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ABSTRACT 

Several budget planning models are presented that exploit 
the longitudinal stability of manpower cohorts. The budgetary 
planning process is described along with the problem of iden- 
tifying and obtaining various types of longitudinal data. An 
infinite horizon linear program for calculating minimum cost 
manpower input plans is found to have a straightforward solu- 
tion under the assumption of "nearly monotone" survivor frac- 
tions. 
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LONGITUDINAL BUDGET PLANNING MODELS 

by 

Han Adler, Robert Levin and Robert M. Oliver 

\ 

I.  INTRODUCTION 

In an earlier report by Grinold, Marshall and Oliver [1973] the authors 

formulate a longitudinal manpower planning model in which manpower requirements 

and survivor fractions are known and given in future time periods. Most of 

these models and the associated data files have been implemented for Interactive 

use and real-time simulation.  See the later report by Grinold and Oliver [1973]. 

In this paper we formulate a longitudinal planning model to study budget ra- 

ther than manpower needs.  The models in this paper examine the current budget 

allocations due to the composition of existing manpower levels, the survivor 

fractions that will determine future behavior of new manpower and budget inputs 

and the budgetary restrictions in future time periods.  See also the forthcoming 

book by Grinold and Marshall [1974]. 

A particular application of these budget planning models for a system con- 

sisting of many manpower skill categories is the enlisted force in the U.S. Navy, 

Interactive computer models of these budget formulations have also been developed 

to aid decision-makers who wish to test the effects of alternative policies on 

staffing requirements and future manpower budgets.  These interactive budget 

planning models have a variety of uses: 

(1) to predict the budgets that will be required by the current stock of 

manpower or continuation of existing budgets. 

(2) to calculate unfulfilled requirements and the new budgets necessary to 

meet them. 

(3) to Identify bottlenecks in the budget planning process. 

(4) to assist in preparation of future manpower budgets, to simulate the ef- 

fects of policy changes on future budgets. 
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(5) to relate alternate personnel retention and performance assumptions to 

the need for future budget Inputs,  and 

(6) to calculate maximum effectiveness manpower schedules when upper bounds 

on future budgets are given. 

Individuals in any budget category can be Identified by characteristics such 

as:    rank, salary, number of years of experience in the skill category, length of 

service, and personal attributes such as age and measures of performance.    The 

models presented in this paper are designed to assist in preparing manpower bud- 

gets and meeting aggregate strength requirements. 

Section II of the paper describes the underlying budget models.    In the ap- 

plication to budgets for manpower requirements the models are based on the assump- 

tion of longitudinal stability in the service lifetimes of different manpower co- 

horts.    We show that the accession  schedule that exactly meets future budgets is 

found by solving a set of lower triangular system of  linear equations.    Section 

III relates several methods of describing the longitudinal behavior of manpower 

budgets and shows how the flows can be estimated from existing data.    We present 

an infinite horizon linear program for the calculation of future accessions sub- 

ject to uppc; bound restrictions on discretionary budgets.    We derive readily 

verifiable conditions on the inputs to the  infinite horizon problem that guaran- 

tee that the equality solution, described in Section II, will be feasible and op- 

timal.    In cases where the equality solution is not optimal we obtain a simple 

nonlinear recursion which is optimal under the assumptions of "nearly monotone" 

budget survivor fractions. 

The models presented in this paper examine the relationships between three 

factors:    (i)  the current budget allocations,   (ii)  the survivor fractions that 

determine the longitudinal behavior of future budgets and categories and  (iii) 

the manpower requirements for future times.    The size of our models,  the type 

of calculations performed and the availability of interactive programs allow 

policy makers to quickly analyze the Impact of various assumptions and policies. 

■■-' '■ 
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II.     THE UNDERLYING BUDGET MODELS 

General Formulation 

We consider an organization which is divided into many budget categories, 

and where a flow of funds over time may be associated with a particular budget 

category or group of categories.    We borrow heavily from the notation of the 

earlier paper  [1973],  with the caution to the reader that,   in the present paper, 

most decision variables have the dimensions of budgets rather than manpower. 

We idealize the evolution of a budget program by analyzing its changes at 

discrete points in time     (i =   ...  -2,-1,0,1,2,   ...)   .     We say  that period    i    is 

the  interval between times     (i - 1)    and    1 ;   it is a future period if    i > 1  , 

a past period if    i £ 0    and the current period if    1 = 1.     In period    1    a bud- 

get of size    x      is added to the category;  that budget is called the new program 

budiict  for period    1    and    x,     is its size.    Let    a.,     be the  fraction of the new 1 ' 1 ij 

budget  in period    1    which is still funded in period    1 + j   (J 2l 0)  ,    Let    z 

be  the total budget in the category at time    k    and let     (m + 1)    be the maximum 

number of periods for which a program may be funded.    Thus    a,.  = 0    if    j   > m . 

For some future time    k    we have 

(1) z,   = x, a,   ,, + x,   T a,   ,   ,  + ...+ x.     a. 
k        k k,0        k-1 k-1,1 k-m k-m,tn 

Equation (1) simply says that the budget at time k is made up of costs surviving 

from programs initiated in earlier periods. Thus it is natural to call the a..'s 

the cost Burvivor fractions  for the program which enters at time 1 . 

At time 0 , the history of past budget programs is given by the vector 

(x »x,  , ... x „,x n .xn) . The current inventory of program budgets Is given 

by y, = x-n- . +x,a, _ + .,.+ x. a,    . The quantity y. , which includes J    J\.       0 0,1   -1 -1,2       1-m l-m,m      ^    J    Jl 

budgets supporting all programs begun during the past m periods, is called the 

current cost  legacy.     In a future period k the cost legacy y,  from past 

«Jfe:... —■■null in       ii 
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programs up to and Including period 0 will be 

(2) 

x-an , + x , a , ... + ... + x.  a.     If k < m 
0 0,k   -1 -l,lcfl      Tc-m k-m,m      — 

0 If k > m . 

Discretionary Budgets and Statlonarlty 

Suppose we have a planning horizon of   T   periods with total budgets 

*1*^2'  *"* ZT '    Froin G(luatlons  (D an^ (2) ve 8ee ^h*' future program budgets 

must satisfy 

(3) 

a1.0xl 

al,lXl + a2.0X2 

Zl-yi 

Z2-y2 

01,T-1X1 + 02.T-2X2 + *•• + "T.O^ ' ZT " yT 

Here we have assumed 

Al:   The diaaretioncay budgets    z   - y.    for periods   k - 1,2 T   are 

met exactly. 

Under Al it Is quite possible that for a given set of    z.'s , y.'s   and   x    's 

some   x.    could be negative.    Such a result would say that In order to exactly 

meet total budgets In all periods    1,2,  ..., T    It will be necessary to reduce 

program budgets In some period. 

We concentrate on the equality solution (assumption Al) for several reasons. 

First,  it is misleading to state the problem as if the new program budgets    (x.) 

are the only variables which the decision-maker can influence.    The cost lega- 

cies    (y.)  , the total budgets    (z. )  , and to some extent the cost survivor 

fractions    (äj.)    can all be changed or explicitly Influenced.    Second, plans 

that are eventually recommended will probably conform to the equality constraints 

MaMI"'*>***-" ' ' ■    ■     "-tllMilil ii IU »MM^M 
- -^ "•••   ■■■■■-■■   -■    --■■ l*i 
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since budget restrictions do not generally allow for slack In the system.   Third, 

we Intend to use the models In this section to test the effects of alternate 

policies on several objectives:     (1) the departure of realistic budgets from 

ideal budgets,  (2) the impact of policy changes on new program budgets, and 

(3)  the costs associated with moving budgets from one category to another.    In 

a later section we shall drop Al and treat the discretionary budgets as upper 

bounds and look for an "optimal" schedule of new program budgets. 

In the remainder of the paper we make an Important second assumption. 

A2:    The   cost    survivor fractions    ct,   .    are stationary from period to 

period.    That is,    a.   . " ä      Independent of    i    and independent of    x.  .    Under 

assumption A2 Equation (3)  simplifies to 

Vi zl-yl 

(A) Vl + a0X2 22- y2 

VlXl + UT-2X2 + ••• + «o*r " ZT - VT 

The cost legacies are given by 

y1 - a^ + o.^ + ... + a^ 

(5) a2x0 + a3X-l + * *' + V2-m 

yT « aTx0+ ... + a 
m^T-m 

Equation (4) can be used in a number of ways. We have mentioned already 

that, given the total budgets, cost legacies, and cost survivor fractions, 

(A) can be used to calculate new program budgets for each period of the planning 

horizon T . Alternatively, given planned budget inputs over the next T periods 

 -■ "uratfiüi mm 
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the z 's can be considered as the result of these inputs. Also, given total 

budgets and planned Inputs, the cost legacies which satisfy Equation (A) can be 

determined. 

Budgetary Planning in Manpower Systems 

Our manpower model is presented in Grinold, Marshall and Oliver [1973]. 

Briefly, x  is the size of the manpower cohort entering in period j , a. is 

the j-period manpower survivor fraction, and c. is the cost of supporting an 

individual in his j  period of service. 

In budgetary terms, the cost of cohort i in its first period is x. = c-x. , 

and j  periods later the cost is a.x. - c.a.x.  so that in the notation of the 

Ciai 
earlier paper we identify a.    = •< J . With this equivalence, the interpretation 

J   c0 

of x  is that of the initial cost of the new manpower cohort in period i . 

Cial  C\      - 
Then ax = -J—J- = —i- ax. + 0(1 - o.,)x.    is the "expected" cost, including the 

I CQ CQ       J J 

possibility of growth in costs due to such things as promotions,   salary increases, 

inflation,  etc.,    j    periods hence.     Thus, a manpower accession    x,    has an initial 

cost    x. = CfX.    and a cost    j    periods later equal  to    a.x. 

(6) Vj = Vl^) ' \afi   ' 

The budget conservation Equations (A) become 

(7) 

:oVi 

c1a1x1 + coaox2 

zl- yl 

Z2- y2 

cT-lVlXl " '' • + C0aOXT " ZT " yT 

^►•tot^fa^j^^^^^^t^^^i^.^ - r   | a  
-■ ■ - ■    i 
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and the cost legacy Equations (5) become 

(8) 
WO + ckflak+lX-l + '' • + VmVm 

^k 

k <_ m 

k > m    . ^     m 
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III. MAXIMIZING MANPOWER LEVELS 

The manpower accession schedule that meets future discretionary budgets 

z - y  exactly Is found by solving the equations 

Vi zl- yl 

a1x1 + a0x2 z2-y2 

(1) a  iX, + a_nXo+ ... + Ol„X 
m-1 1   m-Z Z 0 m 

a x, + a .x- + ... + a.x + ot.x^.. 
m 1   m-l 2        1 m   0 m+1 

z - y 
m  •'m 

'nri-l 

a x» + ... + a.x + a.x_., + a-x.,, = z_.0 m 2        2ml nrfl   0 nH-2   nri-2 

where It Is understood that a = a c  . 

In this section we shall relax the assumption that future budget require- 

ments are satisfied exactly.  Instead we shall treat the variables z  as upper 

bounds on the total budget level at time t . Moreover, we shall restrict the 

manpower accessions x  to be nonnegative. Thus the equalities In (1) will be 

replaced by Inequalities (f) . This leaves us with an Infinite system of linear 

Inequalities that will, in general, have a large number of possible solutions. 

To obta'tn a single accession schedule In this case we will specify a performance 

criterion and then select the accession schedule that optimizes that criterion. 

In the analysis that follows we assume that the performance criterion is to 

maximize the present worth of the size of all future manpower levels. This ob- 

jective is obtained by discounting future levels to today's levels and then sum- 

ming over all future periods. We show that there are many conditions ol practical 

_jmm^mm^^^^ ssz ' -- - mm 



interest when the equality solution discussed In earlier sections is Indeed an 

optimal solution to the infinite-horizon program. 

The Infinite Horizon Program 

There are several approaches to the solution of (1) when the restriction of 

exactly meeting the budget requirements is relaxed.  In describing a manpower 

maximization model In which the budget requirements are considered to be upper 

bounds the problem Is to choose the nonnegative vector (x.,x2, ...) that satis- 

fies 

Vi 1 ^ - y1 

x
t 1 

0 

(2) 

Vl + a0x2      ^ Z2 " y2 

a2x1 + a1x2 + a0x3 1 z3 - y3 

As we have seen in the earlier paper the stock levels of manpower in period 

1 having j years of service is 

(3) nij " Xi-jaJ 

so that the total stock of people in period 1 is 

(4) 
m 
I" 

j=0 ij 

min(m,i-l) 

I 
jr.O 

Xi-jaj + yi 

Multiplying (A) by 6    and summing over all periods yields an objective of 

discounted manpower effectiveness or strength equal to 

oo    i_i 

(5) I    S1"1    I    *      -    I    6i-1y1 +    I      I    61-1 xi   .a. 
i-1 j«0    XJ       i-1 1     i«l j«0 1 ^ J 

-   ■' ■■ -' '^"'«n^nini ii 
■fa^^'*"-1-'*' -.hirnvfriii aaBataaüiMiiill 
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This measure makes the contribution of an Individual more valuable the earlier 

it Is available.    Since the legacies   y.    are usually known and fixed we will 

concentrate on maximizing the right-hand term in (5) with respect to the acces- 

sion levels    (x,,x0>   ...) . 

If we define the expected discounted lifetime of an individual as 

m 1 2 m 
(6) T •    y    M"1 - on + 0.6 + a_6    + ... + a 6 6 < 1 

J^J    j 0        1 2 m 

the right-hand term in (5) can be written as I   \ 

<*   1-1 
I  I 5  x. .a - ^ TX öJ" ■ T ^ x. 

1-1 j-C      3 3  J-l .        j-1 ;, 

J-l 

It is obvious that t.he value of T will not affect the optimal solution. Thus, 

without loss of generality, we can study the problem of maximizing the simpler 

expression 

i        ' 

(7) 
j-l :, 

subject to the inequalities of (2). The dual program is to find nonnegative 

variables u^u.» ... which 

(8) Mlirfwize ü^i  - y^ + "2^2 " ^2^ + 

subject to the inequalities 

u.a0 + u-oi. + u-a. + ... ^1 

u20lO + u3al + * * * — ö 

(9) 
U^öQ + ... ^ 6' 

fc—:->-^...,.^.Bfc«* 
- tmmtM0mmMtmimMllm 
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feasible solution of the dual program Is given by 

(10) ut - n«1"1   with    n -[   I   ä.^j 

This solution always exists, Is strictly positive and always satisfies each dual 

constraint as a strict equality. 

We may use u  to obtain an upper bound to the primal objective as follows: 

Let (x-,x-, ...) be any solution to the inequalities (2). Then we may write 

n"1  I xt6 
t-1 C 

t-1 

m    „ * 
z *i   v x^t"1 - l   (ä^^ + ...+S0xt)ö

t'1 I */     I 
j-0 J  t-1 

- x*t-l 1   I    (z   - yjr      , so that 
t-1 *       c 

rt-l ft-l 
I   V  ln l   (5t-yt)ö

c" - I Cz-yt)u 
t-1 c      t-1  c   c      t-1  c  t c 

Note that the solution (x^xL, ...) to the Equations (1) attains this 

upper bound, i.e. 

~ tt-l 

t-1     z       z 

t-1 

Thus if the equality solution (S^.x», ...) is feasible (nonnegative), it is 

optimal. 

Optimality of Equality Solution 

Intuition suggests the equality solution of (2) will often be an optimal 

i 

. -■- ■-- -■    ...-,..,..,..,.,. ...,■■■■   -...».-^^jKj^-ig,;,!!!^!  ■ 
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solution of the Infinite horizon planning problem posed In (5). Identification 

of the conditions which must exist for the equality solution to be nonnegative 

and thus optimal gives considerable Insight Into the structure of the problem. 

These conditions place bounds on the magnitude of allowable changes In future 

budgets. Moreover, optlmallty of the equality solution gives us an analytic 

expression for total system performance as a function of the continuation rates, 

discretionary budgets, and costs. 

To begin the analysis of this section we look for Solution of a reduced system 

of linear equations 

(11) 

ßlxl+  x2 

P. PAX. T  B<X-  +  X- 

- 1 

- ♦, 

^Z 

ßj^ß^ + ßjßj^ + \x3 + x4 " *1*2*3 

which is equivalent to normalizing the equality system in (1) by the constant 

. It.. (11) $. is defined to be the ratio of successive discretionary 
Zl-yl 

budgets, i.e. z . - y1+.i/z. - y* • Alternatively, one can view (11) as the 

equality system in (2) with a. ■ 1 , ß/ü* ••• ^4 " ai » *i " ^i " * an^ 

(z.+1 - y,.j) ■ ^^o ••* *4 * In either case, multiplication of a solution vector 

x ■ (x-.x«, ...) of (11) by (z. - y1)/ä0 yields the equality solution of (1). 

It should be noted by the reader that just as the cost continuation rates 

IL,1L> •••6.1 measure the period to period increases or decreases in the cost 

survivor fraction, the growth rates «L,*», ... *. measure the period to period 

Increases or decreases in the discretionary budgets available for hiring new 

 ^^j^ggmfr, MBÜMMii n ■irr   r ü...-^...,.,.,...,.., ...^-.±...:n .■. jgjglnJmyjiyilg 
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accessions. 

With this definition of terms It is tempting to believe that so long as 

^• ü. ' i > i«6- the one period Increase (decrease) in discretionary budgets ex- 

ceeds .he one period change in the cost  survivor fractions, nonnegative acces- 

sions will meet new budgets in the next period.  However, the simple numerical 

example having data 

(12a) 

UlA2Ar^^)  = (5 0.2 1 1) 

(B1,b2,^3,ß4) = (2 0.05 1  1) 

yields a  solution 

(12b) (x^Xj.x ,x4,x,.) = (13 "5.1  10.8  20.49) 

with negative components.  This example shows that the condition ifi. - ~<. ^0 

is insufficient to guarantee nonnegative accessions in all periods if there are 

periods of very large budgets followed by a period of small budgets. 

It is not difficult to show by a direct substitution of unknowns in the first 

three quattons of (H) that an equality solution x  HaUsfles 

x. ^ 1 

(13) X2 " *l " 01 

X3 = (*1*2 ~ W " V*1 ' V 

By a  reversion of  the series in  (11)  it  can be  shown  that  in general    x      satisfies 

the j      order  linear,   homogeneous difference equation. 

(14) 
M+i }, Vi-i^j - p'i)  " 1=1    J J k=0 

1  1 1 

m,^ :,.^.-,rt^.^—..- ........^^^ 
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With (14) It Is now possible to obtain x... recursively In terms of x-.x«, ... x. . 

As we have already pointed out the solution of x. only depends on 6.'s and 

i.'s with 1 £ j . In other words changing the budgets on periods beyond j does 

i 

not affect the accessions In time periods on or before    j   .    Since cost contlnu- 

atlon rates are nonnegative It Is simple to show that the sequence of Inequalities 

(15) «fr.  > Max {ßpi^,   ...   ß.} i iii 

Is sufficient to ensure that x.> 0 . The system of Inequalities In (15) Is, of 

course, much more restrictive than the one period Inequalities $. 2. 3.  (all j) 

as It compares the growth rate In one period to all previous  continuation rates. 

The proof is straightforward: xi " 1 i8 nonnegative and by (13) i, 21 ^i also 

Implies x. ^ 0 . If we now assume that x. ,x., ... x. are all nonnegative and 

that (15) holds, then x....  In (14) Is a sum of nonnegative terms. Thus, by In- 

duction on n we see that (15) is sufficient to guarantee that all accessions x. 

are nonnegative. 

Again we use the data In (12a) to Indicate why the equality solution in (12b) 

fails to be optimal.  Notice that 

(16) 

4^ = 5 > Max {2} = 2 

$2 » 0.2 < Max {2,0.05} - 2 

i3 - 1 < Max {2,0.05,1} - 2 

T4 - 1 < Max {2,0.05,1,1} - 2 

Necessary conditions for the x. in (14) to be nonnegative are obtained by 

st 
noting that we can always rewrite the (j + 1)   equation in (11) as 

(17) 
j+1        j+l-i _ 

1 * * J        i ^ J J      1-2    1    k-0      ^ 

 •■ ■ iM^^M) 
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Since Che rlf;ht-hand side Is nonnegative if all    x    > 0  ,  it follows that the 

inequalities on cumulative products, 

(18) 

t^h 

hh ^ ßlB2 

*1*2*3 - ßlß2^3   *  etC• 

must hold.    While    «I". ^ ß.     imply. (18)  the converse is not true as it is quite 

possible that    ^    < 8      while    i-i- ...  $. 1 ß,^  •*•  ^   '    Thu8» the simple and 

local test of whether the growth rate in net budgets exceeds the cost continuation 

rate in each period lies somewhere between the necessary conditions of  (18) and the 

more global sufficiency conditions in (15). 

When the equality solution is nonnegative   (hence optimal), our original 

objective,  the discounted sum of future manpower levels   (neglecting legacies)  is 

(19) I    x/-1 - ( f    a/ /   I    c «/]    I    Czt - yt)^
1 

t-1    c \j-0    J    /  j-0   J J    / t-1 

(see pp.  9-11).    This formula has a reasonable interpretation in the case where 

a. * 1    and the    a,    are nonincreasing.     Let    a. - a..,     be the probability that an 
0 j j        J+l 

individual's lifetime is equal  to    j  .     With  this stochastic  interpretation of  the 

survivor fractions, we define two random variables:     T    the  individual's lifetime 

and    K    the total support cost of an individual.    When    6    is equal to    1   ,  the 

term in parentheses in  (19)   is simply    E(T]/E[K]   .     Thus, we can increase our 

objective by keeping    E[T]     fixed and reducing costs.     Notice that if we attempt  to 

increase expected lifetime by changing the    a     ,  then the cost will change also. 

We can get a more accurate estimate of  the impact of possible changes by rewriting 

the first  term of   (19) with    6 ■ 1    and    a      expressed  in terms of continuation 

rates 
: 

V 

 niinili   
,;:■&&* 
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(20) E[T] 
E[K] \j-o k-o  7/ \j-o   J k-o   7 

The derivative of the above expression with respect to    B.     Is 

m 

J^L 
i E[T]| 1" cj mn 

B^EfK] 

If we let c - E[K]/E[T] denote the "average cost," then we see that If the cost 

c  In the periods following i    Is greater than average, the derivative Is 

negative and Increasing ß  will decrease our objective.  On the other hand. If 

the downstream costs are less than average, then increasing ß  will Increase 

manpower levels.  This agrees with our Intuitive expectation. 

i 

Special Cases 

This section examines several special cases and derives tighter and more 

easily verified conditions   under which the equality solution is optimal. 

First,  if the    ß.     are nondecreasing,  then    ^    >^ ß.     Implies    $,   >^ S.     for 

1 <_ j   , thus the local conditions    ^. >_ ß.    are sufficient for the equality solution 

to be nonnegative. 

In a second case,  if  the    a.    are nonlncreasing,   then    ß.  .1 1    for all    j   . 

Moreover, nonlncreasing    a.     imply, see Equation  (5),  Section 2,  that the legacy 

y      is nonlncreasing.     If    z      is nondecreasing,  it follows that    z    - y      is 

nondecreasing and thus  that    i.  ^. 1    for all    j   .    Therefore, we have optlmality of 

the equality solution under the readily verified conditions    z      nondecreasing and 

a.    nonlncreasing. 

If we further specialize the first case so that    ß    - ß < i      for all    j   , 

then vc can write 

■■■■ -'-■ -■■!-- II  r '  '- figimgll mmm i    t ' ;■:■■*' ■■'.1 -». 
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(21) xj+l ■ ♦ 
« 

J  - 2,3,  ... 

with    x    - 1  ,  and    x, - $.   - ß  .     If    *.  ■ ♦    j  - 1,2,   ....  T  , and    4»    - 1 

thereafter, we obtain 

(22) 
i"1"1^ -6)        j < Ti 

j+1 
*T(1 - ß) j  > T' 

Optlmallty for "Nearly Monotone" Survivors 

In this section, we shall present a very efficient solution method for our 

maximization problem under an additional assumption. 

A3:  ("Nearly Monotone" Survivors) a.-Zo. >_6 j-1, ...,m. 

This assumption is quite simple and is Justified in many practical cases 

(since 6 < 1 and we can expect that a , ^. a.) • 

Our method is given and explained in the following theorem. 

Theorem 1; 

Let    x   be defined by 

min ( 
zi-yl 

l<l<m+l j  ä1_1 

(23) 

min 
j<.l<m+j 

k-1 kXk 

'i-j 

Under assumption A3,    x    is an optimal solution of  the linear program defined by 

maximizing the objective   (7),  subject to the constraints  (2). 

MMM - ■■- ' ■ üI i i • majüMün .....j,.......   ...........,..^*... 
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Obviously, x is a feasible solution of (7). Suppose x is an optimal 

solution.  (Such an optimal solution exists due to the discounting factor 6 

presented in the objective function.) 

We shall show inductively that x. can be replaced by x.  (J - 1,2, ...) 

without changing the value of the objective function. 

Let k - min (j | x. > 0 ; j >_ 2} .  (If x - 0 j - 2 m+1 , then the 

optimality of x implies that x - x .) 

Let us define a new solution x by 

x1 + A1   j - 1 

(24) Xj " W " Ak   j " k 

where    A.   , A.     are determined such that 1        k 

(25) 

°"    A.     [where 

j M , k 

p-1 ■^— ■     max 
o    ,       k<i<m+l p-k  H ai-k/ 

A1 <. x1 - x1 

Ak^Xk 

Thus, if x. ^ x. ,  we can find A , A,  satisfying (25) with A > 0 

In fact, we can define A.  by 

A1 - min ^x1 - x1 ; xk r 
a 

>-k 

p-1 

Obviously,    x    is a feasible solution.    Moreover,  evaluating the values of 

*■ ■ - ■      ^ 
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the objective function for   x   and    x , we have 

(26) I    S*-% -    I    6*-% - Al - 6k-\ - &1/l - i=i 6^ > 
J-l 3      J-l 3        1 k       ^      Vk f 

where the last Inequality resulted from assumption A3 since 

-Eli Eli-Eli ### ^±Ü< 6l-k t 

p-k+1   p-2 p-3 
1 i p-k 

We can repeat this process of Increasing x. by decreasing some x.  (j > k) 

until x. becomes equal to x. without changing the value of ehe objective 

function. 

Now, assuming x. ■ x. for j ■ 1,2, ..., r , we can prove using the same 

arguments as above that x ... can be replaced by x .  while maintaining the 

optlmallty of x . 

Hence, x is an optimal solution of (7).|| 

Note that under assumption A3 the computation of x is done recursively 

starting with x. . Thus, if one is Interested In computing the programs of only 

the first n periods, it can be done easily by simply applying (23) for the first 

n periods. For a numerical example, we refer the reader to Section IV. 

■w^fifufSMm 
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IV.  A NUMERICAI. EXAMPLE 

We present an example below Illustrating applications of our techniques to 

budgetary planning in a manpower system. 

Consider a manpower system in which a group of men (cohort) enters each year, 

and from each cohort, a fraction o  survives at least j years.  The cost of 

support of a man in his (j + l)st year of service is C . 

Specifically, we let a - 1 , a » .9 , a ■ .fa ... a » .1 , a 0 » a^ - 

... = 0 , i.e. we assume that 1/10 of the original cohort leaves the system each 

year, for 10 years. 

We assume a first year cost per man of $10,000 and assume that the cost rises 

by 107! for every year a man remains in the system, so that C, = $10,000 * 1.1 ■ 

$11,000 , C2 = ($10,000) x (l.l)2 . $12,100 , and in general C = ($10,000) * (l.l)^ 

j £ 9 .  We emphasize that in this model the cost of supporting a man depends only 

on his length of service, and is independent of the calendar year. 

Let us assume that, as of December 31, 1974, we have nn = 100 men with 1 

year of service in the system,  n. - 90 men with 2 years of service, n» * 80 , ... 

n« = 10 .  Using the survivor fractions a, given above, we may compute what our 

past accessions to the system must have been in order to account for current man- 

power levels. Thus if 1975 is year 1, the number of men entering in 1974 is 

n0  100 nl  90 
x0 - — - -^- ■ 100 . Similarly the 1973 cohort size was x_1 - ^ - ^ « 100 . 

We see that with this data we must have x- «■ x . x - « 100 , i.e. 100 men 

entered each year from 1965 to 1974. 

Suppose it is desired to know how much money will be required in future years 

to support survivors from the current manpower stocks.  In 1975 the cost will be 

y1 - CJVO + C^x^ +  ...  +C9a9x_8 

»   ($10,000)   x   (l.l  x   ,9 +  (l.l)2 x  .8 + ...  +  (l.l)9  x  .1)  y   (100) 

I i I I 1 

$6,531,000 . 

^lülfci iiil|-|>'lllj*li>iaHi«M«MM^ii    'i      I     I  -.- MHIB 
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and in general 

$1,958,000 

yJ " CjajX0 + Cj+lVlX-l + *•• + C90t9Xj-9 ' 

The quantities y. are what we call cost legacies. 

The cost legacies for 1975-1984 are tabulated below: 

1975 

1976 

1977 

1978 

1979 

y1 » $6,531,000 

y2 - $5,541,000 

y3 = $4,173,000 

y4 - $3,641,000 

y5 = $2,763,000 

1980 

1981 

1982 

1983 

1984 

y6 - $1,958,000 

y7 - $1,249,000 

y8 = $665,000 

y0 = $236,000 

'10 $0 

The budget legacy for 1984 is zero because in that year there will be no survivors 

from current manpower stocks. 

Suppose it is desired to know what future budgets will be required in order 

to continue an input of x. ■ 100 men each year. The required budget for 1975 

is «i " Xi + CQVI ' $6»531»000 + $10,000 x i x 100 - $7,531,000 . In 1980 the 

required budget will be z, - y6 + CjO^x + C.a.x- + ... + CQU-X, - $7,531,000 . 

In general, if we know the accessions x. , we can compute the budgets z. by 

6J yj + Cj-laj-lXl + Cj-2aJ-2X2 + '• . + C-a.x. . This merely says that the 

total budget for a given year is made up of the cost of all accessions before 

the base year 1975 (cost legacies) plus the cost of all accessions in 1975 and 

after.  In this example it is hardly surprising that the z.  should all be equal, 

since future accessions are maintained at the constant level of past accessions. 

 — i -~-'"""- ■■■■ ,1 
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Ws now change the cnphaels to computing future ecceeilone given future budget 

couetralnte. In particular euppoee we are given annual budgete i. for 

j - l(2t ,..,10 (1975-1984) and we wlah to compute the number of men x  that 

must be Input each year In order to exactly exhaust the budgete. We solve the 

following equations 

coVi «1-y1 

ciVi + coaox2 «2-y2 

:9Vi 

Consider the following cases: 

C.OIAX. + ...        + C.aAx,n - s,« - 0o0JC10 " z10 ~ y10 

Case 1: 

If the annual budget   z.    Is $7,531,000 for each year, 1975-1984, the above 

X.Q - 100 , which Is what we would equations give the solution   x. ■ x» - .., 

expect from previous results. 

Case 2; 

Suppose In 1978 and 1981 we obtain budget Increases of 25Z, so that 

51 - ij " *3 " $7,531,000, z^ - z- - z6 ■ $9,414,000, and z - zg - zg - z10 

$11,767,000. Then we obtain 

Note the sharp Increases In accessions for 
years 4 (1978) and 7 (1981). In the subsequent 
years the accessions drop back, even though the 
budget continues at an Increased level. This 
is a result of the large cost legacies from the 
1978 and 1981 cohorts. 

100 x6 - 104 

100 x7 - 342 

100 x8 - 113 

288 x9 - 119 

102 xio - 128 
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Case 3A; 

Suppose we solve the same problem as In Case 2 except we have 25% decreases 

Instead of Increases,  so that    ä1 - i2 - i3 - $7,531,000,    «4 ■ «5 " *g " $5,648,000, 

and   z- - i   - JL - z.. - $4,236,000.    Solving the equations we obtain 

100 x6-96 

100 x7 - -48 

100 x8-88 

-88 x9 - 83 

98 x10 * 76 

We note that   x.    and   x.   are negative.    This means that we must discharge 88 new 

men in 1978 and 48 in 1981 in order to exactly meet budgets. 

Case 3B; 

Suppose we have the same conditions as Case 3A, but are not allowed to dis- 

charge anyone, i.e. we require x. ^ 0 for all j . To stay within budgets, we 

must have 

coVi 

ClVl + C0V2 

^ zl - yl 

1^2 - 72 

C^x- + CRaftx. + ... + Cnanxin 1 «in - yin • 0 0*10 - 'lO      J10 

In general there are many solutions to these inequalities.    To choose a par- 

ticular "optimal" solution we assume that an accession   J    years in the future 

has present value    6J  , and seek to maximize the total present value of all future 

10 
accessions, which is      ][   x,6J      .    Here    6    is a discount factor satisfying 

J-l   2 

H-t 

^-:    -.■.■.^--■■-- 
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0 <  iS  < 1   .    A common value for    6    is    .95   . 

We may compute such a solution using the algorithms of Section III.    The 

solution we obtain Is 

100 x6 = 44 

100 x7- 0 

11 x8 = 86 

0 x9 = 80 

97 xio - 72 

The results of Cases 3A and 3B are compared in Figure 1.    Note that  in periods 

3 and 6 we must  reduce our accessions in anticipation of budget cuts to come in 

periods 4 and  7. 

Conclusion 

We ".ee from this example that  in order to avoid premature discharge of per- 

sonnel,  we must anticipate future budget cuts and reduce accessions appropriately. 

\ 
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