Mﬁw*-—--‘-ﬂ e = SN e T T R e g T, - o i e —

AD-787 502

IMAGE TRANSMISSION VIA SPREAD SPECTRUM
TECHNIQUES

Robert W. Means, et al

Naval Undersea Center

Prepared for:

Advanced Research Projects Agency

1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

AD?87502

IMAGE TRANSMISS!ON
VIA
SPREAD SPECTRUM TECHNIRHES

ARPA Quarterly Technical Report
January 2, 1974 — July 1, 1974

Advanced Research Projects Agency
Order Number 2303
Code Number 3G10

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department ¥ Commerce
Springhield VA 22151

Naval Undersea Center
San Diego, Californ'a 92132

Approved for Public Release; Disgribution Unlimited.

o

ARPA QR4

-

i G o

- :

1
1
e

3

;"\ ""’} f"w

= S N
]
s

. 00T 241974 ’
‘LJLL.J_.J..:’JWU_

|_ACCESSION for
s Wate Section
1 Buft Sechen ()

UNANSDUNGED 0
3R L R —

e e . .
DISTRIDUTION /AVAILABILITY CODES

T Bist_ vl ang or SPECIAL

B

Form Approved Budget Burcau No. 22-R0293

IMAGE TRANSMISSION
ViA
SPREAD SPECTRUM TECHNIQUES

Investigated by

DR. RoBeRT W. MEANS (714:225-6872), Code 608
JEFFREY M. SPEISER (714:225:6607), Code 6C_1
and

HARPER J. WHITEHOUSE (714:225-6315), Code 6003
Naval Undersea Center

San Diego, California

Sponsored by

Advanced Rescarch Projects Agency
Order Number 2303

Code Number 3G10

Contract
effective: 15 February 1973
¢xpiration: 30 June 1974
amount: $£519.400

ARPA Quarterly Technical Report
January 1, 1974 — July 1, 1974

Y%

§
H

ABSTRACT

This report addresses the design of a spread spectrum image transmission system
to provide increased antijam protection to a television link from a small remotely piloted
vehicle. Previous quarterly reports have described component developments, theoretical
advances in image processing, and simulations of proposed coding schemes. This report

summarizes the proposed total system.

4 =g omq o=y NN O N N

$ve=d

aw

CONTENTS

Abstract . . . pageiii
REPORT SUMMARY . . .1
INTRODUCTION . . .2
SYSTEM DESCRIPTION . . .3
APPENDICES
A. University of Southern California Transform Simulation.
Video Spread Spectrum Encoding.
The Modular CHIRP-Z Transform.
High Capacity Lincar Processing Using Multidimensional CHIRP-Z Transforms.

Structural Organization for Real and Complex Convolution by Imaging CCDs.

B B D

Signal Processing Interpreter.

REPORT SUMMARY

This report describes the proposed system for bandwidth reduction of the video

for a remotely piloted vehicle. Two systems 2re being constructed: one compatible with

a standard vidicon, the other compatible with a Charge Injection Device 100 x 100 camera.
The transversal filters for the 100 point Cosine Transform were delivered during this phase
and integrated into a transform subsystem. A limited prototype ground station was de-
signed and constructed during this phase. The proposed transform was shown to be rela-
tively tolerant to bit errors, which is shown in Appendix A. The proposed coding schemes
were investigated and are reported in Appendix B. The modularity of the CHIRP-Z Trans-
form is shown in Appendix C. This modularity and the structures described in Apperdix D
allow general purpose high-speed signal processors which could be used in the channel

decoder.

INTRODUCTION

The Image Transmission via Spread Spectrum Techniques program has developed
to a point where a complete proposed system can be described. Previous quarterly reports
have described component developments, theoretical advances in image processing, and
simulations of proposed coding schemes. A summary of the complete system description

was presented during an ARPA workshop at MITRE on May 14-15, 1974. This summary

is presented below. Also included arc Appendixes A thrugh F which present study efforts

conducted during this last reporting period by individual authors.

Appendix A is a compilation of photographs of transformed images done at the
University of Southern California. Appendix B is a comparison of methods of channel
encoding. Appendix C is a description of the modular CHIRP-Z Transform. Appendix D is
a description of a high capacity linear processor. Appendix E is a description of the utiliza-
tion of a signal processing imager chip. Appendix F is an updated description of a signal

processing interpreter for use in a general purpose computer.

I
i
i
I
i
I
I
l
1
I
I
)
i
I
I
]
l'
\

SYSTEM DESCRIPTION

The following material is presented in summary format and represents the status

of the complete proposed program.

Problem Statement

Design and demonstrate a real time image bandwidth reduction and spread spectrum
encoding system for use in a lightweight Remotely Piloted Vehicle (RPV) television system

to provide protection against intentional and unintentional jamming.

Goals for RPV Image Redundancy Reduction System

a) ~1.51b
b) 15 -30 watts

¢) Field demonstration in spring 1975.

Approach

Reduce data rate in order to use spread spectrum encoding
® Number of image points
¢ Frame rate

® Transform encoding

Performance of Intraframe Encoding

PCM/DPCM

8 — 3 bits/pixel
Transform with

Selective: 3 — | bits/pixel

Quantization

Transforms Examined:

® Haar

® Hadamard

® Slant

® Fourier

Differential Pulse Code Modulation (DPCM)
Discrete Cosine Transform (DCT)
Karhunen - Loéve (K - L)

Mean Square Error Performance of Various Transforms for Exponentially

Correlated Data, p = 0.9:

0.5
9 x DISCRETE COSINE
S o0a4f
0
[+ = L %
w KARHUNEN-LOEVE
o - FOURIER
< WALSH-HADAMARD
§ - AND HAAR
5 L
w 03+
=
L \.:
- ,-"""‘"--::
I 1 i 1 | i L 3. . L | i J
X 0 2 4 8 16 32 64

SIZE OF Q

f

Discrete Fourier Transform, CZT Algorithm:
N-1 .
)G =Y e—121rmn/Ng
2) -2mn = -m2 + (m- n)2 -n2

3 Nel .
3) .Gy = edmAMN |4 n=m2/N (eimnd/N

wherem=0,1,2,...,N-1.

CHIRP-Z Transform Implementation of the DFT

* girmZ/N

e-i1rm2/N

* Denotes either convolution or circular convolution

- L, T O Sy o perTTTT—

DFT Via CZT Algorithm with Parallel Implementation of Complex Arithmetic

2 CIRCULAR
cos% CONVOLUTIONS

Relation of DCT to DFT

e — e E—
N
2N-1
DCT = DFT of symmetric extension = real part of DFT of null extension 3

Serial Access Implementation of the DCT

@l Tn?/(2N-1) Re H>—

g-iTn*(N-1) @-iTn*/(2N-1)

~(N-1)<n<(N-1)
0<n<(N-1) 0<n<(N-1)

Charge Transfer Implementation of DCT

CHARGE TRANSFER
LSI CHIP

el e o |

L

cos 7n?/(2N-1) cos rm?/(2N-1)

cos "m?/(2N-1)

sin 7m?/(2N-1)

k.

g,

sin Tm?/(2N-1)

~sin 7n2/(2N-1) cos 7m’/(2N-1) | ~sin Tm?/(2N-1)

Transforms Examined

DPCM Encoder

INPUT .

Two - Dimensional Hybrid
Haar Haar/DCT
Hadamard Hadamard/DPCM
Fourier Fourier/DPCM
DPCM DCT/DPCM
DCT
CONTROL
MEMORY % STATE
MACHINE
QUANTIZER 2 s
MEMORY
+
——ff}-

YvYy
D, D, Dy, SIGN
OUTPUTS

|

TP ARSI (T AR AT RN RN N S s s b

e v_‘-h

10° Samples/Second Transform System

® 100 X 100 CID sensor

® 100 point BBD implementation of DCT/DPCM

5 X 10° Samples/Second Transform System

® 256 X 240 sensor
® 32 point CCD implementation of DCT/DPCM

Coding Design

Source
a) minimum of 4 frames/sec
b) 256 X 256 pixels
¢) mean square error = 30 dB down
Channel
a) 20 Mbits/sec
b) at each data rate maximize distance between code words

¢) coding for modem independence

e

|

Performance of PNPPM and Simple Repetition as a Function of Redundancy Ratio

Bt BLOCK

B b BLOCK

— PP

10 bog,.. MINIMUM DISTANCE BE TWEEN CODE WORDS

=== SIMPLE REPETITION

Ll 1 |
0 4 8121620 100

120

REDUNDANCY RATIO

f
1
1
1
]
l

System Performance for a Linear Matched Filter PN-PPM Receiver

FRAMES/
SEC BITS/PIXEL
30 1 .56 31
15 1.75 1 .56 31
7-1/2 3 1.75 1 .56 31
3-3/4 3 1.75 1 .56
1-7/8 3 1.75 1
15/16 3 1.75

18 21 24 27 30 dB
MATCHED FILTER PROCESSING GAIN

Performance of Proposed System

CODE BITS GAU%% 'XIO'SE mrggéggg/vce e
/ NOISE
WORD PeR COMPRESSION MARGIN MARGIN

RATIO = s
P =102 | P = 102
LENGTH IXEL P=10 P=10 éggf::yr?gr?) OVER SPEC®
1023 0.31 102.3 224 dB | 23.6dB 30.1dB 27.7d8B

511 0.56 56.8 19.7 dB | 20.5 dB 27.1dB 25.0dB

2556 1.0 32.0 17.2dB | 18.1dB 24.1dB 225d8B
*p =10
S/N=10dB

— oug T R S5 6 P b o O SN OGN AN SN GEN 0NN

Transmitter]

SOURCE ENCODER CHANNEL ENCODER
> . N, N
(N\ 4)
SENSOR COSINE
- TRANSFORM DPCM - PN - PPM —0
IF
SYNC
GENERATOR LD
Receiver
CHANNEL DECODER SOURCE DECDDER
s e N EAS N
VIDEO VIDED DPCM INVERSE
COSINE }—. DISPLAY
MATCHED FILTER DECDDER INTEGRATDR TRANSFORM !
IF
SYNC SYNC
i 10 MATCHED FILTER INTEGRATOR
X
4

i
|
I
i
0
0
[
I
[
I
I
I
I
[
.
i
l
!

APPENDIX A

UNIVERSITY OF SOUTHERN CALIFORNIA
TRANSFORM SIMULATION

TRANSFORMED IMAGES

This appendix presents a compilation of photographs of several image coding systems

based upon transform coding performed at the University of Southern California.

Cosine/DPCM, P=0 2 Dim. Cosine, P =20

l Cosine/DFCM, P - 10”2 2 Dim. Cosine, P - 10'2

Original Hadamard/DPCM, P=0

Figure l. Coded Pictures, 2 Bits/Pixel.
A=3

e —

Cosine/DPCM, P =0

Cosine/DPCM, P - 10'2 2 Dim. Cosine, P = 10'2

Hadamard/DPCM, P =0

Figure 2. Coded Pictures, 1 Bit/Pixel,
A-4

Cosine/DPCM, P 0 2 Dim. Cosine, P -0

Cosine/DPCM, P=10 2 Dim. Cosine, P - 10"2

1
1

Hadamard/DPCM, P =0

Figure 3. Coded Pictures, 0.5 Bit/Pixel.

A=H

£

% ’
by T . L -

r original Cosine/DPCM, P=0

- i

o
B *“"M-!-j

Cosine/DPCM, P =10

T . N

2

? Cosine/DPCM, P =10

!A Figure 4. Coded Pictures, 2 Bits/Pixel.

P T —-—

=

original Cosine/DPCM, P =0

3

Cosine/DPCM, P =10 Cosine/DPCM, P = 10'2

Figure 5. Coded Pictures, 2 Bits/Pixel. |

Cos/DPCM, P -

s -] [] [] I — e

Cos/DPCM, P -10" Cos/DPCM, P=10"

s — Y

.*"

[

-
- .
& . — ﬂ:
3 £
Cos/DPCM, P - 10 Cos/DPCM, P - 10
l Figure 6. Coded Pictures, 1 Bit/Pixel.

A-8

7, st o o = .] [. | . ———

-
, (=]
x ., 4+ e "‘i

Cos/DPCM, P=0

-
A- ‘h |
; ""»35. v#'»s—!-j

Cos/DPCM, P - 1073

-l

i'ﬁ"“-

Cos/DPCM, P = 10'2 Cos/DPCM, P=10

Figure 7. Coded Pictures, 0.5 Bit/Pixel.

A=9

original

2

=3 =,
Cosine/DPCM, P =10 Cosine/DPCM, P = 10

AR T p——

Figure 8. Coded Pictures, 2 Bits/Pixel.

o e .

Figure 9,

Cosine/DPCM, P - 0

Cosine/DPCM, P = 10-2

Coded Pictures, 2 Bits/Pixel.

3

Cos/DPCM, P = 10-2 Cos/DPCM, P

Figure 10, Coded Pictures, 1 Bit/Pixel.

A-12

— eoms N

Cos/DPCM, P=0 Cos/DPCM, P =0

 luneid

2 -2

Cos/DPCM, P =10~ Cos/DPCM, P =10

Figure 11, Coded Pictures, 0.5 Bit/Pixel.

i DEE WA @ AE OGNS GE EE 2= -

A=13

APPENDIX B

VIDEO SPREAD SPECTRUM ENCODING

Dr. E. H. Wrench, Jr.

Naval Undersea Center

s CGEE GEE O b4 i |

R)

B-1

VIDEO SPREAD SPECTRUM ENCODING

by
Edwin H. Wrench, Jr.

INTRODUCTION

In the design of a communication system there is usually a trade off between system
performance and complexity (expense). Such trade offs between complexity and perform-
ance in the presence of noise exist for the video down link for the ARPA remotely piloted
vehicle. The allocated channel bandwidth is barely adequate to transmit the video directly:
however, if direct transmission is used, noisc immunity can only be obtained by increased
transmitted power. For a system of limited size, weight, and power dissipation, this approach

is undesirable.

An alternative approach is to use bandwidth compression techniques to remove re-

dundancy from the video prior to transmission. The compressed video can then be trans-

SR e

mitted directly or recoded to fill the allocated channel bandwidth. The latter technique
further increases noise immunity by trading bandwidth for increased signal-to-noise ratio.
This more complicated system offers the same performance as the direct transmission scheme

but with reduced transmitted power.

In this paper the theoretical performance of three proposed video down link com-

munication systems are compared with the performance of a reference system which uses

direct transmission of the raw video data. The first system (system 1) transmits the binary

compressed video directly using biorthogonal code words. The second system (system 2) |

|

!
i
I
i
§
i
I
I
I
!
l
i
1
[
|
|

uses M-ary signaling techniques to increase the bandwidth of the compressed video to that
of the original raw video data. The code words are pseudorandom noise (PN) sequences
generated by maximal length shift register code generating techniques. They have the prop-
erty that the auto correlation function has constant side lobes of —1/M, where M is the
length of the code word. In the receiver, the received signal is correlated with M code refer-
ences. The correlator with the largest output is chosen as the transmitted code word
(matched filter detection). The third system (system 3) uses code words that are identical
to those of system 2, but uses binary transmission with biorthogonal code words. The M
bits of the code words are then detected on a bit-to-bit basis and the resulting detected bit
stream fed into the correlators. As with system 2, the code word corresponding to the
largest correlator output is chosen as the transmitted code word. The difference between
systems 2 and 3 is that system 3 detection is performed prior to correlation rather than

using correlation to perform the detection as in system 2.

The performance of all three systems will be compared with that of the reference
system (system 4), which transmits and detects a 20 megabit per second video on a bit-to-
bit basis. The code words used are biorthogonal. The noise is assumed to be Gaussian dis-

tributed white noise in all cases and the bit error rate taken as 10'2.

Several different compression ratios for the video were examined. The compression
ratios for various length PN sequences and for a frame rate reduction factor of eight are

given in Table 1.

Table 1. Compression Ratio for Various Code Lengths
for a Frame Rate Reduction Factor of Eight

PN Length, *“M" Compression Ratio
255 32
511 56.8
1023 102.4
B-3

Analysis of the Reference System (System 4)

The signal-to-noise ratio v at the output of the matched filter required to achieve

a given bit error rate in a binary system with biorthogonal code words is
o)
v = [erfc ~ (2 Pb)]"_
) o,
For a bit error rate (Pb) of 107,
v =2.64=43dB.
Analysis of System 1

System 1 is identical to the reference system (system 4) except the transmission

rate has been reduced by a compression ratio factor (C), where

_ No. of bits/sec original data

C=No.of bits/sec compressed data

The output signal-to-noise ratio of the matched filter is

_[7 st
7[,0 Ng

where S(t) is the instantaneous received signal power, and N, is the noise spectral density.

Since the duration of the signal pulse has increased for system 1 by a factor of C,

o0 o0
f S (t)dt=(f S (t)dt.
Lsee ™1 o 4

B-4

\ g 4 - G o -"-- - ﬁ

Therefore the signal-to-noise ratio for system 1 is increased by a factor of C over that of

system 4. The improvement in signal-to-noise ratio for 3 values of C are given in Table 2.

Table 2. Signal-to-Noise Ratio Improvement (dB) for System |

l
I
l
l
I
I

Compression Improvement
Ratio (C) (dB)
32 15.1
o 56.8 17.5
!
o 102.4 20.1

Analysis of System 2

The performance of System 2, employing M-ary signaling with matched filter de-
tection, is described by the probability of a symbol error,

1/2 m-1 |
0o . Py x+(27y) 2
P =1 -[m (2m)1/2 X712 [j_; Qmy V2V gyl 4y, |

For large M, probability of a bit error is

l Pb = 1/2 PS.
' The values of Ps for various values of M and v are tabulated by Viterbi. !

The improvement in the required signal-to-noise ratio is given in Table 3 for various

compression ratios.

lViu:rbi, Andrew J. Phase-Coherent Communication over Continuous Gaussian Channel in Digital Communications with

Space Applications by Solomon W. Golomb. Prentice Hall, 1964.

T YR ey Sl ity

L& S e afliie e TREE PR ST W—— —_ NS I ey

Therefore the signal-to-noise ratio for system 1 is increased by a factor of C over that of

system 4. The improvement in signal-to-noise ratio for 3 values of C are given in Table 2.

Table 2. Signal-to-Noise Ratio Improvement (dB) for System 1

Compression Improvement
Ratio (C) (dB)
32 15.1
56.8 17.5
102.4 20.1

Analysis of System 2

The performance of System 2, employing M-ary signaling with matched filter de-
tection, is described by the probability of a symbol error,

1/2 m-1
oo) x+(27) 2
ps=1_L Qmy1/2 &2 [f oy l2eY gyl 4x

For large M, probability of a bit error is
Pb = 1/2 PS.

The values of Ps for various values of M and v are tabulated by Viterbi. !
The improvement in the required signal-to-noise ratio is given in Table 3 for various

compression ratios.

lVitcxbi, Andrew J. Phase-Coherent Communication over Continuous Gaussian Channel in Digital Communications with
Space Applicatiorls by Solomon W. Golomb. Prentice Hall, 1964.

Table 3. Signal-to-Noise Ratio Improvement (dB) for System 2

Compression Improvement
Ratio (C) (dB)
39, 17.2
56.8 19.7
102.4 224

Analysis of System 3

System 3 uses matched filtering following detection on a bit-to-bit basis. The prob-
ability of a symbol error is derived as follows: There are M correlators, one for each code
word. The output from the correlator which corresponds to the transmitted code has a

value of

when exactly E bit errors have occurred. The correlators with only side lobe sums have

values of

S.=-1-2A+2D,
E
where A is the number of bit crrors in bits that should agree with the reference, and D is
the number of bit errors in bits that should disagree with the reference. Sincc A+ D =E,

the equation can be rewritten

For an individual correlator, an error will occur if the side lobe sum exceeds the main lobe
sum, i.e., SE > ME' There is also a possible error when SE = ME' The probability of
making an error in any correlator, given E bit errors, is

= Prob (SE > ME) + 1/2 Prob (SE = ME)'

l)c/E

F +
Eut, Prob (S; > M) = Prob (-1-4A-2E > M-2E) = Prob (0 > M1y | No. errors = E

= M+1 _ M+l
so that P/ = Prob (D> =) | g + 1/2 Prob (D ==7) | .

b= i-vGeo ML, M, XL By + 172 vceo & M, B B)

c/E
- HYGEO (%:g, M, !?) E)] y

where HYGEO is the hypergeometric distribution

K, (Np\ /NNg) /N
H(K‘N’NI’NR)'-'?L:% i Nl-i> N,/

If we assume the probability of an error in a correlator is independent of the error in the

other correlators, the total probability of a correlator error is

P_= (1-Prob. of no correlator errors) = 1- (1 - PC/E)(M'”.

The probability of a symbol error can then be written as
M M

3 ProbE)b = D, Prob(E)P,

P
£=0 € E=[(M+1)/4]

S

where Prob (E) is the probability of E errors

Prob (E) = (P)E (I-P)M'E('é'),

and where P is the probability of a single bit error (determined by S/N) in the detector.

For biorthogonal coherent detection
P=1/2erfc \/; .
Solution of the equation for PS yields the results shown in Figure 1. For M = 255, and

Py

ability is obtained without bandwidth compression and coding with S/N = 4.2 dB. The

=0.01=1/2 P, the required signal-to-noise ratio is -10.8 dB. This same bit error prob-

imiprovement is then 15.0 dB for the compressed coded video over straight video trans-
mission. These results and those for M =511 and M = 1023 are given in Table 4.

2
Table 4. Signal-to-Noise Ratio Improvement (dB) for System 3 (Pl 107)

D

Compression Improvement
Ratio (C) (dB)

82 15.5
56.8 18.0
102.4 20.8

Discussion

The analysis results are summarized for the three systems in Table 5 for a probability
=0
of a bit error equal to 10, Similar results are given for a probability of a bit error e/jual
to 10.3 in Table 6. Table 7 summarizes the improvement for System 2 with pulse inter-

ference rather than Gaussian noise.

Each of the three systems examined has advantages and disadvantages. System |

gives a 15-20 dB improvement over the reference system (system 4) and requires no sophis-

 §

ticated coding or decoding. However, it is a relatively narrow band system, depending on ;

the compression ratio, that lends itself to easy detection by a jammer.

System 2 gives a 17.2 - 23.7 dB improvement, and wide bandwidth, at the expense
of greatly increased system complexity, since it requires matched filters at IF frequencies.
System 3 is a compromise between system 1 and system 4. The transmission and detection
are done one bit at a time to eliminate the need for large analog matched filters. The per-

formance is within 2 4B of the optimum, provided by system 2.

Table 5. Summary of System Improvement (dB) with the Probability

of a B Error Equal to 10" and Gaussian Noise

Compression Ratio (C)

System 32 56.8 102.4
1 15.1 17.5 20.1
2 17.2 19.7 224
3 15.5 18.0- 20.8

Table 6. Summary of System Improvement (dB) with the Probability
of a Bit Error Equal to 10> and Gaussian Noise

Compression Ratio (C)

System 32 56.8 102.4
1 15.1 17.5 20.1
2 18.4 21.0 28.7
3 16.4 19.3 22.1

Table 7. System 2 Improvement (dB) with Pulse Noise
(10 Log [Code Word Separation])

Compression Ratio (C) 32 56.8 102.4

Improvement (dB) 21 24 27

B9

3
&
o
]
-
oy
w
k=
1S
(=]
=
2
(8]
©
-
(=]
>
3
8
©
Q
[=]
S
a

- M =511
_— M = 1023

L
1 L 1 1
-20 -15 -10 -B
Signal to Noise Ratio (dB)

Figure B-1. System 3 Performance

-, I s = <18 g st 2 g g e R P i, ot - 2

:
;
:]
APPENDIX C :
THE MODULAR CHIRP—Z TRANSFORM
i J. M. Speiser and H. J. Whitehouse g |

Naval Undersea Center

— e I N N e ey e~ == e Ouy G O D OO R OB

C-1

ABSTRACT

Two methods for combining P Chirp-Z Transform (CZT) modules of length N to
perform a Discrete Fourier Transform (DFT) of length NP are described. The firs
method uses an auxiliary parallel-input, parallel-output DFT device of size P
and allows the transform of size NP to be performed in the same time required f¢
a single CZT module to perform a size N transform. The second method uses an
auxiliary parallel-input, serial-output DFT device of size P. If the second
method is implemented entirely in a single technology, such as with CCD's, it
performs the size NP transform in P times the amount of time required for a
single CZT module to perform a size N transform; if P is a composite number,

say P = P]PZ’ the second method also permits the same hardware to perform P]

simul taneous transforms of length NP

9

INTRODUCTION

Many signal processing problems require flexible real-time implementations
of linear signal processing operations such as Fourier transforms, convolution
correlation, and beamforming. A1l of these operations may be performed at high
throughput rates using the discrete Fourier transform implemented via the CZT
algorithm with a transversal filter or cross convolver used to perform the
required convolution or correlation with a discrete chirp [1-3] as shown in
Fig. 1 and described by equations (1) - (3). Special purpose methods have also
been previously described for combining a number of CZT modules to perform a
longer DFT [4]. The previous methods, however, required a different acoustic
surface wave filter for each different number of CZT modules to be combined.
This limits the flexibility of the transform size attainable with a given set
of components, and also prevents the longer transform system from being externally
clocked, since the propagation time through the surface wave device cannot be
varied by more than a small fraction of one percent.

A one-dimensional discrete Fourier transform may be written as a partial
transform of a doubly subscripted representation of the data, followed by a
pointwise multiplication, followed by a second partial transform [4,5] as shown

in equations (4) - (9).

M- 1 -i2mjk
He = Zhj e M (1)
=0

i R g T W

He = Pk [hj P¥1 Py (2)
j=0
ims?
_ M
Pg = ¢ = P (3)
MODULAR CZT
PN-1 =i2nkn
6 - g e for k= 0. . . . PN-1 (4)
n.‘:
P-1 N-1 -i2znk(Pnts) i
= PN
6 = DD ones © (5)
s=0 n=0
! P-1 -i2aks n- -i2wnkn
Gk) ’ & pn+s © " (6)
s=0 n=0
-i2nks
let Q (k) = e n |
-iZn‘k+nN!S
Q (kenN) = e o
-i2nks =i2mnNs
i § PN % PN (8)
-i2usn
- P -
Qs(k+"N) = @ Qs(k) = Cep Qs(k) (9)
-i2nsn
where ¢ = e P

| sn

Figures 2 and 2A show modular CZT implementations which follow from

' equations (4) - (9). The individual CZT subsystems shown in Figures 2 and 2A

C4

]
]

1

3

would be similar to the CZT implementations previously described [1-3]. A
suitable serial to parallel multiplexer is shown in Fig. 3.

The parallel DFT required for the second partial transform in Fig. 2 may be
implemented as combination of summers and attenuators. This is shown in Figures
4-6 for P = 2, 3, and 4. In general, the attenuation factors are complex,
requiring separate weightings for the real and imaginary parts as shown in Fig.
7. A complete double length CZT is shown in Fig. 8. Unfortunately, a parallel
DFT implementation of this type bhecomes unwieldy if the dimension P is very
large.

Other types of discrete Fourier transform implementations may be derived

from the idertities of equations (10) - (12).

P-1 =-i2nkn
_ p
Hk = e hk
n:
1 2
kn o= z((kem)? - (k-n)?)
: 2 2
P-1 =-in(k+n)* in(k-n)
x 2P 2P
Hy e e hy

n:

These equations have been used by Means [6] to design a transform device in which
signals are shifted through two delay lines at different speeds. Alternatively,

if the factors in equation (12) are interpreted as two waves propagating in

B i R S —

opposite directions relative to the function to be transformed, it may be seen

: that the structure of Fig. 9 also performs a discrete Fourier transform with

} speed comparable to that of a CZT. By changing the reference functions applied
: to the delay lines and partitioning the input leads and output summer as shown
?L

k

!

oy g e omn) bmd e) e — e =i e i e o) e o A

C-5

in Fig. 10, the hardware of Fig. 9 may also perform several shorter discrete

Fourier transforms. If the parallel input-serial output CZT of Fig. 10 is used

in the modular CZT of Fig. 2A, then P, discrete Fourier transforms of length P2N

1
may be performed simultaneously, where P = P]P2 is any factorization of P].

— = T —

- e

(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

Whitehouse, H. J., J. M. Speiser, and R. W. Means, High Speed Serial

Access Linear Transform Implementations, presented at the A1l Applications

Digital Computer (AADC) Symposium, Orlando, Florida, 23-25 January 1973,
reprinted as NUC TN 1026.

Means, R. W., D. D. Buss, and H. J. Whitehouse, Real Time Discrete Fourier

Transforms Using Charge Transfer Devices, Proceedings of the CCD Applications

Conference held at the Naval Electronics Laboratory Center, San Diego,
Calif., 18-20 Sept. 1973, pp. 95-101.

Alsup, J. M., R. W. Means, and H. J. Whitehouse, Real-Time Discrete Fourier

Transforms Using Surface Acoustic Wave Devices, Proceedings of the IEE

International Specialist Seminar on Component Performance and System
Applications of Surface Acoustic Wave Devices, held at Aviemore, Scotland,
24-28 Sept. 1973.

Speiser, J. M., H. J. Whitehouse, and J. M. Alsup, High Capacity Linear

Processing Using Multidimensional Chirp-Z Transforms, NUC TN 1212,

13 Nov. 1973.

Gold, Ben and Theodore Bially, Parallelism in Fast Fourier Transform

Hardware, IEEE Transactions on Audio and Electroacoustics, Vol. AU-21,
NO-]a pp- 5‘]69 FEb- 1973-

Means, R. W., Private Communication.

T

s WA cndedl e .

B e L T N S s et

g R v Sy WP R T AR T A, TR R S P e N (R Ry, T SR ——

TRANSVERSAL FILTER

OUTPUT
Hy

2M-1 TAPS

ROM

Figure 1. Direct CZT Implementation

C-8

G(p—ﬂN“’ GN G

. Gyy1 Gi
- : 3
- G[)N—‘I G?N—‘I GN—‘l
X { N N
> czT, N
SERIAL : : PARALLEL
TO et DFT
. n-1 *o¢ 0180 —NpaRALLELF> N
f . OF SIZE p
o MPX . $
| 1 —>— czT, >
== [X N] /\
1 -.21—‘9—‘1':,“" e"”"%‘w_

Figure 2. ONrganization of Modular CZT

' >, czT,, >), -
INPUT SERE . . PARALLEL-INPUT -
[]
PARTI:)LLEL : : SERIAL-OUTPUT |
: Ion-1 ooog|9\)>J % czT,, > % 9 GpN—l G
. . DFT
MPX 4 I N
g OF SIZE p
> cz7, -
[X X]
-b
e--nﬂ“"—;‘-‘l e-.n-‘:‘,%r

: ' Figure 2A. Alternate Organization of flodular CZT

RECIRCULATING
BINARY SHIFT
REGISTER

|

P BITS LONG

>

o — -

o ————

o

!
1 OUTPUTS

>

3

L“—

11

(

Serial to Parallel !Multiplexer

Figure 3.

INPUT

Figure 4.

Parallel DFT of size P = 2

OUTPUT

e oxmw SR W e ey

INPUT

Figure 5.

‘Parallel DFT of size P = 3

OUTPUT

OUTPUT

Figure 6. Parallel DFT of size P = 4

L B citana o d

NPT - OUTPUT

Figure 7. Complex Attenuator

GIN TS S N BN e) b —f — i 1 —i & F 0 &0 0

. C-15

GN—1 [¥Y) GIGO

— -

G2N-1 oo 9190—-+

Bapoy e Gy,

e—u(ZWkIZN)

Figure 8. Double Lenoth CZT

 Me-pl®
e
t=01,..., 2p-1
N el e = -)
h| + -— s e — e (@) >
INPUT
—% ouTP
DELAY DELAY Z e
hp-l_>_ e — ——)
| Ts?
e '
t =01 L 2p-1

Figure 9. Parallel-Input, Serial-Output CZT
using Multi-Port Transversal Filter

e & s=041,..., ptp’—1

N
P

Y
[
Y

Oth .
INPUT 1 .
BLOCK e

. |
[]
N N
[>—R—>
; |
ho —S4- M -
1st °
INPUT 1 . . . —>-0

BLOCK
th cp=1 9—"—'

oo
™M

\'4
Y

|
\ 4
Y

[

!

R—-1st
INPUT 4
BLOCK

Y
™M

.
hR-l,p'—1>'—'—'—‘ b ——
>)

: Figure 10. Modular Use of Parallel Input, Serial Output
CZT Using Multiport Transversal Filter
For p=Rp'

C-18

OUTPUT DURING
SAMPLE TIMES

0,...,p—1

OUTPUT DURING
SAMPLE TIMES

p,...,2p'—1

OUTPUT DURING
SAMPLE TIMES

(R-1)p',..., Rp'=1

APPENDIX D

HIGH CAPACITY LINEAR PROCESSING
USING
MULTIDIMENSIONAL CHIRP-Z TRANSFORMS

J. M. Speiser, H. J. Whitehouse, and J. M. Alsup

Naval Undersea Center

oy
By sy B sl

e R e P

e e

Aun GEE UEE UER AN e e

INTRODUCTION

High speed serial access discrete Fourier transform (DFT) de

vices have

been built using the chirp-z transform (CZT) with transversal filter implemen-

tation of the required convolution 11-3}. Such devices perform a DFT by
premultiplying by a discrete chirp, convolving with a discrete chirp, and

postmultiplying by a discrete chirp. One transform point is obtained per shift,

and the size of the transform is proportional to the number of taps in the

transversal filter used to perform the convolution. If the data is not

recirculated through the filter, then 2N-1 taps are required to implement an

N point DFT. Using present acoustic surface wave or CCD transversal filter
technology, it is difficult to implement a transversal filter with more than
about 1000 independent taps, and therefore a direct transversal filter implemen-
tation of the DFT via a one-dimensional CZT is limited to a size of abcut 500
points.

This note describes a DFT architecture based on a multidimensional CZT.
This architecture uses a small number of high speed transversal filters
together with a larger number of low speed transversal filters to implement a

CZT whose speed is determined by the shift rate of the high speed transversal

filters and whose transform size is determined by the total number of taps of

all the low speed transversal filters.

|

] =i Guni Pu{ Pux O

t—i

av

—|

G W e

B T

REPRESENTATION OF A ONE-DIMENSIONAL DFT AS A TWO-DIMENSIONAL DFT

It has previously been shown [4-6] that if N = NlNZ where N, and N2 have
no common divisor, then the one-dimensional DFT of equation (1) and the two-

dimensional DFT of equation (2) are equivalent.

N-1 -i2n ﬁﬂ
N
fq = E fp e for p,q =0, 1, . . ., N-1 (1)
p=
j.k j k
Nj-1 Np-1 _12,,[._;__1 + ; 2
:E:: :E:: 1 2 ;
jl-O j2=0
for jl,kl =0, 1, 5 Nl-l
The scan required to make the two transforms exactly equivalent is not a
simple lexical scan, but rather a linear congruential scan such as that shown
in equations (3) and (4).
P(3ppd)) = 3 Ny + 3N, (mod N) (3)
q(kl,kz) = k1U1N2 + k2U2Nl (mod N) (4)
The constants Ul and U2 are the solutions of equations (5) and (6).
Nu, = 1 (mod N,) (5)
NU, = 1 (mod N,) (6)

D-3

e a .

N R g

B

G T W P pay

In special cases the output scan is very similar to the input scan. For
example, if N2 = N1+1, then Ulzl and Uz-—l, so that the two scans are glven

by equations (7) and (8).

p = j1N2+j2N1 (mod N) @)

q = kN, - kN, (mod N) (8)

D4

o T —

e S ——

e

s wmn SR N S e - i

SCAN CONVERSION

A linear congruential scan is illustrated in figure 1, and a means of
converting the one-dimensional data to the required two-dimensional tormat is

shown in figure 2. The multiplexer of figure 2 may be implemented with an

acoustic surface wave delay line, together with auxiliary high speed analog

switches. The most suitable analog switches at the present time would appear

to be balanced mixers, since they are capable of switching in 1-2 nanoseconds.

As shown in figures 2 and 3, the data is recirculated once. It will be noted

that if Nl and N2 are nearly equal, the required number of taps is about N'S,

so that for a long transform the required number of taps is much smaller than

the number of samples stored ir the line. This greatly reduces the problem of
dispersion produced by acoustic scattering from the taps. For example, only
100 taps would be needed for the multiplexer of a transform of size about

10,000. Transversal filters with 100 taps and delay lines storing 10,000

samples are well within the existing state of the art.

Warre 3 — e ——— Ay &

,
i

TWO DIMENSIONAL CZT

Once the data is in a two-dimensional format, with simultaneous serial
access to all the rows, it may be transformed in the "horizontal' direction by
the structure shown in figure 4. The individual one-dimensional discrete chirp
filters and discrete chirp generator of figure 4 may be implemented using CCDs
or digital correlators.

An acoustic surface wave device with multiple input taps may be used to
access a column of the partially transformed output in a single shift time of

the partial transform device. With appropriate ccding of the surface wave

column access device, it may also perform the discrete chirp premultiplication

i and discrete chirp convolution of a DFT in the "vertical" direction. A complete
two—~dimensional CZT architecture is shown in figure 5, and the required coding
for the column access surface wave device is shown in figure 6. The complex.
arithmetic may be implemented as described previously [1].

A balanced mixer may be used for the fast multiplier required for the
vertical transform. Lower speed variable transconductance multipliers may be

used in the horizontal partial transform.

D-6

Lot Y

- WER G PE B o4 -

HIGH CAPACITY DFTs

The scan conversion multiplexer of figure 2 may be combined with the two-
dimensional CZT of figure 5 to yield a high capacity CZT device as shown in
figure 7. The throughput rate of the resulting CZT device is proportional to
the sample rate of the surface wave components, and the transform size is
proportional to the total number of taps of all the transversal filters or
digital correlators used in the two-dimensional partial CZT.

The high capacity CZT device can be used as a high speed, high resolution
spectrum analyzer, or as a high bandwidth matched filter with many degrees of
freedom and variable reference function. The matched filter or cross-convolver
use of the high capacity CZT device is shown in figure 8. The required columm
multiplexer may be realized as a small surface wave device with a single input
tap and a number of unweighted output taps, together with a number ur high
speed analog switches, as shown in figure 9. When the device is fully loaded,
the switches are all closed and the serially input data column is available

in parallel at the output of the switches.

D-7

B T R PETBT R, T M L e g D g T —— T p——— W " T

HIGH CAPACITY DFT USING A LEXICAL SCAN

The DFT device of figure 7 using the linear congruential scan of equation
(3) has scveral limitations: the horizontal and vertical sizes of N2 and N1
must have no common divider, the data must recirculate through the multiplexer's
acoustic surface wave device, and the output of the DFT is in the scrambled
order given by equation (4).

A lexical scan similar to one half of a television interlaced scan may be
used to convert a one-dimensional DFT almost into a two-dimensional DFT {7i.
The word "almost' is used becuase of the presence of an additional phase factor
which must be inserted after the first partial tran fomm is performed. Although
this scan has been previously proposed for parallel computation of the FFT {71,
it lends itself equally well to the organization of parallel CZT hardware and
largely circumvents the above mentioned limitations of the linear congruential
scan. In particular, the lexical scan permits the complete elimination of the

large surface wave delay line in the input multiplexer.

In the lexical scan defined by equations (9) aa? (10), N = N.N may be

172
any factorization of N into the product of two integers.
p = lez * jz (9)
q = k, + kN (10)

-

e B T

v AP Tt T T

T AT

I
I
i
I
I
I
I
I
I
!
i
i
I
y
)
!
J
l

The DFT of equation (1) may be rewritten in terms of the lexical scans
of equations (9) and (10) as shown in equation (11) and simplified slightly in

equation (12).

N -1 N -1
-12n [.
220 Mg N+ 3 (kg + N
k+kN Z E:fj N, e N Ng 1) (kp + kN (ith
370 3,70
.k .k j.k
Nz_l -12n 2 2 —-i2n — 21 N -1 -i2m 11
~ N2 N :E: Nl
fk +k.N = E e e fj +j e (12)
17271 - 2
jzno 0
fOl' kl = 0, 1’ . « oy Nl_l
k2 =0,1, .. . Nz-l

The structure of a CZT architecture using equation (12) is identical to
that shown in figure 7, but the scan differs from that of figure 1, and the
required partial CZT differs from that of figure 4, The postmultiplier of the

partial CZT for the lexical scan cen not be the same for all horizontal chanrels
AP
N

because of the presence of the additional factor of -i2n In essence,

the postmultiplier chirps of the partial CZT using tie lexical scan must be on
different (discrete) carrier frequencies.

1t will be noted that when a lexical scan is used, the order in which the
horizontal and vertical transforms are performed is critical. For the scans
shown in figure 10, the vertical transform must be performed first.
Unfortunately, this prevents the transform points from coming out in natural

order. However, this should not present any difficulty for performing

convolution by multiplying in the frequency domain.

REFERENCES

(1] Whitehouse, H. J., J. M. Speiser, and R. W. Means, High Speed Serial

Access Linear Transform Implementations, presented at the All Applications

Digital Computer (AADC) Symposium, Orlando, Florida, 23-25 January 1973,
reprinted as NUC T™N 1026.

|2} Means, R. W., D. D. Buss, and H. J. Whitehouse, Real Time Discrete

Fourier Transforms Using Charge Transfer Devices, Proceedings of the CCD

Applications Conference held at the Naval Electronics Laboratory Center, San
Diego, Calif., 18-20 Sept. 1973, pp. 95-101.

(3] Alsup, J. M., R. W. Means, and H. J. Whitehouse, Real-Time Discrete

Fourier Transforms Using Surface Acoustic Wave Devices, Proceedings of the IEE

International Specialist Seminar on Component Performance and Systems
Applications of Surface Acoustic Wave Devices, held at Aviemore, Scotland,
24-28 Sept. 1973.

[4] Preisendorfer, R. W., Introduction to Fast Fourier Transforms, Visibilit
y

Laboratory, University of California, San Diego, Spring 1967.

[5] Speiser, J. M. and H. J. Whitehouse, A Two Dimensional Discrete

Fourier Transform Architecture, NUC TN 1221, 17 Oct. 1973.

[6] Cooley, James W., Peter A. W. Lewis, and Peter D. Welch, Historical

Notes on the Fast Fourier Transform, IEEE Transactions on Audio and Electro-

acoustics, Vol. AU-15, pp. 76-79, June 1967.

[7] Gold, Ben and Theodore Bially, Parallelism in Fast Fourier Transform

Hardware, IEEE Transactions on Audio and Electroacoustics, Vol. AU-21, No. 1,

pp. 5-16, Feb. 1973.

EXAMPLE:

LET Np 3 W

N> 4

Fel G2 SN o

Fig. 1 ustrabon of the desired scan tor N N, 4

|
|
i
I
I
I
I
i
i
i
]
[
i

. D-11

CLOSF EVERY THIRD YIME SAMPLE

Fig. 2 Mulhiplexer for converting a one dimensonal discrete t onner transtorm into a 1wo dinenstonat
discrete bourier transtorm (for N| 3, Nz=4),

In general, tie mulhipleser will have N 'tap\. and wall nae o detay fine capable ot contannng N' N, simiples,

© N eemm——— Y "

. L
1
g l;_ TR R By h s fo f fa f, f m N
i
I 0
> '4
(a) >
t 0 f"
a
s ! f 1 1 | [
d g 2 1 0 11 10 v " '7 'o '* '4 IJ Lo
f
—— !
. '7
(b) > f
; t-3 iy
as, | ! |
e s 4 L} '2 'l '0 'I 1 'm '0 '8 '7 'h
il f
. 6
ks (© i 'ln
= t-6 L
- > tw ty to b A ty t k to b 10 Ly
. 'n;
f
> 1
(d) -
t 9 f,

"‘ig. 3 Operavion of the maltipleser.

D-13

N, |
—®-_—’ Z Ty (,|21r(12k!/N.‘)
oo

N'-l
< A27() Kk /NL)
/)(>___.. 2: 9, ¢ 2
N), 0 i

o it

Fig. 4

[DCG
N2

D

C

G DCF

N.z N2

Two-dimensional partisl chirp-7 fransform.

D-14

eiﬂmz/Nz FORm (N

DISCRETE CHIRP GENERATOR
* SOURCE Of e''MN2/N
FORN - 0, ..N -}

DISCRETE CHIRP FILTER
- FILTER WITH TAP WE'GHTS Ot

2 DN, 1)

-Z an 1 12Tk N,)

L

P P T T T TTTITERTTNIENT Y e T T e

La et kM -

T ey oy | e e ol

B o e e S . S—— Jo— —
4
i
ok
.
]
¢ n
i PARALLEL ~— TWO DIMENSIONAL > ACOUSTIC
L2 INPUT 4 PARTIAL C/2T7 : SURI ACE
‘ = WAVE
v DEMUX
{ AND
o CHIRP
MULTIPLIER
i 13 i -
| ACOUSTIC
E - ‘SURHACE
1] WAVE
i 3 DISCRETE
CHIRP
FILTER
ACOUSTIC
SURFACE WAVE »
i DISCRETE CHIRP
GENERATOR
+
| 4
! OUTPUT (LEXICAL SCAN)
* &
; o Fig. Hybnd inplanentation of two-dimensional ¢/ t
| -a
-e

Oml o= =4 |

D-15

i
» b
o
mfp— 3
1 —_—— 'l H
INPUTS DEMULTIPLEXER AND CHIRP MULTIPLIER]
H] (N| SEPARATE INPUT TAPS)
L] []
——{ °N B L
e o o c—]’
. AN | -1)
L3
a
v DISCRETE CHIRP FILTER
p (SINGLE WEIGHTED, SUMMED OUTPUT
E OUTPUT TRANSDUCER WITH 2Nl-l TAPS)
|
a
N| -1 :
' j
b a = eilMm2/N)
S
2
]
OUTPUT
: Flyp. = Tap weights and structure for acoustic surlace wave combined demultiplexcr, chirp multiplier,
and discrete chiep lilter.

D-16

T ey e

& ans o - i e — . e o B oo e 2 Lo il Ry Ty v g W L g ¥ VA v WAy LT W) LN e N A L W

o~ 2
| ,
T :
=]
e
INPUT
- — & {MULTIPLEXER
aw i
s Ta R ACOUSTIC
o > SURFACE |
~ TWO DIMENSIONAL — WAVE 1
i : PARTIAL CZT . DEMUX
: ___ AND .
e » CHIRP 3
MUL.T!PLIER | ;
- ACOUSTIC
SURFACE
! 3 WAVE
. DISCRETE !
: . CHIRP
ii FILTER
»e) 1
ACOUSTIC
1 SURFACE WAVE
DISCRETE CHIRP
- GENERATOR :
-k 1
OUTPUT {SC RAMBLED ORDER)
-14 figen o Hybrnd implementation ot g long one-dunensional C/Z 1 1
| |
L
I i
[:
g L
L’ D-17

-

i

“_ﬁ__—___m_

e s ia Bt s L Ak b Rk s e e e ket i L I e i e e i B TrammeSSSgETIl g, ImelSNpEmmrappry [Wrmmmagrevammsmn T SRR SN WAy am—"

—r—— = y

B

_ | 20
|_ SIGNAL }o—< MU X > czr e
_ JcoLumn 20 |
()(}>-1C0NJUGAT|0N o P & P consugaTion
> ouTPUT
[Berr nEOEE]_,__ o g-zo N (IN SCRAMBLED ORDER)

Fig. o Perindic convolution using 2-D CZT (oulput in scrambled order)

SURFACE WAVE TAPPED DELAY LINE
CONTAINING N, SAMPLES

~\’\
“ INPUT
]
A
; 3
| T
r s
3 : :
: 2P
: |
r | :
' 5 .
| P |
* ——
CLOSE EVERY N,

SAMPLE TIMES

Fig. 9 Column Multiplexer

D-19

g ——— T
b e o il ok o ek Db M i D e L i el 2 T e R ™ R — e e TN

———— -

f f, fo 1 =0
(1) N|=N2=3 fs fs f, =1
fﬂ f7 f(l ||=?-

'! f f, fo jy=0

(b) N,=3 f, f, fs fs =l
N,=4

fir fio fy fa =2

Fig. 10 Nlustration of the Lexical Scan

P e —

R g, L WY WS TTEERTNENET WY NP e ap—

:
:
m
w
1
:
__W
|
:

g
- .
e 2
<« 2Z
u-agm
w
>
mman
o -
JZT ~
zmxZ
= b= s=m=e
O oo me —=—
< 0 llllllll *
0 lllllll VL
——
(]
1
© |--3>»--
]
-

P

-———— -

R |

- = o oy | SRR

Fig. 11 Multiplexer for the Lexical Scan

D-21

B b s i . e i i g
—— e pts S A w . . e _ ks b el) b adoi - L e i e . o M oy e L o o ek ol o i T G p——— g
e e P T —— | Sy w8

ks for pegr T IDSANBR VT

APPENDIX E

STRUCTURAL ORGANIZATION
FOR REAL AND COMPLEX
CONVOLUTION BY IMAGING CCDs

Dr. J. W. Bond

Naval Undersea Center

STRUCTURAL ORGANIZATION FOR REAL AND COMPLEX
CONVOLUTION BY IMAGING CCDs

By J. W. Bond

ABSTRACT

A mathematical model is developed for imaging CCDs with one or two registers.
It is shown ¢hat an imaging CCD can be characterized by one sequence associated
to the sensors and one sequence associated to each of the registers. Since only
non-negative amounts of charge can be accumulated or transferred, the sequences
associated with the sensors and the registers must be non-negative and real. Meth-
ods for calculating an arbitrary real or coinplex convolution using imaging CCDs
are established by using the time domain to distinguish the real and imaginary,
positive and negative terms needed t~ calculate the desired convolutions. Explicit
architectures are described for calculating both real and complex convolutions
using a CCD with either two or only one register. The recommended architectures
for calculating complex convolutions are based on a generalization of Tiemann',
algorithm for calculating a complex convolution by calculating the real convolu-
tion of extended sequences. More generally, any number of real and complex
convolutions can be calculated interwoven in time by a device which can be used

to directly calculate convolutions ot sequences of non-negative real numbers.

INTRODUCTION

The chirp 7. algorithm reduces the calculation of a4 Fourier traasform of a sequence of
numbers to a premultiplication by a complex chirp, followed by a complex convolution by
a complex chirp, followed by a post multiplication by a complex chirp. The CCD seems in
principle tc offer a possibility ot sensing and performing the premultiplication and convolu-
tion of an image necessary to spatially Fourier transform an image. Premultiplication would
be accomplished by masks over the sensors. and convolutions would be accomplished by
gating the accumulated charge under the sensors to registers which perform the required
delay and sum operations through charge transter. This note grew out of a successtul attempt

to show that CCDs could be used to perform the Fourier Transform apart trom additional

r

Lot o

I B S T R s A

i
|
|
I
I

£ —i

operations which do not require memory or postmultiplication. The key result described

in this note is a scheme by which a charge-coupled device can be used as a quite general

real convolver even though only non-negative amounts of charge ean be accumulated or
transferred. Once this scheme hos been explained it is easy to extend usual implementations
of Fourier transforms to implementations by CCDs.

The implementations described depend on an essential way on the tact that the image to
be Fourier transformed, sampled by the sensors. is described by a non-negative sequence of
real numbers. The signs involved in all calculations then are independent of the actual data.
The image will be assuined to be varying so slowly that the image can be assumed stationary
during the time required to calculate the spatial Fourier transtorm of the image by the CCD
and its ancillary equipment.

A useful mathematical description of the CCD to derive the architecture tor implement-
ing complex convolutions follows. Each CCD consists of line of sensor elements and either
aright and left register each consisting of data cells or a single register with data cells. Charge
accumulates under the sensors and is transterred from all sensors to some predetermined and
fixed data cells in the right register or from all sensors to some predetermined and fixed
data cells in the left register. After charge has been transferred to either register it is
advanced from the data cell it is in to the one below it betore the next charge is transferred
to either register. Figure | illustrates the basic one register device fundamental to this note.
For ease of presentation, the number of data cells per register and number of sensor ~“lements
will be taken the same so that transters of charge in the device are always to the data cells
adjacent to a sensor element. In tigure I By Bge - - o gN-| denote the charge accumulated
in the sensor elements during a fixed accumulation iime T and are therefore non-negative

real numbers. These real numbers can be viewed as a non-premultiplied sample of the mage

on the sensors. The 2o+ &0 - BN an be premultiplied by numbers between 0 and 1 by
using masks to cut down the illumination hitting the sensor elements. The numbers 4y
ap. ... canog between O and 1 denote tie proportion of illumination passed by the masks

on the corresponding sensor elements. The premultiplied Bo+ Epe oo BN v all be mul-
tiplied by the same number between 0 and 1 by varying the time charge is altowed 1o accu-

mulate in all the sensors. The operation of the device is described by specifving the masks

1--3

REGISTER ;
DESCRIBED BY ;
PROPORTION TIME]
SENSOR REGISTER CHARGE | TRANSFERRED 3
IN-1IN-1[——— ‘
5 ty ;
IN-2IN-2| ——— - ”
i
i
CHARGE ¢
TRANSFER €1 1 .
SENSOR i
ELEMENT DIRECTION .
. e 1 REGISTER ' E
i ADVANCED . ‘
. 4
. #
}
b
9,3, CN-1 IN-1
900 —_— CYCLICALLY |
OUTPUT EXTENDED '
Of(t)

N-1
i=0
Figure 1. Imaging CCD as real convolver.

and the timing sequence tor charge transfer. Immediately, after charge is transferred the

register is advanced, i.c. the charge in any data cell is transferred to the data cell below it.

The output of such a device is given by the formula in figure 1, which is derived in Corollary i.
Figure 2 illustrates how an imaging CCD with 4 elements would be used to convolve the
sequence Bodgr B4, £319, 8343 with the sequence Cor €12 €00 03 with the gj non-negative

and the 3 and ¢ between Qund 1| forj=0, 1, 2, and 3.]

E-4

I SENSOR
ELEMENTS

O {t,)
O (1)
O (t,)
O (t3)
O (ty)
O (ts)
O (tg)

O (t5)

NOTE: AFTER FIRST THREE TRANSFERS THE IMAGING DEVICE
CYCLICALLY CONVOLVES g.z,, 913}, 993y, 9333 WITH ¢, ¢, ¢p, C3-

Figure 2.

DATA
CELLS
9287 | ———
Yy =
goao ——
jo
gOaOCO

9121 * 9521

9222¢ ¥ 9121¢1 * 95352

933360 * 9222C] * 91212 * 953,C3
9333€] ¥ 923pCp * 913)1C3 * 953,C,
9333¢2 * 9232C3 * 91215, * 9535
9333€3 * 923pC, * 9131 ¢ * 953,C)

9333C * 923pC) *9731C) * 953,4C3

Imaging CCD as a real convolver of non-negative sequences.

E-§

1 3|
€2 t2
c3 !
(O t4
c t5
o t6
c3 t7

|
{
|

An imaging CCD can only be used to directly calculate convolutions of two sequences
of non-negative real numbers. In order to use such a device to perform complex convolutions
the following mathematical problem must be solved.

How can G = g(atib) * (c+id) be calculated using only non-negative real numbers for
a, b, ¢, d, sequences of recal numbers between -1 and 1, and g a sequence of non-negative
numbers?

A straightforward mathematical sohution to this problem is to write

_ laj+a fal-a . [Ibl+b [b}-b lclte del-¢ L f Wdj+d o (d]-d
e=e\Ty Ty YN\ T\ T T 2

WNote that each of the quantities [x|*x is non-negative so that this identity calculates the

complex convolution in terms of 16 convolutions of non-negative sequences. If this mathe-
matical solution were implemented in the most straightforward manner 16 CCDs would be
required each with one register with a total of 16 sensor elements associated with each g,
j=0,...,N-1. It could be implemented in one CCD with 16N sensor elements and 16N
data cells. Preferred implementations are based upon generalizations of a procedure dis-
covered by Tiemann to perform complex convolutions with a single real convolver. These
implementations require 10N sensor elements and 1ON data cells when an imaging CCD is
used with the same number of data cells and sensor elements. If a two register CCD were used
tlien 5N sensor elements and 10N data cells are required. In the process of discovering the
recommended implementations a general theory for using CCDs to perform complex con-
volutions vwas developed and will be presented in this note.

The approach is to describe how a single CCD can be used to do calculations which
become increasingly complex. First it is shown how to do convolutions of sequences
Bolgs v EN=1 IN-} and Coe Cfs -+~ + EN=} when the i and ¢j are real numbers be.ween
-1 and | with a single CCD with two registers and then with one register. Next, it is shoan
how to do complex convolutions of sequences g, (a, +ibg) ..o gnoy (agoy +ibyop)and
(O S idy. o ONop T idN_‘ when ajs l)j, S and dj are real numbers between -1 and 1.

All the implementations derived are based on the decomposition of a real number x

& - Ix)ex - _IxEx

into two non-negative real number; xTand x~ defined by x" = ——and x* = ——.

- -

E-6

-

LR

o e

Other implementations are possible, in tact all the tormulas derived would hold for |x|
replaced by any real number at least as large as |x]. In particular, when replaced by 1 the
implementations become implementations using “‘biased arithmetic™. Furthermore, the for-
mulas developed always involve subtracting X~ terms from corresponding st terms, i.e., they
make use of the tundamental identity xT - X7 = x. 50 that replacing xt by | +xand x~ by |
would lead to still other implementations involving “biased arithmetic™.

Mathematically a*c and b*c can be calculated by convolving ia new sequence dye bo, ap.
bl’ ooy NS bN-I With @ new sequence ¢, 0, €. 0. . .., CN-}+ O This simple observation
is the basis for reducing the numbers of CCDs required in implementing real and complex con-
volutions. A simple notation tor describing these and similar sequences which can be created

0‘“0"“’do‘

from given sequences follows. Let [a, b, ¢, ..., d] denote the sequence aj. b
ap b, Ay osana) bN-p+ ON=]- - - - vON=p - -+ dNop - Where as the sequence
dgs v VAN b the sequence b, bl, AL hN-I‘ ¢ the sequence Cor Cpevv s Nt v - o
d the sequenced . d|.....dN_|. In this notation the above observation is

[a,b] * [c, 0] = [ax*c.bxc]
and Tiemann’s algorithm is

[a.b, 0] * [c, +d, -¢c] = [#, a*d +b*c, - (axc - bxd)],

where # is of no interest. The recommended i1 ~lementation of 4 complex convolution by
a CCD with two registers is based on convolving
[at, bt a7, b7t
with
[c+. d+. 0, 0. 0] by one register, and
with
[0.0.0.¢ .d"] by the other register.
The recommended implementations using one CCD with a single register is either to convolve
[a*,a”,b%, b7.0,0.0.0,0 0}
with

ret,0.d%.0,¢7,0.d.0,¢H .

or
[at,0,0%,0,47.0,b7.0,a%, 0]
with

ict,c.d%.d7,0,0,0.0,0,0].

We note that CCP imagers could be designed which would be well suited tor performing
complex convolutions. If each sensor element were connected to the first of two data cells
then a one register CCD with SN sensor elements could be used to calculate the complex con-
volution of two sequences of length N. If more data cells per sensor element were available
and the particular data cell among those associated to each sensor element could vary from
sensor to sensor then a device with 2N sensor elements and 10N data cells could be used to

perform the same complex convolution.

USE OF A SINGLE CCD TO PERFORM CONVOLUTIONS

In this section, recommended architectures are described for performing a rez! and com-

plex convolutions using one and two register CCDs. The use of CCDs to calculate ga*c
where g is a non-negative sequence of real numbers and a can ¢ are sequences of real numbers
will first be described in this section. Since cenvolution is linear in 2 and c, there is no loss
of generality in restricting a can ¢ to sequences of real numbers between -1 and 1.

ta, c+, ¢ are the sequences obtained from

Note ga*c = g(a+— a) x(ct-o), where a
a and c by defining aj+ = (Iaj|+aj)/2, uj' = (Iﬂj|‘8j)/3- cj+ = (ch|+cj)/2 and cj’ = (|cj|—cj)/3.
Theretore, if the architecture is based on this identity, it is necessary to calculate four con-
¥ volutions involving real sequences of non-negative numbers: ga+ x ot ga * et ga+ * ¢
| and ga” *c¢ .

If a CCD has two registers ga+ + ¢t and ga * ¢t can be calculated in the right register
and gat * ¢ and ga™ * ¢ can be calculated in the left register. Figure 3 shows by example
how one CCD with two registers can be used to calculate ga*c.

If a CCD has only one register, gu+ ¢t g * et gu+ * ¢, and ga” * ¢7 can be calcu-
lated in two different ways as illustrated in Figures 4 and 5. Note the implementations
illustrated in Figures 4 and 5 are obtained from one another by interchanging a and ¢. The
figures in this scction present the implementations for N=2. It is easy to derive the imple-

mentations for general N trom those illustrated for N=3 in the figures.

e

-w

ae

LEFT REGISTER
CHARGE TRANSFER
SEQUENCE

CCD WITH
MASK LEVELS INDICATED

9087

1

(2]
[e]

9235

IR

on'lolrx?llol.fllo

[ORr(tjp) - ORlty)

=[O (ty)) - ORlity2)

[OR(tg) - OR(t7) = Go25Cq * 9121 * 93] |
- [OL(t7) - O (tg) = 9525¢, *9121¢2 * 9225¢1]
= 90%0%0 T 91212 * 9292

[Or (tg) - OR(tg) = 435c] * 91215 * 932¢3]
- [0 (tg) - ORl(t1g) = 9920<] *9121% * 9222¢2]
* 90301 *9121% * 92322
= 90207 * 91311 * 92326,]
= 9020%2 ¥ 91211 * 9282

= 09535C2 *9131€] * 92a2C,

Figure 3. Real convolution of length 3 sequences with a 2 register CCD.

RIGHT REGISTER
CHARGE TRANSFER
SEQUENCE

AR

CCOWITH
MASK LEVELS
INDICATED

925 | =

J

‘

‘ 0(t)

O(t12) - O(t13) - O(t14) + Olt;5)
Oftyg) - O(t17) - Olt 8) * Oltyq) =
Oltgo) - Oltay) - Olt2) + Olt2) =

Figure 4. Real convolution of length 3 sequences with a one register CCD, 1.

CHARGE TRANSFER

SEQUENCE
cg to
ol
Be
o[
10
0 | tg
c1 | te
o[y
E10
0 [
(&) E
0|t
—Cf;— t12

9030% * 9121¢2 * 9232¢)
9030€1 * 91381%o * 9232¢C2
9030C2 * 9131C) * 8232¢,

1t &= o

CCD WITH CHARGE TRANSFER
MASK LEVELS INDICATED SEQUENCE
= - —)
it goaz | — < | to
= 0o | = % | h
aw +
goan — 0 t2
o8 0 0 t3
- ——
i g1a1 | —= <1 | ta
a0 0 —— ci t5
i 93] | —= 01l
0 —— 0 t_7
9530 | — Co t8
0 — cé tg
} +
- 95d0 | —™ 0 | tio
1 —_— e
- ‘ 0(t) 0 |t
| U ¢ | ti2
B ¢ | 13
Y s I :
O(ty2) - Oft13) - O(ty4) + Olty5) = 9030co * 9121€2 * 9222C)
(O(tg) - Ofty7) - Oltyg) * Oltyg) = 9o20C1 * 9121 * 923222
O(typ) - Oftp)) - Oftpp) + Oltp3) = 9p35C2 + 9121€] -+ 5222
l Figure 5. Real convolution of length 3 sequences with a one register CCD, 11.
| I
i\

WP S

The implementations of the complex convolution g(atib)*(c+id) which are described
next utilize Tiemann’s algorithm. Note that 16 sums would be required if the basis for the
calculation were the identity g((at-a™) + i(b*-b7) * ((cT-c) +i@¥T-d7)) = glatib) * (c+id).
Tiemann’s algorithm can be written [a, b, 0] * [c, d, -c] = [#, ad+bc, =(ac-bd)], where #
denotes a term which is not usefui. If implemented by a CCD in terms of a*-a~, b*-b~,
c+-c", d+-d", 12 sums would be required. The implementations for the complex convolu-
tion described next are based on a modification of Tiemann’s identity. The two register
single CCD implementation is based on the convolution of [a+, b+, a., b7, at] with [c+, d+,
0,0, 0] in one register and [¢~,d™, 0, 0, 0] in the other. The one register single CCD imple-
mentations are based on either the convolution of [a+, a~, bt b, 0,0,0,0,0,0] with
[c+, 0, d+, 0,¢7,0,d°,0, c+, 0} or, by intercl. nging a2 and b with ¢ and d, the convolution
of [a*,0,b%,0,47,0,b7,0,a%, 0] with [c*, ¢, d%,d7,0,0,0,0,0,01. Note these imple-
mentations only require the calculation of 10 sums, two of which are not combincd with
the other input used to form the desired real and imaginary parts of the output Figure 6
illustrates the 2 register single CCD implementation and figures 7 and 8 the two different
one register single CCD implementations of the complex convolution.

The implementations illustrated in figures 4 and 7 have the different masks of the
same signal sample adjacent while these illustrated in figures 5 and 8 have them separated by
sensor elements masked to zero. Therefore for CCDs with each sensor element correspond-
ing to a single data cells the implementations described by figures 4 and 7 seem best because
adjacent sensor elements could be located within one circle of resolution of the imager.

Note that in the CCD imagers illustrated the basic timing sequence for charge transfers
can be longer than the number of sensor elements because zeros at cither the beginning or
end of the sequence associated to the sensors need not have corresponding sensor elements.
In particular, note that the implementation of the complex convolution illustrated by figure
7 for the case N = 3 would in general require ION-6 sensor elements while that illustrated by
figure 8 would require [ON-}.

The difference in the total number of sensor elements required for the implementa-
tions illustrated in figures 7 and 8 is greatly exaggerated by taking N = 3 and this difference

is not considered to be as important as possible design modifications which can be used to

il A e

LEFT
18| REGISTER
CHARGE CCD WITH MASK
TRANSFER LEVELS IND!CATED
= to 0 —— 9235 —_—
ty |0 - | 9ob5 [—»
to |0 - | 903 | —=
t3 CB - gaE —_—
t4 |do - |92 | —
ts | O - glaI —_—
t6 0 -—— glbi —_—
t7 {0 |] | ==
+
tg | - [91by [—
- +
tg 1 —— glal i
th 0 - goa; —_—
t11]0 ~— | %bo | —
t12 0 P goao -
t13 Cé - gob; —
- +
t14]92 =— [%% | —=—| |
5|0 o ogm |
0
0
o

RIGHT
REGISTER
CHARGE
TRANSFER

+
¢ lto

OR(t1e) - OR (t18)
-0 (t19) + O (tpy)
= aod0 + boc0 + a1d2 + b1c2

+apd) + by

-OR(t17) + ORl(t)g)
*OL(to0) - O (to2)
= ayC, - bod0 +ajcy - b1d2

+axc) -byd

ORl(t21) - OR(ty3)
- O (tpq) + O (tpe)
= aodl + bocl + ald0 + blc0

+apdy + bocy

- OR(ta2) + ORl(tyg)
+OL(to5) - O (tn7)
= a5Cy - bodl tajc, - bldo

+ arCo - b2d2

e

OR(tpe) - OR(tog)
- O (tog) + O (t37)
= aod2 + boc2 + aldl + blcl

+axdg + boe,

- ORl(tp7) + OR(tag)
+ 0L (t30) - O (t3))

= aoc2 = b0d2 + alcl - bldl

taxt,- b2do

Figure 6. Complex convolution by a single 2 register CCD of sequences of length 3.

E-13

e e A N e e

|

CCD WITH MASK
LEVELS INDICATED SEQUENCE

92b3

923

9223

9223

0

0

0

9obo

gob;

902

+
9%

EEEEEEEEEEEEEREEEEEEEEE

L]

SR

[|

|

l

l

I

1

I

|1 1

o(t)

CHARGE

TRANSFER

+
S|t

.

|o]= e]s]e |l |sn]e &)
- =
— o
=

a

| o |
. .

—_ | =
~ [=3]

N
—
-
—
e -]

n a aJ Q (aJ
[S]] o]&|o]s]o]&]els]e]
-
N
i

e o - L L R TR T e

O(t33) - Oft33)
- Olt3g) * Olt37)
= 9oboCo * 9pagdo + 91010 * 9721d)

+gpbpcy +gpayd;

- Olt34) * Nt3s)
* Oltzg) - Oft3g)
= 95300 ~ 9oPod0 * 9721Co ~ g1b1d)

*+ gpapc) - gpbpdg

The other 4 desirable outputs are derived

by calculating O(ty,) - O(ty3) - Oltye)

*+Oltg7). - Oltgg) + Oftss) + Oltyg) '
- Oltgg). Olt52) - Olts3) - Oltsg)

+ O(tg7). and - O(tgy) * Oltgs) -
+O(tgg) - Oltgg).

Figure 7. Complex convolution by a one registci CCD of sequences of length 3, 1.

E-14

IR S . ——— A 174 T—— - T -

i ey emni

cco
WITH
MASK CHARGE
LEVELS TRANSFER
INDICATED SEQUENCE
9285 — C; tO
0 | — |t
b | = a2 |1, O(t3p) - Olt33) - O(t3¢) *+ Olt37)
T -1 «ls 3
F L 0 I =S = 9530dp * 9oboCo + 912192 * 91P1C)
935 | —= 0|t
mEr ™ *gpapd) +9obocy
TE 0 — 0 ts
e gZDE =% 0t
r = 0 | - | 0|ty - 0(134) + O(t35) + O(t38) - O(t39)
9265 — 0|tg _
L[- o= = 9920Co ~ 9oPodc * 9121¢p - 9101 d)
1 0 — 0 tg
1 i gof | =1 | ci]ho +9232¢1 - 92b2d)
i o == 1{'n
L i gl || | d1he The other 4 desirable outputs are derived
! 0 |- dj [t
| o O = by calculating O(tg) - O(t43) - Oltge)
- 92 | —~ 0the
o 1==[| ofus +Oltg7". - Oftgg) + Oltys5) + Oltgg)
g =11 ot - Oltgg). Olt52) - Olts3) - Oftsg)
R i 0 | —= 0|ty9 + O(t57), and O(t54) + O(tss) + O(t58)
i - gla‘{ — 0 1-8 = O(tsg)_
4 4 0 e Q [t
ne goa; — 0 |t20
- L c3 | tg)
| 4 s | | | %l
¢ o | d3) 123
t I 903 | ™ 0 |t2a
I' 0 == 0 tzs
] E I gob; —- 0 t26
0 = 0 t27
_ %% | = 0 1128
l fom o[ty
I Figure 8. Complex convolution by a one register CCD of sequences of length 3, 11.
-
E-15

R s B de

W e —

reduce the number of sensor elements proportional to N for some implementations and not

others.

Suppose that a single register CCD were designed so that each sensor element trans-
ferred its'charge to the first of two data cells. Then figure 5 illustrates an implementation
of the real convolution of sequences of length N which could be accomplished with a CCD
of this type with 2N sensor elements and 4N data cells and figure 8 illustrates an implemen-
tation of the complex convolution of sequences of length N which could be accomplished
with 5N sensor elements and 10N data cells.

Suppose the number of data cells in the CCD could differ from the number of sensor
elements and furthermore that the particular data cell to which charge is transferred from a
sensor element could depend on the location of the sensor element. A two register CCD
designed in this manner could convolve two real sequences of length N using N sensor ele-
ments and 4N dat. cells. This is because for any real number x either x* or x~ will be zero
and therefore the sign can be taken into account by the data cell to which charge is trans-
ferred. Figure 9 illustrates a scheme which would allow the implementation illustrated in
figure 3 to be accomplished with only 2N sensor elements. Figure 10 provides a scheme for
accomplishir.z the complex convolution illustrated in figure 7 using 2N sensor elements and
10N data cells with such a one register CCD.

The 2 register implementation of complex convolution by such CCDs is not so clear
cut, because the Tiemann algorithm is not symmetrical in a, b and c.d. The implementa-
tions with a two register CCD illustrated in figure 6 has about 5/2 N sensors not masked to
zero and uses 10N data cells. The implementation of the Tiemann algorithm based on
Corollary 9 for a two register CCD has 2N sensors not masked to zero and would require
12N data cells. In both cases the scheme in figure 10 could be used to do the implementa-

tions using a minimal number of sensor elements for the given number of data cells.

E-16

G Geed Geed) G S BOE BT B IR o Bewl Bl S BSe e Bl B

-

CORRESPONDING

DATA CELLS IN SENSOR
LEFT REGISTER ELEMENT
- Ej |ﬂj| —
lj =0
9 Iaji
- —
ﬂj <0

CORRESPONDING
DATA CELLS IN
RIGHT REGISTER

Figure 9. A scheme for performing a real convolution with a two register CCD

using a minimal number of sensor elements.

E-17

o

- -

i

P——

Iy

aj<0 bj>0 aj<0 bl<0

NOTE: The one register connections would be to the first 4 data cells as illustrated, but
to only one side, and the number of data cells per pair of sensor element would be

10.

Figure 10. Scheme for CCDs to implement complex convoiution with
minimal numbers of sensor elements.

i =i == Ppul G 0O N

=9

-w

A

1. THE MATHEMATICAL THEORY OF CALCULATION WITH
ONE AND TWO REGISTER CCDs.

In this section, we develop a simple way to describe the output of a single and double
register CCD as a function of time. This will enable us to derive the results discussed in the
intrednction and previous sections of this not’e in a simple manner.

Suppose a CCD consists of N sensor elements and a single register consisting of N
data cells. Suppose further that g, ..., gN.| denotes the charge accumulated by the N sen-
so1 elements in a fixed accumulation time T. Suppose that by masking a sensor element,
the amount of charge accumulated by that sensor element can be reduced. Thus masking
allows us to multiply the non-negative B by a;, real numbers between 0 and 1. The charge
accumulated by the j-th sensor element is written R the g is explicitly included in some
of the propositions and corollaries because in applications g will depend on time and Q will
not. Thus the architecture to implement a calculatior will not depend on the 8 but will
depend on the aj.

To describe the output of the CCD let ¢, ¢y, ..., ¢y, - . - denote the proportion

m’
of charge which could be accumulated during fixed accumulation time T which is trans-
ferred from each sensor element to its corresponding data cell at times tor Yoo ot e

respectively. Without loss of generality all the ¢j can be taken to be real numbers between
0 and 1. The output of the device at one of these times b will be denoted O(m) and is the
amount of charge accumulated in the data cell corresponding to the sensor element indexed
by 0. Immediately after a charge transfer the register is advanced and the charge accumulat-
ed in a data cell is transferred to the next lowest indexed data cell. The next proposition

describes O(m). See figures | and 2.

PROPOSITION 1
The output of a CCD with N sensor elements and N corresponding data cells in its

register is given by:

O(m) = (Cm, Cm-lr- - cm-(N-I)) . (go 5. 8] aj. ... BN llN_])

e g

where

1. 8530 81215 - - - » BN-1 3N-1 denotes the charge accumulated in the accumulation

period T

(8]

A I IR denotes the proportion of charge transferred from all sensor
elements to corresponding data cells at times tg, ..., tg, ...
3. O(m) denotes the output of the CCD at time t,

4. ¢ = 0 for j < 0 by convention

Proof

The proof will be by induction on m and N. If N=1 the output formula is clearly true
for allm. Suppose that the output formula has been established for CCD with less than N
sensor elements. Suppose we have a CCD with N sensors. Then O(0) = (¢, 000 1000 51 O)s
(8529 - - - » BN-1 aN-1) = 80 30 Cp 0 that the output formula is true at time t,. Suppose
the outputs for times t , <t ., are given by

O(m) = (e S 15+ + -+ Em-(N-1- o s 1 EN-1 N-1):

Now 0(m+l) =Cm+l 802 t Cons where Cp is the charge in the data cell correspond-
ing to g a,, after the charge has been transferred at time tp, and has been shifted down. Cy,
is therefore the output at time t;,, of the CCD with N-1 sensors associated with gyay, ...,

8N-1 aN-1° and the same charge transfers. Therefore by induction hypothesis on N we have
Cn = (€ Cmets - - - Sme(N-2)) * (81 31>+ - -+ BN-1 AN-D)
= (0, C(mt1)=1 S(nt1)=2 ** * C(m+1)=(N-1)) * Bo30s- -+ »8N-1 aN-1)
Therefore
O(m+1) = Cmsls Smt1)-10- -+ S(m+1)-(N-1)) * Bo 30> - -+ » EN-1 3N-1)
which completes the proof.

Note that the sensors have been indexed from the bottom up while charge is trans-

ferred from the top down. This is necessary so ti.at the imaging CCD can be viewed natural-

ly as a real convolver.

"'-I mm —— S = e = B TR S
Corollary 1
l The output of a CCD, when Cm = ¢k if M=k mod N with o < k < N-1, is given by
N-1
l O(N) +k) = z 83 Cij» foro <k <N-
i=0
I Proof
O(N+k) = (CN'H(’CN'H(—]’ ey Ck) J (goao,g]al. <o BN-] aN_]) .
I If

N-1
Gk = z gjaj Ck_j, k=0, S N-1
=0

then G = (ga) * c. Thus Corollary 1 shows that the CCD can be viewed as a device which

§ convolves the sequence (gja,, . . ., BN-] 4N-]) With the sequence (c,, .. ., CN-1)- Fur-

thermore the CCD is completely described by specifying the two sequences.

:-. i i For sequencesa, b, c,...,d all of length N let fa, b, c, ..., d] denote the sequence
" Y bo, & - ,do,a],b],c],. R ,d]. = ’aN-]’bN-I’CN-]"' . 'dN-] .
o PROPOSITION 2
= Let a, b, ¢ be sequences of length N. Then
. [a,b] * [c,0] = [a *c,b *¢] .

Proof

Let d = [a, b] so that dyy =ay and d2k+] = by and f = [c, 0] so that fry = ¢y and
f2k+] =0. The:n

ON-1 N-] N-]
d »)y = z djr Doyt = z doj fak-2j = z A Cksj
i'=0 =0 =0
and
IN-1 N-1 N
@ Doy = D fauenyy = > et k@il = D brk
i'=0 =0 =0

If x is any real number let

xt = (Ix] + x)/2and x™ = (Ix] - x)/2.

G B W Ol e e

Corollary 2
A CCD with one register can be used to convolve ga with ¢, with a any sequence of N
real numbers between -1 and 1 and ¢ a sequence of N non-negative numbers by summing

pairs of successive outputs.

Proof
Let the CCD be the one associated with the sequences [ga™, ga | and [c¢, o] and note

that (ga+ *C)-(ga” *¢)= g(a+ -a7) * ¢ = gaxc.

Corollary 3
A single CCD with 2 registers can be used to convolve ga with ¢, where a and ¢ are
sequences of real numbers between -1 and 1 by summing 4 successive outputs two from

one register and two from the other.

Proof

Let the sensor elements be associated with the sequence [ga+, ga~] and one register
with the sequence [c+, o] and the other register with the sequence [0, ¢]. Then
(gat-ga) *(ct-c)=garc

Note by substituting for a, b, ¢ in Proposition 2 the sequences [c, o], [d, o], and
[a, b], respectively, it follows that [[a, bl, (o, o]] * [[c, o], [d, o]] - [[a. bl * [c, 0],
[a,b] = [d, o]] = [a*c,axd,b=*c,b*d]. Itiseasy to generalize this observation to

obtain the next theorem.

Theorem 1
Ifa,b,c,...,dare msequences of length Nand e, f, . .., g are n sequences of
length N then
[[a.b,c,...,d].[o.....o],...,[o,....o]]*
[le.o,....0],[f0,...,0],...,[8...,0I]
= [a*e,a*f,...,a*g,b*e,b*f.....b*g,....d*e.d*t‘....,d*g]

=4 G=q Ooui Owd "N BE

-y

Proof

First we establish the theorem for the case when m is arbitrary and n=1. Let

g=la,b,...,dland h=[f,...,0]. Then g\ = ay, Bmk+] * b - "’gmk+(m—l)=dk

and hy) = fk with hmk+j =0forj=1,...,m-1. Therefore

mN-1
(8 * Mmk+k' = B(mk+k')-" 1y’
i=0
N-1
= 8(mk+k')-mj Kmj» for hy =0 unlessj’ = mj
=0
N-]
Bm(k-j)+k’ 'mj -
j=0
Therefore
= N-] N-|
Gy = Y i @ Dyt = D Oy -0 € * Kinicem- 1
=0 =0
n-1
=2
=0

completing the first part of the proof.

Now the proof is completed by induction on n+m. Suppose the proposition has been

proved for n+m < k. Suppose n+m =k and in addition that n = 2 for the induction step

has been proved already whenn = 1.

Let

I
=
o
@
o
)
I
o

Then

(0 68,0 .. 580 [0, . -5 505 . .-

Lol S B ET kel

Sl

5 @3 oo

,ol,

,ol * [le.o,...,0],[f0,... 0],

..., [g,0,...0]) = [A,0,...., 0Ol +[E,F,....G] = [A*E,A+F,...,A*G]

= [axe,a*f,...,asgbre b=t . . bag ...,

This completes the proof of the theorem.

dxe,dxt,...,d=*g]

T

o mm. aibl)

ARt 25, B B 4

Corollary 4

A single CCD can be used to calculate any number of real convolutions interwoven

in time provided the sequences involved are non-negative sequences of real numbers

bounded by 1.

Corollary 5

A single CCD with one register can be used to caiculate a convolution of a sequence
ga and ¢ with a and ¢ both sequences of real numbers between -1 and 1 by summing 4 suc-
cessive outputs of the register. In particular, let the sensors be associated with the sequence

[u+. a_, 0, 0] and the register associated with the sequence [c+, o,¢ ,0].

Proof

[at,a7,0,0] * [c*,0,¢7, 0] = [atectam xct, ot xc, a7 xc7)
and

(a+ * c+)-(a+* c)-(a” c+)+(a'*c') = ax*.
Corollary 6

One CCD with two registers can be used to calculate a complex convolution
(ga + ib) * (c+id) in a conventional manner with a, b, ¢, and d real numbers between -1
and 1. In particular, let the sensors associated with one CCD be [a+, A bt. b ,0,0,0,0]

with one register (ct.0,0.0, d*, 0.0, 0] and the other register [0,0,¢ ., 0,0,0,d7,0].

Proof
The right register calculates
[at.a7,b%.b7,0.0,0,0] * ic*, 0,0.0,d% 0,0, 0]
= [atxcta » ctotxct b st dtadta » d*, bt xdt b+ dh
0 that
) @rrct-a xcH) - +dt-b xdhH =axct-bxd’
and

) wrrct+b xchH+@rxdt-a xdH) = brctrara’

E-24

The left register yields the same convolutions as the right register with ¢* 1eplaced by
¢ andd* replaced by d” so that
@*ct-bxd¥)-(a*c -bxd) =arc-bxd
and

brxct+axd)-(b*rc +axd) =bre+axd.

i el | i e

Corollary 7

One CCD with one register can be used to calculate a complex convolution g (a+ib) *

i

(¢+id) in a conventional manner with a, b, ¢, and d real numbers between =1 and 1. In
particular, let the sensors be associated with the sequence

i {a*,a”, bt b",0,0,0,0,0,0,0,0,0,0,0,0]

and the register with

[¢*, 0,0,0,¢7,0,0,0,d%,0,0,0,d",0,0,0].

M Proof
i The convolution ot the two sequences clearly gives the same sequences a¥, a~ ,bt. b
convolved with c¢*, ¢™, d¥, d™ as used above to construct a * c - b # dandb *xc+a *d.
] Corollaries 6 and 7 do not yield the best implementation of a complex convolution
using a CCD, for a better one can be derived based on an algorithm found by Tiemann.
! l Tiemann’s procedure is an immediate corollary to the next proposition.
M PROPOSITION 3
= Let a, b, ¢, d, and e be sequences of N real numbers. Then
[a,b,0] * [¢,d,e] = [#,a*xd+b*xc,a*xe+Db*d]

where the expression for # in terms of a, b, ¢, d, and e is not of interest.

Proof
Let f=[a,b,c] andg={c,d,e] so that f3x = ax. F34) = by, {342 = 0.83; = ck
B3+l = dk,and 83k+2 = €. Then

.o

E-25

s sorns e e - - et e Vo A s s e

N-1

z £3j 83k+1)-3j z £3j B3k +1)-(3j+1)
=0 j=0

—

(f* 8)3k+]

L

z

N-1

= z 'dk dk-j o z bk Ck-j

=() j=0

St o

N-1

f3j 83k+2)-3j * z f3j+1 B3k+2)-(3j+1)
=0

E

(F* 8)342

—
1l
o

N-1

N-1
F aj ek_j + z bj dk-j
=0 =0

L

Corollary 8 (Tiemann)
Let a, b, ¢ and d be sequences of N real numbers. Then
fa,b,0] *[c,d,-c] = [#,a*d+b*c.,-(a*xc-b*d)]

where the expression for # in terms of a, b, ¢ and d is of little interest.

Proof

Let e = -cin proposition 3.

Corollary 9

One CCD with two registers can be used to implement the Tiemann algorithm for
complex convolutions. In particular, let the sensors be associated with the sequence
[at,a™, b*, b, 0, 0] and one register with the sequence (¢t o0,d% 0, ¢, 0] and the

other register with the sequence {o,c”,0,d ", 0, c+l 1

Proof
LetA = [a*, bt 0], B = [a,b",0],C = [¢*,d¥,c¢) and O = o, 0, 0]
in proposition 3. Then
(at,a”,b*, b7, 0,0] * (ct, 0,d% 0,¢7,0]

= [A,B] * [C,0] = [AxC, BxC]

E-26

!

l Note

l A+C = [#,a s dt+ 0Tt @ x0T 2 dT))
and

I B+xC = [#, 4 * dt+ b * ¢t (@ % ¢+ b7 % dh) by Proposition 3.
Then

I atsdt+ptact-@+dt+b xch) = axdt+oxc?
and

Joard

@rsctbt xdh)-@ s +b xdN) = asc+bxdt.

1 :‘g The left register outputs can be used to calculate the same expressions, but with et
g 3
o replaced by ¢~ at by d7, and ¢~ by ¢t. Therefore
71 + + - ot I
i (a*d"+bxc")-(axd”+tbxc7) =a*xd+bx*c
i
and
H | + +
(a*cT+b*xd)-(a*xc"+b*xd") = a*xc-bx*xd.
i .
= Corollary 10
E8 | One CCD with one register can be used to implement the Tiemann algorithm for com-
- plex convolutions. In particular, let the sensors be associated with the sequence [at.a", bt
11 ‘ - . . - - -
11 b~,0,0,0,0,0,0,0, 0] and the register with the sequence [c+. o.d¥.0.¢".0.¢". 0.d . 0.
_i ¢t ol.
) Proof
/ [[u+‘ b*, 0. 0,0.0].ja". b7, 0.0, 0, o]] * [[A s wL c+] * |0, 0,0, 0,0, 0.]]
yields all the outputs used to construct a xc- bxdandaxd+bx ¢ in the Corollary 9.
Note that the register sequence described in Corollary 10 repeats ¢~ in the middle.

This suggests that length 10N sequences might be used. Towards this end the next proposi-

] tion is established.

N —

PROPOSITION 4

Leta, b, c,d, e, f, and g denote sequences of length N. Then
[a,b,0,0,0] *[c,d,e, f,g]l = [#, a»d + bxc, axe + brd, a*f + bxe, axg + bxf]

where the expression for # is not of interest.

Proof

Letp=[a, b,0,0,0] and q = [c,d, ¢, f, g]. Then pgy = ay, P4 = by, Psk+j =0,

i=2.3,4and qg =, A5y 4] = dy, A5K4+2 = €ks A543 = fi> and As5k+4 = 8- Then

N-1 N-1
(P *Dsk+h = z Psj 4(5k+h)-5j * Z Psj+1 9(5k+h) - (5j+1)
=0 i=0
N-1 N-1 K
¥ Z P5j 45(k-jy+h * z Psj+1 95(k-j) + (h-1)» 0=0.1,2.3,
i=0 =0 and 4.

Thus (p * Q)5k+h Bives the desired terms forh =1, 2, 3, and 4.

Corollary 11

One CCD with two registers can be used to implement a modifed Tiemann algorithm

for complex convolutions. In particular, let the sensors be associated with [a+, b+, e b a+]

and one register with [ct, d+, 0, 0, 0] and the other with [¢~, d™, 0, O, O].

Proof

[a*,b%,a7, b7, a%] * [c*,d*.0,0,0] = [#,b" xct+at «d¥,a x T +bT x Y,
b-xct+a % d+, atxct+b « d+]. Then (b+*c+ s a+*d+) - (b'*c+ + a‘*d+) = bxct
+axdt (a""*c+ + b'*d+) - @ *ct +btxdt) = axct - bxd*. The output of other register

can be used to obtain the same expressions with ¢t replaced by ¢~ and dt replaced by d~.

Corollary 12
One CCD with one register can be used to implement a modified Tiemann algorithm
for complex convolutions. In particular, let the sensors we associated with [a+, Fi=t b+, b~,

0,0, 0,0, 0, 0] and the register with the sequence [ct.0.d%.0,¢7,0,d7.0,ct, 0.

E-28

i ==) @ 0DE N N =am

- . ATy S "W R A R — T N — -

Proof

Let A = [a+. b+, 0,0,0],B = [a",b7,0,0,0].C = [c+, d+. e, diF, c+] and

O =[o0,0,0,0,0]. Then

[A,B] x [C, O] = [AxC, BxC].

As in the proof of Corollary 9, the expressions axdt + b*c+, axc” + b*d+, axd™ + bx¢”, and
a*ct + bxd™ are obtained by taking the difference of successive terms. Then
(axd¥ + bxct) - (axd™+ brc™) = axd + brc and (axct +brd7) - (axc™ + brd™)
= a*c-bxd .
Because of the importance of Corollary 12 it is desirable to have a direct proof of it

independent of most of the theoretical development presented in this section.

Direct Proof of Corollary 12

Let
e = [at,a",bt, b7, 0,0,0,0,0,0]
f = [c+, 0, d+, o,¢c,0,d7, 0, c+, o]
Then

1ok = 3T €10k+1 = A e1ok+2 = bktiegre3 = by™, ejok+j = O for
i=4,...,9
and
flok = o™ froke2 = ¥ Floked = o7 flok+s = 9k Flokes = ¢ and
f10k+j =0 when j=1,3,5,7,and 9.

The proof will follow by calculating the 8 useful terms of e * f.

First
N-1 N-1
(exDjok+h = Z €10j f(10k+h) =10 * 5 €10j+1 f(1ok+h) - (10j+1)
=0 =0
N-1 N-1
+'zo ¢10j+2 f(10k+h)-(10j+2)+2) ®10j+3 f(10k+h) - (10j+3)
= JF

E-29

Eape i b i S pli s L i suSithindl

because € gy +j'=0 fork'=4,...,9. Next

N-1 N-1
(e*xD 1ok + 2n = Z €10j f10(kj) + 2h +z €10j+2 f10(k-j) + 2(h-1)
i=0 j=0
and
N-1 N-1
(e*N10k + (2n+1) = z;,) €105+1 f10(k-j) + 2h "2) €10j+3 f10(k-j) + 2(h-1)
= =

because f) gy 4 k' = 0 when k' is odd.

Therefore
N-1
gk = (e*Dygk + 2n - (*D1ok + (2n+1) = z (e10 - €105+ 10k) + 2h
=0
N-1
> Z (e105+2 - €10+3) f10(k-j) + 2(h-1) -
=0
Then
N-1 N-1I
- + +
gl = z aj dk—j + z bj Ck_j
=0 j=0
N-1 N-1
. - +
2= 4t) bdk
=0 =0
N-1 N-1
g3 = Z 2 dg * Z bj Ck-j
j=0 =0
N-1 N-1
& + =
g4 = z aj Ck_j + z b_l dk-_l
=0 =0
so that finally
N-1 N-1
8) -g3 = z aj dk-j + z b.| Ck_j
=0 =0

E-30

and
N-1| N-1|
24 - 82 = z 'dj Ck_j— z bj dk-j'
1 j=0 j=0
N

E-31

APPENDIX F

SIGNAL PROCESSING INTERPRETER

B
I
I
I
I
|
I
I

B. R. Woods

Naval Undersea Center

ABSTRACT

This note describes additions and modifications to a signal processing
interpreter which was developed as part of the ARPA sponsored program for
image transmission via spread spectrum links. The signal processing inter-
preter, SPIN3,is an interactive program for use at a time-sharing demand
terminal. It provides the user with the equivalent of a calculator designed
to perform signal processing operations and provides the software equivalent

of a large number of modules for breadboarding a complete signal processing F
system,

This interpreter is meant to be used by engineers and scientists who are
familiar with signal processing, but who may have no knowledge of programming.

The signal processing interpreter is particularly useful for the rapid
investigation of systems whose complexity precludes a complete analytic study,
and whose utilization of new components may make hardware breadboarding un-

desirable because of cost and procurement time 1imitations. |

The present note describes software additions and modifications generated
during the period July 1973 through March 1974 and is meant to be used in o
conjunction with the Signal Processing Interpreter Preliminary Description
and User's Guide [1]. It replaces NUC TN 1213, by the same name [3].

-

o L et s - e e dame Lt o

Bt

TABLE OF CONTENTS

'
- Page No.
1 :E Abstract j
r = Table of Contents ii
: , ;E A. New Commands and Newly Implemented Commands 1
B. Detailed Description of the New Commands and
i1 Newly Implemented Commands 3
a 1. Exponentiation 3
it 2. Reciprocals 3
. 3. Addition of Vectors 3
ii 4, Shifts 4
;! 5. Stack Operations 6
- 6. Scaling 5
i 7. Correction of Vector Points 8
8. Printing Command Names 9
9. Polar and Rectangular Coordinate Conversion 10
' 10. DFT n
: i1 11. Noise Generation 12
= 12. Vector Expansion and Decimation 13
: 13. Cosine Transforms 14
14, Modified Log 15
- 15, Macros 16
| i 16. Mass Storage 19
E = 17. Circulant Projection 2]
i 18. Barker Sequence Generation 22
E " 19. Complementary Sequence Generation 23
20. Differential Pulse Code Modulation 24
i - 21. Quantization 26
n 22. Real and Imaginary Parts of Vectors 26

Summation of Vector Components

e et il

c.

D.
E.

Modification to Existing Commands

A O BwWw N -

. Setting Dimensions
. Inputting Vectors by Points

Plotting Vectors
Constant Functions
Printing Vectors
Other Minor Changes

Changes to SPIN3 Processor

References

F4

28

28
29
30
30
30
30

32
35

=21 == B

) [—

A. New Commands and Newly Implemented Commands

As the Signal Processing Interpreter has been used and tested by potential
and actual users, the need for extensions and expansions of the system have
become evident. These needs were mostly met by the addition of a variety
of new commands to the repertory of existing commands.

Below is an alphabetic 1isting of these new additions giving the names
only. Their functions and use will be covered in detail in the body of this
report, under Section B.

'ADD'

'AUTOSCALE'

'BARKER GENERATOR'
'CIRCULANT PROJECTION'
'CLEAR'

'CLEAR X'
'COMPLEMENTARY SEQUENCE'
'CORRECT'

'"CORRECT MACRO'
'DECIMATE'

'DEFINE DPCM GAIN'
'DEFINE DPCM QUANTIZER'
'DEFINE DPCM RCVR'
'DEFINE MACRO'

'DFT'

'DPCM'

'DPCM RCVR'

'EDCT'

'EXECUTE MACRO'
'EXPAND'

'EXPONENTIAL'

'IMAG PART'

'LIST DPCM'

'LIST MACRO'

'MASS RECALL'

'MASS STORE'

'MODIFIED LOG'

'NOISE GENERATOR'
'0DCT!

'PLOT'

'POLAR TO RECTANGULAR'
'PRINT ALL COMMANDS'
'QUANTIZER'

'REAL PART'
'RECIPROCAL'
'RECTANGULAR TO POLAR'
'RIGHT CIRCULAR SHIFT'
'RIGHT SHIFT'

'ROLL DOWN'

'ROLL UP'

'SCALE'

'SUM!

F-6

ot owed umd

[3 y
om0 d

| =5

< B
-I - B. Detailed Description of the New Commands and Newly Implemented Ccmmands*
l; 1. Exponentiation
- 1 ’ Exponentiation of the elements of a vector was made available to users
i i of the Signal Processing Interpreter by the new command
i l 'EXPONENTIAL'
] = It simply replaces each component Zi of the vector by eZi, where Zi
[| is complex.
]
| 2. Reciprocals
The command 'RECIPROCAL' was added. It checks for zero data points
[of a vector to avoid illegal division formulations. If one is en-
countered, an error message results that says:
"VECTOR CONTAINS A ZERO. RECIPROCAL NOT PERFORMED."
and, in fact, no reciprocal is then performed. If all data points are

legitimately non-zero, then processor replaces each point of the vector

by its complex reciprocal.

3. Addition of Vectors

Addition of vectors was made possible by including the command 'ADD'.

Tnis will cause addition of the lowest two vectors in the stack, after
zero fiiling the shorter one to the size of the longer. It will also

lower the remaining vectors of the stack one level. Resultant is

placed in the X-register.

*In the following naragraphs that describe the commands, use is made of a set of
! sub paragraphs under the headings "Programming Considerations". These were
designed for the person who must know in detail how and why the code was wiritten
the way it was. The average user can either skim them or skip them entirely.

TS — e

4, Shifts

a. Commands

There are two basic kinds of shifts available to the user of the Signal
Processing Interpreter. There is a straight shift of the elements of

a vector, with the end values being lost as they are shifted off the end
and zeros filling the new positions opened up. This is called by:

1 =i o O

'"RIGHT SHIFT'

And there is a circular shift of the vector components, with all values -
being preserved. This is called by:

'"RIGHT CIRCULAR SHIFT' A

There are no 'LEFT SHIFT' or 'LEFT CIRCULAR SHIFT' commands. These
cases are handled in another way. (See b;low).

b. Use

(1) To perform a right shift, user puts his vector into the X-register
and calls 'RIGHT SHIFT'. Processor then interrogates him with message
"ENTER NUMBER OF POSITIONS TO BE SHIFTED", to whch he responds by
entering an integer. Vector is then shifted that number of places
to the right,while that number of vector components are lost off the
right end. Also the left end will now contain that number of zero '
components. Shifted vector will appear in the X-register. :

(2) To perform a left shift, everything is done the same way except that
the number entered by tha user for positions to be shifted, is entered d
as a negative integer. In this case the zero components appear at the
right end and shifted components are lost off the left end.

(3) To perform a right circular shift, user puts his vector in the X-register
and calls 'RIGHT CIRCULAR SHIFT'. He receives the same message

"ENTER NUMBER OF POSITIONS TO BE SHIFTED"
to which he responds by entering an integer. A circular shift then
takes place and resultant appears in the X-register.

-

.
i
I
1
!
I
|
|

ae

o8

»w

(4) To perform a left circular shift, everything is done the same way except
that the number entered by the user for positions to be shifted is
entered as a negative integer.

(5) If the number entered for either shift command is zero, nothing takes
place and user is asked for next command.

(6) If the number of places shifted is greater than or equal to the vector
size for a straight shift, the result is to zero out your vector,

Programming Considerations

(1) Circular shifts are done modulo the vector size. A circular shift

by the vector size leaves the vector unchanged.

(2) Circular shifts are done by a FORTRAN subroutine called CSHItT, while
straight shifts are done by Code embedded in ALGOL routine SPIN 3.

(3) In order not to cause problems, the value used for a straight shift
is made equal to the smaller of the following two values: vector size

and number entered.

a

(4) Since a circular shift by a multiple of KX is equivalent to a shift of
zero, a circular shift of -k is equivalent to a circular shift of NX-k,
so the distinction between right circular shifts and left circular shifts
is purely conceptual.

5. Stack Operations

4
a. Commands

Several new stack operations were provided and are listed below:

'ROLL uP'
"ROLL DOWN'
'CLEAR'
'CLEAR X'

b. Use

(1) User would use these in same way as the stack operations on the HP-35,
Their usage is straightforward. See reference [7] for information on the KP-35,

(2) 'CLEAR' initializes with zero all 512 cells of all registers, regardless
of their original vector dimensions. Then it sets all register dimen-
sions to the nominal value of 1. 'CLEAR X' does so only for the X-register.

(3) 'ROLL UP' and 'ROLL DOWN' also work on 512 cell transfers regardless
of vector size.

¢. Programming Considerations

(1) The vectors were cleared as 512 and rolled up or down as 512 for two
reasons. One was efficiency of code written and the other to avoid =
leaving garbage in cells that might give trouble at a later time.

(2) 'ROLL UP' and 'ROLL DOWN' actually perform cyclic permutations of the
vectors X, Y, Z, T and also of their dimensions NX, NY, NZ and NT.

B N el B g

F-10

6. Sca]ing

. a. Commands

Scaling can be done to a vector by using one of the following commands:

'SCALE'
'AUTOSCALE"

The first one requires a scale factor to be supplied by the user,

while
the second one is an automatic scaling process.

b. Use

! | (1) The commard 'SCALE' calls upon the user to
' "ENTER CUMFLEX SCALE FACTOR'

When he does, his original vector is multiplied pointwise by this scale

factor, and the result is in the X-register.

(2) When 'AUTOSCALE' is called, processor calculates the absolute value

of the largest point of the original vector and scales vector by this
quantity. It also prints out the message

"PREVIOUS LARGEST ABSOLUTE VALUE = §

The variable printed is this quantity used for scaling.

c. Programming Considerations

(1) A FORTRAN subroutine called SCALE was used even though the code was so
short to suppose that it would logically be embedded in the ALGOL SPIN 3
procedure. This was done to allow uniform entry of the complex scaling

factor. To enter complex numbers by FORTRAN is different from ALGOL,
An entry of a complex number for FORTRAN is of the form

4., -3.6
while for ALGOL, it is of the form

4, -3.6
(2) Autoscaling makes use of the ALGOL procedure MAX.

7. Correction of Vector Points

a. Command

The user may correct a point of a vector in the X-register by calling
'CORRECT'

b. Use

(1) After user places his call to 'CORRECT', processor comes back to ask
user to

“ENTER INDEX OF POINT TO BE CORRECTED" , { |

(2) User then enters his integer and receives back the message !i g'
| "ENTER COMPLEX DATA POINT NUMBER ARl g - i
where the variable is the jndex he just entered, i
(3) Now he enters a complex value in FORTRAN format and receives a verifica- 1
tion print back of what he Just entered, with the message
"VALUE STORED AT INDEX IS " i
(4) Processor replaces previous value at that point by the new one, i) i

| C. Programming Considerations
|
1

(1) Correction is done in a FORTRAN subroutine named CORRV, This was done
to allow use of standard FORTRAN format for jnputing the complex value
of the point to be corrected. ALGOL uses a different format, and it was
necessary to have consistency of input conventions,

(2) At some later time, it may be desirable to make sure index entered is i

within the bounds of the vector being corrected, No check is now made
and problems could result from sloppy use.

-e

(3) Complex input format for FORTRAN has the real part first, then a corma,

then the imaginary part. The rea] part and the imaginary parts are
real numbers with decimal points,

F-12

8. Printing Command Names

a. Command

An operator was implemented to allow the printing out of the command
name as soon as it is recognized. It is called by

'PRINT ALL COMMANDS'
b. Use

(1) Whenever, if ever, the user desires to see the command names printed
out, he need only call once, 'PRINT ALL COMMANDS', and it will be
done for the remainder of the run,

(2) This was implemented mainly for batch jobs where a sequential listing
of the commands performed is otherwise unavailable.

(3) This printing of commands will also occur for the elements that make
up a macro.

¢c. Programming Considerations

(1) Processor uses a flag called PCFLAG, It has an initial value of 0
and changes to 1 at the first time 'PRINT ALL COMMANDS' is called.
Thereafter it remains 1 for the rest of the run. In other words,
there is no way to shut it off, at present. An additional command
could easily be created to do that. It need only reset the flag.

(2) This command provides a printout for batch jobs which is readable

without reference to the card deck which was used for submission of
the job,

9. Polar and Rectangular Coordinate Conversion

a. Commands

User can perform conversion of a vector from polar to rectangular
coordinates by calling:

'"POLAR TO RECTANGULAR'
Or he can convert rectangular coordinates to polar by:

'"RECTANGULAR TO POLAR'

b. Use
When either of the above is called, the user receives message:
"ENTER R OR D IN STRING QUOTES FOR ANGLES IN DEG, RAD"

User responds with 'D' or 'R' ,

¢. Programming Considerations

(1) Vector data is complex type, so when rectangular, the real part is
X coordinate and imaginary part is Y coordinate. For polar, real
part is magnitude and the imaginary part is angle.

(2) Program actually only checks for the 'D' option. If not 'D', then
'R' is assumed.

(3) It was necessary to include a special routine to compute the angles.
The ALGOL arctangent routine does not preserve uniqueness through the
transform since it uses only a single input argument. The FORTRAN
routine FUNCTION CANG was added. It also handles the case of zero
for both coordinates. To use it however, it was necessary to type it as

EXTERNAL FORTRAN REAL PROCEDURE

R et FiG s

P

i

I_
|
|

=1 =y pa

L P |

i =

[Ji 8
e §

-
[t 2]

>-

i

,merw == e P S TR AR = s oo i ool =N O I DT AN SRS IR

10. DFT
a . Command
User may call 'DFT' when a discrete Fourier transform is desired and not
have to make the decision himseif about whether it is an 'FFT' or a 'CZT'.
b. Use

User puts vector to be transformed into the X-register, calls 'DFT', and
receives his transformed vector back in the X-register,

c. Programming Considerations

(1) Program will check the vector dimension for powers of 2 up to an exponent
of 9, that is, up to a value of 512. If a power of 2, then the FFTSP
subroutine will be called. Otherwise it will be CZT.

(2) Code is redundant with some in 'EDCT'. (See writeup of Cosine Trans-
forms). It may be desirable to convert this to a subroutine and replace
the redundant code with subroutine calls.

m“'ﬂ‘h—-ﬁ-—ﬂ T | S ——— — S e E R e g PR T Y o s e T i

11.Noise Generation

a. Command

A noise generation capability is available to the Signal Processing
Interpreter user by calling

'"NOISE GENERATOR'
b. Use

(1) After calling 'NOISE GENERATOR', user receives back the message:

"ENTER INITIALIZATION POINT FOR NOISE GENERATOR"

(2) He responds by entering a positive integer that controls the starting
point of the random number generator that creates the noise sequence.

(3) User then is asked to: "ENTER VARIANCE"“. This is a real number and
represents the variance that the final noise sequence will have,

(4) After he enters this number, the noise sequence is generated and
appears in the X-register.

(5) The length of the noise sequence generated is the length of the X-register
vector at the time it is called.

c. Programming Considerations

(1) Processor calls upon a FORTRAN subroutine called NOISE to perform the
task.

(2) The method used for the random number generator came from "Communications
of the ACM", Volume 12, Number 2, of February 1969, p. 93-94, by
J. B. Kruskal. [2]

(3) The random number generator used was set up to allow sequences of up
to 8192 points. Since we are limited to 512, in general, we can start
the sequences at a variety of points to get independent sequences,
Method generates a zero-mean random vector using a multiplicative con-
gruential method.

B b y — A i e s S R AL oaean _ro et ke

F-16

o

i
i
I
1
I
|

4
L)

-

e

.8

12. Vector Expansion and Decimation

a. Commands

b.

Expansion and decimation of a vector are available to the user through
the commands:

Use

(1)

(2)

(3)

(4)

(5)

"EXPAND'
'DECIMATE'

To expand a vector in the X-register, user calls 'EXPAND'. Processor
then asks user to

"ENTER INTEGER EXPANSION FACTOR* ,
to which the user responds with a positive integer. (Call it INT)
The new vector will be of length

1 + ((NX-1) * INT), where NX was the original length. The first
point remains fixed, while between each two points of the original
vector there will be inserted (INT-1) zero points. Resultant appears
in the X-register and destroys the original vector.

Decimation works in a corresponding way. With the vector in the X-register,
the user calls 'DECIMATE'. The processor then asks user to

"ENTER INTEGER DECIMATION FACTOR® ,
to which the user responds with a positive integer. (Call il RNNT).

The new vector will be of length 1 + ((NX-1)/NNT) where NX was the
original vector size. The new vector will be the first point and every
NNT-th point thereafter.

Note that these operators are not commutative, either in value or
in length.

. Programming Considerations

(1)

The code for decimation uses integer division as noted by the // sign.

This is necessary to truncate off fractional parts.

13. Cosine Transforms

a. Commands

Even and odd discrete cosine transforms are available through the commands:

"EDCT'
'oDCT!

b. Use

(1) User puts vector to be transformed in the X-register and then gives
g appropriate call: 'EDCT' for even discrete cosine transform or '0DCT'
for odd discrete cosine transform.

(2) Processor generates transform and stores the results back into the
X-register,

(3) Size of the original vector is limited to 256, with the one exception
of the number 512 being allowed for’the 'EDCT'.

c. Programming Considerations

(1) Actual formulas implemented are not included here mor is an explanation
of the method. User is referred to NUC TN 1265, entitled "High Speed

Serial Access Implementation for Discrete Cosine Transforms" by J. M.
Speiser,

(2) The reason for limitation of size of original vector is due to method
used. If not a power of 2, method makes use of CZT routine which
quadruples size. But the dimensioning is limited to 1024, thus 256
for original vector.

(3) Routines make use of a flag called NODD, which takes on the value 1 for
odd or O for even. The odd transform automatically uses the CZT routine,
while the even one must test for power of 2. It it is a power of 2,
then the FFT routine is used; otherwise the CZT is again used.

(4) We cannot use the 'DFT' formal call to do this as the code is embedded
in the SPIN 3 routine, but the code to do this checking is identical,
One, at some later time, could make the 'DFT' a subroutine and then
use it for both places,as the code is redundant.

bt e b

— = " el T L

]

3 14, Modified Log

- A modified lTogarithm routine is available to user with call
“ *MODIFIED LOG'

1 b. Use

[

[

(1) Vector to be processed is placed in the X-register and call is made
to '"MODIFIED LOG'

(2) At this point program interrogates user with message
"ENTER MINIMUM RECOGNIZED NUMBER'

(3) User then enters a positive, real number. If it is not positive,
a diagnostic results

“ERROR. NUMBER MUST BE POSITIVE REAL"
and he is again asked to enter his number until he gets it right.

(4) The real part of the vector is then checked against this minimum
recognized number. If it is larger, then the complex number is replaced
by the natural logarithm of its real part. If not, it is replaced by
the natural logarithm of the minimum recognized number,

. Programming Considerations

(1) Code will not at present catch errors in type for entering the minimum

recognized number. But this safeguard could easily be buiit in.

e

15. MACROS

a. Commands

User may define and use combinations of Signal Processing Interpreter
statements as blocks or macros. To do so he will use some or all of the
following four commands:

'DEFINE MACRO'
'LIST MACRO'
'CORRECT MACRO'
'"EXECUTE MACRO'

b. Use

(1) To begin the process, user enters 'DEFINE MACRO'. Only one macro may be used
at one time by the user. The processor then prints out:

"ENTER NUMBER OF COMMANDS TO BE USED FOR MACRO."

The user then enters an integer between 2 and 20. (Actually 1 would
work, but would be meaningless). If he enters a number greater than
20, a diagnostic results. ‘

"ERROR. MORE THAN 20 COMMANDS"
He is again asked for number of commands.
(2) Once he has properly entered the number, he receives the message:

"ENTER COMMAND" until he has entered enough statements to make
up the desired size for the macro. At this point he receives message:

"END OF MACRO DEFINITION"

(3) Provisions are made to keep the run from terminating if user makes a
bad entry. He then receives a message:

"ERROR IN ENTERING LAST MACRO COMMAND"
and is given another chance to enter it correctly.

Note: Processor does not do a command table search at this time so command
still may not be legitimate. It just means that entry was of correct
format.

E
{

(4) User may check to see what is in the macro by calling:
'LIST MACRO'

It gives a printed 1isting of the command names that make up the macro,
and tnis process makes a good check.

The user may desire to correct the generated macro or change it. He
may do so by calling

'CORRECT MACRO'

This is similar in concept to the command 'CORRECT' associated with changes
in vector values.
Program returns message:

WENTER INDEX OF COMMAND TO BE CORRECTED"

User enters an integer between 1 and 20 and receives back message:
"ENTER COMMAND" , which he does. Process repeats if an error occurs
in entering. Upon successful completion, control returns to normal
sequence.

Jser is now ready to execute his macro, done by calling:
'EXECUTE MACRO'

This will cause the first command to be executed and all subsequent
others possible up to the first required parameter input or option
selection. Process continues until all commands in macro have been

F
|
1.

executed, at which time user receives message:
"END OF MACRO EXECUTION"

(7) Control returns to normal sequence. g

(8) User note that the normal sequence message of the form k
nNX=8 PLEASE ENTER NEXT COMMAND"

will be deleted between executed commands of a macro. It will appear
after the completion of any one of the four macro control commands.

(9) Macro, once generated, is available to the user, at his discretion,
for the rest of the run.

F-21

c. Programming Considerations

(1) Macros are limited to 20 commands at present. This could easily be
changed by minimal reprogramming. Also more than one macro could be
implemented by a somewhat larger job of programming.

(2) Read error checks are built in to catch errors in entering commands
to macro. Check is made for form only. Errors in spelling or erroneous :£
names won't be caught until user tries to execute his macro.

1

(3) A flag named MAFLAG is used to control suppression of unwanted print
statements between macro commands. It is set to 1 during execution
of a macro and to 0 at all other times.

4
b oo

[ot]

16. Mass Storage

a. Commands

Mass memory for vector storage and retrieval is available to the signal

processing interpreter user through the following commands:

b. Use

(1)

(2)
(3)

'MASS STORE'
'MASS RECALL'

In order to use this storage capability, the user must include in
his preliminary setup commands (before execution) the following two
statements (or variations of them):

@ASG, AZ NAME,
@USE 15, NAME.

where NAME is the users own catalogued file, previously assigned by:
@ASG, UP NAME., F/120/TRK

The 120 tracks of mass storage file are necessary to allow for a maximum
of 201 vectors of 512 complex words. User should supply his own file
name for NAME.

Now the Signal Processing Interpreter can be executed.

The two storage commands are very similar in use. To store a vector,
the user puts his vector into the X-register and types 'MASS STORE'.
The Signal Processing Interpreter then interrogates him with the
message:

"ENTER INDEX OF MASS-STORED VECTOR" .

User then enters an integer between 0 and 200. The program will store
the vector in the appropriate memory area along with its size, Con-
versely, to retrieve a vector, user types

'MASS RECALL'

at which time he receives the same interrogation as above. When he enters
the integer (0 ¢ N < 200), he receives the vector back in the X-register

along with its size in NX. User can store up to 201 vectors at a time.
'MASS RECALL' treats the stack in the same way as 'RECALL', that is, it

raises the stack one level with the topmost vector being lost.
F-23

c. Programming Considerations

(1) Program uses same code to accomplish both commands,with a read-write
flag as the only difference.

RWFLAG = 1 for write and RWFLAG=2 for read.

(2) Program makes access to mass storage by sector addressing. In order
to do so, program computes and locates proper spot by using internal
calculations in SUBROUTINE MASTOR and by cdlling system SUBROUTINE
SETADR with correct index.

(3) To make the above calculation one needs to know that there are 28 words
per sector. In order to be able to store a 512 complex word vector,
we would need at least 1024 words. This will be handled by 37 sectors
(1036 words). In addition, the program writes and stores a one-word
block, before storing the vector, that gives vector length. This reauires
an additional sector for a total of 38.*

(4) If an index of 200 (actually the 201st position) is exceeded, user is
given a diagnostic message:

"EXCEEDED MAX INDEX. OPERATION NOT DONE."

Then the mass storage operation is not performed, with control returning
to ask the user for the next command,

(5) The NTRAN no-op statement before CALL SETADR of SUBROUTINE MASTOR is
required in order to assign unit 15 as an NTRAN unit, If it is not
present, the call to SETADR assumes 15 is a FORTRAN file, and then the
first NTRAN call to unit 15 causes the run to bomb. (A file cannot be
both FORTRAN and NTRAN). i

. *There are 64 sectors to 1 track. Since we need 201 vectors each of 38 sectors
length, we need a total of 7638 sectors, or about 120 tracks.

F-24

v —_

W

17. Circulant Projection

a. Command

User may generate a circulant projection of a given vector by calling:

'CIRCULANT PROJECTION'

o I.l

il b. Use
- P P *
ir (1) This replaces Xp by (1 --ﬁ)xp * N XN-P
i‘ for P=0,1, 2, ..., N-1 and where * means complex conjugate.
= 3 (2) User puts ks vector to be processed in the X-register, calls 'CIRCULANT
{ PROJECTION', and then receives this projection back in the X-register.
il c. Programming Considerations

(1) Code makes use of several procedures already defined, as well as several
e temporary arrays for intermediate results.

(2) Formula above supplied by Jeff Speiser,

F-25

18. Barker Sequence Generation

a. Command

User may generate a Barker sequence by a call

'BARKER SEQUENCE'

b. Use

Cc.

(1) By such a call, a Barker sequence will be generated in vector form
in the X-register.

(2) Processor asks user to
"SELECT SIZE FROM 2, 3, 4, 5, 7, 11, 13"

(3) User then enters size as an integer, one of the above. If he makes a
mistake and enters some other integer, he will get either the 7 seauence
or the 13 sequence, depending upon the size of the number he entered.
But he is not kicked off.

Programming Considerations

(1) Barker sequences are from a book by C.E. Cook and M. Bernfeld. See
reference [5]. The above numbhers represent all known sequences.

(2) Where more than one sequence is known (i.e. for 2 and 4), only one of
them is used.

(3) Code for generating sequences is contained in a FORTRAN subroutine
called BARKER.

(4) In order to conserve core storage, sequences are overlapped where
possible. The variable J gives the starting point index of the sequence

in the input data array.

(5) Sequences are given using +1 and -1 rather than just + and - as in paper.

F-26

19.

Complementary Sequence Generation

a. Command

A complementary sequence generation capability is available to the user
by a call to

'COMPLEMENTARY SEQUENCE'
b. Use

(1) User can generate a complementary sequence of lenoth 10, 26, or a
power of 2 up to 9, that is, the number up 512,

(2) After calling 'COMPLEMENTARY SEQUENCE', the user receives back the
message:

WSELECT SIZE 10, 26, or 0-9 (FOR POWER OF 2)"

(3) If he selects 10 or 26, a pre-stored sequence will be fed back into
the X-register with the appropriate dimension. If it is a power of 2,
then the sequence is generated by block recursion: A' = AR, B = AB.
See reference [6].

(4) Sequences form vectors of complex components.

c. Programming Considerations

(1) Actual sequence generation takes place in a FORTRAN subroutine called
COMPLM,

(2) If user makes a mistake and chooses some other integer than those
allowed, he will get either the 26 sequence for numbers areater than
10 or he will get the sequence for 2 to the power 1 for necative
values. This is due to the way the tests are made. These will not
be what he asked for, but he will not have his run terminated either.

(3) Real and imaginary parts of the 10 and 26 sequences are stored in real
arrays and assembled by using the FORTRAN function CMPLX.

(4) Sequence elements are made up of +1 and -1 rather than 1 and 0 as
given in reference [6].

20. Differential Pulse Code Modulation }

a. Commands

The Signal Processing Interpreter has four commands which make possible
the definition and use of a differential pulse code modulation and two
more commands for an associated receiver. These are:

'DEFINE DPCM GAIN'

'"DEFINE DPCM QUANTIZER' i
'"LIST DPCM'

'DPCM' i
'"DEFINE DPCM RCVR'

'DPCM RCVR'

b. Use

(1) In order to use the 'DPCM' command or the 'DPCM RCVR' command, the
user must first define them. He does so by using the other commands.
If no definition takes place, then the gain is assumed to be of magnitude 1
and the quantizer, if present, is assumed to be of an infinite no. of j
steps. (That is, output = input.)

(2) User calls 'DEFINE DPCM GAIN' in order to define or redefine gain.
Program then interrogates user with message "ENTER LOOP GAIN. REAL
NUMBER BETWEEN 0. AND 1." , to which the user responds. Note that
the default value is 1.

(3) The DPCM is still considered undefined until user makes first call to
'DEFINE DPCM QUANTIZER' . Then the following sequence takes place:

(a) Program interrogates user with message

“DEFINE QUANTIZER 1. ENTER NUMBER OF JUMP POINTS" '
(b) User responds with an integer between 1 and 20.

(c) Program then asks for jump points to be entered with message: j

“ENTER REAL NUMBER FOR JUMP "

(d) User enters jump points in response.

(e) Same sequence as (a), (b), (c), and (d) for Quantizer 2.

(f) DPCM is now defined.

(4) If user wants to see how DPCM js defined, he can use
'LIST DPCM'
This will print out gains and jump points for the two auantizers.

(5) To use 'DPCM RCVR', user must first call 'DEFINE DPCM RCVR' or he will
get the default case of gain = 1.
When called, it interrogates user as in (2) above. When answered,
DPCM RCVR is considered defined.

(6) Once defined, user need only call 'DPCM' or 'DPCM RCVR' to perform
desired operation.

(7) Redefinition may take place at any time by the user.

Programming Considerations

(1) Internal flags are set the first time either DPCM or DPCM RCVR are
defined. After that, they are assumed to be defined for the rest of
the run, though redefinition may take place.

(2) Quantizers are limited at present to at most 20 points. But more could
be easily added with simple changes to the program.

(3) When user tries to use DPCM or DPCM RCVR but has not defined them, he
gets a diagnostic message along with having program use default conditions.

(4) If a run bombs off before completion and execution must be restarted,
then redefinition must take place again. No provision is made for
storing DPCM values or those for DPCM RCVR from run to run. Each run
reinitializes all quantities involved. ‘

21. Quantization

a. Command

User has available a quantizer by simply calling
'"QUANTIZER' .

b. Use

(1) User puts his original vector in the X-register and calls upon
'QUANTIZER'. Processor immediately asks him to:

“ENTER INTEGER FOR QUANTIZER"

(2) As soon as user does so, his quantized vector is generated and entered
back into the X-register.

(3) This command provides a uniform quantization into the specified number
of magnitude levels with preservation of sign. Quantization step size
is equal to the maximum of the real and the imaginary parts in the
array divided by the number of levels.

c. Programming Considerations

(1) Processor makes use of a FORTRAN subroutine called QUANT to do
the quantization.
(2) The scaling factor used is calculated by checking al11 the components
of the vector for the largest real or imaginary component magnitude. '
Then the integer entered is divided by this maximum magnitude to make
up the scaling factor. ’
(3) Much of the code in QUANT involves getting the rounding process
correct. It must take place separately for real and imaginary parts
and also handle negative values. The real and imaginary parts are
rounded to the nearest integer.

22. Real and Imaginary Parts of Vectors

Commands to extract the real part or the imaginary part of a complex
vector have been introduced with the calls:

'REAL PART'

'IMAG PART'
Note, however, that 'IMAG PART' replaces the X vector by its imaginary
part but is stored then as a real vector. That is, the oricinal real com-

ponents are destroyed and the original imaginary components take their
place by moving. F-30

—a T &M e em M

e fadt o

e =

| T]
L L |

23.

Summation of Vector Components

Summation of the points of a vector is available through use of the
command 'SUM'., The resultant sum is placed in the only point of a one-
point vector in the X-register, which replaces the vector being summed.
Original vector is lost. This sum is a complex number,

LRER

T

C. Modifications to Existing Commands

1. Setting Dimension

a. Command
User may set vector dimension by using:
'SET X DIMENSION'
b. Use
(1) After giving command call, user receives back the message:
"ENTER DESIRED DIMENSION"
To answer this, he enters an integer between 1 and 512.
(2) If a mistake is made entering the integer, such as an alphabetic

character, then user is given diagnostic message:

WERROR MADE IN ENTERING DIMENSION. TRY AGAIN."

And sequence starts over again with message to:
"ENTER DESIRED DIMENSION"

(3) When dimension is properly entered, control returns to ask for next
command.

! c. Programming Considerations

(1) Code makes use of error conditions for a READ statement. These will
handle almost all errors except an entry with an @ sign, siagnifying
an 1108 control statement. This causes a drop in level and termination
of execution. E

(2) In order to use the error condition, it is necessary to define an error
exit label. One cannot just define it with a colon but must also in-
clude the label name among the non-executahle statements, under LOCAL
LABEL.

2-

Inputting Vectors By Points

a.

Several changes were made to facilitate the command 'INPUT VECTCR'.
The interrogation of the user was transferred entirely to the FORTRAN
subroutine called READV.

. Next READ error checks were built into the reading-in of the complex

data points. Errors caused by bad inputting of data will no longer
terminate a computer run but will simply cause a diagnostic message
to be printed out,

"ERROR TN ENTERING DATA POINT"

Then the user will be given another chance to enter his point correctly.
Most errors will be caught but not ones in which the user begins with

a master space, i.e. @ These will cause a drop in level, and user must
begin his run all over again.

. The effect of this is that noise on the telephone 1ink or user format

errors will now only result in an error message and a request to re-
enter the command or data point.

Programning note: it became necessary to read the subscript of the input
variable with the variable value II41 rather than the normal loop variable
value I which you would expect. This was due to a FORTRAN compiler error
discovered while trying to use I. Details as to what the error did will
not be coverec here. It suffices to say that the error was verified

by the System Programming Group and forwarded on to UNIVAC for correc-

tion via an SSFR by Ben Ermance.

e s Bl Sl o e . S o oo il Sl Lo ink M gl g

3.

4.

B

6.

Plotting Vectors

There are now two recognized calls to obtain plots of the X vector. Both
call upon the same code, and the second call was created only for the
convenience of the user. They are:

'PLOT COMPLEX VECTNR'
'PLOT'
See reference [1] for more information.

Constant Functions

The routine 'CONSTANT FUNCTION' was rewritten to allow a consistent con-
vention for input of complex values. Delimiter is now a corma, not a

blank space as before. If more details are needed, see paragraph B.6.c.(1).
The constant function merely fills the entire vector with a user-supplied
complex constant.

Printing Vectors

In the past a number of routines automatically produced printed listinas
of the present vector contents. This has been changed to a philosophy
of only doing what the user asks. MNow only two routines will result in
a printed listing:

'"PRINT VECTOR'
'PLOT' or 'PLOT COMPLEX VECTOR'

In addition, when using 'PRINT VECTOR', you no longer get back the
message saying "FINISHED PRINTING VECTOR." It was superfluous.

Other Minor Changes

a. Normalization of the FFT was by the square root of N. The CZT uses the
FFTSP subroutine, and thus its normalization is automatic. tormalization
is not now done within the CZT routine itself. Due to possible scalino
problems, this procedure will probably be changed in the near future.

b. The following routines were rewritten for more efficient coding but
have ro substantial changes to their basic logic:

F-34

}
l 1
i 1..
SUBROUTINE CHIRP
I SUBROUTINE CPLOT
PROCEDURE CZT i
l SUBROUTINE REV 4-
SUBROUTINE SEE J
B SUBROUTINE TONE
- One change of note was the addition of EQUIVALENCE statements to '
n SUBROUTINE CPLOT to eliminate the need for the FORTRAN functions REAL |
and AIMAG. This is far more efficient. 1
!
i |
11 l
i |
-n I:
i ’
i
-
il

F-35

L

Ty | VI e g, W

N

| D. Changes to SPIN3 Processor System

A number of changes were made to the SPIN3 procedure, and the major ones

will be mentioned below.

a.

b.

Previous input/output inconsistences due to the differences between
FORTRAN and ALGOL conventions have been eliminated. This mainly affected
the inputting of complex data points.

A1l vector indices, as far as the user is concerned, are row consistent.
They run from zero to N-1 and appear in inputting, listing and plotting
of vectors.

. Errors that previously occurred when entering commands will no lunger

bomb the user off the machine. READ error checks were built into the
system to handle these cases. This kind of error now causes the printing
out of an error diagnostic message

'COMMAND NOT RECOGNIZED"

and then a return to ask the user to enter his next command. One error
that still is not caught and corrected is when user includes the master
space, i.e. @, as part of the command. This will cause a drop in level
and termination of the run being executed.

. The output printing has been cleaned up to minimize unnecessary line feeds,

inefficient print statements and the printing of redundant information,
Controls have been put into the processor, via the MARGIN procedure of
the ALGOL processor, to delete all blank lires at the top and bottom of
the print pages. This was dore to allow plots to be continuous,as well
as listings. This change affects batch jobs only. Clearly cathode ray
scope terminals are not affected, but neither are the DCT 500 terminals,
unfortunately. This is due to line-feeds hard-wired into the DCT 500
hardware. The MARGIN call is

MARGIN ('M,6€,0,0 . ')

The M option is to readjust page length and top and bottom margins. The
66 is for a standard page, and the'two zeros represents lines to be skipped
at top and bottom of page. The string quotes are necessary since, in
reality, the operator MARGIN has only one argument, namely a control

string. And string must be terminated by a period. This takes place
F-36

T T N T T TN T I, e T e

pe_L S RIRESE = .

L, o R k)

w—

at the time all initialization for the processor is done. See reference [4]
for more details on use of MARGIN.

1
1
|

e. Much of the internal code has been rewritten for efficiency of execution
and compactness of format. Thus even though the capabilities of the
System have more than tripled, the number of punch cards has remained
roughly the same. A11 the DO loops of SPIN3 were redone in compact form
as were many IF statements, formats, etc. Procedures internal to SPIN3,
called DOW, PAD, UP, and COPY were greatly compacted.

f. An initialization process was introduced into the processor to allow a
variety of operations to be performed only once during the run to set up
the conditions and prepare for execution of the remaining parts. Prior
to this, every time a new command was input, the processor went back and
reloaded all its command tables, in an ALGOL procedure called ATAB. It
then went through an elaborate process involving Boolean logical operations
to perform a test for matching. ATAB has been eliminated now, the command
tables are loaded only once, the Boolean operations have been replaced by
a simple IF statement, and all initialization is now done only once. This
was done by putting much of the ATAB code into the SPIN3 processor itself,
by making all initialization the first executable code in the routine and
by always returning to points below this code. These changes improved
running times for the executable portion of the proaram by a factor of
between 4 and 5 times. Another change contributing to this great time
saving was terminating the table search as soon as a match was made. Pre-

viously the entire table was searched, even if recognition had already taken
place.

g. The basic flow of the processing of a command is now ¢lightly more complex
since the case of macro commands must be considered. (ommands that make
up a macro take a different path upon being recognized.

h. Extensive use was made of the formatted ALGOL WRITE statement. This allows
literals and variables to appear upon the same line of print. It also
allows multiple use of a format by different WRITE statements. These are
non-executable statements that are placed with the other such declaritive
statements at the front end of the procedure. A programming note: it is

|
t F-37 i
|

necessary to activate each format statement at its end with an activation
code that controls line feeds. Failure to include the activation rode
will have the effect of deleting the WRITE statement execution. In this
sense, the format statements are entirely different from their counter-
parts in FORTRAN. See reference [4] for more details.

In addition, a great many changes were made to the sections of the processor,
containing the code for the individual commands but these will not be
ccvered here since this was already done in Section B.

-

P

-l

=S TN D LR R R e T L T T R e v RO T.W

.‘.’_’
e el e il

‘n.—-—,

E. References

1. Speiser, J. M., Signal Processing Interpreter Preliminary Description
and User's Guide, NUC TN 1065, 25 June 1973,

2. Kruskal, J. B., Extremely Portable Random Number Generator, Communi-
cations of the ACM, Volume 12, Number 2, Feb. 1969, pp. 93-94,

3. Wood, B. R. and Speiser, J. M., Signal Processing Interpreter:
Additions and Modifications, NUC TN 1213, 17 October 1973.

4. UNIVAC 1108 Multi Processor System - ALGOL Programmers Reference,
UP-7544, 1967. i

5. Cook, C.E. and Bernfeld, M., Radar Signals, An Introduction to Theory
and Applications, Academic Press, 1967, p. 245,

6. Golay, M.J.E., Complementary Series, [.R.L. Transactions on Information
Theory, April 1961, pp. 82-87.

7. HP-35 Operating Manual, 00035-930n8, Hewlett Fackard.

F-39

