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ABSTRACT

The Honeywell 6180 is a new large-scale computer for the Multics
timesharing system. This report describes the 6180, and examines the
feasibility of emulating it with each of three microprogrammable pro-
cessors: the Burroughs D-Machine, the Nanodata QM-1, and the Burroughs
B1700. Benchmark emulations are presented for each of these machines.
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SECTION I

INTRODUCTION

This report presents results of a study of the feasibility of
emulating a very sophisticated large scale computer system, the
Honeywell 6180, on three microprogrammable processors: the
Burroughs D-machine, the Burroughs 1700 and the Nanodata NM-1., The
6180 is a third generation computer that supports the current ver-
sion of the Multics system. Multics is a large timesharing system
that embodies such state-of-the-art concepts as virtual memory,
dynamic (execution time) linking, and advanced access controls and
presents one of the most challenging architectures to an emulator
of any existing system. The microprogrammable machines picked for
the study were chosen after a cursory evaluation of available hard-
ware indicated that these were the only machines with the potential
for the emulation. As new microprogrammable processors become
available, the emulation methodology developed in this report
should make the evaluation of these new processors straightforward.

This report assumes the reader is familiar with some of the
basic features of Multics. Chapter 1 of The Multics System by
Organick [14] should be considered a prerequisite for readers of
this report. In addition, "The Multics Virtual Memory'" by
Bensoussan et al [10] will be very helpful. Although both these
publications discuss the implementation of Multics on the GE645
(a precursor of the 6180), most of the details have not been
changed.

Four sections follow this introduction. Section II presents
the 6180 architecture in some detail. Owing to the paucity of
documentation for the 6180 at the time of this writing, this infor-
mation was gleaned from a wide variety of sources. Section III
develops a methodology for the emulation of the 6180. The signif-
icantly greater complexity of the Multics hardware as compared to
other third generation machines requires that new ideas be de-
veloped for implementing the 6180 operations in microprograms.
Section IV then takes a typical 6180 operation and examines the
emulation of that operation on the three microprogrammed processors.
This examination is in sufficient detail to allow a benchmark to be
established for each emulation. Finally, Section V summarizes the
major findings and conclusions of the report.



SECTINN 11

THE ARCHITECTURE OF THE HONEYWELL 6180 SYSTEM

INTRODUCTION

This section describes the architecture of the 6180 or Multics
computer svstem. The descriptive material is directed toward the
intricacies of the instruction evecution cvcle and dvnamic address
translation (DAT) algorithm and is complete enough to allow the
development of an emulation methodolop: and benchmark.

Tae Honeywell 6180 computer svstem supports the current ver-
sion of the Multics operating system and is synonymous with Multics.
The 6180 has evolved from the current generation of Honeywell
hardware, the 6000 series. The 6180 is essentially the Honeywell
6080 modified with DAT hardware for the Multics virtual memory. In
fact, a switch on the 6180 allows it to run as a 6080. The 6080 is,
in turn, the largest and most sophisticated processor in the 6000
series, embodving an extended instruction set, EIS, (for character
string and decimal arithmetic processing) and the fastest circuitry
and memory of the series.

The 6180 Multics system was first offered as a product in
second quarter 1973 and only one 6180 Multics is presently
(September 1973) available to the general user. This available
Multics is at MIT. Because the svstem is so recent, standard
documentation does not exist. Thus the following description comes
from a wide varictv of sources that commonly provide preliminary
documentation for evolutionary systems. These sources include
Honeywell 645 processor (the original Multics machine), 6000 series
and EIS manuals, MIT Informations Processing Center Memos, and
articles in the Communications of the ACM. Because of the diverse
origin of the descriptive materials the presentation of the 6180
architecture should not be construed as final.



SYSTEM DESCRIPTION

The Multics system is composed of processor, memory and input/
output modules as well as a front-end processor as shown in Figure
1. While the 6180 processor is the active element in the system,
and as such deserves pre-c¢minent treatment in a discussion of the
Multics architecture, it is necessary to have sufficient under-
standing of all system modules, their interconnections and their
functional characteristics to appreciate processor operations.
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Figure 1.
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A Typical Configuration of the Multics System



The number of each module type in the 6180 system shown in
Figure 1 is not fixed. A representative example, the MIT installa-
tion, has two 6180 processor modules, three memory modules, one IOM
(Input/Output Multiplexor), one communications processor (A Datanet
355), and a two million word bulk store subsystem (replacing the
second generation paging drum). Each memory module provides storage
for 128K (K=1024) 36-bit wcrds. The operation of modules other than
the processor module is quite conventional. The bulk store facility
provides high speed secondary storage for the virtual memory and
looks like an IOM with a high speed I/0 device. The bulk store,
therefore, is functionally equivalent to an IOM.

SYSTEM PERFORMANCE

The objective of the benchmark emulation is to provide some
comparative measure of the time to perform some function on the
6180 vs the time to perform the same function on each of the emulators.
This measure implies that the time to perform certain functions on
the 6180 is well established. It is not. Sufficient data exists,
however, on the previous Multics performance and on the 6080 to
allow the extrapolation cf 6180 performance data.

Since the 6180 and 6080 differ only in the DAT hardware, if
functions are chosen so that the DAT algorithm is not executed, then
6080 timings can be used to predict the 6180 timings. Table 1 shows
the execution times, in microseconds, for four representative 6080
instructions. The STA instruction is used as the common function for

Instruction Type 6070/6080 Timingl (usecs)
Load A (LDA) n.7

Store A (STA) 1.0

No operation (NOP) 0.7

Floating add (FAD) 1.7

Table I. Instruction Execution Times

(1) Taken from HIS manual [7]



comparisons of executicn times between the 6180 and the various
emulators (see section IV).

PROCESSOR CONFIGURATION

Figure 2.
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A block diagram of the processor module is shown below in
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appending unit, the operations unit and the controls unit. The
three functions can be briefly described as follows:

Controls Unit: This unit performs instruction fetch, decode,
execution, and effective address calculation which may require
multiple indirect word fetches. The control unit portion oper-
ates on the standard instruction set and the extension unit
operates on the extended instruction set. The extended instruc-
tion set is a feature of the even numbered 6000-series processors
(i.e., 6040, 6060, 6080) and includes instruction decode and
address calculation of its ow-.

Operations Unit: This unit performs the arithmetic and logic
operations specified by the various instructions, and loads
and unloads certain registers.

Appending Unit: This unit performs the various operations
needed to implement the DAT (Dynamic Address Translation)
algorithm. An instruction can address memory in the virtual
(append) mode or the absolute mode. When addressing in the
virtual mode, the appending unit takes the two-dimensional
address and converts it to the appropriate 24-bit absolute
address.

Before discussing the operation of each of the above units in
detail, it is appropriate to look at the registers which define each
unit and discuss how each register is used. Due to the lack of
documentation at this level, it is difficult to develop a taxonomy
for the registers that assoclates each register with a functional
box. Thus the following groupings of registers with module functions
may not be entirely accurate.



Controls Unit Registers

The registers functionally belonging to the Controls Unit are
shown in Figure 3. These registers are briefly described as
follows:

FLAGS: This is a series of one or more bit registers that indi-
cate the state in the very complex cycle between
instruction fetch and eventual instruction execution.

ADDRESS PREPARATION CYCLE: XSF, SDWM, PTWM, DSPTW, SDWNP, SOWP, PTW,
FLAGS PTW2, FAP, FANP, FABS

REPEAT MODE: RF, RPT, RD, RL
OTHERS: POT, PON, XDE, XDO, POA, RFI, ITS, IF

0 23 24 35 36 37 5051 54 55 565960 7_11
DSBR ADR W/ s/ 7/ /1 | wwo 1 AlV/ A svacx
0 23 17 18 35 36 37 38 Ll
TPR [TRR[ TSR T CA T CHAR | BITNO |
(o] 23 t7 18 - 35
PPR PRR PSR T ic ]
o] 2 3 _—— 17 18 35 36 3738 L1
PRn(0-7) [RN ] SEGNO_ [ WORDNO [_CHAR_"T BITNO |
IR SINGLE BITS ZERO, NEGATIVE , CARRY, OVERFLOW, EXPONENT OVERFLOW,

EXPONENT UNDERFLOW, OVERFLOW MASK, TALLY RUNOUT, PARITY
ERROR, PARITY MASK, ABSOLUTE MODE, NOT BAR MODE TRUNCATION,
MULTIWORD INSTRUCTION FAULT

0 17
BAR [ BASE ADDRESS )
0 t7

xn(0-7) [ INDEXVALUE ]

Figure 3. Controls Unit Registers
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DSBR:

TPR:

PPR:

PRn(0-7):

IR:

BAR:

Xn(0-7):

Descriptor Segment Base Register. This register contains
the absolute address of the descriptor segment for the
current process (DSBR.ADR), specifies the size of the
segment (DSBR.BND), whether or not it is pagzd (DSBR.U),
and where the stack can be found (DSBR.STACK). More
detailed discussion of the use of this register will be
found in the section on address preparation.

Temporary Pointer Register. Virtual addresses are stored

in pointer registers. The TPR is used as a general

scratch register to hold the virtual address that would
correspond to the memory address register in conventional
machines. TPR.TSR holds the segment number, TPR.CA holds
the current address of the word in the segment, and

TPR.TRR is the ring number associated with the current
reference to that segment. PR.CHAR and PR.BITNO are charac-
ter and bit addresses used by the Extended Instruction Set.

Processor Pointer Register. This register functions as

a virtual instruction counter and is structured similarly
to TPR. PPR.IC is the actual 18-bit instruction counter
register. PPR.P specifies that this is a privileged
procedure.

There are 8 pointer repisters directly addressable by the
programmer. They are used to store indirect addresses to
segments that are frequently referenced. Their use avoids
the extra time required to make an indirect reference
through core. The fields are functionally the same as
the corresponding fields in TPR and PPR.

Indicator Register. This register contains the indicator
bits, error flags, and mode bits for various conditions
found on conventional machines.

Base Address Register. For downward compatability, the
6180 can run as a 6080 by entering the BAR mode. 1In this
mode all addresses within a segment are one dimensional
addresses relative to the value in this register.

Index Registers. These 8 registers are general 18-bit
registers that can be used for indexing in a conventional
manner.



Operations Unit Registers

The Operations Unit contains the three programmer working
registers: accumulator (a), quotient (Q), and exponent (E): and
two registers for timing: timer register (TR) to provide a
relative time base and calerdar clock (CCR) that contains a
current time.

o] 17 18 35
no [ AU I m ]
o = s AilTJ€4_____ . 1
S e W o
0 7
E [ Exponent
o _ 23
TR ‘ 2 MICROSECOND COUNT _'J‘
5t -
CCR L— TURRENT TIME (N MICOSECONDS SINCE JAN |, 190!
[1a.41,899]

Figure 4. Operations Unit Registers



Appending Unit Registers

The Appending Unit is used to implement the DAT algeritham.
There are no registers that can be associated with the Appending
Unit as such, however the unit deals with two data structures in
core that it must also store internallv. The segment descriptor
word (SDW), which is actually a double word, and the page table
word (PTW) are illustrated in Figure 5.

(o} 23 24 32 33 34 35
S DW ADDRESS [ Rt [ R2 [ R3] F]Fc
BOUND | RTE[wW][PTluUu |6 | cL
0o 1 14 15 16 17 18 19 20 22 35
0 171823 2628 29 33 3 35

PTWw [ ADDRESS s JJu IWH ¢ | fc_ |

Figure 5. Apprending Unit Registers

SDW: This dnuble word centains vital information concerning the
segment currently ir use.

ADDRESS: Absolute core address (mod 64) of page table for seg-
ment, or address of segment if not paged.

Rl, R2, R3: Ring numbers (0-7) determining read, wvrite,
execute, and call brackets as follows:

Read bracket is 0 - %2,
Writa bracket is 6 - R1.
Fxecute bracket is R1l. - R2.
Call bracket is (R2+]1) - R3.

F: If off, a directed fault is to take place when chis
segrient is referenced.

FC: If F is off, the fault cocde contsined in this field
is used.

10



BOUND: Highest 16-word block of segment that can be
addressed.

R, E, W: Read, execute and write permit indicators. If on,
access is permitted provided ring bracket is
satisfied.

P: If on and processor is executing in ring zero, the
privileged mode is entered.

u: If on, segment 1is unpaged.

G: Gate indicator. If off, calls to this segment must
be directed to an address less than CL.

CL: Call limiter, above which calls to this segment may
not be made.

PTW: This word contains information about the current page being
accessed.

ADDRESS: Absolute address of this page in memory.

S: For use by software

U: If on, page has been used.

W: If on, page has been written iunto.
F, FC: Same as for SDW.

The Appending Unit also contains two associative memories:
one holds the last 16 SDW's and the other holds the last 16 PTW's
that were referenced. Along with all the information from the SDV
or PTW, the segment and page numbers associated with these are saved
so that an SDW or PTW can be identified by an associative search.

PROCESSOR OPERATION

This subsection discusses the operation of the processor in
four parts. The first two discuss address preparation, the instruc-
tion cycle, and interrupts in general. The last two parts discuss
the same subjects in more detail,

11



Address Preparation -- General

Address preparation for an operand is defined to be the cal-
culation of a two-dimensional address (segment number, offset) that
addresses the operand in virtual memory. Conversion of this virtual
address to a physical address is referred to as DAT. 1In the 6180,
DAT can be thought of as a subroutine that is called whenever a
memory reference is made in the append mode of operation. Address
preparation involves the indexing and fetching of indirect words
necessarv to determine the offset and sometimes the segment number
of the operand referenced by an instruction. Each memory reference
made through DAT requires reference to the segment descriptor word
and page table wor:? for the word being referenced, thus making it
possible for various faults and access violations to occur any time
DAT is used. Since words are alwavs fetched in even-odd pairs,
which must of course both be in the same page, DAT need only operate
with the even part of the offset.

DAT should be thought of only as an address translation,
separate from the memory access to the location referenced. The
reason for excluding the memory access from DAT is that DAT is in-
voked (at least conceptually) at certain times merely to check on
the validity of a virtual address without requiring any reference to
the contents of the address. The DAT subroutine has as input two
arguments and returns an output or generates a fault. The input
arguments are (1) the type of access desired (read, read/write, write,
or execute) and (2) the virtual address (segment and offset). The
returned value, if no fault is generated, is the 24-bit absolute
address. A '"fault" is generated when the virtual address is not
"in core."

An example of the case where no memory acc:s.: to the operand
is made at the time DAT is invoked is the store .nscructinn. The
sequence of events for a store instruction is

(1) calculate address of operand,

(2) call DAT to check on write access,

(3) execute instruction, and

(4) store value into absolute address returned previously
by DAT.

12



The 6180 implements the Multics ring mechanism in hardware.
Rings can be considered to be a generalization of the user-supervisor
modes, where inner (lower numbered) rings have more privilege
than outer (higher numbered) rings. Eight rings are rrovided, with
the most privileged supervisor routines in ring 0 and user routines
executing in rings 4-7. A process executing in an inner ring has all
the access capabilities it has in an outer ring. Thus when a pro-
cedure in an inner ring is called from an outer ring, the current
ring of execution is chai'ged to the ring of the inner procedure and
access is allowed to all data that the previous (outer) ring had
access to, plus new access as required by the inner ring. The ring
protection mechanism requires that the current ring of execution be
saved in a register, and that each segment descriptor word specify
the rings from which access is allowed to that segment.

One of the important aspects of the ring mechanism is that a
procedure in an inner ring can assume the more restricted access of
an outer ring, 1if desired, without changing the current ring of execu-
tion. The need for this capability is best illustrated in the case
where a user routine executing in ring 4, for example, calls a
supervisor routine in ring 1. The user supplies arguments pointing
to data areas within segments accessible to his own ring (4). The
supervisor makes reference to these arguments through pointer re-
gisters containing the segment number and offset of the arguments,
and the ring number of the user. The effective ring number, computed
with each effective address, is the maximum of the ring number in the
pointer register and the current ring. This effective ring number,
not the current ring number, is used to determine the type of access
allowed for the reference. Thus the user cannot force the supervisor
to make reference to segments the user didn't have access to in the
first place. Moreover, each indirect word pointing to another seg-
ment contains a ring number. Thus the user can transmit pointers
from arguments passed to him from an outer ring (such as ring 5) to
the supervisor. The supervisor, when referencing such an indirect
word, will have as its effective ring number the maximum of: super-
visor ring (1), user ring (4), and indirect word (5). The user pro-
gram in ring 4 could of course modify the ring number 5 in the in-
direct word, but even if it made it less than 4, the pointer register

13



that contains the user ring number would force the access privileges
back to those of ring 4.

Instruction Cycle and Interrupts -- General

A machine cycle flowchart for a typical computer would appear
as in Flgure 6, where interrupts could only occur between instruc-
tions. In such a machine only the registers available to software
need be saved at an interrupt, and the details of the boxes 'pre-
pare operand address' and "execute instruction" do not affect this

R E—
FErcw 1| PRERASE EXECUTE any N\ YES | pROCESS |
INSTRUCTION ADDRESS INSTRUCTION & INTERRUPTE ——® | NTERRUPTS
l Y ? / e
e eeeed
MO
’1
Mia 41,903

Figure 6. Typical Machine Cycle

structure. In the 6180 such a situation cannot be tolerated because
the many references .o DAT r2quired during the operand address pre-
paration phase can generate faults (which are processed just like
interrupts). At fault time the internal machine state must be saved
in sufficient detail so thit a return from the fault handler can
restore the machine to the proper point in the operand address
preparation, allowing the process to resume as if the fault had
never occurred.

Figure 7 shows mcre of what the 6180 instruction cycle is like.
The horizontal line of boxes represents different 'cycles'. Each
part of the address preparation that contains a call to DAT must be
an independent cycle of the machine. Interrupts and faults are then
chec'.ed for at defined times between cycles during instruction fetch,
operand fetch, and execution. Ncte the distinction between the
generation of a fault (which occurs in DAT somewhere in che cycle)
and the testing for the fault for the purposes of generating the

14



interrupt after each cycle. This separation is required because
other kinds of faults and interrupts could occur from outside the
DAT, and,to provide an crderly means for determining priority,
interrupts and faults must all be detected at once. It is
intentional that only one box was shown for "execute instruction'.
There appears to be no reason for interrupting the execution of
normal (not multi-word) instructions during their execution because
all necessary calls to DAT for argument validation have been made
previously. The exceptions to this rule might be the transfer and
call instructions whose operands need validation by DAT in the
execute cycle, but the manner in which these exceptions are handled
is not clear from available documentation.

STATE? ;
l
—— - —y— Y — - - —
|
FETCH ADDRESS ADDRESS EXECUTE
PREPARATION PREPARATION 5 o o o s i
INSTRUCTION PART | PART 2 INSTRUCTION
1& S l
ANY FAULTS NO
OR INTERRUPTS
?J
\\a
YES

PROCESS FAULT
OR INTERRUPT

L

Figure 7. 6180 Instruction Cycle
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The box at the top of Figure 7 called "state?" determines
which cycle is to be entered next as a function of various internal
flags and bits. At an interrupt this state must be saved, along
with several internal registers and intermediate resuits not
normally available to software. Software saves this state (reflected
in a "snapshot" of the CPU taken at interrupt recognition time) in
core with the first instruction of an interrunt or fault routine,
and restores this state on return to the interrupted program. Under
some conditions it is necessary for software to examine and modify
the saved state data.

The data saved on an interrupt by the "store control unit"
(SCU) 1instruction contains 8 words that include both the even
and odd numbered instructions currently in execution, the in-
struction counter, etc. Saving of both even and odd instructions
is necessary on the 6180 because the execution of the even instruc-
tion takes place at the same time as part of the address preparation
for the odd instruction, and memory works in double word widths.
Of course, proper handling of faults and interrupts also requires
saving of the software accessible registers, but this saving is
handled directly by the fault handling software.

Up to this time the EIS multiword instructions have been
ignored for the sake of simplicity. The main confusion arising
when multiword instructions are considered is that these instructions
can handle very long strings that can cross page boundaries, and
thus must make DAT references many times during their execution.
The EIS processor also has R additional words of information that
must be saved on an interrupt, by software using the SPL instruc-
tion. The EIS pnrocessor can probably be represented in Figure
7 bv adding one or more "execute EIS instruction" boxes that con-
tain DAT references. Because the EIS instructions go through re-
petitive loops, the understanding is that these additional boxes
may be reentered many times before the instruction is complete.

Address Preparation -- Detail

All non-EIS instructions save a few go through the same
address preparation cvcles. EIS multiword instructions go through
their own address preparations for each of one to three descriptors
following the instruction, and most single word EIS instructions have
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yet another similar but not identical method of address preparation.
Most of the following discussion will be exclusively for the non-
EIS instructions, with general remarks about differences due to the
EIS instructions.

0 I? 18 27 28 29 30 35
| y | OPCODE [1]PR[Tm | Td |
| |

t‘——TV\G-——.1

Figure 8. Ger-ral Instruction Format

All non-EIS instructions have the '"general instruction format'
as shown in Figure 8. The operand referenced by the instruction is
pointed to by the 18-bit address in the "y" field, specifying an
offset in the current segment. The TAG field is a complex field
specifying what modifications are to be performed on the value '"y"
to transform it into a final offset "Y'" that points to the actual
operand. Modifications include indexing and indirection. The first
part of this discussion will be concerned with modifications that
generate an offset Y in the current segment while the last few
modifications described all reference data within another segment.

The tag field, expanded into two subfields, is shown in Figure
9. The major modification category is specified in the Tm {ie'.l.
The Td field specifies either a register (for R, RI, and IR) or more
detail on the type of modification in the case of IT modification.
A general summary of the various modifications follows, but first it
might be helpful to discuss the general format of the indirect word,
illustrated in Figure 10. Note that the indirect word format is
similar to the instruction format with the opcode missing. Any
reference made to a word designated as indirect will be subject to
the same modifications as the original instruction, thus permitting
any number of levels of indirection. Indirection ceases usually
when the tag of the indirect word specifies no further indirection.
Note that the tag of an indirect word or instruction usually specifies
what modification is to be performed on the y field of the current
indirect word, and whether the next word fetched is to be interpreted
as an indirect word or not.
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REGISTER

REGISTER THEN INDIRECT
INDIRECT THEN REGISTER
INDIRECT AND TALLY

lia-a 1,906

[e)

30 3 32 03 -
|ﬁ_l To N NO MODIFICATION
‘ ¥0-X7 INDEX REGISTER O-7
au A UPPER
R REGISTER # aL A LOWER
R1 REGISTER # —< qu Q UFPER
IR REGISTER # qL Q LOWER
IT MODIFICATION It INSTRUCTION COUNTER
\ ) DU DIRECT UPPER
[ oL DIRECT '.OWER
o INDIRECT
I o INCREMENT ADDORESS, DECREMENT TALLY
| DI DECREMENT ADDRESS, INCREMENT TALLY
| AD AL DELTA TO ADDRESS, DECR TALLY
SD SUBTRACT DELTA FROM ADDR., INC TALLY
|“ DIC  DECR ADDRESS, INCR TALLY, CONTINUE
¢ 10C INCR ADDRESS, DECF TALLY, CONTINUE
SC SEQUENCE CHARACTER
SCR  SEQUENCE CHARACTER REVERSED
cl CHARACTER FROM INDIRECT
FTI-3 FAULT TAG 1-3
ITS INDIRECT TO SEGMENT
L ITP  INDIRECT TO POINTER
Figure 9. Tag Field
17 18 29 30 35

VI e e

Figure 10. Indirect Word
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Address Modification. The four modifications specified in the
Td field are summarized as follows:

R Register.
The register specified in the Td field is to be added to
the value y to form the 18 bit offset of the operand. No

indirection takes place.

RI Register, then indirect.
The register in the Td field is added to y as for R modi-
fication, but the result is an offset which points to an
indirect word whose y and TAG fields are interpreted

further.

IR Indirect, then register.
The y field points directly to an indirect word. The
register specified in the current Td field is added to
the resultant offset after all further indirection is
complete. If one of the subsequent indirect words also
specifies IR modification, then the Td field of that word
selects the register to be added, and the original Td
field is ignored.

IT Indirect and tally.
The y field points to an indirect tally word whose con-
tents is interpreted in a manner determined by the
original Td field.

The registers selected by the Tm field for R, RI and IR modifications
are described as follows:

N No modifications.
y becomes the offset.

X0-X7 One of 8 index registers.
Xn+y becomes the offset.

AU,AL  Upper or lower half of A register.
AU+y or AL+y become the offset.

QU,QL  Upper or lower half of Q register.
QU+y or QL+y become the offset.
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IC Instruction counter.
1¢+y becomes the offset.

DU,DL Direct upper or direct lower.
This specifies that y itself is the operand, rather than
the address of the operand. 18 bits of the operand are
always zero, and the 18 bits of y become the high or low
half of the operand. This modification obviously makes
no sense for store instructions.

For the IT (indirect and tally) modification, the Tm field does not
specify a register, but can take on one of the following values that
determine how the indirect word is to be interpreted.

T Indirect only.
The y field of the indirect word is the address of the

operand, and the tag field of the indirect word is
ignored. No further indirection occurs.

ID Increment address, decrement tally.

0 17 18 29 30 35

v TALLY Y,

Figure 11. Indirect Word: 1ID, DI

In this mode the indirect wrrd is interpreted as in
Figure 11. The y field of the indirect word points to the
operand as for I modification, but after operand fetch the
y field is incremented and the tally field is decremented.
If the tally becomes zero after decrementing, the tally
runout indicator is set.

DI Decrement address, increment tally,
The indirect word is interpreted as for ID (Figure 11).
Operation is similar to ID except that the y field is
decremented, the tally is incremented, and then the operand
is fetched.
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IDC

Increment address, decrement tally, continue indirection.
The indirect word is interpreted as in Figure 12. Opera-
tion is identical to ID, except that indirection can con-
tinue as specified by the tag field of this indirect word.
Note that the tag field was ignored for ID and DI. There
is one restriction on the contents of tais tag field: 1If
Td specifies R or RI, Tm must specify N (no modification).
Td may specify IT or IR, for which thore are no restric-
tions.

17 18 29 30 35

y | TALLY TAG |

DIC

AD

(o]

Figure 12. Indirect Tally Word: I™C, DIC

Decrement address, increment tally, continue indirection.
This mode is identical to DI, except that indirection can
continue as for IDC with similar restrictions.

Add delta.
Operation is similar to ID, except the y field is incre-
mented by the value of delta contained in the tag field of
the indirect tally word. The tally field is still decre-
mented by 1.

17 18 29 30 35

y [ TALLY DELTA

SD

Figure 13. Indirect Tally Word: AD, SD

Subtract delta.
Similar to DI except that a delta in the indirect word is
used to decrement the y field as for AD.
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SC Sequence character.
In this mode, the indirect tally word, interpreted as in
Figure 14, is used to address a character operand. Bit 30
specifies whether the character is a 6 or 9 bit character,

0 17 18 29 30 33

y | TALLY lCSV/ACHA%

CHARACTER SIZE:
0=6 BIT CHARS
| = 9 BIT CHARS

Figure 14. Indirect Tally Word: SC, SCR, CI

and CHAR is the character number within the word pointed
to by y. Operation is similar to ID. Each reference will
increment CHAR until it becomes 5 or 3, depending on the
character size. On the next reference CHAR will be set to
! zero and y will be incremented. In this manner sequential
characters in a continuous string are referenced.

i SCR Sequence character reversed.
Operation is parallel to DI, where the indirect word is
interpreted as for SC. The character count goes backwards
until it reaches zero. Then the y field is decremented by
one and CHAR is set to 5 or 3.

CI Character from indirect.
The tally word is interpreted as for SC, but on each re-
ference only the tally field is modified, thus permitting
repeated references to the same character.

ITS Indirect to segment.
This modification is not a tally word modification. The
ITS modifier, appearing in the tag field of an even ad-
dressed indirect word, specifies that the indirect word
and the following word are used to address a location with-
in another segment. This word pair is shown in Figure 15.
The segment number and offset specify the location, and
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the tag field of the second word determines what types of
normal modifications are to be made to the new offset.
The ITS modifier may only appear in an even addressed
indirect word, and not in the instruction. The RN field
specifies the ring number whose access privileges are to
be used when making this reference. The BITNO field is
used to address bits for EIS instructions.

17 18 20 21 26 27 29 30 35

SEGMENT RN V////////////, ITS

OFFSET (Aé/ BITNO}QV%%A TAG

ITP

0

Figure 15. 1ITS Word Pair

Indirect to pointer.

This modifier is used in a manner similar to ITS, except
that the first indirect word specifies a pointer register
(PR) instead of a segment number. This pointer register
contains a segment number, offset, and ring number, and

the offset in the second word is added to the offset in

the PR to form the new offset v which becomes the base

for further address modification specified in the tag field.

2\ 2 30 35

ere V// /1111 LT L TP

OFFSET v/////1 sitno V/////f TAG

Figure 16. ITP Word Pair
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FT1-3 Fault tag 1-3
When this modifier appears in an indirect word or word pair,
a directed fault is generated. This fault may be inter-
preted by software in any way desired, and it is up to
software to set this fault code in the indirect word.

One further type of modification, which takes place before any
other type of modification, and may only be specified in the original
instruction, is a reference through a pointer register (PR). If PR
is specified by a bit in the instruction, as in Figure 17, then ref-
erence is first made to one of the 8 PRs specified in bits 0-2. The
remaining part of the y field, interpreted as a signed 2's complement
number, is added to the offset in the PR to determine the initial y
value to be used for further modification. The tag field is inter-
preted as usual. This mode allows reference to another segment with-
out using an indirect (ITS or ITP) word pair.

0 23 T2 R0E) 27 28 29 30 35
PR# y 0PCODE I I TAG

Figure 17. PR Modification (bit 29=1)

DAT Details. Figure i8 illustrates how DAT works. As men-
tioned earlier, the inputs to DAT are the virtual address (segment,
offset) and the type of access desired (read, write, or execute).

The DAT returns an absolute main memory address of the word refer-
enced. In Figure 18, the TPR contains the virtual address. The TRR
field contains a ring number that is initially the current ring of
execution (PRR) taken from the PPR, but may later (after a level of
indirection to another segment) assume a higher value (and therefore
less access) if specified in the indirect word. There is no way for
TRR to be less than PRR. Refer to Figure 18 for the following steps.

1. The DSBR points to the first word of the page table for the

descriptor segment. This page table contains a word for
every page in the descriptor segment.
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The segment number (TSR) can be thought of as a two part
address where the high 5 bits point to the page table word
(PTW) and the low 10 bits point to the offset within the
page. This step consists of adding the DSBR value to the
high part of TSR to obtain the absolute address of the PTW.
The PIW contains the address of the page, flags that are

set by hardware when the page is written into or referenced,
and fault bits set by software that indicate the kind of
fault to be generated when this page is referenced. Usually
the fault bits are used to signal the fact that the page
desired is not in core. If such a fault occurs, DAT exits
immediately, setting the appropriate fault indicator for
subsequent testing at the end of the current cycle.

If no fault is specified, the PTW's address field is used
to get to the address of the beginning of the page of the
descriptor segment that contains the segment descriptor
word (SDW).

The low part of TSR is an offset into this page, and the

SDW is fetched as a double word. The SDW contains fields
describing the segment to be referenced. Besides specifying
the address of the page table for the segment, the number

of pages in the segment, and faults to be generated if the
page table is not in core, it also describes the kind of
access the current process has to this segment. The

access field allows read, read/write, or execute privilege.
The ring fields con*ain ring numbers specifying from which
rings each of these accesses are permitted, and a call field
specifies at what point entry can be made into this segment
via a CALL instruction (which can change to an inner ring of
execution). A ring field also specifies the new ring number
to be loaded into the PRR when the segment is properly called
using the CALL instruction.

If no fault is generated from the SDW (either due to an
illegal reference or missing segment) then the address of
the page table is determined.

Assuming 1K pages, the high 9 bits of the offset or current
address (CA) are an index into the page table for this seg-
ment, and then the PTW is fetched and treated exactly as in
step 1, with a possible fault being generated.
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7. This step corresponds to step 3, where the actual address of
the page containing the word referenced is determined.

8. The low 10 bits of CA point to the location within the page
that contains the word referenced, and the absolute address
of this word is thus determined. This absolute address is
the output from DAT.

In the worst case three memory references will be needed to
determine the address of a word in core. It is possible for the
descriptor segment or the segment referenced not to be paged, so
that the DSBR or SDW point to the segment itself rather than a page
table. In such a case the offset into the descriptor segment or
referenced segment is the entire TSR or CA field.

In order to reduce the number of memory references required,
a 32 word (60 bit?) associative memory (AM) is used. Sixteen words
are used to save PTWs and 16 words are used for SDWs. Each time a
PTW or SUW is fetched from core by DAT, it is inserted into the AM,
replacing the least recently used word. If a particular PTW or SDW
is desired (as identified by its page number and/nr segment number
which are also stored in the AM), the AM is first searched, and if
the word is found the reference to memory nved not be made for that
word. Since both the segment number and page number can be deter-
mined from the virtual address in TPR (steps 2 and 6 above) the
associative searches for both the SDW and PTW can be made simultaneously.
If the SDW is found, but not the PTW, then DAT must make a memory
reference to get the PTW. 1If the PTW is found, the SDW is not
needed, since the PTW contains the address of the page. Along with
each PTW in the AM are stored the access bits and ring numbers for
the segment of which that PTW is part. Thus access rights may be
checked without looking at the SDW. Searching of the AM does not
appear to consume any additional time, so that there is nothing
wasted if the search fails.

It should be noted that the AM containing PTWs may contain
two PIWs from different segments that are from the same relative
locations within their segments. This means that PTWs in the AM
must be identified not only by their offset in their segment's
page table, but by the segment number as well. This then makes
it completely unnecessary to reference the SDW if the PTW is found.
The actual details of the AM search are not known, nor is the
exact format of the AM words. This information is available for
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the 645, and is likely to be similar for the 6180, the basic
differences being that for the 6180 only one search of the AM is
ever necessary, and that there are more fields (ring access)
that must be stored with each word.

Software has the ability to clear the AM, save its contentr,

and reload it. Clearing of the AM is necessary whenever a processor

removes a page from core., Loading and storing seem only for use
in diagnostics.

Figure 19 is a flowchart of DAT, ignoring the use of associa-
tive memory. It is assumed that references are all made to core.
Reference to a segment with a CALL or RETURN instruction probably
should be included in DAT as another type of access because the
SDW must be fetched and examined in a manner similar to that for
the other types of access. Note that a write into memory is re-
quired to set the "written" or "used" bits in the PTW. Such a
write must occur even if the PTW is obtained from the AM and the
bit was not previously set.

Address Preparation Flowchart. The flowchart in Figure 20
is a partial reconstruction of the effective address preparation
and instruction fetch cycles. Some of the less important IT
modifications are not included. The flowchart uses certain
flags and registers internally (PZ, CT, TRZ, PT). The reference
to INS 1s to a register containing the current instruction and
later various temporary tags. iND is a double word register con-
taining the even and odd indirect words. Names of the various
parts of IND, such as IND.BITNO or IND.TALLY refer to the corre-
sponding fields in the format of the type of indirect word refer-
enced. Reference to the even or odd IND word is implied by the
name of the field or whether the indirect word is an even or odd
location.

Ideally this flowchart should represent the address prepara-
tion exactly. However, the complexity of these sequences forced
us to adopt certain simplifications in order to make this task
more reasonable. Those points not covered in the flowchart are
discussed below.

Almost every 6180 instruction has certain modifications that
are illegal. On the 645, an illegal modification causes an
unpredictable result, so such cases were ignored (and would
likewise produce inconsistent results from the flowchart).
The flowchart was made before it was known that the 6180
generates a fault in every case an illegal modification

is used. This feature of the 6180 required that in order to
detect such a fault, checks have to be made at various points
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within the flowchart against the opcode of the instruction.
The instructions could be grouped into classes (but not by
particular bits in the opcode) for determination of illegal
fault-generating modifications.

The actual machine cycle, as discussed previously and
illustrated in Figure 7, shows the address preparation

split up into independent units. Presumably this split
would require many more flags to indicate whai the current
cycle is. The 645 had five cycle flags, two of which corre-
spond to the PZ and PT flags in the flowchart. The other
three were not needed in the flowchart representation. Other
flags and registers are also necessary for communication of
state between cycles.

The fact that the 645 and 6180 both fetch double words requires
additional flags and tests to determine which word is being
processed. This requirement not only applies to the even or
odd instruction, but also to the even or odd indirect word.

The 6180 and 645 have various repeat modes. A repeat instruc-
tion fetches the next one or two instructions and repeatedly
executes them until a termination condition specified in the
repeat instruction is satisfied. The instructions executed
during the repeat mode have many more restrictions placed on
the types of address modifications they may use. In addition,
address modification is different for each of the two instruc-
tions in the repeat double mode, different on subsequeat
repeats, and a function of bits in the repeat instruction that
change address modification for each of the repeated instruc-
tions separately. Tests for end of repeat (termination
condition satisfied) also have to be made. This confusion
required us to temporarily abandon the treatment of address
modification during the repeat modes.

In reality, the flowcharts for the address preparation should
be an order of magniture more complex -- not to take care of the
failures mentioned above, but due to restrictions in certain modes
and slight differences in operation among similar modes. As an
example, consider the register modifications DU and DL. Figure 20
doesn't treat these in any special way, but clearly the notation
R(INS.Td) makes no sense, and must be handled differently, for
this modification. In addition, whenever DU and DL are used, a
flag must be set to indicate that no memory fetch is required for
the operand.
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Instruction Cycle and Interrupts ~-— Detail

As mentioned earlier, the instruction cycle illustrated in
Figure 7 is not quite accurate. There are instructions which make
reference to DAT as part of the execution cycle (or before
execution but after address preparation). Moreover, address
preparation is only defined as the construction of an effective
virtual address of the operand. For most instructions the operand's
absolute address must be determined (requirine a call to DAT)
so that the operand can be loaded or stored. Note that the only
calls made to DAT during address preparation are for fetching of
indirect words. We have attempted to construct a flowchart of
what happens after address preparation (Figure 20) and before
instruction execution in a form similar to that for the address
preparation. This means that the possibility of faults or
interrupts being generated is ignored.

Instruction Cycle. Figure 21 is our best representation of
the instruction cycle after address preparation that can be made
without more 6180 documentation., For purposes of this representa-
tion all instructions can be divided into seven groups, each of
which is discussed below. Most of this information has either been
deduced or taken from Schroeder and Saltzer [1] -- little came from
Honeywell documentation. There are several problems which currently
prevent us from going into more detail.

1. Instruction does not reference operand.

This group includes instructions that neither store nor
load data into memory nor cause a transfer of control. 1In
this group would be the shift instructions, the repeat
instructions, and a few others that only reference registers.
There is one inconsistency which should be mentioned at this
point, Certain of these instructions (e.g., the shifts)
go through the normal address preparation phase, generating
page faults or whatever is necessary to determine the
effective address of the operand. In the case of shifts,
the resultant offset part of the effective virtual address
is interpreted as a shift amount, and the operand itself
and segment number are ignored. Other instructions, how-
ever, such as the repeats, use their tag and y fields for
controls, and therefore are not subject to address pre-
paration. This means that a check must be made for in-
struction type before address preparation so that those
cycles are bypassed. Figure 20, on the other hand, assumes
that all instructions are treated in the same way. There

36



r i)
1A- 41,900

| 2
: I
NSTRUCTINN
READS
OPERANL

|

|
| DAT(KEAD)
—4DLRESS

L INSTRICTION

NOT REFERENCE

OPERAND

:NSTRUCTION
TYPE ?
M
3 4 5 6 7
! l K 1
INSTRJCTION INSTRUCTION INGTRUCTION ) .
WRITE" READ 8 WRITES TRANSFERS CALL RETURN
JFERAND OPERAND TO OPERANL | 1
. ' '
1 ' [ r t |
| DAT{WRITE) | | DAT (READ - WRITE) DAT! EXECUTE } LAT faLol | | AT RET
l--. ALLKRESS | | —® ADDRESS [
{ 1 L]
| | !
.- ! ! ;
DOE S ! | l
A L ¢ o ‘ L)
l EXECUTE
tNSTRUCTION
¢ A
* -
CONTINUE
WITH NEXT
CYCLE
Figure 21. Instruction Cycle
are even other instructions that use their tag field for

control, but their y field contains the address of the
operand. This means that some of the address preparation
(PR modification and offset calculation) takes place, but
not all of i{t. Tests for these instructions would have to
be made in appropriate places within the flowchart in
Figure 20,

Instruction only reads operand.

These include the obvious group of loads, arithmetic,
and logical instructions that leave their result in a
register. For these instructions DAT(read) is called,
requesting validation and formation of the physical address
of the operand. The actual reading of memory is delayed
until the execute instruction box because not all instruc-
tions read their operands in exactly the same way. For
example, certain load register instructions read 8 or 16
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6. & 7.

consecutive words. It also seems cleaner to keep the memory
reference inside the execute instruction box so that each
instruction can do what it wants with the absolute address
supplied to it.

Instruction writes operand.

This group contains all the store type instructions
that need not read the location to be stored.

Instruction reads and writes operand.

This group contains instiuctions such as "add storage
to accumulator and place result in storage" that must read
and write their operands, and thus both read and write access
is required.

Instruction transfers to operand.

Treatment of these instructions here is not entirely
satisfactory. Figure 21 shows a call to DAL, with check
for execute privilege, before "execution" of the transfer.
This is not really necessary because execute privilege is
already checked for before the fetch of the next instruc-
tion (see Figure 20). However, as Schroeder & Saltzer[l]
point out, it is desirable to check for legal access before
making the transfer, so that a possibly faulting transfer
instruction can be located using the old instruction counter.
The placement of the call to DAT in Figure 16 allows for
this check, but is not good because, in the case of a
conditional transfer whose condition is not satisfied, it
would be a waste of time to call DAT with accompanying
page faults that may occur. This problem could easily be
gotten around by treating transfer instructions differently
from other instructions, but Schroeder & Saltzer's
diagrams seem to indicate that this distinction is not
made.

The CALL and RETURN instructions are the only instructions
that can change the ring of execution. For the sake of
parallelism here it is assumed that the DAT routine has

the capability of checking for call or return privilege.

It would be possible to perform this function in the "execute
instruction" box for CALL and RETURN, but since most of

this function (fetching SDW's, checking access) is already
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performed by DAT, it seems proper for DAT to do the call and
return checks. DAT also changes the current ring number

for the new ring of execution. The execution part of CALL
and RETURN involves setting certain pointer registers and
determining of the stack segment number.

One additional point that should be made is that for transfer,
CALL, and RETURN instructions, the absolute address of the operand
returned by DAT is not used. Instead the actual trausfer consists
of loading the virtual instruction counter (PPR) with a new virtual
effective address (from TPR) and not with an absolute address.

Interrupts and Faults. The box at the bottom of Figure 7
called "process fault or interrupt" is, after closer examination,
much more complex than one would expect. The 645 manual [3] would
have one believe that the hardware's processing of an interrupt
merely involves taking a snapshot of the CPU state and forcing an
XED (execute) instruction into the instruction register tc cause
two instructions in certain memory locations to be executed. After
putting the XED opcode in the instruction register, the cycle flags
need merely be set to force the machine to execute the XFD instruc-
tion. If neither of the two XED'ed instructions cause a branch,
the next instruction to be executed will be the next instruction
in the interrupted program.

In reality, the processor never really '"lets go'" after forcing
the XED. The hardware almost expects an SCU (store control unit)
in the even location and a transfer in the odd location of the
XED'ed pair. If this is not the case the control unit will not be
saved and the interrupted program can not be restarted. The handling
of these two instructions after an interrupt is different from their
normal handling. In fact, if the first instruction is not an SCU and
the second not a transfer, the interrupted process is likely to be in
trouble. The processor signals a '"trouble' fault when something goes
wrong with one of these two instructions (such as when the page refer-
enced by the SCU is not in core). These and other conditions mean
that special tests have to be made by the hardware during and after
address preparation for the SCU and transfer instructions on an
interrupt.
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SECTION III
EMULATION METHODOLOGY

INTRODUCTION

In order to meaningfully compare the effectiveness of emulations
performed on different machines it is necessary for all these
emulations to be based on a common methodology. 1In this section we
propose such a methodology. The ultimate goal of this report is to
determine the feasibility of emulating the 6180 -- not to present
the actual emulation. Therefore this section only discusses those
features of the 6180 that may have a significant effect on a 'bench-
mark emulation' such as the one discussed in Section IV. Certain
important features of the 6180 are not discussed because their effect
on a benchmark is minimal.

An attempt has been made to make this section applicable to all
potential microprogrammed emulators, and thus the architecture of
the emulator is ignored. However, the current state of the art of
microprogrammable processors must be taken into account in order for
a methodology to be useful. For this reason we discuss typical
hardware limitations that might be encountered, and we consider
various ways to deal with these limitations.

GENERAL CONFIGURATION

The first things to determine for any emulation are the level
-- machine language or higher level language —-- at which the emu-
lation is to take place, and which functional units of the target
machine are to be considered. For example, emulation of a "Multics
system' at the user level need only duplicate the features available
at the terminal. Emulation of a large machine with an I/0 channel
may include emulation of the I/0 channel as well, or may require
the I/0 channel as a piece of hardware.

The emulation we are considering is an exact machine language
emulation. The emulator must be completely compatible with machine
language software for the 6180. The only difference allowed is a
time difference: we are assuming that 6180 software is not time
dependent enough for a slowdown to affect its proper execution,
Certain common practices of IBM 7090 days, such as software timing
lo» s, are assumed not to occur. It may be that for proper operation
of some external devices, two instructions must be executed within a
specified time of each other, but this only requires that the
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emulator be 'fast enough" to handle those devices by normal pro-
gramming methods. The slowdown factor that might be considered
reasonable or maximum for the emulator cannot at this point be
determined. There are too many variables that can affect ultimate
performance of the 6180 in its normal Multics environment, (memory
size, user ioad, types of applications, design of system software)
and the emulator has no control over most of these. Whenever we
have tc make a decision between apparent cost or complexity and
speed, we will rely more on intuition than calculated performance
figures.

The 6180 consists of several functional units as discussed in
Section II. Since the separation of these units is not detectable
by software, there is no reason for dividing the emulator into such
units. The possibility of asynchronous operation of the functional
units is not important since such operation only affects speed. We
will therefore assume that one microprogrammable CPU, or one "emulator,"
is sufficient to emulate one processor. The usual 6180 configuration
of several processors and main memory is not software independent
(software is aware of the number of processors) so a separute emu-
lator would be required for each processor. However, the ultimate
purpose in having multiple processors is only for increasing per-
formance which is again not very important «t this time. 1I/0 channel
operation must eventually be considered because I/0 channels are
necessary and the I/0 multiplexors are treated by software as separate
asynchronous units. Emulation of these units is not discussed in this
report due uvc its minimal effect on a benchmark. At some future
time the tradeoff between I/0 multiplexor emulation and 1/0 hardware
has to be determined.

Although it is not necessary to separate the emulator into
functional units, one of the units - the appending unit - performs
such a complex function in essentially "zero'" time that a micro-
programmed emulation of it would not be feasible. The associative
memory is the main reasovn: without it, three memory references are
required just to determine the address of a location in virtual
memory. A slowdown by a factor of three or four may not be un-
satisfactory, but when one considers that this slowdown will be added
to any other slowdowns realized in the emulator, associative memory
hardware becomes a necessity. Moreover, the structure of cynamic
address translation is such that there is not much the processor can
do while waiting for a PTW or SDW to be read from memory. It seems
fairly certain that any emulation will require DAT hardware that
duplicates the function of the DAT subroutine illustrated in Figure
19.
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Another difficulty with the 6180 is the large number of registers
available to the programmer and required by hardware. If the machine
doing the emulation has sufficient register capacity, this presents
no problem. However, it is more likely that some or all of the
registers in the 6180 will have to be put in places such as core,
control store, or other memory units. Judicious assignment of
registers will have an important effect on emulater performance.

MAIN MEMORY

PRUCESSOR | DAT PROCESSOR 2 DAT
EMULATOR HARDWARE EMULATOR HARDWARE

T
Figure 22. Emulator Configuration

The complete emulator configuration, assuming DAT hardware is
required, is shown in Figure 22. A dual processor is used as an
example. For any one particular source machine, the processor
emulator might require additional hardware units. Note that the
DAT hardware is complicated by the fact that it too nust read and
write memory (for fetching PTWs and SDWs and writing PTWs). However,
DAT does not really have a separate port into memory because it never
makes a reference at the same time as its processor.

Besides the DAT box, additional hardware is needed for implement-
ing the calendar clock and timer registers. It can be safely
assumed that a typical off-the-shelf microprogrammable machine does
not have such registers, and that emulation of these timers through
microprogramming or l-microsecond interrupts is too time consuming.

42



All other configuration features of the 6180 (e.g., interleav-
ing, overlap) that normally just help to speed up performance
are not considered at this point in the emulation, but might
be ultimately required in a given simulation. Note that soft-
ware can detect and use interleaving.

MICROPROGRAM ORGANIZATION

In Section II and Figures 6 and 7, it was noted that the in-
struction cycle of the 6180 is not like that of a "classical" machine
because faults and interrupts are allowed during the address prepara-
tion and not just between instructions. If the structure were as in
Figure 6, microprogramming the address preparation would be straight-
forward, though complex. There would be no need to find out exactly
how the 6180 prepares its addresses as long as correct results were
obtained. Programming of the instruction execution would also be
straightforward.

The fact that the address preparation is split into several
defined cycles (of which there are 5 on the 645) puts a serious
restraint on the freedom allowed to the microprogrammer. He must
now organize his microprogram so that faults and interrupts occur
at many specific points in the instruction cycle. In addition, he
amust make sure that a return from 2n interrupt or fault will restore
the processor to the point it left off. The worst restraint seems
to be involved with the control unit status. At an interrupt or
fault, eight words of packed bits of information must be available
for software to save with the SCU instruction. In programming the
address preparation of Figure 20, it may not be very convenient for
the microprogrammer to represent his microprogram state in exactly
the same way done by the 6180 hardware, but it is absolutely necessaryv
that the state stored by the SCU instruction look the same in core.
One can imagine spending a great deal of time packing flags and bits
into the 8 words at each interrupt so that they appear in the proper
format for software. Alternatively, one can imagine firmware con-
tinuously keeping its own state in the right format ready for storing,
but comsuming time on each instruction interrogating its flags be-
cause they are not conveniently placed in its own internal storage
elements. The trick is to find the proper balance between representa-
tion of microprogram state in a defined format and packing and un-
packing bits at interrupts -- otherwise performance is likely to
suffer.

The flowchart of the address preparation in Figure 20 must be
reorganized into 'cycles" as in Figure 7. In addition, the end of
the address preparaticn, represented in Figure 21, has to be worked
in so that all are cousistent. The cycle flags, shown in Figure 3
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(PI, PA, etc.) must be used to determine which of the address pre-
paration cycles is currently being performed. Note that Figure 20
does use several of the flags and temporary registers for its own
state storage, but only to determine when certain conditions are
illegal and to define the path of flow under certain conditions.
Their use in the flowchart probably corresponds to their use in the
6180, except that the flowchart does not save or restore their values
on faults. For a full explanation of these flags and registers,
refer to the 645 manual [3].

In Figure 7, there is one call to DAT within each cycle. Pre-
sumably there is no reason to define a cvcle as separate unless it
contains a call to DAT. It was noted previously that, although the
fault is generated during DAT, it is not detected until the end of
the cycle. In other words, the end of cycle is forced when any fault
occurs in DAT. At time of detection, the interrupt handler is in-
voked. Later, upon restoration of the control unit status the pro-
cess should resume at some appropriate point within the cvcle.
Ideally the return of control should be to the DAT algorithm that
caused the fault, with the same arguments (TPR and type of access)
that it had previously. (Assuming, of course, that the TPR and
other control unit bits have not been altered by software.)

l

DAT

abnormat return

normaol
return

rest of
cycle

"ipgure 23. Typical Machine Cycle

What is required is an accurate portrayal of a typical cycle,
with the location of the DAT call specifically indicated. The cycle
could be thought of as a call to DAT first, followed by the rest of
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the cycle, assuming that the TPR and access request are saved in the
control unit's status. In the 645 the SCU does save the TPR, but

not the access request, though it is probable that the type of access
required can be deduced from the cycle designation. With this
scheme each cycle can be drawn as in Figure 23. The DAT call has a
normal return, which allows continuation of the cycle, and it has an
abnormal return, in the case of a fault, that goes to the end of the

cycle.
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SECTION IV

BENCHMARK EMULATIONS

INTRODUCTION

Given the precise description of the 6180 and a method for the
emulation of that machine, it is now possible to discuss the emula-
tion of the 6180 by the three selected microprogrammable processors.
In a benchmark emulation of the type to be developed here, it is not
necessary, and indeed it would be highly impractical, to present the
detailed emulation. The goal is to emulate a representative machine
function to assess the feasibility of the emulation and to gain a
first-order approximation of the efficiency of such an emulation.
The measure of efficiency used here will be expressed as the time to
emulate the representative function relative to the time the 6180
takes to perform the same function.

An examination of machine language code generated for PL/I
programs in Multics indicates that almost every reference to a data
location is through a pointer register (PR). For this reason, and
because a store is somewhat more involved than a load, the function
chosen as representative is the store A instruction with PR modifi-
cation and no indirection. Simple register modification is assumed.
The instruction fetch and execute cycle for this example are shown
in Figure 24. The TABLE and INS data bases used in this flowchart
are described in TABLE 1I as PL/I-type structures. One main
simplification introduced is that the call to the DAT algorithm
produc::s no faults. In making the comparison, it is assumed that
indirection through the pointer adds no time to the instruction
execution cycle on the 6180. Thus the benchmark emulations must
follow the same path through the instruction cycle as that taken
by the STA on the 6080 to allow a comparison with the 6140.
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This is a STA {nstruction.
Store A in memory

Increment instruction counter.

Figure 24, Instruction Fetch and Fxecute Example (Store A)
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TABLE II

Data Bases for Instruction Fetch and Execute

1 TABLE (Array) FIXED BIN (22),

2 M BIT(1), PERFORM MODIFICATION BIT
2 X BIT(1), NO MODIFICATION ALLOWED
2 D BIT(1), DU,DL MODIFICATION

2 ¢ BIT(1), SC,CI SCR ALLOWED

2 E BIT(1), EIS INSTRUCTION

2 s BIT(1), STORE TYPE

2 DECODE FIXED BIN (16); POINTER TO MICROCODE

1 INS FIXED BIN (36),
2 Y FIXED BIN (18),
2 OPCODE FIXED BIN (10),
2 EIS BIT (1),
2 PR BIT (1),
2 TM FIXED BIN (2),

2 TD FIXED BIN (4);

As previously defined (see Figure 3)
PPR

48



THE BURROUGHS D-MACHINE

Description of the D-Machine

The Burroughs D-Machine, or Interpreter as it is sometimes
called, is a modular, two-level microprogrammable computer with the
capability for sophisticated interconnections between individual D-
Machines. The machine is test described by Reipgel et al [11] and
Bingham et al [12] . The switching interlock, used to connect many
D-Machines for multiprocessor emulations, is described by Davis et
al [13] . The reader should consult the aforementioned references
for detailed descriptions of the architecture and operation of the
D-Machine. The following description gives an outline of those D-
Machine features germane to the benchmark emulation.

The block diagram of an interpreter is shown in Figure 25. The
important characteristics of the interpreter are the two-level
memory and the restricted number of key data paths and general
registers.

The two-level microprogram and nanoprogram memory of the D-
Machine provide a wide control word (54 bit nano-memory width) with-
out the disadvantage of needing large amounts of storage for the
microprogram. The 16 bit microprogram word is either a pointer to
a nanoprogram word or a literal. Thus, any given emulation will be
characterized by a small set (500 to 4000) of nanowords and a
larger microprogram.

The other important characteristic, that of limited data paths
and general registers, works to the detriment of a sophisticated
emulation. Where the emulated machine is characterized by a large
machine state (as the 6180 is) or where the emulation requires com-
plex microprogram interconnections (like stacked calls to micro-
programmed routines), the D-Machine must be augmented to perform the
emulation efficiently. These two deficiencies must be partially
overcome for the 6180 emulation.

Honeywell 6180 Emulation

To perform the 6180 emulation in an efficient manner, the
limitations alluded to above must be overcome. The lack of general
registers can be alleviated by the proposed D-Machine enhancement
to provide functional elements addressable by D-Machine logic. Such
an arrangement is shown in Figure 26 and exists on an operational
D-Machine, 1In the discussion of the emulation, these additional
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Figure 26. Function Elements Added to D-Machine

registers will be assumed to exist, although no initial assumption
will be made about their access times. Also, it is assumed that the
TABLE data base is stored as a functional element.

The DAT (Dynamic Address Translation) algorithm must be per-
formed by the D-Machine as well. To simplify the emulation it will
be assumed that the necessary functional elements for the DAT emula-
tion, such as associative memories are provided.

With the above assumptions, it remains only to go through the
algorithm (the STA instruction) of Figure 24, making estimntes of
the time required by the D-Machine for each activity and commenting
on the manner in which the activity is emulated.

The flowchart for the D-Machine emulation of the 6180 STA
instruction is shown in Figure 27. The figures on the left of
Figure 27 indicate the D-Machine clock times needed for each D-
Machine operation. The symbols Fy and Fp stand for the time for a
function register fetch and the time for a main memory fetch, respec-
tively. The field designations used on the D-Machine registers
refer to the field within the 6180 word currently being emulated
in that register. For example, B.OPCODE refers to the INS.OPCODE
field when the B register contains the INS data word. From the
timings in Figure 27 it can be seen that the STA instruction emula-
tion takes 48 D-Machine clock times. If the F,. time is assumed to
be the same as a D-Machine clock time (not an unrealistic assumption),
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then the STA instruction takes 55 clock times which at a 3 MHz or 5
MHz clock rate represents 18 gsec or 11 usec respectively. (Remem-
ber that the STA instruction takes 1 usec in a 6180.) By resorting
to the ECL circuitry, instead of TTL, and paying 50¢/bit for the
nanoprogram memory, D-Machine clock speeds of 15-20 MHz could be
achieved resulting in 3.5 usec-2.7 usec execution times for the STA
instruction emulation. In a discussion with Burroughs personnel,
we were told that the transition to the higher speed circuitry is
feasible.

THE NANODATA QM-1

Below is a brief description of the features of the QM-1
unique to that machine, and details of a benchmark emulation. For
a complete description of the QM-1 and its operation, see the QM-1
Hardware Level User's Manual [10].

Description of the QM-1

The QM-1 is both micro and nanoprogrammable. Nanoprogramming
is one level below microprogramming in the sense that micropro-
gramming is a level below machine language programming. In the QM-1,
the hardware structure, which represents register units, data paths,
and memory units, is predetermined. The control of these units,
however, is completely under the control of the nanoinstructions. A
nanoinstruction is composrd of many nanoprimitives that specify
operations to be performed in parallel in a single clock time. A
nanoprimitive, for example, may specify that the data available on
a particular bus be gated to its destination. Theoretically a
maximum amount of parallelism can be achieved because the nano-
instruction is sufficiently large so that all events that can
possibly take place simultaneously without conflict can be specified
in one nanoinstruction. The basic nanoinstruction is 360 bits wide,
and is divided into five 72-bit fields designated K, Tl, T2, T3 and
T4. All the T fields are identical, and at any one time only the K
and one of the T's are active. A T field in execution is referred
to as a T-step. The T fields specify gating functions and control
and the K field contains such things as constants and function
specifications to be used by the T-steps. Since the K field must be
shared among all four T-steps, some T-steps often can not make use
of the K field required by the other T-steps in that nanoinstruction.
Under such conditions a T-step must be wasted.

Preceding page blank 55



The QM-1 has an 18-bit structure for its main data paths, and
a 6-bit structure for auxiliary data paths. The 18-bit structure
consists of 32 general purpose local store registers, main memory,
control store, shifter, adder, 32 dedicated and general "external"
registers, and 14 buses connecting these units. One end of each
bus may connect to any one of the local store registers. The other
end of each bus connects the local store register, as either source
or destination, to another unit. Two of the buses may have their
cther end attached to any one of the external registers.

The 6-bit structure is used for both control and data. F-store,
which consists of 32 6-bit registers, has 14 registers assigned for
bus control. For each 18-bit bus, one of these 14 F registers is
used to determine to which of the local store registers that bus is
attached. Similarly two more F's determine which of the external
registers the other ends of two of the buses are attached to. With-
in a T-step, one can specify which F is to be loaded with a value or
constant contained in the K field (thus selecting the local or
external store register to which a particular bus is assigned), and
which buses are to be gated to their destination. There is also a
6-bit arithmetic unit for 6-bit manipulation. Transfers of data
between the 6-bit structure and 18-bit structure are made through
local store register 31. This register is broken up into three
6-bit fields, separately addressable in a manner similar to the F's,

A basic T-step executes in about 80 nanoseconds. The results
of a gating action specified in a T-step are not usually available
in the following T-step, but in the T-step after that. 1If no use
can be made of the extra T-step, a stretch option is available to
double the time of the current T-step in order to make data available
for the next T-step. This stretch option saves no time, but it does
save nanostore for the unused T-step. Certain operations always
must be placed in a stretched T-step to work. A nanoprogrammer has
to be very careful in defining his register usage and order of
operation so that unused T-steps and time periods are minimized.

The designers of the QM-1 intended that control store be used
as a general purpose high speed storage for the microprogram and
data. For an emulation of a machine with more than a few registers,
the register values can be stored in control store. The actual
microinstructions used by the QM-1 are, of course, defined by the
nanoprogram. However, various features encourage one to adopt one
or more of several microinstruction formats. This is not seen to
be much of a restriction or disadvantage, since the choices avall-
able are the most logical.
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Honeywell 6180 Emulation

The Lenchmark emulation on the QM-1 cannot be completely
defined without extensive experience “n nanoprogramming and con-
sultations with Nanodata Corp. The skills that need to be developed
for efficient nanoprogramming could not be mastered in the short
amount of time available to us for determination of this benchmark.
However, feasibility could be determined and several figures have
been arrived at.

The basic hardware structure of the QM-1 to be used for a 6180
emulation is almost identical to the standard QM-1, since the machine
is not modular and expandable like the D-Machine. Some changes,
however, are incorporated as practically necessary to obtain reason-
able efficiency. Most important are the expansion of the main
memory word size to 36 bits instead of 18, and expansion of address-
ing capability co 24 bits. The memory unit in the standard QM-1
empties its output data into a buffer unit (referred to as the RMI
unit) that performs one of several rotate and mask operations selec-
table by the nanoinstruction that reads memory. This unit can be
expanded to hold 36 bits of memory data, either half of which could
be selected as standard 18-bit data. Memory input data could be
similarly buffered in two 18-bit halves. The rest of the 18-bit
structure of the QM-1 is ideal for emulation of a 36-bit machine.
Expansion of addressing range to 24 bits requires assignment of one
of the F registers as a 6-bit high order extension of the 18-bit
memory address now gated into the memory bus.

This emulation requires specially built DAT hardware for
the QM-1. Control of this DAT hardware is accomplished by adding
bits to the K or T fields that request access and initiate action.
The DAT hardware makes references to the TPR and DSBR stored in
defined local store registers, and returns its address in another
defined local store register and F-store.

Assignment and layout of control store and F registers pertinent
to this benchmark are shown in Figure 28, The last twelve F regis-
ters are general purpose and known as GO-Gll. The interfaces to
the DAT hardware are also shown. G4 is used to hold the 6 bits
designating opcode type for purposes of checking illegal address
modes and determining whether the instruction is a load or store

type.
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In addition to register storage in the QM-1, the lower locations
of control store are used to hold the pointer registers (PRs), index
registers, and the A and Q registers. There may be room in local
store for some of these registers, but the increased speed of access
is not worth the extra decoding required to get at these register
values when they are used in address modification. The addresses of
the registers in the first 16 locations in control store are identi-
cal to their register numbers as specified by the Td field in the
instruction or indirect word. The order is as follows:

Address Modification

0 N always contains zero for no modification
1 AU

2 QU

3 DU not used, since DU is decoded separately
4 IC copy of PPR.IC

5 AL

6 qQL

7 DL not used for same reason as DU

8-15 0-7 index registers (X0-X7)

Each time the instruction counter PPR.IC is updated, it must be
copied into control store location 4. All other registers are
permanently and uniquely assigned in the locations specified. Note
that the two halves of A and Q are not next to each other. This is
not seen to cause too much difficulty, since the two halves have to
be referenced separately anyway.

The PRs are stored in the next 32 locations. Each field in the
PR is stored in a separate control store location for ease of access.
The locations are as follows:

16-23 PRn.RN

24-31 PRn.SEGNO
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32-39 PRn.WORDNO
40-47 PRn.BITNO

The control store address of the high 3-bit field of a particular
PR is 16+n, where n is the PR number. Reference to the 4 fields in
a particular PR is accomplished by incrementing the control store
address by 8 for each successive field.

Following the PRs, beginning at control store location 48, the
table containing information about each opcode is stored in numerical
order of opcode. The leftmost 6 bits of each entry contain flags
and the rightmost 12 bits point to the nanoprogram that executes the
instruction.

The usual method of building an emulator on the QM-1 is to
completely nanocode important key routines and instructions. After
that a useful micro-language can be defined for the emulation. In
this way the loss of parallelism introduced by the relatively verti-
cal structure of a microprogram has a minimal effect on execution
time of the most important or commonly used instructions. Therefore
this benchmark emulation is not concerned with the nature or defini-
tion of the microinstructions to be used. The sample address pre-
paration and execution of the store A instruction discussed in the
beginning of this section are entirely programmed in nanocode, and
the assumption is that no significant time will be lost when a later
conversion is made to microcode. It may actually turn out that the
entire address preparation will be specified by one microinstruction.

A sample nanoprogram flowchart of the store A instruction with
its specified modifications is shown in Figure 29. Before dis-
cussing this flowchart further, a few definitions of notation will
be useful.

Rn Specifies a local store register n =0, 1, 2, ...,
31.
CS(Rn) Contents of control store location pointed to by Rn.

n — RMI  Specifies one of four functions (n=0-3) performed
by the RMI unit when data is next stored from the
RMI unit into local store:

0 No change in data, transfer all 18 bits to
destination.
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1 Bits 0-9 of source are put into bits 8-17
of destination, bits 0-7 of destination are
zeroed.

2 Bits 12 and 13 of the source (Tm field) are
put into the destination right adjusted.

3 Bits 14-17 of the source (Td field) are
stored in the destination right adjusted.

C, A, B These are names of the three 6-bit fields in R31,
left to right, respectively.

FIST The name of an F register whose bits can be
individually tested.

NPC Nanoprogram counter

All other operations specified in the flowchart should be self-
explanatory.

The flowchart in Figure 29 is at a relatively high level.
Individual operations in the flowchart correspond to one or more
nanoprimitives. Some operations require more than one T-step,
others require less than one. For example, the operation R4—R1
requires 2 nanoprimitive functions for setting up the bus control
(using constants in a K field) and another nanoprimitive for gating
the transfer of data. It is not completely possible to count the
number of nanoprimitives or T-steps required by this flowchart w!+h-
out actually doing the nanocoding. Nanocoding requires skill in
determining what functions can or should be combined in T-steps and
a bit of cleverness in restructuring the flow so that the number of
T-steps is minimized. One reason for our not attempting to nanocode
this any further is that the skilled nanoprogrammer must be the one
who defines the data structures in control store and local store.

It is very unlikely that the structures defined above are the best
possible.

A rough estimate of the number of T-steps required to execute
the flowchart is 60. This figure was arrived at assuming the maximum
number of steps were required to perform each box in the flowchart
with no overlap or simultaneous transfers taking place. At 80 nano-
seconds per T-step, this comes out to 4.8 microseconds in the worst
case. To be added to this figure should be the time required to
read memory once and part of the time required to write memory. In
addition, if the DAT box takes any additional time to compute an
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address, two calls to DAT should be added in. It seems reasonable
then to assume that the store instruction could be executed in 6-10
microseconds as compared to the 6180 time of 1 microsecond. This
figure is consistent with initial estimates made by Nanodata per-
sonnel when presented with a description of the 6180,

THE BURROUGHS B1700

Our understanding of the B1700 is based almost entirely on the
contents of a preliminary edition of the Burroughs B1700 Systems
Reference Manual [15] . This manual is somewhat incomplete as it
does not document all of the microinstructions, provide any timing
information, or explicity specify the data paths in the CPU. Crude
timing information is available from other sources [16] . We were
unable to talk to any technical people within Burroughs to increase
our understanding of the B1700.

Description of the B1700

The B1700 is a family of small to medium scale computer systems
designed to compete with the IBM System/3 family and the very low
end of the IBM 360/370 series. The preliminary Systems Reference
Manual describes three models, the B1712, B1714, and B1726, and
recently (July, 1973) a fourth model, the B1728 has been announced.
The B1728 is the largest member of the family and we will use a com-
bination of B1728 and B1726 characteristics in our feasibility study.
Main memory for the B1700 uses LSI MOS technology, and has a read
access time of 180 nanoseconds and a full cycle time of about 700
nanoseconds. The B1726 can have up to 98,304 bytes of main memory,
the B1728 can have 262,144 bytes. Both the B1726 and B1728's cen-
tral processors operate at 6 million cycles per second, and both
have control memory as well as main memory. The control memory on
the B1726 has a maximum capacity of 2048 microinstructions. The
B1728 can have control memory for 4096 microinstructions.

The single most unique feature of the B1700 as a microprocessor
is that it represents a first step toward eliminating certain in-
herent structural components that are found in other microprocessors,
and in fact, in most computers. A close examination of most micro-
processors will reveal that the emulation of certain host architec-
ture/instruction sets is much more feacible than that of others.
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The Digital Scientific Corporations META 4, for example, can be used
to reasonably emulate an IBM S/360, but not a DEC PDP-11 [17] .

One way in which the B1700 gives the appearance of no inherent
structure is that there are no word sizes or data formats - operands
may be in any shape or size without loss of efficiency.

While the internal data paths of the CPU are 24 bits wide, main
memory is bit addressable and can be read or written in quantities
of 1 to 24 bits. The B1700 has only 4 general purpose registers, a
memory address register, and a scratchpad that can be accessed as 32
24-bit words or 16 48-bit words. 1In addition, a 32 word stack is
provided, allowing the nesting of micro subroutines. Hardware
condition bits are held in a set of 4-bit registers and the 24-bit
registers can be mapped into 4-bit fields. Two of the general
purpose registers are continuously used as inputs to a 24-bit func-
tion box. The results of various operations on one or two variables
(sum, difference, logical and, complement, etc.) are selected by
using the appropriate pseudo register in the source field of a
microinstruction.

Honeywell 6180 Emulation

In emulating the 6180 we will use the standard B1700 hardware
as described in documentation available to us, except we will assume
that appropriate dynamic address translation (DAT) hardware can be
interfaced with the CPU. 1In doing an emulation the first task is
to map the data structures of the emulated (or target) machine onto
the host machine. In this emulation it is necessary to keep all
programmer accessible registers (pointer registers, index registers,
accummulator, and quotient register) in main memory, as well as the
table used for decoding 6180 instructions, because there is no other
place for them. The scratchpad is too small and control memory can
only be used to hold microinstructions. Low level 6180 registers
such as the TPR and PPR and variables internal to the emulation are
kept in the scratchpad.

The benchmark emulation of the STA instruction (see Figure 30)
requires 76 microinstructions. Assuming 250 nanoseconds (about 1l
machine cycles) per microinstruction, this is an execution time
of 19 microseconds. Delays due to main memory accesses could easily
increase this time to 25 microseconds. Several other factors di-
minish the feasibility of emulating a 6180 with a B1700. The
maximum size of control memory on the B1728 is 4096 microinstructions.
It is highly unlikely that this is large enough for a full emulation -
thus either microinstriictions would have to be executed out of main
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memory (which the B1700 can do) or micro routines would have to be
"demand paged" into control memory. In either case performance
would suffer. Also, the maximum size of main memory - 256K bytes
for a B1728 - is very small compared to a "typical" 6180 configura-
tion. Even the theoretical limit of 221 bytes of main memory

(based on the size of the memory address register) is on the small
side.
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SECTION V

SUMMARY

The Honeywell 6180 is a large and powerful machine, containing
many features not found on other large-scale computers. The complex
addressing structure, virtual memory, and extended instruction set
make emulation a difficult task. In addition, lack of complete
documentation at this point leaves uncertainties that must be taken
care of if an emulation attempt is to proceed. Ve have drawn up
"best guess'" flowcharts of the instruction cycle, address prepara-
tion, and dynamic address translation for the purpose of defining
the machine in enoupgh detail so that a benchmark emulation can be
performed. 1In addition, a general method for complete emulation of
the 6180 has been described.

The goal of the benchmark emulation was to determine which of
three machines -- the D-Machine, the QM-1, and the B1700 -- are
suited for emulation of the 6180, and whether such an emulation is
feasible. We have concluded that the D-Machine and the OM-1 can
handle the emulation, as they are general purpose microprogrammable
machines, but the B1700, with its small size and relatively limited
computational power, probably could not. The sample benchmark emu-
lated a store A instruction using two of the common addressing modes.
This sample gives a rough estimate of the relative processor speeds
in the general case. The relative speeds may not necessarily be the
same for the EIS instructions, which are much more complex in their
execution cycles, nor for interrupts or dynamic address translation
involving memory fetches. We are confident, however, that our
example gives us a good idea of the overall time that will be used
within the CPU to execute an "average' program.

It should be noted that the response time seen by the operator
at a Multics terminal is as much a function of load, memory size,
speed of 1/0, and other variables of the application or installation,
as it is of processor speed. For example, a 6180 with a small amount
of memory and heavy load resulting in frequent paging may appear to
have a poorer performance than an emulator that runs at a fraction
of the speed but has more memory. The choice of emulator should
therefore be based on the expected use and load on the machine -- a
decision that can not be made here. 1In addition, reliability and
support by the manufacturer of the emulator must be considered.
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Unfortunately, it was not possible within the scope of this
project to actually microcode the benchmark emulation on all three
machines. We believe, however, that our calculations are fairly
accurate, and they have been mostly supported by similar estimates
made by people experienced in microcoding of the machines. For
each of the three machines, the processor speed reduction has been

calculated as follows:
D-Machine 11-18 times
QM-1 6-10 times

B1700 25 times
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