplyst s =F(n,rmdof st),
islabstat(fstiof st)—=(n=labelof st)= st,F(n,mkempnd(statmof(fstof st),rmdof st)),
issingle(fstof i) =F(n,rmdof st),
iscond(fstot st) =occurs(n,thenoi(fstof st))-append(F(nthenof(fstof st)),rmdof st),
occurs(n,elsoof(istof st))=appand(F(n,elsoot(fstof st)),rmdof st),
F{n,rmdof st),
isrepwh(fstof st)=occurs(n,bodyof(fstof st))—append(F(n,bodyof(fstof st)),st),
F(n,rmdof st),
istorto{fstof st)=occurs(n,bodyot(fstof st))-append(F(n,bodyot(fstot st)) tortoup(st)),

e g —

:
|

The Semantics of PASCAL in LCF

F(n,rmdof st),
isfordn(fstof st)-occurs(n,bodyof(fstof st))-append(F(n,bodyof(tstof st)),fordnup(st)),
F(n,rmdof st),UU,UU]J),
isvariable = [Ax.isname(x)visae(x)),
isunary = [Ax.(x=pplus)v(x=pminus)v(x=plus!)v(x=minus1)),

isbunary = [Ax.(x=not)),

isbinary s [Ax.(x=plus)v(x=minus)v(xatimes)v(xzdiv)v{xsrmdr)v(xzand)v (xsor)v
(x=lseq)v(x=graq)v(x=lt)v(x=gt)v(xreq)v(rsneq)),

isbbinary = [Ax.(x=and)v(x=or)],

isrelop & [Ax.(xslseq)v(xzgreq)v(x=It)v(x=gtv(x=eq)v(x=nog));

The Semantics of PASCAL in LCF 52

APPENDIX 3

THE SEMANTICS

3.1 Top Level Functions

AXIOM TOPSEM:

FUNCT = [Ap o i.(INPUT®PASCAL(p,0)®0UTPUT)()],

PASCAL = [\p o i. MP(p,8,FRAMEB(p,0,))],

FRAMEB = [Ati o f. (fs8)=[xloc (locsfiloloc INP) = INTERNALREP(i),

(toc=fileloc OUT) = INTERNALREP(o),
(locstextloe) = statmof {,UNDEF],LL),

MP 5 [\t f. MD{declof 1,1)®MS (statmof t,f)],
INPUT s 1D,
OUTPUT = [«F.[rs[)iiseof i =EOF,
ispair i =mkpair(F (fstof i),F (rmdof i),
iscons! i=numof(i),UU](OBUFFER s)]),
INTERNALREP = [ocF.[Ni.iseof i =EOF,

ispair i =mkpair (F(fstof i),F(rmdot i)),
isint i =mknumconsi(i),uu]);

P T L

© - EESeNSEwrenews.

The Semantics of PASCAL in LCF 53

e

3.2 Declaration Part

AXIOM DECSEM:

MD s {\d f. MDEF(d,f)®MDEC(d,1}],

MDEF = [F [\d f.isemptyst d = ID,
istypedef d = CREAT(f,namof dtypof d),
iscmpnd d - F(fstof d,f)®F (rmdof d,f),ID]],

MDEC = [ecF.[Nd f.isemptyst d = ID,
isvardecl d = CREAV(f,namof d,typof d,f),
isprocdecl d = CREAP(f,namot d,prspof df),
isfundecl d = CREAF(f,namof dfnspot d,typeof d,f,f), k
iscmpnd d = F(fstof d,)OF (rmdof d,f),ID]],

CREAT = [\f n ty s CREALOC(f,s,typidloc,n,ty)],

CREAV = [Af n ty fl s.CREALOC(f,s,typeloc,n, TYPEVAL(ty,fl,<))),

4 CREAP = [Af n ps fl s STORE(f,CREALOC(f,s,accink,n,fl),procloc n,ps)],

CREAF = [xfnifstyftfls.
STORE (f,STORE (f,CREALOC(f,5,accink,n,fl),typfunloc n,TYPEVAL(ty,ft,s)),funcloc nfs)),

CREALOC = [\f s loc n valISPRESENT(n,s(f)}=UU,STORE(f,s,loc n,val)];

P Sl E W o

The Semantics of PASCAL 1n LCF

3.3 Definition of MS

AXIOM MSDEF:

MS=[.cF.[rst 1.

isamplyst st = 1D,
iscmpnd st -
isemplysi(fsiof st)= F(rmdot stt),
islabstat(fstof st)= F{mkcmpnd(statmot(fstof st),rmdof st),f),
isgoto(fstof st) = GOTO(F jabelot(fstot s1),f),
isass (fstof st) = ASSIGN(Ihzof({fstof st), MEXPR(rhsof(fstof st},f),f)eF (rmdof si,f},
isproccall(tstof st)->[xs MPB(PROCF AL (namot{fstof s1)f,s),actargof(fstof st)f,s,namof(fstof st))]®

[xs.MD(PROCDECL(namof(istof st),f,s),succ 1,5)]0

[xs.F(PROCBQDY (namof(fstof st),f,s),succ 1,5)JOCLEAR(suce f)@F (rmdof st,f),

isread(fstof s1) = READ(namof(fstof st),f)aF (rmdof st,f),
iswrite(istof s1) — WRITE(namot(fstot s1),f)CF (rmdof st,f),
iscond(fstof st) = COND(MBEXPR(testof(fstof st),f},

F(append(thenof(istot st),rmdof st),f),F(append(elseot(istof st),rmdof st)f)),
iswhile{fstot st) — COND(MBEXPR(lestof(fstof st),f),

F(append(bodyof(istof st),st)f),F(rmdof si,f)),
isrepeal(fstof st) = F(appond(bodyot(fsiof si),mkempnd(mkcond(mkbexprl{not,

testot(tstof st)), fstot st,ES),rmdof st)),f),

isforto(fstof st) = COND(MBEXPR(fortest(istof st),f),

ASSIGN(indexoffstof st),MEXPR(Ibof(fstof st)f),f}®

F(append(bodyof(fstof s!),fortoup st),f),F(rmdof si,f}),
isfordn{fsicf st) = COND(MBEXPR(fortest(fstof st),f),

ASSIGN(indexof(fstof st),MEXPR(ubof(fstof st),f),$)@
F(append(bodyof(fstof si),fordnup st)f),F (rmdot s1,1)), UU,UU]J);

The Semantics of PASCAL in LCF

3.4 Axioms for Statements

AXIOM STATSEM:

READ = [An f sISFUNFR(f,s,8)->ASSIGN(n,MEXPR(fstof (IBUFFER s),1),{,
STORE(0,s,fileloc INP,rmdof(IBUFFER 5))),uU),

WRITE = [An { s.ISFUNFR(f,s,8)= STORE(D,s,fileloc OUT,
mkpair {(mknumeonst(FFTCHV(n,{,s)),0BUFFER s)),UU],

GOTO = [AF.[\n f. Flsegm(n,TEXT(N,N]),

ASSIGN = [«F[An v fs.
n=FUNV—ISADMISVAL(s(f,typeloc FUNV)v(s))=STORE(f,5,FUNV,v(s)),UU,
ISINTYPE(n,v,f,s)STORE(f,s LOCOFVAR(n,{,s),v(s)),
istopt(f)-UU,
ISFUNFR(t,s,NEWFP(n,f,s))-F (VARBNDTO(n,{,s),v,NEWFP(n,f,s),s),UU]),

COND = [rq f g s.(q(s)-1(s),g(s))),

MPB = [rfa aa t s n.BIND({fa,aa succ f,
MAKFRAME(PROCBODY (n,f,s),PFLNK(n,f,s),succ 1,5))],

CLEAR = [Af s f1.(f1=f)=2UUs(t1));

55

The Semantics of PASCAL in LCF

3.5 Birding Mechanism

AXIOM BINDINGS:

BIND = [ocF.[Maaatfs.
isect fa = (iseof aa = s,UU),
isparameter(fstof fa)=F (rmdot fa,rmdof aa,f{,MKBINDING(fstof fa,fstof aa,f,s)),UV]],

MKBINDING = [Afa aa fs.
isvarp{fa) = TYMATCH(ta,typolce,aa,f,s) =CREALOCIf,s,bindloc,namof fa,EXPRFORV(aa)),uu,
isvalp(fa) = ASSIGN(namof fa MEXPR(aa,f),f,CREAV(f,namosf fatypof fa,CRNTF(t,s)s)),
isfunp(fa) = TYMATCH(fa,typfunloc,aa,f,s) =
CREAF {f,namof fa,FUNCDEF(aa,f,s),typot fa,CRNTF{f,s),PFLINK(aa,f,s),s),Ul,
isprocp(fa)~» CREAP(f,namof fa,PROCDEF (aaf,s),PFLINK(aa,f,5),5),UU),

TYMATC! = [Afa loc aa f s. TYPEVAL(typof fa,CRNTF(f,s),s)=TYPEDEF {loc aa,pred f,s)],

TYPEVAL 2 [«F[An s,
isbasetype n = n,
isarspec n -» mkarspec(F(arlimof n,f,s),F(typelof nf,s)),
istyppart n = iseof n = n,ispair n = mkpair{F(fstof n,f,s),F(rmdof n,f,s)),UU,
ISLOCAL(typidloc n,s{f))=F(s(f,typidioc n)t,s),
istopf f = UU,F(n,CRNTF(t,s),5)]);

The Semantics of PASCAL in LCF 57

3.6 Evaluation of Expressions

AXIOM EXPRESSIONS:

MEXPR = [ocF.[r@ f 5.
isconst ¢ = MCONST e,
isvariable e = FETCHV(a,{,s),
isfundes @ — RETURN(succ f,MF(namof e,actargof e,f,s)),
isexpr e —isunary(opof e) = MOP1 (opof o,F (arglof e,f,s)),
isbinary (opof @)= MOP2(opof e,F(arglof e,f,s),F(arg2of e,4,8)),UU,ULY),

MF = [An a f. MFB(FUNCF AL(n,f),a,f,n)6MP(FUNCOEF (n,f),succ 1),

MFB = [Afa aa f n s.BIND(fa,an,succ ¢{,CREALOC(succ ftypeloc,FUNV,TYPEDEF (n,{,5),
MAKFRAME (FUNCBODY (n,f,s),PFLNK(n,f,s),suce f,5) N,

MBEXPR = [o«cF.[\e fs.
(e=irue)-TT,(e=false)-FF,
isbexpr @ —visbunary(bopof o) = MBOP1 (bopof e,F (barglof e,f,3)),
isbbinary (bopof e)-» MBOP2(bopof e,F(barglof e,f,s),F(barg? of e,f,8)),
isrelop(bopof @)-RELOP(bopof e,MEXPR(arg ! of o,f,5),MEXPR(arg2of e,{,s)),UU,uU}),

MCONST = [Ax.isconst x = numot x,UU),
MOPL = [kx.x=pplus-vkx.x,x-pminus-bkx.(e-x),xsplusl-»succ,x:minu:l-bprod,UU],
MBOP! 2 [Ax.xznoi=-UU),

MOP2 = [kx.x=plus-b!0,x=minu:-b!-,x=time:->!*,x=div->!/,x:rmdr-omod,UU],
MBOP2 = [Ax.xsand=!Ax=or-iv,Ul),
RELOP = [XX.xalsoq-vls,throq-\!2,x=lt-i!<,x=gt-v!>,x=eq-b!=,x=neq-¢/,UU];

The Semantics of PASCAL in LCF

3.7 Variables

AXIOM VARIABLES:

NAMOFVAR £ [Av.nsFUNV-UU,isname v=bv,isae v=snamof v,uu),
LOCOFVAR = [Av f sisname v=v,isae v=rarloc(namof v,VAL(subof v,f,s)),uUU},
TYPOFVAR = [Av f sisnamo v=>TYPEOF (v,{,3),isae v=typolof(TYPEOF (namof v,f,8)),Ul},
EXPRFORV 1 [Av f sisname v-iv,isae v-smkae(namof v,EXPRVAL(subof v)),Ul},
VARBNDTO = [Av f s.|SBND(NAMOFVAR v,f,s)-

ishame v = BVALOF{vf,s),

isae v = mkae(BVALOF (namof v,f,s),subof v).UU,v},

ISINTYPE s [Av val f s.ISLOCAL(typeloc NAMOFVAR(v)s(f); =
ISADMISVAL(TYPOFVAR(v,{,5),val(s)),FF),

ISADMISVAL = [Aty v.(ty=INT)=visint v,issublim ty=ISINBOUND(v,ty),uu},

ISINBOUND = [o«F.[Ax y.
iseof x =TT,
ispair x = F(fstof x,fstof y)AF(rmdof x,rmdof y),
isint x = issublim y=(x2numof(Ibof y))A(x¢numof(ubof y)),uu,uul],

VAL s [«F.[Apfs.
iseof p = EOF,
ispair p = mkpair(MEXPR(fstof p,f.8),F (rmdof p,f,s)),UU}]J,

EXPRVAL = [«F[rpfs.
iseof p = EOF,
ispair p = mkpair(mknumconst(MEXPR(frstof p.f.s)),F (rmdof p,f,s)),UU]J;

58

B — e . — =

The Semantics of PASCAL in LCF 59

3.8 The Lookup of the Store

AXIOM LOOKUP:

IBUFFER = [xs5.5(8 filcloc INP)),

OBUFFER = [xs.s{B, fileloc OUT)),

TEXT = [Mf s.s{f,textloe)),

PROCDEF = [An f s.FETCH{procloc n,f,s)),
FUNCDEF = [An f s FETCH({funcloc nf,s)),
TYPEDEF = [Aloc f s.FETCH(loc,f,5)),
PROCTXT = [An f s.texic!(PROCDEF(n,f,s))),
FUNCTXT = [An { s.textof (FUNCDEF(n,1,5))),
PROCFAL = [An f s.fargof (PROCOEF(n,f,s))),
FUNCFAL = [An f s.fargof(FUNCOEF (nf,s))),
PROCBODY = [An f s.statmof(PROCTXT{n,f,5))),
FUNCBODY = [An f s.statmof(FUNCTXT{n,f,s))),
PROCDECL = [An f s.declof(PROCTXT(n,t.5))],
FUNCDECL = [An f s.declof{FUNCTXT{(n,f,s))),

PFLNK = [An{s. FETCH(accInk n,f,s)),

NEWFP = [An f 5. ISBND(NANQFVAR v,f,s)= pred f,CRNTF(f,s)),

| CRNTF = [\ s. s{f,alnk)),

{ FETCH = [ocF.[Al f s.ISLOCAL(l,s(f))=s{t,1),istopf(f)=UU,F (I,CRNTF {1,5),5)]),

FETCHV = [oF.[An f s.ISLOCAL(typeloc NAMOFVAR(n),s{f))=
ISLOCAL(NAMOFVAR(n),s{f))=s(f,LOCOFVAR(n,f,5)),UU,
istopt(f)=UU,F (VARBNDTO(n,i,s),NEWFP(nf,5),5)]),

TYPEOF = [An i s.s{f,typeloc n)),
BVALQF = [An f s.s{f,bindloc n));

The Semantics of PASCAL in LCF 60

3.9 Updating and Miscellaneons Axioms

AXIOMm UF DATE:

STORE = [Af s loc val [Af1 11 «{>MODFRAME(s(t)Joc,val)s(f1}]),
MODFRAME = [Af loc val[aloc] loc] zloc=val f{loc)]),
MAKFRAME = [Atxt In f s.[Af].f1=f=>[Aloc] loc]=textioc—=txt,loc]=alnk - In,UNDEF),s(f1)]];

AXIOM FRAME:

frame = [xs f.s(1)),
istopf = [Af.(128));

AXIOM AUXSEM:

1® = [Af g rglfir)),

iD= [arx),

ISFUNFR = [ecF [Af & nf. ISLOCAL(FUNV,s(¢))- FF,pred fenf = TT,F(pred f,8,n1)]],

| ISLOCAL = [Aloc fr.fr{loc)=UNDEF-FF,TT),

ISPRESENT = [An fr.isname n=ISLOCAL(typidloc n,fr)vISLOCAL(typeloc nfriv
ISLOCAL (accink n,fr)VISLOCAL(bindioc n,fr),UU],

RETURN = [Xf 5.ISLOCAL(FUNV,s(f))=s(f,FUNV),UU],

ISBND = [An s f.ISLOCAL(bindloc n,s(t);

The Semantict of PASCAL in LCF 6l

APPENDIN ¢

Proof of the equivalence involving WHILE for goto-free programs

4.1 List of LCF commands

TRY 1 INDUCT -;
TRY 1 SPREF;

LAREL INDUCT;

TRY 2 SPREF;

USE GOTOF;

APPL - ,S,mrcmpnd(mkuhile(t,S),ES), {;
LAREL HELP;

SINPL - 8Y GOTOFI;
APPL . INOUCT,S,t,{;
SINPL -3

USE CONOL -;

APPL -,MBEXPR(t,{),S;
SIMPL -3

SSe+.HELP;

TRY SSUBST .MSFP 0ZC 3;
TRY ;0ED;

o}

& .

The Semantics of PASCAL in LCF 62
4.2 Printout of the proof
JTRY #1 ¥S t § . tsgototree(S) :: HK ' T(MBEXPR{Y, 1) ,M5(5, 1)) ¢ HS(mkempndimuhiie(t,5),ES), 1) INDUCT 331 «
| memmemmmcmmmmena-
} JTRY #1#1 ¥S t t . Isgotofree(S) :1 UUCMBEXPR(Y, () ,MS(S,1)) c MS(mrempndimeuhiie(t,5),ES), 1) SPREF.
| 1332 V¥S t t . 1sgototree(S) :: UUHBEXPR(1, 1),NS(5, 1)) « NS(mhcmpnd(m uhile(t,S) ,ES),) --- SPREF BY .

| JTRY #142 VS t t . isgotofree(S) 1: (at b LCONOC(t,beF (t,b), 1001 (MBEXPR(Y,), MS(S, 1)) ¢ NS (mhcmpnd(mkuhile(t~

,3),ES), 1) ¢+ ASSUME ¥S t t . isgotofree(S) :: FMBEXPR (1, #) ,MS(S, 1)) c HS(m.cmpnd (mkkhiie(t,S),ES), 1) SPRE~
fF. .

| 1333 ¥S t f . isgototree(S) :: F (MBEXPR (1, §),M5(5,1)) ¢ MS(mrempnd (mkuhite(1,5) ES), 1) (333) --- ASSUNE.

| 1334 isgototrea(S) a TT (334) --- SASSUHE.

| 1338 Y¥S P f . 1sgotofreet3) 11 tsgototres(P) 11 M5(append(3,P), 1) = MS(S,HeNS(P, 1) --- USE GOTOF,

| 1336 {AS P { .isgotofres(S)+tisgototree (P)aNS (append(S,P), 1), U, UUT(S, B cmpnd (mh.uhiie(t,S),ES), 1) B (AS P ~
t .isgo!olru(S)-o(isqo!olru(P)-o(HS(S,!)uHS(P,O)),UU),UUl (S,mkempnd (mrwhite (1,5),ES), 1) -== APPL 33S S mkempnd~
tmkubhile(t,5),ES) t.

| 1337 HS(appendi53,miipndimiahlic(,8),E8)),1) = MSAS, DS (mh emond (mkuh i le(t,S) ,ES), 1) (334) --- SIMPL 336«
BY 33 GOTOFL .

| 1373 (AS t f .1sgotofree(S)+F (MBEXPR(1, 1) ,NS(5,1)),UUL(S,1,§) ¢ (AS t f .isgotofree (5)NS (mkempnd (mh.white{t~
,$),E5),), UUI (S, 1,) (333) --- APPL 333 5 t 1,

| 1339 F(MBEXPRt1,1),MS(S, 1)) ¢ NS {mkcmpnd(mruhile(t,5),ES}, 1) (333 334) --- STHPL 338 BY 334 .

| 1368 VT S1 . CONO(T,MS(SI,U)&F (HBEXPR(1,§),NS(S, 11),10) c CONO(T,MS(S1. 1)eHS (mkempnd (mb uhiTe (1,5) ,ES), 1), 10~
) (333 334) --- USE CONOI 338.

| 1341 (AT 51 .CONO(T,N5(31,)sF (HBEXPR(t, 1) HS(S,§)),10)) (MBEXPRIt, §),5) ¢ (AT S1 .CONO(T,NS(SI, t)eNS (mkempn~
dimcuhilet,5),E5),1),100) (MBEXPR(t, 1),5) (335> 334) --- APPL 340 NPEXPR(1, 1) S,

| |362 CONO (MREXPR (1, 1), MS (5, t)=F (HBEXPR(t, 1) NMS(S, §)),10) c COND(MBEXPR(t, 1), NS (S, #)=0iS (m cmpnd (mbihite (1,5)~
LES), 1), 10) (333 334) --- SIMPL 341,

I
| | ITRY #1#42#1 COND(HBEXPR(t, 1) M3 (5, f1sF (MBEXPR(Y, 1), HS(S, 1)), 10) « HS (mkempnd (mb whi e (1,5) ,ES),) SSUB~
ST 320 OCC 3.

I
| 1| |TRY #142#4141 CONO(MBEXPR (1, 1),HS (5, 1) wF (MBEXPR(t, 1), MS(5,1)),'0) ¢ COND(MBEXPR(t, 1),NS5(S, t)=:MS (mhcmpnd~
(mkwhile(t,5),ES),1),10)

o
|343 COND(MBEXPR(1,§),HS(S, t)uF (MBEXPR(t, #),15(S,1)),10) c N5(mkempnd(mkwhile(1,S),ES), #) (333 334) -wu ~

SSURST 342 USING 320 OCC 3.

R e aa— :
| 1346 VS t t . isgototres(S) :: (At b LCONO(t,bxfF (1,b),100) (MBEXPR(t, t) ,MS(S,§)) c MS(mhcmpnd (miubiie(1,S5) E~

$),1) (333) --- SPREF 343.

|
365 VS t f . isgotofree(S) :: HHILE(MBEXPR(1,1),N5(S,1)) c MS(mhcmpnd(mkuhile(1,5),ES),) --- INDUCT 332 3«
44,

e G, | kbl

The Semantics of PASCAL in LCF 63

APPENDIX 5

Proof of the equivalence involving REPEAT for goto-free programs

5.1 List of LCF commands

TRY 1 INOUCT -
TRY 1 SPREF;

LABEL INDUCT; v
TRY 2 SPREF; : .
USE GOTOF;

APPL - ,S5,mkempnd(mkcond (mkbexprl(not,t),mkrepeat (S, t),ES) ES),f

LABEL HELP;

SINPL - BY GOTOFI;

APPL . IWDUCT,S, t,

SIMPL -3

USE CONDY -3

RPPL -,MBEXPR (mkbexprl(not,t),),S;

SINPL -3 1
SS+.HELP;

TRY SSUBST .MSFP OCC 3;
TRY SSUBST .MSFP OCC 4,
TRY ;QED;

-

L
P

S R L

The Semantics of PASCAL in LCF 64

5.2 Printout of the proof

|TRY #1 ¥S t { . isqotofree(S) :: REPERT(HS(S, () ,MBEXPR (mkbexprl(not,t),1)) c MS(mkecmpnd (mirepeat(S,1) ES) 1)~
INCUCT 331 .

| ITRY #141 ¥S t { , 1sgotofree(S) :: UU(NS(S, () ,MBEXPR (mbexprlinot,), 1)) c MS(mrcmpnd (mcrepeat (S, 1) ,E5), {1
SPREF.

] 1332 ¥S t { . isqgotofree(S) :: UUCHS(S, () ,HBEXPR(mkbaxprlinot,t), 1)) c NS (mkcmpnd (mkrepeat(S,t) ,ES), () c—n

- SPREF BY .

| |TRY #142 ¥S t { . isgotofree(S) :: JAab t .beCDND(t,F(b,1),)D)) #1S(S,) HBEXPR (mkbexprl(not,t), f)) ¢ MS(mkew
mpnd (mkrepeat (5,1) ,ES),) 1 ASSUME ¥S t f . isqotofree(S) :: F(MS(S,f) ,MBEXPR (mkbexprl(not,t), 1)) ¢ MS(mkempnd~
(mkrepeat (S,1),ES), 1) SPREF,

] 1333 ¥S t . isyotofree.5) :: F(MS(S,+), MBEXPR (mkbexprlinot,t),{)) c MS(mkempnd(mkrepeat(S,t) ,ES), 1) (333~
) ==~ ASSUME.

| 1334 isqgotofree(S) = TT (334) --- SASSUME.

] 1335 YS P { . isgotofree(S) :: isyotofree(P) :: NS(append(S,P) §) & MS(S,)saNS(P, () --- USE GOTOF.

| 1336 JAS P { .isyotofree(S)+(isgotofree(P).lS(append(S,P), 1) UUI,UU) (S, mkempnd (mkcond (mkbexpri (not, t) ,mkrep~
eat (S, 1) ,ES),ES), 1) = IS P { .isgotofreo(5)(isqgotofree(P)«(MS(S, I&MS(P, 1)) ,UU),UU) (S, mb cmpnd (mb cond (mkbexpr] (~
not,t),mkrepeat(S,t) ,ES),ES), 1) --= APPL 335 S mkcmpnd (mkcond(mbexprl(not,t) ,mk-opoat(S,1) ,ES),ES) f,

| 1337 MS (append (S, mk cmpnd (mk cond (m baxprl(not, t) ,mrepaat (S, 1) ,ES),ES)), §) & MS(S,) N3 (m.cmpnd (mkcond (mkbex~
pritnot,t) mirepeat(S,1),ES) ES), 1) (334) --- SIHPL 336 BY 334 GDTDFI .

| 1338 JAS t f .isgotofrea(S)-F (NS(S, 1) MBEXPR (mbevprl(not, 1), §)),UUJ(S,t,§) ¢ [AS t { .isgotofree(S) NS (mic~
mpnd (mkrepeat(S,) ,ES),), UU) (S, t,§) (333) --- APPL 333 S t (.

| 1339 F(NS(S, {) ,HBEXPR (mh bawprl(not, 1), 1)) ¢ HS(m cmpnd (mirepeat (5,1),ES), 1) (333 334) --- SIHPL 338 BY 334~
| 1340 ¥T SI . MS(S1,)«COND(T,F (MS(S, 1), IIBEXPR(m hexprl(not, 1), 1)), 1D) ¢ NS(S1,) =CONO (T, NS (m cmprd (nk repeat~
(5,1),ES), 0,100 (333 334) --- USE CONOL 339,

| 1341 IAT S1 .HS(S1,)=COND(T,F (HS(S,), IBEXPR (m.bexprl(not, 1), §)),10)) (MBEXPR (mkbexprl(not,t),1),5) ¢ JAT S~
1 .MS5(S1,)«COND (T, 1S (mkcmpnd (mk repoat (S, 1) ,ES), §),10)) (NBEXPR(mkbosprl(not,1),1),S) (333 334) --- APPL 340 MBE~
XPR (mkbexprl(not,t), 1) S,

| |342 MS (S, 1) CDND (HBEXPR (mkboxprl (not, t', §) ,F (MS(S, #) NBEXPR (mkbaxprl(no*, 1), 1)) ,)D) c MS(S,) «COND (MBEXPR (~
mkbexpritnot,t), 1) HS(mkcmpnd (mkrepeat(S,t) ,ES),§),10) (333 334) --- SINPL 341,

| | =memmmmmmmmccc e

| | ITRY 414241 1S(S, 1) «COND (HBEXPR (m bexprl(not,t),) ,F (HS(S, {) MBEXPR (mkbexprl(not,t),)),10) ¢ MS(mkempnd (~
mkrepoat (S,t) ,ES), §) SSUBST 320 DCC 3.

[|| ==mmmmmmmssommneeees

| | | ITRY #142#4141 HS(S,')uCOND(ﬁBEXPR(mibovprl(nol,l),U,F(NS(S,'),ﬁBEXPR(mkbexprl(not,1),')),]0) c MS(S,)~
«MS (mkcmpnd (mkcond (mkbexprl (not, t) mkrepeat (5,1),ES),ES), §) SSUBST 32D DCC 4.

|||] memmmmmmmmmamaoaneee

] 1| | ITRY 2142414141 1S(S, {)=COND (MBEXPR (mkbexprl(not, 1), 1) ,F (MS(S, 1) ,MBEXPR (mkbexprl(not,t),1)),)0) ¢ HS(~
S, 1) =COND (MBEXPR (m bexprl (not, 1), 1) 1S (mk cmpnd (mkrepeat (S, 1) ,ES), 1), 1D) .

| | | | =emememmmemnnnnnnnae :

§ 1 | |33 1S(S,{)«CDND(MBEXPR (mkbexprl(not, 1), 1) ,F (HS(S,) ,HBEXPR (mrbexprl (not, 1), 1)) ,10) ¢ MS(S, #) NS (mkemp~
nd fmkcond (mvbexprlfnot, t) mkrepeat (S, 1) ES),ES), 1) (333 334) --- SSUBST 342 USING 32D OCC 4.

| |] =mmmmmmomeocooooaaae

| | 1364 MS(S,{)«CDND(MBEXPR (mkinaxprl(not, t),), F(HS(S, {) HBEXPR (mkbexprl(not, 1), 1)) ,)D) ¢ NS (mkempnd (mbrepea~
1(S,1),ES), 1) (333 334) --- SSUBST 343 USING 328 DCC 3.

|] -mmmmmmemmeoooomnee

| 3¢5 VS t { . 1sgotofree(S) it Jab t .buCOND(1,F (b, 1), 10)] (MS(S,) MBEXPR (m hexprl(not, t), 1)) ¢ MS(mkempnd (~
merepeat (S5, 1) ,ES),) (333) --- SPREF 346.

| P Y R

1346 ¥S t f . 1sgotofree(S) 1: REPERT(M5(5, () MBEXPR (mkbexprlinot, 1), {.) c HS(mcmpnd (mkrepeat(S,t),E5),) -
--= INOUCT 332 345.

The Senmantics of PASCAL in LCF

APPENDIX 6

Proof of the equivalence involving FORTO for goto-free programs

6.1 List of LCF commands

TRY 1 INOUCT -y
TRY 1 SPREF;

LABEL INDUCT;

TRY 2 SPPTF;

USE GOTGF;

RPPL - ,S,mrcmpnd(mkforto{i,mkexpri(plusl,i),e2,5),ES) ,{;
LAREL HELP;

SIMPL -

APPL .INDUCT,S,i,mrerpri(piuslt,i),e2,(;

SIMPL -3

USE CONDY -

APPL - ,MBEXPR(mkre| (1saq,e,e2),1),5,ASSICN (i MEXPR (e,), 1) ;
SINPL -;

SS+. HELP;

TRY SSURST .MSFP OCC 3;
TRY ;Q€ED;

The Semantics of PASCAL in LCF 66
6.2 Printout of the proof
JTRY #1 ¥S 1 el 2 f . 1sgotofree(S) :: FORTOf1,el1,02,M5(5,8),#) ¢ NS(mrcmpnd (mkforto(i,el,e2,5),E5),) I~
NDUCT 304 .
| |TRY #1#1 ¥S i el @2 . isgotofroe(S) 11 UUli,el,02,1H5(5,6),1) c HS(mcmpnd(mkiforto(i,el,e2,5) ,ES), 1) ~
SPREF.
] 1305 VS 1 el €2 f . isgotofree(S) :: UUCi,el,e2,NS5(5,0),1) c MS(mkecmpnd(mkforto(i,el,e2,5),E5), 1) --= SPRw~
EF BY .

| |TRY #1#2 VS 1 & @2 f . 1sgotofreefS) t: (Ai e @2 b .CDND(NBEXPR(mkroI(iuq,o,eZ),H,(RSSIGN!;,HEXPR(Q,H..
,) wb)eF Ci meexprl(plusl,i),e2,b,),1001(1,0,02,M5(5,4),¢) c MSUmcmpnd(mkfortofi,e,e2,3) ,ES),f) 1 ASSUME VS i~
e e2 | . isgotofree(S) :: Fli,e,02,M5(5,1),1) c NSfmkecmpnd (mrfortoli,e, e2,5),ES),1) SPREF.

] 1306 YS i e #2 f . isgotofree!S) :: F(1,0,02,15(5,6),4) c MS(mkcmpnd(rk forto(i,e,e2,5),ES),4) (306) --- AS~
SUME.

| }307 1sgotofres(S) = TT (307) --- SASSUME.

| 1308 VYS P . 1sgotofres(S) :: isgotofrea(P) :: MS(append(5,P), 1) & NS(S,HIMSHP,) --- USE GDTDF,

} 1309 (AS P f .isqgotofree(S)«(isqotofree (P)lS (append(S,P),), UU),UU] (S, mycmpnd (mb forto (1, mhexpri(plusl,), e~
2,5),E5),6) = (NS P # .isqotofree(S)+(isgotofree(P)«(MS(S,)«NS(P, £)),UU),UU] IS, miecmpnd (m forto (i, mrexprlipiusl,~
1),e2,5) ,ES),#) ——- APPL 308 S micmpndimk forto (i, mravprliplusl,),e2,5) ,ES) f,

| 1318 HS(append (5, m cmpnd (mk for to (i, masprliplusl,1),02,5),E5)),6) = MS(S, I&M5 (mkcmpnd (mb forto (i, mhexprl(pin
usl,1),22,5),ES),4) (307) --- SINPL 309 BY 307 GDTOF1 .

| 1311 [AS 1+ o €2 f .1sgotofrea(S)aFfy,0,e2,1S(5,6),) UUI(S, 1 merprliplusl,1),e2,f) ¢ (AS | e el 18gotofs
ree(5) NS fmv cmpnd fmk forto(1,e,e2,5) ,ES), £),UUI (S, 1 ,mespritplusl, 1), e2,f) (306) --- APPL 306 S 1 mkesprliplusl,~
1) e2 .

| }312 Fti,mberpriiplusl,1),e2,115(5,4),¢) c HS(mkcmpnd(m forto(i,mesprliplusl,i),e2,5) ES), 1) (306 307) ---w
SIMPL 311 BY 307 .

] 1313 YT S1 H . COND(T, (HsMS (S}, #))«F (i, mkexprl(plusl,1),e2,M5(S,£),4) 1D) ¢ COND (T, He(NMS(S1, §)&MS (b cmpnd (ma
sfortoli,mrexprl(plusl,1),e2,5) ,ES),4)),ID) (306 307) --- USE CONDI 312.

| 1314 (AT S1 H .COND(T, (HsHS(S1,#))4f G mkesprl(plus], 1),42,05(S,6),0), 1DV] (HBEXPR(mb rel (Iseq,0,e2),).5,RSS~
IGNf1 ,MEXPR (e, #),4)) c (AT S1 H .COND(T, Hx(RS(5L, H)uhS tmicmpnd (mk for to {1, miexprl(plusl, 1),82,5) ES), $)),10)) (MBE~
XPRimirel(lsaq,a,e2),1),5,ASSIGN (1, HEXPR (e, 1), 1)) (306 307) --- APPL 313 MBEXPR(mirol(lIscqy,e,e2),4) S RSSIGN((,~
HEXPR (s, 1), 1),

| 1315 COND(MBEXPR(mrreifiseq,0,82),1), (RSSIGN (i, HEXPR (e, #),1)sNS(5, £))«F (o, mhevpri(plusl, i), e2 NS4S, 4),4), 10~
) ¢ COND(HBEXPRimirel(iseq,e,e2),f),RSSIGN (1, MEXPR (e,), £)=(NS(S, #)sNS (mkcmpnd (mk forto (1, mkexprl(plus]l,),e2,5),~
£S),6)),1D0) (306 307) --- SIMPL 314,

| | =mommmmoemoonoooae

} | ITRY #1#241 COND(MBEXPR(miroi(lzaq,0,02),1), (RSSIGN (i, HEXPR(e,), f)&NS(S, f))eF (1 mkexpri(plusl,i), e2,MS (5.
L0, 0,10 ¢ NS (mempna(mk fortoli,e,e2,5),ES), 1) SSUBST 293 0CC 3.

| | | =-ec-emevccccccannea

I 1 | ITRY #142#141 COND(MBEXPR(mkrel(Iseq,e,02),), (RSSIGN(i ,MFXPRfe,), £)&HS (S, #))sF (1 mrexprl(piusl,i), e2,+~
MS(S,#),6),10) c COND(MBEXPR(mire! (Iseq,e,02),f),ASSIGN (i MEXPR(a, 1), H)(MSIS, £) S tmrcmpnd (mk forto (i, mkexpr](pl~
usl,1),e2,5),E9), 1), 1D .

||| =mmmemmmmocmneaeas

| | |316 COND(MBEXPR(mrrel(lseq,e,e2), "), (RSSIGN (1 HEXPR(e,), f)sMS(S,) uF (i mevpriiplusl,+) a2, M55,), §),~
10) ¢ HStmycmpnd(myfortofi,e,e2,5) ,E5),§) (306 307) --- SSUBST 315 USING 293 DCC 3.

| | commmmmmmmcceeen

| 1317 ¥S 1+ e @2 f . 1sgotofrea(S) :: Ini o €2 b § ,COND(MBEXPR(miral(lseq,n,¢2),f), (ASSIGN (1 MEXPR (a,), f)ab~
YeoF £0 ,mraxprliplusl, 1) ,e2,b, 60,1001 (1,0,02,05(3,),6) ¢ MS(mbcmpndint fortoli,e,e2,5) ,ES),) (306) --- SPREF 316~
IS N

1318 V5 1 el @2 f . 1sgotofree(5) :: FORTDfi,el,e2,NS(5,1),f) c M3(m cmpnd(m¥ forto(i,el,e2,5) ES)) —== [N~
OUCT 305 317.

B A s o it b T R R A e o S N T VI S T S W TR TN 1 VL v

The Semantics of PASCAL in LCF 67

APPENDIX 7 2)

Proof of the goto-free factorial program .

: 7.1 List of LCF commands

$S¢ .APPLY, .FUNCT, .PRSCAL, .1P, .FUNCCONP, . 1D, .OP,.SP, . HD; |
TRY SIHPL;
TRY INDUCT .WHILE; l

TRY 1 SPREF;
$S + .COND; SS - .SP;
LABEL INDUCT;

TRY 2 SPREF;

LABEL L1 --;

TRY CASES =(ned);

TRY 3 SInPL;
TRY 2;

USE RRITHL .L1 ,-
QED -3

TRY { SIMPL;

RAPPL .INDUCT,pred n,xen;
SIMPL -;

TRY ; QED;

The Semantics of PASCAL in LCF 68

7.2 Printout of the proof

|TRY #1 V¥n x . isnatin) :: isnatix) :: APPLY(FRACTORIAL,n,x) c FRCT(n,x) SineL,

|

[|TRY #1#1 ¥n » . isnat{n) :: ismat(x) :: RESULT(HRITE (n1,0,MHILE (MBEXPR (test,0) ,HS (body,0) ,READ (nl,0,READ (n~
2.8, LREAVIO, n2, INT,0,CREAV(D, n1, INT, 0, FRANEG (FACTORIAL , INPUT(LIST (n,x)) ,EOF)))))))) ¢ FRCT(n,x) INDUCT 314 .

e

[| ITRY #1#1#1 ¥n x . isnatin) t: ismat(x) s: RESULT(HRITE (nl,0,UU(MBEXPR (test,0) 1S (body,8) ,READ (n1, 0, READ (~
n2.0,CREAV(0,n2, INT,8,CREAV(D, nl, INT, 3, FRANEQ (FRCTORIAL , INPUT(LIST (n, %)) ,EOF)))))))) ¢ FACT(n,x) SPREF.

|1 318 V¥nx . isnatn) :: isnat(x) :: RESULT(HRITE(nl,0,UU (MBEXPR (test,0) NS (body,0) ,READ (n1,0, READ (n2, 8, CR~
EAV(8,n2, INT,0,CREAV(J,nl, INT,0,FRAMES (FACTORIAL, INPUT(LIST(n,x)) ,EOF)))))))) € FACT(n,x) --- SPREF BY TH8 THE.

: | |TRY #1#1#2 V¥n » . isnat(n) :: isnat(>) :: RESULT(HRITE(n1,0, (At b .COND(t,h«F (t,b),1D)] (HBEXPR(test,d) M+
5 (body, 0) ,READ (nl,0,READ(n2, 8, CREAV (B, n2, INT, 8, CREAV(O,nl, INT,0,FRANED (FACTORIAL , INPUT(LIST (n,x)) ,EOF))))1))) ¢ ~
FACT(n,») : ASSUME ¥n x . isnat(n) :: ‘snat(x) :: RESULTC(RITE(nl,0,F (MBEXPR (test,08),HS (hody,0) ,RERD(n1,8,READ~
(n.0,CREAV(@,n2, INT,0,CREAV(D, n1, INT, 0, FRANEQ (FACTORIAL , INPUT (LIST (n,x)) ,EOF)))))))) ¢ FACT(n,x) SPREF.

{1 1319 Vn x . isnat(n) :: isnat(x) :: RESULTCIRITE (nl,0,F {BEXPR(test,0) NS (hody,0) ,READ (n1,0,READ(nZ, 0, CRE~
RV (0,12, INT,0,CREAV(8,nl, INT,0,FRANED(FACTORIAL, INPUT(LIST(n,x)) ,EOF)))3)))) c FACT(n,x) (319) --- ASSUHME.

| | 1320 isnat(n) = TT (320) --- SASSUME.

[i 1321 ismatGo = TT (321) -—- SASSUME.

O e g

U | | ITRY #1#1#28) RESULT(URITE (nl,0,~(n=0) F (HBEXPR (test,0) 1S thow 3),MS thody, 0, FRAMEL(SP,n,x))) ,FRANEL (SP
.n,x))) ¢ FACT(n,x) CRSES ~(n=@).

B R B ol e
| | ITRY #1#1#24143 RESULTCGIRITE (n1,8,~(n=8) +F (HBEXPR (test,0) ™S (body,0),HS (body,0,FRAHEL(SP,n,x))) FRANE
n,x))) ¢ FACT(n,») : SASSUME ~(n=0) = FF SInPL.

{1 1322 ~(n=8) = FF (322) --- SASSUME.

{ | 1323 RESULTCIRITE(n1,0,~(n=0)F (MBEXPR (test,0) NS (body,0) NS thody, 0, FRANEL (SP,n,x))) ,FRANEL (SP,n,x)))~
ACT(n,x) (321 322) --- SIMPL BY 321 322 LH4.

|

|
|
n

|TRY #141424142 RESULT(HRITE (n1,0,~(n=8) +F (NBEXPR (1est,0) NS (body,8) ,HS (body, 8, FRAMEL (SP,n,x))) ,FRAME~
1)) ¢ FACT(n,x) : SASSUNE =(n=0) = W .

[326 -~(n=8) = UU (324) --- SASSUMNE.

}325 TT = UU (320 324) --- USE ARITHI 320 324.

132 TT = WU (320 324) --- INCL 325.

|
| |TRY #1#1420181 RESULT(URITE (n1,0,~(n=8)+F (MBEXPR (test,0) N5 (hody,0) ,HS (hody, 8,FRANEL (SP,n,x))), FRANE~
x))) e FACT(n,x) : SRSSUME =(n=0) = TT SInPL.
| 1327 ~(n=0) = TT (327) --- SASSUME.
| 1328 [An » .isnat(n)=liznat (x)+RESULT(WRITE (nl,0,F (MBEXPR (test,0) MS (body,0) ,READ (n1,0,READ (n2,0,CREA~
Vi@, n2, INT,0,CREAV(0,nl, INT,8,FRANED (FRCTORIAL,, INPUTI(LIST(n,»)) ,EQF)))3)))),UU) ,UU) (pred(n) ,xin) ¢ [An x .isnat(~
Al ationat GO =FACT (o, x) ,UU) ,UU) (predin) .+ :n) (319) -—- APPL 319 pred(n) x:n.

L0 0| 1323 PESULTUIRITE (n1,0,F (MBEYPP (1e51,08) M5 (hody,0) ,FRANEL(SP, pred(n) ,x:in)))) ¢ FACT(n,x) (319 320 32~
1 327) --- SIMPL 328 BY 320 321 327 LML ARITH2 ARITH3 ARITH&.
| | scemsmemacscaccccan=
| | |TRY & #1 RESULT CLIRITE (nl,0,F (MBEXPR(test,0) NS (body,0) ,FRANEL(SP,pred(n),«:n)))) ¢ FACT(n,x).

—— T e e — ———

| -

| | | | esemeereccececccenn=

| |] 1330 RESULT(HRITE (n],0,~(n=0)F (MBEXPR (te5t,0),HS (hody,0) ,H5 thody, 8, FRANEL (SP,n,x))) ,FRANEL (5P, n,x)))~
FRCT(n,») (319 320 321 327) --- SINPL 329 BY 321 327 LM2.

|| | cmmmmmmmmmmmnnennann

| | 1331 RESULTGIRITE (nl,0,~(n=0)<F (NBEAPR (test,0) 1S tbody, 0) , NS tbody, 0, FRANEL (SP,n,x))) FRAMEL (SP,n,x))) c~
ACT(n,») (319 320 321) --- CASES ~(n=0) 330 326 323.

B i it

i1 1332 ¥n ox . iznatin) :: ismat(x) :: RESULTUIRITE(n1,0, (At b .CONDCt, beF (t,b), 10)) (HBEXPR (test,B) 15 (body, ~
8),RERD(nl,F,FERD(nZ,(’,CRERV(B,nE,lNT,ﬂ,CREﬂ\'(B,hl.IN!,B,FRRHEB(FRCTO’”“L,lNPUf(LlST(n,K)),EUF)))))H) ¢ FRCT(n,~
+) (319) --- SPREF 231 BY 227 288 251 320 321 LM3 LN1.

{1333 W ox . isnat(n) :: ismat(x) :: RESULT(MRITE(nl,0,UHILE (NREXPR (test,0) NS (hody,0) ,RERD(ni,0,READ (n2,0,C~
ReAV (0, n2, INT,8,CRERVAD, nl, INT,,FRANED (FACTORIAL , INPUT(LIST(n,x)) ,EOF)1)))))) € FACT(n,x) --- INDUCT 318 332.

|
!
|
<
|
|
F
I

13346 ¥n x . isnatin) :: isnat(x) :: APPLY (FACTORIAL ,n,») c FACT(n,x) --- SINPL 333 BY 207 208 210 214 280 2«
64 3be 306 307 318 311 316 TH13 THIS THIO THI2 THI1 THS TH14 TH2 TH? TH3 THI.

| t el
h‘m SR RS SRS S TN i ENIOPE IR PR

L e e s ek B T i -

N AT EREA Ip e TR mpe, SRR . Gy ——

The Semantics of PASCAL in LCF

APPENDIX 8

Proof of the McCarthy Airline Reservation System

8.1 List of LCF commands

S5+ .APPLY, .FUNCT, .PASCAL,.FUNCCONP, .NP, . SP;
TRY SINPL;
TRY INDUCT .REPERT;
TRY | SPREF;
TRY CASES -~(elltisqled);
TRY 3 SIHPL;
TRY 2:; USE ARITHL -, --=-euu; QED;
TRY | SIMPL,
LABEL INDUCT;
TRY & SPREF;
TRY CASES ~(ell(isq)=d);
TRY 3 SINPL;
TRY 2; USE ARITHL -,-me-emwj QED;
SS+ .COND, .10;
TRY 1 SIhPL;

APPL . INOUCT, tait]l 1sq,mkpair(stupdtlisa,p,q),0sq),stupdtlisq,p,q),wlupétlisa,p,q);

SIMPL ~;
TRY; QEO;

_———— - i e e

69

The Semantics of PASCAL in LCF 20

8.2 Printout of the proof

jTRY 41 Yisq 05q p q . Isufsqlizg) 12 isufoslosq) i isint(p) :t 1sintlq) it APPLY (McCARTHY,p,q,15q9,05q) ¢ BO~
OrING (p,q, isq,054) SIMPL.

T a— Y -

| |TRY #1#1 VYisq osq p q . isuisqliza) :: isufoslosq) :i isunt(p) i: isin(l(q) :: OUTPUT(-(MEXPR(rq.0,NS (BOOY,~
0,READ (st,8,READ (w1, 0,FRAMEL (p,«, 154,05q)))))a3) «REPEAT (NS (BOOY, 8) ,1BEXPR (mkbexpr 1 (not, mrol (eq,rq,m numconst (3)~
y),8),0,15(R00Y,0,RERD (s t,8,RERD(w1,8,FRANEL (p, 4, 159,05q))))), NS (BODY,0,READ (51,8 ,RERD (w1, 0,FRANEL (p, 4, 159,05q)) ~
1)) ¢ BOOY ING(p,q,1s1,05q) INGUCT 3088 .

| | —--o-cmmmmemmm——a—-

{ | |TRY #1#1#1 Visq osq p q . 'sufsqlisg) i isufoslosq) it isint(p) 12 isint(q) :: QUTPUT(S(MEXPR(rq,0,MS (B~
00Y,8,READ(st,8,READ (W1, 8, FRANEL (p, ¢, 154,024))))) e 3)-UU (NS (RODY, B) , MBEXPR (mbexprl(not,mire ! leq,rq,m numconst (3) ~
)),ﬂ),B,HS(BBBY,B,RERB(st.ﬂ,RERﬂ(ul,O,FRRHEI(|),q,lsq.osq))))),HS(BﬂOY,ﬂ,REﬂO(sQ,ﬂ,RERB(ul,O,FRRNEl(p,((,|5q_°5q)).
1)) ¢ BROON XNG(p,q, 15q,05q) SPREF,
| | 1335 isuwisntisq) = TT (335} --- SASSUME.

| 1336 1zulostosq) = TT (336) --- SASSUNE,

| 1337 1sint(p) = TT (337) --- SATSUME.

| 1338 isintiq) = TT (338) --- SASSUHE.

R e

|

|
|
|

|
|
|
|
| | |TRY #1#121#1 OUTPUT(~(ell (15q)=3)-UU,NS(BOOY,D,FRANEZ (p,q, 15q,08q))) c LOONING(p,q, 1sq,03q) CASES ~
~(elllisq)=z3).

|

'
| | |TRY #1#14(81#3 OUTPUT (~(ell(1sq)=3) YU, NS (BOOY,D,FRANEZ(p,q, 150,05q))) ¢ BOOLING(p,q,1sq9,05q9) : SASS~
UNE ~(elllisq?=3) = FF SINPL.
| 11 1339 =(elltism=3) £ FF (339) - SASSUME.
| | | |34 DUTPUT (~(m 1] (1sq) =3) UL, NS (BOOY,0,FRANE2 (p,q, 1509,039))) ¢ BOOKING(p,q, 1sq,08q) (335 330 337 338~
339) --- SIMPL BY 335 336 337 338 339 Ln3.
1
| | | ITRY #lal2lale2 DUTPUT (=~(ell(15q)=3) VU, NS (BOOY,0,FRANE2 (p,q,15q,08¢))) ¢ BOON ING(p,q, 15q,05q) ¢ SASS~
E .~telllisg)=3) = W .
| 1241 ~(elllisg)=3) =z UU (341) --- SRSSUME.
| 1362 TT s UU (335 341) --- USE ARITH! 341 335.

Ul

(
|
|
|
|
|
"
|
f
|
|
f

|
|
|
[

| | |TRY #1#141#141 OUTPUT(~(ell(isq)=3)+UU, NS (BOOY,0,FRANE2(p,q, isa,0sq))) ¢ BOOI iNG(p,q, 1sq,05q) : SRSS«~

UME ~(efllisqled) = TT SINPL,
| 1343 -telllisg)=d) 5 TT (343) --~ SASSUME.
Y

| ¥

R E DUTPUT (= (e 1§ (18¢)=3) LU, NS (BOOY,D,FRAME2 (p. 7, 18¢,e59))) < BOOLINC ‘p,a,1sq,05¢) (343) ~-a SIMPL ~
BY 343 THG.

TR RS T e

| | | 1345 DUTPUT (= (n 1] (1sq) =3)aUU,115(RODY,0,FRAMEZ (r g, 15¢,053q))) ¢ BOOKING(p,q, 15q,05q) (335 336 337 338) «~
—e= CASES =lelltisq)=3) 344 342 340.

| | | —mmmmmmmmemmmmnmees

| | 1346 VYisq ozq p q . rsufsqlisq) 2 rewloslosq) it asintip) :: asint(g) :: OUTPUT(~(MEXPR(rq,0,MS(BOOY,0, R~
ERD(=t,8,READ (1,0, FRANC L (p,a. 15a,054))))) =) ~UU(MS(RODY, 0) MIBEXPR (mi havprl(not,mrel (ny,rq,m numcons113))),0) ,0~
_HS(ROOV,O.REQB(-,l,O,REDO(uI,O,FRQNU(p,q.usq,osq))))),HS(BOOY,O,REHB(S!.B.REﬂﬂ(ul,O,FRnHEl(p,q.|sq,osq))))) c Be
00 1hG tp,q, 129,032q) --- SPREF 345 RY 335 336 337 338 LM9 Ln2.

| | |TRY #14142 VYisq osq p g . 1sulaglisq) :: isuloslosq) @3 1sant(p) ttoasand () 12 DUTPUT (< (NEXPR (rep, 0, M5 (A~
ODY,0,READ (=t,0,READ (w1}, 0,FRANEL(p,q, 15,5020)e3)o (a8 T 1 B<CONO(T,F(B,T,1), 10V (NS (RODY, D) ,HREXPR (b bexprl (~
not,mtrnl(oq,rq,mtnumcon;t(3))),0),B,MS(PGOY,O,REGO(s\.ﬂ,REGO(ul,O,FRﬂl‘lEl(p,q,lsq,osq))))),HS(BBOY,B,REGO(sQ,B,R~
EPS (!, 0,FRAMEL (p, ¢, 13q,08q))))) < BROOI ING(p,q, 15q,030) : ASSUNE Yisqosqpq . isuisqli~
sq) :: iswfoslosq) :: isint(p) it asint(m) iy OBUTPUT(~(MEXPR(rq,0,NS(ROOY,0,RERD(s1,0,RERD (w1, 8, FRAMEL (p~
_q,isq|osq))))):3)-F(NS(RBOY,B),I‘I[’.E)’PR(mIbe';prl(nol,mwel(eq,rq,mrnumcons((3))),0),0,HS(BOBY,0,REQO(st,ﬂ_REQO(u|.,
,0,FRAMEL (p,q, 150,0354))))) H5(BOOY,8,READ(st,8,RERD (W1, 0,FRANEL (p,q, iza,02q))))) ¢ BBONING (p,q, 15q,024) SPRE~
F.

| | |367 ¥isq ozq p q . 1suisqlisq) o asulos(osq) i asint{p) i isint(q) i3 OUTPUT (~(MEXPR (14, 0,HS (ROOY, 0, R~
EAB (1,0, READ (1, 0,FRANEL (p,q, 156,050)))))1=3) +F (NS (RODY, 8) , MDEXPR (m berprl(not,mral (eq,rq,m numconsi (3))),8),0,~
M5 (R00Y,0,READ (st,0,READ (w1, 8,FRANEL (p,q, 15q,030))))) M5 (BOBY,8,RERD (st,0,READ (w1, 0,FRRIE (p,q,159,0592)))) ¢ BO~
0V ING(p,qy, 15q,059) (347) --- ASSUNE.

| | 13648 isulsglisg) = TT (348) --- SASSUME.

| 1349 suloslosq) = TT (349) --- SASSUME.

| H
| | 1350 isint(p) = TT (358) --- SASSUNE.

T

-

¥ A e e g

The Semantics of PASCAL in LCF 71

| 1351 isinttq) =TT (351) --- SHSSUME.

||| mmmmmmeeenmooaeeaas

11| |TRY 21812281 QUTPUT (~(8!i (15q)=3) +CONO(MBEXPR (ml besprrl(not,mrel (ag,rq,mbnumconst (3))),0) F (MS(BODY,0) ~
,MBEXPR (mh he>prl(not,mrel(eq,ro,mnumconst (3))3,0),0),10,1S(BOOY, 0,15 (BOOY, 8,FRANE2 (p,q, 1sq,05q)))) NS (BOOY, 0, F~
RAME2 (p,q,159,05q))) ¢ BOOKING(p,q,15q,08q) CA3ES -(alllisg)=d),

I

1 VL ITRY #101024183 QUTPUT(~fe11(15g)=3)-CONO(MREXPR (m bexpr 1 (not,mre) (eq,rq, ol numconst (3))),0) F(NS(BOD~
Y,O),HBEXPR(mbemrl(nol,mbrn)(eq,uq,mtmuncons!(3))),0),0),IO.HS(BOOY.O.HS(BOOY,O,FRPHH(p,q,|sq,o:q)))),HS(BODY~
,0,FRRME2 (p,q,159,08q))) ¢ FOOKING(p,q, 150 059) ¢ SASSUME -~(elllisq)=3) 5 FF SlnpL. ’

I 1111352 =tetllisq)=d) 3 FF (352) --- SASSUME.

I] 11 1353 OUTPUT(-(ril(i5q)=3)-CONO(HBEXPR (m beyprlinot, mrel (eq,rq,mnumconst(3))),8) F (MS(BODY,8) , NBEXPR~
(mkbexprl(not,mirel (eq,rq,mknumconst(3))) 0),0),10,MS(BOOY,0,MS(ROOY,0,FRANEZ (p,qa, 15q,05q))) NS (BOOY, 0, FRANEZ (pa
Ja,159,05a))) ¢ BOOVING (p,q, isq,osq) (368 349 350 351 352) --- SIMPL BY 348 349 350 351 352 LM3,

1 | 1| |TRY #ialalelal OUTPUT (~(e!]l (izq)=3) +CONG LIKEXPR (m bevprl(not,m rel(eq,rgq,m numconst(3))),0) ,F(NS(ROD~
Y,0) MBEXPR (ms besprl(not,mrellsg,rq,mnumconst(3))),01,0),10,1S (RO0Y,8,NS(BOOY,B8,FRANED (n,a, 154,054}))) MS(RODY~
,B,FRANEZ (p,qq, 15g,08¢))) ¢ BOOKING(p,q, 1m0,050) ¢ SRO5UME <(elllisg)=3) 3 UU

L1 1] 1356 ~(atlusads3) = UU (354) --- SR3SUNE.

| | | 1355 7T = UU (348 354) --- USE ARITHI 354 348,

|

|

|]| | mmmmmmmmesmoemnnaae

1 L1 | [TRY #lalalslal QUTPUT (~(e!11(isq)=3)-CONO(HBREXPR (mkbexprl (not, mrel (eq,rq,mnumcon=t(33)),0) F(MS(RDO~

Y,O),IIBEXPR(MDheyprl(nol,mhrel(eq,rq,mnumcors!(J))).0),0),lO,HS(BOOY,O,HS(BODY,O,IRRNEE(p.q,|sq,o€.q)))),l‘|S(BODY.
,0,FRAMEZ (p, «, 1sq,05q)}) ¢ BOOKING(p,q, 150,029} : SR55UME ~le)l (isq)=3) = TT S1MPL.

1111 1356 =telltisad=3) & TT (356) --- SASSUNE.

1 1| | 1357 [anisq 0sq p g - 15ufsqlisad=(isufos (osq)=isint(n) «(izint (q) «OUTPUT (« (MEXPR (g, 0,MS (BOOY,0,RERD (s~
t,8,PERD (ul,8,FRANEL (p,q, 15a,050)))))=3)-F (NS (ROOY, 8}, IBEXPR (1s hevnrl (not,mirel (eq,rq,mnumconst(3))),8),0,1S (RO~
DY,0,READ (st,0,READ (w1,0,FRAMEL (p,q, 1sa,089)))}) NS (BOOY,0,REFO(st,8,RERD (M1, 8,FRANEL(p, . 159,059))))) UL, UUY U
U),UU) Crar L Cisq),mbparr (stupdt Qiea,p,) osq),stupdt Cisa,p,a) wlupdt Cisa,p, o)) ¢ [Nisq osg p g cisufsqlisg)s Cisue
fos(osq)=Cizint{(p)aCizint (q) sBOBKING (p,a,15q,08q),UL),UUY, U0, UUI (tartlCisq) ,mpair (stupdtCisq,p,q),05q),stupdt (~
isa,p,q),mlupdt Cisa,p.a)) (347) --- APPL 347 taililisq) mrpair(stupdtlisq,p,q),osa) stupdtisq,pia) wlupdt(isq,~
p.al.

kL] QUTPUT (~(el3 (1sq)=3) «F (MS(BOOY, 0) ,MREXPR (m} besprl(not,mrrel (eq,rq,mnumconst (3))),0),0,MS(RODY, 0~
,FRAME3 (p,q, 159,0sq))) NS (BOOY, 0, FRANES (p,q, 159,080))) ¢ ROOVING(;;, «, isaq,0sq) (347 348 349 350 351 356) --; SIM~
PL 357 RY 348 349 350 351 356 LM7 LM2 LNS ARITHZ ARITH3 ARITH4 ARITHS LMé.

R oo

1 1 L1 |TRY #lalecelalsl QUTPUT (~(c13(1sq) =3) «F (NS(BOOY,), MBEXPR (ml bexprl(not,mrel (eq,rq,m numconst (3)))~
,0),0,M5(BODY, 0,FRANE3(p,q, 15q,0sa))) NS (ROOY,D,FRANES (p,q, 180,05q))) ¢ BOOKING(p,q, 15q,08q)

[1L || mmmeemmemmmeemnneae

1 1359 QUTPUT (~(e 1] (1sq)=3)-CONO(HBEYPR (M bo>prlinot,mirelleq,rq,m numconst(3))),0) ,F INS(RO0,,0) HBEXPR~
(m) bevprl(not,mlrnl(r.\q,rq,mknumconst(:i))),0).0),lO,NS(BOOY,O,HS(BOOY.O.FRnﬂEl(p,q,|sq,osq)))),I'S(BODY,O.D'RRHEZ(p-
,a,150q,039))) ¢ BOOHING (p,q, 1sq,02q) (347 348 349 350 351 356) --- SIMPL 358 RY 227 081 348 349 350 351 356 LM«
8 LM6.

||| | mmmmmmomcoee ooome
| || 1360 OUTPUT(~(ell(12q)=3)-CONNUIREYPRC vhesprl(not,mirel teq,rg,m numconst(3))),8) F (11 (BODY,0) ,IIBEXPR (ma

bhevprl(not,mralfeq,rq,m numconst (3))),0),8),10,M5(RN0OY,0,NS5(E00Y,F FRAMEZ (p,q,184,02q))) 'IZ(RODY, 8,FRANES (p, g~
,129,054))) ¢ BOO) ING(p,q, 150,05q) (347 348 349 350 351) --- CASES -(ellisg)=3) 259 355 35,.

{ I s -mmd e =

| | 1361 Vizg osq p q . 1sufsqlisg) :: tsufoslosq) :: asint(p) t: asint(q) :: BUTPUT(-(NEXPR (g, 0,11S (RODY, 8, R~
ERO(=t,0,READ (w1, 0, FRANEL {p,q, 150,050)))))=30a(xB T { .8xCONO(T,F(B,T, 1), 1001 (15 (RODY, D), IBEXPR (m hasprLnot, mra
o (ag.rq,mumconst (3))),8),0,M5(B00Y, 0,RCAD (s, 0,RERD (W1, O,FPRIEL(p, g, 12q,084))))) NS (BODY,0,REND (- t,0,RERD (M1, ~
8.FRANEL (p,q,159,03q))))) ¢ BOOLING(p,q, 15q,05q) (347) --- SPREF 360 BY 280 348 349 350 351 LMY LM2,

| | mommmmmeemmeeonanes

| {362 VYisg osq p q . 1sufsqlisq) :: rsufoslosq) :: asintip) i isintlg) 3 QUTPUT (~(NMEXPR (rq,0,MS(RODY,0,RER~
Dist,0,RERD(uI,8,FRAMEL(p,q, 1£q9,05q)V))):3) ~REPERT (RS (BOOY, 0) , "BEXFR (mi bevprl ot mielteq,rq,m numcorst(31)),8) ~
,0,MS(RODY,0,RERD(st,8,RERD (w1, 0,FRANEL(p, 4, isq,08¢4))))) MS(ROOY, 0,RERD(st,0,RERD(uil,0,FRANEL (p, ¢, 15c,052¢))))) Cw~
BOOY ING(p,q, 15g,05q) -=-- INDUCT 346 301.

| wmmmmmcccmmeeemm——n-
1363 Yisq osq p g . 1sufsqlisq) :: asutoslosq) i 1sint(p) 1 1sint(q) :: APPLY(McCARTHY,p,q,159,05q) ¢ BOOKI~
NG(p,q,15q9,08q) --- SIMPL 362 BY 207 208 2108 280 303 326 333 334 LM1 TH2 THS.

e P YR T e T U WY NTTNSAETT Y T g mm T e pe——— - A N A g P W, W RV G e B o oa i b

The Semantics of PASCAL in LCF 72

REFERENCES

Atello, L. and Atello, M.,
1974 Proving Program Correctness in LCF,
Presented at the Colloquium on Programnung, Paris, 9-11 April 1974.

Dijkstra, EW,,

1972 Notes on Structured Programming,
Structured Programinung, by Dahl, O.]., Dijkstra, EW. and Hoare, C AR,
Academic Press (1972) 1-82.

Floyd, RW,

1967 Assigning meanings to programs,
Proc. of a Symposium on Applied Mathematics, Vol. 19 - Mathematical Aspects of
Science, (Schwartz,).T. ed.), American Math. Society (1967) 19-32.

Haberman, A. M.,
1973 Critical Comments on the Programming Language PASCAL,
Department of Computer Science, Carnegie-Mellon University, October 1973

Hoare, C.AR.,
1969 An Axiomatic Basis for Computer Programming,
Comm. ACM, Vol.12, No. 10 (1969) 576-580, 583.

Hoare, CAR,
1972 A note on the for statement,
BIT 12 (1972) 234-241

Hoare, C.A.R. and Wirth, N,
1972 An Axiomatic Definition of the Programming Language PASCAL,
Acta informatica, Vol.2 (1972) 235.355,

lgarashi, S, London, R.L . and Luckham D.C,,
1972 Automatic Program Verification 1: A Logical Basis and its Implementation,
Artfical Inteligence Memo No. 200, Stanford University (1972).

Kleene, S.C.,
16952 Introduction to Metomathematics
Van Nostrand Company Inc, New York 1952.

Kleene, S.C., and Vesley, R.E.
1965 T he Foundations of Intuitionistic Mathematics
North-Holland Publishing Company, Amsterdam 19 5.

doratiaes o e B a ot e

L e e s ainis _ R g Ll e o i e e e b e e B R T - S s iaad B = o -
— T g— . . R Sp— — 1] - g T T W TN T T W m—m— g g e

The Semantics of PASCAL in LCF

Lucas, P. and Walk, K,
1969 On the Formal Description of PLII,
Ann. Rev. in Automatic Programming, Vol. 6, Part 3 (1969).

McCarthy, J.,
1961 A Basis for a Mathematical T heory of Computation,
Proc. of the Western Joint Comp. Conf,, Spartan Books, New York (1961) 225-128.

McCarthy, J., and Painter, J.
1966 Correctness of a compiler for arithmetic expre:sions
Stanford Artificial Intelligence Memo No. 40 (1966).
Also in Math. Aspects »f Computer Science, Am. Math. Sor. (1967).

Manna, Z,,
1969 The correctness of programs,
J.of Comp. and Sys. Science,Vol.3 (1969) 119-127.

Milner, R,
1072a Logic for computable functions, description of a machine implementation
Artificis] Intelligence Memo No. 169,Stanford University (1972).

Milner, R,
1972b Implementation and Applications of Scott’s Logic for Compurable Functions,
Proc. ACM Conf. on Proving Assertions about Programs.
’ New Mexico State University, Las Cruces, New Mexico (i1972) 1-5.

Milner, R. and Weyhrau-h, RW,

1972 Proving Compiles Correct iess in ¢ Mechanized Logic,
Machine Intelligence 7 (Meitzer, B. and Michie, D. Eds),
Edinbourgh University Press (1972) 51-70.

Newey, M.,
1973 Axioms and Theorems for Integers, Lists and Finite Sets in LCF,
Artificial Intelligence Memo No.184, Stanford University (1973).

I Newey, M.,
¥ 1974 Formal Semantics of LiSP with Applications to Program Correctness
; Forthcoming Ph. D. Dissertation, Stanford University, 1974.

Scott, D.S. and Strachey, C,,

1971 Towards a Mathematical Semantics for Computer Languages,
Proc. of the Symposium on Computers and Auteinata,
Microwave Research Institute Symposia Series, Vol.21,
Polytechnic Institute of Brooklyn (1971).

Scott, D.S,,
1971 Continous Lattices, Proc. of 1971 Dalhousie Conf.,
Springer Lecture Notes Series, Springer-Verlag, Heidelberg (1971).

d

The Semantics of PASCAL in LCF 74

Waldinger R. J. and Levitt K. N,
1973 Reasoning about brograms

TN 86: SRI-AI (1973)
Wirth, N,
1971 The Programn:ing Language PASCAL,

Acta Informati-a, Vol.l (1971) 35-63.
Wirth, N,

1972 The Programming Laguage PASCAL (Revised Retort),
Berichte der Fachgr., Compurer-Wissenschaften, Mr. 5, ET.H., Zurizh (1972).

Weyhrauch, R.W. and Milner, R,
1972 Program Semantics and Correctness in a Mechanized Logic,
Proc. Ist USA-Japan Computer Conf., Tokyo (1972).

