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NOTICES

This report is issued to provide a manual of gravity
correlation methods for the prediction of 1° x 1° mean gravity
ancmaly values for continental areas. It is intended 1or use by
organizations and individuals interested in the geophysical
accountability and prediction of gravity anomalies. Nothing
herein is to be construed as Defense Mapping Agency Doctrine.

This report is a dissertation submitted to the Graduate
Division of the University of Hawaii in partial fulfillment of
the reguirements for the degree of Doctor of Philosophy in
Geology and Geophysics.

This publication does not contain information or material of
a copyrighted nature, nor is a copyright pending on any portion

thereof'. Reprodvction in whole or part is permitted for any

purpose of the United States Government.
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PREFACE

The intent of this study is to establish an understanding of
geophysical gravity prediction. The study, however, is oriented
as much to applied as to theoretical aspects of gravity correlations.
The writer has endeavored throughout to provide a simple picture
of the central ideas underlying gravity correlation, prediction,
theory, and practice.

The first three sections provide an introduction and discussion
of some gravity anomaly principles of importance *o geophysical
gravity prediction. In this regard, no attempt is made to discuss
all of the ideas of George P. Woollard whose extensive work in
geophysical gravity analysis forms the backbone of gravity
correlations. Rather, a complete bibliography of previous work
is included. The remainder of the report is a comprehensive
exemination of gecphysical prediction methods and their

reliability.
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ABSTRACT

Mean gravity anomaly values which represent 1° x 1° surface
areas can be predicted on the continents by geophysical gravity
correlation methods whether or not measured gravity data exists
within those 1° x 1° areas. These methods take into consideraticn
the earth's structure, composition, and response to changes in
surficial mass distribution by means of observed or computed
correlations between gravity and other geophysical parameters within
geologie/tectonic provinces. Linear basic prediction functions,
used to describe and predict the relationships between gravity and
elevation, are shown to be a natursl consequence of the properties of
gravity reduction procedures and the observed behavior of gravity
anomglies within structurally homogenous regions. The effects of
local structural variations can be computed using simple attraction
formulas or derived from systematic observation of gravity anomaly
variations which characterize different types of local structures.
With little or no measured gravity data, geophysical grayity
predictions haeve an accuracy range of + 5 to + 20 milligals. With

mor: adequate amounts of measured data, accuracies of + 1 to + 2

miliigals can be achieved easily.
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1. INTRODICTION

1.1 The Need for Meen Gravity Anousaly Date aud the Nature of the

Problem in Gravity Prediction
The input datua required for applications of the integral

formulas of physical geodesy to compite gravimetric geoid
undulations, deflection of the vertical components, and similar
parameters includes a detailed globel representation of the earth's
gravity anomaly field. The same global representation may be

used to derive an earth gravity model, e.g., a spherical harmonic
expression of global gravity variations.

For both purposes, it is convenient to express the global
gravity anomaly field in terms of mean or average values which
represent surface areas of 1° x 1° in diuension. When needed,
mean gravity anomaly values representing larger sized surface
areas, e.g., 5° x 5°, 10° x 10°, can be obtained readily by
averaging the basic 1° x 1° "building blocks."

The 1° x 1° mean gravity ancmaly field also is useful for
geophysically analyzing semi-regional changes in gravity which
reflect the effects of all major topographic and geologic changes
esgociated with mass inequalities in the lithosphere. The 5° x 5°
and 10° x 10° average values can be used to study gross mass end
gecidal changes.

Global representations of the earth's geoid and gravity anomaly

field have been deduced from satellite ~rbital data considered

alone (Anderle, 1966; Guier and Newton, ' /65; Kohnlein, 1966;




Khan and Woollard, 1968) as well as in combination with surface
gravity data (Uotila, 1962; Kaula, 1963, 1966c, 1967; Khan, 1969,
1972; Beers, 1971). These global gravity representations, however,
provide only very generalized gravity anomaly expressions
(equivalent to mean ancmalies for 15° x 15° or larger areas) and,
hence, have Iimited geodetic and gecphysical application.

The best way to obtain 1° x 1° mean gravity anomaly values
is by using the gravity measurements which exist within the 1° x 21°
areas together with conventirnal, statistical, or geornysical
averaging techniques. This can be dcne only in those portions
of the world vhere gravity surveys have provided a reascnably
dense and well distributed network of gravity measur=ments.

A conslderable body of measured gravity data is now available--
the DOD Gravity Library, for example, holds more than te. million
measurements. Most of the continental data is based on the same
gravity standard and datum as a recult of the international
gravity standardization program initiated in 1948 (Woollard 1950;
Woollard and Rose, 1963).

However, measured gravity coverajge is by no means complete.
There are many large recions on t.e conti:ents where gravity
measurements are lacking or available only in sparse quantities.

In the oceans, the situation is even worse Lecause of the great
areas involved, the fact that few ships are equipped with
gravimeters, and the relatively few years in which it has been

possible to have accurate navigation at sea as well as reliable

gyrostablized shipboard gravimetric systems.
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Obviously, 1° x 1° mean gravity anomalies cannot be obtained
by averaging gravity measurements for the many large regions of
the earth's surface where an insufficient number of gravity
measurements are available. Some other approach must be used to
obtain the best possible estimate of average gravity anomely values
for such regfons.

Statistical extrapolations and the methods of satellive
geodesy can be used to obtain approximate mean values for the
gravimetrically unsurveyed areas. Since these methods have been
discussed by other authors (see, for example, Kaula, 1966a, 1966b;
Rapp, 1966) they will not be reviewed here.

Geophysical prediction using gravity correlation methods
provides an attractive alternative to the statistical-satellite
methods. With the geophysicel methods, 1° x 1° mean gravity
anomalies can be determined for any continental area whether or
not gravity measurements have been made in that area. More
specifically, the geophysical methods can improve predictions made
by other methods where some gravity measurements are available,
and can provide usable evaluated predictions where no gravity
measurements exist. A unique feature of the geophysical approach
is that the actual geological and geophysical causes of gravity
anomalies are taken into account.

Th2 fundamental premise of the geophysical methods is that

gravity anomalies can be predicted using correlations with some

combinations of earth parameter values whicn either are known or can
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be readily determined. Parameters such as regional surface
elevation and age of the crust, for example, are related to
regional changes in gravity anomaly values. Local changes in
gravity anomalies are related to local changes in geology and
topography. Both types of relationships can be established
anelytically ‘or empirically and combined to predict gravity
anomalies which have considerable geodetic value.

The geophysicel prgdiction methods are based on the concept
that the lithosphere, on a regional basis, is inherently week and
in isostatic equilibrium with the underlying aesthenospnere.
However, these methods do not assume that zero isostatic and free
air gravity anomalies are associated with equilibrium conditions.
Indeed, Woollard and Strange (1966) have shown that zero free
air and isostatic anomalies are not to be expected, given a crust
of variable density and thickness, even under conditions of
perfect isostatic equilibrium. The recognition of these
constraints, whicn are a consequence of the proximity effect
obvicus in the Newtcnian expression for gravitational attraction,
makes it necessary to consider lithospheric structure and
composition either directly, as revealed by seismic refraction
and reflection deep soundings, or indirectly in the absence of
such data through standardized relations observed between

averaged gravity and regional elevation values in different

continental areas.
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It must be recognized that the problem of mean gravity
anomaly prediction is not a simple one. The complex structure
and composition of the lithosphere which exists today has evolved
over a time span of a billion years or longer. Changing patterns
and locations of orogenic events have resulted in the creation of a
nmore heterogeneous mass distribution rather than s more homogeneous
one. Consider, for example, the effects of lithospheric subduction
and obduction at crustal plate boundaries. The resulting
mechanical displacements in plate mass, the selective melting of
mobile components in a deeper, hotter environment with Llhe
subsequent, intrusion, volcanism, thermal and pressure metamorphism
have led to uplift in the orogenic belts. Many such belts have
een eroded away and then buried under the detrital material of
vounger orogenic belts. Yet, the root effects of the older belts
rsist as mass anomalies in the crust. Consider glso that the
spreading centers have shifted in lpcation, have been dispiaced
along major transform faults, and even have been overridden by
migrating continental blocks, thereby generating abnormal crustal
and gravity relations.
in addition to the above effects, there have been prolonged
periods of worldwide volcanic activity (for example, during
Triassic-Jurassic time), periods of worldwide continental flooding
by the oceans (for >xample, during Cretacious time), and periocs
of extensive worldwide glaciation and de-glaciation. In each

case, the resulting changes in surface mass distribution have

resulted in a differential vertical displacemert of the
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lithcsphere and its boundary witi respect to the underlying .

aesthenosphere. The earth's crust does adjust for these )
changes in mass distribution through the isostatic mechanism. Iﬁ
Such an adjustment, subsequent to the removal of the Pleistocene

ice caps in Eurupe and North America, can be observed in even the :
. short pefiod.bf a decade by the rising of Fenno-Scandenavia and
eastern Canada as measured by repeated levelling. There is, thus, f
a time lag between changes in surface mass distributions and the ' {

achievement of isostatic equilibrium.

The effects of the time lag are also evident in the case of

the Rocky Mountains. Although the Rockies were base levelled in

Eocene to Miocene time, 17-L40 million years vefore present time
(MYBP), they now stand 6000 feet or more above the surrounding '
terrane. The much older Appalachian Mountains show remnant |
peneplains of at least two such cycles of base levelling and
rejuvenation caused by the time lag in the isostatic adjustment
cycle.

The mechanism involved in isostatic adjustment is plastic ’
flow and viscous creep. This process is much slower than surface
erosion. Furthermore, isostatic adjustment involves total crustal
mass movement and momentum and not just surficial mass removal
and transfer as with surfece erosion.

The combination of the earth responding differentially at
its surface to internal dynamic forces, with the attendant tectonic

and compositional changes in its outer layer, and adjusting

isostatically (but with an out of phase time lag) for changes in




surficial mass distribution causes isostatic equilibrium to be
only en average condition for the earth as a whole. Isostatic
equilibrium, thus, is not realized on a semi-continental or even
continental sized basis, and certainiy not on a 1° x 1° sized basis.
Even where there is local isostatic equilibrium, it does not follow
that there will be zero free &air and isostatic gravity ancmalies.

Because of the above considerations, statistical approaches
to the prediction of gravity on a global basis do not have general
applicability. Rather, it has been necessary to use empirical
relations determined for application to specific regions. These
relations, in effect, take into account the complexity of the
underlying lithospheric structure and composition as well as the
geologic history of regions comprising the domains in which a
given empirical relation has general application. The present
study, therefore, incorporates a tacit recognition of the
complexities of lithospheric structure, composition, and response
to changes in surficial mass distribution. It is evident that
all these factors must be considered if gravity is to be predicted
with any degree of reliability.

Included in the present study are: (1) a review of the
geophysical methods which have proven to be the most effective in
predicting gravity aromaly values; (2) the writer's analysis as

to why these methods are effective; and (3) the writer's contributions

towards making these methods more reliatle and exact.




Some recent studies have suggested that a combined statistical--
geophysical approach to gravity prediction is highly desirable (Wilcox,
1971) especially if a single "best" prediction method can be developed
(Lebart, 1972). However, because of the complexities of earth
structure and geologic history, it is quite unlikely that a single
"best" predict;on method really exists. Indeed, there are a number
of rather different geophysical prediction methods, each of whicn
vorks well in some situations, poorly in others. Thus, it seems better
to inject statisticil rigor into each of the geophysical methods.

This has been done insofar as possible.

The prediction of mean gravity anomaly values for areas smaller
than 1° x 1°, e.g., 1' x 1', 5' x 5', is not considered in this study.
Gecphysical prediction of mean values for such small sized areas, in
general, cannot be justified in terms of increased precision for the
1° x 1° values obtained as averages of the smaller sized means.
Prediction of the smaller sized means, per se, pre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>