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Introduction

It is of great interest to the study of cooperative game theory
to develop models whereby the dynamics of negotiation amoug the players
can be 1nvea£igated. One approach to this problem concentrates on the
use of discrete transfer schemes to study how players might arrive at
a desirable outcome. A parallel approach employs systems .f differential
equations whose solutions represent a continuous transfer of payoff over
time. It is the intention of this work to further research in this
latter area.

The advantages of such an approach are multifold, Not only does it
enable us to view game theory in terms of the actions of individusls or
coalitions, but it also enables us to characterize solution concepts in
terms of associated "behavior". Having done so, it is possible to ask:
which points of a solution concept are attainable, given a certain set of
actions on the part of the players; which points are stable and in what
sense; vhich are stable only from certain directions; how a final point
could be reached over time; and so forth.

In 1968, Stearns [27] exhibited a sequence of discrete transfers
of payoff among the players which converged to points of the Kernel of
Davis and Maschler [8]. In 1972, Billera [3] smoothed these transfer
sequences to obtain a system of differential equations whose solutions
represented a continuous transfer of payoff and which also converged to
the Kernel. In 19Th, Wang [30] showed that a modification of the
relaxation method of Agmon [1] could provide a discrete transfer

sequence which converged to the core [11] of a game.



In this paper, we exhibit several systems of differential equations
which represent possible behavior patterns for the players. The solutions
of these systems are shown to converge to a number of solution concepts,
among them the core, the "two-center" of Spinetto [26], and the Shapley
value [23]. This is accomplished by defining for games classes of
optimal "centroids" end "nuclei" whieh fall into the class of "pre-
emptive nuclei" as defined by Charnes and Kortanek [5], since they
minimize certain convex functions. These centroids and nuclei are the
critical points of the various systems of differential equations and it
is shown under what conditions the centroids and nuclei coincide with
classical solution concepts.

This work is divided into four chapters., Chapter I establishes
most of the mathematical foundation for the rest of the paper and also
provides some geometrical insight into the processes discussed. Cheapter II
is an application of these results to cooperative games with sidepayments
and also proves some results peculiar to this formulation. Chapter iII
is a somewhat different approach to cooperative games wherein coalitions
bargein through an external referee. Some attempt 1s made to study
games without sidepayments. Finally, Chapter IV is a comparison of
these systems with the dynamic approach of Billera and also contains

some questions of interest.



I. Systems of Differential Equations with Polyhedral Stable Sets

81, Geometric Considerations

Let {ai} i=1,...,m be a fixed set of unit vectors iu R" where

n

R” is Euclidean n-space. For beR™ with components {bl’bz""'bm}

and xERn define the functions
gl(x,b) = <ai,x> +b, .

Here, <,> 1is the standard inner product on R® , and we will also
denote by ||:|| the Euclidean norm on the appropriate space. Also
define

PL(b) = (x|g}(x,b) = 0 i=1,...,m

core (b) = {x|gi(x,b) <0, i=1,...,m} .

Each P(b) is a hyperplane in R® while core (b), if nonempty,
is a possibly unbounded polyhedron in R® since it is the intersection
of half-spaces, Here, as in the rest of this work, "polyhedron" will be
synonymous with "convex polyhedron." The following two facts are
elementary results from analytic geometry:

a) The normal (perpendicular) Euclidean distance from any point

xR® to P'(b) is Igi(x,b)l (vhere [:| is absolute value),

b) The normal vector from any point xeR" to a point in Pi(b)

is -gi(x,b)ai.
Let R, = {ken"‘lki >0, 1=1,...,m,i.e., R, is the strictly

positive orthant in R® . For keRT , consider the following system of



differential equations:

- 3 1 + i
(I.a) x = D(x,b,k) = = k;[g"(x,0)]" =

i=1

here i = ax
wher F

and []" = max{-,0}

m

+ 0 xoeRn , there exists a unique

Proposition 1I.1: For any beR™ ,» KER

soiution Y(t,x.,b,k) to (I.a) , continuous in t

O’
for te(= =,»j and such that Y(O,xo,b,k) = x

0 .

Proof: This is an immediate consequence of the fact that D(x,b,k) is
continuous and locally Lipschitz in x . The reader is referred
to Coddington and Levinson [ 6], or Hale [12] as references for

results on systems of differential equations, #

Geometrically, one can imagine the half-space
ix|g*(x,b) > 0}
to be the "wrong side" of hyperplane P'(b) . All other points will
constitute the "right side." At any point xeR" , consider all those
i such that x 1s on the wrong side of Pl(b) . Let us call such a
Pi(b) an "offended" hyperplane. Take a positive linear combination of
the normal vectors from x to the offended hyperplanes to cbtain
- 1 kg )" et
5
Thus, the solutions of system (l.a) tend to move toward the offended

hyperplanes as t increases, ignoring the others, so 1t might be



expected that, along solutions, the distance to offended hyperplanes
would tend to decrease. This notion will be made rigorous and proven

later,
§2, Centroids

With {0.1} ,b,and k as above, we can define C(b,k) , the

set of "k-centroids of b (with vectors {ai})" to be

{xcR"|#(x,b,k) = IWF ¢(y,b,k)}
yeRP

n 2
b oy b= 3 x, ( ety antY) .
vhere y izl i( g (y )

Observe that (1) if core (b) is nonempty, then core (b) is precisely
C(b,k) , and (2) C(b,k) 41s, in this case, independent of k . In

general, however, C(b,k) 4@ not independsnt.of Xk ..

Proposition I.2: For any beR™® , and ks:R';l , Clbk) # 0.

Proof: ¢(x,b,k) 20 for all xeR® , so INF #(x,b,k) exists.
B x
let w= Igl' #(x,b,k) . There must exist a sequence
{x | 2= 1,2,...} such that
Q(xn.b.k) < O(xn_l,b,k) for n=1,2,,.. and
LIM o(x_,b,k) = v,
Déw a
It {||x ||{n=242,...} 1s bounded for all =n , then (x }

has a limit point x, end O(xo,b.k) = v by contimuity of ¢ .



Suppose Han + o ., Let
M = {i|gi(xn.b) >0} n=1,2,...

Since there are only a finite number of posgitile Mn » there

must be & subsequence of {xn} (which we will also denote by
{xn} ) such that O(xn,b,k) *w and M =M forall n.
Let K= {xeRnIgi(x,b) >0 all t.Ml,gd(x,b) < 0 for all
J¢M1} . K is a clused, nonempty polyhedron (in particular all

x €K ) so, by Theorem 2,12.6 of Stoer and Witzgall [28], we
can decompose K as follows:

K=P+ P'

P 18 a polytcpe such that PCK

P' 1is the cone {x|<ai,x> >0 for all

ieMl . <’ yX> <0 for all JtMl} .
Therefore, each x can be written

+ A
X, =V YU yneP ’ uneP

i . 2
(I.b) o(x ,byk) = ] k (<a’,x>+b)

ieMl

i 2
= ) k,(<a®yy +u>+b,)

iy

- 1*z="1 ki{(<ai'yn> * bi)2 + (“1'“{)2

i ) i
+ 2(<a >+ bi)(<ai.uﬁ>)} .
Since PCK , gi.('.;'n.b) >0 for all 1&M1 . From the

definition of P' above, we see

<li,un> >0 for all n, for all ieMl .



Therefore from (I.b)

O(xn,b,k) > ¢(yn,o,k) >w,

but ¢(xn,b,k) converges to w and s0 ¢(y“,b,k) converges

to w . But al yeP,and P is compact, sc {yn} has a limit

point X, and 0(x0,b,k) = w ., Therefore xoeC(b,k) . #

+
Since [*] is a convex, nonnegative, and nondecreasing function
on R, and (')2 is convex while g (x,b) is an affine function of
x , it follows that ¢(x,b,k) is also a convex function in x . Observe

also that ( [']+>2 is continuously differentiable with
d +\2 +
Eg-([s]) =laie)

Thus, ®(x,b,k) 1is continuously differentiable on R"

Let x = £(x) be any system of differential equations on R .

A "critical poiit" of the system is any point ¥y such that f(y)=0.

Proposition I.3: X is a k-centroid of b if and only if

Vo(x,b,k)lx = 0, where V 1is the gradient operator

with respect to x .

Proof: This follows from the observation that ¢ is convex and

continuously differentiable (see Fleming, [ 9 ], section 2-5). #

Proposition I.k: X, 1is & k-centroid of b if and only 1if x, is a

critical point of System (I.a).



-
" -

m
Proof: 3%- (¢(x,b,k)) = 2] ki[<a,i,x> + ‘bi]+ ol

3 1=1 J

Hence, V&(x,b,k) = - 2D(x,b,k) , so x. 1is g critical point

0
if and only if D(x,b,k) = 0 if and only if vo(x,b,k)lxo =

o

if and only if x, 1is a k-centroid of b . #

0
§3. Properties of C(b,k)

We will now establish certein properties of C(b,k) . An easy
observation is that if core (b) ¥ @ , then the set of k-centroids of

b is a polyhedron. This is true even if core (b) = ¢ .
Proposition I.5: C(b,k) is a closed polyhedron.

Proof: Let Xq Xy be k-centroids of b . Then

m
o= ) k[gt(x b))%t
1E113x1 *

i +. 1
80 0= igl ki[s (xl,b)] <@’ ,Xy=X,>

¢ 1 + .4 i
= 121 k,[g7(x) ,0)]7 (g7 (xb) = g7 (x,,b)) .

g 1 +, 4 i
Similarly O = ) k [87(x00)]" (8 (xp0b) = £ (x;40)) .
=1

Subtracting ve obtain: .

m
0= } k(le"(x;,0)1"[g"(x;,0)1")(6" (x,b)-g" (x, 1))
i=] -

n
-1 ki{:-([si(xl.b>1*)2 - ([g! (xqy2)1")?
i=]

+ [gi(xl.b>1*(gi<xo.b>)+[s*(xo.b>1*<ai<x1.b){}



-

A

o s
B {- et ot - a2

+ 2[gi(xl.b)]'igi(xo,b)]{}
m 3 ¢
-- 1 k, ([&" (x,0)1" = [g*(x,,0)1N)% < 0,

Therefore, [gi(xo,b)]+ = [gi(xl,b)]+ 1l + 2 IR s

moreover, if X, is any point in R" such that

[gi(xz,b)]+ = [gi(xo,b)]+ » then x, must also be a
k-centroid of b since ¢(x2,b,k) = 0(xo,b,k) . Therefore,
knowing that there exists at least one k-centroid of b , Xq s

C(b,k) can be rewritten as
{ n; i i
xeR" |g (x,b) <0 for all i for which g (xo,b) < 0}
N { n, i i i
xeR |g (x,b) = g (xo,b) for all i for which g (xo,b) > 0}

which is the finite intersection of half-spaces and hyperplanes

and is therefore a polyhedron. #

The following fact which appears in the previous proof bears
emphasizing:

Corollary I.6: [gi(x,b)]+ is constant over C(b,k) for i =1,...,m .

Geometrically, this means that all k-centroids of b not only

"Sffend" the same hyperplanes, but lie equidistant trom each. of them.

Corollary I.7: If X, and x, are.distinct k-centroids @f b , then

<x; - xo,a1> = 0 for all i such that gi(xo,b) >0,



Corollary I.8: Let X, be a k-centroid of b . If {ailgi(xo,b) > 0}

upan R s then x_  is the unique k-centroid of b .,

0

It would be of interest to know how the set C(b,k) changes with
P and k . Unfortunately, this is still primarily an open question as
of this writing, although partial answers can be given. In particular,
vhen core (b) # @ , belinterior {b|core b # #}} then small changes in
b affect C(b,k) = core (b) only slightly. To show this, we first
establish some terminology in the manner of Dantzig, et al. [T7].

Let {An} be a sequence of subsets of some metric space X (in
our case, X will be R").

Define

i-’m n. i

(LIMA = {}ex|x = LIM x_ where {n ,} 1is an infinite sequence of
i

integers and x_ €A .

LIMA = {%exlx = LIM x  where x €A for all but a finite number
="n n+e N n n

of %} .

If LIM A =TI A, then we say LIM A_ exists and ve set

LIMA =LIMA =LIMA .,
n - n n

LEMMA 1.9 (Dantzig et al.): Let X be a metric space and let {An}
be a sequence of connected subsets of X .
Let U be an open subset of X with com-

pact boundary, If LIM An is nonempty and

10

LIM AnCU s then AnCU for all sufficiently

large n .



11

ImtA 1,10 (Mantzig et al.): Let {b™} be a sequence in R" , where) b™+b
and supvose core (b) # g , core (%) # ¢
for all n , then LIM (core (b)) -

= core (b) .

We would like to be able to quantify this notion by putting a
metric on subsets of R° + To do this, first define ‘or any x€R™ ’

n
and 'any set ACR

a(x|a) = Iy |[x -yl .

For two sets A and B in R" define

u(A,B) = !u\x(sup. a(x|B) , SuP _d(xlA)) .
XEA X€EB
This is a metric on the space of compact subsets of R" and is
commonly called the Hausdor{f metric. The following proposition estab-

lishes the continuity of core (b) in the Hausdorff metric. This has

already been observed by Sondermann [25] in the case of games,

Proposition I.11: Suppose b + b , core (b") # @ for all n ,

core (b) # # and core (b) is compact. Then for all
€ > 0 , there exists N s.t.

u(core (b) , core (b")) < € whenever n >N .

Proof: ©Suppose not, then there exists an € > 0 and a subsequence
n
n, > = such that (core (b i) , core (b)) > €, This can

happen in either (or both) of two ways.

n
i) "here. éxists subsequence ny + e, x, €core (bd) and

J

d(an | core (b)) > ¢ for all J .



-

i1) There exists subsequence n *®, x € core (b) and
k

Nk
d(xnk | core (b 7)) >  for all k .

Sujpose i) occurs, then by Lemma I.9, {xn } must have

a convr.rgent subsequence, so without loss of generality we may

assume {xn } converges to some point Xg o By definition,

€ LIM core (b*) , hence x. € core {b) by Lemma I.10. But

*o 0
d(an | core (b)) > ¢ implies d(x0 | core (b)) >€e,a
contradiction.

Now suppose 1ii) occurs. By the compactness of core (b) ,

we can assume xnk *+ x, € core (b) . But X, € core (b) if and

n
only if x, € LIM core (™) so Xo ® k_I’g ynk where

n
¢ core (b K)  for all but finitely many k . Pick k

Y
"
sufficiently large so that

llxnk-xoll <€/2 and

llynk = x0|| < 5/2 ¢

Therefore ||x, - ] < ¢ 8o that
k

"k

€ II n Y Il d( I core (b ))
x - .

But we assumed d(_xnk | core (bnk)) > € so we are left with

another contradiction. #

12



$h. Convergence of Solutions of (I.a)

We have already shown that the k-centroids of b were precisely
the critical points of System (I.a). The next Proposition will show

the relationship between solutions of (I.a) and C(b,k) .

Proposition I.14: For any xocRn . beR™ and .keﬂf s Lbe :sdlution
v(t,x ,b,k) of (I.s) with Y(O.xo,b.k) * X,

is bounded for t > 0 and further, as t *+ « ,

Y(t.xo.b.k) converges to & k-centroid of b .

Let x be any k—centrcid of b . For eny x&RD

E

define
Z(x) -% lx - 2}1° .
Thus, along anyusélutionto (I.a) , i.e., where

x = x(t) = Y(t.xo.b.k) ,
@ CE, x - 1)

n
« -] xletx,p)] <l x-i>
i=]

m
= I xlexp)) el i
i=1

n
- k (gl(x,0)1" (g (&,b) < atix,b)) .
121 18 . (8 = SLL )

We sav in the proof of Proposition I.5 that

m
x [g'(£,2)1" (gl (x,0) - g*(x,b))= 0.
1.2.1 e (s % g (x )



(I.c)

(I.e')

14

Therefore, by subtracting

m
Lze ] xlex) - (6'&,0)1N)E D) - g'(x,0)
i=]

n
<= ) x(lexp))* - (&)1 <0,
i=l

i.e.,
'd;‘t' Hv(r,xo,b,k) - x|] 2|‘r-t-<-° forall t > 0 so
Ilv(t,xob.k) - %]] < 1%y - ¢/ foralx t>o0,
Moreover, (I.c) and uniqueness of solutions imply that if X,

is not & k-centroid of b , then

d—:- [1v(7,xg0b,k) - %12, <0 forall t20.

Hence, Z(x) is a Lyapunov function on R" for System (I.a)
and it follows from standard resultc (see Hale [12], p. 296)
that the w-limit set of Y(t,xo.b,k) is contained in C(b,k)
vhere the w-limit set of Y(t,xo,b.k) is the set of limit
points in R® of Y(t,x,,b,k) as t + . All that remains

to show is that Y(t,x.,b,k) converges to a single k-centroid

0
of b . Suppose there were two distinct points, X and x

in the w~limit set of Y(t,xo,b.k) . Let € > 0 be such that
||;'- i|| > 2¢ , By the definition of w=limit set, there
exists T >0 s.t. ||Y(T,x0.b,k) «-x|] <€, but

IIY(t,xo.b.k) - x|| 1is a decreasing function of t , so for

all £ 27, [Ivtx bk =%l <e 8o [I¥(t,xy,b,0-%l] > €,

contradicting the assertion that X was in the w-limit set

of Y(t,xy.byk) . #
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Note: In the case that core (b) ¥ ¢, it is possible to show the
following more general result, For i =1,,..,m , let ri(-)
be a continuous and locally Lipschitz function on R such that
tl(s)>0 1f 8>0, £ (s) =0 if 8<0. Then if
Y(t,xo.b,f) is a solution to the system
x=- ? (g (x,p))e!
isl

thenas t+ » , Y(t,xo.b,f) converges to a point of core (b).
For fi(') = ki[']+ , this result is contained in Proposition I.1h,

We will denote the limit point of Y{t,x,,b.k) by
YQw,xo.b,k) . It is evident from equation (I.c') that all
kecentroids of b are stable [in the sense of Lyapunov) points
of System (I.a). It clearly follows that System (I.a) has no
unsteble critical points.

Convergence, as has been seen, is straightforward. For any
initisl point x, , the solution Y(t,xo,b.k) approaches each
kecentroid of b simultaneously as t + » and converges to a

particular one.

Convergence can be viewed in another way, however. Since
the k-centroids of b were characterized as the minimizing points
of o(x,b,k) , it is of interest to investigate
o(y(t,xy,byk) , b,k)
a8 t + « , Recall that in the pro.f of Proposition I.lt we
showed that
V¢ = - 2D(x,b,k) .

Thus we immediately see that



16

d d 2
15 O(r(tx,b,k) byk) = <v0,2{¥(t,xq,Dk)> = -2| Ip(x,b,k)|[|°

that {8, ¢ 1is decreasing along solutions of (I.a). Moreover,
since System (I.a) can be rewritten

X= - %— v6(x,b,k) ,

the solutions of (I.a) follow the negative gradient of the
function % . In other words, at any point x , the solutions

of (l.a) tend in the direction most optimal to minimize ¢ .

In general, however, it is not the case that the soluticas follow
e shortest path. (in the sense of arclength) from x, to c(v,k) ,

nor is ¥Y(wv,x.,b,k) necessarily the closest kecentroid of b

o’

to xo.

§5, Coceéentroids

The set CC(b,k) of "ke-cocentroids of b" is the set

{xeR™|¥(x,b,k) = INF ¥(y,b,k)}
yeRP

m i A2
where ¥(x,b,k) = § k [« g (x,b)] .
i=1
No.e that the k-cocentroids of b (with vectors {a'}) are the
kecentoids of =b (with vectors {-ai}). Hence such observations as
CcC(b,k) is & polyhedron and [-gi(x,b)]+ is constant over CC(b,k)
and so forth are obvious., Moreover, it immediately follows that

solutions of

m .
(I.a) x= ] k[-g'(x,p)]%}
i=]



converge to k-cocentroids of b . We will say more about cocentroids

later on.

§6. Continuity of Limit Points

We can consider Y(m.xo,b,k) as a function from R® x RT X RT to

C(b,k) . This section will investigate some of the continuity prop-
erties of Y(w,",*,’) . Note that any such result is also dependent
on the continuity of C(b,k) . We will need the following lemma which

is a standard result of the theory of ordinary differential equations.

Lemma I.15: Let Y(t.xo,bo,ko) be a solution of System (I.a) for

m

some (x ko) in R® x R® «x R, . For (x,b,k) 4in an

0*P0*

open neighborhood of (xo,bo,ko) (in the product space),
there is a solution Y(t,x,b,k) of System (I.a). Moreover
v(t,x,b,k) 1s continuous in (t,x,b,k) at (to,xo,bo,ko)
for all tO .

Proof: This follows from the continuity of D(x,b,k) in (x,b,k) and

also from the uniqueness of solutions of System {I.a).

(ef Hale [12], Theorem I.3.4). #

m

Proposition I.16: For any (b,k)eR™ x R,

Y(m,xo,b,k) is continuous

in xo .

17
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Procf: Pick € > 0 , any xoeRn « Pick T 80 large that
IIY(TOxolbOk) - Y(“,xo,b.k)ll <el/b .

Choose 6§ s.t. |[[|x - xoll < § dimplies

| 1¥(Tyxg0 k) = Y(T,x,0,5) || < €/

which we can do by the previous lemma. Therefore

Fiv(T,x,0,k) - Y(u,xo,b,k)|| < €/2 |, but by Equation I.c'
IIY(t,x,b,kﬁ - Y(“oxo’btk)ll < €/2

for all t > T . Since for some T' > T
IlY(t,X,b,k) = y(w,x,b,k)ll < €/2
for all t > T' it follows that

[ y(=,x,b,k) = y(w,xo,b,k)ll <eg. #

The continuity of y(w,xo,b,k) in (xo,b,k) , as mentioned
before is dependent on the continuity of C(b,k) and can only be
established, therefore, in those cases where the continuity of
c(b,k) is known,

Let W= {beRmIcore (b) # # and core(b) is compact } . Let D
be a compact subset of RP ,axd E scompact subset of W . Observe that
by Proposition I.1l1l, core (b) can be viewed as a continucus mapping
from W to the space of compact subsets of R® ., Hence, over E ,
the continuity is uniform, i.e., for all n > O , there exists 6 > 0
such that u(core (b), core (b')) < n whenever, b,b'e¢E , ||b-b'|]| < 6.

Let B bdbe a compact subset of DXEXRT .

Lemma I.17: Let € > 0 ., Then there exists N s.t,

| [v(t,x,b,k)=v(*,x,b,k)||<c for all t>N and all (x,b,k)€B.



. emh

Proof:

Let

Tn(bo)= “!.b.k)CRan*RTId(Y(n,x.b,k)l core (bo)) < €/4}
for n=1,2,... andall. boew

and pick & such that for all b,b'¢E , }|b-b']] < & tmplies
u(core (b) , core (b')) < €/4 , Let V(b) = {lellb-i' < §)
for all beW . Now set U(b) = R™xV(b)<E, .

Tn(b) is an open set in R“nwxnf since it is the inverse
image of an open set under the continuous map y(n.-,-,-) .
Also 1t 4s clear that U(b) 1s open in RankRT :

Let sn(b) = Tn('b)nU(b) s n®l.2,,,. beW,

and let S = blgE s,(b)  n=1.2,.. .

Each Sn(b) 1s open {n Rnukaf and thus so is each 5 .

Moreover, for all (x,b,k)eB , (x,'b,k)esn for some n since
for some n.,d(y(n,x,b,k)]core (b)) < €/4 , and, of course,
(x,b,x)eU(b) . Thus {s } 1s an open cover of B, B is

compact, hunce there 1s a finite subcover Snl,....Snk of B,
Let (x,b,k)cSanB , then (x,b,k)esnd(bo)

for some b.e¢E , i,e.,

0
(x,b,k)eTnJ(bo)(\U(bo) 5

But 1f so, then
d(Y(nJ,x,b,k))lcore (bo)) < €/} and
Ilb-bo||<6 vhich implies wu(core(b) , core (bo)) <€/,

Therefore

d(Y(nJ,x.b,k)l core (b)) < €/2 ,

19



From Equation (I.c') , it follows that

||Y(nJ.X.b.k) - v{=,x,b,k)|| < €.

But since any (x,b,k)eB 1lies in some S, » setting
: J

N= MAX {(n
1<i<k

i} will satisfy the requirement of the hypothesis,

Note that continuity of ¥ in k was not explicitly used in the
above proof. Indeed, the variable k was merely carried along in the
notation (except in the assertion that Tn(b) vas open), The reason
for this is that if core (b) # # , then, as we have seen, C(b,k) is

independent of k . To complete the continuity section we show:

Proposition I.18: v(=,x,b,k) is jJointly continuous in (x,b,k) for

(x,b,k)eR"xWxEK, .

Proof: Let {xJ} . {bJ} R {x%} be sequences in R®, W, and RT

respectively and suppose there exists (x,b,k)eRanxRT such

that xJ +x , 1) >b, end kI » k. Since

( 0 (xJ ,b‘1 ,kJ))U (x,t,k) is compact, then by Lemma I.17
J=1

there exists a T : ~h that

v, %909 ,k) = Y(wxd, 09, k9)|] < €/3 3 =1,2,...
”Y(Taxnbok) - Y(“lxobtk)” < €/3.,
By Lemma I,15 it is possible to choose an M s0 large tha%

Hv(r,xd,bd,kd) = Y(T,x,b,k)|| < €/3 forall §>u.

20
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Therefore, for all J > M,
117 (% b3 k) = Y(@,x,0,6) || <
¥ (wxd 09 ,k9) = v(T,x9,09,%9)] ]
+ Ty(r,xd, 0 kd) = v(1,x,0,0!
+ []v(Tx,b,k) = Y(,x,b,0)]] <€ . #
It is conjectured that Y(=,x,b,k) 1is continuous in

m
(x,b,k) over Ranme+ , but this has not as yet been proven.

§7. Nuclei

Recall that for System (I.a), there were no restrictions on the
vectors {a"' > other than that they be unit vectors. Hence there is
no requirement that they be linearly independent, or any such condition.
Suppose, given {ail § & dogo.aml g aieRn - beR™ 5 keR': s We generate

i am

a nev set of vectors. (&l |1 = 1,...,2m} , ®*eR® , beR ",

EER:fo = Rfm in the following way:

= -8 =a i'l.oocgm

bi.-bm*i ’bi i'l,.-..m
ki = km*i = ki i = l..'.m L]

Using these vectors, we can exhibit the analogue of System (T.a):

: am _ 1 -
(I.e) x =-] k[®iew ] T
i=1

= .
= -if kiﬁsi(x.b)]+a1-[-si(X.b)l+&ij
=]
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. R i i
(IO ') i - k ( ,b) .
e or X izl 1(8 X ) a

Similarly, we can define the k-centroids of b (with vectors

{£1}) to be the minimizing points of

o(x) = zzm E, ([€io +T5,1%?
{=1 i L i

- 1 F, (6ix))?
i=1

We will define N(b,k) , the set of "kenuclei of b (with vectors
{ai})", tobethe set of k-centroids of b (with vectors {EJ}). This
definition, while introducing perhaps redundant terminology, stresses
the differences between C(b,k) and N(b,k) while indicating that the
ke-nuclei of b are themselves centroids of a different, albeit related,
set of vectors.

It is therefore to be expected that the set of k-nuclei of b would
share many of the properties of C(b,k) and this is indeed so. These

are listed below for completeness.

Corollary I1.19: For any xoeRn A beRm, keRT , there exists a unique

solution to System (I.e') which converges to a k-nucleus
of b. The set N(b,k) is precisely the set of
critical points of (I.e').

Corollary I1.20: The set of k-nuclei of b 'is nonempty and polyhedral.
Moreover (<a;,x> +wbi) is constant as x ranges over

N{b,k} for io= 1,i.:ym .

Corollary I.21: The set N(b,k) comprises a unique point if

{ail i=1,...,m} spans R".

There is a slightly more general continuity result.



Proposition 1.22: Let C(t,xo,b,k) be a solution of (I.e') with 1imit
point &(e,x,,b,k) . If the {al} span E® , then

t(w,x ,b,k) 1is continuous in (xo,b) over RUxR® .

0'
Proof: ©Since {ai} span R® , the k-nucleus of b is unique for all
b . Thus, c(w,xo,b,k) is independent of x . ‘Letting A Dbe

the matrix with rows /E;' ai » we know that the k-nucleus of

b, t(eyx,byk) , is AYE where Ber™ , B, =/k b, and

A* is the generalized (pseudo-) inverse of A . The conclusion
follows from the observations the A*B 1s a continuous function

of b.

Note: for a discussion of generalized inverses, see, for

example, Pringle and Rayner [20]. #

§6. Relationships among Centroids, Cocentroids and Nuclei

We conclude this chapter with a number of observations on the

relationships among centroids, cocentroids, and nuclei.

Proposition 1.23: If x is an element of any two of C(b,k) ,

cc(v,k) , N(b,k), then it is an element of the third.

Proof: Note that
v i 1, 1 T i +4
(I.t) -3 ki( <@ x> + b )a = - § ki[ <a x> + b1] a
i=]1 i=1

n

+ 3 k [-<ai,x> -b, )*a?
X i i
i=1

23



so if any two of the summations vanishes, so must the third, #

Therefore, a k-centroid ¢f b is & k-nucieus o' b .f and only

if it is also a k=cocentroid of

b , and 80 on.

Finally, we note some relations among the soiutions of Systems

(I.a), (I.d4) and (I.e). Let v{t,x

O.b,k) be the solution cf (I.a)

vith initial point x, , V(t,xo.b.k) the soluticn cf System (I.d)

with initial point X

(I.e') with ini%ial point Xq
say ‘a(t), B(t)cR" are 'negatively

and 1if

a

E(a(t)> =0
Similarly, a(t) and B{(t) are"

a(0) = B(0) = Xy and

and C(t,xo,b,k) bYe the sclution of System

We wil: say that two functions of t

tengent'at x. 1f a(0) =8(0) = x

0 0

g - &
"dt(a(”>|t=o '

pesitivery tangen” at X, if

d ) d ( Y
-_—f O = om—— B ' .
2o\t |t=0 dt (t')‘wo

The following are simple consequences of Equation (I.f),

Proposition I.2k: a) erC(b,k)

1t and only if 71t,x0,b,k) and

C(t,xo,b,k) are posltively tangent at X ¢

b) erCC(b,k) it and onuy 1f v(t,xo,b,k) and
c(t,xo,b,k) are positively tangeat at X, .
cJ xoiN(B,x) if and oniy if v(t,xo,b,k) and

'v'(t,xo,b,k; ar

e negatively tangent at x0 .

2k



IT. Applications to Cooperative Game Theosy

§1, Cooperative Games with Sidepayments

The concept of an "n-person cooperative game with sidepayments" was
introduced in von Neumann and Morgenstern [29]. It consists of :

a) N= {1,2,...,n} , a set of players.

b) 2N€p = (s 4 $|SEN} , all "coalitions" of the players.

e) v gL § >R, a "characteristic function".

d) Some "set of payoffs" in R" .

We will define precisely the set of payoffs in which we are interested
below. A game is denoted (N,v) , or simply v , with the set N under-
stood.

The players may correspond to individuals, corporations, nations,
armies, or any set of entities which may cooperate by forming coalitions
in order to secure a share of some limited commodity. We assume that
this commodity is transferable from player to player; that is, a player
or group of players may give all or part of their holdings of the com-
modity directly to any other player or group of players. The char-~
acteristic function v(S) can be understood to represent how much of
the commodity coalition S could obtain for itself as a unit were it
to act independently of the remaining players.

A payoff x€RP represents a potential or actunl.distribution of
the conmodity among the players where each player 1 receives xi .

Certainly not all xeR"  are logical payoffs, If we denote 2 xy by
ies

x(S) , then among the more reasonable payoff concepts are the following:

25
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Feasible payoffs:  {xeR"|x(N) < v(N))}

Efficieat payoffé: {xcR®|x(N) = v(N)} & E(v)

S-rational payoffs: {xeRn|x(S) > v(8)}

Imputations: {xeR?|x(N) = v(N) , x, > v({i})
for all i = 1,,..,0} .

Since v(N) represents the amount of the commodity which the entire
set of players N can obtain by cooperating, it is not surprising that
efficient payoffs are desirable if the game is to result in some sort
of stable outcome with all players participating. Each coalitions S ,
however, is most interested in an end result which is S-rational, and
therein often lies the conflict among coalitions over what the final
payoff should be. Infeasible points, i.e., those which are not feasible,
may be thought of as unattainable by the grand coalition N .

In order to Quantify in some way the sgtisfaction or dissatisfaction
of coalition S with a payoff x , denote by es(x) the quantity

v(s) - x(s) .
This quantity is sometimes called the "excess of S at x ".
Presumably, the smaller es(x) , the more satisfied is coalition

S with payoff x . Let us also define at this time the "efficient

excess of S at x " for S¥#N, P to be

A g N s) N
eS(X)'<-A'x>+(]+“_+—I-TYS '; = A-]—'-L—L'—'-Nv,_ 8*)

vhere: |S| is the cardinality of S ,
IN| =n , and

ASeRn such that

1 1€S
A5 =T8T )

- §
=1
T ———— i‘s R
N = 8]



27
The purpose of this efficient excess will tecome clear shortly.

§2. Solution Concepts

A solution concept is a payoff or a set of payoffs which is either
(1) equitable with respect to certain axioms of fairness or optimality,
or (2) 1is "stable" with respect to some type of bargaining procedure.
Two well-known solutionconcepts are appropriate to the results of this
chapter,

The "core" is the set of efficient points which are S-rational for
all S . Explicitly,

core (v) = {xeE(v)|eg(x) <0 for all se2" - ¢} .

The core of a game may be empty, but when it i3 not, it is a closed
polytope. Core points are both optimal, in the sense that each coalition
is receiving at least as much as v(S) , and stable, in the sense that
no coalition could expect to profit by withdrawing unilaterally from
the game.

The Shapley value is a solution concept which falls into the
category of "fair" points. The Shapley value, usually denoted ¢[v] ,
is determined uniquely over the class of all n-person games by the
following three axioms.

I. A carrier for a game v is a coalition T such that for all
S, v(S) = v(SNT) . The first axiom requires that for any
carrier T of v, ¢[vl(T) = vw(T) .

II. Let 7 be a permutation on {1,...,n} . Let wv be the game

such that nv(8) = v(rS) . For any vector xeR® let mx be
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the vector such that (ﬂx)i = x"i s 1i=1,...,n . Then the

second axiom requires that
¢(mv) = n4(v) for all permutations 7 and all games v ,
III. If u and v are two n-person games, let the game u + v be

the game (u+v)(S) = u(S) + v(S) . The third axiom then requires

thet ¢, (uw] = ful + ¢,(v] .

Axioms I and II have several well-known consequences which sub-
stantiate the notion that the Shapley value is a fair division point.
Let us briefly mention two. First, call player i a "dummy" if, for
all coalitions S which do not contain 1 , v(Su{i}) = v(S) + v({i}) .

It follows then that ¢i[v] = v({i}) . That is, players which
bring the same marginal value to all coalitions receive that amount at
the Shapley value. Second, let us say two players, i and J , are
"symmetric" if. v({i}) = v({j}) and for all coalitions S containing
neither i nor J , v(SU({i}) = v(S5U{J}) . Then, by Axiom II,
¢i[v] = ¢J[v] . Hence players which are equivalent under the character-

istic function receive the same payoff at the Shapley value,

§3. Efficient Bargaining Systems

For {ASeRn|Se2N- @} and efficient excesses

{Ss(x)lxeRn , 8e2¥- (BUN)} as defined previously, we define an
“"efficient bargainirg system" to be a system of differential equations

of the following form:
. egx) 7"

S
(II.a) x= J k l:_] 4
se2¥ - (gum) SL[1a5]] | []a%]]
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. dx
where x = at and

kg6R,  for all ge2 - (puR) .

Note that we have substituted 2“- (PUN) for a set of integers
as the index set of the summation. The set {ks > 0|SC2N- (pUN)}

n_
will be called the set of '"coalitional weights'. Ra' 2 s clearly the

set of all such. The variable t may be considered as time.
It is apparent that System (II.a) is of the same form as System
(I.a) so that for any point X, » there exists a contimwous (in t )

solution Y(t,xo,v.k) such that Y(O.xo,v,k) = x Note that along

0 [ ]
solutions of (II.a)

n

d

= i[ v, (tyx5,v,k) = 0
=1

80 that we can state:

Lemma II.1: If initial point x. is efficient, then Y(t,xo.v,k) is

0
efficient for all ¢t .

N Lemma II.2: For all S ¢ N,# , all xe€E(v)
e.(x)
8
e.(x) .
? | 1a8]12 8

e m(,;)l? e (<o i - )
W11 = i+ ey~ T oD
|TA:;:2 el s - o Bt ofte e )
N|NIS { H _Liﬁlf's“]"ﬁzf'-(-'?'sl[*|sN|(li§i§is|5'T;E'f§T}




but xeE(v) <= x(N) = v(N) 80

||A;T|)2 Lol Upgp=tel { (cxe) + v) ety }

=eg(x) . #
Note that this shows core(v)= {xeE(v)|eg(x) <0 for all 8 ¢ N}

= {xeE(v)|ég < 0 for 11 S ¢ N},

Lesmas II.1l and IIX.2 yield:

Proposition II.3: If initial point xer(v) then Y(t,xo,v,k) with
Y(O,xo,v,k) = x, is a solution of System (II.a)
if and only ir it is a solution of the following

system:

. + 8
(I1.b) X = SEN kS[es(x)] A

It is informative to give an intuitive interpretation of System

30

(II.b) in terms of possible actions of the players in the game. We will,

in general, refer to such an interpretation as a "behavior". It should
be noted that, in this context, "behavior" is not intended to be a
rigorous concept, but only an aid to intuition.

Suppose, during negotiation among the players to determine the
final distribution of the payoff, some efficient payoff x is offered.
Since the players participate in the game through coalitiomns, it is for
the coalitions to alter x +to obtain a more desirable payoff. Let us
assume coalition S evaluates x by observing es(x) , and on that
basis decides whether to demand more from its complementary set, i.e,,

the remaining players. If es(x) <0, coalition S 1is receiving at
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least as much as it is worth (according to the characteristic function)
and therefore cannot enforce a demand on N-8 , If es(x) > 0 , however,
we will permit S to extract payment from N-8 at a rate properticnal
to es(x) . It is understood, of course, that N-S will be permitted
to extract payment from 8 if eu_s(x) >0, The term kS[es(x)]f in
(II.b) represents the rate of payment from N-S to S . The multiple
kB is jJust the constant of proportionality. Since all members of a
coalition participate equally in the activities of that coalition, each
member of S receives Té-l-ks[es(x)]* vhile each member of N-§ pays
Tir]_*ETkS[es(x)]+ . Thle ensures that the total payoff x(N) remains
constant. Summing all these payments over all coalitions of

Mo (x U@} , the total rate of redistribution of payoff is clearly
R kgle(x)]* A%,
N

The grand coalition N 1is excluded from the summation since there
is no one from vhom N can extract payment., In addition, by choosing
efficient initial points, thé coalition N always reveives satisfactory
paynent.

In light of the previous discussion, it would not be unreasonable
to viev the coalitional weights as some measure of a coalition's ability
to extract payment from its complementary coalition, in other words, its
"influence". Such heuristic interpretations will be given from time to
time although no attempt will be made in this work to make these more
rigorous. The coalitiocnal weights wiil be studied later as a means by

vhich certain notions of fairness in bargaining can be enforced.



L. Centroids for Games

We will define k-centroids of a game v 1in a somevhat more
restrictive way than in Chapter I. The added ccnstraint will be seen
to cause no great difficulty.

n

Let v be an n-person game, and KkeR_ -e ;

Define C(v,k) , the
set of "k-centroids of v" to be the set

{xeE(v)|®'(x,v,k) = INF ¢'(y,v,k)}
yEE(V)

: ; Z és(x) +\ 2
o' (x,v,k) = k .
T o S([HASH] )

Had we defined the k-centroid of v as in Chapter I, that is, by

vhere

omitting the constraint x(N) = v(N) , the nature of A5} would make
it clear that the set of unconstrained centroids would be precisely
{C(vyk) + \u |- = < i < } where u is the unit vector normal to
E(v) ; i.e.,, C(v,k) 1is the projection of the set of unconstrained

centroids onto E(v) . This is because <As,u> =0 for all S #N.

Proposition I1.4: x is a k-centroid of v if and only if x

minimizes

o(x,v k) = § kgl ia®]1% (legx))™)®
S¥N

over E(v) .

Proof: Lemma II.2 shows that over E(v) , ¢ = ¢' ., #
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For xeE(v) , let us call ksllAb||a([eS(x)]+)2 the "dissatisfaction

ot S at x ", and ®(x,v,k) the "total dissatisfacticn at x ".
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The set (Sles(x) > 0} will be the "set of dissatisfied coalitions”.
Using this terminology, C(v,k) is the set of efficient payoffs which
minimize total dissatisfaction, while core (v) consists of those
efficient points at which total dissatisfaction is 0 , As in Chapter I,

if core (v) ¥ § , core (v) = C(v,k) .

Lemma II.5: For all S ¥ N , the dissatisfaction of S at x is

constant as x ranges over C(v,k) .
Proof: See Corollary I.6. #

Therefore, a dissatisfied coalition S 1is indifferent to variations
of payoff over C(v,k) since es(x) will remain constant. It is in-
teresting that the set of dissatisfied coalitions is the same for all
k-centroids of v for a given k , i,e., it is impossible to satisfy
any such S without raising the total dissatisfaction.,

Under this interpretation, the coalitional weights could be viewed
as measures of the coalitions' sensitivities to not receiving their

values--the larger k_, , the more dissatisfied is 8 at any given

S
payoff.

Proposition II.6: C(v,k) is a nonempty closed polytope.

Proof: By Proposition I.5, C(v,k) is a closed polyhedron. Suppose
it is not compact, then it contains some half line

{yy + rujr > 0 , yoeC(v,k) , U ¥ 0} . Since C(v,k)cE(v) ,

n
it follovs that ] u, =0 .
i=1



By Lemma II.5

(eqiyn + )]’ = [e y )1¥ for a2l r> 0 and
S°Y0 S'Y¢ -

all seen-(Num

equivalently

[es(yo) - ru(s;]* = [es(yo)]+ for a1l r > 0 and

se 2 - (Nyo)
Therefore
u(s) > 0 for ail § such that es(yo) £0
u(s) = 0 fcr all S such that es(yo) >0
or 1in any case
u{s) - 0 tor sll S e Mo
This combined with u{N} = 0 1implies u = 0 contradicting the

previous assumpticsn that u # 0 #

We complete this secticn with a characterization of the collection
of dissatisfied ccalitions at a ke-centroid
In {15), Shapley defined tne acticn of & balanced colliection of

sets. Given a collecticn J ci subsets S of a set N , J is said

to be balanced if there ex.sts {“'S > 0|Sef } such that chas = aN

Q
where (a.S)i = {(l) 1;5 Shapley no*ed that a balan:ed collection

could be considered a generalized partiticn

Proposition II.7: Iet]beac::llec.t.ian cf subsets S of a set N . Then

J is balanced if and only 1f there exist {dS > OlSeJ}

such that 5 d A% =0 .

S.r.f :
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Brogf: o 1s balanced if and only if there exists (cs >0 |8 e}

such that X cSaS = a.N. Note that } csus can never be O
J

vhenever the family J is nonempty. Thus o # ¢ is balanced

1f and only if there exists {c_ > 0 | s € f} such that

N N
S_ / S a a -
SR au -

But

N N
joo© - Jee ) ERAAL
-} cg (as - (as, aN))I—;—I;I—

-zcs (aso-i%LaN): jcs—é—z AS.
J | |14%1
c
So, by putting d = —S , We can see that J is balanced if
511851

and only if there exists {d5 > 0 | § ed } such that j dsAS = 0.#

Corollary IT1.8: The collection of dissatisfied coalitions at a

k-centroid is balanced.

Proof: In the above proposition, put dg = kS[eS(x)]+ for all dissatisfied

S, where x is any k-centroid of v.

5. Convergence

Let us restate the convergence results of Chapter I in terms

of games,
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Proposition II.9: Let v be a game and {kS} any set of coalitional

weights. For any xer(v) , there exists a solution
Y(t,xo,vk) , continuous in t such that

LIM Y(t,xo.v,k) , exists and is a k-centroid of v ,
)

As before, denote this limit point by Y(w,xo,v,k). Thus bargaining
as described above where dissatisfied coalitions extract peyment from
complementary coalitions results in a redistribution of the total payoff
v(N) over time in such a way that, as t + = , the distribution con-
verges to one which minimizes total dissatisfaction. Recall that this
convergerre is such that y(t,xo,v,k) approaches all k-centroids of
v simultaneously as t increases, and also follows the negative
gradient of ¢'(x,v,k) . V¢(x,v,k) , on the other hand, does not, in
general, lie in the hyperplane {x|x(N) = O} as does V¢' . However,
a simple computation demonstrates that for any xeE(v) , v¢'(x,v,k) is
the projection of ¥é(x,v,k) onto {x|x(N) = 0} . In this sense,
y(t,xo.v,k) follows the negative gradient of the total dissatisfaction
function. Therefore, while this type of behavior may not result in a
"shortest route" in Euclidean distance to a k-centroid, which would
translate into "minimum total exchange of payoff", it is optimal in the
sense that it produces, at any x , a rate of redistribution which is
most effective in reducing total dissatisfaction locally, i.e., in small
enough neighborhoods of x . Hence, players employing an efficient
bargaining system arrive at a global optimum by acting in a locally
optimal manner.

Also, with respect to eff._ient bargaining systems, it is clear

that, individually, each k-centroid of v 1is a stable point and, if we



define a set to be asymptotically stable if all points of the set are
stable, and if all trajectories converge to a point of the set then
C(v,k) is asymptotically stable. 'Ih particulav, the oprée, if nonempty,
is asymptotically stable with respect to this system,

§6. Cocentroids

In the manner of Chapter I, we will define k-cocentroids of a game
v . While it may appear in the model we are using that cocentroids are
highly nonoptimal and therefore perhaps uninteresting, it will become
evident that, in some cases, these "worst" points will bear an important
relationship to the optimal centroids and certain "fair" points.

Given a game v , coalitional weights {ks} , and some efficient
point x , we will call

kgl 145112 ([- eg(x)]*)?

the "satisfaction" of S at x , and we will also call

vix,v,k) = ] k| [A%][2 ([- eg(x))")
SEN

the "total satisfaction" at x ., {S|es(x) < 0} will be the set of
"satisfied coalitions” at. x . The set of "k-cocentroids of v ",
CC(v,k) is the set

{xeE(v)|¥(x,v,k) = INF V¥(y,v,k)} .
yeE(v)

Although cocentroids are those points which minimize total satis-
faction, it does not necessarily follow that total di 'satisfaction is
large over CC(v,k) , since we will see in Section §12 of this Chapter

that C(v,k) and CC(v,k) can, under certain conditions, coincide,

37

Clearly, it is possible to display a system of differential equations
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(IL.c) x == ) ke (x)1*AS,
(] X SEN S eSx

the solutions of which, for any efficient initial point, converge to a
k=cocentroid of v . A behavior for such a system would be one in which
satisfied coalitions are donating payoffs to their complements at a rate
proportional to kS[- es(x)]+ vhile dissatisfied coalitons are silent,
achieving, in the 1imit, & final distribution which minimizes total
satisfaction,

An argument entirely similar to that of Proposition II.6 yields

Proposition II.10: CC(v,k) is a nonempty closed polytope.

It is also clear that es(x) is constant over CC(v,k) for all

satisfied coalitions S .

§7. Continuity

Let x, €E(v) , and let Y(t.xo.v,k) be a solution of System (II.Db).
We have already shown that as t + = , this solutica converges to. a point

y(w,xo,v.k) € C(v,k) . Propositions I.16 and I.18 establish the following

results for games.

Proposition II.11: For any game v and any set of coealitional weights

{k.} , Y(m.xo,v,k) is continuous in x, over E(v).

S

Proposition II1.12: Let

W= {v| core v§¢},

then y(w,xo.v,k) is continuous in (xo.v.k) over



39

X= {(x’v,k)ler(v). veW , kEREg-e}

Proof: Note the added restriction that xer(v) , and also
core (v)CE(v) . Thus the proof of Propositicn I.18 must be
modified slightly using the observation that 1f {v"} + v then
core (v®) + core v frim Dantzig, et el. [5) end also, despite
E(v®) not being cemmact, u.E(v") , E(v)) * 0. Then the proof

essentially gres as that for Proposition I.18. #

§8. Allocation Systems and Nuclei

Suppose for a game v and set cf coalitional weights {ks} y We
vere to combine the two systems (I1.b) and (Il.c), much as we did in
Chapter I, to obtain
(II.e) x= ] ks(es(x))AS

SaN
such a system will be calied an "efficient allocation system". The
behavior it represents 1s straightforward: satisfied coalitons are
giving to their compiements their excess payotf while dissatisfied
coalitons are extracting payment from their compliements, Note that in
general a coaliton S being dissatisfied dces not necessarily imply
that N - S5 1is satisfied or conversely. Hcwever, in the case that
core (v) # @ , it is true that es(x) > 0 implies eN_S(x) <0 (for
proof, see Wang [30], Lemma 2.1) so that dissatisfied coalitons are
always demanding paymen: from ccalitions who "can afford it".

We define N(v,k) 1ic be the set of kenuclei of v which is the set

{xeE(v:|6{x,v,k) = INF O(y,v,k)}
yeE(v)
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vhere
oxvi) = I ko] 148]12(eg(x))?

We will call ©(x,v,k) the total "disorder" of the game at x ,
and it is clear that total disorder is the sum of total satisfaction and
total dissatisfaction. A k-nucleus of v is therefore a point which
minimizes total disorder. The k-nucleus is related to a class of "convex

preemptive nuclei" proposed by Charne's and Kortanek [ 5].

Proposition II.13: Let c(t,xo.v.k) be a solution of System (II.e)
with efficient initial point Xq - Thenas t + ®

C(t,xo,v,k) converges to a k-nucleus of v ,

Proof: This follows from Corollary I.19. #

Further it should be apparent that total disorder will decrease
along solutions of (II.e).
From Corollsry I.20, es(x) is constant as x ranges over N(v,k)

for all S ¥ N . Therefore:

Proposition II,14: For any game v , and any of coalitional weights

{ks} » N(v,k) contains a unique point.

Proof: Let both x and y be in N(v,k) . Then es(x) -es(y) for

all S ¥ N so in perticular e{i}(x) = e{i}(y) , 1=1,.,..,n.

Hence x=y . #
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By Proposition I.23, we can state the following.

Proposition II.15: Let xeE(v) . Then x being in any two of
C(v,k) , cC(v,k) , and N(v,k) implies x is in

the third.

So if x minimizes both total dissatisfaction and total disorder,
then x must minimize total satisfaction also.

The sets C(v,k) , CC(v,k) and N(v,k) can also be characterized
by the tangency of solutions of the Systems (II.b), (II.c), and (II.e)
as in Proposition I.24, Such a result gives information on the various
behaviors of the players at payoffs in these sets. For instance, players
vith a distribution xeCC(v,k) , i.e., where total satisfaction is
minimized, will act in the sam¢« way, instantaneously at x , as if to
arrive ultimately at C(v,k) or N(v,k) , although the trajectories

vill diverge as soon as they leave CC(v,k) .
§9. Coalitional Weights

Some possible interpretations of the coalitional weights have been
already mentioned, and it is not difficult to list more, e.g., ks could
be the probability of coaliton € forming, giving the term
kSIIASII([eS(x)]+)2 a possible interpretaiton of "expelted dissatis-
faction." Similar interpretations have been used by other writers with
respect to other weighting schemas. See, for example, Owen [18]. Un-
fortunately, notions such as "influence" or "sensitivity" or "probability

of a coalition forming" are difficult to quantify. Suppose instead, we
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view the coalitional weights as a mechanism whereby we can impose some
concept of "fairness" on the bargaining. In this section, this idea

of fairness will be made rigorous by axioms, not unlike those in the
definition of the Shapley value, Necessary and sufficient conditions

on the coalitional weights will be deduced in order for these axioms

to hold. In this manner, we will obtain a set of "universal" coalitional
weights, i.e., weights which are not functions of the game v . Note
that this haes tacitly been assumed in the previous sections of this work
although it would be of interest to see what sort of results one could
derive if ks were a function of v , e.g., if ks ~v(S) . Such an
analysis will not be undertaken here,

Let x = D(x,v) be either (II.b) or (II.e). (The result also
hclds for System (IT.c), but this fact is not of much interest.)
We would like to enforce the notion that bargaining depends only on the
characteristic function, rather than on the labelling of the players.

We can do that with the following axiom. Recall that for xeR" .

we denote by Tx the vector in R such that (Trx)i =x. 0 1=1,...,0,

A, If m is any permutaticn on {1,...,n} , then we require
D(mx, mv) = =D(x, V)

for all n-person games v and all efficient points x .

Proposition II1.16: A necessary and sufficient condition for Axiom A

to hold is that ks = kT whenever |S| = ITI .

Such a set of coalitional weights will be denoted

fro}
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L3

We will prove this result for efficient bargaini=ng systems only.
The proof for efficient allocation systems is entirely analogous.
Necessity: Pick any veR® , and 8o ¥ N, Let v bde the game

given by v(S) = v(S) for all 8 ¢ 8, amd v(So) = Y(So) +a,

for some a > 0 , Let 7 be any permutation on {1,...,n} ,

then
D(y,wv) = [ klv(8) = v(8)1*A° = (kg « a) a%0
S¢N 0
Dlry,mv) = ] klre(T) - my(m)]* AT .
T¥N
The only non-zero term in this latter sum is for T = S0

1

or T=n Sy » 1.2,

-1

n So
D(my,mv) = (k o a) A 5
TS

-]l s
Note that mXA" S50 = a0 g0 if Axiom A is to hold,
k _ = ks . Observe that for all permutations r ,
T "8y 0

|1t'lSO| - ISOI . Thus since S, wvas arbitrary, necessity must

0
follow.

Sufficiency: Let v be any game, and x any point in E(v) .
Then

: + .8
D(x,v) = szu..klsl [v(s) - x(8)] A
D(rx,mv) = ] kipp [mv(D) - mx(7)1*AT .
¥R

In the latter sum let T = 71§ , 80
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. -1
Daxyv) = ]k _, [nv(r7's) - ax(nTte))’A" ®

n~Logn """l

=1

= I K [v(s) - x(s)1* A"
n-lS#N
-1
+ .7 78

S&N klsl [v(s) - x(S)] A

-1

80 n-lD(nx,nv) = J k [v(s) - x(8)]* »~1" S« D(x,v) . #
|s]

S#EN
This result has pleasant consequences for symmetric players. For
convenience, let us adopt the following convention: given two players
i and J , let us call player i "as powerful as" player J (denote
by 1> J if v({i}) > v({J}) and for all S containing neither 1

nor § , v(su{i}) > v(su{y}) .

Lemma II.17: Given coalitionai weights {klsl} s 1f 1 >> J and

xeRn such that x. < x

i » then D, (x,v) _>_DJ(x,v) s

J

Proof: Again, the proof is for efficient bargaining systems only. For
allocation systems the prcof is similar.
D(x,v) = g klsl [es(x)]’ A5
{S¢¥N
i¢s
Jés}
+ Su{i}
*Eiglalegy a0 A

+ ,850{3}
+ k|S|+l'[eSU U}(x)] A

+ Su{ilu {3}
* Eiglselesy po (™) A

{3

Wl s feggy 01" M i e 01a,

+
+ k2[e{id}(x)] A
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Therefore

1
D, (x,v) - DJ(x.v) = S;Z‘N k|s|+l{[°su{i}(x)]+ (_S_T-l')
i¢s

J£8

- Leg ygfx)” (Tfﬁm) '[esufd}(xm('lgh)
+ legy ey (]N| m TSI - 1)}

+ k) [-x, +v(U4h)? (1 ) Trl‘—l)

-y Lexg + UGDT (2= i)

1 1 +
" ol Mlstor (Tt * Tipepey) (1-x(0)-nvisve

ifs
J#8

- [- x(8) - x* v(suu})]*)

+ kl(l- TN_lIE)Q' x+wv((1N]" - [- wa({J})]+).

But we assumed - x, + v({i}) > - X+ v({3})

and
- x; + v(SV{iD) 2 - x, + v(SV{ID)
for all S such that i ¢ S and J ¢ S,

80 D, (x,v) - Dj(x,v) >0. #

Proposition II.18: Suppose i >> § and xer(v) such that

(x5)y 2 (xo)J. If v(t,x,) is a solution of
x = D(x,v) with initial point Xy » then
v, (t,x) _>_YJ(t,x0) for a1l t 20 ,

and in particular Yi(“,xo) > YJ(”,xo) .



Proof: Suppose that ior some t' <=, yi(t',xo) < yJ(t'.xo) :

Let t,=max {0 <t it'lyi(t,xo) ;Yd(t.xo)} . Since y is

0
continuous in t , it follows from the Mean Value Theorem that
there exists a 'tl in the open interval (to,t') such that

a% [Yi(tixo)- YJ(t.xo)]tlt - Di(Y(tllxo)'v)'DJ(Y(tl.xo)'v)) < 0 .
1

But yi(tl,xo) < YJ(tl'xO) by choice of t, , so by Lemma II.17,
Di(y(tl,xo),v) - DJ(Y(tl'xo)’ v) > 0 . This contradiction

invalidates the assumption on the existence of t' . #

80, if a player i 1is as powerful as a player J , and rec:ives at
least as much at the outset of bargaining as J , then at no time in

bargaining (or allocation) will player i do worse than player J .

Corollary II.10: Given coalitional weights {klsl} s if players 1
and J are symmetric, and (xo)1 = (xO)J , then
Yi(t,xo) = YJ(t,xo) for all t > 0, In particular

Yi(.’xo) L YJ(Q.XO) D

Thus, Axiom A preserves symmetric payoffs to symmetric players,
and, vhen enforced, resglts in solutions of efficient bargaining systems
or efficient allocation systems which reflect the power of the players
as indicated by their marginal effect on coalitionel strength.

Now suppose ve have a dummy player i , who, at some payoff Xg 0
receives v({i}) . There would not seem to be any reason for 1 to

receive any more or less than v({i}) at any future point in the

bargaining. This is the essence of Axiom B.



B, For any game v , if i 4is a dummy player and xcE(v) where

x, = v({1}) , then Di(x.v) =0.

i
Proposition I1,20: A necessary and sufficient condition for Axiom B to
hold for efficient bargaining or allocation systems

is that for all S such.tHat 1 ¢ 8 ¥ N-{i},
sy {4 - ks
s[ + 1 |N| NEE

Proof: Again, we give the proof only for bargaining systems,
n N
Necessity: Pick yeR™ and some 862 =N, vwhere 1 ¢ SO ¥ N-{i},
Let v Dbe the game

v(so) = y(so) +a for some a >0

v(SOU{i}) - y(sou {i}) + a and

v(8) = y(8) for all other S .
For B to hold we must have
s s.u {1}
+ 0 + .0
0= Di(Y.v) = ksoga) A+ kso {1} [a] Ay

1 1
"“‘s;) “)‘(|x'|'-|so' |) "“‘sou {1y °‘)('[‘T'so +1)
K k
By i sov {1}
N[-[8q] ~ I85l+'1 .

But 80 wvag arbitrary, and B must hold for all games v ,

80

so this part of the proof is complete.

Sufficiency: Let v be any game with dummy player 1 ,
x¢E(v) such that ﬂ-vﬁﬂ),
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Then

D(x,v) = ) {}S[v(s) - x(8)]* A8
{8:1¢S¥N={1}}

A + suu}}
+ ksu{i}[v(su{i}) - x(su{il)} A

+ kg lv(h) - x,0* Al

+ ky_(qy[v(8-1}) - x(®-01D]" -l

Note that since x 1is efficient and i 1is a dummy
Vv(Ne{1})ex(N={i}) = v(N)=v({i})=x(N)+x({i}) =0 ,

80 that

Di(x.v) {S|S§1, {ks[v(s) x(8)] (Tﬁ-F-I-gT)

S¢¥N-{1}}

+ kSU{i}[V(SUi) - x(8) - xi]+< Sl+ 1)}

k
syfi} + +
(I1.£) = {Slgti, Efin{[v(s)w(i)-x(s)-x(i)] - [v(s)- (8)] } :
S¥N-{1}}

When x, = v({i}l) , this sum is zero. #

The next proposition give us some indication of how dummies fare

along trajectories.

Proposition II.21: Suppose v 1is a game with dummy i , xeE(v) . Then
x > v({i}) implies Di(x,v) <0
xigv({il) implies Dj(x,v) £ 0w

Proof: This follows directly from Equation (II.f). #



So, along trajectories, the amount received by a dummy will tend to
decrease monotonically, if it is more than the dummy's value, or will

increase monotonically if it is less,

Corollary II.22: Let Y(t,xo) be a solution to x = D(x,v) with

initial point x If i is a dummy and

0 L[]
(xo)i = v({i}) , then Yi(t,xo) = v({1}) for all

t 20 . Inparticular Y (=x,) =v({1}).

Suppose we wish to have both Axioms A and B hold. Then we can
inductively construct the coalitional weights as follows (where we denote
kg by ki vhen |s| = a):

kl =W for some w > 0

2

- T TP
ey . B 3
SR ca

s|t (In|-Is])1
Kls| = ¥ (N[ :

If we set ¢ --Ig—l we have

clearly

Proposition II.23: A pecessary and sufficient condition for Axioms A

and B to hold is that for all S¥¢ N or ¢,

k. = ¢ N[\~ for some c¢ ¥ 0
S 151 ° )

The constant ¢ only determines the speed of convergence of the
solutions, which can be taken into account by a change in the time

variable. Therefore the constant ¢ will be omitted henceforth.
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§10. The Shapley Value as a k-Nucleus of ¥

Recall that the Shapley value is an efficient payoff which reflects
the symmetry of the game and which gives dummies their marginal values,
In light of the ebove discussion, it is apparent that the Shapley value
is an excellent choice as an initial point for many bdargaining systems,
This is particularly true in those cases where the Shapley value is not
e point of C(v,k) . Then, by applying the bargaining system with the
above coalitional weights, the limit distribution of payoff will be one
reflecting the same desirable symmetries and payoffs to dummies as the
Shapley value, but with lower total dissatisfaction. Note that this
proves the existence of such a point.

The allocation system converges to a point vhich minimized total
entropy. We will now show the relationship between the Shapley value

and the k-nucleus of v for the "fair" coalitional veights
-1
(}g:) . We first need the following result of Keane [1L],

(Section 7):

Lemma II.24: The Shapley value is the unique efficient point minimizing

-1
S’XW ({g:ﬁ) (es(:t))2 subject to

x(N) = v(N) .

Proposition II.25: The Shapley value ¢[v] 4is the unique k-nucleus of

v , if for all S¥N or ¢

In[\-1
kS = (lsl .
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Proof: This follows immediately from the observation that
Inl\=1, .82 _ 1 Inl-2) -1 |
= . F
|E| IIJL || WT—_T 'Sl-l for all S
Hence, for any efficient initial point, the solutions of an alloca-

|s|
vaelue, demonstrating that the Shapley value is asymptotically stable

tion system with coalitionel weights {j(INI)-l\} converge to the Shapley
with respect to this system.

The difference between the dynamics of the bargeining and allocation
systems provides insight intc the difference between C(v,k) (or
core (v)) and the Shapley valuz. C(v,k) is, in essence a "greedy"
solution councept, since the information about negative excesses is
supressed. Coalitions act only to minimize dissatisfaction, ignoring how
much over their values certain coalitions may be receiving at any point.
The Shapley value, on the other hand, arises when coalitions seek payoffs

as close to their values as possible, with the coalitional weights

in\-1

|S| determining which ccalitions must be the closest.

Proposition II.15 yielcds a condition for the Shapley value to be

a centroid,

Inl\-1

Proposition II1.26: ¢[v] € C(v,k) for k = Is|

if and only if

¢[v] € cC(v,k)

Suppose core (v) # @ and ¢[v] is in the core. Then it is the
unique core point which minimizes total satisfaction. Since the core

is compact, however, there is a point which maximizes total satisfaction
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over the core. Such a "maximin" point might be of interest to players

of an actual game.

§11. The Two-Center of Spinetto

Other choices of the ccaliticnal weights can be justified on the
basis of which sets of points become optimal when those weights are used.
Spinetto [16] defined the two-center to be the point minimizing.

) (es(x))2 over all xeE(v)
S#N

subject to x, >0 for all 1 .

i

|s|(|n|-|s|)
[N

precisely the two-center whenever the k-nucleus is an imputation.

Letting kg = i|AS||-2 = , the k-nucleus of v is

Using this fact, a condition fcr the two-center to be in C(v,k) or
core (v) can be deduced. Note that these weights satisfy the symmetry

condition.

§12. Constant Sum Games

Constant sum games are those games for which v(S) + v(N=S) = v(N)
for all S¢N . For this class of games, a particular limitation on the
coalitional weights yields an interesting relationship among the solutions

of the various systems already enccuntered.,

Proposition II.27: Let v be & constent sum game. If ks = kN-S

for all S then there exists a unique point x

such that 1ix)} = C(v,k) = CC(v,k) = N(v,k) .



Proof:

Furthermore, for any initial point Xq the orbits

through x. for the bargaining and allocation

0
systems (and also System (II.c) coincide.

I y(t,xo) is a solution to a system of differential equations,

the orbit through x. 1is {Y(t,xo)lt > 0} . Also note that the

0
condition on the coalitional weights in Proposition II.2T7 is

[\-1 X
satisfied by ks'({gl and by kS =||AS|| 2

, among others,
For xeE(v) , v(8) = x(8) = - (v(N-8) - x(N=-8))

80 [eg(x))" = [- ey o(x)]" .

Hence by the choice of coalitional weights
+ +

But observe, AS:m _ pAW-S

80

+ .5 + N-S
Iy Ksles017 4w - 1y ooy o017 A

+ .S
= - S§N ks[- eS(x)] A” .,

This shows also that

+ .S S
2 s§n kg [es(x)] A = sgn ks(eS(x))A 5

Therefore, if y(t,xo.v,k) is a solution to

X = 5 kS[eS(x)]+ AS , then it is a solution to
SN

X = - S’Z‘Nks[- es(x)]+ A5 ana if c(t.xo,v,k) is a

solution to

s S
x = Sgnks(es(x)) A

53
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then Y(2t,xov,k) = C(t.xo.v,k) . So the orbits coincide. The
coincidence of C(v,k) , CC(v,k) , and N(v,k) foilows, or can
be seen fromthe fact that in all three cases, the same function

is minimized, #

§13, The Nucleolus as k-Centroid of v

For any x€E(v) , let ©(x) be the vector in Ren'2 oL A, 222
nents are the excesses es(x) arranged in decreasing order. We will de-
fine the "nucleolus of the set of efficient points," v*(v) , to be any
point of E(v) for which ©(x) 4is lexicographically least over the
hyperplane E(v) . Similarly, "the nucleolus of the game v ," v(v) ,
is generally considered to be that imputation for which 6(x) is lex-
icographically least over the set of imputations for v . It has been
shown that both v*(v) and v(v) are unique points (for a further dis-
cussion of the nucleolus, see Schmeidler [22] and Kohlberg [15]). Clearly,

ir v*(v) 1is an imputation, then v*(v) and v(v) coincide.

Proposition II.28: Let v be any game,

a) If core (v) # § , then v(v) = vi(v) and v(v)
is a k-centroid of v for any choice of
coalitional weights.

b) If core (v) = @ , then there exist coalitional
weights’ {kS} such that V#(v) is a k-centroid

of v.

Part a) follows directly from the observation that if

n-
core v ¥ § , then for any keﬂi 2, core v = C(v,k) and

l?
3
o

vi(v) € core (v) ,



Part b) follows from a minor modification of an argument of
Kohlberg [15] which yields the result that the sat

@ = {s|eg(v*(v))}> ©
is balanced. By Proposition II.T7, therefore, there exist

pocitive constants {dSISeB} guch that

Jaga® =0
@ a
] S eQ?
eSZV“zVS)
let k, =
any positive value S ¢@§ .
Then 2 kS[eS(v*(v))]+ A5 = 0
S¢¥N

proving the result, #

Corollary II.29: Let v be any game. If v#(v) 4s an imputation,
then v(v) is a k-centroid of v for some set of

coalitional weights.

Corollary II.30: Let v be any game. If v(v) 1is in the interior of
the set of imputations for v , then v(v) is a

k-centroid of v for some set of coalitional weights.

44
S

£: If v*(v) is an imputation then v*(v) = v(v) and the result

follows. If not, then in a neighborhoocd of v(v) 1lying in the
imputation set, there is a point y on the open line segment
(v#(v) , v(v)) for which 6(y) is lexicographically less than

o(v(v)) , contradicting the definition of v(v) . #
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It is not difficult to show that if v is a O-monotonic game, then
v®(v) is an imputation (see, for example, the prodf of Theorem 2.li in
Maschler, et al. [17]. This paper also gives a definition of O-monotonic

games.). Therefore, we have

Corollary II.31: If v is a O-monotonic game, then v(v) is a

k-centroid of v for some set of coalitional weights.

§1L. Examples

The first example is a case where the core, the Shapley value, and
the k-cocentroid do not coincide.
Example 1: v(123) =1 «v(12) =7/8 wv(13) = 3/4 v(23) = 3/8
v(l) = v(2) = v(3) = 0

Core (v) = (5/8 , 1/, 1/8)

1h 11

Shapleyvalue-(%g-. iz im)

-1
- (18 1u 1 ||
k=-cocentroid of v (.m ,'TQ- , o ) for ks = ( ) .

The second example exhibits some solutions to

x= 7 k. [e (x)]* a®
s "8
s¥N
-1
for ks = (:g:) . The trajectories are drawn in the set of imputations

displayed in barycentric coordinates,

Example 2: Consider the game
v(123) =1  v(12) = 1/3 +v(13) = 1/5 wv(23) =1/2

v(l) = v(2) = v(3) =0,
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!23(:}-{:-

xX,=0
1

=1

x2x0

f-'-.-‘i-h.

solutions

FIGURE 1

For Example 2
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Figure 1 depicts several of the orbits of System(II.b) for ks s ]
for all 8 .

It i8 not difficult to see .what is happening along these treajectories;
for instance, along the trajectory marked (a), player 2 is making pay-
ment to 1 and 3 equally until core (v) is reached. Along (b), 2
is agein making payment to 1 and 3 until coalition {23} finds
itself with too-iittle, at which point player 1 must also pay 2 and
3 to correct this imbalance, Over the trajectory, player 2's: .share:
decreases, 3's 1increases and 1's initially increases and then

decreases.
§15. Discussion:

We have observed that, in the limit of a bargaining trajectory,
some coalitions will be dissatisfied if the.core is empty. One might
Justifiably ask, therefore, why a dissatisfied coalition S should
continue to participate in the bargaining when it can guarantee itself
v(8) by removing itself from the game. One possible answer is that all
of the members of S are members.of other coalitions and can expect
benefits from those other coalitions provided that they remain in the
game, Also, although S may be dissatisfied at some finite time, it
can hope for satisfaction in the limit,

In some cases, though, it would seem that the game should logically
break up. For instance, suppose at some time L Yi(to,xo.v,k) < v({1})

d .
and == {Yi(T’xO'v'k)”T"ho <0, If player i had no reason to believe

yi(w,xo,v,k) > v({1}) , then it would be in player i's interest to

accept v({i}) and, if possible, remove himself from the game at time



t. . Then one could investigate the game played by the rest of the

0
n-l

players with initial point  xeR with xJ = YJ(tO’xo'v'k) for

J = l.nu.’i -1 [y and X (to'xo'v’k) J = i,ooo.n-lo

37 Tm
Thus, in this way, bergaining systems could be used to predict breakup
of the game by the removal of the players. By noting for which
t .yd(t,xo.v,k) = v({J}) and is decreasing, it might even be possible
to predict in what order the players would leave the game,

We conclude with a few remarks about initial points and efficiency.
We have assumed throughout this chapter that the initial point X, was
efficient and in that way we accounted for v(N) . If X, 1is not
efficient, however, then solutions to the systems

-~

é (x) S

A

S
11a%1J 118°]1

+
= SgN kg [es(x)]

do not coincide. One could choose one of these systems, (or a variation

M.

of it) and produce a trajectory that.would redistribute xo(N) in a vay
that the unit point would also be ncnefficient. If, however, it were
desired that the limit point be efficient, it is easy enough to add a
term to the first of the above systems which would yield trajectories

which tended toward the hyperplane E(v) . For example

. [: g(x) AS AN
X = —————
e ||A||] TSR AT

where AF = (1,1,..,,1) » It is not difficult to see that if

Y'(t,xo,v.k) is a solution to the above system, then Y'(“.xo,v,k)
will not only be efficient, but will also be a k-centroid of v as

previously defined. A similar device will work for allocation systems,
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A conceptual difficulty arises in zoing from a non-efficient to an
efficient point in that payoff will either have to be minufaciurea or
destroyed in a system which is essentially closed.

- In some cases, however,. it may be.helpful to assume the existence
of an external element affecting the game. The next chapter will in-

vestigate one such case.

€0



III. Nonefficient Bargaining Systems

§1. A Modified Bargaining System

Suppose one had a situation wherein the players could not
directly exchange the commodity under arbitration but had to act
instead through a third party, a "referee", who also had the power
to extend "credit" to all the coalitions. Then it might be reasonable
to expect bargaining trajectories to leave the hyperplane E(v) although
it seems natural to require that the limit of any such trajectory
be efficient.,

We will assume in this section that while the payoff may not
be directly transferred among players or coalitions, the excess eS(x)
is still a measure of the satisfaction or dissatisfaction of coalition
S at x,

Consider the following system of differential equations, which
we will call an "intermediary bargaining system"; the intermediary being

the aforementioned referee,

N ]
(111.a) =k e (x) =—2=— + ; k. [e (X)]+ =
N °N ”‘N”Q SEN S 'S ”aSHQ

where for all Se2N-¢, kS>0 and aSeR® such that

®

S = 1l for ieS
0 for ifs.

We can also define, as in Chapter II, the k-icentroid of v
(the "i" stands for "intermediary") to be that point in R® which

minimizes



k.
E(x,v,k) = |—|:-";W2 (ey(x))? + A !_la_;!—‘? ([eg(x)1")2.

Unfortunately, as can be seen from later results, the icentroids
of v are, in general, infeasible, i.e., x(¥)>v(N) for any icentroid x.
Icentroids, and appropriately defined icocentroids and inuclei will
not be dealt with at any length.

Consider, however, a game v such that core(v) # @. Since
Z(x,v,k) > 0 for all xeR® and Z(x,v,k) = 0 1f and only 1if xe core(v),
it is clear that the set of k-icentroids of v is precisely core (v).
In view of this fact, therefore, we will, in the remainder of this
chapter, only consider games with nonempty cores. The following

results are directly out of Chapter I.

Proposition III.1l: For any xoeRn, there exists a solution y(t,xo,v,k)

to System (I1I,a) such that LIM Y(t,xo,v,k) exists

t»>

and is a point of core (v). (As before, denote

this point by Y(w,xo,v,k).

Proposition III.2: Y(@,xo,v,k) is jointly ccntinuous in (xo,v,k)
n
2 -1

over R x W » R, where W, as before, is

{v]core (v) ¢ 9}.

Note that we do not require x. to be efficient, although we

0

will generally assume that it is.
The behavior corresponding to System (III.a) differs from

that in Chapter II in that the coalitions do not meke demands on

each other, but rather on the referee, who pays only to those coalitions

with positive excess in proportion to that excess. The vectors {as}
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indicate that when the referee makes payment to a coalition, all
members of that coalition receive an equal share.

N

a

The term kg eN(x) ﬂ:NI—I-z can be interpreted as follows. If

x is a point where x(N)<v(N), the referee will make payment to all
the players equally until an efficient point is reached. On the other
hand, if x is infeasible, which is likely to happen as the coalitions
extra.ct. their demends from the referee, then the referee will require
~that the players pay a "penalty" in proportion to the infeasibility
of x. This "bonus-penalty" function of the referee is precisely the
mechanism whereby efficient limits are atteined. Without it, the
coalitions would simply demand sufficient payoff to satisfy them all
without regard to the amount actually available.

We will now investigate the trajectories of the intermediary

bargaining system,

Lemma III.3: If xer(v), then Y(t,xo,v,k) is efficient or infeasible
for 0<t<e and if x, £ core (v), v(t,x,,v,k) is infeasible
in some (positive) neighborhood of t = O.

Proof: *(N) = H(x,v,k) = k. [e.(x)]" sl + k (e (x)) Anl_
i S;N Sl 11a3]12 . V] ]2

+
= SSN kgleg(x)]™ + Ky(ey(x)).

Since x.€E(v), eN(x)-O. If x.ecore (v), Y(t,xo,v,k)-xo for

0 0
all nonnegative t. If xotcore (v), then H(xo,v,k)>0 so by
continuity

n
Z Yi(t.xo,v,k) > v(N) for t in some
i=]
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neighborhood [0,€) of 0, To see that
n
Y Yi(t,xo.v,k) > v(N) for all t, it is enough
i=1
to observe that if x(N) < v(N), H(x,v,k) > 0. So, if at
any time ?.
n -
Z Yi(tlxoivok) < V(N).
i=1
an application of the Mean Value Theorem would provide

the necessary contradiction. #
Lemma III.4: If x' is efficient and H(x',v,k) = O, then x' € core (v).
Proof: This follows immediately from the definition of H. #

Suppose x. € E(v)-core(v). Then Y(t,xo,v,k) can never become

0

efficient for 0<t<e, since if it did, say at t then by the continuity

o’
of H, it would follow that H(Y(to,xo,v,k),v,k) =0, s0 by Lemma III. k4,
Y(to,xo,v,k) € core (v). But uniqueness of trajectories implies that

Y(to,xo,v,k) is a critical point if and only if x_. is a critical point,

0
which we assumed was not the case. Therefore we can state the following

proposition.

Proposition III.5: Let x; ¢ E(v)-core(v). Then y(t,xo,v,k) is
infeasible for all finite positive time, and

converges to a feasible point as t-<,

Thus the trajectories can be characterized as looping up from
and back to the hyperplane E(v). In terms of a behavior, one could

say that initially the referee pays to the coalitions faster than



they are penalized, however ultimately the penalty role of the
referee dominates,
Note that is possible to set a limit on how infeasible the

trajectories become, since

a(y(t,x5,v,k) | core(v)) < d(xy | core(v)) for ell t20.

Of further interest is the question of which points of the
core are reachable through intermediary bargaining starting at
noncore efficient points. This, of course, was no problem in Chapter II,
where only boundary points of C(v,k) relative to E(v) were reachable.

We will show that this is also the case here.

Lemma IIT.6: Suppose X, € E(v)-core(v), Then for all t>0, there

exists a coalition S # N such that eS(Y(t,xo,v,k)) > 0,

Proof: Suppose not, then for some 0<t, <= , eS(Y(tO,xo,v,k)) < 0 for
all S # N, Further suppose to is the first time for which

this happens. Note that for any § > 0,
e (Y(t.,x ,v,k) + 6a") < 0 and
sV v0rXor"s =
N
eN(Y(to,xo,v,k) + 62 ) <0,

Therefore, equation (III.a) becomes

N
a

[1e"] 12

(III.b) % = kLo (v(to,x v k) + sa)))

If we integrate equation (III.g) backward in time (i.e., in

the direction of decreasing t) from Y(to,xo,v,k), it is clear
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that the equation of motion will be

dx aN
T = -kN eN(x) -I-I—NI—I'2 wvhere = -t,
a

Hence the backward trajectory from Y(to,xo,v,k) lies on the
ray
Y(to.xo,v,k) + 6a) » 620 and thus for some t, < t,,
es(y(tl,xo,v,k)) < 0 for all S # N, contradiction the

assumption that to was the first such time. #

Proposition III.7: For x, € E(v)=-core(v), Y(@,xo,v,k) is an element

of the boundary of core (v) (relative to E(v)).

Proof: From Lemma III.6, for n = 1,2,..., there exists Sn sucﬁ that

eg (Y(n,xo,v,k)) > 0, Since 2 is finite, we can, without
n

loss of generality assume that Sn = So for all n, Therefore

eg (Y(n,xo,v,k)) >0 for all n so that
0

eso(y(w,xo,v,k))‘z_o.

But Y(w,xo,v,k) € core (v) implies eq (Y(°,x0,v,k)) =0, #
0

§2. Coalitional Weights and Symmetry

As in Chapter II, we wish to investigate possible choices of the

coalitional weights. Let x = D(x,v) stand for equation (III.a). Let

T be any permutation on {1,2,...,n} and nv, mx be as in §9 of Chapter II,
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Proposition III.8: A necessary and sufficient condition that D(mx,nv)
= mD(x,v) for all x, v, 7, is that kg = kn

whenever [8| = |T].
Proof: The proof of this result follows that of Proposition II.1l6 exactly.

Using these coalition weights, and the notation of Chapter II,

wve obtain these corollaries.
Corollary ITT.9: If 1> J and x, £ %, then D, (x,v) ;Da(x.v).

Corollary ITT.10: If i >> § and (x,), 2 (x,) 4o then
Yi(t,xo,v,k) g_yd(t.xo,v,k) for all t > O,

Corollery III.11: If i and J are symmetric, (xo)i - ("0)3' then
Yi(t.xo.v,k) = yJ(t,xo,v.k) for all t > O,

Thus, with certain coalitional weights, symmetry is preserved.
Unfortunately, there is no result analogous to the one for dumies as
in Chapter II. This is because a dummy player receives payment for
all the dissatisfied coalitions of which he is a member, but does
not have to pay a substantial penalty until after the trajectory

has become infeasible.

§3. Nonsidepayment Gemes

Because the trajectories of (III.a) become infeasible, and
because of the existence of the (possibly objectionable) referee,
the preceeding analysis 1s not suitable for true cooperative games

wvith sidepayments. As was indicated in the beginning of this chapter,
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this model could apply to a situation where the coalitions could not
directly transfer payoff and had to make their transfers through a
third party. Under such conditions, a referee would not be inappropriate,
Because of the assumed form of the excess, however, this model is
not applicable to the general nonsidepayment cooperative game (for a
survey of nonsidepayment games, see Aumann [2]). Still, it is felt
that this is a beginning in the study of a differential approach

to the dynamics of nonsidepayment games. The missing elements in
this study are an adequate interpretation of excess, and, more
importantly, vectors indicating how the coalitions will split any
payment which they receive,

For one limited class of nonsidepayment games, these elements
are present and bargaining systems can be constructed. A "hyperplane
geme", as defined by Billera in [4], consists of a set of players N,
coalitions S ¢ 2N, a characteristic function v: 2N + R, and vectors
gs e R® for all S ¢ 2N which are such that for any S, g? >0 for

i=1,...,n and gf = 0 whenever i ¢ S. These vectors determine

"game subsets"

Vo = {x ¢ B® |<-gs,x> + v(s) > o}.

S

The core of such a game is defined to be
fxev | x¢ interior(Vg) for all § ¢ Nl

Equivalently, the core is the set of points such that

s-g> x> + v(5) 5 0 for all S, and

<egh x> + v(N) = 0.
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Clearly, a bargaining system of the form:
S + g N N
1= ) Kk [<-g x> + v(8) ] =B+ k (<-g ,x> + V(W) Yo
8 8112 N vy N2
SEN le”! | e 1]

will have solutions converging to the core, whenever nonempty., It is

possible, by constructing vectors GS, perpendicular to gN, to devise

a bargaining system for these games whose solutions lie entirely in

{x | <-gN,x> + v(N) = 0}.



IV. Some Questious and Conclus:. .oz

In [3], Billera exhibited a system of differential equations
vhich has continuous solutions converging to the kernel of a couoperative

game with sidepayments. Briefly, his system is:

n
(Iv.a) x -le {diJ(X) - ddi(x)} for 1 = 1,...,n

vhere d“(x): R® + R, and is continuous for 1,j = 1,...,n
and 0< dia(x) :kiJ(X) for 1, = 1,...,n
where ku(x) = 1/2 [aiJ(X) - sJi(x)]+,

MAX {eT(x)l 1€T, JFT)}  vhen iy}

27 (x) = &

0 vhen i=j,

In order to compare this system with the syst’ems in this paper,
we need some terminology. We will say that a system is "interpersonal"
if the behavior it describes is primarily one of interaction among
individual players. A system is "intercoalitional" if the interaction
is primarily among coalitions, with the individual players participating
only insomuch as they are members of coalitions.

System (IV.a), therefore, is clearly interpersonal since changes
in payoff distribution are the result of demands by individual players
on the others,

The bargaining and allocation systems of this paper, however, are
clearly intercoalitional, Demands and payments are made by coalitions
as units, with the irdividual players playing secondary roles.

It is interesting to observe how information is utilized in the

various systems. In all cases, the basis elements of information
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svailable to the players are the excesses. Bargaining systems utilize
s,aem to calculate dissatisfaction, allocation systems, disorder, while
in (IV.a), the excesses are used to compute the demand individual
players make on each other.

While one might be tempted to characterize some solution concepts
only as interpersonal or intercoalitional depending on an associated
system, there is a danger in that there may be various types of systems
converging to any given solution concept. This indicates possible
areas of future investigation: do there exist interpersonal systems
for the core or the Shapley value and are there intercoalitional
systeme for the kernel?

Recall that the systems of this work each had an associated convex
function. The solutions of a system followed the negative gradient
of that function. Therefore, another question which can be asked
about System (IV.a) is whether there is some function INI(x) such that

System (IV.a) can be rewritten

Kalai, Maschler, and Owen [13] have displayed a number of functions
vhich decrease along solutions of (IV.a), but it is unclear whether
these functions can be utilized to provide such a NI(x) since they are
not continuously differentiable, We can note one fact about I if it
exists. Since the kernel of a game is not necessarily connected, if we
desire that VIl = O only on the kernel, it follows that NI cannot be
convex as are ¢ and ©, Thus Il may have critical points which are
local maxima or seddle points, accounting perhaps for the (Lyapunov)
instability of some kernel points under (IV.a) (see [13] for instability

results).
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Bystem (IV.a) is closely associated with Stearns' sequences of
discrete transfers [27]. It is believed that similar systems of
discrete transfers can be defined which approximate the trajectories
of the systems defined in this paper and which converge to the same
solution concepts. Wang [30] has described a transfer sequence based
on a method of Agmon [1] which conv?rges, when the core is nonempty,
to a point of the core. For an efficient initial point Xns her

sequence is as follows:

f
N[xn_lj ir S is not efficient
x = < s[xn_l] if x _, is efficient and
S MAX
ceglxpg) = g eplxy ) > 0
L_xn-l if x i € core (v)
where N[{x .] =x + eN(xp-; aN
n-1 Nl
L
S[x ] x + e (x = ) aS.
n=-1 ne=1l -ETET-l'
8

It turns out that every second step of this sequence yields an
infeasible point, requiring the "N-corrections", N[-.], to return the
sequence to the hyperplane of efficient points. As was indicated in
Chapter III, this type of situation is tqlerable under certein
modifications of the notion of cooperative game, but for a game with
true sidepayments, and no outside "referee", this sequence is not
entirely intuitively satisfying. It can be seen as a direct result
of Agmon [1], that the following sequence of transfers converges

to the core, whenever nonempty, and moreover each point in the

T2
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sequence is efficient for any efficient initial point Xy

f‘xn-l if x | € core (v)
x=
< i ¢ (v) and
x 1t es(xn_l) A if x, _, £ core (v)e
eS(xn-l) = MAX eT(xn-l) >0,

T

Work remains to be done on other solution ccncepts and in
particular many questions remain concerning the nucleolus. It was
shown in Chapter II that under certain conditions, the nucleolus is a
k-centroid for some set of coalitional weights. It need not, however,
be the unique k-centroid for that set of weights, particularly if
the core is non-empty. One ca- therefore ask whether or not there is
a system of differential equations for which the nucleolus is the
unique critical point,

Returning to the characterization of the nucleolus as a k-centroid,
it would be of great interest to know the properties of the coalitional

weights for which this is true, i.e., for precisely which values of {ks}

the nucleolus is a k-centroid. Some preliminary investigation indicates

that often

Lt
k= ”Hl

5 \lsl

is one such set of coalitional weights., If this turns out to be true

in more generality, then it may lead to a result indicating under what

conditions the nucleolus and the Shapley value coincide.
Investigations should be made into the behavior of actual players,

and how they adjust payoffs over time. With information on this question,



it would perhaps be possible to determine whether the behaviors
described in this work have analogues in reality.

In Chapter ITI, some indication was made of the difficulties
inherent in the case of nonsidepayment games., More investigation
into differential approaches to these games remains to be done.

Finally, a conjecture of interest and importance is that the
collection ¥ of dissatisfied coalitions at a k-centroid of a game
is independent of the coalitional weights, If so,.’ is & function
only of the game and may be of value in determining which coalitions,
by unusually large characteristic function values, prevent the

existence of a nonempty core.

Th
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