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1 1. INTRODUCTION

lI

The accuracy of the Navy navigation satellite, Trar-Isit, is dependent on precise orbit determination and orbit
prediction. Improvements in orbit prediction have been

limited by uncertai~ities in orbit disturbance from solar
pressure and atmospheric drag. The Disturbance Compen-
sation System (Discos) was designed at Stanford University
under subcontract to the Applied Physics Laboratory of The
Johns Hopkins University. It was flown on the Triad satel-
lite, and it has opened possibilities for improvements in
accuracy and operational convenience for the Transit sys-
tem by freeing Triad's orbit of disturbances larger than
5 X 10-12 g.

To eliminate the effect of forces on the Discos sys-
tem because of the various satellite components, each main
electronics package (shown in Fig. 1) had its mass proper-
ties measured. To accomplish this a bifilar pendulum was
designed that could rotate a body into six distinct positions
with respect to a coordinate system that had its origin fixedIL at the body's center of mass. With this rotational capability,
six independent moment of inertia measurements were made.
The data were then reduced with the aid of a computer, and

[ the complete inertia matrix with respect to the package cen-
ter of mass was determined.

A

, p

I
I

' ~ ~Preceding page blank- -
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I 2. ANALYSIS

I

Figure 2 shows a line with respect to a mass parti-
cle mj. The moment of inertia of the particle with respect
to the line L (X, A, y) is

I 'L 2 2xx +A 2 yy + 2zz - 2)1Ixy - 2Xylxz - 2AvIyz. (1)

I X, t, and a are the direction cosines of a line L in space
that passes through the origin of a fixed Cartesian system

j of coordinates.

In order to solve for the unknown cross products in
Eq. (1), it is necessary that the body shown in Fig. 2 be
moved to six different angular positions and that the moment
of inertia is measured at each of those positions. Equation

1(1) was derived so that only three of the angular positions
I can be mutually perpendicular. Figure 3 shows three of the

mutually perpendicular axes x', y', and z'. Each of these
axes could be placed on the axis of rotation. Also, the three
skew lines are shown in Fig. 3; their angular rotations and
line numbers are indicated below:

I Line Rotation

2 -50,+45

3 +450

To use the moment of inertia data obtained from the
1six different measurements, the equations are set up as

shown in Eq. (2). Equation (1) is rewritten where the prime
refers to the moment of inertia of the axis being measured:

I
!
I

I -9-
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NXIxy + XyIxz + MVIyz 2 X2 Ixx + + y2 I.z - IL . (2)

Now, setting up a matrix of the left-hand side of Eq. (2) in
consideration of Fig. 4 where Sc = sin (Y an! Cu = cos C
(also for three skew lines) we obtain the following:

-$51SICxcSo I C ISxICc S ISc!C&1  -lcy-

S 2 Sac2 CA 2Sa 2 CA2Sxa2 Ca 2 S9 2 Sa 2 Ca 2  Ikz . (3)

L/ 3 S 3 C33S 3 C03 SX3 Ca 3 S3 3 Sa 3 Ca 3  Iz

In setting up the right-hand side in a matrix form, we ob-
tain:

22 2I -(C81Scx)21cx~ SlSI2,~ 2 , ,W a I W SN 1 Ca Izz -I'

1 1 IYcIZL

(CA 2 Sue2 ) Ixx (8 2Sc 2 )2 I y 2 Izz I L  (4)

a2 1/ 2 ,,, //- I 'll
(CA S01 ) lXX (SO3 S 3 ) lyy Ca 3 Izz -

Using matrix notation on the left- and right-hand side,

FIXY
[Cij] Ixz = [Di - ILi] (-) (5)

l IyzL5
therefore letting Ixz Eij. Solving for the cross products

-11-
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we have

E Cij]-I [Dij -lij] (6)
[Eij2 (6)

Knowing all the cross products we can set up the following
matrix equation to solve for the principal axis:

r

(Ixx - I) Ixy Ixz

Iyx (Iyy - I) Iyz =0. (7)

LIzx Izy (Izz - I)]

I If we let I = X we can solve the above as follows:

2 2 2
(Ixxlyylzz - Izylxx - Izxyy - Iyxlzz + 2lyzlzxlyx)

+ )(IxxIyy + IyyIzz + Ixxlzz - Izy + Izx + Iyx) (8)

S4 X 2(Ixx + Iyy + Izz) - )p = 0 .

The three roots of the above will be the moments of
inertia about the principal axis of the package.

velc ISince for rotation about a principal axis the angular
velocity vector coincides with this axis, the set of numbers

Sx , wy, Wz I, which satisfies the following corresponding to**?' I I 1 of Eq. (8), consists of the direction numbers for axis I1 .

(Ix - ll)W x(1) - IxyO (1) - IxzW (i) 0j Ix y z

(1) (1) (1

-lyxWO(I + (Iyy - Il) 1 )c - IyzWa(I 0(9

-Izx x (1) _Izywy(1) + (Izz -I I) (1)

Solving Eq. (9) will result in the ratios -Wx(1). ( ) : z
I and the axis associated with I1 is thereby define3 relative

13-
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to the original coordinate system. To solve the ratios, let i
one direction number equal 1. 0. Repeat this procedure for
the other two roots of Eq. (8) to define the other principal
axes with respect to the original coordinate system.

By using the above analysis and by knowing the mo- -.

ment of inertia of a package fo:: three perpendicular axes
as well as three skew axes, the inertia matrix can be com-
pleted. Once this inertia matrix is completed, the princi- -

pal moments of inertia of the body can be determined as
well as the orientation of the principal axes with respect to
the coordinat.: axis system useQ for the original measure-
mernts.

3

-J

I

U
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3. DEVELOPMENT OF THE MEASURING TECHNIQUE

The design goals for the measurement of the mass
properties were as follows:

1. Error in the moment of inertia +0. 5% of the sum
of the three inertias about any set of three mutually perpen- f
dicular axes;

2. Mass center location determined within +0. 001
inch of mounting surfaces and hole patterns; and

3. Mass measurements of all packages to within

±0. 050 gram.

Of all the reqiv.rements, the third was obviously the
one that would be the easiest to meet. To determine the
inertia matrix and center of mass it was apparent that ex-

jtraordinary precision would have to be obtained.

There were two basic proposals put forth by APL toIobtain the complete inertia matrix:

1. Obtain a large A-frame and suspend a torsional
pendulum at least 6 feet long from it, and

2. Develop a pendulum similar to a trifilar pendu-

lum.

The second proposal was selected for the following

reasons:

1. Package orientation and subsequent dynamic un-
balance would have a minimal effect on the system.

2. A preliminary calculation of the error allowed
on the smallest package showed it to be on the order of
2. 5 x 10-5 slug ft 2 . It was apparent, therefore, that air

I K U-15-
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drag on any system used would affect the period measure-
ment and should be eliminated if possible. By using the
second proposal the entire system could be put efficiently
into a bell jar.

3. Other considerations would be the weight and, -i

therefore, the configuration of the basic system. A bifilar
pendulum lends itself to efficient mass distribution. Most
of the mass can be concentrated at the center of oscillation,
thereby eliminating large Mr 2 terms.

Figures 5 and 6 show the preliminary bifilar pendu-
lum arrangement. Part of the testing on this bifilar pendu-
lum concerned the problem of determining the best suspen-
sion system wire diameter and material. The figures show
the pendulum supported by two 0. 007 inch BeCu wires. Sub-
sequent to the use of the 0.007 inch BeCu wire, music wire
and hypodermic needle tubing suspension systems were -
tested. The final suspension system chosen was stainless
steel hypodermic needle tubing with a 0.042 inch 0. D. and
a 0.006 inch wall. -,

The basic equation for determining the moment of
inertia on a bifilar pendulum (knowing the period) is

S-T2WD2 (10)

16ff2 L

where I = moment of inertia, T = period, D = distance be-

tween the supporting wires, W = weight on the pendulum,
and L = wire length.

Figure 6 shows the-pendulum witha test mass in .
place and small pins that could be selectively removed and
relocated to produce a change in its moment of inertia.
This test mass proved that a moment of inertia change of
approximately ±0. 5% of the sum of three perpendicular
axes could be measueed. After it was proven that the bifi- -

lar pendulum would give the accuracy desired, the design
of a more sophisticated system was begun.

16 -
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I Fig. 5 PROTOTYPE MOMENT OF INERTIA DESIGN
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II

I 4. FINAL PENDULUM DESIGN

Based on the analysis and the preliminary experi-Iments, a platform was designed that could rotate to three
perpendicular axes and tihat could also be offset to locate

* I the package into three skew positions. Figures 7 and 8
Ishow a package in two of the orthogonal ayis positions, and

Fig. 9 shows a package in one of the skew positions. A
counterweight was mounted beneath the package on the plat-
form frame to compensate for the unbalanced moment
caused by the location of the package in its various posi-

I tions.

Inherent in the platform design was the necessity to
design it so that the package, when attached to the platform,
could be positioned at its center of mass. In Fig. 7 the
arrows show the adjustment methods as indicated below:

I, Arrow Function (see Fig. 7)

1 This shaft was adjusted by a screw on
the bottom that allowed the package to
be adjusted in the vertical direction.

S2 This shaft was adjustable to the right
*• or left.

3 This screw adjusted the platform

toward or away from the viewer.

All of the above functions were adjusted in a specially de-
signed fixture using precision measuring devices that mea-
sured to 0. 0001 inch.

IFigures 10c and 10d show the fixture being used
with )iscos package No. 5. The dial indicator (used for
the measurement of the vertical motion of the platform) as
wel as the height gauge (used to locate the package counter-
weight) are shown. Figure 10 also shows the micrometers

1 used for the lateral positioning of the package.

-19-
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All of the adjustments were made after the center of
mass was measured (see Figs. 10a and 10b). The beam
used for the center of mass determination was designed so
that the moment of inertia platform was registered in a
known location on the beam. This beam was supported by
a 0. 375 inch diameter ball in the center of the weighing pan
on a precision balance and two 0. 375 inch diameter balls at
the olner end.

The advantage of measuring the center of mass in
this manner was that the package (once installed on the
inertia platform) was not removed until all of its mass prop-
erties were determined.

To complete the system, the pendulum was sus-
pended in a bell jar (Fig. 11), which rested on a collar.
The collar had two ports that could be used for viewing,
and when required the port cover could be disassembled
for system adjustment without disturbing the bell jar.

-24-
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II

I5. ELECTRONICS INSTRUMENTATION

It was obvious in the development of the measuring
technique that the bifilar pendulum was going to have to be
carefully instrumented to be successful. Figure 11 shows
all of the instruments external to the be!l jar, and Fig. 8
is a view that shows the instrumentation inside the bell jar.

A shaft was attached to the bottom of the moment of
inertia platform. It was guided by a nylon bearing approxi-
mately 0. 010 inch larger than its 0. D. To start the pendu-
lum, a timing motor was actuated that rotated a cam-
operated wire that "locked" onto the pendulum shaft. After
the pendulum was rotated 200, the wire was abruptly re-
leased from the inertia pendulum shaft, allowing the pendu-1 lum to swing freely.

A fan-shaped disk with a small hole in it was located
I directly above the pendulum shaft. The "fan" rotated be-

tween a light and an N-P-N planar silicon light sensor.
When the hole passed over the light sensor, the light illumi-
nating the sensor triggered the external electronics.

The following is a list of the external electronics
i and their use:

Instriment Function

' IOscilloscope To determine if the light was
centered over the hole in the
"fan. "

Sanborn recorder To check for pendulum damp-

ing.

I Printer To record the period of the
pendulum.

Counter To check if the average of 10
periods was remaining con-
stant.

Preceding page blank - 27 -
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16. TEST RESULTS

I 'I

On 23 November 1971 the final calibration tests and
package testing began on the bifilar pendulum. During all
of the tests a vacuum of 30 inches of mercury was main-

I tained.

To account for any measurement variation owing to
the weight of the package being measured, a calibration
weight was made for each package. Also, to determine if
the measured moments of inertia were reasonable, a com-
puter program was written that calculated the moment of
inertia of homogeneous packages the same size as Discos
(see Appendix A). Figure 12 shows the program printout.

I, To do the final calculations a computer program was
written. This program calculated the test mass moments
of inertia as well as the final package moment of inertia.
In this way the program was cont;nually checked for accu-
racy by a known mass. Figure 13 is a sample of the pro-
gram printout. The printout notation is as follows:

I..P = Final package moment of inertia and cross
1 J product,

IL(ij) = Moment of inertia of skew line,
m Ii Principal moment of inertia,

i J, 2, 3, and

I IPRO(ij) = Final moment of inertia matrix check.

P
!

Preceding[ page blank -2
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7. CONCLUDING REMARKS

I
On 11 April 1972 Figs. 14a and 14b were sent to

Stanford University, thereby completing the package mass
property documentation for the Discos electronic packages.

After insertion into orbit, Discos operated success-

fully for 1 year until it was commanded off. It exceeded its
design requirements for orbital perturbations of 10-11 g.

I
I
I
I

- I

I
Ii
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II
Appendix A

MOMENT OF INERTIA EQUATIONS FOR BODIES THE
SHAPE OF THE DISCOS PACKAGES

i To determine if the moments of inertia calculated on
the bifilar pendulum were reasonable, the equations for the
moment of inertia of the three principal axis of the Discos
package were determined as follows:

I

j RR

4 d

d Ixx

x0

,

x/ R Cos 0

, pI

I Preceding page blank - 37-
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The radius to the element of mass is
2 2 21

D=[z2 +2 cos (A-1)

The element of mass is

dm = Pr d~drdz . (A-2)

Therefore, the M of Ixx is

Ixx= p ff D2 r d~drdz , (A-3)

H R

Ixx = J (z 2 + r cos20) r 2dOdrdz , (A-4)

2

and, finally,

HpcxCR - R4I Hp sin2c [R 4- RI4
lxx = + 2 1 (A-5)/4 8

H3ai [R 2 R2

+ 2 1
12

- 38 -
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Iyy

Ix x '

Iy
dz

04f dy]

1 The element of mass is

dm =dy dz(b-a) p .(A-6)

'1 The radius to the element is

1 2 2
r = y + z 1 (A-7)

ITherefore, the M of Iyy is

Iyy r 2 rdm (A-8)

IyyPf f (b- a)(y2 +z 2)dydz. (A-9)
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And, finally,

h0R 4 2hpR 4sin 4 a hoR 4sin 4 PR 2h 3
I 4 -16 2 tan O 12

(A-10)

+2R 2h 3sin PR 2h 3 in
24 12 tanal

Izz
z

Y

x

The element of mass is

dmn rd~drdzp P (A-11)
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The radius of the element is R; therefore lzz is

H R1  O

2

And, finally,

Izz 20 2 1 H(A -13)
L74

The above equations were programmed. and the

mass properties of homogeneous packages of the same

weight as the actual Discos packages were determinled.
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