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ABSTRACT: Normal mode theory, ray theory, and modified ray
theory are compared for several arbitrary velocity profiles.

The normal mode theory program uses a finite difference approach
to solve for the spectrum of discrete modes once an arbitrary
sound velocity profile and a constant velocity fluid bottom

are specified. A ray tracing program is used to find the
coherent sum of rays at points of interest. Modified ray

theory leading to an Alry function sclution is used to

correct ray theory at caustics and in adjacent shadow zones.

We first treat cwo arbitrary velocity profiles leading to
convergence zones with what we characterize as vertical
causties. The agreement in the comparisons is quite good.
The fall off in intensity in caustic shadow zones predicted
by modified ray theory agrees witl normal mode theory. PRay
theory combined with modified ray theory contributions in
caustic regionc and caustic shadow zones agrees with most
major reatures of the nourmal mode calculation. Interference
between rays and shadow zone contributions from adjacent
caustics causes many of the oscillations present in
convergence sone propagaticn loss vs range curves.

For 2 villnear velocity prorile leading to convergence zones
with more nearly horizontal caustics, the agreement 1s only
fair. Caustic locatlions are verified, but the particular
modified ray theory being used does not predict an intensity
fall off into caustic shadow zones that is in agreement with
normal mode calculations. Reasons for this are discussed.
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1, Introduction

Ray theory, modified ray theory, and normal mode theory
are three different approaches for calculating accustic intenusity
at a given point in the ocean once the source location and
drevailing sound velocity profile have been specified, Each
has its own limitations and regions of intended use, Ray theory

(1-4) has traditionally been the ~ost widely used approach

for propagation loss calculutions for both c¢w (5-7) and explosive
sources (8-11), Its popularity rests on both its relative ease
of calculation and its intuitively cppealing description of the
channeling of energy along ray paths and within ray tubes of
varying cross-section, More recently, modified ray theory (12-17)
has seen increased use as a means of enhancing ray theory results
by yielding predictions on caustiics and in the adjacent caustic-
related shadow zones, regions in which ray theory is invalid,
Normal mode theory (18-23), actually the mos general of the
three, has suffered until recently from a lack of the large,

high speed computers needed for the solution of many realistic
propagation problems. It has also gsuffered from, and continues
to suffer from, the absence of a clear, intuitive description

of the normal modes that could competve with ray diagrams

(Figure 1.1) in explaining how energy gets from source to
receiver, With the advent of larger computers, however, normal
mode theory has seen development along several lines of approach,
and it is fast becoming a widely used technique with as much

of a follewing as ray theory.
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As this continuing development has progressed, more effort
has gone into comparisons of normal mode theory with ray theory,
modified ray theory, and completely different approaches (24),

The object has been to determine the conditions under which

each theory is the appropriate choice for intensity calculations.
From relatively small scale efforts at comparing two theories

with each other (25-27), efforts have progressed to complete
detailed couparisons of mode, ray, and modified ray theories

for an analytic sound velocity profile (16). In this recent
article, Pedersen and Gordon demonstrated how normal mode theory
could be used to determine the validity of ray theory and

modified ray theory in the region where all three overlap, near

2 caustic, They did this comparison for an analytic, monotonically
decreasing sound velocity profile yielding a close-in caustic,

and they suggested that it would be useful to do the same compariscn
for a deep ocean profile yielding a convergence zone caustic.

For some time,this author has been involved in studies of
convergence zone caustics and their effect on propagating
shock waves from underwater explosions (8, 28-30). To predict
the effect of refraction on these transients at caustics, we
have combined a frequency dependent modified ray derivation
that accounts for refraction (13) with a Fourier series representa-
tion of the shock wave as an exponential decay from a peak
pressure (29). With this approach, we have successfully maiched
experimental pressure records measured in a convergence zone
during an at-sea test involving underwater explosions (8),

However, one successful comparison does not validate a method,

And the modified ray solution used to account for refraction

2
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effects has not Yreen extensively validated., Therefore, it was
felt that a comparison with a more general approach was necogsary
to justify our continuing use or modified ray results. Normal
mode theory seemed a logical choice for our standard of comparison
since it is more general than, and lacks the drawbacks of,

ray and modified ray theories.

However, combining results from a normal mode program that
accepts an arbitrary sound velocity ~rofile with a transient
source representation is a difficult, time consumirg task that,
to this author's knowledge, has not yet been successfully
accomplished. PFurthermore, if ray and modified ray results are
adequate Ifor underwater explosion shock wave predictions near
caustics - and if this can be verified without complete
comparisons with normal mode results - such full scale
comparisons may be unnecessary, In order to accomplish this
partial validation, we decided to compare modified ray theory
with normal mode theory for the lower frequencies in the shock
wave (on the order of 50-100 Hz). At these low frequencies
we would expect discrepancies between normal mode theory and
modified ray theory - a "high frequency” approximation -~ to be
mest apparent, If, on the other hand, they agreed fairly well
in this low frequency domain, we could expect them to agree at
least as well at the higher frequencies in the shock wave, We
could then have confidence in the use of modified ray theory
on all parts of the shock wave spectrum without rescrting to
total pulse reconstructio.. involving normal mode theory., We
decided to do these comparisons for a relatively arbitrary sound
velocity profile so that we would be testing the theories for

realistic and often encountered propagation conditions,
3
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These comparisons led to several expected, and unexpected,
chores., The finite difference normal mode program (22) required
modification in order that it work properly for the deep-water
profiles under consideration, A mode summing program had to be

written, The ray program (6, 31) being used had to be made

compatible with modified ray results previously derived (13).

And a ray sorting program had to be written that could incorporate
the effects of one or more caustics into the intensity
calculation,

At one point the normal mode program was yielding incorrect
results for propagation loss versus range, We found ourselves
using ray theory and modified ray theory as the standards of
comparison, with normal mode theory the sample requiring validation -
a complete reversal of their intended roles., We will discuss
this problem in order to point out some of the difficulties
associated with finite difference calculations and to stress
the need for validation of any model., It is not a revelation
to state that any propagation model (any program, for that matter)
can print out apparently reasonable propagation loss versus
range curves while doing an incorrect calculation.,

In the following sections we will first discuss the
common roots of all three theuries, We will then describe the
specific ray, modified ray, and normal mode calculations used
in these comparisons, After checking normal mode results for
a shallow water model, we will examine a deep ocean profile,

concerning ourselves only with the first caustic in the

cade L

convergence zone and frequencies of 50 Hz and 100 Hz, ‘hen for

a slightly shallower profile, we will consider the various

b
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caustics present in a typical convergence zone, Finally we
will look at a profile yielding several more nearly horizontal
caustics, This will turn out to be the most difficult to
treat with the horizontal expansion form of modified ray
theory that we are using, and here we will discuss a useful
alternative derivation (14).

It is hoped that all of these comparisons will give a
better feel for the strengths and weaknesses of the various
theories as well as indicate where each one can be used to best
advantage., They also should help explain what propagation
paths and interference mechanisms are causing the complex
propagation loss curves predicted by normal mode theory in
convergence zones, Finally the comparisons will demonstrate
that modified ray theory is valid - and often gquite useful -
in predicting pressures on and near caustics, For a realisti=z
deep ocean profile, a combination of ray theory and modified ray
theory results often yields a satisfactory prediction of
pressures in the convergence zone when compared to a niore
general normal mode calculation., The fact that the modified
ray theory has an explicit frequency dependence means one can
locate the caustic once, calculate a few parameters, and then
find the intensity for any frequency rapidly, This is as
opposed to normal mode theory, where one has to calculate
intensity at a given point independently for each frequency.
Thus, mouified ray theory is valid for the treatment of the
various frequencies in the shock waves from underwater explosions
near caustics, as well as being an inherently easier, more

rapid calculation to make.
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2. Wave Equation Roots of Ray Theory, Modified
Ray Theory and Normal Mcde Theory

As we have said, there are many alternative solutions to
the wave equation. More than one approach leads toc ray theory
type results, normal mode results, or any other category of
solutions, Each approach emphasizes a particular aspect of
propagation phenomena., In this section we will summarize the two
basic derivations that have served as the basis for our work
in modified ray theory and normal mode theory, We will first
go through the details of the Sachs and Silbiger derivation (13)
that arrives at a ray theory solution, shows what assumptions
cause it to break down at caustics, and finally arrives at a
modified ray theory solution by making the appropriate changes
in the derivation, The main thrust of this derivation is tc
show how modified ray theory springs logically from ray theory's
failure at caustics (ray theory itself can probably be better
understood by examination of other derivations (1)). Then we
will start again with the wave equation, bul this time we will
go through the details of Newmazn and Ingenito's (22) finite
difference normal mode solution, So this section will summarize
the basic equations from previous efforts that are modified,
evaluated, and compared in the following sections,

We start with the reduced wave equation for pressure and

an assumed e *%% time dependence:
VEp + K'n"(z) = - P f(x)f(*p §ce) (2.1)
where T(2) = e(2)/Cl2) (2.2)
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Using cylindrical symmetry, Sachs and Silbiger (13) rewrite

this asi

4 ’39 +k"n"'c%)p 2P ?S..ﬁ_‘i’ (2.4)

\
v e amr

This equation is then multiplied by 3;(k§r) , and integrated

from 0 to & to obtain:

T a2 Yooy . £ . .
%;L ex*[n%z)-§"1F = ii’_;.‘fcz) (2.5)
-]
Where {(g’g)g S PL",%)I(KE”)FAP (2‘6)
and  P(r2) = S 4(&,%)3'0(«;”)«;45 (2.7)
e} S f08,3 Mo (kg e ds (2.8)
Equation (2.5) is then solved us1ng a WKB approximation to
arrive ats
¢ kM(zu) + $(3)]
£.05,2) = (2.9)

qTr kcn‘ ¢ )% (1-€%) VY
[y 2 'l&
where 4)(5): gfn ()-§ 1%da ) %1‘ is the turning (2.10)
point depth.
gy
These are the pertinent equations for rays beyond their
turning points. Equation (2.8 for pressure is evaluated
using Equation (2,9) and the asymptotic form of the Hankel

function for large arguments:

o0 ‘/ ) .“

plr) = Ps g [ ks zeku(g,m) q.n&
AT ) L 2Tr nkgh (- gh T (2,11)
W(Sﬂ.li): §|‘+ #(1‘!.)... 4}(&) (2.12)

5
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To use a stationary phase approach, and with ray theory in
mind, Sachs and Silbiger look for zeros §¢ §S of .%}-g in the
range g < \, Nn(2) . They then assume that the main contribu-
tions to the integral are i1 the vicinity of these zeros,

This corresponds to ray theory in that g:\ will turn out to
be SiN VY, , where O, is the initial angle of a ray, As long
as we move along this ray path, the value of the integral will
be significant and energy will propagate,

The phase term \J(g) is then expanded around these zeros

(13):
" 3 m
WLE) W(gs)*%(g.gsuw (§5)4 2 (6 Y W () (2,13)
n 2
where W (§,) = 3-5%3"(9\5:53 (2.14)
and w'(§5\= ¢ by definition on a ray. (2.15)

Thus Equation (2.11) becomes:

/
plra):§ {[ k§ ]L
1 2w AT (n*-§2) (1-4*)2

exp[m uk(\,l(i,s) -5t W (g)-r(_g_‘w v ‘5‘)]}"5 (2,16)
Assuming the integral in Equatlon (2.16) is slowly varying
when g is near gS and dropping higher order terms than
w (g) yields: Ya
; P(V'?.\ e 2’ {r(\- t)/;(h g)v;[_Q(;,);M;)]}
(2.17)

exp iu( ] QA\* « Q(%.) 4 &(2)]}
This is a ray type solution for the refracted wave (beyond the

¢ ray turning point), where each term in the sum corresponds to

i)
a ray leaving the source at angle ('e',,)s = SiN Sj‘”ith the vertical.

bar g

e
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We note that the amplitude of each ray is determined in part

by
“!/a

"'/
W) . [ dten) + é“(a)] (2.18)

where Mfkgg was the only derivative of the Taylor series
expansion (Equation 2,13) assumed to contribute to the integral
(Equation 2,16).

A caustic can be defined in several ways: One alternative
is to look at rays at a constant depth and plot range, r, versus
§$gs;rp03 (Figure 2,1), We see that the caustic point at depth z
is a range minimum point (it could alsc be a range maximum
point). Thus for the caustic points

Br’\ = Q:MI 0

o8 lgeg, ~ gt lgsg, (2.19)
The quantity‘mfkgp that we assumed was larger than all higher
derivatives turns out to be zero on the caustic. Then
Equation (2.18, becomes infinite, and the pressure (Equation 2,17)
becomes infinite. This then is the way ray theory breaks down
at the caustic,

It is a natural step to now include the third derivative
in the integral for pressure. However Sac..s and Silbiger go
through several steps in inserting the derivative that are
mathematically correct, but not at all obvious., So we will
explain this part of the derivation (32) in detail., If we are
on a caustic at (icﬂi) , the ray tnrough the caustic point

is giver by gj:S; . Then
i
WL e 2 20 (2.20)

10
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This is just the criterion for being on a ray (Equation 2.15),
applied to a particular caustic ray. By definition on the

caustic, we also know
I
WE, 200 (2.21)

1]
We note that W 1is independent of range, r, since r vanishes
frem Equation (2,12} upon taking two derivatives with respect
to & . Thus if we are at depth 2¢ , but at a range r not

equal to r,, We can he on a ray, but not at the caustic:

\,]'(gslr-'a‘).o w"(gs\i;)¢°

,\A
-
\

N

However if we replace §J by §c in these two eguations, we are

not on a ray (the ray f)t. passes through r. at zc), S0t
k’(g‘,r,a,) fo (2.24)

But since there is a caustic at depth Z,» and the next

derivative is independent of r (rc or r wekes no difference):

]
W g, 2] 20 (2.25)

So if w(g‘r’ 2) is expanded around ge for points off,
®
as well as on, tho caustic, then \;J will be zero for all r,

not just r.,» therefore:

Wlg m2a s WES, v 20 + N'(gdr‘a‘_\(g-gb)* LW r, 2 ,,)(gg)

(2.26)
'
We rote that \J(g‘,r,u) iz non zero for r # r,, Alsc from

Equation (2,12):
WG ,r 20 WG K 20 s Y“*‘P‘**"*‘*{l [r * ‘f’(“*‘?’“‘} (2.27)

11
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4
Since \J(g‘,m,i‘):o (the caustic ray satisfies the ray

criteria)

]
Wlg, ,r2) s r-r =ar (2.28)

If we now also expand the amplitude .actors in Equation (2,17)
around ga , drop higher than first order terms a: leading
to nigher frequency terms after integiation, and put in the
other derivative information obtained above, we get Sachs and

Silbiger's(33)integral expression for pressure on and near the

caustict
143 Lad
.~ < Kb, ¢ —.ﬂ L 3 )
P(\ 2e) ‘% L’"" (ng‘-g‘)"t-(aag‘)ﬂ] exP[‘ch c;] Sexp i&[los +§ ]}ds (2.29)

6 og [ﬁkv’]%;“ 513] ' ',Ozkzbr ar C . (%‘wm,)"/b (230)

i1}
and () in s is used depending on the sign of VQ » The
integral is then expressed in terms of the Airy function

(Figure 2,2}, yielding:
V2

% AT, L (2 0) exp (kW - (T .
plriz= %YK g[n(n"; §:)V'L<\' S})'/’-] hitzp) exp ke LQ)“ (2,31

where (+) in the Airy function is determined by (\*}:‘ >'- °) .
Equation (2.31) is valid on both sides of the caustic, as well
as on the caustic at Ar:0 . We will go into considerable
detail in later sections as to this equation®s applicability

under various circumstances. In general, it will turn out to

12
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be quite useful in predicting pressures on the caustic itself
as well as in the adjacent shadow zone and caustic region,
And the Airy function will be important in understanding how
pressure near the caustic varies with frequency and distance
from the caustic, AY .

We now start again with the wave equation - this time for
velocity potential - and summarize the Newman and Ingenito
derivation (2Z) resulting in a finite difference normal mode
solution., They start off with the Helmholtz equation in both
a water and a fluid bottom layer (Figure 2,3):

T
v @(r ) o+ ?(2\ §(r,z) : -o.'tl'r'r g(r‘: g‘(i'ﬂo) (2.32)

for the region ©0 &% &£H

and

E s =
v i(r,a) + :C_d_::' dlrz) =0

A\ (2.33)
for the region Y 43 & 0°
The boundary conditions are
§ (ri01 20 ' (2.34)
£ $ir ) %(r H) (2.35)
2hira| s 2halnn |
o 2rH P ‘.z-H (2,36)

the conventional pressure release surtace, cnd continuity of
impedance and normal particle velocity at the hottom boundary,
Equation (2.32) leads to a soluiion for § as a sum of discrete

and continuous medes., Discrete modes dominate at ranges

13
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beyond a few water depths, so these are all that are considered.
(When we examine the riode sum in the normal mode section, it
will be clear why contributions from modes in the continuum die
out with range.) Separating variables, and normalizing the
depth variable 72: 2/H , we are left with the 7[ dependent

wave equations to sclve (34):

. [0 3 1 q {)
" (2 W-o - z, (M) =0

-—_AA%‘H ‘ H [??'T"b) K“] h (2.37)
0¢Me
(

d’i:\m) 4 Ht[_“’_: - Kn 2:)(’1) *0

Jnt Ct (2.38)
1¢Me oo

where kn is the eigenvalue for the nth

eigenfunction,

Newman and Ingenito divide the water layer intom equal finite
difference layers, each with velocity ¢€/(7) (Figure 2.4),

This is accomplished by defining m layer depths.y"\.mhn’u-n.n.l.
and linearly interpo. ting between the input sound velocity
points to find e velocity at each of these points., Then into
Equation (?2.37' 11 the water layer, they substitute a first
central difference for the secord derivative:

C\tin.i t T piel ~2Znis 2»0’_-'

an W (2.39)

where h is the incremental layer depth H/m
Now the differential equation is in finite difference form:

() : . 1 (}} 0]
Lpear = {a-n h‘[ﬁ_ “ka L2, " 2 (2.40)

(e} ‘ Mt
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Thus we now have an expression relating the wave function

amplitude for the n‘h

h

mode at the i+l depth point to the amplitude

at the '1t h

and i-1 points, the velocity at the it point and
the wave number k. We will discuss in Section (5) how this
is used to find the individual modes, and how they are then

summed to find the propagation loss,

15
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3. Ray Theory

It was felt that rather than add one more ray tracing
program to the already infinite number in existence, we could
modify one already existing to suit our purposes, We wanted
first of all to be able to find all the ray paths to a given
point in space and add the arrivals coherently in order to
calculate the net intensity at that point. Then we wanted to
be able to modify the program to calculate the actual pressure
on the caustic using modified ray theory (Equation (2,31)).
Finally, we wanted to be able to add in shadow zone contributions
at a point of interest, when that point is in the shadow zone
of one or more caustics.

We chose to use and modify CONGRATS (Continuous Gradient
Ray Tracing System), a program written by Weinberg and Cohen
at NUSC (31), CONGRATS fits the velocity profile data points
with layers of the following depth dependencze:

.'/7.
c(e) = {Vo+ (2.2, 9o+ (2-2,9,
[1+(z-20)9,]*

(3.1)

By the appropriate choives of the four arbitrary parameters
Vor Bor 81 8 (z, is the depth at the top of the layer),

one can either describe the profile as a series of straight
line segments each with the appropriate gradicnt (Figure 3,14),

or as a series of curves defined so that both the velocity and

20
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gradient are continuous at each layer interface (Figure 3,1B).*

Once the profile is specified, travel time, range, and amplitude
along a ray can be easily obtained since the integrals for
these quantities are readily evaluated in terms of elementary
functions (31).

CONGRATS can be used to plot ray diagrams in order to
qualitatively examine the sound field for a specific profile
(Figure 1.1), But it can also be used to quantitatively
evaluate the intensity at specific points in the sound field.
This is accomplished in the following way. One specifies
the velocity profile and defines the appropriate profile layers,
Then the source depth is defined, as are the particular range-
depth target points of interest, Finally, one specifies a
grid of rays (by source angle) of fine enough spacing and
sufficient angular width in order to ensonify the target range-
depth points with each significant type of ray arrival (It
is no small task to pick the ray spacing and grid, and skill
at this ray selection increases with practice), CONGRATS then
traces one ray at a time to each target depth of interest,

When CONGRATS finds two consecutive rays that bracket a
target range at the target depth (Figure 3.2), it assumes
that a ray between those two (called an eigenray) wculd reach

the target point. So the program then interpolates between

*The continuous layers can zliminate many of the false caustics
caused when rays turn at layerinterfaces and the gradients are
discontinuous (35). In the cases we treated this was not a

problem, however, and constant gradient layers were adequate.
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the twc rays in order to find the travel time, amplitude, etc.,
for that particular eigenray. It then was written to add all
the eigenrays at each target range-depth point coherantly or
incoherently, By doing a series of range points at a fixed
depth, one could then generate a typical propagation loss
versus range curve (Figure 3,3),

As originally written, CONGRATS' sorting programs for
adding the eigenrays coherently were not compatible with the
CDC 6400 computer, Furthermore, it could not calculate
actual intensity on the caustic when a ray passed through a
caustic, And when points of interest were in the shadow zones
of one or more caustics, it could not add in these shadow
zone contributions to those from "real" rays passing through
these points, These are the changes made at the Naval Ordnance
Laboratory by the author with the help of Jean Goertner and
Robert Thrun.

In this oecuion, we will discuss the coherent sorting
program written for a CDC 6400 computer, This program
calculates the resultant intensity at each target point of
interest, It also can add in shadow zone contributions at
each point for any number of caustics, and eliminate bottom
bounce arrivals if this is desired, In the modified ray
section, we will discuss how CONGRATS has been medified to
calculate intensity on the caustic using a modified ray
calculation (13),

As we have said, CONGRATS finds the eigenrays that pass

through each target point by interpolating between each pair

22
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of rays that bracket each point. If we specify enough rays of
different type (direct, surface reflected, etc.), to ensonify
the region, we have at each point a complete set of eigenrays
that account for all significant energy paths between source
and receiver, CONGRATS then writes on tape or permanent file
several blocks of data, Each case - defined as the set of
input data cards up to the next process card - results first
in the writing of a data block containing all of the input
data in CONGRATS internal units: kyds, kyds/sec, seconds and
radian, The second, and if necessary, succeeding blocks of
output data are groups of 100 arrivals, each an eigeviay. At
*this point they are sorted by increasing source angle with range-

depth points all intermixed,

L

Appendix (I) is a listing of the program written at NOL to

sort these arrivals and add them coherently, Each eigenray »f

j that passes through a target point (r, =) has a

travel time Tj (r, 2) seconds, propagation loss Lj (r, 2) dB, and

additional phase shift (from surface reflections, caustics, etc.)

source angle €

of ¢j (r, z). 1Ignoring shadow zones and caustics for the
moment, one can then find the net propagation loss at a given point

{(r, 2z) and a specific frequency by:

N(r,2) = 2o ’os P°/‘P,(r:%)l 48 (3.2)
Po 15 the Source pressure at 1yd
(-L; (r,2)/a0) .
Aand a(r,%) 2 Py % 10 ! exp(t [W-r‘)(r,i)""é(ﬂz))) (3.3)

Pl (r, z) is the net pressure at point (r,z). Tt is
obtained by the coherent sum of real rays. Thls summation
is what the main hody of the program accomplltshes. In

the orogram listing in Appendix (I), iines 13-3i, read the

23
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input data block., Lines 34-90 read in the blocks of eigenrays
into a doubly subscripted array Buffer (I, J) and convert from
CONGRATS units (kyds, kyds/sec, etc.) to original input units
(meters, meters/sec, etc.), (feet, feet/sec, etc.) or any other
of the many combinations allowed in CONGRATS., The portion of
the program from line (133) to the end first sorts the arrivals
by increasing target depth and then by increasing target range
for each depth, Then all the arrivals at a given target point
(r, z) are added in phase according to Equaticn (3.3).

Appendix (1), pages ( 149-155) show first the output data block
contzining all the original data, page ( 149 ), ihen the
sorted collection of arrivals, pages (150-153), and finally the
resultant intensity and phase at each target depth-range point,
pages (154-155).

For some studies it is necessary to eliminate all rays
that reflect off the bottom {or surface)., For example, our
normal mode calculations have been done (for simplicity) with
a bottom fluid whose impedence is matched to the water column
(ey = ¢y (z = }{).Io2 =fl = 1), So we would not expect first
order bottcm reflections to be present in the normal mode
calculation, And we would not want the ray calculations to
include bottom reflections either, The easiest way to eliminate
bottom reflections is to not include rays beyond the grazing

ray in the calculation. But sometimes this is not advisable,*

*For example, CONGRATS needs at least one ray at each depth range

point in order to store the point fcr coherent sorting, Sometimes

when we are in tae shadow zone, there are no real direct rays -
only bottom reflected r2ys. We need these rays to "save" the

points of interest so that we can add in the shadow zone arrivals
at these points using the summing program.

24
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and another way of eliminating bottom refleciions must be used.
CONGRATS has the capability for including bottom (or surface)
loss as a function of incident angle, So if we want to drop
out bottom (or surface) reflections, we set the loss for all
angles of reflection to be 9000 dB. Then in the sorting program,
Appendix (I), page (147), lines (173-184), ve chock to see if
the propagation loss for any arrival is greater than 9000 4B
(i,e. it has reflected off the bottom at least once). All of
these arrivals are then eliminated from the calculation.

As we have said, the sorting program must also be able to
add in shadow zone arrivals whenever the target point is in
the shadow zore of a caustic. We have chosen to work with a
modified ray expression that yields results at various ranges
on either side of the caustic (as well as on it) at the fixed
depth the caustic occurs at, A ray of source angle 60 may have

a caustic at range r. and depth g Then the contribution

c
from this caustic at any range r at the caustic depth 2o is
given by: a

= Po " QTTgt ¥¢ l ot
PU 2= 2 K r[vz (nv-,gz)'u(»-gn)'/u] Avp) exp (RU-GF) (5.0
[ <
+ wm )( 0)

(3

where all quantities of interest were defined in Section (2),
Equa i~as (2.30-2.31), 'The pressure ecpression, and its

region of validity, are further discussed in the modified ray
section, For negative/o andlf|> 1 we are in the double arrival
region associated with the caustic., In Section (4), we will
discuss the use of the caustic solution in this region as

opposed to the actual two arrivals as calculated from ray theory,
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However, in the shadow zone there is no problem, Ray
theory yields no shadow zone contribution, and the modified
ray theory contribution is necessary for completeness. We
need to evaluate both the amplitude and the phase of these
arrivals, so that we may incorporate them into the coherent
sum (Equation (3.2)). When a ray passes through a caustic,
CONGRATS prints out the amplitude on the caustic, This is

Equation (2.4) with Ar = o, sof = o. This is essentially:
plre,) = BAilo) (3.5)

since the remainder of the amplitude expression is the same on

and off the caustic, Off the caustic at arbitrary r, the pressure

is then

blr 2o = B A (KBS (o)) BaiL K5 ar) (3.6)

So the pressure off the caustic, in terms of the pressure on

the caustic calculated by CONGRATS is:

blr,20 = plr,2) LAl /Ailo) (3.7)
And the propagation loss at distance Ar off the caustic is
W Loﬂp(r,zg\] 2.0 Log[ bl 2) 1Al p)] //Ai“)] (3.8)
or
R0Loq[plr,20] = Mlr,20) = AMPDG - aoLo%[]Ai(()\‘ /.34] 50)

where AMPDB is the propagation loss on the caustic calculated
by CONGRATS., We also need the total phase of the arrival,

We note that

Wer) = §r+ $lzoy + $(2) (3.10)

26
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It is defined in such a way (Equation (2,10)) that ¢(z°)
and ¢(zc) must be integrated analytically or numerically,
But we would like to use quantities already calculated by
CONGRATS where possible to avoid unnecessary calculations,
We can follow in reverse a derivation by Officer (28) in
order to arrive at a relationship between Wc(rc) and T(rc),
the travel time to the caustic alrecdy calculated in CONGRATS,

We take wc(rc)’
2 2

. t'/; i '}
Wlrd= g, o % Cntar-¢da rS (n'ar- gt “da (3.11)
2, 2y
L '
1 L] h‘
s §r ¢ % [nm-gl da (2.12)
t0

where g‘_‘- sin(ey), = c_c%‘(_}ssi.n'a' (3.13)

2
¢ \ ./7-
s C(2) g:q *c(aoig Cu’ay - (gc)"] dz (3.14)

z,
‘ 1
o) L 2 sin(e) (3.15)
where c) 5 c(a) ’
Therefore: 2 b
t [ Y
Vc_(rz) = gf& + S [d"(%) - (gé) ] A% (3.16)

%

But for a ray:
Melr) = 0 = ra V()¢ (2

3¢ ¢ 3¢ (3.17)
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Thent re o= 4(2) - ‘Dé(%) (3.18)
o¢ 'ag
or taking the derivative of Equation (3.12),
2¢
v g% (ot@-(5)*" da (3.19)
2o

Substituting this into Equation (3.16) for r=r, and combining
terms:t

Welr) s % [ (8" + [“’(z)-(s")zl‘,jda(a.zo)
C(20) T
% :
| &h I E«gtl\-<sz>‘l"*] T
2

da
e (2) D_ (g;)z C.,"(%)] Y (3.22)

wo—""

but § = Sine o cos 4= [1-(§) ¢ (2)] %(3,23)

¢ AT
2. 2e
Therefore\':J_f_-_(.'_'Q : x _‘if. = __é_S__ = T (v) (3.24)
Cao) ) o5 e, @)

20 2,

28
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So if we have travel time to the caustic from CONGRATS, T(rc),

we can immediately evaluate W(rc) byt

Wele) = €20 Tr) (3.25)
Or for arbitrary r, off the caustic in either direction,
Welry = gcr * ¢(%.)+ ¢(h) (3.26)

1]

g (rer) & dlra)+ d(2) * 41 (3.27)

= gc(r.r‘c) *\Jc(f") (3.28)

2 g ar 4 clz) Ter (3.29)

then KWelr) = M) * wT("t) (3.30)
(%)

Thus the main phase term in Equation (3.14) is readily calculated
from constants (gc W, C(zo). O r) and the travel time to

the caustic point T(rc) calculated by CONGRATS. To complete

the phase we must also add =T /4 and any extra phase shift (t)(n)
associated with extra caustics, surface reflections, etc.

the ray may have undergone, We can then add to the arrivalg
given by Equation (3.3) shadow zone arrivals for the caustics

occurring at the depth of interest'(z ) and various ranges
c

rC(l)' rc(z) e rc(n)x

M {_V‘,ze]/ao .
( n )e"P cf«)(&\n(br),fwT[Q(-.g-g + ¢(n)] (3.31)

Tryze)z T+ 5 10
Cxo)

PT is the coherent sum of all rays, including caustic shadow zone

contributions. This 1is done in the sorting program, Appendix (I),

lines (93-130). We conly add an arrival from the nth caustic as
long as we are in the shadcw zone of that particular caustic (tf)o).

~
For a typical range minimum c&\:ﬁerg% zone caustic, w(':"

~
S
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is negative, so¢ we use Ai(-p£ ). Thus A r must be negative
in order for -/0 to be positive, and r must be less than r,.
So we are to the left of the caustic, nearer the source,

This then describes CONGRATS and the sorting program we
have written 1o accompany it. The sorting program adds the
regular ray arrivals coherently. It adds in shadow zone arriveis
coherently when the target point is in the shadow zone of

one or more caustics, And bottom reflections can be eliminated

when this is desired,
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Lk, Modified Ray Theory

While ray theory is usea extensively for propagation lous
calculation, its failure near caustics is well documented, The
predictions of infinite peak pressure on the caustic and zero
pressure in the adjacent shadow zone are two unrealigtic and
unacceptable conditions., This failure occurs because of the
"high frequency" approximation inherent in the eikonal
equation (37). It yields a picture in which all energy within
a ray tube of a given cross section at the source remains within
that ray tube as the cross section goes to zero at the caustic
(defined as the locus of pecints where infinitesimally clese
rays cross), So the finite amount of energy, contained in a
zero cross section ray tube, yields infinite peak pressure,

It we are interested in pressure on the caustic, or in the
ad jacent shadow zone, another solution must be used.

To this end, several authors (12-14) have solved the
wave equation for expressions that remain valid on the caustic,
Sachs and Silbiger (13) and Brekhovskikh (12) obtained an
expression that yields pressure on the caustic, as well as off
the caustic horizontally in either direction (Figure 4.14).
Ludwig's derivation (14) yields pressure on the caustic, and
off the caustic in either direction normal to it (Figure 4,1B),
Ludwis's solution has both a uniform and non-uniform result.
The uniform asymptotic theory is exact in the ray double arrival
region, while the non-uniform solution is only approximately
correct there. Ludwig's non-uniform result is very similar to

Sachs and Silbiger's result (13)., The similarities and
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differences between the various solutions will be discussed in
more detail later on in this section, The horizontal expansions
in particular have been used to predict pressure histories

from underwater explosions in convergence zones (8) and in flooded
quarries (8,9). They also have been compared with ray theorv

and normal mode theory for a monotomically decreasing sound
velocity profile (6).

In our earlier work (8), we used a constant gradient
profile for which the modified ray solution could be obtained
analytically. We will start out by summarizing this derivation
for pressure on and near a caustic, Then we will discusg the
evaluation of the various quantities necessary to actually
calculate pressure, And finally we will relate these expressions
to the appropriate quantities in CONGRATS that were being, or
are now being, calculated,

As we have pointed out in Section (2), cne can solve the
wave equation using a WKB approximation and arrive at a ray
solution (Section 2, Eguation 2,17), This equation breaks down
at a caustic., A further derivation results in a new integral
(2.29) for pressure on and near a caustic. When the integral
is evaluated, Sachs and Silbiger (13) arrive at an expression

valid at caustics (2,31):
'h
(ra)e Bkl __ans, Ai(%p) exp (KWe-im ) (5.1)
P62 qT !_r; (n* g“)‘lt(h. S:)"" e P q

" N

(£:Me o)
where F:c = sin(ec)‘, (eg)c is the source angle passing through
a caustic at (rc. zc) and the remaining quantities are defined

in Equation (2,30), ¢
3
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For a typlcal convergence zone caustic (Figure 4,2), wcm(r‘)

is negativet hence we use Ay (-p). Then forr > r.» to the
right of the caustic at P = o, the Airy function, and so

the pregssure, first rises as we move through the caustic
region (Figure 2,2)., Further to the right ( \fl > ), we see
oscillations in the Airy function that are typical of the
well known ray double arrival region adjacent te the caustic,
To the left of the caustic, for positive arguments of the Airy
function, the pressure decays exponentially with distance off
the caustic as well as frequency to the two thirds power,

For a caustic with wcm(r‘) positive, the picture is
completely reversed with the shadow zone to the right of the
caustic, etec,

Several quantities must be evaluated in order to calculate
pressure on or near a caustic using Equation (4,1), First we
have to know when a particular ray goes through a caustic,

As has been pointed out. a caustic is a range minimum or maximum

point at constant depth. So at a caustic

v H "_.(_g.ﬁ.’ _D._‘:.' H
%-g & (36.,) 0 (4.2)

where Sine;=z § = (2o
Cv
and Cv is the sound velocity at the vertex of the ray.

CONGRATS determines this by evaluating or along a ray, and
Cv

checking for caanges in sign of this quantity, indicating it
has passed through zero. This is equivalent to the check on

A
%.%-’i we have used in previous work (38). So for a given
source angle (eo) we can move along the ray until 'Ql‘
Ly
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approaches zero. At this point (rc. zc) we are on the caustic,
By tracing a number of rays of different source angles, we can
generate one or more caustic curves in r, z space and find the
caustics at a particular depth of interest (Figure 4.3). Then
Tor Zgs Ar (to the point of interest), n?‘(zc). gc' k, and
Wc(r) (Section 2, Equations 2,10 and 2,12) are fixed for each
caustic,

Thus we need only to evaluate 5 (Equation 2,30) in
order to find the pressure on the caustic, We have an expression
for g in Sachs and Silbiger notation, but we first need the

proper derivation in CONGRATS notation. In CONGRATS, the

range increment in a layer is defined ast

2,
Ir]l = AR = % c(vda (4.3)
A | (RSYRTE)

Because C{z)} is defined analytically as a function of z
(Equation 3.1), this integral can be evaluated in terms of
elementary functions (39). Its first derivative, 9r/d¢,
which is needed for ray amplitude calculation and caustic location,
was also evaluated analytically, But we need the second
derivative, b‘r/'act , for caustic amplitude calculation,
This derivative was obtained, and it is summarized in
Appendix (IV), It was then inserted into CONG?ATS. In order

. . . . Y,
to use this derivative, we must relate it to D%gégél '

the derivative in our modified ray notation (Equation 2,30),
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We start off with:

Nelr) = §rv 2o+ $(20) (h.4)
Wele) = r o+ O & D20 (8,5)
¢ § 9§
'__D_N =0 S = -'Détia) - ’a¢(1‘-c)|
On a ray Y ¢ ) ! . pagr (4,6)
s S lgsg 35 lgsg,

2
From Equation(4,5), '3__\:! = ?— [‘D () + mﬂi‘)] (b,7)

L ST Y 6
(2
But from Equation(bf.é)b-s-gk{_ o '?a{ as long as we are on a ray,

1 '31.

: - or
Then BS; .DS; (4,8)

where r is the analytic range expression in CONGRATS.

. R . DV Dy

Since % Y 3¢, (4.9)
3
'B__\_A.Jt = -'3_:"; :"’Q-' ?I. 'DE.V.} (4:10)
Bg‘ P13 VG L VG
O B AN S W T o
X \ Sy ! 5, St (4.11)
But 'Q.f 0 on a caustic, so
Cy
> (D
A AR 1D
3%3 va g o s cv
1
= cla) %rzl (4.13)
v
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So with the second range derivative (Appendix IV) we have

added to the progra?, and the appropriate constants,

we can calculate P} Hdﬁ.)[ﬁga and so § « This then is the
final quantity necessary to calculate pressure on the caustic
by Equation (4,1), and evaluate modified ray theory arrivals in
Equation (3.31).

Now that we have shown how to calculate the pressure on
and near a caustic, we would like to discuss the validity of
its use at various locations near the caustic and its
relationship to other methods of caustic calculation., Looking
at Equation (4,1), we can picture the pressure as a constant
times the Airy function (Figure 2.2), For Ai(0), we are on
the caustic and the expression is valid for most single, well=-
behaved caustics. Fer Ai(~f ), the pressure at first grows
in what we call the caustic region (0 ¢ \IDI 415 ). Here
we expect the caustic solution to be better than the ray
solution which is diverging (Figure 4.,4), We note that
P = k2/3§ &r. The quantity g is roughly tne focusing
factor, indicating the strength of the caustic, It is also
related to the slope of the caustic, For typical convergence
zone caustics we characterize as vertical (Figurc 4,2) (depth
to range slopet 1:10),3 is on the order of ,002, Therefore
the source frequency and width of the caustic region (where

ray theory is invalid) are related by:

Ar %150 /s (4,14)

ko
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Thus a 100 Hz source will have a caustic region about 2500
meters wide, The lower the frequency, the wider tne caustic
region where ray theory is not valid.

For larger negative arguments (to the right or left of
the caustic depending on whether WJHUQ\ is negative or
positive), we are in the ray double arrival region, where
ray theory is valid, The caustic solution (with an asymptotic

form of the Airy function) does yield two arrivals (40):

R/
P(r‘ig) = Eo I gﬁr
4T | ar (l.gcl)‘/z (n*. g:)‘lz (ar)”e
(k.15)

. ew(ﬁk[}«l:- (%gor)zlj)'re:rf(ik[uvo (%Sarf’j-c_{;)

However, they are of equal amplitude, a condition that we only
expect to be true very near the caustic,

Since this expression is only an approximation derived
from the value on the caustic, we shall see that from case to
case the oscillation pattern agrees more or less with the
actual pressure as calculated by ray theory or normal mode
theory., This agreement and disagreement can be understood by
considering Figure (4.5)., Consider a causiic at point (A)
(Figure 4,54), We then extend the caustic solution horizontally
into the double arrival region to point (B)., This extension
will only be valid when the rays actually passing through
point (B) have essentially the same history near the caustic
as the ray passing through the caustic at point (A), Only
this way can the ray going through (A) "know" wihat rays at (B)

should look like. \
il
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For the simple circular caustic, this is easiest to see
(Figure 4,5A), As long as the radius of curvature is roughly
the same, rays at (B) (having passed through C) are roughly
the same as the ray passing through a caustic at (A). Then
an extrapolation to (B) based on (A) is roughly correct. This
is easiest to see at Point (E) when ray (1) is at a distance
from the caustic equal to AB, The ray pattern looks similar
to that at (B)., But if the curvature changes (Figure 4,5B)
then the rays at (B) (having pasced through C) do not have the
same history as the ray passing through (A). Again look at
(E), when ray (1) is the cporopriate distance from the caustic,
The ray pattern at (E) is different than at (B), while the
expansion assumes the pattern is the same at both points.

For more complicated caustics, it is not as easy to see. But
the same rule of thumb applies, As long as the radius of
curvature, or slope, cf the caustic does not change much along
the caustic, say from (¢) to (A), we can extend the caustic
solution horizontally to a point near (A) through which rays
from (C) pass.

In the shadow zone, we have ndé real rays from that caustic
to compare modified ray theory to. The shadow zone arrival
is the only one., But from the Airy function (Figure 2.2),
the pressure falls as the two thirds power of frequency at a
given distance Ar, or linearly with horizontal distance from
the caustic for a fixed frequency. We can only verify this
behavior by comparison with normal mode theory, since ray

theory predicts zero pressure in the shadow zone,

L2
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For more nearly horizontal caustics (Figure 4.6) that
have depth to range slopes of approximately 11100, X is less
than ,001, In this case the width of the caustic region is
roughly two to five times wider than in the vertical case
(Equation 4.16), Intuitively we would expect the peak

amplitude to be lower, as the <¢nergy is spread over a broader

».. caustic region, This is generally the case. The horizontal

cauctics tend to have significantly lower peak amplitude,
with the prassure falling off much more slowly into the shadow
zone than in the wvertical case,

The same arguments hold for extensions into the double
arrival region from smooth horizontal caustics that hold for
vertical caustics, Reasonable predictions depend on the
caustic having the same radius of curvature throughout the
region of interest, However for horizontal causiics (Figure 4,6)
the rays must travel considerably farther  to reach an arbitrary
point (B), distance AB from the caustic., So the caustic must
maintain the same local slope, or radius of curvature, for a
much longer distance., This makes it more difficult for the
horizontal expansion to work, and i1t is this case where a
normal expansien is more reasonable., In Figure (6}, FB is
much shorter than AB, Thus a prediction Jor (B) based on (F)
is more likely to work than one from (A) extended to (B).
Furthermore, there may not be a caustic at the proper depth,

line (D)., In this case, a horizontal expansion into the shadow

zone is not possible.
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Figure 4.4 Airy Punction and Divergent Ray Solution
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5. Normal Mode Theory and Program Validation

Normal mode theory is the most general o¢f the three
solutions to the wave equation that we have examined, By
solving the wave equation directly, rather than the ray
equation approximation, we avoid the problems inherent in
ray theory and modified ray theory, Normal mode theory does
not break down at caustics., It yields finite non-zero pressure
in the shadow zone, accounting for energy diffracted from the
caustic, And it yields the resultant intensity at a given point
directly. No ray theory type addition of various ray energy
paths - and the worry of missing one - need be done,

This is not to say that normal mode theory is flawless,

In solving for the net intensity, it eliminates one of the

nice things about ray theory - the very physical picture the

ray diagram (Figure 4.2) gives about the paths that energy

is taking between source and receiver., There have been attempts
(41) to relate various portions of the mode spectrum to specific
types of rays., However, we are more comfortable understanding
the intensity in terms of the ray and modified ray arrivals
interfering with each other, and then comparing this to the
normal mode theory result in order to understand the significance
of the various intensity variations in the propagation loss
curve, Other faults of normal mode theory will be discussed
during the remainder of this section, But in general, for

deep ocean profiles it becomes a case of solving for many modes
{which at some point becomes too many), and 4doing it completely

over each time a different source frequency is specified. The

T A AT W RS s
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frequency dependence is not like ray or modified ray theory,
where geometry is considered first as ray paths are calculated,
a1 then frequency is accounted for only during the coherent
addition of arrivals. In normal mode theory each frequency
results in a completely different set of modes, and so a
completely new calculation must be done from start to finish,
So as with anything else, each theory has its appropriate
use, Normal mode theory is suitable for shallow water (few

modes):profiles and for some deep water (moderate number of

modes) profiles, It serves as an excellent standard of comparison
with each to check out ray and modified ray theory results.
Ray theory is especially useful for many deep water profiles,
and modified ray theory extends its usefulness by adding the
capability for intensity calculations on and near caustics,

Once on. decides that a normal mode solution is desired,
{ there are several alternative routes for doing the calculation.
i As discussed in Section (2), we have chosen to use a finite
difference approach, enabling us to deal with an arbitrary
velocity profile, We have taken a program originally written

for the shallow water case, and we have made the appropriate

modifications so that it could handle the deep water case., In
the process we have learned quite a bit not onl_ about normal
mode calculations in general, but also about the peculiarities
of finite difference calculations in particular,

First we will briefly describe the use of the equations

obtained by Newman and Ingenito (22) to calculate the normal

T I R TN B R A B Ty s

modes for a given profile, Then we will discuss the summing

program written to calculate the propagation loss once the

R L R

51

it -



NOLTR T4-95

normal modes have been cbtiained, Finally we will discuss the
changes made in the normal mode computer program so that 1t
could treat the deep water case,

As discusse¢ in Section (2), Newman and Ingenito arrived
at a finite difference expression for the unnorm2lized wave
function at the i + 1 point in terms of the sound velocity in

th layer, the trial mode wave number kn' and the value of

the wave function at the i - 1 and i'th point:

the i

- r 0 [}
0O (Y 1 2
. < - \ om—— - N - E '-
B il ' !_(c;‘):. k“.\ Lo e -

The velocity profile has been split up into m equal depth layers

of depth h, and the velocity <°‘)i specified in each layer.

If we had two points to start off Equation (5.1), Zn(i)
.
and Zgl% , and a kn' we could gencrate ihe mode shape. Then

if the mode shape satisfied all the boundary conditions and
had the correct shape (the nth mode has n-l1 zero crossings),
we would know that we had the coerrect value of kn' as well

as the proper mode shape, Using the two boundary conditions
at the water-bottom interface, Newman and Ingenito (42) arrive
at expressions for the first two wave function values, at the

water-bottom interface and one layer up:

M
Zn,l z ﬂi/ﬂ =R for 2sH or =l (5.2)

" o ity ond At
:Ry1+hA?-nD-0W .

for ”2: 1=K
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kY
where A : Ht[k: -%5';1’)
H
2 FP’[ iy - I 1 .
D Hm) n (5.4)
W= B [ wt -l(L ]
CH(n-h) "

(There are several typographical errors in this part of their

report and this part of the program listing as well.)

The program then takes these two points, the trial kn‘

Equation (5.1), and the velocity profile; it follows the

wave function up to the surface. kn is iterated on until we
have the proper number of zero crossings, and the wave function
is within some small epsiion of zerc at the surface, This
last requirement satisfies the last boundary condition of the
surface as a pressurc release boundary.

The iteration on kn should be started in a way that
minimizes the number of trial solutions tested before the
proper k. is obtained., For the first moce, a maximum mode

wave number kn(max). and a minimum mode wave number kn {min) are

defined by
W
1 k. (max) = +—— . .
n [C(h)‘j min (DO))
; k, (min) = ét (5.6)

where [C(q?)]

! and €, is the velocity in the bottom, Several trial k

min is the minimum sound veloccity in the water

e e

between k_ (max) and Kp (min) are tried until a mode shape with
no zero crossing is obtained*. Then this k, and kn {max)

N are used as the bracketing values which the final iteration

#The first mode just reaches zero amplitude at the surface.
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th

process starts off with. For the n™ mode, k,_, is used as a

lower limit instead of kn(max), and the upper limit is adjusted

down from kn(min) until n-1 zero crossings are obtained. Other-~
wise the iteration process 1is the same.

The normalization constant is found by numerical integration
of the wave function in the water layer anu analytical integration
of it in the bottom layer. After each normalized mode Un(°2)
is calculated, the wave number, kn' and other necessary information
about the mode is written on a permanent file when our revised
version is used, Also written on this file is the »narticular
mode amplitude at one source depth Un(%o) and up to five
recciver depths UnCQ ) (Main program, lines 190-230)., The file
then serves as input for the summing program listed in
Appendix (III),

In th's summing program, we calculate the pressure at a given

point in space by relating pressure to velocity potential:

plrzy s p 2 &lnm (5.7)

Using the suppressed e'udt time dependence and the velocity

potential (43):

. VZ u U (K r.éﬂ
dirzy = - (g#r) Zi z n‘ﬁé%ﬁ:C&) e " 'g (5.8
We obtain from (5.7)

pray: 22 (g L el a0 e ™ T (0
The continuous portlon of tho mode bp% trum consists of modes for
which | knl ¢ W/c,, Solutions of kquations (2.37) and (2.38)
lead to imaginary values of kn and so an exp(-knr) in
Equation (5.9). So these modes are damped out for ranges greater

than a few water depths,
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We then assume spherical spreading close in, so that the

reference pressure at unit distance is (44):

_ (kR
R(\",%) H -L_&Q/), e (5.10)
1 R
which at 1 meter yields:
T
wph nm (5.11)

sk
Therefore the propagation loss is:

. o ,.ﬁ-ﬂ 2 u (’rzo)u"(ﬁl)
PL. = &oLoS El% z a0 Log /% = " —1_177-_— (5.12)

Thus given the mode wave rumbers, other constants such as

density and water depth, H, and mode amplitudes at the source

; and receiver depths for each mode, we can calculate the propagation
; loss., This is then what the summing program, Appendix (III),

does, Since there is nothing special in Equation (5.12)

about source and receiver depth, we have written the program

so that any depth specified in the normal mode program can be
used as the source depth in the summing program. The program
reads in information from the normal mode program (Appendix 1I),
checks what source and receiver depths are required, calculates

propagation loss according to Equation (5.12), and plots or

T T S o AT S DA

prints propagation loss versus range.

When Pedersen and Gordon (6) compared normal mode theory
to ray theory, they pointed out that this interchangeability
of source and receiver is not true with ray theory, only normal

mode theory. They then proceeded to show thati the ray theory

5%
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result should be modified by the ratio of source to receiver
sound velocity to make it equivalent to and comparable to

normal mode theory:

H o, = H. + 10 Log (CS/Ch) (5.13)

While the correction makes ray theery more "exact,” it is

not significant for many realistic profiles., For example,

in our profile, Figure (4.2), the worst case would be source

at the velocity minimum, receiver on the bottom, The correction
would still only be ,1 dB, The correction is important when
some analytical profiles are used, Here the receiver or source
sound velocity may get very low (admittedly unrealistic), and
the correction becomes significant,

Once the normal mode summing program was written and checked
out, we did a few straightforward comparisons in order to
verify the output of the normal mode program, Ve compared
results from our program to results from two other programs
for a shallow water profile (Figure 5.1). DiNerncli (24)
had originally used this preofile to compare his fast field
orogram (FFP) to Bartberger's normal mode program (23)., The
FFP uses a completely different approach by first fitting the
sound velocity profile with exponential layers, It then solves
the wave equation directly in terms of Greens functions and
uses a fast fourier technique on the computer,

Figure (5.2) shows the two original results in addition
to a calculation for the same profile using our no.mal mode
program, Discrepancies in the original comparison were
attributed to FFP's use of exponential layers as opposed to

Bartberger's linear layer fit of the velocity profile (Figure 5.1),
56
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We would expect our results to be closer to the other normal
mode result, since both use constant gradient segments.
However our normal mode calculation includes only "trapped
modes” (i.e. modes whose phase velocity is less than the sound
velocity in the bottom fluid). This is the discrete portion
of the mode spectrum, Bartberger's normal mode progran
continues calculating modes up into the continuum (phase velocity
greater than bottom fluid sound velocity), and so it should
yield a different result. But the comparisons in Figure (5,2)
show essentially the same propagation loss versus range for
all three theories, This ccmparison gave us confidence in

the program as originally written for shallow water cases,

We then proceeded to test th: normal mode program for a
deep water case., We chose a typical deep water case yielding
a well developed convergence zone (Figure 5.3). This ray
diagram for a 305 m source depth indicates that to the right
of the caustic (Figure 5.3, line AB) bordering the convergence
zone, there is a well developed double arrival region, One
arr.val has passed through the caustic, the other is approaching
it, We then ran CONGRATS for a 500 m receiver and 100 Hz
source frequency. We chose ranges from 54 km to 62 km, which
took the receiver from the shadow zone, over the caustic, and
into the double arrival region, In the shadow zone, CONGRATS
found no real rays as expected (bottom bounce arrivals were
dropped from the calculation as discussed in Section 3). To
the right of the caustic, twe arrivals were found at each

range point. They were then added coherently using ihe ray

5T
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summing program (Appendix I), A “72 phase shift was added
in CONGRATS to the arrival that had passed through the caustic,
This phase shift is a2 well known but sometimes controversial
feature of ray theory. Figure {(5.4) shows the propagaiion loss*
versus range curve for a 500 m receiver, The propagation loss is
essentially infinite to the left of the caustic - which is
indicated by the vertical line at 56.3 km. The propagation loss
jumps to zero at the caustic (infinite intensity), then
increases to a plateau at about 57 km., From this point on the
propagation loss curve oscillates as the two arrivals interfere
first destructively, then constructively, Both are very roughly
equal in amplitude. That plus the T/2 phase shift results in
this particular curve (Figure 5.4), There have been many
supportive papers (45-47) on the use of the T/2 phase shift
at caustics, and later we will add our own example of how this
is the phase shift necessary for ray theory to be consistent
with modified ray theory and normal mode theory,

In any event, now that we had the ray theory result, we
ran the normal mode program for the same profile. We split the
profile into the maximum allowable number of layers, 1000, and
found from a preliminary run that there were 139 modes, To
match the ray calculation geom:try we set the bottom density
equal to 1 and the bottom fluid velocity equal to the velocity
in the wa » ~t the bottom (this is a matched impedance with no
#A1l propagation loss values will be in dBire 1 yd unless

otherwise specified.
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first order bottom reflections). We then used the normal mode
program to calculate all the mode shapes, stored the mode
amplitudes for each mode for source (305 m) and receiver

(500 m) depths, and found the propagation loss using the mode
summing program (Appendix II7), Figure (5.5) shows this curve
as well as the ray theory curve, They couldn‘t be more out of
phase if we had tried to make them so.

This disagreement was unexpected, to say the least, We
proceeded to examine both programs in order to find the problem
and eventually found the difficulty to be with the normal mode
calculation., We were calculating 139 modes and using 1000
finite difserence layers in the water column, This meant that
for the higher modes that were oscillating one hundred times
or more in the water column, we were allowing 10 finite difference
“2yers or less to fit each oscillation. The scarcity of layers
would result in a poor representation of higher modes as we
followed the wave function from one layer to the next, and more
layers would enable us to more accurctely find that mode shape,
This inaccuracy in mode shape would affect not only the normalization
constant but also the choice of mode wave number, K,

Figure (5,6) shows the normal mode calculation for 2000
layers., The comparison is better, but still not satisfying.
Figure (5.7) shows ‘he normal mode calculation for 3000 layers,
Here there is still closer agreement with ray theory. And the
change in the normal mode calculation from 2000 to 3000 layers
is small compared to the change from 10VUv to 2000 layers., It

was felt that calculations for more than 3000 layers were
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unnecessary, and a rule of thumb was adopted that at least
20 times the number of modes equaled the number of finite
difference layers required for the calculation,

The larger number of layers required necessitated a
rewriting of the program. We now calculate one mode at a
time, extract the required information, and go on to the next.
This is as opposed to the original storage of a group of twelve
modes at a time, The program was substantially rewritten to
keep its size small while increasing the number of finite
difference layers. A listing is shown in Appendix (II).

We also made several changes to improve the accuracy and
speed of the calculation, using knowledge gained while looking

for the flaw in the program, For example, regula falsi (48)

is usually faster than simple halving as a root finding technique,

and as such it was used exclusively in the original program,
But for the lower modes in the deep water case, we found that
the first trial values of kn were yielding values of the
unnormalized wave function at the surface on the order of

+ 10100. This was instead of the very small value, €€ 1,
needed to satisfy the pressure release boundary condition,
Because of this, regula falsi was taking excessively long to
zero in on +ihe proper kn' So we now use halving of the
difference between successive kn's until the wave function at
the surface is less than 1050 {Appendix II, Subroutine Half,
lines 45-70), and then we use regula falsi until the wave
function at the surface is less than € , 1In general, this
cut the number of iterations required by more than half for

the lower modes,
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Another change in the program involved the method used
for zeroing the wave function near the surface, Ideally,
for each mode one can find a kn so that the mode has the
proper number of zero crossings (n-1) and reaches an amplitude
value of zero at the surface., In practice, using numerical
evaluation of the mode shape, the amplitude is never quite
zero at the surface., Even for changes in kn of one parc in

l012

, the surface wave function value may still be small, but
finite, So the program was set up to satisfy the surface

boundary condition as follows:
z, M=0) %0 (5.14)

where € is some small number on the order of .0l or less,

10' and the

If kn is changing by less than one part in 10"
amplitude still isn't within & of zero at the surface, the
iteration process stens, At this point the wave function will
look like Figure (5.8A) or Figurs (5.8B). It will approach
zero amplitude at the surfacg, miss reaching zero amplitude
at the surface, or cross too early resulting in one too many
zero crossings. This information nhear tiie surface is incorrect,
and essentially useless. Newman and Ingenito {22) decided to
zero the mode amplitude at these depths in the following way,
They calculated the mode shape, again starting from the bottom.
They checked until there were n-1 zero crossings (for the nth
mode), Point A, Figure (5.8A), Then they followed the wave
function as it first increases (AR) and then decreases beyond B,

At this point, beyond B, the wave function should monotonically

decrease to zero at the surface, If it does (Figure 5.84),
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it is left alone, But if it doesn't, at some point it may cross
the axis or start to increase again (Figure 5.,8B). This is the
point where the wave function is assumed to misbehave, and it
is zeroed from there to the surface, This is done in subroutine
(Iterate) when Flag equals 2,

While this apprcach works well for many profiles, it can
yield incorrect results for some modes with some profiles,
For example, consider an asymmeiric, double well profile
(Figure 5.9). While most modes present no problem, consider
mode 4 (Figure 5.10). This is the unnormalized wave function,
The program would follow it to point (A), continue up to (B),
and then down to (C). There would be the proper number of
zero crossings, so it wouldn't expect the amplitude to increase
beyond point (B)., It would then incorrectly zero out the mode
beyond (C) in the upper well and normalize incorrectly,
resulting in an incorrect mode (Figure 5.11), To avoid this,
we chose to zero the amplitude starting from the surface.
The possibilities are the same as before (Figure 5.8) with
the first case being left alone, while the other two require
zeroing, So we start from the top and see which shape the
first oscillation has, This is, of course, after first
generating and storing the entire mode shape by starting at
the bottom-water interface, and using the last value of kn
obtained. This mode shape is not correct nzar the surface,
but it is the best we can do within the accuracy limitations

of the method and computer, We then zero the mode amplitude
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near the surface where necessary., Figure (5.12) shows mode &

again, but this time after proper zeroing, ws see the correct

normalized mode shape. These changes were made in Subroutine

= Iterate, Appendix (II).
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c(2) = coe°ZIH (ft/sec)
-—-———»
4982 5000

SURFACE
° Z (10 f1)
z(36f1)

Z{ft)

z,=360 L-i- I e —=-BOTTOM
c, = 5006 (ft/sec),p, /P, =10

T« m e o - gy

f = 1000 Hz, 1 =10°

Figure 5.1 Environmental Description for a Single
Exponential Layer(From DiNapoli(24))
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Figure 5.9 Double Well Sound Velocity Prcfile
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Figure 5,12 Mode 4, Correctly Normalized

(Small Amplitude Oscillation in Bottom
Well Roughly One Tenth as Large as
Shown Here)
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6. Profile I, Comparisons Near a Single Caustic

OQur first comparisons of the three theories were done using
the deep occan prot'ile used in our checkout of the normal mode
program (Section 5, pages 57-60}. Profile I*(Figure 5.3)
was specifically chosen so that the caustic bordering the
convergence zone (Figure 5,3, line AR) would have a well
developed double arrival region to the right of it, While we
are also interested in comparisons close in and for more than
one caustic, we felt it would first be advisable to compare the
theories in the simplest region where all three are valid,
near a single caustic, To the left of the caustic (line AB),
there is at first a simple caustic-related shadow zone. This
region will not turn out to be completely free from effects of
the surface reflected shadow zone boundary close in (Figure 5.3,
line CD), But the two boundaries are far enough apart so that
we can separate out the effects of each, To the right of the
caustic, because of the bottom depth of the profile, we have
a double arrival region free from other arrivals for an
appreciable distance from the caustic., This enables vs to
compare the three theories not only in the caustic region, but
for several oscillations in the double arrival region as well,

Calculations were dcne for a source depth of 305 m, and
receiver depths of 250 m, 500 m, and 1500 m, This way we were
treating different situations -~ a receiver shallower than the
source, between the source and sound channel axis depths, and
near the sound channel axis. Figure (6.,1) shows comparisons

between ray theory and modified ray theory at the two deeper
#*Input sound velocity profile data in Appendix V.
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depths for a source frequency of 100 Hz, As expected, ray
theory propagation loss diverges as the caustic is approached
from the right, and reaches zerc (infinite peak pressure) at
the caustic - indicated by the vertical line in each part of
the figure, Modified ray theory indicates a finite, non-zero
propagation loss at the caustic, and the intensity falls off
exponentially from there into the shadow zone., Just to the
right of the caustic, for Airy function argumentl/ol < 1,5,
we are in the caustic region - or caustic boundary layer (13),
Here we expect modified ray theory to be better than ray theory.
This is the region in each part of Figure (6.1) where the
modified ray theory propagation loss first decreases and finally
reaches a minimum, before again starting to increase. We see
that at about this minimum point, ray and modified ray theories
merge and reach their best agreement (Figure (6.1A) at 57 km,
for example),

Beyond this point we expect ray theory to be valid;
modified ray theory may agree with it, but this will depend
on the local geometry of the caustic, At 500 m (Figure 6.1A),
modified ray theory does do well in this double arrival region
and follows the ray theory oscillations adequately., At 1500 m
(Figure 6,1B), however, modified ray results fail rapidly in
the double arrival region. It is soon almost completely cut of
phase with the ray theory results, This disagreement is not
unexpected (49), and points out that care must be exercised in

extending modified ray theory far into the double arrival region.
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In Figure (6.2), we now add normal mode theory results at
each depth. On the caustic at each depth, modified ray results
agree with the normal mode results, Thus, modified ray theory
does yield valid predictions on the caustic. Then looking at
500 m, we see that normal mode values duplicate the modified
ray results in the caustic region, and then it agrees with both
ray and modified ray theories in the double arrival region., To
the left of the caustic, the normal mode results agree with modi-
fied ray results in predicting an exponential drop off in
intensity into the shadow zone, Only when the pressure has
fallen 35 to 40 dB and a weaker diffraction pattern from the
close in boundary and bottom starts to predominate, does
modified ray theory fail, So in this case, it predicts the
caustic related shadow zone effect as far as we can see it.

Now we look at 1500 m where ray and modified ray disagree
in the double arrival region (Figure 6,1B). Since we are using
normal mode theory as the standard of comparison valid everywhere,
we expect it to agree with modified ray theory in the caustic
region (0 & /9£ -1,5) - where modified ray is valid, Then we
expect normal mode results to agreé with ray theory results
in the double arrival region (beyond 52.5 km) - where ray
theory is valid, Jigure (6.2B) verifies this behavior. In
the shadow zone, modified ray results are still in good agreement
with normal mode results., Thus the tendency of modified ray to
be valid in some region to the right of the caustic appcars
to be accompanied by a similar tendency to the left of the
caustic. Sachs (49) has explored this problem of the shadow

zone validity of modified ray thecry using an idealized model
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resulting in a circular caustic, He demonstrated that as one
proceeds into the shadow zone (large positive argumentS/O of
the Airy function), modified ray theory breaks down when compared
to an exact solution of his particular problem (Figure 6,3), So
if we could follow modified ray farther into the shadow zone -
and we will do this later in a multi-caustic case- we would expect
it to fail. However, for our realistic profile, modified ray
theory is still in good agreement with normal mode theory when
the intensity is quite low,

Sachs (49) also considers the use of complex ray theory
in the shadow zone, Cunplex ray theory is the ray type solution
valid in shadow zones where regular ray theory is not useful.
From Figure (6.3), we can see that complex ray theory does work
well in the shadow zone, It is somewhat more difficult to use,
since it requires solutions for complex roots of the ray equations
for range, time, etc. However, it can be a useful addition to
ray solutions for work in the deep shadow zone.

We next did the same compariscn for 50 Hs (Figure 6,4),%
The agreement among the three theories is about the same as
for 160 Hz., There are fewer oscillations over the same range
increment because of the lower frequency. Furthermore, the
disagreement between ray and modified ray theory at 1500 m
(Figure 6,4C) starts to occur at a different range -~ at about
56 to 57 km - between the first and second nulls, What is
roughly constant at the point of disagreement islo , the
argument of the Airy function - which is a function of the

3

frequency through kz/ and also distance off the caustic, A r,

*Here we include a 250 m receiver for the first ime,
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Thus for the same geometry caustic (constan. S ), and different
frequencies, @ is the factor that scales the Airy function by
spreading or shrinking it over the space coordinate r, Finally,
Figure (6,5) shows the results for 50 and 100 Hz in the shadow
zone at 500 m depth, Modified ray predicts that intensity will
fall off exponentially with k2/3 and distance off the caustic,
Ar, Figure (6.5) demonstrates that both of these modified ray
theory approximations are good estimates of the behavior
predicted near the caustic by normal modo theory, Finally, it
should also be noted that the consistency of all three theories
in the double arrival region iepends on the T/2 phase shift that
is inserted in the ray theory result for the ray that has passed
through the caustic, This phase shift is also implicit in the
modified ray theory result (50). Only this way do they agree
with normal mode theory. 3o this is just one more demonstration

of the presence of a “72 phase shift 2t a caustic,
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Figure 6.3 Breakdown of Modified Ray Theory(CBL) in Deep Shadow Zone(From Sachs(49))
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7. Profile II, Comparisons for a Multi-Caustic Convergence Zone

While our main concern is with caustics and the convergence
zone, for completeness we compared ray theory to normal mode
theery in the near field region to the left of the shadow
zone, Figure (7.1) shows the velocity profile*and ray diagram
considered, Figure (7.2) shows the near field comparisons for
the three depths of interest., Because we are using the asymptotic
expression for the Hankel function, good for large arguments, we
do not expect the normal mode result to be valid within a
range of about one water depth of the source, And this
breakdown does show up (for example, at ranges less than
10 km in Figure (7.2C)) where the normal mode result starts to
diverge,

In Figure (7.2), the propagation loss curve oscillates
several times as the direct and surface reflected rays interfere,
Then at a specitic range at each depth (29.6 km at 15u0 m,
for example), the ray theory propagation loss increases to
infinity as we enter the shadow zone, Normal mode results
continue to indicate a finite amount of energy present in the
shadow zone, At 250 m (Figure 7.2A), the general fall off in
diffracted energy with increasing range is most obvious,
Superimposed on this fall off is an oscillation due to energy

that is probably reflected by the matched impedance, discontinuous
gradient bottom, As the receiver depth becomes deeper, the
distance between the near shadow zone boundary and caustic
shadow zone boundary decreases and the bottom grows closer,
so that by the time we reach 1500 m, the average propagation loss

remains roughly constant throughout the shadow. zone.

*Input sound velocity profile data in Appendix V,
8
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We next examined the convergence zone resulting from the
same profile (Figure 7.1)., The various caustics present in
the ray diagram are shown in Figure (7.3). The receiver
depths ¢re *the same as before, 250 m, 500 m, and 1500 m,
However due vo the complexity of the ray pattern, we will
discuss each receiver depth separately,

Table (7,1) summarizes the rays passing through each
range point at a depth of 250 m in the counvergence zone.
Figure (7.%) shows the ray theory propagation loss calculated
by CONCRATS which sum&ed coherently the rays present at esach
point, Lt also contains the propagation loss versus range
curve as calculated by normal mode theory. In the ray theory
curve, we see a caustic at 58.9 km. Two arrivals interfere
to the right of this up to point (U ), where the bottom cuts
off one of them., The single arrival region extends to point (V),
where we pass over the next caustic and pick up one more arrival,
This caustic is branch B in Figure (7.3). It is the surface
reflected branch made up of those single arrivals adjacent to
the first caustic that were not cut off by the bottom. At
point (W) we pass over another caustic resulting from rays
that are reflected off the surface near the source (Figure 7.3,
Branch C). Again we pick up another ray. Finally at point (X).
and beyond, we pink up another arrival that has reflected off
the surface, passed through a caustic (Figure 7.3, Branch H), and
reflected off the surface again,

There are two causes for abrupt, discontinuous changes in
the propagation loss curve calculated by ray theory. First,

the appearance of the caustic usually results in a sharp spike
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in the propagation loss curve, This is seen at 58.9 km, at
the border of the convergence zone. The modified ray resultis
we add in will smooth these out as shown in the previous
comparisons (Figure 6.1). The other cause of abrupti changes
is the sudden cut off of a given group of rays by the bottom,
This problem, also discussed by Pedersen and Gordon (16), is

present in our matched impedance bettom, In any case, a

particular series of rays, each of which turns deeper and reaches

a different range point in a smooth pattern, suddenly is cut
off by the bottom (Figure 7.5). There is not a smooth
transition as rays hevond the critical ray are cut off and so
do not continue the previously established smooth pattern.
Normal mode results do indicate a smooth transition, and this
problem of ray theory we have not treated,

We do, however, treat the caustic problem, We add in
modified ray resnlts whenever we are in the shadow zone or
on the caustic, Furthermore, we add in the mod.lied ray
results, and take out the two divergent ray arrivals, whenever
we are in the caustic region, 0 ? P 2 -~ 1.5 in the Airy
function.* Figure (7.6) shows the combination of ray theory
and modified ray theory, as compared to normal mode theory.
As in other compariscns, the convergence zone boundary is
adequately described by modified ray results. At point (Y),
we see the start of an oscillation caused by ihe single "real"

ray interfering with a shadow zone arrival from the caustic

——

*Wherev r we talk of putting in modified ray results in the
caustic region, it will be understood that we take out of

the sum of all rays those particular rays associated

with that caustic.
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at poinv (V). In general, ray plus modified ray goes a long
way towa,d matching the normal mode results., As discussed
previously, the worst points of comparison are where the
bottom cuts off an arrival, Points (U) and (Z). Normal mode
results indicate a smooth transition, but simple ray theory
has no way of treating this. Instead an arrival abruptly
dissppears, resulting in a sudden increase or decrease in
propagation loss,

Figure (7.7) shows ray theory versus normal mode theory
at a depth of 500 m, Table (7.2) summarizes the rays at each
point, a similar pattern to that at 250 m, Here, however, we
are out of the caustic region at point (U) where bottom cut
off of one arrival occurs, And the caustic at point (V) is
more obvious. Figure (7.8) shows the ray theory combined with
modified ray results, as well as the normal mode 1esults, We
see azain the interference of a single ray arrival with a shadow
zone arrival, point (W) to point (V), But the normal mode
result shows an additiomal oscillation, point (U) to point (W),
This suggests an appreciable shadow zone contribution far to
the left of the caustic at point (V), much farther than
modified ray theory results indicate. This shows that the
modified ray theory intensity probably falls off too quickly,
and breaks down beyond some point off the caustic, This
verifies the failure of modified ray theory far into shadow
zones discussed by Sachs (4#9). The extra points indicated by
asterisks in Figure (7.8) include in the coherent sum of all
arrivals the ray double arrivals to the right of the caustic

at point (V), But these two arrivals are in the caustic region,
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and the modified ray results should be used instead., So as
we indicated before, the modified ray results are inserted
in place of the two ray arrivals in the dashed curve in
Figure (7.8). This resuw)t is clearly more appropriate than
the result indicated by the asterisks that includes the rays
from that caustic within the caustic region,

Figure (7.9) shows the ray results and normal mode
results for a depth of 1500 m. Table (7.3) summarizes the
ray arrivals at the various range points. Figure (7.9) contains
a somewhat simpler ray pattern., The caustic region and partial
double arrival region are followed by a single arrival region,
another caustic, and finally at point (U), a different double
arrival region, Here each arrival has passed through a caustic,
and one is further surface reflected. So we have a modified
interference pattern, Figure (7.10) shows modified ray plus
ray theory and normal mode theory., Again modified ray theory
takes care of many of the problems of ray theory. Beyond
point (V) in the normal mode solution, we see an oscillation
superimposed on the interference pattern shown by ray theory.
This oscillation is similar to thz osrillation in the first
shadow zone from 40 km to 48 km and caused by the matched
impedance, discontinuous gradient bottom. We believe that the
oscillation beyond point (V) is also due to bottom effects.,
Again the abrupt changes in propagation loss where bottom cut
off occurs (points W and X) are obviously regions where

improvement is needed.,
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We then did the same comparisons lor a 50 Hz source
frequency, While the ray arrivals at each point are the
same (Tables 7.1 - 7.3), the frequency is different. So the
oscillation pattern is different, Figures (7.1l - 7.13)
show ray +*heory versus normal mode theory. Figures (7,14 - 7.16)
are .- e ray plus modified ray calculations for 250 m, 500 m,
and 1500 m, Also shown are the normal mode results, For
250 m, the general agreement is good., However, the ray plus
modified ray result (Figure 7.14A) cthows two nulls at points (U)
and (V), while the normal mode result shows one null near
Point (V). The nulls in the ray result are due to single
diverging rays in the caustic regions to the right of caustics
near these points, We were reluctant to substitute the
modified ray result here, because we didn’'t have two arrivals tfo
remove as in a normal caustic region. It is not obvious that
a caustic region where bottom cut-off oi one arrival is
occurring is the same as a normal one with two diverging arrivals,
It would seem that this region should be somewhai different,
even though the two arrivals couldn't be resolved in the
caustic region if both were there, But we put in the modified
ray result in this region to the right of each caustic -~ and
removed the single arrival from each caustic - to see what it
would do (Figure 7,14B). The use of modified ray theory does
appear to eliminate most of the first null, or merge the two
together, It does not work completely, whicii is not unexpected.
So our feeling that the modified ray result is somewhat like -
and somewhat different from - a single arrival caustic region

seems to be correct,
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At 500 m (Figure 7.15), we again note the general agreement,
The asterisks starting at point (U) are another set of points
where we have added the modified ray result instead of the
single arrival in the caustic region, Here, however, the
region of single arrivals from the caustic is quite wide,

And the modiried ray is actually worse than the use of the
single ray associated with the caustic. This just points out
that transitions from caustic to caustic at low frequencies
are quite complex and take place over a considerable distance.
So cautiion must be uced in itrying to apply modified ray
results in wide, single arrival caustic regions.

Figure (7.16) shows comparisons of the theories for 1500 m,
Beyond peint (U), resulte from the two theories start to diverge,
Figure (7.17) shows calculations for the convergence zone and
ad jacent shadow zones, using normal mode theory and two different
bottoms., The use of a hard bottom (Figure 7.17B) not only
changes the first shadow zone (up io point V) and the
converge.ce zone, but also changes the region beyond point (u)
where the direct ray arrivals are getting weak. So we attribute
the disagreement beyond point (U) ;n Figure (7.16) to bottom
effects in a region where non-bottom reflected arrivals are
contributing comparatively less energy.

Using Profile II, we next tabulated the propagation loss
partial sum as a function of the number of modes in the sum,

For 50 Hz there are a total of 53 discrete modes. Ffor a 500 m
receiver the intensity is highest, or conversely the propagation
loss is lowest, in the convergence zone (50-68 km). Intuitively,

one would expect most of the modes to contribute here, In
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the shadow zone, the intensity is lowest, so intuitively one
would expect a fewer number of modes to contribute, So
from intuition alone, one would expect the shadow zone propagation
loss level to be achieved after perhaps 10 to 30 modes were
summed, and the convergence zone level to be achieved only
after almest all the modes are summed,

In actual fact, the reverse is true, Figurec (7.18) and
(7.19) show the propagation loss as a function of the number
of modes included in the sum. This was done for .wo points
in the convergence zone (57.8 and 67 km) and two points in the
shadow zone (44 and 50.% km)., For both points in the convergence
zone, the propagation loss curve levels off after about 32 to
34 1o0des are included in the sum, From this point up to the
point where the last mode contribution is included in the sum,
there is very litile change in the propagation loss. On the
other hand, the points in the shadow zone show considerable
oscillation in the propagation loss as more modes are included
in the sum, The propagation loss partial sum changes by as much
as 15 dB from mode to mode, and only with the addition of the
last mode do we reach the correct level. Thus the high
intensity levels in the convergence zone are actually closer
to being average levels, and the lower intensity levels in
the shadow zone are built up (or more appropriately broken
down) from the convergence zone levels by the destructive

interference of higher modes.
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Table 7.1l: Profile II, Receiver Depth - 250 m

a Rays Passing Throurh Ranse Points of Interest
' Group Ran§e Angle History
{(km Scurce _ Receiver
1 59-59.8 Down Up Caustic
Down Up
1I 59.9-63.4 Down Up Caustic
II1 63,6-64,2 Down Up Caustic
Down Down Far S.R.*, Caustic
Iv €. 4-67.8 Up Tip Near S.R., Caustic
Down Up Caustic
Down Down Far S.R., Caustic
v 68-70 Up Up Near S,R., Caustic
Up Down Near S.R.,Caustic,Far S.R.
Down Up Caustic
Down Down Caustic, Far S.R.
* Far S.R. - Surface reflection at convergence zcne (60-70 Km)
Hear S.R. - Surface reilection near source (0-15 Km)

Caustic Parameters for 100 Hz

Branc ?4§?nge e (e )er M(ﬁggz)s 'fgrgz ) "g .;H
A/58.93 5.919 82.8 39.3%  ,0025 0
B/63.4k 7.827 7,332 84.2  h2,32  ,0028 -
C/64,27 -7.65  =7,55 8u.n n2,87  ,0020 -T
E/79.6 -1,365 ~-.66 88,7 53 .00024 - T/a
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Table 7.2: Profile II, Receiver Depth - 500 m

Rays Passine Through Range Points of interest

Group Range Angle History
(¥m) Source _ Receiver i
I 56,4~58 Down Up Caustic
Tnown Up
II 58,2-62,2 Down Up Caustic
III 62,6~-65,2 Up Up Near S.R.*, Caustic
Dswn Up Caustic
1v 65.4-69.4 Uy Up Near S,R., Caustic
Up Up Caustic
Down Down Caustic, Far S.R.
v 69,6-70 Up Up Near S.R,, Caustic
Up Down Near S.R. Caustic,Far S,R,
Up lip Caustic
Down Down Caustic, Far S.R.
% Far S.R. - Surface reflection at convergzence zone (60-70 Km)

Near S.R. - Surface reflection near source (0-15 Km)

Cavstic Parameters for 100 Hz

Brarj{:éi;ange e, (Do) o, Arzﬂ.gg? %‘éfg:} '5 ¢“
A/56.33 k,66 82,6 37.63 .0023 0

B/65.26 7.80 8,7 85 43,53  .0049 -7
c/62.39 “7.17 -8,0 84,7 41,63 ,0027 -
F/81.05 .75 3.76 92.7 53.87 .00027 -
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Table 7.31 Profile II, Receiver Depth - 1500 m

Rays Passins Throurh Range Points of Interest

Group Range Angle distory
{km) Source  Receijver
I 51-53,6 Down Up Caustic
Down Up
11 53,8-57.6 Dovin Up Caustic
111 57.8-58 Up Up Near S.R.,¥*
Up Up Near S.R., Caustic
Up Up Caustic
Iv 58,2-59 Up Up Near S.R., Caustic
Up Up Caustic

Near S.R. - Surface reflection near source (0-15 Km)

Cavgtic Paramelers (for 100 Hz)

% Par S.R. - Surface reflection at convergence zone (60-70 Km)

Branch/Range 2] e AMPDB Time

(k) © (Dep) T (dB) (Sec) 3 4%
A/50.95 3.99 86 33.98 .0019 0
C/57.69 -6.69  -1,,: 87 38,42 .0025 -
F/87.13 .76 1.5 98 57.98 .00028 .
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8. Comparisons for Horizontal Caustics

Up to this point we have concerned ourselves with one
class of caustics, These we have characterized as vertical
(depth to range slope 1:10,$z .002), Now we wil: examine
the caustics we characterize as horizontal (depth: to range
slope of 11100 ,X < ,001), As discussed in Section (4),
these are caustics for which a normal expansion off the
caustic, such as Ludwig's, would seem more appropriate,
However, for some horizontal caustics, a horizontal expansion
off the caustic is still possible and convenient, For these,
we would like to know how accurate the shadow zone and caustic
predictions are,

We originally intended to use an arbitrary velocity
profile of 10 to 20 layers in treating this case, However,
the complicated ray patterns arising from such profiles tend
to interfere with the examination of the horizontal caustice
ther 2lves. So we selected a bilinear profile#(Figure 8,1),
for which we could separate out the caustic regions more
easily, Figure (8.2) shows the ray diagram for chis profile
and a source depth of 1000 m, The caustics of interest are
guite clear. They are summarized in Figure (8,3) for the
second convergence zone, There is a cusped caustic {ABC)
nested inside the caustic that limits the convergence zone
on the left (GH). Table (8.1) sums up the caustic parameters

for caustics at two depths, 201 m and 281 m,
*Input sound velocity profile data in Appendix V.
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At a depth of 201 m, the caustics are far enough apart so
that we can examine the shadow zone for each one individually.
Looking at the second convergence zone, Figure (8.4) shows
the comparison between normal mode theory and ray theory for
a 50 Hz source frequency, and Figure (8.5) slows normal mode
and modified ray theory. The first. thing we notice in
Figure (8.5) is that the intensity falls off more slowly
with range into the shadow zone than for the vertical caustics
previously considered., For example, for the caustic at 153.5 km
in Figure (8.5), the propagation loss has increased 10 dB at
a distance of 3500 m into the shadow zone., For a vertical
caustic (Figure 6.1), the first 10 dB increase occurs in 1500 m,
less than half +he Jdistance, This is in line with our description
of horizontal caustics as weak caustics, where the energy is
spread out over a broader region to either side of it. For
both caustics in Figure (8.5), the modified ray calculation
in the shadow zone is good for about 2000-4000 m into the
shadow zone, For erch caustic, the normal mode calculations
show a more rapid decrease ir. intensity with increasing Ar in
the shadow zone than does the modified ray prediction., A
possible explanation shows the value of a normal caustic
expansion, Consicer point (M) in Figure (8.3), We have
obtained a value for the propagation loss there by horizontal
expansion from point (N) to the right., But the caustic point
closest to point (M) is point (L). and this is a weaker caustic
point than point (N), So 2 prediction for point (M) based on
point (L) would yield a lower intensity, one more in line with

the normal mode calculation, We see that one -“isadvantage of a
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horizontal expansion for a horizontal caustic is that we may
be fairly close to a much weaker caustic point, and not be
taking this into account. But with this caution in mind, we
have demonstrated that a smooth, simple caustic, whether
horizontal or vertical, can be treated by a horizontal expansion.,
Finally, we considered a deeper receiver (281 m), where
the shadow zone of one caustic overlaps the single arrival ray
region of the previous caustic, Figure (8,6) shows a comparison
of ray theory to normal mode theory for this depth. . is
typical of the previous cases, with divergent rays near caustics
and single arrival regions far enough to the right of each
caustic (238 km to 144 km, for example), We then added in
modified ray results in each shadow zone and caustic region
(Figure 8,7). From 143 km to 147 km, we see an inverference
pattiern resulting from a combination of a real single arrival
and the snhadow zone contribution from the caustic at 150,5 km,
The pattern is similar to that in Figure (7.6),around 64 km,
but here the agreement is poor, The oscillation pattern is
not quite correc¢t, and the level is too high. This is probably
due to an excessively large shadow zone contribution of the
type discussed in the previous paragraph., This dis ‘eement
demonstrates how modified ray theory results using a lL.rizontal
expansion can be incorrect when the point of interest is far

enough from the ‘caustic,
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FPigure 8.1 -Profile  I1I, Bilinear Sound Velocity Profile
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Table 8,1t Caustic Summarys Profile 11I, Second Convergence Zone

Depth=201 m
r, 8, T, P.L. $ Extra Phase Shift
(m) (sec) (aB)

135455 10,4 89,16 91 ,001117
153540 | -10,33] 100.85{ 93 ,000815

-7
-31/2

Depth=281 m
r, 60 '1‘c P.L, S Extra Phase Shift
(m) (sec) (dB)

1330751 9.9 87.635 91,8 .001105 s

150147 1 -9,8 98,674 93,7 .000798 -3m/2
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9, Conclusion

The comparisons we have made can be evaluated in several
different vayst in terms of the usefulness of the modified
ray theory we have applied at caustics, in terms of the
validation of a particular normal mode program we have used,
or in terms of the general usage of ray theory and normal mode
theory. As in every comparison of several theories, this has
been an iterative process, Knowledge gained in calculating
ray theory curves leads to information about normal mode
thaory, which in turn leads to information about modified
ray theory, and so on, In this way, we feel that knowledge
can be gained about each approach tha* would not become
apparent in the conrclideration of one approach by itself,

It should be noted that what we call modified ray theory
(12) ras also been termed a caustic boundary layer solution (13),
a uniform asymptotic theory (14), and 2 caustic correction,
To further complicate things, there is a completely different
derivation termed modified ray theory (51, $2) which is useful
wvhen rays turn near boundaries, While this auther is comfortable
with modified ray theory (it is after all a result of modifying
the basic ray equations), perhaps "caustic ray correction”
would distinguish derivations intended for use near caustics
from more general expressions,

Whatever it is called, we feel that these comparisons
have once more demonstrated the usefuiness of modified ray
theory near caustics, In many cases, the addition of modified
ray theory results at caustics to simple ray theory yields a
much more satisfying propagation loss vs, range curve when
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compared to normal mode theory. The interference between "reai®
rays and shadow zone contributions from adjacent caustics

helps explain many of the oscillations present in normal mode

results and absent in simple ray theory results, Thus caustic

shadow zone contributions are an important part of the
convergence zone irntensity picture, For what we characterize
: as vertical caustics, the horizontal expansion we use works
quite well. For horizontal caustics, the expansion can at
best be said to give only fair agreement.

For the horizontal caustics, a normal expansion such as

Ludwig's (14) or Kratsov's (15) should be better. But in

: reality, it should take just a coordinate transformation to
make Sachs and Silbiger's horizontal expansion eguivalent to
Ludwig's non-uniform normal expansion. The real value of
Ludwig's approach is in its uniform asymptotic theory applications.
By uniform asymptotic theory, we mean that for a smooth caustic,
one can obtain an expression that is valid everywhere - on

the caustic, in the caustic region, and out into the dorlie
arrival region. The expression will automatically be identical
with ray theory in the double arrival region., Thus, haphazard
agreement in the double arrival region can be avoided. While
this approach is quite powerful, in practice it is often
difficult to take advantage of. In many realistic deep water
profiles (as in our Profile II), the bottom cuts off one of

the two caustic-related arrivals relatively near the caustic,
and the niform asymptotic thecry is equally helpless. In our
comparisons at 100 Hz, we barely get one full oscillation in

the double arrival region before bottom cuteff of one arrival
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occurs, For frequencies of 1 kHz or above (where there are
many oscillations over the same range increment), the uniform
asymptotic theory would be useful as long as the caustic
curvature remained constant (otherwise further modifications
would be necessary). However, for frequencies on the order
of 100 Hz, and realistic velocily profiles, a non-uniform
approach is just as useful. This may be either the horizontal
expansion (12, 13) or Ludwig's (14) non-uniform result, since
each has its own advantages. In any event, the modified ray
theory we have used does work on the caustic, It works well
in the caustic region. And for vertical caustics, it accurately
predicts the near shadow zone field out to & range where the
pressure has dropped some 40 dB from maximum.

As far as normal mode theory is concerned, we feel
that Section (5) demonstrates the need for validation of any
theory by comparisons. Only this way can apparently accurate
calculations be verified. By comparing the normal mode results
to ray theory, we verified that the caustics were where they
should be, and that the close in direct-surface reflection
interference pattern was accuratlely predicted. So we validated
the particular normal mode program being used. Comparisons for
idealized profiles with exact solutions (3, 16) are necessary,
These standard cases give a good indication of the inherent
accuracy of the program or theory under ccnsideration, But
comparisons for realistic profiles such as we have dealt
with are also necessary to verify a program or theory‘s

behavior for ranges, frequencies, and cases of practical interest,

137




[P N

NOLTR Th-95

Thus we feel that an arbitrary profile input - such as allowed
in the finite difference normal mode program we use - is
desirable for evaluation of realistic cases of interest,

One disadvantage of realigtic comparisons is that they
often contain a bottom, and we are sometimes interested in
minimizing bottom effects to examine other phenomena, such as
caustic effects, For this reason, we treated profiles with a
matched impedance bottom. This way w: eliminated first-~order
bottom reflections, This did lower ihe level of bottom reflected
energy in the convergence zone, and enabled uz tc separate
out caustic shadow zone effects; but we were st’ll getting
abrupt changes in propagation loss where bottcn cutoff occurrzd
and also probably getting bottom reflected energy from the
gradient mismatch at the bottom. No doubt these effects could be
accounted for by a bottom reflection treatment plus a diffraction
correction past the critical ray, but we were primarily interested
in caustic treatments, In obtaining reality in our comparisons,
w2 sacrificed simplicity., So we were forced to weed out the
phenomena of interest from other phenomena equaily interesting,
but not pertinent to this study.

With all the problems associated with the ray theory
resultss caustics, bottom reflections, and diffraction
corrections for bottom cutoff, the cuestion c¢cften arises -~
why bother at all? Normal mode theory, and other approaches,
sum all these effects purely and simply. A cynic might attribute
the continuing usage of ray theory to the huge investment in
time and energy put into ray tracing programs all over the

country, But there are cases and situations where ray theory
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is still be‘ter than normal mod~ sheory,., For shallow water

and surface chamnnel calculations, normal mode theory is
generally accepted as superior. For deep waier profiles, and
frequencies on the order of 100 Hz, normal mode and ray theory
are roughly equal - even though normal mode theory does include
all the effects that must be tacked or in ray theory. At higher
frequencies ray effects become more important than wave effects,
and ray theory is probably better, Ray theory is far superior

as an interpretive tool, indicating in rav diagrams how the

energy gets from one place to another. And for some applications,

fast ray tracing programs (7) can easily outperform normal

mode programs, Ray theory and modified ray theory are
especially useful in the treatment of pulses, Because they

both have an explicit frequency dependence, one can trace ray
paths and caustic locations independent of frequency., Then

one can put in the frequency dependence as the arrivals are
coherently summed and the total pulse reconstructed by Fourier
synthesis (8), This is as opposed to normal mode theory where
one has to calculate intensity for each frequency independently,
Finally, the need will always remain for well known ray theory
calculations with which to compare the new, more complex methods

of calculation continually being developed,
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Appendix I: Program RAYTRV Listing
(Coherent Ray Sorting Program)
PROGRAM RAYTRV CDC.6400 FTN V3.0~

PROGRAM RAYTRV(INPUT+OUTPUTTAPF2)

COMPLFX SUM(100) «DUM

DIMENSION JRN(100:2)
DIMENSION TARGET( 11043)«SP{21042)+sRP(21042)¢VP0(210,
DIMENSTON TEST(3)«TESTLI(R) +RUFFER(94RO0) « IRFR(9+4800)
EQUIVALEMCE (BUFFFR4 JBFR)

TAPF2 IS OQUTPUT OF CONGRATS
NCASE EQUALS THF NUMRER (OF PROCESS CARDS IN CONGRATS
NCASE IS THE NUMBF® OF CASES TO BE PPOCESSED
IPPN.,GT. 0 MEANS PRINT OUT PATA
1PPOC,GT, 0 MEANS ADN ARPIVALS COHERENTLY
ISHDAR=N,GT, 0 MEANS N SHADOW ZONE ARRIVALS
ARE TO BE READ IN

CARD READ STATCMENTS - tings 1%, 23,26, 1S

READ 976 9NCASE
976 FORMAT(IS)
N0 1R20 NCA=]1+NCASE
NSTOP=0
NSTART=-99
READ Q7541PRMIPROCISHDAR
NARRIV=0
975 FORMAT (315)
READ 10004 (TEST(J) eJ=1¢R)
READ 10004 (TEST1(J) eJ=1+8)
1000 FOPMAT(RALD)
READ (2) (TARPGET(I)sI=1e 330)
READ (2) (SP{I)+I=14420)
READ (2) (AP (I)e]=14420)
REAND(2) (VPO(I)4I=141240)
READ (?)
IF(EOF(2) +NE,0.) GO TO 100
990 STOP 5
100 NSTOP=NSTORP+100
NSTART=MSTART+100
READ(?) ((BUFFER(TaJ) «I1=249) o d=NSTART+NSTOP)
DO 1001 JUK=NSTART.NSTOPR
IF(IMFR(24JK) JEQ.0) 6N TO 101
1001 CONTINUE
IF(HNSTOPNELANQ) RO TO 100
STOP 7 )
101 NRT=TFIX(TARGET( 11041))
NZT=IFIX(TAFGET( 11042))
NARRTV= JK=1
IF(NARPIV.LE.0) 6O TO 1R20
IF(IPRN,LELO0) GO TO 725
PRINT 200
200 FORMAT (1H)+4NX]1AHCONGIATS OFSULTS////7970%
1 34HIMPUT INFARMLTTIONM (USED IN FINNING +//420X,
2 3THRAYS PASSING THAFOUGH SPECIFIED TARGET «//020X
3 YTHRANGES aAnD NERTHS;
PRINT 275¢TARGET( 100941)«TARGET( 10942)sTARGET( 10943}
275 FOQMAT(///’SXo?}HGOUWCE RANGE IN KYDS=4E15.R45%,
144
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NOLTR 74-95
PROGRAM RAYTRV CDC 6400 FTN V3.0-P316 OF

1 21HSOURCE DEPTH IN KYDS=eE15.8¢5Xs
2 2AHSQURCE VFLOCITY IN KYDS/S=«£15,8)
PRINT 300eTARPGFT(MZT+242) «TERGET(NZT+243)
300 FORMAT(///+46XeP2HRSURFAOCE OEPTAH IN KYDS=9E1E.845X
60 60 1 PTHSURFACE VELNCITY IN KYNS/S=4E20,R)
PRINT 3S50¢TAFGFT(MZT+12) o TARGET(NZT+1,3)
350 FORMAT(///+4AXe21HROTTOM DEPTH IM KYDS=¢E15,8¢5Xy
1 26HROTTOM VELOCITY IM KYDS/S=e£20.8)
IF{TARGET( 10R«3).LF,0,) GO TO 2690
65 PRINT 37S+TARGET( 10R.2) «TARGFT( 108¢1)
375 FORMAT(/// 35X« 1 THFRFAQUANCY (RAD/S)I=4E20.,Re5Xy
1 2ZHATTENUATION IN DH/KYD=4E20.R)
3A90 NVPOA=TIFIX(VPO(21041))
3700 PRINT 3702
0 3702 FORMAT(///7+45X«28HCONGRATS VFLOCITY PARAMFTFR59
1 / 45X P2AHermccmrcccrrrn e a e r e
2 //+AH LAYER TXeAHZO-KYN412¥yAHV O~ KYD/S!I4XO?HG0917XOZHGIO
417X0 PHG24 14X« THV=KYD/S/ /)
PRINT 3712+ (Ne (VPO (MeJ) ad=146) ¢N=1sNVPO?
75 3712 FORMAT(I44+1PRF1IQ,R)
PRINT 400
400 FORMBT(///7450Y«2)1HTBRGET DEPTHS IN <YDS)
PRIMT S0 (TARGET(I42)eI=1eNZT)
500 FOSMAT{1i +6E20,R)
a0 80 PRINT 5§50
550 FORMAT(///+5NX421HTAPGFT RANGES IN KYDS)
PRINT S00«(TARGET(Is1)9I=19NRT)

PRINT 700
T00 FORMAT(/////+ 60Xe22HCOLLECTION OF ARRIVALS)
8s 725 DO 1350 J=1NZT

1350 TAPGFT(Je2)=TAOGFT (Js2)/TARGET( 1044c)
00 1360 J=1NRT
1360 TARGET(Jel)=TARGFT{Js1)/TARGET( 10441)
DO 1370 J=leMARRTYV
90 RUFFFR(3«JI=FUFFFR(34J)/(1.,745329255~2)
1370 RUFFFO(4«J)=SHFFFR(44J) /(1,76532925E=2)
IF(ISHDARGLE.O) RO TO 740

95
ALL QUANTITIES PEAD IN HFRE ARE ;N ORIGINAL UNITS

SAME UNITS AS FFED INTO CONGRATS
ZC IS DEPTn OF [NTFRFST
RC 1S CAUSTIC RANGRF AT DEPTH ZC
60“?&9\‘3\‘}#6GQQQGQQ&QGGGQQQGQD%Q&QQ
MAKF ZC+2C BOTH SAMF UNITS
EITHER METERSCFEETYNSFTC

100 100

OO0 N

. 2:-2-%-X-2-2.X-X-F-%. R R-X-R-F. 22X 0. R-F-R. 2. . R R RIR L. ¥ ¥ 213
THFATO IS IMITIAL ANGLF(IN NEG) OF RAY GOING THROUGH CAUSTIC
TC IS TQAVEL TIMR ToO CAuUsSTIcC
AMPRA IS PROP, LNOSS TO CAUSTIC IN DR
PS IS ANY ADDITIOWAL PHASE SHIFT-DUE TO SURFLCFETC,
Wl 1S THIRD DFRIVATIVE 0OF W NFFDED IN AIRY FUNCTION
ISIGN IS SIGN OF THIRN DERIVATIVE-~+1 OF =1
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118

120

125

130

138

140

145

150

; 155

; 160

165

PROGRAM RAYT

115
2010

2200

2899
2900
2990

140
740
7%0

1200
1
2
3

1250
1390
1
1395
1400

1420

1455
165 1460

NOLTR T4-95
RV CNC 6400 FTN V3,0-P316 OP

C2=TARGFT(10Q+3}/TARGFT(10441)
AK=TARGET(108+3)/C?

ATO=A1(0,)

RO 2990 IF=1+1SHNAR

READ 20103 THEATO«Z7CeRCoeTCoAMPDR W] 9PSsISIGN

FORMAT(7¥10.3412)
XIC=COS(THEATN*],74532925E=2)

D0 2900 TE2=1eN77
IFIARS{TARGET(IF?42)-7C)oGE,.(0001) GO TO 2900
DO 2RAG IF1=1NRT
DELR=TARGET(IF141)=RC
RHO= (AK#& { ,66AT) )2 1 #NELR*ISIGN
IF(RHO.LE. Q¢ ) GO TO 2899
NARRIV:EMLIRIV+]

IF(NARTV.LFL800) GO TO 2200
STOP 4
RUFFER (AINARPTV) =A4PDR-20,%AL0GI0(ABS (AT (RRO) ) /ATIO)
BUFFF& (9MaRRIV)=TC+XTC#DELR/C2
BUFFFR{T4NALRIVIZTARGFT(108.3) #8UFFFR(S+MARRIV)~,78539R]16+P¢
IRFR{BeMARRIV)=IF]
IRYR (2 MARRIV) =IF>
BUFFFR (34NARRIV) =N,
RUFFFR (44MNARPIV) =0,
IRFR(QNAPRIV) 2990009
CONTINUE
CONT INUF
CONT INUE

NO 750 I=1.MARATYV
IRFR(141)=100213FPR(241)+IRFR(Bs])
J=QUNARR] Y
CALL COMSOT(I3FDeJo0e0alsl)
IF(IPPN,LE.Q) GO0 TO 1400
PRINT 1200 )
FORMAT (1H=93X e 1 2HTARRET NEPTH.15H TAQGET RANGFE
164 INITIAL ANGLE 418H FINAL AMGLE +15H TRAVEL TIME
18H  PROP, LOSS  +158H PHASE '
15H  PHASE SHIFT +10~NO, OF RFV)
PRINT 12504 ({TFST(J)eJ=1e8) s (TFSTL1(L) sL=104)
FARMAT (1H «12510)
DO 1390 J=1 NIRRTV
PS=RUFFER (T e ) =TAPRET (10R3) #AUFFFR(Sy.))
PRINT 139STARGFT(IRFH(PeJ) 92) 9y TARGET(IRFR(BsJ) 01) o
APUFFFR(Toed) e I207) e PSeIRFR (G, )
FOPHMAT(RELS He 16} .
IFCIPROC.LF.) GO TO 1R20
DO 1420 U=14100
SUM(J)=CHOLX(0,40,)
J=9
I1C=0
12T=0
147=12T7:1
IRT=1
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PROGRAM RAYTRYV CNC &400 FTN V3,0-P316 OPT:
1465 IC=IC+1
1475 J=d+}
IF(J.GT . MARPIV) GO TO 1700
IF(IRFR(24J) JMNELI7T) GO TO 1600
170 170 IF(IRFR(RyJ) LMELIGT) GO TO 1590
Cowmmiem THIS FLAGS BOTTOM{ OR SURFACF) ROUNCES W~EN LOSS
Cormromnnne IN CONGRATS IS SETY TO 9,E+03 08 SO ONE
175 Coornm=e CAN DFLETE THEM FROM THE SUM OF ARRIVALS
180 o T
- — - ———. o - - /{
1477 CONTINUE
IF (RUFFER(69J) e GEL9.E+03) GO TO 1485
185
AMP=10,4%%# (= (RUFFFR(A4J)/?720e))
PH= RUFFER(T7¢J)
RE=AMP=COS (PH)
190 AIG=AMPASIN (PH)
DUM=CHMPLX (REAIR)
GO TO 1490
14R5 DUM=CMPLX (0es04)
1490 SUMLTC)=SUM(IC) +DUM
195 195 IRD(IC1)=I7
IRD(IC2)=1KT
GO Y0 147S
1596 IF(IRTLENNRT} RO TO 1455
IRT=IRT+1
200 J=Jd-1
GO TO 1465
1600 J=d-1
GO TO 1455
1700 PRTNT 1750
205 PRIMT 17A0 +TFSTLL)«TEST(2)«TEST(3)
oe 10200 IJd=1.1C
IF((REBLISUMITIJUYN) «FR0,.) o AND (ATMAG(SUM{TU) ] 4EQe04)) GO TO 1RO
2100 FOORMAT(TI1044¥18,7)
Y=CAQS(SU*(TU))
210 Y1=PFAL (SU~(IJ))
YA=AIMAS(S V(1))
PI=ATAN2(Y2.Y1)
NDR==20,24L0GRl0(Y)
GO TO 1799
218 1750 FOQOMAT(////«30Xe2THRFSULTANT AT TARGFT POINTSe//»
1 3XW1PHTARGET "FPTHW4X e ISHTARGET RANGE ehX o
4 JOHRESQULTANT AMEL TTUNE 410X «&HPHASF)
1760 FORMAT (/4381047 %e34PCT412Xa2HDH12X e 3HRAD)
1770 Y=9QQ39,
220 220 DR=999499,

7

RN RE T /e P



NOLTR TL-95
PROGRAM RAYTRV CNC 6400 FTN V3.0-P316

Pi=0,
1799 PRINT 1810+TARGET(IPN(IJe1) 92) ¢« TARGET(IRD{IJ92)01)eYsDBsP
18400 CONT INUE
1810 FORMAT(/45F15.7)
FEL <25 1820 CONT INUE
END

148
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NOLTR TL-95
Appendix II:+ Normal Mode Program Listing

The following is a card by card listing of the data deck,
This precedes the program listing. While the program hag
undergone extensive revision, the main logic and substance of

the program follows Newman and Ingenito (22),

Card 1 READ 500, KKK, INC

500 FORMAT (2I4)

KKK « number of sound speed profiles for which

calculations are to be made
INC-If MODSHAPE=1, prints amplitude at layers:
l, 1 + INC, 1 + 2 ¢« INC, etc.

Card 2 RFAD 4500, PROPLT, MODSHAPE, MODEPLT, GRUVEL, GRUPLT,

GRUVELS

4500 FORMAT (Fs5.1, 215, 3F5,1)

PROPLT = 1 - plots sound speed profile otherwise -

no plot
MODSHAPE = 1 - prints mod amplitude values
otherwise - no print
MODEPLT = 1 -~ plots mode amplitudes - otherwise -
no plot
GRUVEL = 1 - indicates group velocities are to be
calculated otherwise - program terminates
1 - plots group velocity curves otherwise -
no plot
GRUVELS = 1 - prints group velocities over frequency
range specified otherwise - no print

Card 3 READ 1000, TITLE
1000 FORMAT (1CA8)
TITLE - word and/or number description of problem

Card & READ 2000, VELNO
2000 FORMAT (I110)
VELNO - number identification of sound speed profile

Card 5 READ k000, F, CT, R), R2, H, LI, ND, NM, NF, EPSILON
4000 FORMAT (SF10,3, U4I4, F10.4)
F - Frequency of source
CT ~ second layer sound speed
Rl - density of first layer
R2 - density of serond layer
H - first layer den+h (woter layer)
L1 - number of in~rements irto which first layer
is to be divided for finite difference equations
ND < number of sound speed depths
NM - number of normal modes or eigenfunctions wanted
NF - number of additional frequencies
EPSILON - criterion for acceptable solutions

i

GRUPLT

- . Y —— o WY
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Card 6 READ €000, (21(I), c1(I), I=1, ND)
6000 FORMAT (2F10,3)
21(I), C1(1I) - profile depth and sound speed

Card ND+6 READ 7500, SD, (RD(I), I=1.5)
7500 FORMAT 6F10,3
SD ~ Source Depth
RD(I) - Receiver Depth

Card ND+7 READ 12000 (LB1(I), LB2(I), I=1,10)
14000 FORMAT (10(2I4))
LB1l, LB2 Specific modes to be calculated
i.e, | 5 1060 110 O O
Means calculate modes 1 through 5, and 100
through 110

Card ND+8 READ 1300 F
1300 FORMAT (F10,3)
F - New source frequency

Card ND+NF+8 READ 14000, FMIN, FMAX, FDELF
FMIN Lowest frequency for group velocity calculation

FiAX Largest frequency for group velocity calculation
DELF Frequency increment for group velocity
calculation
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PROGRAM

31

¥y

N

30

55

NOR

5

11111
800
1000
2000
3000
4000
snQn

6000

7000

8000

Q000
10000
11000
1zo00
13000
14000
15000
16000
17000
18000
18000
20000
21000
22000
23000
24000
25000
26000
27000
27001

C FIVE READ STATEMENTS STORF CONSTANTS AND FLAG

NOLTR Th-95

COMMON/A/Z1(5N0) oCTUS0) ¢ Z1INTS0) oLLR(1I0) 9sLUB(L10) 4MMU(30) +LR1(10)

“0N3
PROGREM NORMODI(TNFUTSOUTPUTHTA
CovMON/Y 7 KT 31009
COMMON/2/22N(3100) « can(
COMMOM/AR/CP (20420) 9V (20420) oGV (
*Lk2(10)

COMMON/AC/AKN( 12)«RR( 12)+PV( 1
COMMON/AD/ECSILONGH HD KD 34 NL DL
#GRUVFEL «GRUPLT . 1ZERNGIGY
COMMON/AE/LOEPTH sLamMp +LGRU
DIMENSION INDEX(A) s AMPMOD(Ae12)

DIMENSION RD(S)

NDIMENSTION ZT(3100)4Z27(3100)
NDIMFNSION PLTMONE (PS4) «TITLE(10)
EQUTVALEMCE (72N e2T) 9 (XTeZ22)

DATA LAMP/9RAMPLITUNE/

DATA LDEPTH/4H DEPTH /

DATA LFRF/YRFRENUENCY/

DATA LGRU/SHGRQOUP VEL/
FORMAT(214)
FOPMAT(F5,1421543F5.1)
FORMAT{1048)

FORMAT(1H1+10A8)
FOPMAT(TI10)
FORWMAT(///)

FORMAT (# FREQUENCY/ROTTOM V./H?0 DEN./ROTTOM NDEN/H20 DEPTH/ LI/

#/7 NM/ NF/  FPSILON #)
FORMAT(SF10,344T4eF10,.4)

FORMAT (2F10,3)

FORMAT (# SOUND SPFFD PROFILE #)
FORMAT (# NEPTH VFLOCITY #)
FORMAT (1H1s% SOURCE FREQUENCY =
FOPMBT (/)

FOPMAT (# mMaXImMUN NO, OF ZERO CPO
FOOMAT (#  MQODE CUTOQOFF AT
FORMAT(10(214))

FORMAT (# MODE = #,413)
FORPMAT (& WAVFE NUMRBER
FORMAT (3£20,13)

FORMAT (1K])

FORMAT (# MODE AMPLITUNES FOR SQU
FOWMAT(10X+12(3X4#¥MONF=413))
FORMAT{4XeA. o12(X9A0))

FORMAT (13F10.3)

FORMAT(F10,3)

FORMAT (3F10,3)

FORMAT (# GKOUP VFLOCITIES #)
FORPMAT(X9AR«B1412(XsARyAL))

FORMAT(I0F)1.4)

FOPMAT(2F11.4)
Calt PLOTS(PLTMONE «P%441)

READITI11+KKKWINC
D0 99Q7 M=] KKK
READ 800yPROPLTyMODSHAP «MODEPL

158

CDC 6400 FTN V3,0-P316 OPT=}
PFlsTAPET7+PUNCH=TAPET+ TAPEQ)
3100)
20+420)¢C(20920)+DKN(20420)
2reAN( 12)92ZF(12)
SeReITeCTyCTDeMODSHAP sMODEPLT

'LFRE

#4FR.3)

SSINGRS = #414)

THIS SOURCE FREQUENCY #)

PHASE VELOCITY ‘ R #)

RCE FREQUENCY (HZ) = #4FR,2)

INFORMATION

T+GRUVEL s GRUPLTsGRUVELS
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PROGRAM NORMODR COC 6400 FTN V3,0~-P316 OPT=1

READ 1000+TITLE
PRINT 2000«TITLE

READ 3000,VELNO

IF(PROPLT.EQ.0.0) GO YO S

0 60 CALL PLOT(0ee9e0391)

CALL SYMALG(Nefa~AoeDeBal64y104PROFILE IN990+0410)
CALL NUMBR{0,04=440¢Ne169VELMD3O0,00=1 )
CaLL PLOT{(2.5+0403+1)
5 PRINT 4000
6 READ ANDNIF3CTeR1eP2eHyLTIaNDINMsMF4EPSTLON
PRINT 5000
PRINT 6000+FsCT9yR14P2oHsLIoNDyNMeNFsEPSILON
PRINT 4000
¢ SIXTH READ STATFMENT STORFS SOUNMD SPEED PROFILE
" READ 70009(Z1C(T)sCL(TI)sI=14ND)
PRINT 8000
PRINT 9000
PRINT 70009(ZY(I)«C1(I)sI=1¢ND)
READ 7500+SDy (OD(IL)9IL=145)
s 7500 FORMAT(6F104.3)
ISTEP=A®INC
JSTEP=G%INC
SNEP=SO/H
DO 7 I=1+5
an 7 eN(I)=RD(I) /M
PUMCH 7A00.SDED W IRD(IL) 4 IL=145) L]
WETEST=,S/FLOAT(LT)
7600 FORMAT(AFL0.6¢15)
8*C NORMALTZATION OF SOUMD VELOCITY PROFILE DEPTHS
15 2 DO 10 T=1,ND
10 ZIM(D)=ZYI(I)/H
N=IT+1
DL=1.0/L1
NORMALIZATION OF INCRFEMENTAL DEPTHS
a0 NO 20 I=1N
20 Z2M(1)=nLe(]=-1)

CALL TC SURROUTINE 4HICH LINEAR INTERPOLATES RETWFEN THE ABOVE TwO Si
NORPMALIZED wATER DFPTHS TO YIELD & SET OF SOUND VELOCITIES FOR Ti
NORMAL T7FD INCRFMFNTAL WATER DEPTHS

og CALL 7ZCINTER (NDyNoF4C2MINWPROPLT)

1=0
OLS=DL=NL £
CTD=CTaCT b+
HD=H#H
00 R=R2/R]
IT=N
HN3=HN®H .
C CALCULATION OF LARGFST KN (AK2) AND SMALLEST KN (AK1})
30 AK1=(h.,2R31853071&%F)/CT
ng AK2=(6.,PB31853NT194F) /C24IN
FO=(30,47841T6043A0F0F)
‘ AK3=zAK]
' IF (MODFPLT.EN.0) GA TO 4C
CALL PLOT(Se90,93¢i)
| L0 110 CALL SYMHL4{0.04=he00h,14420HSOURCE. FREQUENCY (HZ) +90,0420)
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C CALCULATION OF MAXIMUM MODF AVAILARLE USING A SURRNUTINF WHICH ITERA
FROM RPOTTOM TO SUWFACE USING A FALSE POSITION TECHN{QUE
SUSRNUTINE ITEPATE CALCUHLATES A MODF SHAPF FOR A GIVEN EIGFNVALUE

NOLTR TL-95

NORMOD3 CDC 6400 FTN V3,0-P316 OPT=1

CaLl NUMBR(040e¢=24040,14¢Fe00,001, )

BY THE METHOD OF FALSF POSITIOM(REGULA FALSI)
40 1ZFRO=0

CALL TTERATE (AK14FDyHyC2DsDLSeHD9HD3sCTD9ITINCReReZoAsZZ DLy IZERS

1)
b0 41 IL=146
41  IMDEX(IL)=0
PRINT 100004F
PRINT 11000
PRINT 120004NCR
PUNCH 115004FsR19HyNCR

11500 FORMAT(3F10,3514)

?ROGDAM
. C
c
115 ¢
145
c
c
c
165 ¢

PRINT 11000
IF(NCRLEQ.0) 50460
50 PRINT 13000
READ 14000y (LBI(I)oLB2(1)sI=1510)
GO 70 259
60 ICOUNT=JPAGE=0
READ 140004 (LBY(T)sLR2(I)eI=1910)
PPIMT 14000, (LRYI(I)2LR2(I)eI=1y10)
DO 70 T1=1410
LLR(I)=LBI(D)
70 LUR(I)=LH2(T)
FLAG=D,0
SKIP=IC=1
DN 120 J=1s10
JJ=LLP (J)
RO IF(JJ.LELNCR) 110,90
Q0 LUR(J)=NCR
G0 TO 120
110 IF(JJLEQLLUBLY)) 1264115
115 JJ=JdJd+1
G0 TO 80
120 CONTINUE
130 ICOUNT=ICOUNT+1
AK1=AK3
1=LLK (ICOUNT)
IUR=LUR (1COUNT)
IF( T JFR,0> 2404140
140 PRINT 150001

SURRQUTINF HALF DETERMIMES EIGENVALUE FOR EACH MODE SHAPE 8Y THE

HALF INTERVAL SFARCH TFCHNIQUE
CALL HALF(AK1+AK23FDaMCRyAS]IHIC)
RA=SORT (A)
LJ=LI=~1
ONN=EVEN=0.0
CALCULATION OF NORMALIZATION CONSTANT USING SIMPSONS RULE
DO 160 J=2eL12
1A0 EVEN=EVEN+ZZ(J)=Z7 (1)
DO 170 J=3sLJe2
170 ODD=NNN+Z2(J) 272 (J)
SIMPSOMS FQUATION PARARNLIC RULE VERSION HILDEBRANMD

160
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AT1=RI#(DL/3.)#(ZZ(1)%2Z (1) +46 PEVEN+2420N0+ZZ(N) #ZZ(N))
A12=P2#(1.,0/(2.0%R4))

AND=(1,0/(A11+412))

AN(TC)I=SORT (AND) .

170 C SUYROUTINE PLOTS MONDE SHAPES

195

220

180

CALL SHAPE(NICI)
RR(TC)=16.,2R31853N=FeP24AND) / (CT#AKN(IC) #2,08RA)
PV(IC=(6,283148530%F) /8KN(IC)
PRINT 1A000
PRIMT 17000¢AKKN{IC)«PV(IC)+RR(IC)
PUNMCH 17000sAKN(IC) 9PV (IC)IRR(IC)
PRINT 4000
JPAGE=JPAGE+]

IF(JUPAGE,EQ.7) 18M,185
PRINT 18000
JPAGE=0

C TEST TO DETCRMINE WETHER ADDITIONAL MODES ARE REQUIRED

185

190

230
1230

1232
1235

1236
1300

AK2=AKN (IC)
AK]=AK3 -
MNU(IC) =1
IC=1C+1
I=T+1
G0 TO 230
PRIMT 18000
IF((AFLAG.ENsle) e AND, (FLAG.EN,2.)) GO TO 250
AFLAG=1.
ENDFILE 7
JPAGE=0
IK=IC-1
1C=1
JPUN=(
PUNMCH 214004ZT(INDEX (1)} s (AMPMOD(19K2)eK2=1412) ¢ JPUN
JPUN=]
DO 1190 111=2+INDEN
PUMCH 2160042T(TMDEX(ITI}) o CAMPMOO(TTIWK3) +eK3=1,12) ¢ JPUN
FORVAT(F10.653F20.13/4E20.13/4E20,13/E20413012)
ENRFILF 7
PRINT 1R000
IF(FLAGLERL2) G0 TO 250
GO TO 236
JF(I.LF.(LLF(1)41)1123041300
NO 1235 JiloN

COC 6400 FTN V3,0-P3'4 OPT=]

TFU(ZT(J)~WETEST) oLToSNEPLAND . (ZT (J) +WETEST) +GELSDEP) IMDEX (1) =J

N0 1237 ILK=145

TE((ZT(J) =WETEST) oL TeRN(TLKY (AMD, (2T (J) +WETEST) sGE.RD(ILK) « AND.F

@ (ILK) WNE,0s) TNPREX(ILK+1)=J

CONTINUE

CONTINUE

INDEN=]

DO 1236 JLK1=24A

IF{INDEX (ILK]1) oNESB) INDEN=INDEN+]
CONTINUE
AMPMOD (1 (IC-1))=XT{INDEX (1))

DO 1303 JJ=1 NG ISTEP

IEND=JJ+JSTEP
161
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PROFRAM NORM0D3 CNC 6400 FTN V3,0-P316 ORT=]

TEND=MINO(TENNN)
PRINT 270006 (ZT(LLY 9 XT(LL) oLL=JUJ9IEND,INC)
1303 CONTINUE
AFLAG=0,
25 225 DO 1305 I1I=2+INNEN
1395 AMPHMO)(TIT«(IC=-1))=XT(INDEX(III))
IF(IC.FR.13) GO TO 190
236 1IF(T.,EQ,1UR+]) 1304140
240 FLAG=?
30 GO TO 190
250 NF=MF-]
ENNFILE 7
IF{ NF (GE.0) 2604270
260 READ 23000 oF
35 GO TO 30
270 IF(GRUVFL.EQs1e0) 2R049997
280 READ 24000 $FMINSFMAXIDELF
1C=1}
K= ({{FMAX=FMIN) /DELF)+0.5)+5,0
N 1COUNT=J=0
290 ICOUNT=TICOUNT+]
I=LR]1 (ICOUNT)
TUR=LR? (ICOUNT)
IF(1.FQ.0) 3704300

5 25 300 IF(T.EQ.IUS+1) 290,310
310 F=(FMIN=(2,0%DELF))
320 J=Jd+]

AK1=(h,2831853%F) /CT
AK?= (h,PR316534F) /C2MIN
0 FN=139,4794]17T6#F ¢F)
16V=17ERN=0
CALL ITERATE(AK] sFDsHsC2DsDLS9sHDsHD3+CTD 9 IToNCRIR¢ZsAy229DLy1ZERC
#1)
IF(NCP,GE.T) 3304340
'S 330 CALL HALF(AK19AK2+FDsNCRaAs IS IC)
DKN(ICeJ)=AKN(IC)
ClIC+J)=(6.2831853%F) /DKN(ICed)
G0 TO 350
340 C!ICeJ) =040
0 350 F=F+NFLF
TH{J.EQ.K) 3604320
c CALL ORQERROP (040)
360 I=1+1 £
1C=1C+1
5 J=0.
G0 TO 300
370 L=X-2
1COUNT=0
1c=1
0 J=2
' RFILAG=0,0
380 ICOUNT=TCOUNT+]
1=LR1 (ICOUNT)
o TUR=LR? (1COUNT)
5 275 IF(1.FQ.0} 5204390
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440 CPUTCeJ=2)=(~ClICsU+2)+4,0%C(ICsJ+1}=-3,04C(ICsJ))/(12.5A63707%DEIL

CnC 6400 FTNM

V3.0-P316 OPT=1

450 CP(ICAJ=2)=(=C(ICsJ+2)+8,02C(ICesJ+1)~R,02C{ICeJ~1)4C(ICsI-2})/

163

PROGRAM NOPMOD3
390 J=J+l
IF(CIICsU=2) ED,0,0) 4004450
400 TF(C(ICeU~1)oFEQ.N0) 410430
410 IF(C(ICJ)ENL0,0) 4209440
20 280 420 GV(IC J-21=10,0£10
GO TO 470
430 CPUTIC J=2)=(C(ICyJ*1)~C(ICeU~1))/(12.5663707*DFLF)
GO TO 460
35 #)
G0 TO 460
& (75.3982238=DELF)
4A0 V(ICeJ=2)=(1.0/C(TICoJ) ) ~(DKN(ICsJ)/C(ICeJ))HCP(ICeJ=2)
30 GV(ICsJ=2)=(1,0/ViICed=2))
470 IF(J.FO.L) 4804390
480 MNIF(IC)=]
IC=1C+1}
I=1+1
% J=2
IF(IC.FN,13) 4904510
490 PRINT 18000
IK=JC~1
PRINT 25000
) 300 PRINT 11000
PRINT 20000« (MNU(J) oJ=19TK)
PRINT 26000+LFRF s (LGRUs J2=14IK}
F=FMIN
DO 500 N=3,L
5 PRIMT 220004F s (GV(JaN=2) ¢J=141K)
500 F=fF+DFLF
IF(RFLAG.EN,2.0) GO TO 530
510 IF(I. N,IUR<]) 3804360
K20 BFLAG=2,0
n GO TO 490
SU=RDUTIMF PLOTS GROUP VELOCITIES
530 IF(GRUPLT.EN.1.0) 540,9997
540 CALL GROUP( ICKsFMINGFMAX,DELF)
; 9997 COMTINUE
5 415 9998  CALL PLOT(20+¢0ev301)
‘ 9999 COMTINUE
' END
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CDC 6400 FTY V3I,0-P316 OPT=]

SURRCUTINE GROUP(IC,KeFMINsFMAXGNELF)
COMMON/AA/CP (20,20) 9V (20420) 9GV(20+20)4C(20+20) 2DKN(204+20)

KK=K=4

CALCULATION T0O FIND MAX, AMD M4IN,

GVMAX=0,0
D0 20 I=1+IC
DO 10 J=1.KK

GROUP VELQCITIES

10 IF(GV(IaJ) eBELGVMAX AN GV {Tad) eNEL10.02810) GVMAX=GV (I4J)

20 CONTIMUE
GVMIN=GVMAX
DO 40 I=1.1C
DO 30 J=14KK

30 IF(RV(T+J}LELGVMIN)Y GVMIN=GV(IJ)

40 CONTINUF
SCALING OF GROUP VELNCITIES
IGVMINZGVMIN/LO, 0
GUMIN=TGVMINE10, 0
GVNTFF=GVMAX=-GVMIN
50 GVMI=1,0
SCALE=1,0
60 TO 120
60 IF(GVNIFF.LE.20,0) 70,80
70 GUMI=2,0
SCALF=2,0
60 TO 120
J IF(BVNIFF.LE.40,0) 904100
90 AVMI=4,0
SCALE=4,0
G0 TO 120
100 IF(GYNIFF.LE.60,0)
110 GVMI=A,0
SCALE- 0.0
60O Ty 120
115 IF(GVNIFF.LE.80,0) 1164120
116 GVMI=8,0
SCALF=R,0
SCALING OF FREQUENCIES
120 FDIFF=FMaX-FMIN
IF(FDIFF.LEL10.0) 1304140
130 FNI=1.0
FSCALE=1,0
GO TO 240
140 IF(FNIFF.LE.50.0) 1504160
150 FNT=5,0
FSCALE=5,0
G0 TO 240
160 IF(FPIFFLLE.100,0) 1704180
170 FNI=10,0
FSCALF=10.0
GO TO 260
1. IF(FOIFF.LEL250.0) 190,200
190 FNI=2G,0
FSCALE=25.0

100115

164
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SURRNUTINE GROUP COC 6400 FTN V3,0-P316 OPT=1

60 TO 240
200 IF{FDIFF,LE.500.0) 2104220
210 FNT=50.0
FSCALF=50.0
40 60 GO TO 260
220 IF(FNTFFLLEL1000.0) 2304240
230 FNI=100.0
FSCALE=100.0
G0 TO 260
65 240 TF(FOIFF,LEL1500,0) 2504260
250 FNT=15040
FSCALE=150.0
C PLOT PACKAGE FOK GROUP VELOCITIES
260 C4LL PLOT(5.5e=1045301)
79 CALL AXIS(040+0.0s21HGPOUP VELOCITY(M/SEC) +21910.0+90,05GVMINS
BGYMT)
CALL AYIS(040+0.0013HFREQUENCY (HZ) +=13910.0+0.05 FMINsFNI)
: DO 356 I=1s1C
DUMF=FMIN
75 DO 340 J=1sKK
X= (NUMF=FMIN) /FSCALE
TF(BYV(TeJd) oF0,10,08%10) 2805290
2R0 DUMF=NUMF+DELF
CALL PLOT(XsYy3e=1)
GO 10 30
200 Y= (GV(IsJ)~GVMIN) /SCALE
IF(RV(Tedm1) JER.10,04510) 2944295
294 CALL PLOT(X+Ys0o=1)
206 17 (J.F0.1) 3004310
5 300 CALL PLOT(XeYy39~1)
G0 TO 320
310 CALL OLOT(XeYy29=1)
320 DUMF=NUMF +DELF
TF (J.FO.KK) 3309340
‘0 330 X=X+0.1
Y=Y=0.03
CALL SYMIL4(XsYe000Ts4HMODEs04096)
X=X¢0.5
XIM=FLOAT (1)
5 CALL NUMKR(XeYs0eNTeXTMy0eNe=1)
340 CONTIMUF
350 CONTINUF .
CALL PLOT(15.040.09341)
360 KETURN
0 100 END’
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SUBROUTINF  HALF CNC 6400 FTN V3,0~P316 OPT=1
SURROUTINE RALF (BK]1«AK24FDINCRyA+I+IC)

COMMON/Y/ XT U 3190)
COMMON/2/Z2N(3100) o €2D(3100)
5 COMMOM/BA/CP(204320) «V(20920) 4GV (20020)9C(20+20) +DKN(20420)
COMMOM/BR/ZYI(50) 9Cl(S0) e ZIN(SO) oLLR(10)sLUB(I0) «MMU(I0)9LR]I{(20)
«LR?2(10)
COMMOM/ZAC/ZAKN 12)4RPP( 12) 4PV 12)eAM( 12)9ZF(12)
COMMON/AN/EPSILON«HaHN «HD39DL sDLSsRsIT+CToCTDeMODSHAP +MODEPLTS
1n SGRUVEL «GRUPLT«I7ERN, IGV
EQUTVALFNCE(XTeZ2)
1000 FOPMAT(® UPPER aMPLITUNES ARF 7EROED FOR THIS MODE &)
C HALF INTERVAL SEARCH FOR THE KNS ASSOCIATED WITH THE MODES DESIRED
JuMbe =0
18 10 AK1=4K2-AK1
DIVINF=2,0
11 BRN=AK)+ (AKI/DIVIDE)
I2FRO=0
CALL ITERATE(BKN¢FDoHsCPDsDLS9sHDIHD3sCTD 9 ITINCRIR9Z9yAsZZ+DL IZER
20 #1)
IF(JUMPQEQOI) 40020
20 IF(MCR.EN.I=~1) 50,30
30 TF(NCO,LT.I~1) 354356
35 DIVIDE=NIVIDE+1,0
°c GO 10 11
36 AK)=BKN
GO T0O 30
40 IF(MCR.ENLT) 70445
45 IF(NCP.LT.I) 35436
30 20 50 JuMP=YYMP+]
60 AKP=BKN
2T1=2
GO TO 10
70 1IF(Z) B0+160490
35 R0 AKML=RKN
2L=2
AKNR=AK?2
ZR=7T
G0 T0 98
0 90 AKNR=RKN
IR=7
AKNL =AK2
ZL=7T1
98 CONTINUE

N

C-~=ADDEN 3/2  HALVING APPFOACH
TF (ARS(ZL) oLT41.F50.NR.ZRLT.1.ES0) ©0 TO 100
DIFFP= (AKNR=AKNLY /P
AKA=AKNL +DIFF2
0 101 1ZFRN=0
CALL ITERATE (AKAVFDsHyC2DsDLSsHD «HD3+CTD o IToMCRoRsZ oLy ZZoDL s 1ZERC
81)
IF (ARS(7) JLE.EOSILON) 17049]
31 IF(ZP®7)92494194
5 55 92  DIFFz(AKNR=AKA) /2.

T
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NOLTR Th~95

HALF COC 6400 FTN V3.0-P316 0OPT=}

IF(ARS(DIFF)JLE.1,E-12) 160493
AKNL=AKA
2L=2
AKA=AKA+DIFF
GO T0 101
DIFF=(AKA=-AKNL)Y/?,
IF(ARS(DIFF) JLEL1.F~12) 160495
AKNR=AKA
AKA=AKA-DIFF
2Rr=Z
GO T0 101

- G S S o Ty T " o P - S P Gh SR A S Ve N ah -

ATING THE KN ASSOCIATFD WITH THE MODE DESIRED USING THE KNL AND K
FOUND ARQVE BY THE METHOD OF FALSE POSITION

AKAZAKNL + (ZL# (AKNR=AKNL) )/ (ZL~-ZR)

FORMAT(IS9RF18,10)

1ZFRO=0

CALL ITERATE (AKAWFDoH¢CPDoDLS-HDsHD3sCTDoIToNCRIR9Z9A»ZZsDLyIZER
#1)

IF(ARS (Z)YLLE.EPSTLONM) 1709110

IF(ZR%Z7) 12041404140

IF(ABS (AKNL=AKA) ,LF,1,0E~12) 1404130

L=7

AKNL=AKA

GO TO 100

IF(AxS (AKNR=AKA).LE,1.,0E=12) 1604150

ZR=7

AKNR=AKA

GO TO 190

17FRGC=1

PRINT 1000

165 CALL ITERATE(AKAWiNyHoeCPD9DLSyHDoHD3sCTD 9 ITyNCRIR929A92Z24DL e IZER(

+1)

170 AKN(IC)=AKA

100

ZF(1CY=2
I1Gv=0
RETURN
END

167
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CDC 6400 FTN V3,0-P316 OPT=1

SURROUTINE ITERATE (AKNGFDyHeC2DsDLSsHN9HD3sCTDyITeMCRIRIZeAZZy!
®#IZFROLI)
DIMENSTION 2Z(IT)«C2D(IT)

5 € SURRQUTINE USES # FINITE DIFFERENCE TECHNIQUE, TO NUMERICALLY FIND T

30

55

C

SHAPE ASSOCIATED WITH A GIVEN KN

C CONSTAMT IN FRONT OF FUMCTION ASSUMED TO BE ONE INITIALLY

Commm

MAXFLAG=0

N=1T

A=HD®#ARS (AKN®AKN=(FD/CTD))

ZM1=R

XND=HD® ((FD/C2D(1T)) - (AKN®AKNY )

XNW=HD#* ((FD/C2D(1T=1)) = (AKN#AKN))
MEXT CARD ADDED AS TEST NOL 3/6/73

XNW=HA# ( ((FO# (SORT(C2ND(IT=1))))/{C2DLIT)##1.5) )~ {AKNZAKN))

C TAYLOR SERIES EXPANSION TO ORTAIN NEXT Z

10
20

30
40

(22224
an

90

lo00
110
120
130

Conosn

131

134
135

136

Z=ZM18 (1o + ((DL/RIZSORT () )~ (5, 4DLS#XND/6,) + (DLSH#XNW/3,) -
#{((DLENLS)/6,0) #SORT (A) #XND# (1 ./R)))
MCR=0
IF(ZM1%Z,LE.0.0) 10420
NCR=NCR+]
PS= (2.0~ (HD=DLS)# ((FD/C2D(IT~1))~(AKN®AKN)))
ZP1=(P&®e7) ~2ZM]
IF(Z#ZP1.LEL0.0) 30440
NCR=NCR+}
ZZ(1T)=2ZM]
IM1=2
2=2P1
CHANGE NOL 4/6 REMOVE DOWN TO 77
IT=1T-1
IF(IT=2.LTe0) 90420
IT=N
Z7(2)=ZM1
ZZi1)=7
GO TO0 130
IT=1T=-1
IF(TT=2.LT+0) 1204110
ZZ(1T)=0,0
GO TO 100
IT=N
22(1)=2=0.0
22(?2)=771=0,0
CONT INUF
SCHANCF NOL.  4/6  ADD TO 140
IF(IZEROLNELLY GO 10 140
IF(MCP 6T (I=1)) 1314136
N0 136 IT=1.N
IF((7Z(1T)ZZ(IT+1)),LEL0.) GO TO 135
27(IT)=0. :
CONTINUE
272(IT)=0.
GO TO 1139
DO 139 IT=14N
IF(AQS(ZZ2(1T+1)).6T.ABS(ZZ(IT))) GO TO 1139
ZZ(IT)=0. 168
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139 CONTINUE
1139 IT=N
140 CONTINUE
RETHRN
60 END
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NOLTR T4-95

CDC 6400 FTN V3,0-P316 OPT=1

SURRQUTINE SHAPE(N.IsIMODE)
COMMOMN/Y Y/ XT( 3100)
COMMON/2/22N(3100) €2D0(3100)
5 COMMON/AA/CP(P0420) ¢V (20420) vGV{20020)eC(20920)+DKN(20420)
COMMON/BS3/721(50) «CY (S04 ZIN(SO)$LLR(10) 9L UB(1N) ¢MNU(30) 91.RY(10),
#LR2(10)
COMMON/AC/ZAKN( 12) PR ( 12) 4PV 12)saN( 12)eZF(12)
COMMON/AQ/EPSILONIHeHN «HD39DLoDLSsRyJTsCToCTD e MOOSHAP oMODEPLT,
#GRUVFL«GRUPLTIZERDLIGY
COMMON/AE/LDEPTH LAMP «LGRU o LFRE
DIMENSTION ZT(3100)¢772(3100)
EQUIVALENCE (Z2Ne2T) e (XT422)
C I PERTAINS TO IC IM MAIN PROGRAM
DO 1N JUT=1yN
AT( JT)=ZZ(JT)#AN(T)
10 ZT(JUT)=72N(JT}
WRITE (9,12) IMONE
WRITF (9¢14) (ZT(LL)Y «XT(LL) oLL=14N)
12 FORMAT(I10)
14 FORWGAT(4E20,10)
IF(MONFPLTLEQ.)) 2040
C PLOT PACKAGE FOR MODE SHAPES
20 IF(IZFROGEG,]) 24425
24 XB=6.5
XD=-2 . 0
XL=4,0
Xi=~4,0
6D TO 26
30 7?5 XRz4.5
Xﬂ:-l 0
XL=2.,0
XI==2,0
26 CALL PLOT( XBe0,0 +3+1)
CALL AXTIS( XDeD,0<20KRNORMALTIZED AMPLITUDNE 920« YL90,0+XT192.0)
CALL AXTIS(0409=S+s0«1AHNORMALIZED DEPTH41 09540490600 . 1a09-0.2)
CALL SYM3L4(~0.59~64090+095¢4HMONE 40,004}
XIR=FLOAT(IMOVF)
CALL NUMAR(0.25¢=6.000.00959XTRyN,D9=1)
NN=3
DO 30 JT=1eN
X=XT({ JT)/2.0
zeZT(JT)45,0
CALL PLOT(XeYeNNy=1;
b5 30 nN=?
40 RETURN
END

170
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NOLTR T7k-95

CDC 6400 FTN V3.0~-P316 OPT=1}

SURRQUTINE ZCINTEFR (NDeNeFC2MINsPROPLT)
COuMnM/1 7 XTH 3100)
COMMON/2/22M(3100) « €20(3100)
5 COMMON/BA/CP(20420) sV (20¢20) «GV (20020} aC(20e20) ¢4D¥NI(20420)
COMMON/BR/Z1(S50)«ClL(R0) 97 1IN(50) ¢LLBI10)9LUB(10) ¢MNU(30)sLR1(10)-
#LR2(10)
COMMON/ZAC/AKN( 12)+FR( 12) 9PV 12)0ANMT 12)92F(12)
COMMON/BD/EPSTLON«HoHD s HD3 9 DL s DLS P9 IToCT+CTDIMODSHAP 340DEPLT
SGRUVEFL ¢ GRUPLT« I7ERD G IGV
COMMON/AE/LDEPTH LAMP +LGRU +LFRE
C LINFAR INTEPPOLATION
DG 80 J=1N
DO 40 TI=14ND
IF(7IN(I) oEQ,Z2N(J)) 10420
10 CAD{U)=Cl(])
GO TO 50
20 IF(Z1IM(I)oGTaZ2M{J)) 30440
30 Z6T=Z2I1M(1)
ZLT=Z1IN(]I-1)
CGT=C1(I)
CLT=C1(I-1)
C EQUATION USEN FOR LINEAR INTERPOLATING
CPN(UI=((ZeN(J) =Z2LT) 7 (ZGT=ZLT)) #(CART=-CLT) + CLT
GO TO S0
40 CONTINULE
S0 CONTINUF
C SEARCH FOR MINIMUM SOUND VELOCITY ON SOUND VELOCITY PROFILE (ALSO FI
(o MAXTHMUM SOUND VELOCITY)
30 C?.”AX=0.0
DO &0 I=1eN
60 IF(CZD(1)GEL.CPMAX) C2ZMAX=C2D(I)
C2MIN=C2MAX
DO 70 I=14sN
70 IF(C2P(T)LELCPMIN)  CPMIN=CPD(])
C PLOT PACKAGE FOR SOiND SPFED PROFILE
IF(PRNPLTEQel40) 752800
75 CDIFF=C>PMAX=C2MIN
IC2M=CPMIN/10,0
CeM=IC2#=10,0
IF(CDIFF,LE.S.N) &K0,90
80 PL=2.5
PI=0,%
CamI=1.0
SCaLF=0,5
GO 70O 170
90 IF(CNIFF LE.10e0) 1004110
100 PL=2.5
p]=0.q
Ce2nI=2.0
SCALE=0,25
GO 70 179
110 IF(CDIFF,LEL25.0) 1204130
120 PL=2.5

55 PI=0.5 i
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SUSPOUTINE  ZCINTER CDC 6400 FTN V3,0-P316 OPT=}

CemI=g, 0
SCALE=001
GO TO 170
130 IF(CDIFF,LE.50,0) 1404150
60 60 140 PL=5.0
PIl=0.5
C2M1=5,0
SCALE=001
G0 70 170
6% 150 IF(CDIFF.LEL100,0) 160,170
160 PL=5.0
PI=0.5
C2MI=10.0
SCALT=0.,0¢
70 170 CALL PLOT(0490,.9391)
PL=PL+PI]
CALL AXIS(0,0e=5,04)ARNORMALTIZED DEPTH«1645.049040 1,0e=0.2)
CALL AYIS{(040904001P=SOUND SPEFED(M/SEC) ¢18sPL 40,00 C2MyC2MI)
NN=Z
75 00 1P0 T=1sN
X=(C2D(1)~-CPM) #SCALE
Y==72N(1)*5,0
CALL PLOT(XeYoNNy=1)
180 NN=?
| CALL PLOT(2.5904.4341)
200 CONTINUF
NO 210 J=14N
210 CPD(J)=CaD(J)=C2D(J)
RETURN
ag 85 END
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SUPROUTINE LINE (XsYoeNoK)
DIMENSION X(1)eY(1)
13=3
NP=N#K
DO 10 TI=]1eNPyK
CALL PLOT (X(I)4Y(I)eI3e~1)
13=2
RETURN
END
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Appendix IlI:Normal Mode Summing Program
NORMSUM COC 6400 FTN V3,0-P

o

1000

1020
1021
1010

7600

11600

10

2000

PROGRAM NORMSUM{ IMPUT«QUTPUT+TAPET y TAPEYL)

TAPET 1S OUTPUT FILE ORP TAPE FROM NORMAL MODE PROG.

SR~ STARTING RANGS FOR CALC.
RIMC-RANGE INMCREMEMT
NR~NUMRER OF INCHFMENTS

PRD(142440+45) ARE UP TO 5 RECEIVER DEPTHS
SOURCE IS SOURCE DEPTH .
ARQVE MUST 8BE ONE OF NEPTHS USED IN NORMAL MONE PROG.

NPRIN ,GT. 0-=PRINT RESULTS

NPLOT 6Ts 0.~=-PLOT RCSULTS

PRINTR=INITIAL QANARF 0N PLOT

PRINC-RANGE INCPREMFENT/INCH ON PLOT
PDRINT-INITIAL PROP L0OSS AT ROTTOM OF PLOT
PDYIN~ rPROP LOSS IMCOFMENT/INCH

CARD READ STATEMEMTS-LINEs 2e, 31, 33,35

COMPLEX TEST

COMPLEX SUMYPSFS, Z«CS14
DIMENSIONAKN(1000) XTS(1000) «XTR(1000
DIMENSTIONRRD(S) « TSL1INOD) «FSIS00) s TL(S00) «RD(S) 4 AXT(12)
DIMENSINN IRP{R) 4 TRFND(S)}
CALL PLOTS(0.+0,41)

READ 1000 «SPyRINC NP

FORMAT (2F10.3415)

IF(NR,GT.500) STNP &

READ 10204 (PRN{IL) «IL=145)

FORMAT (5F10,3)

READ 1021 +«SNURCE

FORMATI(F10.3)
READ 1010 NPRINJNPLOTsPRINTR«PRINCIPNRINTPDRIN
FORMAT (21544F1N,3)
READ(7+7500)SDEP(PD{TIL) 9 IL=145) L1

FOPMAT(6F104641%)

WETEST=.5/FLOAT(LT)

READ(74+11500)F P aHNMCR

NCR]1=NCR

FORMAT(3F10.3+14)

DO 7 1=145

IR(I) =

PRD(I)=PRND(I)/H
SCURCF=SOURCE/n
PI=3.141592A5%359

CST4= CHMPLX(0.4-P1/06,,
SUMI=(RI/H)BSQRT(2.093,161592)2CFXP(CST4)
J=0

1S8=1

J=J+)
REBD(T7<P000) AKM(J) 4PV4RR
FORMAT (3KE20.13)

17h
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pmQaM NORMSUM CDC 6400 FTN V3,0-P316 OPT=1 (

IF(EQF(7))204+10
20 J=J-1
25 READ(7+3000)ADFP(AXT(IIT)41I1=1912)+IF1
3000 FOPMAT(F10.6+3FP0.13/4E20.13/74F20,13/7E20.13+12)
’ 60 IF(EOF(7))30435
30 J=J+1
READ(742000) AKN(J) yPVRR
IF(FOF(7))60410
35 IF(IF1.FQ.0) 6O TO 4S
DO 37 TJK=1,+%
IF((IF1.ER.1) «AND, (ARS(RD(IJK) ~=ADEP) (LT WETEST) ¢ AND 4 (RD(IJUK) NFEL D
#5) GO TO 38
37 CONTINUE
STOP 6
0 38 IRENN(TJKI=IR(IJK) +11
ITP=TREND ([ JK)
I1TR=IR (I1JK)
1C0=0
DO 39 IP=ITR.ITP
5 1C0=1CO+]
39 XTR(IP IJK)=aXT{ICO)
IR(TUKI=IR(IUK) +12
60 T0 2%
45 IEMD=1S+11
30 1C0=0
DO 47 I1JS=IS.IEND
1CO=1C0+1
47  XTS(IJUS)=4AXT(ICO)
IS=Is+12
35 85 60 TO 25
60 IF(ARS(SOURCE=-SNEP) ,LT.WETEST) GO TO A4
06 62 IC11=1,5
IF(ARS(SOURCE-RD(ICI1)) LY WETEST) GO TO 63
62  CONTINUE
Qg STOP 3
63 DO 10A1 IJJ1=1+1000
XTS(TJJL) =XTRITJIJLLICID)
1061 COMTINUE
; 64 DO 800 IC=1.5
95 IF(PPD(IC) (EQ.N,) STOP 2
R=SR
DO 65 TN=1.1000_
65 TS(10) =0,
DO 64 INI=14G00D
> 00 A6  FS{ID1)=CMPLX(0400.)
: NO on  1J=1.5
IF{ARS(PRO(IC) =D (TJ)) JLTLHETFST) GO TO 9%
QQ COMT IMUE
Ce==1J 1S IMNICATOR FNOR XTR:1000+1J) ARRAY
6 Lo 1 NO 100 M=) 4NCR) N
100 TS(IMI=ATS{IM)2XTP(IMelJ) /SART (AKN{IM))
N0 200 JJ=1+MR
PS= CMPLX(0.40,)
D0 1R0  TJJ=14NCR)
110 110 2=AKN{TJJ) ®Re CMPLY (0,41,)

i75
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NORMSUH CNC 6400 FTN V3.0-P316 0PT=1
180 PS=PS+TS(IJJ) #CEXP(Z)
FS(JJ)=FS(JJ) +(SUM)/SQRT (R)) ¢PS
TL(JJ)==20,#AL0OGLO(CAKRS{FS(JJ)))

TLGJDY =TL(JS) +20.#ALOEY10 (1. /cQ154)

----- CONVERTS FROM RE 1 METER TO RE 1 YARD
200 R=R+RINC

RA=PRD(IC) =H
SA=SOURCE#*H
PRINT 2500 +SARA
IF(NPLOT,EQ.D ) GO TO 400
CALL PLOT(2¢¢0493¢1)
CAL!. SYMBL4(0093eee149]13HSOURCE DEPTH=490,913)
CALL MUMAR (049542041695 3490e01)
CALL PLOT(lee0ac3s1)
CALL SYMBL4(0e03e3014415HRPECEIVER DEPTH=490.415)
CALL NUMBR{0415.54014617A490401)
CALL PLOT(1,.90ee301)
CALL SYMBL4(0es3eeelba]l4HFREQUENCY (HZ)=4904914)
CALL NUM3R(0+15.594149F19069-1)
CALL PLNT(2+.¢0s93¢1)

CALL AXIS{0,90¢9OHRANGE (KM} 9=3410,9049PRINTRIPRIMC?

CALL AXIS(0.404¢20RPROPAGATION LOSS(08)9209841904+PDRINT4PDRIN)
CALL PLOT(0.90493e-1)
400 CONTIMUF
2600 FGRMAT (28X +#NORMAL MONE PROPAGATION LOSS RE 1 YD#//25X+2SQURCE OF
#TH=83F10.3010Xe4RECFIVER DEPTH=#4F10.,3//30Xe% PANGE ey #TRANSMY
#SION LOSS(DR)®)
R=SR
NN=3
N 600 IMP=14NR
IF(NPRIM,E0,0) GO TO &S00
PRINT 35004RaTL (TMPY
S00 IF(NPLOT,EQ.Q0) 30 TO &00
X=((R/{1,E+3))=PRINTR) /PRINC
Y=(PPDRINT-TL(IMP)Y)/ARS(PDRIN]}
Y=AMAX] (e Y)
CALL PLODT{(XeYeNNy~1)
NN=?
600 R=R+RTIMC
3500 FORMAT(29XsF1Nn,3¢ SX4F10,3)
CALLL PLOT(liasN,e3e])
800 CHONTINUE
END
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Appendix TV: Evaluation of Second Rarge Derivative

In order to evaluate pressure on the caustic (Equation 4.1),

we need to ~valuate a“R/'DCu"' and obtain 33W0/D§‘ (Equation 4.15),

PP

'33\Jc['¢)§3 is defined in terms of the derivative of an integral:

VM. f3 %[n (3)-§*] % 4a J 2 EE Y3y g Ay

So———y -~ N s

°8 LYy ]S‘S [Dg‘& § “} (1v.1)
2, §:§,

But the integral can be split up into several integrals, each

evaluated in a different sound velocity profile layer:

%, LYW
3\\14 : %ﬁmc\z o(A(!)Jaww P\méiw ma)de..... R(-Zs)dl (1v.2)
'bgt bg3 )
2 e 2, ‘Ef 525,

‘ -
wherz A(R) 2 an(i).g"] A
{J 2%
Thus we can evaluate ? u‘/)s". or'b R/DC;‘. in each layer and then

3
sum to obtain @ w‘lagg.
In CONGRATS, A R in a layer from z; to z, is defined as (39)

R 18RI a 221_>{(1+gaa +p[-é(-.-i)]§ (1v.3)

v
where
A-.e = AE, * Aaz ) A%“: ‘2’."2“ (IV 3A)
—g— .
D2 2.-2, Y s .S.(x‘ul) (IV.3B)
Y.V'Q\lt‘/" q ) a

Xg 2 C82 ¢b

%= ac-bt
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QA= V- C,.1
b - a3, ’%30
3 * +

¢:aq ey

F= c.slb = 3,-%30%1

H is one of several results depending on the sign of ¢ and q.
8o+ 811 & and v, are the four parameters (Fquation 3,1 )
in the particular layer being considered.
Weinberg then obtains BR/DCV . the derivative necessary

for amplitude calculation along a ray:

M. LW L 2D 'b?:o@..!.!i.]
RICE RIS LA SN AL WL ')}‘”-“’

He then evaluates the necessary derivatives:

W, VAR, and 2 o)L IV,
' e, ¢y [(zo ‘)‘] (xv.3)

for the possible values of ¢ and q, i.e. »rsitive, negative, or

zero, For calculation on a caustic, we need one more derivative,
1 . . . ‘ . .

DzQ/DCV . Taking the derivative of Equation (IV.4) yields:

2R L F3 1R . R DD R
RGN

[}
AT T prl 3, e ¢ D 3¢, Ay

L3R LR .20 W2 4pd [irn.
Cv 'va {Cv CV Cv" Sl C P DCV C(zb l)

T~ T
+304, 2 &2 ,20p Q [-'.(1‘- -t]
C, ¢ ¢ ogrLere (1v.6)
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New derivatives required are:

2 PIEY A (i /4
:\:Ev" ’ 2C,* ’ ;S.Cv"[z <{D-‘)] (IV.7)
3D
Bi %cvt
For c# O
20 _':.P ‘aj_/_'_‘)_ﬁv + ’B_,YL_/_acv
Dcv z[\/‘llt. \/z t/‘] \I‘ Yy \Iz‘lt (IV.8)
Then
Z
o . B ) Wae 4 /e
S N T
(1v.9)
2 2 ‘ *
-D '31-/‘25;‘ q"b__‘,‘,/_:‘}.cvx - ."..:\/ [?'Y' ] A %[%Z"]
z{.\/"lz,\l’.‘/z] Y, " \/L/" 2Y, 74 B¢y 29,194
So we also need Dt’k/DC:Z
For ¢ = O (Ray vertexes)t
M ozo , Yoo (IV.10)
Y
Therefore iterms multiplied by ;ﬁ@ , or by V; ' are zero.
.a'l - 'DCV
i ) a2
eyt
From Equation (IV.3A)
DA . 4 R
YRR (IV.11)
2 - 2
So D‘__é} - .‘7:3-—2 (IV.lZ)
¢, Cv
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t —
The quantity %ﬁ?i. is non-zero only in the layer in which
v
the ray turns, Only here will Zy be a function of Cye
XY
D: ‘ch‘-

From Equation (1V,3B) 2
M 2 ()4, 02.) 28

Ay ')Cv
except for turning point layer where
'b_\l_k = 0
?Cq A"‘%
Then for a non vectex layer ?é—-‘ 2 °)
* o Cv
WV . (14 g o) Pk’
D¢t t ¢,k

For a vertex layer

92, . ~(I+ zA*z)l A
¢y ~7.ix_:- 9Cy
Then
3 %
BN = -q (1+q a2,) [
Tt : __%:__z DC\:]
2 A2
+ (1+9,02,) %
. (1r3: 02 det
Since .3 .4
20 :2C, ) 919 ==-6C
CV DCV‘

Cy .L(.t‘_ -;)]
E1 o, L ¢ V2
Starting with [1_(& _,)] , taking two derivatives and
c\2p

recombining several terms, it can be shown that
2 [a(g-0]e 2% 12 [a(h-)
T ¢ h2o ¢ 2, ¢ §¢ 20

k3
#|20 JH -1 S Y Ak
[?c, mv] { col} [ [w Ct

(Equation (IV,19) continued on next page)
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2
-4 .3 L H g_o'} oL Ol

2D ¢, 0| a¢,|  2be FC*

Everything here has been previously obtained except for

Q:ﬁ . This is found to be
2L
k3
VU o= =L D(D._E-) « L 20 Qe
¢, ¢} Ny ve 90, Ry
2 (IVv.20)
*l,[b e ] RN
2J¢ 2t ¢,

In this Appendix, we have obtained the extra derivatives
?
necessary for calculating 3%£3t . In general they san mostly
v

be expressed in terms of quantities already evaluated in

CONGRATS for E?% . So the proper combinations of the
v

appropriate quantities were programmed into CONGRATS, along

T

with the necessary new terms, in order to evaluate %ﬁ?"
v

This was done by Jean Goertner of NOL, Once this was accomplished,

the main part of the program was modified to calculate the pressure

on the caustic according to Equation (4.1).
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Appendix V., Input Sound Velocity Data

Profile I (Source Depth for All Calculations: z = 305 m)

Depth Velocity
m mn/s
0 1524,3
457,2 1521.57
685.8 1509, 68
853,44 1495,35
1036.3 1490,48
1188.7 1490,46
1478.28 149]1,7
1981,2 1499,01
3352.8 1516,99
5250 1548,.78

Profile II ( Source Depth for All Calculationsi z, = 305 m)

Depth Velocity
m m/s
0 1524.3
ks7,2 1521.57
685.8 1509.58
853,44 1495.35
1036,3 1490,48
1188,7 1490,46
1478, 28 1491,7
1981,2 1499,01
3352.8 1516,99
k572 1537.42

Profile I1I (Source Depth for All Calculations: 2y, = 1000 m)

Depth Velocity
m m/s
o 1570
2250 1500
5750 1570
For all profiles, °1 = Py = 1, Unit consistency 1s not necessary

as long as Equation (5.12) 1s used since density units cancel.
However, {or evaluation of pressure using Equation (5.9), densities

should be in MKS units in order that pressure be in nm2.
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