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NOTICES 

This report is issued to provide a manual of gravity- 

correlation methods for the prediction of 1° x 1° mean gravity 

anomaly values for continental areas. It is intended ror use by 

organizations and individuals interested in the geophysical 

accountability and prediction of gravity anomalies. Nothing 

herein is to be construed as Defense Mapping Agency Doctrine. 

This report is a dissertation submitted to the Graduate 

Division of the University of Hawaii in partial fulfillment of 

the requirements for the degree of Doctor of Philosophy in 

Geology and Geophysics. 

This publication does not contain information or material of 

a copyrighted nature, nor is a copyright pending on any portion 

thereof. Reprodrction in whole or part is permitted for any 

purpose of the United States Government. 
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PREFACE 

The intent of this study is to establish an understanding of 

geophysical gravity prediction. The study, however, is oriented 

as much to applied as to theoretical aspects of gravity correlations, 

The writer has endeavored throughout to provide a simple picture 

of the central ideas underlying gravity correlation, prediction, 

theory, and practice, 

The first three sections provide an introduction and discussion 

of some gravity anomaly principles of importance to geophysical 

gravity prediction. In this regard, no attempt is made to discuss 

all of the ideas of George P. Voollard whose extensive work in 

geophysical gravity analysis forms the backbone of gravity 

correlations. Rather, a complete bibliography of previous work 

is included. The remainder of the report is a comprehensive 

examination of geophysical prediction methods and their 

reliability. 
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ABSTRACT 

Mean gravity anomaly values which represent 1° x 1° surface 

areas can be predicted on the continents by geophysical gravity 

correlation methods whether or not measured gravity data exists 

within those 1° x 1° areas. These methods take into consideration 

the earth's structure, composition, and response to changes in 

surficial mass distribution by means of observed or computed 

correlations between gravity and other geophysical parameters within 

geologic/tectonic provinces. Linear basic prediction functions, 

used to describe and predict the relationships between gravity and 

elevation, are shown to be a natural consequence of the properties of 

gravity reduction procedures and the observed behavior of gravity 

anomalies within structurally homogenous regions. The effects of 

local structural variations can be computed using simple attraction 

formulas or derived from systematic observation of gravity anomaly 

variations which characterize different types of local structures. 

With little or no measured gravity data, geophysical gravity 

predictions have an accuracy range of +5 to + 20 milligals. With 

mor;; adequate amounts of measured data, accuracies of + 1 to + 2 

milligals can be achieved easily. 
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1. INTRODUCTION 

1.1 The Need for Mean Gravity Anomaly Pat p. and the Nature of the 

Problem in Gravity Prediction 

The input data required for applications of the integral 

formulas of physical geodesy to compute gravimetric geoid 

undulations, deflection of the vertical components, and similar 

parameters includes a detailed global representation of the earth's 

gravity anomaly field. The same global representation may be 

used to derive an earth gravity model, e.g., a spherical harmonic 

exprossion of global gravity variations. 

For both purposes, it is convenient to express the global 

gravity anomaly field in terms of mean or average values which 

represent surface areas of 1° x 1° in dimension. When needed, 

mean gravity anomaly values representing larger sized surface 

a-eas, e.g., 5° x 5°, 10° x 10°, can be obtained readily by 

averaging the basic 1° x 1° "building blocks." 

The 1° x 1°" mean gravity anomaly field also is useful for 

geophysically analyzing semi-regional changes in gravity which 

reflect the effects of all major topographic and geologic changes 

associated with mass inequalities in the lithosphere. The 5° x 5° 

and 10° x 10° average values can be used to study gross mass and 

geoidal changes. 

Global representations of the earth's geoid and gravity anomaly 

field have been deduced from satellite orbital data considered 

alone (Anderle, 1966; Guier and Newton, 1 65; Köhnlein, 1966; 

*i* 
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Khan and Woollard, I968) as well as in combination with surface 

gravity data (Uotila, 1962; Kaula, 1963, 1966c, 196?; Khan, 1969, 

1972; Beers, 1971)• These global gravity representations, however, 

provide only very generalized gravity anomaly expressions 

(equivalent to mean anomalies for 15° x 15° or larger areas) and, 

hence, have l'imited geodetic and geophysical application. 

The best way to obtain 1° x 1° mean gravity anomaly values 

is by using the gravity measurements which exist within the 1° x 1° 

areas together with conventional, statistical, or geopnysical 

averaging techniques. This can be done only in x,ho3e portions 

of the world where gravity surveys have provided a reasonably 

dense and we.ll distributed network of gravity measurements. 

A considerable body of measured gravity data is now available— 

the DOD Gravity Library, for example, holds more than te'. million 

measurements.  Most of the continental data is based on the same 

gravity standard and datum as a result of the international 

gravity standardization program initiated in 19^8 (Woollard 1950; 

Woollard and Rose, 1963)■ 

However, measured gravity coverage is by no means complete. 

There are many large regions on t.ie continents where gravity 

measurements are lacking or available only in sparse quantities. 

In the oceans, the situation is even worse because of the great 

areas involved, the fact that few ships are equipped with 

gravimeters, and the relatively few years in which it has been 

possible to have accurate navigation at sea as well as reliable 

gyrostablized shipboard gravimetric systems. 

OHft ma 
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Obviously, 1° x 1° mean gravity anomalies cannot be obtained 

by averaging gravity measurements for the many large regions of 

the earth's surface where an insufficient number of gravity 

measurements are available. Some other approach must be used to 

obtain the best possible estimate of average gravity anomaly values 

for such regi ons. 

Statistical extrapolations and the methods of satellite 

geodesy can be used to obtain approximate mean values for the 

gravimetrically unsurveyed areas. Since these methods have been 

discussed by other authors (see, for example, Kaula, 1966a, 1966b; 

Rapp, 1966) they will not be reviewed here. 

Geophysical prediction using gravity correlation methods 

provides an attractive alternative to the statistical-satellite 

methods. With the geophysical methods, 1° x 1° mean gravity 

anomalies can be determined for any continental area whether or 

not gravity measurements have been made in that area. More 

specifically, the geophysical methods can improve predictions made 

by other methods where some gravity measurements are available, 

and can provide usable evaluated predictions where no gravity 

measurements exist. A unique feature of the geophysical approach 

is that the actual geological and geophysical causes of gravity 

anomalies are taken into account. 

The fundamental premise of the geophysical methods is that 

gravity anomalies can be predicted using correlations with some 

combinations of earth parameter values whicn either are known or can 

^La» 



be readily determined. Parameters such as regional surface 

elevation and age of the crust, for example, are related to 

regional changes in gravity anomaly values. Local changes in 

gravity anomalies are related to local changes in geology and 

topography. Both types of relationships can be established 

analytically 'or empirically and combined to predict gravity 

anomalies which have considerable geodetic value. 

The geophysical prediction methods are based on the concept 

that the lithosphere, on a regional basis, is inherently weak and 

in isostatic equilibrium with the underlying aesthenosphere. 

However, these methods do not assume that zero isostatic and free 

air gravity anomalies are associated with equilibrium conditions. 

Indeed, Woollard and Strange (1966) have shown that zero free 

air and isostatic anomalies are not to be expected, given a crust 

cf variable density and thickness, even under conditions of 

perfect isostatic equilibrium. The recognition of these 

constraints, which are a consequence of the proximity effect 

obvious in the Newtonian expression for gravitational attraction, 

makes it necessary to consider lithospheric structure and 

composition either directly, as revealed by seismic refraction 

and reflection deep soundings, or indirectly in the absence of 

such data through standardized relations observed between 

averaged gravity and regional elevation values in different 

continental areas. 
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It must be recognized that the problem of mean gravity- 

anomaly prediction is not a simple one. The complex structure 

and composition of the lithosphere which exists today has evolved 

over a time span of a billion years or longer. Changing patterns 

and locations of orogenic events have resulted in the creation of a 

more heterogeneous mass distribution rather than a more homogeneous 

one. Consider, for example, the effects of lithospheric subduction 

and obduction at crustal plate boundaries. The resulting 

mechanical displacements in plate mass, the selective melting of 

mobile components in a deeper, hotter environment with the 

subsequent, intrusion, volcanism, thermal and pressure metamorphism 

have led to uplift in the orogenic belts. Many such belts have 

een eroded away and then buried under the detrital material of 

younger orogenic belts. Yet, the root effects of the older belts 

rsist as mass anomalies in the crust. Consider also that the 

spreading centers have shifted in location, have been displaced 

along major transform faultss and even have been overridden by 

migrating continental blocks, thereby generating abnormal crustal 

and gravity relations. 

In addition to the above effects, there have been prolonged 

periods of worldwide volcanic activity (for example, during 

Triassic-Jurassic time), periods of worldwide continental flooding 

by the oceans (for example, during Cretacious time), and periods 

of extensive worldwide glaciation and de-glaciation. In each 

case, the resulting changes in surface mass distribution have 

resulted in a differential vertical displacement of the 

I 
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lithcsphere and its boundary with respect to the underlying 

aesthenosphere. The earth's crust does adjust for these 

changes in mass distribution through the isostatic mechanism. 

Such an adjustment, subsequent to the removal of the Pleistocene 

ice caps in Europe and North America, can be observed in even the 

short period of a decade by the rising of Fenno-Scandanavia and 

eastern Canada as measured by repeated levelling. There is, thus, 

a time lag between changes in surface mass distributions and the 

achievement of isostatic equilibrium. 

The effects of the time lag are also evident in the case of 

the Rocky Mountains. Although the Rockies were base levelled in 

Eocene to Miocene time, 17-^0 million years before present time 

(MYBP), they now stand 6000 feet or more above the surrounding 

terrane. The much older Appalachian Mountains show remnant 

peneplains of at least two such cycles of base levelling and 

rejuvenation caused by the time lag in the ioostatic adjustment 

cycle. 

The mechanism involved in isostatic adjustment is plastic 

flow and viscous creep. This process is much slower than surface 

erosion. Furthermore, isostatic adjustment involves total crustal 

mass movement and momentum and not just surficial mass removal 

and transfer as with surface erosion. 

The combination of the earth responding differentially at 

its surface to internal dynamic forces, with the attendant tectonic 

and compositional changes in its outer layer, and adjusting 

isostatically (but with an out of phase time lag) for changes in 

mCto m -'—       -    - ^MM——g^ 
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surficial mass distribution causes isostatic equilibrium to be 

only an average condition for the earth as a whole. Isostatic 

equilibrium, thus, is not realized on a semi-continental or even 

continental sized basis, and certainly not on a 1° x 1° sized basis. 

Even where there is local isostatic equilibrium, it does not follow 

that t'iere will be zero free air and isostatic gravity anomalies. 

Because of the above considerations, statistical approaches 

to the prediction of gravity on a global basis do not have general 

applicability. Rather, it has been necessary to use empirical 

relations determined for application to specific regions. These 

relations, in effect, take into account the complexity of the 

underlying lithospheric structure and composition as well as the 

geologic history of regions comprising the domains in which a 

given empirical relation has general application. The present 

study, therefore, incorporates a tacit recognition of the 

complexities of lithospheric structure, composition, and response 

to changes in surficial mass distribution. It is evident that 

all these factors must be considered if gravity is to be predicted 

with any degree of reliability. 

Included in the present study are:  (l) a review of the 

geophysical methods which have proven to be the most effective in 

predicting gravity anomaly values; (2) the writer's analysis as 

to why these methods are effective; and (3) the writer's contributions 

towards making these methods more reliable and exact. 



Some recent studies have suggested that a combined statistical— 

geophysical approach to gravity prediction is highly desirable (Wilcox, 

1971) especially if a single "best" prediction method can be developed 

(Lebart, 1972). However, because of the complexities of earth 

structure and geologic history, it is quite unlikely that a single 

"best" prediction method really exists.  Indeed, there are a number 

of rather different geophysical prediction methods, each of which 

works well in some situations, poorly in others. Thus, it seems better 

to inject statistical rigor into each of the geophysical methods. 

This has been done insofar as possible. 

The prediction of mean gravity anomaly values for areas smaller 

than 1° x 1°, e.g., 1' x 1', 5' x 5'» is not considered in this study. 

Geophysical prediction of mean values for such small sized areas, in 

general, cannot be justified in terms of increased precision for the 

1° x 1° values obtained as averages of the smaller sized means. 

Prediction of the smaller sized means, per se, presents an entirely 

different and more complex set of problems than does prediction of 

1° x 1° means. The smaller sized means, for example, are extremely 

sensitive to very local topographic and geologic changes. Further, 

these changes seldom conform to any *"ixed grid system such as is 

generally used in 1° x 1° prediction. Thus, each prediction for a 

small sized area has to be handled on an individual basis—a time 

consuming and costly process. Geophysical predictions certainly can 

be and are made for the small sized areas, when required, but the 

methods used are other than those contained in this study. 

^iate wm 
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1.2 Gravity Correlations 

Gravity correlations is the study and application of numerical 

interrelationships (i.e., correlations) between variations in the 

gravity anomaly field Aud corresponding variations in geological, 

crustal, and upper mantle structure, regional and local topography, 

and various other types of related geophysical data. Examples of 

well knc_vn gravity correlations are (l) the inverse relationship 

between regional elevation and regional Bouguer gravity anomalies, 

and (2) the association of local minimums in the gravity anomaly 

field with certain types of sedimentary basins. 

Geophysical correlations, a term having a somewhat broader 

meaning than gravity conelations, is the study and application of 

numerical interrelationships between any set of geophysical parameters, 

Gravity correlations draw upon many branches of earth science. 

Geology provides data pertaining to local geologic structure, rock 

density, and geotectonics. Geodesy provides methods for gravity 

reduction and analysis plus the theories of isostasy. Celestial 

mechanics, applied to artificial earth satellites, provides an 

indication of global scale density anomalies in the upper portions of 

the earth. Seismology provides knowledge of crustal and upper mantle 

structure. Cartography provides topographic maps giving elevation 

data. Magnetic anomaly data assists in the interpretation of geologic 

and crustal structure. Analysis of heat flow data provides additional 

insight into the intricacies of crustal and upper mantle structure. 

Although the term, gravity correlations, is relatively new, 

gravity correlations relationships have been studied and used for 
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many years. Geologists, for example, have used variations in the 

gravity anomaly field to assist in the interpretation of geologic 

structure. Similarly, geophysicists have used the gravity anomaly 

field as a tool in the interpretation of crustal and upper mantle 

structure. The application of gravity correlations discussed in this 

study are the reverse of these "classical" uses. Here, known geologic 

and crustal structure is used to predict the gravity anomaly field. 

1.3 Gravity Prediction 

The term, gravity prediction, has been used in the literature 

to denote any process which enables the estimation of a gravity anomaly 

value (l) for any point (i.e., site) at which the acceleration of 

gravity has not been measured, or (2) which represents the average 

gravity anomaly value within a given surface area—whether or not 

the acceleration of gravity has been measured at points within 

that surface area. Thus, gravity prediction may involve interpolation, 

extrapolation, or both. 

As used in this study, gravity prediction refers to the 

application of gravity correlation methods to estimate 1° x 1° mean 

gravity anomaly values for continental regions of the earth's surface, 

especially those regions which contain a few or no gravity measurements. 

Gravity prediction using gravity correlations generally involves 

(l) an analysis of the numerical interrelationships between the gravity 

anomaly field and geological, geophysical, and topographic data within 

regions of the earth's surface where variations in the gravity anomaly 

field are well defined by gravity observations, and (2) application 
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of appropriate correlations determined by (l) to predict gravity anomaly 

values for 1° x 1° areas within regions of the earth's surface where 

gravity measurements are lacking or available only in sparse 

quantities. Geologic, geophysical, and topographic data is generally 

available in sufficient quality and quantity to support gravity 

predictions using gravity correlations in most continental areas. 

Gravity correlation technology has advanced steadily over the 

past few years, and gravity predictions now can be made for any 

continental 1° x 1° area. Remarkably accurate results are obtained 

in many instances, although uniformly reliable predictions cannot be 

made in all situations where gravity measurements are lacking. In 

the latter case, however, gravity correlation produced 1° x 1° mean 

anomaly predictions always provide a usable approximation of the true 

value—probably the best estimate of the 1° x 1° mean gravity anomaly 

field for regions in which gravity measurements are not available. 

l.k    Gravity Interpolation 

Gravity interpolation is any process which enables the estimation 

of gravity anomaly values for points or areas located between jr 

among sites of gravity observations. Gravity interpolation by gravity 

correlations is most often used to densify a field of existing gravity 

anomaly values during a gravity prediction operation. 

i 

i 
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2.  HISTORICAL BACKGROUND 

The basic principles of gravity correlations have been used for 

many years in geophysical exploration studies and in the interpretation 

of geologic structure. Paving the way for later gravity prediction 
t 

applications was the work of George P. Woollard who, in the 

I93O-I96O time period, published many careful and extensive 

analyses of the geological and geophysical accountability of gravity 

anomaly variations. 

The specific application of gravity correlations to gravity 

prediction is a comparatively recent development. Pioneering 

the geophysical gravity prediction movement was William P. Durbin, Jr. 

(I96la, 196lb, 1966) who first suggested the possibility of 

estimating gravity anomaly values using gravity—geology 

correlations, then demonstrated the feasibility of the idea by 

constructing gravity anomaly maps based upon geologic evidence 

for the south central United States. 

The earliest known application of geologic data to evaluate 

and predict 1° x 1° mean gravity anomalies is the work of 

Pothermel et al. (1963). 

Geophysical data was added to geologic data as a basis for 

gravity prediction by George P. Woollard (1962) who published 

a document which has come to be regarded as a fundamental gravity 

correlations reference manual.  Since then, Woollard and his 

associates at the University of Hawaii have published several 

i 
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additional works giving further development to gravity correlations 

as a method of gravity analysis, interpolation, and prediction 

(Strange and Woollard, 196Ua; Woollard, 1966, 1968b, 1968c, 1969a). 

Practical methods for prediction of 1° x 1° mean gravity 

anomalies using gravity correlations first appeared in I96U. At 

the USAF Aeronautical Chart & Information Center (ACIC), now the 

Defense Mapping Agency Aerospace Center (DMAAC), Rothermel (196M 

developed a number of methods including the original version of 

the GRADE interpolation and prediction technique. At the University 

of Hawaii, Strange and Woollard (lS>6U"b) proposed a method which 

was to be the forerunner of the NOGAP prediction technique and 

demonstrated its reliability in the United States. A modified 

version ot the technique (GAPFREE) was published two years later 

(Woollard and Strange, 1966). The original version cf the GAIN 

interpolation method was described by Strange and Woollard (196^) 

and applied in Wyoming with good success. 

The NOGAP prediction method has been applied with modifications 

by Woollard and his associates to geophysically predict and 

evaluate mean gravity anomalies for East Asia (Woollard and Fan, 

1967), Mexico (Woollard, 1968a), and Europe (Woollard, 1969b). 

Much of the gravity correlation research and mean anomaly 

prediction work of the University of Hawaii has been done under 

contract to ACIC and DMAAC. 

In 1966, a gravity correlations working group was established 

at ACIC. This group under the direction of the writer further 

developed and refined the geophysical prediction methods, and 

4 
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began a program to use these methods to systematically predict 

1° x 1° mean gravity anomalies for all continental and oceanic 

areas which contain few or no gravity measurements. The group 

also investigated the use of geophysical methods for gravity 

interpolation (Wilcox, 1967) and for prediction of mean anomalies 

to represent large sized surface areas (Wilcox, 1966). Other 

major contributions of the group include the standardization of 

geophysical gravity prediction techniques (Wilcox, 1968), the 

development of the EXGAP prediction procedure by L. E. Wilcox in 

1968 (revised in 1973), and the development of the UNGAP method 

by J. T. Voss in 1972. 

By 1971, the ACIC group had completed predictions for the 

entire Eurasian continent. This work was published in the form 

>f a Bouguer gravity anomaly map (USAF ACIC, 1971a; Wilcox et al. , 

1972) and a geoid (Durbin et al., 1972). The mean anomalies 

were also made available in the form of a mean gravity anomalj 

tabulation (USAF ACIC, 1971b). Predictions for all of Africu 

and South America were completed in 1973 and published in the 

form of Bouguer anomaly maps (Slettene et al., 1973; Breville 

at al., 1973). Work is continuing at DMAAC to complete 1° x 1° 

mean anomaJy predictions for other continental areas and, in 

conjunction with the University of Hawaii, to develop geophysical 

prediction techniques suitable for application in oceanic areas 

(Woollard and Daugherty, 1970, 1973; Khan et al., 1971; Woollard 

and Khan, 1972; Daugherty, 1973; Woollard, 197M • 

A mmm mm 



15 

A multiple regression approach, in which several geophysical 

correlations are combined to predict gravity anomalies, has been 

tested successfully in the United States, Western Europe, and 

Australia by Vincent and Strange (1970). 

Free air anomaly maps compiled using observed and geophysically 

predicted anomalies have been published by Strange (1972). 

It is especially gratifying to note that in the past two 

or three years, there has been a general birth of interest among 

geodesists in the geophysical accountability of gravity variations. 

In fact, no less than cne-third of the sessions at the International 

Symposium on Earth Gravity Models, held at St. Louis on August l6-l8, 

1972, were devoted to geophysical problems. A portion of the new 

interest in "geophysical geodesy" has been generated, no doubt, 

by the new theory of plate tectonics—which has had an overall 

unifying effect on the earth sciences. However, part of the 

interest must be attributed to the gravity correlation pioneers 

of the early 1960's who paved the way for making geophysics 

an integral part of geodesy. 

■ ■  ill 
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3.  THEORETICAL BACKGROUND 

3.1 Observed Gravity 

The acceleration of gravity at any discrete point on the 

physical surface of the earth is generated by all of the masses 

contained within the real earth. The value for the acceleration 

of gravity at any surface point, obtained by suitably adjusted and 

corrected gravity measurements, is known as "observed gravity," g . 
o 

For the purposes of gravity prediction, observed gravity, as 

obtained by modern land gravity measurements, may be considered 

to be error free. 

The existence of mountains, ocean basins, and other 

topographic structures is direct evidence that the masses within 

the earth are irregularly distributed at the surface, and 

interpretations of seismic data have provided indirect evidence of 

the existence of irregularities in mass distribution within the 

earth's interior. These mass distribution irregularities must 

be the source of the irregular variations which are found in the 

earth's observed gravity field. 

3•2 Normal Gravity 

Normal gravity is a computed value which refers to the surface 

of the normal earth, i.e., the normal ellipsoid chosen to represent 

the earth. Values of normal gravity vary as a regular function of 

latitude only. The overall magnitude of the normal gravity field 

depends upon constants which express the size, shape, and rate of 

rotation of the normal ellipsoid. 

**LI 
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The normal gravity field represents the attraction of an 

idealized fluid earth whose masses are assumed to be in complete 

equilibrium and symmetrically distributed with respect to the 

rotation axis and equator. The mass of the normal earth is, 

by definition, equal to the mass of the real earth, Such a model 

is geophysically reasonable and will generate the regular normal 

gravity field. An exact structure-density model of the normal 

earth is of no great interest either to geodesy or geophysics 

and, in fact, an exact geophysically reasonable model of the 

normal earth has never been derived. 

3.3 Gravity Anomaly 

3.3.1 Geodetic Definition 

A gravity anomaly is the difference between the 

observed gravity and normal gravity at a given location.  In 

classical geodetic applications, the point of comparison is the 

point on the geoid directly below the point where gravity is 

observed. The method used to reduce the observed value of 

gravity to an equivalent value at sea level (on the geoid) 

determines the type of gravity anomaly obtained. 

Ag = (go + <5gQ) - Y (3.3-1) 

where 

Ag = gravity anomaly 

g = observed gravity on the physical surface of the earth 

at elevation h = h 
o 

h = the orthometric height above sea level 

*** '       ■       ■ ——■■ 
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Y = normal gravity computed on the ellipsoid directly below 

the point at which gravity is observed 

6g = reduction applied to gravity observed at elevation 

h = h , to obtain an equivalent value at sea level, 
o 

h = 0 

N'ote that observed gravity is reduced to a point on 

the geoid and normal gravit" is computed at a point on the 

ellipsoid. In general, tt>  ■ two points do not coincide and this 

fact is of some imports   co geodesy. However, for geophysical 

analysis purposes, the point cf comparison for both quantities is 

assumed to be located on the geoid. 

Application of the reduction, 6g , actually accomplishes 

two physical operations by the computation:  (l) all earth mass 

above sea level is either moved inside of the geoid (e.g., free-air 

reduction, isostatic reduction) or removed entirely (e.g., Bouguer 

reduction), and (2) the observed gravity value is lowered from the 

physical surface to sea level. The physical significance cf this 

two step operation is that no mass remains outside of the point 

of comparison after 6g is applied, i.e., there is no gravitational 

component directed upward. 

3-3.2 Geophysical Definition 

Being the difference between the observed and normal 

values of gravity, a gravity anomaly must reflect the difference 

between the true and normal mass distributions within the earth. 

Ag = MT - Mg (3.3-2) 
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where 

Hp = the anomalous mass distribution within the real earth 

Mj, = the regular mass distribution within the normal earth 

When the regular normal gravity field is subtracted 

from the irregular observed gravity field, the remainder—the 

gravity anomalies—are ecrrr/lially just the irregularities in the 

observed gravity field caused by the anomalous mass distribution 

within the real earth. Application of the reduction, 6g , in 
o 

computing the gravity anomalies superimposes certain additional 

effects onto those caused by the mass distribution irregularities. 

One effect of the Bouguer reduction, for example, is that the 

irregularities in observed gravity caused by local topographic 

variations are filtered out. The nature of the superimposed 

effects depends upor the properties of the type of reduction used. 

3.^ Global, Regional, and Local Gravity Anomaly Variations 

Analysis of the gravity anomaly field with respect to its 

regional and residual components, a technique used extensively in 

geophysical exploration (geophysical prospecting) work, has proven 

to be very convenient for gravity correlation studies and, thus, 

has been adopted in the NOGAP and other geophysical gravity anomaly 

prediction methods. Because of a basic difference in definition, 

however, the term "local" replaces the term "residual" for gravity 

prediction application. 

The purpose of regional-local (or regional-residual) 

separation always is to isolate elements of the gravity anomaly 

field which can be interpreted with respect to particular geological 

■ <■*    -i m —*ma*— 
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or geophysical elements.  In the case of geophysical exploration 

applications, only the residual gravity anomaly variations are of 

practical interest. Both components are important for geophysical 

gravity prediction. 

The many methods of regional-residual separation which have 

been proposed'for geophysical prospecting purposes (see, for example, 

Agocs, 1951i Nettleton, 195**; and Simpson, 195*0 all involve a 

smoothing of the gravity anomaly field according to some mathematical 

or graphical criteria. The smoothed field is interpreted as the 

regional component and the difference (i.e., residual) between the 

gravity anomaly field and the smoothed field is taken as the 

residual component. The degree of smoothing applied varies 

depending upon the criteria chosen and, as a result, the process 

of regional-residual separation is highly subjective. 

For gravity prediction purposes, regional gravity anomaly 

variations are defined to be that portion of the gravity anomaly 

variations caused by mass distribution irregularities7 in the 

crust and by regional topography and the degree of its isostatic 

compensation. Prediction of regional gravity effects, therefore, 

is based upon correlation between regional topography and regional 

gravity with due consideration being given to isostatic effects, 

and by analysis of the gravitational effects of regional changes in 

crustal structure. 

Superimposed upon the regional variations are the local 

variations defined to be that portion of the gravity anomaly 

variations caused by mass distribution irregularities in nearby 

(local) surface geologic structure and by local topography. 
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Prediction of the local gravity effects, then, is a function of 

changes in surface geology as well as correlations between lccal 

topography and local gravity. 

Although the boundary between regional and local gravity 

anomaly variations is defined carefully for geophysical prediction 

methods, some logical decisions are still necessary with respect 

to whether a particular structure contributes to the gravity 

anomaly field in a regional or local sense.  It can be argued, 

for example, that a large sedimentary basin which extends over 

several 1° x 1° areas is, in fact, a regional structure. 

However, in some prediction methods the gravitational effect of 

such basins is most conveniently predicted in terms of its local 

perturbations on a regional field defined by a basic predictor. 

Hence, the gravity anomaly effect of sedimentary basins is 

considered to be local for such methods. 

In addition to the local and regional gravity anomaly 

variations discussed in the preceding paragraphs, there are also 

longer period or global variations. A gravity anomaly representation 

obtained by harmonic analysis of the perturbations of artificial 

earth satellites shows only the longer period or global variations. 

To date, these global variations have been correlated with known 

structural variations only in a qualitative sense. Kaula (19-69, 

1970), for example, suggests that, with some exceptions, global 

positives tend to be correlated with active tectonic departures 

from equilibrium which, in turn, are correlated with areas of 

current dynamic activity at the earth's surface and reflect internal 

A 



dynamic activity. At present, these internal processes are not 

sufficiently understood to enable their use for prediction of 

global gravity variations. Fortunately, it hardly seems necessary 

to develop a geophysical method to predict the longer period 

variations per se since the global gravity fields derived from 

satellite perturbation analysis can be used for this purpose. 

Woollard and Khan (1972) have confirmed the desirability of 

analyzing the gravity anomaly field in terms of three components: 

(l) a short wavelength component depending upon local topography, 

local geology, and their mode of emplacement; (2) an intermediate 

wavelength component depending upon regional topographic and 

tectonic patterns and their isostatic compensation, and (3) a 

long wavelength component depending upon global scale morphological 

and tectonic patterns. Table 3-1 compares this three component 

scheme to the classical two component scheme, the latter being 

modified to include the global component. The two schemes are 

seen to be completely compatible.  In current geophysical 

prediction methodology, however, the global and regional 

contributions to the gravity anomaly are predicted as a single 

component. 

3-5 Mean Gravity Anomalies 

3.5-1 Geodetic Uses 

Gravity is measured and gravity anomalies are computed 

at discrete points en the surface of the earth. Yet, the integral 

formulas usr-d for most geodetic applications require a knowledge of 
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TABLE 3-1 

COMPARISON OF GRAVITY CORRELATION 

ANOMALY ANALYSIS SCHEMES 

23 

Expanded Classical 
Gravity Analysis 

System 

Woollard-Khan 
Gravity Analysis 

System 

Local 

- near surface geologic 
structure 

- local topography 

Short Wavelength 

- local topography 

- local geology 

- mode of emplacement 

Regional 

- crustal structure 

- regional topography 

- degree of isostatic 
compensation 

Intermediate Wavelength 

- regional topography 

- regional tectonic patterns 

- isostatic compensation 

Global 

- geodynamic processes 

- mantle structure 

Long Wavelength 

- global morphology 

- global tectonic patterns 
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gravity anomaly data continuously over the whole earth. Examples 

of these integral formulas are (Heiskanen and Moritz, 1967) 

M = 
R 

UTIG J  j   Ag S(*) do 

1 
UTTG Ag 

dS 
d* 

cos a 

sin a 

nm 

rutij 

1_ 
J      J 

a 

Ag P   (sin*) 
nm 

do 

cos mX 

sin m\ 

(3.5-1) 

, do 

where 

N = gravimetric geoid height 

£, rj ~  gravimetric deflection of the vertical components 

a , b  = fully normalized harmonic coefficients of degree, n, 
nm  nm 

and order, m, for an earth gravity model 

Ag = gravity anomaly representing the differential surface 

element, do 

S(\fr) = Stokes'  function 

P      (sin<)>) = fully normalized Legendre's associated function 

a, i|) = Spherical polar coordinates 

<j>, X = Geodetic latitude and longitude 

R, G = constants 

f f 

J J 
o 

|   denotes integration over the whole earth 
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For practical evaluation of the integral formulas 

(3.5-1) summation over finite surface elements replaces the 

integration over differential elements. Therefore, in the 

practical case, the gravity anomaly input must be in the form of 

values •v;.';b represent finite surface areas, e.g., 5' x 5'» 

1° x 1°, etc  Mean gravity anomalies, predicted as a function of 

the gravity anomalies computed from measurements at discrete 

points over the surface, serve as the required input data. 

3-5.2 definition:  Comments on Prediction Methods 

A mean gravity anomaly is defined as the mean value 

of the gravity anomaly field within a specified surface area. 

A 1° x 1° mean Bouguer anomaly, for example, is the average 

value of an infinite number of Bouguer anomalies computed at 

measurement sites which are evenly distributed throughout the 

1° x 1° area. 

The rigorous formula for 1° x 1° mean gravity 

anomaly, Ag> which represents a rectangular 1° x 1° surface area 

with dimensions a and b is (Heiskanen and Moritz, 1967) 

^ = ab" 
x=0 y=0 

b 

Ag (x, y) dxdy (3-5-2) 

where the gravity anomaly, Ag, must be known at every point (x, y) 

within the 1° x 1° area.     If the Ag (x, y) are free air anomalies, 

Ag is a 1° x 1° mean free air anomaly.  If the Ag (x, y) are 

Bouguer anomalies, Ag is a 1° x 1° mean Bouguer anomaly. 
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Since gravity is measured at only a finite number of 

discrete points within any surface area, equation (3-5-2) never can 

be evaluated in the given form.  Instead, the 1° x 1° mean anomal/, 

Ag, can be approximated by a linear combination of the measured 

values, Ag. (Heiskanen and Moritz, 1967) 

   n 
Ag = I a Ag. (3.5-3) 

i«l 

The coefficients, a., which depend only upon the 
i 

relative positions of the gravity measurements and mean anomaly 

value, may be chosen in several ways. In least squares (statistical) 

prediction, for example, the a. are determined so that the standard 

error of prediction is minimized. With a large value of n for 

gravity measurements well distributed throughout the 1° x 1° 

area, setting all values of a. = 1/n gives the required mean 

value. 

—  1 n 

Ag = - Z    Ag. (3.5-1») 
n i=l  X 

Formula (3.5-M applies to Bouguer anomalies in 

continental areas.  If free air anomalies are used within the 

continents, a correction must be added to (3-5-M to account for 

the difference between the mean elevation, H, of the are?', and 

the average, h, of the elevations at the points where Ag^^ is 

observed. The correction is computed using equation (3.6-25) 

where (Ag )  represents the average of the observed free air anomaly 
F Q 

values, (AgJp represents the true 1° x 1° mean free air anomaly, and 

6h = H - h. 
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With fewer measurements and/or uneven distribution of 

measurements within a surface area, an isoanomaly map can be 

constructed using linear interpolation, modified by geological 

considerations, of the Bougue*" anomalies. Then the integration 

(3.5-2) can be performed graphically with reference to the Bouguer 

anomaly map. Gome additional Bouguer anomaly values may be 

obtained by gravity correlation interpolation between measurement 

sites to supplement the measured values used to construct the 

gravity anomaly contours. The GRADE prediction method uses 

this approach. 

The 1° x 1° mean gravity anomalies also may be 

predicted with direct reference to correlations between 

variations in geological/geophysical/topographic parameters and 

the corresponding variations in mean gravity anomaly values.  In 

this case 

dÄg = f(dh, äS) (3-5-5) 

where f(dh, dC) is some function of topographic and structural 

changes, respectively.  If, for example, the changes ia the regions. 

part of the 1° x 1° mean gravity anomalies are constant with 

respect to changes in mean elovations, which is true for 1° x i' 

mean Bouguer anomalies and mean elevations in many regions, then 

dh 

or, in a slightly modified form, 

ß (3.5-6) 

dAg = ß dh (3.5-7) 
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Integration of the above gives, immediately, 

Ag = 6 h + a (3.5-8) 

which is 'ihe equation for the basic predictor in the NOGAP 

prediction method. Equations such as (3.5-5) and (3.5-8) can 

be defined in portions of an area having uniform regional structure 

and adequate gravity measurements, and used as prediction functions 

in other portions of the same area which contain little or no 

measured gravity data. 

Although geophysical constraints are sometimes 

included in the formulations, statistical mean anomaly prediction 

procedures, using equations such as (3.5-3) typically are based 

primarily upon an expression of the manner in which the gravity 

anomaly field varies with respect to itself within a given region. 

To simplify the mathematical expressions involved, such variations 

are assumed to be isotropic when, in reality, they usually are 

nut. The invalidity of this assumption appears to place a severe 

constraint on the applicability of statistical prediction. 

By contrast, although statistical procedures are often 

used in the fomulations, geophysical mean anomaly predictions, using 

equations such as (3-5-8), are based primarily on expressions of 

the manner in which the gravity anomaly field varies with respect 

to some other physical parameter within a structurally homogeneous 

region.  Such variations usually are isotropic, and this fact 

strengthens the validity of the geophysical prediction methods. 
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3-5-3 Mean vs. Point Anomalies 

Point gravity anomalies fully reflect all effects of 

regional and local variations in earth structure. Mean gravity 

anomalies which represent surface areas of 1° x 1° or larger, on 

the other hand, are essentially regional anomalies since much 

(but not all) of the effect of local structural variations is 

lost in the averaging process which produces the mean anomaly. 

A local mass anomaly of small areal extent, such as an ultra-basic 

dike, may have a pronounced local effect upon a point anomaly, 

but virtually no effect upon a lp x 1° mean anomaly. Larger local 

geologic features, such as sedimentary basins, will affect both 

poirt and mean anomalies in a similar (but not identical) way. 

Local anomaly effects, therefore, must be analyzed specifically 

with respect to the type of anomaly, point or mean, which is 

being coisidered. 

Thus, the details of local gravity anomaly variations 

must be studied in terms of point anomalies, whereas the regional 

gravity variations are conveniently analyzed in terms of the 

mean gravity anomalies.  In fact, the regional anomaly field 

reflected in 1° x 1° mean anomaly values is contaminated only by 

the effects of fairly broad local structural variations.  It is 

the gravitational effects of these broaa local variations which 

must be determined in 1° x 1° mean anomaly predictions. 

mk 
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3.5-1* Mean Elevation 

The elevation value corresponding to the mean gravity 

anomaly (3.5-2) is the mean elevation, H, given by 

• a  I- b 

H = —■   j   J  h(x, y) dxdy        (3-5-9) 

x=0 y=0 

where h is the elevation at every point (x, y) within the area. 

Mean elevations are determined by graphical integration from 

topographic maps. 

3.6 Free Air Anomaly 

3.6.1 Complete Free Air Reduction*; Simple Free Air Reduction 

Two steps are necessary to obtain \ uiv^retically 

correct free air gravity anomaly, Figure 3-1. Firstly, all masses 

above sea level are "condensed" vertically to form an infiiütesirally 

thin surface mass which is placed just underneath the geoid. The 

density, K, of this surface mass at any point, Q, vertically 

beneath the point, P, on the physical surface, is given by 

K    = oh !3.6-l) 

*The non-standard terminology, "complete free air reduction," is 

used for descriptive clarity. The type of complete free air 

reduction described here is attributed to Helmert and is usually 

called Helmert's condensation reduction. 
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where 

h is the elevation of P above sea level 

a is the average density of the topographic masses between 

F and Q. 

At the  completion of the first  step, the topographic 

masses have been removed,  an equivalent mass has been inserted 

at elevation h=0 in the form of a surface layer,  and a gravity 

observation at point P is now situated "in free  air" at  an elevation, 

h, above sea level.     In the second step of the complete free air 

reduction, the gravity observation is lowered "through free air" 

to sea. level. 

The gravitational effects of both steps  are determined 

computationally and combined to obtain the complete  free air 

reduction,   (<5g  )„,. 

(5g„)_ = - g+ g. + gT (3-6-2) 
'OF DT       '"G      °F 

where 

g    = gravitational attraction at P of the volume mass 
I 

constituting the topography which is removed in step 1. 

ge = gravitational attraction at P of the surface mass which 

is inserted just under the geoid in step 1. 

gT, = free air correction, step 2, which lowers the observation 

from P to sea level at Q. 

Except for areas of very rugged topography, the gravitatic 

effect of the surface layer is very nearly equal to the gravitation0.! 

attraction of l.lie topography.  Therefore, with good approximation 
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FIGURE 3-1 

ILLUSTRATION OF COMPUTATIONAL STEPS NECESSARY 

TO OBTAIN THEORETICALLY CORRECT 

FREE AIR ANOMALY 

I , 
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Point, P, on physical surface 
Point, Q, vertically below P on geoid surface 
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STEP 1. Remove topographic masses completely. 

Point, P, now situated in free air at elevation, h, above geoid. 

2. Lower observed gravity value through free a,r to sea 



for most cases, the assumption 

/•T - r (3.6-3) 

is made and equation (3.6-2) reduces to the simple free air reduction 

(6gQ)F = gp (3.6-U) 

and inserting'(3-6-1+) into (3.3-1), the simple free air gravity- 

anomaly, &g , is given by 
r 

Agv = gn + g-, - Y (3.6-51 

3-6.2 Free Air Correction 

The free air correction gives the difference between 

gravity at the point P on the earth's physical surface where 

gravity is observed and at the point Q on the geoid, where Q 

lies vertically beneath P at a distance, h.  It is assumed that no 

rock matter exists between P and Q, Figure 3-1, step 2. 

Under the condition that no matter lies between 

P and Q, gravity and its derivatives of all orders exist and vary 

as continuous functions of elevation between these points. 

Therefore, the necessary conditions are fulfilled for application 

of the Taylor (Maclaurin) Series 

g (z) = g (0) + g» (0) z + h  g" (0) z2 + . . .  (3.6-6) 

where the primes indicate differentiation. 

In the present case, g (z) = g , gravity observed at 

elevation h; g (o) = g , gravity at sea level, b = 0; and z = -h 
Q 

where the negative sign is required because elevation increases 

outward while gravity increases inward. With these definitions 

miam 
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the series  (3.6-6) becomes 

i 

I 

>2£ 

or, solving for gravity at the geoid 

3g    1 3 g 2 
. SQ = gP + 3h h ' 2Wh    + * ' *      (3.6-8) 

The quadratic terra of (3-6-8) contributes 726 x 10_1° 

h2 mgals/meter. This amounts tc less than one mgal unless gravity 

is observed at elevations in excess of 12,000 feet above sea level. 

Therefore, the quadratic term is always omitted except when gravity 

is observed in the highest mountains. 

Evaluation of the linear term of (3-6-8) requires a 

knowledge of the vertical gradient of gravity, 3g/9h, which varies 

as a function of latitude, height, and near surface mass distribution. 

However, the variation is sufficiently small to enable the use of 

a constant value for 3g/3h for many practical purposes (Heiskanen 

and Moritz, 1967). To obtain this constant, consider Newton's 

law of gravitation for a normal spherical earth 

Y=^ (3.6-9) 

where 

Y = normal gravity 

k = gravitational constant 

m = mass of the earth 

r = radius of curvature of the normal earth 
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The vertical derivative of (3 6-9) is 

il •* il _  1_ /knu -  2km 
3h ~ 3r = ~ 3r V' = 7; (3.6-10) 

where the negative derivative is used "because elevation, h, is 

positive outward while normal gravity is positive inward. 

Substituting (-3.6-9) into (3.6-10) leaves 

ix_ Si 
3h   r 

(3.6-11) 

Insertion of averagr values for y  and r into (3.6-11) 

gives the constant value 

|£ : ff- = + 0.3086 mgal/meter. 
3h  3h 

(3.6-12) 

Detailed discussions of more exact expressions for 

3g/3h, and of the approximations involved in obtaining the constant 

value (3.6-12) may "be found in Heiskanen and Moritz, 1967, and 

Bomford, 1971. 

The final form for the free air correction, using 

only linear terms of (3.6-8) with (3.6-12) is 

Sr, &n   ~   ST If h = 0.3086 h (3.6-13) T  BQ  °P  3h 

where h is in meters. Insertion of (3.6-13) into (3.6-5) giv.is, 

for the simple free air anomaly 

Agp = gQ + 0.3086 h - Y (3.6-_U) 

3.6.3 Geophysical Properties of the Free Air Anomaly 

Observed gravity corrected to sea level by the free 

air reduction, (gA + g„), measures the force of gravity generated 0    r 

by the real earth and includes all gravitational effects of (l) the 
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topographic masses and (2) the other lateral density variations 

within the real earth. Normal gravity, Y» measures the force of 

gravity generated by the normal earth which has neither topographic 

masses nor irregular density variations. Yet the total mass of 

the normal earth which generates y  is defined as being equal to 

the total mass of the real earth which generates (g. + g„). 
0   r 

Therefore, the free air anomaly computed according to (3.6-5) 

% = (g0 + gF) - y 

is simply a measure of all gravitational differences between the 

irregular mass distribution within the real earth and the regular 

mass distribution within the normal earth. 

3.6.3.1 Isostasy and the Free Air Anomaly 

The topographic masses, condensed onto the 

geoid sufface of the real earth by the free air reduction, 

unquestionably represent a gross excess of mass with respect to 

the normal sea level earth which has no mass above sea level. 

Consequently, there ought to be a strong direct correlation 

between elevation and the free air gravity anomaly and in fact, 

such a correlation does exist in most areas—but only on a local 

basir, On a regional basis there is, at best, only a mild 

correlation betwten elevation and free air anomaly. In fact, 

free air anomaly values for gravity observations located on broad 

regional topographic features, such as plateaus, tend to average 

near zero and, on a global basis, the most probable free air 

anomaly value is_ zero. 
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The lack of any strong regional correlation 

between elevation and free air anomaly means that, on a regional 

basis, the mass excess due to topography must be nearly cancelled 

out, i.e., isostatically balanced, by some compensating mass 

deficiency within the real earth. 

On a global basis, isostatic compensation 

of the topographic masses is nearly complete.  Regionally, however, 

the gravitational balance usually is not exact. Since regional 

departures from i30static balance are fully reflected in regional 

free air anomaly values, the effects of regional structures on the 

free air gravity anomaly field always must be considered with 

respect to the degree of isostatic conroensation which exists 

within the region. 

The existence of a strong local correlation 

between free air anomaly and elevation suggests that local topographic 

variations and, hence, local density variations of any type are 

either very poorly compensated or not compensated at all. In other 

words the full gravitational effects of local topographic and 

structural variations are reflected in local free air anomaly 

variations without reference to compensation effects. 

The wisdom of analyzing free air gravity 

anomalies with respect to their regional and local components 

should be immediately evident from the foregoing paragraphs. 

Uote, incidentally, that computation of the 

free air anomaly using (3.6-110 involves no assumptions about 

either rock density or the nature of the isostatic mechanism. 
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Therefore, use of the free air anomaly provides suhstuntial freedom 

in the interpretation of geological and geophysical structures 

which produce the anomaly. Such freedom is not possible with the 

isostatic anomaly forms whi"h are computed with respect to rock 

density assumptions and tied to earth structural models both 

of which are now known to be incorrect. 

The foregoing advantage of free air anomalies 

is, to a major degree, offset by a disadvantage which is particularly 

troublesome in mountainous areas, namely, the extreme sensitivity 

of free air anomalies to local elevation changes and the consequent 

masking of local geologic effects. 

3.6.3.2 Local Variations in the Free Air Anomaly 

The specific nature of the variations of 

the free air anomalies within a local area depends largely upon 

the topographic characteristics of that area. 

With flat to low surface relief, the free 

air anomalies tend to have small magnitudes and are as likely to 

be positive as negative. Any local variations in the free air 

anomalies within such localities are caused by uncompensated 

local geologic variations.  Local positives, for example, may 

reflect higher density rocks or structural uplifts which bring 

higher density rocks nearer to the surface. Conversely, local 

negatives may reflect lower density rocks or structural depressions 

which cause higher density rocks to be a greater distance from 

the surface and/or which are filled with low density sediments. 
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With moderate to high surface relief, the 

free air anomalies are directly correlated with uncompensated local 

topographic variations, being highly positive on mountain peaks 

and strongly negative in deep valleys. The dominant topographic 

effects in such localities mask any free air gravity anomaly 

variations caused by local geologic variations. 

Consider Figure 3-2, If (l) the topographic 

rise under point P is completely compensated, i.e., the positive 

gravitational effect of the mass excess due to the hill is 

cancelled out by the negative gravitational effect of some 

compensating mass deficiency at depth, and (2) there are no other 

lateral mass distribution variations between the points, P and Q, 

then the free air anomaly at P should equal that at Q 

( VP 
= (Vc 13.6-15) 

or, using (3-6-1**! 

(g0)p - Yp + 0.3086 hp = (gQ)Q - YQ + 0.3086 hQ (3.6-16; 

Define the unreduced surface gravity anomaly, 

Agc, to be given by 

Ags = g0 - Y (3.6-17) 

where y  is interpreted to function merely as a latitude correction 

term to remove the systematic effects of the earth's flattening 

from observed gravity. Thus, Ag„ applies at the point on the 
b 

physical surface where g is measured, and variations in Agc 

are tantamount to variations in observed gravity. 



(3.6-16) becomes 

1+1 

Using the above definition of Ag^, equation 

(Ags)p = (Ags)Q - 0.3086 6h        (3.6-18) 

where 

(Ag ) = (gn)D ~ VT, = unreduced surface anomaly at P 

(Ag ) = (SA^Q ~ Yo = unre^uce(^ surface anomaly at Q 

hp = elevation at P 

hn = elevation at Q 

5h = hp - hQ 

Equation (3.6-18) can hold only if the 

topographic feature ac P is a regional structure such as a broad 

plateau. Woollard (1962) maintains that topographic features 

must be about 3° x 3° or larger in lateral extent in order to be 

completely compensated—as was assumed in deriving (3.6-18). 

If the hill under point P is a local 

topographic feature, it must be treated as being totally 

uncompensated or nearly so. This is true because, as shown by 

Woollard (1962) and Strange and Woollard (196M, the gravitational 

effect of the topography always greatly exceeds that for the 

compensation for local features. This is confirmed by Jeffreys 

(1970) who states that a topographic variation of small areal 

extent will have the same effect on free air gravity whether the 

variation is compensated or not, namely, approximately the simple 

Bouguer plate effect. This relation will now be derived. 
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If the hill at P (Fig.-e 3-2)  is treated as 

being wholly uncompensated, then the gravitational attraction of 

the mass within the hill must he removed from observed gravity 

at P and Q in order to maintain the equality  (3.6-18).    Thus, 

(Aggip - (gH)p = (Ags)Q + (gH)Q - 0.3086 «h        (3.6-19) 

where 

(gtj)^ = gravitational attraction at P of the mass within the H F 

hill  (Figure 3-2) 

(g ) = gravitational attraction at Q of the mass within the 
H Q 

hill (Figure 3-2) 

The sign of (g,,)., in (3.6-19) is negative 
n r 

since the removal of mass in the hill beneath P will reduce the 

value of gravity measured at P. The sign of (g,J_ in (3.6-19) is 
n y 

positive because the removal of mass in the hill which is situated 

above Q will increase the value of gravity measured at Q. 

As a first approximation, the hill under P 

can be replaced by a right circular cylinder of infinite radius 

and height equal to 6h, i.e., the Bouguer plate of height, Sh. 

The attraction at P of the rock mass contained within the Bouguer 

plate is given by 

5Bp = 2 IT k o 6h (3.6-20! 

where 

g  = attraction of the Bouguer plate 

k = gravitational constant 

0 = volume density of the rock matter within the Bouguer plw 

i» —■<M—mm 
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Now the attractive force computed by (3.6-20) 

includes not only that of the topographic mass under P, but also 

that of the adjacent area shaded in Figure 3-2.  In reality, the 

shaded area is void of rock mass. Therefore, it is necessary to 

subtract the gravitational attraction of the shaded area from 

the Bouguer plate attraction given by (3-6-20) to obtain just 

the attractive force of the hill. 

The attractive force at P of the shaded area, 

Figure 3-2, is given by the terrain correction at P, TC^.  Thus, 

the attraction of the hill under P, Figure 3-2, is given exactly 

by 

(gH)p = 2 it k o 6h - TCp (3-6-21) 

Within the context of the simple relationship 

shown in Figure 3-2, it is obvious that the gravitational attraction 

of the hill at Q is given exactly by the terrain correction at 5, TC 

(gH)Q=TCQ (3.6-22) 

The value of the terrain correction approaches 

a minimum of zero in areas of gentle relief, a maximum of 0.05 

milligals per meter in areas of very rugged relief, and averages 

0.0316 milligals per meter of elevation difference (oh) for point 

gravity anomalies (Voss, 1972b). 

Now putting (3.6-21) and (3.6-22) into (3-6-19; 

(A?s)p = (Agg) - 0.3086 6h + 2 n k 0 5h - TCp + TC^  (3.6-23) 

i 

I 

WKZLM m -«-^ 
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Converting (3.6-23) to the free air anomaly 

by (3.6-11*) and the definition, Ag = g-, - Y, gives 
o U 

- Yp + (AgF)p - 0.3086 hp + Yp = - YQ + (AgF)Q - 0.3086 hQ 

+ YQ - 0.3086 (hp - hQ) + 2 TT k a (hp - hQ) - TCp + TCQ 

leaves 

Simplification of the preceding equation 

(Vp = (VQ 
+ 2 IT k O 6h - TCp + TCQ (3.6-21*) 

The density value generally used in equations 

of the type (3.6-21*) is 2.67 grams per cubic centimeter (gm/cm
3). 

This value is "... a reasonable approximation for the density 

of continental topographic features" (Woollard and Khan, 1972). 

Actual values, however, may vary between about 2.2 and 2.9 gm/cm3 

(Strange and Woollard, 196I+). 

Using a = 2.67 gm/cm3 and the generally 

_8 
accepted value for the gravitational constant, k = 6.67 x 10 

cm3/gm sec2, then (3.6-21*) becomes 

(Agp)p = (AgF)Q + 0.1119 6h - TCp + TCQ (3.6-25) 

Although the general equations (3-6-21*) and 

(3.6-25) were derived specifically for the simple topographic 

model of Figure 3-2, Appendix C she /s thai, these equations., in 

fact, have general application to a""l topographic settings. 

The general relations (3.6-21+) and (3-6-25) 

hold for local topographic variations, i.e., for topographic 

variations within a radius of about 10 kilometers. Within such a 
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i 
small area, these equations show that the free air anomaly varies «. 

I 

largely as a linear function of elevation difference between points 

where gravity is observed. Since local elevation, of course, does 

not vary as a linear function of position, then it follows that 

linear interpolation between free air anomaly values is an 

invalid procedure and, for this reason, free air anomaly maps are 

very difficult to draw accurately in continental areas.  Indeed, 

the property of free air anomaly values to be closely associated 

with elevation variations within a local area makes the free air 

anomaly an undesirable form for interpolation and extrapolation 

purposes within the continents particularly in mountainous areas. 

The general validity of (3-6-25) can be 

illustrated by a numerical example for a physical setting which 

closely approximates Figure 3-2.  Suppose the point, P, of Figur? 

3-2 lies at the summit of Pikes Peak and zhe  point, Q, lies on the 

nearby plain at Colorado Springs.  Gravity and elevation data for 

these two stations are given in Table 3-2. Then, 

(VPIKES PK = <VcOLO SPG + °-1119 5h 

_  Tf +   TT 
PIKES PK COLO  SPG 

(Ag_)_Tl_0 „ = - IT + 0.1119  (^293 - 181+2) -57 + 0 
F PIKnS Pi„ 

(/
VPIKES PK = + 20° m«al 

which  checks   closely with the free  air anomaly value  of + 203 mgal 

(Table  3-2) which was  computed from observed gravity  at  Pikes  Peak. 



1+8 

TABLE 3-2 

DATA FOR GRAVITY OBSERVATIONS 

AT PIKES PEAK AND COLORADO SPRINGS 

STATION 
LOCATION (mgal) 

—     ■ — 

h 
(meters) 

TC 
(mgal) 

Complete 

(mgal) 

PIKES PEAK 

COLORADO SPRINGS 

+203 

- IT 

1+293 

18U2 

+51 

0 

-220 

-223 

SOURCE:  Woollard (1962] 
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Now suppose that the point, Q,  in Figure 3-2 

is  located at sea level.    Then, h_ = 0,  6h = h   ,  and equation 

(3.6-25) becomes 

(Vh=hp 
=  (Vh=0 + °-1119 hP " TCP + TCQ      (3'6_26) 

Equation  (3.6-26) shows that, within a local 

area, the free air anomaly at any point above sea level,   (Ag  ) , 
r n=n^ 

is given by a constant sea level free air anomaly value, (Ag )  , 

plus about one milligal per nine meters of elevation.  In a more 

general form, (3.6-26) may be written 

AgF = t> + uh 13.6-27) 

where 

Ag = free air anomaly computed from observed gravity by 

(3-6-lU) for a point within a local area 

h = elevation of that point 

i>  and ui are constants which may be determined empirically by 

a linear least squares data fit according to (3.6-27). 

Note that only free air anomaly values are 

involved in (3.6-26) and (3.6-27^ <jven though these expressions 

resemble the Bouguer—free air anomaly relation, cp. (3.7-15). 

The sea level free air anomaly value, 0, thoug! 

nearly constant within a. very local area, will vary from place to 

place mainly as a function of local topographic characteristics, 

although it is also sensitive to other locally and regionally 

varying factors. 
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The value of in within any local area depends 

primarily upon the average magnitude of the terrain corrections, 

the density of the rock matter composing the topography, and the 

degree of local compensation actually afforded to the local 

topographic features. Using equation (3.6-25) some logical limits 

can be place upon the magnitude of w with reference to the normal 

limits of the rock density, a, and terrain corrections. With the 

limits 2.2 and 2.9 for density, the value of 2 IT k a h will vary 

between 0.092 h and 0.122 h, where h is in meters. Adding the 

limits 0 and 0.05 mgal/meter for the terrain corrections, then the 

limits on w in milligals per meter are 

0.0U2 1 u <_ 0.172 (3.6-28) 

The limits (3-6-28) assume a total lack of 

local compensation. As the local features become increasingly 

broader in extent, however, an increasing amount of compensation is 

afforded.  Since, for complete compensation, ui = 0, a more inclusive 

limits statement is 

0 <_ u) <_ 0.172 (3.6-29) 

Extensive empirical tests in the United States 

and Europe suggests that a good overall average value for point 

data is (Voss, 1972b) 

a> = O.OGO (3.6-30) 

which, interestingly, lies about midway in the range given 

by (3.6-29). 
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It is; also interesting to note that using 

the "normal" values of 2.67 for a  and 0.0316 mgal/meter for TC , 

assuming TCn to be zero, yields the value w = 0.080. 

The existence of the local free air anomaly 

relationship (3.6-27) suggests that a 1° x 1° mean free air anomaly 

can be predicted by 

AgF = iji + ton (3.6-31) 

where 

Lg„  = predicted 1° x 1° mean free air anomaly 
r 

h = mean elevation of the 1° x 1° area for which the mean 

free air anomaly is to be predicted 

The constants, 4» and u, are determined by a 

least squares fit of equation (3.6-27) at many well distributed 

measurement sites within the 1° x 1° area.  In regions of locally 

homogeneous structure and topography, the constants y  and u will 

vary uniformly from one 1° x 1° area to the next, and linear 

interpolation is possible.  However, very rapid variations in 

<Ji and to are encountered across breaks in local structure or where 

local topographic characteristics change. Consequently, considerable 

care must be exercised when using (3.6-31) for 1° x lu mean anomaly 

prediction. 

3.6.3.3 Regional Variations in the Free Air Anomaly 

The free air anomaly varies as a linear 

function of elevation within a local area because lov-al topographic 

variations of up to about 10 kilometers in width can be treated as 

wholly or nearly uncompensated features. Regional topographic 

m*mm 
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variations greater than about 3° x 3° in extent, on the other hand, 

may be treated as nearly compensated features. Consequently, 

free air anomalies will not necessarily be positive over an 

extensive area with high average height, but rather, should have 

an average value of near zero in such regions. 

The behavior of free air anomalies with 

respect to topographic features varying in lateral extent between 

about 10 km x 10 km and abo;it 3° x 3° is transitional. Relatively 

positive free air anomalies are generally associated with relatively 

high topographic features whose lateral extent lies within the 

transitional range. As the topographic high becomes narrower, 

the positive free air anomaly associated with it becomes more 

intense. The limiting cases are no correlation (except at the 

edges) as the feature becomes increasingly broad on the one hand, 

and the relation (3.6-25) as the feature becomes narrower on 

the other hand. 

Wcollard (1969a) has determined the regional 

relations which exist between free air anomalies and elevations 

within the United States. These relations, given in terms of 

1° x 1° mean values are. 

Asr = - 0.103 H + 18 
F 

ÄL =  0.009 H - 3 

Ag^ =  O.OU7 H - TU 

0 £ H <_ 200 

200 <_ H <_ I8OO 

H > l800 

(3.6-32) 

(3.6-33) 

(3.6-3U) 

where 

Ag^ = 1° x 1° mean free air anomaly in milligals 

H = 1° x 1° mean elevation in meters 
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The first relation (3.6-32) applies to coastal 

and interior lowlands where surface relief is slight. The relation 

is actually very poorly defined which suggests that, in fact, 

there is virtually no regional correlation between free air anomaly 

and elevation in the flat lowlands (Strange and Woollard, 196ha.). 

The second relation (3.6-33) applies to 

moderately elevated areas in the interior where relief is typically 

low to moderate.  Insertion of the limiting elevation values into 

(3.6-33) shows that, on the average, the 1° x 1° mean free air 

anomaly increases only by about 10 mgal over the mean elevation 

range of 200 to 1800 meters. This is a very mild correlation. 

The third relation (3.6-3*+) shows that the 

1° x 1° mean free air anomaly values tend to increase somewhat 

more rapidly with elevation in the highly mountainous areas of the 

United States whose 1° x 1° mean elevations exceed l800 meters. 

This is due to the smaller width of topographic features in the 

mountains as compared to those at lower elevations.  However, note 

that the slope constant of (3.6-3**) is still only about half that 

normally expected for the local free air anomaly elevation 

correlation, relation (3.6-30). 

Relations of the type (3.6-33) and (3.6-3M 

have been suggested for prediction 1° x 1° mean anomalies in 

unsurveyed areas (see Woollard and Strange, 1966).  However, 

experience has shown that prediction with the Bouguer anomaly 

generally gives superior results, i.e., more definitive correlations 

than that provided by, e.g., (3.6-33). 



5h 

Superimposed upon the regional elevation effects, 

if any, are the effects of regional geology, crustal structure, and 

regional isostatic imbalances. Woollard (1962) states the factors, 

other than elevation, which can affect the regional part of the 

free air anomaly: 

(1) Regional departures from isostatic 

balance due to (a) variations in crust or upper mantle strength, 

(b) external stresses such as compression at the edges of crustal 

plates, or (c) a time lag in establishing equilibrium conditions 

for changes in surface mass caused by erosion, deposition, 

glaciation, or deglaciation. 

(2) Lateral gradational density changes 

within the crust and/or upper mantle due to compositional variations, 

and 

(3) Regional variations in depth to 

basement or other intra-crustal boundaries across which a density 

contrast exists. 

These non-elevation dependent factors affect 

all of the common gravity anomaly types in a similar manner and to 

a similar degree. 

3-7 Bcuguer Anomaly 

3.7.1 Elements of the Bouguer Anomaly 

Analagously to the free air anomaly, two steps are 

necessary to obtain a theoretically correct Bouguer gravity anomaly 

value, Figure 3-3.  Firstly, all masses above sea level are removed 

completely leaving a gravity observation at point P situated in free 

Jta 
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air at an elevation h above sea level.  Secondly, the gravity 

observation is lowered through free air to sea level. In a 

mathematical sense, the topographic masses are moved to infinity. 

The gravitational effects of each step are determined 

computationally and combined to obtain the Bouguer reduction, 

(6gQ)B = - gT + gF (3.7-1) 

where g and g are as dex'.ied for equation (3.6-2). 
L      r 

The term, g , is the free air correction given by 
r 

equation (3-6-13). The term, g^ includes the following mandatory 

and/or optional elements: 

.Mandatory element 

Bouguer correction, g 

Optional elements 

Terrain correction, TC 

/ Curvature correction, CC 

Geologic correction, GC 

Different terminology applies depending upon which, if 

any, of the optional elements are rsed.  With the omission of all 

optional elements, the relation 

&T (3-7-2) 

•CT^^IMLMA^^^^ 
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FIGURE 3-3 

ILLUSTRATION OF COMPUTATIONAL STEPS NECESSARY 

TO OBTAIN THEORETICALLY CORRECT 

BOUGUER ANOMALY 
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Point, P, on physical surface 
Point, Q, vertically below P on geoid surface 

STEP 1. Remove topographic masses completely. 
Point, P, now situaied in free air at elevation, h, above geoid. 

STEP 2. Lower observed gravity value through free air to sea level. 
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when inserted into equation (3-7-1) defines the simple Bouguer 

reduction* 

(6g0)B = - gp + gF (3.7-3) 

such that, by (3.3-1), the simple Bouguer anomaly is given by 

AgB = gQ - gB + gF - Y (3.7-10 

The relation 

PT = RB -  TC (3.7-5) 

defines the complete Bouguer reduction 

(«g0)B = - gB + TC + gp (3.7-6) 

such that the complete Bouguer anomaly is given by 

AgB = g0 - gB + TC + gp - Y (3.7-7) 

The curvature correction is an optional addition to 

(3-7-7) and the geologically corrected forms which follow. 

Geologically corrected Bouguer anomalies may or may not 

contain the terrain correction and, hence, are of two forms.  The 

geologically corrected simple Bouguer anomaly is 

AgB = gQ - gB + GC + gF - Y (3-7-8) 

^Regrettably, there is no consistency in Bouguer anomaly terminology in 

the literature. The form identified here as the simple Bouguer reduction 

is sometimes termed the complete Bouguer reduction; also the form 

identified later as the complete Bouguer reduction is sometirr.es called 

the refined Bouguer reduction. Other variants are also found. 

«I^i    ■ —*——■■—I 
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and the geologically corrected complete Bouguer anomaly is 

AgB = gQ - gB 
+ TC + GC + gp - Y        (3-7-9) 

Comparison of C3-6—5) and (3-7-^) shows that the relation 

between the simple free air anomaly and simple Bouguer anomaly is 

Agp = Ag3 + gB (3-7-10) ' 

Similarly, comparison of (3.6-5) and (3-7-7) shows 

that the relation between the simple free air anomaly and complete 

Bouguer anomaly is 

Agp = AgB + RB - TC (3.7-11) 

Relations (3.7-10) and (3-7-11) apply to both point 

and me?.n gravity anomaly values. 

3.7.2 Bouguer Correction, g 

Ass'ame that the physical surface of the earth which 

passes through the point where gravity is observed is flat (planar) 

and horizontal and that the surface of the geoid is parallel to ?t. 

These two assumed surfaces, when extended infinitely far in "..11 

horizontal directions, enclose and define the Bouguer pl»te (Kigurv -'--1. 

Mathematically, the Bouguer plate is a right circular 

cylinder of height, h, and infinite radius where h correspond.' to 

the elevation of the gravity observation site above sea level. 

The observation site is assumed to be situated at the intersection 

of the axis and upper surface of the cylinder. 
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FIGURE 3-k 

THE BOUGUER PLATE 

[Bouguer plate io shaded) 
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A complete derivation of the gravitational attraction 

of the infinite Bouguer plate is given in Appendix A with the 

result appearing there as equation (A-l6).  It is written here 

as 

gn » 2 » k a a (3.7-12) 

where 

k = gravitational constant 

o = volume density of the rock matter within the Bouguer plate 

h = elevation of the gravity observation above sea level. 

The most  commonly used value for the density factor in 

the Bouguer correction is 2.67 gm/cm3.    This value, when used for 

gravity reduction purposes, represents the average density of the 

sedimentary and crystalline rocks lying between the ground surface 

and sea level;  a value  jf about  2.9 gm/cm3 is needed to represent 

the mean density of the crust  as  a whole  (see tfoollard and Khan, 

1972).     With the value of 2.67 gm/cm3  for density  and the  commonly 

accepted value  for the gravitational  constant,  equation   (3.7-12) 

is  obtained in  its usual  form 

gD = 0.1119 h (3.7-13) 

where h  is  in meters.     Using   (3.7-13), the equations   (3-7-10) 

and   (3.7-11)  now read 

■y       -'-T,   '     ■•■■■-   ' -     -'L Ag_ =  AbD +  O.UI9 h (3.I-.L- 

Ag_ =  Aff    +  0.1119 h - TC (3.7-15) 
r D 

which  are the  forms   in which these relations  are usually  stated. 
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Note that three basic approximations are made when the 

Bouguer correction (3.7-13) is used to compute the gravitational 

effect of the masses above sea level. Namely, these topographic 

masses are assumed to be (l) perfectly flat, (2) of infinite 

horizontal extent, and (3) composed of rock whose density is 

2.67 gm/cm3 throughout. 

The first approximation does not cause appreciable 

error in computation of the topographic gravitational effect for 

areas which are, in fact, essentially flat and planar, e.g.. 

coastal and interior lowlands, platforms, etc., Figure 3-5B. 

In mountainous terrain, however, where the topographic profile 

is not well approximated by the Bouguer plate, Figure 3-5A, 

the terrain r^rection must be applied in order to obtain a 

theoretically correct Bouguer anomaly value, i.e., a value from 

which the gravitational effects of the topographic masses have 

been eliminated completely. 

The second approximation, while having significant 

consequences for the geophysical interpretation of the meaning of 

the Bouguer anomaly, causes only negligible error in the computation 

of the topographic gravitational effect.  If desired, the error 

can be eliminated by application of the small curvature correction. 

The third approximation is actually a strength of 

the Bouguer anomaly since it provides a foundation for analysis 

of the effects of local geologic structure on gravity anomaly 

variations. The analysis is done with re*e"2nce to the geologic 

correction. 

i 

I 
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FIGURE 3-5A 

TERRAIN CORRECTION NEEDED 

FIGURE 3-5B 

TERRAIN CORRECTION NOT NEEDED 

\ mm m II ■^■a—^— 
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TERRAIN CORRECTION NEEüED 

Physical surface 

Bouguer 
plate 

H 

(geoid) 

• 

TERRAIN CORRECTION NOT NEEDED 

^~ Physical surface 

Q 

Sea level 

(geoid) 

V  Bouguer 
/     plate 
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3-7-3 Terrain Correction 

The terrain correction should be used in Bouguer 

anomaly computations whenever the topographic relief in the 

vicinity of the gravity observation point differs markedly from 

the flat planar model implied by the Bouguer plate. 

There are two situations to be considered as shown 

in Figure 3-5A.  Area A, included within the Bouguer plate, is 

above the physical surface of the earth and, therefore, contains 

no rock mass.  On the other hand, the mass contained within area B 

lies entirely above the upper surface of the Bouguer plate. Thus, 

when the attraction of the Bouguer plate is subtracted from 

observed gravity as an approximation of the attraction of the 

actual topography, too much mass is subtracted at A, too little 

mass is subtracted at B, and the resulting anomaly form will not 

be free of topographic effects. 

The terrain correction, when applied, (l) restores the 

attraction of the mass mistakenly removed at A when the attraction 

of the Bouguer plate is subtracted, the restoration of mass beneath 

the point F causing gravity observed at ? to increase, and (2) 

eliminates the attraction of the mass remaining at B after the 

Bouguer plate has been removed.  Since the mass at B exerts an 

upward or diminishing effect on gravity observed at P, its removal 

will cause observed gravity at P to increase. The terrain 

correction, thus, is always positive in the context of equations 

*k rifti HI 
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(3-7-6) and (3.7-7) for continental areas, i.e., when the terrain 

correction is interpreted as a correction to observed gravity in 

the Bouguer reduction. 

For practical computation of the terrain correction, 

the physical surface of the earth in the vicinity of the gravity 

observation point is approximated by a series of horizontal plane 

segments which, together with the upper surface of the Bouguer 

plate, define the upper and lower surface of a series of cylindrical 

compartments radiating outward from the observation point. 

Cylindrical formulas such as (A-l6) of Appendix A, modified for 

application to cylindrical compartments, are used to compute the 

attraction of the mass within each compartment where the elevation 

argument in the formulas is the difference between the elevation 

of the horizontal plane segment and the elevation of the upper 

surface of the Bouguer plate.  The gravitational effects of all 

compartrrents are summed to obtain the final terrain correction 

value. 

The gravitational attraction of the topographic masses 

attenuates rapidly as the horizontal distance from the gravity 

observation point increases. Consequently, the terrain correction 

computation need be carried only a maximum distance of ±66 km from 

the gravity observation point. Masses beyond 166 km in horizontal 

distance, being on the horizon* exert practically no gravitational 

*The attraction of mass on the horizon is predominately horizontal 

(rather than vertical, i.e., gravitational). 

JL -<■— «■MM 
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attraction of the computation point. In many cases, it is 

unnecessary to carry the computation beyond a 20 km radi'j~ from 

the station. Woollard (1962) shows that in general, 95$ of the 

terrain correction value is generated by the masses contained 

within an inner 20 km radius of the observation. Thus, if the 

contribution to the terrain correction from the inner 20 km is 

found to be 20 mgal or less, omission of the area between 20 

and l66 km will cause an error of less than 1 mgal. 

3.7.1+ Curvature Correction 

Because of the earth's curvature, the outer portion 

of the Bouguer plate departs from the earth's surface.  In fact, 

at a distance of 166 kilometers from the gravity observation 

point, the lower surface of the Bouguer plate is more than a 

kilometer above sea level. 

Since topographic mass is actually situated somewhat 

below the outer regions of the Bouguer plate, the vertical 

attraction of that mass is somewhat greater than that predicted 

by the Bouguer plate. The curvature correction accounts for this 

small difference. 

In addition to eliminating the effects of curvature, 

the curvature correction also removes the attraction of that 

part of the Bouguer plate beyond 166 kilometers from the 

observation point. 

The maximum curvature correction value, less than 2 mgal, 

occurs when the gravity observation station lies at an altitude of  about 

2300 meters.  The correction is smaller for lesser or greater elevations. 

i 

1 
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3-7-5 Geologic Correction 

The geologic correction generally is used to obtain 

some insight into local lateral density variations in the upper 

part of the crust—especially those within the sedimentary column. 

Consider first the case of lateral density variations 

within the topographic masses. Figure 3-6 shows a sedimentary 

sequence where the average rock density varies from 2.8 gm/cm3 

within region A through 2.67 gm/cm3 witnin region 5 to 2.6 fWcm3 

within region C. For simplicity, the upper topographic surface 

is assumed to be flat and planar. 

Now examine the result of computing Bouguer gravity 

anomaly values over areas A, B, and C using the usual density 

factor of 2.67 gm/cm3 in the Bouguer correction. Within area B, 

the correct amount of topographic mass is subtracted in the Bouguer 

plate and the Bouguer anomaly profile will be level—assuming, 

of course, that there are no lateral density variations below 

the geoid. Within area A, an insufficient amount of mass is 

subtracted in the Bouguer plate since the actual density of the 

rock matter within A exceeds the density of the Bouguer plate. 

The attraction of the unsubtracted mass remaining within area A 

after the Bouguer correction is made must cause a positive deflection 

or "anomaly" in the Bouguer anomaly profile over area A. 

Looking again at this relation from a slightly 

different viewpoint, the greater mass per unit area within A as 

compared to area B means that observed gravity over A must exceed 

that over B. 

^i^KM« 
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FIGURE 3-6 

THE GEOLOGIC CORRECTION: 

LATERAL DENSITY VARIATIONS 

ABOVE SEA LEVEL 
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Bouguer 
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(s0)A > (g0)B 

Since there are no lateral density variations  in the 

normal earth, then* 

YA=  YB 

And,  since the elevation of area A is the  sane as 

that of area B 

(gB}A =   VB 

(gF)A =   (gF)3 

According to the above and equation (3.7-M, therefore, 

it must be true that 

(AgB>A > (
VB 

The magnitude of the "anomaly," 5Ag , over A and C 

is given by 

6Agn = 2TTK (o - o_)h (3.7-16) 
D D 

where 

0 = actual density of the rock within A or C 

0 = density of rock in the Bouguer plate 
B 

Equation (3.7-16) should be recognized a? a form 

appropriate to computing the attraction of a cylindrical disk of 

infinite radius, height, h, and density, a - 0   . 
h 

•Assuming, of course, that the latitude of A is not greatly 

different from that of B. 
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Equation '3-7-16) shows that the magnitude of the 

"anomaly" over A and C is a function of not only the density 

difference, a - a  ,  but also of the elevation, h. That is, the 
B 

magnitude of the "anomaly" over A or C is correlated with 

elevation. The correlation is direct when a - a is positive, 
B 

inverse when a - a is negative. Suppose the physical surface 
B 

of Figure 3-6 is a normal topographic profile instead of a flat 

plane. Then, if a - a # 0, the local Bouguer anomaly profile 
B 

will he a direct or inverse reflection of that local topographic 

profile. This fact is of importance to the GRADE prediction 

method. 

With the limits 2.2 and 2.9 gm/cm3 for actual rock 

density, then the factor, a - o  , has the limits 
B 

- 0.U7 <  (o - o_) < + 0.23 
B 

Insertion of these limits into  (3.7-16) gives, as 

approximate limiting values 

- 0.020 h < 6Ag_ <_ + 0.010 h (3-7-17) 
B 

The magnitude of the dependence of local Bouguer 

anomaly variations upon local elevation variations (3-7-17) is 

thus much smaller than the magnitude of the dependence of local 

free air anomaly variations upon local elevation variations (3.6-30). 

Further, if o - o = 0, the Bouguer anomaly :.£, independent of 
B 

local elevation variations. This fact is demonstrated further 

in Section 3-7.6. 

*tei 
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The condition, a - a   =  0, can be simulated by use of 
B 

the geologic correction which is given by (3.7-16) with reversed 

sign. 

GC = 2Ttk (o_, - a)h (3.7-18) 

For area A the geologic correction, with h in meters, is 

GCA = 2TTk (2.67 - 2.8)h 

= 0.0U191 (- 0.13)h 

= - 0.005h 

And, for area C 

GCC = 2irk (2.67 - 2.6)h 

= 0.0U191 (+ 0.07)h 

= + 0.003h 

The negative correction, GC , added to observed gravity 

over area A and the positive correction, GC , added to observed 

gravity over area C will cause the Bouguer anomaly profile to be 

level over the entire sedimentary sequence (dashed line, Figure 3-6) 

again assuming that there are no lateral density variations below 

the geoid.  In the case of the real earth, there are density 

variations below the geoid which will cause the Bouguer anomaly 

profile ^o fluctuate.  In this case, application of the proper 

geologic corrections will still remove all correlations between the 

local Bouguer anomaly profile and the local topographic profile. 

Consider next the case of lateral density variations 

just below sea level. Since no mass below sea level is subtracted 

in the Bouguer reduction, the density value used in the Bouguer 

correction is not a factor here. What is important is the density 
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structure implied by normal gravity, namely an average density 

basement rock with no lateral density variations. On the other 

hand, normal gravity is not a factor in analyzing the topographic 

column because the normal earth lacks topographic mass. 

Figure 3-7 shows a sedimentary sequence extending from 

sea level downward a depth, d, to the top of the basement complex. 

The average rock density within this sedimentary sequence varies 

from 2.79 gm/cm3 within region D through 2.jk gm/cm3 within region 

E to 2.63 gm/cm3 within region F. These values reflect the 

study of Woollard (1962) which shows that the value of 2.lh gm/cm3 

is close to the average density for all basement rocks encountered 

in North America. 

Now examine the result of deducting normal gravity when 

the Bouguer anomaly is computed over each of these regions. 

Within areas E, the correct amount of mass is deducted; within D 

too little mass is subtracted causing a positive "anomaly"; and 

within F too much mass is deducted causing a negative "anomaly.'' 

The magnitude of the "anomaly" over D and F is given by 

6AgB = 2Trk (a - a^)d (3.T-19) 

where 

a = actual rock density within D or F 

0 = average density of basement rock as implied by normal 

gravity 

^■»   1 1    •     Mi^M^—i—da 
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FIGURE 3-7 

THE GEOLOGIC CORRECTION: 

LATERAL DENSITY VARIATIONS 

BELOW SEA LEVEL 
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Equation (3.7-19) shows that the "anomaly" is a functlo.: 

of lot'» tr.e density difference, o - n. , and the depth to baser.ent , 

d. The correlation between anomaly and depth to basement is direct 

when a - c. is positive, and inverse when a - a is negative. 

Figure ;—7 shows that the local Bouguer anomaly profile is a direct 

or inversJ  reflection of the buried basement topography. This 

fact, again, is of importance in the GRADE prediction method. 

'.'he factor, a  - a   ,  also may be interpreted as the 

density contrast between rocks within :he sedimentary sequence 

and the underlying basement rock.  In fact, this interpretation 

is desirarle when more complex geologic structures are being 

gravimetr'cally analyzed. 

The geologic correction for the below sea level case 

is given >y 

GC = 2nk (o, - n)d (3.7-20^ 
A 

For area D, the geologic correction, with d in 

meters, is 

GC    = 27ik   {2.1h -  2.79)d 

= 0.0^191  (- 0.05)d 

= - 0.002d 

And for area F 

GC    = 2irk   {2.1h -  2.63)d 

= 0.0U191   (+ C.ll)d 

= + 0.00?d 
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Application of these corrections to observed gravity 

will eliminate the correlation between depth to basement and 

Bouguer anomaly in the case of an undulating basement surface. 

Two different methods have been used for determining 

the geologic correction. One was developed by Woollard (1937, 1938) 

and the other by Nettleton (1939). 

In Woollard's method, subsurface geologic information 

is used to determine the actual mean density for each compartment 

of the Hayford and Bowie (1912) terrain correction zones. The 

density is determined down to sea level or the top of the 

crystalline basement complex.  Examples are given by Woollard 

(1937, 1938) in his study of the Big Horn Mountain-Black Hills area. 

In the density profiling method of Nettleton (1939) 

trial density value" are used along a profile across topographic 

features to determine which density value gives no correlation 

between terrain corrected gravity anomalies and topographic- 

elevations . 

Woollard's method is preferred in areas where the 

topography is of tectonic or igneous intrusion origin. Kettleton's 

method is applicable in areas where the topography is of erosional 

origin except when there is a considerable amount of relief in 

the basement surface underlying the sedimentary strata. Woollard' r- 

method is better in the latter case. 

More complex geological correction computations are 

often attempted.  For example, a hypothetical model of rock 

structure can be set UD, stratified if desired, and exact 

attraction formulas appropriate to the shape of tne structure can 

*h 
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be used to compute the attraction effects of the density con^asts. 

The computed anomaly profiles can be compared to observed Bouguer 

anomaly profiles, and then the structure and density of the model 

can be adjusted within logical bounds until a best fit is obtained 

between the two profiles. The result is a most probable model 

of subsurface rock structure. The remaining unexplained differences 

between the Bouguer anomaly profile and the computed profile can 

be ascribed to lateral density variations deeper within the crust 

and upper mantle. 

With a knowledge of local Bouguer gravity anomaly 

variations, then, the local subsurface geologic structures which 

generate these variations can be deduced. Other information, 

e.g., seismic, geological survey, well logs, Ttc, is always 

necessary as input to enable construction of a first approximation 

and to put logical limits on solutions because the problem has 

no urtque solution. In fact, there are an infinite number of 

subsurface geologic structure arrangements which can generate 

any given Bouguer anomaly profile. 

On the other hand, if the subsurface geologic structure 

is known with reasonable accuracy, the gravity variations generated 

by said structures can be predicted. This problem does have a 

unique solution and is the basis for the local geologic correction 

term used in the NOGAP prediction scheme. 

*l«fc      ■     ^mm—Ü 
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3.7-6 Geophysical Properties cf the Bouguer Anomaly 

The Bouguer gravity anomaly is a useful, easy to 

compute tool for geophysical and geological interpretation as well 

as for gravity interpolation and prediction. Yet, at the same time, 

it is wholly unsuitable for most geodetic applications. This 

seemingly schizophrenic nature of the Bouguer anomaly in due to 

its peculiar geophysical properties. 

Consider, for example, the equation obtained by 

inserting the Bouguer reduction, equation (3.7-1), into the basic 

gravity anomaly relation (3.3-1). The result may be written 

AgB - (gc + gF) - (Y  gT) (3.7-21) 

As was pointed out at the outset of Section 3-6.3 on 

the free air anomaly, the total mass of the earth generates the 

term, (g + g ), the total mass of the normal earth generates the 
U    r 

value, y,  and these two masses are defined to be equal. Therefore, 

the term, (y + 3_) implies the existence of more mass than the 

total mass of the earth.  In consideration of the foregoing and 

equation (3.7-21), it is not at all surprising that the Bouguer 

anomaly is generally negative approximately in proportion to 

the amount of mass subtracted in the Bouguer reduction*; nor is it 

surprising that an anomaly form which is not conservative of earth 

mass should be of little value in applying the integral formulas or 

physical geodesy,  jn the other hand, subtraction of the Bouguer 

*A more convenient geophysical interpretation of this phenomenon 

will be discussed in Section 3.7-6.1. 

«■MMlMMtfft 



reduction is a necessary prerequisite to application of the 

geologic correction—whose value to structural interpretation has 

been discussed in Section 3•7-5• 

Next, consider a highly instructive interpretation of 

the Bouguer gravity anomaly suggested by Bomford (Bomford, 1971). 

Recall that, in the Bouguer reduction, the topography is approximated 

by a circular cylinder of infinite radius which is tangent to 

the geoid at the gravity anomaly computation point and whose 

thickness is equal to the elevation of the point vfhere gravity 

is observed, Note that the curvature of the earth is totally 

neglected in the Bouguer model. 

In the immediate vicinity of the gravity observation 

station, say within a radius of 50 km—about 1° x 1°—the terrain 

corrected Bouguer plate gives an excellent approximation of the 

actual topography such that the gravitational attraction of the 

nearby topographic masses can be accurately removed by the Bouguer 

reduction if the correct density factor is used. 

The inner zone grades outward into an .ntermediate belt 

in which the gravitational effect of the topography becomes small 

both for the real earth and for the Bouguer plate model because 

all masses in both cases are near the horizon. 

Cutside of the intermediate belt the gravitational 

effect or the topography again becomes significant because the 

curvature of the earth causes the topography to be significantly 

below th? horizon of the gravity computation point. On the real 

earth, the gravitaticnal effect of distant topography is nearly 
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cancelled by isostatic compensetion.  In the Bouguer model, 

neglect of curvature means that all distant topography is on 

the horizon and, hence, exerts no vertical attraction component 

at the point where gravity is observed.  In other words, in the 

Bouguer model, the effect of the distant topography is ^ncelitd 

by neglect of curvature. 

It is evident, therefore, that the regional character 

of the Bouguer anomaly differs markedly from the local character. 

Locally, the Bouguer anomal;, is a sensitive indicator of lateral 

density variations within nearby masses.  Regionally, the Bouguer 

anomaly is an indicator of the degree of regional isostatic balance. 

However, since masses located at intermediate distances have little 

effect on the Bouguer anomaly, there is no sharp boundary between 

the local ana regional effects. 

The Bouguer gravity anomaly thus is well suited to 

analysis and prediction in t rms of regional and local components. 

3.7.6.1 Isostasy and the Bouguer Anomaly 

Conüder again the geophysical consequences 

of computing a geologically corrected complete Bouguer gravity 

anomaly.  The Bouguer and terrain corrections subtract the 

gravitational effects of the masses above sea level.  Then, if 

the density factors are chosen properly, all local gravitational 

effects of density variations within the topographic masses and 

sub geoid rocks can be eliminated by the geologic correction. 

Addition of the free air correction and subtraction of normal 

gravity now give a Bouguer gravity anomaly referenced to the 

geoid which is free of near surface geologic effects. 

■f»      •   f^w^—i^Mi 
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Yet, it is an observed fact that no matter 

what "reasonable" density factors are used to compute Bouguer anomalies, 

these anomalies almost always resemble a smoothed mirror image of 

the topography—the higher the regional elevation, the more 

negative the Bouguer anomaly. Note especially that the inverse 

relation between elevation and Bouguer anomaly is a smooth regional 

effect.  Complete Bouguer anomalies do not reflect local topographic 

variations when the proper density factor is chosen for use in the 

Bouguer reduction. 

The strong inverse correlation between 

regional elevation and Bouguer anomaly, evidently, cannot be related 

to near surface density variations—the effects of these were 

eliminated when the geologic correction was applied. The only 

possible explanation is that the negative Bouguer anomalies are 

caused by a regional mass deficiency which exists under the 

continents in proportion to the regional elevation of the overlying 

land mass. This mass deficit is called "compensation." 

Regional Bouguer anomalies can serve as a 

kind of indicator of ehe degree of compensation extant in an area. 

If the regional Bouguer anomaly is more negative than expected 

for a given regional eJ^vntion level, then a condition of 

overcompensation* is indicated. Conversely, if the regional Bouguei 

anomaly is more positive than expected for a /egionaJ elevation 

level, then a condition of undercompensation is indicated. The 

*That is, the gravitational effect of the mass deficit at depth 

exceeds the gravitational attraction of the topographic mass. 

»*■»'        ■ —————id 
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Or 

ricturc1 can be cor.nlicated by the presence of regional abnormal} tier: 

in crustal and upper mantle structure or density.  For example, an 

abnormally dense crustal block can be in complete isostatic 

equilibrium, yet still generate a relatively positive gravity 

anomaly indication which suggests a condition of undercompensation 

(lolizdra. 1972; Woollard, 1969a). 

Now, if the strong inverse correlation 

between regional elevation and regional Bouguer gravity anomaly 

Is  generated by compensating mass, then the lack of such a strong 

correlation must signal a lack of compensating mass.  And, since 

it is observed that local topographic variations are not correlated 

with the geologically corr ;--'ted Bouguer anomaly, it follows that- 

local topographic variations are uncompensated. This same 

conclusion was deduced with respect to local free air anomaly— 

elevation correlations. 

3.7-6.2 Local Variations in the Bouguer Anomaly 

Local variations in the complete Bouguer gravit;, 

anomaly field are very nearly free of correlation with local 

topographic variations. Only a relatively small ar.ount of elevation 

dependt.-nce exists because of local geologic influences. 

Note, however, that simple Bouguer anomalies 

contain a negative bias due to omission of the terrain correction 

ana, to this degree, do depend upon local topography. 

Consider Figure 3-2. If the hill is of local 

extent, it may be treated as an uncompensated feature and equatic: 

(3.6-2M applies for the case of no lateral density or geological 

* mid tm 
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structure variations. For the case where lateral density and 

structural variations do exist, equations such as (3.7-16) and 

(3.7-19) must be considered in addition to equation (3.6-2U), 

(Agp)p = (Agp)Q + 2 ir k a 6h - TCp + TCQ 

Conversion of the above to an expression 

involving the complete Bouguer anomaly is accomplished by 

substitution of (3.7-11) and (3-7-12) which gives 

(AgB)p + 2 TT k a hp - TCp 

= UsB)Q + 2 * k 0 h - TC + 2 w k 0 6h - TCp + TC 

Since 6h = h - h , the above immediately 

reduces to the form 

(AgR)p = (Agß)Q (3-7-22) 

The general validity of the remarkable result 

expressed by equation (3.7-22) is illustrated by the numerical 

example of Table 3-2. 

Thus, the derivation o^ (3-7-22) shovrs that 

the pronounced non-linear variations in the free air gravity 

anomalies due to local topographic variations can be eliminated 

entirely by application of the complete Bouguer reduction. 

It is evident from the foregoing that any 

local variations in the complete Bouguer gravity anomaly field 

must be caused solely by lateral mass variations due to changes in 

density and/or local structural pattern, Fince (l) observed gravi+ 

■ <■* mmmmmmmmmmmam 
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is the integrated effect of mass attraction over a wide area, 

(2) lateral mass variations are mostly gradational, and (3) really- 

sharp anomalies in mass distribution are of limited occurrence In 

sub-geoid local continental geologic structure, it. follows that the 

continental B~uguer gravity anomaly field, in general, is continuous 

and smoothly varying. Thus, Bouguer anomaly values are well suited 

for linear interpolation and for this reason most gravity anomaly 

maps of continental areas depict Bouguer anomalies. Another 

reason for the latter is the simplicity of Bouguer anomaly 

computation ". compared to, e.g., isostatic anomaly computation. 

3.7.6.3 Regional Variations in the Bouguer Anomaly 

The gravitational effect of 'he compensating 

mass distributions generates the observed inverse relationship 

between regional elevation levels and BougU3r anomaly values. A 

useful rathematical expression will now be derived for this 

relationship. 

If the topographic feature of Figure 3-2 

is of regional extent, then this feature may be treated as being 

wholly compensated and equation (3.6-15) applies. 

(AgF)p = (AgF)Q 

This equation assumes a lack of lateral 

density variations between points P and Q other than those associated 

•fith the topography and its isostatic compensation. 

mii 
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Conversion of the above expression to a form 

involving complete Bouguer anomalies is accomplished by substitution 

of equations (3-7-11) and (3.7-12), giving 

(AgB)p + 2 TT k o hp - TCp 

= (AgB)Q + 2 , k a hQ - TCQ 

Or, solving for (Ag£)p 

(AgB)p = (AgB)Q - 2 IT k o (hp - hQ) + (TCp - TCQ) 

Under most conditions, the regional terrain 

correction terms, rCL and TC,., are nearly equal in magnitude and 
r     y 

the term (TCn - TCj will tend to zero. Then, letting 6h = h - h , 

the above reduces to 

(Agß)p = (Agß)Q - 2 IT k a  dh        (3.7-23) 

Considerable care must be exercised in 

interpreting equation (3-7-23) because, although the difference 

between (Ag ) and (Ag ) is actually a function of the differing 
B P       D  Q 

amounts of compensating mass deficiency under P and Q, only the 

topography related quantities a and 6h actually appear in the 

equation itself. Recall the three stated conditions for (3.7-23) 

to hold, namely, (l) the anomaly and elevation values are regional 

values, (2) isostalic compensation is complete under P and Q, and 

(3) there are no lateral mass abnormalities. Under these conditions, 

equation (3.7-23) merely expresses the evident fact that the gravity 

effect of the difference in compensation between P and Q is equal (but 

opposite in sign) to the gravity effect of the difference in 
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topographic nass between P and Q. 

For complete compensation to exist, the 

regional values Ag and 6h must represent surface areas of 3° x 3° 
c 

or larger in dimension (Woollard, 1969a). The "normal" value of 

(3-7-23) in such cases is found by inserting the density factor used 

to compute the Bouguer anomalies (Ag ) and (Ag L. For the usual 

factor, c = 2.67 gm/cm3, equation (3.7-23) becomes 

(AgE)p = (AgB)Q - 0.1119 Sh 

If the regional values, (Ag ) , (Ag ) . and 
a i By 

<5h, represent areas smaller than 3° x 3°, isostatic compensation 

cannot be assumed to be complete. Also, lateral mass abnormalities 

may exist. Then (3-7 -23' cannot be evaluated in its present form 

because the gravity effects of the topography and compensation, in 

general, will not be equivalent. Thus, it appears that ar 

equation involving quantities related to the amount of compensation 

present must replace (3-7-23). Unfortunately, such an equation can 

be derived only with reference to an assumed isostatic model. 

In order to avoid the use of an assumed 

isostatic model, consider converting (3.7-23) to a more general 

form which eliminates specific reference to the topographic 

quantity, o, which may have no simple relationship to the amount of 

compensation present in an area. 

Let Q be located at sea level.  Then h. = 0, Q 

oh = h , and (3-7-23) becomes 

(Vh=hp 
= (Vh=0 - 2 n K o hp       (3.7-2U) 

«* 
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Then, arbitrarily rewrite (3-7-2U) in the more 

general form 

where 

AgB = a + eh (3.7-25) 

Ag_ -+ (Ag„), ,  = regional Bouguer anomaly 
D ü n=n- 

for any continental area, P, whose regional elevation above sea level 

is h = hp, 

a •+ (Ag.,), _Q 
s a sea level regional Bouguer anomaly value 

representing the region PQ 

ß = a coefficient representing the regional Bouguer 

anomaly gradient with respect to elevation 

within the region PQ 

The topographic quarr ity, h, still appears in 

equation (3«7-25). However, it is very reasonable to suppose that 

the regional compensation can be expressed as a linear function 

of regional elevation level. 

If (l) the degree of isostatic compensation and 

(2) any regionally anomalous lateral mass distribution structure 

of the crust remain essentially constant over a particular regional 

geologic or tectonic entity, then it follows that the values, a  and 

ß, must also remain essentially constant over t'ixt regional structural 

entity. Then values for a and ß can be determin2d empirically by a 

linear regression of Ag^ and h over the region covered by that structural 
B 

entity. 

It is a unique property of the Bouguer anomaly 

that, within most areas of homogeneous structural characteristics, 

the value of the constant, ßD, determined with reference to regional 
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Ar„ and h values is very similar to the value of the constant, ß , 
i'j r 

determined with reference to point Ag and h values,  (iiote that 
B 

this similarity is not a property of the corresponding free air 

anomaly relationships.) However, the interpretation of (3-7-25) 

is slightly different depending upon which type of data, point 

or mean, is regressed to obtain the a and ß constants. 

In one case, (3-7-25) may be written 

Ag"E = ap + 8p h (3.7-26) 

where 

AgD = a 1° x 1° mean Bouguer anomaly b 

h = the 1° x 1° mean elevation corresponding to Ag a 

ap and ß are determined by a linear iegression of point elevation 

and point Bouguer anomalies within the 1° x 1° area represented by 

Ag-^ and h. 

Oince the correlation between Bouguer anomalies 

and elevation defined by (3-7-25) is a regional one, then (3-7-26) 

is a valid relation between the regional values Ag and h even 

though the constants otp and p are determined from point data. 

In fact, (3.7-26) cr.n be used to ri edict valid 1° x 1° mean anomalie: 

when h, a , and ß are known for the 1° x 1° area in question. 

The constants, a and ß , will vary somewhat 

from one 1° x 1° area to the next. The variation will be small 

when both 1° x 1° areas are similar in regional structure, larger 

when the regional structure is dissimilar. These variations are 

regional with respect to the point anomalies—buc local with 

resüect to the i° x 1° mean anomalies. 

■ 1«fc    1   ■       ^mmm^tmm^amam^^mm^mtmm* 
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In the other case, (3.7-25) may be dritten 

Agß = aR + ßR h (3.7-27) 

where 

AgR and h are the same as in (3.7-26) 

öL, and ß_ are determined by a linear regression of mean elevation 

vs. 1° x 1° mean Bouguer anomalies within areas whose regional 

structure is similar to and vhich are continuous with the 1° x 1° 

area corresponding to Ag anJ a. 
D 

The constants, OL, and ß_, can be evaluated 

for most areas of uniform regional structure within the continents. 

Recently determined examples, written in the form of equation 

(3.7-27), include: 

AREA EQUATION 

Alpine Geosyncline, Europe Ag„ = - 0.101* h + 21.h 

Cordillera, W. Canada AgD = - 0.078 h - 7.1 
D 

Red Sea Äg_ = - O.üA h - 7-0 
D 

Trans Urals AgD - - 0.090 h - 2.k 

In the above equations which, incidentally, 

can be used to predict the regional part of valid 1° x 1° mean 

anomalies within each area, Ag is the regional Bouguer anomaly 
B 

(milligals) represented by the 1° x 1° mean value and h is the 

regional elevation (meters) represented in some cases by the 

1° x 1° mean value, in other cases by the 3° x 3° mean value. 

Other examples, similar to the above, are given by Woollard 

(1969a, 1968b). 
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Application of (3-7-26) for lc x 1° mean 

rravity anomaly prediction is essentially an interpolation 

process which nay be used when the 1° x 1° area for which the 

prediction is to be Tiade contains a fair to good density and 

distribution of observed gravity data. The method fails when 

elevation differences within the 1° x 1° area are too small to 

enable definition of the regional elevation-anomaly relationship, 

or when the gravitational effects of local structural variations 

within the 1° x 1° mask the regional elevation-anomaly relationship. 

In fact, the constants, a and 8 , of equation (3-7-26) will 

always be less well defined than the constants, a and 6 , of 
n      n 

equation (3-7-271 because of the larger gravitational effects 

of local structural variations on point anomalies as compared to 

mean anomalies. 

Application of (3-7-27) for 1° x 1° mean 

anomaly prediction is essentially an extrapolation process 

which may be user, when the 1° x -1 ° area for which the prediction 

is to be made contains few or no gravity observations.  However, 

sufficient gravity data must be available in adjacent 1° x 1° areas 

with similar structure to enable definition of the « and ßr R     H 

values.  Corrections for some kinds of local and regional 

structural variations must be made when (3-7-27) is used for 

gravity anomaly prediction. Guch corrections are unnecessary 

vnen (3-7-26) is applied for 1° x 1° mean anomaly prediction. 



9»* In addition to the elevation dependent 

regional variations discussed above, Bouguer anomalies are also 

subject to regional variations in geologic and crustal structure. 

Examples of factors causing such variations were mentioned in 

connection with the discussion on regional variations in the 

free air anomalv. 

3.8 Isostatic Anomaly 

3.B.1 Elements of the Isostatic Anomaly 

As was ' le case with the free air and Bouguer anomalies, 

computation of an isos'' :  gravity anomaly 's essentially a two 

step process.  In the irst step, all masses above sea level 

the topographic masses) are removed and then redistributed beneath 

the geoid in such a manner as to eliminate the negative gravitational 

effects of the compensating mass deficiencies. The mass 

redistribution is carried out with reference to (l) an assumed 

model of earth structure and (2) a specific concept of the nature 

of -.he isostatic mechanism. 

At the completion of the first step, which removes 

both the topography and its compensation, the gravity observation 

site is situated in free air at an elevation, h, above sea level. 

In the second step, gravity is lowered through free air to sea 

level. 

The gravitational effects of each of the two steps are 

determined computationally and combined to obtain the isostatic 

reduction, (5g) 
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[6«0)j = - 8T + gj 
+ gF (3.8-1) 

where 

g = isostatic correction 

Sm and g are the same as defined for equation (3-6-2) 
i     F 

For the isostatic reduction, the term g includes the 

complete Bouguer correction civen by equation (3.7-5) to which the 

curvature correction, CC, has been added. The term, g , is the 
r 

free air correction given by (3.6-13).  Insertion of these relations 

into (3.8-1) give* for the isostatic reduction 

(6gQ)1  = - gß + TC + CC + gj + gp      (3.8-2) 

such that, by (3-3-1), the isostatic anomaly, Ag , is 

Agj «gq-gg+TC+CC+gj+gp-Y (3.8-3) 

Comparison of (3-7-7) to (3-3-3) shows that the relation 

between the complete Bouguer anomaly and the isostatic anomaly is 

Agj = Agß + gj (3.8-U) 

where the small curvature correction term has been dropped. 

Equation (3•8-U) shows that the Bouguer anomaly is actually one 

limiting case of the isostatic anomaly because, when the topographic 

mass is moved to infinity in the Bouguer reduction, then gT = 0 

and Ag = Ag .  Incidentally, the free air anomaly is another 
I     B 

limiting case of the isostatic aaomaly.  In this case, the 

topographic mass, moved just underneath the geoid, is essentially 

still topographic mass in its gravitational effects. Then, 

gT = gT, and Agx = Agß + gT = Agp 

■1—      m      M—^^M 
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Insertion of (3.7-11) and (3.7-12) into (3.8-M gives 

the relation between the free air anomaly and the isostatic anomaly 

Agj = AgF - 2 7T k o h + TC + g (3.8-5) 

3.8.2 Isostatic Correction 

The isostatic correction includes (l) the gravitational 

attraction at the observation site, P, of the volume mass placed 

beneath the geoid *ii accordance with a particular earth model and 

isostatic theory, said mass being equivalent to the topographic 

masses removed by the Bouguer reduction; plus (2) the gravitational 

attraction at P of distant topography and its compensation. 

The basic purpose of any isostatic correction is to 

redistribute all topographic mass removed by the Bouguer 

leduction in order to (l) cancel the negative gravitational 

effects of the mass deficiencies which compensate the topography, 

and (2) eliminate any correlation between the resulting isostatic 

anomalies and elevation variations. Actually, the second of the 

foregoing is a consequence of the first. 

Ihere are several varieties of isostatic correction 

in common or occasional use, each depending upon a different earth 

model and/or isostatic concept, but all purporting to accomplish 

the same purpose. The problem here is that the exact nature of 

the isostatic mechanism and structure of the earth's interior is 

still a matter of conjecture. Therefore, any earth model and 

isostatic concept used is, at best, only an idealized approximation 

of the truth. Moreover, each variety of isostatic anomaly must 
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have a somewhat different geophysical meaning, and any detailed 

geophysical interpretation of isostatic gravity anomalies must 

be made within the context of a given model and mechanism 

assumption.  Fortunately, a general discussion of isostatic 

anomaly properties can be made without specific reference to a 

particular model or isostatic concept. 

Most geodesists feel that, for geodetic purposes, it 

does not matter which variety of isostatic correction is used. 

However, the same kind of isostatic correction must b^ used in a 

mathematically precise and self-consistent manner to reduce all 

gravity data to be applied in deriving the geodetic products 

desired. 

The most commonly used concepts of the isostatic 

mechanism are the Pratt-Hayford and Airy-Heiskanen systems. Some 

geophysical properties peculiar to each of these systems, as well 

as the idealized structural models associated with them, are 

discussed in Section 3.10. A discussion of the rather complex 

formulas and reduction procedures for these systems is given in 

Heiskanen and Vening Meinesz (1958), Heiskanen and Moritz (1967), 

and other sources. 

Both Pratt-Hayford and Airy-Heiskanen isostatic 

systems require the topographic masses to be moved to considerable 

depths beneath sea level.  (The > masses in their new location 

may be called compensating masses   In the most commonly used 

Airy-Heiskanen model, all such masses are relocated at depths 

greater than 30 kilometers and up to about 60 kilometers below 
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sea level, the maximum depth being proportional to the regional 

elevation levels.  In the most commonly used Pratt-Hayford 

rue dels, the masses are evenly distributed between sea level 

avt'-i depths of 56.9, 96, or 113.7 kilometers. 

The much greater depth of the topographic masses 

after redistribution as compared to these masses in their 

original above sea level location means that the nature of the 

gravitational effect of the deep seated compensating masses on 

a surface gravity observation must be greatly different, than 

that of the topographic masses in their original near surface 

location. In fact, the gravitational effect of the topography 

is local and immediate, while the gravitational effect of the 

compensation is regional and distant. 

Consider Figure 3-8. The vertical component of the 

gravitational attraction, g , of any mass element, M, varies in 
Li 

inverse proportion to the square of the distance between M and 

the observation site P, and in direct proportion to the cosine 

cf the angle, 6, subtended at the observation point by the vector, 

g7, and the line connecting the observation site to the mass 

element. 

g,«^ (3.8-6) 

Now, the topographic masses directly beneath P have 

a very small 9 and D, hence, a large vertical gravitational 

effect at P. But 8 becomes very large for topographic mass 

elements only a small horizontal distance from F, and as M 

approaches the horizon, 9 rapidly approaches 9Ü0 and the vertical 

■to* m     ^mm^ammftmmammmt^ 
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gravitational effect of M rapidly approaches zero. Thus, 

topographic masses nearby P have a large gravitational effect 

at P, but topographic masses even a relatively small horizontal 

distance away from P have only a minor gravitational effect at P. 

Compensating masses directly beneath P, although also 

having a small G, have a much larger D than the topographic masses. 

Hence the gravitational effect of compensating mass nearby P is 

small. As the horizontal distance between M and P increases, 6 

increases more slowly than for topographic masses at the same 

horizontal distances (and cos 9 does not become vanishingly 

small).  Hence the gravitational effect of compensation can be 

expected to accumulate slowly over a rather wide range of 

distance from P.  (A detailed discussic-i of this effect is given 

by Hayford and Bowie, 1912). 

Table 3-3, based on graphs in Woollard (1959) shows 

the relative gravitational effects of topography and compensation 

which exists at various distances away from the point of observation. 

For example, the table shows that 90 percent of the total 

gravitational attraction (vertical component) at P of the 

topographic masses is generated by those masses within 10 

kilometers of the obser\dtion point (but only h%  of the total 

gravitational attraction [vertical component] rj.z  P of the 

compensating masses is generated by such masses within a 

horizontal distance of 10 kilometers from the observation point). 

This means that local topographic variations can, in fact, be 

treated as being virtually unco;apensated locally—as was done 

during the discussions of the free air and Bouguer anomalies. 
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FIGURE 3-8 

COMPARISON OF GRAVITATIONAL EFFECTS 

TOPOGRAPHY VS. COMPENSATION 

M_ = Element of topographic mass 

IA    = Elemert of compensating mass 

D = Distance from observation point, P, to topographic mass element, 

D = Distance from observation point, P, to compensating mass element, 

6^ = Angle between vertical gravity component, g , and line connecting 
1 it 

ob servation point, P, with topographic mass element, M_ 

6 = Angle between vertical gravity component, g , and line connecting 

observation point, P, with compensating mass element, M 
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TABLE 3-3 

RELATIVE GRAVITATIONAL EFFECTS 

OF TOPOGRAPHY AND COMPENSATION 

AT VARIOUS DISTANCES FROM GRAVITY OBSERVATION POINT 

D  = horizontal distance from the point of observation in 'fm 

T = percent of total topographic gravitational attraction (vertical 

component) generated by topographic masses within the indicated 

zone 

C = percent of total compensation gravitational attraction (vertical 

component) generated by compensating masses within the indicated 

^one 

ET = cumulative percentages of T 

^C = cumulative percentages of C 

sm = small 

■<■»        ■ I I ^—^a^^^^^^^^^g 
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The toMe also shows that nearly 100 percent of the 

topographic gravitational effect is generated by masses within 50 

kilometers distance (about a 1° x 1° area) from the observation 

point—but only 50 percent of the total compensation effect. Even 

at a distance of 166 kilometers (about a 3° x 3° area), only 79 

percent of the total compensation effect has been accounted for. 

This means that about 21%  of the compensation is due to distant 

masses, and that a 3° x 3° area is about the smallest area within 

which the topography can be considered to be about 80 percent 

compensated locally. 

Because of the fact that the gravitational effects 

of the compensation are generated by masses which are mostly rather 

far from the observation point and consist of an integration of 

small components over the whole earth, it follows that the isostatic 

correction, g , is a comparatively slowly varying quantity.  Indeed, 

the difference between two gT values at two points fairly close 

together (within a local area) will be close to zero. This is 

true because nost of the comDonents largely overlap for the two 

computations. 

3.8.3 Geophysical Properties of the Isostatic Anomaly 

Isostatic gravity anomalies can be a useful tool for 

geophysical and geological interpretation. They interpolate we^i 

and are also suitable for geodetic applications. However, 

computation of isostatic anomalies is difficult and time consuming, 

and isostatic anomalies cannot be predicted easily using geophypicai 

methods. The latter is true because isostatic anomalies, in geners.:., 

—^lM 
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tend to be uncorrelated with elevation variations. The isostatic 

anomalies are discussed here mainly because of the insight they 

provide to the types of anomalies which more readily can be 

predicted using geophysical methods. 

Among the advantages of the isostatic anomaly form is 

that it is conservative of mass. Consider equation (3.8-3) 

written ia the form 

Agj = (?0 + sF) - y  - (gB - 1C -  CC) + gj 

Recall that the term, (g + g ), is generated by the 
U     r 

total mass of the real earth and that the term, y,  arises from 

the total mass of the normal earth, these two masses being equal 

by definition. The topographic masses within 166 kilometers from 

the point P, for which AgT is being calculated, generate the term 

(gn - TC - CC), and these masses moved to locations beneath the 
D 

geoid to counteract the compensating mass deficiencies generate the 

major portion of %^, the moved masses being equal to the topographic 

masses removed in the Bouguer reduction. The balance of g is 

generated by the effects of distant topography and its compensation, 

i.e., all topography and compensation mass deficiencies located 

more than 166 kilometers from P. Thus, the isostatic anomaly, 

like free air anomaly, is conservative of mass and useful for 

geodetic as well as geophysical purposes. 

3.8.3.1 Isostasy and the Isostatic Anomaly 

The topographic masses, removed in the 

Eouguer reduction, are replaced beneath the geoid by the isostatic 

correction in such a way that the negative gravitational effec s 

tiM 
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of the compensating mass deficiencies, as reflected in the regionally 

negative Bouguer anomalies, are cancelled. Note carefully that 

all of the mass removed by the Bouguer reduction is fully restored 

by the isostatic correction. Thus, if a topographic feature is, in 

fact, completely compensated, the positive effect of the mass 

restored by the isostatic correction will exactly cancel the 

negative effect of the compensating mass deficiencies, and the 

resulting isostatic anomaly will be equal to the free air anomaly 

less local topographic effects. A positive isostatic ar.oraaly 

suggests an exct.-.s of topographic mass over compensating mass 

deficiency, and a negative isostatic anomaly suggests an excess 

of compensating mass deficiency over topographic mass. The 

actual situation is complicated by differences between reality 

and the isostatic concept and earth model used in a particular 

isostatic reduction. 

3.8.3.2 Properties of Free Air and Bouguer Anomalies 

as Deri;ud from Isostatic Anomaly Relationships 

Once again, consider Figure 3-2.  If the 

degree of compensation under both the topographic rise and adjacent 

lower areas is the same, and there are no lateral density variations 

between P and Q other than those due to topography and its 

compensation, then it must be true that 

(Agx)p= (Agl) (3.8-7) 

A&J 
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Expanding by (3.8-3) 

(g0)p - (gB)p + TCp + CCp + (gl)p + (gF)p - Yp 

VQ - Vq + TCQ + CCQ + Vq + VQ - \ 
(3.8-8] 

Since Agp = gQ + gp - y, then 

(AgF)p- (gB)p+-TCp + CCp+ (g][)p 

= (Agp)Q- (gB)Q + TCQ ♦ CCQ ♦ (gj)Q 

And, since g_ = 2 IT k a  h, 6h = h - h ; and 

dropping the small rC terms, 

(Agp)p - (Agp)Q = 2 ir k a  6h - TCp + TCQ   (3.8-9) 

- [(gT)p - (gj)Q] 

Note that equation (3.3-9) can also be written 

in the more general form 

(AgF)p - (AgF)Q = (gT)p - (gT)Q - [(g:)p - (gx)Q]  (3.8-10) 

Equation (3.8-9) is the general form for 

the specific regional relations (3.6-32), (3-6-33), and (3.6-3*0 • 

Equation (3-8-9) shows that for the condition 

(3.6-15) 

(AgF)p = (Agp)Q 

to hold, it is necessary that the difference between the attraction 

of the topography at P and Q must be equal to the difference 

betveen the attraction of the compensation at P and Q, that 

2 TT k o 6h - TCp + TC - (gj)p - (gj)       (3.6-11: 

*■■ m 
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Equation (3.8-11) is a most reasonable 

condition for the existence of a constant degree of isostatic 

compensation at P and Q. 

Equation (3-8-9), although derived for 

regional gravity relations, can he used to illustrate why local 

free air gravity relations depend heavily on local elevation 

variations. Within a local area, the topography related term, 

2 IT k o fib, varies as rapidly as the topography varies. However, 

the compensation related term, (gT)p - (sT)Q, varies rather slowly 

and is close to zero when P and Q are nearby. Thus, it is 

mathematically impossible for local topographic variations to be 

locally compensated.  In fact, as 

(Ag:)p - (Agx)Q - 0 

then (3.8-9) reverts to the relation (3-6—2U) previously derived 

for the local free air anomaly relationship 

(AgF)p - (Ag?)Q = 2 v  k 0 6h - TCp + TCQ 

Thus, the local free air anomaly relationship 

is actually just  a special case of the general free air anomaly 

equation  (3.8-9).     Next,  insert the relation 

A% = g0 - 6B 
+ TC + CC + gp - Y 

into  (3.8-8) to obtain 

(VP"  (VQ = -  [{h]?-  UI}Q.] (3-3"1?) 
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Equation (3.8-12) is a more precise version 

of (3.7-23), and shows that the regional Bouguer anomaly is, in 

fact, a measure of compensation. Again, (3.8-12) applies for 

the regional case. For local Bouguer anomaly relations, the right 

side of (3.8-12) approaches zero, and the equation reduces to 

the local relation (3-7-22) 

(AgB)p = (AgB)Q 

Hence, the local Bouguer anomaly relation is 

also just a special case of the general Bouguer anomaly equation 

(3.8-12). 

Now, insert (3.8-5) into (3.6-15) which gives 

the regional relation 

(Agl)p + 2 « k o hp - TCp - (gl)p 

" SV 2 . k o hr TCQ - (Sl)Q 

As before,  6h = hD - h  , and after some 

rearrangement, 

(AgT)p -  (AgT)Q = - 2 7T k a «h + TCp - TCQ +  [(g].)p -  (gj)Q]     (3.8-13) 

Note that the right side of (3.8-13) for 

the isostatic anomaly is the negative equivalent of the right side 

of (3.8-9) for the free air anomaly. In the case of the free air 

anomaly, the topography is condensed into a surface layer on the 

geoid wh-re it still has a positive effect on the observed gravity, 

whereas the negative gravity effect of the compensating mass 

deficiency remains unaltered. In the case of the isostatic anomaly, 

«iM m-^ 
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the topographic mass is removed by the Bouguer reduction causing 

a negative effect on obser/ed gravity, and restored beneath the 

geoid to cancel the compensating mass deficiency, causing a 

positive effect on observed gravity. 

Note also that, since the Bouguer reduction 

is applied to compute the isostatic anomaly, the geologic correction 

applies equally to both anomaly types. 

In (3.8-13), suppose the point Q is at sea level. 

Then, h = 0, and 5h = hp. Also, there is no topographic mass above 

Q to be redistributed beneath tie geoid. Therefore, (gT)n can only 

contain the effects of distant tciography ar.d its compensation. Thus, 

(AgA=h = UgI}h=0 - 2 n k a hp + TCp - TCQ + [(g].)p - DTCQ] (3.8-lU) 

The relative complexity of the above and the fact 

that the compensation related terms tend to cancel the elevation 

related terms suggest that no simple relationship of the form Ag = 

a + ßh can be used to represent isostatic anomaly variations. 

A slight rearrangement of (3.8-lU) gives the form 

(Vh=hp - 
(gI>P = [(Vh=0 - DTC] ~ 2 * k ° hP + TCP " TCQ 

By (3.8-U), the above reduces to 

(Vh-h = [UgI}h=0 * DTC] ' 2  * k ° hP * TCP " TCQ   (3-8"15) 

Comparison of (3.8-15), (3.7-2U), and (3.7-25) 

shows that the a constant in the relation 

Ägß = o + ßh 

is a form of sea level isostatic anomaly which lacks distant 

topography and compensation effects. 

Next, insert (3.8-5) into the local 

relationship (3.6-2U) to obtain 
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(Agj)p + 2 i k o hp - TCp - (gz)p = (Agj)Q + 2 * k 0 hQ 

" TCQ " ^Q + 2 TT k 0 (^ - hQ) - TCp + TCQ 

The above reduces to 

(Agl)p - (Agj)Q = (6l)p - (gl)Q 

But, for the local situation,  (gj)p -  (ß-r)Q "* 0> 

Therefore, the local isostatic anomaly relationship is, simply 

(&gl)p =  (AgJQ (3.8-16) 

Now, (3.8-16), derived for a local situation, 

is an equation which guarantees that the same degree of isostatic 

compensation exists at P as does at Q. Yet, in the local case, 

the topographic feature at P cannot possibly be compensated 

locally. The apparent contradiction can be resolved only if 

isostasy is a condition with regional, not local, applicability. 

In other words, (3.8-16) says only that the same degree of 

regional isostatic compensation exists at both P and Q. This is 

most reasonable if P and Q are close together within a local area. 

3.8.3.3 Properties of the Free Air Anomaly With 

Terrain Correction as Derived From Isostatic Anomaly Relationships 

Equation (3-8-9) may be written in the form 

(AgY)p - (Agy)Q = 2 IT k a 6h - [(g][)p - (gz)Q]     (3.8-17) 

where the expressions 

(Agy)p = (AgF)p + TCp 

(3.8-18) 

represent the free air anomaly with terrain correction at points P 

(AgY)Q = (A6F)Q * TCQ 

mid 
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and Q, respectively. This anomaly form, sometimes called the Fjye 

anomaly, is often used in applications of Molodenskiy's solution 

to the problems of physical geodesy. 

For the local situation where (gj)p - (ST)Q "* 0' 

equation (3.8-17) reduces to 

UgY)p - (Agy)Q = 2 TT k o 6h (3.8-19) 

The right side of (3-6-19) is the difference 

in gravitational attraction between two horizontal plateaus 

(Bouguer plates), one with elevation, hp, and the other with 

elevation, h.. At first glance this peculiar anomaly form may 

seem to have some application for geophysical gravity prediction 

because, for the case of Q at sea level, (3.8-19) becomes 

(Vh-hp= (Vh=o + 2,kahp 
which is rigorously in the form 

Agy = i)/ + ioh 

(3.8-20) 

(3.8-21) 

From a geophysical viewpoint, however, it is 

difficult to understand why the free air anomaly with terrain 

correction has achieved ready acceptance for eeodetic applications, 

Insertion of the definition (3.8-17) into the basic free air 

anomaly relation (3.6-5) gives the equation 

Agy = (gQ + gp) - (Y - TC) (3.8-22) 

Recall hat the total mass of the real earth 

generates the term, (g + g_,), the total mass of the normal earth 
0   r 

generates the value, Y, and these two masses are defined to be 

equal. Therefore, the term, (Y - TC), implies the existence of 

less mass than the total mess of the real earth! Anomaly forms 
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which are not mass conservative are usually avoided for geodetic 

application. 

Equation (3-8-22) shows that the anomaly, Ag , 

will tend to have a positive bias in areas of rugged topography 

where TC is large—much as the Bougujr anomaly has a negative bias 

in mountainous areas. Thus, the regional form (j.8-17) has no 

isostatic significance and is difficult to interpret from a 

structural standpoint since the topographic term has a positive 

bias and the ma^nit^de of the bias is solely a function of the 

ruggeaness of the local terrain.  Consequently, it appears most 

unlikely that Ag is a useful form for gravity prediction. 

3•9 Unreduced Surface Anomaly 

The unreduced surface anomaly, £g_, defined by 

Ags = gQ - Y (3.9-D 

is not in the same class as the gravity anomaly types previously 

discussed because the reduction to sea level, 6g , is omitted. 

It has no geodetic value on the continents, and never before has 

been used for geophysical analysis. 

There are two ways to view the unreduced surface anomaly. 

One is that, since g applies at the earth's surface and y 

applies at sea level (technically, at the ellipsoid surface), 

then Ag_ is really undefined since its point of application is 

ambiguous. The second view, more suitable for geophysical purposes, 

is that the only purpose of Y in (3-9-1) is to serve as a kind of 

latitude correction which removes the syrt^natic gravitational 

hiflft 
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effects of the earth's flattening from observed gravity. Using 

the latter interpretation of y> then variations in Agc are 

tantamount to variations in observed gravity caused by mass 

distribution irregularities in the real earth. 

The normal regional relation for the unreduced surface anomaly 

is given by equation (3.6-18) 

(Ar   = (ASS)Q ~ 0-3036 6h (3-9-2) 

which, if Q is take    sea level, is rigorously in the form 

(Ags) = £ + nh (3.9-3) 

where the constants, £ and n, may be determined by a linear 

regression analysis of mean values within a region of homogeneous 

structure. 

Using equations (3.6-32), (3.6-33), and (3.6-3M and the 

difference between (3-9-2) and (3-6-15), estimated average regional 

relations between unreduced surface anomalies and elevations within 

the United States, based upon 1° x 1° mean values, are 

Ägg = + 18 - 0.0U12 H    0 £ H <_ 200      (3-9->0 

Agg = - 3 - 0.300 H     200 <_ H <_ 1800   (3-9-5) 

Ägg = - 7k  - 0.262 H    H > 1800        (3-9-6) 

where H = 1° x 1° mean elevation in meters. 

The normal local relationship between Ag„ and elevation is 

given by equation (3.6-23). 

(Agg)p = (Agg)Q - 0.3086 6h + 2 IT k a 6h - TCp + TCQ (3.9-7! 

m '—        - __^-^»——^.^ 
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'«hich, if Q is taken at sea level, can be written in the form 

(Agg)p = c + 9h (3.9-8) 

Using the limits of 2.2 to 2.9 gm/cm? for density, 0 to 0.05 

ingal per meter for the terrain corrections, and assuming the free 

air gradient to he constant, then the limits on 6 are 

- 0.266H < 6 < - 0.1370 (3.9-9) 

Since,  for the case of complete compensation,  6 = - 0.3086, 

then a more comprehensive limits statement is 

0.3036 < 6 < - 0.1370 (3.9-10) 

Empirical tests in the United States suggests that a good 

average value for 0,  using point data,  is   (Voss, 1972) 

0 = - 0.2287 

Relation (3.9-M gives a value for 6 which lies outside of 

the limits (3.9-10). However, (3.9-*+) is based upon the free 

air anomaly relation (3.6-32) which, as has been mentioned 

previously, was very poorly defined. 

3.10 Isostatic Models, Mechanisms, and Analysis 

3.10.1 Isostasy 

Isostasy refers to a state of equilibrium in the 

outer parts of the earth in which (l) the land masses which extend 

above sea level are counterbalanced by a compensating mass deficiency 

beneath sea level, and (2) the ocean basins which contain low density 
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water are counterbalanced by a compensating mass excess beneath 

the ocean floor. 

The general validity of the isostatic principle 

has been established conclusively using purely geodetic arguments. 

For example, the fact that free air anomalies are largely 

uncorrelated with regional elevation changes can be cited as 

evidence of the existence of regional isostatic balance. The 

reader is referred to Heiskanen and Vening Meinesz (1958) for 

free air, Bouguer, and isostatic gravity anomaly statistics 

which demonstrate that, on a regional basis, the mountains and 

oceanic basins are very close to being in complete isostatic 

equilibrium. 

Some departures from regional isostatic balance do 

exist, for example, recently deglaceated regions. Also, the crust 

of the earth appears to have sufficient strength to maintain 

local mass distribution variations such that the local density 

and topographic irregularities are largely uncompensated. The 

strong correlation between free air anomalies and local elevation 

variations, for example, proves that local topographic irregularities 

are uncompensated. 

The exact physical mechanisms of isostasy are, as 

yet, unknown. However, there are a number of isostatic theories 

which probably provide at least a good approximation of the 

isostatic mechanisms. Each of these theories specifies an exact 

manner in which the compensating mass deficiencies or excesses 

are distributed within the earth. One such theory must be adopted 

and used as a basis for determining the isostatic correction in 
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isostatic anomaly computations and, in general, for estimating 

the gravitational effects of the compensating masses. 

The two "classic" isostatic theories are those of 

J. B. Pratt and G. B. Airy. Both date from 1855. 

3.10.2 Pratt Isostatic Theory 

In the Pratt isostatic system, the deficiency of 

nass beneath the land areas and the excess of mass below the 

oceanic areas are evenly distributed between ground or sea floor 

level and some depth, called the depth of compensation, wher? 

isostatic equilibrium is complete.  It follows that each column 

of matter with unit cross sectional area, extending to the earth's 

surface from the depth of compensation, contains equal mass. 

Equal mass above the level of compensation in 

the unit area crustal columns means that the pressure must be 

equal everywhere at the level of compensation.  Indeed, the 

meaning of isortasy is "equal pressure." 

Pressure is defined as force per unit area, 

F 
P = (3.10-1) 

where 

P = pressure 

F = force 

A = area 

Force, in turn, is defined as the product of mass 

and acceleration; in this case, the acceleration due to gravity 

F = mg (3.10-2) 
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'here 

m = mass 

g = gravitational acceleration 

and mass is the product of volume and density 

m = Va (3.10-3) 

where 

V = volume 

a = density 

Therefore, combining the above equation, pressure 

is given by 

P = ^ (3.10-M 

Consider a series of columns with unit cross 

sectional area extending from the level of compensation up to 

the surface of the earth, Figure 3-9- The upper surface of 

column S is at sea level and its height, hc, is equivalent to b 

the distance from sea level to the depth of compensation. 

Column P stands 'beneath a mountain area, and the elevation 

of its upper surface above sea level is Ah = h - h^. Column Q 

stands beneath an oceanic area whose water depth is hn - hc. 

Suppose the pressure is equal at the depth of 

compensation for all columns. Then 

P = P = P 
S   P   Q 

or, using (3.10-U) for columns P and S 

Vsgs V
PVP 

(3.10-5) 
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Since the volume of each column is the product of 

its cross sectional area and height, h, 

V = Ah (3.10-6) 

then (3.10-5) becomes 

Vsgs = VPS
P (3'10-7) 

Assuming that the acceleration of gravity is constant 

at the level of compensation leaves 

VS'VP r-10-8) 

Equation (3-10-8) shows that the density of a Pratt 

crustal column is inversely proportional to its height. Thus, 

column P has a lesser density, and column Q has a greater density 

than column S. 

Now, solve (3.10-8) for a and subtract a    from 

both sides, 

hS°S 
°p " as = Aa = — ~ °S 

Simplification leaves 

-  (hD - h  )  o Aho 
Ao =  2 § S = __^. (3.10-9) 

hp hp 

Equation (3.10-9) shows that, in the Pratt 

isostatic system, isostatic compensation is achieved entirely 

by a uniform variation in density above the level of compensation. 

J. F. Hayford (1909) modified Pratt isostatic 

theory somewhat. According to Hayford, the depth of compensation 

is measured from the topographic surface rather than from sea level, 

*il 
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FIGURE 3-9 

CRUSTAL COLUOS 

FOR PRATT ISOSTASY 

*b 
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FIGURE 3-10 

CRUSTAL COLUMNS 

FOR PRATT-HAYFORD ISOSTASY 
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Figure 3-10.    Thus, in the so-called Pratt-Hayford system, 

equation  (3.10-9) must be modified to read 

- Aha„ 
Aa = (3.10-10) 

where D = depth of compensation. 

The depth of compensation producing the smallest 

isostatic gravity anomalies in the United States was determined 

to be 113.7 kilometers (Hayford and Bowie, 1912).  In the Pratt- 

Hayford syrtem, therefore, complete isostatic equilibrium is 

achieved near the Lop of the aesthenosphere. 

Gravitational analysis of the structure of the crust 

and upper mantle is seldom done using Pratt-Hayford isostatic 

theory probably because the only information provided by this 

theory—changes in mean density of the earth above the level 

of compensation—is insufficiently diagnostic of corresponding 

changes in structure. Also, the infinite Bouguer plate type 

formula (commonly used for this type of analysis) for the 

gravitational attraction of Pratt-Hayford compensation, 

Ag = - 2 IT k Aa D (3.10-11) 

is trivially related to the corresponding formula for attraction 

of the topography 

Ag = 2 TT k on Ah .3.10-12; 

Insert  (3-10-10)  into (3-10-11)  and the latter 

reduces  immediately to  (3.10-12). 
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3.10.3 Airy Isostatic Theory 

Airy postulated the existence of a relatively 

thin crust standing above a denser rock base (the mantle).  In 

the Airy system, the crust beneath the continents extends downward 

into the mantle and, conversely, the mantle under the oceans 

projects upward into the crust such that the total mass per unit 

area down to some level just beneath the deepest continental root 

is everywhere equal. Essentially, Airy's system has a crust of 

uniform density floating in a denser mantle material in accordance 

with Archimedes Principle. 

W. A. Heiskanen developed practical procedures for 

computing isostatic anomalies using the Airy principle in 1938. 

Also, Uijing the geophysical knowledge of the day together with 

geodetic arguments, he proposed density and thickness values 

appropriate for Airy-type isostasy. 

More recently, G. P. Woollard has used modern 

geophysical and geochemical knowledge and evidence to deduce 

the most probable density and thickness parameters for an Airy-type 

isostatic system. Woollard also introduced and perfected the 

"crustal column" method of gravity analysis used in this study. 

Consider a pair of crustal columns floating in 

the mantle in accordance with Archimedes principle, Figure 3-11. 

The upper surface of column S is at sea level; the upper surface 

of column P extends h kilometers above sea level.  In order to 

hydrostatically support the additional mass above bea level , 

column P has a root increment which extends a distance AR kilometers 
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FIGURE 3-11 

CRUSTAL COLUMNS 

FOR AIRY ISOSTASY 
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deeper into the mantle than column S. Column S is called the 

standard or reference sea level column. Column P represents a 

column of any height whose mean density is the same as the standard 

column. 

Appropriate parameters for these Airy-type crustal 

columns, as determined by Heiskanen (Heiskanen and Vening 

Meinesz, 1958) and Woollard (1969a), are given in Table 3-*+. 

In Table 3-4, a is the expected mean density of 
b 

the standard crustal column, 0 is the expected mean density at 

the top of the mantle, H is the expected thickness of the 

reference sea level crustal column, and H/R is the expected ratio of 

free board to root. The reader is referred to Woollard (1962) for 

an extensive discussion of the type of rationale used to deduce 

these values from geophysical, geochemical, and gravimetric 

evidence. 

Either set of parameters may be used for isostatic 

anomaly computations since both enable a self-consistent determination 

of the gravitational effects of topography and its isostatic 

compensation. However, Woollard's values, being compatible with 

known geophysical parameters, are more appropriate for studies 

of crustal and upper mantle structure using gravity anomalies 

together with other geophysical data. 

To develop the basic equations for the Airy isostatic 

principle note that, according to Archimedes Principle, a floating 

body displaces its own mass. Therefore, the mass of the standard 

column, column S of Figure 3-11, is equal to the mass of the mantle 

material displaced by its root. 
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TABLE 3-1» 

PARAMETERS FOR AIRY-HEISKANEN AND AIRY-WOOLLARD ISOSTATIC MODELS 

PARAMETER WOOLLARD HEISKANEN 

°S 
0 

m 

2.93 gm/cm3 

3.32 gm/cm3 

2.67 gm/cm3 

3.27 gm/cm3 

Hs 
H/R 

33 km 

1/1.5 

30 km 

1/U.U5 

*il 
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Since, by (3.10-3) and (3.10-6) 

m = Va 

and, V = Ah 

then, m = Aho 

where 

m = Mass 

V = Volume 

A = Cross sectional area 

h = height 

o = density 

Therefore, for the standard crustal column, it must 

he true that 

AH„o = ARa 
S S     m 

or, dropping the common area factor 

H_o = Ra (3.10-13) 
b b    m 

vhere the symbols are defined in Figure 3-11. 

Equation (3.10-13) can be used to demonstrate the 

self-consistency of each parameter set in Table 3-1*. From Figure 3-11- 

it is evident that 

F = HQ - R 

Using Woollard's values 

8.5 s  8.5 
R * jrir H„ = irt (33) = 29.H8 km 

Similarly, using Heiskanen's values 

R = 2U.t*95 km 

«L tfMMftBHft 
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Insertion of these and other Table 3-^ values 

into equation (3.10-13) shows that 

(33) (2.93) = 96.T = (29.118) (3.32) 

for Wüollard's values and 

(30) (2.67) = 80.1 = (2U.U95) (3.27) 

for Heiskfsen's values. 

Equation (3-10-13) can be modified to reflect 

changes in crustal root thickness due to changes in elevation. 

To convert from the standard sea level column, column S of 

Figure 3-11, to a general crustal column of elevation, h, column 

P of Figure 3-11, it is evident that H must be replaced by h + Kr, + /.!"- 

and thab R must be replaced R + AR. Putting these substitutions 

into equation (3.10-13) gives 

(h + H + AR) o0 = (R + AR: 

A simple rearrangement of terms gives 

o„h = (a - 0 ) AR 
b      m    b 

: 3.10-1»*) 

(3.10-15: 

or, in another form 

AR = 
m   o 

h (3.10-16) 

Equations   (3-10-15) and  (3-10-16)  are basic for 

Airy-Heiskanen isostasy and show that equilibrium is  attained 

by variations in the depth of the crustal root but without 

variations  in density. 
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Woollard has modified the basic Airy type equations 

to allow for a variation in crustal density as well as in crustal 

thickness—which is more in keeping with the situation actually 

found in nature. Let 

°c = °s + Aac (3.10-17) 

wnere 

o„ = actual mean crustal density 

oa  = expected mean density for the standard sea level crust 

Replace a by a,. + Aa in equation (3-10-lU) to 

obtain 

(h + H + AR) (o0 + AoJ = (R + AR) o     (3-30-18) 
S       S    C m 

or, 

h   (o_ + Ao.) + AR  (o_ + Aa   )  + Ho    + H_Aa    = Ro    + ARo 
EC SCSSbOm m 

Considering (3.10-13) and (3.10-17), the above 

reduces to 

o_h + An H- = (a - o ) AR 
C     C S    m   C 

(3.10-19) 

or, in another form 

AR = 
°ch * AocHs 
%- °C 

.3.10-20; 

Equations (3-10-19) and (3-10-20) express Airy- 

Woollard isostasy*. One further modification can be made to 

allow inclusion of an anomalous mantle density.  Let 

*The expression, "Airy-Woollard isostasy," is used here for the first 

time and connotes a variation of the Airy isostatic model which allow: 

density variations and uses Woollard's values for the crust/mantle 

parameters of the model. 
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(3.10-21) 

where 

o = actual mean density of the upper mantle 

a = expected mean density of the standard upper mantle 

Replace a by a,. + Ao„ in (3.10-18) to obtain 
m    M    M 

(h + Hs + AR) (os + Aac) = (R + AR) (©M + AoM) 

or, 

h (os + Mc) + AR (ag + Aac) ♦ Hsos ♦ HsAoc 

= RoM 
+ H^aM + AR (oM + AoM) 

Considering (3.10-13), (3.10-17), and (3.10-21), 

the above reduces to 

ach - AacHs - AaMR = („„.- aQ)  AR (3.10-22; 

or, in another form 

AR = 
ach ♦ AacHs - Aa^R 

(3.10-23) 

Since H    = F - R, the two equations above also may 

be written in the form 

oh + (Ac    - AoJ  HQ + AoMF =  (a.. - o_)  AR (3.10-21) 
C C M      S M MC 

AR = 
och +  (Aoc - AoM)  Hs + AoMF 

°M" °C 
(3.10-25) 

The cifference between Airy-Heisanen isostasy  (no 

density variation)  oommonly used for isostatic anomaly computations 

and the geophysically more realistic Airy-Woollard type of isostasy 

(density variation possible) is given by the difference between 

equations  (3.10-25) and (3.10-16) 
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ah + (Aa - AaJ H + io F   aQh 
6AR = -£- ^ **—§ M_ _ _S    (3.10-26) 

°M - °C °M " °S 

For the case of zero elevation (h=0), the above 

reduces to 

(40 - 40 ) Hc ♦ 40 F 

"Vo *      o„-,^        ' 3' ^) 

Equation (3.10-27) shows that an increase in crustal 

thickness is required to maintain isostatic equilibrium when 

mean crustal density exceeds the standard value, when mean upper 

mantle density is less than the standard value, or both.  Conversely, 

a decrease in crustal thickness is necessary to maintain isostatic 

equilibrium when o„ < a„.  when 0,, > a   , or both.  Since usually 
C   S      M   m 

jAan| > |Aa |, the crustal effects usually are predominant. 

Now a greater than normal mean density in the crust 

(Aa positive) must exert a positive influence on observed gravity 

but, for this case, an insufficient amount of compensation 

(AR too small) is predicted by Airy-Heiskanen isostatic theory 

which ignores the effects of variations in mean crustal density. 

As a result, the Airy-Heiskanen isostatic anomaly may be positive 

even though isostatic compensation is complete. Conversely, a 

lower than normal mean crustal density can yield a negative 

Airy-Heiskanen isostatic anomaly even though isostatic compensation 

nay be complete. 

In fact, all isostatic anomaly forms are subject to 

and dependent upon the isostatic model chosen to compute them. 

If the model is incorrect, the anomalies may give false indications 

of isostatic conditions. 
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A summary of the effects on crustal root increment 

of variations in mean crustal and upper mantle density is given in 

Table 3-5. numerical examples of the effects of crustal density 

variations on Airy-type isostasy are given by Woollard (1969). 

3.10.U Gravity Analysis Using the Airy-Heiskanen Model 

The Airy isostatic model can he used in a simple 

gravity analysis scheme to compute the magnitude of gravitational 

effects generated by varying isostatic conditions. Such analyses 

are often useful in deducing local or regional corrections 

for gravity prediction. 

The Airy-Heiskanen version is used here for the sake 

of simplicity. However, use of the Airy-Woollard version is 

recommended in all cases where the additional parameters (La    and 

An.,) required by this model are known or can be determined. 

The crustal columns of Figure 3-11 are appropriate 

for Airy-Heiskanen isostasy. The gravitational attraction, g , 

of the topographic mass ir column P can be approximated closely 

"ey using the Eouguer plate formula (3*7-1?), 

gT = 2 TT k ap h (3.10-28) 

which also can be recognized as the left side of equation (3-10-15) 

multiplied by 2nk. Similarly, the gravitational attraction, gT, 

of the crustal root which compensates the topographic mass in 

column F can be approximated by 

bT = 2nk (0 - c0) AH (".10-2?) 

m 
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TABLE 3-5 

EFFECT OF DENSITY CHATIGES 

OH AIRY CRUSTAL ROOT 

CASE 

1 

2 

3 

1 

5 

6 

7 

8 

9 

Aa 
M 

6AR 

2.93 

2.98 

2.98 

2.98 

2.87 

2.87 

2.87 

2.93 

2.93 

3-32 

3.3U 

3.32 

3.30 

3.3U 

3.32 

3.30 

3.3i+ 

3.30 

C i"i 

h = 0 h - 1 

OOO 0 

+0.06         +0.02      +3-9 +1*-6 

+0.06          0              +5-8 +7.1 

+0.06          -0.02      +8.0 +9-8 

-O.O6           +0.02       -5.5 -6.9 

-O.O6          0               -h.k -5-5 

-O.O6          -0.02      -3.3 -fc.l 

0                  +0.02      -1.1+ -1.8 

0                  -0.02      +1.6 +2.0 

a    = 2.93,    0    = 3.31,    H„ =33,    R = 29-118 
c ' m D 
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which also can he recognized as the right side of (3.10-15) 

multiplied "by 2nk. 

Now recall the general difference equations for 

the free air anomaly (3.8-10) and Bouguer anomaly (3-8-12) 

(gTU< (AgF)p- (AgF)s = (gT)p - (gT)s - tUI)p 

^P" (A6B)S = " [(SI}P " (SI}S] 

Insertion of (3.10-28) and (3-10-29) into the above 

ives 

(AgF)p - (Agp)s = 2 IT k az  (hp - hg) - [2 TT k (o^  - og) (ARp - ARj j 

(3.10-301 

(Ag Jp - (Ag ) = - [2 * X (OB - 0 ) (AR - AR,)]  (3.10-31! 
BF      do m    0     r     o 

Equations (3.10-30) and (3.10-31) are the fundamental 

relationships for gravity anomaly analysis using the Airy-Heiskanen 

isostatic model, and enable computation of actual values for the 

differences in free air and Bou oer anomalies over columns 5 and P, 

Figure 3-11. 

Assume an elevation of one kilometer (h = 1 km) 

for column P. The length of crustal root (AR_) required to 

isostatically balance one kilometer of topography is readily 

determined from the free board to root ratio. Since, for the Airy- 

Heiskanen system, F/R = I/U.U5, then AR = U.U5 km because the 

*The terrain correction terms have been omitted in this approximation. 

The change of subscript Q to S is obvious. 
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change in F in 1 km.     Alternatively, the value for AR can be 

determined using equation (3.10-16)  and tic   appropriate Airy- 

Heiskanen parameters.     From Table 3-'» 

AR = o    - a 
m        f 

l(h=l)      i./T - 2.67 
(3.10-3^ 

The value? for the standard nea lov<d column, 

column C of Figure 3-11, are h„ = 0, and Ap,(, = J. 

Putting values appropriate for columns V  and ", 

Figure 3—13 , and the Airy-ileiskanen parameters from Table 3-U into 

equations (3.10-30) and (3.10-31) shows that 

(AgF)F - (AeF)Q = Ca.9i) (2.67) (1-0) 

- [(1*1.91) (3.n7 - 2.67) (I*.1*5 - 0)1 = 0 

and 

(Ag rp - (Agfi) = - [(Ul.91) (3-27 - 2.67) (»».1»5 - 0)] = - 111-9 mga] 

The free air anomaly result confirms the condition 

(3.6-15) and the Bouguer anomaly result confirms the approximate 

relation (3.7-23) for the case of a constant degree of COT.T "nsation 

in columns S and P. 

The geophysical gravity prediction methods assume 

the existence of a constant degree of regional compensation from 

one 1° x 1° area to the next—which in mort  cases is entirely 

realistic.  However, abnormal isostatic conditions are encountered 

occasionally where changes in degree of regional compensation occur 
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and must be included in the prediction scheme as a regional 

correction.  In addition, local corrections must be determined 

for certain types of local structures whose local gravitational 

expression is generated by isostatic effects as well as topographic 

variations and near surface density contrasts. Gravity analysis 

using crustal models can be a useful technique for developing 

such corrections. 

Consider, for example, the upper model of Figure 3-12. 

Column Q is in complete isostatic equilibrium and has a topographic 

mass whose elevation is one kilometer (h = 1 km). Therefore, 

the length of its crustal root increment using Airy-Heiskanen 

parameters is U.i+5 km (APL = ^.^5 km). The topographic mass on 

column P has a lower elevation than that on column Q (h < h ), 

but the depth of its crustal root is identical to that of column Q 

(ARp=ARQ). 

The upper model of Figure 3-12 is essentially a 

"before" and "after" situation where column P might have been 

created by rapid erosion of the topography or by rapid melting of 

a glacial ice load atop column Q. There has been insufficient 

time for column P to reattain isostatic balance after topographic 

mass removal—this condition is simulated by assigning the same 

length of crustal root to column P as to column Q.  In other words, 

column P is over compensated (too deep a crustal root). 

Suppose the elevation of the topographic mass atop 

column P (upper model) Figure 3-12 is 0.95 km, the topmost 0.05 km 

of mass having been removed by rapid erosion. Using h = 0.95 and 
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FIGURE 3-12 

AIRY ISOSTATIC MODELS 

FOR RAPID EROSION, 

GLACIER REMOVAL, 

LOCAL UNCOMPENSATED TOPOGRAPHY, 

AND MAJOR HORST 
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other values appropriate for the model into the general difference 

equations  (3.10-30)  arid  (3.10-31)  shows that 

(AgJD -  (AgJ0 = (1*1.91)  (2.67)   (0.95 - 1.0) -  [(1+1.91)  (3.27 - 2.67) 

(U.l+5 - It.1+5) = -  (6 - 0) = - 6 mgal (3.10-33) 

Ug  )    -  (AgJ. = -  [(111.91)  (3.27 - 2.67)   (U.l*5 - U.U5)] = 0 

(3.10- 3*0 

The free air anomaly result confirms that the relation 

(3.8-9) reduces to (3-6-24) in that the second term vanishes, and 

the Bouguer anomaly result confirms the relation (3-7-22) for 

the case of an uncompensated topographic difference. 

In straight forward fashion, the correction to be 

applied for a prediction ia terms of free air anomalies is given 

directly by the above computation, in this case - 6 mgal—which 

approximates the local correction actually required for some eroded 

mountain areas. The correction to be applied for a prediction using 

Bouguer anomalies is also - 6 mgal, not zero as is suggested by 

the above computation.  The reason for this is that the Bouguer 

anomaly predicted for column P assuming compensation will be too 

positive. With a constant degree of isostatic compensation, 

equation (3.10-31) gives 

:&tB)p ~ UgB)Q = - 2 v  k (3.27 - 2.67) (U.23 - U.U5) = + 6 mgal 

where 

&F u  2-67 (0-9?) = k  23 kn 
P  3.27 - 2.67    ^ Rrn 
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The actual difference, as computed by (3.10-3**) is 

r.ero. Therefore, the correction to be applied is 

(SAgg)^ - (&kg  )    = 0 - 6 = - 6 mgal 

where 

(6Ag ) = actual difference in Bouguer anomaly 
B A 

(6Ag ) = difference in Bouguer anomaly assuming a constant 

degree of compensation 

Consequently, for prediction purposes, the correction 

computed by (3.10-30) is applicable to predictions made in terms 

of either the free air or the Bouguer anomaly. 

For the case of ice load removal, the computation is 

somewhat more complex because the density of glacial ice (0.917 

gm/cm3) must replace the mean crustal density for the topographic 

segment of height h - h . For this example, assume that h = 0.7 VJ 
y    r r 

and, as before, h = 1 km then, 

A- _ (0.7) (2.67) + (0.3) (0-917) _ , ,7 . 
An _ 3.27 _ 2.67       - 

3,5T km 

and 

(Agp)p - (A«F) = (Ul.91) (0.917) (0.7 - 1.0) 

- [(Ul.91) (3.27 - 2.67) (3.57 - 3-57)] = - 12 mgal 

In fact, both highly eroded mountain areas and 

recently deglaceated regions are typified by anomalously negative 

gravity anomalies.  In both ^ases, the over compensated crustal 

''locks should begin to rise in order to reattain a condition of 

isostatic equilibrium. The rate of uplift can often be correlated 

with the negative anomaly and a regional or local correction can be 
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developed from this relationship rather than by use of a crustal 

model. 

Similar models can be applied to compute gravitational 

effects associated with other types of structures which, typically, 

are isostatically unbalanced. The method fails in some special 

situations such as areas of heavy sedimentation which, logically, 

should be under compensated due to rapid accumulation of additional 

surficial mass.  By observation, however, such areas generally are 

not characterized by a positive bias in gravity anomalies. A 

possible explanation for this phenomenon is that the negative 

gravitational effects of the low density surficial sediments tends 

to counterbalance the positive gravitational effects of under 

compensation. 

3.10.5 Limitations of Airy Isostatic Theory 

Airy isostatic theory assumes that isostatic compensation 

is achieved totally by the crust floating in a denser plastic mantle 

material.  The A.iry-Keiskanen model additionally assumes that 

compensation is achieved entirely by variations in crustal thickness 

(i.e., without variation in density). Recent interpretations of 

seismic refraction and reflection data suggest that the Airy- 

Heiskanen assumption is an oversimplification. 

Maps of crustal thickness and seismic velocity recently 

published by Pakiser and Zietz (Pakiser and Zietz, 1965)» for 

example, chow that there is no appreciable crustal thickening 

under most mountainous areas in the United States.  Yet, t'r 

Airy-Heiskanen model definitely requires that crustal thickening 
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take place under areas of high topography and vice versa. These 

maps also show that the crust is abnormally thick in comparison 

to topographic heights under the western Great Plains, and abnormally 

thin in comparison to topographic elevations under the Basin and 

Range' province. 

Consideration of density changes in the crust and 

mantle as indicated by changes in seismic velocity, using the Airy- 

Woollard isostatic model, satisfactorily explains much of the crustal 

thickness variations which appear abnormal in terms of the 

Airy-Heiskanen model (Woollard, 1966, 1968c, 1969b; Strange and 

Woollard, 196M. However, even the Airy-Woollard model cannot 

completely explain all observed crustal thickness relationships. 

Evidently, isostatic compensation is not always totally achieved 

by density contrasts at the crust-mantle boundary-in at least some 

instances there must be additional density contrasts within the 

mantle which account for part of the compensation. These have 

yet to be modelled successfully. 

Although Airy-type isostatic gravity analysis cannot 

be applied too literally, they cannot be discarded either since 

such analyses provide an understanding of certain types of gravity 

anomaly occurrences which can be obtained in no other way. 

3•11 Other Geophysical Considerations of Importance to Gravity 

Prediction 

Before attempting geophysical gravity prediction, t!:e physical 

scientist should be familar with the nature of lateral and vertical 

variations in the crust and mantle of the earth, as deduced from 

m\tm        1  1     ^mmm^mm^mtm 
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various types of geophysical measurements. The reader is referroi 

to the ample published literature to obtain this information. 

In addition to the works authored or co-authored by 

G. P. Woollard, the following are recommended: Jacobs et al., 1970; 

Garland, 1971; Issacs et al., 1968; Jeffreys, 197C; and Stacey, 1969. 

/\ 
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h.    NORMAL GRAVITY ANOMALY PREDICTION METHOD (NOGAP) 

h.l    Fundamental NOGAP Prediction Formula 

The normal Gravity Anomaly Prediction Method (NOGAP) can 

be used to predict mean gravity anomaly values for most continental 

.1° x 1° areas whether or not any gravity measurements exist within 

those 1° x 1° areas. For this reason, NOGAP is the geophysical 

gravity anomaly prediction method most frequently used, especially 

in regions which contain a minimum of gravity measurements. 

Input data required for NOGAP predictions includes 1° x 1° 

mean elevation values and geologic, tectonic, and geophysical 

naps and documents which provide information sufficient to enable 

analysis and interpretation of the structures and conditions which 

cause mean gravity anomaly variations. Some measured gravity data 

is helpful—but not required. 

A 1° x 1° mean Eouguer gravity anomaly is predicted by the 

IIOGAP method as the sum of four terms, each of whicn is individually 

determined. The first two terms, basic predictor and regional 

correction, contain the regional component of the prediction. 

The two remaining terms, local geologic correction and local 

elevation correction, contain the local component of the prediction. 

AgB = BP + gR + *L + £E 
(U.l-1) 

where 

Ag = predicted 1° x 1° mean Bouguer anomaly 
B 

BP = basic predictor 

g = regional correction 
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g = local geologic correction 
u 

g_ = local elevation correction 

The predicted 1° x 1° mean free air anomaly is obtained from 

the predicted 1° x 1° mean Bouguer anomaly by the use of equation 

(3.7-14) 

Agp = Agß + 0.1119 h (4.1-2) 

where 

Ag„ = predicted 1° x 1° mean free air anomaly 
r 

= l" 1    x 1° mean elevation 

4.2    Basic Predictor 

4.2. Discussion 

The existence of constant (linear) relationships 

between changes in the regional component of mean Bouguer gravity 

anomalies and changes in the corresponding mean elevations has 

been established conclusively by Woollard (1968b, 1969a) and 

Wilcox (1971). The simplicity, consistency, and almost universal 

occurrence of such relationships together with the fact that mean 

elevation data is the most widely available geophysical data on 

the continents makes this type of correlation an ideal foundation 

for the development of the fundamental prediction function called 

the basic predictor (BP). 

The basic predictor used in NOGAP prediction is the 

equation of the linear regression between 1° x 1° mean Bouguer 

anomaly values and the corresponding mean elevation values, essentially 

equation (3-5-8) or (3-7-27) 
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BP = a + ßR h (U.2-1) 

where 

BP = basic predictor 

a_, ß = regression constants 

h = mean elevation 

The basic predictor equation (U.2-1) is derived in a 

region where the gravity anomaly field is known (control region) 

and applied to predict basic regional gravity anomaly values in an 

adjacent region (prediction region) which contains few or no gravity 

measurements. Both control and prediction regions should be 

contained within the same geologic/tectonic province. 

The size of the geologic/tectonic province whose mean 

anomaly—mean elevation relationship can be defined by a single 

basic prediction function is variable. The province may be quite 

large (Europe, Rocky Mountains Cordillera, etc.) or rather small 

(Baltic Shield, Korean Peninsula, etc.). Also, different basic 

predictors sometimes are applicable to high, intermediate, and low 

mean elevations. The extent of applicability of each basic 

predictor must be established by careful observation of the 

relationships which exist within the control region. 

In deriving and applying 'he basic prediction function, 

equation (U.2-1), the 1° x 1° mean Bouguer anomaly values often 

are correlated with 1° x 1° mean elevation values (ODM). Alternatively, 

a more consistent regression may be obtained by correlating 1° x 1° 

mean Bouguer anomalies with one of two types of weighted 3° x 3° 

mean elevation values (.ME), Figure k-1. 

mid 
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FIGURE k-1 

WEIGHTED 3° X 3° MEAN ELEVATIONS (ME) 

Each square is a 1° x 1° area. 

numbers are weights to be assigned to each 1° x 1° mean elevation 

(ODM) when computing the ME. 

The computed ME values are to be correlated with the 1° x 1° 

mean Bouguer anomaly value for the center 1° x 1° area. 

tm 
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ME, 

1 1 1 

1 2 1 

1 1 1 

ME. 

1 2 1 

2 4 2 

1 2 1 
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The basic predictor can be interpreted geophysically 

as an indicator of the isostatic, crustal, and upper mantle density 

distribution conditions which characterize each geologic/tectonic 

province. The variable form of the basic pr dictor which is 

applicable to different provinces probably is caused by differing 

isostatic mechanisms and variations in crustal and upper mantle 

density distribution properties. A major strength of the NOGAP 

method is that such variations can be taken into account without 

having to construct precise models or make assumptions about the 

mechanisms involved. 

it.2.2 Procedure 

Step 1:' Divide the total area to be worked into major 

geologic/tectonic provinces using published geologic/tectonic/ 

geophysical maps and documents. 

Step 2: Compute and/or tabulate 1° x 1° mean elevations 

(ODM) and weighted 3° x 3° mean elevations (ME) for each geologic ' 

tectonic province. Predict and tabulate 1° x 1° mean Bouguer  goalies 

(/ig ) for those regions of each geologic/tectonic province where 

measured gravity data is available (control regions). 

Step 3: Determine local geologic corrections, g , and 

local elevation corrections, g„, for all 1° x 1° areas within the 
Si 

control region and insert these into the tabulations made in step 2. 

Step k:    For each geologic/tectonic provir.ce, make 

plots of (Äg - g) vs. ODM, (Äg~B - g~L - £E) vs. MElt and (Agß - gL - g£) 

vs. ME . The value (Ag0 - gT) is the regional component of the 1° x 1° 2 B    Li 

mean Bouguer anomalies which corresponds to the ODM values; the value 
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(Ap - gT - g_) is the regional component of the 1° x 1° mean Bouguer 
nut* 

anomalies which corresponds to the ME values. 

Step 5'-    Examine each plot. If a single regression 

line provides a good linear fit to the plotted points proceed to 

step 10. Otherwise, continue with step 6. 

Step 6: Reconsider g determination. Revised correction 
Li 

values for some of the local structures in the control area may- 

provide a better linear fit. In fact, this process is often helpful 

in refining local geologic corrections determined by the empirical 

or analytical methods in the prediction areas'. 

Step 7: Re-examine the geologic/tectonic province 

boundaries determined in step 1. Adjustment of these boundaries and/or 

definition of additional provinces frequently is the quickest way 

to create order out of chaos on the plots. Conversely, it may be 

possible to combine two or more provinces which have an identical 

mean anomaly—mean elevation relationship. 

Step 8:  Consider subdivision of pvovinces into high, 

intermediate, and/or low mean elevation regions. This procedure is most 

useful when the original plot shows linear segments joined by 

directional discontinuities. 

Step 0'    A slightly non-linear (curved line) relationship 

is one indicator of possible necessity to apply a regional correction, 

g . An unacceptably large point scatter remaining after steps 6-8 have- 

been completed is another indicator of a need for a g_. For basic 

predictor derivation in such cases, determine the regional correction, 

5B ~ gL ~ gE 
subtract it from (Agm - g.) and (Ag_ - gT - g„), and repeat steps 

15 Jj H Li P. 

k-Q  as necessary- 
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Step 10:  Select the most consistent plot (smallest 

point scatter) to represent each geologic/tectonic province. 

Compute the final linear regression constants, ou and ßn, and 

associated error functions using a least squares solution 

(Appendix D). The constants, a    and ß_, are inserted into 

equation (h.2-1) which is applied in the prediction region of 

each province. 

Options: Many who have considerable experience in 

geophysical gravity prediction prefer to use a programmable 

desk calculator (or high speed electronic computer in instances 

where the amount of data is large) together with an analysis of 

residuals to accomplish steps h  through 9- However, use of the 

plots as described is still desirable not only for bringing out 

the rationale of the basic predictor derivation process but also 

for recognizing gaps in information that need to be filled to 

upgrade the constants in the equations derived when using this 

approach. 

Cautions: The procedure given above cannot be used 

to obtain a basic predictor for those geologic/tectonic provinces 

(1) where insufficient measured gravity data is available to 

enable definition of a control region within that province or 

(2) where there is insufficient variation in the mean elevation 

values to enable determination of a correlation with variations 

in mean gravity anomalies. The corrected average basic predictor 

(Section 5.1) must be used in such cases. 



;-. 3 Regional Correction 

The basic predictor contains that portion of the regional 

component of mean Bouguer anomalies which is constant with respect 

to the near, elevation—mean anomaly correlation throughout a 

reoloric/tectonic province.  However, the basic predictor cannot 

control the gravitational effects of any long period changes in 

crustal structure, upper mantle structure, or isostatic character! s4: :■ 

within that geologic/tectonic province.  Hence, a regional correction 

g„, sometimes must be added to tne basic predictor in order to 

describe the regional gravity anomaly field completely. 

Unfortunately, there are as many techniques for determining 

regional corrections as there are geologic/tectonic provinces 

which require such corrections.  Further, many geologic/tectonic 

provinces do not require any regional correction at all. 

Exreri er.ce ana .iudeement therefore, are indispensable element" of 

regional correction derivation. 

Come indicators of situations requiring a rerional correction 

are mentioned in fter 9 of the basic predictor derivation procedure. 

'*. regional correction which eliminates a curvature in the basic 

predictor relationship can be determined empirically witli reference 

to the curve itself,  in all other cases, geophysical evident"'- 

must te used to derive the regional correction. 

The relationship most frequently used to establish a rerional 

correction is a oorrela'^'on between mean Bougue.t anomalies -and 

crustal thickness (depth of the Mohorovivic Discontinuity below 

ses le''ei '.  Such oorrel ations have been used to estahd ' c\ 
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regional corrections, for example, in the Baltic Shield, the 

Caucasus, and portions of Siberia. 

Other types of geophysical evidence which may be helpful in 

deriving regional corrections include seismic velocity, density, 

and possibly heat flow data. 

U.k    Local Geologic Correct-1'on 

U.li.l Discussion 

The local geologic correction, g ., accounts for variations 
ij 

in the Bouguer gravity anomalies caused by uncompensated mass 

distribution irregularities in local geologic structure. 

Some local gravity anomaly variations are directly 

related to near surface density contrasts.  Consider, for example, 

a basin-like depression in crystalline rocks of average density 

which is filled with low density clastic sedimentary rocks. The 

low density material occupying the basin contrasted with the 

underlying higher density crystallines results in a localized 

relative mass deficiency and, consequently, a localized gravity low. 

The mechanisms involved here were explained during the discussion 

of the geologic correction (Section 3•T•5) • 

The local correction, g , for density contrast situations 
jj 

can be determined either by empirical estimation or analytical 

computation.  Analytical computation involves construction of a 

poolorical structure "model" using published geological data, and 

application of formulas which enable computation of the local 

g»j»i «■« 
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gravitational effects of the "model" as a function of size, shape, 

depth, and density contrast. 

Other local gravity anomaly variations, such as those 

caused by large grabens, are related to local variations in crustal 

thickness and density o^ to local isostatic effects. Local 

correction values for such structures can be determined either 

using isostatic models (as described in Section 3.10.U) or by 

empirical estimation. 

Empirical estimation involves studies of the 

gravitational effects of different types of geological structures 

in areas where the gravity anomaly field is wel] known, identification 

of the local anomaly variation signatures of each structural type, 

and development of a local geologic correction table giving the 

average local gravitational effects of each structural feature. 

Local geologic correction values taken from the table are adjusted 

as necessary to account for unique structural variations in 

different prediction areas. 

Local geologic effects determined by the computational 

methods are more precise—but not necessarily more accurate than 

those determined by empirical estimation. In fact, some types of 

loca] effects can be determined only by empirical estimation. 

Certain types of sedimentary basins, for example, exert a positive 

effect on the local gravity anomalies.  In other cases, use of 

analytical computation in conjunction with empirical estimation 

produces the best results. 
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U.U.2 Analytical Computation 

A local geologic correction, g. , may be obtained for 

any surface point by one analytical computation method whenever 

two conditions are satisfied. 

Condition A: The local gravitational effect is 

produced primarily by uncompensated density contrasts in near 

surface geological structure rather than by local crustal and 

isostatic abnormalities. 

Condition B: The size, shape, depth, and density 

contrasts which define the local geological structures can be 

determined or estimated. 

Examples of structural types which do and do not 

satisfy condition A are given in Table U-l. 

Published geological maps and documents sometimes 

provide detailed size, shape, and depth parameters for local 

geologic structures. More often, the most probable strucutral 

parameters must be developed from differing published interpretations, 

Accurate rock density data, determined by laboratory 

measurements, is rarely available. Consequently, density values 

usually must be estimated using a knowledge of the rock types 

involved and average rock density tables such as Table U-2. With 

sufficient measured gravity data, density profiling procedures 

fllpti '.eton, 1939, 19U0) can give good results. 

Quite frequently, known rock types of a particular 

local structure must be contrasted with the "basement" rockr. The 

value, 2.67 gm/cm3, is commonly thought to be a good estimate of 

-*Jü 
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TABLE U-l 

EXAMPLES OF STRUCTURES WHICH USUALLY 

PRODUCE gT BY DENSITY CONTRAST L 

Small to medium sized sediment filled depressions (basins) 

Igneous intrusions 

Igneous extrusions 

Granites 

Minor horsts and grabens 

Some uplifts 

EXAMPLES OF STRUCTURES WHICH USUALLY DO NOT 

PRODUCE gT BY DENSITY CONTRAST 
Li 

Large geosynclinal type basins 

Major horst and graben 

Abnormal basins 

Abnormal uplifts 

Folded mountain ranges 

Recently deglaceated areas 

(Corn-piled from several G.  P.  Woollard documents', 
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TABLE k-2 

AVERAGE DENSITY 

OF COMMON CRYSTALLINE ROCK TYPES 

(grams/centimeter3) 

Meta sediments (slate, schist, quartzite, 2.7U 
meta-sandstone, etc) 

Acidic igneous (granite, granite gneiss, etc) 2.67 

Intermediate igneous (quartz, granidiorite, 2.75 
granidiorite gneiss, diorite, tonalite, 
anorthosite, syenite, etc) 

Basic igneous (diabase, gabbro, norite, etc) 2.99 

Ultrabasic igneous (amphibolite, pyroxene, etc) 3•2U 

Extrusive igneous* 
Tertiary or younger 2.70 
Older than Tertiary 2.75 

Average density for all basement rocks 2.1h 

*For basic to ultra basic extrusives, a greater density is likely 

(After Woollard, 1962; and Heiland, 1968) 

^ii mmmmm 
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average "basement" rock density. In fact, the figure 2.67 gm/cm3 

is the average density for granites as well as the average density 

for all surface rocks including both the sedimentary and 

crystalline types. Hence, 2.67 gm/cm3 is not truly representative 

of the "basement" unless the "basement" happens to be composed of 

average granites. 

Woollard (1962) has determined that 2.7^ gm/cm3 is 

the best value to use for average "basement" density, and this 

value is recommended for all gravity correlation work where more 

specific data is lacking. 

Average density contrast values can be obtained by 

subtracting the average basement rock density value from the average 

density value for specific rock types such as those given in 

Table k-2.    The resulting density differences show that a negative 

gravitational effect can be expected over acidic igneous rocks 

and Tertiary extrusives, a positive effect can be expected over 

basic and ultra basic igneous rocks, and that no local effect is 

expected over meta-sediments, intermediate igneous rocks, and older 

extrusives. 

Determination of average density values appropriate for 

sedimentary rocks is complicated by variations with age, depth of 

burial, porosity, and other factors. The reader is referred to 

Woollard (1962) and Strange and Woollard (l961ta) for a detailed 

discussion of sedimentary as well as crystalline rock density 

determinations. 

—Jj 
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U.li.2.1 Sedimentary Basins 

Use of analytical computation to obtain the 

local geologic correction for a sedimentary basin is best demonstrated 

by an example. Figure k-2  shows a cross section of a small steep-walled 

sedimentary basin which is assumed to be roughly circular in plan 

view. Assume that published geological information used to construct 

the cross-sectional "model" gives the following parameters for the 

basin: 

(1) The average density of the sedimentary 

rocks in the basin is oiC, = 2.57 gm/cm
3, which is a good average 

value for buried Cenezoic elastics. 

(2) The basin i.; surrounded by basement rocks 

whose average density is estimated to be o = 2.7^ gm/cm3. 
D 

(3) The surface extent (diameter) of the basin 

is x = 150 miles * 2U0 km. 

(h)  The depth of the basin is 10,000 feet 

- 3.0 km. 

The volume occupied by the basin can be 

approximated by a vertical right circular cylinder, as shown by 

the dashed lines on Figure ^-2. The local gravity anomaly effect, 

g,, of the relative mass deficiency within the sedimentary basin 
L 

then can be computed using the simple gravitational attraction 

formulas for a vertical right circular cylinder. Figure ^-3 

shows the formula and relations applicable for computing g. 

at any point on the surface. Figure h-k  shows an alternate formula 

which can be used to compute g at the surface point which lies on 
Li 
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the axis of the cylinder. Using the latter, and comparing the 

data given in Figure k-2 to that required by Figure U-k 

he  = on - cr = 2.57 - 2.71* = - 0.17 gm/cm3 
o   B 

h = y = 3 km 

d = 0 (computation point is on the upper surface of the cylinder) 

r = | = 120 km 

Using equation  (U.U-3) 

a =   [(0 +  3)2  + 1202]'i =  120.0U km 

b =   (02  + 1202) 2 =  120 km 

Finally, applying formula (h.k-2) 

gT  =   (Ul.91)   (- 0.17)   (3 - 120.Ok + 120)  = - 21 mgal 
Li 

The values of a and b  computed above are very 

nearly equal.     Hence,  the term  (h - a + b)  in equation   (U.fc-2)   is 

very nearly equal to h.    Examination of Figure h~h shovs  that this 

always will be true when the lateral extent of the cylinder  is rr.uch 

greater than its thickness.     Thus,  for a  >> h, equation   (l*.^-::) 

reduces to 

gT   = Ul.91 La h (U.a-S) 
b 

which may be recognized as the geologic correction equation (3.7-16) 

In practice, equation (U.U—5) gives an excellent 

approximation of gT at any point (not too close to the edge) :n 

essentially horizontal structures (e.g., basin:;, flows, etc.) whose 

'..ateral extent is much greater than its thickness. 

MQfc— 1 11 ti irii 11 11111 ■■!! 1 u M—■—MM 
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FIGURE k-2 

EXAMPLE OF SEDIMENTARY BASIN 

FOR  ANALYTICAL COMPUTATION 

OF LOCAL GEOLOGIC EFFECT 

aq = Density of sedimentary rocks =2.55 gm/cm
3 

op = Density of basement rocks = 2.7*+ gm/cm3 

X = Extent,   (diameter)  of sedimentary basin = 150 miles  ; 2^0 km 

y = Depth of sedimentary basin = 10,000 feet  =  3km 

/ 
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FIGURE k-Z 

GRAVITATIONAL ATTRACTION 

OF RIGHT CIRCULAR CYLINDER 

g = 6.66 La  (i) h (k.k-l) 

h in kilometers 

u is the solid angle subtended at the computation point by the 

circular boundary of the horizontal plane through the mid point of the 

cylinder. 

Ao in gm/cm3 

1 !■ in tim 
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FIGURE k-k 

GRAVITATIONAL ATTRACTION 

OF RIGHT CIRCULAR CYLINDER 

AT A POINT ON THE AXIS OF THE CYLINDER 

gL = 1*1.91 Ao (h - a + b) (U.U-2) 

a = [(d + h)2 + r2]** (l*.l*-3) 

b = [d2 + rz]h (k.k-k) 

h, a, b, d, r in kilometers 

La  in gm/cm3 

*L 
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It may be convenient to use formula (U.U—1) 

for certain types of structures where the condition for use of (k.U-5) 

is not net. To use equation (U.U—1) the solid angle, ID, must be 

evaluated. Charts published in Nettleton (19^2) are recommended. 

Values determined for g by these attraction 

formulas apply to the surface paints for which they are computed. 

To obtain the mean local geological correction for a 1° x 1° area, 

g , compute gT for several points which are evenly distributed 

throughout the 1° x 1° area and average then. 

A uniform average density was assumed for the 

rocks in the sedimentary basin of Figure h-2. Actually, sedimentary 

rock density usually increases as a function of depth of burial due 

to the effects of compaction. To account for this variation, the 

sedimentary basin can be stratified into density layers each of which 

can be approximated by a right circular cylinder (or other appropriate 

geometric figure). Then the increment of gT generated by each layer 

can be calculated, and all such incremental g values summed to 
u 

obtain the total effect. The slight increase in precision obtained 

in this manner, however, usually is not sufficient to justify the 

extra work involved for 1° x 1° mean gravity anomaly prediction 

applications. The exception to this rule is the case of basins 

which are very irregular in plan view or cross section.  Careful 

detailed modelling of such structures may give improved g 

values. 

«ll 
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k.k.2.2    Buried Ridge or Uplifts 

The local gravity anomaly effect, g , of buried 

ridges or anticlines can also be illustrated by examples. Figure 

H-5 is a cross section of an elongated ridge or uplift in the basement 

rock beneath a cover of sedimentary rock. Assume that published 

geological information used to construct the "model" gives the 

following parameters: 

Average density of sedimentary rock, o = 2.57 gm/cm3 

Average density of the basement rocks, a = 2.7^ g:r:/crr.3 

Height of ridge top above the average basement surface, 

h = 5000 feet : 1.5 km 

Depth of ridge top beneath the surface, d = 5000 feet ~ 1.: 

Average (normal) basement depth, y = 10,000 feet = 3 kn: 

The volume occupied by the ridge can be 

approximated by a horizontal right circular cylinder as shown tv 

the dashed lines in Figure U— 5. The appropriate attraction formula 

is shown in Figure k-6.    Correlating the data given in Figure U-S to 

that required by Figure k-6 

Ac = a - a- - 2.1k -  2.57 = + 0.17 gm/cm3 

r = k = 0.75 km z 

z = d + r = 2.25 km 

For a computation point on the surface directly 

above the axis of the cylinder 

x = 0 

mid 
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FIGURE 1+-5 

EXAMPLE OF A BURIED RIDGE 

FOR ANALYTICAL COMPUTATION 

OF LOCAL GEOLOGIC EFFECT 

a = Density of sedimentary rocks =2.57 gm/cm3 

oD = Density of basement rocks = 2.7*+ gm/cm
3 

a 

h = Height of ridge = 5000 feet ; 1.5 km 

y = Normal depth of basement = 10,000 feet ; 3 km 

d = depth of ridge top = 5000 feet 7 1.5 km 

mam 
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FIGURE k-6 

GRAVITATIONAL ATTRACTION 

OF A HORIZONTAL CYLINDER 

OF INFINITE EXTENT 

i -. A-, Ao r2 Z 
gL = 1*1.91 —£7~ 

X2 = X2 + z2 

(U.U-6) 

(U.U-7) 

d, r, X, Z in kilometers 

AJ in gm/cm3 

L Ji - 
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Applying equation  (U.I4-6) 

g . Cn.91) (Q-17) (Q-7!>)2 (2.2?) = + 2 mgal 
L 02 + 2.252 

Analysis of equation (k.k-6)  shows that g 
Li 

decreases as the distance of the surface computation point from the 

ridge axis increases, and that buried ridges or uplifts must he 

very large and/or near the surface to generate an appreciable gT• 

If the buried ridge of Figure U-5 happens to 

be located within the sedimentary basin of Figure H~2, g.   at a 

sir* face point is computed as the combined effect of the two structures 

as illustrated by Figure k-7. 

h.k.2.3 Plutons and Other Local Structures 

Analytical computation of g.. for plutons and 

other local structures is accomplished in a manner similar to that 

used in the examples given previously for basins and buried ridges. 

Approximate the structure by a regular geometric fig-are and compute 

G using the attraction formula appropriate for that figure. 

Geometric figures useful for approximation cf various structures 

are listed in Table U-3. Very irregular structures may have to be 

approximated by several contiguous figures.  In the latter case, 

high speed computer computations are more efficient than hand 

calculations. See Beierle and Rothermel (197*0 for a detailed 

listing of attraction formulas and a discussion of computation 

procedures. 

^li 
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In determining the g    value  for 1°  x 1°  areas, 
ij 

smaller plutcns can be ignored. Only fairly massive structures with 

appreciable density contrast contribute to g . Table k-k  lists 
L 

types of igneous structures which do and do not affect the average 

1° x 1° g values. 
u 

ii. h. 2 . h    Procedure 

Step 1: Determine applicability of analytical 

computation method—see if both conditions A and B are satisfied. 

Step 2:  Construct the most probable "model'' 

of the local structures using published geological data. Define 

size, shape, and depth parameters. 

Step 3: Assign density values to local 

structures and the basement rock; compute density contrasts. 

Step h:    Approximate structural "models" using 

regular geometric figures. 

Step 5: Use the gravitational attraction 

formulas appropriate for each geometric figure to compute g 

values at surface points. (See Beierle and Rothermel, 19TM- 

Step 6: Average an even distribution of point 

§. values within each 1° x 1° area to obtair the mean g needed lor 

gravity prediction. 

Step T:  Compare comput^:1 g with valut 
Li 

determined by empirical estimation and adjust as necessary. 

Option.-;:  In some attraction formulas, use of 

an average depth for the 1° x 1° area will give a 1° x 1° mean g, 

directly.  In such cases, reduce the computed g in proportion t,> 

mid 
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FIGURE 1+-7 

> 

EXAMPLE OF BURIED RIDGE 

WITHIN A SEDIMENTARY BASIN 

Dimensions of each structure are identical to those of structures 

shown in Figures k-2  and l*-5 • 

g for basin 
u 

-  21 mgal 

g for buried ridge + 2 mgal 
Li * 

Totui g    at  computation point        - 19 mgal 
L 
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TABLE U-3 

AUFLES OF REGULAR GEOMETRI'".: FIGURES 

WEICH CAII EE USED TO APPROXIMATE 

LOCAL GEOLOGIC STRUCTURES 

STRUCTURE 

Lopolith,  Batholith 

:oiv 

sldera 

GEOMETRIC  FIGURE 

Sphere • Eerii soh0 re , 
1 n v e r t e d Cone 

Henisphere,  Sheet 

Vertical   r:;t.   Circ'il: 
Cylinder 

Linear L'nlift, Buried Eidne 

• in 

:ertical  R: stiacer.ent 

Horizontal  r'c.   EircnE 
Cylinder 

Rectangular trist.i, 
Vertical   Rt.   Circular 
Cylinder,   Inverted Z< 

Rectangular Irian, 
Offset 

•ular  features Grout)  oi 
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TABLE U-U 

IaUEOUS STRUCTURES WITH/"WITHOUT 1° X 1° '-RAVITY EFFECTS 

Structures Affectinc 
1° 1° Mean gT 

Structures Not Affecting 
1° x lc Mean g. 

Batholiths 

Laccoliths 

Large Lopoliths 

Large Deep Seated Flutons 

Thick Extensive Flovs 

Large Calderas 

Sills 

Dikes 

Shallow Seated Snail 

Thin Flows 

Small Calderas 

*!0TE.:  Density contrast must be significant 

«Mfe 
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the percentage of the 1° x 1° area covered by the local structure. 

Computations may be done most efficiently using programmable desk 

calculators for cases involving a ie'ativel^ &»&}? amount T data. 

Otherwise, use of high speed computers is recommended. 

Cautions: The analytical computation procedure- 

can be deceptively simple. Actually, a great deal of skill and 

experience is needed to construct a satisfactory "model" and to 

evaluate the goodness of the computed g values. The situation 

where the anomalous mass distribution of near surface geologic 

features is partially compensated isostatically is particularly 

difficult to handle.  In the latter case, the computed g values 
Li 

must be reduced in proportion to degree of compensation which is 

estimated to exist. 

h.I*. 3 Empirical Estimation 

The heart of the empirical estimation method is Table k-5, 

and Table h-6  vhich give the average 1° x 1° local gravity anomaly 

effects which are generated by a number of geological structure 

types. The table contains values originally proposed by Strange 

and Woollard (196^1.) and Woollard and Strange (1966) which have been 

Modified as necessary based upon several years of geophysical 

gravity anomaly prediction experience. 

h.U.3.. 1 Discussion of Local Correction Tables 

Although the corrections given in Tables U-5 

and h-6  are derived primarily from empirical evidence, they also 

:.ave a sound theoretical foundation. 

a    -      ti£M 
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Note, for example, that the correction for 

basins containing relatively old clastic sediments is smaller than 

that for basins containing relatively young clastic sediments.  The 

reason for this is that the older sediments are usually denser than 

the younger ones because of (l) greater compaction due to greater 

depth of burial, (2) the longer time of being subjected to the pressu; 

of overlying strata, and/or (3) having been more deeply buried in 

the past than at present. The greater density of the older sediments: 

produces a smaller density contrast with the surrounding crystallines 

and, hence, a smaller local geologic correction. 

iio correction is ever made for basins containing 

carbonate sediments since these rock types have average densities 

very nearly equal to 2.7^ gm/cm3—so that there is very little, if 

any, density contrast with the surrounding basement rock. 

In similar manner, the other corrections river, 

in the Tables can be shown to be compatible with the expected 

density contrast and/or local isostatic imbalance situations which 

characterize each structural type. 

Specific types of areas where no consistent 

local correction can be made include Paleozoic sedimentary b;.sir.~ in 

stable shield areas, such as the Illinois Basin, very large 

geosynclinal basins where isostatic effects counterbalance effects 

of sediments, such as the Gulf Coastal area, folded and thrust 

faulted mountains such as the Montana Rockies, flood basalt, sue!. 

as the Columbia Basalt Plateau region, and stable plains areas such 

as the central U. S. (Kansas, Nebraska, the Dakotas, etc.). 

+im MMI 



184 

TABLE U-5 

TABLE OF LOCAL GEOLOGIC CORRECTIONS 
(Part l) 

Corrections gi»<*n in railligals 

1. Granites, Intrusives, Volcanism 

a. Large granitic batholith  (e.g., Ic'aho Batholith)                -50 

b. Other granitic bodies -20 

c. Ultrabasi'j intrusives +20 

d. Tertiär;/- extrusions -10 

e. Trapped basic       I ultrabasic extrusives  (e.g.,  Snake        +h'j 
River Downwarp, Mid Continent High) 

2. Sediment Filled Depressions  (Basins) 

a. Most small to medium sized basins 

(1) Containing 10,000* feet or more of Cenezoic -20* 
or Cretacious  clastic  sediments • 

(2) Containing 20,000* foet  or more of early -2' * 
Mesozoic or Palezoic  sediment 

(3) Containing carbonate sediments 

b. Largt  ^eosynclinal basins 

(1) Containing 20,000* feet or more of Cenezoic -1 * 
clastic sediments 

(2) Containing pre-Cenezoic clastic sediments 

(3) Containing carbonate sediments 

c. Abnormal basins—due to crustal subsidence, etc 

(1) Cuperimposed on shield areas +2  ** 

(2) Intermountain  (e.g., Hungarian Basin) +2  ** 

*Reduce correction in proportion to lesser sediment thickness 

**Use average of corrections determined from 2a and 2c 

■ IWfc M^—aMW 
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TABLE k-6 

TABLE OF LOCAL GEOLOGIC CORRECTIONS 
(Part 2) 

Corrections given in milligals 

Fault Bounded Downwarps 

a. Major graben 

(1) Intermountain -**0 

(2) Not in mountains -50 

b. Minor graben -20 

Uplifts 

a. Horsts (fault bounded uplifts) 

(1) Major, intermountain +30 

(2) Major, not in mountains +^0 

(3) Minor +20 

b. Abnormal uplifts—due to crustal dilation, etc. 

(1) Superimposed on shield -30 

(2) Plateaus of eustatic uplift -15 

c. Other uplifts (not fault bounded) 0 to +1 

Local Isostatic Imbalance 

a. Folded mountain ranges 

(1) Mesozoic or younger -ic 

(2) r'alezoic or older 0 

b. Areas of recent deglaceation 

(1) Major Pleistocene glaciers -1;" 

(2) Minor glaciers 0 

(3) Glaciers older than Pleistocene C 

*li 
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U.U.3-2 Use of Local Correction Tables 

Tables U-5 and U-6 give the average 1° x 1° 

local geologic correction g. for structures which occupy all or most 

of the 1° x 1° area. Corrections given must he reduced proportionally 

for structures which occupy only a portion of the 1° x 1° arer>. 

When two or more structures requiring a 

correction occupy the same 1° x 1° area, the applicable g. is 

computed as the weighted average of the correction for each structure. 

The weights depend upon the portion of the 1° x 1° area covered by 

each structure. 

For example, suppose 15%  of the 1° x 1° 

area incorporates 10,000 feet of r^nezoic clastic sediments in 

a basin which is about 2° x 2° in extent, and that the other 25$ 

of the same 1° x lc area incorporates a small horst. Tht correction 

for the basin is 0.75 (-20) = - 15 mgal. The correction for the 

horst is 0.25 (+20) = + 5 mgal. The final correction for the 

1° x 1° area is (-15 + 5)  = - 10 mgal. 

Gravity measurements, where available, should 

be used to refine the average values given in the table for application 

to specific structures. Lacking gravity measurements, refinement 

of the corrections must be based upon experience and geologic 

intuition. 

h.$    Local Elevation Correction 

U.5.I Discussion 

A local elevation correction, g„, is required whenever 

3° x 3° mean elevations (ME) and simple 1° x 1° mean Bouguer anomalies 

■^        ■        I  I 
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are used in the basic predictor formulation. The g_ accounts for th> 

local gravity anomaly affects of the differences between the 3° x 3° 

mean elevations and the actual mean elevations of the 1° x 1° areas 

for which mean anomalies are being predicted. 

Ho local elevation correction is needed when 1° x 1° 

nenn elevations (ODM) are used in the basic predictor formulation. 

In view of the local Eouguer anomaly relation (3-7-22) 

(AgB)p = (AgB)Q 

it may seem surprising that  a local elevation correction  is  require"; 

to account  for the difference between the 1° x 1° and 3° x 3° mean 

elevation level.     However, equation  (3.'(-<^-J  applies to terrain 

corrected Bouguer anomalies whereas non-terrain corrected Bouguer 

anomalies  are generally used in KOGAP prediction.    The equivalent 

of  (3.7-22)  for non-terrain corrected Bauguer anomalies  is  obtained 

by inserting equations   (3.7-10)   and  (3.7-12)  into equation  (3.6-2H) 

which gives  the relation 

<VP-  UgB'Q = " TCP + TCQ (l"5~l) 

If P  is  interpreted as the 1°  x 1° mean value and  ",. 

as the  3° x  3° mean value, then the local correction,  g   , necessar,' 

to convert  a mean Bouguer anomaly predicted with a 3° x 3° mean 

elevation tc  a value compatible with the 1° x 1° mean elevation  is 

i_. = - TCp + TCQ (U.5-2) 

•■.'here 

?"    =  average terrain correction for 1°  x 1° mean  anomalies 

«i^MMi^dh 
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are 

TC, = average terrain correction value for 3° x 3° mean anomalies 
•i 

Values determined by Voss (1972b) for TCp and TC 

TC = 0.021 mgal/meter 

Hence, 

TC = 0.008 mgal/meter 

j- = - 0.013 6h (t.5-3) 

where 

5h = hv - h    = 0DM - ME 

Extensive testing has proven that, equation  (U.5—3) 

works well in most areas. 

U.5.2    Procedure 

Use equation (^.5-3) to determine the local correction 

whenever the basic predictor is formulated in terms of 3° x 3° mean 

elevations (ME) and simple 1° x 1° mean Bouguer anomalies. 

Omit the local elevation correction whenever the basic 

predictor is formulated in terms of 1° x 1° mean elevations (0DM). 

h.6    Evaluation of II0GAP Predictions 

I;,6-1 Evaluation Formulas 

Using fundamental principles of error theory it can be 

shown that the standard errors of N0GAP prediction are given by 

En = (E2n + 0.01 e2')h (U.6-?) 
F     B H 

wher all E and e values are standard errors in milligals except for 

*fa 
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e which is a standard error in meters. Specifically, 
H 

E = error of 1° x 1° mean Bouguer anomaly predicted by equation 
B 

(U.l-1) 

E = error of 1° x 1° mean free air anomaly predicted by equation 

U.l-2) 

em = error of basic predictor 
Dr 

e = error of regional correction 

eT - error of local geologic correction 

e„ = error of local elevation correction 
E 

e„ = error of 1° x 1° mean elevation (ODM) 
n 

The error of basic predictor, e  , is given by 

eBp= [(h eß)
2 + (ßR e-)

2fS (k.6-3) 

where 

h = mean elevation used in basic predictor, equation (U.2-1) 

e = error in ß_ constant cv" basic predictor equation found 
p n 

using the error propagation formula (D-ll) given in Appendix D 

3„ = regression slope constant used in basic predictor equation 

e— = error of mean elevation value used in basic predictor equation 

It usually can be assumed in continental areas that the 

measured gravity data used to derive the basic predictor is error-free. 

In the rare situations where this is not the case, add the term e c 

Ag 

under the radical in equation (U.6-3), where e.  is the error of :he 
Ag 

measured gravity data. 

The errors, eD and e , are estimates of the accuracy of 
R     L 

the correction?, g and g , respectively. Where no values for g_ 

and g can be determined, then e and e represent estimates of the 
U H Li 

MMMMWtt 
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errors incurred by not accounting for local and regional gravity 

anomaly variations in the prediction. 

In estimating values for e and e , it should be noted 
n      Li 

that the point scatter in the basic predictor derivation plots is 

caused primarily by the combined effects of e and e and, therefore, 
K        Li 

can be used to determine a first approximation of the average 

effects of e„ and eT in the prediction area. 
B     L 

The error in local elevation correction is given by 

e = 0.01 (e 2 + e2 Y1 

E        H     ME 
(U.6-U) 

The error tern , e„, is omitted when the correction g„ 

is not used in the NOGAP prediction. 

U.6.2 Proven Reliability of NOGAP Prediction 

It is very difficult to establish precise reliability 

data for NOGAP prediction because the method generally is used in 

regions which contain very little if any measured gravity data for 

comparison with the predicted values. However, the overall 

reliability of the method can be proven by citing three lines of 

evidence. 

Several years ago a number of NOGAP geophysical 

predictions were made in regions of Eurasia and North America 

where there was, at the time, very limited amounts of measured 

gravity data. Some time after the predictions were completed, 

measured data which cover3d these prediction areas quite well was 

acquired by the DOD Gravity Library. Using the measured gravity 

data, 1° x 1° mean anomalies were commuted by conventional methods 
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and then compared to the 1° x 1° mean values predicted by the IIQGAI 

method. The standard deviation between "measured" and geophysical!;/ 

predicted 1° x 1° mean anomalies are shown in Table U-T. 

Additionally, a test project was conducted in the 

European area. H0GA.J geophysical predictions were made using a 

very small, poorly ■■ istributed sampling of the measured gravity 

data which exists in the region. The predicted 1° x 1° mean 

values were compared with "measured" values computed using all 

measured data. The results are shown in Table U-8. 

Final, y. Strange and Woollard (l96Ub) nade geophysical 

predictions in the Umted States using s  NOGAP-type method. The 

standard error of these predictions was +_ 13 mgal. 

It is apparent from the preceding that IIOGAP predictions 

have an accuracy range of 5 to 20 mgal. Most modern predictions 

fall into a 9 to 15 mgal accuracy range. These figures are not 

bad considering the minimum input of measured gravity data for 

most IIOGAP predictions. With adequate amounts of measured gravity 

data, of course, KOGAP accuracies of 1-2 mgal can be attained 

easily. 
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TABLE U-7 

STANDARD ERRORS OF GEOPHYSICALLY 

PREDICTED 1° X 1J MEAiJ ANOMALIES 

RANGE OF 
PREDICTED VALUES STANDARD 

NUMBER OF AgF 
(mal) 

ERROR 
AREA 1° X 1° AREAS (ffigal) 

JORTH AMERICA    291* +52 to -61 + 15 

lURASIA 159 +128 to - 100 + g 



TABL3 k-Q 

RELIABILITY OF NOGAP PREDICTIONS 

IN WESTERN EUROPE 
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TYPE AREA 

Small Basins 

Large Basins 

Basement exposures 

Geosynclinal mountains 

Graben and Plateaus 

Coastal lowlands 

ERROR RANGE 
(mgal) 

-10 

-15 

5-10 

10-20 

5-10 

-10 

c tm 
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5. MODIFICATIONS AND VARIATIONS - NOGAP PREDICTION 

5.1 Corrected Average Basic Predictor 

Whenever possible, the NOGAP basic predictor is derived by 

regression analysis in a control region for application in the 

prediction region of the same geologic/tectonic province. This 

approach fails whenever the amount or distribution of measured 

gravity data within a geologic/tectonic province is insufficient 

to enable definition of a control region for that province.  In 

such cases, a corrected average basic predictor is needed to enable 

1° x 1° mean anomaly prediction by the NOGAP method. 

The (uncorrected) average basic predictor function recommended 

for most applications is 

BPA = - O.O89U ME (5-1-1) 

where 

BPA = average basic predictor 

ME = weighted 3° x 3° mean elevation, as defined by Figure h-1, 

in meters 

Equation (5-1-1) is determined as the mean of the empirically 

derived equation (5.1-11) and the theoretically derived equation 

(5.1-12). Other average basic predictor functions haviig more limited 

application can be derived by empirical means. 

Two special corrections must be added to the average basic 

predictor to obtain a basic predictor value which is suitable for 

use in the fundamental NOGAP prediction formula (U.l-l). Thus, 

BP = BPA + gIC + gDC (5-1-2) 

IT" im    ■  1 1, mtjä^mmmm^^^^^^^mm 
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where 

BP = basic predictor for use in  (U.1—l) 

BPA = average basic predictor from (5-1-1) 

gTr = isostatic-crustal correction 

g      = gravitational effect of distant  compensation 
JJLf 

The value given by equation (5-1-2) is the corrected average 

basic predictor. 

5.1.1 Empirically Derived Average Basic Predictors 

It has been establi tied that variations in th2 Bouguer 

gravity anomaly are tantamount to changes in the amount of compensnt: 

present, equation (3.8-11). using Airy isostatic hypothesis, these 

changes in compensation and, hence, Bouguer anomaly can be interpret1 

in terms of variations in crustal thickness, equation (3.10-31). 

Airy isostatic theory also demands variations in crustal thickness 

to accompany variations in topographic elevation, equation (3.10-16) • 

Seismic evidence and gravitational analysis (Woollard, 1959> 1966, 

1968c, 1969b; Strange and Woollard, I96U; Demnitskaya, 1959) show 

that, on an average worldwide basis, the relations observed 

between elevation, crustal thickness, and Bouguer anomaly are quite 

close to those predicted by Airy isostatic theory.  In addition, 

many departures from one Airy theory predictions can be ascribed 

tc v?" * :ions in the density of the crust and mantle and to some 

regional isostatic imbalance. These average worldwide relationships 

provide an excellent foundation for development of average basic 

predictor functions. 
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Demnitskaya (1959) ha^ compiled worldwide maps of 

crustal thickness and compared these data with worldwide Bouguer 

anomaly and elevation data. Using least squares solution, she 

detentined that the following expressions represent the average 

relationship between crustal thickness and elevation 01 Bouguer anomaly 

H = 35 (1 - tanh 0.0037 Agß) (5-1-3) 

H = 33 t.anh (0.38 h - G.lS) + 38 (5-1-M 

where 

H = crustal thickness in kilometers 

Ag = Bouguer gravity aromaly in milligals 

h = elevation in kilometers 

Equating the two above expressions and solving for the 

Bouguer anomaly gives 

1 
Ag_ = - 270.27 tanh  [0.9^286 tanh (0.38 h - 0.18) + 0.0085'i]  (5-1-5) 

To use equation (5-1-5) as an average basic predictor, 

replace Agn with BPA and h with the appropriate mean elevation in 
D 

kilometers. 

When used as an average basic predictor, equation (5-l-"J 

gives favorable results in the Eurasian area but fails in North 

America (Durbin, 1962). This result suggests, logically, that 

Demnitskaya's measured data was hea/ily concentrated in the 

Eurasian area—giving heavier weight to this area in the least 

squares solution. 

Woollard (1959) performed a similar worldwide analysis 

of crustal thickness, elevation, and Bouguer anomaly data from which 

the following equations were derived by Durbin (l96l). 
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AgD = 0.115 (H + 9*+.l)
2 - hkk.k 

D 
(5.1-6) 

H = (- 1605.358 h + 12392.620)*5 - 1^3-322   (5-1-7) 

which, when the second is substitn'.ou into the first gives, after 

some simplification 

Agß = fa (2.61*3 h - 103) (5.1-8) 

Equation (5.1-8), which can be converted into an average 

basic predictor function in a manner similar to (5.1-5), gives 

good results in North America but fails in Eurasia (Durbin, I962). 

A linear equation with quite general application ca.n 

be derived from relations published by Woollard (1962) based upon 

mora extensive data than was used in 1959« 

H = 33.U - 0.085 Ag3 (5.1-9) 

H = 33.2 + 7.5 h (5.1-10) 

Equating the two above equations and solving for AgR 

gives 

Agß = - 88.2 h (5.1-11) 

where h is in kilometers and a small constant term has been dropped. 

Converting to an average basic predictor gives 

BPA = - 0.0882 h (5.1-12) 

where h is an appropriate mean elevation value in meters. 

Being worldwide average relations equations (5-1-5), 

(5.1-8), and (5.1-12) must represent the elevation-Bouguer anomaly 

correlation for the worldwide average isostatic condition.  On a 

worldwide basis, isostatic compensation is complete. 

mi*m 
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5.1.2 A Theoretically Derived Average Basic Predictor 

To derive an average basic predictor theoretically, 

assume that complete isostatic equilibrium exists and compute the 

Bouguer anomaly which corresponds to this condition as a function of 

mean elevation. An isostatic model can be set up for this purpose 

using Airy-Heiskanen isostatic theory, Figure 5-1« A radius of 166 km 

is chosen for the model since this radius will enclose approximately 

a 3° x 3° area—the smallest area likely to be in complete isostatic 

equilibrium (Woollard, 1962).  (Hence, the h term in equation (5-1-11) 

must also be a 3° x 3° mean elevation). 

Approximate the compensating root of the Airy-Heiskanen 

isostatic model by a vertical right circular cylinder, Figure 5-2, 

and compute the gravitational attraction of the compensation using 

formula (U.U-2), (U.U-3)• and (U.U-U), Figure k-k.    The result is 

the Bouguer anomaly corresponding to a condition of isostatic 

equilibrium for a 3° x 3° mean elevation of 1 km. 

a = [(30 + U.l+5)2 + löö2]*4 = 169-537 km 

b = (302 + 1662)5* = 168.689 km 

Ao = 2.67 - 3.27 = - 0.6 gm/cm3 

Ag_   = (1+1.91) (- 0.6) (U.l+5 - 169.537 + 168.689) = - 90.6 mgal/km 
Bh=l 

Generalizing this result for any elevation gives the 

average basic predictor 

BPA = - 0.0906 h (5.1-13) 

where h = 3° x 3° mem elevation in meters, essentially ME 

(Figure U-l). 
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5.1.3    The Need for Corrections to Average Basic Predictors 

The regional component of the Bougucr anomaly,  controlled 

by the basic predictor, is generated by both local and distant 

distributions of the compensating masses  as well as by density anomali< 

in the crust and upper mantle.    Yet the theoretical derivation of 

the average basic predictor assumes that  isostatic compensation is 

complete  (that  is, there ?re no uncompensated regional density 

anomalies) and takes into account only that compensation which is 

within a 166 kilometer radius.    Also,  an assumption that  compensation 

is achieved by the Airy-Heiskanen mechanism was made  in the derivation. 

The empirically derived average basic predictors are 

also tied to the Airy isostatic model and represent a condition of 

complete isostatic equilibrium.    Also, the random effects  of distant 

compensation must be averaged out.    The close correspondence between 

the empirical equation  (5.1-12)  and the theoretical equation  (5-1-13) 

is  further evidence that the empirical and theoretical models,  in 

fact, must have very similar properties. 

Although the average basic predictor certainly is quite 

accurate as an expression representing worldwide average conditions, 

it  is logical that  some corrections  are necessary to convert the  averir 

basic predictor to a form which is  suitable for use  in the IJOGAF 

prediction formula.    This  is true because,  in general, the geophysical 

properties of any given prediction area will not  correspond exactly 

to the worldwide average properties. 

A good understanding of how well the average basic 

predictor will approximate the actual mear Bouguer anomaly—mean 

elevation relationship within a given region can be obtained from 

MMHMi 
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FIGURE 5-1 

MRY-HEISKANEN ISOSTATIC MODEL 

FOR AVERAGE BASIC PREDICTOR DERIVATION 

°s = 2.67 gm/cm3 

o    = 
m 3.27 gm/cm3 

Hs = 30 km 

F/R = lA.1+5 

Let: r = 166 km 

h = 1 km 

Then: R = U.U5 km 

mid 
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FIGURE 5-2 

MODELLING OF COMPENSATION 

USING VERTICAL RIGHT CIRCULAR CYLINDER 

AND AIRY-HEISKANEN ISOSTASY 

Hn = 30 km S 

AR = k.k5  km 

r = 166 km 

L MM m 
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FIGURE 5-3 

AVERAGE BASIC PREDICTOR 

SUPERIMPOSED ON OBSERVED RELATIONS 

OF 3° X 3° MEAN ELEVATIONS AND BOUGUER ANOMALIES 

Basic figure from Woollard (196913) 

mii mma i* 
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Figure 5-3. This figure was obtained by superimposing the line 

generated by equation (5-1-1) onto Figure 1 of Woollard (1969b), 

which shows observed relations of 3° x 3° mean elevations and Bouguer 

anomalies for iß continental regions throughout the world.  The 

comparison shows that (l) use of a basic predictor specifically 

determined for application within a given region is always 

preferable and (2) some corrections are essential if the average 

basic predictor is to give satisfactory results for many regions. 

5.I.I* Distant Compensation Correction 

The distant compensation correction accounts for the 

gravitational effects of the compensating masses which lie outside 

of the 166 kilometer radius included in the theoretical derivation 

of the average basic predictor. This correction can be obtained 

easily from maps by Karki et al. (1961). These maps are designed 

to provide a value for use in the isostatic correction, gT, where 

the effect of compensation is positive. For Bouguer anomaly 

prediction, however, the effect of compensation is negative. 

Therefore, 

gDC = - gDTC (5.1-iM 

where 

gnf, = Bouguer gravity effect of distant compensation for use in 

equation (5-1-2) 

g TC = Isostatic gravity effect of distant topography and its 

compensation read from maps by Karki et al. (I96l). 

ti^mmammmg^mmmmmmmm 
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5-1.5 Isostatic-Crustal Correction 

The isostatic-crustal correction accounts for (l) regional 

departures from isostatic balance, (2) the existence of crustal and 

upper mantle density distributions other than those predicted by- 

Airy isostatic models, and (3) very long period (global) variations 

in the gravity anomaly field caused by deep seated mass perturbations. 

As was true in the case of the regional correction, 

there are nearly as many approaches for developing isostatic-crustal 

corrections as there are geologic/tectonic provinces which require 

such corrections. The evidence and methods which can be used tend 

to follow a limited number of patterns some of which are discussed 

in the following paragraphs. Extended discussions of other types of 

regionality factors which must be considered in developing isostatic- 

crustal corrections are included in Woollard (1968b, 1969a). 

Evidence for regional departures from isostatic balance 

includes rapid uplift or subsidence of the crust, recent glaciation 

or deglaciation, rapid erosion, etc. Regions suspected of being out 

of isostatic balance should be compared with other regions having 

similar characteristics and ample measured gravity data. An 

isostatic-crustal correction can be derived for the latter and 

applied to the former. 

Strange and Woollard (l96Ua) have derived an isostatic- 

crustal correction for two types of regions where crustal and upper 

mantle density distributions differ from those predicted by the Airy 

isostatic model. These are (l) regions where both mean crustal 

seismic velocity (and, hence, density) and upper mantle seismic 

•*** —fc—M^—■— 



velocity (density) are abnormally high and the crust is thicker 

than predicted by Airy theory (example: Northern Great Plains), and 

(2) regions whare both mean crustal and upper mantle velocity are 

abnormally low and the crust is thinner than predicted by Airy 

theory (example:  Southern Basin ar-l Range province). These regions 

must not be long and narrow. Using empirical relations between 

crustal thickness and regional gravity anomalies, Strange and Woollard 

have developed an isostatic-crustal correction determination 

procedure for such regions. The procedure is this: 

Step 1: Determine actual crustal thickness from 

published interpretations of seismic velocity data. 

Step 2: Determine the crustal thickness predicted by 

Airy theory from Figure II-9 of Strange und Woollard (l96Ha). 

Step 3= Enter actual minus predicted crustal thickness 

into Figure II-U of Strange and Woollard (1961+a) and read the 

isostatic-crustal correction. 

A gooa approximation of the very long period (global) 

variations in the gravity anomaly field can be obtained as the 

difference between the global gravity field value computed from the 

low degree spherical harmonics (derived by satellite perturbation 

analysis) and the value given by the theoretical gravity formula 

(Strange and Woollti-d, 196Ua). 

Any measured gravity data which exists in the prediction 

region can be used as a rough check oi' the regional component of 

the Bouguer gravity prediction given by the corrected average basic 

L       — ~±l 
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predictor. Of course, local effects must be removed frorr. the measure 

lata before it is compared to the value given by the corrected 

average basic predictor. 

Careful deductive reasoning combined with considerable 

skill and judgement is necessary to enable development of accurate 

values for the isostatic-crustal correction for prediction areas 

which contain no measured gravity dn.H a. 

5-1.6 Evaluation of the Corrected Average Basic Predictor 

The standard error of the corrected average basic 

, predictor computed by equations (5-1-2) and (5-1-1) is given by 

e„ = [(0.09 e-)2 + e2  f
2 (5-1-15) 

Br h       it 

where 

e  = error of corrected average basic predictor in milligals 

e— = error of the mean elevation value used in the average has:'. 

predictor equation (5.1-1) in meters. 

e  = error of the Isostatic-cruslal correction in milligals 

/ The value obtained by (5-1-15) is to be used in equation 

(U.6-2) for MOGAP p^diction evaluation. 

Since the average basic predictor is quite accurate as 

an expression representing the worldwide average relationship 

between mean Bouguer anomalies and mean elevations, there is no tern. 

in (5.1-15) involving the slope constant error, e .  Likewise, the 
ß 

distant compensation correction is "correct"' by definition, and, 

hence not an error factor in (5.1-15). 

MM 
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The error, eTf,, is an estimate of the accuracy of the 

correction, gTfl. Where no value for g„_ c-in be determined, then 

eT represents the error incurred by not accounting for actual 

regional isostatic and crustal conditions. 

Results of a test project in Europe provide some 

guidance for the expected reliability of NOGAP predictions made 

using the corrected average basic predictor. Details are given in 

Table 5-1. 

5»2 Basic Predict   / Multiple Regression 

Comparatively little research has been completed to determine the 

nature of the multiple (combined) relationships between Bougner gravity, 

mean elevation, and other geophysical parameters. Nonethelesr, it 

should be possible to define a basic predictor of the form 

BPM - a + bx + cy + dz + . . . (5.2-1) 

where 

BPM = multiple basic predictor 

a, b, c, d, . . . = multiple regression constants 

x, y, z, . . . = geophysical variables such as mean elevation, 

crustal thickness, depth to crystalline 

basement, etc. 

Based upon results of research conducted to date, multiple basic 

predictors such as (5.2-1) appear to apply to regions which are 

comparitively localized in extent. Also, the multiple basic 

predictors incorporate part or all the local and regional correction 

terms as well. A study by Vincent and Strange (1970) indicates that 

the multiple regression prediction can give excellent results. 
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TABLE 5-1 

RELIABILITY OF NOGAP PREDICTIONS 

USING CORRECTED AVERAGE BASIC PREDICTORS 

IN WESTERN EUROPE 

TYPE AREA ERROR RANGE 
(mgal) 

Small Basins -10 

Large Basins 15-25 

Easement Exposures 5-20 

Geosynclinal Mountains 15-25 

Grabens and Plateaus 10-15 

Coastal Lowlands -10 

*id 
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5.3 Hormal Gravity Anomaly PredictIon-Free Air Version (GAPFREE) 

Basic predictor functions are generally determined in terms 

of mean Bouguer gravity anomaly—mean elevation relationships 

because of the strong, well-defined correlation which usually 

exists between these two parameters. However, a basic predictor 

function also can be derived in terms of mean free air anomaly—mean 

elevation relationships. The major difficulty with the latter 

approach is that the free air linear basic predictor relation is 

frequently very nearly parallel to the elevation axis which results 

in an ill-defined basic predictor equation, for example, equation 

(3.6-33). 

Gravity anomaly prediction using a free air basic prediction 

(GAPFREE) is similar in form to HOGAP prediction, and theoretically 

at least should give identical results whenever the free air basic 

predictor is well defined. The fundamental prediction equation 

is 

Äg"F = BPF + g"R + i~L + g£F (5-3-1) 

where 

Agr, = predicted 1° x 1° mean free air anomaly 
r 

BPF = free air basic predictor 

gp = regional correction 

g    = local correction 

g„_, = locil free air elevation correction 

The predicted 1° x 1° mean Bouguer anomaly is obtained from 

the predicted 1°  x 1° mean free air anomaly by use of equation 

(3.7-lM 

Äg"B = Xgp - 0.1119 h (5-3-2) 
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where 

Ag = predicted 1° x 1° mean Bouguer anomaly 

h = 1° x 1° mean elevation 

The free air basic predictor used for GAPFRE^, prediction is the 

equation of the linear regression between 1° x 1° mean free air anomaly 

values and the corresponding mean elevation values. 

BIT = a  + ßh (5-3-3) 

where 

BPF =  free air basic predictor 

ex,  ß = regression constants 

h = mean elevation 

The procedure for free air basic predictor derivation ire 

similar to those outlined for the standard ITOGAP basic predictor, 

and eitner 1° x 1° or 3° x 3° mean elevations may be used. 

The regional and local geologic corrections  are obtained in 

the same manner as for standard NOGAP prediction. 

The local free air elevation correction, used only when 3° x  3 

mean elevations  are involved in the free air basic predictor,  is 

obtained from equation  (3.6-25) 

(AgF)p =  (Agp)Q + 0.1119  oh - TCp + TC (5 -3-U) 

where P is   interpreted as the 1° x 1° mean value  and Q, as the  3° x  ~lc 

mean value.     Thus, 

g£F = 0.1119 6h - TCp + TCQ. (5.3-5) 

The value of  (- TC_ + TC.)   is given by   (U.5-3)  to be  -  0.013 <ch. r y 

therefore, 

-<4J MHHtl 
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gEF =0.099 6h 

where 

6h = hp - hQ = 0D^5 - ME 

Evaluation of GAPFPEE prediction is similar to evaluation of 

NOGAP prediction. 
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6.  GRAVITY DENSIFICATION AND EXTEilSlüU METHOD (GRADE) 

6.1 Discussion 

In region? where a limited amount of measured gravity data is 

available, conventional averaging methods often do not yield accurate 

1° x 1° mean anomalies. When geologic structure is considered in the 

prediction process, however, the resulting 1° x 1° mean can be quite 

accurate (Scheibe, 1965)- The Gravity Densification and Extension 

(GRADE) method is the gravity correlation prediction procedure most 

often used to incorporate structural considerations into 1° x 1° 

mean gravity anomaly predictions in continental regions of limited 

measured gravity data availability. 

The GRADE method Ub.^ gravity correlations to densify and extend 

the known gravity field by interpolation. The mean anomalies are 

predicted using both the measured and interpolated data. 

Input data required for GRADE prediction is the same as for IIOGAP 

prediction plus an average of from two to ten gravity measurements 

per 1° x 1° area within the prediction region. 

In GRADE prediction, the locations of all available gravity 

measuremerts are plotted on a map base of suitable scale. Then the 

Bouguer gravity anomaly values for all plotted points are graphically 

compared with the corresponding values of various types of numerical 

geophysical or geological data which are known continuously throughout 

the prediction region. All correlations are noted and the equations 

which express the interrelationships between correlated data are 

d.j-reloped. These equations are used to interpolate Bouguer anomaly 

values for an even distribution of Doints within each 1° x 1° area. 
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All measured and interpolated Bcuguer anomaly values are annotated on 

r.ii" plot , and the combined field is contoured using geologic/tectonic 

structure rnapn as additional control. The final mean 1° x 1° mean 

anomaly values are read from the completed contour charts. 

The applicability of correlations found is usually limited to a 

single geologic/tectonic province and, occasionally, to individual 

.jeologic formations. For this reason, Boueuer ancmaly interpolations 

are extended only into regions which are structurally homogeneous with 

the region in which the correlations being used were determined. Thir. 

property is actually a strength of the method because each 

■ravitationally significant local structural variation is takon into 

aceoun+. 

In addition, the measured gravity dat* used in the method 

automatically controls much of the regional component of the gravity 

anomaly field.  Hence, IRADÜl predictions are well controlled both 

locally and regionally. 

Gome examples of the types of data which can be used to establish 

correlations for GRADE interpolation are Tiven in Table 6-1. 

6.2    Procedure 

Step 1:  Obtain plots showing the locations of all gravity 

measurements available within the prediction region. A scale of 

1:1,000,000 is generally us^d for 1° x 1° prediction. Annotate 

r'ouguer anomaly values at measurement sites. 

Step 2:    Obtain all numerical geological and geophysical data 

available in the prediction region.  Sources of such data are listed 

in lible 6-1.  If necessary, construct contour maps of each type of 

mh 
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TABLE 6-1 

SOME EXAMFLES OF NUMERICAL GEOLOGIC AND GEOPHYSICAL 

DATA WHICH CAN BE USED TO ESTABLISH 

CORRELATIONS FOR GRADE INTERPOLATION 

DATA 

rrustal Thickness 

>pth to Mohorovicic 
is continuity 

Jepth to Intra-Crustal 
discontinuities 

-hickness of Sedimentary 
■ecks 

jerth co Basement 

'eis-ni c Vave Velocity 

>ustal or '.iear Surface 
'er.c : ty Var i at i on? 

I"vat ion 

SOURCES 

Crustal Maps, Profiles (seismic 
gravimetric) 

Crustal Maps, Profiles (seisr.ic 
pravimotric) 

Crustal Maps (seismic, 
f-ravimetri c) 

Tectonic Maps 

Tectonic Maps 

Seismic Data 

Seisrr.ic Data, density Maps, 
Crustal Profile"» 

Topographic Maps 

1 in m\\ 
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data to obtain a representation showing ^w A.he data varies in value 

throughout the prediction region. Annotate (or tabulate) values for 

each type of data, read from the contour maps, at the gravity measurement 

sites on the plots made in Step 1, 

Step 3: Subdivide the prediction region into geologic/tectonic 

provinces using published geologic and tectonic maps and documents. 

Step h:    For each geologic/tectonic province, make plots (graphs) 

of Bouguer anomaly values against the values of the various types of 

numerical geological and geophysical data at the gravity measurement 

sites. 

Step 5= Examine- each plot. If a single regression line provides 

a good linear fit to the plotted points proceed to Step 8. Otherwise 

continue with Step 6. 

Step 6: Re-examine the geologic/tectonic province boundaries 

determined in Step 3. AdJ'.stment of these boundaries and/or definition 

of additional provinces may help achieve good linear relationships. 

Conversely, it may be possible to combine two or more provinces which 

have the same relationships. 

Step 7: Consider subdivision of plots into high, intermediate, 

and low elevation regions, especially when the original plot shows 

linear segments Joined by directional discontinuities. 

Step 8: Select the most consistent plot (smallest point scatter) 

to represent each geologic/tectonic province. Compute linear > 

regression coefficients using a least squares solution (Appendix D). 

Step 9: Use the correlation formulas determined in Step 8 to 

interpolate Bouguer gravity anomaly values at an even distribution of 

points within the prediction region. Where the Bouguer anomaly gradient 
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is small, a total of 5 to 10 measured and interpolated values per 

1° x 1° area should be sufficient. With a larger gradient, 20 or 

more points per 1° x 1° area may be required. Annotate the additional 

Bouguer anomaly values on the plots made in Step 1. 

Step 10: Contour the densified and extended Bouguer gravity 

anomaly field on the final annotated plots. Use local variations 

in geological structure as additional control in constructing the 

contours. 

Step 11: Read the final 1° x 1° mean Bouguer anomaly values 

from the completed contour plots. 

Step 12: Compute the final 1° x 1° mean free air anomaly 

using equation (U.l-2). 

Options: Experienced people generally prefer to use programmable 

desk calculators or high speed computers to accomplish Steps U 

through 9- Using the plots as described, however, is an aid 

both in understanding the processes involved and in defining 

where the data could have alternate interpretations. 

6.3 Crustal Parameter Variations 

A stronger correlation sometimes exists between the numerical 

geophysical data and the two geophysical parameters, mean crustal 

density and crustal root increment, than between the geophysical 

data and the Bouguer gravity anomaly data. Consequently, it is 

sometimes advantageous to use these two crustal parameters in lieu 

of the Bouguer gravity anomaly in GRADE prediction. 
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Exnressions for the two crustal parameters are obtained using 

.-ilry-Wocllard isostatic thaory. The basic relationships are given 

vy  equations (3.10-20) and (3.10-31) which may be written in the 

form 
o h + {a    - a   ) H 

AR = - Q §—S- (6.3-1) 
m   u 

Agn = - 2nk (a - o_) AR (6-3-2) 
• B m   C 

where all symbols are defined in section 3-10. 

Jolve (6.3-2) for AR, equate to (6.3-1) and solve the resulting 

expression for a    to obtain 

2nk o Hg - Ag 
cc= in (H0 ; h) (6-3-3) 

O 

Equations (6.3-1) and k 5.3—3) are used to obtain values for 

the two crustal parameters, o and AR, at each gravity measurement 

site. These parameters are plotted individually against the numerical 

geophysical data, and the best correlations are used to interpolate 

additional a and AR values at an even distribution of points within 

the prediction region. Then equation (6.3-2) is used to convert the 

interpolated crustal parameters to interpolated Bouguer anomaly 

values which are then contoured, as usual. 

C.U    Mountain Modification 

The standard GRADE method sometimes gives inadequate results 

In rugged mountainous areas where the available measured gravity 

iata is not distributed well enough to represent rapid structural 

and topographic changes. The mountain modification of the GRADE met!.'-, 

often enables more reliable predictions to be made in such areas. 

hlAh 
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Pairs of measurement sites are selected such that the lines 

connecting the pairs cross the structural trends at nearly right 

angles. The Bouguer anomalies or crustal parameters are plotted 

against the numerical geophysical data at the end points (measurement 

sites) of each line. Then a linear interpolation is used to obtain 

Bouguer anomaly or parameter values at equal intervals along each 

line. The measured and interpolated values are contoured and the 

means read in the usual manner. 

6.5 Evaluation of GRADE Prediction 

6.5-1 Evaluation Formulas 

Considering the fundamental principles of error theory, 

the standard error of GRADE prediction is given by 

En =  ej-T <6-5-D 
U + 2> 

EF =  (E2
B + 0.01 e2

H)4 (6.5-2) 

where E and e values are standard errors  in milligals except eu H 

wh'ch is  a standard error in meters.     Specifically, 

E    = error of 1° x 1° mean Bouguer anomaly predicted by GRADE 

procedures 

E    = error of 1° x 1° mean free air anomaly predicted by equation 
r 

ih.1-2) 

e    = error of interpolated Bouguer anomalies 

e„ = error of 1° x 1° mean elevation  (ODM) 
n 

ra = number of measured gravity values in the 1° x 1° area 

n = number of interpjlated gravity values  in the 1° x 1°  area 

'— ' ^-^-^_—~> 
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The error of the interpolated Eouguer anomalies is given 

by 

ez  = [(Peß)
2 + (&e?)2)h (6.5-3) 

where 

P = average value of the numerical geophysical data in the 

correlation used for the 1° x 1° area 

ep = error of the numerical geophysical data used 

?■ -  slope constant of the linear correlation equation used for 

interpolation 

e = error of the slope constant given by the error propagation 
D 

formula (Appendix D) 

When crustal parameters are used, compute an error for 

each parameter using equation (6.5-3)—this gives e._ for the root 
On 

increment and e    for mean crustal density.    Then 

ez = kO  [{(oM - oc) e R}2  +  (AR eQ)2] {£ 5-k) 

»here  AR and c    are average values for the 1° x 1° area. 

For the mountain modification, use m + nA  in the 

denominator of  (6.5-1). 

6.5-2    Test Reliability of GRADE Predictions 

A test project to evaluate GRADE prediction reliability- 

has been conducted in the European area.    Values predicted using the 

GRADE method and variable amounts of measured data were compared 

with "measured" values computed U'iing alJ measured gravity data. 

The results are shown in Table 6-2. 

MM 
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TABLE 6-2 

RELIABILITY OF GRADE PREDICTIONS 

IN WESTERN EUROPE 

1. Normal Areas 

Average Number Standard 
Measurement 
per 1° x lc 

s            Error Range 
(mgal) 

Error 
(mgal) 

0-U    5-9   10-lU 

2 10% 20$ 103 t 1 

5 15% 25% — + 5 

10 100% — — + 2       1 

2. Rugged Areas—Mountain Modification 

Average Number Standard 
Measurement 
per 1° x 1° 

s            Error Range 
(mgal) 

Error 
(mgal) 

0-U  5-9  10-lU > 15 

3 35? 15jS 25% 25% + 15 
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T.  EXTENDED GRAVITY ANOMALY PREDICTION METHOD (EXGAP) 

7 • J  Discussion 

The Extended Gravity Anomaly Prediction Method (EXGAP) was 

derived originally as an extension of the NOGAP method. The 

original version, as described in Wilcox et al. (1972) and Wilcox 

(1968) was somewhat awkward in its expression and recommended usage. 

The method is presented here in a revised and more adequate form. 

The EXGAP method is useful for 1° x 1° areas which contain only 

one or two gravity measurements and for which a valid IIOGAP basic 

predictor equation has been determined.  It is based on the assumption 

that the regional inverse linear relationship between point Bouguer 

anomalies and elevations within the 1° x 1° area is parallel to the 

regional mean Bouguer anomaly—mean elevation relationship expressed 

by the basic predictor.  In general, this assumption is sufficiently 

valid for 1° x 1° anomaly predictions. 

The relations involved are shown graphically in Figure 7-1. 

From this figure, it is evident that 

Agß = (AgB - gL) - ß (h - h)        (7.1-1) 

where 

AgD = 1° x 1° mean Bouguer anomaly 
D 

h = 1" x 1° mean elevation 

Ag = Bouguer anomaly computed at ehe measurement site 

h = elevation of the measurement site 

;■:, = local geologic correction at the measurement, siu° 

£ = slope constant of the NOGAP basic predictor 
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Equation (7.1-1) is the EXGAP prediction formula. All parameters 

required by this formula are "known" except for the local geologic 

correction, g , which must be determined by the analytical computation 
Li 

method described in Section h.U.2.  (Empirical estimation cannot be 

used for a g value which applies to a particular measurement site). 

Hence, application of the EXGAP method is limited to areas where 

local geological effects can be computed by the analytical method. 

Results are always improved when more than one gravity measurement 

is available within the 1° x 1° area for which a prediction is desired. 

In such cases, apply equation (7-1-1) independently for each 

measurement and take an average. 

The predicted free air anom-'ly is obtained using equation (U. 1—2). 

7.2 Evaluation of EXGAP Prediction 

The standard error of EXGAP prediction is given by 

= [e2._ + e2 + {(h - h) e '}2 + (S ej2 + (ß e-)2]'2  (7.2-1 
Ag 

EF= [EB
2 + 0.01 eh

2T (7.2-2) 

where all E and e values are standard errors. Specifically, 

E = error of 1° x 1° mean Bouguer anomaly (mgal) predicted by 
B 

equation (7-1-1) 

E„ = error of 1° x 1° mean free air anomaly (mgal) predicted 
r 

by equation (h.1-2) 

e  = error of Bouguer anomaly (mgal) at the measurement site 
Ag 

e. = estimated error of loct.1 geologic correction (mgal) 
h 

h = elevation at the measurement site (meters) 

h = error of mean elevation used in the NOGAP basic predictor (meter 
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. / 

FIGURE 7-1 

EXGAP RELATIONS 
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by 

e = error of the slope constant of the NOGAP basic predictor 

e, = error of the elevation at measurement site (meters) 

e— -  error of mean elevation (meters) 
Y 

ß = NOGAP slope constant 

When two or more computations are averaged, the error is given 

EB = 
\    +~B2 + 

(7.2-31 

where 

n = number of measurements used 
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8.  UNREDUCED GRAVITY ANOMALY FREDICTIOII METHOD (UIIGAP) 

3.1 Discussion and Method 

The Unreduced Gravity Anomaly Prediction (UNGAF) method relie;; 

on correlations between the unreduced surface anomaly defined by 

equation (3-9-1) 

AgS = S0 " Y 
(8.1-1) 

and elevation data within major geologic/tectonic provinces. 

The unreduced surface anomaly is almost always more strongly 

correlated (larger coefficient of correlation) with elevation than 

either the free air or the Bouguer anomaly (Rothermel, 1973). Thir- 

is true in both a local and a regional sense. Also, only a relativ«, 

small amount of measured data is required to establish usable 

correlations. The distribution of this measured data within 

1° x 1° areas is not important for UNGAF prediction. These propcrtl' 

constitute the major strengths of the UIIGAP method. 

The major difficulty of the method is that valid basic predict': 

relationships frequently must be deciphered from a complicated suit' 

of local relationships.  Nevertheless, the UNGAF method has proven 

to be very useful in some situations where a NOGAP basic predictor 

cannot be determined—either due to an ill defined relationship 

between regional elevations and Bouguer anomalies or due to insuff;r- 

amounts and/or distributions of measured gravity data to enable 

definition of a control region. 

The normal local relationship between unreduced surface anor/ily 

ana elevation is given by equation (3-9-7). 
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(AgJp =   (Agg)Q - 0.3086 6h + 2 * k a  Sh - TCp + TCQ  (8.1-2) 

which, when  (Ag„L  is taken to be at  sea level and elevation dependent 
b «y 

terms are combined, can be written in the general form 

Ags = c + 9h (8.1-3) 

Equation (8.1-3) can be viewed as the form of the UTJGAP basic 

predictor. 

The U1IGAP basic predictor is derived in the following manner. 

A plot is made of unreduced surface anomalies against elevation for 

gravity measurement sites within major geologic/tectonic provinces. 

These plots almost always show the existence of strong linear 

relationships betweei these two variables which can be expressed in 

terms of equation (8.1-3). Generally, there will be a unique value 

of the constants, c,  and 9, for each 1° x 1° area. With locally 

homogeneous structure, t,  and 6 will vary slowly and uniformly from 

one 1° x 1° area to the next—or they may not vary at all. More 

rapid changes in z,  and G may take place across breaks in local 

structure and across major province boundaries. However, all of 

these variations are merely superimposed on the dominant term, 0.3086 :h, 

in (8.1-2) so that the UNGAP relationship (8.1-3) is always well 

behaved. 

Subtraction of analytically computed or estimated local 

geologic effects from the unreduced anomaly values before construction 

of the plot sometimes yields one or more very well defined 

relationships.  In such cases, the slope and intercept constant of 

each relationship are determined by a least squares fit (Appendix b). 
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In other cases, the plot will show a more complex suite of local 

relationships which must be merged graphically into a single 

average local relationship. Then the slope and intercept constants 

determined graphically for the average relationships are used to 

define the UNGAP basic predictors. 

Insertion of the 1° x 1° mean elevation, h, into 

Agn = t,  + 9h (8.1-u; 

where c,  and 6 have been determined as above gives a basic prediction 

of the corresponding 1° x 1° mean unreduced surface anomaly, Agc. 

Local geologic corrections, determined analytically or empirically, 

should be added to the basic prediction where possible. However, 

caution must be used when the basic predictor was determined by the 

merging process which rather arbitrarily forces "corrections" into 

individual 1° x 1° relationships in order to obtain an average curve. 

Careful observation of the manner in which 9 and C vary from one 

1° x 1° to the next on the plots may help in the development of 

empirical local adjustments to the basic prediction when the latter 

was determined by merging. 

The 1° x 1° mean free air and Bouguer anomalies are computed by 

Ag = Ag„ + 0.3086 h 
r     £ 

AgB = Agp - 0.1119 h 

where 

Ag = 1° x 1° mean free air anomaly 
F 

Ag_ = 1° x 1° mean Bouguer anomaly 
B 

h = 1° x 1° mean elevation in meters 

(3.1-5) 

(8.1-6) 



232 

Agc = 1° x 1° mean unreduced surface anomaly 

8.2    Evaluation of IINGAP Prediction 

The standard error of UNGAP predictions is given by 

ES=(eBp2 + eL2)J5 

EF =  (Eg* ♦ 0.1 e*-)* 

z-sh EB =   (Ep2  + 0.01 e2
h) 

(8.2-1) 

(8.2-2) 

(8.2-3) 

where all E and e values are standard errors. Specifically, 

E = error of predicted 1° x 1° mean free air anomaly, mgal 
r 

E = error of predicted 1° x 1° mean Bouguer anomaly, mgal 

E = error of predicted 1° x 1° mean unreduced surface anomaly, 
o 

mgal 

e— = error of 1° x 1° mean elevation, meters 
h 

e = estimated error of local geologic corrections, mgal 
Li 

e  = error of the basic predictor, mgal 
Br 

The error of the basic predictor is given by 

*w = [<e eh>* + (h .,)»]* 

or, 

(8.2-U) 

eBP=[(eeh)2+eM2]H (8-2"5) 

where 

9 = slope constant in (8.1-U) 

e = error in constant of the basic predictor found using the 
0 

error propagation formula (D-ll) in Appendix D. 

ew = estimated error of merging determined from the plot "scatter' 
M 
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equation (8.2—M is used when the basic predictor is determin-' 

by ■■■.. least squares solution. Equation (8.2-5) is used when the hi: 

predictor is determined by merging. 
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9-  GEOLOGIC ATTRACTION INTERPOLATION METHOD (GAIil] 

9•1 Discussion and Method 

The Geologic Attraction Interpolation (GAIN) Method can be 

used to pre Viet 1° x 1° mean gravity anomalies in regions where th» 

local gravitational variations are caused entirely by near surface 

density contrasts. A few gravity measurements must be available to 

control the regional gravity variations. Methods of the GAIN type 

have yielded excellent results in Wyoming (Strange and Woollard, 

196ka) and in the south-central United States (Durbin, 196la). 

Methods of the GAIN type are used most frequently in regions 

where sedimentary rocks overlie a cyrstalline basement and it is 

this type of application which is discussed in the following 

paragraphs. 

In the GAIN method, several geologic cross sections are 

constructed and then converted into density variation cross sections 

using a density—depth relationship appropriate for the area being 

worked. Data describing the density sections is entered into a two 

dimensional attraction computer program and the gravitational effect" 

of density contrasts in the local geologic structures are competed 

at intervals along the sections. The computed effects are used to 

interpolate gravity anomaly values at points between gravity measurement 

sites. The field of : ^asured and interpolated values is contoured 

with respect to local geologic structure and the final 1° x 1° mean 

Bouguer anomalies are read from the completed contoured charts. 
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The geologic cross sections are constructed across the centers 

and perp jndicular to the longest dimension of the geologic structures 

in the region. Each profile must pass through at least two gravity- 

measurement sites which, preferably, are located on basement rock 

outcrops. Enough profiles should be constructed so that every 

1° x 1° area contains a portion of one of the profiles. 

The geologic cross section itself is compiled from the best 

available geologic and tectonic maps and related textual data 

using standard methods. 

In converting the geologic cross sections to density sections, 

densxty values for the crystalline basement and overlying sediments 

can be obtained from well log data, or in the absence of such data, 

by application of Chapter 13i of Woollard (1962). All sedimentary 

rocks equal in density to the crystalline rocks are treated as 

basement rocks. Density values determined for the sedimentary rocks 

can be averaged and used to construct a sediment to basement density 

contrast vs. depth curve. Density increase with depth tends to be 

exponential for clastic sediments (see Figure IV-3, Strange and Woollard, 

196Ua). Recent near surface unconsolidated deposits may have a nearly 

constant density—not varying with depth. 

The density contrast vs. depth curve is applied to convert the 

geologic cross section to a density contrast cross section. The 

density section typically consists of near parallel layers which 

cut across the geologic formation boundaries. 

-'—■        -        — 
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Data from the density cross sections are entered into a two 

dimensional attraction computer program and the gravitational effects 

of lhe density section are computed. These local effects are 

superimposed on the regional field as defined by the gravity 

neasurement. A computed profile of local gravitational effects is 

shown superimposed on a "fixed" regional field defined by measured 

data in Figure 9-1- 

As shown by Figure 9-1, the location of each gravity measurement 

has been plotted along the profile of local effects. The value of 

the local effect at each measurement site is subtracted from the 

Souguer anomaly value at that site to yield the regional component 

at that site. The regional component is plot'ed on another graph 

whose ordinate is the regional component of the Bouguer anomaly and 

whose abscissa is along the profile (Figure 9-2). The plotted points 

are interconnected with straight lines which define the regional 

trend. Then the interpolated Bouguer anomaly for any point between 

the observation sites is the sum of the regional trend (from Figure ?-'. 

and the local gravitational effect (from Figure 9-1) at that point. 

Interpolated Bouguer anomalies are plotted at frequent intervals 

along each profile in a map base of suitable scale. For 1° x 1° 

prediction, a 1:1,000,000 scale is satisfactory.  The plotted points 

are contoured with respect to local geologic structure and topography, 

and the final 1° x 1° mean Bouguer anomalies are read from the 

completed contoured map. The final i° x 1° mean free air anomaly 

is computed by equation (U. 1—2 ). 



Additional details of ~AI1I application are  river,  in oe^ticr. 

'■trance  and ".'.'ocliarn (l?6^a). 

Evaluation of C-AII7 Prediction 

The   "tandard error of GAIN prediction  is  f,iver. fcy 
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FIGURE 9-1 

COMPUTED GRAVITY EFFECTS PROFILE 

(See Figure 9-2 for numerical interpolation data) 
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FIGURE 9-2 

REGIONAL TREND PROFILE 

MEASURED 
DATA 

OBSERVED 1 LOTTED 

AgB 

Gravity Station A - 170 mgal - 170 - (+5) - - 175 mgal 

Gravity Station B - 185 mgal - 185 - (-10) = - 175 mgal 

Gravity Station C - l60 mgal - 160 - (-5) = - 155 mgal 

INTERPOLATED 
DATA 

REGIONAL 
A*B 

LOCAL 
EFFECT 

TOTAL 

AgB 

Point 1 - 175 mgal - 10 mgal - 185 mgal 

Point 2 

          . 

- l65 mgal 0 mgal - 165 mgal 
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10. CONCLUDING COMMENTS ABOUT GEOPHYSICAL PREDICTION METHODS 

A number of geophysical gravity anomaly prediction methods 

have been described ant discussed in some detail. Of these, NOGAP, 

EXGAP, UNGAP, and GAPFREE are applied to extend 1° x 1° mean gravity 

anomaly coverage into regions which contain very limited, if any, 

measured gravity data. The two interpolation methods, GRADE and 

GAIN, are applied to densify existing fields of measured gravity 

data for the purpose of 1° x 1° mean gravity anomaly prediction. 

All these methods give values which are superior to those which can 

be obtained by use of the measured data alone with conventional 

averaging techniques. 

Since no two geologic and tectonic settings are exactly 

identical, it is safe to say that none of the geophysical methods 

ever has been applied twice in exactly the same manner. In fact, 

many variations to each method are possible and the scientist doing 

the prediction always must be alert for new ways to adapt the standard 

methods so that they "fit" different regions. Therefore, the 

procedure discussed must be regarded as a genera], guide rather than 

a cookbook list of recipes. 

Experience, insight, and Judgment factors are very important 

in geophysical gravity prediction. The best way to learn it is to 

do it! 
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APPENDIX A. 

DERIVATION OF FORMULA 

FOR bOUGUER PLATE CORRECTION 

Author's note: The following mathematical development for the 

Bouguer plate correction is based on that given in Heiskanen and 

Moritz (1967) and does not represent original work by the writer. 

The other appendixes do represent original work by the writer. 

1. Definition of Symbols Used (Figure A-l) 

a = height of point, P, above origin 

h = height of cylinder above origin 

r = radius of cylinder 

dV = volume element within cylinder 

x, y. 2 = rectangular coordinates 

a, s, 2 = cylindrical coordinates 

t = slant distance from point, P, to top edge of cylinder 

t_. = slant distance from point, P, to bottom edge of cylinder 

I = distance from point, P, to volume element, dV 

a = density of material contained within the cylinder 

U = gravitational potential at P 

k = gravitational constant 

g = gravitational force at P 

gn = gravitational force on axis at upper surface of the cyiinde. 

g,  = gravitational force of the Eouguer plate at a point on 
b 

its upper surface 

«id 
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FIGURE A-l 

FIGURES FOR DERIVATION OF 

BOÜGUER PLATE CORRECTION 

> 

, / 
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2. Vertical Attraction of a Homogeneous Right Circular Cylinder 

at an External Point Situated on the Axis of the Cylinder 

The potential of any solid body at an external point is given by 

r r 
up = k JJ *« 

(A-l) 

If the point is located on the axis of a right circular cylinder 

then, from Figure A-l 

I  = (s2 + {d - z}2) 2\'i (A-2. 

dV = dx dy dz = s ds da dz (A-3) 

Also, from Figure A-l, it is evident that the integration limits 

are, for the cylinder, 

0 to 2-rr for a 

0 to r for s (A-U) 

0 to h for z 

Thus, with the density being constant, equation (A-l) may be 

written 
h      r      2TT 
r 

Up = k a 
s  ds da dz 

(s2  +   {d -  z}2) zy* 
z=0    s=0 a=0 

Integration of  (A-5) with respect to a gives 

h      r 
 s ds dz .        .a Up = k a 

=40 s=*0      (s2 + {d -  zi2) 

2TT 

and evaluation between the limits 0 and 2n leaves 

P    r 
Up = 2 u k a ]   J 

z=0 s=0 

s ds dz 

(s2 + {d - z)2)*5 

(A-5) 

(A-6) 



In order to integrate (A-6) with respect to s, note that 
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to (x2 + a2)* 

Therefore (A-6)  integrated with respect to s gives 

U    = 2 TT k a      I     (s2 + {d - z}2)*   dz 
z^O 

and evaluation between the limits 0 and r leaves 

h 

U = 2 1 k 0 
J 
z=0 

Fz - d + ({d - z}2 + r2)**] dz 

In (A-7), note that 

({d - z}2 + r2)^ = ({d2 + r2} - 2dz + z2)^ 

which is of the form 

(A-7) 

(ax2 + bx + c) 

where 

a = 1 

b = -2d 

2  x A2\1 c =  (r2 + d"-) 

x = z 

Integral tables give the form 

(ax2  + bx + c)'2 dx    = 
2ax + b 

1+a (ax2 + bx + c) 

+   Iac " b      m  [2ax + b + 2  (a {ax2 + bx + c})"* ] 
8a /a 
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In consideration ol the above and after some simplification 

({d - z}2  + r2)H    =    - \ (d - z)   (r2  +  {d - z}2)h 

(A-8) 

- -|   r2   in [d - z +  ({d - z}2 + r2)^ ] + j   r2  Jin 2 

The constant term, — r2  £n 2,  in (A-8) will vanish during 

evaluation of the definite integral and, hence, may he dropped. 

How, note that 

~    ["§ (d - z)2]   •»    (z - d) dz (A-9) 

Considering the results (A-8) and (A-9), integration of (A-?) 

with respect to z gives 

Lp = 2 it k o [ \  (d - z)2 - \  (d - z) (r2 + {d - ZI2)*5 

- |r2 £n (d - z + {(d - z)2 + r2}^ ] 

and evaluation between the  limits 0 and h leaves the final expression 

for potential generated by the  cylinder at P. 

2\'2 U    = 7i k o   {(d - h)2  - d2  -  (d - h)   (r2  +  {d - h}2) 

+ d  (r2  + d2) 2\'2 2 4~       I _. -in*- £n   [d - h +   ({d - h}2  + r2)'5  ] (A-10) 

fa  [d +  (d2 + r2P    ]} 

The vertical gravitational attraction of the cylinder at P is 

the negative derivative of the potential at P with respect to the 

vertical  ails  of the  cylinder 

3U„ 
gP =       3d 

(A-ll) 
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Operating on (A-10) according to (A-ll) gives, after considerable 

simplification 

gp = 2 v  k a [h + (r2 + {d - h)2)h - (r2 + d2)h ] (A-12) 

which may also be written (Figure h-h) 

gp = 2 v k o [h - t1  + t2] (A-13) 

Now let the point, P, descend to the upper surface of the cylinder. 

At this point, d = h, and (A-12) becomes 

g = 2 it k ö [h + r - (r2 + h2 )"* ] (A-lV. 

3. attraction of the Bouguer Plate at a Point Situated on  Its 

Upper Surface 

The Bouguer Plate is a right circular cylinder of irfinite 

radius and height, h. To obtain the gravitational attraction of the 

Bouguer plate at a point on its upper surface, take the limit of 

(A-lU) as r approaches infinity 

g = 2 Ti k o h + 2 IT k o lim [r - (r2 + h2)2 ] (A-15) 
1---KD 

According to L'Hospital's Rule 

when 

lim f(x) = lim ~-   f(x) 
dx 

lim f(x) -> °° 

Applying VHospital's Rule to the second term of (A-15) 

lim [r - (r2 + h2)h }    = Urn |- [r - (r2 + h2)'1 } 
2*->uC) 

um 
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= lim [l - p rpvr] 

=
 "" [1" (l-hhr*)H] 

= 0 

Therefore, (A-15) reduces to the form 

gß = 2 IT k a h 

which is the Bouguer Plate correction. 

(A-16) 

gfc M 



APPENDIX  B. 

AN  ERROR  COVARIANCE FUNCTION FOR  1°  X  1°  MEAN 

ANOMALY VALUES PREDICTED BY THE NOGAP METHOD 

Error covariance functions are frequently of use in error 

propagation studies to determine the accuracy of various geodetic 

quantities   computed  using the  1° x 1° mean anomalies.     Heiskanen  and 

Moritz   (1967)   give  some  appropriate error covariance  formulas  for 

gravity prediction where  ample observed gravity data is  available. 

The  following derivation is  intended to develop an error covariance 

formula which  can be  applied  in the case when little or no  observed 

data exists,  and when 1° x 1° mean anomaly prediction  is dons usj:.ig 

a NOGAP-:.ype procedure. 

.he basic l.OGAP prediction  formula, used to predict   1^x1° mean 

anomalies within a prediction  area containing little or nc  observed 

gravity  data,  may be written  in the  form, 

AgFT =  b?P + R:P +  LCP (B_1 

where 

igT,,.., =  predicted mean  anomaly  for the  1°  x ic   area designated 

B:",, =  basic predictor  for area F 

RJr =  regional  cor:   ction(s)   for  are: 

1.'.. =  ic:al  correct ion( s)   for area F 
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Local corrections, LC, are determined individually for each 

1° x 1° prediction and are based upon an analysis of local geological/ 

geophysical mass anomalies which exist within each 1° x 1° area. 

The regional corrections, RC, are functions which vary slowly from 

one 1° x 1° are- to the next and express small changes in the 

regional gravity anomaly field provided by the basic predictor. 

The basic predictor, BP, is a prediction of the stable regional 

part of the gravity anomaly field.  It is given by 

BPp = a + 3hp (B-2) 

where 

hT   is a mean elevation value corresponding to area P 
r' 

a, 3 are constants 

Insertion of (B-2) into (B-l) gives an expanded version of 

the basic NOGAP prediction formula 

Ag  = a + ßhp + RC + LC (B-3) 

The constants a and ßare the intercept and slope constants, 

respectively, of a linear regression between Agp and hp for 

1° x 1° blocks within a control area where sufficient observed 

gravity data is available to obtain accurate mean anomaly values 

using conventional data averaging methods.  Both the control area 

and prediction area raust bo contained within the same overall regional 

structure such that the u and fa constants determined in the control 

area are also applicable in the prediction area.  For this reason, 

the erroi relationships of the basic predictor are identical in the 

control ani prediction areas. The equation appropriate for linear 



regression  in  the  control  area is 

%0 ' RCP -  LCp = a + 6hp (B- 

where 

Ag      = wean anomaly predicted for area P from observed data 
t o 

Regional and local corrections are subtracted from Ag  in 

order to obtain a uniform regional gravity anomaly value, Ag  , which 

can be expressed in the linear form of the basic predictor. With 

the definition, 

AgpR = AgpQ- hCp- LCp (B-5; 

uation (B-i») for the control area becomes 

Ag  - a + 3hp (B-L-) 

The procedures used and errors involved in predicting the local 

and regional corrections are identical in both the control and 

prediction areas.  Consequently, the error relationships of LC 

ana '.-..' together with those of the regional gravity field, are 

adequately expressed in the single value, Agp . 

:'he intercept value, a, is the gravity anomaly value correspond!:; 

to zero mean elevation.  Moving a to the left side of equation (B~6) 

has the effect of translating the mean elevation-mean anomaly 

coordina-e axes such that the regression line relating the gravity 

and elevation parameters is constrained to pass oiirough the point 

(0, 0).  The translation has no effect whatsoever on the slope 

constant, i,  or the error relationships.  Accordingly, (3-6) becomes 

(Ag.  - a) = ßh, (B-7) 



Now define h to be the mean value of all h„ within the control 
m P   

area, ana 

Ah = hp - hm (B-8) 

where 

hm = M {hp} (B-9) 

Then, (B-9) becomes 

(AgpR - a) - ßAhp + 3hm 

or 

(^PR - ° - %> " ß"A^P 

Since both a  and ßh represent gravity values, let 
m 

Agp = (AgpR - a - ßh ) (B-10) 

to obtain 

Agp = ßÄhp (B-ll) 

which is merely the control area prediction equation (B-M written 

in a simpler form which is most useful for error analysis. Both 

Ag and Ah are variables which are centered about zero by the 

operations (B-10) and (B-8) respectively, as is required by the 

following statistical computations. 

Thus, Ag is a form of the mean gravity anomaly predicted for 

the ]° x 1° area designated as area P by the NOGAP gravity correlation 

prediction procedures.  It includes a)1 error factors due to basic 

predictor, regional corrections, and local corrections, and represents 

error conditions in both the control and prediction areas. 
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If the correct value of the mean gravity anomaly for area P 

(corresponding in form to the predicted value Ag ) is Ag , then the 

true error of prediction, E^, is given by 

Ep = Agp - Agp 

Insertion of (B-ll) into (B-12) gives 

(B-12) 

Ep = Agp ßAhT 

Squaring (B-13) yields 

(B-13) 

or 

Ep
2 = (Agp - ßAhp) (Agp - 6Ahp) 

Ep
2 = Agp2 - 2ßAgp Ahp + ß2Ahp2 (B-lfc) 

Now, form the average of (B-lU) over the control area.  In so 

doing, adapt the statistical definitions of Heiskanen and Moritz 

(1967) as follows 

M {E2} = 1.  - m2 

M {Agp
2} = C0 

M {Ag" Äh } = B 

(B-15) 

M {Ahp
2} = AQ 

where 

M {E2} = the average value of E2 

m = the standard error of prediction 

Cq = the auto-covariance (average product) of mean gravity anomalies 

which are a constant distance,  £,  apart 

B0 = the  cross-covariance of mean gravity anomaly and mean elevation 
o 

values which are a constant distance,  S,  apart 

mmmi 
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Aq = the auto-covariance of mean elevation values which are a 

constant distance, S, apart 

For S=0, as is the case in (B-15), the values C~, B_, and A 

reprtsent the variances. 

In consideration of the definitions (B-15), averaging (B-lU) 

yields 

M {E2} = M {Agp
2} - 2ß M {Agp Ahp} * ß2 M {Ahp

2} 

cr 

m' 2 - 2ß Bn  + ß2 kr (B-16) 0   K 0  K  0 

The vales of ß for most accurate prediction is found by 

minimizing the standard prediction error expressed by (B-l6) as a 

function cf ß. Accordingly 

Sm^ 

or 

2 BQ + 26 AQ = 0 

..^ (B-17) 

0 

It can be shown that the value of ß obtained by (B-17) is 

identical to that obtained by linear regression analysis of equation 

(B-U). 

To obtain the correlation of prediction errors for two 

diiferent 1° x 1° areas, it is necessary to form the error covarianc?. 

0  , which tv definition is 

°PQ = M {EP EQ} 
(B-16; 

«t&m 
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Inserting (B-13) into (B-l8) gives 

apQ = M {Ep EQ} = M {(&gp - 6Ahp) (AgQ - ß&hQ)} 

or 

opQ = M {&gp AgQ} - ß M Ugp AhQ} - 6 M {Ag Ahp} + ß
2 M {Ahp AhQ} 

(B-19! 

Performing the indicated averaging gives the error covariance 

°PQ = °PQ - 2ß BPQ + ß2 V (B-20) 

where 

C_ = aato-covariance of mean gravity anomalies which are a 

constant distance, S=PQ, apart 

BpQ and A^ are similarly defined 

To form the error covariance function, compute oDn as a function 

Of S=PQ. 

The error covariance function, as derived, is applicable over 

both control and prediction areas for 1° x 1° mean anomalies 

predicted by the NOGAP prediction procedure. 
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APPENDIX C, 

GENERALITY OF EQUATIONS (3.6-2U) AND (3.6-25) 

IN EVALUATING THE EFFECT OF LOCAL TOPOGRAPHY ON GRAVITY 

Equations (3.6-2U) and (3.6-25), which express the effect of 

local topographic variations on the free air gravity anomalys were 

derived with reference to a very simple topographic model (Figure 3-2), 

It will be demonstrated in this Appendix that these equations, in 

fact, have general application to all topographic settings. It 

will also "be shown that equation (3.6-23) is a more general form of 

the well known reduction of Poincare and Prey (see Heiskanen and 

Moritz, 1967, page 163). 

Figure C-l is a general topographic model where the points P 

arid Q, between which the difference in gravitational attraction of 

the topography is to be determined, are both located on a slope. 

The locally uncompensated feature is considered to be the topographic 

mass above the elevation hD and below the elevation hc. The 

gravitational attraction of the mass within this feature must be 

removed from observed gravity at P and Q to correct the equality 

(3.6-lG) for the case that the feature is wholly uncompensated. 

Reading from Figure C-l, it is evident that 

(gT)p = (g1)p - (e2)p - (gu)p (c-i) 

(gT)Q = (gx)Q + (g2)Q - (gu)Q (C-2) 

where 

(g^L = gravitational attraction at P of the locally uncompensated 

mass within the hill 

*LH 
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(gm)n 
= gravitational attraction at Q of the locally uncompensated 

mass within the hill 

(g-. )p 
= gravitational attraction at P of the mass within the 

region labeled A on Figure C-l 

(g?)n  = gravitational attraction at Q "of the mass within the 

region labeled B on Figure C-2 

(«2)pf (ß2V (
&

0F*   ^
&
0Q  

are silflilary defined 

The signs of (g?)p and (gr)p are negative since removal of mass 

in the hill beneath P will reduce the value of gravity measured at P. 

The sign of (g.) is positive because the removal of mass in the 

hill which is situated above P will increase the value of gravity 

measured at P.  Similar comments apply to explain the signs of the 

terms relating to the point Q. 

Using (C-l) and (C-2) to correct (3.6-18) for the case of no 

compensation gives the relation 

(Ags)p + (g1)p - (g2)p - (gu)p 

" (AgS)Q + (S1}Q + (S2}Q ' (VQ - °-
3086 6h       (C"3) 

Equation (C-3) which is valid for the general mode^. (Figure C-l) 

corresponds to equation (3.6-19) which is valid for the simple 

topographic model (Figure 3-2).  Converting (C-3; to the free air 

anomaly jy (3.6-lU) and the definition, AgQ = g-, - y 

(Agp)p + (g1)p - (gg)p - (gjt)p 

- (be )   + (z  ) + (g ) - (g.) (c-M 

( 

M. 
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FIGURE C-l 

TOPOGRAPHIC VARIATION 

GENERAL MODEL 1 

*   -"»■"   _^_m in—m—MtM 
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It remains to be shown that the general relations (3.6-2U) and 

(3.6-25) are identical to (C-k).    Equation (3.6-2U) is 

(AgF)p = (AgF)Q + 2 * k a  6h - TCp + TCQ :c-5i 

Ir^ertion of the value, 0 = 2.67 gm/cm3, and the value of the 

gravitational  constant gives equation  (3.6-25). 

(ACF)p =  (Agp)    + 0.1119 6h - TCp + TCQ 

Since  5h = hD - h  ,  equation  (C-5) may he written 

(C-6) 

(Agp)p - 2 TT k a hp + TCp = (Agp)Q - 2 * k a hQ + TCQ  (C-7) 

which may be recognized as one form of the equation (3.7-22). 

The terms, 2 IT k a h, are just the simple Bouguer correction, g , so 
is 

that  (C-7) may be written 

(ASF)p "   (gB)p + TCp =   (AgF)Q -   (gB)Q + TCQ (C-8) 

From Figure C-l and the definitions of the Bouguer ar i terrain 

corrections, it is evident that 

(gB)p 
r; (g2)p 

+ (63)p 
+ (gjj)p + (*5)p 

+ (gg)p 

TCp = (gl)p + (g3)p + (g5)p 

(S3}Q=  {sh\ +  (g5}Q+   (g6}Q 

TCQ-   (gx)Q+   (g2)q+   (g5)Q 

Insertion of equations   (C-9)  into  (C-8) gives,  after some 

simplification, 

(AgF)p +   (g]_)p   -  (g2)p -   (gu)p -   (g6)p 

=   (AgF)Q +   (gx)Q +   (g2)Q-   (6l4)Q -   (g6)Q 

(C-9) 

(c-10) 

lAft 
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Since layer 6  i-  an  infinite plane layer with respect   to both 

points P and <i> then 

(g.)       =   2   T5   k   0   h, 
c  1 r (g,L o Q 

and  (G-10)  reduces to 

l?\, + (s^p " (S2
)P " {i 

k P 
'p_l ] ~i 

-   (Ag?)Q +   (8l)Q +   (g2)Q -   (gu)Q 

which is identical to the previously derived equation (C-M.  Hence, 

the general applicability of (3.6-21+) and (3.6-25) is proven. 

It is a simple matter to extend the relations derived for 

general model 1 (Figure C-l) to the situation known by general model 

2 (Figure C-2).  Model 1 represents t^e general case for gentle to 

moderate topography, whereas model 2 represeits the general case for 

rugged topography. 

Model 2 is complicated by the existence of a second uncompensated 

local feature which exerts a gravitational attraction at the point.: 

P and 5.  Por the case of figure C-2, it is evident that 

(g L = (gJP + (gJP - (gjp - (g,)„ - (gJr - (gJp       (c-i.) 
i   . _L   1 i    r ii  I 4   r or y   r 

(gjr = (gj- + (eJ,  + (&J,, + (so)fl - (gJr - (eQ)r,       (c-i3) 1  Q 1  •< 2 ^ f   Q o Q 4 Q 9 ^< 

Using   (t'-12)   anl  (C-lj)  to correct   (3.6-18)   for the  case of no 

compensation gives the relation 

(AgLJ,   +   (,%),.  +   (g7)p -   (g2)p -   (g,,)p -   (gg)p -   (g,9)p 

= Ug,),+ (%).^ (g2K + (gJQ + (gö)Q - («,),- (g9),-o 

(c-u, 
0.30ÖO   Si 
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FIGURE C-2 

TOPOGRAPHIC VARIATION 

GENERAL MODEL 2 

L_ 1 i.  ^1 
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Proof that (3.6-2U) reduces to (G—lU) for the case of Figure C-2 

is left as an exercise for the reader. The generalization of the 

Figure C-2 model to the case of many adjacent locally uncompensated 

features is obvious. 

The two limiting situations of the Figure C-2 model are of 

interest.  One limiting case is approached as the width, m, of the 

valley becomes large.  In this case, the attraction of the second 

hill becomes negligible, i.e., 

/-iG   ii) * large 

'Vi •+ 0 

Vi ■■> 0 

S'i -> 0 

\C-15. 

where i = P or Q 

Insertion of the limits (C-15) into the relation (C-lM yields 

the relation (C-3) which applies to the model of Figure C-l. 

The other limiting case of Figure C-2 is when the width, u, 

of the valley becomes small.  Then 

As co -*■ 0 

(gj. + (g7). -* 2 Ti k o (h0 - h ) 

(g0), 
+ (go), - 2 T,  k a (h0 - h ) (C-16) 

c   X 0 1 >J    r 

{&k]i  + (g9}i * 2 v  k G (hS ~ hP) 

where i = P or o.  Insertion of the limiting relations (C-l6) into 

(C-l*4 ' gives 

«iM 
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(Ags)p + 2 TT k a  (hs - hp) - 2 TT k a  (hp - h  ) - 2 TT k a  (hQ - hR) 

=  (Ags)Q + 2 TT k a  (hs - hp) + 2 TT k o   (hp - hQ) - 2 ir k a   (h    - hR) 

- 0.3086 6h 

which, since 6h = hD - h , reduces to 

(Agg)    = (Ags)p - k TT k a 6h + 0.3086 6h (C-17) 

With a = 2.67 gm/cm3 and the usual value for k, the above becomes 

(Agg)Q =  (Agg)p + 0.08U8 5h (C-18) 

Equations (C-17) and (C-l8) may be recognized as the reduction 

of Poincare and Prey which is used to obtain the value of gravity 

at a point (Q) within the earth at a distance 6h below a surface 

point (P). 

kian 
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APPEI'DIX D. 

LEAST SQUARES SOLUTION 

AID ERROR FUNCTIONS 

FOR NOGAP BASIC PREDICTORS 

1. Linear Regression 

The linear basic predictor used for the NOGAP method is given 

by equation (U.2-1) 

BP = aR + ßR h (D--JL/ 

where 

BP = basic predictor, a regional Bouguer gravity anomaly value 

a = the (Bouguer anomaly axis) intercept constant 
n 

ftp = the slope constant 

h = the mean elevation form used for the basic predictor 

relationship 

Replacing the predicted value BP by ehe measured value Ag and 

dropping subscripts gives error equations of the form 

V. = a + ß h. - Ag. 
l        li 

(D-2! 

A least squares solution using the error equations (D-2) and a 

Gaussian reduction of the normal equations gives the following 

results 
I  (G. H. ) 

0 =  *-±- (D-3) 
I h" 

Z   (Ag )   Z  h. 
a  =  i- _  i. 6 (D-U) 

n n 

«ij 



u     = 
Z G.2 -  ß  Z   (G.   H.) 

l 11 

n - 2 

l. 
'2 
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(D-5) 

R = 
E   (G.   H.) 

(EG2.   EH2.) 
1 1 

(D-6! 

[ßß]  = 
Z  H' 

(D-T) 

Z h. 
[aß]  = -  i [ßß] 

n 
(D-8) 

[oa] = ~-  [aß] n 
(D-9) 

e    = u  y   [aa] a 
(D-10) 

e    = v   / [ßß] (D-ll) 

e(a +  ßh)  = P   ^laa]  + 2h   [aß]  + h2   [ßß] (D-12) 

£ Ag, 
Gi ■ A«i 

(D-13) 

H. = h. - 
1   1 

(B-HO 

In the above, 

n = number of "measurements" 

R = correlation coefficient 

[aa], [aß], [ßß] = weight and correlation numbers 



e = error of intercept concept 

eQ = error of slope constant 
P 

y = standard error if weight unit 

G , A.   are center gravity coordinates 

2. Multiple Regression 

The basic predictor form using a multiple correlation is 

BP = a + bx * cy + dz (D-15) 

Replacing the predicted value BP by the measured value Ag gives 

error equations of the form 

V. = a + bx. + cy. + dz. - Ag. (D-16) 

A least squares solution using the error equations (D-l6) and a 

Gaussian reduction of normal equations give the following results 

where brackets indicate summation: 

an. 3 
dd. 3 

(D-1T) 

eft. 2 
cc. 2 

cd. 2 
cc. 2 

(D-18) 

b = 
hi,  1 
bb. 1 

bd. 1 
bb. 1 

be. 1 
bb. 1 

(D-19) 

a= iMl . ill d.kl c _ kl b 
n      n     n        n 

(D-20) 

ee. k~\ 
(D-21) 

A mm 



e = 
a 

y  /   \aa) 

eb = y  /  (8ß) 

e = 
c 

= v / (YY) 

ed = 
:  y   /   (AA) 
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(D-22) 

(D-23) 

(D-2U) 

(D-25) 

e      -   a + bx + cy + dz =  [(act)  ♦ x*   (3ß)  + y2   (YY) + *   (**> + 2*  ^ 

+ <>y  (ay) + 2z   (aft)  + 2xy  (*Y) + 2xz  (0&)  + 2yz  (AA)   ] ^ (D-26) 

(aA)  = dd.   3 
(D-27) 

(ctY) 
cm.  2 cd.  2 
cc.  2    "    cc.  2 

(ctA) (D-28) 

(aß) = 
_^_1    _    *><L_i(aA) . ^4 (ay) 

bb.  1 bbTT VUÜ/      bb.  1 
(D-29) 

(aa)=I_M(aA)-M(aY) -Isl(aß) (D-30: 

/     \ dn.  3 
<eA) = - d!T3 

(D-31) 

(37) 
ch. _2. 
cc  2 

cd. 2   (Rl\\ 
cc. 2   \*i!1l 

.. ^ be.  1 ,     \ 1 bd.   1  /     \       Dc.  I  /„   \ (^) = bbh- "   bbTi(eA) -b¥7T(^) 

(D-32) 

(D-33) 
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(YA)  = - 
dp.  3 
dd.  3 (D-3M 

(YY) 
cd.  2 

cc.  2 cc.  2 (YA) (D-35) 

(AA) 
dd.   3 

(D-3-6) 

bb. 1 = [x2j _.{xi_üa 
(D-3T) 

be.   1 =  [xy] Ul [y] (D-38) 

bd. !  =  [xz]  _MJjÜ. (D-39) 

be.   1 = [xAg] + MiM (D-UO: 

:c<  2 =  [y2]  - Izlizl -  (bc-   1)   <bc-  1) 
bb.  1 (D-Ul) 

cd.  2 =  [yz]  _ LLLUI .  (be.  iMbd.  1) (D-U2) 

ce.   2 - [yAS] + MJM . l^LU^i! (D.,3) 

dd>   3 =  t72-, _ LLLÜÜ. _ Ibd.  1)   (bd.  lj _ led. 2)  cd. 2)        (D_W) 
n bb .  1 cc.  2 

:«..   .-. 
di.  3 = -  [z.g] + ^LLM _  (**•  1?   ("• H _  («*• 2>  <f • -■   (D-45) 

n bb.   1 cc.  2 

0    j, 3   [Ag2]  _   [Ag]   [Ag]  _   (bj.   1)   (be.  1) 
Lüg  J n bb.  1 

(ce.  2)   (c&.  2)       (dt.   3)   (d&.   3) 
cc.  2 " dd.   3 

(D-h6) 

JLmt ^^M 
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(D-U7) 

cm.  2 
J^j _  (be.  1)   (bm.  1) 

bb.  1 
(D-US) 

dm.   3 = 
[z] _  (bd.  1)   (bm.  l)  _  (cd.  2)   (cm.   2) 

bb.   1 cc, 
(D-l+9) 

en.   2 = 
be.   1 
bb.  1 

(D-50) 

dn.   3 
bd.   i       fed.   2)   (en.  2) 
bb.   1 cc.   2 

(D-51) 

cd.   2 
dP-   3 = cTT? 

(D-52) 
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APPENDIX E. 

DIGEST OF CONVENTIONAL METHODS 

A nummary cf conventional methods used to predict 1° x 1° mean 

gravity anomalies is included for the convenience of the reader. 

Addition»", details may be found in Defense Mapping Agency Aerospace 

Center (1973). 

1. Observed Gravity Averages 

The averaging method is the simplest method for determining 

1° x 1° mean Pouguer gravity anomalies and can be relied upon to 

provide accurate mean values when a large number of gravity 

observation stations are evenly distributed throughout the 1° x 1° 

area. Two computational schemes are in common usage. The 1° x 1° 

mean Bouguer anomalies can be computed as the arithmetic mean of the 

observed Bouguer anomaly values at all observation stations within 

the 1° x 1° area. Alternatively, averages may be computed individually 

for each 10' x 10' component of the 1° x 1° area, then the 10' x 10' 

components are a-veraged to obtain the final 1° \  1° mean values. The 

litter procedure automatically compensates for minor irregularities 

in gravity observation station distribution within the 1° x 1° area. 

2. Gravity Anc.r.aly Map Contouring 

The contouring method is usually a most reliable method for 

determining 1° x 1° mean Bouguer gravity anomalies and provides 

accurate values ever, when the gravity observation stations are 
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unevenly distributed within the 1° x 1° area. The; location of 

each gravity observation station is plotted on a map sheft of 

suitable scale. The corresponding Bouguer anomaly value is annotated. 

Iso-anomaly contours are interpolated from the anomaly values and 

drawn on the map. Plotting and contouring may be done visually and 

by hand, or mechanically using computer contouring programs e:.ä 

automatic plotting equipment. The 1° x 1° mean Bouguer anomaly value 

may be determined with a sufficient degree of accuracy from the 

completed contour map as the average of the interpolated values for 

the four corner points, the four mid points on each side and the 

center point taken twice (Woollard, 1969a). 

3• Statistical Prediction 

The statistical methods vhich can be used to compute 1° x 1° 

mean gravity anomalies provide values of somewhat greater reliability 

than the contouring method in some cases, less in others. The 

degree of reliability depends on the amount and distribution of 

observed gravity data coverage and how well the numerical process 

involved can simulate the entual geophysical and geological 

structures which produce the gravity anomaly variations. 

The statistical prediction program for mean gravity anomalies 

is based on the formulation developed by Moritz and later modified 

for practical application by Rapp. A set of gravity anomaly 

ccvariance coefficients is required as input data. These coefficients 

are derived from observed gravity anomaly values within a relatively 

large area such as a 5° x 5° region and statistically represent the 
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average rate of change with respect to distance with the gravity- 

anomaly field within that region. The derived coefficient set is 

used to predict mean gravity anomalies for small size surface 

elements within the larger region. In normal practice, mean 

grs.vity anomalies ere computed for each 5' x 5' component of a 

1° x 1° area. The 5' x 51 values are then averaged to obtain 

1° x 1° mean gravity anomalies. 

To obtain optimum results when using the statistical approach 

in mean gravity anomaly predictions, care must be exercised to 

insure insofar as possible that the gravity anomaly covariance 

coefficients used for the prediction are derived from a region 

having the same gravity field characteristics as the area in which 

the mean anomaly predictions are being made, 
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