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Introduction 

It is of great interest to the study of cooperative game theory 

to develop models whereby the dynamics of negotiation amoag the players 

can be investigated.    One approach to this problem concentrates on the 

use of discrete transfer schemes bo study how players might arrive at 

a desirable outcome.    A parallel approach employs systems jf differential 

equations whose solutions represent a continuous transfer of payoff over 

time.    It is the intention of this work to further research in this 

latter area. 

The advantages of such an approach are multifold. Not only does it 

enable us to view game theory in terms of the actions of individuals or 

coalitions, hut it also enables us to characterize solution concepts in 

terms of associated "behavior". Having done so, it is possible to ask: 

which points of a solution concept are attainable, given a certain set of 

actions on the part of the players; which points are stable and In what 

sense; which are stable only from certain directions; how a final point 

could be reached over time; and so forth. 

In 1968, Stearns [27] exhibited a sequence of discrete transfers 

of payoff among the players which converged to points of the Kernel of 

Davis and Maschler [8].    In 1972, Billera [3] smoothed these transfer 

sequences to obtain a system of differential equations whose solutions 

represented a continuous transfer of payoff and which also converged to 

the Kernel,    In 1971», Wang [30] showed that a modification of the 

relaxation method of Agmon [l] could provide a discrete transfer 

sequence which converged to the core [11] of a game. 



In this paper, we exhibit several systems of differential equations 

which represent possible behavior patterns for the players.    The solutions 

of these systems are shown to converge to a number of solution concepts, 

among them the core, the "two-center" of Spinetto [26], and the Shapley 

value [23].    This is accomplished by defining for games classes of 

optimal "centroids" anfl "nuclei" which fall into the class of "pre- 

emptive nuclei" as defined by Charnes and Kortanek [5], since they 

minimize certain convex functions.    These centroids and nuclei are the 

critical points of the various systems of differential equations and it 

is shown under what conditions the centroids and nuclei coincide with 

classical solution concepts. 

This work is divided into four chapters.    Chapter I establishes 

most of the mathematical foundation for the rest of the paper and also 

provides some geometrical insight into the processes discussed.    Chapter II 

is an application of these results to cooperative games with sidepayments 

and also proves some results peculiar to this formulation.    Chapter III 

is a somewhat different approach to cooperative games wherein coalitions 

bargain through an external referee.    Some attempt is made to study 

games without sidepayments.    Finally, Chapter IV is a comparison of 

these systems with the dynamic approach of Billera and also contains 

some questions of interest. 



I. Systems of Differential Equations with Polyhedral Stable Sets 

§1. Geometric Considerations 

Let ta ) i = i,-..,m be a fixed set of unit vectors in   R  where 

R  is Euclidean n-spacer For beR  with components {b.. ,b-,... ,b } 

and xeR  define the functions 

g (x,b) = <a ,x> + b. . 

Here, < ,> is the standard inner product on R , and we will also 

denote by | | ^ i | the Euclidean norm on the appropriate space. Also 

define 

P1(b) = (xlg^x.b) = 0}    i ■ l....,m 

core (b) = {x|g (x,b) 5, 0 , i = l»...tm} . 

Each P (b) is a hyperplane in Rn while core (b), if nonempty, 

is a possibly unbounded polyhedron in R  since it is the intersection 

of half-spaces. Here, as in the rest of this work, "polyhedron" will be 

synonymous with "convex polyhedron." The following two facts are 

elementary results from analytic geometry: 

a) The normal (perpendicular) Euclidean distance from any point 

xeR  to P (b) is |g (x,b)| (where \'\    is absolute value). 

b) The normal vector from any point xeR  to a point in P (b) 

is -g (x,b)a\ 

Let R° = {keRm|k. > 0 , i ■ l,...,m} , i.e., R° is the strictly 

positive orthant in R . For keR , consider the following system of 



differential equations: 

m +    i (I.a)      x = D(x,b,kM -£    k[g1(x,b)l    a 

where    x = TT 

and        I' J    ■ max{• ,0)   , 

Proposition 1^1:    For any    beR     , keR    , x0eR    , there exists a unique 

solution    Y(t,xn,b,k)    to    (I.a)   , continuous in   t 

for    te(~ co,00;    and such that    Y(0,X  ,b,k) = x    . 

Proof:    This is an immediate consequence of the fact that    D(x,b,k)    is 

continuous and locally Lipschitz in   x .    The reader is referred 

to Coddington and Levinson [ 6], or Hale  [12] as references for 

results on systems of differential equations.    # 

Geometrically, one can imagine the half-space 

txjg1(x1b) >  0} 

to be the "wrong side" of hyperplane    P (b)   .    All other points will 

constitute the "right side"    At any point    xeR    , consider all those 

i    such that    x    is on the wrong side of    P (b)  .    Let us call such a 

P (b)    an "offended" hyperplane.    Take a positive linear combination of 

the normal vectors from    x    to the offended hyperplanes to obtain 

-    I    k (g^x.b)]* a1  . 
1*1 

Thus, the solutions of system {I.a) tend to move toward the offended 

hyperplanes as t increases, ignoring the others, so it might be 



expected that, along solutlona, the distance to offended hyperplanes 

would tend to decrease. This notion will he made rigorous and proven 

later. 

S2. Centroids 

With (a } » b , and k as above, ve can define C(b,k} , the 

set of "k-centroids of b (with vectors {a1})" to be 

{xeRn|«U.b,k) • IB? ♦(ytb,k)} 
y€Rn 

where ♦(y.b,*) • f k. ([gi(y,b)l+,) . 
i»l 1 ^       / 

Observe that (l) if cor« (b) is nonempty, then oore (b) is precisely 

C(b,k) , and (2) C(b,k) is, in this case, independent of k . In 

general, however, C(b,k) It not independent of k . 

Proposition 1.2; For any htB?  , and kcl^ , C(b,k) # 0 . 

Proof; •(ac.b.k) > 0 for aU x€Rn  , so IMP •(x.b.k) exists. 

Let w ■ INF 4(x,b(k) . There must exist a sequence 
x 

(x | n« 1,2,...) such that 

♦(x,,b,k) < •(x.. ,»b,k) for n « 1,2,.«.  and n        n^x 

LIM ♦(x.^.k) » v . 
n-N.  n 

If {||x || I n « lt2,...} is bounded for all n , then (x > 

has a limit point x. and •(x0,b,k) ■ v by continuity of * , 



Suppose 11*11 "*" " • Let 

N - {i|gi(x ,b) > 0}  n » 1,2,... 
n       n   "• 

Since there are only a finite number of poselMe M , there 

must be a Bubsectuenee of ix )    (which we will also denote by 

{x } ) such ihat »(x ,b,k) -*• w and M ■ M.  for all n . 
n n n  ^L 

Let     K ■ {xeRn|gi(x.b) ^0 all ^^^(x.b) <, 0 for. all 

iiVL.}  . K is a closed, nonempty polyhedron (in particular all 

x eK ) so, by Theorem 2.12.6 of Stoer and Witzgall [28], we 

can decompose K as follows: 

K ■ P ♦ P' 

P  is a polytcpe such that PCK 

P' is the cone {xl<a ,x> ^0 for all 

ieM- , <aJ ,x> <, 0  for all J^} . 

Therefore, each x  can be written 

x ■ y + u . y eP , u eP' , 
n  'n   n * 'n  * n 

(I.b) «(x .b.k) « I     k (<a1tx > + b.)
2 

n      ieMj^ i    n   i 

"iL1
ki(<ai,yn + v + 'Ji)2 

- x ki{(<ai.v + bi)2 + (<ai»v)2 

^«a^u^)]   . 

e   PCK t     g
i(y ,b) >_ 0       for all   i«*^ .    From the 

+ 2(<ai,yn> + b. 

Sine 

definition of P' above, we see 

<a ,u > 1 0 for all n , for all ieM. 



Therefore from (I.b) 

*{xn,b,k) > *(yn,otk) ^ w , 

but ♦(x ,b,k) converges to w and ao *(y jbjk) converges 

to w . But allyeP.and P is compact, so iy  1 has a limit 

poiixt x0 and *(x ,b,k) = w .  Therefore  x0eC{b,k) . # 

Since [']  is a convexi nonnegative, and nondecreasing function 

2 i 
on R , avid (•)  is convex while g (x,b) is an affine function of 

x , it follows that *(x,b,k) is also a convex function in x . Observe 

also that ( [•] )  is continuously differentiable with 

£(i.i+)2-=W. 
Thus, *(x,b,k) is continuously differentiable on R 

Let x = f(x) be any system of differential equations on R . 

A "critical poii-t" of the system is any point y such that f(y)=0. 

Proposition 1.3; x_ is a k-centroid of b if and only if 

7*(x,b,k)|  = 0 , where V is the gradient operator 
x0 

with respect to x . 

Proof: This follows from the observation that 4 is convex and 

continuously differentiable (see Fleming, [ 9 ], section 2-5). # 

Proposition I.U; x- is a k-centroid of" b if and only if x. is a 

critical point of System (I^a). 



Proof; ■g—- (•(x.b.k)) ■ 2 f k t<ai,x> + b.]+ a^ 
iXj i«i ^^        i   J 

Hence, 7*(x»b,k) ■ - 2D(x,btk) , so x. la a critical point 

if and only if D(x,btk) « 0 if and only if V*(x,blk)|x0 « 0 

if and only if x. is a k-centroiti of b . # 

13. Properties of C(b.k) 

We vill nov establish certain properties of C(b,k) . An easy 

observation is that if core (b) i* 0 , then the set of k-centroids of 

b is a polyhedron. This is true even if core (b) = 0 . 

Proposition 1.5; C(b,k) is a closed polyhedron. 

Proof; Let xotx1 be k-centroids of b . Then 

0- I k.^U-.b^V 
1-1 1   •L 

0» I k.[gi(x1,b)]
+<ai,x -x > 

f kJg^x-.b)]* (gl(x0,b) - g^x-.b)) . 
L-l 1 

Similarly 0 - I ki[g
i(x0.b)]

+ (gi(x0,b) - g
i(x1,b)) . 

so 
1-1 

m 
I 
1-1 

1-1 

SubtractiBtf^e obtain 

0 - I k1([g
i(x1.b)r-[g

i(x0.b)]
+)(gi(x0.b)-g

i(x1.b)) 
l»l *   ■L 

- ! kT-üg^.b)]*)2 - ([g^XQ.b)]*)2 

♦ [gi(x1.b)]+(gi(x0,b))+[gi(x0,b)]+(gi(x1.b))j 



<      f   k f- ([g^x .b)]+)2 - ([g^x .b)]+)2 

i»l      L 

+ 2[gi(x1,b))'[gi(x0.b)]+j 

--   !   k.dg^x-.b)]* - [g1(xn.b)J+)210 . 
i-1 

Therefore,    [gi(x0,b)]+ ■  [gi(x1,b)]+   i = l»...,m ; 

moreover,  if   x«    is any point in   R    such that 

[g (x2,b)]+ = [g (x0,b)]    , then   x2   must also be a 

k-centroid of   b   since    *(x  ,b,k) - *(x ,btk)  .    Therefore, 

knowing that there exists at least one k-centroid of   b ,    x0 , 

C(b,k)    can be rewritten as 

{xeRnjgi(x,b) <, 0    for all    i    for which   gi(x0,b) <. 0} 

H {xcRn|gi(x,b) = gi(x0,b)    for all    i    for which   gi(x0,b) > 0} 

which is the finite intersection of half-spaces and hyperpianes 

and is therefore a polyhedron.    # 

The following fact which appears in the previous proof bears 

emphasizing: 

Corollary 1.6;    [g (x,b)]      is constant over    C(b,k)    for    i = l,...,m , 

Geometrically, this means that all k-centroids of   b    not only 

"offend" the same hyperplanes, but lie equidistant from each, of them. 

Corollary 1.7;    If    x-    and    x      are^distinct k-centroids gf   b , then 

<x1  - x ,a > = 0    for all    i    such that    g (xn«b) > 0 . 
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Corollary 1.8; Let xQ   be a k-centroid of b t  If (a |g U0,b) > 0} 

(..pan R , th*n x  is the unique k-centroid of b . 

It would be of interest to know how the set C{b,k) changes with 

b and k . Unfortunately, this is still primarily an open question as 

of this writing, although partial answers can be given. In particular, 

when core (b) ^ 0 , bednterior (bjcore b ^ 0}} then small changes in 

b affect C(b,k) ■ core (b) only slightly. To show this, we first 

establish some terminology in the manner of Dantzig, et al, [ 7 ]. 

Let {A } be a sequence of subsets of some metric space X (in 

our ca^G, X will be R ). 

Define 

LIM A = ^xexlx ■ LIM x  where (n.} is an infinite sequence of 1   j+oo ni        i 

integers and x EA  > ni niJ 

n  I 
•}■ 

LIM A_ ■ ^xex|x = LIM x  where x eA  for all but a finite number 
n-*» n       n n 

of 

If LIM A = LIM A , then we say LIM A exists and we set 
—— n      n '        ^     n 

LIM A = LIM A » LIM A . 
n  —— n      n 

LEMMA 1.9 (Dantzig et al.): Let X be a metric space and let (A } 

be a sequence of connected subsets of X . 

Let U be an open subset of X with com- 

pact boundary. If LIM A  is nonempty and 

LIM A CU , then A CU for all sufficiently 

large n 
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mm 1.10 ('lantzig ot al.):    Let    {b11}    be a sequence in   R    , whefe> bn-»b 

and suppose core (b) / 0 , core (b  ) ^ 0 

for all    n , then    LIM (core (b11)) • 

= core (b)  , 

We would like to be able to quantify this notion by putting a 

metric on subsets of   R11 .    To do this, first define  lor any   xcR    , 

and lany set   ACR    , 

d(x|A) = INF ||x - y||   . 
yeA 

For two sets A and B in R  define 

y(A,B) = ]\Ax(sVE d(x|B) , SUP d(x|A)^ 
\ xeA       xeB     / 

This is a metric on the space of compact subsets of R  and is 

commonly called the Hausdorff metric. The following proposition estab- 

lishes the continuity of core (b) in the Hausdorff metric. This has 

already been observed by Sondermann [23]  in the case of games. 

Proposition 1.11; Suppose b ->• b , core (b ) j4 0 for all n , 

core (b) ?* 0 and  core (b) is compact. Then for all 

e > 0 , there exists N s.t. 

y(core (b) , core (b )) < e whenever n ^N . 

Proof; Suppose not, then there exists an e > 0 and a subsequence 

ni 
n. -> o» such that  (core (b ) , core (b)) >_ e . This can 

happen in either (or both) of two ways. 

n« 
i) There, exists subeequenee n. ■> " , x e core (b J) and 

d(xn | core (b)) >_ e for all J . 
J 
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11) There exists subsequence   n.  -*-">. x   e core (b)    and 
*      nk 

nk 
d(x    core (b  )) >   for all k . 

nk 

Suppose l) occurs, then by Leima 1.9, (x } must have 

a conv.rgent subsequence, so without lose of generality we may 

assume tx } converges to some point x. . By definition, 
J 

x e LIM core (b^) , hence x. e core (b) by Lemma 1.10. But 

d(x_  | core (b)) > c implies d(xrt | core (b)) > e , a 

contradiction. 

Now suppose 11) occurs. By the compactness of core (b) , 

we can assume xn "*" x« c core (b) . But x0 e core (b) if and 

only If x- e LIM core (bn) so xn ■ LIM y_  where 

nk 
y_ e core (b ) for all but finitely many k . Pick k 
"k 

sufficiently large so that 

||x- - x0|| < c/2   and 

l|ynk -x0|| < e/2 . 

Therefore   | |xri    - y«   11  < E so that 
k K 

e > llxn  -y. II i^^iL I   core (b k)) • 

But we assumed dfxj. | core (b *)) > e so we are left with 
k "* 

another contradiction. # 
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ik.   Convergence ef Solutiong of (I.a) 

We have already shown that the k-centroids of   b   were precisely 

the critical points of System (I.a).    The next Proposition will show 

the relationship between solutions of (I.a) and   C(blk) . 

Proposition I.lU;    For any   x0eRn » beR1111   and   kcl^ , the solution 

Y(t»x0,b,k)   of   (I.a)   with   Y(O,x0tb,k) ' x0 

i» bounded for t ^ 0 and further, as t * " , 

Y(ttx ,b,k) converges to a k-oaotroid of b . 

Proof; Let z be any k-centrcid of b . For any zcRa 

define 

Z(x)-i||x-i||2 . 

Thus, along anynSölutlonto (I.a) , i.e., where 

x - x(t) ■ Y(t,x0,btk) , 

^te(x))-<t.r.i> 
dt 

- I   k.Ig^x.b)]*^1^-^ 
i-1 1 

- I k.lg^x.b)!*^1.«* 
i-l 1 

- I   ki[g
l(x.b)l+(g1(x,b) - g^x.b)) 

1-1 1       v ' 

We saw in the proof of Proposition 1.5 that 

I k,[gi(x*,b)]+(gi(x,b) - g^x.b))- 0 . 
1-1 ^^       V ' 
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Therefore, by subtracting 

(I.c) &Zm   I   ^([«^x.b)]*- [gi(i,b)]+)(gi(i.b) -g^x.b)) 

i- ! VLg^x.b)]*- [g^i.b)]*)2 < o . 
i-1 

I.e., 

^ | |Y(t,x0,b,k) - x| I 2 | T.t i 0   for «31 t > 0   so 

(I.C)       l|t(ttx0b,k) - x|I < llx0 - «||  for all t>0. 

Moreover, (I.c) and uniqueness of solutions Imply that If x 

Is not a k-centroid of b , then 

£ llY(*,x0,b.k) - i||^t < 0 for all t > 0 . 

Hence, Z(x) is a Lyapunov function on R  for System (I.a) 

and it follows from standard result? (see Hale [12], p. 296) 

that the «-limit set of Y(t,x ,b,k) is contained in C(b,k) 

where the u-limit set of Y(t,x0,b,k) Is ihe  set of limit 

points in Rn of Y(t,x0,b,k) as t ->• • , All that remains 

to show is that Y(t,x ,b,k) converges to a single k-centroid 

of b . Suppose there were two distinct points, x and x 

In the (u-llmit set of Y(t,x0,b,k) . Let e > 0 be such that 

l|x - x|| > 2c . By the definition of ü>-llmit set, there 

exists T > 0 s.t.  | |Y(T,x0,b,k) - x| | < e , but 

|lY(t,x0,b,k) - x11 is a decreasing function of t , so for 

ail t ^T , ||Y(t,x0,b,k) - 711 < e so IlY(t,x0,b,k)-x| I > e , 

contradicting the assertion that x was in the delimit set 

of Y(t,x0,b,k) . # 
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Note; In the case that core (b) ff 0 , It is possible to show the 

following more general result. For i ■ l,...,m , let f (s) 

be a continuous and locally Llpschltz function on B such that 

f^s) > 0 if s > 0 , f^s) »0 if s ^ 0 . Then if 

Y(t(xolbtf) is a solution to the system 

i - - ? fi(gi(xtb))a
i 

i»l 

then as   t -»■ » , Y(tlx-,b,f)   converges to a point of core (b). 

For   f (•) ■ kjt*]    , this result is contained in Proposition l.lk. 

We will denote the limit point of   Y(tt:rotb,h)   by 

Y^),xotb,k)  .    It is evident from equation (l.c1) that all 

k-centroids of   b   are stable [in the sense of Lyapunov) points 

ef System (I.a).    It clearly follows that System (l.a) has no 

unstable critical points. 

Convergence, as has been seen, is straightforward.    For any 

initial point   x-  , the solution   Y(t,x.lb(k)    approaches each 

k-centroid   of   b  simultaneous!j as   t ->• »    and converges to a 

particular one. 

Convergence can be viewed in another way, however.    Since 

the k-centroids of   b   were characterized as the minimizing points 

of   ♦(x^.k)  , it is of interest to investigate 

♦ (Y(t,x0,b,k)  , b,k) 

as   t -*• • .    Recall that in the pro^f of Proposition I.U we 

showed that 

7* - - 2D(x,b,k) . 

Thus we immediately see that 
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~»(Y(t,xofbflOtb,k) - <7*,~(Y(t.xotbtk)> - -2I !D(xtbtk)| |2 , 

that is, * Is decreasing along solutions of (I.a). Moreover, 

since System (l.a) can be rewritten 

1  / x = - - V*(xtb,k) , 

the solutions of (l.a) follow the negative gradient of the 

function * . In other words, at any point x , the solutions 

of (l.a) tend in the direction most optimal to minimize * . 

In general, however, it is not the case that the solutins follow 

a shortest path (in the sense of arclength) from x. to 0(1 ,k) , 

nor is Y(^,x-,b,k) necessarily the closest k-ccntroid of b 

to x0. 

§5. Cocentroids 

The set CC(b,k) of "k-cocentröids of b" is the set 

(xeR^U.b.k) = INF «Ky.b.kH 
yeRn 

m   /   .      \2 
where ^(x.b.k) » I   k ([- g1(x,b)] 1 . 

i«l  x ' 

No-.e that the k-cocentroids of b (with vectors {a }) are the 

k-centvoids of -b (with vectors {-a }). Hence such observations as 

CC(b,k) la a polyhedron and [-g (x,b)]  is constant over CC(b,k) 

and so forth are obvious. Moreover, it immediately follows that 

solutions of 

(I.d) k-    I   kJ-g^x^nV 
i-1 
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converge to k-cocentroids of b . We will say more about cocentroids 

later on. 

S6. Continuity of Limit Points 

We can consider  Y^.x-j.b.k) as a function from R * R * R+ to 

C(b,k) . This section will investigate some of the continuity prop- 

erties of Y^.'.'t") • Note that any such result is also dependent 

on the continuity of C{b,k) . We will need the following lemma which 

is a standard result of the theory of ordinary differpntial equations. 

Lemma 1.1$: Let Y(t,xf.,b0,kn) be a solution of System (I.a) for 

some U-.b-.k.) in Rn *  Rm * R^ . For (x,b,k) in an 

open neighborhood of (x0,b0,k0) (in the product space), 

there is a solution Y(t,x,b,k) of System (1.a). Moreover 

Y(t,x,b,k) is continuous in (t,x,b,k) at (t0,xr,b0,k0) 

for all t- . 

Proof; This follows from the continuity cf D(x,b,k) in (x,b,k) and 

also from the uniqueness of solutions of System (I.a), 

(cf Hale [12], Theorem 1.3,^). # 

Proposition I.l6; For any (b^JeR0 x R*  Y(»,X ,b,k) is continuous 

in x0 . 
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Proof;    Pick   s > 0 , any   x0eRn .    Pick   T   so large that 

||Y(T,x0.b.k) -Y(-,x0,b.k)||  < eA . 

Chooee 6 s.t.  | |x - x0|] < 6 implies 

||Y(T,x0b,k) - Y(T,x,bfk)|| < e/U 

which we can do by the previous lemma. Therefore 

!iY(T,x,b,k) - Y(«,x0,b,k)|| < E/2 , but by Equation I.c 

IKU.x.b.k - Y(-,x0,b.k)|| < e/2 

for all t >_ T . Since for some T' ^ T 

||Y(t.xfb.k) - Y(-.X,b,k)|| < e/2 

for all t > T' it follovs that 

||Y(-,x.b.k) - Y(-,xn.b.k)|| < c . # 

The continuity of Y(0(,»x0,b,k) in (x0,btk) , as mentioned 

before is dependent on the continuity of C(b,k) and can only be 

established, therefore, in those cases where the continuity of 

C{b,k) is known. 

Let W« {bcR^core (b) + 0   and corft (b) is compact } . Let D 

be a compact subset of Rn , and E aconpact subset of W . Observe that 

by Proposition 1.11, core (b) can be viewed as a continuous mapping 

from W to the space of compact subsets of Rn . Hence, over E , 

»he continuity is uniform, i.e., for all n > 0 , there exists 6 > 0 

such that y(core (b), core (b1)) < n whenever, b^'cE , | jb-b'| | < 6 . 

Let B be a compact subset of DxExR . 

Lemma 1.17: Let c > 0 . Then there exists N s.t. 

||Y(t,x,b,k)-Y(",x,b,k)||<e for all t^N and all (x,b,k)eB. 
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Proof; Let 

Tn(b0)=«x.b,k)cR
nxWxRj|d(Y(n,x.b,k)| core (b0)) < e/U} 

for a «1,2,...  8*4*11. t0eW 

and pick « such that for all b.VeE , Hb-h'H < 6 Implies 

v(cor© (b) , core (b*)) < eA • Let V(b) • {bcw|llb-b < «> 

for all b«W . Now set U(b) - RnxY(b)*R^ . 

T (b) Is an open se!-, in R11»!!^" since it is the inverse 

image of cm open set under the continuous map Y(n,•,•»•) . 

Also it Is clear that U(b) is open In RnxW*H^ . 

Let S (b) - T (b)nu(b) i n - 1,2,...  bcW , 

and let S^ " V   Sw(b)   n « 1,2,... • 
n  Dtjc, n 

Each S (b) Is open In Rn«WXR° and thus so is each S . n * + n 

Moreover, for all (x,b,k)EB , (xtb,k)eS  for some n since 

for some n , d(Y(n,x,b,k)|eore (b)) < E/U , and, of course, 

(x,b,k)eU(b) . Thus (S } is an open cover of B , B is 

compact, hynce there Is a finite subcover S ,..«,S   of B , 
nl    nk 

Let     (x,b,k)e3n r\B  , then (x,b,k)eSn (b0) 

for some "b0cE , i.e., 

(x,b,k)cTn (b0)nu(b0) . 
J 

But if so, then 

d(Y(nj,x,b,,k))|core (b0)) < e/k and 

||b-b0||<« which implies u(core(b) , core (b0)) < t/k . 

Therefore 

d(Y(nj,x,b,k)| core (b)) < e/2 . 
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From Equation (I.c1) , It follows that 

HYU ,xtb,k) - Y(",x,b,k)|| < e . 

But since any (x,b,k)eB lies In some S  , setting 

N ■ MAX {n.} will satisfy the requirement of the hypothesis. # 
l<l<k  1 

Note that continuity of Y In k was not explicitly used in the 

above proof. Indeed, the variable k was merely carried along in the 

notation (except in the assertion that T (b) was open). The reason 

for this is that if core (b) # 0 , then, as we have seen, C(b,k) is 

independent of k . To complete the continuity section we show: 

Proposition I.l8; Y^x^.k) is Jointly continuous in (x,b,k) for 

(x,b,k)eRnxWxR° . 

Proof; Let {xJ} , {b*1} , {k*5} be sequences in Rn , W , and R° 

respectively and suppose there exists (x,b,k)eR xWxR  such 

that x^ -»• x , b"' -»• b , and k"' + k . Since 

(  U (x^b*5,^) )U (x,b,k) is compact, then by Lemma 1.17 
Vj»l        ' 

there exists a T t h that 

iiY(T,xJ,bJ,kJ) - Y(»,xJ,bJ.kJ)i| c e/3   J =1,2,... 

|lY(T.x,b,k) - Y(»,x,b,k)il < e/3 . 

By Lemma 1.13 it is possible to choose an M so large that 

l|ir(T,xJ,bJ,kJ) - Y(T,x,b.k)M < e/3 for all J ^.M . 
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Therefore, for all J >. M , 

||Y(«.xJ,bJ.kJ) - Y(-,x,b,k)|| <. 

||Y(«.xJ,bJ.kJ) - Y(T,xJ.bJ.kJ)|| 

+ ||Y(T.xJ,bJ,kJ) - Y(T,xfb,k)ll 

+ MY(T,x,b,k) - Y('-,x,b,k)|| < e .     § 

It is conjectured that Y(<*>(x,b,k) Is continuous In 

(x(b(k) over R xR xR , but this has not as yet been proven. 

S7* Ruclei 

Recall that for System (I.a), there were no restrictions on the 

vectors la* other than that they be unit vectors. Hence there is 

no requirement that they be linearly independent, or any such condition. 

Suppose, given U I 1 ■ 1,... taJ , a eRn , beR111 , keR , we generate 

a new set of vectors- (a |i = 1,...,^} , l" ERn f beR  , 

keR+xR^ ■ R+ in the following wiiy: 

51. -m+i        1 -a         »a 

\' m+i          i 

V k ^^    » k. m+i          i 

1 « 1. 

1 ■ 1, • •. (m 

i * 1,•■.m . 

Using these vectors, we can exhibit the analogue of System (I.a): 

2ni     . 

(I.e) x "-I k [<ffi,x>+b.]+T. 
i-1 *       *       * 

-I   ki|[g
i(x,b)]+ai-[-g

i(x.b)]+ai| 
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(I.e«)   or    x--I k. fgi(xtb))a
i . 

i-1 1 ^     / 

Similarly! ve can define the k-centroids of b (with vectors 

{«T }) to be the minimizing points of 

e(x) - I  k. i[<*\x> +b.]+)2 
i-i 1 

» J k, (g^x.b))2 . 
1-1 1 

We will define N(b,k) , the set of "k-nuclei of b (with vectors 

{a1})", tobethe set of k-centroids of b (with vectors {a1}). This 

definition, while introducing perhaps redundant terminology» stresses 

the differences between C(b,k) and N(b,k) while indicating that the 

k-nuclei of b are themselves centroids of a different« albeit related, 

set of vectors. 

It is therefore to be expected that the set of k-nuclei of b would 

share many of the properties of C(b,k) and this is indeed so. These 

are listed below for completeness. 

Corollary 1.19; For any x cR , beR , kcR , there exists a unique 

solution to System (l.e') which converges to a k-nucleus 

of b . The set N(btk) is precisely the set of 

critical points of (l.e1). 

Corollary 1.20; The set of k-nuclei. of b is nonempty and polyhedral. 

Moreover (<a.,x> + b.) is constant as x ranges over 

•.N{b,k^ for i» ln.nm . 

Corollary 1.21; The set N(b,k) comprises a unique point if 

{a | i = l,,..,m} spans R . 

There is a slightly more general continuity result. 



23 

Proposition 1.22; Let C(t,x0,b,k) be a solution of (l.e') with limit 

point ?(»,x0,'blk) . If the {a } span R , then 

C(«,x0,b,k) is continuous in (x-.b) over R xR . 

Proof; Since (a } span R , the k-nucleus of b is unique for all 

b . Thus, t(«,x0,b,k) is independent of xQ . Letting A be 

the matrix with rows Sk7   a , we know that the k-nucleus of 

^ . C(«.x0,b,k) , is A+ß where 6eRm , ^ = »^ ^ an<i 

A+ is the generalized (pseudo-) inverse of A . The conclusion 

follows from the observations the A+fJ is a continuous function 

of b . 

Note; for a discussion of generalized inverses, see, for 

example, Pringle and Rayner [20], # 

S8, Relationahlps lamong Centroids. Cocentroids and Nuclei 

We conclude this chapter with a number of observations on the 

relationships among centroids, cocentroids, and nuclei. 

Proposition 1.23; If x is an element of any two of C(b,k) , 

CC(b,k) , N(b,k) , then it is an element of the third. 

Proof; Note that 
m .  .    m     ,       . . 

(I.f) - I M •-a1,x> + b^-ja1 = - £ k.[ <a1,x> + b ] a 
i-1 1 i-1 l 1 

. V i. r  i   v 1+ i + I   k.[-<a ,x> -b,] a 
i«a 
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so if any two of the sunanatlnns vanishes, so mist the third, if 

Therefore, a k-centroid of b la a Jt-nucleus of b if and only 

if it is also a k-cocentrold of b , and so on - 

Finally, we note some relation» among the solutioii» of Systems 

(I.a), (l.d) and (l.e). Let Y(t,x0,b,k) Tbe the solution cf (l.a) 

with initial point x. , Tft.X-.b.k) the solution cf System (l.d) 

with initial point x. and c(t,x-,b,k) be the solution of System 

(l.e1) with initial point x. . We wllj. say that tvo functions of t , 

iJasr'4ft), 8(t)eRn are "negatively tangant" at x0 if a(o)=ß(0)=x0 

and if 

iH)w-3rO')it.t 
Similarly, a(t)    and    ß(t)    are "pcai'.ivexy tongen'l'at   x.    if 

0(0) = 0(0) = x0    and 

The following are simple consequences ol  Equation (l.f). 

Proposition 1.2U:    a)    xQtC(b,k)    if and only if    YU,x0,b,k)    and 

i;(t,x0,b,k)    are pooitively tangent at    x^ . 

b) x eCClb.k)  it and omy if  YU.X ,b,k) and 

^(t,xn,b,kj are pobitively tangent at x , 

c) x t.Nib,K)  if and umy if  vit.x ,b,k; and 

T(t,x tb,k; are negatively tangent at x . 



II. Applications to Cooperative Game Theoxy 

SI. Cooperative Games vlth Sldepayments 

The concept of an "n-person cooperative game vlth sldepayments" was 

Introduced In von Neumann and Morgenstern [29]. It consists of : 

a) N ■ {l,2,...,n} , a set of players. 

b) 2Nfi0 = {S i< 0|SjCN} , all "coalitions" of the players. 

c) v: 2-0-*-R,a "cha-acterlstlc function". 

d) Some nmt of payoffs" In R11 . 

We will define precisely the set of payoffs in which we are interested 

below. A game is denoted (N,v) , or simply v , with the set N under- 

stood. 

The players may correspond to individuals, corporations, nations, 

armies, or any set of entities which nay cooperate by forming coalitions 

in order to secure a share of some limited commodity. We assume that 

this commodity is transferable from player to player; that is, a player 

or group of players may give all or part of their holdings of the com- 

modity directly to any other player or group of players. The char- 

acteristic function v(S) can be understood to represent how much of 

the commodity coalition S could obtain for itself as a unit were it 

to act independently of the remaining players. 

A payoff xeR  represents a potential or actual distribution of 

the commodity among the players where each player 1 receives x. . 

Certainly not all xeR  are logical payoffs. If we denote I   x. by 
its 

x(S) , then among the more reasonable payoff concepts are the following: 

25 
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Feasible payoffs:        {xcRn|x{N) <.v(H)} 

Efficient payoffs:      {xcBn|x(N) - v(H)} E E(v) 

S-rational payoffs:    {xERn|x(S)  >.v(S)} 

Imputations: {xeRn|x(N) ■ v(N)   , x1 ^vCCi}) 

for all i •.lt,i,,B}  . 

Since   v(N)    represents the amount of the commodity vhich the entire 

set of players    N   can obtain by cooperating, it is not surprising that 

efficient payoffs are desirable if the game is to result in some sort 

of stable outcome with all players participating.    Each coalitions   S , 

however, is most interested in cm end result which is S-rational, and 

therein often lies the conflict among coalitions over what the final 

payoff should be.    Infeasible points, i.e., those which are not feasible, 

may be thought of as unattainable by the grand coalition   N . 

In order to quantify in some way the satisfaction or dissatisfaction 

of coalition   S   with a payoff   x , denote by   eg(x)    the quantity 

v(S) - x(S)  . 

This quantity is sometimes called the "excess of    S    at    x ". 

Presumably, the smaller    e-(x)  , the more satisfied is coalition 

S   with payoff   x .    Let us also define at this time the "efficient 

excess of    S    at    x "    for    S # N , 0   to be 

~  r   \      >    «S    v . f     IN|  v(S) V(N)       \ 8s(x) - <- A .x>+ ^g| t^ff |s|y - |Hp->N 

where: |s|    is the cardinality of   S , 

|N|  = n ,    and 

A eR such that 

r i 

^•< 
FT 

-1 
INI  -  |S| 

ieS 

i^S . 
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The purpose of this efficient excess will become clear shortly. 

§2. Solution Concepts 

A solution concept Is a payoff or a set of payoffs which Is either 

(l) equitable with respect to certain axioms of fairness or optinallty, 

or (2) Is "stable" with respect to some type of bargaining procedure. 

Two well-known solution concepts are appropriate to the results of this 

chapter. 

The "core" Is the set of efficient points which are S-ratlonal for 

all S . Explicitly, 

core (v) - {xeE(v)|es(x) <_ 0 for all Se2N-0} . 

The core of a game may be empty, but when it la not. It Is a closed 

polytope. Core points are both optimal. In the sense that each coalition 

Is receiving at least as much as v(s) , and stable. In the sense that 

no coalition could expect to profit by withdrawing unilaterally from 

the game. 

The Shapley valu« Is a eolutlon concept which falls Into the 

category of "fair" points. The Shapley value, usually denoted ^[v] , 

is determined uniquely over the class of all n-person games by the 

following three axioms. 

I. A carrier for a game v is a coalition T such that for all 

S , v(S) ■ v(SOT) . The first axiom requires that for any 

carrier T of v , ♦[vKT) ■ v(T) . 

II. Let ir be a permutation on {l,...,n} . Let irv be the game 

such that irv(S) ■ v(TrS) . For any vector xeR  let irx be 
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the vector such that    (nx). ■ x .  ,    1 ■ lt...(n .    Then the 

second axiom requires that 

$(irv) ■ ir^(v)    for all permutations    ir   and all games   v . 

III. If   u   and   v   are two n-person gomes, let the game    u + v   be 

the game    (u+v){S) ■ u(S) ♦ v(S) .    The third axiom then requires 

that    ^[u+v] ■ ♦1fcO + ♦i[v]  . 

Axioms I and II have several well-known consequences which sub» 

stantlate the notion that the Shapley value Is a fair division point. 

Let us briefly mention two.    First, call player    1    a "dummy" If, for 

all coalitions    S   which do not contain   1  ,    v(SU {l}) ■ v(S) + v({l))  . 

It follows then that    ♦.[v] ■ v({l})  .    That Is, players which 

bring the same marginal value to all coalitions receive that amount at 

the Shapley value.    Second, let us say two players,    1    and   J  ,    are 

"symmetric"    If   v({i})»v({J})   and for all coalitions    S   containing 

neither   1   nor   J  ,    v(S 1/{!}) - v(Stl{J})  .    Then, by Axiom II, 

♦jlv] ■ ♦•[v]  .    Hence players which are equivalent under the character- 

istic function receive the same payoff at the Shapley value. 

S3.    Efficient Bargaining Systems 

C n Iff 

For   {A eR |Se2 -0)    and efficient excesses 

{eg(x)|xeRn , Se2 - (0u N)}    as defined previously, we define an 

"efficient bargaining system" to be a system of differential equations 

of the following form: 

(Il.a) x -   I 
«)    SU|AS||J 

(x)  V     AS 

3c2H-(0»»)    SU|AS||J     ||AS|| 
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where  x ■ TT"  and 
at 

k_eR   for all f5e2N-(0uN). 
O  T 

Note that ve have substituted 2 - (0UN) for a set of Integers 

i  N 
as the Index set of the summation. The set (k. > 0|se2 - (0UN)} 

2^-2 
will he called the set of "coalltlonal weights". R    is clearly the 

•et of all such. The variable t may be considered as time. 

It Is apparent that System (II.a) is of the same form as System 

(I.a) so that for any point x_ , there exists a continuous (in t ) 

solution Y(t,x0,v,k) such that Y(Otx-(v(k) « x . Note that along 

solutions of (II.a) 

n 

3t E Y^t.x ,v.k) - 0 
1"1 

so that we can state: 

Lemma II.1;    If initial point   x.   is efficient, then   Y(tlx0,v,k) is 

efficient for all   t . 

Lemna II.2;    For all   S # Nt0 ,    all   xeE(v) 

es(x) 
■   60(x) . 

I|A8||2 S 

TV««*.     *S(x)    _ 1        f   ,.B   v .      Ill rlB) v(N)      1 

I i.S 112 _   1    . 1 III 

eVx)    .  ISUINI . Isl) r   x(S)  ,    x(N-S)    ,      |N| y(S) vjrjjO   1 
||AS||2 |N| ^      |S|       |N|  - JS]       IS|(|N|  -  |S|)    -[Npfsr; 

|S|(|N|-|S|) f. xjSl^    XJS)      .     x(S)    +  ,|N|(vjsn      .    v(S)    \ 
1*1   l PI w\*i wm www wwi] 

so 
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tout xeE(V) <*> x(K) ■ v(N)   so 

eg(x) . # 

Note that this ihovs core(v)- {zeE(y)|eg(x) < 0 for all S j« B) 

■ {xeE(T)I«e < 0   for »11 S ^ H) . 

is n.l sad II.2 yield: 

Proposition II.31 If initial point x0eE(v) then Y(ttx0,vtk) with 

Y(0,X ,v,k) ■ x0 is a solution of System (II.a) 

if and only if it is a solution of the following 

system: 

(Il.b)        x « I kQ[e.(x)] AS . 
S^N S S 

It is informative to give an intuitive interpretation of System 

(II.h) in terms of possible actions of the players in the game.    We will, 

in general, refer to such an interpretation as a "behavior".     It should 

be noted that, in this context, "behavior" is not intended to be a 

rigorous concept, but only an aid to intuition. 

Suppose, during negotiation among the players to determine the 

final distribution of the payoff, some efficient payoff   x    is offered. 

Since the players participate in the game through coalitions, it is for 

the coalitions to alter    x    to obtain a more desirable payoff.    Let us 

assume coalition    S    evaluates    x    by observing    eg(x)  , and on that 

basis decides whether to demand more from its complementary set, i.e., 

the remaining players.    If   e (x) < 0 , coalition   S    is receiving at 
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least as much as it is worth (according to the characteristic function) 

and therefore cannot enforce a demand on   N-S .    If   es(x) > 0 , however, 

we will permit    S   to extract payment from   N-S   at a rate proportional 

to ee(x) .    It is understood, of course, that   N-S   will be permitted 

to extract payment from   S    if   e„ -(x) > 0 .   The term   k8[eg(x)]     in 

(II.b) represents the rate of payment from   N-S   to   S .    The multiple 

k.    is Just the constant of proportionality.    Since all members of a o 

coalition participate equally in the activities of that coalition, each 

member of   S   receives   TcT ^gt«^*)]     while each member of   N-S   pays 

Tsrn-rr k [e (x)]    .    This ensures that the total payoff   x(N)    remains 

constant.    Summing all these payments over all coalitions of 

2   - {NÜ0}  » the total rate of redistribution of payoff is clearly 

i k_[ea(x)]+ AS . 
N   S    8 

The grand coalition N is excluded from the summation since there 

is no one trom whom N can extract payment. In addition, by choosing 

efficient initial points, the coalition N always reveives satisfactory 

payment. 

In light of the previous discussion, it would not be unreasonable 

to view the coalitional weights as some measure of a coalition's ability 

to extract payment from its complementary coalition, in other words, its 

"influence". Such heuristic interpretations will be given from time to 

time although no attempt will be made in this work to make these more 

rigorous. The coalitional weights will be studied later as a means by 

which certain notions of fairness in bargaining can be enforced. 
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k,    Centrolds for Games 

Ve vill define k-centroids of a game v in a aomewhat more - 

restrictive way than In Chapter I, The added ccnstraint will be seen 

to cause no great difficulty. 

Let v be an n-person game, and keR+ ' , Define C(vtk) , the 

set of "k-centroids of v" to be the set 

{xeE(v)|*,(xlvtk) = INF ♦•(y.v.k)} 
yeE(v) 

where 

(x,v,k) = I k 
S#N S 

res{x) -| + \2 

l|AS|I 

Had we defined the k-centroid of v as in Chapter I, that is, by 

S omitting the constraint x(N) » v(N) , the nature of (A } would make 

it clear that the set of unconstrained centroids would be precisely 

{C(v,k) + Xu | - <» < A < oo} where u is the unit vector normal to 

E(v) ; i.e., C(v,k) is the projection of the set of unconstrained 

centroids onto E(v) . This is because <A ,u> = 0 for all S # N . 

Proposition II.h:    x is a k-centroid of v if and only if x 

minimizes 

«(x.v.k) - I k liAS||2 ([e-UiT;2 

S^N S S 

over E(v) , 

Proof; Lemma II.2 shows that over E(v) , * » ♦' , # 

VS||2(les(xrj + )2 

of S at x ", and *(x,v,k) the "total dissatisfaction at x ". 

For xeE(v) , let us call kg | lAfa | |2([es(x)]
+)2 the "dissatisfaction 
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The set    {s|es(x) > 0}   will be the "set of dissatisfied coelitlons". 

Using this terminology,    C(v,k)    is the set of efficient payoffs which 

minimize total dissatisfaction, while core (v) consists of those 

efficient points at which total dissatisfaction is    0 .    As in Chapter I, 

if core (v) j* 0 , core (v) ■ C(v,k)  . 

Lemma II.5;    For all    S f* N , the dissatisfaction of   S   at   x    is 

constant as    x ranges over   C(v,k) . 

Proof;    See Corollary 1,6.    # 

Therefore, a dissatisfied coalition   S   is indifferent to variations 

of payoff over   C(v,k) since    eg(x)    will remain constant.    It is in- 

teresting that the set of dissatisfied coalitions is the same for all 

k-centroids of   v   for a given   k ,    i.e., it is impossible to satisfy 

any such   S   without raising the total dissatisfaction. 

Under this interpretation, the coalitional weights could be viewed 

as measures of the coalitions' sensitivities to not receiving their 

values—the larger    k^  , the more dissatisfied is    S   at any given 

payoff. 

Proposition II.6;    C(v,k)    is a nonempty closed polytope. 

Proof;    By Proposition 1.5,    C(v,k)    is a closed polyhedron.    Suppose 

it is not compact, then it contains some half line 

{y0 + ru|r >, 0  , y0cC(v,k)   , u »^ 0}  .    Since    C(v,k)cE(v)  , 

n 
it follows that      ^   u   ■ 0 . 

i»l    1 
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By Lemma II 3 

[es:jr0 + ru)]    ■ [esvy0»]      for all    r ^0    and 

all   S t 2N - fNy 0) 

equlvalently 

[esiy0) - fu(S)]* ■ legfyQ)]* for all    r ^.0    and 

S e  2N - (NU0) 

Therefore 

u(S) ^ 0 for all    S        such that    es(y0) 1 0 

ufS) * 0 for  all    S        such that    es(y0) 
> 0 

or in any case 

uvS) __ 0 tor  all    S t 2N - (NU0) 

This combined with u(H) - 0    implie»    u = 0    contradicting the 

previous assumption that    u f 0       # 

We complete this section with a characterization of the collection 

of dissatisfied ccalltiüne at a k-centroid 

In [15]t Shapiey defined tne ncticn of a balanced collection of 

sets.    Given a collection   J   ci subsets    S   of a set    N ,   ^ is said 

to be balanced if there e>,.sts    L-     > OJSe,/ }    such that    2,cca    ■ a 

S 11    if5 

where    (a )    ■  < _      ,"1        Shapiey no*ed that a balai.^ed collection 

could be considered a generalized partition 

Proposition IK7: Let ^ be a collection of subsets    S    of a set    N .    Then 

J is balanced if and only if there exist    id« > o|sew ^ 

r S such that      )    d- A    - 0 . 
S^   S 
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Proof; $  lg balanced If and only If there exists (c > 0 | S eJ7 } 

r   S   N r   S 
such that 2. csa " a • Note that  ) cga can never be 0 

whenever the family ^   is nonempty. Thus ^ ft 0 is balanced 

if and only if there exists {c > 0 | S e ^ } such that 

V   S   /r   S    aN  y    aN 
i cga - <l  c a , , ,  ', \ ..       ■ 0. 
j' s      S^ s    / INI   / r^r- 

But       „    >     n     N       .N r   S   / r   S    a   v    a / c.a - \\  c a ,      > == 

i  As 

^ - v   i '        *rCs ||A
S
||
2 

cs P So» by putting d ■   s—r- , we can see that <{f is balanced If 

and only if there exists {d > 0 | S tj}  such that J djl « O.d' 

Corollary II.8; The collection of dissatisfied coalitions at a 

k-centroid is balanced. 

Proof; In the above proposition, put de ■ kQ[e-(x)] for all dissatisfied 

S, where x is any k-centroid of v. 

5. Convergence 

Let us restate the convergence results of Chapter I in terms 

of games. 
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Proposition II.9:    Let   v   be a game and    {kg)   any set of coalltional 

weights.    For any   x eE(v)  , there exists a solution 

Y(t,xn,vk)  , continuous in   t   such that 

LIM Y(t,x0,v,k)  , exist« and is a k-centrold of   v . 

As before, denote this limit point by    YC^IXQ.V.IC).    Thus bargaining 

as described above where dissatisfied coalitions extract payment from 

complementary coalitions results in a redistribution of the total payoff 

v(N)    over time in such a way that, as   t -»• 00 , the distribution con- 

verges to one which minimizes total dissatisfaction.    Recall that this 

convergerce  Is such that    Y(t,x.,v,k)   approaches all k-centrolds of 

v    simultaneously as   t    Increases, and also follows the negative 

gradient of    ♦,(x,v,k)  .    7«(x,v,k)  , on the other hand, does not, in 

general, lie In the hyperplane    {x|x(N) = 0}   as does    7«'   .    However, 

a simple computation demonstrates that for any   xeE(v)  , V4,(x,v,k)    is 

the projection of   7*(x,v,k)    onto    {x|x(N) ■ 0} .    In this sense, 

Y(t,xn,v,k)    follows the negative gradient of the total dissatisfaction 

function.    Therefore, while this type of behavior may not result in a 

"shortest route" in Euclidean distance to a k-centroid, which would 

translate into "minimum total exchange of payoff", it is optimal in the 

sense that it produces, at any   x , a rate of redistribution which is 

most effective in reducing total dissatisfaction locally, i.e., in small 

enough neighborhoods of   x .    Hence, players employing an efficient 

bargaining system arrive at a global optimum by acting in a locally 

optimal manner. 

Also, with respect to effx-ient bargaining systems, it Is clear 

that, individually, each k-centroid of   v    la a stable point and, if we 
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define a set to be asymptotically stable if all points of the set are 

stable, and if all trajectories converge to a point of the set then 

C(v,k)    is asymptotically stable.    Ih partictüAr, the core, it nonempty, 

is asymptotically stable with respect to this system. 

§6.    Cocentroids 

In the manner of Chapter I, ve vill define k-cocentroids of a game 

v .    While it may appear in the model ve are using that cocentroids are 

highly nonoptimal and therefore perhaps uninteresting, it vill become 

evident that, in some cases, these "worst" points will bear an important 

relationship to the optimal centroids and certain "fair" points. 

Given a game   v , coalltional weights    {kg} , and some efficient 

point   x , we will call 

3„~8ii2(t-.s(-^ 
the "satisfaction" of   S   at   x , and we will also call 

fCx.v.k) -    I    kJ|AS||2 ([-e-(x)]+)2 

SftN    S S 

the "total satisfaction" at   x .    {s|ee(x) < 0}   will be the set of 

"satisfied coalitions" at, x .    The set of "k-cocentroids of   v ", 

CC(v,k)    is the set 

{xeE(v)|*(x,v,k) ■   INF   «(y,v,k)}  . 
yeE(v) 

Although cocentroids are those points which minimize total satis- 

faction, it does not necessarily follow that toted di satisfaction is 

large over CC(v,k) , since we will see in Section §12 of this Chapter 

that C(v,k) and CC(v,k) can, under certain conditions, coincide. 

Clearly, it is possible to display a system of differential equations 
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(Il.c)        i - - I kR[^.(x)]+AS , 

the solutions of which, for any efficient initial point, converge to a 

k-cocentrold of v „ A behavior for such a system would he one in which 

satisfied coalitions are donating payoffs to their complements at a rate 

proportional to k [- e-(x)]  while dissatisfied coalltons are silent, 

achieving, in the limit, a final distribution which minimizes total 

satisfaction. 

An argument entirely similar to that of Proposition II.6 yields 

Proposition 11.10; CC(v,k) is a nonempty closed polytope. 

It is also clear that e^x) Is constant over CC(v,k) for all 

satisfied coalitions S . 

§7. Continuity 

Let x0 eE(v) , and let Y(t,xQ,v,k) be a solution of System (II.b). 

We have already shown that as t -♦■ 09 , this solution converges to a point 

Y(«I,X ,v,k) e C(v,k) . Propositions I.l6 and I.l8 establish the following 

results for games. 

Proposition 11.11; For any game v and any set of coalitlonal weights 

{kg} , Y(",x0,v,k) is continuous in x0 over E{v), 

Proposition 11.12; Let 

W ■ {v| core v j* 0} , 

then Y(<»,x0,v,k) is continuous in (x.,v,k) over 
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X - {(xlv,k)|xeE(v), veW , keR^'2> 

Proof; Note the added restriction th«t x0eE(v) , «ind also 

core (v)CE(v) , Thua the proof of Proposition I.l8 must be 

modified slightly ■ueing the observation that if (v } -♦■ v then 

core (v11) ■♦■ core v frcm Dantzig, et al. [5] and also, despite 

E(vn) not being icnpact, tiV'E(v
n) , E(v)} •♦ 0 , Then the proof 

essentially gees as that for Proposition I.l8, # 

18. Allocation Systems and Nuclei 

Suppose for a game v and set of coalitional weights {kg} , ve 

were to combine the two systems (11,b) and (ll.c), much as ve did in 

Chapter I, to obtain 

(H.e) i - I   ks(es(x))A
S 

SrN 

such a system will be called an "efficient allocation system".    The 

behavior it represents is straightforward:    satisfied coalitons are 

giving to their complemente their excess payoff while dissatisfied 

coalitons are extracting payment from their complements.    Note that in 

general a coaliton    S    being dissatisfied dees not necessarily imply 

that    N- - S    is satisfied or converaeiyr    However,  in the case that 

core (v) f* 0 , it is tiue that    ea(x) > 0    implies    eM _(x) < 0    (for 

proof, see Wang [30], Lemma 2,1} so that dissatisfied coalitons cure 

always demanding payment from coalitions who "can afford it". 

We define   N(v,k)    tc be the set of k-nuclei of   v   which is the set 

{xeE(v)|e(x,v,k) •    INF    0(y,v,k)} 
yeE(v) 
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where 

e(x.T.k).   7   ksllA8Il2(es(x))2 

We will call   e(x,v,k)   the total "dieorder" of the game at   x , 

and it is clear that total disorder is the sum of total satisfaction and 

total dissatisfaction.    A k-nucleus of   v    is therefore a point which 

minimizes total disorder.    The k-nucleus is related to a class of "convex 

preemptive nuclei" proposed by Charne's and Kortanek [5]. 

Proposition 11.13:    Let    ;(t,x0.v.k)   be a solution of System (II.e) 

with efficient initial point   x0 .    Then as   t -•' " 

C(ttx_,v,k)   converges to a k-nucleus of   v , 

Proof;   This follows from Corollary 1.19.    # 

Further it should be apparent that total disorder will decrease 

along solutions of (ll.e). 

From Corollary 1.20,   es(x)    is constant as   x   ranges over   N(v,k) 

for all   S f* N .    Therefore: 

Proposition II.lU;    For any game   v , and any of coalitional weights 

{kg} , N(v,k)    contains a unique point. 

Proof;    Let both   x   and   y   be in   N(vtk)  .    Then    es(x) ■ es(y)    for 

all    S f* N   so in particular    e{i}(x) ■ e{i}^  »    i ■ lj»"»n . 

Hence    x ■ y .    # 
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By Proposition 1.23« ve can state the following. 

Proposition 11.1$;    Let    x6E(v) .    Then   x   being in any two of 

C(v,k)  , CC(v,k)   ,    and N(v,k)    implies   x    is in 

the third. 

So if   x   minimizes both total dissatisfaction and total disorder, 

then   x   must minimize total satisfaction also. 

The sets    C(v,k)  , CC(v,k)   and   N(v,k)    can also be characterized 

by the tangency of solutions of the Systems {II.b),  (II.c), and (II.e) 

as in Proposition 1.2k.    Such a result gives information on the various 

behaviors of the players at payoffs in these sets.    For instance, players 

with a distribution   xeCC(v,k)  , i.e., where total satisfaction is 

minimized, will act in the samo way. Instantaneously at   x , as if to 

arrive ultimately at    C(v,k)    or   N(v,k)  , although the trajectories 

will diverge as soon as they leave   CC(v,k)  . 

§9.    Coalitional Weights 

Some possible interpretations of the coalitional weights have been 

already mentionedt and it is not difficult to list more, e.g.,    k0   could 
o 

be the probability of coaliton   ?    forming, giving the term 

kg||A  ||([eg(x)]   )      a possible interpretaiton of "expelted dissatis- 

faction."    Similar interpretations have been used by other writers with 

respect to other weighting Schemas.    See, for example, Owen [18],    Un- 

fortunately, notions such as "Influence" or "sensitivity" or "probability 

of a coalition forming" are difficult to quantify.    Suppose instead, we 
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view the coalltlonal weights as a mechanism whereby we can Impose some 

concept of "fairness" on the bargaining. In this section, this Idea 

of fairness will be made rigorous by axioms, not unlike those in the 

definition of the Shapley value. Necessary and sufficient conditions 

on the coalltlonal weights will be deduced in order for these axioms 

to hold. In this manner, we will obtain a set of "universal" coalltlonal 

weights. I.e., weights which are not functions of the game v . Note 

that this has tacitly been assumed in the previous sections of this work 

although it would be of interest to see what sort of results one could 

derive if k_ were a function of v , e.g., if k- ^iv(S) . Such an 
fa o 

analysis will not be undertaken here. 

Let    x = D(x,v)    be either (II.b) or (II.e).     (The result also 

holds for System (II.c), but this        fact is not of much Interest.) 

We would like to enforce the notion that bargaining depends only on the 

characteristic function, rather than on the labelling of the players. 

We can do that with the following axiom.    Recall that for   xeR    , 

we denote by    irx    the vector in   R      such that    {fix).  » x .   , 1 ■ l,...,n. 

A.    If    ir    is any permutation on    {!,...,n}   , then we require 

Ddrx, irv) ■ wD(x, v) 

for all n-person games    v   and all efficient points    x . 

Proposition II. 16:    A necessary and sufficient condition for Axiom A 

to hold is that    k    ■ 1^    whenever     |s| ■  |T|   . 

Such a set of coalltlonal weights will be denoted 

{k|S|} 
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Proof; We will prove this result for efficient bargaining «ystems only. 

The proof for efficient allocation systeaiB it entirely analogous. 

Necessity; Pick any YeRn , and S. )< N . Let v be the game 

given by v(S) ■ Y(S) for all S f* SQ and v(S0) ■ Y{S0) + o , 

for some a > 0 . Let ir be any permutation on {l,...,n} , 

then 

D(Y.v) - I  kq[v(S) - Y(S)]
+AS - (kB • a) AS0 

DdrY.ffv) - I  kjnvd) - Tfy{H)]* AT . 
TftN 1 

The only non-zero term in this latter sum is for vT « S. 

or T ■ it" Sft , i.e., 

D(TrY,''v) ■ (k ,  • a) A 
IT^SQ 

11 S0 

-1    s 
Note that ITV So ■ A 0 , so if Axiom A Is to hold, 

k ,  ■ kc . Observe that for all permutations ff , 
tr-^o   80 

U" S-l > |S0| . Thus since S  was arbitrary, necessity must 

follow. 

Sufficiency; Let v be any game, and x any point in E(v) . 

Then 

D(x,v) - T ..k|s| [v(S) -x(S)]+ AS 

D(Trx,irv) - I   ki-i [irv(T) - irx(T)]V . 
T^H |T| 

In the latter sum let T ■ IT" S , so 
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D(irx,Trv)  -Ik,     [wvdr^S)  - ^(ir^S)]V    S 

-      I        kjs|   [v(S)  - x(S)]+ A7'" S 

wk|s|   [v(S)  - X{3)]+ A^8 

3#N 

-1 
so ir^Ddrx.nv) -    V    k|e|   [v(S) - x(S)]+ ir'V   S - D(X,Y)   . 

This result has pleasant consequences for symmetric players. For 

convenience, let us adopt the following convention: given two players 

i and J , let us call player i "as powerful as" player J (denote 

by i » J if v({i}) 21 v({J}) and for all S containing neither i 

nor    J   , v(SU{i}) 1 v(SU{J}J   . 

LeimriR 11.17;    Given coaiitionai weights    {k|_|}   , if    i » J    and 

xeRn    such that    x. ^ x.   , then    D.(x,v) ^. D (x,v)  . 
x J i j 

Proof;    Again, the proof is for efficient bargaining systems only.    For 

allocation systems the proof is similarr 

.S 
D(X,V) " ISJN   klsl [es(x)r 

i. u r ^  M+ AÖU (i} 
+ k|s|+l[eSü{i}(x)]    A 

.  v f /   M+ ASU{i}ü{j} 
iC|s|+2leSU{i}U{j}Un    A 

+ k2[e{iJ}(x)]+A{ij}+ k1[e{i}(x)]+A{i}+ ^[e^ j(x)fA{j}. 
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Therefor« 

D^x.v) -DjCx.v) - ^k,s|+1^IeSv;{i}(x)]+(-^—) 

- [esU{^x)]+(|N|-|s|-i)"[esu{j}(x)]+([stn) 

+ [eSU{i}1+(|N|   -  |S|  -l)j 

♦ ^  [^ + v({i})]+  (l - 4r) 

" JN 
k|s|n (isp: ^ |N|-|s|-i)([-x(s)-Vv(Suft}f 

- [- x(S) -XJ+ v(SÜ{j})]+) 

+ k^l- TH^I)^- xi+v({i})]+ - [- Xj+vCCj})]*). 

But we assumed   - x. + v({i}) ^- x.+ v({J}) 

and 

- xi ♦ v(SU{i}) i- xj + v(S^{J}) 

for all S such that 1 I S and J I S, 

so D.(x,v) - D (x,v) ^ 0 . # 

Proposition II. 18; Suppose 1 » J and x0eE(v) such that 

(x0)i > (XQ),. If Y(t,x0) IS a solution of 

x ■ D(x,v) with Initial point x0 , then 

Yi(t,x0) ^IT^t.XQ) for all t>0, 

and In particular YJ-.x-) >_ Y (».XQ) . 
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Proofs Suppoae that tor some t' < " , Y1(t
,,x0) < Y.Ct'.XQ) . 

Let t ■ max {0 <, t ^ t'lYjU^) >, Y.U.XQ)} . Since Y is 

continuous In t , it follows from the Mean Value Theorem that 

there exists at. in the open interval (t0,t') such that 

£ [Y^t.Xjj)- Yj(t,X0)] |  - Di(Y(t1.x0)tv)-DJ(Y(t;LjX0)tv)) < 0 . lYiVT;»xo;_ Tjvx;»xon ! 

But Yi(t1,x0) < YJC^.XQ) by choice of t0 , so by Lemma 11.17, 

D.(Y(t1,x0),v) - D.(Y(t, .XQ), v) >_ 0 . This contradiction 

invalidates the assumption on the existence of t' . # 

So, if a player i is as powerful as a player J , and receives at 

least as much at the outset of bargaining as J , then at no time in 

bargaining (or allocation) will player i do worse than player J . 

Corollary 11.19: Given coalitional weights {k|g|} * if players i 

and J are symmetric, and (x0). ■ i*Q),  *  then 

Yi(t,x0) - Y.(t,x0) for all t ^ 0 . In particular 

Yi(-»X0) " Yj(-»xo) ' 

Thus, Axiom A preserves symmetric payoffs to symmetric players, 

and, when enforced, results in solutions of efficient bargaining systems 

or efficient allocation systems which reflect the power of the players 

as indicated by their marginal effect on coalitional strength. 

Now suppose we have a dummy player i , who, at some payoff x. , 

receives v({i}) . There would not seem to be any reason for i to 

receive any more or less than v({i}) at any future point in the 

bargaining. This is the essence of Axiom B. 
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B. For any game v , if i is a dummy player and xeE(v) where 

x1 ■ v({i}) , then Di(x,v) - 0 . 

Proposition 11.20» A necessary and sufficient condition for Axiom B to 

hold for efficient bargaining or allocation systems 

is that for all S such,that! 1 i 8 t  H-{i}, 

kSU{i}    ks 
JsfTi  |N| - |S1 . 

Proof; Again, we give the proof only for bargaining systems. 

n N 
Necessity> Pick ytR     and some S0e2 -N, where 1 jf S. ^ B-{i}. 

Let v be the game 

v(S0) ■ Y(S0) + o for some o > 0 

v(S0ü{i}) • Y(S0ü {i>) + a and 

v(8) ■ Y(S)      for all other S . 

For B to hold we must have 

0 - D^Y.y) - *8W\0 * KSo {i} [0]
+ A,0 

Ooaro)(is^r) 

But 8. .vat arbitrary, and B must hold for all games v , 

so this part of the proof is complete. 

Sufficiency; Let v be any game with dummy player i , 

xeE(v) such that x. ■ v({i}) . 
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Then 

D(x.v) - I fkJvCs) -x(S)]+AS 

+ .S + kSü{i}lv(SÜ{i}) - x(SU{i})r A 

+ k{l}[v({i}) -xj* A{i} 

Uii}^ 

+ ^..^[vdMU) - x(N-{i})]+ AN-{i} . 

Note that since   x    is efficient and    1    Is a dummy 

v(N-{l})-x(N-{l}) - v(N)-v({i})-x(N)+x({i}) - 0 . 

so that 

S»<N-{1}} 

+ ksü{i}iv(süi) -x(s) - xi]+(wr0} 

(Il.f) -   I    T|^ijf[v(S)+v(i)-x(S)-x(l)]
+ - Iv(S)- (S)]+) . 

{S 8^1.  ISI + 1 I J {S|8^i, 

When x. ■ v({l}) , this sum is zero. # 

The next proposition give us some indication of how dummies fare 

along trajectories. 

Proposition 11.21; Suppose v is a game with dummy 1 , xeE(v) . Then 

x >v({l}) implies D.U.v) <^ 0 

x1<v({i}) implies D^x.v^O. 

Proof; This follows directly from Equation (il.f). # 



So, along trajectories, the amount received by a dummy will tend to 

decrease monotonlcally, If It Is more than the dummy's value, or will 

Increase monotonlcally If It is less. 

Corollary 11.22! Let Y(t,x ) be a solution to x ■ D(x,v) with 

initial point x. . If i is a dummy and 

(x0)i - v({i}) , then Y^.XQ) - v({i}) for all 

t ^0 , In particular Y.^.x.) ■ v({i}) . 

Suppose we wish to have both Axioms A and B hold. Then we can 

inductively construct the coalltional weights as follows (where we denote 

ke by k., when |s| « o): 

k = w  for some w > 0 

.        2 K2'w * jifpr 
2      3 

k s v • r ^ -  . ii i ä
3      jsjir ]NP2 

clearly 

k  - M Isl; (INUISI)! K|S1  W   (|NJ-l)l     * 

If we set c ■ rsrr    we have |N| 

Proposition 11.23;    A necessary and sufficient condition for Axioms A 

and B to hold is that for all   S # N   or    t , 

kS " c f ! s i I      »    f or 8ome   c^O« 

The constant c only determines the speed of convergence of the 

solutions, which can be taken into account by a change in the time 

variable. Therefore the constant c will be omitted henceforth. 
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flO. The Shapley Value as a H-HucleuB of v 

Recall that the Shapley value is an efficient payoff which reflects 

the symmetry of the game and vhich gives dummies their marginal values. 

In light of the above discussion, it is apparent that the Shapley value 

is an excellent choice as an initial point for many bargaining systems. 

This is particularly true in those cases where the Shapley value is not 

a point of C(v,k) . Then, by applying the bargaining system with the 

above coalitional weights, the limit distribution of payoff will be one 

reflecting the same desirable synaetries and payoffs to dummies as the 

Shapley value, but with lower total dissatisfaction. Note that this 

proves the existence of such a point. 

The allocation system converges to a point which minimised total 

entropy. We will now show the relationship between the Shapley value 

and the k-nucleus of v for the "fair" coalitional weights 

[(If ■ We first need the following result of Keane [lU], 
(Section 7) 

Lemma II.2U; The Shapley value Is the unique efficient point minimizing 

(j^)'1^1 
I   ll"l"?l" («BCX))2  subject to 

Sfl» 

x(H) - v(N) . 

Proposition 11.25; The Shapley value ♦[v] is the unique k-nucleus of 

v , if for all S*V    or    0 

5   \lsl/ • 



51 

Proof;    This follows immediately from the observation that 

1       I  !Ki^"1      for all    S.    # 
N -1       ISl-l 

Hence, for any efficient initial point, the solutions of an alloca- 

tion system with coalitional weights No   (  converge to the Shapley 

value, demonstrating that the Shapley value is asymptotically stable 

with respect to this system. 

The difference between the dynamics of the bargaining and allocation 

systems provides insight into the difference between C(v,k) (or 

core (v)) and the Shapley valu», C(v,k) is, in essence a "greedy" 

solution concept, since the information about negative excesses is 

supressed. Coalitions act only to minimize dissatisfaction, ignoring how 

much over their values certain coalitions may be receiving at any point. 

The Shapley value, on the other hand, arises when coalitions seek payoffs 

as close to their values as possible, with the coalitional weights 

INIV1 
J-. j   determining which coalitions must be the closest. 

Proposition 11.15 yields a condition for the Shapley value to be 

a centroid. 

Proposition 11.26; «fW e C(v,k; for k = ( ig )   if and only if 

<t>M & CC(v,k) , 

Suppose core (v) ^ 0 and $[vj is in the core. Then it is the 

unique core point which minimizes total satisfaction. Since the core 

is compact, however, there is a point which maximizes total satisfaction 
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over the core. Such a "maximm" point might be of interest to players 

of an actual game, 

§11. The Tvo-Center of Splnetto 

Other choices of the ccaliticnai weights can be justified on the 

basis of which sets of points become optimal when those weights are used. 

Spinetto [l6] defined the two-center to be the point minimizing. 

I    (e (x))2 over all xeE(v) 
S#N  b 

subject to    x. ^ 0    for all    i  . 

r        ^- , il.S|,-2 ISUINUISI) 4.V      1. 1 Letting   k   *  I |A | I      ■ nrr , the k-nucleus of   v    is 
b |M| 

precisely the two-center whenever the k-nucleus is an imputation. 

Using this fact, a condition for  the two-center to be in   C(vtk)    or 

core (v)    can be deduced«    Note that these weights satisfy the symmetry 

condition. 

§12.    Constant Sum Games 

Constant sum games are those games for which   v(S) + v(N-S) * v(N) 

for all    S^N .    For this class of games, a particular limitation on the 

coalitional weights yields an interesting relationship among the solutions 

of the various systems already encountered. 

Proposition 11.27:    Let    v   be a constant sum game.    If   kg » k„ g 

for all    S    then there exists a unique point    x 

such that     txJ - C(v,k) ■ CC(v,k) * N(v,k)  . 
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Furthermore, for any Initial point x.., the orbits 

through x- for the bargaining and allocation 

systems (and also System (II.c) coincide. 

Note; If y{ttxQ)    is a solution to a system of differential equations, 

the orbit through x0 is {Y(t,x )|t ^ 0} . Also note that the 

condition on the coalitional weights in Proposition 11.27 is 

satisfied by k'l |g| j   and by kg ■ ||A I j  , among others. 

Proof; For X€E(v) , v(S) - x(S) - - (v(N-S) - x(N-S)) 

BO [es(x)] ■ [- eN_g(x)] . 

Hence by the choice of coalitional weights 

ks[es(x)]+«kN_s[-eN_s(x)]
+ . 

n.*  v AS     AN-S But observe, A ■ - A 

so 

+ .S    r ,   r    / M+ AN-S A 

S#N 

+ S 
kgl- es(x)] A . 

This shows also that 

i+ .S 2 
S> 
I   ks [es(x)rA

ö- J   ks(es(x))A
ö . 

Therefore, if Y(t,x ,v,k) is a solution to 

x " A k0[e-(x)] A , then it is a solution to 
SJIN 

S S 

i " - I k_[- e_(x)]+ AS and if c(t,xn,v,k) is 
S*TiS        S 0 

solution to 

i - I  kJeJx)) AS 
S)*N S S 
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then Y(2t,x0vlk) ■ C(t,xotv,k) . So the orbits coincide. The 

coincidence of C(v,k) , CC(v(k) , and N(vtk) follows, or can 

he seen from the fact that in all three cases, the same function 

ia minimized. # 

113. The Nucleolufl as k-Centroid of v 

For any xcE(v) , let e(x) he the vector in *2*'2   wh08e compo- 

nents are the excesses eg(x) arranged in decreasing order. We will de- 

fine the "nucleolus of the set of efficient points," v*(v) , to be any 

point of E(v) for which 9(x) is lexicographically least over the 

hyperplane E(v) . Similarly, "the nucleolus of the game v ," v(v) , 

is generally considered to be that imputation for which 0(x) is lex- 

icographically least over the set of imputations for v . It has been 

shown that both v*(v) and v(v) are unique points (for a further dis- 

cussion of the nucleolus, see Schmeidler [22] and Kohlberg [15]). Clearly, 

if v*(v) is an imputation, then v*(v) and v(v) coincide. 

Proposition 11.28; Let v be any game. 

a) If core (v) ^ 0 , then v(v) ■ v*(v) and v(v) 

is a k-centroid of v for any choice of 

coalitional weights. 

b) If core (v) « 0 , then there exist coalitional 

weights (kg) such that v«(v) is a k-centroid 

of v . 

Proof; Part a) follows directly from the observation that if 

core v f* 0 , then for any keR+  , core v ■ C(v,k) and 

v»(v) E core (v) . 
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Part b) follows from a minor modification of an argument of 

Kohlberg [15] which yields the result that the s-st 

(8- {S|es(v»(v))}> 0 

is balanced. By Proposition II.7, therefore, there exist 

positive constants {djseiß} such that 

I ds A
S - 0 

0 ' c    ds 
TAT)      SE<3 

let     kg - 
V 
any positive value § i fä    • 

Then     I    k<,[e<.(v»(v))]
+ AS - 0 

proving the result. # 

Corollary 11.29: Let v be any game. If v*(v) is an imputation, 

then v(v) is a k-centroid of v for some set of 

coalitional weights. 

Corollary 11.30: Let v be any game. If v(v) is in the interior of 

the set of imputations for v , then v(v) is a 

k-centroid of v for some set of coalitional weights. 

Proof: If v*(v) is cm imputation then v*(v) ■ v(v) and the result 

follows. If not, then in a neighborhood of v(v) lying in the 

imputation set, there is a point y on the open line segment 

(v*(v) , v(v)) for which 0(y) is lexicographically less than 

0(v(v)) , contradicting the definition of v(v) . # 
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It is not difficult to show that If v Is a 0-monotonic game, then 

v*(v) Is an Imputation (see, for example, the proof of Theorem 2.1» in 

Maschler, et al. [17]. This paper also gives a definition of 0-monotonic 

games.). Therefore, ve have 

Corollary 11.31: If v is a 0-monotonic game, then v(v) is a 

k-centroid of v for some set of coalitional weights. 

lib. Examples 

The first example is a case where the core, the Shapley value, and 

the k-cocentroid do not coincide. 

Example 1;    v(l23) ■ 1     yU2) » 7/8     v(l3) ■ 3A     v(23) - 3/8 

v(l) ■ v(2) ■ v(3) - 0 

Core (v) -      (5/8 ,   lA  ,   1/8) 

eu -.    -.    / 23   1U   11 v 
Shapley value - ( ^f i ^ . Jfi ) 

18     11     11 x ,.        /iHr "i 
k-cocentroid of   v . ( |it ^ ^ Ji ) for kg 

The second example exhibits some solutions to 

•+AS 

(M\-i for   k- «   ( ,QI )    .    The trajectories are drawn in the set of imputations 

displayed in barycentric coordinates. 

Example 2;    Consider the game 

V(123) ■ 1      V(12) - 1/3     V(13) - 1/5      v(23) ■ 1/2 

v(l) - v(2) - v(3) « 0 . 
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solutions 

FIGURE 1 

For Example 2 
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Figure 1   depicts several of the orbits of Systemdl.b) for   k   ■ 1 

for all   S . 

It Is not difficult to see what Is happening along these trajectories; 

for Instance, along the trajectory narked (a), player 2    Is making pay- 

ment to   1   and    3   equally until core (v)    Is reached.    Along (b),    2 

Is again making payment to    1    and   3   until coalition    {23}    finds 

Itself with too little, at vhlch point player 1   must also pay   2   and 

3   to correct this Imbalance.    Over the trajectory, player 2*8   .share; 

decreases,    3*8    Increases and   I's   Initially Increases and then 

decreases. 

§15.    Discussion; 

We have observed that. In the limit of a bargaining trajectory, 

some coalitions will be dissatisfied If the core is empty.    One might 

Justifiably ask, therefore, why a dissatisfied coalition    S    should 

continue to participate In the bargaining vhen it can guarantee Itself 

v(S)   by removing Itself from the game.    One possible answer is that all 

of the members of   S   are members of other coalitions and can expect 

benefits from those other coalitions provided that they remain In the 

game.   Also, although   S   may be dissatisfied at some finite time, it 

can hope for satisfaction in the limit. 

In some cases, though, it would seem that the game should logically 

break up.    For instance, suppose at some time   t.  , Y.(t0,xQ,v,k) ^v({l}) 

and   rr tYi(
Ttxo»v»lc^lT»t    * 0 •    If Player   i   had no reason to believe 

Yi(»»x0»v,k) >_ v({i})  , then It would be in player    i's    interest to 

accept   v({l})    and, if possible, remove himself from the game at time 
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t . Then one could Investigate the game played by the rest of the 

players with initial point  xeRn"  with x » Y^tQ.x-.v.k) for 

J - l,...,i - 1 , and Xj » YJ+1(t0,x0,v,k)  J = l,...,n-l. 

Thus, In this way, bargaining systems could be used to predict breakup 

of the game by the removal of the players. By noting for which 

t ,Yi(t,x.,v,k) ■ v({J}) and is decreasing, it might even be possible 

to predict In what order the players would leave the game. 

We conclude with a few remarks about* initial points and efficiency. 

We have assumed throughout this chapter that the Initial point x. was 

efficient and in that way we accounted for v(N) . If xQ is not 

efficient, however, then solutions to the systems 

[es(x) -i S 

n^ilj Ti^iT 
i. i 

Sfti 
ks  [es(x)]+AS 

do not coincide. One could choose one of these systems, (or a variation 

of it) and produce a trajectory that would redistribute x_(N) in a way 

that the unit point would also be nonefficlent. If, however. It were 

desired that the limit point be efficient, it is easy enough to add a 

term to the first of the above systems which would yield trajectories 

which tended toward the hyperplane E(v) . For example 

.S 
-♦ k^ejx)) - 

A" 

req(x) -i+  AS .K 

N T 
where A ■ (1,1,...,l) . It is not difficult to see that if 

Y'{t,x0,v,k) is a solution to the above system, then Y'^x ,v,k) 

will not only be efficient, but will also be a k-centrold of v as 

previously defined. A similar device will work for allocation systems. 
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A conceptual difficulty arises In.sdtag from a non-efficient to on 

efficient point in that peyoff vill either have to be ocnufacturea or 

deetroyed in a system vhlch is essentially closed. 

In some cases, however, it may be.helpful to assume the existence 

of aa external element affecting the game. The next chapter vill in- 

vestigate one such ease. 



III. Noneffie lent Bargaining Systems 

SI. A Modified Bargaining System 

Suppose one had a situation wherein the players could not 

directly exchange the commodity under arbitration but had to act 

Instead through a third party, a "referee", vho also had the power 

to extend "credit" to all the coalitions. Then it might be reasonable 

to expect bargaining trajectories to leave the hyperplane E(v) although 

it seems natural to require that the limit of any such trajectory 

be efficient. 

We will assume in this section that while the payoff may not 

be directly transferred among players or coalitions, the excess ee,(x) 

is still a measure of the satisfaction or dissatisfaction of coalition 

S at x. 

Consider the following system of differential equations, which 

we will call an "intermediary bargaining system"; the Intermediary being 

the aforementioned referee. 

N S 
(III.a)    1 - kM eH(x) —äa— + I   k0 [ee(x)r —^ N N   "aNll2  SJN S  SV J ||aS||2 

where for all Se2 -0, ks>0 and a eR such that 

S   fl for leS 
for i^S. 

We can also define, as in Chapter II, the k-lcentroid of v 

(the "1" stands for "intermediary") to be that point in Rn which 

minimizes 

61 
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ia   il S/N l|aS| 
5(x.v.k) - -r-^r-2 (eN(x))2 +    I   -^-g ([es(x)m 

Unfortunately, as can be seen from later results, the icentroids 

of v are,  in general, infeasible, i,e,t x(ll)>v(K) for any icentroid x. 

Icentroids, and appropriately defined icocentroids and inuclei will 

not be dealt with at any length. 

Consider, however, a game v such that core(v) 4 0.    Since 

E(x,v,k) >_ 0 for all xeRn and 5(x,v,k) = 0 if and only if xe core(v), 

it is clear that the set of k-icentroids of v is precisely core (v). 

In view of this fact, therefore, we will, in the remainder of this 

chapter, only consider games with nonempty cores.    The following 

results are directly out of Chapter I, 

Proposition III.l;    For any x0eHn» there exists a solution Y(t,x0,v,k) 

to System (III,a) such that LIM Y(t,x0,v,k) exists 
t-w» 

and is a point of core (v),  (As before, denote 

this point by Y^.x-tV.k). 

Proposition III.2; Y(0otX0,v,k) is Jointly continuous in (x0,v,k) 

2n 1 
over R x W x R  " where W, as before, is 

{v|core (v) j 0}. 

Note that we do not require x0 to be efficient, although we 

will generally assume that it is. 

The behavior corresponding to System (lll.a) differs from 

that in Chapter II in that the coalitions do not make demands on 

each other, but rather on the referee, who pays only to those coalitions 

with positive excess in proportion to that excess. The vectors {a } 
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indicate that when the referee makes payment to a coalition, all 

menibers of that coalition receive cm equal share. 

N 
The term k« e„{x)  ——W"—« c«1 he Interpreted as follows. If ** N   ||aN||2 

x is a point where x(N)<v(N)( the referee will make payment to all 

the players equally until an efficient point is reached. On the other 

hand, if x is infeasihle, which is likely to happen as the coalitions 

extract their demands from the referee, then the referee will require 

that the players pay a "penalty" in proportion to the infeasibility 

of x. This "bonus-penalty" function of the referee is precisely the 

mechanism whereby efficient limits are attained. Without it, the 

coalitions would simply demand sufficient payoff to satisfy them all 

without regard to the amount actually available. 

We will now investigate the trajectories of the intermediary 

bargaining system. 

Lemma III.3; If x0eE(v), then Y(t,x0,v,k) is efficient or infeasihle 

for 0<t<f and if x- i  core (v), Y(t,x0,v,k) is infeasihle 

in some (positive) neighborhood of t * 0. 

JSOOf:    »(H) - HU.,.*) . ^ ks[.s(x)]
+ y[äi_2 ♦ k^U)) -M_ 

Since x0cE(v), eN(x)"0.    If x0ecore (v)t Y(t,x0,v,k)»x0 for 

all nonnegative t.    If x-jicore (v), then H(x0,v,k)>0 so by 

continuity 
n 
^    Yj(t,xn,v,k) > v(N)    for t in some 

i-1    1 
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neighborhood [0,e) of 0. To see that 

n 
I   Y.(ttxn,vtk) > v(N)  for all t, it is enough 

i»l 1   U 

to observe that if x(N) < v(N), H(x,v,k) > 0. So, if at 

any time t, 

n 
I   Y.(t,x .v.k) < v(N)f 

i=l 

an application of the Mean Value Theorem would provide 

the necessary contradiction. # 

Lemma III.U; If x1 is efficient and HU'tv,k) • 0, then x' e core (v). 

Proof; This follows immediately from the definition of H. # 

Suppose x- e E(v)-core(v). Then Y(t,x0,v,k) can never become 

efficient for 0<t<-, since if it did, say at t0, then by the continuity 

of H, it would follow that H(Y(t0,x0,v,k) tv,k) « 0 , so by Lemma III.U, 

Y(t0,x0,v,k) e core (v). But uniqueness of trajectories implies that 

Y(t0,x0,v,k) is a critical point if and only if xn is a critical point, 

which we assumed was not the case. Therefore we can state the following 

proposition. 

Proposition III.3: Let x e E(v)-core(v), Then Y(t,x0,v,k) is 

infeasible for all finite positive time, and 

converges to a feasible point as t-*-00. 

Thus the trajectories can be characterized as looping up from 

and back to the hyperplane E(v), In terms of a behavior, one could 

say that initially the referee pays to the coalitions faster than 
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they are penalized, however ultimately the penalty role of the 

referee dominates. 

Note that is possible to set a limit on how infeasible the 

trajectories become, since 

d(Y(t,x0,v,k) | core(v)) 1 d(x0 | core(v))  for all t>p. 

Of further interest is the question of which points of the 

core are reachable through intermediary bargaining starting at 

noncore efficient points.    This, of course, was no problem in Chapter II, 

whei-p only boundary points of C(v,k) relative to E(v) were reachable. 

We will show that this is also the case here. 

Lewwift III.6:    Suppose x0 c E(v)-core(v).    Then for all t>p, there 

exists a coalition S # N such that es(Y(t,x0,v,k)) > 0. 

Proof;    Suppose not, then for some 0<t0<» , es(Y(t0,x0,v,k)) ^ 0 for 

all S # N.    Further suppose t0 is the first time for which 

this happens.    Note that for any «S ^ 0, 

es(Y(t0,x0,v,k) + 6aN)  <, 0 and 

eN(Y(t0,x0,v,k) + 6a )  < 0. 

Therefore, equation (III.a) becomes 

N N 

(Ill.b) i - k {eN(Y(t0,x0,v,k) + 6an)} -^-v, . 
Ma || 

If we integrate equation (III.a) backward in time  (i.e., in 

the direction of decreasing t) from Y(t0,x0,v,k), it is clear 



66 

that the equation of motion will be 

TT " •*« O*) ""T;—'o   where x * -t. dx    N N   ||aN||2 

Hence the backward trajectory from Y(totxolv,k) lies on the 

ray 

N 
Y(t0,x0,v,k) + 6a , 6 ^ 0   and thus for some t. < t0, 

eg(Y(t1,x0,v,k)) < 0 for all S ?< N, contradiction the 

assumption that t0 was the first such time. # 

Proposition III.7: For x0 e E(v)-core(v), Y(
cotX0,v,k) is an element 

of the boundary of core (v)  (relative to E(v)). 

Prooft From Lemma III.6, for n ■ 1,2,.,., therfe exists S such that 

N 
eg (Y(n,x0,v,k)) > 0. Since 2 is finite, we can, without 

n 

loss of generality assume that S    » S.  for all n.    Therefore 
n   u 

e» (Y(n,xA,v,k)) > 0  for all n so that 
S0    0 

es (YC-.XQ.v.k)) >_ 0. 

But Y(0,,,xr.,v,k) e core (v) implies ee (Y(
<10,xr,,v,k)) »0.  # 0 s0    0 

12. Coeditional Weights and Symmetry 

As in Chapter II, we wish to investigate possible choices of the 

coalitional weights. Let x ■ D(x,v) stand for equation (III.a). Let 

ir be any permutation on {l,2,...,n} and irv, TTX be as in §9 of Chapter II. 
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Proposition III.8; A necessary and sufficient condition that D(irx,Trv) 

■ irD(xtv) fpr all xt  v, ir, Is that k0 ■ 1^ 

whenever |s| ■ |T| . 

Proof; The proof of this result follows that of Proposition 11.16 exactly. 

Using these coalition weights,, and the notation of Chapter II, 

we obtain these corollaries. 

Corollary III.9; If 1 » J and xi l«,. then D^x.v) >.D,(x,v). 

Corollary III. 10; If 1 » J and (x0)i >, UQK. then 

Yi(t,x0,vtk) > Yj(t.x0,v,k) for all t >. 0. 

Corollary III. 11; If 1 and J are symmetric, (XQ)I " (x«)., then 

YjU.x^v.k) ■ Y (t,x0,v,k) for all t >, 0. 

Thus, with certain coalltlonal weights, symmetry is preserved. 

Unfortunately, there is no result analogous to the one for dummies as 

in Chapter II. This is because a dummy player receives payment for 

all the dissatisfied coalitions of which he is a member, but does 

not have to pay a substantial penalty until after the trajectory 

has become infeasible. 

S3. Nonsidepayment Games 

Because the trajectories of (ill.a) become infeasible, and 

because of the existence of the (possibly objectionable) referee, 

the preceeding analysis is not suitable for true cooperative games 

with sidepayments. As was Indicated in the beginning of this chapter. 
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this model could apply to a situation where the coalitions aould not 

directly transfer payoff and had to make their transfers through a 

third party.    Under such conditions, a referee would not be inappropriate. 

Because of the assumed form of the excess, however, this model is 

not applicable to the general nonsidepayment cooperative game (for a 

survey of nonsidepayment games, see Aumann [2]).    Still, it is felt 

that this is a beginning in the study of a differential approach 

to the dynamics of nonsidepayment games.    The missing elements in 

this study are an adequate interpretation of excess, and, more 

importantly, vectors indicating how the coalitions will split any 

payment which they receive. 

For one limited class of nonsidepayment games, these elements 

are present and bargaining systems can be constructed.    A "hyperplane 

game", as defined by Billera in [1*1, consists of a set of players N, 

N N coalitions S e 2 , a characteristic function v: 2   ->• R, and vectors 

g    e Rn for all S e 2    which are such that for any S, gi ^ 0    for 

i = l,...,n and g^ = 0 whenever i ^ S.    These vectors determine 

"game subsets" 

Vs « {x e Rn l<-gS,x> + v(S) >, 0}. 

The core of such a game is defined to be 

{x e VN | x ^ interior(Vs) for all ScN}. 

Equivalently, the core is the set of points such that 

<-gS,x> + v(S) £ 0 for all S, and 

<-gN,x> + v(N) ■ 0. 
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Clearly, a bargaining aystem of the form: 

S -N 

Sfto | Ig  |1 ||g 11 

will have solutions converging to the core, whenever nonempty,    It is 
S N 

possible, by constructing vectors G , perpendicular to g , to devise 

a bargaining system for these games whose solutions lie entirely in 

{x |   <-gN,x> + v(N) » 0}. 



IV.  Some QuestiOiis and Cone 1 ._■-■■—<i; 

In [3]» Billera exhibited a system of differential equations 

which has continuous solutions converging to the kernel of a cooperative 

game with sidepayments. Briefly, his system is: 

n 
(IV.») i-X {d (x)-d.(x)}    f or i - 1 n 

J«l  1J     J 

where   d. .(x): Rn * R, and is continuous for i,J ■ l(...,n 

and   0 < d (x) < k (x)   for i.J • l,...,n 

where  ^.(x) - 1/2 U^U) - Sji^)^. 

8iJ (x) 

MAX {e_(x)| ieT, J^T)  when i^J 
T   l 

0 when i"J. 

In order to compare this system with the systems in this paper, 

we need some terminology. We will say that a system is "interpersonal" 

if the behavior it describes is primarily one of interaction among 

individual players. A system is "intercoalitional" if the interaction 

is primarily among coalitions, with the Individual players participating 

only insomuch as they are members of coalitions. 

System (IV.a), therefore, is clearly interpersonal since changes 

in payoff distribution are the result of demands by individual players 

on the others. 

The bargaining and allocation systems of this paper, however, are 

clearly intercoalitional. Demands and payments are made by coalitions 

as units, with the individual players playing secondary roles. 

It is interesting to observe how information is utilized in the 

various systems. In all cases, the basis elements of information 

70 
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available to the players are the excesses.    Bargaining systems utilize 

'„.lern to calculate dissatisfaction, allocation systems, disorder, while 

in (IV.a), the excesses are used to compute the demand Individual 

players make on each other. 

While one might he tempted to characterize some «olution concepts 

only as Interpersonal or intercoalitional depending on an associated 

system, there is a danger In that there may be various types of systems 

converging to any given solution concept.    This Indicates possible 

areas of future investigation:    do there exist interpersonal systems 

for tbe core or the Shapley value and are there intercoalitional 

systems for the kernel? 

Recall that the systems of this work each had an associated convex 

function.    The solutions of a system followed the negative gradient 

of that function.    Therefore, another question which can be asked 

about System (IV.a) is whether there is some function II(x) such that 

System (IV.a) can be rewritten 

i = -VII(x). 

Kalai, Maschler, and Owen [13] have displayed a number of functions 

which decrease along solutions of (IV.a), but it is unclear whether 

these functions can be utilized to provide such a n(x) since they are 

not continuously differentlable.    We can note one fact about n if it 

exists.    Since the kernel of a game is not necessarily connected, if we 

desire that VII = 0 only on the kernel, it follows that n cannot be 

convex as are i and 0.    Thus II may have critical points which are 

local maxima or saddle points, accounting perhaps for the (Lyapunov) 

instability of some kernel points under (IV.a)  (see  [13] for instability 

results). 
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System (IV.a) la closely associated with Stearns'  sequences of 

discrete transfers [27j.    It is believed that similar systems of 

discrete transfers can be defined which approximate the trajectories 

of the systems defined in this paper and which converge to the same 

solution concepts.    Wang [30] has described a transfer sequence based 

on a method of Agmon [l] which converges, when the core is nonempty, 

to a point of the core.    For an efficient initial point x0, her 

sequence is as follows: 

C N[x    J    if x   .is not efficient n-i n-i 

Stx- , ]    if x   ,18 efficient and v n»i n-1 
MAX 

Vi     if Vi e core (v) 

X n 

^ - V! {-^1} •H 
where N[x    , J ■ x 

1*1 

siVi1 " Vi+pÖ^V8' 
L      8        J 

It turns out that every second step of this sequence yields an 

infeaslble point, requiring the "N-correctlons", N[•], to return the 

sequence to the hyperplane of efficient points.    As was indicated in 

Chapter III, this type of situation is tolerable under certain 

modifications of the notion of cooperative game, but for a game with 

true sidepayments, and no outside "referee", this sequence is not 

entirely intuitively satisfying.    It can be seen as a direct result 

of Agmon [l], that the following sequence of transfers converges 

to the core, whenever nonempty, and moreover each point    in the 
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sequence is efficient for any efficient initial point x0: 

x if x    ,   e core (v) 1    n-1 ö-l 
x n .S 

x    .  + ejx    ,) Ab        if *    T* 
core (v) anä 

n-1       S   n-l n-x 

^\^  ' f eT{\J  >0- 

Work remains to be done on other solution concepts and in 

particular many questions remain concerning the nucleolus.    It was 

shown in Chapter II that under certain conditions, the nucleolus is a 

k-centroid for some set of coalitional weights.    It need not, however, 

be the unique k-centroid for that set of weights, particularly if 

the core is non-empty.    One cao therefore ask whether or not there is 

a system of differential equations for which the nucleolus is the 

unique critical point. 

Returning to the characterization of the nucleolus as a k-centroid, 

it would be of great interest to know the properties of the coalitional 

weights for which this is true, i.e., for precisely which values of {kg} 

the nucleolus is a k-centroid.    Some preliminary investigation indicates 

that often 

is one such set of coalitional weights.    If this turns out to be true 

in more generality, then it may lead to a result indicating under what 

conditions the nucleolus and the Shapley value coincide. 

Investigations should be made into the behavior of actual players, 

and how they adjust payoffs over time.    With information on this question. 
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it would perhaps be possible to determine whether the behaviors 

described in this work have analogues in reality. 

In Chapter III, some indication was made of the difficulties 

inherent in the case of nonsidepayment games. More investigation 

into differential approaches to these games remains to be done. 

Finally, a conjecture of interest and importance is that the 

collection J  of dissatisfied coalitions at a k-centroid of a game 

is independent of the coalitlonal weights. If so, 1/ is a function 

only of the game and may be of value in determining which coalitions, 

by unusually large characteristic function values, prevent the 

existence of a nonempty core. 
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