
^»■•"■^wnwif-wwiww^iiwwwrwippirw*^^^

AD-787 631

THE SEMANTICS OF PASCAL IN LCF

Lulgia Aie I lo , et al

Stanford University

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

August 1974

DISTRIBUTED 8Y:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

anmt

mmmmp rw~~m mnwM umm^m** « m nnnwmmmmmmmmmII....P.M. ,

I

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE ('»Tien Dal« Entared)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

STAN-CS-T^Vf

2. GOVT ACCESSION NO

4. TITLE (and Subiltl»)

THE SEMANTICS OF PASCAL IN LCF

7. AUTHORf«;

L. Aiello, M. Aiello, and R. W. Weyhrauch

jagtz ^3/
READ INSTRUCTIONS

BEFORE COMPLETING FORM
3. RECIOIENT^S CATALOG NUMBER

5. TYPE OF REPORT » '"ERIOD COVERED

technical, August 197^-
b. PERFORMlNf. ORC. REPORT NUMBER

STAN -CS -74-^7
«. CONTRACT OR GRANT NUMBERf«)

DAHC 15-73-C-043b

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Stanford University-
Computer Science Department
Stanford, California 9^30^

11. CONTROLLING OFFICE NAME AND ADDRESS

ARPA/.IPT, Attn: S. D. Crocker
ll+OG Wilson Blvd., Arlington, Va. 22209

10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

12. REPORT DATE

August, 1974

14 MONITORING AGENCY NAME « ADDRESS^//d///Bfen(from Conttollint Ottlc»)

ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rm. 165
Stanford University-
Stanford, California 9^50^

13. NUMBER Of PAGES

?» 30
15. SECURITY CLASS, (of Ihla tepor.)

Unclassified
IS«. DECi-ASSIFI CATION/DOWN GRADING

SCHEDULE

16 DISTRIBUTION 3T ATEMEN T fof (h/s ReporlJ

Releasable without limitations on dissemination.

17 DISTRIBUTION STATEMENT (ol the abttracl mlerad in Block 20, II dltlarant Itom Repot!)

18. SUPPLEMENTARI NOTES

19. KEY WORDS (Cnnllnua on revataa alda if nacaaaary and Idenllty by block numb.r;

Reptoducfd by ..„ .,
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

20 ABSTRACT (Conllnue on ravarae aida II nacaaaary and Idanllfy by block numbat)

We define a semantics for the arithmetic part of PASCAL by giving it
an interpretation in LCF, a language based on the typed \-calculus.
Programs are represented in terms of their abstract syntax. We show
sample proofs, using LCF, of some general properties of PASCAL and the
correctness of some particular programs. A program implementing the
McCarthy Airline reservation system is proved correct.

joj
vO IJANM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

I.
Unclassified

SECURII Y CLASSIFICATION OF THIS PAGE f^Tien D«(« En(—-dj

mjpmm - ■ ■ - ■ ■ ■■- '--*

PUI "IP! H mm* ™*^mr.mm mmm *m I..H.IP.J«. ..« ... r.-7^ «npMHwnn ■■

ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM No.221

COMPUTER SCIENCE DEPARTMENT
REPORT No.4'17

AUGUST 19*74

The Semantics of PASCAL in LCF

by
Luigia Aiello
Mane Aiello

and
Richard W. Weyhrauch

Abstract:

D D C

•Ml T-T-— ' THI

c

We define a semantics for the arithmetic part of PASCAL by giving it an
interpretation in LCF, a language based on the typed X-calculus. Programs are
represented in terms of their abstract syntax. We show sample proofs, using LCF. of
some general properties of PASCAL and the correctness of some particular programs.
A program implementing the McCarthy Airline reservation system is prove" correct.

Authors' addrrwrs

L. Aiello, Utilulo di Klaboraxionr drll'Informaxionp, via S. Maria -16, Ü6100 Pisa, lialy;

M. AIPIIO, Istituto <li Scirnjic drU'lnforma/ionr, llnivrrsua' di Pisa, rorso Italia 40, 56100 Pisa, Italy;

R. Wflvhraurh, Al I.ah., Computrr Sricnrc Dcpl., Stanford Ilnivprsity, Stanford, California 94305. or

Wryhraurh OSII-AI

This rrsrarrh is snpporlrd (in part) l»y the Advanced Rrsrarrh Projects Agency of the Office of the
Secretary of Defense (DAHC IS^.I-C-OlW.

The views and conclusions contained in this document are those of the authors and should not he interpreted
as necessarily represcnlmp the official policies, either expressed or implied, of the Advanced ResearcS
Projects Apency, or the IIS. Government.

Reproduced in USA. Available from the National Technical Information Service, Sprnßficld, Virginia 22151.

Ifll

m—mmmm Mi>ll ^...~m^LU-—***~M*~L~1^*m^...*.i~~tM

mm wwmmm »»■-»>» 1 ! ! ^i11«* ! nmw^^m^mmmmmmm"* i i

The Semantics of PASCAL in LCF

TABLE OF CONTKN'I-S

1 INTRODUCTION

2 THK SKM ANTICS OK PASCAL

2.1 Drsrrlplion of ihc srmanlir-

2.2 Top irvri funrlions

I DRCRlfnON OF THK LANGUAGK

3.1 Drrlaralion part

3.1.1 Data Type Definitions

3.1.2 Variable Derlaraliors

3.1.3 ProreHurc and Fimelion Declarations

3.2 F.xprrfs-ons

3.2.1 \rillimetir F.xpiessions

3.2.1.' Kvalnalion of Constants and F.xprrssjons

3.2.1.2 Kvalnalion of Vanalilrs

3.2.1.3 Function DrMf-'tiators

3.2.2 Boolean F.xpressions

3.3 Statement Part

3.3.1 Simpl" Slatrmenls

3.3.1.1 Goto Statement

3.3.1.2 AsRißnmenl Staieiiunt

3.3.1.3 Procedure Statement

3.3.1.-1 Read Sta ement

3.3.1.,S Write Statement

3.3.2 Structured Si*. • icnts

3.3.1.1 Conditional St.ileimnt

1

4

4

5

7

7

7

B

8

9

9

9

10

11

13

U

14
•

15

15

16

18

19

19

19

ib

-—-- i ii—im*—tniM i n „M , i .■liii- Ml -i^l i ■ ^." -^.^- '

P- -w«»« '"•IH'-L « '• "» i^n

mi ir—~"~*"'

|«imnnniii i

The Semantics of PASCAL in LCF

3.3.2.2 While and Rrpoat Slalrmcnl«

3.3.2.3 For Slatrmcni

4 PKOPKRTIKS Off THK SKM ANTICS

4.1 The Ktriclncss of MS on llic slorr

4.2 Propertic« of MS for golo-frcc pro^ramt

4.3 An equivalent mean ng function for goto-trce programs

4.4 Kqiiivalrnrrs for repetitive statements

4.5 Miscellaneous theorems on MDEC, MDEF, MS

5 EXAMPLKS

5.1 The factorial program

5.2 The McCarthy Airline Reservation System

6 CONTUSION

Appendix 1 A BRIEF DESCRIPTION OF LCF

Appendix 2 T»: ;■ ABSTRACT SYNTAX

2.1 Syntax for Statements

2.2 Syntax for Expression«

2.3 Predicates for the Idenlification of Synlactie Constructs

2.4 Auxiliary Predicates and Functions

Appendix I THE SEMANTICS

3.1 Top Level Functions

3.2 Declaration Part

3.3 Definition of MS

3.4 Axioms for Statements

3.5 Rinding Mechanism

3.6 Evaluation of Expressions

3.7 Variables

iC,

20

21

25

25

26

28

29

30

33

33

37

43

45

46

46

48

♦9

53

M

55

56

57

— -"■ — ,d^a|A|aMkli|£aria

»•■^■HmWWIMpHW^m 1 " "" mmmmr*** ^WPW^PWf .«■»■■U,ll I ^MWi1", ip .i.ii >M i j iiiMB

Tl>e Semantics of PASCAL in LCF

3.8 Thr Lookup of ifcn Storr

3.9 Uptlating .mil Misrrllanrons Axioms

Appondr« \ Proof of llic rquivjirnrr involving WHILE for golo-frrn programs

4.1 Lisl of \jCJf commands

4.2 Prinlonl of ihr proof

Apprmlix I Proof of the rqnivalcnrr involving REPEAT for golo-froo programs

S.l List of I.CK rommands

.r).2 Printout of the proof

Apprmlix 6 Proof of the equivalence involving rORTO for goio-free programs

6.1 List of LCF commands

6.2 Printout of the proof

Appendix 7 Proof of the ifoto-frce factorial program

7.1 List of LCF commands

7.2 Printout of the proof

Appendix 8 Proof of the McCarthy Airline Reservation System

8.1 List of LCF commands

8.2 Printout of the proof

References

ii

59

60

61

61

62

63

63

64

65

65

66

67

67

68

69

69

70

72

J - - tailMifafe-c - - ■ i mii^t i rmniiMl

'"""■ ■ i an ma« IU " ■" "—
——. ^immmm*mmim**'i i> ■ n«w.

The Semantics of PASCAL in LCF

SECTION I INTRODUCTION

This paper is an attempt to determine the order of magnitude of the problem of giving an axiomatic
treatment, in LCF, of an established programming language with a sizable user community. We
wanted to include such features as declarations, I/O, different types of parameter bindings and
control structures. For this purpose we chose the integer arithmetic part of PASCAL, which we will

refer to as PASCAL. It seemed to us a reasonable choice in that;

1) it satisfies the above criterion, thus it is not a toy language.

2) it is powerful enough to compute any partial recursive function on sequences of integers,

3) the existence of VCGEN (Igarashi, London and Luckham 1973) and FOL (Weyhrauch and
Thomas 1974) will eventually give us the ability to compare the effectiveness of Hoare's
axiomatic definition of PASCAL, McCarthy's style of first order axiomatization (McCarthy
and Painter 1966) and the Scott style of assigning extensional meanings to programs.

One pleasant result of our work was the discovery that me task seems more managrable than we
had originally thought. Most discouraging was realizing exactly how inadequate even careful

descriptions of programming languages actually are.

LCF is both a logical calculus and a proof-checker for a suspected proof in the logic. It could be
described is an equation calculus based on terms in the typH X-cal .ulus, whose most powerful rule
of inference is Klcene's first recursion theorem stated as a rule (see KleeiT? \%2). Using this
languaee in the mathematical theory of computation was first suggested by Dana Scott. Its formal
properties are described in Milner 1972a. 1972b. Also see Milner and Weyhrauch 1972, Weyhrauch
and Milner 1972, Newey 1973, 1974, Aiello and Aiello 1974 for other applications. A short

description of LCF syntax ii given in appendix 1

Initially tur intent was to present a semantics for the description of PASCAL given in Wirth 1971,
1972 and Wirth and Hoare 1973. As a remit of OUT attempts to give what we ccnsider a complete
descnption, we found many ambiguities and places where the literal mterpre ation of Wir'h's
descriptions led to a semantics having undesirable properties (see 3.3.2.3 for a disuission of the for
statement). We have described a language which has a fairly smooth semantics, and whose formal
propei ties are more clearly appaient. All the differences ate documented in the text.

We think of our axiomatization »s characterizing properties of the whole PASCAL and not as a
description of propernes of individual statements In section 42, for instance, we prove that, if two
programs P and O don't contain goto statements, we can represent the function computed by the
program consisting^ P appended to Q,as the composition of the function computed by P with that
computed by Q, This theorem and others in section 4 simply cannot be expressed or used m
formalisms like Floyd's method of attaching assertions to programs or in Hoare's axiomatic
approach. We consider this a major difficulty with those techniques. Both consider programs
individually It is our belief that the feasibility of checking (or generaung) large formal proofs
depends on our ability to prove general properties of claws of programs, A description of the
entirt i -'grammmg language is required in order to mention these classes,

Charactenz ng m entire language in this way means thai conflicts arising out of putting different

MIMMM

%-mt^mmm mmm^Hrnrnmimmmmmimimi*"**''**** •"""' ■ll" mmmm*"^^*^1™

The Semantics of PASCAL in LCF 2

Droerammine features together must be resolved, or at least descnbable in the formal.sm. The
S sclssZ of funcuon activat.ons .n sect.on 3.2.1.3 .s a typ.cal example of the d.f .culty one
enco inters when trying to characterize the behavior of an enure language. Unusual programs
rannot be ignored or left unrncntionod. In actual programming languages the ability to decide if •
pnLram 's well formed is in general too costly and many "ill formed" programs are usually accepted
by the parser. An example of such a difficult case .s found in sect.on 3.3.2.3. on the for statement.

In section 2 we describe th« axiomaliiation of the environment in which PASCAL programs are

executtd.

A soecial word is needed here to make clear an abuse of language that appears throughout the
reoort We frequently speak about a combinator being executed and then explain what it does.
Strictly speaking this is not correct. Combmators don't do anything. The functions we mention are
to be i. terpreted extensionally. It means that the only properties ti LCF functions that can be

mentioned are properties of their graphs. Thus, when NÜnf at

F ! [XN.OsnatMtNMisRichardlNHGood.BacO.FF)]

we may say informally that F is a function which checks if N is a name. If it is not then its value is
FF otherwise it returns Good or kd depending en whether that name is Richard or not. This
description is in the style of an interpreter. More correctly we should say, F is a three valued
function whose value is FF on arguments which are not names, and otherwise has the value Good or
Bad depending or whether that name is Richard. Hotu the function is tmpHttä is t.ansparent to
LCF This point is very impoitant so that there is no confusion about the nature of the semantics
defined here To each program is assigned a function, nor a computation procedure. LCF terms
also have interpretations as computation procedures, but it is not this interpretation that concerns us

here.

Section 3 describes all the control structures and statements relevant to the arithmetic part of

PASCAL. They include

1) type definitions
2) variable and array declarations,
3) procedure declarations and procedure activations,
4) function declarations and function evaluations,
5) assignment, conditional, while, repeat, for-to,for-downto and goto statements.

6) input/output instructions.

We do not consider constant definitions, label declarations (Wirth 1972). case or with statements, or
records and files (except 1NP and OUT). These are either easily addabk or are not relevant to tht

arithmetic part of PASCAL.

Although LCF uses the typed Vcalculus, a natural semantics may be given to goto's and to
procedures having themselves as actual parameters without introducing type conflicts. This is

explained In section 3.3.1.3.

Examples of general theorems about PASCAL are presented in section 4. Most of the work to date
on the correctness and equivalence of programs, has actually only dealt with the extensional

 äuM,

mimmmmmmm**^ (linn iniMnmnmivwnPMPnp I «IllMl^W«WPW|lfpiP»P»IP!ip Ltnmi IP.IIPPII».IU««I i'ii!" • I -wf—uw ^

The Semantics of PASCAL in LCF

properties of algorithms. Input/output or the effects of decl.iiations cannot be ignored in ?iny theory
of coircctness which hopes to be practical. As soon as we ask whether a program will rur. or not, or
whether it will compile or not, then the question "do we have the correct algorithm?" is a minimal
criterion for corroctness. In addition, the distribution and consumption of resources during the
execution of a program, involves both whaf has been declared and how bindings are made to
parameters. The correctness of programs which input data incrementally, must know how these
inputs are treated.

We have set out here a description of a large but stable core for any interesting programming
language. We wanted to establish a base from which further work could be done towards a practical
system for proving properties of programs within this core. Some example are the theorems of
sect>on 4.

Section 5 gives partial correctness proofs for some progiams. The much overworked factorial
program is again discussed. We included it to show some of the flexibility in our approach to
program correctness as well as illuitrate points made in other parts of the report. A proof of the
correctness of a program implementing the McCarthy Airline reservation system is given. This is
new in that it treats an interactive program which has a potentially infinite number of inputs The
details are in 5.2.

The appendices contain a short description of the LCF syntr.x, the list of all the LCF axioms
describing the syntax and semantics of PASCAL, and the actual LCF printouts of the proofs of
theorems meiuioned in the text.

Some familiarity with the papers Wirth 1971, 1972 and Wirth and Hoare 1973 is recommended to
better understand this memo.

^MMMMMHi

vmwitw'imfmmwmutmi wnnnw^^^^mmmmmm 'I. llJ|uwpuiP i" N i JWippfipiipBPipiBpir^wi UIIIPI • r-^^-^ ,, m*wm mmm

The Semantics of PASCAL in LCF 4

SECTION 2 THE SEMANTICS OF PASCAL

Section 2.1 Description of the $em<>nt!c$

In this version of PASCAL we restrict our attention to programs whose inputs are sequences of
integers. The meaning (or interpretation) we assign to a program is thus a function from sequences
of integers into sequences of integers.

Programs, on the other hand, map memories onto memories. In order to describe the effects of
procedures and function activations more clearly we introduce the notion of a store. A store divides
the memory into/ram« or environments. Frames are specified by i frame point er. Thus we think of
programs as mapping stora onto storey and strrei are functions Uom frame pointers to frames.

store: framepointer -* frame

A frame is a function from locrtions to values.

frame: location * value

A store describes abstractly additional structure of a memory without knowing how it is realized in
any particular implementation The execution of a program, p, starts with the creation of the initial
store. This is done by FRAMES (see next section). It contains the locations lileloc INP and fileloc OUT
for the input and output files respectively, and a location textloc where the text of the program is
stored. This store has only one frame called 8.

Type definitions are then made in this/ram^. Each/ram* represents an environment in which the
current declarations and variable bindings are found

The effect of declaring a variable, v, in * frame is to create a location typeloc v, which contains the
type of v. Thus we can tell if a variable has been declare-! in a frame «(f) by checking if

s(f,typeloc v)-UNDEF.

The execution of a procedure or a function creates a new frame. It is set up by the ombmator
MAKFRAME defined in appendix 3.9. The new framepointer is just the successor of the cur-ent one.
namely that pointing to the frame where the procedure or function has been activated. This
imposes a stack discipline on procedure and function activations. The binding of free variables are
made in the style of ALGOL. The pcMtion of the variable declaration in the program text
determines the binding irame. FETCHV is the function which looks up the value currently bound to
a variable.

The combinators FRAME8 and MAKFRAME build stores with the following property. If f is a
framepointer corresponding to a non activated frame, then s(f)äUU, otherwise for any legal location
loc, s(f,loc) is either a value or is UNDEF. The value of a variable is stored in | location which
depends on its name. This is slightly complicated in PASCAL, because both identifiers and array
element names (e.g. A[l]) are considered variables. Section 3.2.1.2 describes the combinators which
allow us to treat them uniformly.

i.li!IU«.S« ivPiijj|iuump«nprani|iMimiiRNmipp ^« PllWW«"! ■WVSPWWW '" ■ — ■-■, -^^WPPW

The Semantics of PASCAL in LCF

Both FRAME8 and MAKFRAME store the body of statements to be evaluated into a location of the
frame they are defining. The effect of proceoure and function declarations is to add new locations
to the store.

The statement part of a program, procedure or function, is interpreted in the store where the
corresponding declaration part has been evaluated. Statements are evaluated m sequential order,
unless a goto statement is encountered. Where to go is determined by the function s«gm, which takes
a text and a label, and returns a text, i.e. it tel's you where to jump. The new text is evaluated in
the same frame is you jumped from. Tnus you cannot jump out of a procedure activation. Thü
follows Wirth 1971. The effects of the other statements are pretty much as you might expect. They
are defined by MS in section 3.3.

The stack discipline imposed on procedure and function activations and the discipline imposed on
goto's are not intrinsic to this approach to the description of the semantics of programming
languages. We impose them because we wanted to correspond to Wirth 1971.

Programs are written in abstract syntactic form. Each syntactic construct is assembled by a
constitutor and its components are selected by a selector. The list of all the axioms about the syntactic
constructors and selectors arc given in appenc'ices 2.1 and 22. Each construct is identified by
associating a type to it. A predicate is defined which is satisfied only by objects of that type (see
appendix 2.3). The equality of identifiers denoting types of syntactic constructs and of location
names is denoted by V in the formulas through the text and is detectcc by LCF itself.

Section 2.2 Top level functions

The function FUNCT:

FUNCT * [Xp o.^i.ONPUTsPASCAKp.oteOUTPUTKi)]] .

where 9?[\i g x.g(flx))] is the composition function and i, o are sequences of integers, represents the
"inte. fice'" between functions which compute on integers and programs which -.ompute on stores.

Wirth 1971 describes a program as a PASCAL procedure which has an input and an output file as
parameters. The combinator PASCAL

PASCAL ■ IVp.[Xo i.MP(p,B,FRAMEO(p,o,i))]]

when ,'pplied to a program, p, is a function which takes as arguments two sequences of integers o
and i (representing the initialization of the output and input files respectively) and returns a
function from stores to store; The rietinition of PASCAL imitates explicitly the bindings vhich a
procedure would make when executed as part of a program. FRAME0(p) applied to o and i creates a
store containing a single frame, called 8, with these bindings and then applies MP to the program p
in frame B and this store.

FRAME8 = [Xp.[Xo i [Xf. (1=8) -♦
[Xloc.(loc=«ileloc INP)-» INTERiMLREPd),

(loc=fileloc OUTH INTERNALREP(o),
(loc»textloc)-»slatmof(p),UNnEF]1UU]]]l

—

MH Jill Wlll«HJI|IP lillW«««H W^W^l»»WWWP^aW»i«l.«*M.I"WJJ«HUI WPIiPipinPMigMPUMil ^MMDimil

The Semantics of PASCAL in LCF 6

PASCAL programs read sequences of numerals supplied by some input device into the buffet (il«loe
INF and write outputs into the buffer «ileloc OUT. INPUT is just the identity function. The write
statement put« numerals in the output buffer, thus OUTPUT maps sequences of numerals, onto
sequences of integers. INTERNALREP is a function which takes sequences of integers and returns
sequences of numerals. The definitions are found in appendix ? 1.

Programs m PASCAL have two parts; a declaration part and a statement part.

The interpretation of a program in some frame specified by the framepointer f:

MP ■ [Xp f MD(d«clof t,f)®MS(statmof t,()]

is just the interpretation of definitions MD composed with that of statements MS. These are
described in the next section.

mtKUtitmMtmmitmmi^^ *■•*• - --^

»■pip wm*. w<m\v^^mmimn ummiumm. »"'■■•I™ «JIIIM. i' i',m.m<r.miimi.r*.mii iiiu .iiiwi«ii»»wwi.f --'.-i iijuiii.iijpininii|ipHp L|III|I.IPP>IMMII

The Semantics of PASCAL in LCF

SECTION 3 DESCRIPTION OF THE LANGUAGE

This section contains the iescnption of all the instructions included in our version of PASCAL and
the description of their semantics in LCF Each text (it may be a program, n procedure or a function
text) consists of two parts: declaration part and statement part. The semantics of a text depends on
the frame in which such text is executed, 'or this reason a framepointer is specified as parameter in
every semantic function.

Section 3.1 Declaration part

The declaration part includes type dejinitions and the declaratioi of all the variables, functions and
procedures local to that text. Its semantics is defined by:

MD s [\d f.MDEF(dpf)®MDEC(d1f)],

MDEF ' [ciF.[\d f.
isemptyst d -♦ ID,
istypedef d -♦ CREAT{f,namof d.typof d),
iscmpnd d -» F(fstof d,l)®F(rmdof d.O.ID]],

MDEC » [o<F.[\d f.
isemptyst d -» ID,
isvardeel d -♦ CREAV{f,namof d,typof d,f),
isprocdecl d ■♦ CREAP«,namof d.prspof d,f),
isfundocl d -» CREAF(f,namof d,fnspof d.typeof d,f,f),
iscmpnd d -♦ F(fstof d,f)®F(rmdof d,f),ID]].

MD is the composition of MDEF, which defines the semantics of type definitions and MDEC, which
defines the semantics of variable, procedure and function declarations. Every iutntifier appearing in
a declaration statement is a name so it must satisfy the predicate isname. Consequently, whenever
some property of a PASCAL program is to be proved in I CF, for each identifier appearing in that
program, axioms stating that it is a name are to be added. The predicates for the identification of
syntactic constructs are given in appendix 2.3.

3.1.1 Data Type Definitions

Since we are dealing with the integer arithmetic part of PASCAL the scalar data types we have
introduced are the intimer type INT and its subranges. A subrange is an interval of integers and is
defined by specifying its lower and upper bounds. The structured data types included in our
language are the array types. An array may have any number of indices (each ranging in a subrange
type) ard its elements are all of the same scalar type.

Each type may be assigned a name in a type dejiv'don. The semantics of a type definition is GREAT:

GREAT • [M n ty s.GREALOG(f,s,«ypidloc,n,ty)].

GREALOG * [Xf s loc n val, ISPRESENT(n,s(f))-»UU,STORE(f,s,loc n,val)]

m^m*. - "• '■-
■^..A.. ■;., ..^...

p mmß mn^m.'m* HB^B^WP "-^— iiminjiinniiiiiiiWPWW ' '>.v' vmw*"»' mmm* ■^■m^ws'WM^

!

The Semantics of PASCAL m LCF

CREALOC is used by GREAT. It declares a name n to be a synonym for the fype ty in the frame s(f).
by storing ty in a new location typidloc n. The result of CREALOC is undefmeii if n doesn't satisfy tb
predicate icnam« or if it nas been already declared in the current frame. This is tested by ISPRESEN1
Modification of the stoic is done by the combmator STORE. Their definitions are in appendix 3.9.

In the definitions of MDEF and CREAT no aisumption is made on the order of the type definitions. If
all the type Identifiers satisfy the predicate imam« and are different from each other, the result of
MDEF on a frame, in which they don't appear, doesn't depend on their order in the text (see theorems

in 4.5^

3.1.2 Variable Declarations

Each variable occurring in a text must be assigned a type which specifies the range of values that
variable may assume during the execution of the statement part of the text. The semantics of a
variable declaration is defined by CREAV:

CREAV • [XI n 1y II i.CREALOCd.s.typ.loc.n.TYPEVALIty.fl,!))].

CREAV creates a location in the current frame s(0, whose name is typ«loc n, provided n is a name and
no other location with the same name already exists in that frame. The content of that location is
the type associated with n. Such type is evaluated by TYPEVAL (see 3.3.1.3). Each type identifier
possibly appearing in it is removed and its definition is substituted fo.- it. The evaluation is made In
the frame specified by the framepointer fl. When a variable is declared fl coincides with f. so at the
moment there is no point in introducing another parameter m CREAV. We have introduced this
extra parameter since CREAV is also used when binding value parameters in a procedure or function
activation. On that occasion the two framepomters f and fl (the one in which the new location is
cre?led and the one in which the type evaluation starts) do not coincide.

3.1.3 Procedure and Function Declarations

The senmntics of a procedure declaration is defined by CREAP:

CREAP • [X(n ps fl s.STORE(l,CREALOC(f,s,iCclnk,n,fl)1proeloc n,ps)],

The result of CREAP is undefined if n is not a name or somrthing with the same name has already
been declared. Otherwise two locationi are created. One of them, whose name Is procloc n contains
the formal ' >ument list and the text associated to that procedure decla.ation, the other one, whose
name Is ac«,. < n contains the frame pointer specifying the frame where the procedure has been
declared, i.e. the environment where its free variables are bound. As for variable declarations, when
a procedure is declared the two framepomters f and fl are the same, but the combmator CREAP is
also used when binding procedure parameters in a procedure or function activation, and in that case

the two framepomters differ.

The semantics of a function declaration is CREAF:

CREAF i [Xf n fs ty ft fl s.
STORE(flSTORE(f,CREALOC(f1s,«celnk,n1fl),typ«loc n,TYPEVAL(ty)ft,s)),funcloc n,fs)).

L I - mmm

w&^*wmm*^fmmii*—m~im i~^m^**^*m mmmmmmm '~,v Ml

The Semantics of PASCAL in LCF

CREAF is similar to CREAP The only difference is that, in addition to funloc n and acelnk n, a location
typ«loc n is created, whose content is the type of the result of that function.

From the definition of MDEC and the others LCF combinators describing '.he semantirs of the
declarations it follows that tSe order in which declarations are made is not reVvant. If the identifiers
being declared are different and no other locations have been declared with then names the same
store is obtained, independently of the order (see theorems in 15). Tms is slightly more general than
the definition of PASCAL in Wirth 1971, which requi.es that all the variable declarations must
appear before the function and procedure declarations.

Section 3.2 Expressions

An LCF function can either evaluate to an object or to a truth value, but not both. For this reason
we could not introduce a unique evaluation function for arithmetic and boolean expiersions. So we
have divided expressions into arithmetic and boolean (this distinction is absent in Wirth Wl\) and
introduced two evaluation functions Furthermore, we have introduced a finer distinction between
the types of operators in order to avoid funny situations like the prefix adding operator "or" which
is allowed in ihe syntax given in Wirth 1971, 1972 but who^e meaning is not defined there.

3.2.1 Arithmetic Expressions

Arithmetic expressions are written in abstract syntactic form and are evaluated by MEXPR:

MEXPR s [oiF [Xe f s.
isconst a -> MCONST e,
Isexpr e -»isunarylopof •) -♦ MOPKopof e)F(arglof e.f.s)),

isbinary(opof e)-» M0P2(opot e,F(arglof elf,s),F(arg2of e,f,s)),
isvariable • -» FETCHVto.f.s),
isfundes • -» RETURN(succ f,MF(namof e.actargot e,f,s)),UU,UU]],

3.2.1.1 Evaluation of Constants and Expressions

The abstract syntactic represmtaticm of numbers is defined by the combmator mknumconst. If n is a
number, mknumconst n is the corresponding numeral and it satisfies the predicate isconst (see
appendix 2?). Numerals are evaluated by the semantic combmator MCONST, which returns the
corresponding number.

MCONST s [Xx.isconst x -» numof x,UU).

Arithmetic operator symbols appear explicitly in expressions and satisfy the predicate isunary or
isbinary according to the number of arguments the corresponding operator expects (see definitions !n
appendix 2.1) When evaluating arithmetic expressions MEXPR checks whether the operator symbol
is unary or binary, then MOPI or M0P2 evaluates them and applies the corresponding valu^ io the
argument(s) evaluated recursively

MOPI ■ [Xx.xspplus-^Xx.x.xspminus-Ax.lb-x^xsplusl-^succ^minusMprtd.UU).

mam m.*** ^ ■ ■■—-— - ^

nR^W««HP!l|IUil.M ! ■ Ji i*lll^|ip«^i^i i i .mw* ' '•**• mmtu II.II. in I«PW*-

The Semantics of PASCAL in LCF 10

M0P2 ■ [Xx.x«plus-»!»,x»minus-*!-,x:lim«8-»!*,x»div-»!/,x»rmdr-*modlUU].

MOPI evaluates unary operator s/mbols and M0P2 evaluates binary (peratot symbols to tne
corresponding functions. For example, the meaning of the symbol plus i.« ihe LCF function ♦. Note
that, due to the LCF syntax, infix operators, when written wither arguments, are prefixed by T.
Ar. LCF axiomatuatlon of arithmetic is given m Newey 1973.

As an example, if:

mKexpr2(plüS,mk«xprl (plusl.n! ,,
l'r>K»xpr2(tim«slmknumconst 21mk«xprl (minusl,n2)))

is evaluated in a frame where * .e location nl contains the value 3 and the location n' contains the
value 7, its result is 16, i.e. s' .c(3H2*pred(7))

3.2.1.2 Evaluation of Variables

If the expression to be evaluated is a variable, then the corresponding value is fetched by the
FETCHV combmator.

FETCHV » [ocF.[Xn f s.
ISLOCAUU peloc NAMOFVAR(n)1s{f)HISLOCAL(NAMOFVAR(n)1s(f))-»s«,LOCOFVAR(nIf1s)),UU,
istopUfHUU.FtVARBNDTOdi.f.sl.NEWFPIn.f.s)^)]].

The fetching mechanism is very simple The variable to be fetched may be an entire variable of a
scalar type or an array element In both cases a test is done (by ISLOrU) to see whether or not that
variable name has been declared in the current frame. If this is the case, the cotiesponding value is
fetched in the current frame (it will be undefined if the variable has been declared, but no value has
been assigned to that location). If the variable name has not been declared in the current frame and
the current frame is not the top one (i.e. if the fetching is done during a procedure or function
activation), the binding list is checked. In fact the variable to be fetched may be a formal parameter
passed by name (see 111.3 for details on the binding mechanism). In this case FETCHV applies
recursively to the corresponding actual parameter in the preceding frame. If that variable name is
not found in the binding list, the variable is free for that procedure or function activation, hence
FETCHV applies recursively to the same variable in tho frame specified by the result o'. NEWFP, i.e. the
frame where the procedure or function m executioi; has been declared, hence where its free
variables are bound.

The definitions of the auxiliary combmaiois used in FETCHV may be found in appendix ?..7,-9.
ISLOCAL performs a test to ser whether a given name has been declared or not in a frame.
NAMOFVAR applies to a variable n, and gives as result its name: it coincides with n if n is an entire
variable of scalar type, or it is the name part of n if n is an array element. Analogously LOCOFVAR
returns the location of n. As above, the location of n might be n itself, or an array location, varbndto
is the function which accedes the list of parameter bindings If the variable n appears in it, then n
(or its name-part) is a formal name parameter and the conesponding actual parameter is the result
of varbndto. If n is not a name parameter, then n itself is the result of varbndto. In this case n is a
free variable for the function or procedure in execution. NEWFP evaluates to pred f or to the content
of the alnk location of the current frame, according to whether n is a formal parameter or a free
variable. The alnk location is set up when a new frame is created for a procedure (function)
activation, it contains the pointer to the frame where the activated procedure (function) has been
declared.

■MatMMMHaMM

IIJIHL..,, pill» ' u i vmmmmmm'^m&m^^ mw^mmm i ii IIII^IW.M>UI>'>"««>W«MIII.M<..<1> ^WPWPBIUBWi^w»^

The Semantics of PASCAL in LCF II

From the definition of NAMOFVA'' given in appendix 3 7 wc see that its result is undefined if it is
applied to FL'NV. As explained in ?.2.l.3 and 3.3.1.2 FUNV is the location where the value of a
function is stored. Since NAMOFVAF, is undefined on FUNV, the result of FETCHV is undefined if it
applies tu FUNV, So it is impossible to "read" the value of a function with the usual fetching
combmator,

3.2.1.3 Function Designators

If the expression to be evaluated is a function designator, then a new frame is set up. The function
is evaluated by MF and its value is retrieved by the RETURN combmator in a special location named
FUNV

RETURN = [Xf s.lSLOCAUFUNV.slDHsU.FUNVj.UU],

The semantics of a function activation is very similar to that of a procedure activation (see 3.3.1.3).
Starting from a riven store, a new frame is created by the combmator MFB and then the semantic
function MP (described in section 22) is applied to the text of the function. The current frame is
changed by incrementing the I'ame pointer by 1.

MF = [\n a f. MFB(FUNCFAL(n,f)(a,fIn)®WP(FUNCDEF(n,f)1succ f)].

FUNCFAI. and FUNCDEF are the two functions which fetch from the «tore the formal argument list
and the text of the function being activated. Their definition is given in appendix 3.8. They use the
FETCH combmator which, like FETCHV, returns the content of a location from the frame where it has
been created.

The activa'ion of a new frame and the binding of parameters is done by MFB:

MFB 3 (Xfi aa f n s.BINDWa.aa^uce f,CREALOC(suec Mypeloc FUNV)TYPEDEF(n,f,s),
MAKFRAME(FUNCBODY(n,(,s))PFLNK(n,f,s),suec f.s)))].

It not only binds the formal parameters to the actual parameters (the binding function BIND will be
fully explained in 3 3.1,3), but it also creates a new frame The frame in which the function is
evaluated is set up by MAKFRAME (}M appendix 3.9) It creates a location lexlloc where the statement
part of the text is stored, and a location alnk whose content is a pointer to the frame where the
function has been declared. Moreover, a lo;ation typeloc FUNV is created, whose content is the type of
the function being evaluate.' A location named FUNV will eventually contain the value of the
function. In fact Wirth 1971. 1972 says that the function name must appear at least pi ? in the
function text at the left hand side of an assijnment statement. The value of the function m
execution is stored in the FUNV location by the combmator ASSIGN From its definition in 3.3.1.2 we
see that the result of a function can only be assigned to FUNV in its function frame. This means that
if the name of the function in execution appears at the left hand side of an assignment statement in
the text of a procedure where such identifier has not b.?en declared, it is interpreted as a free
variable, not the nam? of the function in execution.

As noted in 3.2.1 2 the FETCHV conbinator returns an undefined value if applied to FUNV. This
implies that a variable namec FUNV cannot be declared even in a frame different from that set up
by a function activation. We have prevented this by considering FUNV a "reserved" identifier which

^""11 1 1 ■■ I !«•■ lWWf^i^W»li^^WP ■w' " >'■ i H ii HIM^^M«I^*^ MHn^lMniiiMwiiilivtin.i. II i ■TO-W »ww^^«

The Semantics of PASCAL in LCF 12

doesn't sausfy the predicate isn«me. so it cannot be used in declaiations (the axiom isname FUNV^FF is
included in appendix 2.4).

We assume that the fanslator from concrete to abstract syntax nas substituted FUNV for nil the
occurrences of the function name on the left hand side of assignment statements within the function
text. If there are no such occurrences, the function activation returns an undefined result. If there
are several, the last executed cieteimmes the value of the function. If a variable identifier equal to
the name of the function in execution occurs on the ngth hand side of an assignment statement,
then either that v.,.i<,ble has been declared within the function execution or it is considered a free
variable of that iunction. When a variable has been declared with the same name as tne function in
execution, its value is undefined during the function exe^ ion. In fact, it cannot be assigned a value
since FUNV has replaced it on the left hand side of any assignment statement. It cannot be inputed
since the read statement cannot be executed within a function activation (see the following
paragraphs for a discussion on side effects).

The declaration of a variable with the same name as the function in execution is not forbidden by
W"th 1971, 1972, but we do not see any reasonable semantics for it. In addition Wnth 1971. 1972
says tha.;

"Occurrence of the function identifier in a function designator within its declaration
implies recursive execution of the function".

This sentence doesn't specify what happens if within a function another function is declared with
the same name. Our semantics allocs such declarations - why not? In such case the "outermos»"
function cannot be executed recurnvely This is also the case if a function has a formal parameter
with the same name (this is not forbidden in Wirth 1971, 1972). In this case the corresponding
actual parameter is executed.

PASCAL allows functions to have themselves as actual parameters Even though LCF is a typed
logic, the sematU": combinators we have defined avoid type conflicts by passing the text of the
function and not the function itself as a parameter. This is also true for procedures having
themselves as parameters.

Haberman 1973 is very critical of the PASCAL'S notion of function He says that, while the aim of a
PASCAL function is that of not having side effects, this is not true since a function may caii a
procedure which may have side effects. Our semantics deals with this situation In a different way.
Statements which change the content of a location and hence cause side effects are Oi ly the
assignment .ead, write and for statements.

The read and write statements modify the enntent of the input and output buffers so they cannot be
executed during a function activation. We forbid this by the test ISFUNFR which is performed
whenever a read/write statement is executed. It checks if any frame between the current one and the
top one has been set up by a function activation (see ?.3.l ■»,-5). The tf$t on whether a frame has
been created for a function activa'ion or for a procedure activation is du.ie by checking in the frame
whether typ«loc FUNV is defined or not.

An assignment statement may cause side effects by as.ignmg a value to a free variable. Whenever
the variable to be assigned is a fu'e variable for tue current fume, the ASSIGN rombmator (see

j

MMMM ■

i u n « umi mw-*rw tr-m ^•mi^mm^mm^mmtmmimm ^^mmmmil ■ n BII i sai ■ .n i ■

The Semantics of PASCAL in LCF 13

".3.1.2). checks whether between the current frame and that where the variable is bound (hence
where the modification of ihe store actually takes place) a function has been activated.

The for statement may cause a side effect if its control variable is free In a function activation.
Wirth 1971, 197J doesn't say that the control variable must be local to the frame where the for
statement is executed. In our semantic definition of PASCAL, the for statement cannot cause sic'e
effects in a function activation since its definition relies on the combmator ASSIGN for updating the

control variable (see 3 3.2.3).

We mcludeo the aboi/e checks in our semantics so that ill-formed programs return an undelmed
store, it turns out, however, that m our formalism no function can cause side effects. This is because
MEXFR simply returns a value from a function activation The checks clone in our semantic
combimtors amount to checking for side effects "at run time". Thus some programs which would be
rejected by a PASCAL compiler will still have well defined meaning for us if the statements

producing side effects are never executed

Finally, we want to point out that our semantics allows parameters of a function to be passed by
name, but guarantees that those parameters can only be "read" during the function execution This
contrasts with Hoare's opinion (private communication) that PASCAL functions must not have
parameters passed by name Wirth 1971, 1972 says nothing about it. In Wirth 1971 the assignment
to nonlocal variables is explicitly forbidden Nothing is said about this in Wirth 1972.

3.2.2 Boolean Expressions

The evaluation of boolean expressions is very similar to that of arithmetic expressions (see 3.2.1 and

subsections). It is performed by M8EXPR:

MBEXPR = [*F.(X« < s.
(•«true)-*TT,
(•«fslstHFF,
isbexpr e -♦isbunary(bopol o) -• MDOPKbopof e,F(barglof e.l.s)),

i8bbinary(bopof o)-» MBOP2(bopo« e,F(barglo« »».(.sj.FCbargZof e,«,s)),
isrelop(bopol a) -» RELOP(bopct o.MEXPRUrglot e1f,s),MEXPR(arg2of e.l.sN.UU.UU]].

true and false are the abstract syntactic representations of the boolean constants true and false. If the
expiession to be evaluated is the constant true, then it evaluates to TT, if it is the constant false, it
evaluates to FF. Boolean expressions containing unary and binary uperator symbols are evaluated
like arithmetic ones Relation operators take integers as arguments, so the meaning of a relation
syribal is applied to its arguments evaluated by MEXPR The meaning of unary and binary boolean
operators and that of relation operators is defined by MB0P1, MB0P2 and RELOP

MBOPI i [Xx.x=not-»-,UU],
MB0P2 ' [Xx xsand-»'A,x«or-»!v,UU],
RELOP I [Xx.xslseq-»!<,xs6req-»!>,xsll-»!<1x-gt-»!>,x=eq-»:-1x=neq-»/,UU]

For example in the frame specified by the frame pointer f and m the store s

mhbexprl (not.mKbexprZCor.mKrel.H.a.mknumconst 0),mkr*l(6t,i,mknumcons» I)))

ppiipS«^iWiP«"W!»»»«iw^BW,i.ii i i •iiiP*^<wniai53R^<ira«H«apqt^iii«f^.aiww>i«H>ip^^w>mii|iiuiiii "«i * "" mr^mm

The Semantics of PASCAL in LCF 14

evaluates ;o
\

-((MEXPR(i,f,s)<B)v(MEXPRU,f,s)>n).

An LCF axiomatization for the boalean operators is given in Newey 1973.

Section 3.3 Statement Part

The semantics of the statement part of :he program is defined by MS.

MS=[o<:F[Xst f.
isomptyst s< -» ID,
iscmpnd si -»
isemptystCfstof st)-» F(rmdof st.f),
islabitat(fstof st)-» F(mkcmpnd(statmof(fstof sl),rmdof stj.f),
isRoto(fstof st) -» GOTO(Fflabelof{fstof st),f),
isass (fstof st) -» ASSIGNdhsoUfstof 5t),MEXPR(rhsof(fstol st),f),f)8F(rmcof st.f),
isproccalKfslof st)-»[\s.MPB(PROCFAL(iiamof(fstof st)1(,s)1aclargof(fstof st),f,s1namof(fstof st))]®

[Xs.MO(PROCDECL(namof((stof st)1l(s))succ «,s)]®
[Xs.F(PROCBODY(namof(fstof sD.f.sl.succ f,s)]®CLEAR(suce f)®F(rmdof st.f),

isread(fstof st) >• READ(namo((fstof st),f)®F(rmdof st,f),
iswrite{fstof st) -* WRITE(namo((t!:tof st)1f)®F{rmdof st.f),
iscond(fstof st) -* COND(MBEXPR(tostof(fsM« st),!),

F(append(th8no(((stof st),rmdof st),f),F(append(elseof(fstof st),rmdof st),f)),
i8whil«(fstof st) -> COND(MBEXPR(tcstof(fstof st),f),

F(append(bodyof(fstof st),st),f),F(rmdof st,f)),
isropeatCstof st) -* F(append(bod/o((fstol st),mKcmpnd(mkcond(mKb«xprl(not,

testof(fstof 5t)),f5tof st,ES),rmdof st)),f),
isforto(fstof st) -» COND(MBEXPR(fortest(fstof st),f),

ASSIGN(indexof(fr.tof st),MEXPR(lbof(fstof %\),i),m
F(append(bodyof{fGtof st),fortoup sD^.Ftrmdof st.f)),

isfordn{fstof st) -» CONDIMIJEXPROortesKfstof stM),
ASSIGN(indoxof(htof :t),MEXPR(ubof(htof ltMM)t
F(append(bodyof(fGtof sl),fo-dnup 5t),f)(F(rmdof st^^UU.UU]].

The detimtion of MS has the form of a nested concutional, each branch corresponds to one
instruction of the language. Note that MS is dcfmfd only on the empty statement ES, whose semantics
is the identity IDs[\x.x], and on compound statements In fact, the abstract syntactic form of a
program is a list of instructions assembled by the constructor mkcmpnd and ending with the empty
statement EG When the first argument of MS is a compound statement a test is done on its first
element Except for the labeled statements, whose semantics is simply that the corresponding
unlabeled statement, the detailed description of the semantic functions defining the meaning of each
instruction will be given in the following sections

3.3.1 S in pie Statements

We have defined the semantics of all the simple statements of PASCAL, te. goto statement,
assignment statement, and procedure statement Furthermoie. we have defined the semantics of an
instruction for reading input data from the input buffer INP and of an instruction which writes
output data into the taitput buffer OUT

a

mmtmmm^mämä/m^m^, ^ -^ ^
-'--■ -"- ■ - • ■ ' ~

«MIIWIII I mn^imimii'^ww^Km «wriM mwuiwrnffii m»*vmmmimmmmmmmmm mmm***^m*i~^'^m** i,i,m«imr >

The Semantics of PASCAL in LCF 15

3.3.1.1 Goto Statement

The semantics of the goto statement is defined by the GOTO combinator.

GOTO « [XF.[Xn f FUnmMEXTOH.f)]],

It applies the semantic function MS ircur.ively to the text retuincd by the fgm combinator:

s«gn 5 [o<:F [Vn st.
isemptyst si -» UU,
iscmpnd st-»
isomptysldstof st) -»F(n,rmdof st),
islabstaMfstof st)-»(n=labelo< st)- st1F{n1mkcmpnd(statrtiof(fstof sD.rmdof st)),
issingleOstot st) -»F(n,rtrdo< st),
isconddstoJ st) -♦occurj(n,thenof(fstot st))-»appond(F(n,thonof(fstof st)),rmdot st),

occurs(n,elsed(fr.lof st))-»J;3pend|F(n,elseol(fütof st)),rmdof st),
F(n,rmdol st),

isrepwh(fstof st) -»occurs(n,bodyol(fstof sl))-*append(F{n,bodyof(fstof st))^!),
F(n,rmdof st),

isforlo(fstof st) -»occursln.bodyoKfstot st))-»
append(F(n,bodyof(fstof st)),<orloup(st)),F(n,rmdof st),

isforon(fstof st) -»occursln.bodyoflfstol st))-»
apperd(F(n,bodyof(f5lof st)),fordnup(st)),F(n,rmdof st),UU,UU]].

segm applies to a label, and fhe text st which is retrieved from the store by the TEXT combinator.
and returns the piece of text starting from the first occurre ce of the label If the label is not found
in the text the result of sagm is undefined The behaviour of PASCAL, programs when several
identical labels appear in it is another example of ambiguity in Wirth 1971, 1972. An accurate
description of a language must say if this is a well-formed program or not

In our semantics, no restriction is imposed on where the label may appear in the text. This means
that jumps into (or out (ram) the body of a repetitive statement are allowed. The behavior of sagm
in such case will be described in then respective sections.

According to Wirth 1971 we do not allow jumps into a procedure body, but, contrary to Wirth 1972
we do not allow jumps out of a procedure activation, re. jumps cannot cause the change of the
current frame. For this reason m have not introduced the label declaration statement of Wirth 1972
since the notion of scope for a label is meaningless to our semantics.

Lockhood Morns and others have suggested the notion of continuation as a possible way oi defining
the semantics of programming languages with the goto mstiuction It cannot be used in L :F in a
straightforward way Miice a type conflict arises. On the contrary in our semantics no type conflict is
introduced by the goto, in fact its semantics simply reduces to changing the first irglNMM of MS.
The text tc oe executed next is replaced by the text evaluated by the s«gm function.

3.3.12 Asiignment Statement

The semantics of the assignment statement is defined by the combinator ASSIGN:

 - - - •_ -

^w^H^— .m|ii|,,i«Ml|J 11 IIHIilUIIMII«l)il.W l.i. i. mi J" lu,l ■ ^"■' inn in» mi m «q

The Semantics of PASCAL in LCF 16

ASSIGNi [o<:F[Xnvlt.
n-FUNV-»ISADMISVAL(s{f1typ«locFUNV)1vU)H$TORE(l,s1FUNV,v(s)),UU,
ISINTYPE(n,vIf,s)-»ST0RE(f,s1L0C0FVAR(n,f15),v(s)),
ittopfdHUU,
ISFUNFR(fl«(NEWFP(n,f.s))-»F(VARBNDTO(n,(,s)1v,NEWFP(n,«I$)9s),UU]].

First of all a test is done to see whether the location to be assigned is FUNV, i.e. if we are assigning
the value to a function identifier in a function -»ctivation (see 3 2.1.?). In this case if the typeloc FUNV
is prc:?nt in the current fianie and the vskie » Matches with us content, the combmator STORE stores
v($) IN FUNV (see appendix ?..9) Otherwise ASSIGN returns the undtfmed store. If n is not FUNV,
then the current frame is checked. If n has Leen ieclared in it mi the value v matches with its type
then the assignment 'akes place. A type rrmmaich ma\es the assignment to leturn the undefined
store. If n is not local to the current frame, it may be a name parameter or a free variable for that
frame. In both cases ASSIGN applies recursively with a mechanism quite similar to FETCHV (see
3.2.12) The only difference is thai here a test is done by ISFUNFR to see if the assignment may cause
a side effect in a function activation.

ISFUNFR i [*F.IX* t n(. ISLOCAL(FUNV,s(f))-» FF.prtd f«nf -» TT(F(pr«d f.s.nf)]].

ISFUNFR checks if any frame between those pointed to by f and nf is a function frame, i.e. if FUNV is

local to it.

The auxiliary combmator ISINTYPE:

ISINTYPE • [Xv val « «ISLOCALdypeloc NAM0FVAR(v)1t(f))-»ISADMISVAL(TYP0FVAfi(v,fI8),vil(«)),FF].

eva'jates to tn^ if th» variable v is local to the frame s(0 and the value val is compatible with its
type. It evaluates to false if v is not local to s(f) and to undefined if a type mismatch occurs. The
definition of the combmators used in ISINTYPE may be found in appendix 3.7,-9.

3.3.1.3 Procedure Statement

When a procedure is activated, its formal arguments are bound to the actual arguments in a new
frame obtained by increasing the current frame pointer by 1. In such frame a location Uxfloe is
created whose content is the statement part of the activated procedure, and a location alnk is created
containing the pointer to the frame where the procedure has been declared.

By looking at the definition of MS given in 3 3 we see that, when a procedure statement is executed,
the auxiliary combmators PROCr'AL, PROCBODY, PROCDECL are us?d. They are defined in appendix
3.8 and are used for fetching th'. formal argument list, the declaration part and the statement part uf

the activated procedure.

The set up of the new framt and the binding of the parameters is done by MPB:

MPB i [Xla aa f s n.BINDOa.aa.succ f,MAKFRAME(PROCBODY|n,f,s),PFLNK(n,ffs),$uce f.s))].

MAKFRAME sets up a new frame and creates the locations lextloc and alnk in it. At the end of the
procedure activation such frame is deleted by CLEAR:

CLEAR» [Xf «ll.(fl.fHUU,«(fl)]

MM •MMIittMHM^MiMteAl ^M. _- _

11 lui iMvaippmnw^WBr ■^r vp|ppgm9TCapin«WH^^'-".i|iii-i<ituwH^"f^**mifaj|i.i ■ ^^wiwwprr WP^^^IWH" i •«■

The Semantics of PASCAL in LCF 17

CLEAR makes it explicit that the local variables of the procedure frame ar« no longer in the store

The bindings of the parameters in a procedure activation is the same as that of a function
activation It is defined by:

BIND a [«F [Via aa f s.
iseof fa -» (is«of aa «• s,UU),
isparameter(fslof fa) -»F(rmdof fa.rmdof aa.fpMKBINDINGdstof la.fstof aa1f)s)))UU]]

Corresponding parameters in the two lists are bound by MKBINDING. if the two lists have different
length the binding results in an undefined store. PASCAL allows procedures without parameters. In
such case the abstract syntax for the two parameter lists is the empty list EOF.

The MKBINDING combinator is defined as:

MKBINDING I [Xfa aa f s.
isvarpUa) -» TYMATCH(fa,typelocpaa,f,s) ■»

CREALOC(f)s1bindloc)namol la.EXPRFGRVIain.UU,
isvalp(fa) -» ASSIGNfnamof fa.MEXPRiaa.D.f,

CREAV(f,namof fa.lypof fa.CRNTFff.s),«)),
isfunp(fa) -* TYMATCH(fa,typfunloc,aa,l,t) -»

CREAF(f,namof fa,FUNCDEF(da,f,s)1»ypof fa1CRNTF(fps),PFLINK(aalf1s)1s),UU1

isprocp(fa)-» CREAPtf.namof fa,PR0CDEF(aa,f,s)(PFLINK(aa,f1s)1s)1UU1.

If the formal parameter fa is a vanabl" paramett. (re. a parameter passed by name) then, if its type
matches the type of the actual parameter aa, a binding location bindloc (namof fa) is created. Its
content is the EXPRFORV(aa) If aa has subscripts they must be evaluated when the binding takes
place (s?e Wirth 1971), This evaluation is performed by EXPRFORV which substitutes a numeral for
the value of each subscript

Th^ test on the type matching between formal and actual parameters is done by TYMATCH:

TYMATCH ; [Xfa loe aa f s.TYPEVALdypof fa1CRNTF(f,5),s)=TYPEDEF(loc aa.prcd f.s)]

The type identifier associated wuh the formal argument is evaluated (by TYPEVAL) in the frame
where the procedure has been declared. The pointer to it is retrieved by CRNTF We have In fact
chosen to evaluate the type associated with the formal arguments of a procedure when it is activated
and not when it is declared. The type of the actual argument is fetched from the store by the
TYPEDEF combmator in the location typoloc aa or fy'pfunloc aa depending on whether fa is a variable
or function parameter. All these auxiliary combmators are defined in appendix ?.8 Here we only
describe TYPEVAL:

TYPEVAL * [ccF[\n f s
Isbasetype n -» n,
isarspec n -» mKarsp«e(F(arlimof n,fls),F(typelof n,l,s)),
istyppart n -* issof n -» n,

ispair n -♦ mkpairfFilstof n,fls),F(rmdof n,f,5)),UU,
ISLOCALdypeloc n,s(f))-»F(s(f,lypeloc n),f,s),
istopf f -» UU.Ffn.CRNTFff.s),'.)]).

If the type n being evaluated is a base type, i.e. integer or subiauge, then TYPEVAL evaluates to it. If

■■Ml ■MaaaaMai

WPH'I1 ii«.Miiiiiiwu■■ii>iin>Hii«iiiiii i.■IKIIJIIIIW .mm» iHj(in«pp»fimai(«p*ipp i» n in iiiipimn. MWIIII ■""""'■ "**

The Semantics of PASCAL in LCF 18

n is an array specification, then both the types of its subscripts and the type of its elements are
recursively evaluated. The types of the subscripts of an array are given as a list of subranges. This
list satisfies the predicate istyppart. so each one of its elements is recursively ev Juatea Finally, if the
type being ev?luated is a type identifier defined in the current frame, then TYPEVAL applies
recursively to its definition If the type definition is not found in the current frame, then the

appropriate frame is searched.

If a formal parameter fi is passed by value, then a variable fa is declared in the current frame by
CREAV (see 3.1.2). Its type is evaluated by TYPEVAL in the appropriate frame and stored into the
location typ«loe la. The value of the actual parameter aa is then computed by MEXPR and assigned to
fa. ASSIGN checks whether or not the types of fa and aa are compatible (see 3.3.1.2).

If the formal parameter fa is a function parameter and the type of fa matches with thac of aa. a
function fa is declared in the current frame by the combinator CREAF (see 3.1.3). The type of this
function is the type of fa evaluated by TYPEVAL in the appropriate frame. In its acelnk location the
content of the aeclnk locanon of aa is stored. The text of the actual argument is retrieved by
FUNCDEF, its aeclnk by PFLINK and its type is evaluated by TYPEVAL in the usual way.

If the formal parameter fa is a procedure parameter a procedure is declared in the current frame
by CREAP. In the aeclnk of such procedure the content of the aeclnk location of the actual parameter is

stored.

Since the combinators used for binding formal and actual parameters are those used in declarations
(see 3 12-3) an undefined store is returned if the reserved identifier FUNV is used as formal
Darameter (see 321.3 for a discussion on the use of FUNV). Fiom the definition of MKBINDING it is
also evident that FUNV cannot be used as an actual parameter since both EXPRFORV and MEXPR
return an undefined result if applied to FUNV The auxiliary combinators used by MKBINDING test,
by ISPRESENT. the presence of identifiers in a frame. It follows that an identifier cannot appear twice

as formal parameter and in the declaration part of a procedure

Procedures, as well as functions (see 3.2.13), cannot be executed recursively if they declare a
procedure or have a formal procedure parameter with the same name.

As noted for functions, a procedure may also have itself as actual argument. Even though LCF is a
typed logic, we avoid type conflicts by passing texts, and not functions as parameters.

3.3.1.4 Read Statement

PASCAL has no read and write statements We have introduced them for defining the semantics of
the input and output. In vVirth 1972 a standard procedures, read and write, are introduced for

handling the input and output.

As said in 22 the data to be inputed is stored into the filaloc INP location of the store by the PASCAL
function Whenever the value of a variable has to be inputed. it is read from the buffer INP by the

READ function:

READ « [Xn f $.ISFUNFR(f,s.0)-»ASSIGN(n,MEXPr?(fr.tof(IBUFFER sJ.O.f.
STORE(8,s,fileloc INP,rmdof(IBUFFER s))),UU].

- .._—..

ifmimmimmiBm^m^tmammmm - «ilMVurvwillWllKMUUTC^^^*«""» '■<! .«••"■■I I i1"-1"" l-"

The Semantics of PASCAL in ICF 19

A test is dp:ie to see If the read statement is executed during a function activation, in this casr thf
result of READ is undefined. Otherwise its result is a new store where the first element of the ,n|-«it
buffer has been removed and its value has been assigned to the variable being read.

3.3.1.5 Write Statement

The results produced by a program are stored into the fiWoc OUT location, where the/ are eventually
retrieved by the OUTPUT combinator (see 22). The write statement puts into the buffer the numeral
of the value of the vanaile to be outputed.

WRITE E [Xn f s.lSFUNFRO.s.BHSTOREtö.s.fileloe OUT.mkpairlmknumeonstlFETCHVdi.f.s)),
OBUFFER s)),UÜ]].

As with the read statement, it is forbidden to write during a function activation.

3.3.2 Structured S atements

The structured statements included in our verton of PASCAL are:
1) the conditional statement in its two forms: if-then and if-ihrn-cl»e,
2) the repetition statements while and re/«-«!,
3) the for statement in its two forms: for-io and for-dowmn

We have not included the rn*r and the uith statements defined m Wnth 1971, 1972 since they do
not seem very relevant to the integer arithmetic part of PASCAL. In Wirth 1971, 1972 the
compound statement is also mcliuled in the list of structuied statements. In our description of
PASCAL the compound statrment does not appear since the ktgiit, rnii delimiters are not present in
the abstract syntactic form of a progiam. The compound statement in its abstract syntactic form is a
list of statements assembled by the syntactic constructor tnkcmrid and ending with the symbol ES.
The semantics of the compound statement is defined by MS whicl ctttblithtl the flow of the control
through the statement part of the program text.

3.3.21 Conditional Statement

The conditional statement in PASCAL has two forms: i/-(/ieii and if-ihrn-dsr. In the abstract
syntactic form the conditional statement always has an else part, possibly it reduces to the empty

statement ES.

The semantics of the conditional statement is defined by the combinator CGND:

COND s [\q f B s.(q(s)-»f(s),g(s))].

The test of the conditional is evaluated in the store where the conditional statement is executed. The
conditional returns the then-part or the else-part evaluated in this store, depending on the value of

the test.

Going back to the definition of MS given in ?.3, we see that if the first statement of the text in
execution is a cond'.ional, its test is evaluated by the MBEXPR combinator and then MS applies

-■ r

 ■■ " '■■■' ****mmmmmmmmmm* ■"•WWWWBBWBHWHIIIBIPI « ■ tmim^^mim^^**^**'

The Semantics of PASCAL in LCF 20

recursively to the text resulting from appending the then-part or :he else-part of the conditional to
the remaining statements. The append function, defined in appendix 2 5 corresponds to the ordinary

appending function for lists.

If a goto statement is executed within a branch of a conditional, then the execution goes on with the
text furnished by the segm function. If a jump into a branch of a conditional is done, then the text
to be executed next consists cf all the statement: between the first occurrence of the label to jump to
and the end of the branch of the conditional, appended to the rest of the program. This text is the
result of the sr -unction defined in 3.3 1.1

3.3.2.2 While and Repeat Statements

The while statement is a repetition statement whore abstract syntax is:

mKwhii«(t*8t,body).

body is repeatedly executed until test becomes alse. The semantics of the while statement as given in
MS (see 3.3) can be explained as follows: t#it is evaluated, if its result is true, then MS applies
recursively to body appended to the *Mta s:?.tement itself and to the remaining statements in
execution. If the test fails. MS applies to the remaining statements.

Wirth 1971 says thaf in PASCAL, for all e and 5 the 'wo statements

whih € do S

and

if e ihm he gin 5, while e do S rnd

are equivalent. We prove this true for our semantics (see 4.4).

The repeat statement is similar to (he while statement. The only difference is in that the repeat first
executes its body and then performs the test to see whether to go on or stop. The semantics of the
repeat sta'ement is defined m MS (see 3 3) MS applies recursively to the body of the repeat,
appended to a conditional (specifying whether or not the repeat must be executed again), appended

to the remaining statements in execution.

We have also proved the equivalence described in Wirth 1971 for the repeat statement, i.e. for all .
and S the two following statements are equivalent;

reprnl S unUl €

hrfiin 5, if *4 thru rr/wnl S unlil f rnd

In Weyhrauch and Milner 1972 and in Aiello and Aiello 1974 a WHILE combmator w, s introduced
for defining the semantics of the while statement:

-*■'•■• "-^

mm ■ '■ ■""■ J.WII ij piUPJ|W^l«l«pilinppir-< I Pi I,il li|l.|ltiiPIP7iPM!RJIIP*«IMMFi^9pPOTHWripq|pi|ipH|h9ipPilirjR

The Semantics of PASCAL in LCF 21

WHILE ■ [<*F.[Xt b.CONDii.b&FO.blJD))].

It cannot be used here since a g,oto statement can stop the execution of the body of the while. We
can prove that the definition of the semantics for the while statement given in MS reduces to the
above semantic combmator when the body of the while is goto free (see 4.3).

The language described in Weyhrauch Milner 1972 had no repeat statement. Tne semantics for the
repeat statement was described in Aiello, Aiello 1974 by the combinaLvr REPEAT:

REPEAT '- [<*F.[Xb t. b»COND(t1F(b1t))ID)]].

It is similar to the WHILE combmator described above and the same considerations concerning the
presence of goto's hold for it.

If a goto statement is executed within the body of a while or repeat statement, then the execution of
the rep-tition statement is stopped and the text to be executed next is furnished by the segm
combmator. From the definition of segm given in 3.3.1, we see that when a goto statement jumps
into the jody oi i repeat (while) statement the piece of body starting from the first occurrence of the
label is appended to the text starting from that repeat (while) statement. This means that the part of
body from the label to the end is executed and then a test is dene to see whether or not the
execution of the repetition statement must be stopped or goes on.

3.3.2.3 For Statement

In PASCAL the for statement has two forms:

for i:*el to e2 do b;

and

for {"(l dou uln (2 do b;

In both cases b is the body of statemrnts which is repeatedly executed, and (is the variable which
controls the loop. In the forto statement it is increased by I each time b is executed In the for-
downto statement it is decremented by 1. The two expressions el and «2 will be referred to as the
initial and final values of the control variable.

The abstract syntax for the two forms of for statements is defined by:

mKforto(i,el,e2,b),

mKfordn(i,al,e2,b).

Their semantics is defined in MS A test is done to check if the value of the control variable i is
equal to the final value o2. The test is:

fortest i [Xx .i5forto(x)-*mkrel(l5oq1lbof(x)1ubof(x))1isfoidn(x)-»mkrcl(groq)ubof(x)Ilbof(x)),UU].

If fortest evaluates to TT, th;. initial value el is assigned to the control variable i, then the meaning

aaaaMaaaMMM,.— ■■MaMaaiaaaai

-——— ipwi i iji«a i !■ im. i 11 «um JIIM .vwwmmmmmmmf*^**' tmmmmtißim^mim

The Semantics of PASCAL m LCF 22

function MS applies io lie body of the for statement appended to the text assembled by the

combinator fortoup (fordnup)

fortoup ■ [\x .mkcmpnd(fnkforlo(indoxof«stof(x)),mk«prl(plusl,ind«xo<(f8iof|x))),
ubo((lttol(x))lbodyo<(lttof(x))l,rmdof(x))]l

fordnup ■ [Xx .mKempnddnKfordniind^xofdtloftxjj.mkÄxprKminusI.indaxofOitoflx))),
Ibof(f8tof|x)),bodyef(»$to«(x))),rmdof{x))]

fortoup (fordnup) updates the initial value of the for loop by substituting i*l (i-l) for i.

We have chosen to def ne the for in terms of the algorithmic equivalences given in Wirth 1971. i.e.

for all i, el. tl and S the statemcU:

for «.-</ «o tl do S

is equivalent to

if el<e2 then
begin i:-e};S;

for i.'succii) io e2 do S
end

and the statement

for t'el downto e2 do S

is equivalent to

if el>e2 then
begin (."eltS;

for i:-pred(i) to e2 do S
end

We have imposed no restrictions on the fact that the values of i, el and e2 are changed by 5 or by
the for statement itself, or on the jumps into or out from the body of a for statement. The value of
the control variable at completion of the for has the last value assumed, namely the value it had
after the last execution of 5. This interpretation of the for statement is different from the description
of the PASCAL for statement as given in Wirth 1971. 1972 and in Hoare and Wirth 197?. The
definitions given in these three papers are indeed different from each other. Our choice has been
motivated by the fact that we wanted the semantics of the for statement to be as smooth as possible
and, at the same time, we wanted to make it less ambiguous then Wirth 1972. The definition of the
for, given in term.' of the above algorithmic equivalences in Wirth 1971, was changed in Wirth
1972, following me suggestions made in Hoate 1972. In order to leave the implementer more
freedom, the following equivalences are required in Wirth 1972:

for i:*el to t2 do S

is equivalent to

 - -

■Hl«." mplm^^ iwuijinipijaMWiii Hi),»«IJW i I liiniilHWDPli "^-^ fl^^ BWmWP HWP^MIH

The Semantics of PASCAL in LCF 23

i.-el; Si i.'succii); S; ... i:*f2; S

and

for i:*el doumlo (2 dn S

is equivalent to

!.-<•/, 5; i:-pred{i); S: ... i:-e2; S

These definitions seem ambiguous to us: what happens if (I>e2 in the for-to statement?

The third definition of the PASCAL for statement is given in Hoare and Wirth 1973. This is
closer to that given in Wirth 1972, but not the same. It is given in axiomatic form:

(a<x<h) A P([a..x)) {5} P([<i...v])

P([]) {/or.v:.a to b do S) P([«JD

(a<x<b) A P((x..t']) {5} P([x..b])

P([]) {for xi'b dowtao a do S] P([a..b])

It is written in the formalism proposed by Home 1969, where P{QjR means that if P and R are
predicates and P is true before the wcittion of 'he body of statements Q, and Ovterminates, then R
is true after the execution of <^,] denotes the interval jxlasxib}, [a,b) denotes the interval
{x|aix<b}, and so on. This rule was UMd in Hoare 1972 for characterizing the correctness of the for
statement. Apart from the far iat the description of the rule given in Hoare 1972 and that given in
Hoare and Wirth 1973 are 'rent, we do not agree with it. In fact it leaves unspecified what
happens when the for-to sta nt is executed with the initial value greater then the final value. It
seems to us that any defiiiii..n which leaves this ambiguous cannot serve as a satisfactory
specification of the meaning of the for statement. In particular »t cannot be used to prove general
theorems about the for statement. Consider for example an implementation of PASCAL in which if
b<a in one of the above for statements, then the body of statements 5 is executed 14 times! This
implementation satisfies the above axioms, but is certainly strange.

In Wirth 1971, 1972 nothing is said about the behavior of the goto., "ith respect to the for
statement. Hoare and Wirth 1973 do not deal with goto's. In our semantic definition, if a goto
statement is executed within the body of a for statement, then the execution of the repetition
statement is stopped and the text returned by segm is executed next. From the definition of segm we
see that if a jump in'o the body of a for statement is executed, then sogm retuins the piece of body
starting from the first occurrence of the label to jump to, appended to the piece of abstract syntax
returned by the fortoup or fordnup combmatois

If a jump into the body of a for statemmt is executed we distinguish between two cases: I) tnc jump
is from one point to another point of the body of the uunt for statement. In this case the
computation goes on with the control variable having the cuwent value. 2) the jump is from a point
of the program outside the for statement. In such case the computation may result in the undefined

i" I II H I.l ll.l|l«"WP«" "^ ' ' p«^^m«*ap »w^^ww >»" nnnw ■t""11-" ■ n ' K" ""n Jim

The Semantics of PASCAL in LCF 24

siote accordingly to whether or not the control variable has been assigned a value prior to the
execution of the jump. In fact the updating combmators forloup and fordnup replace i*l and i-1 for
• 1 in the for statement, so it evaluates to UU if the control variable has not yet been assigned a

value.

Haberman 1973 dislikes the possibility of jumping into a for statement. We have allowed such
jumps, thus a for loop may be initialized from outside and started by a jump. This seems reasonable
since PASCAL has no block structure, so the control variable of a for statement has to be declared
in the declaration part of the text and may be given a value independently of the for statement.
Furthermore, since the control variable is not local to the for statement, we do not see any reason for
leaving it undefined after the execution of the for statement, as required in Wirth 1972. Nothing is
said at this regard in Wirth 1971 and in Hoare and Wirth 1973. We do not agree that a perfectly
behaved statement should leave an undefined value in a location which has been declared and
assigned a value. It also leaves ambiguous what happens to the control vanabli if a goto stops the

execution of the for loop.

Our semantics doesn't check to see if the control variable, the initial value or the final value are
modified during the execution of the for statement. This makes our for statement sim:lar to the
while statement. Since the control variable is not a dummy variable of the loop there is no reason
for it to be treated differently from any other variable. Wirth 1971, 1972 and Hoare and Wirth
197? are discordant about the requirements on such modifications. Moreover it is our opinion that
checking for them is very difficult and is unlikely to be done in any current implementations of
PASCAL. Consider for example a program where an integer variable i is declared which also
declares the following procedure;

prorcduro A(jji.integer)
for IM to k do

if i'3 then A(k*lj)
«./«. A(j*lM);

Note that m this.program the control variable is changed by the recursion of the procedure A, not

by an assignment statement.

A final point regarding our semantics: as with the while and repeat statements, if a text is goto-free
the semantics of the for statement can be defined by the following two combmators:

FORTO » [*F.[Xi tl «2 b f. CONDCMBEXPRdnkreiOsoq.el.eZMl.ASSIGNd.MEXPRUl.fl.Dsb»
F(i,mK«xprl(plusl,i),«2,b,f),ID)]];

FORDN « [ocF.[\\ •! e2 b f. C0ND(MBEXPR(mkrel(greq,ol,e2),f),ASSIGN(i,MEXPR(*lIf),f)®b(i»
F(i,mk«xprl (minus l>i),o2>b,f)1ID)]];

The equivalence, in the goto free case, between the definition of the semantics of the for statement
given m MS and that given by the two above combmators, can be proved easily (see 4.3).

Ppw«»wp«liliWliP»llpi^WPipW!W^^"WW^PIWl!^^

The Semarncs of PASCAL in LCF 25

SECTION 4 PROPERTIES OF THE SEMANTICS

In this section we discuss some general properties of th<; interpretation of PASCAL in LCF. We
have proved i

1) the meaning function MS is strict on the store, i e. for any staement st and any framcpointer (,
MSCsM.UufjUU.

2) for goto-free progr ims. MS is a homomorphism with respect to the constructor mkcmpnd, i.e.
VfMS(mkcmpnd(a,b ,f):MS(a,()«MS(b,l)

3) MS reduces to a simpler function for goto-free programs. New combmators defining the
semantics of the epetition statements ire given.

4) all the equivalences about repetition statements given in Wirth 1971 hold in our semantics.

5) some miscellaneous theorems about MDEC, MDEF, MS

Section 4 I The strictness of MS on the store

The main theorem of this section is

Vst f MS(SM,UU)HUU.

We c'o not show the proof here as it is a single LCF simplification using the lemma

Vt a b.{l-»a,b)(UU)=(t-*a(UUj,b(ULI))

The main theorem should not be regarded as trivial however, as it requires 208 substitutions.
Without the LCF simplifier, this proof would have been over 1000 steps long. This is an important
theorem because it shows that our interpretation of statement' behaves correctly with respect to the
termination of computations.

Consider the following program

t^nr n.integfr
hrgin

I: goto I,
n-.-l.
end

This program fails to terminate To us it seems that the only reasonable interpretation of this
program must be the undefined function If the meaning function is not strict, it may happen that
the assignment of 1 to n builds up I store in which n hai value 1 Suppose we were to choose the
most obvious interpretation of assignment, le. if the above program is being executed in a store s,
and a frame whose framepomtei is f then the meaning of the assignment s'atement in the e> ample is
a new store si:

- - - -M.., —»*-_

mmrnm*^**!* . iiiJ|i||ililW|PpnqnMPI^WP>. > i.iinu.na^nüimiOTlipMPp^wiqppnPM^viMi^ "•'"W!"«

The Semantics of PASCAL in LCF 26

tl • [Xfr.fr»f-»[\m.m«n->l,««,rT\)],s(fr,m)],

so

«110 • [Xm.m»n-»l,s(f,m)].

This new store has the unfortunate property that even if ««UU. we still have «l(f,n)«l. It is thus not

undefined

The desire for the interpretation of a program to be an extensionally given function on the store
and composition of these functions to correspond to executing one program after another, means that
an interpretation which is strict on the store is the only one that makes sense. In Hoare's axiomatic
treatment this problem goes away but the price is that every statement that you can prove about a
program is condit.onal on its termination. In the above case one proves the sentence. If the

program terminates then n»l"

Because as already said, the proof is a single step we do not give it here. Instead we will explain
why for our semantics ASSIGN is strict on the store. The W represent some ai oiti ary combmatür.

ASSIGN ^ [Xn v f s.nSFUNV-»ISADMISVAL(s(f,«yp«loc FUNVVWH »»«.ISINTYPECn.v.f.tH «**,«**]

So

ASSIGNCn.v.f.UU) » n.FUNV-^ISADMISVALIUU.vlUU^)-» *»*,UU,ISINTYPE(n,v,f,UUH **«,««*]

ISADMISVAL asks if a value is of an admissible type. UU is not even a type, no less admissible, so

ISADMISVAL returns UU.

ISINTYPE(v,val,l,UU)«ISLOCAL|typ«loeNAMOFVAR{v)(UU))-»ISADMISVAL(TYPOFVAR(v,fIUU),«!l(UU)),FF]

ISLOCALdoc.UU) » UU.UNDEF-*FF,TT

But for any X. UU-X is just UU so ISLOCALIIoe.UU^UU. This is the central point of the entire strictness
proof Looking u i a location in a defined store in an existing frame is not undefined if that
location has not been created. Stores are constructed in such a way that we can test if it is defined
and no assignment is made if it isn't. This check is done by ISLOCAL. which returns UU if the frame
is undefined. The proof is completed by making the correct substitutions.

Other theorems about s'.nctness appear in section 4.5.

Section 4.2 Properties of MS for goto-frce programs

A goto-fiee program is defined by the following predicate :

iscotofr«« < [<*F.[X s
isgoto s -» FF,
issmel« s -♦ TT,
idabsUt « -♦ FUUtmof s),
isiter s -» F(bodyof t),

Si* amatmat^ij^lttiM

W"1 I ■ w—'■"■ 'P - "^mm ^*r^*m* ■" iNipiPwwwwi^B^F^WWWW^PBl^^WMpBFÄW ■wn^

The Semantics ot PASCAL in LCF 28

MS(mKcmpnd(mkldbstal(l ,mKass{a,inKb«xprl (plusl ,a))),ES),f)l

which is false: slatting from a stoie whcie a is declared in the current frame, MS(P,f) returns a store
wheic, in the cuirent frame, a has value ?.. while the ,ight hand side evaluates to a store where, in
the current frame, a as value 4 The light hand side is wrong, since by interpreting each statement
sep irately, it is impossible to skip a piece of text as requned by a goto.

In the next section we consider how the semantics of a PASCAL statement part is simplified when it
is p.oto-free Our semantics deals also with programs where the composition rule is not valid Hoare
axiomatic approach to the definition of the semantics of a programming language relies on the
validity of the composition tule, so a cannot easily treat piograms with goto's. Hoare and Wirth
197? axiomatization of PASCAL, for instance, doesn't define the goto statement The Igarashi.
London and Lurkham 197? VCCEN. based on this approach, deals only with backwards goto's and
preset ves the validity of the composition rule by considering indivisible the piece of program
between the label to jump to and the goto.

i

Sectimi 4.3 An equivalent ineaiiiiijj function for gotofrcc programs

As noted in th? description of ippetition statements (see ?.?.C2,-3), if the body of the repetition
Itatenwnl is goto fice, new combinatori may be defined for describing then semantics. In this case
the semantics defined by MS is the same as that defined by the new combmatots

The ptoofs of the first four equivalences are quite similar, they are carried out by subgoaling to the
two goals with the logical symbols =, c respectively All these pioofs are standard and could be
automated by enriching the featutrs of the current LCF system In appendices 4,5,6 we have
included the commands and the printouts of the proof of one half of each of the first three
equivalences. The fourth is analogous to the third one.

The proof of the equivalence between MS and MSGTFR is carried out by proving the lemmas with c,
a respectively, and using the above equivalences for repetition statements. A long case analysis on S
is performed, analogous to that discussed in 4.2. Even in this case the proof could become very short
by imptoving slightly the LCF conditional simplifier.

1) VS t f i5golofree(S):: MSdnkcmpncKmkwhiled.Sl.ES),») ■ WHILECMBEXPRO.O.MStS.f))

where WHILE i (o<:F [Xf bCONDU.bsFd.bl.lD)]]

2) VS « f, isgotofree{S):: MS(mkcmpnd(mkrepoat(S1t),ES),f) = REPE''AT(MS(S,<),MBEXPR(mkbexprl (not.D.f))

where REPEAT = [u? [\b l.bBCONDK.Fib.O.ID)]]

3) VS i «l e2 f isgotofroelS):: MSImkcmpnd^kfortod.el.oZ.S^ESM) i FORTOd.el.oZ.MSIS.f),«)

where FORTC i [*F.[\i el e2 b f. C0ND{MBEXPR(mkrol(lnoq,el1e2M),ASSIGN|i,MEXPR(el,f)lf)
®b«F(i,mkoxprl(plu5l,i),e21b)t),ID)]];

4) VS i el e2 f .isgoto«ree(S):: MS{mkcmpnd{mkfordn(i1el,e21S),ES),<) I F0RDN(i,el ,e2,MS(S,0,f)

where FORDN s [«F[Xi el e2 b f C0ND(MBEXPR(mkrol(groq1el,e2),«)lASSIGN(i1MEXPR(ellf),f)

M^^MflM -^^ . —

«^m^rw***w*rmm' "rm^m^mmmmm^mmtm ■ mmm >' ■' mmmmmmi^^m^^^m'Wfmmmnim'^fimmmim MFi«VHwi|.i'«^qff^pma^||

The Semantics of PASCAL in LCF

»b®F(i,mK«xp'-l(minujl1i))«2)b1f),ID)n;

5) VS < isgo»ofrM(S):: MS(S,f) * MSGTFRtf.O

29

ID,

where
MSGTFR^o«:F.[Xst I.

isemptyst st
iscmpnd st ■•

is«mptyst((stol st)-
islabsta«(fsto< st)-*
isreaddslof st) -•
iswrit«(fstof st) -'
iMM (fstof st) -»
isproccalKtstot $t)-

iscond(f5tot st)

iswhilelfstof st) -»
isrepeat(fsto1 st) -*
isfortoUslof st) -»

isfordn(fstof st) -»

• F(rmdof st.t),
F(statmot(fstof st),f)®F(rmdof st.f),
READ(n8mof(fstof st),f)®F(rmdof st.f),
WRITE(namof(fstof st),f)»F(rmdof st.f),
ASSIGN(lhsof(fstof st),MEXPR{rhsof(fstof $t),«)lf)«F(rmdof st.f),
♦[Xs.MPB(PROCFAL(namof(fstof st)^^),

actarRoflfstof st)1f,s1namof{fstof st))]8
fXs.MO(PROCDECL(namof(fstol sty.sUuce l.s)]®
[X$ F(PROCBODY(namof(fstof st),',i),suc<-. f,«)]«CLEAR(suce f)®F(rmdof st.f),

• COND(MGEXPR(1e5tof(f5tof sO.f),
F(thfinof(fMof st),f),F(elseof(fstof sD^jeFCrmdot st.f),
WHILE(MBEXPR(teslof(fstof st),f),F(bodyof(fstof tt),f))®F(rmdof st.f),

• REPEAT(bodyof(f5tof stj.MEXPRImKboxprKnot.testoflfstof sl))lf))®F(rmdof
FORTO(indexof(fstof sl),lbof{fstof st),
ubof'fstof sl),bodyof(fstof st),f)©F(rmdof st.l),
FORD:i(indexof(fstof st),ubof(fstof st),

lbof(fstof st),bodyof|fstof sl),f)®F(rmdof st,f),UU,UU]]

The defm.tion of MSGTFR shows how our semant.es s.mpl.f.es for goto-free programs No
manipulation of the text is rtquircd, every statement can be treated mdependentb of the others,
TomTcomb.nators as fort.st. fortoup. fordnup, append are no longer necessary The semant.
ombmators for repet.t.on statements not only s.mphfy the form of MS but also the proofs of

propen.es of .oto-flee programs In fact, m the general case proofs by mduct.on on the re^t.t.on
Sen' mJ be done by mduct.ng on MS. For goto-free programs the mduct.on can be d.rectly
done on the appropr.ate semant.c comb.nator Hence, only propert.es of the body of the repet. .on
statements and not of the whole program are mvolved. The structure of the program reflects
directly on the structure of the proof since allows to factome it into easier lemmas.

in MCtlon 5 1 two afferent p.og.ams wh.ch compute the factorial function are compaied. In the first
one the Iteration is performed by l wh.le statement, in the second one by a backwards goto The
proofs of then correctness are different, the goto-fm case li more straightfo-ward. The proof of the
correctness of the goto program may be .eduod to that of the goto-free program by show.ng that, in
oenenl a while loop is equivalent to an appropriate loop controlled by a conditional goto This
«xamnle show« the advantage of a formalism which allows to prove general properties of the
language and the necessity of creating the right environment of theorems about the programming

language to greately simplify the proofs of propert.es of programs.

Section 4.4 Equivalences for repetitive statements

In »Vim an mterpretat.on of PASCAL in LCF our aim was to be as dose as possible to the
mformal description given in Wlrth 1971. For this reason we proved most of the properties of the

t tenrrnts that are mentioned m that paper. The LCF theorems stat.ng the equivalences for

repetition statements given in W.rth 1971 are

_« mtäi tAmitCtoi

■ i [■i.nuwnmiWH^i ii I.. l«»l»JIJHP. n'immm*m*mmm*m*i~ « n mi 11 p^^wwn»»"' ■" i»«» »w

■■«HI

The Semantics of PASCAL in LCF 30

V« S. MS(mKcmpnd(mKwhile(e,S),ES)) = ^ ..•.».-•»•.«
MS(mkempnd|mkeond|«p«ppend(S1mkempnd(mKwhil«(«1S)ltS)),tS),ES)),

V« S (. MSdDkempndlmkr.peaKS.eJ.ESM) »
MSlappondlS.mkcmpndCmK-.ondi^kbtxprHnot.eKmkempndlmkrepsaKS^J.tSJ.ESJ.ES^.I),

Vi «1 «2 S i. MS(mkcmpnd(mkforto(i,elre2,S),ES)lf) »
MSCmkempnd^kcondimkroKlsoq.ol.oZ), . , , ,» rem rev re»i»

mkempnd(mks8«(i,«l),«pp«rJ(S,mkempnd|mMor1o{i,mk«xprl (pluf I ,i)l«2,S),ES))),ES),ES),t),

Vi el «2 S f. MS(mkempnd(mkfordn{i1el1e2,S)1ES),f) «
MS(mkempnd(mkeond(mkr«l(greq,el,«2), ,,,..,-,.»» re» re» «

mkempnd{mkass(i,«l),8ppend(S,mkcmpnd{mkfordn(i,mkexprl(minusl,i))e2,S),ES))),ES),E5)1t),

All the proofs of the above statements are one step proofs. In hct, we have defined the semantics of
the repetition statements directly in terms of the equivalence described in Wirth 1971,

Section 4.5 Miscellaneoui theorems on MDEC, MDEF, MS

Our aim in this section is not to give an exhaustive list of the properties of PASCAL, but rather to
show some typical example of theorems which have been used in the proofs presented in this report.

Fir t of all we want to state that type definitions and declarations are independent of the order. The

theorem proved for type definitions is;

i8namne(nil)::isnamJ(n2)::nl/n2::ISABSENT(nl,s(0)::lSABSENT(n2(s(f))::
MDEF(mkempnd{mktyp«def(nl,tyl),mkempnd(mktyp«deUn21ty2)lES)),f,s)«
MDEF(mkempnd(mMyp«d«f(n2,ty2),mkcmpnd(mktyp«d«f(nl,tyl),ES)),f,s);

This theorem states that if nl and n2 are different names and they do not appoir in the store, then
the order of type definitions using these names as type identifiers is irrelevant. The predicates
appearing in it have an obvious meaning: ^ is the negation of -. 1SABSENT is the negation of
ISPRESENT. The proof of this theorem has not been included in the report since it is a very simple
proof done by simplification and using some properties of conditional expressions. Analogously the
following theorems can be proved. They state that declarations are independent of the order.

Vnl n2 tyl ty2 f s . ,m (14%
i8name(nl)::i$nam«(n2)::nl/n2 ::ISABSENT(nl1s(f))::ISABSENT(n2,s(f))::
MDEC(mkcmpnd(mkvardecl(nl1tyl),mkcm()nd(mkvardecl(n2lty2),ES)),f1s) •
MDEC(mkcmpnd(mkvard*cl(n2,ty2),mkcmpnd|mkvardecl(nl,tyl)lES)),1Is);

Vnl n2 tyl ty2 fs2 f t . (m /i>%
i8name(nI)::isnam«(n2)::nl/n2::ISABSENT(nl,s(f))::ISABSENT(n21s(f))::
MOEC(mkcmpnd(mkvard«cl(nl(tyl)1mkcmpnd{mkfund«cl(n2,<«21ty2),ES)),f,8) •
MOEC(mkcmpnd(mk«und«cl{n2If82,ty2),mkcmpnd|mkvardeci(nl,lyl),ES)),<,8);

Vnl n2 tyl ty2 Is! fs2 f 8 .
i8nim«(nl)::i8nam«|n2)::nI/n2::lSAQSENT(nl18(f))::ISADSENT(n21s(f))!:
MDEC(mkempnd(mkfund«cl(nl1f8l,tyl),mkcmpnd(mkfundecl(n2,fs21ty2),ES)),f,8)s
MDEC(mkcmpnd(mkfund«cl(n2,f82,1y2)lmkempnd(,nkfundeci(nl1f5l(tyl),ES)),<,8);

tm>m»'m nj mmm* mmn-m'mi'mi'm" f iw7^v^mmm^l^m>mnmf^l^^^7r^rri<m'-^'^«"n""'i''<«>i' njmwiw " i •«'• ja.u^nn^mnpmwVMWIi*».1!11!'!)

The Semantics of PASCAL in LCF 31

Vnl n2 lyl <sl p52 f s .
ISname(nl)::isname(n2)::nl/n2::ISABSENT(nlls(f))::ISABSENT(n2,slO)::
MDEC(mkcmpnd(mk(undecl(nl ,fsl ,ly 1)1mkcmpnd(mkprocdecl(n2rps2),ES))lf1s) ■
MDEC(mkcmpnd(mkprocdecl(n21ps2))mkcmpnd(mkfundocl(nl,fsl,tyl),ES)),f,8);

Vnl n2 tyl ps2 f s .
Jsnamo(nl)::isname(n2)::nl/<n2::ISABSENT(nl1s(f))::ISABSENT(n2,s(0)::
MDEC(mkcmpnd(mkvardecl(nl1lyl),mkcmpnd(mkprocdecl|n2(ps2),ES))1f.8)i

MDEC(mkcmpnd(mkprocdecl(n2,p52),mkc'«P"<1(mhvardGC,<nl',y1)'ES))',>s)5

Vnl n2 psl ps2 f s .
iSname(nl)::.sname(n2)::nl/r2::ISABSENT(nl1s(())::ISABSENT(n21s(f))::
MDEC(mkcmpnd(mkprocdecllnl .psl),mkcmpnd(mkprocdecl(n2,ps2),ES)),f,s) -
MDEC(mkcmpnd(mkprocdocl(n2,p52)1mkcmpnd((rikprocdocl(nl,psl)1ES)),<,s);

Some theorems tlcscnbing properties of MDEF and MDEC are now listed. Each of them has been

proved in one step.

V x y f. MDEF(mkcmpnd(x,y),f)-MDEF(x,f)®MDEF;ypf);

V x y f MDEFdnkvardecKx.yj.f): ID;

V x y z f.MDEFtmkfundacllx.y.z),«)5 ID;

V / y f. MDEF(mkprocdecl(x,y),f)= ID;

V x y f. MDEFCrrW.ypedeflx.y),»); CREAT(fIx,y);

Vf. ^DEF{ES.1)ilD;

V x y <. MDECCmkcmpndU.y^O-MDECix.OsMDECIy.O;

V x y f. MDECdnkvardecKx.y),!)» CREAVd.x.y.f);

V x y z I MDECdnkfundocKx.y.z),/)* CREAF(f,x,y,z,<,0;

V x y (. MDEC(mkprocdecl(x,y),«)= CREAPlf.x.y.f);

Vf MDEC(ES,0-ID;

In the following we present some of the theorems dealing with MS. the combmators defining the
semantics of statements and some predicates used by the semantic combmators. The proofs of these
theorems are very simple (one step;, however they were useful in proving programs as well as

properties of MS

Vf MS(ES,f) = ID;

Vx y f.MS(mkcmpnd(mkread x,y),f)-READ(x,f)®MS(y,f);

Vx y f MS(mkcmpnd(mkwrile x,y),f)-WRITE(x1f)0MS{y,f);

Vxl x2 y f.MS(mkempnd(mkass(xl,x2)1y),f)=ASSIGN(xl1MEXPR(x21f),f)®MS(y1f);

'~*^~- ..„J LumjUL-ga—.^—^-^^.. - ., .. ,„ ,

gpiMiiOTii fwnwnmwn 111 •■■"•'- -}\ ».imimmmF^' •■'f^/m-.^i. ,.nimm. iv x<'mm ipmiaiinu , . i .,. i IIUUIIUJIIIIII ««

^

The Semantics of PASCAL in LCF 32

Vn f s,ASSIGN(n,UU,f,s):UU;

Vn e I.ASSIGWn.e.f.UU^UU;

Vn f.WRITE(n1<,UU)5UU;

Vn f.READ(n.f,UU)=UU;

MEXPR(UU)-UU;

BIND(UU) UU;

MPB(UU)=UU;

VI f.FETCH(M,UU)=UU;

Vn f.PROCDEFCn.f.UUj^UU;

Vn f.PROCFAUn.f.UU^UU;

MD(UU) UU;

Vn f PROCTXT(n,f,UU)=UU;

Vn 1.PR0CDECL(n,f,UU)=UU;

Vf.CLEAR(f,UU)=UU;

Vloc.lSLOCAL(loc,UU)iUU;

ISINBOUND(UU)=UU;

Viy.lSADMISVAL(ty.UU)=UU;

Vv f s.lSINTYPEKUU.f.sl-UIJ;

Vp ■ f.lSINTYPE(v,e,f,UU)-UU;

VflSPROCFRAMEif.UUl^UU;

X

^*f**mmmmmm ■^••WJ'WWWP^ m**mp'^m mmmmmr^mm

The Semantics of PASCAL in LCF 33

SECTION 5 EXAMPLES

In this section we want to discuss how to prove PASCAL programs in LCF. Two examples will be
fully described:

1) the factorial program,

2) the McCarthy Airline reservation system.

We have also proved correct a PASCAL, program for the computation of the GCD of two positive
intep.prs with the eudidean algorithm and a PASCAL program for the computation of the norm of a
vector These proofs have been ntCCUtcd using an earlier version of the LCF axiomatization of
PASCAL and are described in Aiello and Aiello 1971 We have not rerun them on the final
version of the axioms because, even though many detai's have been changed, the underlying ideas
have not been modified, so the proofs would remain very similar.

Section 5.1 The factorial program

The partial correctness of a program for the computa ion of the factorial function has been alieady
proved in LCF and discussed in Weyhrauch and Milner 1972. The proof presented here is very
similar to that one. We have included it because the factorial program is a very simple and familiar
example, so it is easy to go through the proof of its correctness. By comparing the proof given here
and that given in Weyhrauch and Milner 1972 it may be seen that even though the programming
language described here is much richer, the proof isn't more complex.

A PASCAL program which computes the factorial function is the following;

far nl,n2: Integrr
hrain
readinl);
reaJinZ);
uhilr r.Z/B do

hrfiin nl:*nl n2;n2:'n2l; rnd;
writi(ril);
rnd;

If the input consists of two nonnegative integers x and n this program computes x.n!. The factorial
function is obtained if x equals I

in this program the repetition is performed by a while statement, hence we will call it while-program.
An analogous program for the computation of the factorial function may be also written using a
goto statement (it will be called goto-program):

vnr nl.n2: integer
he din
read(nl);
rea(l(n2);

I: if n2i'B then

- -

"-■" i mm iiimi*mmmwmmmmwmmi^***i in^|Pll^p(WpVlp>^«<v<i^vw.«fW i nip,, ippnpnii in™w"P""jiM"»ii . Ji ■uK^'n'wainai^H

■■■■■

The Semantics of PASCAL in LCF 34

hr/jiii nl.'nl >n2;n2:'n2l;goio I; end;

rnrf;

In LCF both program« are provable correct with respect to the function FACT:

FACT « [odF.tXn x.n»8 -» x.Flpr^d n1n*x)}]l

FACT applies to two arguments n and x and evaluates to x*n!

In the following, the LCF proof of the while-program is described in details. This program has no
goto's, so the theorems described in 4 2 for goto free programs can be used, making the proof much
simpler. The proof of the stcond form of factorial program will only be sketched.

The abstract syntactic form of the while-program is;

FACTORIAL • mKUxUDP.SP),

DP 5 mkcmpnaCmkvarducKnl.INTl.mkcmpndimkvardwKna.INTl.ES)),

SP ■ mkcmpnd(mkread(n2))mkcmpnd(mkread(nl)1

mkcmpndtmkwhiUUest.body^mkcmpndlmkwriMnD.ES)))),

Ust I mkbexprl (not,mkrel(eq,n2,mknumconst(0))),

body ! mkcmpnd(mkass(nl 1mk9xpr2(times,nl,n2)),mkempnd(mkas«(n2,mk«xprl (minusl,n2)),ES)).

The form of the LCF theorem to be proved is:

Vnx.isnaUn^isnaUx^APPLYiFACTORIALAx^FACTCn.x).

Informally, it says that the evaluation of the program FACTORIAL on the data n and x,' if it
terminates, gives the same result as the computation of the function FACT on n and x. APPLY is the

following combmator:

APPLY 5 [X p x y.fstoMFUNCTIp.EOF.LISTlx.y)))],

LIST » [X x y mkpairlx.mkpairly.EOF))].

As said in section 2, FUNCT maps sequences of integers into sequences of integers. Given a program p
and two input numbers x and y, APPLY applies the combmator FUNCT to the sequence LIST(x,y) and
then takes the first element of the output sequence.

The method used to prove the partial correctness of the while-program is quite standuid 'or proving
programs with a while loop. All the combmators appearing on the term at the left hand side are
substituted by their definition. After some simplification (automatically done by LCF) the goal to be

proved is:

The Semantics of PASCAL in LCF 35

Vn x . isnat(n) :; isnaUx) ::
RESULT(WRilE(nl 81WHILE(MBEXPR(test,8)lMS(bodyia),READ(nl,0lREAD(n2,0,
CREAVW.nZ.INT.B.CREAVO.nl 1INT,0,FRAMEB(FACTORIAL,INPUT(LIST(n,x))lEOF)))))))) c FACT(n,x).

where RESULT is detmed as Vx.RESULT x = fstof(OUTPUT x). The theorem on the while statement
given in section 4? for gotofree programs has been used in achieving the above goal. The
semantics of the loop is exprttwd in U'ims of the WHILE combinator. As it can be seen from the
printout in appendix 7.2 the proof is done by induction on the WHILE combinator. The base case is
trivially proved. The induction step It proved by cases on the predicate which controls the loop, i.e.
-(n=8). If '(n=0) is false then the result easily follows, if '(n=B) is undefined a contradiction arises
because n is a natural numbei If -{n^) is true, the goal is proved by a proper instantiation of the
induction hypothesis. It is instantiated for pred n and x*n. Usually, in programs for the computation
of the factorial of ?. natural number the variable nl is not mputed a value, but It is initialized to 1.
The initialization of nl to x results in a strengthening of the induction hypothesis. In fact the
variable x appears universally quantified in the statement of the theorem to be proved and can be
properly instantiated. Actually the proved theorem is stronger than 'he desired one. The factorial
program is obtained by giving the value 1 to x in the a:iove theorem.

The proof given in appendix 7.2 is generated by the list of commands given in appendix 7.1. We
want again to point out that LCF is not an automatic theorem prover. It has only a subgoaling
mechanism and a sophisticated simplification algorithm which converts terms and simplifies them by
using the axioms and theorems put (by the user) into a "simplification set".

In the simplification set there are all the syntactic constructors and selectors, plus the semantic
combinators appearing in the first line of the list cf commands. Note that LCF labels are prefixed
by a ".", each axiom has been labeled with an identifier equal to the combinator being defined, and
INDUCT is the label of the induction hypothesis. The modifications done to the simplification set after
the proof is started (SS»/-somethiiig) are done only to increase the readability of the goals. In
addition, to inciease the readability of the proof, a combinator FRAME1 is introduced to describe an

intermediate store;

FRAME 1 « [XI nx.[Xf.f=0-»
[Xloc loc=n2 -»n,

loc=nl -*x,
locMypoloc n2 -» INT,
loc=typeloc nl -* INT,
loc=Meloc INP-* EOF,
loc=fileloc OUT-» EOF,
loc=textloc -• t,UNDEF],UU]].

In the printout of the proof each step appears with its "reason", namely the tactic used in achieving
it, as well as the step numbers of the axioms and the names of the theorems Involved In the
simplifications. The theorems TH1, TH2... are general theorems about the semantics, they are some of
the theorems listed in section 4.3 and 4.5. Theorems named ARITH1, ARITH2 . deal with the
arithmetic, they are taken from Newey 1973. Theorems named LM1, LM2... are specific lemmas about
this program. All of them have been proved in the same environment as the main theorem and their
proofs are very simple. Often the proof reduces to a one step simplification They are:

The Semantics of PASCAL in LCF

REAO(nI,8lREAD(n2)B,CREAV(B,n2.1NT,6.CREAV(81nl,INT,B,
FRAME8(FACTORIAL,INPUT(LIST(n1x))lE0F)))))äFRAMEl(SP1n,x)

ASSUME isna» x • TT, h nat n • TT

which implicitly defines the frame FRAME1,

MS(body18IFRAMEl (SP.n.x))« FRAME 1 (SP.pred n.x*!!) ASSUME isnat x • TT, '(n.B)iTT.

It specifies the effect of the meaning function MS on the body of the while statement. Moreover

MBEXPR(ies«I8,FRAMEl(SP,n,x))2 '(n=8) ASSUME isna» n iTT, isnat x^TT

evaluates the test appearing in the while, and finally

RESULT(WRITE(nl .B.FRAMEl (SP.rvO^FACTIn.x) ASSUME -{n-B^FF, i8nat(x)iTT;

asserts that, when the loop is over, the value of the vanble nl is FACT(n,x).

As already noted the proof is fearly standard and could be almost completely automated by
increasing the proving capabilities of LCF. The case of the goto program the proof is standard as
well, but much longer. In fact the theorem presented in 4.3 no longer applies, so the goal 10 be
proved, after the first simplification is:

Vn x . isnal(n) :: i-nat(x) :s
RESULT(MS(m„.fTipnd(nr labstatd .mKcondUost,

mkcmpnd(mkass(nl ,mkexpr2(times,nl ,112)),
mkcmpnd(mkass(n2,mkGxprl (minusl,n2)),
mkcmpnd(mkgolo(l),ES))))ES)),mkcmpnd(mkwrilo(nl),ES)),B,

READ(nl ,B,READ(n2101CREAV(0.n2,INT,aiCREAV(0,nl ,INT,fj,
FRAME8(FACT0RIAL,UPUT(LIST(n,x)),E0F))))))) e FAC7(n,x).

In order to prove it bv induction on MS a possibility is that of proving the above goal in parallel

with the following 3 goals:

Vn x . isnat(n) :: isnat(x) ::
RESULTaXs.CONDIMBEXPROost.O.s),

MS(mkcmpnd(mkass(nl ,mkoxpr2(times,nl ^2)),
mkempnd|mkass(n2,mkexprl (minusl ^.2)),
mkcmpnd(mkgoto(l)lmkcmpnd(mkwrit«inl),ES)))),B1s),

WRITE(nl,B,s))
READ(nl ,B,READ(n2,B,CREAV(Bln2,INT,81CREAV(B,nl,INT,0,

FRAME0(FACTORIAL,INPUT(LIST(n,x)),EOF)))))) c FACT(n,x).

in x . isnat(n) :: isnat(x) ::
RESULT([\s.C0ND(MBEXPR(1ost1flIs),

ASSIGN(nl ,MEXPR(mkexpr2(timoslnl 1n2)18),s)®
MS(mkempnd(mkas5(n21mkoxprl (minus 1 ^2)),

mkcmpnd(mkgolo(l),mkempnd(mkwrite(nl),ES)))))B,s),
WRITE(nl,B,s)]

READ(nl pB)READ(n2,B,CREAV(0,n2,INT,0,CREAV(8,nl ,INT,a,

■ilHllilMM—liaMMMM—TT— m I ■■' - ■ ■

The SeiTirtiitics of PASCAL in LCF 37

FRAME0(FACTORIALIINPUT(LIST(n,x)),EOF)))))) c FACT(n,x).

Vn x . isr at(n) :: isnat(x) ::
RESULT([Xs.COND(MBEXPR(lost101s)1

ASSIGN(nl,MEXPR(mkj,pr2(times,nl,n2))0)ls)«
ASSIGN^.MEXPRimkexprKminusl.nZ))^),!:)»
MS(mkcmpnd(ml<!;oto(l),mkctnpnd(mkwrit«(nl),ES)))),fl,s),
WRITE(nl,B.'.)]

READ(nl,01READ(n2,fl1CREAV(ain21INT,81CREAV(ninl1INT)0,
rRAME0(FACTORIAL,INPUTaiST(n,x)),EOF)))))) c FACT(n,x).

In this way there are four induction hypotheses to be instantiated and it can be seen that each of
them serves to prove the next goal in the above order Even this tricky way is standard. It can be
applied whenever in a program a backward goto is encountered. In addition, such tactic could also
be implemented in a PASCAL ontntcd version of LCF. so the user is relieved from the task of
generating all the parallel goals.

Section 5.2 The McCarthy Airline Reservation System

John McCarthy suggested the problem of proving the correctness of a program for the reservation
system of the McCarthy iirline Company. Such company has one plane, with only one seat. The
plane nrver flies! There are l"'o customers, each one sometimes makes a reservation and then, tred
of waiting for the departure of the plane he cancels. Later on he may try again.

Proving the correctness o" a program for the McCarthy Airline reservation sys.jm is interesting
since it presents some characteristics ibtml in the piogiams so far proved correct. A program which
realizes a reservation system nvist deal with a potentially infinite stream of input data "read" at
successive instants of time. Eacn time a request is inputed, an output datum is produced. The
correctness of incremental computations cannot be dealt with in a system where the input and output
operations aren't mentioned.

Usually, in the existing systems for program verification, I/O is completely ignored. It is not
considered to influence the ".Tieaning" of a program. In fact, existing systems deal with algorithms,
rather than programs, even though such algorithms are expressed in the syntax of a programming
language.

Our axiomatization of PASCAL includes the operations of inputing data from an input file into
locations of the store and outputing data from the store into an outout file. The length of these files
isn't fixed a priori, even for a particular program.

In our formalism we may express and prove a statement of the correctness of a PASCAL program
for the McCarthy Airline reservation system. Such statement asserts that, no matter what the
sequence of requests has been, the seat at any insiant of time is reserved for the right person.

Let
it denote the seat,
wl denote the waiting list,
rq denote the request and
ps denote the passenger.

1

The Semantics cf PASCAL in LCF 38

The variable st may assume the values B, I or 2 meaning free, reserved for passenger I or 2. The
vanable wl assumes the values 8. I and 2 with the same meaning, r^ may assume the value 8 and I
for cancellation and reservation, respectively, ps assumes the values I or 2, denoting the two

passengers.

A PASCAL program realizing the McCarthy Airline reservation system is the following:

/if/riii
var st,wl,ps,rq: integer;
read(u)l);
read(st);
repent

hfigin
read(rq);
if rq*3
than hrgin

readipi),
ifrq-1
thrn if St'B v St-pS

then st.-'pS «lie wi'pS;
ftlM if Jf-8 v sttps

then wi'B ehe hegin st 'Uli end
turtte(st)
end

until rq*3
end

The program consists of an initialization part, in whjch the initial status of the seat and the waiting
list (presumably both 8) are inputed, and of a repeat loop. The body of the loop consists in reading
new data, updating the status of the seat and the waiting list and then writing the status of the seat
into the output buffer. An extraneous value in the input sequence, in this case the number 3. stops

the repetition.

This program doesn't make any assumption on the behavior of the passenger or about the kind of
requests it receives. Each request it accepted and the program behaves correctly even if, for instance,
two cancellations in a row are done by the same person.

The abstract syntax for the above program is:

MCCARTHY I mklexUDP.SP),

DP « mkcmpnd(mkvardecl|wl,INT),mkcmpnd(mkvardecl(sUNT),
mkcmpnd{mkv«rdecl(rqIINT)1mkcmpnd(mkvirdecl|ps,INT),ES)))),

SP » mkcmpnd(mkread(wl),mkcmpnd(mkread(sO,
mkcmpndMrtpMtlBODY.mkreKeq.rq.mknumeonslOW.ES))),

BODY s mkcmpnd(mkr««d rq,mkcmpnd|mkcond(mkrol(oq,rq,mknumconst(3)),ES,
mkcmpnd(mkread ps.SEATUPDATEM.ES)),

SEATUPDATE«

1

 --- - . -.i..^.m.-^...

The Semantics of PASCAL m LCF 39

mkcmpndlmkeondtmkreKeq.rq.mknumconst I),
mkcmpnd(mkcor,d(mkboxpr2(or1mkrcl(cq1sl,mknumcon!.t B)1mkrol(eq)st,ps)),

mkcmpnd(mka55{r.t,p5),CS),mkcnipnd(mka5s(wl,ps)1ES)),£$),
mkcmpnd(mkcond(mkb«>:<pr2(or,mkrel{eq1st,mknumeonst Ol.mkbexprl (notjmkrellfcq.st.ps))),

mkcmpnd(mk«ss(wl,mknumcon5t D^S),
mkcmpnd(mkass('■.t1wl)1mkcmpnd(mkass(wlImknumcop:, fl,ES))>,£$)),

mkcmpnd(mkwrita tt, ES)),

The stuement of the partial conectness of the McCARTHY piogram is:

Visq osq p q iswfsq(isq)::isw10!:(osq)::isint(p)::isint(q)::
APPLY(McCAF?THY,p,q1isql05q)cBOOKING(p1q1isq1osq)1

where: isq denotes the input «equencr, osq denotes the initialization of the output buffer, namely the
output sequence, p and q are the initial values of the waiting list and the seat.

The predicate iswfsq (is-well-formed-^quence) is defined as:

iswfsq = [oiF.[Xsq. (elHsq)» 3)-»TT,isoof sg ->UU,isrqst(ell sq)Aisprsn(el2 sq)-»F(taill sq),FF]J1

where «11, «12, taill, isrqst (isrequest) and isprsn (isperson) are defined as follows:

•II i [Xx. fstof x],

•12 I [Xx. elKrmdof x)],

tail! I [Xx. rmdoUrmdof x)],

isrqst = [Xx.(x=Q)v(x=l)]1

isprsn ■ [Xx.(x=l Mxs2)]

The predicate iswfos (is-well-fonnedoutput-sequence) is

iswfos « [oeF.[Xos.iseof os -» TT,isint(lstof 05)-»F(rmdof osj^F]],

and must be satisfied by the object, presumably EOF, that initializes the output buffer.

The combmaror APPLY appearing in the definition of the goal is:

APPLY i [X p x y is os FUNCT(p,os,LIST(x,y,is))],

LIST ' [Xx y is. mkpair(x,mkpair(y,is))],

FUNCT, the combmator which "interprets" a program p in the frame where the input and output
buffers have been initialized, is described In section 2.

The fact that, at each moment, the scat is reserved for the right person, is expressed in LCF by the
function BOOKING

Mi

mm^—m—m

The Semantics of PASCAL in LCF 40

BOOKING I [odF [X st wt sq OS.
iseof sq -* UU,
(«11 sq"3) -•> os,
Fdaill 8q18lupdt(sq,st,wl)1wlupdl(sq1s»,wl),mKpiir(s»updt(sqlst,wl),08)))],

where stupdt (seatupdate) and wlupdt (waiting-listupdatc) are defined as:

stupdt*[Xsq st wl (dl sq»l)-»(s»«B)v(sUel2 sq)-»e!2 sq,sf,(st«0)v '(st»«l2 sq) -♦ st.wl],

wlupdt-(\sq st wl.(ell sq»l)-»(stx8)v(st=el2 sq)-»wl,«l2 sq.B].

We express the fact that, at each instant of time the program "answers" in the v:ght way. by stating
that it behave: correctly on input sequences of any length. Being extensional our semantics cannot
exprer. the concept of elapsition of time. but. by talking of sequences of any length we give an
adequate extensional representation of a continuing process.

The list of LCF commands and the printout of the proof of the partial correctness of the McCARTHY
program with respect to the BOOKING function is given in appendix 8. The goal to be proved, after

the first simplification is:

Visq osq p q iswtsq{isq) :: iswfos(osq) :: isint(p) :: isint(q) ::
OUTPUK-dvlEXPRtrq.O.MSlBOOY.O.REAOtstO.READIwl.O.FRAMEIIp.q sq.Osq)))))^)-»

REPEATCMSIBODY.Ol.MBEXPRdnkbexprKnot.mkreUeq.rq.mknumc-nstP)))^)^,
MSCBODY.fl.READlst.B.READIwl.O.FRAME 1 (p.q.isq.osq))))),
MSCBODY.O.READIst.B.RCADM.O.FRAMEl (p.q.isq.osq))))) c BOOKINGIp.q.isq.osq)

In achieving this goal the theorem on the repeat statement, given in section 4.3 has been used. The
combmator FRAME! is introduced to increase the readability of the goal, it describes the store after

the declarations are done

FRAME 1 3 [\x y sq os. [Xf.«=B)-»[Xloc.
Ioc=typoloc ps-»INT,
loe»lyp«loc rq-*INT,
loc=typeioc .;-*INT,
loc'typeloc wMNT,
loc=fileloc INP-»INTERNALREP(LIST(x,y,sq)),
loc=fileloc OUT-»INTERNALREP os,
locUxtloe -»SP.UNDEFJ.UU].

The proof of the McCARTHY program differs from that of the factorial program mainly for two
reasons: I) the while and the repeat statements behave difteiently, having the test performed at
different places 2) here an initialization is done within the boay of the repetition statement, h fact,
the two vilues of rq and ps art read within the loop For this reason the loop must be executed once
in order to create a location named rq and one named ps, before doing an induction on the
combmator REPEAT The goal is proved by cases on the test which controls the repeat loop The
only i.ontnvial case is that m which the input sequence is not yet over, namely rq/3 In this case the
repeat loop goes on, so an induction is needed for completing the proof The base case of this
induction is tnviai. The induction stop is proved by doing again cases on the tost which establishes
the exit conditions from the loop. If the loop is completed a lemma is used to stnte the result, if it
goes on the goal is proved by an appropriate instantiat.on of the induction hypothesis

■ - - ■
 - -- -■- .

The Semantics of PASCAL in LCF 41

As in the proof of the factorial progtam the theorems used in the proof have been divided into THs,
ARITHs and LMs THs state facts about the semantics, one of ti »m is the above mentioned theorem
about the seman.ics of the repent statniifnt for goto-frce programs They are shown in 4? and 4.5.
ARITHs are theorems dealing with the arithmetic and properties derived from the above axioms on
the well fomedness of input and output sequences LMs are specific lemmas regarding this program.
The list of these lemmas follows.

Vsq os xl x2. MD{DP101FRAMEd(McCARTHY(INPUT(LIST(xl,x21sq)),INTFRNALREP(os)))=
FRAMEl(xl,x2,sq,os);

is an implicit definition of FRAME1 it defines the store after the declarations are done

READ(st,81READ(wl,B,FRAMEl (x 1 .xa.sq.osjj^FRAMEaix 1 .xZ.sq.o«)

ASSUME isw<sq(sq)5TT, isw1os(os)iTT, isint(xl)äTT(isint(x2)iTT

This statement is an implicit defm.ion of FRAME. It describes the store after wl and st are
initialized.

FRAME2 * [Xxl x2 sq os. [Xf.(f.8)-»[Xloc.
loe«st -»x2,
loc«wl -»xl,
loc=typeloc ps-»INT,
loc=lypoloc rq-^NT,
loclypeloc st-^INT,
loc=typcloc wMNT,
loc=filoloc lNP-»INTERNALREP{5q)1

loc=filoloc OUT-»INTERNALREP(os),
loc^toxtloc -»SP.UNDEFl.UU],

The next theorem

OUTPUT(MSiBODY18,FRAME2(xl,x21sq,os)))iBOOKING(xl,x2,sq1os)

ASSUME '(•!! sq ■ 3)*FF,iswhq sq^TT.iswfos osäTT.isint xltTT.ism» x2iTT

states that, when the input sequence is OV.T, the content of the output file after .he execution of
BODY in the store described by FRAME2. equdls the value of the function BOOKING.

BOOKINGCstupdUsq.x.yKwIupdUsq.x.yMiill sq.mkpiirlstupdUsq.x.yj.osHiBOOKINGIx.y.sq.o^

ASSUME isw«sq sq sTT.iswfos os s TT.isinl x * TT, isint y • TT.-UM sq«3)iTT

states a simple property of the function BOOKING

MS(BODYI8,FRAME2(stupdt{sq,x,y),wiupd1(5q,x1y),tdill sq.mkpairlstupdKsq.x.yj.os)))*
MSCBODY^.FRAMESix.y.sq.os))

ASSUME iswlsq sq »TT.iswfos os i TT.isint x > TT, isint y « TT.-UH sqO)? TT;

MS(BOOY,8,FRAME2(x,y,sq1or.))- FRAMEBIx.y.sq.os)

I

The Semantics of PASCAL in LCF 42

ASSUME iswfsq sq HTT.JSWIOS OS » TT.ismt x * TT, ismt y s TTXell sq»3)- TT;

The two above theorems use the combin.itor FRAME3 to describe an intermediate stort

FRAME3 i [Xxl x2 sq os [Xf |f.0)-[Xloc.
loc=ps -*a\2 sq,
locsrq -♦•II sq,
loe»s1 ->stupdf(sq,xl,x2),
loc«wl -»wlupdKsq^l.xZ),
loc»typeloc ps-»IN".'
loc»typeloc rq-<INT,
loc=typoloc sl-»INT,
loc=typeloc wMNT,
locsfileloc INP-»taill(INTERNALREP sq),
loc«fileloc OUT->mkpair{mknumconst stupdt(sq,xl,x2),INTERNALREP os),
loct.xtloe -»SP,UNDEF],UU];

FRAMES is the description of the store after the Ljdy of the loop has been executed once.

MEXPR(rq,9,MS(BODY,ö,FRAME3(x,y,sq,os)))5 «13 sq

ASSUME iswfsq sq 5TT,isw<os os I TT,isint x s TT.isint y • TT,'(ell sq=3) • TT

MBEXPR(mkbexprl(no«,mkrel(eq,rq,mKnumeonst(3))),0,MS(B0DYj0,FRAME3(x,y,sq,Os))): '(el3 sq = 3)

ASSUME iswfsq sq sTT.iswIos os I TT,isint x i TT,isint y i TT,-(ell sq=3)5 TT

MEXPR(rq,0,MS(BODY,B,FRAWE2(x,y,sq,os));'«ll sq

ASSUME iswlsq sq^TLiswfos os ?TT,isint xäTT.isint y=TT

The three above lemmas are introduced to abbreviate the evaluation of expressions.

mm MM ^■MMMMMH —-■■---—

The Semantics of PASCAL in LCF 43

SECTION 6 CONCLUSION

The most important aspect of this memo relates to our attempt to axiomame all of the arithmetic
Dart of PASCAL This is interesting for two reasons Fim we are able to describe in LCF different
nrotramminp language features and show how they mteract. Secondly we can express property of
chvU of proPiams and use them as lemmas in proofs of theorems about particular programs^ A
void example is the theorem about goto-free programs in section 4.2. It is used in section M to
tlLlifv the first proof of the correctness of the factorial program. When interpreted literallv. it
oroves that for goto-free ptograms the composition rule in Hoare 1969 is valid, By formulating the
validity of this rule as a theorem we can discuss, in LCF, the relative merits of various programming
features This has not previously been accessible to a formal treatment, and is important if the

mathematical theory of computation is ever to have an effect on language design.

Our desire to axiomatize all aspects of a programming language is not s.mply a matter of choice of
availabV formalisms but represents a philosophy about what kinds of questions the mathematical
theory ot computation should ask The method of attaching inductive assertions to programs treats
uroerams one at a time. We do not think general theones about programs can oe developed m this
way Of course using inductive assertions is not a waste of time, but formalisms which use them

should be expanded to include mote general applicability

The kind of questions about progrMM we have m mind include: will it run at all, even if its

algorithm is correct? Will it compile' Does some other coding or "opt"111"11011 compute the same
function^ We believe that LCF is capable of expressing these notions. Furthermore, any formalism
for describing a programming language could reasonably be expected to have this property.

We criticize the original description of PASCAL, not because Wirth didn't have philosophically
reasonable ideas of what various features of a programming language should do, but rather he
laced a formalism which was strong enough to describe the effect of putting together features,
v-hich although separately mrke clear sense, cause problems when combined The example of the
nrocedure in the discussion of the for statement is a case in point. It is net a PASCAL procedure as
the value of the index variable of the for statement is changed in its body. This fact, however is
hard to detect and is certain to be missed by most compilers. The difficulty arises out of the desire
not to make the index of a for statement local to that statement, to have the limits of the for loop
variable deteimined once and for all and to have recursive procedures m the same language
Features when combined in arbitrary ways make even the recognition of well formed programs
complicated Further evidence of this difficulty is found In the large number of restrictions
learashi I ondon and Luckham 197? have put on the application of their rules The onl- example
of a procedure eiven in Hoare and Wirth I973 camot oe treated m their system. It does not seem
obv.ous to us how to extend their style of ax.omatizatio^ to all of PASCAL. We do not impose any
of their restrictions, but describe the full generality allow.. by Wirth. The expressive power of LCF
permits us to represent their restrictions and to prove that uiles similar to theirs are valid for the

subset of PASCAL they treat

The above should reflect on language design One overwhelming feeling of all three authors after
doinp this work was that we know luge amounts more about how to describe a language to make
proving theorem^ about it reasonable We believe that the ability to describe programming features
and demonstrate by proving theorems that a language has certain properties represents a
particularly satisfying way to describe a language. Furthermoie we propose this as a standard for

acceptable descriptions.

The Semantics of PASCAL in LCF 44

One possible idea for future work is ciesifmng a programming language using the more precise
description of this paper. Only small modifications to PASCAL are necessary to give a similar
language a demonstrably smoother semanucs. Thus, by starting wi'h a more detailed description,
some properties of the language, which could only be informall" described before would now be
made explicit as statements in LCF. One could then begin to amass a collection of theorems that
could be used to prove properties of particular programs. We could then integrate everything into
an LCF-PASCAL "machine" which took a concrete PASCAL syntax and generated the LCF
abstract syntactic representaticn. Of course the new language would have to include more features
than those discussed here. Obvious candidates are real arithmetic, file manipulation and more
complicated data structures, if we wanted to abandon the ALGOL like control structures it would
be possible to choose either that of LISP or even the more aggressive control structures of Bobrow
and Wegbreit or the Landin J operator it would be an interesting project to describe them all and
see whit theorems hold when you allow them to exist simultaneously.

We chose to work out the McCarthy airline reservation system as an example because we believe
the treatment of interactive programs is another area which a vital mathematical theory of
computation must consider Our idea for how 'o treat the correctness of continously interactive
programs was to consider them as functions fron sequences of inputs to sequences of outputs. If the
processes you are considering are continous, that is, some initial sequence of outputs is completely
determined after some fixed number of inputs, then rquivalently we can consider the correctness of
finite output sequences given finite input sequences. Basically this idea has been used in
intuitiomstic theories of free choice sequence as developed by Drouwer and Kleene (see Kleene a.id
Vesley 1965).

We end this memo with some comments about LCF A major difficulty involved in using LCF as
the language for mterptermg programming languages is that descriptions of the data being
manipulated (in our case integers) is awkwaiü. The axiomatization of arithmetic in LCF although
adequate is both non standard and frequently hard to us? It is partially the fault of LCF as it does
not implement such nice user oriented features as arbitrary structural inductions, it forces you to use
computation induction in its primitive form. Unfortunately ihe implementation cannot be blamed
for everything. A proof of Wilson's theoren:, for example, would be virtually impossible even by
mathematicarmduction. LCF terms not only have mteipretations as functions, but can also be
interpreted rfs computation rules. Although this duality has not been fully exploited it is the
essential reason that the simplification mechanism of LCF is so successful.

- ■ , * — ~. ■-■-•■

The Semantics of PASCAL in LCF ■ib

APPENDIX 1

A BRIEF DESCRIPTION OF LCF

The syntax of LCF sentences is ciesciitx-d in detail in Milner 1972a. Here we only give an informal
description of the language, its nv.eipietation and enough of the abbreviation conventions to make
the formulas in this report inrelligible to those not familiar with LCF.

There are two kinds of b se variables and constants in LCF Those that ran^e over individuals

and those that range over truth values Each term has an associated type If t is a term and <r its

associated type symbol wr write to- IND and TV are type symbols. If <r and r are type symbols

then so is (<r-.T). We mim X:1ND and xTV for x of type individual and truth values respectively.
There are variables and constants for each different type symbol. The variable symbols of different
types are supposed to be disjoint '"here are three constants of type TV. They are TT for true. FF
for false, and UU for undefined

Terms are formed as follows; if xff is a variable and fcf then [X,x.t]((T-.T) is a term whose

Interpretation is I function from things of type «r onto things of type T In LCF [Xx.[Xy.t]] is

abbreviated by [Xx y.t] If r(<T-T; and s:<r then r(s):r Wc interpret rU) as the result of npplymg the
function r to the argument s. We frequently write this r s, thus

a b c * a(b)(c)-(a(b)){c)=a(blc)

Note that if T is TV then r is a predicate. Conditional expressions are formed as (p-^q.r), where
pTV and q, r are of the same type On the undefined truth value the conditional is undefined, i.e.

for all q and r, (ULMq,r)-UU. Terms are also built up using the least fixed point operator <*. If x:<r

is a variable and S;<r-.<r then [ux.s] is a term representing the least fixed point of the functional s.

Atomic well formed formulas (or AWFFs) are formed by joining two terms using * or c, i.e. if r and
s are terms then r=s and res are AWFFs. m means that the functions denoted by r and s are the
same In a full description of the theory there is also a partial order between terms of the same type.
This is represented using c.

The more usual definition of the factorial function fucHn) *• if .v=0 tfien 1 else nfact(n-l) becomes
in LCF

FACT H [odfXMnrO-M.nfnn-l)]].

LCF also allows two othei abbteviations.

Vx f=g is the same as [Xx.(]=[X)(g]

Because terms are interpreted as extensionally given functions, this definition makes sense

P::0=R is the same as (P-»0,UU)=(P-*R,UU)

Intuitively this is read Ik If P is true then QsR, otherwise I don't know anything

mm ■MHMMa

The Semantics of PASCAL in LCF

APPENDIX 2

THE ABSTRACT SYNTAX

46

2.1 Syntax for Statements

AXIOM SYNAXS:

V d s. typ«(mktex« d s) » _T,
V d s. d«clof(mKtext d «) « d,
V d s stalmof(mkt«xt d •) » •,

V dl d2. type(mkcmpnd dl d2) » _CM,
V dl d2. tstof(mkcfnpnd dl d2) » dl,
V dl d2. rmdof(mkcmpnd dl d2) * d2,

V n ty type(mktypedef n ty) * JO,
V n ly. namof(niMypcdo1 n ty) ■ n,
V n ty. typoUmktypedef n ty) I ty,

V nl n2. type(mksublim nl n2) ■ _SL,
V nl n2. Iboftmksublim nl n2) * nl,
V nl n2. ubof(mksublim nl n2) « n2,

V ai ty. type(mkarspec al ty) £ _AS,
V al ty. arlimoUmkarspac al ty) = al,
V al ty. typ«lof(mkarsp«c al ty) • ty,

V il 12. typ«(mkpair il 12)* .PA,
V II 12. fstoflmkpair il 12)» il,
V il 12. rmdof(mkpair il 12)» 12,

V n ty. typolmkvardocl n ty) • _VD,
V n ty. namof|mkvard«cl n ty) a n,
V n ty. typoUmkvard«! n ty) » ty,

V n ps. typ«(mkprocdecl n ps) = _PD,
V n ps. namof(mkprocdecl n ps) * n,
V n ps. prspoKmkprocdecl n ps) ^ ps,

V n fs ty typo(nik<undocl n fs ty) = _FD,
V n fs ty. namof(mkfundecl n fs ty) - n,
V n fs ty. fnspoffmkfundecl n fs ty) I fs,
V n fs ty. typooflmkfundecl n fs ty) » ty,

V f t typc(mkprocspoc f t) i _PS,
V f tfargoffrnkprocspec f I) = f,
V (t.textof(mkprocspec f t) » t,

V f t.typefmkfunspec f t) = _FS,
V f t.fargof(mkfunspec f t) » f,
V f t.textof(mkfunspec f t) » t,

MBB rr—riMnirii MBMi ■ -

1

The Semantics of PASCAL in LCF 47

V x »y «ype(mkvarp K ly) = .VRP,
V x ty. namof(inkvarp x ty) = x,
V x ty. typoMmkvarp x ty) « ty,

V x ty. typelmkvilp x ty) I .VLP,
V x ty. namo((mkvalp x ty) » x,
V x ty •ypoHnikvalp x ty) » fy,

V x ty type(mkfunp x ty) « .FP,
V x ty namof(mkfunp x ty) « x,
V x ty typoKmkfunp x ty) » ty,

V x. vype(mkprocp x) » _PP,
V x. namof(mkprocp x) » x,

V I s. typelmklabstat I s) » .LS,
V I s. labelof(mklabstat 11) ■ I,
V I s. statmoMmklabstat I s) : S,

V n, type(mkread n) = _RD,
V n. namofdtikread n) s n,

V n. typ©(mkwrite n) i _WT,
V n namc'(mkwrite n) * n.

Vn type{mkgoto n) 5 _G,
Vn labolof(mkgoto n) I n,

Vn e type(fnka5S n a) = _A,
Vn o Ih50f(mka55 n e) = n ,
Vn e rhsoKmkass n e) ^ e ,

V n a. typ©(mkproccall n a) r „PC,
V n a. namof(mkproccall n a) ^ n,
V n a actargoi(mkproccall n a) = a,

Vbe pi p2 type(mkcond ba pi p2) 1 _C,
Vhe pi p2. testof(mkcond be pi p2) - ba,

\A p2. thenof(n-.kcond ba pi p2) 1 pi,
pi p2 elsoof(mkcond a pi p2} 1 p2,

Vt b. type(mkwhile t b) ? .W,
Vt b. testoMmkwhile t b) s t ,
Vt b. bodyof(mkwhile t b) 5 b,

Vb t typeCmkrepe^t b t) * .R,
Vb I. bodyof(mkrepeat b t) b,
Vb t. testof(mkropoat b I) = t ,

Vi ol o2 b typodnktorto i al e2 b)=_FT,
Vi el e2 b ind}xof(mktorto i el e2 b)^ i,
Vi el e2 b lbof(mk(orto i el e2 b)' el,
Vi el o2 b. ubo((mkforto i al o2 b)= o2,
Vi el e2 b bodyof(mkforto i al a2 b)^ b.

 ■■-''- *mm 1 imiiiani

The Semantics of PASCAL in LCF 48

Vi el e2 b. type(mMordn i el e2 bKFD,
Vi el e2 b. mddXO((mKfordn I el a? b) i,
Vi el e2 b. ubof(mKfordn i el o2 b)= el,
Vi el G2 b. !bof(mKfordn i el e2 b)^ «2,
Vi el e2 b. bodyo((mkfordn i el o2 b)< b,

l

type UU i UU,
type ES i JLZ,
type EOF » .EOF;

2.2 Syntax for Expressions

AXIOM EXPRAX:

Vo el type(mKixprl 0 el) * _E,
Vo el. opot(mKexprl o ol) =" o,
Vo el. argloUmKexprl o el) el,

Vbo bei. type(mkboxpr! bo bol) = _BF.
Vbo bei bopof(mKbexprl bo bei) I bo,
Vbo bei barglof(mkbexprl bo bei) i bei,

Vo el e2. type(mkexpr2 o el e2) ^ _E,
Vo el o2. opof(mKoxpr2 o el o2) : 0,
Vo el e2. arglof(mKexpr2 o el e2) i el,
Vo el e2. arg2of(mKexpr2 o el e2) ■ e2,

Vbo bei be2. type(mKbexpr2 bo bei De2)l .BE,
Vbo bei be2 bopof(mKboxpr2 ► ie2) i bo,
Vbo bei bei. bargluUmkbexr . ^2) = bei,
Vbo bei be2. barg2of(mkbexpt . j^l be2) ■ be2,

Vbo el e2 type(mkre! bo el e2) - .BE,
Vbo el e2. bopof(mkrel bo el e2) * bo,
Vbo el e2. arglof(mkrel bo el e2) ■ el,
Vbo el e2 arg2o((mkrei bo el e2) i e2,

V n i. lypednkae n 1) 5 .AE,
V n i. namof(mkae n i) s n,
V n i. subof(mkae n i) ä i,

V n a. typelmkfundes n a) 5 .FA,
V n a. namof(mklundes n a) ; n,
V n a actargo((mMundes n a) = a,

V n. type(mknumconst n) = .NC,
V n. numotlmknutnconst n) « n;

^«■JMkJ MBM^Ml «. ■Mia 'f ■ iJ

il«.«iijni.u PJIM iiuiiminaiRkiui iJ4iNHiiu«aAiuiiL|M!«vmw^ip«nilppnnR*i>l<«MaflVliMr -, . u , , I, ,^.1 I ,„,„, , i«iiiK|i«inii imtiiB..iwRii' I ILPJIIIUJWIJ.JI« 1

The Semantics of PASCAL in LCF 49

2.3 Predicates for the Identification of Syntactic Constructs

AXIOM PREDAX:

Vx..
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.

Vx.
Vx.
Vx.
Vx.
Vx,
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.

stext x 5 type x = _T,
sempnd x ■ typ« x « _CM,
stypadef x = type x » .TD,
ssublim x £ type x ■ _SL,
sarspsc x E typ« x ■ .AS,
spair x « typ« x « _PA,
svardeel x * typ« x « _VD,
nprocdecl x = typ« x « _PD,
sfundeel x = type x » _FD,
sprocspec x ^ type x s _PS,
sfunspec x = type x - _FS,
svarp x ■ type x = _VRP,
svalp x s type x = _VLP
sfunp x H type x = _FP,
sprocp x 5 type x « .PP,

slabstat x I type x * _L5,
sread x = typo x = _RD,
swrite x i type x « .WT,
sgoto x = type x s .G,
sasG x 5 type x - _A,
sproccall x I type x = _PC,
scond x s type x = _C,
swhMe x I type x - .W,
srepeat x ■ type x ■ .R,
sforto x = type x « .FT,
sfordn x = type x « .FD,

Vx. isemptyst x i type x = .ES
Vx. iseof x = type x « .EOF,

Vx. iseonst x ■ type x = .NC,
Vx. Isname x ■ type x « _N,
Vx. isexpr x = type x « .E,
Vx. isbexpr x i type x » .BE,
Vx. isrel x s typo x « .BE,
Vx. isao x = typo x « _AE,
Vx. isfundes x = type x = _FA;

■ ■

l«*W*«MP«milUBUM.IIiW i i m^mnw* ' > v i wmmm**** v '<f"Mm)m'mnm^mm,^f^mfmwwmrW9fW'i^!lff^^«i''' «i.iiluiLWijiii

The Semantics of PASCAL in LCF

2.4 Auxiliary Predicates and Functions

AXIOM AUXSYN :

isnama FUNV » FF,

fstof EOF ■ UU,

rmdof EOF • UU;

issmgl« ■ [Xst. (isread st)v(iswrita st)v(issimpla st)v(isemptyst st)],

issimple * [Xsl. (isgoto st)v(isass sl)v(isproccall st)],

fortost H [Xx .isforto(x)-»mkrel(lsoq,lbof{x),ubo((x))lis<ordn(x)-»mkrel(£req,ubof(x),lbof(x)),UU] ,

fortoup " [Xx .mKcmpnd(mkforto(indexof(fstof(x)),mKexprl(plusl,indexof(fstof(x)))l
ubof(fstof(x)),bodyof(lstof(x))),rmdof(x))],

fordnup < [Xx .mKcmpnd(mkfordn(lndexof(fstof(x)),mkexprI (minusl,ind«xof(fstof(x))),
lbof(fstof(x)),bodyof(fstof(x))),rmdof(x))],

isrepwh ■ [Xst. (isrepsat st)v(itwhile si)],

islter s [Xst. (Isforto st)v(isfordn st)v(isrepwh st)],

isparameter = [Xx. (isvarp x)v(i5valp xMisproep x)v(isfunp x)],

isbasatype = [Xn (n=INT)v(typo(n)=_SL)],

istyppart • [Xn.ispair(n)viseof(n)]l

occurs » [oiF.[Xn st.
Isemptyst s* H UU,
Iscmpnd st •* r(i.ft^f st)vF(n,rincc' it),
islabstat st -» (n»lab€lof s'.HTT,F(n,rmdof st),
.ssinsle st -♦ Fr,
:s:ter st -» F(n,bodyof st),
iscond st -> Mn.thonof st)vF(n,elsaof st),UU]],

append « [o r [A stl st2.
isemptyst stl -* s\2,
iscmpnd stl -♦ mkempnd(fstof stl, F(rmdof stl,st2)),UU]],

«•gm s [c^F.[Xn st,
isamptyst si -* UU,
iscmpnd st->
isemptyst s; -»F(n,rmdof st),
islabstaKfstof st)-»(n=labolof st)-» st,F(r\,mkcmpnd(statmof(fstof 8t),rmdof st)),
issmgleUstof st) -♦F(n,rmdof st),
iscond(fstof st) -»occurs(n,tlienof(fstof st))-*append(F(n,thenof(f5tof st)),rmdof st),

occurs(n,elsoof(istof st))-»append(F(n,elsoof(fstof st)),rmdof st),
F(n,rmdof st),

israpwh(fstof stHoccurs(n,bodyof(fstof st))-»append(F(n,bodyof(fstof st)),st),
F(nlrmdof st),

isforto(fstof st)-»occurs(n,bodyof(fstof st))-»append(F(n,bodyof(fstof st)),fortoup(st)).

50

 , ,ui^i*^mim^^^^mmt

■ - mtm^ -.^^i..

- ■ ' ' •wwm~*^mimmmimi*'mi*mf^^^™™*m*™mi*^'***'**'^'** " ■ vw^m^imum-ik-mmm WK.J.I iii.p.wiHu niaiim

The Semantics of PASCAL in LCF

F(n,rmdof st),
isfordn(fstof stHoccursdi.bodyofifstol st))-»ipp«nd(F(n,bodyof(fstof stjj.fordnuplsf)),

Fdi.rmdof 5t),UU,UU]],

isvarisible I [Xx.isname(x)visaa()()],

isunary > [Xx (x=ppius)v(x=pminus)v(x=plur, 1)v(x=minusl)],

isbunary = [\x.(x*not)],

isbinary s [Xx.(x=plu5)v(x=minus)v(x=times)v(xsdiv)v(x»rmdr)v{xsand)v(x«or)v
(x«ls«q)v(x«g-«q)v(x«lt)v(xsgt)v(x»eq)v()'<neq)])

isbbinary i [Xx.(x*and)v(xior)],

isrelop E [Xx.(x»lseq)v|x«greq)v(x=ll)v(x=gt)v{xs«q)v(x»noq)];

51

— ■ --- ■ -'■■■■"'■• -^ ■» -

»P^W^^WWIPJUIIIJUMI*"»"! H ii i ■■■pwwwpmwBWHimp, mi im^*^mmm*ammm'mmwi*m*mmmmm*mm****^'

The Semantics of PASCAL in LCF 52

APPENDIX 3

THE SEMANTICS

3.1 Top Le 'el Functions

AXIOM TOPSEM:

FUNCT i [\p o i.(lNPUT®PASCAL(p,o)»OUTPUT)(i)],

PASCAL s [\p 0 i. MPCp.a.FRAMEÖtp.o.i))],

FRAMEB s [XI i o f. (f»8)-*[Moc.{loc=filoloc INP) i INTERNALREP(i),
(loc=filcloc OUT) -» INTERNALREP^),
(loe«lextloc) -♦ stitmof t.UNDEFJ.Uw'],

MR ■ [Xt f. MD(declof t,f)»MS(s1atmof t.f)],

INPUT i ID,

OUTPUT • [oiF.[X8.[Xi.i««of i -»EOF,
ispair i -»mKpair(F(f5tof i),F(rmd.if i)),
isconst HnumoflD.UU^OBUFFER «)]],

INTERNALREP * [^F.[Xi.is«of i -»EOF.
ispair i -»mKpair(F(fsto< i),F(rm<Jof i)),
isint i -»mknumcontt(i),UU]];

MaMM«MiMteMMMMMMMM«MMDMM&iiMMH^HnaM«ii^ I

""-»-'"•^■»WSil'wipp "w" ,i,w«p>*w^w«npp«i«wp»p««piii"iitPiiiwiL»ipi

VMMMHarai

IIMI.HfJ,IPIl«^i,«PI-PIJ I Ml» I

The Semantics of PASCAL in LCF 53

3.? Declaration Part

AXIOM DECSEM:

MD ■ [Xd f. MDEF(d,f)«MDEC(d,f)],

MDEF • [*F [Xd f.lstmptyst d -♦ ID,
istypedel d -» CREAT(f,namof d.typof d),
isempnd d -» F(fslof d.DsFlrmdof d.O.ID]],

MDEC • [otF.[Xd f isemptyst d -» ID,
isvard«! d -> CREAV(f,namof d.typof d.f),
isprocdocl d -» CREAPIf.namof d.prspof d.f),
isfundecl d -♦ CREAFIf.namo« d.fnspof d^ypeof d,f,f),
isempnd d -♦ F(fstol d.DöFIrmdof d.D.ID]],

GREAT • [M n ty s.CREALOCIf.s.typidloc.n.ty)],

CREAV « [Xf n ty fl s.CREALOCd.s.typeloc.n.TYPEVALOy.d.O)].

CREAP * [Xf n ps II s.STOREO.CREALOCd.s.acclnk.n.fD.procloc n.ps)],

CREAF ' [Xf n fs ty It fl $.
STORE(flST0RE(f,CREAL0C(l1slacclnk,nlll)1fyplunloc n,TYPEVAL(ty,lt,s))1luncloc n.ls)],

CREALOC • [XI s loc n val.lSPRESENKn.slDHUU.STGREd.s.loc n.val)];

 i« ■■ i -.---- ■ —..-—.^A..^ M..

■ i iIJWHI w«ii' ivrmnm t*ii~*mmmmm*3amm*~m*'^*' IIIW»IIWIII ii ■ \u^^m^m \nm nm^^mn

The Semantics of PASCAL m LCF 54

3.3 Definition of MS

AXIOM MSDEF:

MS^F [Xst f.
is'j.'nptysl st -♦ ID,
iscmpnd st ->
isetnptyst(f5tof it)-
isUbstatlfstof st)-*
i5p,oto(fstof st) ->
isass (fstof st) ■»
isproccall(fstof st)-

isreaddstof st) -»
iswritefistof st) -»
lscond(istof st)

iswhile«slof st) ->

isrepeat(fstof st)

IsfortoUstof st)

isfordn(fstcf st)

♦ F(rmdof st.f),
F(mkcmpnd(Rtfltmnf(f5lo(stj.rmoof st),f),
GOTW.IaboloUfstof r,t),l),
ASSIGN(lhr.of(fstof Gtj.MCXPRIrhsofdstof st),f),f)0F{rmdof st.f),
>[Xs.MPB(PROCFAL(ndmot(fsto(st)1f)s),actarsof(fstof sD.f.s.namoflfstof st))]9
[\s.MD(PROCDECL(namotlfstof st),f,s),succ f.s)]®

[Xs.F(PROCBODY(namo((fstof sD.f.sj.succ f,5)]QCLEAR(succ 0®F(rmdof st.f),
REAO(namof{f3tol 5t),f)»F(rmdof st,«),
WRITE(namof(fctof r.t),f)eF(rmdof st.f),
COND(MBEXPR(testo(((stof st),!),

F(appcnd(thGnof(fstot st),rmdof st),4),F(append(elseof(fsto(st),rmdof $0,0),
COND(MBEXPR(testof(f5to(stl.f),

F(append(bodyo((fstof st),st),l),F(rmdof st.O),
• F(appond(bodyof(fstof st))mkcmpnd(mkcond{mKboxprl(not,

testof((stof sO),fstof st,ES),rmiof st)),!),
COND(MBEXPR(fortost(fstof st),f),
ASSIGNdndoxofifstof 5t),MEXPR(lbof(fstof st),f),f)®
F(append(bodyof(fstof sO.fortoup st),f),F(rmdof st.O),
CONO(MBEXPR(fortest(f5tofst),f))

ASSIGN(indexo((fslof st),MEXPR(ubof(fstof sO,f),f)®
F(appand('}Odyof(fstof stj.fordnup st),f),F(rmdof st,f)), UU,UU]];

■WOHMMMM - 'L • ni iiiifcnii

(pwnw>L4wjiiiiji ii .nniipi yipi ujiitji miwmmmmmmm.i1.1 1.1 u i i' T--»- i ,i i iu«ii<fii.wwmi.aw«iiMi«n«ivwir«wii«nvin»uiiq^«^^

The Semantics of PASCAL in LCF

S.4 Axioms for Statements

AXIOM STATSEM:

READ £ [Xn « s.lSFUNFRO.s.BHASSIGNKMEXPRtfstofdBUFFER s),i),i,
STOREtO.s.fileloc INP.rmdofdBUFFER 5)))1UU]1

WRITE i [Xn f s.lSFUNFRO.s.O)-» STORE(0,s,fileloc OUT,
mkpairlmknumconstlFFTCHVIn.f.sll.OBUFFERsJl.UU],

GOTO i [XF.[Xn i Fdogmln.TEXTOD.f)]],

ASSIGN « [«iF [Xn v f s.
n=FUNV-»ISADMISVAL(s(f1typclocFUNV)1v(s))-»STORE(f1s,FUNV,v(»)),UU,
ISINTYPE(n,v1f1s)-»STORE(f1slLOCOFVAR(n1fls)lv(s))1

istopf(fWUU,
ISFUNFR(f,s1NEWFP(n,f1s)HF(VARBNDTO{n,f1s),v,NEWFP(n,f,s),s),UU]](

COND = [Xq f B «^(sHfCsj.gls))],

MPB s [Xfa aa < s n BINO(fa,aa,succ I,
MAKFRAME(PROCBODY(n1f1s),PFLNK(n1f1s),succ f.s))],

CLEAR = [Xf sM.(fl«f)-»UU,s(fl)];

ii

Ml

ilfWiW*i"i)i| «'* iBiwmpii^wqp^flni^w»BWT"w»«II»»»pp«)»!MIHIi**»^^»"-" j nuiii.iJMnwiv«««! HIWIIUJIpiJJIIffHIIMI. IIIIIIWW

■ '

The Semantics of PASCAL in LCF

3.5 Bidding Mechanism

AXIOM BINDINGS:

BIND ■ [o<F.[Xfa aa f c.
ised fa -* (iseof aa «* s.UU),
lsparam«t«r(fstof fa)-»F(rmdof fa.rmdol aa,f,MKBINDING«stof fa.fttof aalfls)),UU]],

MKBINDING l [Xfa aa f s.
isvarp(ta) -* TYMATChKfa.typoiccaa.l.s) -»CREALOC(f,s,bindloc,namof fa,EXPRFORV(aa)),UU,
i8vaip(fa) -♦ ASSIGN{namof fa.MEXPRIaa.O.f.CREAVIf.nanr.if «a.typof fa.CRNTFlf.s),«)),
is«unp{fa) -♦ TYMATCHlfa.typfunioc.da.f.s) -♦

CREAFU.namoffa.FUNCDEFIaa.f.sj.typof lalCRNTF(f,s)1PFLINK(aa1f18),s),UU,
IsproeplfaHCREAPCf.namof falPROCDEF(aaIf,s)1PFLINK(aa1f,s)ls),UU],

TYMATC!; s [xf, loc aa f s.TYPEVAKtypof fa.CRNTFO.sl.s^TYPEDEFdoc aa.pred f.s)],

TYPEVAL ^ [odF.[Xn I s.
isbasotype n -> n,
isarspet n -» mkarsp«c(F(arliir)Of n,f,t),F(typ«lof n,f,s)),
istyppart n -» iseof n -* n.ispair n -* mKpair(F(fstof n,f,s),F(rmdof n,f,s)),UU,
ISLOCALOypidloc nI«(f)HF($(f1typidloe n),\,s),
ittopf f -» UUlF(n,CRNTF(f1$),s)]];

56

-- ■ ■ -J— -- ^■- - ■■—'

ii ii iinipi.a.vBvpi^tiin -M Miim<..ii«iiiiiupii mi i mipii iwui""ww»ww»wiwwnpwprii i >III i| ■■ IJIIVHI pi

The Semantics of PASCAL in LCF 57

3.6 Evaluation of Expressions

AXIOM EXPRESSIONS:

MEXPR i [ccF.[K» I s.
isconst • -» MCONST «,
isvariablt e -» FETCHVIo.f.s),
isfund«s • -» RETURN{;ucc f,WF(namof «.adargof e,f,s)),
isexpr a -»isunaryCopof e) -» MOPKopof o,F(arglol e.f.s)),

isbinary(opof •)-» M0P2(opof «.FCarglof «.(.s^Flarjaof «.f.sjj.UU.UU]],

MF i [Xn i f. MFB(FUNCFAL(nlf),a1fln)©MP(FUNCOEF(n,f)(suce f)],

MFB » [Xfa aa f n s BINDdeja.succ ',CREALOC(succ f.typeioc.FUNV.TYPEOEFCn.f.i),
MAKFRAME(FUNCBODY(n1f,s)1PFLNK(n1f1s)lsucc f.s)))],

MBEXPR « [oiF.[X« f s.
(•«trueHTT.te^falsal^FF,
isbexpr e -»isbunarylbopof o) -» MBOPKbopof o,F(barglof e.f.s)),

isbbinary(bopof e)-» MBOP2(bopof e.Flbarglol e.f.sj.FCbarg^of o.f.s)),
itr«lop(bopof •)-.RELOP(bopof «.MEXPRlarglof •1l,8)lMEXPR(arj2of •,f,8)),UU,UU]]1

MCONST i [Xx.isconsl x -♦ numof x.UU],

M0P1 « [Xx.xspplus^Xx.x.xipminus^Xx^B-xj.x'plusl^succ.X'minusl-^prad.UUl.
MBOPI ' [Xx.x^ot-^'.UU],

M0P2 5 [Xx.xsplus-»l»1xsminus-*!-,xstim«-»!«,x«div-»l/1x«rmdr-»mod1UU]l
MB0P2 i [Xx.x»and-»!A1x«or-*!vpUU]l
RELOP * [Xx.x«ls«q-»!<,x»8r«q-»l>1x»lt-»l<(x»gt-*!>,xteq-»!=lx=neq-»/IUU];

matt -

pp«wwpp»B!wiiw»BPw«iptiHBptwif^w<i«^ii«>w^flwniwip(P»w^^

The Semantics of PASCAL in LCF

3.7 Variables

AXIOM VARIABLES:

NAMTVAR s [Xv,n=FUNV-*UU,isname v-»v,i5ae v-*namof v.UU],
LOCOFVAR • [Xv f s.isnamo v^v.isae v-»arloc(namof v.VAKsubof v.f.sH.UU],
TYPOFVAR -• [Xv f s.isnamo v^TYPEOFIv.f.sl.isa« v-»typoiof{TYPEOF(namof v f,$)),UU],
EXPRFORV s [Xv f s.isnam« v-»v,ls8« v-»mkae(namof v,EXPRVAL(subof vjj.UU],
VARBNDTO • [Xv f s.lSBND(NAMOFVAR v.f.s)-»

isname v -» BVALOF(vlfls),
it«« v -♦ mK««(BVALOF(namo» v.f.sj.subof vVUU.v),

ISINTYPE • [Xv val 1 s.lSLOCAUtypoloc NAMOFVAR(v)1«(f)) -»
ISADMISVAL(TYPOFVAR(vlf,i))val(s)))FF],

ISADMISVAL « [Xty v.ttylNTHaint v.itsublim ty+ISINBOUNDW.tyj.UU],

ISINBOUND ä [«(F.[Xx y.
Iseof x -♦ TT,
ispair x -» F(fstof x.fstof y)AF(rmdo< x.rmdof y),
isint x -» issublim y->(x>numoUlbof y))A(x<numoUubof y))lUU,UU]],

VAL • [otF.[Xp 1 «.
iseof p -♦ EOF,
ispair p -♦ mkpair(MEXPR(f$tof p.f.sj.FCrmdof plf1s)),UU]),

EXPRVAL • [«^F [Xp f s.
iseof p -♦ EOF,
ispair p -» mKpair(mknumconst(MEXPR«rsto(p,«,s)),F(rmdof p)f,s)),UU]];

58

Hpia n i. ■!■ "-»■■ iiwi miipi. w IH»I»WIIIII»«.IW.pi iu nvoav^mw^uppampqimpw ■ M HJ inwwwW^i^^*W^WW«Blw™"^^W»^^ ■"■l" >•! J "^ «s.^u ii i^iiim

The Semantics of PASCAL in LCF

3.8 The Lookup of the Store

AXIOM LOOKUP:

IBUFFER = [Xs.s^.filcloe INP)],
OBUFFER i [Xs.stfl.ftloloc OUT)],
TEXT = [Xf s.slf.toxtloc)],
PROCDEF : [\r\ f s.FETCH(proeloc n.f,«)],
FUNCDEF s [\n f s.FETCH(funcloc n.f,«)],
TYPEDEF - [Woe 1 s.FETCHdoc.f.s)],
PROCTXT s [Xn f s.UxtoUPROCDEFCn.f.s))],
FUNCTXT = [Xn f s.tex'oflFUNCDEFtn.f.s))],
PROCFAL 5 [Xn f s.fargoflPROCOEFCn.f.s))],
FUNCFAL i [Xn f s.fargoflFUNCDEFCn.f.s))],
PROCDODY = [Xn f s.statmoflPROCTXTCn.f.s))],
FUNCBODY s [xn f s.statmoflFUNCTXTIn.f.s))],
PROCDECL ' [Xn f 5.d«lo<(PR0CTXT{n1f.s))j,
FUNCDECL ' [Xn f s.d»clof(FUNCTXT(n,fps))]1

PFLNK B [Xn f s. FETCH(acclnk n.f,:)],
NEWFP 3 [Xn f s. ISBNDWAN'QFVAR v.f.s)-» pred f,CRNTF(f,s)]p

CRNTF ^ [Xf s. s(f,alnk)],
FETCH s [«iF^XI f s.lSLOCALO.sW^sU.D.islopfUHUU.FO.CRNTFM.s)]],
FETCHV : [oiF.[Xn f s.lSLOCAUtypeloc NAMOFVAR(n),s(f))-»

ISLOCAL(NAMOFVAR(n)1s(f)Ht(f,LOCOFVAR(n1f1s)),UU,
istopf(f)-»UU1F(VARBNDTO{npt,$),NEWFP(n,f,s)15)]],

59

TYPEOF = [Xn i s.slf.typoloc n)),
BVALOF = [Xn f s s(fpbindloc n)];

1
i

 ■Mil I

immmm mmmimmrBmmmi^mmiiiw*^'******' in i HI uimvnninc*i DJPVIIIIU i mti i it ii ■■ lip«

The Semantics of PASCAL in LCF 60

3.9 Updating and Miscellaneous Axioms

AXIOf/. Uf -ATE:

STORE z [\i s loc val.[Xfl.fl««->MODFRAME(s{f),loc1v«l),s(il)]]1

MODFRAME °- [\i loc val.[Xlocl.locUloc-»val,f|locl)]],
MAKFRAME • [Mxt In f $.[Xfl.ll«f-*[Xlocl.locl«»«xtloc-*txt,locl»alnk -♦ ir.1UNDEF],s(fl)J];

AXIOM FRAME:

fram« « [Xs f.s(f)],
istopf = [X(.(f-B)];

AXIOM AUX'iEM:

19 • [Xf A r.iiHr))],

ISFUNFR tha&i t nf. ISLOCAKFUNV.sCf))-» fF,pr«d Lnl -* TT,F(pr«d l.s.nf)]],
ISLOCAL « [Xloc fr.frdoe^UNDEF-^FF.TT],
ISPRESEhT • [Xn fr.isname n-»ISLOCAL(typidloc n.frlvlSLOCALUypeloc n.frW

ISLOCAKaccinK n.fiOvlSLOCAUbindloc n.frj.UU],
RETURN H [\1 8.ISL0CAL(FUNV,s(f)Hs((IFUNV),UU]1

ISBND ■ [Xn s MSLOCAL(bindloc n,s(f))];

^^ ^^^HaHaaa_a^ —i *j"-

wmmmm „P..,,.,.,. iiiiijii« pnpipippi<<^nimiii|liiPl|lii i) i i wiimii.jiiiiLiii.i»niii«iiiiii.j,iiiiiHi«iii m imm

1

The Semantic of PASCAL in LCF 61

APPENDIX 4

Proof of the equivnlence involving WHILE for gotofree programs

4.1 List of LCF commands

TRY 1 INDUCT -;
TRY 1 SPREF;

LABEL INDUCT,
TRY 2 SPREFi
USE GOTOF;
RPPL - ,S,m» cmpiirtifiwhi l«(t,S) ,fS), f ;

LABEL HELP;
SIMPL - BY C0T0F1;
flPPL . INDUCT,S.l.li
SIMPL -i
USE CONDI -;
RPPL -.tIBEXPRlt.n.S;
SIMPL -;
SSt.HELP;

TRY SSUBST .nSFP net 3.
TRY ;QE0;

M^^^HMM^M«

»pw^^»^pppp|p^P||p!iW|IMniM.W»^ ii III , uniliUMUiPIU H J.IU»» I ■Wl W »•lllll ■.! ■ lH I.IIIHII

The Semantics of PASCAL in LCF 62

4.2 Printout of the proof

|TRY #i VS I) . isqototr««(S) :! Uht'.L !(1BEXPR(I, O ,nS(S, ()) c llSlmkcmpndlnHwhi led ,S) ,ES), () INDUCT 331 .

| |TRY #1#1 VS « f . iiqototrttO) ü UU^MBEXPRd, f) ,nS(S,))) c MS (iii>cmpnd(m* wh, It (I .S) ,ES), () SPREf.
| |332 VS I f . i»90to(r»i(S) ;: UUmßEXPRU, U .flSIS, ()) t llSdm cmpnddnkuhi lt(t,S) .ES), O —SPREF B> .

I -

| |TRY 0102 VS t « . iS90to<r««(S) :: [At b .CONOM.bttF (I .b), ID)) (nBEXPRU, f) ,nS(S, f)) c IIS (mi c-pni (mi wh i I e (I-
,S),ES),0 ! BSSUME VS t f . i»qolofree(S) ;: F (flBLXPRd , () ,(15(3, t)) c ftSdnl cmpndlmkuhi It tt ,S) ,ES), () SPRE>

r.
I |333 VS » f . isqolo(rtt(S) :: F (rtBEXPR (t, () .MSIS, ()) c US (mkcmpnddnlwhi It (1 ,S> ,ES), f) (333) — flSlUflE.
| |334 isc)otolrtt(S) ä TT (334) — SRSSUHE.

|335 VS P f . i»qolo(rtt(3) i! isgotod ct (F) :! n3(<tppcnd(3,P), I) i t1S(5, ()KHS(P,)) — USE COTOF.
|336 US P f . isqolo(rtt(S)'>(iäqotolret(P)'t1S(<ipptnd(S,P),<)l'JU),UUl (S, nlcmpnddnlHhi lt(t,S) ,ES), I) I t.vS P •

) . isqotofr«t(S)<(iigolo(rtt(P)<(t1S(S,t)xnS(P>()),UlJ),UUl (S.mt.cmpndlmiMtii lt(t,S)(ES),f) — fiPPL 335 S mkcmpnd.
(mkuhi !i?(1,S>,ES) f.

| |JJ/ ri5(ÄPptno(3>mkLM.H"c!{ir.UI-,;Ic(t,S;>ES))>«) • «("!, l)kllS(mi cmnnd(mmhllt (t .S) .ES), 1) (334) — SIMPL 336«
BY 33 COTOF1 .
| \tH [.\S t (. is9ato(rtt(S)'F(nBEXPR(t.(),nS(S,()),UUl (S,t.<> c [XS t f . itqotofrtt (S)-riS (mkcmpnd (m» uh i it (t«

,S)>EJ),().UU) (S.t.O (333) — BPPL 333 S t t.
| |339 F(nBEXPR(t,1)^3(5,(1) c nS(mlrc»pnd(in>Mhi It (l,S) ,ES),)) (333 334) — SIHPL 338 BY 334 .
j |348 VT SI . C0ND(TlMS(Sl)OKF(nßEXPR(l)l),HS(S,t)),I0) c C0N0(TinS(Sl OetlSdnkcmpnd (mt whi It (t ,5) .ES) , f), ID.

> (333 334) — USE CONDI 339.
| |341 tAT SI .C0N0(T,113(31,()«F(HBEXPR(I,t),nS(S,O),1D)1 (MBEXPRK.O.S) e IXT SI .C0ND(T,115(31, ()«nS(mkempn.

d(mki.;'n lt(l,S),E3).(),ID)) (MBEXPR((,0,3) (33i 334) — RPPL 340 II[I£XPR(I, () S.
| |342 CDN0(l1BEXPR(l,(),flS(3,()vKnBEXPR(t,f) nS(S,t))1ID) c C0ND(f1BEXPR(t, f) ,f1S(S, f)>llS(ml cmprddnt while (1 ,S).

.ES),(),IC) (333 334) — SIMPL 341.

I I - "
j |TRY #1#:#1 C0ND(IIBEXPR(l,O.MS(S.nsF(nEEXPR(l,(),nS(S,()).ID) ' nS(m»cmpncl(ml win lo(t,S),ES), () SSUB-

ST 320 OCC 3.

I I I "-
| | | |TRY ,fl*2mi COND(nBEXPR(l,f),IIS(S,()»FinBEXPR(t,(),nS(S,()l,'0) c COND(nBE>:PR!t,(),nS(S,()xnS(micmpnd~

(mkuh:le(t,S),ES),l),ID)

i I I
j j |343 COND(nBEXPR(l,(),nS(S)()<.F(nBEXPR(l,'),nS(S,t)),10) c n3(mkcmpnd(»kwhile(l,3),E3),() (333 334)

SSUBST 342 USING 320 OCC 3.

I I
| |344 VS I f . isqolo(rtt(S) :: Ul b .C0N0 (I ,b«F (t ,b), 10)) ((IBEXPR (t, () ,(1S(S, ()) c (IS (mkcmpnd (mkuh i le (t ,S) ,E>

S).() (333) — SPREF 343.

|345 VS 1 (. IsqototrttlSi :: WHILE (MBEXPRd,)) ,nS(S, O) c tlSlmt cmpnddnkwhi It d,S) ,ES), () — INDUCT 332 3.
44.

^——^ _aMa_<Ma^ -z-rrr. -

The Semantics of PASCAL in LCF 63

X

APPENDIX 5

Proof of the equivalence involving REPEAT for gotc-free programs

5.1 Li>t of LCF commands

TRY 1 INDUCT -;
TRY 1 SPREF|

LABEL INDUCT;
TRY 2 SPREFj
USE GOTOFj
RPPL - ,3,mtcmpn(i(mkcond ikbtyprl (nol, 1) ,mtr«i|jMl'5, ,) ,E5) ,ES) . (I
LABEL HELP;
SinPL - BY COTOFli

flPPL .INDUCT.S.t.l;
SIMPL -;
USE CONPl -;
flPPL -,hBEXPR (mkbexprl(not,t),») ,S;

SIHPL -;
SSt.HELP;

TRY SSUBST .MSFP OCC 3|
TRY SSUBST .MSFP OCC 4j
TRY ;QE0|

 - ■i

The Semantics of PASCAL in LCF 6-1

5.2 Printout or the proof

|TRY #1 VS I « . iiqotolrt«(S) II REPfflTCMS (t, t) pHBEXPR («kbtxprl (not, O , f)) c HSCmk cmpnd (Wreptat (S, I) ,ES),«).
INDJCT 331 .

I
| |TRY #1*1 VS (t . i»qoto(rt»(S) : i UU (nS(S, () .nBEXPRdiUbixprl (not, I), f)) c nS(m> cmpnd (m, reptaKS, t) .ES), t),

SPREF.

| |332 VS t) . isqolotr««(S) :; UU (HSCS, I) .HBEXPR (mkbtxprKnot, I), f)) c tlSdnkcmpnd (mkrtptat (S, t) ,ES), (!
- SPREF BV .

I
I —
| |TRY #1#2 VS t f . iiqoto(r««tS) ;: UJ t .b«C0ND(t,F(b, I), 10)1(115(5, () .HBEXPR (mkbexprl (not, I), ()) cMSdnkc-

mpnd(nikr«peat(S,t),ES),«> : RSSUKE VS t f . iiqotofrM(S) || F (nS(S, f) .IIBEXPR (mkbtxpr-l (not, n , f)) c HS (mk cmpnd-
(mkrepeaKS.D.ES),)) SPREC.

| |333 VS t f . isqotofrtt 3) :: F (MStS, t) ,MBEXPR(inkb»xprl (not, O , O) c riS(mkcmpnd(mkrep»at (S, t) ,ES), () (333.
) — ASSUHE.

| |334 isqo(ofri«(S) s TT (334) — SflSSUME.

| |335 VS P f . Jsqoto(rti(S) :: ist|Otofre»(P) ;: !1S(append(S,P), I) i nS(S, flKOS (P, <) — USE GOTOF.

| |336 I^S P « . i»c)Oto(rtt(S)-(isqolo(re«(P)-MS(app«nd(S,P),l>,UU),UU) (S,i«kcinpnd(mkcond(mkbexprllnol, D.mkrep-
•at (S,t),ES),ES),() 5 IxS P I . isqotofr(:o(3)-.(isqotofr«e(P)*(nS(S, t)i.nS(P, f)))UU)>UU1 (S.mkcmpnddnk cond(mkbsxprl (.
not, t) .mkrepeat (S, t) ,ES) .ES), I) — RPPL 335 S (tikeiiipnd(nikcond(mU)e»prl (not, I) .mk-opoat (S, t) ,ES) ,ES) (.

| |337 nS(Äppend(S,inkciiipnd(mkcond(rin he>|>rl (not, II .mkrepsal (S, t) ,ES> ,ES)),)) i I1S(S, IIKPIS (mk cmpnddnkcond (mkbsx.
prKnot, l),mkrepeat(S,t),ES),ES),l) (334) — SinPL 336 BY 334 G0T0F1 .

| |338 txS t (. isqotofre«(S)-F(nS(S, t),nBEXPR(nkbrvprl(not1t),t)),UUl (S,t,») c IAS t f . isqotofre« (S)-.MS (mkc.
mpnd(mkrepsat(S,t),ES),f),UU) (S,t,f) (333) — BPPL 333 S t I.

| |339 F(nS(S,t),MBEXPR(mll)oxprl(nol1l),()) c US dm cmpnd (mkropsat (3, t) ,ES), O (333 334) — SIIIPL 336 BY 334.

| 1348 VT SI . nS(Sl)n!.-COND(T,F(nS(S,n,nBEXPR(milmpi-l(iiol,!),()),10) c rtSISl, ()>:C0N0 (T.tlS (mt cmprJ (mk repeat.
(S,t)(ES).n,ID) (333 334) — USE C0H01 333.

| |341 (AT SI .nS(Sl,t)KC0N0(T,F(nS(S,l),IIBEXPR(intb8xprl(not,t),f)),I0)) (l1BEXPR(mkbexprl(not,t),»),5) c [ATS.
1 .MS(S1, f)«CONO(T,nS(mkcmpnd(mkrepoat(S,t),ES),(),ID)l (MBEXPR(mkbo>prl(nol,t),(),S) (333 334) — flPPL 340 MBE.
XPRdnkboxprl (not, t), () S.

| |342 nS(S, t)«COND(nBEXPR(mkbo>prl(not, C , l),F(nS(S,(),MBE>PR(mkb9xprl(no,,t),f)),I0) c HS (S, OwCONf) (MBEXPR (.
mkbexprl(not,t),(),nS(mkcmpnd(mkrcpBat(S,t),ES),f),ID) (333 334) — SIHPL 341.

I I
| | |TRY m2#l nS(S,»)>:C0N0(nBEXPR(n,H)exprl(not>t),l),F(l1S(S,(),HBEXPR(mkbexprl(not,t),f))1I0) C RS(«ke>Vntf(*

mkrepoat (S,t),ES),f) SSUBST 320 OCC 3.

1 I I -
| | | |TRY #U2#U1 nS(S,l)xC0N0(nBEXPR(mkbexprl(nol,l),t),F(n5(S,f),MBEXPR(mkbexprl(nol,t),t)),lD) c nS(S1().

KnS(mkcmpnd(inkcond(mlbe>prl(not,t),iiikrepeat(S,t),ES),ES),t) SSUBST 320 OCC 4.

MM —-
I { | I |TRY *U21U1#1 nS(S>t)5iC0ND.,lBEXPR(mkboxprl(not,t).(),F((1S(S,(),nBEXPR(mkb6xprl(nol,t),())lID) c nS(.

S,))»C0N0(l1BEXPR(mkbexprl(not,t),t), MS'ink cmpnd (ink repeat (S, t) ,ES), f), ID)

MM -
| | | |343 HS{S,t)KCONO(nBEXPR(mkbe-prl(not,t),n,F(nS(S,U,nBEXPR(mkbexprl(not,l),f)),IO) c MS (S, f)icl1S(mkcmp.

nd(ink.cond(mkbexprl(not,t),mkrepeat(S,t),ES),ES),f) (333 334) — SSUBST 342 USING 320 OCC 4.

I I I - —
| | |344 nS(S>l)«COND(nBEXPR(BAne,prl'not,t),)),F(nS(S)(),nBEXPR(irkbe>prl(notlt)1f)),ID) c MS (mkcmpnd (mk repea-

US, t),ES), I) (333 334) — SSUBST 343 USING 328 OCC 3.

I I —
| |345 *S I t . itqotofree(S) n Ub t .bscCONOd.F (b, tl, 10)1 (115 (S, f) .MBEXPR (mkhexpr 1 (not, I), f)) c nS(mkcmpnd(.

mkrepeai<S,t),ES),n (333) —SPREF 344.

I —
|346 VS t (. itqololree(S) M REPEnT(nS (S, () ,t1BEXPR (mkbe.prl (not, I), I,) c HS(ink cmpnddnkropeat (S, t) ,E:;), O

— INDUCT 332 345.

-• - -

The Semantics of PASCAL in LCF 6^

APPENDIX 6

Proof of the equivalence involving FORTO for goto-free programs

6.1 Lift of LCF coimnands

TRY 1 INDUCT -|
TRY 1 SPREF;

LABEL INDUCT;
TRY 2 SPP:Fj
USE COTCFj
RPPL - ,S,m>cmpnd(»Horto(t,ir*ti.prl(pluil1 D.tZ.SJ.ES) Jj
LABEL HELP;
SIMPL - ;
RPPL . INDUCT.S, l.mfexprKplusl, i)1«2,(i
SIMPL -;
USE CONDI -i
RPPL -.flBEXPRlmkreKlsjq.t.iJJ.n.S.flSSICNd.nEX'RU.IM);
SIMPL -i
SS+.HELP;

TRY SSUB3T .MSFP OCC 3;
TRY ;QEDj

Htmmmtmm^. _.

The Semantics of PASCAL in LCF 66

6.2 Printout of the proof

|TRV «1 VS i (1 «2 f . i$qolotree(3) :: FORTOt i ,ll, «2,nS (S, f), 11 c IIS (mkcmpnd (m> lorto d ,«1, «2, S) .CS) , . I I.
NDUCT 30* .

| |TRY #1#1 VS i «1 82 I . ijqotolrri^lS) M UU(i ,«1,92^5 (S, (), () c MSdnt cmpnd (»MOPIOI i,»1,62,5) .ES), f)
SPREF.

| |30S VS i •! «2 f . itqoto<rt«(S) n UU(i ,»l,»2,nS IS, n , t) c HS (m> cmprd (mMor to d ,el ,»:.Si , ES) . f) —. SPR.
EF BY .

I
I
| jTRY #i#2 VS i • «2 (. fsqota<rea(S) it tM • t2 b < .C0N0(nBEXPR(mlrt I (iitq,*,«2), <), (RSSICN 11 ,nEXPR (e, <) .

.Ot-blieFd ,in»t>prl(plusl, i),(2,b,n,lD)l (i,e,i2,nS(S,l),<) c nS(m» cmpnddn» fartol i ,•,«2, i) ,ES), f) i RSSUME VS U
• t2 I . isqototr«.(S) :: F(i,i,*2,nS(S,n,l) c nS(mkcmpnd(iiiHarto(i >*,*2,S) ,ES), <) SPREF.
| {30b VS i • 12 f . itgatalratlS) :: F (> ,*.*2,nS(S, f), 1) c nSdnkcmpndlr.K lorto(i ,t,e2,S) ,ES), O (306) — M*

SUHE.
| |307 isgolofr*«(S) = TT (307) — SRSSUtlE.
| |308 VS P I . i£qolofre»(S) it isqotolif9(P) :; IIS (append (3,P), 1) * I1S(S, OKIIS (P, t) — USE C0T0F.
| |309 [\SP (, isqotofr«e(S)->(i5qoto(reii(P)^nS(.i|)pBnd(3,P), () ,UU) ,UU1 (S,in» cmpnddnt (or to(i ,m» evprl (p lusl, i) ,t»

2,j),ES),() i (VS P (. i3qotolre»(S)-.(isqoto(ree(P)-(f1S(S,f)kMS(P,()),UU),UU] (S,mkcmpnd(ffiHorto(i,m>e«p"l(plusl,.
i) ,e2,3) ,ES), O --- flPP! 308 S ml cmpnrt imi lor lo(i ,mt cpi"!'plusl, i) ,e2,S) ,ES) (.

| |310 MS (.i|)p6nd(3,iin cmpurtlml (oi to(i ,tnl o>i>r 1 (plusl, i) ,o2,3) ,ES)), I) ; MS (S, (lnflS (mk cwpnd (mt (or to (i, ml evprl (p I .
usl, il.'Z.SKES),!) (307) — SIMPl 309 BY 307 G0T0F1 ,

| 1311 CvS > t e2 (. isqololree(SI'r(i,o,c2,IIS(S,(),(),UU) (S, i,mle^prKplusl, i),«2,0 c [xS i e el I .isqotoU
ree(3)-'MS(m>cmpnd(mMorto(',e,e2,S) ,ES), n,UU) (S, i,i»>«':prl(piutl, i),e:,() (306) ~- FiPPL 306 S i mke-prl (p lusl, »
i) e2 (.

| |312 Fd.mle-prKplusl, i),«2^15(3,1),() c HSImlcmpndCmklortod.mioprKpiutl, i),o2,S),E3), () (306 307) .
SIMPL 311 BY 307 .

| |313 VT SI H . C0N0(T, (HvMS(Sl,())vF((,mkeyprl(plusl,i),«2^5(3,0,0,10) c COND (T,Hy (MS (SI, llcMS (mtcmpnd (m-
Korto(i,mHMprl(plusl,i),i2,S),ES),0),ID) (306 307) — USE C0N01 312.

| |314 UT Si H .C0ND(T, (Hi.MS(Sl,())>f (i,ml(«^prl(plutl,i),i«2,H5(S,O,O,I0)l (MBEXPR(ni»rel(lsiq,o,«2), ().S,fiSS»
IGN(i,MEXPR(e, t), O) c (AT SI H .CONlKT.HnlMS (51, OiiMS (mt cmpnd(mk (or tol i ,i«k»xprl (p lusl, O ,e2,S) ,ES) , t)) , 10)1 (MBE.
XPR(m>rol (Iseq.e,«2),0(S,flSSICN(i,riEXPR(e,(),()) (306 307) — RPPL 313 MBEXPR (ml ro I (lscq,»>«2) , ') S RUIfiNti,«
MEXPR(9, I),I),

| 1315 C0N0(MBEXPR(mkr9l(ls«q,0,»2),O,(flSSICN(i1MEXPR(e,O,Oin5(S,O)«F(i>iiik»vprl(pltisl,i),e2,MS(5,(),n,ID«
) c C0ND'1BEXPR(mlrel (ls«q,e,»2), O ,fiS5ICN (i ,MEXPR («, O , Os(MS(S, () >;nS(mkcrpnd(nl (orto(i ,mkt>rprl(pluEl, I) ,•2,1),*
ES),O),I0) (306 307) — SIMPL 314.

| | |TRY nntl COND(nBEXPR(mlrol(l;.eq,o,92),0,(R35IGN(i,MEXPR(e.O,OKM5(S,0)KF(f,mk9xprl(plusl, i),e2,MS(5«
(),(),10) c MS(mlcmpno(iiiKorto(i,9,92.5),E5),0 SSUBST 293 OCC 3.

I I I
| | | |TRY *1#2*1#1 C0N0(nBEXPR(mlrel(ls9q,e,92),(),(fl5SIGN(i,MFXPR(9,O,OBMS(S,()K-F(i,ml9xprl(plusl, i),92,.

MS(S, (), D.ID) c C0N0(MBEXPR(mir9l (lseq,9,92), O ,flS5IGN (i ,MEXPR(9, O , Oii(MS(S, OKMS (mlclnpndlml lor to (i ,mkexprl(pl.
usl, i),62,S),ES>,IM,ID)

| | | 316 C0N0 (MBEXPR (mkr9l(IS9q,e, 92), !, (ASSIGN! i ,MEXPR(9, O , OvMS(S, O)KF (i ,mi eyprl (plusl, i), 62,MS (5, O , 1),.
10) c M5(inicmpnd(mklorto(i,9,e2,S),ES),0 (306 307) — SSUBST 315 USING 293 OCC 3.

| |317 VS i 9 92 (. isqototrefi(S) ;i (M 9 92 b (.C0ND(1BEXPR(mi ro I (Is9q,9,(,:), O , (flSSICN (i ,MEXPR (9,1), ONb.
)'<F (i,mko>iprl(plusl, i),e2,l>10,10)1 (1,9,o2,M5(5(l), 1) c MS (ml cm|)nd(mHofto(1,9,92,5) ,E5), O (306) ---SPREF 316-

|318 VS 1 9l 92 I . isqotolr99(S) :; F0RTO(1,91,92^5(5, O , O c nS(ml cmpnd(mKor to (. ,el ,e2,S) ,E5), () — IN-
DUCT 30b 317.

HlJlUyil IUII M1««!

The Semantics of PASCAL in LCF

APPENDIX 7

Proof of the goto-free factorial program

67

7.1 L't of LCF commands

SS+ .fiPPLY,.FUNCT,.PfiSCflL,.l1P,.FUNCC0nPl.ID>.0P>.SP>.HDi

TRY SinPLi
TRY INDUCT .WHILE)

TRY 1 SPREF|
SS ♦ .CONOi SS - .SPt
LABEL INDUCT;
TRY 2 SPREFj
LABEL LI —;
TRY CASES -.(n.«)j

TRY 3 SlflPLi

TRY 2!
USE ARITHI .LI ,-i
OED -;

TRY 1 SIflPL;
APPL .INDUCT,pr»d n,K*ni
SIHPL -;
TRY t 0EDt

I

x

■ IMII ■ I ! »

fW*m*r? ■ —' ■ --

The Semantics of PASCAL in LCF 69

I

APPENDIX 8

Proof of the McCarthy Airline Reservation System

8.1 List of LCF commands

S3* .nPPLY>.FUNCT(.PPSCBL>.FUNCCOriP,,nP,.SP;
TRY SinPL;
TRY INDUCT .REPEAT,
TRY 1 SPREFj
TRY COSES -(tlKnql.Dj

TRY 3 SIHPLi
TRY tt USE RRITH1 -, j QED;
TRY J SinPL;

LRBEL INDUCT;
TRY : SPREF;
TRY CaStS ■.(•ll(isq).3)|

TRY 3 SIWL;
TRY :•. USE RRITh. -, . QED;
SS* .CONO. .10;
TRY 1 SIMPL;
RPPL . INDUCT, Kill iq.ml'piir Istup n (isci.p.q) ,o$q) , slupdl (itq,p,q) ,ulupat (isq,p,q);
SIMPL -;
TRY, QED;

I

LS==i *■ *m„.

The Semantics of PASCAL in LCF 70

8.2 Printout of tlie proof

ITRV *1 Visq osq p q . iSMfsqdsq) :! uwlostosq) :: ismttp) :; i»(nt(q) :! RPPLVftlcCRRTHY.p.q, isq.osq) c BO»

OMNG(p,q, isq.osq) SlflPL.

I — --
| |TRY »Hi Visq osq p q . nwtsqdiq) ;; iswlos(osq) :: mnKp) :: isinttq) ;: OUTPUT(-(nEXPR (rq O.MSIBOOY..

O.REPDCsl.O.REflDdjI.OJRfinEKp.q, isq.o-.q)))))i3)«REPEPT(nS(B0Dy,0) .HBEXPR (mkbexpr 1 (not ,m» ro I Icq.rq.mk numconsl (3)-
)) ,0),0.nS(B00Y,0,REnD(st,8 REflD(ul,0,FRnMEl(p,qr isq, osq))))), OS (BODY, 0,REfiO (it, 0,REflO(ul,0, FRAME Kp.q, isq,osq)i-

))) c BOOMNG<p,q.isi,osq) INDUCT 388 .

| |TRY flilti Visq osq p q . isufsqdsq) ;: iswtoslosq) :: isinKp) :: itint(q) :: OUTPUT (-(MEXPR (rq, e,ns (B*
ODY,0,RtflD(s1,0,REfiO<wl .OJRfltlEKp.q, i«.q,osq)))))«3)-.UU(nS(pODY,0) .rtBEXPR (mt btxprl (not ,mM-« I (eq,rq,m> numconst (3)«

)) ,0) [a,l1SIB0DY,0,RERD(s1.0,REn0(ul,0,rRnMCl(p,q,isq,osq))))),H3(B00Y,0,REfl0(st,0,REfl0(wl)0,FRfinEl(p,q, isq,osq)).

))) c BfW :NG(p,q, i'-.q,osq) SPREF.

| | |33S iswlsqdsq) ■ TT (335) — SAStUPf.
| | |336 iswtostosq) = TT (336) — SnsSlülE,

i | |337 ismttp) ; TT (337) — WTSUHt.
1 | |338 itinl(q) = TT (338) SB^SUHE.

I I I
| | | |TRY mm.»! 0UTPJT(-(ell(isq)=3)-UU,t1S(B0DY19,FRflnE:(p,q,isq)osq))) c DO0HNG(p,q, isq.osq) COSES»

-(ell(isq)»3) .

I I I I -
| | | { |TRY #i#l*l*l«3 0UTPUT(-(ell(isq)=3)-.UU,nS(B0DY,0,FRBME2(p,q,isq,o5q))) c BOO! lNC(p,q, isq.osq) : SfiSS-

UME -(ell(isq;=3) s FF StHPL.
{ | | | |339 <(tll(ttq)01 s FF (339) •— SflSSLHE.

| 1340 0UTPUT(-(»ll(isq)-3)-UU,nS(B00Y,8,FRnnE2(p)q,isq,osq))) c BOOUNC (p,q, isq.osq) (335 33G 337 338»

339) -— SinPL BY 335 336 337 338 339 1.113.

I I I I —- "-
I I I I -
I { | | \Vn Mimm 0OTWT(«JtlUiM|>«3»«üü,«$<IOOV,i,FtmCH#,q,lMi»M>>> c •00i:|<W«|i,q,tM|i»M|l : SfiSS»

UME »(•ll(isq>>3) £ UU
I I I I |:U »(ell(isq).3) ! UU (341) — SRSSUIE.
| | | { |342 TT 5 UU OJ'J 341) — uSE flRITHl 341 335.

I I I I -—
MM "
| { | | |TRY #imUl*l 0UTPUT(-(ell(isq).3>4W,nS(B00Y,e,FRRnE2(p,q,isq,o»q))) c B00I iNCtp.q, isq,03q) t SfiSS»

UME -(•Il(isq)r3) f TT SIMPL.
| | | | |343 »(•ll(i»q).3) i TT (343) — SfiSSUfE.
| | | | |344 0UTPUT(-(tll(i»q).3)-UU,nS(B00Y,eiFRBnE2(p.'',1iic,t»q))) c BOOtlNf p,q, Isq.ost,) (343) —SIMPL»

BY 343 TH6.

MM -
| | | (345 0UTPUT(-('!ll(isq).3)-.UU,nS(B0DY,8,FRPME2('',q1isq,osq))) c B00I.ING(p,q, isq.osq) (335 336 337 338) »

— CfiSES »(€ll(isq) = ?) 344 342 340.
| | |
| | |3*6 Visq osq p q . iM<«q<iiql :; iiwtor.(o3q) ;; isint(p) :: isinl(q) :: OUTPUT (-(MEXPR (rq, 0,MS (BOOY, 0,R»

|Mlat,CfMM(Hl ,0,FRBIiri (p,q. i?q,o-.q))))) .3)-UU (MS (BODY, 0) ,MBEXPR(mi he.prl (not, ml i el (r,(|,r(|,mt n.,mcon<,t (3))) ,0) ,0»
nS(|IOOY,8,RCAO(tl,(,ll£raiHl,(.MMiCI (p.q, iM|,05n))))) ,MS(B00y,0,REnD(st,8,REflD(wl ,0,FRnnEl (p,q. i!.q,os.q))))) c B»

00) ltlG(p!q,lxq,o-.q) — SPREF 345 BY 335 336 337 338 1119 LM2.

I I —- —

I |TRY t\t\»2 Visq osq p q . iswl-.qdsq) :: i5Hfos(o5q) :! isint(p) : : isint((|) ;: OUTPUT (-(MtXPR (r q, 0, MS (B»
ODY,0,RffiD('.t,0,REnO(ui,0,FRfillEl(p,q, i--q,c ;q)))))«3)-.l*B T (.B'>C0ND(T,F (B.T, f). ID)! (MS(B00Y, 0) .MBEXPR (ml bexprl (»

not^mlrnl (oq.rq.m» numconst (3)) > ,8) ,8,MS (P0DY,e,RER0 (s 1,0,REfi0 (w 1, 8,FRnME 1 (p,q, isq,osq))))) .MS (BODY, e.REOD (s t, 0,R»

EP"(ul ,e,FRnnEl (p,q, i3q,osq))))) c BOO) ING(p,q, isq.osq) ! fiSSUME V isq osq p q . iswfsqd»

sq) ;! iSH(os(osq) ;; isinl(p) ;: isinKf) :: OUTPUT (-(MEXPR(rq,0,tlS(BODY, 0,PEflD (s I, O.RERD (w 1, 0, FRfiMEl (p»
,q, isq,o3q)))))=3)-.F(MS(nODY,e),rir.EXrR(mlbe>pil(nol,ml'rel (eq.rq.ml mimconsl (3))) ,8), B,MS(BnOY, 0,RERD ist, O.REfiO (u I »

'oirRRMEKp.q, irq,osq)))))>n3(B0DY,e,REfl0(5t,B,RERD(wl,e,FRRMEl(p,q, isq.osq))))) c B00I ING(p,q, isq.osq) SPRE»

F. '
| | |347 Visq osq p q . iSM(sqdsq) ;: isufos(osq) :: isint(p) :: isint(q) ;: OUTPUT U(MEXPR (rq, 0, MS (BODY, 0, R.

ERG (st ,0,RERD(»l, O.FPnMEl (p.q, isq,osq)))) i=3)-F (MS(B0DY,0) ,MCEXPR (ml be>.prl (nol.ml rol (eq^q.mlnumconst (3))),0),0,»

M3(BOoi',0,RERD(sl,0,REflO(Hl,0,FRRnEl(p,q, .sq^sq))))) ,MS(B00Y,8,RER0(st ,8,REflD(ul ,0,FRfiME (p.q, isq,osq))))) c BO-

0» ING(p,q,isq,osq) (347) — RSSUDE.
| | |348 iswfsqdsq) = TT (348) — SRSSUME.
| | |349 .sutos(osq) = TT (349) -— SRSSUME.

| 1358 uinKp) = TT (358) — SRSSUME.

IM i—.innii ii

The Semantics of PASCAL in LCF 71

I | |3S1 .smKq) • TT (351) — S'iSSUtlE.

| |TRY tllltlii OUTPUT (-.(«i i(i5q) = 3)-C0ND(t1BEXPR(rHbe>prKnol.mtrel (eq.rq.ml mimconst (3))) ,0) ,F (MS (BODY, 0) .
.MBEHPRdirtboprKnol.irlr«! (eq.ro.m» mimconst (3)1) ,0) ,0), lO.MS (BODY, 0inS(B00Y,0,FRRnE2(|),q, isq.osq)))) ,HS (BODY, O.F.
RRnE2(p,q, isq.osq))) c 6001-INC (p,q, isq.osq) CASES -(•ll(iiq>=3).

I I I I -
j | | |TRY #lfU;#lf3 0U'lPUT(-(tll(isq)=3)-C0N0(l1B£XPRl»ttoo.|)r Knot.mtrel (eq,rq.,nHiiiiiicoriSl(3))) ,0),F(nS(BOD-

Y,0),nBEXPR(mkb9.prl<r)O.,m>r'. l(eM,i(|,iiitnuiiicoiist(3))),0),0)1I0.n3(B00Y,0,MS(B0DY,0,FRFnE2(p,q, isq.osq)))) , MS (BODY.

)Ö,FRRf1E:(p,q, isq.osq))) c P00»:INr.(p,q, isq osq) l SflSSUME -(•! 1 (i5q).3) I FF SIIIPL.
| | | | |352 -(«IKisqJ.J) I FF (352) -— SflSSUflE.

1353 0UTPUT(-(i>ll(i»q)»3)->CÜND(MBEXPR(trH)evprl(not.mtrel (eq.rq.mrniimconst (3))) ,0) ,F (MS (BODY, 0) .MBEXPR.
(mkbexp'-Knot.mkrel (eq.rq.mKnumconst (31)) 0), 0), 10,nS (BODY.O, MS (BODY, 0,FRBnE2 (p,q, i»q, osq))!), MS (BODY, 0, FRRME: (p.
.q, .sq^sq))) c B00MNC (p, q. i5q,osq) (348 349 350 351 352) — SlflPL BY 348 349 350 351 352 Lt13.

II I I "
I I I I - "
| j | | |TRY #ifl<,;#l#2 OUTPUT(-(»ll(i:q) = 3)-.C0l«DMittEXI,R(ml be-prl(oo1,ml r«l («q,rq,mtnumc3ii5t (3))) ,0) ,F (NS(B00»

Y,0),nBEXPR(mtbe.prl(not,m>rel («q^q,*» mimconsl (3))) ,0) ,0), lD,l1S(P0DY,0,nS (BODY. 0,rRPnE2(i>,tt, isq.osq)))) .MS (BODY-
,0,FRnnL2(|)1(|, isq,osq))) c BDOI INC(p,(|. irq.osq) : SRJJUME -(• 11 (iiq).3) = UÜ

| { | { |354 -(•llwsq>.3) ! ÜU (354) -— SR3SUHE,
| | | | |355 TT = UU (348 354) --- USE RR1TH1 354 348.

I I I I - "
I I I I "-
{{|{ |TRY /UU:*!*! OUTPUT (-(ell(isq)O)-C0HD(NBE>PR(mH)<>M"'l'"Ol."» rel'eq,rq,mtiiumcon',t (3M) ,0) ,F(I1S(B0D»

Y,0).MP,EXPR(mM)e.prl(not,mkrel (eq,rq,ini numcoi^l (3))), 0). 0), lO.MS (BODY, O.nS (BODY, 0,1 RflnE2 (p.q, isq,ocq)))) ,nS(B0DY>
,0.rPflrc:(p.q. isq.osq))) c B00>:lNG(p,q, i5q,osq) : SRSSUtlE -(« 11 (i£q) = 3) = TT iIUPL.

{ | | | |356 -U-ll(isq)=3) s TT (356) --SRSSUtlE.
|357 (\isq osq p q . i swfsq (isq)-(iSH<os (osq)-(is nil di) «(is ml (q)-OUTPUT (MflEXPR (rq, 0. flS (BODY, 0. READ (s-

t.O.PEROIwl .O.FRRMEl (p,q, isq,03q)))))-3)-F (nS(B0DY,0) ,IIBEXPR(ii(bsvnrl (nol,m»r«l (eq,rq,m) nuirconst (3))) ,0) ,0,115 (BO..
DY.0.RERO(st.0,REflD(ui,0,FRRMEl(p,q, lMiM4>>>>>tnS(|M)V,llltCU(tl,afKII0(iiltl,FMflCl(|i,4,iM,Mq)>))),IW>^».U«
U) ,UU1 (tai 11 (isq) ,IIH pAir (»tuprtl (i?q,p,'|) .osq) ,sliipf1l (isq,p,<|) .mupfU (isq,p,q)) c Uisq otq p q . iswtr.q (i--.q) - (isu-
fos (osq)-(isint (p)-(isint (q)-BOO) INC(p,ci, isq.osq) ,UU) ,UU) ,UU) ,UU1 (l.li 11 (isq),») pflir (slupHl (isq.p.q) ,osq) .stupdt (.
isq.p.q) .wlupdt (isq.p.q)) (347) — RPPL 347 tailidsq) mkpii ir (stupdt (isq.p.q),osq) stupdt (isq^'.q) wkipdt(isql.

P,di-
ll | | |358 0UTPUT(-(el3(isq)=3)-F'nä(ßOOY,0),nBEXPR(mH)i..prl(not,mt-rel (eq,rq,imnufficon5t (3))) ,0) ,0,nS(BODY,0.

,FRflnE3(p)q. isq.osq))),l1S(B00Y,0.FRRnE3(p.(|, isq.osq))» c B00IINC(,;, isq.osq) (347 348 349 350 351 356) —v Sin.
PL 357 BY 348 349 350 351 356 Ln7 Ln2 Ln5 RRITH; RRITH3 RRITH4 RRITHb Ln4.

Mill -
j j j |TRY #l<,l#:#li'li'l 0UTPUT(-(rl3(isq)=3)-F (nS(BOOY,0),nBEXPR(mlbBxprl(not,m)rcl (eq.rq.ml numconst (3))).

,O).O.nS(BOOY.0.FRflnE3(p.M, i sq, osq))), MS (r.00Y,0,FRRt1E3(p,q1 isq.osq))) c BOOt-INC(p,q, itq,osq)

Mill --
j | 359 OUTPUT (-(el l(isq)s3)-C0Ntl(llpEXDR(inVbo.prl (nu1,mir<>l (eq,r((,ir>nimconst (3))) ,0) ,F 'MS (BOD. ,0) ,riBEXPR.

(mkhe.prl(-iot,mtrr.|(eq,rq,m^nufflconst(3))),0).0).ID.HS(B0DY,0.ll3(B00Y.0.FRRnE2(p.q,isq.osq)))).li;(B00Y.0.lRflME2(p.
,q, .sq.osq))) c B00I IH0(p.q. isq.osq) (347 348 349 350 351 356) — SIMPL 358 BY 227 281 348 349 350 351 356 Ltl.

8 LM.
II II — —

| | 360 OUTPUT (-(el 1 (isq) r3)-CÜUn(np.f/PR (' ' l)i>»prl (not .ml ml (rq.rq.m» rumconr.t (3))) ,0) .F tW (BODY. 0) .IIBEXPR (m-
kbevprl (not. mit "I (»q.l (|. mt numcons t (3))). 0). 0), ID.MS (BODY. 0, MS (pOOY , T FRflnE2(p,q. isq.osq)))' IS (BODY. O.FRnME2 (p, q.
, isq.osq))) c BOOt INC(p,ii, isq.osq) (347 348 349 350 351) — CRSES -(e 11 (isq).3) 355 355 33j.

I I i
1361 Visq osq p q . iMltqdsq) :: isu(ns(osq) : ; isinl(p) :: isint(q) !: OUTPUT (-(IIEXPR (rq, 0. MS (BODY, 0, R-

ERD(st,0,REfiD;ji,0,FRRIlEl<p,q. isq.osq)))))=3)-ivB T t .B-COND (T, F (B. T. (). 10)1 (MS (BODY. 0). liBEXPR (r-i bo^pr 1 (not, mt r.
• I (nq.i'(Kml.iumcon-,t (3))).O).0.nS{pOOY.0.R!:HJj(st.0.RERO(Ml.0,rPfinEl(|i.(|. isq.osq))))) .MS (BODY. O.RE^D (•■ t. 0. READ (u I,-
e.FRRMEl'(p,q, isq.osq))))) c BOOt ING(p.q, isq.osq) (347) -— SPREF 360 BY 280 348 349 350 351 LM9 LM2.

|362 Visq osq p q . iswtsqdsq) ;: isutostosq) :; isint(p) :: innt(q) ;; OUTPUT (-(I1EXPR (rq, 0,MS (BODY, 0, RER-
0 is 1,0, READ (w I. O.FRRMEl (p.q. ir.q.osq) M)). 31-I*EPERT IMS (B00Y.0) .IPEXPR (mt boMirl (not .mti «I (rq.rq.mt mimcorr.t (3))), 0) «
.0.MS(P0D'.0.REflD(st.0.RERD(ul,0.FRRIIEl(p, i. isq.osq))))) .t1S(B0DY.0.RERD(st .0.RER0(w I .O.FPRMEl (p.q. isq.osq))))) c
'BOOt INC(p,q. nq.osq) —- INDUCT 346 361.

|363 Visq osq p q . iswtsqdsq) :: iiHlos(osq) :: isint(p) :: isint(q) :: flPPLY(McCRRTHY,p,q. isq.osq) c B00).I.
NCtp.q, isq.osq) — SIMPL 362 BY 207 208 210 280 303 326 333 334 LM1 TH2 TH5.

-

-—." ■,"»•"—"- ■—-«n-^r-——»w^w--"-»^r--

1
The Semantics of PASCAL in LCF 72

REFERENCES

Aiello, L. and Aiello, M.,
1974 Proving Pwgram CvnrHtntH in LtF,

Presented at the Collo(]uiiini on Piogiamming, Pans, 9-11 April 1974.

Dijkstia. E W ,
1972 Notes on Sfructural Programming,

Structured Prograniming, by Dahl, O.J., Dijkstra, E.W. and Hoare, CAR.,
Academic Press (197C) 142.

Floyd. R.W ,
1967 Assigning meanings to progmms,

Proc. of a Symposium on Applied Mathematics, Vol. 19 - Mathematical Aspects of
Science, (Schwartz, JT. ed.), American Math Society (1967) 19-32.

Haberman, A. M ,
1973 Critical Comments on the Ptogiamming Language PASCAL,

Department of Computer Science, Carnegie-Mellon University, October 1973.

Hoare, CAR.
1969 An Axiomatic Basis for Computer Programming.

Comm. ACM, Vol.12. No. lO (1969) 576-580. MS.

Hoare, CAR.,
1972 A note on the for statement,

BIT 12(1972) 334-341

Hoare, CAR. and VVirth, N ,
1973 An Axiomatic Defimlion of the Progiamming Language PASCAL.

Acta Informatira, Vol.2 (1973) 3J5.S55.

Igarashi, S , London, R.L . and Luckham DC,
197? Automatic Program Edification 1. A Logical Basis and its Implementation.

Artificial Intelligence Memo No. 200, Stanford University (1973).

Kleene, SC,
1952 Intioduction to Metamathematics

Van Nostrand Company Inc., New York 1952.

Kleene, SC, and Vesley. RE.
1965 The Foundations of Intuitionistic Mathematics

North-Holland Publishing Company, Amsterdam 19' 5.

■Mi

■^ ,"-.111.11 liiiilLailwu! ' ..--.-,

The Semantics of PASCAL in LCF

Lucas. P. and W?lk, K,
1969 On the Formal Description of PLIl,

Ann. Rev. in Automatic Programming, Vol. 6, Part 3 (1969).

McCarthy, J.,
1961 A Basis for a Mathematical Theory of Computation,

Proc. of the Western Joint Comp. Conf., Spartan Books, New York (1961) 225-138.

McCarthy, J., and Painter, J.
1966 Correctness of a compiler for arithmetic expre:sions

Stanford Artificial Intelligence Memo No. -10 (1966).
Also in Math. Aspects »f Computer Science, Am. Math. Sor. (1967)

Manna, Z.,
1969 The correctness of programs,

J.of Comp. ana Sys. Scienf.r,Vol.3 (1969) 119-127.

Milner, R.,
1972a Logic for comput-ible functions, description of a machine implementation

Artificitl Intelligcncp Memo No. l69,S:anfoid University (1972).

Milner, R ,
1972b Implementation and Applications of Scott's Logic for Compv'able Functions,

Proc. ACM Conf. on Prcmg Assertions about Programs.
New Mexico State Univeisity, Las Cruces, New Mexico (i972) 1-5.

Milner, R. and Weyhrauh, R.W,
1972 Proving Compile Correct ;rJi in a Mechanized Logic,

Machine Intelligence 7 (Me.tzcr, B. and Michie, D. Eds.),
Edinbourgh University Press (1972) 51-70.

Newey, M.,
19''?. Axioms and Theorems for Integeis, Lists and Finite Sets in LCF,

Artificial Intelligence Memo No. 184, Stdiiford University (1973).

Newey, M.,
1974 Formal Semantics of LISP with Applications to Program Correctness

Forthcoming Ph. D. Dissertation, Stanford University, 1974.

Scott, D.S. and Strachey, C,
1971 Towards a Mathematical Semantics for Computer Languages,

Proc. of the Symposium on Computers and Automata,
Microwave Research Institute Symposia Senrs, Vol.21,
Polytechnic Institute of Brooklyn (1971).

Scott, D.S.,
1971 Continous Lattices, Proc. of 1971 Dalhousie Conf.,

Springer Lecture Notes Series, Springer-Verlag, Heidelberg (1971)

73

MBIMiMMMMM .^_—___~ _~ -"- •-

MHHBHHBMMKB

■««■«^qpppr—' i i ,i.i." JtiiMmiimpnpRpn*"Knm<

-^.-i"

The Semantics of PASCAL in L< F 74

Waldinger R. J. and Levitt K. N.,
1973 Reasoning about Programs

TN 86: SRI-AM 1973)

Wirth, N..
1971 }"*# Programn.ir.g Language PASCAL,

Acta Informati.a. Vol.1 (1971) 35-63.

Wirth, N..
1972 The Programming La iguage PASCAL (Revised Retort),

Berichte der Fachgr., Compufr-Wissenichaften, Nr. 5, E.T.H., Zurrh (1972).

Weyhrauch, R.W. and Milner. R..
1972 Program Semantics and Correctness in a Mechanized Logic,

Proc. Ist USA-Japan Computer Conf.. Tokyo (1972).

- -■ ■ ■ -- ■ mmmumm , .^.q^j.^,

