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1. Introduction

Ray theory, modified ray theory, and normal mode theory

are three different approaches for calculating acoustic intensity

at a given point in the ocean once the source location and

prevailing sound velocity profile have been specified. Each

has its own limitations and regions of intended use. Ray theory

(1-4) has traditionally beer the .-ost wide.y used approach

for propagation loss calculations for both cw (5-?) and explosive

sources (8-11). Its popularity rests on both its relative ease

of calculation and its intuitively appealing description of the

channeling of energy along ray paths arid within ray tubas of

varying cross-section. More recently, modified ray theory (12-17)

has seen increased use as a means of enhancing ray theory results

by yielding predictions on caustics and in the adjacent caustic-

related shadow zones, regions in which ray theory is invalid.

Normal mode theory (18-23), actually the mos general of the

three, has suffered until recently from a lack of the large,

high speed computers needed for the solution of many realistic

propagation problems. It has also uffered from, and continues

to suffer from, the absence of a clear, intuitive description

of the normal modes that could compete with ray diagrams

(Figure 1.1) in explaining how energy gets from source to

receiver. With the advent of larger computers, however, normal

mode theory has seen development along several lines of approach,

and it is fast becoming a N.idely used technique with as much

of a following as ray theory.
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As this continuing development has progressed, more effort

has gone into comparisons of normal mode theory with ray theory,

modified ray theory, and completely different approaches (24).

The object has been to determine the conditions under which

each theory is the appropriate choice for intensity calculations.

From relatively small scale efforts at comparing two theories

with each other (25-27), efforts have progressed to complete

detailed comparisons of mode, ray, and modified ray theories

for an analytic sound velocity profile (16). In this recent

article, Pedersen and Gordon demonstrated how normal mode theory

could be used to determine the validity of ray theory and

modified ray theory in the region where all three overlap, near

a caustic. They did this comparison for an analytic, monotonically

decreasing sound velocity profile yielding a close-in caustic,

and they suggested that it would be useful to do the same comparison

for a deep ocean profile yielding a convergence zone caustic.

For some time,this author has been involved in studies of

convergence zone caustics and their effect on propagating

shock waves from underwater explosions (8, 28-30). To predict

the effect of refraction on these transients at caustics, we

have combined a frequency dependent modified ray derivation

that accounts for refraction (13) with a Fourier series representa-

tion of the siock wave as an exponential decay from a peak

pressure (29). With this approach, we have successfully matched

experimental pressure records measured in a convergence zone

during an at-sea test involving underwater explosions (8).

However, one successful comparison does not validate a method.

And the modified ray solution used to account for refraction

2
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effects has not been extensively validated. Therefore, it was

felt that a comparison with a more general approach was neces,'ary

to justify our continuing use of modified ray results. Normal

mode theory seemed a logica) choice for our standard of comparison

sinne it is more general than, and lacks the drawbacks of,

ray and modified ray theories.

However, combining results from a normal mode program that

accepts an arbitrary sound velocity ?rofile with a transient

source representation is a difficult, time consumiy.g task that,

to this author's knowledge, has not yet been successfully

accomplished. Furthermore, if ray and modified ray results are

adequate for underwater explosion shock wave predictions near

caustics - and if this can be verified without complete

comparisons with normal mode results - such full scale

comparisons may be unnecessary. In order to accomplish this

partial validation, we decided to compare modified ray theory

with normal mode theory for the lower frequencies in the shock

wave (on the order of 50-100 Hz). At these low frequencies

we would expect discrepancies between normal mode theory and

modified ray theory - a "high frequency" approximation - to be

most apparent. If, on the other hand, they agreed fairly well

in this low frequency domain, we could expect them to agree at

least as well at the higher frequencies in the shock wave. We

could then have confidence in the use of modified ray theory

on all parts of the shock wave spectrum without rescrting to

total pulse reconstruction- involving normal mode theory. We

decided to do these comparisons for a relatively arbitrary sound

velocity profile so that we would be testing t>.e theories for

realistic and often encountered propagation conditions.

3
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Thcse comparisons led to several expected, and unexpected,

chores. The finite difference normal mode program (22) required

modification in order that it work properly for the deep-water

profiles under consideration. A mode summing program had to be

written. The ray program (6, 31) being used had to be made

compatible with modified ray results previously derived (13).

And a ray sorting program had to be written that could incorporate

the effects of one or more caustics into the intensity

calculation.

At one point the normal mode program was yielding incorrect

results for propagation loss versus range. We found ourselves

using ray theory and modified ray theory as the standards of

comparison, with normal mode theory the sample requiring validation -

a complete reversal of their intended roles. We will discuss

this problem in order to point out some of the difficulties

associated with finite difference calculations and to stress

the need for validation of any model. It is not a revelation

to state that any propagation model (any program, for that matter)

can print out apparently reasonable propagation loss versus

range curves while doing an incorrect calculation.

In the following sections we will first discuss the

common roots of all three theories. We will then describe the

specific ray, modified ray, and normal mode calculations used

in these comparisons. After checking normal mode results for

a shallow water model, we will examine a deep ocean profile,

concerning ourselves only with the first caustic in the

convergence zone and frequencies of 50 Hz and 100 Hz. -2hen for

a slightl shallower profile, we will consider the various
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caustics present in a typical convergence zone. Finally we

will look at a profile yielding several more nearly horizontal

caustics. This will turn out to be the most difficult to

treat with the horizontal expansion form of modified ray

theory that we are using, and here we will discuss a useful

alternative derivation (14).

It is hoped that all of these comparisons will give a

better feel for the strengths and weaknesses of the various

theories as well as indicate where each one can be used to best

advantage. They also should help explain what propagation

paths and interference mechanisms are causing the complex

propagation loss curves predicted by normal mode theory in

convergence zones. Finally the comparisons will demonstrate

that modified ray theory is valid - and often quite useful -

in predicting pressures on and near caustics. For a realistic

deep ocean profile, a combination of ray theory and modified ray

theory results often yields a satisfactory prediction of

pressures in the convergence zone when compared to a more

general normal mode calculation. The fact that the modified

ray theory has an explicit frequency dependence means one can

locate the caustic once, calculate a few parameters, and then

find the intensity for any frequency rapidly. This is as

opposed to normal mode theory, where one has to calculate

intensity at a given point independently for each frequency.

Thus, modified ray theory is valid for the treatment of the

various frequencies in the shock waves from underwater explosions

near caustics, as well as being an inherently easier, more

rapid calculation to make.

5
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2. Wave Equation Roots of Ray Theory, Modified
Ray Theory and Normal Mode Theory

As we hate said, there are many alternative solutions to

the wave equation. More than one approach leads to ray theory

type results, normal mode results, or any other category of

solutions. Each approach emphasizes a particular aspect of

propagation phenomena. In this section we will summarize the two

basic derivations that have served as the basis for our work

in modified ray theory and normal mode theory. We will first

go through the details of the Sachs and Silbiger derivation (13)

that arrives at a ray theory solution, shows what assumptions

cause it to break down at caustics, and finally arrives at a

modified ray theory solution by making the appropriate changes

in the derivation. The main thrust of this derivation is to

show how modified ray theory springs logically from ray theory's

failure at caustics (ray theory itself can probably be better

understood by examination of other derivations (1)). Then we

will start again with the wave equation, but this time we will

go through the details of Newmarn and Ingenito's (22) finite

difference normal mode solution. go this section will summarize

the basic equations from previous efforts that are modified,

evaluated, and compared in the following sections.

We start with the reduced wave equation for pressure and

an assumed e- Ut time dependences

+ P 0  (2.1)

where nlCa) ( ,)/C( ) (2.2)

C . ) (2.3)

7
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Using cylindrical symmetry, Sachs and Silbiger (13) rewrite

this ast

I +. P I -  (2.4)

This equation is then multiplied by 7,o( r) and integrated

from 0 to Oc to obtain:

' 4-F KLnc-IS' -. rct) (2.5)

Where ;(tit)%* S% (r,a) ( (2.6)

and k(r.) (2.7)

:~. ~ H~(K~fl4 $(2.8)
Equation (2.5) is then solved using a WKB approximation to

arrive at:

; (2.9)

where : £fl%(*.' ) T is the turning (2.10)

point depth.

These are the pertinent equations for rays beyond their

turning points. Equation (2.8' for pressure is evaluated

using Equation (2.9) and the asymptotic form of the Hankel

function for large arguments:

IT -- (,. )(M (2.11)

8
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To use a stationary phase approach, and with ray theory in

mind, Sachs and Silbiger look for zeros St t of \ in the

range ' | t(9. . They then assume that the main contribu-

tions to the integral are ii the vicinity of these zeros.

This corresponds to ray theory in that % will turn out to

be Sin -o , where o is the initial angle of a ray, As long

as we move along this ray path, the value of the integral will

be significant and energy will propagate.

The phase term W(t is then expanded around these zeros

(13):

where W( (2.14)

and by definition on a ray. (2.15)

Thus Equation (2.11) becomes:

e T ~Lr 4 K(h(s 1 ' ' ~ * (2.16)

Assuming the integral in Equation (2.16) is slowly varying

when t is near and dropping higher order terms than

W" ,) yields:

exp JKI~ +~)

This is a ray type solution for the refracted wave (beyond the

ray turning point), where each term in the sum corresponds to

a ray leaving the soarce at angle (&)I with the vertical.

9
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We note that the amplitude of each ray is determined in part

by: Y 9./

where W was the only derivative of the Taylor series

expansion (Equation 2.13) assumed to contribute to the integral

(Equation 2.16).

A caustic can be defined in several ways: One alternative

is to look at rays at a constant depth and plot range, r, versus

1t in o. (Figure 2.1). We see that the caustic point at depth z

is a range minimum point (it could also be a range maximum

point). Thus for the caustic point:

ZrI Z VzW :

The quantity W that we assumed was larger than all higher

derivatives turns out to be zero on the caustic. Then

Equation (2.181 becomes infinite, and the pressure (Equation 2.17)

becomes infinite. This then is the way ray theory breaks down

at the caustic.

It is a natural step to now include the third derivative

in the integral for pressure. However Sac..s and Silbiger go

through several steps in inserting the derivative that are

mathematically correct, but not at all obvious. So we will

explain this part of the derivation (32) in detail. If we are

on a caustic at (tc:, , the ray tnrough the caustic point

is giv- by : . Then

W Q) .0 (2.20)

10
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This is just the criterion for being on a ray (Equation 2.15),

applied to a particular caustic ray. B definition on the

caustic, we also know

W" (2.21)

We note that W is independent of range, r, since r vanishes

frcm Equation (2.12) upon taking two derivatives with respect

to . Thus if we are at depth tr , but at a range r not

equal to rc, we can be on a ray, but not at the caustics

W ,o W , #0 (2.22N

However if we replace by g, in these two equations, we are

not on a ray (the ray passes through rc at Zc), so:

, (2.24)

But since there is a caustic at depth zc, and the next
derivative is independent of r (r or r makes no difference):

W ( 9t t) a (2.25)

So if W is expanded around for points off,

as well as on, tho caustic, then WO will be zero for all r,

not just rc, therefore:

i , (2.205)

We n~ote that W'4C ) is non zero fo-r / rc. Also from

Equation (2.12)sir +, al (.7
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Since W(0 ri :O (the caustic ray satisfies the ray

criteria)

W1  )~)£ , .6r (2.28)

If we now also expand the amplitude .actors in Equation (2.17)

around %C , drop higher than first order terms aL leading

to higher frequency terms after integration, and put in the

other derivative information obtained above, we get Sachs and

Silbiger's(33)integral expression for pressure on and near the

caustic:

ex WcO XP S+S (2.)
0 'r

and (_) in s is used depending on the sign of W, The

integral is %hen expressed in terms of the Airy function

(Figure 2.2), yieldingt

_9 k, t)) c ( (2.31

where (+) in the Airy function is determined by w .

Equation (2.31) is valid on both sides of the caustic, as well

as on the caustic at Arzo . We will go into considerable

detail in later sections as to this equation's applicability

under various circumstances. In general, it will turn out to

12
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be quite useful in predicting pressures on the caustic itself

as well as in the adjacent shadow zone and caustic region.

And the Airy function will be important in understanding how

pressure near the caustic varies with frequency and distance

from the caustic, Ar .

We now start again with the wave equation - this time for

velocity potential - and summarize the Newman and Ingenito

derivation (2Z) resulting in a finite differenue normal mode

solution. They start off with the Helmholtz equation in both

a water and a fluid bottom layer (Figure 2.3)3

'~"~ II-± r X ' (2.32)

for the region 0 -

and

1711jr~) + W! ko') :C
C(2.33)

for the region

The boundary conditions are

(e. ) 0(2. 34)

~ (r H) H) (2.35)

the conventional pressure release surface, anl continuity of
impedance and normal particle velocity at the bottom boundary.

Equation (2.32) leads to a solu-Lon for i as a sum of discrete

and continuous modes. Discrete modes dominate at ranges

I1
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beyond a few water depths, so these are all that are considered.

(When we examine the node sum in the normal mode section, it

will be clear why contributions from modes in the continuum die

out with range.) Separating variables, and normalizing the

depth variable -Z/H , we are left with the 9 dependent

wave equations to solve (34)t

0h0 wit 1 (04) (g (2.37)

M - " ("0 -. 0
Lt (2.38)

where h is the eigenvalue for the n th eigen/unction.

Newman and Ingenito divide the water layer intom equal finite

difference layers, each with velocity CPV~~ (Figure 2.4J).

This is accomplished by defining mn layer depths, nIMI.

and linearly interpo. ting between the input sound velocity

points to find 9 velocity at each of these points. Then into

Equation (?.3e, i £i the water layer, they substitute a first

central difference for the second derivative:

a 71. (2.39)

where h is the incremental layer depth Him

Now the differential equation is in finite difference form:

~n:LI -I] k- -(2.40)

14
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Thus we now have an expression relating the wave function

amplitude for the nth mode at the i+l depth point to the amplitude

at the i th and i-1 points, the velocity at the i th point and

the wave number kne We will discuss in Section (5) how this

is used to find the individual modes, and how they are then

summed to find the propagation loss.

15
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Figure 2.4 Sound Speed Profile Interpolation

(From Newman and Ingenito(22))
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3. Ray Theory

It was felt that rather than add one more ray tracing

program to the already infinite number in existence, we could

modify one already existing to suit our purposes. We wanted

first of all to be able to find all the ray paths to a given

point in space and add the arrivals coherently in order to

calculate the net intensity at that point. Then we wanted to

be able to modify the program to calculate the actual pressure

on the caustic using modified ray theory (Equation (2.31)).

Finally, we wanted to be able to add in shadow zone contributions

at a point of interest, when that point is in the shadow zone

of one or more caustics.

We chose to use and modify CONGRATS (Continuous Gradient

Ray Tracing System), a program written by Weinberg and Cohen

at NUSC (31). CONGRATS fits the velocity profile data points

with layers of the following depth dependence,

(3.1)

By the appropriate choices of the four arbitrary parameters

v0 got g1, g2 (zo is the depth at the top of the layer),

one can either describe the profile as a series of straight

line segments each with the appropriate gradient (Figure 3.1A),

or as a series of curves defined so that both the velocity and

20
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gradient are continuous at each layer interface (Figure 3.lB).*

Once the profile is specified, travel time, range, and amplitude

along a ray can be easily obtained since the integrals for

these quantities are readily evaluated in terms of elementary

functions (31).

CONGRATS can be used to plot ray diagrams in order to

qualitatively examine the sound field for a specific profile

(Figure 1.1). But it can also be used to quantitatively

evaluate the intensity at specific points in the sound field,

This is accomplished in the following way. One specifies

the velocity profile and defines the appropriate profile layers.

Then the source depth is defined, as are the particular range-

depth target points of interest. Finally, one specifies a

grid of rays (by source angle) of fine enough spacing and

sufficient angular width in order to ensonify the target range-

depth points with each significant type of ray arrival (It

is no smal] task to pick the ray spacing and grid, and skill

at this ray selection increases with practice). CONGRATS then

traces one ray at a time to each target depth of interest.

When CONGRATS finds two consecutive rays that bracket a

target range at the target depth (Figure 3.2), it assumes

that a ray between those two (called an eigenray) wculd reach

the target point. So the program then interpolates between

*The continuous layers can eliminate many of the false caustics

caused when rays turn at layerinterfaces and the gradients are

discontinuous (35). In the cases we treated this was not a

problem, however, and constant gradient layers were adequate.

21
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the twc rays in order to find the travel time, amplitude, etc.,

for that particular eigenray. It then was written to add all

the eigenrays at each target range-depth point coherently or

incoherently. By doing a series of range points at a fixed

depth, one could then generate a typical propagation loss

versus range curve (Figure 3.3).

As originally written, CONGRATS' sorting programs for

adding the eigenrays coherently were not compatible with the

CDC 6400 computer. Furthermore, it could not calculate

actual intensity on the caustic when a ray passed through a

caustic. And when points of interest were in the shadow zones

of one or more caustics, it could not add in these shadow

zone contributions to those from "real" rays passing through

these points. These ar. the changes made at the Naval Ordnance

Laboratory by the author with the help of Jean Goertner and

Robert Thrun.

In this oeuion, we will discuss the coherent sorting

program written for a CDC 6400 computer. This program

calculates the resultant intensity at each target point of

interest. It also can add in shadow zone contributions at

each point for any number of caustics, and eliminate bottom

bounce arrivals if this is desired. In the modified ray

section, we will discuss how CONGRATS has been modified to

calculate intensity on the caustic using a modified ray

calculation (13).

As we have said, CONGRATS finds the eigenrays that pass

through each target point by interpolating between each pair

22
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of rays that bracket each point. If we specify enough rays of

different type (direct, surface reflected, etc.), to ensonify

the region, we have at each point a complete set of eigenrays

that account for all significant energy paths between source

and receiver. CONGRATS then writes on tape or permanent file

several blocks of data. Each case - defined as the set of

input data cards up to the next process card - results first

in the writing of a data block containing all of the input

data in CONGRATS internal units: kyds, kyds/sec, seconds and

radian. The second, and if necessary, succeeding blocks of

output data are groups of 100 arrivals, each an eige^':ay. At

this point they are sorted by increasing source argle with range-

depth points all intermixed.

Appendix (I) is a listing of the program written at NOL to

sort these arrivals and add them coherently. Each eigenray of

source angle e that passes through a target point (r, z) has a

travel time T. (r, z) seconds, propagation loss L. (r, z) dB, and

additional phase shift (from surface reflections, caustics, etc.)

of j (r, z). Ignoring shadow zones and caustics for the

moment, one can then find the net propagation loss at a given point

(r, z) and a specific frequency W by:

4i Sotr-rce pe5uet

P1 (r, z) is the net pressure at point (r,z). Tt is

obtained by the coherent sum of real rays. This summation

is what the main body of the program accomplshes. In

the orogram listing in Appendix (I), lines 13-3G read the

23
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input data block. Lines 34-90 read in the blocks of eigenrays

into a doubly subscripted array Buffer (I, J) and convert from

CONGRATS units (kyds, kyds/sec, etc.) to original input units

(meters, meters/see, etc.), (feet, feet/sec, etc.) or any other

of the many combinations allowed in CONGRATS. The portion of

the program from line (133) to the end first sorts the arrivals

by increasing target depth and then by increasing target range

for each depth. Then all the arrivals at a given target point

(r, z) are added in phase according to Equation (3.3).

Appendix (I), pages ( 149-155) show first the output data block

containing all the original data, page ( 149 ), then the

sorted collection of arrivals, pages (150-153), and finally the

resultant intensity and phase at each target depth-range point,

pages (154-155).

For some studies it is necessary to eliminate all rays

that reflect off the bottom (or surface). For example, our

normA] mode calculations have been done (for simplicity) with

a bottom fluid whose impedence is matched to the water column

(c = e (z = H), P 2 = Pi = 1). So we would not expect first

ordpr bottom reflections to be present in the normal mode

calculation. And we would not want the ray calculations to

include bottom reflections either. The easiest way to eliminate

bottom reflections is to not include rays beyond the grazing

ray in the calculation. But sometimes this is not advisable,*

*For example, CONGRATS needs at least one ray at each depth range

point in order to store the point for coherent sorting. Sometimes

when we are in t.ne shadow zone, there are no real direct rays -

only bottom reflected riys. We need these rays to "save" the

points of interest so that we can add in the shadow zone arrivals

at these points using the summing program.

24
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and another way of eliminating bottom reflecLions must be used.

CONGRATS has the capability for including bottom (or surface)

loss as a function of incident angle. So if we want to drop

out bottom (or surface) reflections, we set the loss for all

angles of reflection to be 900 dB. Then in the sorting program,

Appendix (I), page (147), lines (173-184), v'e chck to see if

the propagation loss for any arrival is greater than 9000 dB

(i.e. it has reflected off the bottom at least once). All of

these arrivals are then eliminated from the calculation.

As we have said, the sorting program must also be able to

add in shadow zone arrivals whenever the target point is in

the shadow zone of a caustic. We havy chosen to work with a

modified ray expression that yields results at various ranges

on either side of the caustic (as well as on it) at the fixed

depth the caustic occurs at. A ray of source angle 80 may have

a caustic at range rc and depth zc . Then the contribution

from this caustic at any range r at the caustic depth zc is

given bys 1/2

W" 0)
where all quantities of interest were defined in Section (2),

Equa ;-,s (2.30-2.31). The pressure expression, and its

region of validity, are further discussed in the modified ray

section. For negative and > 1 we are in the double arrival

region associated with the caustic. In Section (4), we will

discuss the use of the caustic solution in this region as

opposed to the actual two arrivals as calculated from ray theory.

25
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However, in the shadow zone there is no problem. Ray I
theory yields no shadow zone contribution, and the modified

ray theory contribution is necessary for completeness. We

need to evaluate both the amplitude and the phase of these

arrivals, so that we may incorporate them into the coherent

sum (Equation (3.2)). When a ray passes through a caustic,

CONGRATS prints out the amplitude on the caustic. This is

Equation (3.4) with &r = o, sop= o. This is essentiallys

since the remainder of the amplitude expression is the same on

and off the caustic. Off the caustic at arbitrary r, the pressure

is then ( : A; [K'(- A'.[ K'94r (3.6)

So the pressure off the caustic, in terms of the pressure on

the caustic calculated by CONGRATS is:

(r, Se)- p (r. ,) I A I(e) I/A -(o) (3.7)

And the propagation loss at distance hr off the caustic is

u a o Lo4 A(r i) (0] pI A~ (3.8)
or

where AMPDB is the propagation loss on the caustic calculated

by CONGRATS. We also need the total phase of the arrival.

We note that

26
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It is defined in such a way (Equation (2.10)) that +(z o )

and 4(zc ) must be integrated analytically or numerically.

But we would like to use quantities already calculated by

CONGRATS where possible to avoid unnecessary calculations.

We can follow in reverse a derivation by Officer (16) in

order to arrive at a relationship between Wc(rc) and T(rc,

the travel time to the caustic alre,.dy calculated in CONGRATS.

We take Wc (r c ),

where sin $ (,&O c s(,. in- ( .13

- - ie (3.11)

where D(N: j -  ' S in(a____, (3.15)

Therefore:

Q11)S S- (3.16)

But for" a ray:

+(3.17)
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Then: r : - '(Co) -v (3.18)

or taking the derivative of Equation (3.12),

r-- ' (a ( ')?"'/  a (3.19)

Substituting this into Equation (3.16) for r=rc and combining

terms:

Wt.o_ _____.___.] . dl (3.20)

C Li.0CJV)

.- , (3.21)

(3.22)

but n C 0Sh' .(3.23)

Therefore r (324)
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So if we have travel time to the caustic from CONGRATS, T(r C ),

we can immediately evaluate W(rc ) byt
Wjv,. -- c(s T(r) (3.25)

Or for arbitrary r, off the caustic in either direction,

\Jdi - 4, . 4( ) (3.26)

+ (3.27)

- * vJc(v J (3.28)

4 CC s.) T(,rc) (3.29)

Then kAr) " (ar) * w r (3.30)

Thus the main phase term in Equation (3.11) is readily calculated

from constants (~' SC W , C(z0), &r) and the travel time to

the caustic point T(rc ) calculated by CONGRATS. To complete

the phase we must also add -7T/4 and any extra phase shift (n)

associated with extra caustics, surface reflections, etc.

the ray may have undergone. We can then add to the arrivals

given by Equation (3.3) shadow zone arrivals for the caustics

occurring at the depth of interest (z.) and various ranges

rc(1), rc(2) ... c(n)

~ - tI . ~ r, j/ o ) ~ C ( 0 ) tw Cv i . 46 (3 .3 1 )

PT is the coherent sum of all rays, including caustic shadow zone

contributions. This is done in the sorting program, Appendix (I),

lines (93-130). We only add an arrival from +he nth caustic as

long as we are in the shad'q zone of that partIcular caustic (te>o).
For a typical range minimum coerg zone caustic, W'''

29
N'
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is negative, so we use Ai(- 4 ). Thus A r must be negative

in order for -/ to be positive, and r must be less than rc .

So we are to the left of the caustic, nearer the source.

This then describes CONGRATS and the sorting program we

have written to accompany it. The sorting program adds the

regular ray arrivals coherently. It adds in shadow zone arrivals

coherently when the target point is in the shadow zone of

one or more caustics. And bottom reflections can be eliminated

when this is desired.
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Figure 3.1B Continuous Gradient Fit to Pr~file Data Points
Velocity FT/S (Ki06)
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Figure 3.2 Search for Eigenray

33

\I

33



IiOLTR 7hj-95

0
P-I

0

Cd

P4

0

04

Cd
0

E-4

(9p) ssoq uoipeDdoad OUTse'-i $40

.r

3h4



NOLTR 74-95

4. Modified Ray Theory

While ray theory is usea extensively for propagation loss

calculation, its failure near caustics is well documented. The

predictions of infinite peak pressure on the caustic and zero

pressure in the adjacent shadow zone are two unrealistic and

unacceptable conditions. This failure occurs because of the

"high frequency" approximation inherent in the eikonal

equation (37). It yields a picture in which all energy within

a ray tube of a given cross section at the source remains within

that ray tube as the cross section goes to zero at the caustic

(defined as the locus of points where infinitesimally close

rays cross). So the finite amount of energy, contained in a

zero cross section ray tube, yields infinite peak pressure.

If we are interested in pressure on the caustic, or in the

adjacent shadow zone, another solution must be used.

To this end, several authors (12-14) have solved the

wave equation for expressions that remain valid on the caustic.

Sachs and Silbiger (13) and Brekhovskikh (12) obtained an

expression that yields pressure on the caustic, as well as off

the caustic horizontally in either direction (Figure 4.1A).

Ludwig's derivation (14) yields pressure on the caustic, and

off the caustic in either direction normal to it (Figure 4.1B).

Ludwig's solution has both a uniform and non-uniform result.

The uniform asymptotic theory is exact in the ray double arrival

region, while the non-uniform solution is only approximately

correct there. Ludwig's non-uniform result is very similar to

Sachs and Silbiger's result (13). The similarities and
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differences between the various solutions will be discussed in

more detail later on in this section. The horizontal expansions

in particular have been used to predict pressure histories

from underwater explosions in convergence zones (8) and in flooded

quarries (8,9). They also have been compared with ray theory

and normal mode theory for a monotomically decreasing sound

velocity profile (6).

In our earlier work (8), we used a constant gradient

profile for which the modified ray solution could be obtained

analytically. We will start out by summarizing this derivation

for pressure on and near a caustic. Then we will discuss the

evaluation of the various quantities necessary to actually

calculate pressure. And finally we will relate these expressions

to the appropriate quantities in CONGRATS that were being, or

are now being, calculated.

As we have pointed out in Section (2), one can solve the

wave equation using a WKB approximation and arrive at a ray

solution (Section 2, Equation 2.17). This equation breaks down

at a caustic. A further derivation results in a new integral

(2.29) for pressure on and near a caustic. When the integral

is evaluated, Sachs and Silbiger (13) arrive at an expression

valid at caustics (2.31),

PO X '14 ~~~~~~A.' !)ep(W-i)(.1

where %c = sin(Oo), (e0o)is the source angle passing through

a caustic at (rc, zc) and the remaining quantities are defined

in Equation (2.30).
36
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For a typical convergence zone caustic (Figure 4.2), Wc (r

is negativel hence we use Ai (-p ). Then for r > rc, to the

right of the caustic at p = o, the Airy function, and so

the pressure, first rises as we move through the caustic

region (Figure 2.2). Further to the right ( tpi >1 ), we see

oscillations in the Airy function that are typical of the

well known ray double arrival region adjacent to the caustic.

To the left of the caustic, for positive arguments of the Airy

function, the pressure decays exponentially with distance off

the caustic as well as frequency to the two thirds power.
I!J

For a caustic with Wc (rc) positive, the picture is

completely reversed with the shadow zone to the right of the

caustic, etc.

Several quantities must be evaluated in order to calculate

pressure on or near a caustic using Equation (4.1). First we

have to know when a particular ray goes through a caustic.

As has been pointed out, a caustic is a range minimum or maximum

point at constant depth. So at a taustic

: V (4.2)

where SinO COO
CV

and Cv is the sound velocity at the vertex of the ray.

CONGRATS determines this by evaluating kr along a ray, and
a c

checking for cnanges in sign of this quantity, indicating it

has passed through zero. This is equivalent to the check on

IN we have used in previous Work (38). So for a given

source angle (e0) we can move along the ray until
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approaches zero. At this point (r C, zc ) we are on the caustic.

By tracing a number of rays of different source angles, we can

generate one or more caustic curves in r, z space and find the

caustics at a particular depth of interest (Figure 4.3). Then

r c zc Ar (to the point of interest), n2(zc), % c, k, and

Wc(r) (Section 2, Equations 2.10 and 2.12) are fixed for each

caustic.

Thus we need only to evaluate t (Equation 2.30) in

order to find the pressure on the caustic. We have an expression

for t in Sachs and Silbiger notation, but we first need the

proper derivation in CONGRATS notation. In CONGRATS, the

range increment in a layer is defined as:

Ri C C(;. a (4.3)

Because C(z) is defined analytically as a function of z

(Equation 3.1), this integral can be evaluated in terms of

elementary functions (39). Its first derivative, Zr/ZC. ,

which is needed for ray amplitude calculation and caustic location,

was also evaluated analytically. But we need the second

derivative, t'r/D& , for caustic amplitude calculation.

This derivative was obtained, and it is summarized in

Appendix (IV). It was then inserted into CONGRATS. In order

to use this derivative, we must relate it to OW

the derivative in our modified ray notation (Equation 2.30).
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We start off withi

W ,' -gr + C .o) ++¢,' (4.4)

%W 4:___ z. tj, -'d4+ ) -¢(P,

.++ ---+- (4+.5)

Ona ray at (4,6)

From Equation(4.5), - _. _ (4.7)

But from Equation(4.6) as long as we are on a ray.

*1 2.

Then . . L(4.8)

where r is the analytic range expression in CONGRATS.

Since - r (4.9)

V-- i ".(4,10)

,++,-) " '" (,4-,1).
% . ¢,, j +.2 . -,.(.

But 0 on a caustic, so

f" - (, " +, r c+ (4.12)
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So with the second range derivative (Appendix IV) we have

added to the program, and the appropriate constants,
3-

we can calculate W.rC jiZS and so * This then is the

final quantity necessary to calculate pressure on the caustic

by Equation (4.1), and evaluate modified ray theory arrivals in

Equation (3.31).

Now that we have shown how to calculate the pressure on

and near a caustic, we would like to discuss the validity of

its use at various locations near the caustic and its

relationship to other methods of caustic calculation. Looking

at Equation (4.1), we can picture the pressure as a constant

times the Airy function (Figure 2.2). For Ai(0), we are on

the caustic and the expression is valid for most single, well-

behaved caustics. Fcr Ai(-p ), the pressure at first grows

in what we call the caustic region (0 S )p . t.s ). Here

we expect the caustic solution to be better than the ray

solution which is diverging (Figure 4.4). We note that

= k2/3g 4r. The quantity is roughly tne focusing

factor, indicating the strength of the caustic. It is also

related to the slope of the caustic. For typical convergence

zone caustics we characterize as vertical (Figurc 4.2) (depth

to range slope: 1l:0),l is on the order of .002. Therefore

the source frequency and width of the caustic region (where

ray theory is invalid) are related by:

4o4.14)
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Thus a 100 Hz source will have a caustic region about 2500

meters wide. The lower the frequency, the wider tne caustic

region where ray theory is not valid.

For larger negative arguments (to the right or left of
Ut

the caustic depending on whether W. (r, is negative or

positive), we are in the ray double arrival region, where

ray theory is valid. The caustic solution (with an asymptotic

form of the Airy function) does yield two arrivals (40)t

(4.15)

However, they are of equal amplitude, a condition that we only

expect to be true very near the caustic.

Since this expression is only an approximation derived

from the value on the caustic, we shall see that from case to

case the oscillation pattern agrees more or less with the

actual pressure as calculated by ray theory or normal mode

theory. This agreement and disagreement can be understood by

considering Figure (4.5). Consider a caustic at point (A)

(Figure 4.5A). We then extend the caustic solution horizontally

into the double arrival region to point (B). This extension

will only be valid when the rays actually passing through

point (B) have essentially the same history near the caustic

as the ray passing through the caustic at point (A). Only

this way can the ray going through (A) "know" what rays at (B)

should look like.
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For the simpl6 circular caustic, this is easiest to see

(Figure 4.5A). As long as the radius of curvature is roughly

the same, rays at (B) (having passed through C) are roughly

the same as the ray passing through a caustic at (A). Then

an extrapolation to (B) based on (A) is roughly correct. This

is easiest to see at Point (E) when ray (1) is at a distance

from the caustic equal to AB. The ray pattern looks similar

to that at (B). But if the curvature changes (Figure 4.5B)

then the rays at (B) (having passed through C) do not have the

same history as the ray passing through (A). Again look at

(E), when ray (1) is the rppropriate distance from the caustic.

The ray pattern at (E) is different than at (B), while the

expansion assumes the pattern is the same at both points.

For more complicated caustics, it is not as easy to see. But

the same rule of thumb applies. As long as the radius of

curvature, or slope, cf the caustic does not change much along

the caustic, say from (C) to (A), we can extend the caustic

solution horizontally to a point near (A) through which rays

from (C) pass.

In the shadow zone, we have n6 real rays from that caustic

to compare modified ray theory to. The shadow zone arrival

is the only one. But from the Airy function (Figure 2.2),

the pressure falls as the two thirds power of frequency at a

given distance 4r, or linearly with horizontal distance from

the caustic for a fixed frequency. We can only verify this

behavior by comparison with normal mode theory, since ray

theory predicts zero pressure in the shadow zone.
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For more nearly horizontal caustics (Figure 4.6) that

have depth to range slopes of approximately 1ilOO, I is less

than .001. In this case the width of the caustic region is

roughly two to five times wider than in the vertical case

(Equation 4.16). Intuitively we would expect the peak

amplitude to be lower, as the ,nergy is spread over a broader

... caustic region. This is generally the case. The horizontal

cauctics tend to have significantly lower peak amplitude,

with the pressure falling off much more slowly into the shadow

zone than in the vertical case.

The same arguments hold for extensions into the double

arrival region from smooth horizontal caustics that hold for

vertical caustics. Reasonable predictions depend on the

caustic having the same radius of curvature throughout the

region of interest. However for horizontal caustics (Figure 4.6)

the rays must travel considerably farther to reach an arbitrary

point (B), distance AB from the caustic. So the caustic must

maintain the same local slope, or radius of curvature, for a

much longer distance. This makes it more difficult for the

horizontal expansion to work, and it is this case where a

normal expansion is more reasonable. In Figure (6), FB is

much shorter than AB. Thus a prediction for (B) based on (F)

V is more likely to work than one from (A) extended to (B).

Furthermore, there may not be a caustic at the proper depth,

line (D). In this case, a horizontal expansion into the shadow

zone is not possible.
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Figure 4.4 Airy Function and Divergent Ray Solution
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5. Normal Mode Theory and Program Validation

Normal mod, theory is the most general of the three

solutions to the wave equation that we have examined. By

solving the wave equation directly, rather than thle ray

equation approximation, we avoid the problems inherent in

ray theory and modified ray theory. Normal mode theory does

not break down at caustics. It yields finite non-zero pressure

in the shadow zone, accounting for energy diffracted from the

caustic. And it yields the resultant intensity at a given point

directly. No ray theory type addition of various ray energy

paths - and the worry of missing one - need be done.

This is not to say that normal mode theory is flawless.

In solving for the net intensity, it eliminates one of che

nice things about ray theory - the very physical picture the

ray diagram (Figure 4.2) gives about the paths that energy

is taking between source and receiver. There have been attempts

(41) to relate various portions of the mode spectrum to specific

types of rays. However, we are more comfortable understanding

the intensity in terms of the ray @nd modified ray arrivals

interfering with each other, and then comparing this to the

normal mode theory result in order to understand the significance

of the various intensity variations in the propagation loss

curve. Other faults of normal mode theory will be discussed

during the remainder of this section. But in general, for

deep ocean profiles it becomes a case of solving for many modes

(which at some point becomes too many), and doing it completely

over each time a different source frequency is specified. The
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frequency dependence is not like ray or modified ray theory,

where geometry is considered first as ray paths are calculated,

a,! then frequency is accounted for only during the coherent

addition of arrivals. In normal mode theory each frequency

results in a completely different set of modes, and so a

completely new calculation must be done from start to finish.

So as with anything else, each theory has its appropriate

use. Normal mode theory is suitable for shallow water (few

modes)Aprofiles and for some deep water (moderate number of

modes) profiles. It serves as an excellent standard of comparison

with each to check out ray and modified ray theory results.

Ray theory is especially useful for many deep water profiles,

and modified ray theory extends its usefulness by adding the

capability for intensity calculations on and near caustics.

Once on, decides that a normal mode solution is desired,

there are several alternative routes for doing the calculation.

As discussed in Section (2), we have chosen to use a finite

difference approach, enabling us to deal with an arbitrary

velocity profile. We have taken a program originally written

for the shallow water case, and we have made the appropriate

modifications so that it could handle the deep water case. In

the process we have learned quite a bit not onl; about normal

mode calculations in general, but also about the peculiarities

of finite difference calculations in particular.

First we will briefly describe the use of the equations

Aobtained by Newmao and Ingenito (22) to calculate the normal

modes for a given profile. Then we will discuss the summing

program written to calculate the propagation loss once the
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normal modes have been obtained. Finally we will discuss the

changes made in the normal mode computer program so that it

could treat the deep water case.

As discussed in Section (2), Newman and Ingenito arrived

at a finite difference expression for the unnormalized wave

function at the i + 1 point in terms of the sound relocity in

the ith layer, the trial mode wave number k n, and the value of

the wave function at the i - 1 and i th points

M ~ r IM

h -~ 4-1 (5.1)L (

The velocity profile has been split up into in equal depth layers

of depth h, and the velocity (c,)i specified in each layer,

If we had two points to start off Equation (5.1), Z ()
n,l

and Z , and a kn, we could generate the mode shape. Then

if the mode shape satisfied all the boundary conditions and

had the correct shape (the nth mode has n-l zero crossings),

we would know that we had the correct value of k n, as well

as the proper mode shape. Using the two boundary conditions

at the water-bottom interface, Newman and Ingenito (42) arrive

at expressions for the first two wa.e function values, at the

water-bottom interface and one layer ups

" I +or ASK or (5.2)

- . --- (5.3)

52 r
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where A: H2  Ak 'L.t I.

(There are several typographical errors in this part of their

report and this part of the program listing as well.)

The program then takes these two points, the trial kn ,

Equation (5.1), and the velocity profile; it follows the

wave function up to the surface. kn is iterated on until we

have the proper number of zero crossings, and the wave function

is within some small epsiion of zero at the surface. This

last requirement satisfies the last boundary condition of the

surface as a pressure release boundary.

The iteration on In should be started in a way that

minimizes the number of trial solutions tested before the

proper kn is obtained. For the first mode, a maximum mode

wave number k n(max), and a minimum mode wave number kn (min) are

defined by,

kn (max) = i (5.5)

R n (min) = (5.6)

where [C(V )] min is the minimum sound velocity in the water

and C 2 is the velocity in the bottom. Several trial kn

between kn (max) and k (min) are tried until a mode shape with
n n

no zero crossing is obtained*. Then this kn and In (max)

are used as the bracketing values which the final iteration

*The first mode just reaches zero amplitude at the surface.
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process starts off with. For the nth mode, k is used as an-1.
lower limit instend of kn(max), ind the upper limit is adjusted
down from k (min) until n-i zero crossings are obtained. Other-

nn

wise the iteration process is the same.

The normalization constant is found by numerical integration

of the wave function in the water layer anu analytical integration

of it in the bottom layer. After each normalized mode Un(*)

is calculated, the wave number, kn, and other necessary information

about the mode is written on a permanent file when our revised

version is used. Also written on this file is the particular

mode amplitude at one source depth Un(no) and up to five

receiver depths Un(0 ) (rMain program, lines 190-230). The file

then serves as input for the summing program listed in

Appendix (III).

In ths summing program, we calculate the pressure at a given

point in space by relating pressure to velocity potential:

S(57)

Using the suppressed e time dependence and the velocity

potential (43):

H

We obtain from (5.7)

The continuous portion of the mode spectrum consists of modes for

which I knJ < W/c2' Solutions of Equations (2.37) and (2.38)

lead to imaginary values of kn and so an exp(-knr) in

Equation (5.9). So these modes are damped out for ranges greater

than a few water depths.
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We then assume spherical spreading close in, so that the

reference pressure at unit distance is (44)t

: j, e_ (5.10)
'4T t

which at 1 meter yields:

nm (5.n1)

Therefore the propagation loss is:

ZL. oLo o I (5.12)

Thus given the mode wave numbers, oiher constants such as

density and water depth, H, and mode amplitudes at the source

and receiver depths for each mode, we can calculate the propagation

loss. This is then what the summing program, Appendix (III),

does. Since there is nothing special in Equation (5.12)

about source and receiver depth, we have written the program

so that any depth specified in the normal mode program can be

used as the source depth in tne summing program. The program

reads in information from the normal mode program (Appendix II),

checks what source and receiver depths are required, calculates

propagation loss according to Equation (5.12), and plots or

prints propagation loss versus range.

When Pedersen and Gordon (6) compared normal mode theory

to ray theory, they pointed out that this interchangeability

of source and receiver is not true with ray theory, only normal

mode theory. They then proceeded to show that the ray theory
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result should be modified by the ratio of source to receiver

sound velocity to make it equivalent to and comparable to

normal mode theoryt

Hnm = Hr + 10 Log (Cs/ (5.13)

While the correction makes ray theory more "exact," it is

not significant for many realistic profiles. For example,

in our profile, Figure (4.2), the worst case would be source

at the velocity minimum, receiver on the bottom. The correction

would still only be .1 dB. The correction is important when

some analytical profiles are used. Here the receiver or source

sound velocity may get very low (admittedly unrealistic), and

the correction becomes significant.

Once the normal mode summing program was written and checked

out, we did a few straightforward comparisons in order to

verify the output of the normal mode program. We compared

results from our program to results from two other programs

for a shallow water profile (Figure 5.1). DiN~poli (24)

had originally used this profile to compare his fast field

program (FFP) to Bartberger's normill mode program (23). The

FFP uses a completely different approach by first fitting the

sound velocity profile with exponential layers. It then solves

the wave equation directly in terms of Greens functions and

uses a fast fourier technique on the computer.

Figure (5.2) shows the two original results in addition

to a calculation for the same profile using our normal mode

program. Discrepancies in the original comparison were

attributed to FFP's use of exponential layers as opposed to

Bartberger's linear layer fit of the velocity profile (Figure 5.1).
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We would expect our results to be closer to the other normal

mode result, since both use constant gradient segments.

However our normal mode calculation includes only "trapped

modes" (i.e. modes whose phase velocity is less than the sound

velocity in the bottom fluid). This is the discrete portion

of the mode spectrum. Bartberger's normal mode program

continues calculating modes up into the continuum (phase velocity

greater than bottom fluid sound velocity), and so it should

yield a different result. But the comparisons in Figure (5.2)

show essentially the same propagation loss versus range for

all three theories. This ccmparison gave us confidence in

the program as originally written for shallow water cases.

We then proceeded to test tha normal mode program for a

deep water case. We chose a typical deep water case yielding

a well developed convergence zone (Figure 5.3). This ray

diagram for a 305 m source depth indicates that to the right

of the caustic (Figure 5.3, line AB) bordering the convergence

zone, there is a well developed double arrival region. One

arrival has passed through the caustic, the other is approaching

it. We then ran CONGRATS for a 500 m receiver and 100 Hz

source frequency. We chose ranges from 54 km to 62 km, which

took the receiver from the shadow zone, over the caustic, and

into the double arrival region. In the shadow zone, CONGRATS

found no real rays as expected (bottom bounce arrivals were

dropped from the calculation as discussed in Section 3). To

the right of the caustic, two arrivals were found at each

range point. They were then added coherently using the ray
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summing program (Appendix I). A W/ 2 phase shift was added

in CONGRATS to the arrival that had passed through the caustic.

This phase shift is a well known but sometimes controversial

feature of ray theory. Figure (5.4) shows the propagation loss*

versus range curve for a 500 m receiver. The propagation loss is

essentially infinite to the left of the caustic - which is

indicated by the vertical line at 56.3 km. The propagation loss

jumps to zero at the caustic (infinite intensity), then

increases to a plateau at about 57 km. From this point on the

propagation loss curve oscillates as the two arrivals interfere

first destructively, then constructively. Both are very roughly

equal in amplitude. That plus the IT/2 phase shift results in

-this particular curve (Figure 5.4). There have been many

supportive papers (45-47) on the use of the IT/2 phase shift

at caustics, and later we will add our own example of how this

is the phase shift necessary for ray theory to be consistent

with modified ray theory and normal mode theory.

In any event, now that we had the ray theory result, we

ran the normal mode program for the same profile. We split the

profile into the maximum allowable number of layers, 1000, and

found from a preliminary run that there were 139 modes. To

match the ray calculation geom'.try we set the bottom density

equal to 1 and the bottom fluid velocity equal to the velocity

in the wa P -t the bottom (this is a matched impedance with no

*All propagdtion loss values will be in dB:re 1 yd unless

otherwise specified.
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first order bottom reflections). We then used the normal mode

program to calculate all the mode shapes, stored the mode

amplitudes for each mode for source (305 m) and receiver

(500 m) depths, and found the propagation loss using the mode

summing program (Appendix IIT). Figure (5.5) shows this curve

as well as the ray theory curve. They couldn't be more out of

phase if we had tried to make them so.

This disagreement was unexpected, to say the least. We

proceeded to examine both programs in order to find the problem

and eventually found the difficulty to be with the normal mode

calculation. We were calculating 139 modes and using 1000

finite difierence layers in the water column. This meant that

for the higher modes that were oscillating one hundred times

or more in the water column, we were allowing 10 finite difference

'ayers or less to fit each oscillation. The scarcity of layers

would result in a poor representation of higher modes as we

followed the wave function from one layer to the next, and more

layers would enable us to more accurately find that mode shape.

This inaccuracy in mode shape would affect not only the normalization

constant but also the choice of mode wave number, kn

Figure (5.6) shows the normal mode calculation for 2000

layers. The comparison is better, but still not satisfying.

Figure (5.7) shows the normal mode calculation for 3000 layers.

Here there is still closer agreement with ray theory. And the

change in the normal mode calculation from 2000 to 3000 layers

is small compared to the change from 100i to 2000 layers. It

was felt that calculations for more than 3000 layers were
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unnecessary, and a rule of thumb was adopted that at least

20 times the number of modes equaled the number of finite

difference layers required for the calculation.

The larger number of layers required necessitated a

rewriting of the program. We now calculate one mode at a

time, extract the required information, and go on to the next.

This is as opposed to the original storage of a group of twelve

modes at a time. The program was substantially rewritten to

keep its size small while increasing the number of finite

difference layers. A listing is shown in Appendix (II).

We also made several changes to improve the accuracy and

speed of the calculation, using knowledge gained while looking

for the flaw in the program. For example, regula falsi (48)

is usually faster than simple halving as a root finding technique,

and as such it was uzed exclusively in the original program.

But for the lower modes in the deep water case, we found that

the first trial values of k n were yielding values of the

unnormalized wave function at the surface on the order of

+ 100. This was instead of the very small value,(< 1,

needed to satisfy the pressure release boundary condition.

Because of this, regula falsi was taking excessively long to

zero in on the proper kn . So we now use halving of the

difference between successive k n's until the wave function at

the surface is less than 1050 (Appendix II, Subroutine Half,

lines 45-70), and then we use regula falsi until the wave

function at the surface is less than E . In general, this

cut the number of iterations required by more than half for

the lower modes.

6o
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Another change in the progra: involved the method used

for zeroing the wave function nE:ar the surface. Ideally,

for each mode one can find a kn so that the mode has the

pioper number of zero crossings (n-i) and reaches an amplitude

value of zero at the surface. In practice, using numerical

evaluation of the mode shape, the amplitude is never quite

zero at the surface. Even for changes in kn of one par'c in

l012, the surface wave function value may still be small, but

finite, So the program was set up to satisfy the surface

boundary condition as follows:

Zn (M= 0) t 0 (5.14)

where C is some small number on the order of .01 or less.

If k is changing by less than one part in 10  and the
n

amplitude still isn't within C of zero at the surface, the

iteration process stcps. At this point the wave function will

look like Figure (5.8A) or Figure (5.8B). It will approach

zero amplitude at the surface, miss reaching zero amplitude

at the surface, or cross too early resulting inr one too many

zero crossings. This information hear tiia surface is incorrect,

and essentially useless. Newman and Ingenito (22) decided to

zero the mode amplitude at these depths in the following way.

They calculated the mode shape, again starting from the bottom.

They checked until there were n-l zero crossings (for the nth

mode), Point A, Figure (5.8A). Then they followed the wave

function as it first increases (AB) and then decreases beyond B.

At this point, beyond B, the wave function should monotonically

decrease to zero at the surface. If it does (Figure 5.8A),

61
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it is left alone. But if it doesn't, at some point it may cross

the axis or start to increase again (Figure 5.8B). This is the

point where the wave function is assumed to misbehave, and it

is zeroed from there to the surface. This is done in subroutine

(Iterate) when Flag equals 2.

While this apprcach works well for many profiles, it can

yield incorrect results for some modes with some profiles.

For example, consider an asymmetric, double well profile

(Figure 5.9). While most modes present no problem, consider

mode 4 (Figure 5.10). This is the unnormalized wave function.

The program would follow it to point (A), continue up to (B),

and then down to (C). There would be the proper number of

zero crossings, so it wouldn't expect the amplitude to increase

beyond point (B). It would then incorrectly zero out the mode

beyond (C) in the upper well and normalize incorrectly,

resulting in an incorrect mode (Figure 5.11). To avoid this,

we chose to zero the amplitude starting from the surface.

The possibilities are the same as before (Figure 5.8) with

the first case being left alone, while the other two require

zeroing. So we start from the top and see which shape the

first oscillation has. This is, of course, after first

generating and storing the entire mode shape by starting at

the bottom-water interface, and using the last value of kn

obtained. This mode shape is not correct n~ar the surface,

but it is the best we can do within the accuracy limitations

of the method and computer. We then zero the mode amplitude
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near the surface where necessary. Figure (5.12) shows mode 4

again, but this time after proper zeroing, w, see the correct

normalized mode shape. These changes were made in Subroutine

Iterate, Appendix (II).
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Figure 5.1 Environmental Description for a Single

Exponential Layer(From DiNapoli(24))
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Figure 5.9 Double Well Sound Velocity Profile
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Figure 5.12 Mode 4, Correctly Normalized

(Small Amplitude Oscillation in Bottom
Well Roughly One Tenth as Large as
Shown Here)
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6. Profile I, Comparisons Near a Single Caustic

Our first comparisons of the three theories were done using

the deep ocean profile used in our checkout of the normal mode

program (Section 5, pages 57-60). Profile I*(Figure 5.3)

was specifically chosen so that the caustic bordering the

convergence zone (Figure 5.3, line AB) would have a well

developed double arrival region to the right of it, While we

are also interested in comparisons close in and for more than

one caustic, we felt it would first be advisable to compare the

theories in the simplest region where all three are valid,

near a single caustic. To the left of the caustic (line AB),

there is at first a simple caustic-related shadow zone. This

region will not turn out to be completely free from effects of

the surface reflected shadow zone boundary close in (Figure 5.3,

line CD). But the two boundaries are far enough apart so that

we can separate out the effects of each. To the right of the

caustic, because of the bottom depth of the profile, we have

a double arrival region free from other arrivals for an

appreciable distance from the caustic. This enables us to

compare the three theories not only in the caustic region, but

for several oscillations in the double arrival region as well.

Calculations were dcne for a source depth of 305 m, and

receiver depths of 250 m, 500 m, and 1500 m. This way we were

treating different situations - a receiver shallower than the

source, between the source and sound channel axis depths, and

near the sound channel axis. Figure (6.1) shows comparisons

between ray theory and modified ray theory at the two deeper

*Input sound velocity profile data in Appendix V.
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depths for a source frequency of 100 Hz. As expected, ray

theory propagation loss diverges as the caustic is approached

from the right, and reaches zero (infinite peak pressure) at

the caustic - indicated by the vertical line in each part of

the figure. Modified ray theory indicates a finite, non-zero

propagation loss at the caustic, and the intensity falls off

exponentially from there into the shadow zone. Just to the

right of the caustic, for Airy function argumentl01 S 1.5,

we are in the caustic region - or caustic boundary layer (13).

Here we expect modified ray theory to be better than ray theory.

This is the region in each part of Figure (6.1) where the

modified ray theory propagation loss first decreases and finally

reaches a minimum, before again starting to increase. We see

that at about this minimum point, ray and modified ray theories

merge and reach their best agreement (Figure (6.1A) at 57 km,

for example).

Beyond this point we expect ray theory to be valid;

modified ray theory may agree with it, but this will depend

on the local geometry of the caustic. At 500 m (Figure 6.1A),

modified ray theory does do well in this double arrival region

and follows the ray theory oscillations adequately. At 1500 m

(Figure 6.1B), however, modified ray results fail rapidly in

the double arrival region. It is soon almost complettly out of

phase with the ray theory results. This disagreement is not

unexpected (49), and points out that care must be exercised in

extending modified ray theory far into the double arrival region.
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In Figure (6.2), we now add normal mode theory results at

each aepth. On the caustic at each depth, modified ray results

agree with the normal mode results. Thus, modified ray theory

does yield valid predictions on the caustic. Then looking at

500 m, we see that normal mode values duplicate the modified

ray results in the caustic region, and then it agrees with both

ray aid modified ray theories in the double arrival region. To

the left of the caustic, the normal mode results agree with modi-

fied ray results in predicting an exponential drop off in

intensity into the shadow zone. Only when the pressure has

fallen 35 to 40 dB and a weaker diffraction pattern from the

close in boundary and bottom starts to predominate, does

modified ray theory fail. So in this case, it predicts the

caustic related shadow zone effect as far as we can see it.

Now we look at 1500 m where ray and modified ray disagree

in the double arrival region (Figure 6.1B). Since we are using

normal mode theory as the standard of comparison valid everywhere,

we expect it to agree with modified ray theory in the caustic

region (0 E P -1.5) - where modified ray is valid. Then we

expect normal mode results to agree with ray theory results

in the double arrival region (beyond 52.5 km) - where ray

theory is valid. ,igure (6.2B) verifies this behavior. In

the shadow zone, modified ray results are still in good agreement

with normal mode results. Thus the tendency of modified ray to

be valid in some region to the right of the caustic appears

to be accompanied by a similar tendency to the left of the

caustic. Sachs (49) has explored this problem of the shadow

zone validity of modified ray theory using an idealized model
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resulting in a circular caustic. He demonstrated that as one

proceeds into the shadow zone (large positive arguments / of

the Airy function), modified ray theory breaks down when compared

to an exact solution of his particular problem (Figure 6.3). So

if we could follow modified ray farther into the shadow zone -

and we will do this later in a multi-caustic case- we would expect

it to fail. However, for our realistic profile, modified ray

theory is still in good agreement with normal mode theory when

the intensity is quite low.

Sachs (49) also considers the use of complex ray theory

in the shadow zone. Ccmplex ray theory is the ray type solution

valid in shadow zones where regular ray theory is not useful.

From Figure (6.3), we can see that complex ray theory does work

well in the shadow zone. It is somewhat more difficult to use,

since it requires solutions for complex roots of the ray equations

for range, time, etc. However, it can be a useful addition to

ray solutions for work in the deep shadow zone.

We next did the same comparison for 50 H4 (Figure 6.4).*

The agreement among the three theories is about the same as

for 100 Hz. There are fewer oscillations over the same range

increment because of the lower frequency. Furthermore, the

disagreement between ray and modified ray theory at 1500 m

(Figure 6.4c) starts to occur at a different range - at about

56 to 57 km - between the first and second nulls. What is

roughly constant at the point of disagreement is , the

argument of the Airy function - which is a function of the

frequency through k2/ 3 and also distance off the caustic, A r.

*Here we include a 250 m receiver for the first "ime.
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Thus for the same geometry caustin (constan' r ), and different

frequencies, /0 is the factor that scales the Airy function by

spreading or shrinking it over the space coordinate r. Finally,

Figure (6.5) shows the results for 50 and 100 Hz in the shadow

zone at 500 m depth. Modified ray predicts that intensity will

fall off exponentially with k2/3 and distance off the caustic,

Ar. Figure (6.5) demonstrates that both of these modified ray

theory approximations are good estimates of the behavior

predicted near the caustic by normal mode theory. Finally, it

should also be noted that the consistency of all three theories

in the double arrival region depends on the W/ 2 phase shift that

is inserted in the ray theory result for the ray that has passed

through the caustic. This phase shift is also implicit in the

modified ray theory result (50). Only this way do they agree

with normal mode theory. So this is just one more demonstration

of the presence of a 0/2 phase shift Pt a caustic.
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7. Profile II, Comparisons for a Multi-Caustic Convergence Zone

While our main concern is with causiics and the convergence

zone, for completeness we compared ray theory to normal mode

theory in the near field region to the left of the shadow

zone. Figure (7.1) shows the velocity profile*and ray diagram

considered. Figure (7.2) shows the near field comparisons for

the three depths of interest. Because we are using the asymptotic

expression for the lfankel function, good for large arguments, we

do not expect the normal mode result to be valid within a

range of about one water depth of the source. And this

breakdown does show up (for example, at ranges less than

10 km in Figure (7.2C)) where the normal mode result starts to

diverge.

In Figure (7.2), the propagation loss curve oscillates

several times as the direct and surface reflected rays interfere.

Then at a specific range at each depth (29.6 km at 15u0 m,

for example), the ray theory propagation loss increases to

infinity as we enter the shadow zone. Normal mode results

continue to indicate a finite amouznt of energy present in the

shadow zone. At 250 m (Figure 7.2A), the general fall off in

diffracted energy with increasing range is most obvious.

Superimposed on this fall off is an oscillation due to energy

that is probably reflected by the matched impedance, discontinuous

gradient bottom. As the receiver depth becomes deeper, the

distance between the near shadow zone boundary and caustic

shadow zone boundary decreases and the bottom grows closer,

so that by the time we reach 1500 m, the average propagation loss

remains roughly constant throughout the shadow, zone.

*Input sound velocity profile data in Appendix V.
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We next examined the convergence zone resulting from the

same profile (Figure 7.1). The various caustics present in

the ray diagram are shown in Figure (7.3). The receiver

depths ,re the same as before, 250 m, 500 m, and 1500 m.

However due to the complexity of the ray pattern, we will

discuss each receiver depth separately.

Table (7.1) summarizes the rays passing through each

range point at a depth of 250 m in the convergence zone.

Figure (7. ) shows the ray theory propagation loss calculated

by CONCRATS which summed coherently the rays present at each

point, it also contains the propagation loss versus range

curve as calculated by normal mode theory. In the ray theory

curve, we see a caustic at 58.9 km. Two arrivals interfere

to the right of this up to point (U ), where the bottom cuts

off one of them. The single arrival region extends to point (V),

where we pass over the next caustic and pick up one more arrival.

This caustic is branch B in Figure (7.3). It is the surface

reflected branch made up- of those single arrivals adjacent to

the first caustic that were not cut off by the bottom. At

point (W) we pass over another caustic resulting from rays

that are reflected off the sucface near the source (Figure 7.3,

Branch C). Again we pick up another ray. Finally at point (X).

and beyond, we piok up another arrival that has reflected off

the surface, passed through a caustic (Figure 7.3, Branch H), and

reflected off the surface again.

There are two causes for abrot, discontinuous changes in

the propagation loss curve calculated by ray theory. First,

the appearance of the caustic usually results in a sharp spike
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in the propagation loss curve. This is seen at 58.9 km, at

the border of the convergence zone. The modified ray results

we add in will smooth these out as shown in the previous

comparisons (Figure 6.1). The other cause of abrupt changes

is the sudden cut off uf. a given group of rays by the bottom.

Thi' problem, also discuss.ed by Pedersen and Gordon (16), is

present in our matched impedance bottom. In any case, a

particulpr series of rays, each of which turns deeper and reaches

a different range point in a smooth pattern, suddenly is cut

off by the bottom (Figure 7.5). There is not a smooth

transition as rays beyond the critical ray are cut off and so

do not continue the previously established smooth pattern.

Normal, mode results do indicate a smooth transition, and this

problem of ray theory we have not treated.

We do, however, treat the caustic problem. We add in

modified ray resillts whenever we are in the shadow zone or

on the catstic. Furthermore, we add in the modfied ray

results, and take out the two divergent ray arrivals, whenever

we are in the caustic region, 0 : P 2 - 1.5 in the Airy

function.* Figure (7.6) shows the combination of ray theory

and modified ray theory, as compared to normal mode theory.

As in other comparisons, the convergence zone boundary is

adequately described by modified ray results. At point (Y),

we see the start of an oscillation caused by the single "real"

ray interfering with a shadow zone arrival from the caustic

*WhereN, r we -Calk of putting in modified ray results in the

caustic region, it will be understood that we take out of

4the sum of all rays those particular rays associated

with that caustic.
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at point (v). In general, ray plus modified ray goes a long

way towa2d matching the normal mode results. As discussed

previously, the worst points of comparison are where the

bottom cuts off an arrival, Points (U) and (Z). Normal mode

results indicate a smooth transition, but simple ray theory

has no way of treating this. Instead an arrival abruptly

disbppears, resulting in a sudden increase or decrease in

propagation loss.

Figure (7.7) shows ray theory versus normal mode theory

at a depth of 500 m. Table (7.2) summarizes the rays at each

point, a similar pattern to that at 250 m. Here, however, we

are out of the caustic region at point (U) where bottom cut

off of one arrival occurs. And the caustic at point (V) is

more obvious. Figure (7.8) shows the ray theory combined with

modified rpy results, as well as the normal mode iusults. We

see again the interference of a single ray arrival with a shadow

zone arrival, point (W) to point (V). But the normal mode

result shows an additional oscillation, point (U) to point (W).

This suggests an appreciable shadow zone contribution far to

the left of the caustic at point (V), much farther than

modified ray theory results indicate. This shows that the

modified ray theory intensity probably falls off too quickly,

and breaks down beyond some point off the caustic. This

verifies the failure of modified ray theory far into shadow

zones discussed by Sachs (49 ). The extra points indicated by

asterisks in Figure (7.8) include in the coherent sum of all

arrivals the ray double arrivals to the right of the caustic

at point (V). But these two arrivals are in the caustic region,
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and the modified iay results should be used instead. So as

we indicated before, the modified ray results are inserted

in place of the two ray arrivals in the dashed curve in

Figure (7.8). This resu)t is clearly more appropriate than

the result indicated by the asterisks that includes the rays

from that caustic within the caustic region.

Figure (7.9) shows the ray results and normal mode

results for a depth of 1500 m. Table (7.3) summarizes the

ray arrivals at the various range points. Figure (7.9) contains

a somewhat simpler ray pattern. The caustic region and partial

double arrival region are followed by a single arrival region,

another caustic, and finally at point (U), a different double

arrival region. Here each arrival has passed through a caustic,

and one is further surface reflected. So we have a modified

interference pattern. Figure (7.10) shows modified ray plus

ray theory and normal mode theory. Again modified ray theory

takes care of many of the priblems of ray theory. Beyond

point (V) in the normal mode solution, we see an oscillation

superimposed on the interference pattern shown by ray theory.

This oscillation is similar to the ostillation in the first

shadow zone from 40 km to 48 km and caused by the matched

impedance, discontinuous gradient bottom. We believe that the

oscillation bey6nd point (V) is also due to bottom effects.

Again the abrupt changes in propagation loss where bottom cut

off occurs (points W and X) are obviously regions where

improvement is needed.
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We then did the same comparisons for a 50 Hz source

frequency. While the ray arrivals at each point are the

same (Tables 7.1 - 7.3), the frequency is different. So the

oscillation pattern is different. Figures (7.11 - 7.13)

show ray theory versus normal mode theory. Figures (7.14 - 7.16)

are i'e ray plus modified ray calculations for 250 m, 500 m,

and 1500 m. Also shown are the normal mode results. For

250 m, the general agreement is good. However, the ray plus

modified ray result (Figure 7.14A) shows two nulls at points (U)

and (V), while the nov'mal mode result shows one null near

Point (V). The nulls in the ray result are due to single

diverging rays in the caustic regions to the right of caustics

near these points. We were reluctant to substitute the

modified ray result here, because we didn't have two arrivalg to

remove as in a normal caustic region. It is not obvious that

a caustic region where bottom cut-off of one arrival is

occurring is the same as a normal one with two diverging arrivals.

It would seem that this region should be somewhat different,

even though the two arrivals couldn't be resolved ..n the

caustic region if both were there. But we put in the modified

ray result in this region to the right of each caustic - and

removed the single arrival from each caustic - to see what it

would do (Figure 7.14B). The use of modified ray theory does

appear to eliminate most of the first null, or merge the two

together. It does not work completely, whic. is not unexpected.

So our feeling that the modified ray result is some,:hat like -

and somewhat different from - a single arrival caustic region

seems to be correct.
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At 500 m (Figure 7.15), we again note the general agreement.

The asterisks starting at point (U) are another set of points

where we have added the modified ray result instead of the

single arrival in the caustic region. Here, however, the

region of single arrivals from the caustic is quite wide.

And the modified ray is actually worse than the use of the

single ray associated with the caustic. This just points out

that transitions from caustic to caustic at low frequencies

are quite complex and take place over a considerable distance.

So caution must be u'ed in trying to apply modified ray

results in wide, single arrival caustic regions.

Figure (7.16) shows comparisons of the theories for 1500 m.

Beyond point (U), results from the two theories start to diverge.

Figure (7.17) shows calculations for the convergence zone and

adjacent shadow zoneb, using normal mode theory and two different

bottoms. The use of a hard bottom (Figure 7.17B) not only

changes the first shadow zone (up to point V) and the

convergeice zone, but also changes the region beyond point (U)

where the direct ray arrivals are getting weak. So we attribute

the disagreement beyond point (U) in Figure (7.16) to bottom

effects in a region where non-bottom reflected arrivals are

contributing comparatively less energy.

Using Profile II, we next tabulated the propagation loss

5fpartial sum as a function of the number of modes in the sum.

, For 50 Hz there are a total of 53 discrete modes. For a 500 m

jreceive the intensity is highest, or conversely the propagation

loss is lowest, in the convergence zone (50-68 km). Intuitively,

one would expect most of the modes to contribute here. In
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the shadow zone, the intensity is lowest, so intuitively one

would expect a fewer number of modes to contribute. So

from intuition alone, one would expect the shadow zone propagation

loss level to be achieved after perhaps 10 to 30 modes were

summed, and the convergence zone level. to bp achieved only

after almost all the modes are summed.

In actual fact, the reverse is true. Figureo (7.18) and

(7.19) show the propagation loss as a function of the number

of modes included in the sum. This was done for owo points

in the convergence zone (57.8 and 67 km) and two points in the

shadow zone (44 and 50.4 km). For both points in the convergence

zone, the propagation loss curve levels off after about 32 to

34 .-odes are included in the sum. From this point up to the

point where the last mode contribution is included in the sum,

there is very little change in the propagation loss. On the

other hand, the points in the shadow zone show considerable

oscillation in the propagation loss as more modes are included

in the sum. The propagation loss partial sum changes by as much

as 15 dB from mode to mode, and only with the addition of the

last mode do we reach the correct level. Thus the high

intensity levels in the convergence zone are actually closer

to being average levels, and the lower intensity levels in

the shadow zone are built up (or more appropriately broken

down) from the convergence zone levels by the destructive

interference of higher modes.
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Table 7.1: Profile II, Receiver Depth - 250 m

Rays Passing Throuoh Range Points of Interest

Group Range Angle History
(km) Scurce Receiver

I 59-59.8 Down Up Caustic
Down Up

II 59.9-63.4 Down Up Caustic

III 63.6-64.2 Down Up Caustic
Down Down Far S.R.*, Caustic

IV 64.4-67.8 Up lip Near S.R., Caustic
Down Up Caustic
Down Down Far S.R., Caustic

V 68-70 Up Up Near S.R., Caustic
Up Down Near S.R.,Caustic,Far S.R.
Down Up Caustic
Down Down Caustic, Far S.R.

* Far S.R. - Surface reflection at convergence zone (60-70 Km)

Near S.R. - Surface reflection near source (0-15 Km)

Caustic Parameters for ]00 Hz

Branch/Range er  AIMPDB Time
(km) 0°Deg) r (dB) (Sec)

A/58.93 5.919 82.8 39.34 .0025 0

B/63.44 7.427 7.i3 84.2 42.32 .0028 -7r

c/64.27 -7.65 -7.55 84." '2.87 .0029

E/79.6 -1.365 -.66 88.7 53 .00024 . /Z-
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Table 7.2t Profile II, Receiver Depth - 500 m

Rays Passing Through Range Points of interest

Group Raiige Angle History
(m) Source Receiver

I 56.4-58 Down Up Caustic
-Down Up

II 58.2-62.2 Down Up Caustic

III 62.6-65.2 Up Up Near S.R.*, Caustic
D,wn Up Caustic

IV 65.4-69.4 U!, Up Near S.R., Caustic
Up Up Caustic

Down Down Caustic, Far S.R.

V 69.6-70 Up Up Near S.R., Caustic
Up Down Near S.R.,Caustic,Far S.R.
Up Up Caustic
Down Down Caustic, Far S.R.

• Far S.R. - Surface reflection at convergence zone (60-70 Km)

Near S.R. - Surface reflection near source (0-15 Km)

Caustic Pnrmrpters for 100 H7

Branch/Range 0 0 A MPDB Time
(in) o (Deg) r (d,) (Sec.L

A/56.33 4.66 82.6 37.63 .0023 0

B/65.26 7.89 8.7 85' 43.53 .0049 - 77"

c/62,39 -7.17 -8.0 84.7 41.63 .0027 - 7T

F/81.05 .75 3.76 92.7 53.87 .00027 -
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Table 7 .1: Profile II, Receiver Depth - 1500 m

Rays Passin!! Through Rane Points of interest

Grotip Ranae Angle History
(k ) Source Receiver

I 51-53,6 Down Up Caustic
Down Up

II 53.8-57.6 Down Up Caustic

III 57.8-58 Up Up Near S.R.*
Up Up Near S.R., Caustic
Up Up Caustic

IV 58.2-69 Up Up Near S.R., Caustic
Up Up Caustic

Far S.R. - Surface reflection at convergence zone (60-70 Km)

Near S.R. - Surface reflection near source (0-15 Km)

C~tstic P'-!rk-ne Lers ( for 100 10.)

Branch/Range o e AMPDB Time
(km) 0 (Dep) r (dR) (Sec)

A/50,95 3.99 86 33.98 .0019 0

C/57.69 -6.69 -1)," 87 38.4 2  .0025 - T

F/87.1 3 .76 11,5 98 57.98 .00028 L
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8. Comparisons for Horizontal Caustics

Up to this point we have concerned ourselves with one

class of caustics. These we have characterized as vertical

(depth to range slope lilO .002). Now we wil examine

the caustics we characterize as horizontal (depth to range

slope of il00 ( .001). As discussed in Section (4),

these are caustics for which a normal expansion off the

caustic, such as Ludwig's, would seem more appropriatp.

However, for some horizontal caustics, a horizontal expansion

off the caustic is still possible and convenient. For these,

we would like to know how accurate the shadow zone and caustic

predictions are.

We originally intended to use an arbitrary velocity

profile of 10 to 20 layers in treating this case. However,

the complicated ray patterns arising from such profiles tend

to interfere with the examination of the horizontal caustics

ther alver. So we selected a bilinear profile*(Figure 8.1),

for which we could separate out the caustic regions more

easily. Figure (8.2) shows the ray diagram for chis profile

and a source depth of 1000 m. The caustics of interest are

quite clear. They are summarized in Figure (8.3) for the

second convergence zone. There is a cusped caustic (ABC)

nested inside the caustic that limits the convergence zone

on the left (GH). Table (8.1) sums up the caustic parameters

for caustics at two depths, 201 m and 281 m.

*Input sound velocity profile data in Appendix V.
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At a depth of 201 m, the caustics are far enough apart so

that we can examine the shadow zone for each one individually.

Looking at the second convergence zone, Figure (8.4) shows

the comparison between normal mode theory and ray theory for

a 50 Hz source frequency, and Figure (8.5) sYws normal mode

and modified ray theory. The first thing we notice in

Figure (8.5) is that the intensity falls off more slowly

with range into the shadow zone than for the vertical caustics

previously considered. For example, for the caustic at 153.5 km

in Figure (8.5), the propagation loss has increased 10 dB at

a distance of 3500 m into the shadow zone. For a vertical

caustic (Figure 6.1), the first 10 dB increase occurs in 1500 m,

less than half -he distance. This is in line with our description

of horizontal caustics as weak caustics, where the energy is

spread out over a broader region to either side of it. For

both caustics in Figure (8.5), the modified ray calculation

in the shadow zone is good for about 2000-4000 m into the

shadow zone. For ech caustic, the normal mode calculations

show a more rapid decrease in intensity with increasing Ar in

the shadow zone than does the modified ray prediction. A

possible explanation shows the value of' a normal caustic

expansion. Consider point (M) in Figure (8.3). We have

obtained a value for the propagation loss there by horizontal

expansion from point (N) to the right. But the caustic point

closest to point (M) is point (L). and this is a weaker caustic

point than point (N). So a prediction for point (M) based on

point (L) would yield a lower intensity, one more in line with

the normal mode calculation. We see that one tisadvantage of a
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horizontal expansion for a horizontal caustic is that we may

be fairly close to a much weaker caustic point, and not be

taking this into account. But with this caution in mind, we

have demonstrated that a smooth, simple caustic, whether

horizontal or vertical, can be treated by a horizontal expansion.

Finally, we considered a deeper receiver (281 m), where

the shadow zone of one caustic overlaps the single arrival ray

region of the previous caustic. Figure (8.6) shows a comparison

of ray theory to normal mode theory for this depth. LL is

typical of the previous cases, with divergent rays near caustics

and single arrival regions far enough to the right of each

caustic (1.38 km to 144 km, for example). We then added in

modified ray results in each shadow zone and caustic region

(Figure 8.7). From 143 km to 147 km, we see an interference

pattern resulting from a combination of a real single arrival

and the shadow zone contribution from the caustic at 150.5 km.

The pattern is similar to that in Figure (7.6),around 64 km,

but here the agreement is poor. The oscillation pattern is

not quite correct, and the level is too high. This is probably

due to an excessively large shadow zone contribution of the

type discussed in the previous paragraph. This diF -eement

'Iemonstrates how modified ray theory results using a .,,rizontal

expansion can be incorrect when the point of interest is far

enough from the-caustic.
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Figure.8.1l -Profile III, Bilinear Sound Velocity Profile
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Table 8.11 Caustic Summarys Profile 1II, Second Convergence Zone

Depth=201 m

r c  e o  Tc  P.L. Extra Phase Shift

(m) (sec) (dB) I
135455 10.4 89.16 91 .001117 -

153540 -10.33 100.85 93 .000815 -31r/2

Depth=281 m

r 00 T P.L. Extra Phase Shift

(M) (sec) (dB)

133075 9.9 87.635 91.8 .001105 - it

150147 -9.8 98.674 93.7 .000798 -31r/2
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9. Conclusion

The comparisons we have made can be evaluated in several

different 'ayst in terms of the usefulness of the modified

ray theory we have applied at caustics, in terms of the

validation of a particular normal mode program we have used,

or in terms of the genera] usage of ray theory and normal mode

theory. As in every comparison of several theories, this has

been an iterative process. Knowledge gained in calculating

ray theory curves leads to information about normal mode

theory, which in turn leads to information about modified

ray theory, and so on. In this way, we feel that knowledge

can be gained about each approach thit would not become

apparent in the con,.ideration of one approach by itself.

It should be noted that what we call modified ray theory

(12) kas also been termed a caustic boundary layer solution (13),

a uniform asymptotic theory (14), and a caustic correction.

To further complicate things, there is a completely different

derivation termed modified ray theory (51, 52) which is usefi1

when rays turn near boundaries. While this author is comfortable

with modified ray theory (it is after all a result of modifying

the basic ray equations), perhaps "caustic ray correction"

would distinguish derivations intended for use near caustics

from more general expressions.

Whatever it is called, we feel that these comparisons

have once more demonstrated the usefulness of modified ray

theory near caustics. In many cases, the addition of modified

ray theory results at caustics to simple ray theory yields a

much more satisfying propagation lojs vs. range curve when

135



NOLTR 74-95

compared to normal mode theory. The interference between "real"

rays and shadow zone contributions from adjacent caustics

helps explain many of the oscillai;ions present in normal mode

results and absent in simple ray theory results. Thus caustic

shadow zone contributions are an important part of the

c.onvergence zone irtensity picture. For what we characterize

as vertical caustics, the horizontal expansion we use works

quite well. For horizontal caustics, the expansion can at

best be said to give only fair agreement.

For the horizontal caustics, a normal expansion such as

Ludwig's (14) or Kratsov's (15) should be better. But in

reality, it should take just a coordinate transformation to

make Sachs and Silbiger's horizontal expansion equivalent to

Ludwig's non-uniform normal expansion. The real value of

Ludwig's approach is in its uniform asymptotic theory applications.

By uniform asymptotic theory, we mean that for a smooth caustic,

one can obtain an expression that is valid everywhere - on

the caustic, in the caustic region, and out into the dov"'±e

arrival region. The expression will automatically be identical

with ray theory in the double arrival region. Thus, haphazard

agreement in the double arrival region can be avoided. While

this approach is quite powerful, in practice it is often

difficult to take advantage of. In many realistic deep water

profiles (as in our Profile II), the bottom cuts off one of

the two raustic-related arrivals relatively near the caustic,

and the iniform asymptotic theory is equally helpless. In our

comparisons at 100 Hz, we barely get one full oscillation in

the doubLe arrival region before bottom cutoff of one arrival
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occurs. For frequencies of 1 kHz or above (where there are

many oscillations over the same range increment), the uniform

asymptotic theory would be useful as long as the caustic

curvature remained constant (otherwise further modifications

would be necessary). However, for frequencies on the order

of 100 Hz, and realistic velocity profiles, a non-uniform

approach is just as useful, This may be either the horizontal

expansion (12, 13) or Ludwig's (14) non-uniform result, since

each has its own advantages. In any event, the modified ray

theory we have used does work on thc custic. It works well

in the caustic region. And for vertical caustics, it accurately

predicts the near shadow zone field out to & range where the

pressure has dropped some 40 dB from maximum.

As far as normal mode theory is concerned, we feel

that Section (5) demonstrates the need for validation of any

theory by comparisons. Only this way can apparently accurate

calculations be verified. By comparing the normal mode resultsI to ray theory, we verified that the caustics were where they

should be, and that the close in direct-surface reflection

interference pattern was accurately predicted. So we validated

the particular normal mode program being used. Comparisons for

idealized profiles with exact solutions (3, 16) are necessary.

These standard cases give a good indication of the inherent

accuracy of the program or theory under ccnsideration. But

comparisons for realistic profiles such as we have dealt

with are also necessary to verify a program or theory's

behavior for ranges, frequencies, and cases of practical interest.
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Thus we feel that an arbitrary profile input - such as allowed

in the finite difference normal mode program we use - is

desirable for evaluation of realistic cases of interest.

One disadvantage of realistic comparisons is that they

often contain a bottom, and we are sometimes interested in

minimizing bottom effects to examine other phenomena, such as

caustic effects. For this reajon, we treated profiles with a

matched impedance bottom. This way w.t eliminated first-order

bottom reflections. This did lower Lne level of bottom reflected

energy in the convergence zone, and enabled us to separate

out caustic shadow zone effects; but we were st'll getting

abrupt changes in propagation loss where botto, cutoff occurred

and also probably getting bottom reflected energy from the

gradient mismatch at the bottom. No doubt these effects could be

accounted for by a bottom reflection treatment plus a diffraction

correction past the critical ray, but we were primarily interested

in caustic treatments, In obtaining reality in our comparisons,

we sacrificed simplicity. So we were forced to weed out the

phenomena of interest from other phenomena equally interesting,

but not pertinent to this study.

With all the problems associated with the ray theory

resultsi caustics, bottom reflections, and diffraction

corrections for bottom cutoff, the cuestion often arises -

why bother at all? Normal. mode theory, and other approaches,

sum all these effects purely and simply. A cynic might attribute

the continuing usage of ray theory to the huge investment in

time and energy put into ray tracing programs all over the

country. But there are cases and situations where ray theory
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is still better than normal mod- Theory. For shallow water

and surface chanel calculations, normal mode theory is

generally accepted as superior. For deep waier profiles, and

frequencies on the order of 100 Hz, normal mode and ray theory

are roughly equal - even though normal mode theory does include

all the effects that must be tacked on in ray theory. At higher

frequencies ray effects become more important than wave effects,

and ray theory is probably better. Ray theory is far superior

as an interpretive tool, indicating in ray diagrams how the

energy gets from one place to another. And for some applications,

fast ray tracing programs (7) can easily outperform normal

mode programs. Ray theory and modified ray theory arg

especially useful in the treatment of pulses. Because they

both have an explicit frequency dependence, one can trace ray

paths and caustic locations independent of frequency. Then

one can put in the frequency dependence as the arrivals are

coherently summed and the total pulse reconstructed by Fourier

t synthesis (8 ). This is as opposed to normal mode theory where

one has to calculate intensity for each frequency independently.

Finally, the need will always remain for well known ray theory

calculations with which to compare the new, more complex methods

of calculation continually being developed.
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Appendix it Program RAYTRV Listing

(Coherent Ray Sorting Program)
PROGRAM RAYTRV CDC 640'0 FTN V3.0-

PROG~RAM RAYTRV(I1\lPLIT9O(JTPUTTAPF2)
COMPLFX SUMC1AO) n~l
DIMENSION IRQ~lOOi2)

DIMPFNSION TAPGFrc 11o.3).5P(21fl?,PP(21092),VPO(2l0,
5 ~DItAFNSTON1 TEST (-0)TEST1 (9) 9RIFFER(9v A00) 419FP(99800)

E0IVALElNCE (8UFFFR, IAFR)

C TAPF2 IS OUTPUT OF CONGPATS
10 C NCASE EOUALS THFL NOMIP.ER OF PROCESS CARDS IN CONGPATS

C NCAS: IS THE NU~mFP OF CASES TO 8E PPOCESSED
C IPPN*GT* 0 mEANIS PPINT OUT PATA
C IP9QOC.GT. 0 MEANS ADO AQPIVALS COHERENTLY
C ISHDAR=N.GT. 0 MEANS N SHADOW 70O&4!E ARRIVALS

15 C ARE TO BE READ IN

CA~RD) R5EAD -5rATC*;IEDJT5 - LIAtJ5S It, A3142,15

READ 9769NCASE
976 FOPqiAT(15)

20 00 IR20 NCA=1,tNJCfSE
NSTOP~fl
NSTART=-99

READ Q75,IPRNIPROCISHDAR
NARPIV=0

25 975 FOPMAT(315)
READ 10o0i(TEST(J)*J=1q8)
READ 1A00,(TEST1(J).J=1q8)

1000 FnOMAT(RA10)
READ (2) (T,3PGET(I)-PI~l* 330)

30 READ (2) (SP(I)1I=1,420)
READ (?HR;P(I),11,4?l)

RE AD C?)
IF(EOF(?).NE.0.) GO TO 100

3590 STOP 5
100 NSTOP=NISTOP+10)

NSTAPT~tISTAPT. 100
READ(?)C(UuFFErBT.J),I=?,9),%I:NSTARTiNSTOP)

401001 CNTU

11 NRT=IFIX(TARGFT( 110,1))
45 NZT=IFIXCTAFGET( 110-2))

NAQPTV= JK-1
IF(NAPPIV.LE.0) '30 TO IA20
IF(TORN.LE.0) GO T( 7?5
PRIN~T ?00

so 200 FO"Tl~~xq6CNPT PFS0JLTS,////q?0Xq,
I 34HINPUT IN.g1IlI6TTflNI LISE:D IN FINr)11N( 11920X,

2 37HP~AYS PASSING THiPO1)t'e-4 SL)ECIFIEO TAR(ET*//v?lX9
3 17HPANCF5 Ar'In 'nPTHS;
PRINT ?75*TAPG'ETC 100i1)*TAPfET( 10Qq?),TA0GFT( 10993)

55 275 FOPMT(///i5X9?lH')0LlQC RANGF IN KYDS~gE15.A,ciXs
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PROARAM RAYTRV CDC 6400 FTN V3.0-P316 OF

1 21HSnURCE DEPTH IN KYDS=*E15.9X9
2 2A'HSOUWCF VFLOCITY IN KYOS/S=*El5.8)

PRIt"T 300qTAP(WT (t.'7T,+,?) .TtRGET (NZT+?,3)
300 FOPMAT(///46xq??-SUJ0FACF DEPTH IN KYI)S~,E1S.895X9

60 60 1 27HSIJRFACE VF.LACITY TIN KYnS/S~tE?O.k)
PRINT 3'0,TAPGPT(iJ7ZT+1.?),ThtCET(NZT+193)

350 FOPVAT(///q46Xq21HPOTTOM OEOTH IN KYI0S;=El5.8,SXp
I ?6HqOTTOM VELOCITY IN KYDq/S:.oE20.8)

TFCTA'PGET( 1OM.3).LF.A.) GO TO 3690
65 PRINT 375,TAFIG T( 1OP.2)9TAPXFT( 108.1)

375 FOPMAT(///30X,17H-FPFC4tFNCY(RAD/Sl=,E2O.8q5X,
1 22HATTENIJATION IN t)f4/KYO=4E20.A)

3.A9n NVPn=IFIX(VPOC?10o.))
3700 PRTIT 370?

10 370O2 FO0MAT(///,45X%2BNCOnhfGATS VFLOCTTY PARAMETERS,
/ /A5X ?AH------------------------------

P//96H- LAYEP 17X9AHZO-KYnl2XFHVO-KYD/S, l4X,?HG0 17X,2HGlq
417X* ?HG21l4X*7Hl/-wYD/S//)

PRINT 3712,(N,(VP(M.tJ),tJ=1,6),N=-1,NVP0!
75 371? FOPmAT(I4,iP6-1Q.A)

PRINT 400
400 FnPMbT(///950Y.21HTbPGET I)EPTHS IN '(YDS)

5o0 ropt.lATU;, 96E20.8)
An 80 PRINT 550

550 F0QPMATC///,5flxqP1HTAPGFT RANGES IN KYDS)
PRINT 9O0q(TA"WET(I,1)qI1qNRpT)
PRINT 700

700 FOpMAT(/////, 40Xq??HCOLLECTION OF ARRIVALS)
85 725 D0 1350 J=1,NZT

1350 TAOGFT (J,2) =TOGFT(,),?) /TARG.T ( 104%e)
no 1360 J=1,NQT

1360 TAPGcT CJ,1)=TAJ(PT (J, ) /TARGET 104,1)
DO 1370 J~l*N-%A)TV

90 RUFFFR(3,J)=LIFPFF(3,j)/(1.7454?925E-2)
1370 RIIFFFQ(4,j)=qIJFF *P(4,J)/(1 .7453292SIE-2)

IFtISHOAR.LE.O) GO TO 740

95S
C ALL QUANTITIES PEAD IN H-FPE APF iN ORIGINAL UNITS
C SAME UNITS AS FFEL; INTO CONGPATS
C ZC IS DFPTm OF iJTFfRFST
C PC IS CAUSTIC dANa AT DEPTH ZC

100 100 C

C MA'(F ZC."C q3OTH- SA'AFP UNMITS
C EITH-ER 'lFEQSFEFTYOSFTC

'S C THFATO IS INITIAL bN(dj.F(IfII FG) OF PAY GOING THROUGH CAUSTIC
C TC IS TPAVEL TIMiF TO CAUSTIC
C AMPPrn IS PROP. LOSS TO CAUSTIC IN OP
C PS IS ANY ADDITTO'JAL PH4ASE SHIFT-DUE TO SURFi-CF4ETC.
C Wl IS THIRD nPRIVATIVF OF W NEFOED IN AIPY FO'NCTI0N

10C ISIGN IS SIGN OF THIPn 0FWIVATI VE-l+ OP -1

145



NOLTR 7I4-95

PROC'RAM RAYTRV CDC 6400 FTKI V3.O-P316 OP

C2=TAPC.FT(l0Q,3)/TAP(GFT(IO4q1)
AK=TAPr.ET (10893)/C?
AIO=AI (0.)
DO 2)QO IF=1,1'IS-r)AR

11; 115 READ ?01 0,TI-'ATO.7CPCTCAt4PABWlPS, ISTGN

XIC=COS (T ,ATO'i 1.74i3?22E-?)
00 2.900 T 2=1.7T
IFIAS(TA;ET(F.?)-ZC).E..0fl1) GO TO 2900

1?O) DO 2AQj TF1=l.P,:RT

PHO=(AK<**(.66A7))*Hl*lELiR*ISIGN
IF(RHO.1.E. n, ) C6O TO ?899
NA~j 1tRI~

125 IF(NAf,'TV,LF.8fl0) GO TO 2200
STOP 4

22A0 RIFFFQ(6,NApCTV=AmPDM20.*AL0G1lO(A8S(AI (PHO) )/AIO)
BUFFFP (S,,IAPPIV) =TC+xTC*0ELR/C2

130 IRFP(RoiAt-IV) =Irl
BLJFFE (; ,NARIV) =A*P

EBJFFPR C4djARPIV) =O.
13 ~ IRFR(q-(qAPRIV) =9QQQQ

13c;?Rq9) CONTINUE
2900 CwNT I jUF
2990 CONT INUEI 40 140
740 DO 790 I=1,M'ARQIV
750 IPFP(1 il)=100)*I-FP(?,i) .IRFP(8,)I)

CALL COtASOT (IqF0-,)Oq(l.1,1)
145 IF(IOPNI.LE.0) G~O TO 1400

POINT 1200
1200 FO00AT(1H-,3XolHT&PrET fEPTH9lSH TAQGET PANSEF

1 15H INITIAL ANGLE 91SH FINAL APIGLE ,15H TPAVE.. TIME

lco3IHPAESI T s -O. OF ,L=1q4

155 1460 PIT 139;T~;(RPPJi)TRE(8RRJ9)

I .(PJFFI,?(1 J)-1 1 h6% S9 -FO 0 J
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PRO(aRAM RAYTRV COC 6400 FTN V3.O-P316 OPT:

1465 IC=IC~l
1475 J=J.1

TFCJGT.NAPPIV) GO TO 1700
lF(I0FR(2qJ).NP.I7T) 630 TO 10

170 70 IF(IPFPRJ).'ljE~QT) GO TO 159,'

C------TH-IS FL46S BOTTOM( OP SORFACFJ POUNCES W4EN LOSS
C ----------!N COH(~?ATS IS SET TO 9,E+03 O'i 9O ONE

175 C ------- CAN DE~LETE THEM~ FPOM THE SUM OF ARRIVALS

1477 CONTINUE
IF(PUFFEHCF6,J).CE.9.E.03) 6O TO 148q

185

AMP=I 0.**((PUPFR ((.oJ) /?0.))
PH=PUFFFIR(7,J)

Rr=A 4P*COS (PH-O
190 AIG=AMP*SIN(PH)

DIJm=CmPLX (RE.AICG)
0O TO 14QO

14AS OUM=CMPLX(0.q0.)
1490 SUmCTC)=SUw(I-l)+OUM

199 195 IRf(Ic.l)=?i
IRO(CIC. 2) =IRT
GO TOl 1475

1590 IF(IPT.Eo.NRT) r~O TO 1455
IFPT=IRT+ 1

200 =-
GO TO 1465

1600 J=J-1
GO TO 1455

1700 PPRIT 1750

205 PRIN!T 17AO ,T7ST(i) .TFSrc2) .TEST'13)
00 1000 IJ=1.IC
IF((PcbL(SUM(IJ)).O0.)AN.(AI&IAG(SUMi(TJ)).EOh0.)) GO TO IAO

2100 FO~rwAT (I 0 1q.7)
Y=CAQS(SU"i(Tj))

210 Yl1FFALSJmCIJ))

Y=A T MA'; cllw ( IJ)
P1=ATAN12(y2-Yl)
flP=-20.*4LO410 C)

GO TO 1799

2)r- 171;0 FO0.AAT(/,//,30X.?7c0FStlLTANT AT TAPG9'T POINTSq//,
I 3X,1l?HTARET ')FOTJ,4915lT6NCET RAN~GE 96xq

? IqcCULTtNT A'Lr-Tj~lE,1Q~f'-HHASF,
17AO FOO MAT (/.3A10,7x,3-t0OU el2Xi2HD~. 12X,3HL AD)
1770 YOqq)q~.

2?n 220 DR=99999.
147



NOLTR 74-~95

PROGRAM 9AYTRV C!)C 6400 FTN V3.O-P316

1799 PR TNT I 8lOTAWE1C(Ipr)( I j,1) 92) qTA~RGET( I Rri(I.J92191) tY9fBqP
1800 rONTINUE
1810 FOPMAT(/v5FlS.7)

22r, 425 1820 CONTINUE
ENn

14



NOLTR 74-1.95I
0' 0

a .0 n~
w 0

0 CD

0 N NN NA N NN

in 00000 ,0

00oo0000c00ll WkJw :w Lj iJ
o-c oc o CD 0.1CCC00C

***,+*+4 +4t -- 4f

fl in (A1 ma,0 )n 0 N " r-c.1P-c
ar o o o- - .00 0t zo

In in mn Ln m .0.m0t'. n co

0) Vk 0 0 ,0o n, .0i r.At.

- ----- ---

#- +

> J 0 crN N Np N N LO N

C I 0 4 N 2 NJVVV N w
*D & M. .0.InOilcf r-me t0,cOc rm P

W r W P- 000000000 C4* 444.4u

=> 0 4I I SIISL.LJ~j..,J
'0 0~C L W WUJ..l 0J

Cu 0' v

F) F) Un NC NC

2 -

*4 -. t- *O~~ O ~ C Z 4 0#0 +0+

I- I t t- I- t-JJWJ.J~ L orJW ) fL.L

M IA 0 Ln o rn CDt o a.
L0 07 0

r c-~ I. -%.I

Id .4'*0'u t l r, 'r LJLLJW W.b

C C t fl!A vI Mg'z*MrW2NCZ

Id 1. )4 o v



> NOLTR 74-55
3 0. 0a . 0. 0l 0. a 0. 0 .

cy 2 . 0 . C. 0. 0a, 0.
U.. a- . (Y. 0. 0. ol . 0' 0
0.* 0 0. 0. ' ' 7. 0. 0. 0.

I. 0 0 0 0 00 :L a. 0o 0 01 0o 0 00 0 000- 0 0 0000 00 0 000000 0 0 0
W1 M* * * 4 4 * C* *4 In4 . .M4 4 4 * 4 4 4 * 4. M4 x . 4X40- T ,. *4y D4 v4

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ m- ' n-n I InWI LIiI..II. CIW . LW Ii~~tW I L~LLLW ~ t~JII'I Li~ .t.
In ~ ~ ~ V N -N N . N N .u~ Noc M M Aj Cow o .; M

Z s ai 68 6611611 1a 1 a a m ., l I a a I a am a a m ai1
.1

c-.-T T TTr - ( cTc... ;c T -T( -T L2- L' -T tL: T-Z T L T -- T T
*c c*4 4 * 4 #.* . 4 4 ,, . 4 * * * * 44 * 4 . 4 4

LaWWwW W uWi L)LI L WW ,. W W I,-W , W W .WWWWWLILIILLIIU WWL.L..LJIJLIWWI
uI t .''a.2 Nlt... r-0N4o n 4 L y nu -v , u -Tv nr

CI r .DA7
=,*N .nC' N c Nm ) , ~ -- i r4'-, ;4 lC Z

.. .. .. .. . ...... ........... If o ' . ..
P, CL

H, MC 0 -e .4M 4M N A . r& v v M. rvITV,4 , ( 4enj N.2M &4 .o.M.4 f.

;* I,,N-0 N ' C'N~ .N In G ,-cr ,,

0- CD M -DX Z0'-0. 3 -0 M V 0 0

01 1 10 N ' .~ C 0:C O .Itt:-. C't.C' C C' If 0: : :oIa c -, . O 't- .,.i-:an 0 O . 0

w- C>C5 0 =c5 0. =5 C i 0 a c=c a i 0 is c-a a am- 0 ma c a C

t * *44 *** 4444 444 4444 4444 04 *** ~ 4 440 *4* 4 + 4 + 4 *4 4

0. mAa A ut wIII Ws~L~ 'j N.. r .t) wIIL., L.n~ . LILLI. W..J~~ ILI.....tJxLITm l t-..~ li I
t -tr-) CO.1e t .*'"4 0- Vf.3Jt z-4 .0 0. CID D- -400-4 m 00,C mm. 0..

4
.. .4 M C l:.. 0.~n+ o P- ''DI ~0' - J)C

0 a m o-r vJNt0oc c.-r C'In In t - R I t*'- -t)0 ' i - .0tf ' 1 0- -N t
M2 .0'04&f o 0st 0 .0 0e. .04. or,,=. cr)- coro rao .'o

* ~ ~~~~~ t .s Itts .em .am .il It a ti a s ss as

LIW c C~~0. 0 0 0 0000 c 0c C,00a 0 ,0:
,Co0 00 00 0000000C'0 000 0 0. . c0 30 0 3 0 0 3)0

o's 4 x000 -: , -' !, )0 n

- 0

Cl Cv t A. . .. . ' N N 0 . L..............

a- r

tt ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I Mr-CC0 0 0 0 't 0 0 0 0 O 3 0. o~ 0 0 ~ o o ~ ,.
o000 Cc0.Nt)M700C 'c" 112".:, 4= Mr0o N -L0...-..b

c- m-i e -u' m a m Ln nJt 'C UN a' .Is a, n NC. MS A i I C.5 - U~ ai 'P '

!:~~~ ~~~ 501- 0 .0v . .



NOLTR 7I4-95
cu m. mN tuu 0 mNNNO, m NNo. mN NNO MN N No MSNN No. I c s co NNmo iI cu(% I No MNeu NOSmN NNOMcmN N

al a, a- 0 0' 01 0' 0 0, 0- 0
0 0. 0 0 0 CF. V. 0 a- a.
a, ol a- a. 0 0. 0 0 0. 0

OO' 0 C. o ' 0 . 0 0 0 000

'atIIU L~t 4jjWww, www A LUW0W L w W .jU ,L"W l k WU-L.WL )W IWL

m0v.' 0 V. 3 N .-.f1a z N - if 0 z N -.' 0. N -11 'Ia iN -in a-' 'c y di az N -'1 a, zN- o33 a-c N -11 a- -D N. n1 ac N -1110 'z N

0! M llt M.5I NC- I I n , MM I 1 - IS IS N1 A I-c IS Nc I~ M' S I S I N 11 - 1 1S -S C I' M1 N 0t IS IS N - CS IS N1 Ic- IS IS n 0a

te' nc *'0..'c'CVow -- i n m -n 'C' 4 D2:4nt v-NCC n44 f . n c0.-.N4 n a) 4 ncD 0 n m);1 44 occ...tC - 3 z 1in1 .-mVNN' N r N 41 - . C-NN' 0 N I Q..' N I, I41 - a) co t- ' N 2, C N 11 -D N I m4 N C

** iii 1as, a1t ' 1m 1 a1 ai aIIIIa *111111 ' a a Iam I a Ii m Iii a Iag sa I I Ia a Ia

UI' C' C' C4 C' C 1 C' C' C' C' C C' C' C' C' C' C L C' C' C' C' ' C' CU 1 i C' C C' C' CI'' C51'

* 44 4 4 44 * * .44444.4,.;.;. . t ***;* ; * 4 4 # *4.** ** +* 4 *

ONNO'C'CCVCN1 0'C 11w w ' w W eISO w ) W W 6 W W W J W 41N-'!3-0'W0L, .!CC'CW00 L! - te W LC.,' W 0 U .

N'i 00 M" 'C N' N' pC A" .i N c' '* _0 0, N Sa. ' 4NN' " CNN' S 'I'NN 'g ' N 'c IS C N 'C.2 ' N 'CI i N A c "' MD z N '
0000000a- 0000000T0T0I0:00mmO=c.01-0d,00n2000 I T'tIC 0 41mm V0000000 000
*44 44..c444,4 N4N44. N.N4 I -4.m m N4I4N* . 4 n4 4 4 m44 444 44n4 44

Li~~~~~ -i -i Li -i -i Li -i Li -i -iL L i-iLiL -i iL -i-iLiL L i -iLiL i- iLiC -i ih-L L iL -L L i- iLiL - i 'i - - iLiL i-
. . ... . . . . . . . . .. .. .. .. .. '.. 0 1 'C '4'.-S N I1 N' . .. . .. .. .NV..0.I . .. l.. . fV..N

tN O C.0aS 00 4 04 0. 00. 0. . --. 04 ISV0IS. .0 ., .0 IO C.O.IS C* 01 1 C1110 01 'WISC4> N 0 'CNISNNCNNI

N N N , N N N Nr, Nc, N' N' N N N NN4 N0N NC N N N N% N No I~ N N N N o r- N Nm C. N N -N N N' N' N a N N N. N N' N
1 4. .2 a N . . . n a 1 a , l 1 ,z0 n a -

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 , 4 4 4 4 44t4 4 4 4 4 4 4 4 4 4

N-N-- NNm ,N N N m -NN N mN NN NNN N vN NNNN N'N N NN NNN NNN N ~NNSN N NNN N N

00 c OC 000c=0 Oc 0 c m =c C a r)00c c0 0030C 000 0VV CCC' cOV C CVCr.0 c 'V
4 1 4 *,4 4 4 4.4 4 4 4 4 *.a4 4 4 4 * 4 * 4 . 4 * 4 4

Li'.J w w W wi w.J~ vi~~ WW'iJw J wiii.~ L'a w .J L) W W.0~ W i.JW " 4 pii~~ wLicJ W~i ~ u-W L u,' e LJw
-N 4 ),D0N 0 p'COAn (40, r NISC U'4' N.aS, N'3V InV ,Sf~ -- ' a.'1 m1~' , cf"SNISI I

in 0 Nt ON O II' V I'C. N C's3 33, I .wx p N 21 m vCIS' w~z JD C3 'CN3 I'm'~ -'I=

CD ~ ~ ~ I~~ NS11 nI- I 3''t Li3 * 0 '' Da c"n c ,,p \ 0 j'' :Y.
.t A I3' V''1' X'SO CI-' * IS3 cI.' 4'- 1I- CiS. rI .CI- C (I A

................ ................
Oqa oat Nas V cl c 31 c'am 4 ii ONl -'~ z Ca4txa

aNVqN - N m N NNNNC, N N.0 3 0 3 3 N m0 k330 3 N0 'I,0 4 N N~0 m33 0 3 N13 0 .13 355IM'
0333 033 0333 003 '13 '033 300 "'N 43 1 .5140 )343 13i 3 3

N (J NNCJN NNNO ViC NNN NN ONAONN NN N000 0 NOV V O V VS V V O 0 O 'Vofoc' N N NNN'N0N0N0
Cc oo030 ct O' CV a33V , mc 0 e 0 VV N N ,C 4 C% ''4140' CC c -T 0 z C. m0 0'='

N iC .- 0 '00- ' C ' tV 3 303 -ID C. .t3 1 (I C r C. 4 L.3n f\
-f...c. C c. I 7'L'f I~. tr.C ,' P tC 'r. I.2 * :~

O C' IO'C.C'la"I ,*3f C .I 'D , SIS4'r 3 !!,a30 II ' .C''''? II~C~

E .M .... 0,... .. .. .. .. .. .. .. ..

no M I 0 a, 4 1 0 4 , in m 0151J



NOLTR 724- 5
o P r . o0 - 01 o GI cp

a- o o. 0 0. o 0 a, a. 01 17

-- - -- - -------- ------ --- -- ------ ------

o000 0 000 C, o C,0 0 0 0 0 0 0 0 0 0 00 O0 0 00 0 0 00 0 0
** 4 * * * *4**4 * -* f t * .* +* 4 * * * #* * * **+* * * * 4 4, 4 ,, *

m1 P) r- c ( 11 - :) M1 0 m f) r)NC-PP ) M. fN M c m) PN - M) c) N 0- m) a) m 0. P m) M f-) M) Q M P) P) N, e- P) P)

Ln c 0(itn 0 Nf0N : n0NzNflo- 14n0 c 0N N 0 o.1 N o l n 0 N . , M; Nt'N;Ufl0 -n

ob OD IIIa IDo IC IIm o o '4)3-0 ' Z !M 0 &1 4DiI a(D. s s a a e a a s s gMa a!t m a sDa a0a eaD

3 - m ,n 2 x o,! ;z ' a. clz o m M . o

P 01 1 11PP . 4n C' :a , " N'; " - em " -- n mN; I,- m n,
tna ~-t c !c4mo2:c nC - D . )n'C0n Dn,, , :L ,nm u,4 o~ 0~t - .. n o-NLcznN

~~~r _4P1P)_z r _wt_ _c)mt_. 0J .P4.00 . 44 P

*.P4P o rt D4 n ;;m 41'44\: cc,4N 4N'tn 44nn4 4N 4P 4 NDN 4 n . : n z n z Vn4, P 44 4 o 4

WW~ih~hhi.ih~hhiih&.Ji .hii .hi I . ii. . hhhL. .i d W J . ........3hhhhhhii i.ihhh

L9 - -0N0~0) C ? '9'e - T - T T T L(VT0 ~lP0 0P .1P0.O PI4t T CUI L
S~ ~ Lf.0iP 0 0 11rN 4. #C'0 C .-. t-l.P14 4 + 1; + *C #e 4C O 4'.000.~.

4~L' C4~3~ 
oCCCO

)N N1 a),)P 1P )P )" )P P )P )P )P )P )P . .P )P 4P 14P 4 .4 N o) z1 N c o 4c 'A'n ' 4 4 a, z

. . ..4 . ..... ... . .f...a. .. .N .- .C . ............ . .0P .U .1 P . . .0. . . C . -. N

N-.o0 o1 00 Q.ON1 c 00 .- o o oQ P 0I.P -o.. 4XC> C 0 , o 0 (~.4 4ocQr, Q1 0 0P)-N' cP4 Q 4 0 o0 P Q o

W4' 444444 *Wj W4 W4 4 4 4 4 ~4 4W 4 4 U4 4 4W4 4 *4 4 Wj44 4 4 4-P 4P 4~..P 4
LO UJ 0 II 0 Wi 0 II W II W SI 0 ISJ 0A WS Wg LO 0 Ii U0WU Uo WWWWWUJ w W WL UWW

lE ) A m NO' .11 1-.1 -n (.4- Z MN)n ,, :!,a~P .,O +JP4 C1 . :! 00 4 0P0P
2' Nj A vo Z'P 3, Ln J 0

t...~o~1-- 1-0tJ) ~ 4 '4 )--4 .00f~ )-P-. 0J~- NNP'. )4.. (-0' A

C Iv DI I C I I 0'1) 8 S C I C I 8 1 0 1 1 C I I C I I 0

c'2 cJrr P 'i.u'Pj 1~
Do.. . . .. . . . . . . . * 3, * D4 * ** * >* ** * * z.* *D

hi ~ ~ ~ ~ ~ ! zi hi '. .3h h 3 3.3..3h h it33. 3. 3 i.3..33.)..3-.333. 5'333 i.3h ..D.33..I...3hCh ih ]3 ihhhi.
0 00 00 00 01 00. l . 0 0 000 !o00 00 0 0'. 03 a 000007303.,0

3 2 : o:( :o o:0,~, )0 P I 4 0 0 )) .) . 4 o : c c : o

Ivcu N . Nft N ftM t M t N N N um NN '000Nft0f0N N NN Nm % N NN NM m N N k N0Nr0 N & M A
c.~ ~ ~ c .zcz-c z- cc ccc .' c .c .zcrc=Qz.czr .NN N 4 4 00 .0c 0.

4 4 * 4 * 4 4 4 4 + 4 4 4 4 4 *-3 OUO 3 + 4 4 4 4 4 4 W . 44 . 4 4

r- 0~0 mV ~ ~ 0 1: G c~ c c0 01 0 Oh O f, 4 L.I Nc'r.:00.f

.' ..Cc ~ ~ ' .. . . . . .~ . . .3 . . . . . . .0 .. . . . .3

N* w........NN- Nl N NNN' NN- C -j....................... N N N N0N:N:- M
ocoo *=oo oooc c030oc o co0) o ococ0 c00 00000Coc o0c300 o)0I) c oo+ o0

00 'C C O0 0) C O 40 Z~ .' #' O .0( +' 0 0 0 0 *I3. . . + + + ++ + + +, *+

. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LO W WU) W L)"J ) tt U

z .ITa) I x . V cL 41 r c cvr, m N L D mN52

N Io .Ni cr t f m. T



NOLTR 74-95
N 0I MaNawC~M N a mc NCv MUN N MN auCio' m .UNNN0 C'U NN Nvuu) mO' r)NN0').JJO (INNc M

a' 0 0. 0. 0. .01 0- a- 0. 0- 0.
a- a, a- 0 01 a, 01 a- a- a' 0
0. 0 0. . 0 ' 0 0. a, 0 0. 0. CF,

K ' ' 0. 0. 0. 0' 0 0 00

0 0 00 0 0) 0 0 0 0 z C Xi 00 0 00 0 0 n x 0. 000 00 0x 000 0 00 0 00 C 0 1 ca m 0 0

t' r -0 in! in -0 N'- L n w-. N- LA .- n m! n A -. 0 t ' r . U LA -C NA W- J1 0 -. Mt LA ZD. t! X) . N - -0 n:- LA in

an vo N A aDN n cru- anlixasr g la c4 am a co a is am al amau r~ km s a IV i m si a SB I

CL:!.c~~ . . I .ci t s . . .. ... .L Ic .c: .I c .! . r .. I.

**l U, *4 4* ** U, 4tl T4 44 * *4?* U, U,4 4 44 4 . ** 1** 744* *::.AAA+LLLLALLLLAA*AAALLLLLAAAAALLLLLAAAA+ALLLLLA #LLALLLL
LUUUULLUUULULU.ULLLLLW+. +ULLLUUWUUULU'ULWULLLLLWUUUL

W WW t w w uC L. NCO'. .. C'..44w' . UO.-. ld i.CC w -M..-C ! w~',- w'L00 '£ wCf! tw lOD'-wN.w0IJa w

mmvc c:.3 J 2:. 07 0 '- 'J P-4f x T 'p 'r '. Pp T
N -ILA C1 f .0 c 0!-CVD 1I-a' .a Na T".' 0M.-t C0-L 0N-0 -44% N;-L MCf' : D3 4 C- ML0 .r

0 ~, 0!0 ' NA.. ? 'LA.. 0 30 A 4CC 3O -- MN " O'!-' m0A - C fL . 4 " 70 CI P N'.--
3-0 z0C ' - C c - .-------- VC '£ 'A'I CC,' 0C'nC11.4447.CC-DjA n4Cvin o ndl N D CIf., N404 CC0 4 0 4 C,4 M0 C' 0 4r-,N 444 D v IN An z4 04444444

C"CC- - - In 4C(C 44 m m44'C4~ PV C'CN 4 'n m 4 m m I 4 m mC* 4 C'4C'C 4 C'.r4C 'tM4C'

444 . . . . . . . . . .4'I4. '144 4 44.4 44 4 4 * 44 . 4 44

C L~t- .O . . ... .''C .0.. .' .~f- 4 11 . .. .~'C .- .3 . . N~L . ~ C',!-.... ... .0.,33-' . .l.-ON . . . .C. .-

m M r £ .0OA 4 4.NCtC' 4!...Cr-.LC 0PCLrNCV 0O.-.LIr.r-Cr 0'V O'33C'..fm4 -40C.C(% I M t-.N3- . r.'0'-lN.OT0M0.t

C', iCN C N N N C n o- 0 'VN CV C' z 'm£m 0 NVNNNNNNNNCVNcN-Ca.0.NNNNNN 4V'NNNN

!'C V C C 0 C' -n - 0- Cc n D'. 'C -C .. 'C C. - C C' 1 0 C " - CC C -' r4 o ri - 7' 0 4 ' 44 o!- nI CC '

NNC'I~~~~~~ ~~~~~ ~~~~~~~~ TNN NNN NAAJ NN'J N.CJ UCJUC VCJ' NU N N CN'C ~? N J

4. UJe LaLW W e.'CL LI UL L U. L L i uLi W L WU.u : LU U) W LUJLL LU U WL- L A LULWWLWL LULC

,Z J n , 1-, - p'C'f m D-'C 1. C0 ' ,' -n4 ntI C,0 N m 11.60 aO.0' 1- 4' n3C0 m CTOw O

LD 0~np n 65 0 , 0 M5 D T I 0 t- 0 as 0 31 0 ca m I 0 sm z ma 0 a

C>. LA0 NJ~ 4)1.-1ID00 o L * . 0 -JN O 4 'M 4 N - LZ 0 'rr ON .000 04LA 0
L(I LU.La UW f ( LUULL LUUUL LUU'U'. vUULL LUUL mc .UCLL LUULL t.ULL rC'.L U.JLL :LU.WLUrf jr 4

0'L ZU o t -I 4£ M, £!-fl (I'CU !-4 N- m-L &.. I..r U...C'.. '-cI 4 ..e.4 -, 'r 'r c R
.. 3 , . 3 C " - 'l 4 A - - 0 - A ,l. ) A 3 " 3 5 T14 - C3L . A - - N O 0 0 0 0

0
4
c') P -. C4 z A ON c z m'Ni N111^- 1,-0- :' 3 40 . r- 04 t C c0 0 mCCN ,nc w

001 \J00 M'. 0 tJ'3 . t3 J4 n in'- in - tr -*3"D .-. 70 -. 707 in0~ -).))
4. w in)3in tr o.'~ mO1. CCn- 311' in).. w. in i0 3N.' In.3 N - iro n -b O-o ! k o N-.c

em~~~~ Imm ' 6 'Tm Ia~ xmm rhi &ma Og " aa -m -rm o.4

0 c O ' 3: 3 2 C . . . . .U O .3 0 .

N IV LU N N I c N N m CC. N ri 4u N N.000 ) ri NC li '3 IV' w MN N N N N 4 N 4 v N. . N0 'C N0 N W NL N N~ m N N N N N C'-C
0.300000c 0 c 30 a0.C50 0 00 C 0 c 0 0 P 3 0.0 30 0 0 .. 033...c 0 0.33.3.3 c= c 0 00000

+4 4 + +44 4 4 44 4 4 4 4 4 4 44 4 4 4 4 4 4 44 4 4 4 4 4 4
to- ., l u , j! l w -0 u' ''' W. . .-. . .wwulw w w

-' z C', ' inC cc '! . IDCC.

x 0 .'3C.5 ~ '' C' CD, co 't tc Ct r- C, v3 o3 c.c c C c . 3' 'D ( 'D 0C' C V.3 MAOC C .1 'r m i 3' A ' 0 3 n .1 -t
LC'CI.U'-U V C'UL I.C =.IU I'JCcU ' UCC''LU' U I~Ct J TILLULUCU'C z!C L U LLCI CC

-C' 0153



0~ 0' 0' 0'NOLTR 74.95
NOMmNO mNQ% cu Nu

0. 0' 0' a

a. 0' 0. C.

Li Li to i l.J U. Lo Li 1. wi Li U, Li wi

N- ' .0T .- ' 1 00 -. 0-C0
Z, I" c"0 C 0 0. 1 0 t 0, A 10

- ~ ~~~~~i m . P 0 fuC

. . . .P'C . C. . ....

f0Cn N NC 0o 0 N. N CC C

,C, L0 N N c 0' 00 m 000

10 1. . .01 . .0 . ' . 0 . .

In 4 r rl m f, 40 -4 m . m
00 000000000

* . . *0C'4 4 4 4 4 4 0
Ui Li i Li IP Li Ui L LL, Li WiL iL

N) 0M _. N '1. N, N Cj I"

m *P 0 _1 N, %C NN C N .)P

en m 400 4 a 4 *

MMNNNN &W0.~NN44 I 0 N0 N 0'4C0 N0C0N0'.NN~' 0lC N ".l NC C0. 2 -P - N 0 1 4 C 0 0 0 0 .
40 4 4:4 cr000 4 N 0 0' +. 0' +' + . N P

N O110 N 'C 11 (1 4 If N *C C . 0 4 P *. ft 0
NC 0 N 0 1 C0-0 t- 10 C C. m N AI f- 0 N V) 0. m 0 10 0

't~~~ 0 .0 N N 10 0 in00 N 0 m 0 ' 0N I) - Cn N
c 00 ' C0 00 , If Nc fN CUP N c M. N N N 4L Np

N N JN NN N N Cj N NU M N NC N N P1 N N NM N N N M N ti
0 !0000 00r,0 0 0 i 0 0 0 0 C 0 0 C5 0 0 0 0 0. a 0, 0, 0, 0

Li +iiih Li, # iJ 0 Li Li Li a + Li Li Li Li Li + Li Li L+iLi i L

.4 4 4 * 4 4 4 0 4 CE 4- 44 N 4 4, -r m4 - < 4 4 1 ft c 4 4 m I- CP 4
.N CU 1*I- ,0=I- c m a, m. cD x Z m n N. CD InP 0 & ' -e

00 'o N 0 Co. 0i 0D 0 0 0 0 0 0 0 0- N
e~4 CD 0 r. 0l N 1- 0Z O0 m 0t m 0n c 0 m. in 0- 0 0

in .% 2 .1 U, N U, in in C, c r) i o 0, N Cn co c- t-

-0C3C..100 M 0 0 0 0 C 0 0 0 0 . 0 0 0 0 0 a 0 00 0
+ 4 + * V) I I It J 10 10 1P 1P' U 10 1021 IP I I0 1 I0 I0 10 I I

P1 7 VI.UlI UI P.CIc 0. .- "' . ... -r- N '- r

,- .j .a' * . 4 . . I

'o N 11t 0154



'NOLTR 74J95

-~~~~~~~~ 0 -4 0 . .4 - 0 . 0 0 c r4 c c 0 0 4 0
*4 .+ . 4 4 4. 4 4 4. 4 + 4 . 4 4 4 * + * * #. 4 # 4 4 +..

C'~~~~~~ *C P.- 0'0- It (ni n0o.- N N 4 - 0 ~ N N N N 0 It ' 0 I
C.. . I N In N . . 19 C) 0 3 C c o) - 4 . ' 0 N 00 . . 4 ,-C ') - t. M' MC W (') N 0 tn wC "' 3' co N In N-)3D n ' '') ) N . - O - -C, .4 N N N 0 N O O.- N C) C) I C . '

4 4. . . . . . . .(v*I S

N -In ' N N N N ' ' N I N N N CM m' In m m' Inm ' t C

3' C N 3' .0 N 0 N0 m' mO 3 1 0 4 s t- ;z n 4 4 M) ' P In M C') t- In N In FC 0
o, ) w 3' o 0 - . 3 . In CO 0 in) N s 4' NO C'D M' 3' m N~ tn C ) 3 In m

cu In 3' N N - 0 3' In W 4 CO N CO a m. N c c' 4 n I -0 '4 It .1 In 19' x0 %C 9' ' O 3 ' 0 c C O C C O C O C O C

4 4 4 4 44 4 4 in m to 4n 4n L4 tnn IC) IntIC U) In I) n n t i n o -t
CO e. 0 0 C. c 0 0 0 0 CO , a .C" OC 0 0 0C.C C 0 0 r>

LI LI L I L I L I I L I L L I LI LI LI LI LI LI LI L LI LI tI LI L I I L.C I -. C '0 '0 '0 3' m n C' '0 mn 0 m' N c') N L) CO 5 'o mO C T ' N 11 O N

T. C ' 0 3'), . 4 P 0. 7. Cw 'D 0 m ; w m" ' l N 17 3' A) . ' 4 '

-n N CO 4 N '0 3' m C' :- cn N - C I 0 -- - 4C 4 n' In (,j N k 3' r) 4

X N P N N 3' 4 Z 0 1- N 0oC4 3 0' fN C. ' - 1 'm CO a,
3' ~~ ~ ~ ~ ~ ~ ~ p 't N N0 t) ID -t 4 0 4 - 0 - n C 0 - N C)C 4 ' 4 C

. .I. . . . . . . . . . . . . . . . .*.....

TCC -P Ino t t n v, in In T n ti) tr oC In 2 LC n In 11' In In wC In '4 r IC' I -IC I

L3 C O ' C O CO C O CC O 0O . O ) C . C' C C O C

0 C O C 0 C C C O0 0 0 C 0 0 0 0 C, O CO 0 0 0
T T P, 4 C L .' 4 .'r 5 C'. w 3 LM C. C\ . 3 , 11 4, 0 C 3 '

C ' : 4 4 41 4 In I 'n In In o 0 40 0 z0 N N I- CO CO W 0 ID L. 1,. 0- 3 '1 3'

u t, L u- 1, IA 1, u t. u u -, 1. u El IA t- u u t, L. C

O C. 0 0 0 OO0 3 0 0 O0 0 O0 0 C 0 C 0 Q. 0 C 0 0 
C'. 0 C' C' ? (3 C 0 0 CO I ' C, 0 ' 0 C C 0 0 0 0 . 0cO O 0 0 CC~~~ ~~~~~ ; _; ; I I~ I GC .3 I. . . C C . C . C C C ' C C0 O 0 0 D CO 0 0 O 0 CO0 O C O 0 0 C C O C O0 0 0 O 0 0 0 'C

L' n In In InM)C) I n I n n I n I n I n Lt.9 L n C. In UI n n I
- ,C! -- . .IT T. - - - 1*' - - ,- T - T

4. . . . . . 4..... ..... .. .. .. .... ... . .. . . 4. . 4.

155



NOLTR 7h-95

Appendix II Normal Mode Program Listing

The following is a card by card listing of the data deck.

This precedes the program listing. While the program has

undergone extensive revision, the main logic and substance of

the program follows Newman and Ingenito (22).

Card 1 READ 500, KKK, INC
500 FORMAT (214)
KKK - number of sound speed profiles for which

calculations are to be made
INC-If MODSHAPE=l, prints amplitude at layers:

1, 1 + INC, 1 + 2 • INC, etc.
Card 2 READ 4500, PROPLT, MODSHAPE, MODEPLT, GRUVEL, GRUPLT,

GRUVELS
4500 FORMAT (F5.1, 215, 3F5.1)
PROPLT = 1 - plots sound speed profile otherwise -

no plot
MODSHAPE = 1 - prints mod amplitude values

otherwise - no print
MODEPLT = 1 - plots mode amplitudes - otherwise -

no plot
GRUVEL = 1 - indicates group velocities are to be

calculated otherwise - program terminates
GRUPLT = 1 - plots group velocity curves otherwise -

no plot
GRUVELS = 1 - prints group velocities over frequency

range specified otherwise - no print
Card 3 READ 1000, TITLE

1000 FORMAT (10A8)
TITLE - word and/or number description of problem

Card 4 READ 2000, VELNO
2000 FORMAT (IO)
VELNO - number identification of sound speed profile

Card READ 4000, F, CT, RI., R2, H, LI, ND, NM, NF, EPSILON
4000 FORM1AT (5F10.3, 414, F10.4)
F - Frequency of source
CT - second layer sound speed
Rl - density of first layer
R2 - density of sepond lavor
H - fi-st layer de,-h (vrpter layer)
Ll - number of in-rements ito which first layer

is to be divided for finite difference equations
ND - number of sound speed depths
NM - number of normal modes or eigenfunctions wanted
NF - number of additional frequencies
EPSILON - criterion for acceptable solutions
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Card 6 REkD 6000, (Zl(I), Cl(I), I=!, ND)
6000 FORMAT (2FlO.3)
Zl(I), Cl(I) - profile depth and sound speed

Card ND+6 READ 7500, SD, (RD(!), I=1,5)
7500 FORMAT 6F10.3
SD - Source Depth
RD(I) - Receiver Depth

Card ND+7 READ 14000 (LBI(I), LB2(I), I=1,10)
14000 FORMAT (10(214))
LB1, LB2 Specific modes to be calculated

i.e. 3 5 100 110 0 0
Means calculate modes 1 through 5, and 100
through 110

Card ND+8 READ 1300 F
1300 FORMAT (FlO.3)
F - New source frequency

Card ND+NF+8 READ 14000, FIN, FMAX, FDELF
FMIN Lowest frequency for group velocity calculation
Fi4AX Largest frequency for group velocity calculation
DELF Frequency increment for group velocity

calculation
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PROG'RAMA NOR'40fl3 CDC 6400 FTN V3*0-P316 OPT=l

PPOGRA~M NORW'Ofl(IPT4UTPUTTAPF1TAPF7PUNCH=TAPE7,TAPE9)
COMMONI/1/ XT( 3100)
CO' 4 ON/?/Z2N(3100)* C2DC3100)
COMMOKI/AA/CPC?0,20),V(2092()),GV(20,20)C(202)DN(2020)

5 CO'~'ON/A-i/Z1(50) ,C (50) ,ZlN(O) ,LL'R(i0) ,L1li(l0) ,MMLI(30) ,L41 (10),
*LR?(10)
COMMON/AC/aKN( 12).PPC 1?)vPVC 1P),IhN( 12),'ZF(12)
COuAMON/A0/EPSILONHgIr)HD3,0L ,OLSPITCTCTDMODSHAP ,MODEPLT,

*GRUVF:LtGRLlPLT. IZFRO. WV
COMNIO'/AE/LOEPTH ILAMP 9LGPU 9LFRE
DIMENSION IN0EX(6)qAMPMO0CAo12)

ImENSION Nl(cs)
DlIMEN~SION ZT(3100)sZZ(3100)

OIMFNcION PLTM0OE(?V)4)*TITLE(10)

DATA LA~iP/(4H4DmPLITL'O)E/
flATA LOEFPTH/4H DEPTH I

DATA LFRP/9HFREOUEK"CY/
DATA LGRU/QHGROUP VEL/

n 11111 FORM'4T(?I4)
90O FOQmAT(F5.1 .?IS.3F5.1)
1000 F0RAATU%04&8)
2000 FORMAT(1H1,10AR)
3000 FOOMAT(I10)

5 ~ 4000 FOIJ14TC(///)
5000 FOPM'AT(* FREOLJENCY/ROTTOM V./H?0 DEN./ROTTOM r)EN/H20 DEPTH/ LI/

*/ NMI NF/ FPSIL0N *)
6000 F0'Q'MAT (5Fl.3q414.F10.4)
7000 FOP-IAT(2FI0.3)

11 30 P000O FORM~AT(* SOUND SPF.FP PROFILE

0000 FORMAT(* DEPTW4 VFLOCITY *

11000 F0~m4T(/)
12000 FOOMAT(* mAxjmiMU Nn. OF ZtPO CPOSSINGS = *914)

r;13000 FOOMAT(O MODE CUTOFF AT THIS SOURCE FREQUENCY *
14000 FnOMAT(10(214))
15000 FOPMAT(* MOEA = *,13)
16000 FOPMAT(* WAVE NUMBER PHASE VELOCITY ' R *
17000 FOOSMATC3E2O.13)

0 IPOOO FORMAT(1Hl)
19000 FOPNIAT(* MOOF AMPLITUnES FOR SOURCE FREQUENCY(HZ) *,FA.2)
?0000 FOw04AT(10X,12(3x%*mO0F*,I3))
21000 FOPlN4.T(4Xi,.?(XA9))
22000 FO~tIAT(13FI0.3)

523000 FO011AT(F10.3)
24000 FOPl.4AT(3F10.3)
25000 FOQMAT(* GkOUP VELOCITIES *
26000 FOu"AT(XvA8.Alt12(X*APAl))
27000 FORtAAT(10Flj.4)
27001 FOPfIAT(2FI1.4)

CALL PLOTS(PLTM00E,?94tl)
C FIVE PFArI STATEVENTS STOPF CONSTANTS ANNi FLAG INFORMATION

READI 'iii ,KKK, INC
00 QS97 M=1.KKK(

55 READ) 800,PROPL-TMODSHAP 9MODEPLTGRUVELGHUPLTGRUVELS
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PRU(ARAM NOPMOD3 CDC 6400 FTN V3.O-P316 OPT1l

READ 1000*TITLE
PRINT 2000*TITLE
READ 3000,VELNO
IF(PROPLT.E0..0) GO TO 5

i)60 CALL PI.QT(0.,q.,q,1)
CALL SYMAL4 (0*0.-A.0,0. 14, 10HPPOFILE 10990.0910)
CALL NueRP (0.o,-'4.0,l. 14,VELNiO,0 0.0,-1
CALL PLOT (2.L,90. ,3,1)

5 PRINT 4000
1c;PEIAD A00'~,FCTO1,P2,HLI.NON~ItiFEPSILON

PPTHT 5000
PPINT 6000 aFCTR1,P2,H,LINflNM.NFEPSILON
PPI1T 4000

C SIXTH READ STATFMENT STORFS SOUND SPEED PROFILE
~0 READ 7000,(Zl(T),Cl(I)vI=1,ND)

PRINT 8000
PRINT 9000
PRINT 7000, (ZI (I) ,C1(I) ,I=19ND)
READ) 7c;00vSOCD(IL),IL1,t5)

F57500 FOP'mAT(6F10*3)
ISTEP=A*INC
JSTEP=5* INC

SnEP=SO/riI DO 7 1=195
7 PO(1)=RD(I)/H

PUlNCH 7600,SO.FD,(PO(I.),1LI1,),LI'I wETFST=.'/FLOAT (LI)
7600 F0~mAT(F10.6*T5)

C NOtRMALIZATIOJ OF SOUND) VELOCITY PROFILE M':PTHS
.585 DO 10 T=1,NO

10 Zlt(I)=Zl(I)/H

rJL=l.0/LI

C NORMA17ATTO OF INCREMENTAL DEPTHS

C CALL TO SUPPOUTINF 't-ICH LINEAR INTERPOLATES PETWFEN THE ABOVE TWO Sl

C NOPMALIZED VATEP r)FPTHS TO YIELD A SET OF SOU1,IO VELOCITIES FOR T,
C NOPMALT7FD INC'QFMFN'TAL wATER DEPTHS

CALL ZCIWJTER (ND9NvJFC?MItJtPPOPLT)

OLS=DL-
CTD=CT*CT
HD=H*H

00 R=P2/Pl
I T =,
Hfp3=HD*H

C CALCULATION OF LAR(rST KN (AK2) AND SMALLEST KN CAKI)
30 AKl=(6.2A318c;307Iqi*F)/CT

AK2= (6.?83I853n710*F) /CMIN
FO= (3O.4784I76043(i*F*F)
AK3=AKI
IlF(MOnFPLT.EO.0) COn TO 40
CALL PLOT(5.,0.93.i)

in110 CALL SYML4(0.0-6.*0.4?0HSOUCE-FRELE-NCY(HZ),q0.0,2O)
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DotpoiAI N0R40D3 COC 6400 FTN V3.O-P316 OPT=1

CALL NMBR(0.0.-?.00. 14,FoO0.O, 1
C CALCULATION OF MAXIMUM P~OOF AVAILABLE USING A SUAROUTINF WHICH ITERA
C FROM POTTW' TO SUOFACE USING A FALSE POSITION TECHNiQUE
C SU-iPOLITINE ITEPATE CALCIILATES A MOOF SHAPE FOR A GIVEN EIGFNVALUE

'5 115 C SY THE METHOD OF FALSF POSITIONCREGULA FALSI)
40 IZF.Pn=n

CALL ITERATE CAKI ,FOHC2DDLSHDHD3,CTDITNCRRZAZZDLIZERf
*I)

DO 41 IL=1,6
41 IMPEX (IL) =0

PRINT 100009F
PRINT 11000
PRINIT 12000,NCP
PUNCH 11500,FP1,HNCR

11500 FORMAT(3F1093,I4)
PRINT 11000
Ir(NCR.EO.0) 50960

50 PPINT 13000
READ) 1400, LB1 (I) ,L'3?(I) qIl,10)

!f) GO (10 250
60 lCOUNT=JPAGE=0

DO 70 1=1910
LLP CI)=LRI( I)

70 LUP ( I ) L (I)
FLAG=l. 0
SKIP=IC1l
DO 120 J~1,10

0 JJ=LLP(J)
A0 IF(JJ.LF.NCR) 110,90
Qf0 LUR(J)=NCR

'30 TO 120
110 IFCJJ.EO.LU9(J)) 120,115

5 14 115JJ=JJ+1
5 145 11560 TO 80

120 CONTINUE
130 ICOUN\T=ICOUNT.1

AKJ=AK3
0=L(CUT

IUR=LUR(ICOUNT)
IF( 1 F.' 240.140

140 PRINT 15000.1
C SUQPOUTIKIF HALF DETEPMINES EIGENVALUE FOR EACH MODE SHAPE BY THE

S C HALF INTEPVAL SFAPCH TFCHN~IQbE
CALL LALF(AKIt,4'qFD9NCRAIIC)
RA=SDRT A)
LJ=4I-l
Or)=EVEN=0.0

C CALCULATION OF NORMAL17ATION CONSTANT USING SIMPSONS RULE
DO 160 J=29LI,2

160 EVEh'=FVEIJ+ZZ(J)*Z7(.U
00 170 J=39LJt2

170 O0F)=0n0*ZZ(J)*7Z(J)
5 165 C SIMPSONS FOLIATION PARAPOLIC PULE VERSIONj HILDEBRAND
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AI1ZRI*(DL/3.)*CZZ(1)*ZZ()+4.*EVE,?.*OlD+Z(N)*ZZ(N))

AN(TC)=SORT(AND).
170 C SU'4POI'TJN'E PLOTS MODE SHAPES

CAILL SHAPENICI)
%QR(TC)=(6.28314L3*F*P2*AN~D)/(CT*AKN(IC)*2.0*PA)
PVIC=(6.2831830*F)/AKN(IC)
PRINT IAOOO
PRINT 17000,M(tf(IC)*PV(IC)*RR(IC)
PUNCH 170009AKN(IC),PV(IC)gRR(IC)
PRINT 4000
JPAGF=JPAGE+ I
IF(JP4GE.EO.7) l~fl,185

10 1FR0 PRINsT 18000
JPbn0=

C TE~f TO DETrqmINE WETHER ADDITIONAL MODES ARE REQUIIRED

IW; AK?=AKNJ(IC)

AKI=AK3*

IC=IC.1
1=1+1
GO TO 230

190 PRINJT 19000

'0 IF((AFLAG.EO.1.).AND.(FLAG.EO.2.)) GO TO 250

JPAGE=0

222 JPLIN=0
PUt;CH 21400qZT(INDEX(l,(APMOD(IK2)4K2=ltl1^)JPUN

226o JPON, J P U

IF(FLAG.EQ.2) GO TO 250
15 GO TO 236

120 DO 33 J-,.1,N
IF((ZT(J)-WFTEST).LT.Sr)EP.ANr).(ZT(J)+WETEST).GE.SDEP) I"IDX()=J

Do 1?37 ILK=I.'9
0 TF(ZT(J)-WETEST).LT.Pi)(TLK).A 'D. CZTJ)+wETEST).GE.RD(ILK).AND.F

123? CONTNE . ~n)(IK1=
1232 CONTINUE

INPFN~l
Itz DO 1236 ILKI=296

123A CONTINUE
1300 AIAP.,ODC1, (IC-1fl2XT(1NDEXC1))

DO 1103 JJ=),NvISTEP
>0 220 IEND=JJ+JSTEP 6
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PRO'PWA NORMODI CflC 6400 FTN V3*0-P316 OPT~l

PRIN~T 270fO9(ZT(LL19XT(LL)sLL=JJtIENDINC)
1303 CONTINUE

AFLAG=O.
25225 DO 1305 III=29INflEN

1305 AAtOiO)CIII, (IC-i) )=XTCINDEX(III))
lF(ICF'h13) Go TO 190

240 FLAC,=?
10 GO TO 190

250 NF=NF-1
EF.ILE 7
IF( N~F .GE.0) 260s270

26~0 PEAn ?3000 *F
35C'O TO 30

270 IF(CRIJVPL.EG.1.l) 2PO99997
2AO REAr) 24000 ,FMINoFMAXDELF

IC~1
K=MCC FVAX-FmIN) /OELF) .0.5) .5.0

n ICOhf'T=J=O
290 ICOUINT=ICOUNT+1

I=LRI (ICOUNT)
IUP=LP? (ICOUNT)
IH(I,.1.0) 370,000

5245 300 IF(T.E0.1U0.1) 2q0*310
310 F=(Pm1N-(2.0*DELF))

32n J=J.1I AK?= C6.?q3lA53*F) /C2mYN
F0n f39.47%3al76*F*F)
IGV=I7FRO0
CALL ITERATE(AK1 ,FDtH-lC20DLSHDHD3CTDTNCRRZALLDLIZERC

*I)
IF(NC'O.GE.I) 3309340

330 CALL HALF(AKliAK2*FDNCRvAI,IC)
DKN( CIC,J) =AKN .(IC)
CCICJ)=(6.2831853*F)/OK1W(IC.J)
GO TO 350

340 CflCeJ)0O.O

lI(J.EO.K) 36003?0
C CALL 0ROERROP(0*0)

IC= ICOUNT

ICUNTC CONT
IF(.O.~52,9
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39n J=J.1
IF(C(ICJ-?).Fn.0.0) 400,450

400 IF(C(IC.J-1).EQ.0.0) 410.430
410 IF(C(IC-J)*EQ.O.O) 420,440

4() 280 420 GV(IC-J-?)=10OE10
GO TO 470

430 CP(TCqJ-2)=(CCICJ+1)-CC1CqJ-1) )/(12.5663707*DELF)
GO TO 460

440 CP(CCJ-2)1(-CCTCJ+2),4.0*CcICJ,1)-3.0*C(ICJ) )/(12.5663707*DEI

GO TO 460
450 CP(CIJ-2)=C-C(ICj+2) noIg~)AOC~~jl+~~j2)

* (75.399??3c;*0ELF)
460 V(TC.J-2)=(1.0/C(TCJ) )-(DKN(lCj)/C(1Cj) )*CP(ICJ-2)

GV( IC.J-?)= 1. 0/VtilCJ-2))
470 IF(J.F0.L) 4800390
480 MN'J (IC)1=

IC=Ic+1

J=2
IF(IC.F0.13) 4909510

490 PR~INT 19000
IK=TC-1
PRIN~T 29000

300V PRI 4T 11000
PRINT ?0000*(MNU~t(J)qJ=19JK)
PRIT 260009LFRF9CLGPu, J2=1,1K)
F=FM IN
D0 500 N=3,L

r5 PRINT P?000vFCcV(JN-2',J=IIK)
900 F=F+flFLF

IF(QFLlAG.EO,2.0) GO TO 530
510 IF(I.70.IUq<1j) 3P9390
520 RFL&G--?.O

n 6O TO 490
CSWJRO(rTNF PLOTS GPOLIP VELOCITIES
530 IF(cPIIPLT.F0.].0) 54099997
540 ChLL *,POIJP( IC9KqFMINFMAXOELF)
9997 CONT INUE

r) 415 99911 CALL PLOT(?0.t..391)
9999 CONTINUE

END
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SURPOUTINE GPOUP(TC,KvFMINiFMAXiOELF)
COMMON/AA/CP(20,20),V(?0,20),CVC20,20)oCC20,20),DKN(20,?0)
KKL-K-4

3 C CALCULATION TO FIND MAAX. ANn M.IN. GPOUP VELOCITIES
(,VMAX=0 *
DO ?0 11'*IC
DO 10 J1.*KK

10 IF(CV(I.J).CE.GVMAX.A-'d).,V(IJ).NE.10.0**iO) GVMAX=GVCIIJ)
10 20 CONITI NIUE

6VM4IN=CVmAX
DO 4~0 1=191C
on 30 J=19KK

30 IF(SV(IgJ),LE.GVMIN) GVIAIN=GV(I*J)
1540 COM'TINUF

C SCALING OF GROUP VELOCITIES
I CIM IN=~V MIN/ 10.*0
GV mTK= I r ~AIN*10.*0
GVOTFF=SVm'4X-GVMIN

20 IF(CvfIFF.LE.10.0) 50,60I50 GVkil.0
SCALE=1.0
(jO TO 120

60 IF(GVr)IFF.LE.20.0) 70980
70 G VM T?2. 0

SCALF=2.0
6O TO 120
IF(GVflIFF.LE.40.0) 90.100

90 GVM1=4.0
30 30 SCALE=4.0

GO TO 120
100 IF(G,~nIFF.LE.60,0) 'i09115

10GVMT=A.0
SC1LE-o.0

15 Go Tt) 120
"IF IF(G\'lrIFF.LE.80,0) 116.120
II(, CVlT=.0

SCALF=P.0
C SCALINCG OF FPEOUENCIES

40 120 FO1FF=FmAX-FMIN
IF CF)TFF.LE.10.0) 1309140

130 FNI=1.0
FSCAL'F=].0
GO TO ?AO

45 140 IF(FflTFF.LE.50.0) 1501160
150 FNT='9.0

F SC ALE~= *0

GO TO 260
160 IF(FDIFF.LE.100.0) 17fl,180

io ~ 170 F6)1=1.0
FSCALF=1 0.0
GO TO 260

IP,, IF(FO)IFF.LE.2?50.0) 1909200
190 FNI=25i.0

;555 FSCALF=25.0
164
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GO0 TO 2';0
200 IF(FOIFF.LE.500.0) 210*220
21n FNT~qO.0

60 FSCALF=90.*0
60 GO TO 260
220 IF(Fi0TFF.LE.1000o0) 2309240
?310 FNI=100.o

FSCbLE=100.0
GO TO 260

65 240 IF(F0TFF.LE.15(0.0) ?509260
2'50 FNT=1'q0.0

FSCALE=150 .0
C PLOT PACKAGEF FOk GROUD VFLOCITIES

260 C:hLL PLOT(5.5.-10.91*1)
7() CAL.L AXIS(0.090.0,21HGPOUP VELOCITY(M/SEC),21,10.0,90.0,GVM4IN,

*GV~i I)
CALL AXIS(0.0,0.0,I3HFREQUENCY(HZ) ,-13,10.0t0.0, FMINtFNI)
DO 35A I=19IC
DUrI F =F rIN

T5 DO 340 J=19KK
X=(PU)MF-FIAIN) /FSCALE
JF(CV(TJj) .F0.10.0**10) 290,290

?AO DUvF=D mF +DEL F
CALL PLOT(XY,-l)
GOC' 10 31.0

2QO Y=(SV(IJ)-GVMIN)/SCALF
IF(S~V(19J-1) .FQ.10.0**10) 294,295

294 CALL PLOT(XipY,0*-l)

15 300 CALL PLOT(X.Y,39-l)
GO TO 3?0

310) CALL 0LoT(XwY,?,-l)
3?(1 U A FOL(mF + fELF

TF(J.FO.KK) 330,340

in 330 X=X*O.l
Y=Y-0.03
CALL SYM13L4 (X4Y90.07j4HM'OE,0.0,4)

X I PFLOAT (I)
CALL Mij(XY0.n7XltMq.fl-1)

340 CONIT IMUF
35 0 COSIT I KUF

CALL PLOT(15.0*,0091
3,,,0 REFTURN

0 100 END'
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SUROUTINE hALF(bKI ,AK2qFONCRAvIIC)

COM"ON/1/ XT( 3100)
CO~mOK'/2/Z2N(3100) ' C2DC3100)

*P(10)

CO.%1MON/Af/EPSILON,*HHfl.N3,OLDLSR, ITCTCTDMAODSHAP iMODEPLT,
I n *GR(JVF 1 961UPL T * I7E'PO,7IV

C0 EOPMTALFi EP AMPITUDE ARE 7EROED FOR THIS MODE *
C AF"hTEQVAL SEARCH- FOP THE KNS ASSOCIATED WITH THE MODES DESIRED

JUtA=M
1s 10 AKI=AK?-AK1

DIVIOF=2.O
11 fKN=AK).(AKI/DIVIDE)

IZFRO=O
CALL 7TEPATEC(NFDHC?DDLSHOHD3,CTD, ITNCRRZAZZDL, IZEP

20 *1) R.OID 03

:6IF (JLPP.EQ. 1 40920

30 F(JCo.LT.I-1) 35,36
35 DIVIDF=OIVIDE+1.0

GO '10 11

GO TO 10
40 IF(NCP.E0.I) 7n,45

45 IFU(JC-.LT.1) 35936
30 30 ro jijmp=jt+ 1

60 AK?=HKN
ZTI=Z

GO TO In
70 IF(7) 809160990

35 Ft0 AKIL=PKN
ZL=Z
AKNP=AK2
ZR=7TI
GO TO 98

40f 90 AKNP=RKN
ZR=Z
AKNJL=AK2
ZL=ZTI

9p CONJTINUE

C---AOOFI) 3/? HALVIKJG APPPOACH
IF(AHI(ZL)LT..50.flR.ZR.LT.1.E50) SO TO 100
DTFF?= (AKNP-IAKNL) I?*
AKA=AKNL+r)IFF2

~r)101 TZPRn=O
CALL ITENATE (AKAFDHC?DDLSHD.HD3,CTD, ITNCRRZAgZZ.P)LIZERC

*I)
IF(ARS-,(7).LFESILON) 170991

55 9? DIFF=(AKNR-AKA)/2. 16

16



NOLTR 74-~95

qUbDOUTINF HALF CDC 6400 FTN~ V3.o-P316 OPT~l

IFCARS(DIFF).LF..1.E-1?) 160993
93 AKNL=AKA

ZL=Z
AKA=AKA+flIFF

6)60 G0 TO 101
04 fIFF=(AKA-AKNL)/2.

IF(APS(DIFF).LE.1.F-1?) 160995
95 AKIJR=AKA

AKA=AKA-DIFF
65 ZP=Z

GO TO 101
c-----------------------------------------
C LOCATINGi THE KN ASSOCIATFl WITH THE MODE DESIRED USING THE KNL AND K
C FOUNDJf AROVE BY THE METHOn OF FALSE POSITION

70 100 AK=KL(L(KR-K4)/Z-R
1001 FORMAT'(I5,'RF 1*10)

IZFR0=O
CALL ITEPATE CAKAFD9HC?DDLS.,HDHD3,CTOITNCRRZAZZ,)LIZER

*I)
75 IF(AP.-; (Z).LE.FPSTLONi) 1709110

11() IF(ZP*Z) 120,140,1l40
120 IF(AB3S (AKNL-AKA).LF.1.OE-12) 16'09130
130 ZL=7
80 AKNL=AKA
80 0G TO 100
140 TF(;Ar4S (AKNR-AKA).LE.1.OE-12) 160*1'50

150 ZR=Z
AKNP=A K A
GO TO In0

160 FPl

165 CALL ITERATE (AKAqrOHC?DDLSRDHD3,CTD, ITt'CR,,ZAZZDL, IZER(
*I)

170 AKN(IC)=AKA
ZF(TC)=Z
1 GV 0
RET URN

100 END
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SUPRO;TIN'E ITERATE (AKNFDH.C2OLS'-DHD3CT), ICRRZAZZ,'
*IZFPO, I)
nIKIENSION ZZdITCD(UT)

5 5 C SUI9POUTIN;j USES A FINITE DIFFERENJCE TECHNIQUE. TO NUMERICALLY FIND TI
C SHAPE AI;SOCIATED WITH A GIVEN KN
C CONSTANT IN FRONT OF FUNCTION ASSUM~ED TO 8E ONE INITIALLY

MAXFLAG=0
N=IT

10 A=HD*ABS CAKN*AKN-(FD/CTO))
ZM1=R
XNID=HO*( CFD/C20(IT) )-(AKN*AKN.))
XNW=HD*((CFD/C20 CI T-1) )-( AKN*AKN) )

C ---- K'EXT CARD ADDED AS TEST NOL 3/6/73
IS XNW=Hfl*((FD*(SO1RT(C2r0IT-1))))/(C2D(IT)**1.5))-cAKN*AKN))

C TAYLOR SEPIES EXPANSION TO ORITAIN NEXT Z
Z=ZmI* (.+ C(OL/P) *SDPT(C ) ) -C *DLS*XND/6.)+ (DL S*XNW/3.)-

*(((DL*DLS)/6.0)*SOPH(A)*XN4D*(1./R)))
NC = 0

20 IF(ZMI*Z.LE.0.0) 10920
10 NCP=NCR+1
20 PS=(?.O-CHQ*DLS)*((FD/C?D(IT-1))-(AKN*AKN,)))

ZPI=(PS*Z)-ZMI
IF(Z*ZPI .LE.0,0) 30940

2' 30 NCR=NCR41
40 ZZ(IT)=ZM1

ZM1=Z
Z=ZPI

C*O~**CHANGE NOL 4/6 REMOVE DOWN TO 77
30 30 AO IT=IT-1

IF(IT-2.LT.O) 90920
90 IT=N

ZZC?) =Zml
ZZ (1 )=7

35 GO TO 130
100 IT=IT-l

IF(TT-2.LT.O) 1209110
110 ZZ(IT)=O.0

GO TO 100
40 120 IT=N

ZZ (1)=7=0.0
ZZ(?)=7ml=0,.0

130 CONTINUF
C**O***CHANCF NOI. 4/6 Annf TO 140

45 IF(IZFPO.t'E.1) GO 10 140

131 1)0 134 IT=1,N
IF((77(IT)*ZZCIT+1)).LE.0.) GO To 135
Z7(IT) =0.

134 CONTINUE
135 Z7(IT)=0.

GO TO 1139
136 DO 13Q IT=19N

IF(ARS(ZZC1T+1)).(GT.ARS(ZZCIT))) (0 TO 1139
5 ) 55 ZZ(IT)=0. 168
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139 CONTINUE

140 CONTTNUE
RE71T

6n 60 END
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SURPOUTINE SHAPE(N.I.IMODE)
COMMONI/l/ XT( 3100)
COwm.ON/?/Z2t.U3jno)* C20C3100)

s 5 C0mk4On/A/CP(20.20),V(?0920),CV(?0,2f)CC20,?0),DKN(?0920)
COMMON/A-i/Z1 (SO) CI (50) qZlN(50) LLR(l0) ,LIY;3C1O) ,MNU(30) ,LP1(10)i

*CRP10)
COMMON/AC/AKN( 12)*P'PC 12),PVC 12),AN'( 12)97F(12)
COMMONl/AO/EPSILON.HHn.HD3,OLDLSR, ITCTtCTDMOOSHAP ,MODEPLT,

10 *GRtlVFL9G0UPLT917EP~qIGV
CO~lmO"/AF/LDEPTH *LAM.P *LGPU 9LFRE
DITMENSION ZTC3100'I77(3100)
fQtIIVALV'CE(Z?N9ZT)*(XTqZZ)

C I PERTAINS TO IC IN MAIN PROGRAM
I C; DO In JT=19N

XT( JT)=ZZ(JT)*AN(I)
10 ZT(JT)=72N(JT)

WfITF(9~tl4)(ZT(LL).XT(LL),LL=1,N)
20 12 FOPMAT(I10)

14 FOPrAAT(4E20.10)
TF(tAOfFPLT.EO.1) 20.40

C PLOT PACKAGE FOR '.iO()E SHAPES
20 IF(IZFPO,EG,1) 24,25

2c' 24 XS=6.5
X0=-2.0
XL=4.0
X1-4 .0
6O TO 26

30 30 ?5 XR=4.5

XL=2.0
26 K-2.0
2CALL PLOT( kR,0.0 .3.1)

35 CALL AXIS( X[pqn.04?0HN0PMALIZFD AMPLITUflE,?0, )L9O.09XIt?.0)
CALL AXSO0--9ANRAIE DEPTH9,,-5.0,Q0.0, 1P0,-0#2)
CALL SYt;L4(-0.'5,-6,00,09'),4HMO0E,0.0,4)
XTP=FLOAT(CIMO-)F)
CALL NUm4 (0.2C,.-6.0,0.095,XTpRfl.0,-1)

40 NN=3
00 30 JT=19N
X=XT( JT)/2.0
Y=-ZT (JT) *5* 0
CALL PLOT(XY9NN9-1)

45 45 30 NN=?2
40 RETURN

END
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SUQP0UTINE ZCINTE'- CN[P.NFCMINvPROPLT)
CO'AOt1/ XT( 3100)
COmMON~/2/Z2N(3100)e C2D(3100)

5 5 CO0I'MONI/4/CP(~20),oV(?02n).cV(?0,P?0),C(?20),OY)INC?0,20)

*LLk (10)

C~tAmOtNI/6f/EPSILON.MM()HD3,DLDLSP, ITCTCT0,MODSH-AP ,MO0DEPLT9
10 *GRU-VFL,(GLIOLT I 7F~nAI GV

C0MmOhI/LAE/LD)EPTH eLAMP 9LGRU tLFRE
C LIt'WA' INTEPPOLATION

DO qn J=19N
00 40 I11ND

GO TO 50
20 IF(7lH(I).GT.Z2'liJ)) 30940
30 ZrPT=Z I i( I

20 ZLT=Z1N(I-1)
C6T=CI (I)

k CLT=CI (I-I)
C EQUATIO~j J UFr FOR LpJFAD INTERPOLATING

C?r)(J)=((ZdNCJ)-ZLT)/(ZGT-ZLT))*(CT-CLT) + CLT
2f GO TO 50I 40 CON~T I NUE

50 CONT INUF
C SEAPCH FOP MINIMUM SOUJND VELOCITY ON SOUN D VELOCITY PROFILE (ALSO F",
C MAXIMUM SOUND VELOCITY)

3n 30 C1A=.
00 f-0 1=10N

60 IF(C2?D(I).GE.C?mAX) C2"AX=C2D(I)
CRMIN=C2MAX
DO 70 I~1qN

35 70 IF(C?n(I).LE*C?k'I 1 r?MIN=ICD(I)
C PLOT PACKAGE FOR2 SOlINO SPF.D PROFILE

IFCPRnPLT.EO.1.0) 71,o200
75 CDIFF=CPMAX-C2mIN

IC~tA=C?PYIN,10. 0
60 C24=ICm* 10.0

IF (COIFF.LE.5.n) 8~00
80 PL-?.S

P I =0. c
C2mT= 1.0

45 SCiLF=0.5
GO TO 170

go IF(cFOIFF.LE.1o.o) 100,110
100 ?L=2.5

SCALE=0.25
Go0 To 170

110 IF(C)IFF.LE.25.0) 1209130
1?0 PL=2.5

55 p~o~s171
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C2mT=5.0
SCALR=0. I
GO TO 170

130 IF(CDTFF.LE.50.0) 140*150
60 60 140 PL=5.0

p I =0.c;

SCALE=0.1
GO TO 170

6r,150 IF(COTFF.LE.100.0) 160,170
160 PL=5.0

P~1=0.0

70 SCALF=0.05
70170 CALL PLOT(0.,0,,3,1)

PL = PLP 1
CALL AXIS CO.0,-'.0, 1AtNORMALIZED DEPTH. 16t5*0qQ0*0, 1*0.-0*2)
CALL AXIS(0.0,0*091P-4S0UND SPEF.D(M/SEC),14,PL ,090, C2Mt4C2MI)
NN= 3

75 00 iPO T=1,N
X=(C?nl(I) -C?m) *SCALE
Y=-72tNCI)*5.0
CALL PLOT(XYNN,-1)

180 NN=2
Rr CALL PLOTC2.5,0.931)

200 CONTINVJ
00 210 J=1,N

210 C?0(J)=C2D(J)*C20(J)
RETURN

85 END
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SUPPO1'TINE LINE (XY~vK)

13=3
NP =N* K
DO 00 A1=1,NPK
CALL PLOT (XCI)9Y(I)*13'-1)

10 13=2

END
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Appendix Ills Normal Mode Summing Program

PROARAM NORMSUM CDC 6400 FTN V3.O-P

PROGRAM NORMSUM(INPUTqOUTPUTTAPE7 ,TAPE1)

C TAPE7 IS OUTPUT FILE OP TAPE FROM NORMAL MODE PROG.
5 5'

C SR- STAPTING PANGF FOR CALC.
C RINC-RANfE IN"CREMENiT
C NR-NUm~PER OF INCQFfN'ENTS

10 C PRIDC1.? 1 .. ,S5) ARE LIP TO 5 RECEIVER D)EPTHS
C SOUPCE IS SOURCE DEPTH~
c ABOVE MUST HE ONE OF DEPTHIS USED IN NORMAL MODE PROG.

C NPRTN .GT, 0--PRINT PF.SULTS
15 C NPLOT .GT. 0.- 0 LOT Pr-S(JLTS

C- PRINTP-INITI4L 0~4INiF ON' PLOT
C PRTNC-RANGE INCPE'AFNT/INCH ON PLOT
C PDVVINT- NITIAL PPOP LOSS AT ROTTOM OF PLOT
C PD91N- e-ROP LOSS IN'CFENT/INCH

20 , CAR~D PrEA?) -.TI'T A T5: rfT- LPJES t 3e1 ,33, 3
6

COMPLEX TEST
COMPLFX SUMlqPSiFS, Z*CS14

DIMENSIONAKNU(100o) XTS(1000) ,XTP(1000,
25 DIMENSIONPIn(b)TS~lOnO),FSc500),TL.(500),pO(9,,AXT(12)

PP.'ENSION IP0U)iTFN(5,l
CALL PLOTS(0.,fl.,I)
READ 10004SPIQTNC. KQ

1000 FOPM.AT (RF1O.3,15)
30 30 TAF(NP.GT.500) STOP 5

RFAD 102fl(PRO(IL)*1L=I%5)

1020 FOPm4T(, Flo.3)
RE6D 1A21'SOURCE

1021 FOPMAT(FIO.3)
35 READ 1010 ,NPPTN.NPLOT.PRINTRqPRINCPORINTPDPTN

1010 FOPtMAT (?15*4F1OC1)
REAri797600)SOEP,(FPO(IL),IL=1,s),LI

7600 FOP'MAT(6F10.s,.1c)
WETEST=.5/FLOAT (LT)

40 READC7v1 1500)Fi ,HqkICP
NCPI =NCR

11500 FOPMAT(3Flo.3, 14)

DO 7 7=199
65 RT=

7 PRD(I)=PPO(I)/H
SOUR C F=SO IQCE / 4
P1=3. ]41592535-9

rinSUml=(P]/H) *S,2PT (2.0*3. 141592)*CFXP(CS14)
J=O0

10 J=J~)
READ(7cP?000)AK"JcJ),PVRR

55 55 2000 FOPmAT(3E20.13)
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IF(EOF(7) )20910
20 J=J-1

3000 FOP'AT (FJO.6,3P?0.13/4E20.13/4E20.13/E20.13,I2)
60 IF(EOF(7))30939

30 ~J=J+l
READ(712000)AKN(CJ)qPV4RR
IF(FOF(7) )60.10

35 IF(IF1.F0.0) '30 TO 45
R D0 37 IJK=195

IF((IF1.EQ.1).AND.CARS(RD(IJK)-ADEP).LT.WETEST).AIO.(RD(IJK).NFA
*)) GO TO 363

37 CONTINUE
STOP 6

C) 38 IPt'FNOIJK)=IP(IJK).11
ITP=IPEN) CIJiK)
ITR=IP (IJK)
ICO=0
DO 30 IP=ITR.ITP

9- ICO=ICOl
39 XTIP(lPqIJK)=AYT(TCO)

k !IR(TJK)=IP(IJK) +1?
GO TO ?5

ICO=0
DO 47 IJS=IS91ENDI TIcO=IcO+ 1

47 XTS(IJS)=AXT(ICO)
IS~Iq+1 2

mi85 60 TO 2

60 IF(A'QSCSOUPCE-SOFEP).LT.WETEST) SO TO 64

DO 6? IC11=lti;
IF(ARS(SoURCE-P0UICII)).LT*WETEST) 6O TO 63

62 CONTINUE
C) 0 STOP 3

63 Do 1061 IJJ1*100n
XTS(IJJI) =XTR(TJJ19IC11)

1061 CONTINUE
64 00 RO0) IC=1*5

99 ~ IF(PPO(IC).EQ.O,) STnP2

DO 61; TD=1.l0An,

65 TS(In0=O.

00 660 FSTl) =ML X (0.0

066IFtAsqD0u(C) D;Jl.LT.WETFST) 6O TO 95;

C)O COMT I NUE
C--- TJ 15 I'IPICATOP FOP XTR 1c00,IlJ) ARRAY

100 TS;(Im'=,ATS(lA)*XTP(IM.IJ)/SOPT(AKN(T.M))
DO 200 dj~1,N
PS= CmPLX(0.4flJ
00 1'A0 ljj~l*NCRI

ti0 110 Z=AKN(Ijj)OR* CMPLY(CO.9,.)
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IP4,.,RAt4 NORMSUI CDC 6400 FTN V3.O-P316 OPT~l 0

180 PS=PS+TSCIJJ)*CEXP(7)
FSCJJ)=FS(Jj)+(StIMI]/SORT(R))*PS
TL(JJ)=-20.*ALOGI0CCA.S(FS(JJ)))

115 TL(JIJ)=TL(JJ) +)0.*ALOt.10(l/.Q54)
C--CONIVEPTS FROM RE 1 PETER TO RE 1 YARD
200 R=R.PINC

RA=PRD (IC)*
SA=SOIJRCE*H
PRINT 2500 vSAqPA
IF(NPLOTE0.0 ) GO TO 400
CALL PLOT(2.*0993'1)
CALL SYM'3L4(0. '3..14q 13HSOtIPCE DEPTH,990.913)
CALL NUk' SR0.i5.2%*149FI90.91)
CALL PLOT(1.90.%3.fl
CALL SYm4"L4(0..q..14,15H0ECEIVER DEPTH=990.,15)
CALL NUMBiR(0. q5.5,..4tPAvq0*il)
CALL PLOT(1.,O.*3*1)
CALL SY'AHL4(0.,3...14q 141FEUENCYHZ)=,90.,14)

n CALL NLIm R(0.q5.5t.1j~,Fi90*,-l)
CALL PLOTC2.v0.i3*l)

CALL A XIS (0. 0*iWP A GF I'K.%) ,.~10. -to. PRJNTR,PRI"C.

S CALL AXIS(0.90.*2n"PPOPA(SATION LOSSCLDB),?0,8.,Q0.,PDRINTPORIN)
CALL PLOT(O.90*,3.-fl

400 CONTINUF
2500 FGPMAT(?HiX,*NOOMAL moflE PROPAGTION~ LOSS RE I. YD*//25X9'SOUPCE DE

*TH=*iFl0.3q 10X-*PECFIVER DEPTH=*,Fl0.3//30X,* PANGE *9*TPAN5LjJ

0 140 *SION LOSS(D'A)*)
R=SR

NN=3

IF(t"PP~I.EO.0) G0 TO c;00

5 PRTNT 3500,PqTl-(TmPl
500 IF(NPLOT.KQ.0) GO TO 600

X=(CR/(1.E.3))-PRB",TP)/PRlNC
V=CPnRP'JT-TL C IMP) )/APS CPDRIN)

'0 CALL PLOT(XYqNN9-1)
NN=;)

600 P=RRTklC
3500 FOPMAT(;?9X9Fln.3q 5XiF10.3)

;5 155 800 CONT I NUE
E ND
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Appendix TV: Evashation of Second Raree Derivative

In order to evaluate pressiwe on the caustic (Equation 4.1),

we need to -valuate DA/YCvL and obtain ZhG/Dtl (Equation 4.15).

is defined in terms of the derivative of an integral:

But the integral can be split up into several integrals, each

evaluated in a different sound velocity profile layer:

wher A 0 -In" a)

Thus we can evaluate %Np.3 , or in each )ayer and then

sum to obtain ewqz 3.

In CONGRATS, A R in a layer from z. to z2 is defined as (39):

where

7(IV.3A)

Y'4 (I-3B

+
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H is one of several results depending on the sign of c and q.

got g1 ' g2 and vo are the four parameters (Equation 3.1

in the particular layer being considered.

Weinberg then obtains K/ C1  , the derivative necessary

for amplitude calculation along a ray: 1 14

He then evaluates the necesspry derivatives,

for the possible values of c and q, i.e. P'sitive, negative, or

zero. For calculation on a caustic, we need one moie derivative,

Taking the derivative of Equation (IV.4) yields:

R 78 - t

C C L (IV.6)
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New derivatives required are:

3D
L- I I' ) (. " (PV.7)

For c/ 0

i cv 4. Z/ZCv

Then

Sy'/a 4 .y / cv /c

(IV.9)

2v ,.',. 2
- q - , Y

So we also need J Y&/Dcv"

For c = 0 (Ray vertexes):

- (IV.10)

Therefore terms multiplied by , or by Y, , are zero.

7..- .Cv

From Equation (TV.3A)

__ (IV.ll)

S Z (IV.12)
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The quantity - is non-zero only in the layer in which

the ray turns. Only here will z2 be a function of cv .

From Equation (IV.3B)

i-CV (IV.13)
except for turning point layer where

_ = 0 (IV.14)

Then for a non vertex layer )
-(v -(IV .1 5 )

For a vertex layer

%C' 14 %CV (IV.16)
Then tY

4.0

"cj "') C~j (IV.17)

Since _-- -'

Starting with[±(iN .i , taking two derivatives and

recombining several terms, it can be shown that

" C * CE*D 2 'jC
(Equation (IV.19) continued on next page)
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Everything here has been previously obtained except for

zA . This is found to be

bC1C.

(IV.20)

In this Appendix, we have obtained the extra derivatives

necessary for calculating z% . In general they can mostly

be expressed in terms of quantities already evaluated in

CONGRATS for '. So the proper combinations of the

appropriate quantities were programmed into CONGRATS, along

with the necessary new terms, in order to evaluate

This was done by Jean Goertner of NOL. Once this was accomplished,

the main part of the program was modified to calculate the pressure

on the caustic according to Equation (4.1).
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Appendix V. Input Sound Velocity Data

Profile I (Source Depth for All Calculationss = 305 m)

Depth 7elocity
rn m/s

0 1524.3
457.2 1521.57
685.8 1509.68
853.44 1495.35
1036.3 1490.48
1188.7 1490.46
1478.28 149l.7
1981.2 1499.01
3352.8 1516.99
5250 1548.78

Profile II ( Source Depth for All Calculations: = 305 m)

Depth Velocity
rn m/s

0 1524.3
457.2 I2].57
685.8 1509.68
853.44 1495.35
1036.3 1490.48
1188.7 1490.46
1478.28 1491.7
1981.2 1499.01
3352.8 1516.99
4572 1537.42

Profile III (Source Depth for All Calculations: zo = 1000 m)

Depth Velocity
m m/s

0 1570
2250 1500
5750 1570

For all profiles, p1 = 2 = 1. Unit consistency is not necessary

as long as Equation (5.12) is used since density units cancel.

However, fir evaluation of pressure using Equation (5.9), densities

should be in MKS units in order that pressure be in nm
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