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The Semantics of PASCAL in LCF 

SECTION   I    INTRODUCTION 

This paper is an attempt to determine the order of magnitude of the problem of giving an axiomatic 
treatment, in LCF, of an established programming language with a sizable user community. We 
wanted to include such features as declarations, I/O, different types of parameter bindings and 
control structures. For this purpose we chose the integer arithmetic part of PASCAL, which we will 

refer to as PASCAL. It seemed to us a reasonable choice in that; 

1) it satisfies the above criterion, thus it is not a toy language. 

2) it is powerful enough to compute any partial recursive function on sequences of integers, 

3) the existence of VCGEN (Igarashi, London and Luckham 1973) and FOL (Weyhrauch and 
Thomas 1974) will eventually give us the ability to compare the effectiveness of Hoare's 
axiomatic definition of PASCAL, McCarthy's style of first order axiomatization (McCarthy 
and Painter 1966) and the Scott style of assigning extensional meanings to programs. 

One pleasant result of our work was the discovery that me task seems more managrable than we 
had originally thought. Most discouraging was realizing exactly how inadequate even careful 

descriptions of programming languages actually are. 

LCF is both a logical calculus and a proof-checker for a suspected proof in the logic. It could be 
described is an equation calculus based on terms in the typH X-cal .ulus, whose most powerful rule 
of inference is Klcene's first recursion theorem stated as a rule (see KleeiT? \%2). Using this 
languaee in the mathematical theory of computation was first suggested by Dana Scott. Its formal 
properties are described in Milner 1972a. 1972b. Also see Milner and Weyhrauch 1972, Weyhrauch 
and Milner 1972, Newey 1973, 1974, Aiello and Aiello 1974 for other applications. A short 

description of LCF syntax ii given in appendix 1 

Initially tur intent was to present a semantics for the description of PASCAL given in Wirth 1971, 
1972 and Wirth and Hoare 1973. As a remit of OUT attempts to give what we ccnsider a complete 
descnption, we found many ambiguities and places where the literal mterpre ation of Wir'h's 
descriptions led to a semantics having undesirable properties (see 3.3.2.3 for a disuission of the for 
statement). We have described a language which has a fairly smooth semantics, and whose formal 
propei ties are more clearly appaient.  All the differences ate documented in the text. 

We think of our axiomatization »s characterizing properties of the whole PASCAL and not as a 
description of propernes of individual statements In section 42, for instance, we prove that, if two 
programs P and O don't contain goto statements, we can represent the function computed by the 
program consisting^ P appended to Q,as the composition of the function computed by P with that 
computed by Q, This theorem and others in section 4 simply cannot be expressed or used m 
formalisms like Floyd's method of attaching assertions to programs or in Hoare's axiomatic 
approach. We consider this a major difficulty with those techniques. Both consider programs 
individually It is our belief that the feasibility of checking (or generaung) large formal proofs 
depends on our ability to prove general properties of claws of programs, A description of the 
entirt i   -'grammmg language is required in order to mention these classes, 

Charactenz ng  m entire language in this way means thai conflicts arising out of putting different 

MIMMM 
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The Semantics of PASCAL in LCF 2 

Droerammine features together must be resolved, or at least descnbable in the formal.sm. The 
S sclssZ of funcuon activat.ons .n sect.on 3.2.1.3 .s a typ.cal example of the d.f .culty one 
enco inters when trying to characterize the behavior of an enure language. Unusual programs 
rannot be ignored or left unrncntionod. In actual programming languages the ability to decide if • 
pnLram 's well formed is in general too costly and many "ill formed" programs are usually accepted 
by the parser.  An example of such a difficult case .s found in sect.on 3.3.2.3. on the for statement. 

In section 2 we describe th« axiomaliiation of the environment in which PASCAL programs are 

executtd. 

A soecial word is needed here to make clear an abuse of language that appears throughout the 
reoort We frequently speak about a combinator being executed and then explain what it does. 
Strictly speaking this is not correct. Combmators don't do anything. The functions we mention are 
to be i. terpreted extensionally. It means that the only properties ti LCF functions that can be 

mentioned are properties of their graphs. Thus, when NÜnf at 

F ! [XN.OsnatMtNMisRichardlNHGood.BacO.FF)] 

we may say informally that F is a function which checks if N is a name. If it is not then its value is 
FF otherwise it returns Good or kd depending en whether that name is Richard or not. This 
description is in the style of an interpreter. More correctly we should say, F is a three valued 
function whose value is FF on arguments which are not names, and otherwise has the value Good or 
Bad depending or whether that name is Richard. Hotu the function is tmpHttä is t.ansparent to 
LCF This point is very impoitant so that there is no confusion about the nature of the semantics 
defined here To each program is assigned a function, nor a computation procedure. LCF terms 
also have interpretations as computation procedures, but it is not this interpretation that concerns us 

here. 

Section 3 describes all the control structures and statements relevant to the arithmetic part of 

PASCAL. They include 

1) type definitions 
2) variable and array declarations, 
3) procedure declarations and procedure activations, 
4) function declarations and function evaluations, 
5) assignment, conditional, while, repeat, for-to,for-downto and goto statements. 

6) input/output instructions. 

We do not consider constant definitions, label declarations (Wirth 1972). case or with statements, or 
records and files (except 1NP and OUT). These are either easily addabk or are not relevant to tht 

arithmetic part of PASCAL. 

Although LCF uses the typed Vcalculus, a natural semantics may be given to goto's and to 
procedures having themselves as actual parameters without introducing type conflicts. This is 

explained In section 3.3.1.3. 

Examples of general theorems about PASCAL are presented in section 4. Most of the work to date 
on  the  correctness and  equivalence of  programs, has actually only  dealt  with  the extensional 

  äuM, 
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properties of algorithms. Input/output or the effects of decl.iiations cannot be ignored in ?iny theory 
of coircctness which hopes to be practical. As soon as we ask whether a program will rur. or not, or 
whether it will compile or not, then the question "do we have the correct algorithm?" is a minimal 
criterion for corroctness. In addition, the distribution and consumption of resources during the 
execution of a program, involves both whaf has been declared and how bindings are made to 
parameters. The correctness of programs which input data incrementally, must know how these 
inputs are treated. 

We have set out here a description of a large but stable core for any interesting programming 
language. We wanted to establish a base from which further work could be done towards a practical 
system for proving properties of programs within this core. Some example are the theorems of 
sect>on 4. 

Section 5 gives partial correctness proofs for some progiams. The much overworked factorial 
program is again discussed. We included it to show some of the flexibility in our approach to 
program correctness as well as illuitrate points made in other parts of the report. A proof of the 
correctness of a program implementing the McCarthy Airline reservation system is given. This is 
new in that it treats an interactive program which has a potentially infinite number of inputs The 
details are in 5.2. 

The appendices contain a short description of the LCF syntr.x, the list of all the LCF axioms 
describing the syntax and semantics of PASCAL, and the actual LCF printouts of the proofs of 
theorems meiuioned in the text. 

Some familiarity with the papers Wirth 1971, 1972 and Wirth and Hoare 1973 is recommended to 
better understand this memo. 

^MMMMMHi   
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SECTION  2    THE SEMANTICS OF PASCAL 

Section   2.1    Description of the $em<>nt!c$ 

In this version of PASCAL we restrict our attention to programs whose inputs are sequences of 
integers. The meaning (or interpretation) we assign to a program is thus a function from sequences 
of integers into sequences of integers. 

Programs, on the other hand, map memories onto memories. In order to describe the effects of 
procedures and function activations more clearly we introduce the notion of a store. A store divides 
the memory into/ram« or environments. Frames are specified by i frame point er. Thus we think of 
programs as mapping stora onto storey and strrei are functions Uom frame pointers to frames. 

store: framepointer -* frame 

A frame is a function from locrtions to values. 

frame: location * value 

A store describes abstractly additional structure of a memory without knowing how it is realized in 
any particular implementation The execution of a program, p, starts with the creation of the initial 
store. This is done by FRAMES (see next section). It contains the locations lileloc INP and fileloc OUT 
for the input and output files respectively, and a location textloc where the text of the program is 
stored.  This store has only one frame called 8. 

Type definitions are then made in this/ram^. Each/ram* represents an environment in which the 
current declarations and variable bindings are found 

The effect of declaring a variable, v, in * frame is to create a location typeloc v, which contains the 
type of v.  Thus we can tell if a variable has been declare-! in a frame «(f) by checking if 

s(f,typeloc v)-UNDEF. 

The execution of a procedure or a function creates a new frame. It is set up by the ombmator 
MAKFRAME defined in appendix 3.9. The new framepointer is just the successor of the cur-ent one. 
namely that pointing to the frame where the procedure or function has been activated. This 
imposes a stack discipline on procedure and function activations. The binding of free variables are 
made in the style of ALGOL. The pcMtion of the variable declaration in the program text 
determines the binding irame. FETCHV is the function which looks up the value currently bound to 
a variable. 

The combinators FRAME8 and MAKFRAME build stores with the following property. If f is a 
framepointer corresponding to a non activated frame, then s(f)äUU, otherwise for any legal location 
loc, s(f,loc) is either a value or is UNDEF. The value of a variable is stored in | location which 
depends on its name. This is slightly complicated in PASCAL, because both identifiers and array 
element names (e.g. A[l]) are considered variables. Section 3.2.1.2 describes the combinators which 
allow us to treat them uniformly. 
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Both FRAME8 and MAKFRAME store the body of statements to be evaluated into a location of the 
frame they are defining. The effect of proceoure and function declarations is to add new locations 
to the store. 

The statement part of a program, procedure or function, is interpreted in the store where the 
corresponding declaration part has been evaluated. Statements are evaluated m sequential order, 
unless a goto statement is encountered. Where to go is determined by the function s«gm, which takes 
a text and a label, and returns a text, i.e. it tel's you where to jump. The new text is evaluated in 
the same frame is you jumped from. Tnus you cannot jump out of a procedure activation. Thü 
follows Wirth 1971. The effects of the other statements are pretty much as you might expect. They 
are defined by MS in section 3.3. 

The stack discipline imposed on procedure and function activations and the discipline imposed on 
goto's are not intrinsic to this approach to the description of the semantics of programming 
languages. We impose them because we wanted to correspond to Wirth 1971. 

Programs are written in abstract syntactic form. Each syntactic construct is assembled by a 
constitutor and its components are selected by a selector. The list of all the axioms about the syntactic 
constructors and selectors arc given in appenc'ices 2.1 and 22. Each construct is identified by 
associating a type to it. A predicate is defined which is satisfied only by objects of that type (see 
appendix 2.3). The equality of identifiers denoting types of syntactic constructs and of location 
names is denoted by V in the formulas through the text and is detectcc by LCF itself. 

Section   2.2   Top level functions 

The function FUNCT: 

FUNCT * [Xp o.^i.ONPUTsPASCAKp.oteOUTPUTKi)]] . 

where 9?[\i g x.g(flx))] is the composition function and i, o are sequences of integers, represents the 
"inte. fice'" between functions which compute on integers and programs which -.ompute on stores. 

Wirth 1971 describes a program as a PASCAL procedure which has an input and an output file as 
parameters. The combinator PASCAL 

PASCAL ■ IVp.[Xo i.MP(p,B,FRAMEO(p,o,i))]] 

when ,'pplied to a program, p, is a function which takes as arguments two sequences of integers o 
and i (representing the initialization of the output and input files respectively) and returns a 
function from stores to store; The rietinition of PASCAL imitates explicitly the bindings vhich a 
procedure would make when executed as part of a program. FRAME0(p) applied to o and i creates a 
store containing a single frame, called 8, with these bindings and then applies MP to the program p 
in frame B and this store. 

FRAME8 = [Xp.[Xo i [Xf. (1=8) -♦ 
[Xloc.(loc=«ileloc INP)-» INTERiMLREPd), 

(loc=fileloc OUTH INTERNALREP(o), 
(loc»textloc)-»slatmof(p),UNnEF]1UU]]]l 

— 
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PASCAL programs read sequences of numerals supplied by some input device into the buffet (il«loe 
INF and write outputs into the buffer «ileloc OUT. INPUT is just the identity function. The write 
statement put« numerals in the output buffer, thus OUTPUT maps sequences of numerals, onto 
sequences of integers. INTERNALREP is a function which takes sequences of integers and returns 
sequences of numerals. The definitions are found in appendix ? 1. 

Programs m PASCAL have two parts; a declaration part and a statement part. 

The interpretation of a program in some frame specified by the framepointer f: 

MP ■   [Xp f MD(d«clof t,f)®MS(statmof t,()] 

is just the interpretation of definitions MD composed with that of statements MS. These are 
described in the next section. 

mtKUtitmMtmmitmmi^^ *■•*• - --^ 
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SECTION  3    DESCRIPTION OF THE LANGUAGE 

This section contains the iescnption of all the instructions included in our version of PASCAL and 
the description of their semantics in LCF Each text (it may be a program, n procedure or a function 
text) consists of two parts: declaration part and statement part. The semantics of a text depends on 
the frame in which such text is executed, 'or this reason a framepointer is specified as parameter in 
every semantic function. 

Section   3.1    Declaration part 

The declaration part includes type dejinitions and the declaratioi of all the variables, functions and 
procedures local to that text. Its semantics is defined by: 

MD    s [\d f.MDEF(dpf)®MDEC(d1f)], 

MDEF ' [ciF.[\d f. 
isemptyst d -♦ ID, 
istypedef d -♦ CREAT{f,namof d.typof d), 
iscmpnd d -» F(fstof d,l)®F(rmdof d.O.ID]], 

MDEC » [o<F.[\d f. 
isemptyst   d -» ID, 
isvardeel  d -♦ CREAV{f,namof d,typof d,f), 
isprocdecl d ■♦ CREAP«,namof d.prspof d,f), 
isfundocl  d -» CREAF(f,namof d,fnspof d.typeof d,f,f), 
iscmpnd     d -♦ F(fstof d,f)®F(rmdof d,f),ID]]. 

MD is the composition of MDEF, which defines the semantics of type definitions and MDEC, which 
defines the semantics of variable, procedure and function declarations. Every iutntifier appearing in 
a declaration statement is a name so it must satisfy the predicate isname. Consequently, whenever 
some property of a PASCAL program is to be proved in I CF, for each identifier appearing in that 
program, axioms stating that it is a name are to be added. The predicates for the identification of 
syntactic constructs are given in appendix 2.3. 

3.1.1    Data Type Definitions 

Since we are dealing with the integer arithmetic part of PASCAL the scalar data types we have 
introduced are the intimer type INT and its subranges. A subrange is an interval of integers and is 
defined by specifying its lower and upper bounds. The structured data types included in our 
language are the array types. An array may have any number of indices (each ranging in a subrange 
type) ard its elements are all of the same scalar type. 

Each type may be assigned a name in a type dejiv'don. The semantics of a type definition is GREAT: 

GREAT • [M n ty s.GREALOG(f,s,«ypidloc,n,ty)]. 

GREALOG   * [Xf s loc n val, ISPRESENT(n,s(f))-»UU,STORE(f,s,loc n,val)] 

m^m*. - "•  '■- 
■ ..... ...    .^..A..    ■;.,     ..^... 
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CREALOC is used by GREAT.   It declares a name n to be a synonym for the fype ty in the frame s(f). 
by storing ty in a new location typidloc n. The result of CREALOC is undefmeii if n doesn't satisfy tb 
predicate icnam« or if it nas been already declared in the current frame. This is tested by ISPRESEN1 
Modification of the stoic is done by the combmator STORE. Their definitions are in appendix 3.9. 

In the definitions of MDEF and CREAT no aisumption is made on the order of the type definitions. If 
all the type Identifiers satisfy the predicate imam« and are different from each other, the result of 
MDEF on a frame, in which they don't appear, doesn't depend on their order in the text (see theorems 

in 4.5^ 

3.1.2 Variable Declarations 

Each variable occurring in a text must be assigned a type which specifies the range of values that 
variable may assume during the execution of the statement part of the text. The semantics of a 
variable declaration is defined by CREAV: 

CREAV • [XI n 1y II i.CREALOCd.s.typ.loc.n.TYPEVALIty.fl,!))]. 

CREAV creates a location in the current frame s(0, whose name is typ«loc n, provided n is a name and 
no other location with the same name already exists in that frame. The content of that location is 
the type associated with n. Such type is evaluated by TYPEVAL (see 3.3.1.3). Each type identifier 
possibly appearing in it is removed and its definition is substituted fo.- it. The evaluation is made In 
the frame specified by the framepointer fl. When a variable is declared fl coincides with f. so at the 
moment there is no point in introducing another parameter m CREAV. We have introduced this 
extra parameter since CREAV is also used when binding value parameters in a procedure or function 
activation. On that occasion the two framepomters f and fl (the one in which the new location is 
cre?led and the one in which the type evaluation starts) do not coincide. 

3.1.3 Procedure and Function Declarations 

The senmntics of a procedure declaration is defined by CREAP: 

CREAP • [X( n ps fl s.STORE(l,CREALOC(f,s,iCclnk,n,fl)1proeloc n,ps)], 

The result of CREAP is undefined if n is not a name or somrthing with the same name has already 
been declared. Otherwise two locationi are created. One of them, whose name Is procloc n contains 
the formal ' >ument list and the text associated to that procedure decla.ation, the other one, whose 
name Is ac«,. < n contains the frame pointer specifying the frame where the procedure has been 
declared, i.e. the environment where its free variables are bound. As for variable declarations, when 
a procedure is declared the two framepomters f and fl are the same, but the combmator CREAP is 
also used when binding procedure parameters in a procedure or function activation, and in that case 

the two framepomters differ. 

The semantics of a function declaration is CREAF: 

CREAF i [Xf n fs ty ft fl s. 
STORE(flSTORE(f,CREALOC(f1s,«celnk,n1fl),typ«loc n,TYPEVAL(ty)ft,s)),funcloc n,fs)). 

L I     - mmm 
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CREAF is similar to CREAP The only difference is that, in addition to funloc n and acelnk n, a location 
typ«loc n is created, whose content is the type of the result of that function. 

From the definition of MDEC and the others LCF combinators describing '.he semantirs of the 
declarations it follows that tSe order in which declarations are made is not reVvant. If the identifiers 
being declared are different and no other locations have been declared with then names the same 
store is obtained, independently of the order (see theorems in 15). Tms is slightly more general than 
the definition of PASCAL in Wirth 1971, which requi.es that all the variable declarations must 
appear before the function and procedure declarations. 

Section   3.2    Expressions 

An LCF function can either evaluate to an object or to a truth value, but not both. For this reason 
we could not introduce a unique evaluation function for arithmetic and boolean expiersions. So we 
have divided expressions into arithmetic and boolean (this distinction is absent in Wirth Wl\) and 
introduced two evaluation functions Furthermore, we have introduced a finer distinction between 
the types of operators in order to avoid funny situations like the prefix adding operator "or" which 
is allowed in ihe syntax given in Wirth 1971, 1972 but who^e meaning is not defined there. 

3.2.1    Arithmetic Expressions 

Arithmetic expressions are written in abstract syntactic form and are evaluated by MEXPR: 

MEXPR s [oiF [Xe f s. 
isconst a     -> MCONST e, 
Isexpr e -»isunarylopof •) -♦ MOPKopof e)F(arglof e.f.s)), 

isbinary(opof e)-» M0P2(opot e,F(arglof elf,s),F(arg2of e,f,s)), 
isvariable • -» FETCHVto.f.s), 
isfundes •    -» RETURN(succ f,MF(namof e.actargot e,f,s)),UU,UU]], 

3.2.1.1    Evaluation of Constants and Expressions 

The abstract syntactic represmtaticm of numbers is defined by the combmator mknumconst. If n is a 
number, mknumconst n is the corresponding numeral and it satisfies the predicate isconst (see 
appendix 2?). Numerals are evaluated by the semantic combmator MCONST, which returns the 
corresponding number. 

MCONST s [Xx.isconst x -» numof x,UU). 

Arithmetic operator symbols appear explicitly in expressions and satisfy the predicate isunary or 
isbinary according to the number of arguments the corresponding operator expects (see definitions !n 
appendix 2.1) When evaluating arithmetic expressions MEXPR checks whether the operator symbol 
is unary or binary, then MOPI or M0P2 evaluates them and applies the corresponding valu^ io the 
argument(s) evaluated recursively 

MOPI ■ [Xx.xspplus-^Xx.x.xspminus-Ax.lb-x^xsplusl-^succ^minusMprtd.UU). 

mam m.*** ^ ■ ■■—-—      - ^ 
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M0P2 ■ [Xx.x«plus-»!»,x»minus-*!-,x:lim«8-»!*,x»div-»!/,x»rmdr-*modlUU]. 

MOPI evaluates unary operator s/mbols and M0P2 evaluates binary ( peratot symbols to tne 
corresponding functions. For example, the meaning of the symbol plus i.« ihe LCF function ♦. Note 
that, due to the LCF syntax, infix operators, when written wither arguments, are prefixed by T. 
Ar. LCF axiomatuatlon of arithmetic is given m Newey 1973. 

As an example, if: 

mKexpr2(plüS,mk«xprl (plusl.n! ,,
l'r>K»xpr2(tim«slmknumconst 21mk«xprl (minusl,n2))) 

is evaluated in a frame where * .e location nl contains the value 3 and the location n' contains the 
value 7, its result is 16, i.e.  s' .c(3H2*pred(7)) 

3.2.1.2    Evaluation of Variables 

If the expression to be evaluated is a variable, then the corresponding value is fetched by the 
FETCHV combmator. 

FETCHV   » [ocF.[Xn f s. 
ISLOCAUU peloc NAMOFVAR(n)1s{f)HISLOCAL(NAMOFVAR(n)1s(f))-»s«,LOCOFVAR(nIf1s)),UU, 
istopUfHUU.FtVARBNDTOdi.f.sl.NEWFPIn.f.s)^)]]. 

The fetching mechanism is very simple The variable to be fetched may be an entire variable of a 
scalar type or an array element In both cases a test is done (by ISLOrU) to see whether or not that 
variable name has been declared in the current frame. If this is the case, the cotiesponding value is 
fetched in the current frame (it will be undefined if the variable has been declared, but no value has 
been assigned to that location). If the variable name has not been declared in the current frame and 
the current frame is not the top one (i.e. if the fetching is done during a procedure or function 
activation), the binding list is checked. In fact the variable to be fetched may be a formal parameter 
passed by name (see 111.3 for details on the binding mechanism). In this case FETCHV applies 
recursively to the corresponding actual parameter in the preceding frame. If that variable name is 
not found in the binding list, the variable is free for that procedure or function activation, hence 
FETCHV applies recursively to the same variable in tho frame specified by the result o'. NEWFP, i.e. the 
frame where the procedure or function m executioi; has been declared, hence where its free 
variables are bound. 

The definitions of the auxiliary combmaiois used in FETCHV may be found in appendix ?..7,-9. 
ISLOCAL performs a test to ser whether a given name has been declared or not in a frame. 
NAMOFVAR applies to a variable n, and gives as result its name: it coincides with n if n is an entire 
variable of scalar type, or it is the name part of n if n is an array element. Analogously LOCOFVAR 
returns the location of n. As above, the location of n might be n itself, or an array location, varbndto 
is the function which accedes the list of parameter bindings If the variable n appears in it, then n 
(or its name-part) is a formal name parameter and the conesponding actual parameter is the result 
of varbndto. If n is not a name parameter, then n itself is the result of varbndto. In this case n is a 
free variable for the function or procedure in execution. NEWFP evaluates to pred f or to the content 
of the alnk location of the current frame, according to whether n is a formal parameter or a free 
variable. The alnk location is set up when a new frame is created for a procedure (function) 
activation, it contains the pointer to the frame where the activated procedure (function) has been 
declared. 

■MatMMMHaMM 
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From the definition of NAMOFVA'' given in appendix 3 7 wc see that its result is undefined if it is 
applied to FL'NV. As explained in ?.2.l.3 and 3.3.1.2 FUNV is the location where the value of a 
function is stored. Since NAMOFVAF, is undefined on FUNV, the result of FETCHV is undefined if it 
applies tu FUNV, So it is impossible to "read" the value of a function with the usual fetching 
combmator, 

3.2.1.3    Function Designators 

If the expression to be evaluated is a function designator, then a new frame is set up. The function 
is evaluated by MF and its value is retrieved by the RETURN combmator in a special location named 
FUNV 

RETURN = [Xf s.lSLOCAUFUNV.slDHsU.FUNVj.UU], 

The semantics of a function activation is very similar to that of a procedure activation (see 3.3.1.3). 
Starting from a riven store, a new frame is created by the combmator MFB and then the semantic 
function MP (described in section 22) is applied to the text of the function. The current frame is 
changed by incrementing the I'ame pointer by 1. 

MF   = [\n a f. MFB(FUNCFAL(n,f)(a,fIn)®WP(FUNCDEF(n,f)1succ f)]. 

FUNCFAI. and FUNCDEF are the two functions which fetch from the «tore the formal argument list 
and the text of the function being activated. Their definition is given in appendix 3.8. They use the 
FETCH combmator which, like FETCHV, returns the content of a location from the frame where it has 
been created. 

The activa'ion of a new frame and the binding of parameters is done by MFB: 

MFB 3 (Xfi aa f n s.BINDWa.aa^uce f,CREALOC(suec Mypeloc FUNV)TYPEDEF(n,f,s), 
MAKFRAME(FUNCBODY(n,(,s))PFLNK(n,f,s),suec f.s) ))]. 

It not only binds the formal parameters to the actual parameters (the binding function BIND will be 
fully explained in 3 3.1,3), but it also creates a new frame The frame in which the function is 
evaluated is set up by MAKFRAME (}M appendix 3.9) It creates a location lexlloc where the statement 
part of the text is stored, and a location alnk whose content is a pointer to the frame where the 
function has been declared. Moreover, a lo;ation typeloc FUNV is created, whose content is the type of 
the function being evaluate.' A location named FUNV will eventually contain the value of the 
function. In fact Wirth 1971. 1972 says that the function name must appear at least pi ? in the 
function text at the left hand side of an assijnment statement. The value of the function m 
execution is stored in the FUNV location by the combmator ASSIGN From its definition in 3.3.1.2 we 
see that the result of a function can only be assigned to FUNV in its function frame. This means that 
if the name of the function in execution appears at the left hand side of an assignment statement in 
the text of a procedure where such identifier has not b.?en declared, it is interpreted as a free 
variable, not the nam? of the function in execution. 

As noted in 3.2.1 2 the FETCHV conbinator returns an undefined value if applied to FUNV. This 
implies that a variable namec FUNV cannot be declared even in a frame different from that set up 
by a function activation.  We have prevented this by considering FUNV a "reserved" identifier which 
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doesn't sausfy the predicate isn«me. so it cannot be used in declaiations (the axiom isname FUNV^FF is 
included in appendix 2.4). 

We assume that the fanslator from concrete to abstract syntax nas substituted FUNV for nil the 
occurrences of the function name on the left hand side of assignment statements within the function 
text. If there are no such occurrences, the function activation returns an undefined result. If there 
are several, the last executed cieteimmes the value of the function. If a variable identifier equal to 
the name of the function in execution occurs on the ngth hand side of an assignment statement, 
then either that v.,.i<,ble has been declared within the function execution or it is considered a free 
variable of that iunction. When a variable has been declared with the same name as tne function in 
execution, its value is undefined during the function exe^ ion. In fact, it cannot be assigned a value 
since FUNV has replaced it on the left hand side of any assignment statement. It cannot be inputed 
since the read statement cannot be executed within a function activation (see the following 
paragraphs for a discussion on side effects). 

The declaration of a variable with the same name as the function in execution is not forbidden by 
W"th 1971, 1972, but we do not see any reasonable semantics for it. In addition Wnth 1971. 1972 
says tha.; 

"Occurrence of the function identifier in a function designator within its declaration 
implies recursive execution of the function". 

This sentence doesn't specify what happens if within a function another function is declared with 
the same name. Our semantics allocs such declarations - why not? In such case the "outermos»" 
function cannot be executed recurnvely This is also the case if a function has a formal parameter 
with the same name (this is not forbidden in Wirth 1971, 1972). In this case the corresponding 
actual parameter is executed. 

PASCAL allows functions to have themselves as actual parameters Even though LCF is a typed 
logic, the sematU": combinators we have defined avoid type conflicts by passing the text of the 
function and not the function itself as a parameter. This is also true for procedures having 
themselves as parameters. 

Haberman 1973 is very critical of the PASCAL'S notion of function He says that, while the aim of a 
PASCAL function is that of not having side effects, this is not true since a function may caii a 
procedure which may have side effects. Our semantics deals with this situation In a different way. 
Statements which change the content of a location and hence cause side effects are Oi ly the 
assignment .ead, write and for statements. 

The read and write statements modify the enntent of the input and output buffers so they cannot be 
executed during a function activation. We forbid this by the test ISFUNFR which is performed 
whenever a read/write statement is executed. It checks if any frame between the current one and the 
top one has been set up by a function activation (see ?.3.l ■»,-5). The tf$t on whether a frame has 
been created for a function activa'ion or for a procedure activation is du.ie by checking in the frame 
whether typ«loc FUNV is defined or not. 

An assignment statement may cause side effects by as.ignmg a value to a free variable. Whenever 
the variable to be assigned is a fu'e variable for tue current fume, the ASSIGN rombmator (see 

j 

MMMM ■ 



i u n   «   umi mw-*rw tr-m ^•mi^mm^mm^mmtmmimm ^^mmmmil  ■ n BII   i      sai    ■ .n     i ■ 

The Semantics of PASCAL in LCF 13 

".3.1.2). checks whether between the current frame and that where the variable is bound (hence 
where the modification of ihe store actually takes place) a function has been activated. 

The for statement may cause a side effect if its control variable is free In a function activation. 
Wirth 1971, 197J doesn't say that the control variable must be local to the frame where the for 
statement is executed. In our semantic definition of PASCAL, the for statement cannot cause sic'e 
effects in a function activation since its definition relies on the combmator ASSIGN for updating the 

control variable (see 3 3.2.3). 

We mcludeo the aboi/e checks in our semantics so that ill-formed programs return an undelmed 
store, it turns out, however, that m our formalism no function can cause side effects. This is because 
MEXFR simply returns a value from a function activation The checks clone in our semantic 
combimtors amount to checking for side effects "at run time". Thus some programs which would be 
rejected by a PASCAL compiler will still have well defined meaning for us if the statements 

producing side effects are never executed 

Finally, we want to point out that our semantics allows parameters of a function to be passed by 
name, but guarantees that those parameters can only be "read" during the function execution This 
contrasts with Hoare's opinion (private communication) that PASCAL functions must not have 
parameters passed by name Wirth 1971, 1972 says nothing about it. In Wirth 1971 the assignment 
to nonlocal variables is explicitly forbidden   Nothing is said about this in Wirth 1972. 

3.2.2    Boolean Expressions 

The evaluation of boolean expressions is very similar to that of arithmetic expressions (see 3.2.1 and 

subsections). It is performed by M8EXPR: 

MBEXPR = [*F.(X« < s. 
(•«true)-*TT, 
(•«fslstHFF, 
isbexpr e -♦isbunary(bopol o) -• MDOPKbopof e,F(barglof e.l.s)), 

i8bbinary(bopof o)-» MBOP2(bopo« e,F(barglo« »».(.sj.FCbargZof e,«,s)), 
isrelop(bopol a)  -» RELOP(bopct o.MEXPRUrglot e1f,s),MEXPR(arg2of e.l.sN.UU.UU]]. 

true and false are the abstract syntactic representations of the boolean constants true and false. If the 
expiession to be evaluated is the constant true, then it evaluates to TT, if it is the constant false, it 
evaluates to FF. Boolean expressions containing unary and binary uperator symbols are evaluated 
like arithmetic ones Relation operators take integers as arguments, so the meaning of a relation 
syribal is applied to its arguments evaluated by MEXPR The meaning of unary and binary boolean 
operators and that of relation operators is defined by MB0P1, MB0P2 and RELOP 

MBOPI    i [Xx.x=not-»-,UU], 
MB0P2   ' [Xx xsand-»'A,x«or-»!v,UU], 
RELOP   I [Xx.xslseq-»!<,xs6req-»!>,xsll-»!<1x-gt-»!>,x=eq-»:-1x=neq-»/,UU] 

For example in the frame specified by the frame pointer f and m the store s 

mhbexprl (not.mKbexprZCor.mKrel.H.a.mknumconst 0),mkr*l(6t,i,mknumcons» I))) 
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evaluates ;o 
\ 

-((MEXPR(i,f,s)<B)v(MEXPRU,f,s)>n). 

An LCF axiomatization for the boalean operators is given in Newey 1973. 

Section   3.3    Statement Part 

The semantics of the statement part of :he program is defined by MS. 

MS=[o<:F[Xst f. 
isomptyst s<     -» ID, 
iscmpnd si -» 
isemptystCfstof st)-» F(rmdof st.f), 
islabitat(fstof st)-» F(mkcmpnd(statmof(fstof sl),rmdof stj.f), 
isRoto(fstof st)    -» GOTO(Fflabelof{fstof st),f), 
isass (fstof st)    -» ASSIGNdhsoUfstof 5t),MEXPR(rhsof(fstol st),f),f)8F(rmcof st.f), 
isproccalKfslof st)-»[\s.MPB(PROCFAL(iiamof(fstof st)1(,s)1aclargof(fstof st),f,s1namof(fstof st))]® 

[Xs.MO(PROCDECL(namof((stof st)1l(s))succ «,s)]® 
[Xs.F(PROCBODY(namof(fstof sD.f.sl.succ f,s)]®CLEAR(suce f)®F(rmdof st.f), 

isread(fstof st)    >• READ(namo((fstof st),f)®F(rmdof st,f), 
iswrite{fstof st)  -* WRITE(namo((t!:tof st)1f)®F{rmdof st.f), 
iscond(fstof st)    -* COND(MBEXPR(tostof(fsM« st),!), 

F(append(th8no(((stof st),rmdof st),f),F(append(elseof(fstof st),rmdof st),f)), 
i8whil«(fstof st)  -> COND(MBEXPR(tcstof(fstof st),f), 

F(append(bodyof(fstof st),st),f),F(rmdof st,f)), 
isropeatCstof st) -* F(append(bod/o((fstol st),mKcmpnd(mkcond(mKb«xprl(not, 

testof(fstof 5t)),f5tof st,ES),rmdof st)),f), 
isforto(fstof st)   -» COND(MBEXPR(fortest(fstof st),f), 

ASSIGN(indexof(fr.tof st),MEXPR(lbof(fstof %\),i),m 
F(append(bodyof{fGtof st),fortoup sD^.Ftrmdof st.f)), 

isfordn{fstof st)   -» CONDIMIJEXPROortesKfstof stM), 
ASSIGN(indoxof(htof :t),MEXPR(ubof(htof ltMM)t 
F(append(bodyof(fGtof sl),fo-dnup 5t),f)(F(rmdof st^^UU.UU]]. 

The detimtion of MS has the form of a nested concutional, each branch corresponds to one 
instruction of the language. Note that MS is dcfmfd only on the empty statement ES, whose semantics 
is the identity IDs[\x.x], and on compound statements In fact, the abstract syntactic form of a 
program is a list of instructions assembled by the constructor mkcmpnd and ending with the empty 
statement EG When the first argument of MS is a compound statement a test is done on its first 
element Except for the labeled statements, whose semantics is simply that the corresponding 
unlabeled statement, the detailed description of the semantic functions defining the meaning of each 
instruction will be given in the following sections 

3.3.1    S in pie Statements 

We have defined the semantics of all the simple statements of PASCAL, te. goto statement, 
assignment statement, and procedure statement Furthermoie. we have defined the semantics of an 
instruction for reading input data from the input buffer INP and of an instruction which writes 
output data into the taitput buffer OUT 

a 
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3.3.1.1    Goto Statement 

The semantics of the goto statement is defined by the GOTO combinator. 

GOTO    « [XF.[Xn f FUnmMEXTOH.f)]], 

It applies the semantic function MS ircur.ively to the text retuincd by the fgm combinator: 

s«gn 5 [o<:F [Vn st. 
isemptyst si -» UU, 
iscmpnd st-» 
isomptysldstof st)   -»F(n,rmdof st), 
islabstaMfstof st)-»(n=labelo< st)-   st1F{n1mkcmpnd(statrtiof(fstof sD.rmdof st)), 
issingleOstot st) -»F(n,rtrdo< st), 
isconddstoJ st)    -♦occurj(n,thenof(fstot st))-»appond(F(n,thonof(fstof st)),rmdot st), 

occurs(n,elsed(fr.lof st))-»J;3pend|F(n,elseol(fütof st)),rmdof st), 
F(n,rmdol st), 

isrepwh(fstof st)   -»occurs(n,bodyol(fstof sl))-*append(F{n,bodyof(fstof st))^!), 
F(n,rmdof st), 

isforlo(fstof st)   -»occursln.bodyoKfstot st))-» 
append(F(n,bodyof(fstof st)),<orloup(st)),F(n,rmdof st), 

isforon(fstof st)   -»occursln.bodyoflfstol st))-» 
apperd(F(n,bodyof(f5lof st)),fordnup(st)),F(n,rmdof st),UU,UU]]. 

segm applies to a label, and fhe text st which is retrieved from the store by the TEXT combinator. 
and returns the piece of text starting from the first occurre ce of the label If the label is not found 
in the text the result of sagm is undefined The behaviour of PASCAL, programs when several 
identical labels appear in it is another example of ambiguity in Wirth 1971, 1972. An accurate 
description of a language must say if this is a well-formed program or not 

In our semantics, no restriction is imposed on where the label may appear in the text. This means 
that jumps into (or out (ram) the body of a repetitive statement are allowed. The behavior of sagm 
in such case will be described in then respective sections. 

According to Wirth 1971 we do not allow jumps into a procedure body, but, contrary to Wirth 1972 
we do not allow jumps out of a procedure activation, re. jumps cannot cause the change of the 
current frame. For this reason m have not introduced the label declaration statement of Wirth 1972 
since the notion of scope for a label is meaningless to our semantics. 

Lockhood Morns and others have suggested the notion of continuation as a possible way oi defining 
the semantics of programming languages with the goto mstiuction It cannot be used in L :F in a 
straightforward way Miice a type conflict arises. On the contrary in our semantics no type conflict is 
introduced by the goto, in fact its semantics simply reduces to changing the first irglNMM of MS. 
The text tc oe executed next is replaced by the text evaluated by the s«gm function. 

3.3.12    Asiignment Statement 

The semantics of the assignment statement is defined by the combinator ASSIGN: 

  - - - •_ - 
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ASSIGNi [o<:F[Xnvlt. 
n-FUNV-»ISADMISVAL(s{f1typ«locFUNV)1vU)H$TORE(l,s1FUNV,v(s)),UU, 
ISINTYPE(n,vIf,s)-»ST0RE(f,s1L0C0FVAR(n,f15),v(s)), 
ittopfdHUU, 
ISFUNFR(fl«(NEWFP(n,f.s))-»F(VARBNDTO(n,(,s)1v,NEWFP(n,«I$)9s),UU]]. 

First of all a test is done to see whether the location to be assigned is FUNV, i.e. if we are assigning 
the value to a function identifier in a function -»ctivation (see 3 2.1.?). In this case if the typeloc FUNV 
is prc:?nt in the current fianie and the vskie » Matches with us content, the combmator STORE stores 
v($) IN FUNV (see appendix ?..9) Otherwise ASSIGN returns the undtfmed store. If n is not FUNV, 
then the current frame is checked. If n has Leen ieclared in it mi the value v matches with its type 
then the assignment 'akes place. A type rrmmaich ma\es the assignment to leturn the undefined 
store. If n is not local to the current frame, it may be a name parameter or a free variable for that 
frame. In both cases ASSIGN applies recursively with a mechanism quite similar to FETCHV (see 
3.2.12) The only difference is thai here a test is done by ISFUNFR to see if the assignment may cause 
a side effect in a function activation. 

ISFUNFR i [*F.IX* t n(. ISLOCAL(FUNV,s(f))-» FF.prtd f«nf -» TT(F(pr«d f.s.nf)]]. 

ISFUNFR checks if any frame between those pointed to by f and nf is a function frame, i.e. if FUNV is 

local to it. 

The auxiliary combmator ISINTYPE: 

ISINTYPE • [Xv val « «ISLOCALdypeloc NAM0FVAR(v)1t(f))-»ISADMISVAL(TYP0FVAfi(v,fI8),vil(«)),FF]. 

eva'jates to tn^ if th» variable v is local to the frame s(0 and the value val is compatible with its 
type. It evaluates to false if v is not local to s(f) and to undefined if a type mismatch occurs. The 
definition of the combmators used in ISINTYPE may be found in appendix 3.7,-9. 

3.3.1.3    Procedure Statement 

When a procedure is activated, its formal arguments are bound to the actual arguments in a new 
frame obtained by increasing the current frame pointer by 1. In such frame a location Uxfloe is 
created whose content is the statement part of the activated procedure, and a location alnk is created 
containing the pointer to the frame where the procedure has been declared. 

By looking at the definition of MS given in 3 3 we see that, when a procedure statement is executed, 
the auxiliary combmators PROCr'AL, PROCBODY, PROCDECL are us?d. They are defined in appendix 
3.8 and are used for fetching th'. formal argument list, the declaration part and the statement part uf 

the activated procedure. 

The set up of the new framt and the binding of the parameters is done by MPB: 

MPB i [Xla aa f s n.BINDOa.aa.succ f,MAKFRAME(PROCBODY|n,f,s),PFLNK(n,ffs),$uce f.s))]. 

MAKFRAME sets up a new frame and creates the locations lextloc and alnk in it. At the end of the 
procedure activation such frame is deleted by CLEAR: 

CLEAR» [Xf «ll.(fl.fHUU,«(fl)] 

MM •MMIittMHM^MiMteAl  ^M. _-    _ 
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CLEAR makes it explicit that the local variables of the procedure frame ar« no longer in the store 

The bindings of the parameters in a procedure activation is the same as that of a function 
activation  It is defined by: 

BIND a [«F [Via aa f s. 
iseof fa -» (is«of aa «• s,UU), 
isparameter(fslof fa) -»F(rmdof fa.rmdof aa.fpMKBINDINGdstof la.fstof aa1f)s)))UU]] 

Corresponding parameters in the two lists are bound by MKBINDING. if the two lists have different 
length the binding results in an undefined store. PASCAL allows procedures without parameters. In 
such case the abstract syntax for the two parameter lists is the empty list EOF. 

The MKBINDING combinator is defined as: 

MKBINDING I [Xfa aa f s. 
isvarpUa) -» TYMATCH(fa,typelocpaa,f,s) ■» 

CREALOC(f)s1bindloc)namol la.EXPRFGRVIain.UU, 
isvalp(fa) -» ASSIGNfnamof fa.MEXPRiaa.D.f, 

CREAV(f,namof fa.lypof fa.CRNTFff.s),«)), 
isfunp(fa) -* TYMATCH(fa,typfunloc,aa,l,t) -» 

CREAF(f,namof fa,FUNCDEF(da,f,s)1»ypof fa1CRNTF(fps),PFLINK(aalf1s)1s),UU1 

isprocp(fa)-» CREAPtf.namof fa,PR0CDEF(aa,f,s)(PFLINK(aa,f1s)1s)1UU1. 

If the formal parameter fa is a vanabl" paramett. (re. a parameter passed by name) then, if its type 
matches the type of the actual parameter aa, a binding location bindloc (namof fa) is created. Its 
content is the EXPRFORV(aa) If aa has subscripts they must be evaluated when the binding takes 
place (s?e Wirth 1971), This evaluation is performed by EXPRFORV which substitutes a numeral for 
the value of each subscript 

Th^ test on the type matching between formal and actual parameters is done by TYMATCH: 

TYMATCH ; [Xfa loe aa f s.TYPEVALdypof fa1CRNTF(f,5),s)=TYPEDEF(loc aa.prcd f.s)] 

The type identifier associated wuh the formal argument is evaluated (by TYPEVAL) in the frame 
where the procedure has been declared. The pointer to it is retrieved by CRNTF We have In fact 
chosen to evaluate the type associated with the formal arguments of a procedure when it is activated 
and not when it is declared. The type of the actual argument is fetched from the store by the 
TYPEDEF combmator in the location typoloc aa or fy'pfunloc aa depending on whether fa is a variable 
or function parameter. All these auxiliary combmators are defined in appendix ?.8 Here we only 
describe TYPEVAL: 

TYPEVAL * [ccF[\n f s 
Isbasetype n -» n, 
isarspec   n -» mKarsp«e(F(arlimof n,fls),F(typelof n,l,s)), 
istyppart n -* issof n  -» n, 

ispair n -♦ mkpairfFilstof n,fls),F(rmdof n,f,5)),UU, 
ISLOCALdypeloc n,s(f))-»F(s(f,lypeloc n),f,s), 
istopf f -» UU.Ffn.CRNTFff.s),'.)]). 

If the type n being evaluated is a base type, i.e. integer or subiauge, then TYPEVAL evaluates to it. If 

■■Ml ■MaaaaMai 
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n is an array specification, then both the types of its subscripts and the type of its elements are 
recursively evaluated. The types of the subscripts of an array are given as a list of subranges. This 
list satisfies the predicate istyppart. so each one of its elements is recursively ev Juatea Finally, if the 
type being ev?luated is a type identifier defined in the current frame, then TYPEVAL applies 
recursively to its definition If the type definition is not found in the current frame, then the 

appropriate frame is searched. 

If a formal parameter fi is passed by value, then a variable fa is declared in the current frame by 
CREAV (see 3.1.2). Its type is evaluated by TYPEVAL in the appropriate frame and stored into the 
location typ«loe la. The value of the actual parameter aa is then computed by MEXPR and assigned to 
fa. ASSIGN checks whether or not the types of fa and aa are compatible (see 3.3.1.2). 

If the formal parameter fa is a function parameter and the type of fa matches with thac of aa. a 
function fa is declared in the current frame by the combinator CREAF (see 3.1.3). The type of this 
function is the type of fa evaluated by TYPEVAL in the appropriate frame. In its acelnk location the 
content of the aeclnk locanon of aa is stored. The text of the actual argument is retrieved by 
FUNCDEF, its aeclnk by PFLINK and its type is evaluated by TYPEVAL in the usual way. 

If the formal parameter fa is a procedure parameter a procedure is declared in the current frame 
by CREAP. In the aeclnk of such procedure the content of the aeclnk location of the actual parameter is 

stored. 

Since the combinators used for binding formal and actual parameters are those used in declarations 
(see 3 12-3) an undefined store is returned if the reserved identifier FUNV is used as formal 
Darameter (see 321.3 for a discussion on the use of FUNV). Fiom the definition of MKBINDING it is 
also evident that FUNV cannot be used as an actual parameter since both EXPRFORV and MEXPR 
return an undefined result if applied to FUNV The auxiliary combinators used by MKBINDING test, 
by ISPRESENT. the presence of identifiers in a frame. It follows that an identifier cannot appear twice 

as formal parameter and in the declaration part of a procedure 

Procedures, as well as functions (see 3.2.13), cannot be executed recursively if they declare a 
procedure or have a formal procedure parameter with the same name. 

As noted for functions, a procedure may also have itself as actual argument. Even though LCF is a 
typed logic, we avoid type conflicts by passing texts, and not functions as parameters. 

3.3.1.4    Read Statement 

PASCAL has no read and write statements We have introduced them for defining the semantics of 
the input and output. In vVirth 1972 a standard procedures, read and write, are introduced for 

handling the input and output. 

As said in 22 the data to be inputed is stored into the filaloc INP location of the store by the PASCAL 
function Whenever the value of a variable has to be inputed. it is read from the buffer INP by the 

READ function: 

READ « [Xn f $.ISFUNFR(f,s.0)-»ASSIGN(n,MEXPr?(fr.tof(IBUFFER sJ.O.f. 
STORE(8,s,fileloc INP,rmdof(IBUFFER s))),UU]. 

-   .._—.. 
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A test is dp:ie to see If the read statement is executed during a function activation, in this casr thf 
result of READ is undefined. Otherwise its result is a new store where the first element of the ,n|-«it 
buffer has been removed and its value has been assigned to the variable being read. 

3.3.1.5    Write Statement 

The results produced by a program are stored into the fiWoc OUT location, where the/ are eventually 
retrieved by the OUTPUT combinator (see 22). The write statement puts into the buffer the numeral 
of the value of the vanaile to be outputed. 

WRITE E [Xn f s.lSFUNFRO.s.BHSTOREtö.s.fileloe OUT.mkpairlmknumeonstlFETCHVdi.f.s)), 
OBUFFER s)),UÜ]]. 

As with the read statement, it is forbidden to write during a function activation. 

3.3.2    Structured S atements 

The structured statements included in our verton of PASCAL are: 
1) the conditional statement in its two forms: if-then and if-ihrn-cl»e, 
2) the repetition statements while and re/«-«!, 
3) the for statement in its two forms: for-io and for-dowmn 

We have not included the rn*r and the uith statements defined m Wnth 1971, 1972 since they do 
not seem very relevant to the integer arithmetic part of PASCAL. In Wirth 1971, 1972 the 
compound statement is also mcliuled in the list of structuied statements. In our description of 
PASCAL the compound statrment does not appear since the ktgiit, rnii delimiters are not present in 
the abstract syntactic form of a progiam. The compound statement in its abstract syntactic form is a 
list of statements assembled by the syntactic constructor tnkcmrid and ending with the symbol ES. 
The semantics of the compound statement is defined by MS whicl ctttblithtl the flow of the control 
through the statement part of the program text. 

3.3.21    Conditional Statement 

The conditional statement in PASCAL has two forms: i/-(/ieii and if-ihrn-dsr. In the abstract 
syntactic form the conditional statement always has an else part, possibly it reduces to the empty 

statement ES. 

The semantics of the conditional statement is defined by the combinator CGND: 

COND s [\q f B s.(q(s)-»f(s),g(s))]. 

The test of the conditional is evaluated in the store where the conditional statement is executed. The 
conditional returns the then-part or the else-part evaluated in this store, depending on the value of 

the test. 

Going back to the definition of MS given in ?.3, we see that if the first statement of the text in 
execution  is a cond'.ional, its test is evaluated by the MBEXPR combinator and then  MS applies 

-■ r 
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recursively to the text resulting from appending the then-part or :he else-part of the conditional to 
the remaining statements. The append function, defined in appendix 2 5 corresponds to the ordinary 

appending function for lists. 

If a goto statement is executed within a branch of a conditional, then the execution goes on with the 
text furnished by the segm function. If a jump into a branch of a conditional is done, then the text 
to be executed next consists cf all the statement: between the first occurrence of the label to jump to 
and the end of the branch of the conditional, appended to the rest of the program. This text is the 
result of the sr     -unction defined in 3.3 1.1 

3.3.2.2    While and Repeat Statements 

The while statement is a repetition statement whore abstract syntax is: 

mKwhii«(t*8t,body). 

body is repeatedly executed until test becomes alse. The semantics of the while statement as given in 
MS (see 3.3) can be explained as follows: t#it is evaluated, if its result is true, then MS applies 
recursively to body appended to the *Mta s:?.tement itself and to the remaining statements in 
execution. If the test fails. MS applies to the remaining statements. 

Wirth 1971 says thaf in PASCAL, for all e and 5 the 'wo statements 

whih € do S 

and 

if e   ihm he gin 5, while e do S rnd 

are equivalent. We prove this true for our semantics (see 4.4). 

The repeat statement is similar to (he while statement. The only difference is in that the repeat first 
executes its body and then performs the test to see whether to go on or stop. The semantics of the 
repeat sta'ement is defined m MS (see 3 3) MS applies recursively to the body of the repeat, 
appended to a conditional (specifying whether or not the repeat must be executed again), appended 

to the remaining statements in execution. 

We have also proved the equivalence described in Wirth 1971 for the repeat statement, i.e. for all . 
and S the two following statements are equivalent; 

reprnl S unUl € 

hrfiin   5, if *4   thru rr/wnl S unlil f rnd 

In Weyhrauch and Milner 1972 and in Aiello and Aiello 1974 a WHILE combmator w, s introduced 
for defining the semantics of the while statement: 

-*■'•■• "-^ 
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WHILE ■ [<*F.[Xt b.CONDii.b&FO.blJD))]. 

It cannot be used here since a g,oto statement can stop the execution of the body of the while. We 
can prove that the definition of the semantics for the while statement given in MS reduces to the 
above semantic combmator when the body of the while is goto free (see 4.3). 

The language described in Weyhrauch Milner 1972 had no repeat statement. Tne semantics for the 
repeat statement was described in Aiello, Aiello 1974 by the combinaLvr REPEAT: 

REPEAT '- [<*F.[Xb t. b»COND(t1F(b1t))ID)]]. 

It is similar to the WHILE combmator described above and the same considerations concerning the 
presence of goto's hold for it. 

If a goto statement is executed within the body of a while or repeat statement, then the execution of 
the rep-tition statement is stopped and the text to be executed next is furnished by the segm 
combmator. From the definition of segm given in 3.3.1, we see that when a goto statement jumps 
into the jody oi i repeat (while) statement the piece of body starting from the first occurrence of the 
label is appended to the text starting from that repeat (while) statement. This means that the part of 
body from the label to the end is executed and then a test is dene to see whether or not the 
execution of the repetition statement must be stopped or goes on. 

3.3.2.3   For Statement 

In PASCAL the for statement has two forms: 

for i:*el   to  e2   do  b; 

and 

for {"(l   dou uln   (2   do   b; 

In both cases b is the body of statemrnts which is repeatedly executed, and ( is the variable which 
controls the loop. In the forto statement it is increased by I each time b is executed In the for- 
downto statement it is decremented by 1. The two expressions el and «2 will be referred to as the 
initial and final values of the control variable. 

The abstract syntax for the two forms of for statements is defined by: 

mKforto(i,el,e2,b), 

mKfordn(i,al,e2,b). 

Their semantics is defined in MS A test is done to check if the value of the control variable i is 
equal to the final value o2. The test is: 

fortest i [Xx .i5forto(x)-*mkrel(l5oq1lbof(x)1ubof(x))1isfoidn(x)-»mkrcl(groq)ubof(x)Ilbof(x)),UU]. 

If fortest evaluates to TT, th;. initial value el is assigned to the control variable i, then the meaning 

aaaaMaaaMMM,.— ■■MaMaaiaaaai 
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function MS applies io lie body of the for statement appended to the text assembled  by the 

combinator fortoup (fordnup) 

fortoup ■ [\x .mkcmpnd(fnkforlo(indoxof«stof(x)),mk«prl(plusl,ind«xo<(f8iof|x))), 
ubo((lttol(x))lbodyo<(lttof(x))l,rmdof(x))]l 

fordnup ■ [Xx .mKempnddnKfordniind^xofdtloftxjj.mkÄxprKminusI.indaxofOitoflx))), 
Ibof(f8tof|x)),bodyef(»$to«(x))),rmdof{x))] 

fortoup (fordnup) updates the initial value of the for loop by substituting i*l (i-l) for i. 

We have chosen to def ne the for in terms of the algorithmic equivalences given in Wirth 1971. i.e. 

for all i, el. tl and S the statemcU: 

for «.-</ «o tl do S 

is equivalent to 

if el<e2 then 
begin i:-e};S; 

for i.'succii) io e2 do S 
end 

and the statement 

for t'el downto e2 do S 

is equivalent to 

if el>e2 then 
begin (."eltS; 

for i:-pred(i) to e2 do S 
end 

We have imposed no restrictions on the fact that the values of i, el and e2 are changed by 5 or by 
the for statement itself, or on the jumps into or out from the body of a for statement. The value of 
the control variable at completion of the for has the last value assumed, namely the value it had 
after the last execution of 5. This interpretation of the for statement is different from the description 
of the PASCAL for statement as given in Wirth 1971. 1972 and in Hoare and Wirth 197?. The 
definitions given in these three papers are indeed different from each other. Our choice has been 
motivated by the fact that we wanted the semantics of the for statement to be as smooth as possible 
and, at the same time, we wanted to make it less ambiguous then Wirth 1972. The definition of the 
for, given in term.' of the above algorithmic equivalences in Wirth 1971, was changed in Wirth 
1972, following me suggestions made in Hoate 1972. In order to leave the implementer more 
freedom, the following equivalences are required in Wirth 1972: 

for i:*el to t2 do S 

is equivalent to 

   - -  
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i.-el; Si i.'succii); S; ... i:*f2; S 

and 

for i:*el doumlo (2 dn S 

is equivalent to 

!.-<•/, 5; i:-pred{i); S: ... i:-e2; S 

These definitions seem  ambiguous to us: what happens if (I>e2 in the for-to statement? 

The third definition of the PASCAL for statement is given in Hoare and Wirth 1973. This is 
closer to that given in Wirth 1972, but not the same. It is given in axiomatic form: 

(a<x<h) A P([a..x)) {5} P([<i...v]) 

P([]) {/or.v:.a to  b  do   S) P([«JD 

(a<x<b) A P((x..t']) {5} P([x..b]) 

P([]) {for xi'b dowtao  a  do  S] P([a..b]) 

It is written in the formalism proposed by Home 1969, where P{QjR means that if P and R are 
predicates and P is true before the wcittion of 'he body of statements Q, and Ovterminates, then R 
is true after the execution of <^, ] denotes the interval jxlasxib}, [a,b) denotes the interval 
{x|aix<b}, and so on. This rule was UMd in Hoare 1972 for characterizing the correctness of the for 
statement. Apart from the far iat the description of the rule given in Hoare 1972 and that given in 
Hoare and Wirth  1973 are 'rent, we do   not agree with it. In fact it leaves unspecified what 
happens when the for-to sta nt is executed with the initial value greater then the final value. It 
seems to us that any defiiiii..n which leaves this ambiguous cannot serve as a satisfactory 
specification of the meaning of the for statement. In particular »t cannot be used to prove general 
theorems about the for statement. Consider for example an implementation of PASCAL in which if 
b<a in one of the above for statements, then the body of statements 5 is executed 14 times! This 
implementation satisfies the above axioms, but is certainly strange. 

In Wirth 1971, 1972 nothing is said about the behavior of the goto., "ith respect to the for 
statement. Hoare and Wirth 1973 do not deal with goto's. In our semantic definition, if a goto 
statement is executed within the body of a for statement, then the execution of the repetition 
statement is stopped and the text returned by segm is executed next. From the definition of segm we 
see that if a jump in'o the body of a for statement is executed, then sogm retuins the piece of body 
starting from the first occurrence of the label to jump to, appended to the piece of abstract syntax 
returned by the fortoup or fordnup combmatois 

If a jump into the body of a for statemmt is executed we distinguish between two cases: I) tnc jump 
is from one point to another point of the body of the uunt for statement. In this case the 
computation goes on with the control variable having the cuwent value. 2) the jump is from a point 
of the program outside the for statement. In such case the computation may result in the undefined 
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siote accordingly to whether or not the control variable has been assigned a value prior to the 
execution of the jump. In fact the updating combmators forloup and fordnup replace i*l and i-1 for 
• 1 in the for statement, so it evaluates to UU if the control variable has not yet been assigned a 

value. 

Haberman 1973 dislikes the possibility of jumping into a for statement. We have allowed such 
jumps, thus a for loop may be initialized from outside and started by a jump. This seems reasonable 
since PASCAL has no block structure, so the control variable of a for statement has to be declared 
in the declaration part of the text and may be given a value independently of the for statement. 
Furthermore, since the control variable is not local to the for statement, we do not see any reason for 
leaving it undefined after the execution of the for statement, as required in Wirth 1972. Nothing is 
said at this regard in Wirth 1971 and in Hoare and Wirth 1973. We do not agree that a perfectly 
behaved statement should leave an undefined value in a location which has been declared and 
assigned a value. It also leaves ambiguous what happens to the control vanabli if a goto stops the 

execution of the for loop. 

Our semantics doesn't check to see if the control variable, the initial value or the final value are 
modified during the execution of the for statement. This makes our for statement sim:lar to the 
while statement. Since the control variable is not a dummy variable of the loop there is no reason 
for it to be treated differently from any other variable. Wirth 1971, 1972 and Hoare and Wirth 
197? are discordant about the requirements on such modifications. Moreover it is our opinion that 
checking for them is very difficult and is unlikely to be done in any current implementations of 
PASCAL. Consider for example a program where an integer variable i is declared which also 
declares the following procedure; 

prorcduro A(jji.integer) 
for IM to k do 

if i'3 then A(k*lj) 
«./«. A(j*lM); 

Note that m this.program the control variable is changed by the recursion of the procedure A, not 

by an assignment statement. 

A final point regarding our semantics: as with the while and repeat statements, if a text is goto-free 
the semantics of the for statement can be defined by the following two combmators: 

FORTO » [*F.[Xi tl «2 b f. CONDCMBEXPRdnkreiOsoq.el.eZMl.ASSIGNd.MEXPRUl.fl.Dsb» 
F(i,mK«xprl(plusl,i),«2,b,f),ID)]]; 

FORDN « [ocF.[\\ •! e2 b f. C0ND(MBEXPR(mkrel(greq,ol,e2),f),ASSIGN(i,MEXPR(*lIf),f)®b(i» 
F(i,mk«xprl (minus l>i),o2>b,f)1ID)]]; 

The equivalence, in the goto free case, between the definition of the semantics of the for statement 
given m MS and that given by the two above combmators, can be proved easily (see 4.3). 
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SECTION   4    PROPERTIES OF THE SEMANTICS 

In this section we discuss some general properties of th<; interpretation of PASCAL in LCF. We 
have proved i 

1) the meaning function MS is strict on the store, i e. for any staement st and any framcpointer (, 
MSCsM.UufjUU. 

2) for goto-free progr ims. MS is a homomorphism with respect to the constructor mkcmpnd, i.e. 
VfMS(mkcmpnd(a,b ,f):MS(a,()«MS(b,l) 

3) MS reduces to a simpler function for goto-free programs. New combmators defining the 
semantics of the  epetition statements ire given. 

4) all the equivalences about repetition statements given in Wirth 1971 hold in our semantics. 

5) some miscellaneous theorems about MDEC, MDEF, MS 

Section   4 I    The strictness of MS on the store 

The main theorem of this section is 

Vst f MS(SM,UU)HUU. 

We c'o not show the proof here as it is a single LCF simplification using the lemma 

Vt a b.{l-»a,b)(UU)=(t-*a(UUj,b(ULI)) 

The main theorem should not be regarded as trivial however, as it requires 208 substitutions. 
Without the LCF simplifier, this proof would have been over 1000 steps long. This is an important 
theorem because it shows that our interpretation of statement' behaves correctly with respect to the 
termination of computations. 

Consider the following program 

t^nr n.integfr 
hrgin 

I: goto I, 
n-.-l. 
end 

This program fails to terminate To us it seems that the only reasonable interpretation of this 
program must be the undefined function If the meaning function is not strict, it may happen that 
the assignment of 1 to n builds up I store in which n hai value 1 Suppose we were to choose the 
most obvious interpretation of assignment, le. if the above program is being executed in a store s, 
and a frame whose framepomtei is f then the meaning of the assignment s'atement in the e> ample is 
a new store si: 

- - - -M.., —»*-_ 
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tl • [Xfr.fr»f-»[\m.m«n->l,««,rT\)],s(fr,m)], 

so 

«110 • [Xm.m»n-»l,s(f,m)]. 

This new store has the unfortunate property that even if ««UU. we still have «l(f,n)«l. It is thus not 

undefined 

The desire for the interpretation of a program to be an extensionally given function on the store 
and composition of these functions to correspond to executing one program after another, means that 
an interpretation which is strict on the store is the only one that makes sense. In Hoare's axiomatic 
treatment this problem goes away but the price is that every statement that you can prove about a 
program is condit.onal on its termination. In the above case one proves the sentence. If the 

program terminates then n»l" 

Because as already said, the proof is a single step we do not give it here. Instead we will explain 
why for our semantics ASSIGN is strict on the store. The W represent some ai oiti ary combmatür. 

ASSIGN ^ [Xn v f s.nSFUNV-»ISADMISVAL(s(f,«yp«loc FUNVVWH »»«.ISINTYPECn.v.f.tH «**,«**] 

So 

ASSIGNCn.v.f.UU) » n.FUNV-^ISADMISVALIUU.vlUU^)-» *»*,UU,ISINTYPE(n,v,f,UUH **«,««*] 

ISADMISVAL asks if a value is of an admissible type. UU is not even a type, no less admissible, so 

ISADMISVAL returns UU. 

ISINTYPE(v,val,l,UU)«ISLOCAL|typ«loeNAMOFVAR{v)(UU))-»ISADMISVAL(TYPOFVAR(v,fIUU),«!l(UU)),FF] 

ISLOCALdoc.UU) » UU.UNDEF-*FF,TT 

But for any X. UU-X is just UU so ISLOCALIIoe.UU^UU. This is the central point of the entire strictness 
proof Looking u i a location in a defined store in an existing frame is not undefined if that 
location has not been created. Stores are constructed in such a way that we can test if it is defined 
and no assignment is made if it isn't. This check is done by ISLOCAL. which returns UU if the frame 
is undefined.  The proof is completed by making the correct substitutions. 

Other theorems about s'.nctness appear in section 4.5. 

Section  4.2    Properties of MS for goto-frce programs 

A goto-fiee program is defined by the following predicate : 

iscotofr«« < [<*F.[X s 
isgoto     s -»    FF, 
issmel«  s -♦    TT, 
idabsUt « -♦ FUUtmof s), 
isiter     s -» F(bodyof t), 

Si*   amatmat^ij^lttiM 
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MS(mKcmpnd(mkldbstal(l ,mKass{a,inKb«xprl (plusl ,a))),ES),f)l 

which is false: slatting from a stoie whcie a is declared in the current frame, MS(P,f) returns a store 
wheic, in the cuirent frame, a has value ?.. while the ,ight hand side evaluates to a store where, in 
the current frame, a as value 4 The light hand side is wrong, since by interpreting each statement 
sep irately, it is impossible to skip a piece of text as requned by a goto. 

In the next section we consider how the semantics of a PASCAL statement part is simplified when it 
is p.oto-free Our semantics deals also with programs where the composition rule is not valid Hoare 
axiomatic approach to the definition of the semantics of a programming language relies on the 
validity of the composition tule, so a cannot easily treat piograms with goto's. Hoare and Wirth 
197? axiomatization of PASCAL, for instance, doesn't define the goto statement The Igarashi. 
London and Lurkham 197? VCCEN. based on this approach, deals only with backwards goto's and 
preset ves the validity of the composition rule by considering indivisible the piece of program 
between the label to jump to and the goto. 

i 

Sectimi   4.3    An equivalent ineaiiiiijj function for gotofrcc programs 

As noted in th? description of ippetition statements (see ?.?.C2,-3), if the body of the repetition 
Itatenwnl is goto fice, new combinatori may be defined for describing then semantics. In this case 
the semantics defined by MS is the same as that defined by the new combmatots 

The ptoofs of the first four equivalences are quite similar, they are carried out by subgoaling to the 
two goals with the logical symbols =, c respectively All these pioofs are standard and could be 
automated by enriching the featutrs of the current LCF system In appendices 4,5,6 we have 
included the commands and the printouts of the proof of one half of each of the first three 
equivalences. The fourth is analogous to the third one. 

The proof of the equivalence between MS and MSGTFR is carried out by proving the lemmas with c, 
a respectively, and using the above equivalences for repetition statements. A long case analysis on S 
is performed, analogous to that discussed in 4.2. Even in this case the proof could become very short 
by imptoving slightly the LCF conditional simplifier. 

1) VS t f  i5golofree(S):: MSdnkcmpncKmkwhiled.Sl.ES),») ■ WHILECMBEXPRO.O.MStS.f)) 

where  WHILE i (o<:F [Xf bCONDU.bsFd.bl.lD)]] 

2) VS « f, isgotofree{S):: MS(mkcmpnd(mkrepoat(S1t),ES),f) = REPE''AT(MS(S,<),MBEXPR(mkbexprl (not.D.f)) 

where  REPEAT = [u? [\b l.bBCONDK.Fib.O.ID)]] 

3) VS i «l e2 f isgotofroelS):: MSImkcmpnd^kfortod.el.oZ.S^ESM) i FORTOd.el.oZ.MSIS.f),«) 

where  FORTC i [*F.[\i el e2 b f. C0ND{MBEXPR(mkrol(lnoq,el1e2M),ASSIGN|i,MEXPR(el,f)lf) 
®b«F(i,mkoxprl(plu5l,i),e21b)t),ID)]]; 

4) VS i el e2 f .isgoto«ree(S):: MS{mkcmpnd{mkfordn(i1el,e21S),ES),<) I F0RDN(i,el ,e2,MS(S,0,f) 

where   FORDN s [«F[Xi el e2 b f C0ND(MBEXPR(mkrol(groq1el,e2),«)lASSIGN(i1MEXPR(ellf),f) 

M^^MflM -^^  . — 
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»b®F(i,mK«xp'-l(minujl1i))«2)b1f),ID)n; 

5) VS <  isgo»ofrM(S):: MS(S,f) * MSGTFRtf.O 

29 

ID, 

where 
MSGTFR^o«:F.[Xst I. 

isemptyst st 
iscmpnd st        ■• 

is«mptyst((stol st)- 
islabsta«(fsto< st)-* 
isreaddslof st)    -• 
iswrit«(fstof st)   -' 
iMM (fstof st)    -» 
isproccalKtstot $t)- 

iscond(f5tot st) 

iswhilelfstof st) -» 
isrepeat(fsto1 st) -* 
isfortoUslof st)   -» 

isfordn(fstof st)   -» 

• F(rmdof st.t), 
F(statmot(fstof st),f)®F(rmdof st.f), 
READ(n8mof(fstof st),f)®F(rmdof st.f), 
WRITE(namof(fstof st),f)»F(rmdof st.f), 
ASSIGN(lhsof(fstof st),MEXPR{rhsof(fstof $t),«)lf)«F(rmdof st.f), 
♦[Xs.MPB(PROCFAL(namof(fstof st)^^), 

actarRoflfstof st)1f,s1namof{fstof st))]8 
fXs.MO(PROCDECL(namof(fstol sty.sUuce l.s)]® 
[X$ F(PROCBODY(namof(fstof st),',i),suc<-. f,«)]«CLEAR(suce f)®F(rmdof st.f), 

• COND(MGEXPR(1e5tof(f5tof sO.f), 
F(thfinof(fMof st),f),F(elseof(fstof sD^jeFCrmdot st.f), 
WHILE(MBEXPR(teslof(fstof st),f),F(bodyof(fstof tt),f))®F(rmdof st.f), 

• REPEAT(bodyof(f5tof stj.MEXPRImKboxprKnot.testoflfstof sl))lf))®F(rmdof 
FORTO(indexof(fstof sl),lbof{fstof st), 
ubof'fstof sl),bodyof(fstof st),f)©F(rmdof st.l), 
FORD:i(indexof(fstof st),ubof(fstof st), 

lbof(fstof st),bodyof|fstof sl),f)®F(rmdof st,f),UU,UU]] 

The defm.tion of MSGTFR shows how our semant.es s.mpl.f.es for goto-free programs No 
manipulation of the text is rtquircd, every statement can be treated mdependentb of the others, 
TomTcomb.nators as fort.st. fortoup. fordnup, append are no longer necessary The semant. 
ombmators for repet.t.on statements not only s.mphfy the form of MS but also the proofs of 

propen.es of .oto-flee programs In fact, m the general case proofs by mduct.on on the re^t.t.on 
Sen' mJ be done by mduct.ng on MS. For goto-free programs the mduct.on can be d.rectly 
done on the appropr.ate semant.c comb.nator Hence, only propert.es of the body of the repet. .on 
statements and not of the whole program are mvolved. The structure of the program reflects 
directly on the structure of the proof since allows to factome it into easier lemmas. 

in MCtlon 5 1 two afferent p.og.ams wh.ch compute the factorial function are compaied. In the first 
one the Iteration is performed by l wh.le statement, in the second one by a backwards goto The 
proofs of then correctness are different, the goto-fm case li more straightfo-ward. The proof of the 
correctness of the goto program may be .eduod to that of the goto-free program by show.ng that, in 
oenenl a while loop is equivalent to an appropriate loop controlled by a conditional goto This 
«xamnle show« the advantage of a formalism which allows to prove general properties of the 
language and the necessity of creating the right environment of theorems about the programming 

language to greately simplify the proofs of propert.es of programs. 

Section   4.4    Equivalences for repetitive statements 

In »Vim an mterpretat.on of PASCAL in LCF our aim was to be as dose as possible to the 
mformal description given in Wlrth 1971. For this reason we proved most of the properties of the 

t tenrrnts that are mentioned  m that paper. The LCF theorems stat.ng the equivalences for 

repetition statements given in W.rth 1971 are 

_« mtäi   tAmitCtoi 
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V« S. MS(mKcmpnd(mKwhile(e,S),ES)) = ^ ..•.».-•»•.« 
MS(mkempnd|mkeond|«p«ppend(S1mkempnd(mKwhil«(«1S)ltS)),tS),ES)), 

V« S (. MSdDkempndlmkr.peaKS.eJ.ESM) » 
MSlappondlS.mkcmpndCmK-.ondi^kbtxprHnot.eKmkempndlmkrepsaKS^J.tSJ.ESJ.ES^.I), 

Vi «1 «2 S i. MS(mkcmpnd(mkforto(i,elre2,S),ES)lf) » 
MSCmkempnd^kcondimkroKlsoq.ol.oZ), .  ,   , ,» rem rev re»i» 

mkempnd(mks8«(i,«l ),«pp«rJ(S,mkempnd|mMor1o{i,mk«xprl (pluf I ,i)l«2,S),ES))),ES),ES),t), 

Vi el «2 S f. MS(mkempnd(mkfordn{i1el1e2,S)1ES),f) « 
MS(mkempnd(mkeond(mkr«l(greq,el,«2), ,,,..,-,.»» re» re» « 

mkempnd{mkass(i,«l),8ppend(S,mkcmpnd{mkfordn(i,mkexprl(minusl,i))e2,S),ES))),ES),E5)1t), 

All the proofs of the above statements are one step proofs. In hct, we have defined the semantics of 
the repetition statements directly in terms of the equivalence described in Wirth 1971, 

Section   4.5   Miscellaneoui theorems on MDEC, MDEF, MS 

Our aim in this section is not to give an exhaustive list of the properties of PASCAL, but rather to 
show some typical example of theorems which have been used in the proofs presented in this report. 

Fir t of all we want to state that type definitions and declarations are independent of the order. The 

theorem proved for type definitions is; 

i8namne(nil)::isnamJ(n2)::nl/n2::ISABSENT(nl,s(0)::lSABSENT(n2(s(f)):: 
MDEF(mkempnd{mktyp«def(nl,tyl),mkempnd(mktyp«deUn21ty2)lES)),f,s)« 
MDEF(mkempnd(mMyp«d«f(n2,ty2),mkcmpnd(mktyp«d«f(nl,tyl),ES)),f,s); 

This theorem states that if nl and n2 are different names and they do not appoir in the store, then 
the order of type definitions using these names as type identifiers is irrelevant. The predicates 
appearing in it have an obvious meaning: ^ is the negation of -. 1SABSENT is the negation of 
ISPRESENT. The proof of this theorem has not been included in the report since it is a very simple 
proof done by simplification and using some properties of conditional expressions. Analogously the 
following theorems can be proved. They state that declarations are independent of the order. 

Vnl n2 tyl ty2 f s . ,m   (14% 
i8name(nl)::i$nam«(n2)::nl/n2 ::ISABSENT(nl1s(f))::ISABSENT(n2,s(f)):: 
MDEC(mkcmpnd(mkvardecl(nl1tyl),mkcm()nd(mkvardecl(n2lty2),ES)),f1s) • 
MDEC(mkcmpnd(mkvard*cl(n2,ty2),mkcmpnd|mkvardecl(nl,tyl)lES)),1Is); 

Vnl n2 tyl ty2 fs2 f t . ( m   /i>% 
i8name(nI)::isnam«(n2)::nl/n2::ISABSENT(nl,s(f))::ISABSENT(n21s(f)):: 
MOEC(mkcmpnd(mkvard«cl(nl(tyl)1mkcmpnd{mkfund«cl(n2,<«21ty2),ES)),f,8) • 
MOEC(mkcmpnd(mk«und«cl{n2If82,ty2),mkcmpnd|mkvardeci(nl,lyl),ES)),<,8); 

Vnl n2 tyl ty2 Is! fs2 f 8 . 
i8nim«(nl)::i8nam«|n2)::nI/n2::lSAQSENT(nl18(f))::ISADSENT(n21s(f))!: 
MDEC(mkempnd(mkfund«cl(nl1f8l,tyl),mkcmpnd(mkfundecl(n2,fs21ty2),ES)),f,8)s 
MDEC(mkcmpnd(mkfund«cl(n2,f82,1y2)lmkempnd(,nkfundeci(nl1f5l(tyl),ES)),<,8); 

  
______ 
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Vnl n2 lyl <sl p52 f s . 
ISname(nl)::isname(n2)::nl/n2::ISABSENT(nlls(f))::ISABSENT(n2,slO):: 
MDEC(mkcmpnd(mk(undecl(nl ,fsl ,ly 1 )1mkcmpnd(mkprocdecl(n2rps2),ES))lf1s) ■ 
MDEC(mkcmpnd(mkprocdecl(n21ps2))mkcmpnd(mkfundocl(nl,fsl,tyl),ES)),f,8); 

Vnl n2 tyl ps2 f s . 
Jsnamo(nl)::isname(n2)::nl/<n2::ISABSENT(nl1s(f))::ISABSENT(n2,s(0):: 
MDEC(mkcmpnd(mkvardecl(nl1lyl),mkcmpnd(mkprocdecl|n2(ps2),ES))1f.8)i 

MDEC(mkcmpnd(mkprocdecl(n2,p52),mkc'«P"<1(mhvardGC,<nl',y1)'ES))',>s)5 

Vnl n2 psl ps2 f s . 
iSname(nl)::.sname(n2)::nl/r2::ISABSENT(nl1s(())::ISABSENT(n21s(f)):: 
MDEC(mkcmpnd(mkprocdecllnl .psl ),mkcmpnd(mkprocdecl(n2,ps2),ES)),f,s) - 
MDEC(mkcmpnd(mkprocdocl(n2,p52)1mkcmpnd((rikprocdocl(nl,psl)1ES)),<,s); 

Some theorems tlcscnbing properties of MDEF and MDEC are now listed. Each of them has been 

proved in one step. 

V x y f. MDEF(mkcmpnd(x,y),f)-MDEF(x,f)®MDEF;ypf); 

V x y f  MDEFdnkvardecKx.yj.f): ID; 

V x y z f.MDEFtmkfundacllx.y.z),«)5 ID; 

V / y f.   MDEF(mkprocdecl(x,y),f)= ID; 

V x y f. MDEFCrrW.ypedeflx.y),»); CREAT(fIx,y); 

Vf.        ^DEF{ES.1)ilD; 

V x y <.  MDECCmkcmpndU.y^O-MDECix.OsMDECIy.O; 

V x y f.   MDECdnkvardecKx.y),!)» CREAVd.x.y.f); 

V x y z I MDECdnkfundocKx.y.z),/)* CREAF(f,x,y,z,<,0; 

V x y (.   MDEC(mkprocdecl(x,y),«)= CREAPlf.x.y.f); 

Vf MDEC(ES,0-ID; 

In the following we present some of the theorems dealing with MS. the combmators defining the 
semantics of statements and some predicates used by the semantic combmators. The proofs of these 
theorems are very simple (one step;, however they were useful in proving programs as well as 

properties of MS 

Vf MS(ES,f) = ID; 

Vx y f.MS(mkcmpnd(mkread x,y),f)-READ(x,f)®MS(y,f); 

Vx y f MS(mkcmpnd(mkwrile x,y),f)-WRITE(x1f)0MS{y,f); 

Vxl x2 y f.MS(mkempnd(mkass(xl,x2)1y),f)=ASSIGN(xl1MEXPR(x21f),f)®MS(y1f); 

'~*^~- ..„J LumjUL-ga—.^—^-^^..     -     ., ..  ,„   ,  
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Vn f s,ASSIGN(n,UU,f,s):UU; 

Vn e I.ASSIGWn.e.f.UU^UU; 

Vn f.WRITE(n1<,UU)5UU; 

Vn f.READ(n.f,UU)=UU; 

MEXPR(UU)-UU; 

BIND(UU) UU; 

MPB(UU)=UU; 

VI f.FETCH(M,UU)=UU; 

Vn f.PROCDEFCn.f.UUj^UU; 

Vn f.PROCFAUn.f.UU^UU; 

MD(UU) UU; 

Vn f PROCTXT(n,f,UU)=UU; 

Vn 1.PR0CDECL(n,f,UU)=UU; 

Vf.CLEAR(f,UU)=UU; 

Vloc.lSLOCAL(loc,UU)iUU; 

ISINBOUND(UU)=UU; 

Viy.lSADMISVAL(ty.UU)=UU; 

Vv f s.lSINTYPEKUU.f.sl-UIJ; 

Vp ■ f.lSINTYPE(v,e,f,UU)-UU; 

VflSPROCFRAMEif.UUl^UU; 

X 
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SECTION   5    EXAMPLES 

In this section we want to discuss how to prove PASCAL programs in LCF. Two examples will be 
fully described: 

1) the factorial program, 

2) the McCarthy Airline reservation system. 

We have also proved correct a PASCAL, program for the computation of the GCD of two positive 
intep.prs with the eudidean algorithm and a PASCAL program for the computation of the norm of a 
vector These proofs have been ntCCUtcd using an earlier version of the LCF axiomatization of 
PASCAL and are described in Aiello and Aiello 1971 We have not rerun them on the final 
version of the axioms because, even though many detai's have been changed, the underlying ideas 
have not been modified, so the proofs would remain very similar. 

Section   5.1    The factorial program 

The partial correctness of a program for the computa ion of the factorial function has been alieady 
proved in LCF and discussed in Weyhrauch and Milner 1972. The proof presented here is very 
similar to that one. We have included it because the factorial program is a very simple and familiar 
example, so it is easy to go through the proof of its correctness. By comparing the proof given here 
and that given in Weyhrauch and Milner 1972 it may be seen that even though the programming 
language described here is much richer, the proof isn't more complex. 

A PASCAL program which computes the factorial function is the following; 

far nl,n2: Integrr 
hrain 
readinl); 
reaJinZ); 
uhilr r.Z/B do 

hrfiin nl:*nl  n2;n2:'n2l; rnd; 
writi(ril); 
rnd; 

If the input consists of two nonnegative integers x and n this program computes x.n!. The factorial 
function is obtained if x equals I 

in this program the repetition is performed by a while statement, hence we will call it while-program. 
An analogous program for the computation of the factorial function may be also written using a 
goto statement (it will be called goto-program): 

vnr nl.n2: integer 
he din 
read(nl); 
rea(l(n2); 

I: if n2i'B then 

-    - 
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hr/jiii nl.'nl >n2;n2:'n2l;goio I; end; 

rnrf; 

In LCF both program« are provable correct with respect to the function FACT: 

FACT « [odF.tXn x.n»8 -» x.Flpr^d n1n*x)}]l 

FACT applies to two arguments n and x and evaluates to x*n! 

In the following, the LCF proof of the while-program is described in details. This program has no 
goto's, so the theorems described in 4 2 for goto free programs can be used, making the proof much 
simpler. The proof of the stcond form of factorial program will only be sketched. 

The abstract syntactic form of the while-program is; 

FACTORIAL • mKUxUDP.SP), 

DP 5 mkcmpnaCmkvarducKnl.INTl.mkcmpndimkvardwKna.INTl.ES)), 

SP ■ mkcmpnd(mkread(n2))mkcmpnd(mkread(nl)1 

mkcmpndtmkwhiUUest.body^mkcmpndlmkwriMnD.ES)))), 

Ust I mkbexprl (not,mkrel(eq,n2,mknumconst(0))), 

body ! mkcmpnd(mkass(nl 1mk9xpr2(times,nl,n2)),mkempnd(mkas«(n2,mk«xprl (minusl,n2)),ES)). 

The form of the LCF theorem to be proved is: 

Vnx.isnaUn^isnaUx^APPLYiFACTORIALAx^FACTCn.x). 

Informally, it says that the evaluation of the program FACTORIAL on the data n and x,' if it 
terminates, gives the same result as the computation of the function FACT on n and x. APPLY is the 

following combmator: 

APPLY 5 [X p x y.fstoMFUNCTIp.EOF.LISTlx.y)))], 

LIST   » [X x y mkpairlx.mkpairly.EOF))]. 

As said in section 2, FUNCT maps sequences of integers into sequences of integers. Given a program p 
and two input numbers x and y, APPLY applies the combmator FUNCT to the sequence LIST(x,y) and 
then takes the first element of the output sequence. 

The method used to prove the partial correctness of the while-program is quite standuid 'or proving 
programs with a while loop. All the combmators appearing on the term at the left hand side are 
substituted by their definition. After some simplification (automatically done by LCF) the goal to be 

proved is: 
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Vn x . isnat(n) :; isnaUx) :: 
RESULT(WRilE(nl 81WHILE(MBEXPR(test,8)lMS(bodyia),READ(nl,0lREAD(n2,0, 
CREAVW.nZ.INT.B.CREAVO.nl 1INT,0,FRAMEB(FACTORIAL,INPUT(LIST(n,x))lEOF)))))))) c FACT(n,x). 

where RESULT is detmed as Vx.RESULT x = fstof(OUTPUT x). The theorem on the while statement 
given in section 4? for gotofree programs has been used in achieving the above goal. The 
semantics of the loop is exprttwd in U'ims of the WHILE combinator. As it can be seen from the 
printout in appendix 7.2 the proof is done by induction on the WHILE combinator. The base case is 
trivially proved. The induction step It proved by cases on the predicate which controls the loop, i.e. 
-(n=8). If '(n=0) is false then the result easily follows, if '(n=B) is undefined a contradiction arises 
because n is a natural numbei If -{n^) is true, the goal is proved by a proper instantiation of the 
induction hypothesis. It is instantiated for pred n and x*n. Usually, in programs for the computation 
of the factorial of ?. natural number the variable nl is not mputed a value, but It is initialized to 1. 
The initialization of nl to x results in a strengthening of the induction hypothesis. In fact the 
variable x appears universally quantified in the statement of the theorem to be proved and can be 
properly instantiated. Actually the proved theorem is stronger than 'he desired one. The factorial 
program is obtained by giving the value 1 to x in the a:iove theorem. 

The proof given in appendix 7.2 is generated by the list of commands given in appendix 7.1. We 
want again to point out that LCF is not an automatic theorem prover. It has only a subgoaling 
mechanism and a sophisticated simplification algorithm which converts terms and simplifies them by 
using the axioms and theorems put (by the user) into a "simplification set". 

In the simplification set there are all the syntactic constructors and selectors, plus the semantic 
combinators appearing in the first line of the list cf commands. Note that LCF labels are prefixed 
by a ".", each axiom has been labeled with an identifier equal to the combinator being defined, and 
INDUCT is the label of the induction hypothesis. The modifications done to the simplification set after 
the proof is started (SS»/-somethiiig) are done only to increase the readability of the goals. In 
addition, to inciease the readability of the proof, a combinator FRAME1 is introduced to describe an 

intermediate store; 

FRAME 1 « [XI nx.[Xf.f=0-» 
[Xloc loc=n2 -»n, 

loc=nl -*x, 
locMypoloc n2 -» INT, 
loc=typeloc nl -* INT, 
loc=Meloc INP-* EOF, 
loc=fileloc OUT-» EOF, 
loc=textloc     -• t,UNDEF],UU]]. 

In the printout of the proof each step appears with its "reason", namely the tactic used in achieving 
it, as well as the step numbers of the axioms and the names of the theorems Involved In the 
simplifications. The theorems TH1, TH2... are general theorems about the semantics, they are some of 
the theorems listed in section 4.3 and 4.5. Theorems named ARITH1, ARITH2 . deal with the 
arithmetic, they are taken from Newey 1973. Theorems named LM1, LM2... are specific lemmas about 
this program. All of them have been proved in the same environment as the main theorem and their 
proofs are very simple. Often the proof reduces to a one step simplification They are: 
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REAO(nI,8lREAD(n2)B,CREAV(B,n2.1NT,6.CREAV(81nl,INT,B, 
FRAME8(FACTORIAL,INPUT(LIST(n1x))lE0F)))))äFRAMEl(SP1n,x) 

ASSUME isna» x • TT, h nat n • TT 

which implicitly defines the frame FRAME1, 

MS(body18IFRAMEl (SP.n.x))« FRAME 1 (SP.pred n.x*!!)   ASSUME isnat x • TT, '(n.B)iTT. 

It specifies the effect of the meaning function MS on the body of the while statement. Moreover 

MBEXPR(ies«I8,FRAMEl(SP,n,x))2 '(n=8)    ASSUME isna» n iTT, isnat x^TT 

evaluates the test appearing in the while, and finally 

RESULT(WRITE(nl .B.FRAMEl (SP.rvO^FACTIn.x)   ASSUME -{n-B^FF, i8nat(x)iTT; 

asserts that, when the loop is over, the value of the vanble nl is FACT(n,x). 

As already noted the proof is fearly standard and could be almost completely automated by 
increasing the proving capabilities of LCF. The case of the goto program the proof is standard as 
well, but much longer. In fact the theorem presented in 4.3 no longer applies, so the goal 10 be 
proved, after the first simplification is: 

Vn x . isnal(n) :: i-nat(x) :s 
RESULT(MS(m„.fTipnd(nr labstatd .mKcondUost, 

mkcmpnd(mkass(nl ,mkexpr2(times,nl ,112)), 
mkcmpnd(mkass(n2,mkGxprl (minusl,n2)), 
mkcmpnd(mkgolo(l),ES))))ES)),mkcmpnd(mkwrilo(nl ),ES)),B, 

READ(nl ,B,READ(n2101CREAV(0.n2,INT,aiCREAV(0,nl ,INT,fj, 
FRAME8(FACT0RIAL,UPUT(LIST(n,x)),E0F))))))) e FAC7(n,x). 

In order to prove it bv induction on MS a possibility is that of proving the above goal in parallel 

with the following 3 goals: 

Vn x . isnat(n) :: isnat(x) :: 
RESULTaXs.CONDIMBEXPROost.O.s), 

MS(mkcmpnd(mkass(nl ,mkoxpr2(times,nl ^2)), 
mkempnd|mkass(n2,mkexprl (minusl ^.2)), 
mkcmpnd(mkgoto(l )lmkcmpnd(mkwrit«inl ),ES)))),B1s), 

WRITE(nl,B,s)) 
READ(nl ,B,READ(n2,B,CREAV(Bln2,INT,81CREAV(B,nl,INT,0, 

FRAME0(FACTORIAL,INPUT(LIST(n,x)),EOF)))))) c FACT(n,x). 

in x . isnat(n) :: isnat(x) :: 
RESULT([\s.C0ND(MBEXPR(1ost1flIs), 

ASSIGN(nl ,MEXPR(mkexpr2(timoslnl 1n2)18),s)® 
MS(mkempnd(mkas5(n21mkoxprl (minus 1 ^2)), 

mkcmpnd(mkgolo(l ),mkempnd(mkwrite(nl ),ES)))))B,s), 
WRITE(nl,B,s)] 

READ(nl pB)READ(n2,B,CREAV(0,n2,INT,0,CREAV(8,nl ,INT,a, 

■ilHllilMM—liaMMMM—TT— m I ■■'      -   ■       ■  
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FRAME0(FACTORIALIINPUT(LIST(n,x)),EOF)))))) c FACT(n,x). 

Vn x . isr at(n) :: isnat(x) :: 
RESULT([Xs.COND(MBEXPR(lost101s)1 

ASSIGN(nl,MEXPR(mkj,pr2(times,nl,n2))0)ls)« 
ASSIGN^.MEXPRimkexprKminusl.nZ))^),!:)» 
MS( mkcmpnd(ml<!;oto(l ),mkctnpnd(mkwrit«(nl ),ES)))),fl,s), 
WRITE(nl,B.'.)] 

READ(nl,01READ(n2,fl1CREAV(ain21INT,81CREAV(ninl1INT)0, 
rRAME0(FACTORIAL,INPUTaiST(n,x)),EOF)))))) c FACT(n,x). 

In this way there are four induction hypotheses to be instantiated and it can be seen that each of 
them serves to prove the next goal in the above order Even this tricky way is standard. It can be 
applied whenever in a program a backward goto is encountered. In addition, such tactic could also 
be implemented in a PASCAL ontntcd version of LCF. so the user is relieved from the task of 
generating all the parallel goals. 

Section   5.2    The McCarthy Airline Reservation System 

John McCarthy suggested the problem of proving the correctness of a program for the reservation 
system of the McCarthy iirline Company. Such company has one plane, with only one seat. The 
plane nrver flies! There are l"'o customers, each one sometimes makes a reservation and then, tred 
of waiting for the departure of the plane he cancels. Later on he may try again. 

Proving the correctness o" a program for the McCarthy Airline reservation sys.jm is interesting 
since it presents some characteristics ibtml in the piogiams so far proved correct. A program which 
realizes a reservation system nvist deal with a potentially infinite stream of input data "read" at 
successive instants of time. Eacn time a request is inputed, an output datum is produced. The 
correctness of incremental computations cannot be dealt with in a system where the input and output 
operations aren't mentioned. 

Usually, in the existing systems for program verification, I/O is completely ignored. It is not 
considered to influence the ".Tieaning" of a program. In fact, existing systems deal with algorithms, 
rather than programs, even though such algorithms are expressed in the syntax of a programming 
language. 

Our axiomatization of PASCAL includes the operations of inputing data from an input file into 
locations of the store and outputing data from the store into an outout file. The length of these files 
isn't fixed a priori, even for a particular program. 

In our formalism we may express and prove a statement of the correctness of a PASCAL program 
for the McCarthy Airline reservation system. Such statement asserts that, no matter what the 
sequence of requests has been, the seat at any insiant of time is reserved for the right person. 

Let 
it denote the seat, 
wl denote the waiting list, 
rq denote the request and 
ps denote the passenger. 
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The variable st may assume the values B, I or 2 meaning free, reserved for passenger I or 2. The 
vanable wl assumes the values 8. I and 2 with the same meaning, r^ may assume the value 8 and I 
for cancellation and reservation, respectively, ps assumes the values I or 2, denoting the two 

passengers. 

A PASCAL program realizing the McCarthy Airline reservation system is the following: 

/if/riii 
var st,wl,ps,rq: integer; 
read(u)l); 
read(st); 
repent 

hfigin 
read(rq); 
if rq*3 
than hrgin 

readipi), 
ifrq-1 
thrn if St'B v St-pS 

then st.-'pS «lie wi'pS; 
ftlM if Jf-8 v sttps 

then wi'B ehe hegin st 'Uli end 
turtte(st) 
end 

until rq*3 
end 

The program consists of an initialization part, in whjch the initial status of the seat and the waiting 
list (presumably both 8) are inputed, and of a repeat loop. The body of the loop consists in reading 
new data, updating the status of the seat and the waiting list and then writing the status of the seat 
into the output buffer. An extraneous value in the input sequence, in this case the number 3. stops 

the repetition. 

This program doesn't make any assumption on the behavior of the passenger or about the kind of 
requests it receives. Each request it accepted and the program behaves correctly even if, for instance, 
two cancellations in a row are done by the same person. 

The abstract syntax for the above program is: 

MCCARTHY I mklexUDP.SP), 

DP « mkcmpnd(mkvardecl|wl,INT),mkcmpnd(mkvardecl(sUNT), 
mkcmpnd{mkv«rdecl(rqIINT)1mkcmpnd(mkvirdecl|ps,INT),ES)))), 

SP » mkcmpnd(mkread(wl),mkcmpnd(mkread(sO, 
mkcmpndMrtpMtlBODY.mkreKeq.rq.mknumeonslOW.ES))), 

BODY s mkcmpnd(mkr««d rq,mkcmpnd|mkcond(mkrol(oq,rq,mknumconst(3)),ES, 
mkcmpnd(mkread ps.SEATUPDATEM.ES)), 

SEATUPDATE« 

1 

    --- - . -.i.. ...... .^.m.-^... 
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mkcmpndlmkeondtmkreKeq.rq.mknumconst I), 
mkcmpnd(mkcor,d(mkboxpr2(or1mkrcl(cq1sl,mknumcon!.t B)1mkrol(eq)st,ps)), 

mkcmpnd(mka55{r.t,p5),CS),mkcnipnd(mka5s(wl,ps)1ES )),£$), 
mkcmpnd(mkcond(mkb«>:<pr2(or,mkrel{eq1st,mknumeonst Ol.mkbexprl (notjmkrellfcq.st.ps))), 

mkcmpnd(mk«ss(wl,mknumcon5t D^S), 
mkcmpnd(mkass('■.t1wl)1mkcmpnd(mkass(wlImknumcop:, fl,ES))>,£$)), 

mkcmpnd(mkwrita tt, ES)), 

The stuement of the partial conectness of the McCARTHY piogram is: 

Visq osq p q iswfsq(isq)::isw10!:(osq)::isint(p)::isint(q):: 
APPLY(McCAF?THY,p,q1isql05q)cBOOKING(p1q1isq1osq)1 

where: isq denotes the input «equencr, osq denotes the initialization of the output buffer, namely the 
output sequence, p and q are the initial values of the waiting list and the seat. 

The predicate iswfsq (is-well-formed-^quence) is defined as: 

iswfsq = [oiF.[Xsq. (elHsq)» 3)-»TT,isoof sg ->UU,isrqst(ell sq)Aisprsn(el2 sq)-»F(taill sq),FF]J1 

where «11, «12, taill, isrqst (isrequest) and isprsn (isperson) are defined as follows: 

•II i [Xx. fstof x], 

•12 I [Xx. elKrmdof x)], 

tail!  I [Xx. rmdoUrmdof x)], 

isrqst = [Xx.(x=Q)v(x=l)]1 

isprsn ■ [Xx.(x=l Mxs2)] 

The predicate iswfos (is-well-fonnedoutput-sequence) is 

iswfos « [oeF.[Xos.iseof os -» TT,isint(lstof 05)-»F(rmdof osj^F]], 

and must be satisfied by the object, presumably EOF, that initializes the output buffer. 

The combmaror APPLY appearing in the definition of the goal is: 

APPLY i [X p x y is os FUNCT(p,os,LIST(x,y,is))], 

LIST ' [Xx y is. mkpair(x,mkpair(y,is))], 

FUNCT, the combmator which "interprets" a program p in the frame where the input and output 
buffers have been initialized, is described In section 2. 

The fact that, at each moment, the scat is reserved for the right person, is expressed in LCF by the 
function BOOKING 

Mi  
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BOOKING I [odF [X st wt sq OS. 
iseof sq       -* UU, 
(«11 sq"3)    -•> os, 
Fdaill 8q18lupdt(sq,st,wl)1wlupdl(sq1s»,wl),mKpiir(s»updt(sqlst,wl),08)))], 

where stupdt (seatupdate) and wlupdt (waiting-listupdatc) are defined as: 

stupdt*[Xsq st wl (dl sq»l)-»(s»«B)v(sUel2 sq)-»e!2 sq,sf,(st«0)v '(st»«l2 sq) -♦ st.wl], 

wlupdt-(\sq st wl.(ell sq»l)-»(stx8)v(st=el2 sq)-»wl,«l2 sq.B]. 

We express the fact that, at each instant of time the program "answers" in the v:ght way. by stating 
that it behave: correctly on input sequences of any length. Being extensional our semantics cannot 
exprer. the concept of elapsition of time. but. by talking of sequences of any length we give an 
adequate extensional representation of a continuing process. 

The list of LCF commands and the printout of the proof of the partial correctness of the McCARTHY 
program with respect to the BOOKING function is given in appendix 8. The goal to be proved, after 

the first simplification is: 

Visq osq p q    iswtsq{isq) :: iswfos(osq) :: isint(p) :: isint(q) :: 
OUTPUK-dvlEXPRtrq.O.MSlBOOY.O.REAOtstO.READIwl.O.FRAMEIIp.q sq.Osq)))))^)-» 

REPEATCMSIBODY.Ol.MBEXPRdnkbexprKnot.mkreUeq.rq.mknumc-nstP)))^)^, 
MSCBODY.fl.READlst.B.READIwl.O.FRAME 1 (p.q.isq.osq))))), 
MSCBODY.O.READIst.B.RCADM.O.FRAMEl (p.q.isq.osq))))) c BOOKINGIp.q.isq.osq) 

In achieving this goal the theorem on the repeat statement, given in section 4.3 has been used. The 
combmator FRAME! is introduced to increase the readability of the goal, it describes the store after 

the declarations are done 

FRAME 1 3 [\x y sq os. [Xf.«=B)-»[Xloc. 
Ioc=typoloc ps-»INT, 
loe»lyp«loc rq-*INT, 
loc=typeioc .;-*INT, 
loc'typeloc wMNT, 
loc=fileloc INP-»INTERNALREP(LIST(x,y,sq)), 
loc=fileloc OUT-»INTERNALREP os, 
locUxtloe     -»SP.UNDEFJ.UU]. 

The proof of the McCARTHY program differs from that of the factorial program mainly for two 
reasons: I) the while and the repeat statements behave difteiently, having the test performed at 
different places 2) here an initialization is done within the boay of the repetition statement, h fact, 
the two vilues of rq and ps art read within the loop For this reason the loop must be executed once 
in order to create a location named rq and one named ps, before doing an induction on the 
combmator REPEAT The goal is proved by cases on the test which controls the repeat loop The 
only i.ontnvial case is that m which the input sequence is not yet over, namely rq/3 In this case the 
repeat loop goes on, so an induction is needed for completing the proof The base case of this 
induction is tnviai. The induction stop is proved by doing again cases on the tost which establishes 
the exit conditions from the loop. If the loop is completed a lemma is used to stnte the result, if it 
goes on the goal is proved by an appropriate instantiat.on of the induction hypothesis 

■     - - ■       
  - -- -■- .      
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As in the proof of the factorial progtam the theorems used in the proof have been divided into THs, 
ARITHs and LMs THs state facts about the semantics, one of ti »m is the above mentioned theorem 
about the seman.ics of the repent statniifnt for goto-frce programs They are shown in 4? and 4.5. 
ARITHs are theorems dealing with the arithmetic and properties derived from the above axioms on 
the well fomedness of input and output sequences LMs are specific lemmas regarding this program. 
The list of these lemmas follows. 

Vsq os xl x2. MD{DP101FRAMEd(McCARTHY(INPUT(LIST(xl,x21sq)),INTFRNALREP(os)))= 
FRAMEl(xl,x2,sq,os); 

is an implicit definition of FRAME1  it defines the store after the declarations are done 

READ(st,81READ(wl,B,FRAMEl (x 1 .xa.sq.osjj^FRAMEaix 1 .xZ.sq.o«) 

ASSUME isw<sq(sq)5TT, isw1os(os)iTT, isint(xl)äTT( isint(x2)iTT 

This statement is an implicit defm.ion of FRAME. It describes the store after wl and st are 
initialized. 

FRAME2 * [Xxl x2   sq os. [Xf.(f.8)-»[Xloc. 
loe«st -»x2, 
loc«wl -»xl, 
loc=typeloc ps-»INT, 
loc=lypoloc rq-^NT, 
loclypeloc st-^INT, 
loc=typcloc wMNT, 
loc=filoloc lNP-»INTERNALREP{5q)1 

loc=filoloc OUT-»INTERNALREP(os), 
loc^toxtloc     -»SP.UNDEFl.UU], 

The next theorem 

OUTPUT(MSiBODY18,FRAME2(xl,x21sq,os)))iBOOKING(xl,x2,sq1os) 

ASSUME '(•!! sq ■ 3 )*FF,iswhq sq^TT.iswfos osäTT.isint xltTT.ism» x2iTT 

states that, when the input sequence is OV.T, the content of the output file after .he execution of 
BODY in the store described by FRAME2. equdls the value of the function BOOKING. 

BOOKINGCstupdUsq.x.yKwIupdUsq.x.yMiill sq.mkpiirlstupdUsq.x.yj.osHiBOOKINGIx.y.sq.o^ 

ASSUME isw«sq sq sTT.iswfos os s TT.isinl x * TT, isint y • TT.-UM sq«3)iTT 

states a simple property of the function BOOKING 

MS(BODYI8,FRAME2(stupdt{sq,x,y),wiupd1(5q,x1y),tdill sq.mkpairlstupdKsq.x.yj.os)))* 
MSCBODY^.FRAMESix.y.sq.os)) 

ASSUME iswlsq sq »TT.iswfos os i TT.isint x > TT, isint y « TT.-UH sqO)? TT; 

MS(BOOY,8,FRAME2(x,y,sq1or.))- FRAMEBIx.y.sq.os) 

I 
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ASSUME iswfsq sq HTT.JSWIOS OS » TT.ismt x * TT, ismt y s TTXell sq»3)- TT; 

The two above theorems use the combin.itor FRAME3 to describe an intermediate stort 

FRAME3 i [Xxl x2 sq os [Xf |f.0)-[Xloc. 
loc=ps -*a\2 sq, 
locsrq -♦•II sq, 
loe»s1 ->stupdf(sq,xl,x2), 
loc«wl -»wlupdKsq^l.xZ), 
loc»typeloc ps-»IN".' 
loc»typeloc rq-<INT, 
loc=typoloc sl-»INT, 
loc=typeloc wMNT, 
locsfileloc INP-»taill(INTERNALREP sq), 
loc«fileloc OUT->mkpair{mknumconst stupdt(sq,xl,x2),INTERNALREP os), 
loct.xtloe     -»SP,UNDEF],UU]; 

FRAMES is the description of the store after the Ljdy of the loop has been executed once. 

MEXPR(rq,9,MS(BODY,ö,FRAME3(x,y,sq,os)))5 «13 sq 

ASSUME iswfsq sq 5TT,isw<os os I TT,isint x s TT.isint y • TT,'(ell sq=3) • TT 

MBEXPR(mkbexprl(no«,mkrel(eq,rq,mKnumeonst(3))),0,MS(B0DYj0,FRAME3(x,y,sq,Os))): '(el3 sq = 3) 

ASSUME iswfsq sq sTT.iswIos os I TT,isint x i TT,isint y i TT,-(ell sq=3)5 TT 

MEXPR(rq,0,MS(BODY,B,FRAWE2(x,y,sq,os));'«ll sq 

ASSUME iswlsq sq^TLiswfos os ?TT,isint xäTT.isint y=TT 

The three above lemmas are introduced to abbreviate the evaluation of expressions. 

mm MM ^■MMMMMH —-■■---— 
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SECTION  6   CONCLUSION 

The most important aspect of this memo relates to our attempt to axiomame all of the arithmetic 
Dart of PASCAL This is interesting for two reasons Fim we are able to describe in LCF different 
nrotramminp language features and show how they mteract. Secondly we can express property of 
chvU of proPiams and use them as lemmas in proofs of theorems about particular programs^ A 
void example is the theorem about goto-free programs in section 4.2. It is used in section M to 
tlLlifv the first proof of the correctness of the factorial program. When interpreted literallv. it 
oroves that for goto-free ptograms the composition rule in Hoare 1969 is valid, By formulating the 
validity of this rule as a theorem we can discuss, in LCF, the relative merits of various programming 
features This has not previously been accessible to a formal treatment, and is important if the 

mathematical theory of computation is ever to have an effect on language design. 

Our desire to axiomatize all aspects of a programming language is not s.mply a matter of choice of 
availabV formalisms but represents a philosophy about what kinds of questions the mathematical 
theory ot computation should ask The method of attaching inductive assertions to programs treats 
uroerams one at a time. We do not think general theones about programs can oe developed m this 
way Of course using inductive assertions is not a waste of time, but formalisms which use them 

should be expanded to include mote general applicability 

The kind of questions about progrMM we have m mind include: will it run at all, even if its 

algorithm is correct? Will it compile' Does some other coding or "opt"111"11011 compute the same 
function^ We believe that LCF is capable of expressing these notions. Furthermore, any formalism 
for describing a programming language could reasonably be expected to have this property. 

We criticize the original description of PASCAL, not because Wirth didn't have philosophically 
reasonable ideas of what various features of a programming language should do, but rather he 
laced a formalism which was strong enough to describe the effect of putting together features, 
v-hich although separately mrke clear sense, cause problems when combined The example of the 
nrocedure in the discussion of the for statement is a case in point. It is net a PASCAL procedure as 
the value of the index variable of the for statement is changed in its body. This fact, however is 
hard to detect and is certain to be missed by most compilers. The difficulty arises out of the desire 
not to make the index of a for statement local to that statement, to have the limits of the for loop 
variable deteimined once and for all and to have recursive procedures m the same language 
Features when combined in arbitrary ways make even the recognition of well formed programs 
complicated Further evidence of this difficulty is found In the large number of restrictions 
learashi I ondon and Luckham 197? have put on the application of their rules The onl- example 
of a procedure eiven in Hoare and Wirth I973 camot oe treated m their system. It does not seem 
obv.ous to us how to extend their style of ax.omatizatio^ to all of PASCAL. We do not impose any 
of their restrictions, but describe the full generality allow.. by Wirth. The expressive power of LCF 
permits us to represent their restrictions and to prove that uiles similar to theirs are valid for the 

subset of PASCAL they treat 

The above should reflect on language design One overwhelming feeling of all three authors after 
doinp this work was that we know luge amounts more about how to describe a language to make 
proving theorem^ about it reasonable We believe that the ability to describe programming features 
and demonstrate by proving theorems that a language has certain properties represents a 
particularly satisfying way to describe a language. Furthermoie we propose this as a standard for 

acceptable descriptions. 
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One possible idea for future work is ciesifmng a programming language using the more precise 
description of this paper. Only small modifications to PASCAL are necessary to give a similar 
language a demonstrably smoother semanucs. Thus, by starting wi'h a more detailed description, 
some properties of the language, which could only be informall" described before would now be 
made explicit as statements in LCF. One could then begin to amass a collection of theorems that 
could be used to prove properties of particular programs. We could then integrate everything into 
an LCF-PASCAL "machine" which took a concrete PASCAL syntax and generated the LCF 
abstract syntactic representaticn. Of course the new language would have to include more features 
than those discussed here. Obvious candidates are real arithmetic, file manipulation and more 
complicated data structures, if we wanted to abandon the ALGOL like control structures it would 
be possible to choose either that of LISP or even the more aggressive control structures of Bobrow 
and Wegbreit or the Landin J operator it would be an interesting project to describe them all and 
see whit theorems hold when you allow them to exist simultaneously. 

We chose to work out the McCarthy airline reservation system as an example because we believe 
the treatment of interactive programs is another area which a vital mathematical theory of 
computation must consider Our idea for how 'o treat the correctness of continously interactive 
programs was to consider them as functions fron sequences of inputs to sequences of outputs. If the 
processes you are considering are continous, that is, some initial sequence of outputs is completely 
determined after some fixed number of inputs, then rquivalently we can consider the correctness of 
finite output sequences given finite input sequences. Basically this idea has been used in 
intuitiomstic theories of free choice sequence as developed by Drouwer and Kleene (see Kleene a.id 
Vesley 1965). 

We end this memo with some comments about LCF A major difficulty involved in using LCF as 
the language for mterptermg programming languages is that descriptions of the data being 
manipulated (in our case integers) is awkwaiü. The axiomatization of arithmetic in LCF although 
adequate is both non standard and frequently hard to us? It is partially the fault of LCF as it does 
not implement such nice user oriented features as arbitrary structural inductions, it forces you to use 
computation induction in its primitive form. Unfortunately ihe implementation cannot be blamed 
for everything. A proof of Wilson's theoren:, for example, would be virtually impossible even by 
mathematicarmduction. LCF terms not only have mteipretations as functions, but can also be 
interpreted rfs computation rules. Although this duality has not been fully exploited it is the 
essential reason that the simplification mechanism of LCF is so successful. 
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APPENDIX   1 

A BRIEF DESCRIPTION OF LCF 

The syntax of LCF sentences is ciesciitx-d in detail in Milner 1972a. Here we only give an informal 
description of the language, its nv.eipietation and enough of the abbreviation conventions to make 
the formulas in this report inrelligible to those not familiar with LCF. 

There are two kinds of b se variables and constants in LCF Those that ran^e over individuals 

and those that range over truth values Each term has an associated type If t is a term and <r its 

associated type symbol wr write to- IND and TV are type symbols. If <r and r are type symbols 

then so is (<r-.T). We mim X:1ND and xTV for x of type individual and truth values respectively. 
There are variables and constants for each different type symbol. The variable symbols of different 
types are supposed to be disjoint '"here are three constants of type TV. They are TT for true. FF 
for false, and UU for undefined 

Terms are formed as follows; if xff is a variable and fcf then [X,x.t]((T-.T) is a term whose 

Interpretation is I function from things of type «r onto things of type T In LCF [Xx.[Xy.t]] is 

abbreviated by [Xx y.t] If r(<T-T; and s:<r then r(s):r Wc interpret rU) as the result of npplymg the 
function r to the argument s.   We frequently write this r s, thus 

a b c * a(b)(c)-(a(b)){c)=a(blc) 

Note that if T is TV then r is a predicate. Conditional expressions are formed as (p-^q.r), where 
pTV and q, r are of the same type On the undefined truth value the conditional is undefined, i.e. 

for all q and r, (ULMq,r)-UU. Terms are also built up using the least fixed point operator <*. If x:<r 

is a variable and S;<r-.<r then [ux.s] is a term representing the least fixed point of the functional s. 

Atomic well formed formulas (or AWFFs) are formed by joining two terms using * or c, i.e. if r and 
s are terms then r=s and res are AWFFs. m means that the functions denoted by r and s are the 
same In a full description of the theory there is also a partial order between terms of the same type. 
This is represented using c. 

The more usual definition of the factorial function fucHn) *• if .v=0 tfien 1 else nfact(n-l) becomes 
in LCF 

FACT H [odfXMnrO-M.nfnn-l)]]. 

LCF also allows two othei abbteviations. 

Vx f=g    is the same as [Xx.(]=[X)( g] 

Because terms are interpreted as extensionally given functions, this definition makes sense 

P::0=R    is the same as (P-»0,UU)=(P-*R,UU) 

Intuitively this is read Ik If P is true then QsR, otherwise I don't know anything 
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APPENDIX  2 

THE ABSTRACT SYNTAX 

46 

2.1    Syntax for Statements 

AXIOM SYNAXS: 

V d s. typ«(mktex« d s) » _T, 
V d s. d«clof(mKtext d «) « d, 
V d s stalmof(mkt«xt d •) » •, 

V dl d2. type(mkcmpnd dl d2) » _CM, 
V dl d2. tstof(mkcfnpnd dl d2) » dl, 
V dl d2. rmdof(mkcmpnd dl d2) * d2, 

V n ty type(mktypedef n ty) * JO, 
V n ly. namof(niMypcdo1 n ty) ■ n, 
V n ty. typoUmktypedef n ty) I ty, 

V nl n2. type(mksublim nl n2) ■ _SL, 
V nl n2. Iboftmksublim nl n2) * nl, 
V nl n2. ubof(mksublim nl n2) « n2, 

V ai ty. type(mkarspec al ty) £ _AS, 
V al ty. arlimoUmkarspac al ty) = al, 
V al ty. typ«lof(mkarsp«c al ty) • ty, 

V il 12. typ«(mkpair il 12)* .PA, 
V II 12. fstoflmkpair il 12)» il, 
V il 12. rmdof(mkpair il 12)» 12, 

V n ty. typolmkvardocl n ty) • _VD, 
V n ty. namof|mkvard«cl n ty) a n, 
V n ty. typoUmkvard«! n ty) » ty, 

V n ps. typ«(mkprocdecl n ps) = _PD, 
V n ps. namof(mkprocdecl n   ps) * n, 
V n ps. prspoKmkprocdecl n ps) ^ ps, 

V n fs ty typo(nik<undocl n fs ty) = _FD, 
V n fs ty. namof(mkfundecl n  fs ty) - n, 
V n fs ty. fnspoffmkfundecl n fs ty) I fs, 
V n fs ty. typooflmkfundecl n fs ty) » ty, 

V f t typc(mkprocspoc f t) i _PS, 
V f tfargoffrnkprocspec f I) = f, 
V ( t.textof(mkprocspec f t) » t, 

V f t.typefmkfunspec f t) = _FS, 
V f t.fargof(mkfunspec f t) » f, 
V f t.textof(mkfunspec f t) » t, 

MBB rr—riMnirii MBMi ■   - 
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V x »y «ype(mkvarp K ly) = .VRP, 
V x ty. namof(inkvarp x ty) = x, 
V x ty. typoMmkvarp x ty) « ty, 

V x ty. typelmkvilp x ty) I .VLP, 
V x ty. namo((mkvalp x ty) » x, 
V x ty •ypoHnikvalp x ty) » fy, 

V x ty type(mkfunp x ty) « .FP, 
V x ty namof(mkfunp x ty) « x, 
V x ty typoKmkfunp x ty) » ty, 

V x. vype(mkprocp x) » _PP, 
V x. namof(mkprocp x) » x, 

V I s. typelmklabstat I s) » .LS, 
V I s. labelof(mklabstat 11) ■ I, 
V I s. statmoMmklabstat I s) : S, 

V n, type(mkread n) = _RD, 
V n. namofdtikread n) s n, 

V n. typ©(mkwrite n) i _WT, 
V n  namc'(mkwrite n) * n. 

Vn  type{mkgoto n) 5 _G, 
Vn  labolof(mkgoto n) I n, 

Vn e type(fnka5S n a) = _A, 
Vn o Ih50f(mka55 n e) = n , 
Vn e  rhsoKmkass n e) ^ e , 

V n a. typ©(mkproccall n a ) r „PC, 
V n a. namof(mkproccall n a ) ^ n, 
V n a actargoi(mkproccall n a) = a, 

Vbe pi p2 type(mkcond ba pi p2) 1 _C, 
Vhe pi p2. testof(mkcond be pi p2) - ba, 

\A p2. thenof(n-.kcond ba pi p2) 1 pi, 
pi p2  elsoof(mkcond a pi p2} 1 p2, 

Vt b. type(mkwhile t b) ? .W, 
Vt b. testoMmkwhile t b) s t , 
Vt b. bodyof(mkwhile t b) 5 b, 

Vb t  typeCmkrepe^t b t) * .R, 
Vb I. bodyof(mkrepeat b t)     b, 
Vb t. testof(mkropoat b I) = t , 

Vi ol o2 b typodnktorto i al e2 b)=_FT, 
Vi el e2 b  ind}xof(mktorto i el e2 b)^ i, 
Vi el e2 b  lbof(mk(orto i el e2 b)' el, 
Vi el o2 b. ubo((mkforto i al o2 b)= o2, 
Vi el e2 b bodyof(mkforto i al a2 b)^ b. 

  ■■-''-  \*mm    1 imiiiani 



The Semantics of PASCAL in LCF 48 

Vi el e2 b. type(mMordn i el e2 bKFD, 
Vi el e2 b. mddXO((mKfordn I el a? b)   i, 
Vi el e2 b. ubof(mKfordn i el o2 b)= el, 
Vi el G2 b. !bof(mKfordn i el e2 b)^ «2, 
Vi el e2 b. bodyo((mkfordn i el o2 b)< b, 

l 

type UU i UU, 
type ES i JLZ, 
type EOF » .EOF; 

2.2    Syntax for Expressions 

AXIOM EXPRAX: 

Vo el   type(mKixprl 0 el) * _E, 
Vo el. opot(mKexprl o ol) =" o, 
Vo el. argloUmKexprl o el)    el, 

Vbo bei. type(mkboxpr! bo bol) = _BF. 
Vbo bei bopof(mKbexprl bo bei) I bo, 
Vbo bei   barglof(mkbexprl bo bei) i bei, 

Vo el e2. type(mkexpr2 o el e2) ^ _E, 
Vo el o2. opof(mKoxpr2 o el o2) : 0, 
Vo el e2. arglof(mKexpr2 o el e2) i el, 
Vo el e2. arg2of(mKexpr2 o el e2) ■ e2, 

Vbo bei be2. type(mKbexpr2 bo bei De2)l .BE, 
Vbo bei be2 bopof(mKboxpr2 ► ie2) i bo, 
Vbo bei bei. bargluUmkbexr .   ^2) = bei, 
Vbo bei be2. barg2of(mkbexpt    .    j^l be2) ■ be2, 

Vbo el e2 type(mkre! bo el e2) - .BE, 
Vbo el e2. bopof(mkrel bo el e2) * bo, 
Vbo el e2. arglof(mkrel bo el e2) ■ el, 
Vbo el e2 arg2o((mkrei bo el e2) i e2, 

V n i. lypednkae n 1) 5 .AE, 
V n i. namof(mkae n i) s n, 
V n i. subof(mkae n i) ä i, 

V n a. typelmkfundes n a) 5 .FA, 
V n a. namof(mklundes n a) ; n, 
V n a actargo((mMundes n a) = a, 

V n. type(mknumconst n) = .NC, 
V n. numotlmknutnconst n) « n; 
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2.3    Predicates for the Identification of Syntactic Constructs 

AXIOM PREDAX: 

Vx.. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 

Vx. 
Vx. 
Vx. 
Vx. 
Vx, 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 
Vx. 

stext x 5 type x = _T, 
sempnd x ■ typ« x « _CM, 
stypadef x = type x » .TD, 
ssublim x £ type x ■ _SL, 
sarspsc x E typ« x ■ .AS, 
spair x « typ« x « _PA, 
svardeel x * typ« x « _VD, 
nprocdecl x = typ« x « _PD, 
sfundeel x = type x » _FD, 
sprocspec x ^ type x s _PS, 
sfunspec x = type x - _FS, 
svarp x ■ type x = _VRP, 
svalp x s type x = _VLP 
sfunp x H type x = _FP, 
sprocp x 5 type x « .PP, 

slabstat x I type x * _L5, 
sread x = typo x = _RD, 
swrite x i type x « .WT, 
sgoto x = type x s .G, 
sasG   x 5 type x - _A, 
sproccall x I type x = _PC, 
scond x s type x = _C, 
swhMe x I type x - .W, 
srepeat x ■ type x ■ .R, 
sforto x = type x « .FT, 
sfordn x = type x « .FD, 

Vx. isemptyst x i type x = .ES 
Vx. iseof x = type x « .EOF, 

Vx. iseonst x ■ type x = .NC, 
Vx. Isname x ■ type x « _N, 
Vx. isexpr x = type x « .E, 
Vx. isbexpr x i type x » .BE, 
Vx. isrel x s typo x « .BE, 
Vx. isao x = typo x « _AE, 
Vx. isfundes x = type x = _FA; 

■     ■ 
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2.4    Auxiliary Predicates and Functions 

AXIOM AUXSYN : 

isnama FUNV » FF, 

fstof EOF ■ UU, 

rmdof EOF • UU; 

issmgl« ■ [Xst. (isread st)v(iswrita st)v(issimpla st)v(isemptyst st)], 

issimple * [Xsl. (isgoto st)v(isass sl)v(isproccall st)], 

fortost H [Xx .isforto(x)-»mkrel(lsoq,lbof{x),ubo((x))lis<ordn(x)-»mkrel(£req,ubof(x),lbof(x)),UU] , 

fortoup " [Xx .mKcmpnd(mkforto(indexof(fstof(x)),mKexprl(plusl,indexof(fstof(x)))l 
ubof(fstof(x)),bodyof(lstof(x))),rmdof(x))], 

fordnup < [Xx .mKcmpnd(mkfordn(lndexof(fstof(x)),mkexprI (minusl,ind«xof(fstof(x))), 
lbof(fstof(x)),bodyof(fstof(x))),rmdof(x))], 

isrepwh  ■ [Xst. (isrepsat st)v(itwhile si)], 

islter    s [Xst. (Isforto st)v(isfordn st)v(isrepwh st)], 

isparameter = [Xx. (isvarp x)v(i5valp xMisproep x)v(isfunp x)], 

isbasatype = [Xn (n=INT)v(typo(n)=_SL)], 

istyppart • [Xn.ispair(n)viseof(n)]l 

occurs   » [oiF.[Xn st. 
Isemptyst s*     H UU, 
Iscmpnd st •* r(i.ft^f st)vF(n,rincc' it), 
islabstat st -» (n»lab€lof s'.HTT,F(n,rmdof st), 
.ssinsle st -♦ Fr, 
:s:ter st -» F(n,bodyof st), 
iscond st -> Mn.thonof st)vF(n,elsaof st),UU]], 

append « [o r [A stl st2. 
isemptyst stl -* s\2, 
iscmpnd stl -♦ mkempnd(fstof stl, F(rmdof stl,st2)),UU]], 

«•gm s [c^F.[Xn st, 
isamptyst si -* UU, 
iscmpnd st-> 
isemptyst s; -»F(n,rmdof st), 
islabstaKfstof st)-»(n=labolof st)-» st,F(r\,mkcmpnd(statmof(fstof 8t),rmdof st)), 
issmgleUstof st) -♦F(n,rmdof st), 
iscond(fstof st) -»occurs(n,tlienof(fstof st))-*append(F(n,thenof(f5tof st)),rmdof st), 

occurs(n,elsoof(istof st))-»append(F(n,elsoof(fstof st)),rmdof st), 
F(n,rmdof st), 

israpwh(fstof stHoccurs(n,bodyof(fstof st))-»append(F(n,bodyof(fstof st)),st), 
F(nlrmdof st), 

isforto(fstof st)-»occurs(n,bodyof(fstof st))-»append(F(n,bodyof(fstof st)),fortoup(st)). 

50 
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F(n,rmdof st), 
isfordn(fstof stHoccursdi.bodyofifstol st))-»ipp«nd(F(n,bodyof(fstof stjj.fordnuplsf)), 

Fdi.rmdof 5t),UU,UU]], 

isvarisible I [Xx.isname(x)visaa()()], 

isunary > [Xx (x=ppius)v(x=pminus)v(x=plur, 1 )v(x=minusl)], 

isbunary = [\x.(x*not)], 

isbinary s [Xx.(x=plu5)v(x=minus)v(x=times)v(xsdiv)v(x»rmdr)v{xsand)v(x«or)v 
(x«ls«q)v(x«g-«q)v(x«lt)v(xsgt)v(x»eq)v()'<neq)]) 

isbbinary i [Xx.(x*and)v(xior)], 

isrelop E [Xx.(x»lseq)v|x«greq)v(x=ll)v(x=gt)v{xs«q)v(x»noq)]; 
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APPENDIX   3 

THE SEMANTICS 

3.1    Top Le 'el Functions 

AXIOM TOPSEM: 

FUNCT     i [\p o i.(lNPUT®PASCAL(p,o)»OUTPUT)(i)], 

PASCAL    s [\p 0 i. MPCp.a.FRAMEÖtp.o.i))], 

FRAMEB    s [XI i o f. (f»8)-*[Moc.{loc=filoloc INP) i INTERNALREP(i), 
(loc=filcloc OUT) -» INTERNALREP^), 
(loe«lextloc) -♦ stitmof t.UNDEFJ.Uw'], 

MR ■ [Xt f. MD(declof t,f)»MS(s1atmof t.f)], 

INPUT     i ID, 

OUTPUT    • [oiF.[X8.[Xi.i««of  i -»EOF, 
ispair i -»mKpair(F(f5tof i),F(rmd.if i)), 
isconst HnumoflD.UU^OBUFFER «)]], 

INTERNALREP * [^F.[Xi.is«of  i -»EOF. 
ispair i -»mKpair(F(fsto< i),F(rm<Jof i)), 
isint   i -»mknumcontt(i),UU]]; 
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3.?    Declaration Part 

AXIOM DECSEM: 

MD ■ [Xd f. MDEF(d,f)«MDEC(d,f)], 

MDEF      • [*F [Xd f.lstmptyst  d -♦ ID, 
istypedel   d -» CREAT(f,namof d.typof d), 
isempnd     d -» F(fslof d.DsFlrmdof d.O.ID]], 

MDEC       • [otF.[Xd f isemptyst  d -» ID, 
isvard«!   d -> CREAV(f,namof d.typof d.f), 
isprocdocl d -» CREAPIf.namof d.prspof d.f), 
isfundecl   d -♦ CREAFIf.namo« d.fnspof d^ypeof d,f,f), 
isempnd     d -♦ F(fstol d.DöFIrmdof d.D.ID]], 

GREAT     • [M n ty s.CREALOCIf.s.typidloc.n.ty)], 

CREAV     « [Xf n ty fl s.CREALOCd.s.typeloc.n.TYPEVALOy.d.O)]. 

CREAP     * [Xf n ps II s.STOREO.CREALOCd.s.acclnk.n.fD.procloc n.ps)], 

CREAF     ' [Xf n fs ty It fl $. 
STORE(flST0RE(f,CREAL0C(l1slacclnk,nlll)1fyplunloc n,TYPEVAL(ty,lt,s))1luncloc n.ls)], 

CREALOC   • [XI s loc n val.lSPRESENKn.slDHUU.STGREd.s.loc n.val)]; 

  i« ■■ i   -.---- ■ —..-—.^A..^  M.. 



■ i iIJWHI w«ii' ivrmnm t*ii~*mmmmm*3amm*~m*'^*'      IIIW»IIWIII     ii ■ \u^^m^m \nm   nm^^mn 

The Semantics of PASCAL m LCF 54 

3.3    Definition of MS 

AXIOM MSDEF: 

MS^F [Xst f. 
is'j.'nptysl st -♦ ID, 
iscmpnd st -> 
isetnptyst(f5tof it)- 
isUbstatlfstof st)-* 
i5p,oto(fstof st) -> 
isass (fstof st) ■» 
isproccall(fstof st)- 

isreaddstof st) -» 
iswritefistof st) -» 
lscond(istof st) 

iswhile«slof st)   -> 

isrepeat(fstof st) 

IsfortoUstof st) 

isfordn(fstcf st) 

♦ F(rmdof st.f), 
F(mkcmpnd(Rtfltmnf(f5lo( stj.rmoof st),f), 
GOTW.IaboloUfstof r,t),l), 
ASSIGN(lhr.of(fstof Gtj.MCXPRIrhsofdstof st),f),f)0F{rmdof st.f), 
>[Xs.MPB(PROCFAL(ndmot(fsto( st)1f)s),actarsof(fstof sD.f.s.namoflfstof st))]9 
[\s.MD(PROCDECL(namotlfstof st),f,s),succ f.s)]® 

[Xs.F(PROCBODY(namo((fstof sD.f.sj.succ f,5)]QCLEAR(succ 0®F(rmdof st.f), 
REAO(namof{f3tol 5t),f)»F(rmdof st,«), 
WRITE(namof(fctof r.t),f)eF(rmdof st.f), 
COND(MBEXPR(testo(((stof st),!), 

F(appcnd(thGnof(fstot st),rmdof st),4),F(append(elseof(fsto( st),rmdof $0,0), 
COND(MBEXPR(testof(f5to( stl.f), 

F(append(bodyo((fstof st),st),l),F(rmdof st.O), 
• F(appond(bodyof(fstof st))mkcmpnd(mkcond{mKboxprl(not, 

testof((stof sO),fstof st,ES),rmiof st)),!), 
COND(MBEXPR(fortost(fstof st),f), 
ASSIGNdndoxofifstof 5t),MEXPR(lbof(fstof st),f),f)® 
F(append(bodyof(fstof sO.fortoup st),f),F(rmdof st.O), 
CONO(MBEXPR(fortest(f5tofst),f)) 

ASSIGN(indexo((fslof st),MEXPR(ubof(fstof sO,f),f)® 
F(appand('}Odyof(fstof stj.fordnup st),f),F(rmdof st,f)),     UU,UU]]; 
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S.4    Axioms for Statements 

AXIOM STATSEM: 

READ    £ [Xn « s.lSFUNFRO.s.BHASSIGNKMEXPRtfstofdBUFFER s),i),i, 
STOREtO.s.fileloc INP.rmdofdBUFFER 5)))1UU]1 

WRITE   i [Xn f s.lSFUNFRO.s.O)-» STORE(0,s,fileloc OUT, 
mkpairlmknumconstlFFTCHVIn.f.sll.OBUFFERsJl.UU], 

GOTO    i [XF.[Xn i Fdogmln.TEXTOD.f)]], 

ASSIGN « [«iF [Xn v f s. 
n=FUNV-»ISADMISVAL(s(f1typclocFUNV)1v(s))-»STORE(f1s,FUNV,v(»)),UU, 
ISINTYPE(n,v1f1s)-»STORE(f1slLOCOFVAR(n1fls)lv(s))1 

istopf(fWUU, 
ISFUNFR(f,s1NEWFP(n,f1s)HF(VARBNDTO{n,f1s),v,NEWFP(n,f,s),s),UU]]( 

COND    = [Xq f B «^(sHfCsj.gls))], 

MPB      s [Xfa aa < s n BINO(fa,aa,succ I, 
MAKFRAME(PROCBODY(n1f1s),PFLNK(n1f1s),succ f.s))], 

CLEAR   = [Xf sM.(fl«f)-»UU,s(fl)]; 

ii 
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The Semantics of PASCAL in LCF 

3.5    Bidding Mechanism 

AXIOM BINDINGS: 

BIND    ■ [o<F.[Xfa aa f c. 
ised fa -* (iseof aa «* s.UU), 
lsparam«t«r(fstof fa)-»F(rmdof fa.rmdol aa,f,MKBINDING«stof fa.fttof aalfls)),UU]], 

MKBINDING l [Xfa aa f s. 
isvarp(ta) -* TYMATChKfa.typoiccaa.l.s) -»CREALOC(f,s,bindloc,namof fa,EXPRFORV(aa)),UU, 
i8vaip(fa) -♦ ASSIGN{namof fa.MEXPRIaa.O.f.CREAVIf.nanr.if «a.typof fa.CRNTFlf.s),«)), 
is«unp{fa) -♦ TYMATCHlfa.typfunioc.da.f.s) -♦ 

CREAFU.namoffa.FUNCDEFIaa.f.sj.typof lalCRNTF(f,s)1PFLINK(aa1f18),s),UU, 
IsproeplfaHCREAPCf.namof falPROCDEF(aaIf,s)1PFLINK(aa1f,s)ls),UU], 

TYMATC!; s [xf, loc aa f s.TYPEVAKtypof fa.CRNTFO.sl.s^TYPEDEFdoc aa.pred f.s)], 

TYPEVAL ^ [odF.[Xn I s. 
isbasotype n -> n, 
isarspet   n -» mkarsp«c(F(arliir)Of n,f,t),F(typ«lof n,f,s)), 
istyppart n -» iseof n  -* n.ispair n -* mKpair(F(fstof n,f,s),F(rmdof n,f,s)),UU, 
ISLOCALOypidloc nI«(f)HF($(f1typidloe n),\,s), 
ittopf f -» UUlF(n,CRNTF(f1$),s)]]; 

56 
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3.6    Evaluation of Expressions 

AXIOM EXPRESSIONS: 

MEXPR i [ccF.[K» I s. 
isconst •     -» MCONST «, 
isvariablt e -» FETCHVIo.f.s), 
isfund«s •    -» RETURN{;ucc f,WF(namof «.adargof e,f,s)), 
isexpr a -»isunaryCopof e) -» MOPKopof o,F(arglol e.f.s)), 

isbinary(opof •)-» M0P2(opof «.FCarglof «.(.s^Flarjaof «.f.sjj.UU.UU]], 

MF     i [Xn i f. MFB(FUNCFAL(nlf),a1fln)©MP(FUNCOEF(n,f)(suce f)], 

MFB    » [Xfa aa f n s BINDdeja.succ ',CREALOC(succ f.typeioc.FUNV.TYPEOEFCn.f.i), 
MAKFRAME(FUNCBODY(n1f,s)1PFLNK(n1f1s)lsucc f.s) ))], 

MBEXPR « [oiF.[X« f s. 
(•«trueHTT.te^falsal^FF, 
isbexpr e -»isbunarylbopof o) -» MBOPKbopof o,F(barglof e.f.s)), 

isbbinary(bopof e)-» MBOP2(bopof e.Flbarglol e.f.sj.FCbarg^of o.f.s)), 
itr«lop(bopof •)-.RELOP(bopof «.MEXPRlarglof •1l,8)lMEXPR(arj2of •,f,8)),UU,UU]]1 

MCONST i [Xx.isconsl x -♦ numof x.UU], 

M0P1    « [Xx.xspplus^Xx.x.xipminus^Xx^B-xj.x'plusl^succ.X'minusl-^prad.UUl. 
MBOPI   ' [Xx.x^ot-^'.UU], 

M0P2    5 [Xx.xsplus-»l»1xsminus-*!-,xstim«-»!«,x«div-»l/1x«rmdr-»mod1UU]l 
MB0P2   i [Xx.x»and-»!A1x«or-*!vpUU]l 
RELOP   * [Xx.x«ls«q-»!<,x»8r«q-»l>1x»lt-»l<(x»gt-*!>,xteq-»!=lx=neq-»/IUU]; 

matt -   
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The Semantics of PASCAL in LCF 

3.7    Variables 

AXIOM VARIABLES: 

NAMTVAR s [Xv,n=FUNV-*UU,isname v-»v,i5ae v-*namof v.UU], 
LOCOFVAR • [Xv f s.isnamo v^v.isae v-»arloc(namof v.VAKsubof v.f.sH.UU], 
TYPOFVAR -• [Xv f s.isnamo v^TYPEOFIv.f.sl.isa« v-»typoiof{TYPEOF(namof v f,$)),UU], 
EXPRFORV s [Xv f s.isnam« v-»v,ls8« v-»mkae(namof v,EXPRVAL(subof vjj.UU], 
VARBNDTO • [Xv f s.lSBND(NAMOFVAR v.f.s)-» 

isname v -» BVALOF(vlfls), 
it«« v    -♦ mK««(BVALOF(namo» v.f.sj.subof vVUU.v), 

ISINTYPE    • [Xv val 1 s.lSLOCAUtypoloc NAMOFVAR(v)1«(f)) -» 
ISADMISVAL(TYPOFVAR(vlf,i))val(s)))FF], 

ISADMISVAL « [Xty v.ttylNTHaint v.itsublim ty+ISINBOUNDW.tyj.UU], 

ISINBOUND  ä [«(F.[Xx y. 
Iseof x  -♦ TT, 
ispair x -» F(fstof x.fstof y)AF(rmdo< x.rmdof y), 
isint x  -» issublim y->(x>numoUlbof y))A(x<numoUubof y))lUU,UU]], 

VAL • [otF.[Xp 1 «. 
iseof p  -♦ EOF, 
ispair p -♦ mkpair(MEXPR(f$tof p.f.sj.FCrmdof plf1s)),UU]), 

EXPRVAL     • [«^F [Xp f s. 
iseof p   -♦ EOF, 
ispair p -» mKpair(mknumconst(MEXPR«rsto( p,«,s)),F(rmdof p)f,s)),UU]]; 
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The Semantics of PASCAL in LCF 

3.8    The Lookup of the Store 

AXIOM LOOKUP: 

IBUFFER = [Xs.s^.filcloe INP)], 
OBUFFER i [Xs.stfl.ftloloc OUT)], 
TEXT      = [Xf s.slf.toxtloc)], 
PROCDEF : [\r\ f s.FETCH(proeloc n.f,«)], 
FUNCDEF s [\n f s.FETCH(funcloc n.f,«)], 
TYPEDEF - [Woe 1 s.FETCHdoc.f.s)], 
PROCTXT s [Xn f s.UxtoUPROCDEFCn.f.s))], 
FUNCTXT = [Xn f s.tex'oflFUNCDEFtn.f.s))], 
PROCFAL 5 [Xn f s.fargoflPROCOEFCn.f.s))], 
FUNCFAL i [Xn f s.fargoflFUNCDEFCn.f.s))], 
PROCDODY = [Xn f s.statmoflPROCTXTCn.f.s))], 
FUNCBODY s [xn f s.statmoflFUNCTXTIn.f.s))], 
PROCDECL ' [Xn f 5.d«lo<(PR0CTXT{n1f.s))j, 
FUNCDECL ' [Xn f s.d»clof(FUNCTXT(n,fps))]1 

PFLNK    B [Xn f s. FETCH(acclnk n.f,:)], 
NEWFP    3 [Xn f s. ISBNDWAN'QFVAR v.f.s)-» pred f,CRNTF(f,s)]p 

CRNTF    ^ [Xf s. s(f,alnk)], 
FETCH    s [«iF^XI f s.lSLOCALO.sW^sU.D.islopfUHUU.FO.CRNTFM.s)]], 
FETCHV   : [oiF.[Xn f s.lSLOCAUtypeloc NAMOFVAR(n),s(f))-» 

ISLOCAL(NAMOFVAR(n)1s(f)Ht(f,LOCOFVAR(n1f1s)),UU, 
istopf(f)-»UU1F(VARBNDTO{npt,$),NEWFP(n,f,s)15)]], 
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TYPEOF   = [Xn i s.slf.typoloc n)), 
BVALOF   = [Xn f s s(fpbindloc n)]; 

1 
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3.9    Updating and Miscellaneous Axioms 

AXIOf/. Uf -ATE: 

STORE      z [\i s loc val.[Xfl.fl««->MODFRAME(s{f),loc1v«l),s(il)]]1 

MODFRAME °- [\i loc val.[Xlocl.locUloc-»val,f|locl)]], 
MAKFRAME • [Mxt In f $.[Xfl.ll«f-*[Xlocl.locl«»«xtloc-*txt,locl»alnk -♦ ir.1UNDEF],s(fl)J]; 

AXIOM FRAME: 

fram«   « [Xs f.s(f)], 
istopf = [X(.(f-B)]; 

AXIOM AUX'iEM: 

19       • [Xf A r.iiHr))], 

ISFUNFR tha&i t nf. ISLOCAKFUNV.sCf))-» fF,pr«d Lnl -* TT,F(pr«d l.s.nf)]], 
ISLOCAL « [Xloc fr.frdoe^UNDEF-^FF.TT], 
ISPRESEhT • [Xn fr.isname n-»ISLOCAL(typidloc n.frlvlSLOCALUypeloc n.frW 

ISLOCAKaccinK n.fiOvlSLOCAUbindloc n.frj.UU], 
RETURN H [\1 8.ISL0CAL(FUNV,s(f)Hs((IFUNV),UU]1 

ISBND    ■ [Xn s MSLOCAL(bindloc n,s(f))]; 

^^ ^^^HaHaaa_a^ —i      *j"- 
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APPENDIX   4 

Proof of the equivnlence involving WHILE for gotofree programs 

4.1    List of LCF commands 

TRY 1 INDUCT -; 
TRY 1 SPREF; 

LABEL INDUCT, 
TRY 2 SPREFi 
USE GOTOF; 
RPPL   -   ,S,m» cmpiirtifiwhi l«(t,S) ,fS), f ; 

LABEL HELP; 
SIMPL - BY C0T0F1; 
flPPL . INDUCT,S.l.li 
SIMPL -i 
USE CONDI -; 
RPPL -.tIBEXPRlt.n.S; 
SIMPL -; 
SSt.HELP; 

TRY SSUBST .nSFP net 3. 
TRY ;QE0; 

M^^^HMM^M« 
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4.2    Printout of the proof 

|TRY #i       VS  I   )   .   isqototr««(S)   :!  Uht'.L !(1BEXPR(I, O ,nS(S, ())  c llSlmkcmpndlnHwhi led ,S) ,ES), () INDUCT  331  . 

|   |TRY #1#1      VS  «   f   .   iiqototrttO)   ü  UU^MBEXPRd, f) ,nS(S,)))  c MS (iii>cmpnd(m* wh, It (I .S) ,ES), () SPREf. 
|    |332       VS   I   f   .    i»90to(r»i(S)   ;:   UUmßEXPRU, U .flSIS, ())  t llSdm cmpnddnkuhi lt(t,S) .ES), O       —SPREF   B>   . 

I    -  

|   |TRY 0102      VS  t   «   .   iS90to<r««(S)   ::   [At b  .CONOM.bttF (I .b), ID)) (nBEXPRU, f) ,nS(S, f))   c IIS (mi c-pni (mi wh i I e (I- 
,S),ES),0   !   BSSUME      VS  t   f  .   i»qolofree(S)   ;:  F (flBLXPRd , () ,(15(3, t))  c ftSdnl cmpndlmkuhi It tt ,S) ,ES), () SPRE> 

r. 
I   |333       VS   »   f   .    isqolo(rtt(S)   ::   F (rtBEXPR (t, () .MSIS, ())   c US (mkcmpnddnlwhi It (1 ,S> ,ES), f)      (333)   —  flSlUflE. 
|   |334       isc)otolrtt(S)   ä  TT    (334)   — SRSSUHE. 

|335      VS P  f   .   i»qolo(rtt(3)   i!   isgotod ct (F)   :!  n3(<tppcnd(3,P), I)  i t1S(5, ()KHS(P, ))       — USE  COTOF. 
|336        US  P   f   . isqolo(rtt(S)'>(iäqotolret(P)'t1S(<ipptnd(S,P),<)l'JU),UUl (S, nlcmpnddnlHhi lt(t,S) ,ES), I)   I   t.vS P   • 

)   . isqotofr«t(S)<(iigolo(rtt(P)<(t1S(S,t)xnS(P>()),UlJ),UUl (S.mt.cmpndlmiMtii lt(t,S)(ES),f)       — fiPPL  335  S  mkcmpnd. 
(mkuhi !i?(1,S>,ES)   f. 

|   |JJ/       ri5(ÄPptno(3>mkLM.H"c!{ir.UI-,;Ic(t,S;>ES))>«)  • «("!, l)kllS(mi cmnnd(mmhllt (t .S) .ES), 1)     (334)   — SIMPL  336« 
BY 33    COTOF1   . 
|   \tH       [.\S  t   (   . is9ato(rtt(S)'F(nBEXPR(t.(),nS(S,()),UUl (S,t.<>  c  [XS  t  f  . itqotofrtt (S)-riS (mkcmpnd (m» uh i it (t« 

,S)>EJ),().UU) (S.t.O     (333)  — BPPL 333 S t  t. 
|   |339      F(nBEXPR(t,1)^3(5,(1)  c nS(mlrc»pnd(in>Mhi It (l,S) ,ES),))     (333 334)  — SIHPL  338 BY 334   . 
j   |348      VT SI   .   C0ND(TlMS(Sl)OKF(nßEXPR(l)l),HS(S,t)),I0)  c C0N0(TinS(Sl  OetlSdnkcmpnd (mt whi It (t ,5) .ES) , f), ID. 

>     (333 334)  — USE CONDI 339. 
|   |341       tAT SI   .C0N0(T,113(31,()«F(HBEXPR(I,t),nS(S,O),1D)1 (MBEXPRK.O.S)  e  IXT SI  .C0ND(T,115(31, ()«nS(mkempn. 

d(mki.;'n lt(l,S),E3).(),ID)) (MBEXPR((,0,3)     (33i 334) — RPPL  340 II[I£XPR(I, () S. 
|   |342      CDN0(l1BEXPR(l,(),flS(3,()vKnBEXPR(t,f)  nS(S,t))1ID)  c C0ND(f1BEXPR(t, f) ,f1S(S, f)>llS(ml cmprddnt while (1 ,S). 

.ES),(),IC)     (333 334)  — SIMPL 341. 

I   I   - "  
j    |TRY  #1#:#1       C0ND(IIBEXPR(l,O.MS(S.nsF(nEEXPR(l,(),nS(S,()).ID)   ' nS(m»cmpncl(ml win lo(t,S),ES), () SSUB- 

ST  320 OCC  3. 

I    I    I     "-  
|   |   |   |TRY ,fl*2mi      COND(nBEXPR(l,f),IIS(S,()»FinBEXPR(t,(),nS(S,()l,'0)  c COND(nBE>:PR!t,(),nS(S,()xnS(micmpnd~ 

(mkuh:le(t,S),ES),l),ID) 

i    I    I   
j   j   |343      COND(nBEXPR(l,(),nS(S)()<.F(nBEXPR(l,'),nS(S,t)),10)  c n3(mkcmpnd(»kwhile(l,3),E3),()     (333  334)  

SSUBST 342 USING 320 OCC 3. 

I I    
| |344  VS I f . isqolo(rtt(S) :: Ul b .C0N0 (I ,b«F (t ,b), 10)) ((IBEXPR (t, () ,(1S(S, ()) c (IS (mkcmpnd (mkuh i le (t ,S) ,E> 

S).()  (333) — SPREF 343. 

|345      VS  1   (   .   IsqototrttlSi   ::  WHILE (MBEXPRd,)) ,nS(S, O )  c tlSlmt cmpnddnkwhi It d,S) ,ES), ()       —  INDUCT  332 3. 
44. 

^——^ _aMa_<Ma^ -z-rrr. - 
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APPENDIX   5 

Proof of the equivalence involving REPEAT for gotc-free programs 

5.1    Li>t of LCF commands 

TRY 1 INDUCT -; 
TRY 1 SPREF| 

LABEL INDUCT; 
TRY 2  SPREFj 
USE GOTOFj 
RPPL - ,3,mtcmpn(i(mkcond ikbtyprl (nol, 1) ,mtr«i|jMl'5, ,) ,E5) ,ES) . ( I 
LABEL HELP; 
SinPL  - BY COTOFli 

flPPL   .INDUCT.S.t.l; 
SIMPL   -; 
USE   CONPl   -; 
flPPL  -,hBEXPR (mkbexprl(not,t),») ,S; 

SIHPL  -; 
SSt.HELP; 

TRY SSUBST .MSFP OCC 3| 
TRY SSUBST .MSFP OCC 4j 
TRY ;QE0| 

    - ■i  
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5.2    Printout or the proof 

|TRY #1      VS  I   «   .   iiqotolrt«(S)   II  REPfflTCMS (t, t) pHBEXPR («kbtxprl (not, O , f))  c HSCmk cmpnd (Wreptat (S, I) ,ES),«). 
INDJCT 331   . 

I     
|   |TRY #1*1      VS  (   t   .   i»qoto(rt»(S)   : i  UU (nS(S, () .nBEXPRdiUbixprl (not, I), f))  c nS(m> cmpnd (m, reptaKS, t) .ES), t), 

SPREF. 

|   |332      VS  t   )   .   isqolotr««(S)   :;  UU (HSCS, I) .HBEXPR (mkbtxprKnot, I), f))  c tlSdnkcmpnd (mkrtptat (S, t) ,ES), (! 
- SPREF  BV   . 

I     
I    —  
| |TRY #1#2 VS t f . iiqoto(r««tS) ;: UJ t .b«C0ND(t,F(b, I), 10)1(115(5, () .HBEXPR (mkbexprl (not, I), ()) cMSdnkc- 

mpnd(nikr«peat(S,t),ES),«> : RSSUKE VS t f . iiqotofrM(S) || F (nS(S, f) .IIBEXPR (mkbtxpr-l (not, n , f)) c HS (mk cmpnd- 
(mkrepeaKS.D.ES),)) SPREC. 

|   |333      VS  t   f   .   isqotofrtt 3)   ::   F (MStS, t) ,MBEXPR(inkb»xprl (not, O , O)  c riS(mkcmpnd(mkrep»at (S, t) ,ES), ()     (333. 
) — ASSUHE. 

|   |334       isqo(ofri«(S)  s TT    (334)  — SflSSUME. 

|   |335      VS P  f   .   Jsqoto(rti(S)   ::   ist|Otofre»(P)   ;:  !1S(append(S,P), I)  i nS(S, flKOS (P, <)       — USE GOTOF. 

| |336 I^S P « . i»c)Oto(rtt(S)-(isqolo(re«(P)-MS(app«nd(S,P),l>,UU),UU) (S,i«kcinpnd(mkcond(mkbexprllnol, D.mkrep- 
•at (S,t),ES),ES),() 5 IxS P I . isqotofr(:o(3)-.( isqotofr«e(P)*(nS(S, t)i.nS(P, f)) )UU)>UU1 (S.mkcmpnddnk cond(mkbsxprl (. 
not, t) .mkrepeat (S, t) ,ES) .ES), I)      — RPPL  335 S (tikeiiipnd(nikcond(mU)e»prl (not, I) .mk-opoat (S, t) ,ES) ,ES)   (. 

| |337 nS(Äppend(S,inkciiipnd(mkcond(rin he>|>rl (not, II .mkrepsal (S, t) ,ES> ,ES)),)) i I1S(S, IIKPIS (mk cmpnddnkcond (mkbsx. 
prKnot, l),mkrepeat(S,t),ES),ES),l)     (334)  — SinPL  336 BY 334 G0T0F1  . 

| |338 txS t ( . isqotofre«(S)-F(nS(S, t),nBEXPR(nkbrvprl(not1t),t)),UUl (S,t,») c IAS t f . isqotofre« (S)-.MS (mkc. 
mpnd(mkrepsat(S,t),ES),f),UU) (S,t,f)     (333)   — BPPL  333 S   t   I. 

|   |339      F(nS(S,t),MBEXPR(mll)oxprl(nol1l),())  c US dm cmpnd (mkropsat (3, t) ,ES), O     (333 334)   — SIIIPL  336 BY  334. 

| 1348 VT SI . nS(Sl)n!.-COND(T,F(nS(S,n,nBEXPR(milmpi-l(iiol,!),()),10) c rtSISl, ()>:C0N0 (T.tlS (mt cmprJ (mk repeat. 
(S,t)(ES).n,ID)     (333 334)  — USE C0H01 333. 

| |341 (AT SI .nS(Sl,t)KC0N0(T,F(nS(S,l),IIBEXPR(intb8xprl(not,t),f)),I0)) (l1BEXPR(mkbexprl(not,t),»),5) c [ATS. 
1 .MS(S1, f )«CONO(T,nS(mkcmpnd(mkrepoat(S,t),ES),(),ID)l (MBEXPR(mkbo>prl(nol,t),(),S) (333 334) — flPPL 340 MBE. 
XPRdnkboxprl (not, t), ()   S. 

| |342 nS(S, t)«COND(nBEXPR(mkbo>prl(not, C , l),F(nS(S,(),MBE>PR(mkb9xprl(no,,t),f)),I0) c HS (S, OwCONf) (MBEXPR (. 
mkbexprl(not,t),(),nS(mkcmpnd(mkrcpBat(S,t),ES),f),ID)     (333 334)   — SIHPL  341. 

I    I       
|    |    |TRY   m2#l       nS(S,»)>:C0N0(nBEXPR(n,H)exprl(not>t),l),F(l1S(S,(),HBEXPR(mkbexprl(not,t),f))1I0)   C RS(«ke>Vntf(* 

mkrepoat (S,t),ES),f)           SSUBST 320 OCC  3. 

1    I    I   -  
| | | |TRY #U2#U1 nS(S,l)xC0N0(nBEXPR(mkbexprl(nol,l),t),F(n5(S,f),MBEXPR(mkbexprl(nol,t),t)),lD) c nS(S1(). 

KnS(mkcmpnd(inkcond(mlbe>prl(not,t),iiikrepeat(S,t),ES),ES),t) SSUBST 320 OCC  4. 

MM   —- 
I { | I |TRY *U21U1#1 nS(S>t)5iC0ND.,lBEXPR(mkboxprl(not,t).(),F((1S(S,(),nBEXPR(mkb6xprl(nol,t),())lID) c nS(. 

S, ))»C0N0(l1BEXPR(mkbexprl(not,t),t), MS'ink cmpnd (ink repeat (S, t) ,ES), f), ID) 

MM  -  
| | | |343 HS{S,t)KCONO(nBEXPR(mkbe-prl(not,t),n,F(nS(S,U,nBEXPR(mkbexprl(not,l),f)),IO) c MS (S, f )icl1S(mkcmp. 

nd(ink.cond(mkbexprl(not,t),mkrepeat(S,t),ES),ES),f)  (333 334) — SSUBST 342 USING 320 OCC 4. 

I I I - —  
| | |344 nS(S>l)«COND(nBEXPR(BAne,prl'not,t),)),F(nS(S)(),nBEXPR(irkbe>prl(notlt)1f)),ID) c MS (mkcmpnd (mk repea- 

US, t),ES), I)  (333 334) — SSUBST 343 USING 328 OCC 3. 

I I  —  
| |345 *S I t . itqotofree(S) n Ub t .bscCONOd.F (b, tl, 10)1 (115 (S, f) .MBEXPR (mkhexpr 1 (not, I), f)) c nS(mkcmpnd(. 

mkrepeai<S,t),ES),n     (333)  —SPREF  344. 

I   —  
|346      VS  t   (   .   itqololree(S)   M  REPEnT(nS (S, () ,t1BEXPR (mkbe.prl (not, I), I, )  c HS(ink cmpnddnkropeat (S, t) ,E:;), O 

— INDUCT 332 345. 

-• -  - 
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APPENDIX  6 

Proof of the equivalence involving FORTO for goto-free programs 

6.1    Lift of LCF coimnands 

TRY 1 INDUCT -| 
TRY 1 SPREF; 

LABEL INDUCT; 
TRY 2 SPP:Fj 
USE  COTCFj 
RPPL  -  ,S,m>cmpnd(»Horto(t,ir*ti.prl(pluil1 D.tZ.SJ.ES)   Jj 
LABEL    HELP; 
SIMPL   -   ; 
RPPL   . INDUCT.S, l.mfexprKplusl, i)1«2,(i 
SIMPL -; 
USE CONDI -i 
RPPL -.flBEXPRlmkreKlsjq.t.iJJ.n.S.flSSICNd.nEX'RU.IM); 
SIMPL -i 
SS+.HELP; 

TRY SSUB3T .MSFP OCC 3; 
TRY ;QEDj 

Htmmmtmm^. _. 
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6.2    Printout of the proof 

|TRV  «1        VS   i   (1  «2   f   .    i$qolotree(3)   ::   FORTOt i ,ll, «2,nS (S, f), 11   c IIS (mkcmpnd (m> lorto d ,«1, «2, S) .CS) , . I I. 
NDUCT  30*   . 

|   |TRY #1#1       VS   i  «1 82  I   .   ijqotolrri^lS)   M  UU( i ,«1,92^5 (S, (), ()  c MSdnt cmpnd (»MOPIOI i,»1,62,5) .ES), f) 
SPREF. 

|   |30S       VS   i   •!  «2  f   .   itqoto<rt«(S)   n  UU( i ,»l,»2,nS IS, n , t)  c HS (m> cmprd (mMor to d ,el ,»:.Si , ES) . f)       —. SPR. 
EF  BY   . 

I      
I     
| jTRY #i#2 VS i • «2 ( . fsqota<rea(S) it tM • t2 b < .C0N0(nBEXPR(mlrt I (iitq,*,«2), <), (RSSICN 11 ,nEXPR (e, <) . 

.Ot-blieFd ,in»t>prl(plusl, i),(2,b,n,lD)l (i,e,i2,nS(S,l),<)  c nS(m» cmpnddn» fartol i ,•,«2, i) ,ES), f)   i   RSSUME       VS   U 
• t2   I   .    isqototr«.(S)   ::   F(i,i,*2,nS(S,n,l)  c nS(mkcmpnd(iiiHarto( i >*,*2,S) ,ES), <) SPREF. 
| {30b VS i • 12 f . itgatalratlS) :: F (> ,*.*2,nS(S, f), 1) c nSdnkcmpndlr.K lorto( i ,t,e2,S) ,ES), O (306) — M* 

SUHE. 
|   |307       isgolofr*«(S)  = TT     (307)  — SRSSUtlE. 
|   |308      VS P  I   .   i£qolofre»(S)   it   isqotolif9(P)   :;  IIS (append (3,P), 1)  * I1S(S, OKIIS (P, t)       — USE  C0T0F. 
| |309 [\SP ( , isqotofr«e(S)->( i5qoto(reii(P)^nS(.i|)pBnd(3,P), () ,UU) ,UU1 (S,in» cmpnddnt (or to( i ,m» evprl (p lusl, i) ,t» 

2,j),ES),() i (VS P ( . i3qotolre»(S)-.(isqoto(ree(P)-(f1S(S,f)kMS(P,()),UU),UU] (S,mkcmpnd(ffiHorto(i,m>e«p"l(plusl,. 
i) ,e2,3) ,ES), O       --- flPP!   308 S ml cmpnrt imi lor lo( i ,mt cpi"!'plusl, i) ,e2,S) ,ES)   (. 

| |310 MS (.i|)p6nd(3,iin cmpurtlml (oi to( i ,tnl o>i>r 1 (plusl, i) ,o2,3) ,ES)), I) ; MS (S, (lnflS (mk cwpnd (mt (or to (i, ml evprl (p I . 
usl, il.'Z.SKES),!)     (307)  — SIMPl   309 BY 307 G0T0F1  , 

| 1311 CvS > t e2 ( . isqololree(SI'r(i,o,c2,IIS(S,(),(),UU) (S, i,mle^prKplusl, i),«2,0 c [xS i e el I .isqotoU 
ree(3)-'MS(m>cmpnd(mMorto(',e,e2,S) ,ES), n,UU) (S, i,i»>«':prl(piutl, i),e:,() (306) ~- FiPPL 306 S i mke-prl (p lusl, » 
i)   e2   (. 

|   |312      Fd.mle-prKplusl, i),«2^15(3,1),()  c HSImlcmpndCmklortod.mioprKpiutl, i),o2,S),E3), ()     (306  307) . 
SIMPL   311  BY 307   . 

| |313 VT SI H . C0N0(T, (HvMS(Sl,())vF((,mkeyprl(plusl,i),«2^5(3,0,0,10) c COND (T,Hy (MS (SI, llcMS (mtcmpnd (m- 
Korto(i,mHMprl(plusl,i),i2,S),ES),0),ID)     (306 307)   — USE C0N01 312. 

| |314 UT Si H .C0ND(T, (Hi.MS(Sl,())>f (i,ml(«^prl(plutl,i),i«2,H5(S,O,O,I0)l (MBEXPR(ni»rel(lsiq,o,«2), ().S,fiSS» 
IGN(i,MEXPR(e, t), O) c (AT SI H .CONlKT.HnlMS (51, OiiMS (mt cmpnd(mk (or tol i ,i«k»xprl (p lusl, O ,e2,S) ,ES) , t)) , 10)1 (MBE. 
XPR(m>rol (Iseq.e,«2),0(S,flSSICN(i,riEXPR(e,(),()) (306 307) — RPPL 313 MBEXPR (ml ro I (lscq,»>«2) , ') S RUIfiNti,« 
MEXPR(9, I),I), 

| 1315 C0N0(MBEXPR(mkr9l(ls«q,0,»2),O,(flSSICN(i1MEXPR(e,O,Oin5(S,O)«F(i>iiik»vprl(pltisl,i),e2,MS(5,(),n,ID« 
) c C0ND'1BEXPR(mlrel (ls«q,e,»2), O ,fiS5ICN (i ,MEXPR («, O , Os(MS(S, () >;nS(mkcrpnd(nl (orto( i ,mkt>rprl(pluEl, I) ,•2,1),* 
ES),O),I0)     (306 307)  — SIMPL 314. 

|    |    |TRY  nntl       COND(nBEXPR(mlrol(l;.eq,o,92),0,(R35IGN(i,MEXPR(e.O,OKM5(S,0)KF(f,mk9xprl(plusl, i),e2,MS(5« 
(),(),10)   c MS(mlcmpno(iiiKorto(i,9,92.5),E5),0 SSUBST 293 OCC  3. 

I    I   I    
| | | |TRY *1#2*1#1 C0N0(nBEXPR(mlrel(ls9q,e,92),(),(fl5SIGN(i,MFXPR(9,O,OBMS(S,()K-F(i,ml9xprl(plusl, i),92,. 

MS(S, (), D.ID) c C0N0(MBEXPR(mir9l (lseq,9,92), O ,flS5IGN (i ,MEXPR(9, O , Oii(MS(S, OKMS (mlclnpndlml lor to (i ,mkexprl(pl. 
usl, i),62,S),ES>,IM,ID) 

|    |   | 316       C0N0 (MBEXPR (mkr9l(IS9q,e, 92),   !, (ASSIGN! i ,MEXPR(9, O , OvMS(S, O )KF (i ,mi eyprl (plusl, i), 62,MS (5, O , 1),. 
10)   c M5(inicmpnd(mklorto(i,9,e2,S),ES),0     (306 307)   — SSUBST 315 USING 293 OCC 3. 

|   |317       VS   i   9  92   (   .   isqototrefi(S)   ;i   (M  9 92 b   (   .C0ND(1BEXPR(mi ro I (Is9q,9,(,:), O , (flSSICN (i ,MEXPR (9,1), ONb. 
)'<F (i,mko>iprl(plusl, i),e2,l>10,10)1 (1,9,o2,M5(5(l), 1)  c MS (ml cm|)nd(mHofto( 1,9,92,5) ,E5), O     (306)   ---SPREF  316- 

|318       VS   1   9l  92   I   .   isqotolr99(S)   :;   F0RTO( 1,91,92^5(5, O , O  c nS(ml cmpnd(mKor to (. ,el ,e2,S) ,E5), ()        —   IN- 
DUCT   30b   317. 
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APPENDIX   7 

Proof of the goto-free factorial program 

67 

7.1    L't of LCF commands 

SS+ .fiPPLY,.FUNCT,.PfiSCflL,.l1P,.FUNCC0nPl.ID>.0P>.SP>.HDi 

TRY SinPLi 
TRY INDUCT .WHILE) 

TRY 1 SPREF| 
SS ♦ .CONOi SS - .SPt 
LABEL INDUCT; 
TRY 2 SPREFj 
LABEL LI —; 
TRY CASES -.(n.«)j 

TRY 3 SlflPLi 

TRY 2! 
USE  ARITHI  .LI  ,-i 
OED -; 

TRY  1 SIflPL; 
APPL   .INDUCT,pr»d n,K*ni 
SIHPL  -; 
TRY  t  0EDt 

I 

x 

■ IMII  ■        I     !    » 
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I 

APPENDIX  8 

Proof of the McCarthy Airline Reservation System 

8.1    List of LCF commands 

S3*   .nPPLY>.FUNCT(.PPSCBL>.FUNCCOriP,,nP,.SP; 
TRY SinPL; 
TRY  INDUCT   .REPEAT, 
TRY  1  SPREFj 
TRY COSES  -(tlKnql.Dj 

TRY   3 SIHPLi 
TRY   tt   USE  RRITH1  -, j   QED; 
TRY  J   SinPL; 

LRBEL  INDUCT; 
TRY : SPREF; 
TRY  CaStS  ■.(•ll(isq).3)| 

TRY  3  SIWL; 
TRY :•.  USE RRITh.  -, .  QED; 
SS*   .CONO.   .10; 
TRY   1   SIMPL; 
RPPL   . INDUCT, Kill     iq.ml'piir Istup n (isci.p.q) ,o$q) , slupdl (itq,p,q) ,ulupat (isq,p,q); 
SIMPL  -; 
TRY,  QED; 

I 

LS==i   *■ *m„. 
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8.2    Printout of tlie proof 

ITRV *1 Visq osq p q . iSMfsqdsq) :! uwlostosq) :: ismttp) :; i»(nt(q) :! RPPLVftlcCRRTHY.p.q, isq.osq) c BO» 

OMNG(p,q, isq.osq) SlflPL. 

I   — --  
|    |TRY  »Hi       Visq osq p q   .   nwtsqdiq)   ;;   iswlos(osq)   ::   mnKp)   ::   isinttq)   ;:   OUTPUT(-(nEXPR (rq  O.MSIBOOY.. 

O.REPDCsl.O.REflDdjI.OJRfinEKp.q, isq.o-.q)))) )i3)«REPEPT(nS(B0Dy,0) .HBEXPR (mkbexpr 1 (not ,m» ro I Icq.rq.mk numconsl (3)- 
)) ,0),0.nS(B00Y,0,REnD(st,8 REflD(ul,0,FRnMEl(p,qr isq, osq))))), OS (BODY, 0,REfiO (it, 0,REflO(ul,0, FRAME Kp.q, isq,osq)i- 

)))   c  BOOMNG<p,q.isi,osq) INDUCT 388  . 

| |TRY flilti Visq osq p q . isufsqdsq) ;: iswtoslosq) :: isinKp) :: itint(q) :: OUTPUT (-(MEXPR (rq, e,ns (B* 
ODY,0,RtflD(s1,0,REfiO<wl .OJRfltlEKp.q, i«.q,osq)))) )«3)-.UU(nS(pODY,0) .rtBEXPR (mt btxprl (not ,mM-« I (eq,rq,m> numconst (3)« 

)) ,0) [a,l1SIB0DY,0,RERD(s1.0,REn0(ul,0,rRnMCl(p,q,isq,osq))))),H3(B00Y,0,REfl0(st,0,REfl0(wl)0,FRfinEl(p,q, isq,osq)). 

)))   c  BfW :NG(p,q, i'-.q,osq) SPREF. 

|   |   |33S       iswlsqdsq)   ■  TT     (335)   — SAStUPf. 
|   |   |336      iswtostosq)   = TT    (336)  — SnsSlülE, 

i   |   |337       ismttp)   ;   TT    (337)  — WTSUHt. 
1    |    |338       itinl(q)   =   TT     (338)    SB^SUHE. 

I    I    I      
|   |   |   |TRY mm.»!      0UTPJT(-(ell(isq)=3)-UU,t1S(B0DY19,FRflnE:(p,q,isq)osq)))  c DO0HNG(p,q, isq.osq) COSES» 

-(ell(isq)»3) . 

I    I    I    I    -  
|    |    |    {    |TRY #i#l*l*l«3      0UTPUT(-(ell(isq)=3)-.UU,nS(B0DY,0,FRBME2(p,q,isq,o5q)))   c BOO! lNC(p,q, isq.osq)   :   SfiSS- 

UME       -(ell(isq;=3)   s   FF StHPL. 
{   |   |   |   |339      <(tll(ttq)01   s FF     (339)  •— SflSSLHE. 

|   1340      0UTPUT(-(»ll(isq)-3)-UU,nS(B00Y,8,FRnnE2(p)q,isq,osq)))  c BOOUNC (p,q, isq.osq)     (335  33G  337  338» 

339)   -— SinPL BY 335 336 337 338 339   1.113. 

I   I   I   I   —- "-  
I   I   I   I   -   
I   {   |   |   \Vn Mimm     0OTWT(«JtlUiM|>«3»«üü,«$<IOOV,i,FtmCH#,q,lMi»M>>> c •00i:|<W«|i,q,tM|i»M|l   :  SfiSS» 

UME       »(•ll(isq>>3)   £  UU 
I   I   I   I   |:U       »(ell(isq).3)  ! UU    (341)  — SRSSUIE. 
|   |   |   {   |342      TT 5  UU     OJ'J 341)  — uSE flRITHl 341  335. 

I   I   I   I   -—   
MM    "  
|    {    |    |   |TRY #imUl*l      0UTPUT(-(ell(isq).3>4W,nS(B00Y,e,FRRnE2(p,q,isq,o»q)))   c B00I iNCtp.q, isq,03q)   t   SfiSS» 

UME       -(•Il(isq)r3)   f  TT SIMPL. 
|   |   |   |   |343      »(•ll(i»q).3)  i TT    (343)  — SfiSSUfE. 
| | | | |344 0UTPUT(-(tll(i»q).3)-UU,nS(B00Y,eiFRBnE2(p.'',1iic,t»q))) c BOOtlNf p,q, Isq.ost,) (343) —SIMPL» 

BY   343     TH6. 

MM  -  
|   |   |   (345      0UTPUT(-('!ll(isq).3)-.UU,nS(B0DY,8,FRPME2('',q1isq,osq)))  c B00I.ING(p,q, isq.osq)     (335  336  337  338)   » 

— CfiSES  »(€ll(isq) = ?)   344  342 340. 
|   |   |      
| | |3*6 Visq osq p q . iM<«q<iiql :; iiwtor.(o3q) ;; isint(p) :: isinl(q) :: OUTPUT (-(MEXPR (rq, 0,MS (BOOY, 0,R» 

|Mlat,CfMM(Hl ,0,FRBIiri (p,q. i?q,o-.q))))) .3)-UU (MS (BODY, 0) ,MBEXPR(mi he.prl (not, ml i el (r,(|,r(|,mt n.,mcon<,t (3) ) ) ,0) ,0» 
nS(|IOOY,8,RCAO(tl,(,ll£raiHl,(.MMiCI (p.q, iM|,05n))))) ,MS(B00y,0,REnD(st,8,REflD(wl ,0,FRnnEl (p,q. i!.q,os.q))) )) c B» 

00) ltlG(p!q,lxq,o-.q)       — SPREF 345 BY 335 336 337 338 1119    LM2. 

I   I   —- —  

I |TRY t\t\»2 Visq osq p q . iswl-.qdsq) :: i5Hfos(o5q) :! isint(p) : : isint((|) ;: OUTPUT (-(MtXPR (r q, 0, MS (B» 
ODY,0,RffiD('.t,0,REnO(ui,0,FRfillEl(p,q, i--q,c ;q) ))))«3)-.l*B T ( .B'>C0ND(T,F (B.T, f). ID)! (MS(B00Y, 0) .MBEXPR (ml bexprl (» 

not^mlrnl (oq.rq.m» numconst (3)) > ,8) ,8,MS (P0DY,e,RER0 (s 1,0,REfi0 (w 1, 8,FRnME 1 (p,q, isq,osq))))) .MS (BODY, e.REOD (s t, 0,R» 

EP"(ul ,e,FRnnEl (p,q, i3q,osq)))))     c    BOO) ING(p,q, isq.osq) ! fiSSUME V   isq  osq  p  q     .    iswfsqd» 

sq) ;! iSH(os(osq) ;; isinl(p) ;: isinKf) :: OUTPUT (-(MEXPR(rq,0,tlS(BODY, 0,PEflD (s I, O.RERD (w 1, 0, FRfiMEl (p» 
,q, isq,o3q)))))=3)-.F(MS(nODY,e),rir.EXrR(mlbe>pil(nol,ml'rel (eq.rq.ml mimconsl (3))) ,8), B,MS(BnOY, 0,RERD ist, O.REfiO (u I » 

'oirRRMEKp.q, irq,osq)))))>n3(B0DY,e,REfl0(5t,B,RERD(wl,e,FRRMEl(p,q, isq.osq)))))   c B00I ING(p,q, isq.osq) SPRE» 

F. ' 
| | |347 Visq osq p q . iSM(sqdsq) ;: isufos(osq) :: isint(p) :: isint(q) ;: OUTPUT U(MEXPR (rq, 0, MS (BODY, 0, R. 

ERG (st ,0,RERD(»l, O.FPnMEl (p.q, isq,osq)))) i=3)-F (MS(B0DY,0) ,MCEXPR (ml be>.prl (nol.ml rol (eq^q.mlnumconst (3))),0),0,» 

M3(BOoi',0,RERD(sl,0,REflO(Hl,0,FRRnEl(p,q, .sq^sq))))) ,MS(B00Y,8,RER0(st ,8,REflD(ul ,0,FRfiME (p.q, isq,osq)))) ) c BO- 

0» ING(p,q,isq,osq)      (347)   — RSSUDE. 
|    |    |348        iswfsqdsq)   =   TT     (348)   — SRSSUME. 
|    |   |349        .sutos(osq)   =   TT     (349)   -— SRSSUME. 

|   1358       uinKp)   =  TT     (358)  — SRSSUME. 

IM i—.innii   ii 
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I    |    |3S1        .smKq)   •   TT     (351)   — S'iSSUtlE. 

| |TRY tllltlii OUTPUT (-.(«i i(i5q) = 3)-C0ND(t1BEXPR(rHbe>prKnol.mtrel (eq.rq.ml mimconst (3))) ,0) ,F (MS (BODY, 0) . 
.MBEHPRdirtboprKnol.irlr«! (eq.ro.m» mimconst (3)1) ,0) ,0), lO.MS (BODY, 0inS(B00Y,0,FRRnE2(|),q, isq.osq)))) ,HS (BODY, O.F. 
RRnE2(p,q, isq.osq)))  c 6001-INC (p,q, isq.osq) CASES -(•ll(iiq>=3). 

I I   I   I    -  
j    |    |    |TRY  #lfU;#lf3       0U'lPUT(-(tll(isq)=3)-C0N0(l1B£XPRl»ttoo.|)r Knot.mtrel (eq,rq.,nHiiiiiicoriSl(3))) ,0),F(nS(BOD- 

Y,0),nBEXPR(mkb9.prl<r)O.,m>r'. l(eM,i(|,iiitnuiiicoiist(3))),0),0)1I0.n3(B00Y,0,MS(B0DY,0,FRFnE2(p,q, isq.osq)))) , MS (BODY. 

)Ö,FRRf1E:(p,q, isq.osq)))  c P00»:INr.(p,q, isq osq)   l  SflSSUME      -(•! 1 (i5q).3)  I FF SIIIPL. 
|   |   |   |   |352      -(«IKisqJ.J)  I FF     (352)  -— SflSSUflE. 

1353 0UTPUT(-(i>ll(i»q)»3)->CÜND(MBEXPR(trH)evprl(not.mtrel (eq.rq.mrniimconst (3))) ,0) ,F (MS (BODY, 0) .MBEXPR. 
(mkbexp'-Knot.mkrel (eq.rq.mKnumconst (31)) 0), 0), 10,nS (BODY.O, MS (BODY, 0,FRBnE2 (p,q, i»q, osq))!), MS (BODY, 0, FRRME: (p. 
.q, .sq^sq)))   c B00MNC (p, q. i5q,osq)     (348 349 350 351  352)  — SlflPL  BY 348 349 350 351  352    Lt13. 

II I   I    "  
I   I   I   I    - "  
| j | | |TRY #ifl<,;#l#2 OUTPUT(-(»ll(i:q) = 3)-.C0l«DMittEXI,R(ml be-prl(oo1,ml r«l («q,rq,mtnumc3ii5t (3))) ,0) ,F (NS(B00» 

Y,0),nBEXPR(mtbe.prl(not,m>rel («q^q,*» mimconsl (3))) ,0) ,0), lD,l1S(P0DY,0,nS (BODY. 0,rRPnE2(i>,tt, isq.osq)))) .MS (BODY- 
,0,FRnnL2(|)1(|, isq,osq)))   c  BDOI INC(p,(|. irq.osq)   :   SRJJUME      -(• 11 (iiq).3)   =  UÜ 

|   {   |   {   |354      -(•llwsq>.3)   ! ÜU    (354)  -— SR3SUHE, 
|   |   |   |   |355      TT  =  UU     (348 354)  --- USE RR1TH1 354  348. 

I   I   I   I   - "  
I I   I   I     "- 
{{|{    |TRY /UU:*!*!       OUTPUT (-(ell(isq)O)-C0HD(NBE>PR(mH)<>M"'l'"Ol."» rel'eq,rq,mtiiumcon',t (3M ) ,0) ,F(I1S(B0D» 

Y,0).MP,EXPR(mM)e.prl(not,mkrel (eq,rq,ini numcoi^l (3))), 0). 0), lO.MS (BODY, O.nS (BODY, 0,1 RflnE2 (p.q, isq,ocq)))) ,nS(B0DY> 
,0.rPflrc:(p.q. isq.osq)))   c B00>:lNG(p,q, i5q,osq)   :   SRSSUtlE      -(« 11 (i£q) = 3)   =   TT iIUPL. 

{   |   |   |   |356      -U-ll(isq)=3)   s  TT    (356)   --SRSSUtlE. 
|357 (\isq osq p q . i swfsq (isq)-(iSH<os (osq)-(is nil di) «(is ml (q)-OUTPUT (MflEXPR (rq, 0. flS (BODY, 0. READ (s- 

t.O.PEROIwl .O.FRRMEl (p,q, isq,03q)))))-3)-F (nS(B0DY,0) ,IIBEXPR(ii( bsvnrl (nol,m»r«l (eq,rq,m) nuirconst (3))) ,0) ,0,115 (BO.. 
DY.0.RERO(st.0,REflD(ui,0,FRRMEl(p,q, lMiM4>>>>>tnS(|M)V,llltCU(tl,afKII0(iiltl,FMflCl(|i,4,iM,Mq)>))),IW>^».U« 
U) ,UU1 (tai 11 (isq) ,IIH pAir (»tuprtl (i?q,p,'|) .osq) ,sliipf1l (isq,p,<|) .mupfU (isq,p,q)) c Uisq otq p q . iswtr.q (i--.q) - ( isu- 
fos (osq)-( isint (p)-( isint (q)-BOO) INC(p,ci, isq.osq) ,UU) ,UU) ,UU) ,UU1 (l.li 11 (isq),») pflir (slupHl (isq.p.q) ,osq) .stupdt (. 
isq.p.q) .wlupdt (isq.p.q))     (347)   — RPPL  347   tailidsq)   mkpii ir (stupdt (isq.p.q),osq)   stupdt (isq^'.q)   wkipdt(isql. 

P,di- 
ll   |   |    |358      0UTPUT(-(el3( isq)=3)-F'nä(ßOOY,0),nBEXPR(mH)i..prl(not,mt-rel (eq,rq,imnufficon5t (3))) ,0) ,0,nS(BODY,0. 

,FRflnE3(p)q. isq.osq))),l1S(B00Y,0.FRRnE3(p.(|, isq.osq))»  c B00IINC(,;,     isq.osq)     (347 348 349 350 351  356)   —v  Sin. 
PL   357  BY  348 349  350  351   356 Ln7 Ln2 Ln5 RRITH; RRITH3 RRITH4 RRITHb    Ln4. 

Mill   - 
j j j |TRY #l<,l#:#li'li'l 0UTPUT(-(rl3(isq)=3)-F (nS(BOOY,0),nBEXPR(mlbBxprl(not,m)rcl (eq.rq.ml numconst (3) ) ). 

,O).O.nS(BOOY.0.FRflnE3(p.M, i sq, osq))), MS (r.00Y,0,FRRt1E3(p,q1 isq.osq)))   c BOOt-INC(p,q, itq,osq) 

Mill --  
j | 359 OUTPUT (-(el l(isq)s3)-C0Ntl(llpEXDR(inVbo.prl (nu1,mir<>l (eq,r((,ir>nimconst (3))) ,0) ,F 'MS (BOD. ,0) ,riBEXPR. 

(mkhe.prl(-iot,mtrr.|(eq,rq,m^nufflconst(3))),0).0).ID.HS(B0DY,0.ll3(B00Y.0.FRRnE2(p.q,isq.osq)))).li;(B00Y.0.lRflME2(p. 
,q, .sq.osq))) c B00I IH0(p.q. isq.osq) (347 348 349 350 351 356) — SIMPL 358 BY 227 281 348 349 350 351 356 Ltl. 

8 LM. 
II II   — —  

| | 360 OUTPUT (-(el 1 (isq) r3)-CÜUn(np.f/PR (' ' l)i>»prl (not .ml ml (rq.rq.m» rumconr.t (3))) ,0) .F tW (BODY. 0) .IIBEXPR (m- 
kbevprl (not. mit "I (»q.l (|. mt numcons t (3))). 0). 0), ID.MS (BODY. 0, MS (pOOY , T FRflnE2(p,q. isq.osq)))' IS (BODY. O.FRnME2 (p, q. 
, isq.osq)))   c BOOt INC(p,ii, isq.osq)     (347 348 349 350 351)  — CRSES   -(e 11 (isq).3)  355 355 33j. 

I   I   i       
1361 Visq osq p q . iMltqdsq) :: isu(ns(osq) : ; isinl(p) :: isint(q) !: OUTPUT (-(IIEXPR (rq, 0. MS (BODY, 0, R- 

ERD(st,0,REfiD;ji,0,FRRIlEl<p,q. isq.osq)))) )=3)-ivB T t .B-COND (T, F (B. T. (). 10)1 (MS (BODY. 0). liBEXPR (r-i bo^pr 1 (not, mt r. 
• I (nq.i'(Kml.iumcon-,t (3))).O).0.nS{pOOY.0.R!:HJj(st.0.RERO(Ml.0,rPfinEl(|i.(|. isq.osq))))) .MS (BODY. O.RE^D (•■ t. 0. READ (u I,- 
e.FRRMEl'(p,q, isq.osq)))))  c BOOt ING(p.q, isq.osq)     (347)  -— SPREF  360 BY 280 348 349 350 351  LM9 LM2. 

|362 Visq osq p q . iswtsqdsq) ;: isutostosq) :; isint(p) :: innt(q) ;; OUTPUT (-(I1EXPR (rq, 0,MS (BODY, 0, RER- 
0 is 1,0, READ (w I. O.FRRMEl (p.q. ir.q.osq) M )). 31-I*EPERT IMS (B00Y.0) .IPEXPR (mt boMirl (not .mti «I (rq.rq.mt mimcorr.t (3))), 0) « 
.0.MS(P0D'.0.REflD(st.0.RERD(ul,0.FRRIIEl(p, i. isq.osq))))) .t1S(B0DY.0.RERD(st .0.RER0(w I .O.FPRMEl (p.q. isq.osq))))) c 
'BOOt INC(p,q. nq.osq)        —-   INDUCT  346  361. 

|363 Visq osq p q . iswtsqdsq) :: iiHlos(osq) :: isint(p) :: isint(q) :: flPPLY(McCRRTHY,p,q. isq.osq) c B00).I. 
NCtp.q, isq.osq)       — SIMPL   362 BY 207 208 210 280 303 326 333 334 LM1  TH2  TH5. 

- 
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