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ABSTRACT '

This is a mid-coatract progress report cof results on a two-year
research program on supersonic jet noise generation and radiation. Specific g
topics covered are {i) the radiation of sound from sources in a jet shear
-layer, as described by Liliey's theory of jet noise generatica. (i) a
theoretical study of the large-scale noise producing structure of jets,
(iii) the design, construction and calibraticn of a high teoperature
anechoic facility for jet noise experiments, (iv) a series of high tempera-
ture subsonic and supersonic. jer noise experiments and the analysis of data

rom these experiments, and (v} the desigr and development of a laser
veiocirceter for the seasurement of mean filow velocity and orthogonal compo-
nents of turbulence veiccity with turbulence spectra, intensity and .
correlations &s standard outputs.
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1.  INTRODUCTION .

After the initial commercial davelopment of the jet engine, it was
obvious tc anyone with perceptive ears that something had to be dene about
jet noise. This problem, of course, was observed by researchers through-
out the worid and after 2 very short time Lighthill produced his famous
theory, Hubbard and Lassiter measured the noise of model jets which on the
whole compared quite well with the Lighthill thecry and Liliey and Westley
discovered a series of jet noise suppression devices which produced sub-
stantial noise reduction and which ware put into use by many of the
commercial aircraft manufacturers thiou_hout the world. Then, with great
finesse, engine manufacturers developed the by-pass fan engine which
further reduced et noise and the cycle was complete. There was no
further need for jet noise research since the problem had apparently been
solved by eliminaticn of the source.

However, as everyone knows, this was not the end of the prcblem. The
world had been told from the early 1950's through the mid-60's that the
noise of military jet fighters, transports and bombers should be ignored
to the extent possible as that was the ''sound of freadom". But stricter
controls on noise of aircraft by governments throughout the world, devel-
opment of even more powerful military jet engines and deveicpment of
supersonic jet aircraft which could not use fanjet engines, by the United
Kingdom, France, the USSR and the USA, put the problem of understanding
and minimization of jet noise into even clearer focus — jet neoise must be
reduced.

Research on jet noise had not, of course, been completely halted as
insinuated above. There were many hundreds of papers published, in the
decade beginning in 1960, on all aspects of the problem. Lighthill
continued to work in the field, at least until 1961 when he produced his
Bakerian Lecture, and Ribner and his group did much to further understand-
ing of the problem tnroughout the 1960's. |In fact, the individual and
group efforts produced many competing ideas on how jet noise and attendant
noise problems were generated. .

But in 1970, with the scheduled development of the B-1 bomber and the
U. S. supersonic transport, the U. S. Air Force and the U. S. Department
of Transportation decided that something other than fragmented research
efforts on jet noise was required if clearer understanding of and substan-
tial reduction of jet noise were to be achieved. As a result, a major
program of jet noise research was initiated. The program was multi-phase,
with three separate awards contracted for the Phase | program definition
and team qualification efforts. At the end of one year of study, which
resufted in a reasonably clear definition of the work necessary for an
adequate theoretical and experimental understanding of how jet noise is
generated and how it radiates (the Lockheed work is given in References 1
through 6), two contractors, Lockheed-Georgia and General Electric, were
selected to implement their proposed programs of jet ncise research.
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The Lockheed program is a very fundamental theoretical and experi-
mental study of jet noise generation and its subsequent radiation from the
jet flow region. The emphasis on fundamentals has been consistently
stressed throughout the study phase and the current program. The program
is three phase, with concentration being on (i) development of a clearer
theoretical undarstanding and description of the jet noise generation and
radiation process, (ii) the measurement of data necessary for qualifica-
tion of theoretical models and predictions, and (iii) development of the
necessary instrumentation technology and operational instrumentation for
the measurement of the requisite experimental data.

In what follows, a progress report is given for the first year's
accomplishments. The program has been very intense and many results have
been generated. A complete presentaticn of ali the work conducted would
be very lengthy and difficult to foliow. Therefore, the most significant
results, in several areas, have been distilled into technical papers and
are presented in an extended appendix to this report. The highlights of
these results are repeated in the body of this document. In addition, to
qualify and clarify the overall direction of the program, the program
objectives are cutlined.

——
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Z,  PROGRAM OBJECTIVES

T cyerall program objectives and specific technrical obJecttves can
oo st4ted By a direct quote from the contract statement of work. It

P
B

@

- emals sbective of this progren is to develop the tech-
s s gdn *fican*py reduce supersonie airerajt propulsion
R . -2 ».21: minimm assceiated performance and weight

StaniXd.  Dyhasia is placed on afterburning and ron-
s fg autersnnﬂn Jet exhaust systems with operating
Celiriona tapieal of supersonie transpord (SST) and long
‘Aﬁ;h wrratezio fB;IJ airevajt propulsion systers. The
Vlam Ty teehnical objectives of this program arve to numeri-
ol amloa tke arplicable turbulence and accustic theories
d“~*ﬂ igﬁ'rtba Jot noise generation and radiation for the

e xd fully-expanded supersonic flov regime and to
$*$“;! .&ﬁ ﬁz-essary turbulence and acoustic parameters in

s..m v vertfy the mumerieal predictions or to supply data

P ,4r&47engefhozse theories, as necegsary.

%r the completion of the program definition phase, there were several

. Voo pTogrem obkjectives determined as necessary for Lockheed®s jet

© 3 re.cavch program to meet the overall program objectives. These were:
the ~tudy of sojutions to and limitations of and development
¥ extensions to Lilley's theory of jet noise genecration;
t2is study would consist of (a) the further development of a
doterministic large-scale model of turbulence as a source of
et roise, and {b) the study of numerical solutions to Lilley's
t+eory for assumed jet noise source distributions and {c) the
study of numerical solutions to Lilley's theory for ‘et noise
source distributions computed from the deterministic turbulence
madel ;

“uvi the development of and qualification of anechoic facilities
suitable for measurement of far-field high~temperature
supersonic jet moise without significant interference with
the noise generation and radiation process.

-+ o} tpe perfarmance and analysis of data from jet noise and
turbulenice experiments necessary for validation of the
thearetical models and predictions; in addition, these
experiments are to provide the basis for new theoretical
models as required; and

vi,.}  the development of optical instrumentation for providing the
necessary turbulence data, in this case a laser velocimeter
for the measurement of turbulence velocity intensity, scale,
wpectra and convection speeds, as well as mean flow velocity.
In addition, the instrument must provide cross-spectra and




cross-correlation information from orthogonal turbulence
components at a point.

The following section describes the progress toward meeting these
objectives.
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3. SUMMARY OF ACHIEVEMENTS

During the first half of this résearch program on supersonic jet
noise generation and radiation, major steps were made toward the achieve~
ment of the stated program geals. In addition, no major problems were
encountered in the work to date. Advances were made in all areas of

research.

o]

Some of these are:

numerical solutions to Lillcy's equation for a number of
tdealized source types and distributions have been com-
pleted and reasonable agreemer. with experiment is seen;

development of the incompressibie axisymmetric jet
turbulence/source function model and the computer
program has been completed;

modifications to an existing facility to permit the
measurement of far-field jet noise from high temperature
supersonic jets in an anechoic free-field environment
have been completed, and facility calibrations have been
completed which conclusively prove that no problems
exist which will contaminate the measured jet noise data;

a measurement program of the noise from high temperature
supersonic jets has been completed, resuiting in a new
prediction model for noise from heated jets; and

one channel of the laser Doppler velocimeter has been
completed and verified and it permits the measurement
of all turbulence velocity quantities up to 20 kHz;
this is one of the most significant achievements to
date in the entire program; in addition, the two-
channel LV optical system was completed and success-
ful operation was verified.

A brief summary of major accompiishments during the past year, in
each area of research is given in the following discussion. More compliete
details can be found in the appropriate appendix.




3.1 JET NOISE THEORY

A special form of Lilley's equation has been solved numerically to obtain

the far~field directivity of acoustic radiation from a point source located

within a parallel sheared jet flow; the results are in fair agreement with
measurements.

Sound generated by velocity fluctuations in & turbulent jet interacts
with the mean flow field along its propagation path through the jet.
Lilley's equation describes explicitly both the sound-mean flow interaction
effects, on a linear basis, and the sound generation which, in a parallel
jet flow model, is represented by a quadratic function of the turbulent
velocity fluctuations.

A special form of Lilley's equation has been solved numerically for
an isothermal, parallel, sheared jet flow field to obtain the far-field
directivity of acoustic radiation from a stationary point source located
within the jet. The point source solutions can be checked by experiment,
since it is not difficult to create a stationary peint source in practice
and these solutions can be used to construct a general solution for any
source distribution.

Examples of point scurce radiation directivities are shown in Figure
1 for four frequencies; the radiation level exhibits a peak some-
where between 60° and 40° to the jet axis, depending on frequency, and
thereafter decreases almost linearly with angle. The measured directivi-
ties, shown in the same figure, do not exhibit a peak but the calculated
results are otherwise in fair agreement, particularly at the higher fre-
quencies for angles shown outside the jet flow (that is, greater than 10°).
The major discrepancy may be connected with our over-simplified parallel
jet flow model since a peak does not appear in the theoretical directivity
patterns obtained with diverging jet flow models; this aspect will be
considered in future work.

The influence of sound mean flow interactions on the axisymmetric
radiation level of a particular angle as a function of the radial position
of the source and frequency (f, - fg) is illustrated by Figure 2 (zero
flow) and Figure 3 (jet Mach No. = 1, velocity profile is shown). In the
absence of flow at low frequencies (f;, f,) the radiation level is inde~
pendent of the source position but at Mach 1 the radiation level is
increased by up to 40 dB. At the highest frequency the zero flow sensi-
tivity is replaced by a large reduction in radiation level if the source
is well inside the jet flow. The level increases linearly with source
distance from the center-line but if we assume that the most significant
sources are located near the lip~line (r'/ro = 1) then it can be seen that
there is a smooth reduction in radiation level with increasing frequency,
which is consistent with experimental observation at small angles to the
jet axis.
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Difference spectra solutions to Lilley's equation for a sirplified version
of the standard turbulerice space-time covariarce funoiion are in good
qualtictive agreement with mecsurements.

The frequency dependence of non-axisymmetric radiation froa s circular
jet is different from that of the axisymmetric radiation in the absence of
sound-mean flow interaction effects. To illustrate their influznce we
consider the case when the point scurce is on the lip-line of a Mach 1 iet;
the variation of radiation level with frequency for five particuiar angles
is shown in Figure & for axisysmetric radiation and in Figurs § for the
first non-axisymetric mode. in the first figure there is a moderate low
frequency "1ift", which is negligible near 9G° and @ smooth reduction or
attenuation at all angles -as the frequency is increased. In Figure 5, the
low frequency behavior is completely different: the non-axisymsetric
radiation is well below that due to the axisymmetric radiation, as in the
zero flow case (not shown).. At higher frequencies sound-mean flow inter-
actions produce the same effect; that is, a reduction In radiation levels
with largest reductions at small angles. In principle all the non-
axisymmetric modes contribute to the acoustic radiation from a turbulent
jet.

In our first attempt at predicting the difference between measured
radiation levels and the classical, theoretical, jet noise directivity
pattern, as, for example, shown in Figure 6, we have assumed that the
source function correlation length in the circumferential direction is
small such that all the modes have equal excitation. The radlation is
equal to a simulation of contributions from a finite number (but suffi-
ciently large to ensure convergence) of modes to give the theoretical
difference spectra shown in Figure 7 {for comparison with Figure 6). Now
that all the significant modes have been taken into account, the theoreti-
cal difference spectra at large angles are nearly constant, while at
smaller angles and at high frequenciec the reducticn or attenuation with
incraasing frequency remains. Both trends exist in the measured differ-
ence spectra but at low frequencies the general behavior is not reproduced
in these theoretical results. This may be due to real source location
effects not yet taken account and other crude assumptions on which this
preliminary mode]l is based rather than on any inherent limitations of
Lilley's equation.

Detailed analysis and further results are given in Appendix 1.
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3.2  TURBULENCE/SOURCE FUMCTION Ti=0kY

The Large-sozle noise reofoviry Sfmwetiore ot o oz_essoelel2 Dnoomprossible
(5 £ t PSS
g v of e primary

Set Flow.

The aim of this work has beea ro 2rI073e tne large-s=aie noice pro-
ducing structure of a turbulent jet. Recentiy, considerabie evidence has
been made available whick indicates that the noise aenerated by a turbe-
lent jet is closely related to 3 large-scale organized motion which results
from instabilities of the primary flow. Experiments have demonstrated that
the scale of these large eddy structures is much farger than that of the
snergy-containing eddies.

The velocity asd pressura in the jet are separated into three comspo-
nents; the first is the time averaged cooponent, the second a time-
dependent orsanized Tluctuation, and the third the background disorganized
twurbulence. The effect of the backaround tucbulence is represented by an
eddy viscosity.

The equations Tor the orcanized motiva ars rourier decwsposed and
linearized and the nean flow is assumed to be Jocally parallel. The
fluctuations are seen to locally satisfy the howcgeneous stability equa~
tions. Thus, the organized motion is described by the spatially unstable
modes which are szigensolutions to the stability equations. By analogy
with stability thecry it is plausible tc assume that the structure of the
jet is locally dominated by the most preferred acde or the most highly
acplifying fluctuation at the location. The radial distributions of
axiai velocity fluctuations and shear stress parameter for the most
uastatle kelical mode in the developed region of the iet are shown in
Figure 8. The most amplifying frequency is a function of the local jet
momentum thickness; this relationship is shown in Figure 9 for the axi~
symmetric and helical modes, n = O and n = 1. The higher freguencies are
seen to dominate for small jet thicknesses and the low frequencies dominate
in the developed jet region, wherz the jet thickness is large. At the end
of the potential core, b%* = 4128, the Strouhal frequency of the dominant
modes lies between .3 and .4. In the potential core region the dominant
frequency is approximately inversely proportional to the local jet width
- and in the deveioped jet the frequency is proportional to Ux/bx. From
the momentum equation G* is inversely proportional to the jet width b*
and so in the developed iet the dominant frequency is inversely propor-
tional to the square o;’ the jet width. These relationships agree well with
these used by Ribner(7 where the radian Strouhal frequency is between .3
and .4 at the end of the potential core and is inversely proportional to L
in the annular mixing region and inversely proportioral to L2 in the
developed je. where L is a characteristic length of a slice of the jet.

10

-




. v 2 U v -

\ . ‘
.8} T . }

bp

g

-y
Ell ~

"

L}
-

a
i
-

4l

i

Rig

.2b L L

o H 4 3 § S 6
(1

Fig. 8 Radial Distributions Axial Velocity Fluctuations and Shear
Stress Parameter in the Deveioped Region of the Jet

Q. 4
3
1 L4
& ‘
7/
]
-
"0 .1 .2 R 1.0 2.0

b#

Fig. 9 Most Amplifying Frequencies for n = 0 and n = | Modes
as a Functiocn of Momentum Thickness

1




-

The downsiream deveiopment of the mean flow, and growth in ensrgy amplitude
of the organized motion, are found by soluiions to integral forms of the
momentwn and energy z2quations, in which the flicituations are deseribed
locally by a swn of the least stable modes for egch azimuthal mode number.

With the fluctuations described locally as a sum of the leasi stable
modes for each azimuthal mode number, the downstream growth of the mean
flow dimensions, jet center-line velocity decay, and turbulent energy may
be calculated. The development of the mean flow is affected by the initial
amplitude of the fluctuations though the maximum amplitude of the fluctua-
tions varies only slightly for large changes ia the initial conditions. The
jet center-line velocity decay for equal initial fluctuation energy ampli-
tudes of the axisymmetric and helicai modes is shown in Figure 10. The
center-line velocity decay is shown in Figure 11, where only a single
azimuthal mode number is considered. The axisymmetric mode alone does not
lead to sufficient energy loss by the mean flow wherecas the helical, n =1,
mode leads to too large a decay in the jet center~line velocity. The
center-line velocity decay computed by a well tested mean flow program is
shown as the coantinuous line in the previous two figures.

A good indication of the amplitude of the velocity and pressure
fluctuations is given by the integrated energy density flux. The down-
stream growth and decay of the energy density is shown in- Figure 12. The
amplitudes of the two azimuthal modes are almost equal in the annular
mixing reaion of the jet but the helical mode dominates the developed
region of the jet.

The downstream growth and decay of single frequenhcy components is
found by determining the local amplitude rate as a function of downstream
distance, with the scale of the mean flow predetermined by the most ampli-
fying mode analysis discussed above. The axial behavior of a number of
different frequency components for the n = 1 mode, for a given equal
initial amplitude, is shown in Figure 13. The higher frequency components
grow very rapidiy to a peak close to the jet exit before decaying at a
similar rate, whereas the lower frequency components peak further down-
stream. The relative magnitudes of these frequency components may be
determined since the magnitude of each component is known at the axial
location where that frequency was most amplifying.

Further results and detailed analysis can be found in Appendix 1.5,
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The development of a two-dimensioral zompressible shear layer is found from
solutione to integral forms of the momzniwn, mechanical energy and thermal
energy equaiions in which the fluctuations ave deseribed locally by the
most wistable etgensolutions tc the viscous compressible stability
equations.

The compressible flow analysis enables the calculation of the effects
of Mach number and temperature variations on the stability of the primary
flow and hence on the crganized fluctuations. Thus., it is possible to
treat such problems as high speed, high temperature flows.

Linearization and Fourier transformation of the continuity, momentum
and internal energy equations and the equation of state for the organized
fluctuations leads to a set of coupled ordinary differential equations for
the fluctuating velocity components, pressure, density and temperature.
Together with the boundary conditions these equations form an eigenvalue
problem. This is solved for specified velocity and temperature profiles
of the mean flow.

Figure 14 shows the effect of the Mach number M_ and the temperature
T, of thu high speed stream on the growth rate for two-dimensional fluc-
tuatsons in a compressible shear layer whose mean velocity profile is of
hyperbolic tangent form and where one stream is at rest. Increasing the
temperature of the high speed stream is seen to reduce the frequency for
maximum amplification. Increasing the Mach number of the high speed
stream is seen to decrease the growth rates of the fluctuations.

The fluctuations are described iocally by the most amplifying solu-
tions of the compressible stability equations. The radial distributions
of the mean square axial and transverse velocity fluctuations and the
shear stress parameter uv are shown in Figure 15.

The linear solutions are used, in the same manner as for the incom-
pressible flow, in integral equations to determine the axial development
of the free shear layer. The dominant frequency as a function of axial
distance may then be calculated and this is shown in Figure 16. As in
the case of the incompressible axisymmetric jet, the high frequencies
are seen to dominate in the early stages of the development of the shear
layer.

Further results and detaiied analysis can be found ir Appendix 1-6.
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3.3 ACOUSTIC FACILITIES !

A new faciliiy, anechoie at all frequencies above 200 Hz, has beer designed
and constructed for investigating suversonie hot jet exhausk noise cver a ¥
large envelope of jet operating eonditions. It incorporates a specially
designed exhaust collector that provides a free-field environment for any
configurution under test.

The present facility was carefully designed accounting for inade-
quacies in other facilities and was guided by the stringent demands of jet
ncise research on this program. Prior to the design and construction of
the facility, a one-sixth scale model of the anechoic room was constructed
and a comprehensive series of flow visualization and temperature mapping
experiments was conducted. The results of this model study dictated the .
design of the exhaust collector/muffler to provide entrainment air in |
quantities demanded by the jet operating conditions. The choice of acous-
tic wedge material and design was optimized by conducting an extensive
series of performance evaluation tests in a specially built impedance tube.

A plan view of the complete hot jet noise facility is shown in Figure
17, and it is described in detail in Appendix 1. A photograph of the
completed facility as viewed through the entrance door is shown in Figure
18. ltems of interest in the photograph are the exhaust collector, the
microphone arc and the crane cover (in the lower left corner). The anechoic
room measures 22' (long) x 20' (wide) x 28' (high) between structural walls,
and the flame-retardant wedges are 18" long. The room is anechoic at all
frequencies above 200 Hz., The hot air is supplied by a Marquardt Sudden
Expansion (SUE) Propane Burner. At the present time, the test range of the
facility for model jets of 2 inches diameter is up to 1500°F stagnation
temperature and pressure ratios as high as 8. This range is adequate to
permit the determination of temperature effects on jet noise, however, upon
installation of a 300 KW electric heater between the muffler and the plenum
sections, it will be possible to increase the range of stagnation tempera-
ture to 2000°F, giving a better high temperature limit for studying
advanced systems. ,

The acoustically lined exhaust collector injests entrainment and room
cooling air through the outer channel of the coaxial duct in guantities
dictated by the particular jet oparating condition, with no special forced-
air injection or fan system. After passing through the air gap between the
concrete wall and the false wall on the collector side of the room, this
entrainment air then distributes symmetrically around the jet axis, thus
keeping the air flow circulation velocities in the room to a minimum.

A "cherry-picker' crane is used to gain access to instrumentation and
test instailations for calibration, test set-up modifications, and mainte-
nance, thus eliminating the need for access platforms and their attendant
reflection problems. The crane is stowed by remote control under an
anechoic cover during all test operations. The microphone arc is at 72
nozzle exit diameters, still outside the wedge near field. Noise data are
normally taken in the range 159 < 6 < 105°, but forward arc measurements
to 150° can be accomplished by adding a plenum plug.

16
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The facilities were subjected to rigovous perjormance evaluation tests, and
it has bzen established that ($) at 72 nozzle diameters from the jet exit
plane, the microphenes arve in the far-field of the jet exhaust al frequen-
cies down to 200 Hz and (iZ) the operation of the facilily, both hot and
cold, is not ajfected by internal noise, at least dowm to 350 jps.

-
DRI PR}

in crder to confirm the design criteria and to ensure the accuracy of
the subsequen:t jet noise measurements, the facilities were subjected to :
rigorous performance evaluaticn tests at appropriate stages and the major
findings are as follows.

The anechoic quality of the room and the far-field criteria were
examined by conducting inverse-sguare law tests, first with a point sound
i source and later with a cold jet (distributed sound source}. Typical
results are presented in Figures 19 and 20 respectively. It can be seen
that the cut-cff frequency of the room is below 200 Hz and that at the
proposed distance of 12 feet (72 nozzle diameters) from the nozzle exit
plane, the microphones will be both in the accustic as well as the
geametrie (or interference) far fields of the jet exhaust at all frequen-
cies of interest (above 200 Hz).

I agl auens

The spectrum of background (or ambient) noise in the anechoic room is
shown in Figure 21, together with the 90° cold jet noise spectra at various
velocities. The low background noise does not affect the jet noise
spectrum even at the lowest velocity (300 fps) tested. Further, the jet
noise spectra for velocities up to 1000 fps follow the VJe dependence, thus
indicating the lack of any significant internal noise contribution.

The magnitude of the internally generated noise at a low value of jet

exit velocity ratio (VJ/ao = (0.32), both cold and hot, was established by

conducting a systematic study {see Appendix !!) and a typical set of

results is presented in Figure 22. |t can be concluded that the internal-
* ly generated noise, for cold as well as hot operation of the facility, is

not significant at least down to Vj/a, = 0.32. All data for V;/a, > 0.32 .

obtained from this jet noise rig represent true turbulent mixing noise, ‘.
' unaffected by internal noise., Due to limitations imposed by the measuring
/ instrumentation noise, however, the lower limit of V /a, in jet noise

experimental programs will be restricted to 0.35.

8
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3.4 JET NOISE EXPERIMENTS

The jet noise experimental program has extended the range of available
turbulent mixing noise data to inelude velocities in the range 0.35 <
Vj/ap < 2.8 with jet stagnation temperature ratios in the range from
unity to values in excess of 3.

The characteristics (spectra and directivity) of the sound field of
supersonic, shock-free jets are studied experimentaliy by measuring the
turbulent mixing noise in the far field from four 2-inch diameter nozzles,
namely a convergent nozzle for pressure ratios up to 1.89 and three
convergent-divergent nozzles having design Mach numbers of 1.4, 1.7 and
2.0, respectively. In order to avoid the contamination of data by shock-
associated noise, these latter were operated only at their design pressure
ratios (up to 7.4).

The experimental program chart (Figure 23) shows the ranges of jet
static temperature ratio T;/T, (and hence also jet density ratio Py/P,)and
jet exit velocity ratio Vj/ap that could be obtained with the available
ranges of stagnation temperature ratio TR/T, and pressure ratio PR/P,. The
portion of the chart above the TR/T, = 3.6 curve has been explored to date,
while the portion below this curve represents the additional regime that
will be available in the near future when the electric heater is installed.
A total of 65 jet exit conditions (Ty/T,, Vj/ag) were in fact chosen, and
these are identified by test point numbers in Figure 23. It can be seen
that by considering test points along each horizontal line it is possible
to keep the jet efflux temperature constant while varying the jet velocity.
Conversely, each vertical line maintains constant exit velocity while
varying jet efflux temperature.

At this stage, the experimental results are being analyzed in order to
obtain some knowledge of the physical origin of the observed effects and
their accountability in terms of the Lighthill acoustic analogy approach
and other prediction methods. In particular, the results at 90° to the jet
axis have been successfully employed to establish the influence of flow
temperature on mixing noise source strengths, as described in detail in
Appendix 111, Several difficulties are presented, however, in analyzing
the results at other angles to the jet axis in terms of available models
for convective amplification and refraction and work is in progress to try
and resolve some of these difficulties.
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The effects of tesperature on turbulent mixing noise source sirergths per
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in order to avcid the additional problems of convective amplification
and refraction, the influence of tespesrature on mixing noise source
strengths is studied by examining the data at 90° to the jet axis only. In
general, twc sources of noise are apparent, one due to the familiar
Reyroids shear siress fluctuations and a second attributable to density or
temperature fluctuations promoted by the turbulent mixing of streams of
dissimilar temperatures. This tatter dominates the measured noise at low
velocity and high temperature. Scaling laws for the spectra at $0° to the
jet axis of these noise components are respectively

(i) Reynolds shear stress noise contribution:

Fr 7-5 v
Smlw) = Splug) "] [.o] = 32(t), where %;-;;1;

Sm(ws) is the master shear stress noise spectrum given in Figure 2& and for
the majority of cases tested,

Ts/TO = 0,7 (TJITQ - l) + 1.

(i1) Temperature fluctuation noise centribution:

2 v )
Sp(w) = Sy(us) [2“] [;-::]- bZ(t), where &T = (T; = To);

ST(wg) is the master temperature fluctuation noise spectrum given In Figure

. r

These sources are not statistically uncorrelated as previously
supposed, but are, it appears, highly correlated. The resulting spectrum,
when both are contributing sufficliently, must therefore be calculated from

S(w) = a2(t) + 2 /a2(t) 7/be(t) + b2(t)

which assumes unity correlation between the sources, where a{t) and b(t)
represent the amplitude dependence of the far field pressure from the
Reynolds shear stress source and the temperature source respectively. The
use of these relationships, in conjunction with the spectrs given In
Figure 24, Is in general capable of predicting the measured spactra at 90°
to the jet axis to an accuracy of 1 or 2 dB.
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3.5 LASER VELOCIMETER DESIGN AND QUALIFICATION

& laser velosimeier develcped Dy the ELockheed-Seorgia Corpany has success-
fully demonsirated the abilitu to measure instantaneous turiulence velocity
tn nigh velocity air iows at repetitior rates as fast as 2.4 microseconds.

A laser velocimeter is an electro-optical system which measures local-
ized velocities in 3 fluid flow field by detecting the laser light scattered
by contaminant particles suspended in and moving with the fluid. Such
systems are potentially capable of measuring instantaneous velocity vectors
in 3 turbulent fiow field over a velocity range from less than 1 inch/second
to greater than Mach %. The measurements do not disturb the flow field and
are made in a localized -region with cylindrical- volume dimensions typically
of 0.3 millimeters radius and one millimeter length. As a consequence of
the feature of non-interference, a wide range of flow characteristics may
be investigated without distorting or destroying the characteristic under
study.

The Lockheed-Georgia Company has developed an advanced laser velocime-
ter (Figures 25 and 26) which provides the unique capability of measuring
two simaltarieous, orthogonal fiow velocity vectors at very high repetition
rates. The minimum time betwean samples is 3 microseconds and the maximum
continuous throughput rate for valid data is 18.75 kHz. The velocimeter
system operates over a velocity range from 1 to 4,600 fps with an instan-
taneous sample accuracy which varies linearly from .13 at 125 fps and below
to 3.2% at 4,000 fps. The ability to achieve these capabilities is based
on three major system features:

(1) a set of unique and highly efficient color separator/beam
splitter optics (Figure 27) provide the basis for generating the msiticolor
laser beams necessary for multivector capability; the optics are self-
aligning, exiremely stable and virtually eliminate cross-talk between
vector channels;

{2) extremely high speed processing electronics {using a 500 MHz
clock rate), and error checking circuitry; and,

(3) direct coupling of the LV to an on-line, high data rate mini-
computer which provides unusual fiexibility in data formatting and in
changing or adding outputs or calculations.
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Analysis of the instantaneous veloeity data from the laser veloeimeter
results in a probability density distribution of the samples, mean velocity,
standard deviation (turbulence intensity), auto and cross-correlation and
power gspectrum and cross-spectrun at frequencies up to 20 kHz. Valid
comparisons have been made with hot-wire spectral data.

The on-1ine mini-computer is used to compute the mean, standard devia-
tion and velocity distribution of the data for immediate reference. An
advanced data processing algorithm processes the random-time samples
acquired at sub-Nyquist average rates to produce the auto-correlation of
each vector and their cross~correlation function. From these, the appro-
priate spectrum information is computed by Fast Fourier Transform. The
power spectrum measured on one channel in an 0.63 inch jet is compared to
that obtained by a hot-wire anemometer in Figure 28. The complete elec-
tronics and processing systems have been calibrated by using frequency
moduiated signals to replace the laser signal inputs while retaining the
particle detection electronics for data sampling. Figure 29 shows the
results due to a 1 kHz square wave modulation indicating harmonics of
correct order and amplitude up to 20 kHz. This data was sampled at an
average rate of 6,000 samples per second. Signals up to 50 kHz have been

k correctly processed in this manner. A simulated data set used to develop
the original software concepts has been extensively used in studies to
b refine the data processing algorithm. Figure 30 shows the cross-spectral

density from two simulated channels compared against the characteristics of
the original signal. Data in the range 300 Hz to 50 kHz have been analyzed
with this simulation.

After absolute calibration of measured velocity and turbulence inten=
sity in the test jet have been completed, the LV will be used in support
of the theoretical program to perform detailed spectral profiles of the
test jet throughout its operating range.

A detailed discussion of the laser velocimeter design and qualifica-
~ tion is given in Appendix V.
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4, _ CONCLUSIONS

1. The homogeneous form of Lilley's equation is recognized to be the
same as the equation which is used to investigate the stability of inviscid,
compressible sheared flows. Thus, two types of solution can be obtained:
the '""acoustic solution' and the “unstable solution''. Unstable solutions
are being studied in our theoretical program to provide information for a
model of the source function in Lilley's equation and are described else-
where. The “acoustic solution" is the subject of this report.

2. Acouscic solutions to Lilley's equation can be constructed from
an appropriate specification of the source function and point source or
Green's function solutions.

3. The influance of sound-mean flow interaction-effects on the
radiation level and directivity of point source solutions has been evalu-
ated in some detail for subsonic parallel jet flows with realistic mean
velocity profiles.

4, The directivity of modified point solutions are only in qualita-
tive agreement with measurement and while questions remain concerning
representation of the experimental source and the type of solution utilized
here, consideration of theoretical results, obtained elsewhere, strongly
suggests that a more realistic mean flow model is required.

.

5. A complete solution to Lilley's equation for a simplified version
of the standard type of source function is evaluated in the form of differ-
ence spectra which are found to be in good qualitative agreement with
measurement.

6. A model for the large-scale organized structure of a turbulent
axisymmetric jet has been decveloped.

7. The model gives the radial, axial and azimuthal variations in the
mean flow and the organized fluctuations. 1t also describes the dominant
frequencies and wavenumber, and hence the phase velocities, as a function
of position in the jet.

8. A similar model for the 2-D compressible shear layer has been
developed.

9. An existing facility has been modified to provide ar anechoic
high temperature (presently 1500°F) jet noise test facility.

10. “In'the facility qualification tests, it was determined that rig
internal noise was not a problem at velocities as low as 350 fps for hot
and cold operation and that the microphones were in both the acoustic and
geometric far fields.

11. A series of high temperature jet noise tests was conducted which
extended the range of available jet noise daca to temperature ratios in
excess of 3.0 up to exhaust Mach numbers of 2,

28
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12. Analysis of the jet noise data at 90° resulted in the develcpment
of a new model of noise due to temperature fluctuations. The data coliapse
to within 1 or 2 d8 at all frequencies, within the complete test envelope.

13. An orthogonal two-channel laser velocimeter design and construc~
tion was completed and checked cut. Signal outputs from the photo-
multiplier tubes proved that the two channel concept was valid.

14. The LV processor and analyzer system was completed and checked
with simulated particle signals. All features of the processor and
analysis program proved to be more than adequate.

15. In actual test runs in the high velocity jet, comparisons between
the LV spectral output and a hot-wire spectrum proved that the Lockheed

laser velocimeter is an operational system and that it meets or exceeds all
design goals.

In conclusion, all scheduled objectives for the first half of the
program have been successfully met without encountering significant diffi-
culties. Thus, it can be concluded that the program goal of understanding
the jet noise generation process can be accomplished by continuing to
follow the original schedule of work, both theoretically and experimentaily.
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INTRODUCT I ON

ot appendix contains papers and notes on theoretical aspects of our
whge S program written by members of the Lockheed team during the past
v4¢  tion 1-2, an ALAA paper by Lilley et al serves, ir part, to
*e.# Gur theoretical program; but since this paper, and other papers
T 23 here, are essentially progress reports, a more general introduc-
. i ven to the two main aspects of our program: the acoustic model,
& . hilley's equation in Section I-1.1 and the turbulence source
—~ ¢« & svierly structure model in Section (-1.2. A brief review of
w0 ynd < wtemporary work is given in each of these sectio?g a more
A ' t.terature review has been recently published by Doak ’.
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1-1. CRITIQUE OF ACOUSTIC AND SOYRCE MODELS FOR THE GENERATION OF NOiSE 8Y TURBULENCE

8. J. Tester and P. J. Yorris
Lockneed-Ceorgia Company
Marietta, Georgia

1~1.1  General introduction to the Accustic
Model, Based o2 Lilley's Egquation, and
1ts Rejaticn to Other Contesporary Models

Our accustic model, in some respects, plays a
central role -in the range of models currently under
developzent elsewhere; for exasple, in a sense, it
includes as special cases the model developed by
mani{ 2) based on a slug flow jet and the approxi-
o382 analytic solutions te Phillip's eguation
abtained by Pao{3) for a sheared jet flow. On the
other hand in these speciat cases and, indeed, in
o3r work, the ozan flow modei is possidly too ex-
sensive in that the cean flow is uni~directional or
saraltlel and herce i< obviously at variance with
the diverging or spreading properties of a rcal jet.
Froa the analytic point of view the advanzages of a3
parallel flow mocel arc so overwhclming that, until
rciently, nith the work of Schubert{4), Hungur et
2°65) | and Liu and Maestrello{6) the diverging
fliow on acoustic radiation had been completely
ignored. Te we conpare the oodels and resuits
fron the aforementioned references with our own and
alse include Lhe more recet work by Taal7), which
is essentially unique, at least froa the acoustic
vicupcint.

In general, the acoustic models arc based on an
inhomogeneous wave equation in say the fluctuating
gressure, p,

tp) = &

~1ere
tlp) = ¢

is a type of (lincar) wave equation which may in-
clude (i) the jet mean velocity and mean temperature
as constants (Mani), as variables depeadent on the
radial coordinate (Phillips-Pao), plus (ii) radial
gradients of the jet mean velocity and temperature
(Litley), ptes (1ii) jet mean velocity and tempera-
ture s functions of the axial coordinate as well as
the radlal coordinate (Skubert, Mungur, Liu). When
these quantities are abseat, it reduces to the
classical wave equation which is the only acoustic
cquation uscd by Tam{ 7); that is, he does not
attempt to utilize any type of inhomogenous wave
€quation and uses only the classica® wave equation
vutside the jet flow region.

Again when these quantities are zbsent, the in-
homogeneous wave equation reduces to Lighthill's
famous equation and the source function A takes on
the well known form which is quidratic in the
relucity fluctuations; it takes on a different form
in Phillips' equation and yet another form in
Lilley's equation although in the latter it is still
quadratic in the velocity fiuctuations. In Mani's
model the source function is not related to the
velocity fluctuations at all and in this sense his
work falls into the category occupied by Schubert,
Mungur and Liu wncre the source or excitation for
their wave equations is the elementary point source.
These works are not concerned with jet noise as
such, that is the strength or distribution of

Preceding page blank
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scund sources within the jet,but enly with how the
sound radiation from c soirze is affected by the
jet mean flow ficld. The task of solving the
Lighthili, Phillips or Lilley equations conveniently
falls into two parts: (a) specification of the
source function A and (b} soluticn of the inhomo-
geneous wave eguation. The source function, it is
assumed, can be accurately specified from a know-
ledge of the turiuient velocity fluctvations in the
jes flow; our progress to date on the development of
3 model for the source function is described in
Section 1-5 and a general introducticn is given in
Saction 1-1.2. Here we consider the problem of
solving the inhooogeneous wave equation for a given
socurce function.

The relevance of the point source studies now
becomes clear: since the wave equation is linear in
the pressure fluctuations and the source function is
aot a deterministic function of space and time, the
only realistic approach is to solve the equation
with the source function replaced by that describing
a stationary point sourcc emittina a pulse at a par-
ticular time. Once this solution is cbtained the
required solution for a particular source function
can be constructed by superposition. These inter-
mediate, stationary point source solutions serve two
other purposes:

{3) siace in the absencc of sound-mean flow in-
teractions the radiation would be omni-directional,
the directivity is a direct consequence of these
interactions and is not cbscured by source convec-
tion and source distribution interference effects,
and

{i1) the solutions can be checked by experiment
since it is not difficult to create a stationary
point-source in practice.

Thus, one of the main purposes of Lilley's equation,
to accurately represent sound-mean flow interac-
tions, can be examined in detail and checked by
experiment, independently of the source function for
turbulent velocity fiuctuations. This is why Sec-
tion 1-4 concentrates ca this type of solution.

We can now examine in more detail the contempo-
rary models having shown that the point source
models of Mani, Schubert, etc., are quite relevant.

Mani{ 2) uses an infinite parallel slug jet flow
model and, as we have said, does not have a turbu-
lence related source function but a point source
which moves with the jet flow velocity from minus
to plus infinity. Apart from this moving source
feature his model is simply a special case of our
flow model in the limit as the velocity profile
tends to the top-hat slug profile, or, a good
approximation to the profile at the jet nozzle. In
his earlier work the source is of infinite 1ife-time
and the only information that could be obtained was
the total acoustic power radiated, which of course
obscures the important directivity effects. In
current work the finite life-time point source is
being examined so that meaningful directivity
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patterns can be obtained. Mani'st 2) work has been
of considerable interest, partly because of the
moving source feature, but this does tend to confuse
source ccnvection and sound-mean flow interaction
effects. A stationary point analysis can be applied
in a straightforward manner to the real case of
interest: a turbulence-related source function
whose space-time covariance is separable in a
coordinate frame movin with some mean convection
speed, as in Section 1-§.

Paot £) has derived approximate anac zic solu-
tions to Phillips equatlion for a oarallel, sheared
jet fiow which he claims should be valid for jet
noise radiation at frequencies near and above the
peak frequency as long as the jet velocity is
greater than 0.6 times the ambient speed of sound.
de believe that Phillips'equation is aspecial case
of Lilley's equation in that solutions from each
equation shouid coincide at high frequencies but we
have not, as yet, proved this, either analytically
or numerically. Pac( 8) uses a source space~time
covariance function of the type described in the
next section although it is not clear whether this
is of the standard, convected type or not. Pao
obtains some impressive agreement with meesured
directivity patterns of supersonic jet noise and
rocket roise. Despite the many advantages of
approximate analytic colutions we have chosen to
concentrate on numerical solutions (see Section 1-%)
to avoid any frequency restrictions and of course we
use Lilley's equation instead of Phillips® since the
latter eguation does not contain the important
shear-sound convection/refraction or diffraction
term,

The point source models of Mungur e al{5) and
Liv and Maestrello continue the work of Schubert(l)
by investigating the radiation of sound from a
source placed in a diverging mean flow. Section i-k
shows that these models are at present more
accurate than our present parallel flow model in
predicting far-field directivity patterns (through
comparisans with neasurements carried out at UTIAS
in recent years). We feel that this problem must be
resolved; that is, we must improve the accuracy of
our solutions in this resoect before proceeding to
construct general solutions to Lilley's inhomoge-
neous equation for realistic and detailed source
functions.

Tan's work is different not only in the sense
that he does not use any form of inhomogencous wave
equation to obtain an acoustic solution but also in
that he uses, in fact, the homogeneous form of
Lilley's eauation to construct an orderly structure
model of the jet turbulence. This apparent dichot-
oy i~ coasidured by Doak in Section §-3. The fact
that wi1lley's equation has unstable solutions as
well as well behaved acoustic solutions was the
basis of Proi. J. E. Ffowecs Williams' criticisms of
our work at the last review. We remain convinced,
however, that the acoustic solutions are valid,
partics® ", o the light of their good qualitative
agreement with measurement and the excellent agree-
ment when a diverging flow model is used ({Section
1-4). Nevertheless, Tam's work is of considerable
interest from the acoustic viewpoint in that he
proposes two mechanisms for noise generation, un-
steady entrainment by the diverging flow and
unsteady vibration of the jet column. The radiation
is calculated by matching the resultant unsteady
velocity fluctuations normal to an imaginary cylin-
drical surface enclosing the jet flow with the

acoustic field in the outer, ambient mediuvm. This
approach is apparently at variance with the
accepted physical concept that velocity fluctuations
within the jet give rise to a volume source distri-
bution, which at low jet Mach numbers, is of quad-
rupole order. Sound genersted within the jet also
gives rise to velocity Tluctuations normal to that
iraginary surface but these are not included by

Taml 7) as such. Although his approach is valid in
principle, its weakness lies in the need for an
extremely accurate description of those surface
velocity fluctuations such that the acoustic compo-
nent is not lost. Both Lilley's equation and
Phillips' equation are solved through a matching
process but the imaginary surface is drawn com-
rletely outside the mean flow and source region such
that on!» acoustic velocity fluctuations exist and
these consist of a superposition of contributions
due to radiation from the elemental sources repre-
senting the entire volume source distributioa.

1-1.2 _ On the Choice of Source Function
in the Radiation of Noise from a Jet

Let us examine the current state of the art with
regard to the specification of the source terms.
There are two distinct schools of thought, though
there is ro essential contradiction between the two.
The first may be termed the 'eddy-model® and the
second the 'wave-model'. The attractiveness of the
former model is its simplicity and its ability to
yield noise predictions which agree in many essen-
tial features with measurements. However, there is
much experimental evidence that this ‘eddy-model' is
too restrictive and conceals the essential noise-
generating components of the turbulence. This
opinion has led to the use of the ‘wave-model’ in
which the sources are described as coherent large-
scale motions.

The original attempts at realism such as those
used by Ribner, Lilley and others specified certain
statistical properties of the flow. In this manner
the cross-correlation between the velocity fluctua-
tions in the direction of the observer can be
expressed in terms of characteristic local frequency
and length scales. An example of this technique is
given by Lilley in Section 1-2. The actual values
of these characteristic scales are always deter-
mined from experimental results. This model for
the turbulence assumes that eddies are convected
downstream at a certain convection speed and are
considered to be approximately isotropic in a frame
of reference moving with the convection speed. It
is also assumed that the eddies are small and that
the rms-value of the correlated quantities is
constant within the correlation volume. Such a
model for the structure of turbulence may be
introduced as

— A2 .
vivi(d,1) = w2 (1 - E;l,_—)sij + le AiAj)

exp (- {Q—l)z + ([—t)zn

where A is the spavial scparation from the source, 1
is the tim. delay, L) is the spatial scale of the
turbulence and Ly is the time scale of the turbu-
lence in a moving frame. This form is based on the
velocity covariance tensor derived by Batchelor

for honogeneous turbulence in a uniform stream where
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t!  longitudinal velocity correlation coefficient
f(a) is given by

f(A) = exp [- (%;02]-

We note that

'R = y2 i =
ViVj (910) VO t J
=0 if]

indicating the presence of only normal stress terms
since the cssumption of local isotropy requires
that the mean flow be uaiform. The experimental
investigation by Fuchs(10) has shown that the iso-
tropic form of the cverall correlation function is
very much at variance with the measurements in a
jet; in fact the correlation measurements indicate
o strong periodic structure for the turbulence.

In spite of these shortcomings this model does
permit the calculation of noise radiated by a jet
and, as is shown in Section 1-2, much useful in-
formation can be obtained.

Howcver it is important to notice that the
characteristic frequency and length scales which
are so crucial to the determination of radiated
noise have, of necessity, to be obtained from ex-
perimental measurements. Changes in the flow
properties by, for example, use of a different jet
nozzle configuration, can also be expected to pro-
duce changes in the noise characteristics. Since the
prediction of the radiated noise is our goal it is
unfortunate that once again, of necessity, the
frequency and length scales must be measured in the
new flow.  In the case of high speed turbulent flow
the measurcment of these scales has not been pos-
sible and only recently, with the use of optical
devices such as the laser velocimeter developed in
this program, have these measurements become
feasible. 1In essence this techaique has not ad-
vanced our ability to predict the radiated noise
from a turbulent flow.

Where are there gaps in our understanding that
nced to be filled? Firstly, as we have discussed
above, the problem must be formulated in a way
vaich accounts for interaction between the sound
wd the flow which leads to such phenomena as re-
fraction or diffraction. Seccondly, it is essential
to develop a model for the turbulence as a source
of noise. It is this latter need that will be
addressed here,

At the very least the model for the noise pro-
ducing structure of the flow must enable computation
of the local characteristic frequency and length
scales as well as the amplitude of the fluctuations
for usc in a simplified description of the statis-
tical properties. This eclementary requirement
releases the researcher from the need to conduct
flow measurements for every change in.the primary
flow; that is, detailed predictions of the radi-
ated noise can be made without the necessity for
experimental input. Of course, this must not
preclude measurements being made either as confir-
mation of the theoretical predictions or to provide
further insight into the mechanisms of noise
generation and radiation. The model for the tur-
bulent structure described in Sections 1-5 and 1-6

provides the required information. The source
function predicted by this analysis may be used in
either a 'Lighthill analysis' or making use of
Lilley's equation. Bergeron{!!) has made some
progress along these lines in his work on the
aerodynamic sound of nearly incompressible
boundary-layer turbulence.

The essence of the mode! presented in Sections
1-5 and 1-6 is that the noise-producing eddies in a
turbulent flow may be described in terms of a large-
scale, wave-iike organized structure. (lLarge-scale
in this context is in relation to both the scale of
the energy-containing eddies in the flow and the
local width of the mean flow.) This description of
the turbulence a’<o permits us to look at the noise
radiation process as deterministic.

The use of a wave-mode] for the turbulent struc-
ture has been used by Tam( 7) and Michalke(12), The
motivation for Tam's mode! was his observation of
schiieren pictures of a supersonic jet which seemed
to exhibit a periodic structure in the developed
region of the jet. Tam assumed that all the noise
production could be associated with a single fre~
quency corresponding to the observed periodicity.
The predicted radiated noise using Tam's model
gives good agreement for both the overall level and
directivity. However, the observed spectrum of jet
noise does not contain one single frequency compo-
nent. Tam has argued that a degree of frequency
spreading will occur, but it would be fortuitous if
the combination of the noise spectrum of the highly
coherent source and the spectrum of noise generated
by the random background turbulence provided a
smooth spectrum over all frequencies.

The work of Michalke{12) was motivated by both
the observed discrepancies between previous source
models and measurements as well as the probable
coincidence of the large-scale motions in a turbu-
lent flow and the stability of this primary flow.
The analysis shows that there is no essential con-
tradiction between the eddy model and the wave model
of jet turbulence though the assumption of the
Gaussian form of overall correlation function leads
to a special case of Michalke's more general expan-
sion scheme. It is also found that the number of
components of jet turbulence which are responsible
for the jet noise is relatively limited being con-
fined to the most coherent eddies.

Though it is not explicitly stated in the
earlier works of Tam(13,14) and Michalke(15), they
appear to rely on the phase velocity of the securce,
predicted by a linear theory, being supersonic. In
this way the inner solution may be matched with the
outer wave solution. This has led Tam(7.13.14) o
study a Mach 2.2 jet. However, in the manner that
Tam(7) has formulated the problem in his most
recent work, this restriction to supersonic jets is
not necessary. Since the amplitude of the sources
is also changing in the axial direction, obeying a
non-linear process, the sources will generate com-
ponents in their wavenumber spectra which will give
supersonic phase velocities. This means that if a
non-linear theory is used there is no restriction
'of the Mach number of the jet flow. In Michalke's
work(15) it is felt that though linear theory alone
is used, which for a subsonic jet would not permit
noise radiation, the truncation of the growing
linear mode at some spatial distance leads to an
equivalent non-linear amplitude limitation and the
wavenumber spectrum generated by this truncation
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will lead to components with supersonic phase
velocities.

The models for the turbulent structure developed
in Sections (-5 and 1-6 extend the work of Tam{7
and Michalke(12). in these models the iarge-scale
structure is not limited to & single frequency as
is the case in Tam's work but admits all possible
frequencies. Hewever, like Tam(7), but unlike
Michaike(12), the model is non-lincar and can lead
to noise radiation by subsonic iets.
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Abstrect

In applications of Lighthilil's theory of sero~
dynaxlc nolse the streagth of the 3ources depends on
the local inteasity of the turbeleat fiuctustions
together with the Intensity of the sound waves gen~
erated by the turhbulence and thelr sutual intes-
actions. These latter effects cannct readily be
zalculated and hince astimates of tha nolse spectrum
ang directivity cannat be obtained. In the presant
mork Lighthill's acoustic snalogy is replaced by a
theoretical model more representazive of the true
fiow and the turbulence fluctuations withia 5t. (n
this model the problem is divided intc aa cuter
regica and an inner region which includes the turbue
lent fiow and Its convection. Pressure fluciuations
in the inner region are sultably matched with those
in the outer. Two important results are odtzined.
Firstly, the gencration of high frequency cocponents
is rot contrciied by the gradients of mean velocity
and temperature within the flow and, secondly, that
within a glven frequency band of the far field
radlation, only certsin regicns of the turbulent
flow contribute 2o that radiated sownd.

1-2.3 Introduction

Lic rill's theory(1).(2) of serodynsmic nolise

as been the foundation of our present knowledge on
the generation of nsxlss from jets. This theory was
extended by furte{3) to include surfaces within the
f:_ow field and by Flowes Willlams (4} to include the
effects of upersunic convecifon speeds.

authors, nctably Ribner(5},(6) gr,d{lligy(”ﬂrnvg
made efforis to include an adequate flow model In
Lighthi¥)'s theory from which ihe distribution of
the effuctive noise sources throughout the flow
field can be evaluated. Ajthough the Lighthitl
theory provides a sultable base for the correlation
of the tital acoustic power output from a jet with
distributions of noise intensity and its spectra,
in its usual form of application it does not pre-
dict the measured convective amplification, the
high frequency spectrun at small angles to the jet
axis and the changes in noise generation and propa~
gation arising from changes in velocity and tem-
perature gradients within the flow field as found
in the careful experiments of Lush and others,

Some success in modifying the basic theory of
Lighthill to inclu?g some of these effects has been
achieved by Ritner(8), poak{3) and others, but
thuse works are far from exhaustive and a more
general treatment is clearly needed.

Since Lighthill's theory Is an exact theory, it
1s difficult to argue on any lack of agreement be-
tween experiment and theory. Differences that do
exist are of course apparent and are only due to the
introduction of approximations to the theory In
applying them to the calculation of the noise gen-
erated, Its directivity and its spectrum from

given jet conflguration. Tais being so, progress In
rsmoving these spparent discrepescies kit been slow.
The difficelty tles in the fact that Lighthill?s
tneory is based o 3n acoustic analogy wisredy the
turbulent flow in 2 jet mixing region, say, Is re-
placed by an equivalent distribution of moving
sources placed In & uniform medium at rest -- the
sources sove dut not the fluid. The strength of the
sources depands on the local intensity of the turbu-
jent fluctuations together with the lntensisy of the
sound waves generated by the turbulence and their
mutual interaction. Thus, the aguivalent scurce
streagth includes all such effects as refraction,
diffraction and scattering. Thus, the major probles
in applications of Lighthill's theory is uncovered,
in that the scurce strength can only be found when
the compiete probies of nolse generation is solved ~=
that is, the sound ingensity as well as the turbu-
fent flyctuations within the flow are known.
Attempts at Iterative methods of solution have so
far not been vary successful and have usually besn
limited to solutions cowering jet exit Mach numbers
which are subsonic and small. Other methods in
which refraction in the highker frequencies is fn-
cluded as 2 correction to-a sslution in which the
source strengsh is exclusively that associated wich
turbulent fluctuations only, are useful in distin-
quishing some of the major characteristics of the
directivity of the sound generated. However, their
validity at low frequenciss Is questionable. There
ts no doubt that these attsmpts at improving the
Lighthit] theory and its applications have only had
marginal success and at present we are forced to
use experimental data in all applied work, with
theory merely assisting in providing a suitable
tackground for the presantation of this data.

tn the Lighthill theory the real turbulent flow
Is replaced by an equivslent distribution of quad-
rupole sources Ti; per unit volume in a uniform
€luid at rest through which the sources mgy move but
not the fluld. The approach to be followed In 2his
paper involves splitting up the problem into an
Inner and outer probiem. In the Inner solution sn
adequate flow mode) of the jet flow is introduced
which includes the mean flow structure and the con~
vection propsrties of the turbulence. Our attampt
here is to provide a general flow model which rep-
resents in & simple way the main features of ile
flow field on the assumption that it s not greatly
contaminated by the sound fleld which it generates,
and which propagates to the far fisld cutside the
flow. Of course in assuming that the instantaneous
flow can be replaced by a time averaged flow field
plus a locally pseudo-random fiuctuating fleld, we
immediately lgnore the fact that over the bulk of
the turbulent flow in a Jet the flow Is turbulently
Intermittent and its large-scale structure, at
least, appears from experinment to be quasi-ordered.
Although there is much conjecture at the present
time on the correct interpretation of the experi-
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cental datal{10).(11). (32} available on the large-
scale structure, nevertheless measuresent and
physical observations confirx broadly a growth of
scale of the large-scale action and 3 reduction of
its characteristic frequency with distance down-
Streae as xight be deduced from the divergence, or
linear growth, of the aean flow field. Thus unless
sound gereration In & turbulent flow is very inter-
nittent in characler and is specifically dependent
only on the instantanecus flow field, it can be
assuned thatl our fiow model, in which the turbulest
structure is evolving contiruously ané wmiformly
along the mixing region cf the jet, can at least
predizt sany of the gowerning festures of the far-
field sound Intensity suck as Its directivity and
spectrue.

The paper {lrst reviews briefly the main charac-
ter stics of the far field sound Intensity of 2 jet
fron Lightkili's formulation. Secondly, the gen-
eralized convective wave squation Yor the inner
flow is €iscussed and the form of the solution of
its chasglaristic (diffraction) equation is given
d interpreted. Finally, the sodel for the flow
field is further discussad and Our attesp:s at
dascribing the large-scale turbulent structure, in-
cluding effacts of flow divergence and non-linear
Interaction, are descrived.

§-2.2 Lighthill®s Theory of Acrodynanic
Kcise Apaiied to Jets

in Lighthil1's(2).(2) theory of aerodynamic noise
the perturbation density p-p,. throughout the entire
nediu?, which is otherwise at rest, is given by the
equation

,32 202 32 Ti.
'3?'3‘.V p-m {2.1)

where le = pv; + {p - gad) 85~ Tije
Lilley(‘3) has given an expanded form for the
term in {p - pa?) but for the purposes of this
section we can assume that T;; is adequately
represented by its first term, and in which the
velocity components are the fluctuating components
of velocity. The reason why the terms involving
products of the mean velocity and fluctuating com-
ponents of velocity are neglected is thas: (see
Appendix 1-2A) such terms can be ideatified as
being responsible for refraction and diffraction
phenomena assoclated with the transmission and pro-
pagation of sound across the real flow field. In
this analysis such effects are absent although their
magnitude is included in the local value and distri-
bution of T j* Clearly any analysis which neglects
then can oniy be directed towards an estimate of the
total acoustic power and its spectrum.

For a static jet the far-field spectrum of noise
at 3 point x at a frequency Y due to a distribution
of quadrupoles of strength T;j moving at an average
Mach number K = ¥;/a_ is found from the solution to
Equation (2.1) to be

dy d ..,
g(g;Y) - fff(l-nzose)'-’%r(zﬂ)l ISk

s 2
2 x

-——

[dt 3t ?xx

123 3t

{r: & V) L (2.2) .

where & 7 ~¥{x « yYMa lz - y] is the wavenumder of J
the sound and is equal to thit in the zurbulence. o
The frequency is the Doppler shifted frequency i

u=y (1 - K cost) (2.3)

wherz 6 is the angie between the line joining the

socrce a3t emission X0 the observer and the direc-

tion cf the mean velocity of the sources iparaliel

0 the jet axis). & Is the separation in moving

coordinates and 1 is the retarded time separation

giver: by !

eyl ¢ &-Gey)

RN FETIRER ) (2.2

with T2 the time separation at the fixed observer. i
Y is the coordinate of the source at emission. Py,

is the space-time covariance of Tj; taken in the

direction of source to observer.

Now the firal two integrations on Py, are equi-
wvalent to performing a four-dimensional Fourier
transform 0n Pyx(y;:8;1) and cin therefore be re-
placed by ;“(y;igfw) and Equation (2.2) has the
equivalent forn

2 - . .l" .
£ o) = o Jff4r 1P tysbs0) {2.5)

provided Pxx is a continuous function along with
its derivatives and satisfies certain specific con-
ditions. By the use of this relationship the
automatic selection of that pert of the turbulence
wave number frequency spectrum function which is
responsible for noise generation is achieved.

Equation (2.5) is an exact resuly for the spec-
trum of the far-field radiation if Pxx includes all
effects of the disturbances in the flow. If the
interference hetween the flow and the sound mode
generated by it is neglected, as stated above, it
can be expected that although ljttle error will be
introduced in the magnitude of Py, its wave number
vector in the turbulence will strictly not be that
of the far-field sound. This effect will be
greater at high than low frequencies. The relation
between the wave rumber vectors in the turbulence
and in the far-field sound can be found in the high
frequenc‘{ limit by ray theory, as suggested by
Csamdy( 4} and others.

In order to clarify what type of results are ob-
tained from this formulation based on Lighthill's
model, we introduce the gross approximation that

Pex(yi851) = Pyux(¥IR, (y:i8) R, (yi7) {2.6)

The four-dimensional Fourier transforms tead to the
functions

d .
L () = ey (;: e 2, (y:0) (z.7)
T

*and
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)
dr - 2
2 (Z;Eﬁ) - I—Z%Q tut -3?— (!;1’) {2.8)
with
WP (yiki) = Pex(y) 1,1, (2.8}

1f it is assumed that
R (yig} = exp { - 8} - 3] - &} ) (2.10}

where 5, = 6, J8) etc. and .k, are scales cf
tucdulence in the direction of the mainstrean ard
sransversely respectively,

and
kyyst) =exp £ =2 1% } {2.11)
we find
R 2
10, = ————exp (-2 Cin,8) ] (2.32)
162", kg
where

c{n,») = {1-#cos®)

2 2
L (cos?3 + — smfa) {2.13}
l

2
* “o

i
(4]

Alth .3h iz can be argued at first sight that
. .S¢ g10ss approximations to measured values of
P,x are too crude to be of value; nevertheless, it
can ~25ily be demonstrated that in evaluating the
far-field spectrum it is not the form of the
fuaction P4x which is critical, but how the length
scales &,,%,,%, in the turbulence and the reference
frequency, Lo in the turbulence, all measured in
the moving frame, vary in the downstream direction
and across the flow. Wz also stress that we have
used the correct form for the source function,
namely, 3Py, /31%, which is consistent with our
assumptions about the form of T;j and that the mean
«roperties of the turbulence are stationary
functions of time.

Finally, we require an approximaticn for the
amplitude function Pxx(y). We put

Paxly) = 82 VD)2 {2.14)

where p is a suitable average density and v, is the
component of turbulent velocity in the direction of
the observer. (If we write v! and v; for the turbu-
ient components of velocity in the axial and
transverse directions then very approximately

v = ;-;_" (cosd + 8 <inB)" (2.15)

where 8 is the ratio of(.\.f-;_"/;-;T)*.

if we now write £, for a typical length scale in
the turbulence and v for a typical velocity in the

turbulence In 3 moving frame then a ralation must
exist between i, vo and I such thet

w t
29 . £2.16)

Yo
The function A, [s the cheracteristic Strovhal

mamber in the turbulence and can, for our purposss,
be assumed 10 be a constant throughout the flow.

With these relations we cae find 'xxfl ki)
!hrwghout the flow and perform the volume inte-
gration as required in Equation {2.5). The inte-
gration is simplified if the function C{H,8) and sy
are both assumed t2 oo functions only cf the axisl
distance along the jet; that is, we assume that X
is a mean representative convecticn speed of sthe
bulk of the turbulence and uy is the cheracteristic
frequency of the turbulence in the center of the
nixing zone 2t any station along the jet. Hence,
from Equation {2.5) we find

llx.y) ,\,L__ f dy, (coss + Bsing)Ely,),
32 a
]

L]
i lr) vyl eyln)?
u, (v,)

exp { -%c ) (2.17)

where
dy,dy, 1 3yt o 2
E(y ) [f .ﬂ-d 'b"(—y '; _': Do »
Yo

b(y ) is a reference width of the mixing zone,
£ a £, and £,/2, = a, a constant, d, is the jet
dnameter and po :s an approprlate reference den-
sity in each region of the jet. The non-
dimensional quantity E will vary siowly along the
flow but for our purpose may be assumed to hsve
constant values in each of the mixing regions of
the jet within and downstream of the potential
core.

The form of the spectral density is made clear
if the two regions specified above are treated
separately in the integration over y,. Tnus, on
using Equauon (2.16) and specifying appropriate
variations of £y, v, and pp with y we find, on
changing the variable of integration from Y, to s,
where s = wg/w, and w, is the value of wp at the
end of the potent!al core which is located at the
station y, = L, that the integral from 0 to L is of
the form

f 5 exp (- T/5%)
1

while the integral from L to = in the far jet is
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f ‘—:-up {~ I7s?)
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where
2
r =X c (e
b
(3
# and w7 and nV3. The values of m and n reflect the

variations of v etc. with Y,. In Equation (2.17)
the value of 9 is the angle of the wave number
vector in the turbulence, which will be different
from that in the external sound field whenever the
model is extended to include the effects of refrac-
tion. The two angles are couplied as a result of
the convection Mach number, frequency, and speed of
sound ratic between the flow inside the jet and in
the ambient air outside. Since the value of T can
be taken as constant, say Iy, according to our
assumptions, from 0 to L, and noting

stc, [lud}?
¢ To = e 3 F (2.18)
where thejet circular frequency Strouhal number
L S = yd/V;, and C; is some average value of C, we

find the following approximate asymptotic forms to
the above integrais for low and high values of the
Stroghal number. Thus, for

3 !
To>>1  Blxiy) v —

cs
L. and
~ 52
Fo <<t Blx3y) ~ &
- Co
» " showing that the convective amplification at low
frequencies is much reduced as compared with
higher frequencies. Other results which can
easily be deduced are that the peak Strouhal
b [ number

i %n ~ I/V/E;

and that at the Mach wave emission angle Mcosf = 1,
Sm decreases with Mach number at sufficiently

large values of H. I this latter case Y,d/a_ is
constant.

The mean value of the square of the far-field
density,obtained from Equation (2.17),

/2

-
B {x8) & ) /xI¢, (2.19)

is a resul{ ?reviously given by Ffowcs Ullliams(“)
and Ribner(6), 1t is also found that approximately
half the total value of B (x,8) is gencrated within
the initial mixing region and the remaining haif is
% generated downstream of the potential core.

The spectrum at high frequencies can be adjusted

for refraction effects, as stated above, by the use .
of ray theory. 1f the mean value of density in the i

early part of the mixing region is P,s Say, then 4
the relation between 8 and 6% (where 9 is now the {
angle of the wave number vector in the external R
sound field) is )

K |
cosd ’pm |
cosfr = |m‘ 6'— (2.20) l.

The cut-off angle for high frequency radiation is
then found for 6% = 0 and is given by ’

1

N “’wlp
1

Most of these resylts are not inconsistent with
experimental data and demonstrate the deep under-
standing that can be found from a systematic study
of Lighthill's theory of aerodynamic noise.
However, the simple results obtained above and sup-
ported by experimental data of Lush{15) and others,
indicate that the interaction between the wave
motion generated by the turbulence and the flow it~
self is complex and cannot adequately be described
by ray theory except in the asymptotic case of very
high frequencies. It is for this reason that the
study described in Section 1-2.4 is undertaken in
order to display a more adequate representation of
the flow field than can be obtained on the basis of
a simple convective quadrupole source model.

cost . = (z.21)

1-2.3 The Generalized Wave Equation
for the Inner Flow

In Lighthiil's acoustic analogy the sources of
sound strength and their distribution reflect not
only the turbulent generation terms but also the
wave-flow interaction processes, which include re-
fraction and scattering. Lighthill's formulation
is therefore of importance when these interaction
effects are negligible, since then the source
function is determined from a specification of the
turbulence with these interaction effects absent.
When interaction effects require investigation it
is necessary to separately describe the flow field
(inner region) from the radiation or far-field
(outer region).

in Appendix 1-2A the flow equations are analyzed
for a slowly diverging mean flow field representa-
tive of a jet mixing region, and a generalized
inhomogeneous convective wave equation is derived
for r = 1/y In p and its fluctuating part r'. This
equation can be written symbolically as

L{r} = A (3.1)
where A is the source function, which contains all
terms not linearly dependent on r', and L{ } is a q

linear operator on r' having variable coefficients

which are functions of the mean flow field and are

assumed to be known. Now in a turbulent flow r'

can be regarded as a random function of space and

time centered on local conditions in the flow. If

we denote this fixed location at X, then r' will o
be a random function of Xy Xy, and t such that

eErt (xg, X4yt %,5 X) (3.2)

ho




NHormally we will refer to the position X as the
wsial station x,. For a pseudo-two dimensional
nixing region we may Fourier decompose r' with
respect to x, and t in terms of the real wave

number k, and the real frequency w. Hence, we

write
H N,
tt. fe"”te‘ks"a do (x,, k33 w, x5 X} (3.3)

which is a Fourier-Stieltjes integral of a general-

ized kind with d, the Fourier coefficient of r*

not in general of bounded variation. For the case

of a slowly diverging mean flow, such as the mixing
z region of a jet, we may choose )

(!l + !II)

and
x = x' - xt,

Then on the assumption that derivatives of r' with
respect to X are small compared with the difference
coordinate x and noting that the mean flow variables
are functions of X only and are dominated by their
variations in the x, direction, we find that the
Equation (3.1) for r' is unchanged provided all its
space differentiations are in terms of x, having
its origin at the chosen station X. In effect
these assumptions are equivalent to replacing the
real diverging flow by a localized parallel flow at
each station X. The mean flow properties in each
parallel flow are those appropriate to the station
X. This stepwise parallel flow approximation. to
the diverging flow can be improved by the use of
the WKBJ method or 3lternatively by making use of
the similarity properties of the mean flow.
However, irrespective of the method employed 1t is
the wave motion crossing each station X that must
be under consideration. Thus, we wil! introduce
the Fourier transform on r' in respect of the dif-
ference coordinate x; in terms of the real wave

- number component kl so that from Equation (3.3)

- j'ei(wt +kyxy + k,x,)éx (3.4)
where k , k, are functions of the station X In the
aerodynamic flow. Thus, from Equation (3.1) the
fundamental characteristic equation can be derived
and for either two-dimensional or axisymmetrica)l
flow we find (see Appendix 1-2A)

2
4Ly ¢ alx,) = hix,) (3.5)

%2

wherg ¢ is a modified Fourier coefficient related
to dw, q(x,) is a flow function dependent on the
mean velocity and the mean temperature and their
gradients as well as the frequency w and the wave
number vector k. Typical mean velocity and q(x,)
profiles for a two-dimensional jet are shown in
Figure 1; the velocity profile in the mixing region
is based on the error function. h(xz) is a modi-
fied Fourier coefficient of the 'source' function A
in Equation (3.1), Equation (3.5), which is the well-
known diffraction equation, is fundamental to the
problem of noise generation in turbulent flows.
high frequencies it reduces to the characteristic
equation of ray acoustics. Equation (3.5) is valid
for all frequencies and wave numbers although
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figure 1. Jet Mean Velocity Profile, ;‘/Vj. at
Axial Station, X,, One-Half Jet
""Diameter, d, from Nozzle; Typical q
Coefficient Profile at Same Axial
Station for Observer Angle, 0, of 30°
and a Reduced Frequency, Yd/a_, of 16,

clearly it is dependent on the validity of the
assumptions in respect of the flow mcdel correspond-
ing to a slowly diverging mean flow. The equation,
in its homogeneous form, has been subjected to
careful investigation in many branches of mathe-
matical physics. For a mechanical system of one
degree of freedom

2m (E- V)
q(x,) = = .

hz
where m, € and V are respectively the mass, total
energy and potential energy and h = h/2n, where h
is Planck's constant. For general values of q(xz)
the equation is not explicitly solvable.(16)

The solution of Equation (3.5) depends on the
position and number of the transition points or
zeros of q(x.). In any general analytic solution
it is necessary to find the continuous solution
across the transition points and this can be
achieved 2; following the method described by ‘
tanger.{16} The solution is found in terms of
Bessel functions of order 1/3 or in terms of Airy
functions. Detalls of this solution were ?lven
recently by Pao(17) and earlier by Lilley(18), Here
we will consider some recent numerical solutions.

it is interesting to note, before considering
the numerical results, that the properties of the
solution of this diffraction equation are not de-
stroyed when the mean flow is replaced by a vortex
sheet model in which the mean velocity and mean
temperature fields are constant, but different, on
both sides of the vortex sheet. This latter model
is sometimes referred to as the 'plug’ or 'slug’
flow mode!. 1in such a mode] the properties of the
mixing region are contracted into the thin vortex
sheet where the finite gradients in mean velocity
and temperature are replaced by infinite gradients.
Naturally although the solution of the vortex shest
model Is qualitatively similar to that of the com-
plete diffraction equation nevertheless certain
important characteristics of the wave interaction
with the flow are only found when the equation is
solved for the finite mixing ragion dimensions and
the finite gradients for the mean flow field. For
example, the far-field sound pressure due to a




—_—

. e
L -
i
2
L4

L'y 4 v Ve yx /1 / T \& ]
3 By
e LR et Amtie
3 o e
R+ Vgl
i " .
) vele, 1)
" 00
)
NS [ )
d 1s,74 e
» 1akte sex1 4
o 38. A3, 00
Ll

Figure 2. Far-Field SPL as a Function of Source

Radial Position for Three Observer Angles

monopole point source in a jet can be critically
dependent on the radial position of the source
within the mixing region, as illustrated in Figure
2; in these examples both the source and observer
are "'above"” th: jet center-line. The far-field
sound pressure at the same angle but “below' the
center-line would be much smaller; because the
Fourier coefficient, dd, decays exponentiatly in
reglons where q(x,) is negative, as shown in Figure
3. This is also the reasun for the low far-field
sound pressure levels (SPL) in Figure 2 when the
source is separated from the observer by negative
q(x,) regions: taking the case 6 = 30° the regions
where q{x ) is negative are, from Figure 1,
0 ¢ 2x,/d < .87 and .94 < 2x,/d < 1.15. When both
regions liec between the ctource and observer, the
far-field SPL decreases in direct proportion to the
path length through the jet because q(x,) is
constant in the first region: this effect is clear
in Figure 2. When the source and observer are
separated by the second region alone, the SPL (for
. ¢ = 30°) is still 20 dB below the free~field level
{10 d8 in Figure 2) and this is partly due to
attenuation through this narrow second region.
However, the free-field SPL's do not result if the
source s placed outside the jet Tiow: reflections
from the jet flow cause a simple Interference
pattern in the far-field. In Figure 2 a pressure
minimum in the far-field occurs at @ = 60° when the
source is at 2x!/d = 1.25 and maxima occur at
8 = 45° for 2x;7d = 1.3 and at 0 = 30° for 2x}/d =

1.4,
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Figure 3. Varlation of Fourler Coefficient, da

(re: 6 = 90°), with “Radlus''; Source
at x} = d/2.
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In the vortex sheet model the diffraction cqua- S
tion can be conveniently replaced by convective !
wave equations with constant coefficients on cach |
side of the vortex sheet and the solutions for the 1
pressure on each side are matched, together with |
satisfying the vortex sheet displacement boundary
condition. Some far-field directivity patterns of 1
a monopole point source located on the centerline '
of a two-dimensional sonic 'plug' jet flow are
shown in Figure 4 for frequencies which span the
usual jet noise frequency range: clearly there *
are very significant changes in far-field direc-
tivity with frequency. Of particular importance
is the loss in intensity of the high frequency
radiation in directions close to the jet axis in
the downstream direction, a result clearly demon-~
strated in the experimental results of Lush(15) and
others. This result has of course been known for
some time and is generally referred to as the
refraction effect in the high frequency limit. ;
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Figure 4. Far-Field SPL Directivity of Source

Located on Centerline of a 'Plug"
Jet Flow at Three Frequencies

Some solutions to the diffraction 2quation in the

form of far-field SPL directivity patterns are com=

pared with 'plug' flow solutions in Figures 5 and

6; for axial stations at and close to the jet

nozzle there is almost complete agreement between ’
the two solutions and low and high frequencies.

However, there are substantial differences at both

frequencies when the axial station is at the end of

the potential core (shown by the dashed line).
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In order to obtain experimental verification of
solutions to the diffraction equation, we must con-

sider the circular jet and eventually, jets of
other cross-sections. Diffraction equation solu-
tions for a circular jet will be presented else-
where, but the good qualitative agreement hetween
measured directivity patterns in Figure 7 and those
zalculated with a circular 'plug' jet flow model in
Figure 8 indicates that adequate experimental veri-
fication will soon be forthcoming.
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Figure 7. MHeasured Far-Field SPL Directivities of

a Source on a Jet Centerline (d = 3/4")
Taken From MacGregor ot al (27)
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Figure 8. Far-Field SPL Directivities of a Source
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Nozzle) for Comparison with MacGreger's
(27) Measurements in Figure 7.
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As shown in Appendix 1-2A, the solution for
the Fourier coefficient do depends on the source
function Fourier coefficient and its distribution
accross the mixing region. The solution can then
be turned into the wave-number/frequency spectrum
function of the far-ficld pressure for each axial .
station of the mixing region and the results summed
over the entire jet. The detailed results and
their comparison with experiment will be left to a
later paper.

However, before leaving this section we refer to
the fact that here we have specifically chosen real
frequencies and real wave-number comporents. Our
justification for this is that in this section we
are dealing with a turbulent source function, which
is represented by a summation of harmonic waves
which do not suffer amplification or damping. We
thus have replaced any problem relating to discrete
events in the flow which might indeed be present in
the real flow, especially in the larger scale
structure, by an equivalent continuous structure
for the turbulent flow. The further explanation of
our model will be left to the next section.

1-2.4  The Mave-Model of a Turbulent

Hixing Region

The generation of noise from the turbulent mixing
of a jet has been shown to depend critically on the
flow structure and the interaction of the wave
motion aenerated by the flow and the flow itself.




Experimental datal10),(11) on the mesn flow and the
turbulence properties have only recently reached a
state of sophistication such that it is now fairly
clear to deduce that a large-scale organized struc-
ture exists in what is usually referred to as a
high Reynolds numbeg turbulent jet flow. The early
work of Townsend(13) also predicted a large-scale
equilibrium struczure for the turbulence which
passed through cycles of growth and decay. However,
it is not yet clear that this large-scale equilib-
rium structure is of similar form to Ehe organized
structure found by Crow and Champagne 10} and Lauv,
Fuchs and Fisher{11) and how far the latter struc-
ture is a function of the break~up of a pseudo
laminar flow near the jet exit into distorted
vortex ring-like structures, which bacome more and
more disorganized as they coavect downstream.

Attacks on the theoretical problem of turbulent
shear flows are thwart with difficulties. HNever-
theless on the crude but simple and plausible
assumption that the large-scale turbulent structure
passess little energy, it is possible to derive
linear equations describing their structure and
motion. |If further the flow variables are Fourier
decomposed in terms of wave-number and frequency it
is easily demonstrated that the equation to solve
is the inhomogeneous Orr-Sormerfeld equation. Thus
in the mixing region flow the large-scale structure
will be dominated by the spatially unstable modes,
which are the eigenvalues of the Orr-Sommerfeld
equation.

We can now conjecture a series of eveats in
sequence. As soon as the mean flow is disturbed at
any station in a jet mixing region the most un-
stable mode will appear and dominate the flow. It
commences to grow in magnitude, at an initial
growth rate governed by linear theory, while being
convected downstream. However, as is evident from
experimental observation, it cannot grow indefi~
nitely. Its interaction with the backyround turbu-
lence will lead to damping. The mode is also
propagating in a region of diverging flow whose
mean characteristics are changing which will result
in distortion and damping of the moade. for example,
there is no linear growth of the axisymet:sic mode
downstream of the potential core 29). in addition,
the growth itself will generate non-linear inertial
and damping effects which in turn damp the mode
growth. It is important to notice that if only the
effects of background turbulence and flow diver-
gence are considered, then the limiting amplitude
of the mode is entirely dependent on the initial
disturbance amplitude, see Figure 12, a phenomenon
not verified by experiment.(l ) Clearly the non-
linear self-limiting process must be taken into
account. On this basis it is reasonable to conjec-
ture that an amplitude Vimiting situation governs
the mcan square intensity of the turbulence. In
this state the turbulence acts das a series of
marginally stable waves as su?gestcd. in a dif-
ferent connection, by Landahl 0), Thus, all that
may be deduced from the eigenvalues of the Orr-
Sormerfeld equation is the initial growth rate of
the amplifying modes. The inclusion of important
non-linear effects and flow divergence require
further treatment to predict the growth of the mode
towards _its amplitude limiting state and ultimate
decay.

The linear perturbation theory for both two and
three~dimensional jets, leading to solutions of
equations analogous to the Orr-Sommerfeld equation,
can be developed for both incompressible and com-
pressible flow. Vortical, sound and entropy nodes
all occur in the compressible flow problem. The
vortical rodes, which were referred to atcve as the
unstable modes, possess phase speeds which are com-
parable with the mearn flow speeds in the jet. The
sound modes, having phase speeds equal to the local
speed of sound, are thought to be damped and are
hence of relatively minor importance in determining
the turbulent jet Tlow structure which is essen-
tially unchanged from subsonic to supersonmic jet
velocities. When .he mean flow speeds are super-
sonic the picture is somewhat confused since the
vortical mcdes may now have supersonic phase speeds.
The work of Tam{22) refers to this latter case and
demonstrates the form of the amp!ifying mode wave
fronts propagating downstream with supersonic phase
speeds and forming weak moviag shock fronts in the
inner region of the flow eaternal to the jet.

If we consider the case of subsonic mean flow, we
find that at each station of the jet downstream of
the jet exit an amplifying wave is set up which is
distorted and dampea by nor-linear interactions and
flow divergence effects. The major amplifying
effects accur in the region upstream of the poten-
tial core since the local growth rates are related
to the local width and jet centerline velocity.
However, we have noted earlier that the linear
perturbation solutions only describe the initial
growth of a mode. The spatial behavior cf the mode
as it propagates downstream is qoverned by botn the
amplitude determined by non-linear considerations
and the local wave number determined from linear
theory. The typical streamwise disturbance
behavior, including only effects of flow divergence,
is given by Ling and Reynolds.(30) 1t i3 clear that
there will be a wave number spectrum associated with
this downstream behavior. This wave number spectrum
will contain components with supersonic phase
speeds, so that non-linear vortical modes cause
acoustic radiation. It is also to be expected that,
at the same time as this wave number spreading s
oceurring, a frequency spreading will alss occur.(23)
The randomized onset of the amplified wave and its
subsequent development may be regarded as forming a
large-scale structure in the turbulent motion and
is the means by which energy is fed into the turbu-
lence from the mean motion. The subsequent trans-
fer of turbulent eneray in different directions
and its diffusion and final dissipation may be
assumed to follow the usual Kolmogoroff cascade
processes. However, the precise form of these pro-
cesses does rnot seem to us to be of importance in
the mechanism of sound generation and its ultimate
radiation from the turbulent layer. We may also
note that our theory has not taken account of
intermittency since we have assumed the turbulent
structure is evolving continuoustly.

In finding the most unstable {vortical) mode from
the eigea solgtion of the Orr-Sommerfeld equation we
assume that the background turbulence is of suffi-
ciently small scale compared with the large-scale
amplifyiny mode that its effect on that mode's
development can be wxpressed in terms of an eddy
viscosity supplanting the kinematic vi .cosity of
the fluid, Therefore the effective Reynoids number
of the turbulent flow is of 0(100) compsred with 3
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vine of 10% o ureater when based on the Kinematic .
14usity. Typical curves of constant amplifica-

can for beto teo-dimensional and axisymmetrical
ctow {n~0) «re shown in Figures 9 and 10, respec-
tively. In Figure 11 is shown the Reynolds stress
distribution .orresponding to the inviscid n31 mode
fcr < circular jet. In Figure 12 the amplification
ond attenuation is shown for the ‘axisymmetric mode
n=t when flow divergence effects are included. The
eigen functions corrusponding to the most unstable
«w0de in a two-dimensional mixing region are shown
ia Fiqure 13 to reproduce the essential character-
1stics of the measured distribution of the Reynolds
stress,  Lorreesponding calculations for an elliptic
ivl bave recently been given by Crigh(on(zh). | - -
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ety

- ete. reference scales of turivsizoee

“ Mach mewer (V,73))
P Spaze-Tine Covasiance
o pressure

qla,) flow funczivn

g reat Tlux vecror

- i/ Ingp

> entropy

H tine

he temperaiure

iy Lighthill's strese temsor
¥ velocity

v convection spead

vj jet exit velozity

positior of observer, space vecicr

Y position of source, zpace vector

& space separation in fixed conrdinates

: space scparation in moving coordinates

¥ radian frequency; ratie of specific heats
CPICV in Appendix A

% sourze function

< deasity

& angle to jet axis (positive downstream)

Tij vistous SIress tensor

M tice difference, also retarded tive
difference

3 dissipation function and wave nusber/
frequency spectrum function

¥ viave mumter/frequency spectrun function

< reference moving frame frequency in
turbulence

“ moving frame radian frequency; radian
frequency in Appendices A and B

4 modified Fourier coefficient

bar denotes a mean quantity

prime denotes a fluctuating variable {except where
specified)
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APPENDIX 1-2A

The Convected Wave Equation

The convacted wave equation is derived by per-
forning a number of operations on the conservation
equations of mass, momentus, and energy and the
equation of state. The gas is assumed to be
perfect. It is convenient to consider as an alter-
aative to the conservation of energy, the equation
of entropy production.

Using a standard rotation these equations may be
aritten in the following form:

Mass %% +tpVey =0 (a.1)
Dv

Momentum  ppm +  Vep = Te1 (A.2)

Entropy Tg—f— = p-g% - g% =T+ ¢ {A.3)

State p = 151 oh (a.4)

where p, 0, h, s are the pressure, density specific
enthalpy and entropy respectively. Y is the ratio
of specific heats, v is the velocity, Q is the heat
flux vector, T iy the viscous stress tensor and ¢
is tne dissipation function. These equations rep~
resent the necessary six equations for the six un-
knowns, p, @, h and V.

6n eliminating p and h between Equations (A.1},
(A.3), and (A.4), we find

gﬂ . = 2 -Q—
pe ¥ Y P Uy =2t e s/ {a.5)

where a2 = (y-1)h is the local speed of sound

. o= -
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squared, and Cp is the specific heat at constant
pressure. On combining the divergence of Equation
(A.2) with D/Dt of Equation (A.5), we find

~2
SR V2 fuv-aZ 1): Vo - 32T0e
i + 2ve¥ ToR {vv-a 4). Vip -~ a®%p-Vs/c,

2
= pa? Vv: V; + l(—g-::-) + yp —2= 2 SIC
P th

- at(9er)  Us/C, - at Ua(Veg) (A.6)

where Vv is the transpose of Vy, | is the idem
factor and the usual notation for the double multi-
plication of dyads is employed. This equation is
exact and has been the starting point of many un-
steady flow problems. In many aerodynamic noise
investigations the terms involving viscous and en-
tropy terms have usually been neglected with

a priori justification. 1In such an approximation

2
1’2 - 3?7 + J;Vz (_2)
oc? ot

2 (vy: 0y (a.7)

and can be rearranged to form an inhomogeneous equa-
tion in p, in which the right~hand side contains
non-linear terms in p and terms not iinearly depen-
dent on p. Suck an equation was derived by
Phillips(25) and forms the basis of his theory of
aerodynamic noise for flows havina supersonic con-
vection speeds.

However, in all turbulent flow problems it is
not immediately obvious that the terms involving
entropy changes are negligible compared with the
remzining terms in Equation (A.6). Apart from the
heat conduction term, entropy production arises
from the finite value of the dissipation function
and in a turbulent flow the overall dissipation of
turbulent energy is Lalanced by the rate of produc-
tion of turbulent energy from the main flow. It
foliows that the Lerns in entropy are not negligible
compared with, say, pa’ {Iv : %*) and must there-~
fore be retained. -

If we return to Equation (A.6) and eliminate s

using Equation (A.3) then we find after some lengthy
algebra that

z
3—? + (y+1) v V%% + (fvv-1a?):99p-
at

-~ a20p « V(in h) - (y-1) L2 (10 )

Jt Dt
+ - 2,2

= pa? (VY:V!)"YTIDP—Y"{ +
Dt

¢oa?| (LA 4 y.g 1gp ) Mne (R}, 5

where the terms involving divergences of the heat
conduction and viscous terms have been excluded for
convenience in writing down the equation. Equation
(A.8) is a more appropriate equation to use in
problems of aerodynamic noise generation than say,

Equation {A.7), although it is not convenient to
proceed without first eliminating pa? from the
right-hand side.

If we choose a new variable

Inp

-
"

<=

then the equation for r corresponding to Equation
(A.8) is
2
2‘% + (y+1) vev %L +{yvv-1a®):v9r -
3t t -

ar Sinh

-~ Qah - P - (y-1) & TR

-1 [2y2 2
= Uy: Oy’ - un_:_ - (2%) +ya?re¥r  (A.9)
2a° ot

where again for convenience the terms involving
viscous and heat conduction terms have not been
written out. It would appear that Equation (A.9)

is a convenient starting point for problems of aero-~
dynamic noise generation. It should be emphasized,
however, that if viscous and heat conduction terms
are to be ignored in a problem of aerodynamic noise
generation from a turbulent flow then the governing
equations from which Equation {A.8) has been
derived are as foilows:

Dr o z Dloh
Y + Vv Yo (A.10)
which is the combined equation of state and
continuity,
Dv 2
ot + a‘Yr=90 (A.11)
the equation of motion, and
Dh
—S o 23
Dt 3t {A.12)

which is the total energy equation, where hg =
h + 1/2 v? is the specific stagnation enthalpy.

in applications of Equation (A 9) to jet flows
we can assume that Ur = 0, where T is the time mean
of r. Thus, on retaining only linear terms in r',
the fluctuating part of r, on the left-hand side cf
Equation {A.9) we find

22—+ (y+1) ¥ 3—' + (Yo vy - (x=1}h 1): VO -

at?

- (1) TheWrt -2V g Uy (A.13)

= 'non-linear' terms.

where we have assumed additionally that DInh/Dt = 0
and the right-hand side contains terms which in
many applications will be found to have the same
order of magnitude as (Yv' : Uv'*) or less.
However, in hot jet fiows at low speeds, for in-
stance, this is not necessarily the case and
additional terms will then appear on the left-hand

r—

v - e
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side of Equation (A.13). This will also be the
case in flows of high Mach number. 1in all these
cases the additional terms can easily be found from

Equation (A.9).

Further simplifications are possible on the
assumption that the jet is slowly diverging so that
the mean velocity field can be represented by
y £ (¥,, 0,0), where ¥V, is a strong function of the
coordinate transverse to the flow, say x2, and is a
slowly varying function of x), the coordinate in
the direction of flow. We thus use the .boundary
layer approximation that

Similarly we assume that for the mean enthalpy
distribution, noting that (Yy-1)h = a2,

3h .. 3h
w2 W,

With these additional approximations Equation (A.13)
reduces to

2.1 - 2.3 - 2,0 -
B2 o 7, B, B2
at H ax‘
- v, av,'
e (y-y) 3R 3t 2
(r-1) 3x, 3x, 9x, 3Ix, (A.14)

= 'non-linear' terms.

In Equation (A.14) we have assumed that the non-
linear terms include the terms involving the stag-
nation enthalpy fluctuations. When these terms
cannot be so regarded, noting for instance the
relation between the stagnation enthalpy fluctua-
tions and the fluctuations in pressure given by
Equation (A.12), then additional terms must be in-
cluded in the left hand side of Equation (A.14).

We see therefore that though the form given for
Equation (A.14) is not uniquet it can be regarded as
suitable for many practical applications.

In deriving Equations (A.9) or (A.13) or (A.14)
as an equation for the fluctuations in r, some
knowledge of the mean and fluctuating flow fields
must be assumed. If for instance it is assumed
that both the mean and fluctuating velocity and
enthalpy fields are kaown, in the absence of the
fluctuating field generated by the r' fluctuations,
then provided the latter are small, we can assume
that in Squations (A.10), (A.11) and (A.12) all
terms other than those involving the derivatives of
r' are known. This indeed is the only justifica-
tion for the use of an equation of the type given
by Equation (A.14). Thus in Equation (A.14) it can
be taken that

v, avz'

2=
x, =,
t A possible modification to Equation (A.14) to in-
clude the practical case mentioned above would be
to replace 3h/dx, by 3hs/3x; on the left-hand

side.

is a known quantity and should be regarded as a
'source' term to be included with other 'source’
terms on the right-hand side of the equation. This
was indeed the basis for the theory of Phillips{25)
referred to 2bove, and has more recently been used
by Lilley(18) and Pao{17). Nevertheless since X'
and r' are linearly deperdent, as given by Equation
(A.11), it is necessary to eliminate the term in
av'/3x. so that finally the right hand side of
Equation (A.14) contains only terms which are either
not lincarly dependent on r' or are of an order of
magnitude negiigible compared with other terms
retained in the equation.

From Equation (A.11) we find that

A X
T tv, Bx) +a 3;: = non-linear terms (A.16)

and so we can eliminate 8v,/3x, from Equation {A.14),
by operating on iy with the operator D/Dt v;. The
resulting equation, which is third-order in'r', is

3 . 3 - 3
2e ey 5, 20t Ly 5, - o R
3t 3Lt 3x, ] 3t 3x,

- 3 - 3.0
3 & —+ (v VL %—57 -
at 3x, ! X
- 33 ai,'\ 2.0 -2 33
- 3% I - ) G -
ax,axg 2 2 at 3x,
ah | 9% -2 B!

2
+ 128" =——— - Y-]) V. o a‘v
ax, 1 9x, Bxlaxz 1 8x,3x:

= A {x,t) (A.16)

where A contains only teems not linearly dependent
on r' plus terms involving enthalpy and stagnation
enthalpy fluctuations.

This form of the generalized convective wave
equation reduces to the simpler form

=y = )
9—-% - %t' div(a? 9r') +
113
W, a2
+ 28 — e A (1) (A.17)
ox X, 0%,

2

where A' contains only non-linear terms, when Y, the
ratio of the specific heats, tends to unity. For
this special case the stagnation enthalpy fluctua-
tions in the convective frame must vanish., Equation
(A.17) is also found when the entropy production
terms are neglected completely. A similar equation
was previously given by tandah1(20) ir his work on
turbulent pressure fiuctuations in boundary layer
flows.
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Equation (A.17) shows that whereas the first two
erms are just 0/Dt of the convected wave equation
in au inhomogencous medium, the third term is the
~esult of the interaction between the disturbance
{the fluctuations in r) and the mean flow field
arising from fluctuations in the source term A\'.

Now in the derivation of Equations (A.18) or
(A.17) the assumption has been made that the mean
flow field is slowly diverging. Hence locally at
any station x, = X. along the jet we can fourier
decompose the }lu*luat-ons inr' in terms of fre~
quency o and real wave number components k, and k,
by application of the Fourier transforma'uon

r I exp Iiul + kex 'dz (x,: w, ki X) {a.18)
vhere k = {k, ,k,) and du is the Fourier coefficient
which is not in general of total bounded fluctua-
tion. In place of du it is convenient to employ a
modified Fourier coefficient ¢ given by

- y “
= dw (4.19)
iw’*vxkx ;

where a_ is the constant speed of sound in the uni-
form medium outside the flow. In terms of f the
fourier transformation of Equation (A.17) reduces
to the characteristic equation

d?r
4L 4 qlx,) 5= h (A.20)
dx:
where
[ 2 'k, 2 vg2
q= =/ - k° 4 -
‘ a w' wl?
ot 23" vk
a i
h o= iwdy
aa w'z

, -
W =wtv, kl

and dy is the Fourier coefficient of the 'source’
function. w' is the moving frame frequency and
primes on 3 and ¥, denote differentiations with
respect to x,. The Fourier coefficient [ is a
function of X, st L k, and X.

We see that Equation (A.20) is the standard dif-
fraction equation of inhomogeneous type. Ffor a
given frequency w and wave number vector k the mean
velocity and tempercture fields determine the
function q, and will therefore be referred to as
the flow function.

A similar characteristic equation is found for an
axisymmetrical flow field. In this case the trans-
verse coordinate x, is the flow radjus. The rela-
tions for z, which we write as c,(3) are now changed
as well as those for h and q. We find, however,
that

50

(3107 4 ql3) (3} = (3} {A.21)

The solution of Equations (A.20) or (A.21) can-
nut be obtained analytically and resort is made to
either approximate analytic solutions or numerical
solutions. In either case the equation to be
salved is

¢ q = slx, - x)) {a.22)

where § is the delta-function and x! i< the
'source' location. |If the solution sc obtained is

L= 2%, x3)
far given values of w and k and distributicns of v

and a8 then the solution for any source function
distribution is

gix,) = _[ h(x3) glx,: x}) dx; (A.25)

-C0

The corresponding value for the wave-number/
frequency spectrum function of the function r' is

a o
Yx, 5 ko X) = Iﬁ-‘*‘

dk,dw=+0

o an

[} 2 ix? 3l
) W (x?) it a(xz) fdx;' a(xz )

X3

a(x,)’ W (x}) w'(x}")
6 dixd'ikoo) g (x,ix5) g#lx,ix)") (A.24)
where
s (xl.xu. @) = %I_gli
dk,w~ 0

is the wave number/frequency spectrum function of
the source function A, and * denotes the complex
conjugate.

Throughout this Appendix the coordinates used
have been fixed coordintes and hence the spectrum
functions ¢ and ¥ are also evaluated in a fixed
frame. Since ¢ must be specified as representing
the known flow field, in general it will be deter-~
mined with respect to a moving frame of reference
and finally transformed to its corresponding value
in a fixed set of coordinates.

In concluding this Appendix on the generalized
convection equation for r, it is stressed that
throughout it is assumed that the flow field can be
determined at any station as the sum of a time mean
value plus a fluctuating value, which Is locally a
random function of space and time. In the case of
a turbulent jet flow where most of the flow is
turbulently intermittent and whose large-scale
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structure Is known from expariment to be quasi-
ordered it is clear that our flow modetl used in the
theoretical analysis Is grossly over-sizplified.
Howaver, in this respect our model is no aore
simplified than In the related zre:tnents of
LighthI11€26), Ffowcs Williams(¥), 2nittips{2s),
Ribner(€) and Pao{17).

APPENDIX  1-28

The Nave-Number-Freguency Spectrum function
Iin Fixed and Moving Coordinates

The solution of aerodynamic noise probiems re-
quires the specification of a space-time covariance
in turbulent flow. In general this function must
be obtained from experiment. ([t can be specified
in terms of a fixed set of coordinates or equi~
valently in a moving frame of reference for which
the velocity is that cf the mean convective velocity
of the turbulence. Thus, the space-time covariance
for the source function associated with, say, vorti-
cal and non-isentropic modes in the turbulence con-
vected with the local mean speed and exprezsed in
moving coordinates, but evaluated at a fixed
statien x would have a form

-~y

P (x,:1 85X) = P (x,:X).

cexp { - 82 - 8 -1 ) (8.1)

where 6,. , and 1 are the space and time separa-
lnons in moving coordinates and 6 =4 /2 H
Ay = 8,/0 3 T @ w1 where &, mc afe 'reference
3 )
tength scales and a reference frequency
respectively.

If 4 is the space separation vector in fixed
cooridinates

|

Gob-agnt (s.2) ‘

where ag B = {¥.,0, 0), and then the space-tize t
covariance in 2 fixed frame is given by .
A

P(1,8) = #(5,8) = Plxy;X), 5

cexp { - &2 - a2 - tz(IOV‘Il ) +
+ v T, /2% ) (8.3)

The spectral density of P(1,4) is for ubillvc <« i,

P(w,8)
[4 xz;x

iuA!

= exp expl- (:l; Zf-ﬂg'fsz}

2 fu v/,

where u ® wok, MNe and o= wl /Vc» 3 result quite
different in Structure to Equatuon (8.1). The
fixed frame result has a form of a slowly damped
wave function which s often interpreted as repre-
senting the near-frozen pattern of turbulent motion
in a given frequency band. The reference frequency
in the moving frame is w, whereas in the fixed frame
it is Vo/%,. Although the space-time covariance in
noving coordinates can be transformed to fixed
coordinates with comparative ease the reverse is not
true. These simple results can easily be general-
ized to other forms of space-time covariance
functions.

{8.4)

0Of particuiar importance is the result given by
Equation (8.4) showing that the effective scale
length in fixed coordinates in the stream direction
is Vc/wg, and not, as usually Incorporated in the
fuxed frame covariance, 2.




§-3. CN THE RESPECTIVE RCGLES QF HELMHOLTZ-TYPE INSTABILITIES AND
ACCUSTIC PROPAGATION 1N JET NOISE GEKEBATION AND RADIATION

Sritec £ O
University f Soutba-pion, England

1-3.1 Introducsicn

fn the 19tn wentury, Helwholtz, Kelvin and
Rayleigh estad!ished that sheared filows of a viscous,
heat conducting fluid could, in certain circua-
stances, exhibit unsiable tendencies. fFor example,
if the fluid in the neighborhood of a point ia a
previously undisturbed, steady, laminar shear layer
were 1o be subjected to o small impulsive distor-
bance, then the tayer downstream of the region of
disturbance would subsequently go into oscillations
of increasing arplitude. These oscillatory,
"upstable" tendencies of the loyer are coavective,
in the sense that, if checked, the amplitude of
oscillation would 1acrease, both with distance down-
stream of the regior of disturbance and with time.
tn other words, the amplitude of unstable oscilla-
Ltion is, as it were, zero for t-x/Vc < 0 and
thereatter increases monotonicaily, and often very
rapidiy, with t-x/Vc. Hzre x is distance dounstrea
from the peint ot visturbance, t is time subsequent
to tne tire of disturbance and V¢ is a convection
velocity, which is usually of the order of the
average velocily in the x~direction of the fluid ia
the layer (the average atross the layer, that is).

In subsequent studies of the behavior of sheared
flows, including those of the present day, this con-
cept of "Heluholtz instabslity' has been of great
consequence. In particular, it has been of central
importance in developing understanding of the tran-
sition from lamicar to turbulent flow of 3 free
shear layer. A probiem in this category is that of
the development of the mean and turbuient flow
charecteristiocs 0 oubsonic ang supersonic jets.

In real tluid tlows, 0f course, in shich unstable
tendencies ot the helmholte type have been identi-
fied and observed, unbounded growth of the oscillia-
tions does not occur. The arplitude of oscillation
reaches a vaxirum, almost always after a relatively
very short tiwe, ana then subsequently decays. In
the ca.u of jet flows it bas been argued, and/or
suggested, that viscosity and heat conduction, flow
diverqgence, non-iincar interactions and acoustic
radiation ray all, either individually or collec-
tively, pluy sote part in the limitation and decay
of any <a¢t swillotions.

Presue. experinental and theoretical evidence on
the turbulent and mean flow structure of jets, and
on the sound fields radiated by them, rather
strongly suygests that the process of the growth,
limitation and decay of such Helmholtz~type oscil-
lations, 1.. ) fluids, may be very closely con-
nected with the process of sound radiation by a
turbulent jet. The pasic evidence for such a belief
is both simple and convincing. First, the region in
which Helmholtz-type “instabilities' could be domi-
nant flow components, and be largely instrumental in
the dynamical process of converting the jet struc-
ture from, effectively, a "plug" flow profile at the
jet exit to, eventually, a fully developed turbulent
jet, is that extending some ten diameters or so
downstream from the exit: that is, the region in-

cluding the potential core and the conically
annularly sorezding “turbulent’ ~ixing region sur-
rounding it. Second, the region of the jet flow
fron which the majo ity of the radiated sound field
appears to emanate 5 rrecis. le the caze region.
Hence, the process of scund generation swst be at
the least, a by-product of, if not actually intrinsic
1o, the process of tne development of the mixing
region from a thin annular Jayer ot the jet exit inte
2 fully developed turbulent jet flow downstreanm from
the end of the potential core.

It follows at cnce from this that the detailed
nature of this flow development must be relevant to
the sound generation process., and vice verss. All
that remains in question is that of exactly which
details of the flow development are mutually
relevant.

Self-evidently, since the comptete problem is
that of determining the flow ficld both inside and
putside the jet fi.e., the nominally "turbulent
mixing flow" fieid inside and rhe nominally
acoustic” field outside}, this remaining Guestion
can 2ls50 be approached cither from inside or out-
side. In the nature of things, cne must expect
acousticians to prefer the 'foutside' approach and
fluid dynamicisis the "inside” one. Similarly, when
studies from two such different starting points are
undertaken, ona cannot expect results which are
automatically and instantly in forms displaying the
desired mutual relevance.

It is not surprising, therefore, that from recent
studies of tne two types an apparently fundamental
probler of resonciling results and methods has
emerged. What is surprising is that this problem of
reconciliation is not just an academic one but that
it has turned out to be crucial to achieving a
common, basic, physical understanding of the pro-
cesses involved.

In its essentials, the problem of reconciliation
can be descrited in the following terms. From the
YHelmholtz instability"” approach (i.e., the "inside'"
approach), present experimental and theoretical
evidance suggests that the "acoustic part' of the
field, both inside and¢ outside the jet, can be re-
garded simply as an intrinsic part, locally, of the
turbulent mixing flow field. Hence, for example, a
gcparate physical identification of {or thecretical
calculation of) this "acoustic part' of the field is
neither necessary nor permissible. From the
"acoustic' (i.e., "outside") approach, however,
oresent experimental and theoretical evidence
equally strongly suggests that there is a separately
identifiable "acoustic" field both inside and out-
side the jet, which is a sum of contributions from
all regions of the jet in which turbulent mixing is
taking place. Thus, this acoustic field is a
»30l2tive property of the whole jet flow rather than
just a loanl property deternined primarily by local
details of the turbulent mixing. Hence, serarate
identification of the Macoustic part" of the field
(or theoretical calculation of it from a reasonably
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accurate model of the entire region of turbulent
aixing flow) is not only permissible but desirable
(and, in practice, fcr reasons to be explained later,
it may be necessary).

from this description of the reconciiiation prob-
len two key questions can be formulated. (i) Are
the two approaches really, and not just apparently,
producing mutually contradictory concepts and
results, and is one or the other therefore valid?
(i3) If both approaches are fundamentally valid, how
can the *acoustic" field be determined as part of
the "turbulence mixing'" flow or, alternatively, how
can the aspects of the “turbulent mixing" flow that
o determine the “acoustic" ficld be evaluated so
that "'separate determination of the Yacoustic' field
from them is permissible?

The answer to the first question is that the nwo
approacnes arg not rutuclly contradierery in any wvay
md thas nesther is invalid. Justification for this
statement, in the form of a proof of the validity of
the "acoustic' opproach solution, is giver in
Appendix 1-3A. Physical clarification and discus-
sicn of the situation is given in the next section,
in which also answers tc the csecond question are
proposed.

1-3.2 Discussion

£~3.2.1  The Helmholtz ®instability’ Approach

The apparent difficuities referred to in question
(i) of the reconciiation problem arise primarily
frem physical misinterpretation of the physical sig-
nificance, and applicability to real fluid flows, of
the faniliar Helmholtz instability motion of IZinear
type, .hich is mathematically unbounded in space and
time. As pressure, density and velocity fluctua-
tions in recal fluid flows are dounded, no mechanical
function of unbounded behavior can be permitted to
represent real flow fluctuations. The theoretical
consequences of this necessary restriction on the
solutions of whatever equations are used to provide
a mathematical modei of the flow ficld are, fairly
rigorously, derived and stated in Appendix 1-3A.
(These results will be used in the remainder of this
discussion, translated into physically descriptive
terms, without any further proof of their validity,
as this obviously would be unnecessary and
redundant.)

Thus, real Helmholtz-type "instability'' motion is
not "unstable" at all. Instead, real Helmholtz-type
instability motion is an oscillation that, teginning
near the jet exit, grows initially with fair rapid-
ity, as it is convected down the jet mixing region,
and then with aimost equal rapidity becomes limited
in amplitude and decays away. The longest time
scale for the growth~decay lifetime of such a dis~
turbance is of the order of the transit time of a
fluid particle in going from the jet exit to the end
of ,the potential core. The longest length scales
are of the order of the jet diameter. Non-
dimensional frequencies (Strouhal numbers) charac-
teristic of the larger, and initially more rapidly
growing, disturbances are of order unity (based on
jet exit diameter and velocity).

fn high speed jet flows there is as yet no
experimental evidence available which can be said to
constitute direct and conclusive identification of
the existence and/or characteristics of this type of
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motion. The circumstantial evidence, both experi-
mental and theoretical, however, is considerable,
and it is gererally agreed that the developing
turbulent mixing region of 2 jet is dominated by
some kind of superposition and/or interactions ot
motions of this type. The lack of direct exgerimen-
tal avidence can be ascribed to the usual well known
experimental difficulties of making and interpreting
observations of fairly randem, convected fluctua-
tions in high speed flows.

Experiment is not alone in being unable, as yet,
to produce more than approximate descriptions of
the character of the turbulent mixing region motion.
When one attempts tu 30 beyond a linearized theory
of the Heimholtz-type motion, to obtain the physi-
cally necessary amplitude limitation, decay and non-
linear interactions of the Heimholtz~type motions,
mathematical difficulties arise, and again it must
be said at present that results as detailed as one
would like are as yet unobtainable. However, by
use of the methods developed by Morris and Lilley
{1.2), a working mode! of »real fiuid Helmholtz-type
motions can be obtained. (n this model, reascnably
accurate growth-1imitation~decay amplitude envelopes
can ke obtained for the range of the representative
Heimholtz-type motions that can be expected to domi-
nate the mixing region motion. Also, the spatial
distribution (both axial, radia! and circumferen-
tial), the convection velocity, the phase or group
velocity, and the frequency power spectral density
of each of these '"wave-packets" can be obtained.
Some phase information on the fluctuations in the
packets is obtainable, but not complete information.
Further, the model includes non-linear interaction
effects among the several gquasi-linear Helmholtz
"“instability" modes only to the extent of providing,
approximately, the limitation-decay portion of the
amplitude envelope for each quasi-linear mode.

There is little doubt that this amplitude-limited
Helmholtz~type "linstability" model is fully capable
of providing a very good representation of the
rieasurable, locally dominant features of the mean
and fluctuating flow in a jet turbulent mixinyg
region. Indeed, one would expect that the results
may well be, if anything, more accurate and detailed
in a number of respects than those which can be
measured by any present, or presently envisaged,
measurement techniques.

However, there must be grave doubts as to whether
the results from the model in its present stage of
development can be directly extended into regions
outside the jet to provide an adequately representa~
tion of the radiated acoustic field. The reason for
these doubts is that the fluctuating motion inside
the mixing region, which the model can represent
with considerable accuracy, is very much dominated
by convected wave-packets of subsonic phase veloci-
ties (except, of course, when the jet speed is so
high that the "eddy convection velocity' itself be-
comes supersonic — i.e., the jet speed is of the
order of twice the speed of sound). It is well
known, however, that only the components of the
fluctuating motion in the mixing region that have
supergonic phase velocities, will produce any
radiated acoustic field at all. Such components, in
the amplitude-1imited, Helmholtz-type "instability"
representation of the mixing region, will arise
almost entirely from the non-linear interaction
processes among the quasi-linear Helmholtz-type
modes and, as has been explaired, the model pres-
ently incorporates such effects only in an approxi-
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m3te way, primarily to provide the amplitude
iimitation and dezay. In particular, the supersonic
phase speed components can be expected to be some-
what sensitive to the phase information in the wave-
packet fluczuations and, as has been mentioned, this
information is not completely included in the model.

(it has been suggested, incidentally, that flow
divergence effects may assist in the active coupling
of the mixing region flow field to the external
acoustic fietd, but from the standpoint of a con-
vected wave equation analysis of the acoustic radia-
tion problem it appears that this is not at all an
effective enough form of active coupling.)

0f course, if either theoretical or experimental
techniques were available to provide a sufficiently
detailed and accurate description of both the
supersonic and subsonic phase velocity components of
the mixing region fluctuations, direct extension of
the mixing region flow outward to accurately include
the entire radiated acoustic field would certainly
be possible. Aay correct model of the mixing region
flow fluctuations, such as that of Morris, must, of
course, include correct boundary conditions at large
distances from the flow (i.e., acoustic radiation
conditions). Thus, in principle, any such model can
be extended directly to include an acoustic radiated
field. It is oniy because of the present imperfect
state of knowledge and limited availabie computa-~
tional techniques that there can be littlie confi~
dence in the accuracy of such a directly extended
result at present, despite the fact that the model
ean be very confidently expected to give a highly
accurate and detailed description of the directly
measurable properties of the mixing region itself.

This situation, of cource, arises directly as a
consequence of the principle, first enunciated by
Lighthill(3) and recognized by him as the corner~
stone of aerodynamic noise theory: namely, that
acoustic radiation in general is very much a by-
product of practically no significance to the total
fluctuating power, of a jet flow.

Tonus the present, and immediately foreseeable
situation is that development of the Helmholtz-type
"instability" approach can be expected to provide
better and better descriptions of the mixing reqion
flow, but not yet by itself, directly, better (or
even perhaps adequate} descriptions of the radiated
acoustic field.

It is patently clear that in such a situation,
any "“separate", exact descriptions of the dependence
of the acoustic field on the entire mixing region
flow field which may be available must be employed
to, at the least, provide whatever information is
available on the coilective (as distinct from
direct) mutual dependence.

It is also a presently valid inference that even
if the Helmholtz-type "instability" approach could
be so refined as to become capable of direct exten~
sion to include the radiated acoustic field, the
dominance of the mixing region flow field by dis-
turbance of subsonic phase velocities is so great
that the collective "acoustic' approach would still
be necessary to provide the information on inherent
cancellation effects, etc. (such as given intrinsi-
cally by Lighthill's quadrupole form of the source
distribution, e.g.) which will be required for any
calculation of the acoustic radiation field to be
done in practice, rather than just in principle.

In this context the Helmholtz-type Yinstability"
approach can be regarded, in the language of the
rethod of matched asymptotic expansions, as being
used, as it were, to provide the "ianer expansion'
of the complete flow field, with the “'accustic®
approach providing the "outer expansion'. #Methods
of matching the two "expansions', which are valid in
orincinle, include both that of using the "inner™
field as an acoustic source distribution from which
the Youter" radiated acoustic field can be calcu-
lated and that of actually matching the two
“expansions' over some convenient outer boundary of
the jet. (Use of this simile for descriptive
purposes should not be taken to imply that either
approach is intrinsically capable of giving correct
ancwers in only one or the other of the two,

“inner'* and “outer', regions. In principie, of
course, both methods are perfectly valid for both
regions.)

1-3.2.2  The "Acoustic" Approach

In Appendix 1-3A it is proved that the “acoustic"
approach, in which, say, the fluctuating pressure is
represented every where as a superposition of
“acoustic' waves, arising from either “equivalent"
or "true' sources representing the exact, 'non-
acoustic' motions of the fluid, provides a corplerc
and unique representation of the fluctuating pres-
sure epcrnwicre, both inside and outside the jet.
The representation is unique in the sense that,
although the functional form of the representation
may equally well be expressed in other forms (i.e.,
for example, in terms of Bessel functions instead of
sines and cosines, etc.), any other vaiid equivalent
functional form must give the same pressure as a
function of space and time. In the context here,
the field variable thus represented could equally
well be the fluctuating part of the logarithm of the
pressure, or the acoustic momentum potential, etc.
Also, the "acoustic" waves thus being superposed to
make up the total representation are understood,
broadly speaking, to be nearly locally adiabatic
pressure disturbances in the form of elementary wave
trains or wave-packets, each travelling at a phase
speed of approximately the speed of sound relative
to the locally moving fluid. (This broad interpre-
tation of the superposed elements as "acoustic"
waves must not, of course, be taken too literally, or
out of context. For example, Lighthill's exact
formulation of his "equation of aerodynamiz sound"
requires one to conceive of thermal diffusion of
density at constant pressure as a process made up as
a superposition of acoustic waves (!), and is none-
theless an exacé representation.)

It is also similarly proved in Appendix §{-3A that
although the “acoustic' approach, in the special
case of domains of infinitely small extent in both
space and time, may yield not only an "acoustic'-
type solution but also an additional solution of the
linear Helmholtz instability type, this additional
solution is definitely not a solution of the full
equations concerned in the general, non-linear
problem (but only, naturally enough, of certain
lincarized limiting forms of these equations. It is
of course, obvious from the most elementary consider-
ations that an unbounded function cannot be permit-
ted at all, strictly speaking, as a solution to any
mathematical model of a physical problem where
boundedness is required from physical considerations
(and especially not when a perfectly good, complete
and unique bounded solution is available [!]).
Equally, of course, it is obvious that solutions of




the linear Helmholtz instability type have physical
significance in relation to real problems only in-
sofar as they are used to describe the initial
growth tendencies of a disturbance; even then, of
course, such solutions are only approximate — they
are exact only, as it were, at zero time (or
amplitude).

As another academic point in the same vein, it
is worth commenting (but only because a curious
interpretation of the results to be mentioned has
been put forward, apparently seriously, on a number
of occasions) on the fact that the linear Helmholtz-
type instability solutions are required, along with
an “acoustic'" solution, to provide complete solu-
tions satisfying "causality' for certain linearized
(and also otherwise idealized) theoretical problems.
Such mathematically correct results are, strictly
speaking, of no generalizable relevance to real
fluid motion, either in practice or in theory,
because the linearized problem itself represents
real f!' id motion only for zero time (and/or ampli-
tude). Also, the use of the word “causality" in
connection with such problems can be misleading. It
is a trivial matter to verify that in such linear-
ized solutions that the "acoustic® part of the
solution and the linear Helmholtz instability part
each indep undently satisfy the causality principle
in its usually accepted sense (indced, its only
physically valid and relevant sense): that is,
that the cause must precede the effect. Causality,
in this valid sense, is, of course, also satisfied
by the complete and unique "acoustic" approach
solution to the full non-linear problem.

The matters discussed in the preceding two
paragraphs are admittedly rather academic in nature.
Nevertheless, in relation to real problems the
discussion has provided some further insight into
how it comes about that the "acoustic' approach
solution is complete and unique for realistic formu-
lati»ns of the aerodynamic noise radiation problem,
and 1nto how it is that linear Helmholtz-type
instability ,olutions have no role to fulfill in
this approach, except, if desired, that of approxi-
mate solutions for very limited space and time
domains (infinitesimal times and amplitudes).
However, a valid, recal question remains. Granted
that the acoustic field outside the jet may indeed
have a representation that has the character of a
superpo ition of Yacoustic" disturbances, how can
the {presumably non-linear) pressure field inside
the jet validiy bave the superficial appearance of
such a character and how is such a representation
to be reconciled with the amplitude=limited
Helmholtz=type instability representation of aub-
aanlea’ly, rather than goniea’ly travelling
disturbances?

The answer o tne first part of the question is
straightforward and is not of much physical signi-
ficance. The phenomenon of interference makes it
possible for very wide classes of functions
("almost any function') to possess a representation
as a superposition of waves of apparently “Macoustic"
{or other) form. Again, the example of Lighthill's
“equivalent acoustic waves' representing thermal
diffusion is relevant. The only real physical
relevance of this otherwise more or less mathemati-
cally accidental occurrence, of representation of
the pressure field inside the flow in terms of

“and hence, in principle, measurable.

“acoustic' waves, can be established i? §erodynamic
noise theories such as those of Lilley 2} or Doak
(4,5). In these theories physical reality can be
ascribed to the elementary “acoustic" waves as
representing, say, the actual individual contribu-
tions from different regions in the mixing flow to
the fiuctuations of logarithm of the prescure, as
arising from certain well-defined™ second order non-
linear flow interactions (Lilley), or, similarly,
the actual fluctuating, well-definedt acoustic
momentum potential field cqused by fluctuations in
the likewise well defined? turbulent and thermal
fluctuat nns (Doak).

The more interesting part of the question, for
present purposes, and the part that requires answer-
ing to complete the conceptual reconciliation of the
Helmholtz "instability" approach and the “acoustic"
approach, is that of the relationship of the
fluctuating pressure field, as calculable, say, in
practice from the "acoustic' approach representa-
tion, and that similarly calculable from the
Helmholtz "instability'" approach, for the pressure
field both inside and outside the jet.

Here the *acoustic' approach solutions show vety
definite advantages over the Helmholtz ''stability"
approach, particularly for the radiated acoustic
field. The "acoustic' approach representations
show that, subject to acoustic scattering effects
(including refraction, diffraction and radiation
efficiency) explicitly and completely represented to
date only in the Lilley and Doak theories, the
radiated acoustic field can be determined primarily
by knowledge only of the solenoidal and thermal
components of the jet mixing region and jet core
motion, and that in this type of representation the
detailed nature of the pressure field inside the jet
is of secondary importance {for detailed justifica-
tion of this point see the cumulative arguments put
forward in reference (4)].

Thus, because of the strong tendency towards
collective dependence of the fluctuating acoustic
{pressure) field, both inside and outside the jet,
on contributions from Ll parts of the turbulent
mixing region and potential core of the jet, the
radiated acoustic field especially, can be fairly
accurately estimated on the basis of minimally
accurate estimations of the « lenoidal (turbulent)
and thermal components of the motion in the jet. To
obtain reasonably accurate estimations of the
fluctuating pressure field, at a point cither inside
or outside the jet, in other words, it is xo¢
especially helpful to know the fluctuating pressure
field at other points (to the degree of approxima-
tion that it can be known at present), but it 72
helpful to know the mean and fluctuating *urbulonf
{solenoidal) velocity (or momentum potential) fields
and the mean and fluctuating thermal fields fnofle
the jet.

It might be said, by way of descriptive explana-
tion of the situation, that the whole matter is
simply a consequence of Bernouwilli's equation. Local
pressure fluctuations in turbuience are known, from
both observation and the theoretical work of
Obukhov, Batchelor and Proudman {see, for example,
reference (6)], to be proportional to the square of
the local turbulent velocity fluctuations., The
radiating pressures associated with these loca)
fluctuations are known, th from experiment%7) and
from Lighthill's theory 3), for example, to be pro-
portional, because of quadrupole inefficiency, to
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the fourth power of the local velacity fluctuations
{subject to mitigation by source convection,
scattering and radiztion efficiency effects). Thue,
the contribution uf the radiated pressure field, at
a point either inside or outside the jet, may well
be, generally, of quite a different order to that
of the locally dutermined contribution. As has
becn argued (4, see p 313) it is presently very
much an open question as to whether or not pressure
flucsuations ™muld the jet will be dominated by
the local contribution, or by radiated contributions
from othur parts of the jet, or by ncither. Hence,
in the present state of knowledge, it is much safer
to regard the pressure field inside the jet as
possibly made up of ! .+/ local and radiated

P . contributicns.

It is now evident that for the present, at least,
descriptions by the Heimholtz-type "instability"
approach should be considered to give the best
possible descriptions of the fwroulent velocity (or
momentum) fluctuations inside the jet but that
Yacoustic' approach descriptions should be con-
sidered as giving the best possible descriptions of
pressure {or "acoustic') field fluctuations, both
inside and outside the jet.

Conclusions

1-3.3

(i) The Helrholtz "instability approach, in the
present state of advancement of techniques and
knowiedye, is capable of giving the best possibie
representations of the mean and turbulent velocity
and temperature fields inside a jet flow.

v —y—

{it) The “acoustic” approach {of Lilley or Doak),
in the greszaet <tate of advancement of techniques
and kaowledae, is capable of giving the best possible
representation of the fluctuating pressure (or
1roie? 0 momentum potential or particle velocity)
ficlds, both inside and outside the jet, given
vither experimental knowledge, or theoretical model-
ling from the Helmholtz "instability" approach of
the = proand r.ow.q v velocity fields, and ¢hopmy!
fields, inside the ,et.

(iii) IS o Helmholtz instabilities have no
dirvet relevance either to real jet flows or to the
sound radiated from them. They have indirect rele-

' vance only insofar as they can be regarded as
’ approximations, for very small times and amplitudes,
to the bouaded, non-linear Helmholtz-type motion.

References

1. P. J. Morris, 1971, Ph.D. Thesis, University
of Southampton, The structure of turbulent
shear tlow,

2.  G. M. Lilley, 1972, The generation and radia-
tion of supersonic jet noise, AFAPL-TR-53,
Vol. IV, 2-90, fiencration of sound in a mixing
region.

3. M. J. Lighthill), 1952, Proceedings of the

Royal Suciety A 211, 564-578, On sound gener-
ated aerodynamically: 1. General Theory.

P. E. Doak, 1972, J. Sound and Vib, 25, 263-

335, Analysis of internally gencrated sound in
continuous materials: 2. A critical review of
h the conceptual adequacy and physical scope of

- -—

existing theories of acrogynanic noise, aith
special refersnce to supersonic jet anie.

3. P. €. Doak, 1973, J. Sound and Vib, gﬁ. 527-
561, Fundamentals of aerodynamic sound theory
and flow duct acoustics.

6. K. Batchelor, 1953, The theory of homo-
geneous turbulence, Cambridge University Press.

7. P. A. Lush and R. H. Burrin, 1972, The genera-
tion and radiation of supersonic jet noise,
AFAPL-TR=72-53, Vol. V., An experimental
investigation of jet noise variation with
velocity and temperature.

B. J. Tester, 1973, J. Sound and Vib. 28, 217-
246, Some aspects of "sound" attenuation in
lined ducts containing inviscid mean flows
with boundary layers.

9. P. N. Shankar, 1972, J. Sound and Vib, 22,
233~246, Acoustic refraction and attenuation
in cylindrical and annular ducts.

APPENDIX 1-3A

A Proof of the Validity of the
Acoustic Approach Solutions for Describing
Acoustic Field Variables both Cutside and
Inside a Jet or Other Turbulent Flow Field

In aerodynamic noise theories, the complete
“exact' equations of mass density and energy density
transport of the fluid are arranged to yield some
generalized form of ''inhomogencous acoustic wave
equation';

L' = -Q (A.1)
where Ly is a linear partial differeatial operator
with variable coefficients (usually functions of
position but in genecral they also could be functions
of time), p' is the (total, "exact') fluctuat: .y
pressure (or logarithm of the pressure, or momentum
potential) and Q is a non-linear function of the
pressure, mass density and fluid velocities (or of ,
some other suitable set of primary dependent ficld
variables).

For applications to far field acoustic radiation
from disturbed flow regions embedded in an infinite
extent of fluig which tends to a state of rest at
very large distances from the disturbed region, the
operator L, is seleated so that outside the dis-
turbed fluid it tends to proportionality to the
small amplitude acoustic wave equation operator,
i.e.

Ly » A (€5 02/3%,2 = "/n?),

where A is a constant (or a trivial space or time
differentiation), C, is the speed of sound in the
fluid at large distances from the disturbed region,
the x; are the Cartesian position coordinates, and

t is time. It is clear that in such situations the
necessary and sufficient physical boundary condition
for equation (A.1) as Xil » « is the usual acoustic
radiation condition.

In this context. the exact prablem of fluid
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totion posed by equation (A.}) can be put as
follows. Given the coefficients of the operator Ly
and the source function @ as bounded functions of
positicn and time, find p' as a bounded function of
position and time that satisfies equation (A.1)
everywhere in space-time and satisfies acoustic
radiation conditions as |xj| =+ «. (For the purpose
here, it is not necessary to explicitly consider
situations in which the fluid has boundaries either
inside or outside the source region. Such boun-
daries, if present, could in any case be represen-
ted simply by equivalent, bounded surface or image
volume source distributions in addition %o Q.)

Boundedness is, of course, an essential condi~
tion to impose on p' if p' is indeed to represent a
physically realizable quantity., By imposing the
condition, and by assuming that L, and Q are
bounded, one is, in effect, making the assumption
{which is in fact the only assumption made in this
proof) that the complete transport equations of the
fluid actually possess a set of bounded solutions
for the dependent field variables (pressure, drasity
velocities). |If the transport equations do not
possess a bounded solution, it is clear that they
must be an unsuitable mathematical model for physi-
cal phenomena that are bounded.

Formally, because equation {A.1), with L, and Q
known, can be regarded as an inhomogeneous iinear
partial differential equation, its solution can be
expressed as

p' = J 6(x;» &5 v 1) Q ly;, ) dy; dr (A.2)

where 6 is a suitable Green's function (space-time
impulse response function), obtained from

L, 6= - -\(xi - yi) & (vt - 1), (A.3)

where - () is the Dirac delta function. (Of course,
in the general case Ly may not be self-adjoint, etc.,
and »0 certain adjustments would be necessary in the
notation of equations (A.2) and (A.3), but their
essential form would be unaffected.)

Now it is possible in some circumstances for G,
as the solution of the impulse response problem
(A.3), to appear to contain an unbounded part. In
particular, when L, is the Landahl operator (as used,
for example, in Lilley's convected inhomogencous wave
equation for aerodynamic noise theory) G as obtained
from equation (A.3) is known in at least one well-
documented case (see reference [8]) to appear to
have two parts: a bounded, "acoustic'" part, Gy, say,
and a part displaying Helmholtz-type instability
behavior, Gy. Thus, in such a case equation (A.2)
would appear to yield, with G = G, + Gy,

' g 1 1
P Pa + PH »
where py is bounded for all space and time but py'
is not. (Also, py' may not satisfy the radiation
conditions.)
Formal application of the Green function approach
in this manner may thus lead, when unstable solu-

tions of the linearized equation

Lap"O

exist, to an unbourded solution in a situation where
a bounded solution is required. Because of the
requirement of boundedness; therefore, there is no
alternative but to reject the entire solution con-
taining any such unbounded part, should it be
obtained, and to ask if any bounded solution can be
obtained.

In some particular cases where L, is the Landahl
operator, it has been argued by Shankar(9). on the
basis of certain general considerations and computer
tests, that the set of acoustic function solutions
alone of the homogeneous form of equaticn (A.1), the
Helmholtz instability solutions being excluded, is
“in all probability complete! If this is the case,
it follows that the acoustic part

p=p, = [ca Q dy, dt {a.b)

is, by 7tae’f, a particular solution of
La pt = - Q.

Furtherrmore, in the shear layer cases investi-
gated by Howe and by Tester(8), in which an unbound-
e¢d part of the Green function, Gy, has been found,
it is a trivial matter to prove that the acoustic
solution by itself is in fact a particular solution
of

Lp'= ~-Q

(The proof for these cases amounts simply to the
observation that in the scurce region, where Q # 0,
in these problems py' is always zero, so that

L =0

a P
everywhere in the fluid and hence py' is a purely
complementary function, not in any way essential to
any particular integral.)

The discussion of the general problem can now,
on the basis of these observations, be conducted in
respect to the two possible cases: (i) G, by itself
is a particular solution of

L6, = -6 (xi - yi) §(t - 1)

(or, alternatively, the bounded solutions of

Lap' =0

form a complete set of functions); (ii) all particu-
lar solutions, G, + Gy contain an unbounded part.

Case (i): Gy is a particular solution. Let the

desired, bounded solution of equation (A.1) be
written as

P' =Py *P.

where

(- .
ps = [, Qdy; s




py is then a particular integral of

Lyp' = =~ Q.
Hence

L, e =0.

Case (ii): All particalar solutions, G5 + Gy,
contatis an unbounded part.

The complete solution then must be of the form

pt= [(6, Q% 6@ dy; dt.
The part

fGa Qdyi dt

satisfies the boundedness and radiation conditions
but the part

satisfies neither. |If this part contains a compo-
nent essential to the particular integral it cannot
normally be removed by addition of any physically
acceptable complementary function. Hence, no solu-
tion satisfying the prescrited boundedness and
radiation conditions exists. The fundamental mathe-
matical model then cannot be valid for the shysical
situation envisaged. {If, by virtue of some kind of
pathological circumstances, it should be possible to

remove LOth the partscutar at ral armd ¢o ple-wn=
tary function parts of

{GH Qdv, &

by addition of some further complementary tunction,
then cne wauld simply return to the result of Case

(i):
p' = f G Q dyi dr.)

Conclusion: Insofar as the complete, ''exact”
equations of fluid motion are believed to be valid
models for real fluids, and insofar as all observa-
tions of aerodyn*=ic noise phenomena to date confirr
that boundedness, and acoustic radiation conditions
at large distances, are always characteristic of the
flows concerned, it follows that all "“acoustic™
operators such as the Landah! operators must have
complete sets of acoustic functions among their
komogenecus solutions so that the bounded acoustic
solution by itself is a particular integral of
equation (A.1). To estahlish the mathematical
sufficiency of the acoustic solution in any particu-
lar case, it is sufficient to establish that the
acoustic part of the Green function alone is a
particular integral of

R A A R U

or that the acoustic sclutions of

Ly p' =0

form a complete set.

58
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Brian J, Teater o> Aote tod, Burr
Loak-eea~secrysa Lompar,
Marierta, lecrgea

Adstract

Sound genarared by velocity fluctuationy ie &
Lurbuient et interacts with tha mean fiow field
alory 1ts reopagation path through the jet to pro-
duce significant changes in the far-fiald rad.atior
teve) ang 2irvectivity. Litley’'s aguat-on atlows o,
1o evaluate these jound-aear flow interaclior
efteots, that s s2und convedt:sn, refraction or
ittt aition, for amy given Curge istrabution, Yo
ot allerrrate some of theus eftecets ang o pro-
S 3w the bases for commtriiters 3 zomplete Lofur o0
io Lilley's wguat on, we  olve tew orobler of 3

ey tomaly point _ogroc focated 1oy osrembar, onee
directeonal, <heared ~ubsonsc jet 1R 3 realiaic
wan velosty protile  CTalcalated Tar=Figld
acoustic radratecs foveis gre prosented 3. 3 fooos
Lion ot “o.ree Iotatien, Troguency ond el Hach
parbery Calouloted Par=tocbs r3diation drirectiest,
pattern. of 3 o foed 20Nt source re compared
w1UN medvurements of Lhe directivity of cound
T3t sted froao g prope source placed inside 4 et
Fross ame b, an ualatat e agree ient 3 nrle
Jde T IONS rRm3 Nl CONCErNinG Fudrysenlation of ke
probe source and the t,,e o' iuteor stideged here,
< nyideratson ot theoretical resulls, ontacaed
el eabere, atrongl)e saggests T a1 3 more Foalsstig
~.an flow mode! i required. A compl_te solution to
Cilie,'s vquation, tor 3 siepdifind version of the
stardard tope of turbslence source tunction statis-

Kty vluste tan e fars of difference wpactny
4nd bound to by in qocd qualitative accement wath
e syur st

t=4 1 tntroduction

In qecent papers Litley (1 ),(2 ) has describes
tte furnalation of a new theorvtical jet notse
model. is in Lighthill's (3) apd Phillipts (&)
rodels it 1c based on an 1nhemogenous wave euation
Lilley' s «quation, however, describes explicitly the
comvined effects of both sound convection ond re-
tract: 1, vr diffraction, by « unidircctional,

carea jet tlow field, and it shows, akwo, that the
souries of sound in such a jet, are, to a good
approximation, 3 non-linear function of the turbu-
lent velocity fluctuations.

The purpose of this paper is to describe one
aspect of our progress to date in a theoretical pro-
aram which has as its goal a detailed evalvation of
Lifley's model for a circular, turbulent, high speed
jet.

ine complete solution to Lilley's cquation will

be constructed from an appropriate <pecification of
the aon-linear source function and solutions to the
samg equation,but with the source function replaced
by that for a point source. A model for the turbu-
lent velocity field is being developed by Morris
(5) and results from his model, in conjunction
with measured data, will be used, in duc course, to
determine the source function statistics.

Here we examine point source solutions (section

T 5, 275 921t 3 f3r B avp tied wevr 37 2f 3
standars type 2F torzuferie woorie fumnuone wmige
are e Comoared o0tk wedsured jex v se 3 fferewe
JeBLlfa 1%elt 3n (rw. Dl Tme 20 vt _tutie aI'uliucav,
villey s eguation are presented nere = suowe Zeta )
e Fully Tilustrate (e eftecty of '~teractions be-
Lween Louhd Srip2Iatio® and 3 oidirectinal ohearey
ant Flooe Frela fzwrsest on, refract on cr aitfrgo-
viony n the Far=-0.a13 vudia? Lf 3eItieit,, whiL”
ca the gbaemice A Flow wouTd e v tovecticmal
Boasg sourae 01Ut Dan are 3bls Corwfed  wotr

Wun FETENTE, R Yre Form of “easured rad.at s
Jirmilidils paller e frar the prates == et esjer.-
wanty, Linge 1t s clrar!y Zesrrabiie 1hat the
waltidaty oF Srese o utiiay be tharoughly ex,lired
pefore proimeling o Lic~truct zompleta soiltiom

tx bidtee  wiuation For vogtiar o coaurie fomot o
CLee nepliom tea kY,

br s roeni a9 led tRgt Sur oreeent s0lutiar sy i
Lridey ~ waaaloe™ ule o0rr 10 Gt orw™ Lelguse Lhe
unstable type of solltyom s agrored, e point 4.
Jestuvsed 1m TRt Tlowary ection

L=, 2 Tingusat

Wt e ety for presare Fluctuations, o'
g wnadirectioral or sargfl=l «hearted Flow o oF
the for=

Liphs x

whore bt g e tial detterant gl Soorator and i
3 nedslinear tunztion of the turtulent velzgit.
tuctualoena.,  FUs homogenow  turm, Lig') & 0, ro-
Juces te an ordinary homogencus daftesential viua-
tion for the Fourter tran . tor= of p* which o«
1wdenticul 1O the ©quation Lsed UD study sound pro=
pagation an lined ducts contatning parallel sheares
flows (6},( 7). it can 2o be recognized ay tre
same egiation, n effect, which s used to =tudy

tre binear ststility properties of raviscid, come
rrescible, parallel sheared tlow, (B} 4nd brcause
ot this the apglication ot Lilley'sw vjuation to tre
jet noise problem, 3. descr: ed here, ha~ Swer
seriously questioned by some students of current xt
neise theory. Opponents argue, often on the bavis
of results obtained with vortex shevt or  plu,
radeds (9), that two types of solutior o= be
expected troe Lriley's eguation, which 3¢ retere.d
to here as the acoustsc solution and the urgiatle
solution. Tle acoustic ~olution, 31+ tne name
implies, 1v wcll behaved and decd,s as the .nver
o distance tron the jet source distributes in the
f -field. The unstable Lalutiva, 1f restraicted 1o
resl frequencies, may grow exporentially i the
downstream direction and unless flow devergences 4nd
ather mechinismy are taken into jccount mhich 1isat
this growth (5}, 1t 142 impzssible to dereve 3
realistic far-field contribution from thes solution
The work reported here ix concerned only aith the
acoustic solution. 1t is naturaily desstrable (o

LA

have a working knowledge ot the acoustic solutson
before proceeding 1o study the unstable solution 163
also there dre possibly regions of the jet where tor
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T ondi sheared. Gyiindrical ;-1 coctuing 2 finmite
whee of wrielente 70 weich the spaie-2iZe covari-
ance ~f ¢he sguarce F the cellaite flaitisaticons,

vi. is Kroan.  Tre nican static preswure. 9. is unic
farz rewughout the jet and radiation field: the jet
’s Inviscid and obeys the iaws for a perfect Sas.
The axial cean velocizy, v, . densily, tesperature
and speed of swund, 3, may vary coasisterntly with
radial pasitica inside the jet but are otherwise
constant. For this rodel Lirley*s equation takes
wne forn {if p'/p -1}
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For the purposes cf the present study the second
tera in the source function, °, is icnored and the
velocity fluctuations are assuved to de incompres~
sidle, that is,

so that the source function takes on a faniliar
forn
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We shall work in eylindrical coordinates as defined
in Figure (1); the differential operator. L, rem2ins
the same except x. is replaced by the radial ccordi-
nate r where it appears explicitly in equation 3.2.
Tne Lignthill source function in cylindrical coordi-
pates, Sc, iS5 the sum of the following terms:
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where €, is a coefficient obtained from mz=erical
solutionz of equation 3.16. The method of numerical
cofution is descrided in Appendix (-3.C and the
fourier inversion in Appendix 1-5.B. In the Fourier
inversion it is shoen that soluticns are vequires
far aaly specific xavenuaders such that

% = Z-cost
19,

where 1 is the observer angl= to the jet axzis:

- .
.-y xpmx)
- ® cos N

: - x?}d 4 p1*
4 (x! x’) £t

The frequency, =, S necessarily restei - ! to real
values in the present analysis and vqual to the
* bserved frequency.

The nuncrical coefficients, €,, then are func-
tioas of the circenferential wavenunbers, n, the
observer angle to the jet axis, ~, the frequency or
Helenolez nuster, H = bry, (xhore o, is the jet
nozzle radius), the radial position of the source,
R* = r’/r,, and the noa-dinensionalized pean ve-
locity and speed of sound profiles, Hy, afay. and
their gradients with respect 1o the rodial cocréi-
rete, R = rirg.

It is the presence of the mean velecity and
tespersture gradient terms in cquation 3.16 which
distinguiskes it from the Fourier transform of
Pnillips equation {4 ) . There are undoubtedlv coa-
sitiens under which these gradieat terms do not
sigais’ ~tly effect the solution tc equation 3.16,
b o cave yet to be deteramined; gualitatively
wah cunditions will be associated with large
ve'sec of e Heleholtz number, &, based on the
width, %, of the jet shear region. At the opposite
aextrene, ko -0, where the gradients based on the
scaled radial coordinate, R, dre becoming indefi-
nitely large, the solutions are certainly indepen-
deat cf these terms and converge to the analytic
solutions for a “top hat" or ’plug'" mean velozity
profile. Thus, Lilley's equatirn certainly in-
cludes the circuelar "plug” jet model, used, for
example, by Kani (13), as a special cose. In this
timit the C, coefficients take one cf twe values,
depending on whether the source is inside or out-
side the “plug" jet:

23 (K.r?)
n" 2 .
Co = —— expljna/2l  re<ry
sty
2 LIS b =
cn = N (E [e’(kzro)"n(xzro)bn =
juEq

- K s (R H [
Kzran(kzro)an] rior.
where

a
(Ezro)2 = (kro)z KEQQE {1 - Hycosp}2 - cos®o}

'

sn - '(k:ra)un (k;.ro)an(x:,,o) -

- ey 1 e M)

o= (1 - cho;E)z %—-
‘o

3: = Jn(EEr') Yn(E:ro) - J“(E::o) ?n(i;r‘)

- - oy -
.‘T; = Jn(l\.;r'.! \’n\x:ro) .ln(k.‘.ro)Yn tkart)

k:ro = kro sin-

The zcros of the function £, deterzine the
position of poles on the camplex k, plane; one or

r¢ of these poles defines the unstable eigenvalues
of k; and the Fourier inversion should include con-
tributions from these poies to give the unstable
colutiorn. This type of sclution, as w2 have already
meationed, is ignored in the present study and ir
sinilar vork eisewhere (i0), {13), but will be
sivdied in future work. It should be emphasized
that the utilization of Lilley's equation, with
realistic velocity and spead of sound profiles as
opposed to the top-hat profile, does nct alter the
general picture in any way. There sill still be an
acoustic solution and one or mere unstable solu-
ticns, bothk of which will be modified by real
profile effects. But, both types of solution can
be recognized and cbtained independently by numeri-
cal =ethods (at least for jet Hach numbers less
than two).

The accystic Green’s function soluticn to
Litley’s equation, equation 3.19, will be utilized
sn sections t=4.4 and I-4.5 to form solutions for
particular source distritutions.

I-4.%  On Theoretical Hodels of the
Probe-let Experiment

In a recent paper by MacGregor ¢t al (14) results
are presented from an experizmental configuration
which we now attempt to represent with an approxi-
mate, theosretical model. The experiment consisted
of a source of svund, introduced through a 1/16"
i.d. hypodermic tube, placed inside a jet, two
diameters downstieam of the jet nozzle on the jet
axis. With the aid of an instrument which "'behaves
somewhat like a correlator’ {14), the acoustic
radiation level, in the far-ficid, at the source
frequency was effectively extracted from the ‘et
noise signal. The radiation level directivi ,
relative tc the level at 90° to the jet is presented
by MacGregor ¢t al (14) for two jet exit Msch
numbers, 0.5 and 0.9, and for four Doppler shifted
frequencies, 1, 1.5, 3.0 and 4.5 KHz. This extrac-
tion process, that is the exclusion of acoustic
signals at all other frequencies, means that our
acoustic component of the Green's function, which
oniy includes the effects of stable linear trans-
mission of sound through the jet shear layer, may
provide a vaiid theoretical description of direc-
tivity patterns measured in this way.

-
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where v o= w2 .
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In the Lighthill model the inhomogenous wave equa=
tion is solved by means of the Green's function,
glx, t/x', t'), which is the acoustic pressure at
(x, t) duc to 2 pulse at time :* fron 3 point
source at x'; in the absence of beundaries, it is
sizply

3z - t' - |x - x'1/aq}
Flx- 2] >

glx.t/x',t*) =

tThe acoustic pressure, p', due to an arbitrary
scurce distribution, Sp, is then

+m
pix,t} = I J‘Q(ﬁ.tli'.(') Splx*,t'}dx' de! 3.8
- v

or

fn the present model we do not attempt to find
g{x,t/x',t') since we are mainly interested in the
spectral density of the aceustic pressure and
therefore the Fourier coefficient p'{x,u} where

p'ix,0) = J. p'{x,t} expljut]de 3.10

The fourier transform of equation 3.8 is

S0
p' (x,0) =fjg(5.ul:_(_'.t‘) Splx'.t') dx! dt' 3.1

-0y

and thus we require a(x,u/x’,t') the {complex)
Fourier coefficient of the acoustic pressure 3t the
observation point x due to a pulse at time t'
emitted from a point source at the point x'.

To summarize,we solve Lilley's inhomogeneous
wave equation

5 %
L(p") = 57 (oo 53~ - Scl 3.12

by assuming the existence of the Green's function
gix,t/x*,t'), which satisfies,

Lla) = 3 (6lx = x*) 8(c - t)) 3.13

and by finding the solution to this equation for
the Green's function Fourier coefficient, gix,w/x',
t'). The solution to Lilley's equation for the
Fourier coefficient p'(x,w) is then

prix,.) =

+in -

a
f .['.-o -5, (.t glmafxie’) dx' det. 3.0
M

in cylindrical coordinates the right-hand side of
equation 3.13 is

ORI L& S A R I R

E‘ (-13

We now proceed to solve equation 3.13 by taking its
Fourier transfcrm with respest to t, X, and $; the
circunferential wavenumber is restricted to integer
values, n, due 10 e usual continuity argument.
The result is an ordinary differential equation

14,49, 9 1100 BN
r dr (rdr) * {dr !'°9e (502)' +

2iglc ey g 2 ,
— 4 =) (- -
* TR R ar var T 9 K Uz -1,k /k)

2
2y .0y -
- (kllk) } r2]
r=pt
= - 21475—1 expl~jut® + jklx; + jn9'l  3.16

where k = w/ay, M, = Vy/3, and the dependent
variable

3= g(k,.r.n.u/x;.r‘.¢‘.t‘)

4o 27

-]

%

g(x,urx',t*) exp[jk;x‘ + jndldx,de.  3.17

g

Once the solution to equation 3.16 is found, the
required solution g(x,w/x',t') is obtained by
inversion:

® 4o
glx,0fx',t') = (-‘i:_:)2 Z {J- glk,,rna/x’,t')

nS-» =

xexp{-jk,x, Jdk,} . expl-ine] 3.18

When the inversion with respect to the axial wave-
number, k,, is restricted to the far-field solution,
as discussed in the previous section, it takes the
forn (sce Appendix |~UB):

expl-Jkx,cos8- jkrsing]
hx{(x1~xi)2+ 2}

g(x"ﬂ’/f_'nt') =

o

rcxpl-jwt‘iexpijkcosbxilz ¢, exp{-jnl¢-6")] 3.18

n==w
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L ane

It might appear that a theoretical model of this
experiment is straightforward: Lilley's equation
could be solved with the velocity profile found at
two-diameters from the jet nozzie and with an
appropriate representation of this experimental
"point" source on the right-hand side of that
equation. We propose here a slightly different
approach based on the argument that the experimen-
tal source is surrounded by a thin annular Tregion
of disturbed fluid whose mean velocity in the axial
direction is zerc adjacent to the source. This
disturbed fluid, which is the probe boundary layer
and wake, will of course spread at a certain rate
downstream of the probe but once again we will use
a non-diverging, infinite, parallel flow model for
this particular region and, further, for simplicity,
it will be assigned a fplug’' flow representation.
In fact both the probe, and hence the wake diameter
will be zero in the present model but, initially
equations are formulated for the mode! shown in
Figure 2. Regicn 1 (the diameter having a limit
zer0) contains a stationary fluid and a point source
representing the probe excitation., Lilley's equa-
tion will be utilized in Region 2, which contains
the sheared jet flow, togetl r with the radiation
condition at its boundary with Region 3 arnd an
inner boundary condition at the interface with
Region 1. Region 3 contains the ambient fluid sur~
rounding the jet. Through this model of the source
and its immediate surroundings we can deduce the
effe stive source strength to be used on the right-
had side of Lilley's equation,

Region
Boundary _of 3
) et Fiow
» =M 2
=
fu, TR Vortex Sheet
reQ _ _Jet Centerline |

Point Source

Fig. 2 Parallel flow Podel of Probe-in~Jet
Experiment

in Region 1 the Green's function, Gl. must
satisfy

d<6 d6
1,19 0 L s(r)
a7t r dr * k261= r s bt

where ki = k7 - K
S = - cxp{-jut']cxp[jk]x;]
and the solution is of the form

J_(k

otkyr) + 1%2 "0(2)(k2') 4.2

Gl = A

In Region 2 the Green's function must satisfy
Lilley's equation but in the vicinity of r = §
where the mean flow is uniform Lilley's equation
reduces to

4% d6
—2.1_2
drz * T dr * KZG =0 h.3

2 = ke - 2 - 2
where K2 = k2((1 lel/k) (kl/k) }

and the solution is the form
G, = & J,(Kyr) + 8, Y (Kyr) LR

but as K,r+K,5+0 the first term in this solution
is negligible compared with the second so that

G, 5 BzYo(Kzr) (K2r+o) 4.5

Across the vortex sheet of the probe wake "plug"
fiow the conditicns of continuity of pressure and
particle displacement are applied

G, = G, u.6

dG, 1 dG,

T T Tokn JR)E T 8.7

which with equations 3.2 and 3.5 give in the linmit
ks »0

iz (1-k M, k)25 = éﬁ .S, 4.8

B, 5

It follows that the point source of unit strength
and the surrounding wake "plug” flow can be re-
placed by a point sourcc of strength ¢ located in a
region of uniform flow, that is, in a region, 2,
which extends to the jet center-line.

According to this model the far-field pressure is
given by (sec Appendix I-4A)

exp{-jh R}
p(Rr.U,z) = __R;E:——-— exp| juot]

. 2%
x(1-hgcosn)’ - ;L . Ay, k.9

where R, is the distance between the source and
observer, 0 is the observer angle to the jet axis,
Mg is the value of My, the mean flow Mach number,
on the jet axis, wg ® aghy is the source radian
frequency and A is, indirectly, the numerical
solution to Lilley's equation. If the jet shear
lsyer is also replaced by a vortex sheet then the
analytic expression for A is

Al 510
£
where

' -
€, = W(kzro)”éZ) (kzro)Jo(K ro)

- - (2)
(Kzro)Jo'(Kzro)H° (kzro)

v = (1 - MRcosu)?




kzr = krosine
k22 w 2 - 262 ~ 21
krZ (kro) {1 Mkco.e) cos2s

HacGregor's (14) results are reproduced in Figures
3 and 5. (in Figures 3-7 the Doppler shift factor,
C, is defined 2s € = [(1-M.cos8)2 + aZM2}};

Me = 0.5 ¥3/ag; a = 0.55.) The corresponding cal-
culated plug flow directivities

-2} [
20 log :2111—— « (1-M cose)2
1008 (k7)) R

0 090

are shown in Figures & and 6. At the condition

Hg = V3/ay = 0.5 the measured and calculated re-
sults, in Figures 3 and &, are not significantly
different Tor angles greater than 10° (when the
observer is either inside, or close to, the local
residual jet flow, a parallel flow model cannot be
expected to be valid}. At the higher jet Mach
number, Figures 5 and 6 show that there are clearly
substantial differences between meazurement and
theory over the whole range of frequencizs and
angles.
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Fig. 3 MHeasured Far-Field SPL Directivities of
a Source on Jet Center-Line (ro = 3/8")
Taken from MacGregor .* 1! {14)
(VJ/ao = 0.5)

« = 90°)

4 NG=-9790

CALCULATED SPL JB (RE.

0 10 20 30 L4 S0 & jo & 90
., ODSERVER ANGLL TO <ef XI5

fig. & Calculated Far-Field SPL Directivitics of a
Source on the Center-Line of a Circular
"Plug" Jet Flow (That is, Axial Station at
Nozzle) for Comparison with MacGregor's
{14) Measurements Shown in Fig. 3
(VJ/a0 = 0.5)

o

L-2]

» 3
47 - .19

" 0.9 s

=

o 2.0

© .

=z v

o

2 0.0 3

g

= 0.0 - 30.9)

S

L 50 T 7

6 W 2y W 4 0 8¢ Jo 80 R
. OBSERVER ANGLE 70 JET A1S

Fig. 5 Measured Far-Field SPL Dircctivities of a
Source on Jet Center-Line (r, = 3/8") Taken
from MacGregor ¢ «1 {14} (VJIao = 0.9)

o 9
(=
o
a2
« =104
&
- =207 ‘t.,l“)‘J 3
«©
° n;IZr A9
& =309 b
v 172 -
?' “
= =401 /e [0}
=2 "
3
2 4.0 ~ 95.0
]
3 50 T v T T v T T Y
'} 10 23 16 G 50 [3:] 7% 89 99

« TBSERVER ANGLE TO JET AKE%

Fig. 6 Calculated Far-Field SPL Directivities of
a Source vn the Center~Line of a Circular
"Plug Jet Fiow (That i, Axial Station
at Nozzle) for Comparison with MazGregor's
(14} Measurements Shoan in Fig. §
(V‘,/ae = 4.9)

e &

o~

»

=144

= 204 !
<«

-

2 -3+ s
&

[>]

: S i ey
Z -5 v T Y — T T T

19 20 10 L 0 (X1 e o 43
o OBSEAVER ANGLE T JET AXaS

Fig. 7 Lilley Equation Solutions: Far-Field SPL

Directivities of a Source on the Center-
Line of a Circular Sheared Jet Flow for
Comparison with MacGregor's (14)
Measurements Shown in Fig. 5 (VJ/a0 = 0.9)

The directivities of solutions to Lilley's
equation are shown in Figure 7 for the condition
Mp = 0.9; For the lower Hach number (0.5) the re-
sults are almost identical to those for a plug flow
profile. The Mg = 0.9 olutinns have been vbtained
using a velocity profile which is a3 good approxi-
mation to Lhat found in a convergent nozzle jet two
diameters downstream of the nozzle — the location
of the probe termination in MacGregor's cxperiment,
There are now less but still substantial dif-
ferences between these Lilley equation solutions
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and MacGreqor's measurements and we now consider
the possible reasons for this.

We have already stressed toat to obtain the
present results we have ignorca the existence of un-
stable modes and the effects of diverging flow. We
w@ill also consider the possibil:ity that the model-
ling of the probe source 15 ir question. The effect
of unstabie modes is outside the scope of this re-
port but we can consider tue effects of diverging
flow by reference to the work of Schubert (15) and
Mungur (i6)}. We fix the absolute Helmboltz number
at kgry = .53, consider three jet Hach numbers, 0.3,
3.5 and 0.9, and use Grande's {17) experimental
results in which conditions are virtually tdentical
to those in MacGregor's work but here, in the direc~
tivity patterns, the frequency is held constant
{ratker than the Doppier shifted frequency). Both
Schubert (15) and Hungur (l6) take diverging flow
nto account, with certain approximations, but
Mungur's (16) results, shown in Figures 8-10, arc in
better agreement with experiment [Grande's (17)
measurements in this casej than Schubert's are with
his own measurements (15). Altbough the Lilley
equation solutions are not particularly different
from both Grande's measurements and Mungur's re-
suits at the conditions Mp = 0.3 and 0.5 {outside
the 0-10° sector) there are substantial differences
at the highest Mach number. (In Figure 10 the plug
flow model results are also shown; Lilley egquation
solutions yield an improvement over those for the
plug flow model but the characteristic shape of the
measured directivity pattern, 1t appears, cannot be
reproduced with either parallel flow model. A
diverging flow model does give the correct shape as
well as excellent absolute levels and we are there-
fore forced to conclude, tentatively at least, that
aa accurate predictien of sound-mean flow inter-
antiv effects requires some form of diverging jet
tiow rodel,

unfortunately, this conclusion can only be re-
gar;ed as teotative, not anly because of the neglect
of the unst. ble wodes but because of some new ex-
perimenial results recently reported by Ingard (18).
The strong implication in these results is that the
ingeztion of sound into a mean flow through a
boundary layer may not be correctly modelled by the
assumpticn that the particle disp.2cement §s con-
stant torough that boundary layzr, Further, the
results indicate that continuity of particle
s-lucity, wnife not explicitly justified by ingard
{18), should te vsed instead. While the experi-
sental configuration {a rigid walled flow duct) is

KN »
N ol ,,rulao 0.53
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different from that of the prope-jet experiment,
it is of Interest to modify our source model
accordlingly and to compute the new directivity
patterns, at least for the "plug" jet tlow profile.
The results for comparison with HacGregor's (14)
measurements are shown in Figure 11 and although
the appearance of a peak in the calculated results
is not consistent with measurement it may be more
than coincidence that there is yood agreement for
the two higher frequencies, outside the 0-10°
sector.

In spite of these results and our other areas of
doubt, Mungur's impressive predictions have per-
suaded us that either his model, or perhaps a
similar mode} still based on a locally parallel flow
representation, should be used in our future work.

In the next section solutions to Lilley's equa-
tion will be used to construct a crude jet noise
model and particular emphasis will be placed on the
dependence of these solutions on source location
and Helmholtz number. In the light of the above
comparisons with experiment we should consider the
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trends exhibited by the sclutions to be only quaii~
tatively correct.
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Fig. 11 Comparison of Plug Flow "Constant
Particle Velocity Source' Direc-
tivities with MacGregor's (14)
Measurements (VJ/ao = 0.9)

1-4.5 Solutions to Lilley's Equation

Having obtained the Green's function solution tc
Lilley's equation {in the far-field) as a function
of frequency, scurce position, x', and the time at
which the source emits a pulse.t', the far-field
pressure, p(x,0), due to a source distribution (in
cylindrical coordinztes)

a 2
2]
gz-{;-z-) SC ‘ﬁ.t)

is o .
a?
plx,w) = ffff (5—27%7 S (x',t)}
x g{x,w/x',t') dx’ de'! 5.1
where
x' = (x}.r'he')

dx' = r'dr'de’ dxy .

The form of S¢ i5 glven by equation 3.6 and the
Green's function is, from equation 3.19,

g(x),r,¢,w/x'!,r' »¢' vt') =
exp[-jkx cose ~ jkrsing)

kn((x-x})2 + r?)

«

expl-jut*]

expl Jkeost.x}] . :E: <, exp[-jn{¢~¢')] 5.2

ne-x

where

2 A M%)
expl jn-/2]

Cn(r'] =

A = expi~nvi} A,

and Ag(r') = A (kcosd, r', n) is a numerical solu~

tion to Lilley's equation. The components of the
source distribution consist of first and second

derivatives, with respect to xy, r and &, of the

velocity products vyv;, vive, etc., but these con
be removed, as in Lighthili's anaiysis, by partial
integration. ({From this point on we restrict the

analysis to isothermal jet flows). An example of

this manipulation is az follows; the leading term
in £, is
W22

Yo

1~

YL
.Xl

and the radisted pressure due to this component is

iy 32v§
p(x,0) =ffffao glx,f/x',t') dx' dt'
’Xx; Z - = -

which, after partial intearation, is

490
2
plx,0v) =ffff oovE s {x,o/x't") dx*' dt* .
iy sx 2
- 1
This is an exact result as long as “w2/dx! and v?

vanish at x! » & ~. We now use the usual approxi=
mation, valid in the far-field.that terms like

3 1 cosb
. R —z‘- N
ax; {(x,-x;)2 + rz)i Re

(where RZ = (x;= x})% + r?)

3 -sine
and T (cos8) = R )
1

which appear in,
-37 {exp j kcoséx!} = (j kcosd
ax1 1
+ kx; 3%7 costlexp[jkcostxyl,
H

can be neglected; so that for this example,

p(x,w) ifﬁjg(ﬁ,mlg_',t') (-kzcosze)oov"l’ dx' dt'.
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we obtain:

expl -jkR "

pix,0) = - ——I‘-;ﬁ—- . szEfﬂ(X{.r‘.i"

é{p vivys 2, cost) exp[-jut' ]r'dr'd¢'dx’dt'

where
a2 - Y2 2
f Rr = (xl x‘) +r
- Congs
cosé = (xl x])/Rr
L1 = ! - Y

’ s 1

2(x!,r',8')

Repezting these steps with all the components of S¢

and Rr(Rr), corresponding to an average value of

mental resuits (which are normallized by the N

radiation !evel at 90° to the jet axis). The func-
tions (for no Interactions) become |
Q(X;,r',¢’) ‘g
= expljkcosd X: + jkr'sinBeos(4-4')] 5.6 !
5.3 .
°(°oV|Vj'“'°°5°) = povRZ 5.7 i

where

vp = vlcosé * vrsinsco,(¢-¢') + v¢sin55in(¢-¢') (

is the turbulent velocity component in the direc~

tion of the observer. We now proceed to obtain {
explicit expressions for P(x,w) the spectral density

of p{x,w) and for this purpose equation (5.6) is re- i

- written as
= expljkeosBXj] Y € (r') expl-jn(¢-4")] 5.4 TR
L n=-~x o
and = exp{jkcoseX;] :Z: exp[jnn/Z]Jn(kr'sina)
b YooV, vss M cosd) = =
‘o 30 ey x expl~jn(¢-4')].
2ened jcos jcos!
0o[v1cos 0 vy, 5= TRy V1Y kg 557
v2 Plx,w) = 2 2 fffffffexp(;kcos!)()('-X")l
iy, jCOSG .Yz 3% '6" Rt
l ikf e 3(kr')2
» N 32q 1 af XEE exp[jou/2}Jd (kr*sin8) exp[-jn(¢-6')]
" T S o~ T Pa e "
A==»
b
cosd .
+ v,v %—-—y— + v Vs { *
3 kr')a 34 ikr'i ikr'sa ' o -
b v xIZ‘ exp[-jmn/2)J (kr"'sin6) exp[+im($-¢") )
’
o
} ! S N " Y S
(kr )2 3 (kr')2q 342
} i’ i x expl=jur]. V(XL XY et r 90500, 1)
TEFTT—'-TKFTY 5.5 x r'dride'dxidr r''dr'dedxy 5.8
Note that average values have been assigned to 6(6) where

x}(x}) since the variation of & and R, with x} has T
bénn neglected in the above steps; X is chosén in Vi = Limit | vZ(X!,r' .8, T+t")
such a way as to minimize the errors incurred in R Tr»o 2T RISV
these approximations. T
In view of the apparent complexity of the expres- 2 (yot
. . . v .o, vaE (XY, et A, e ) de" .
sion for p(x,w) given in cquation 5.3, it is of * R( Porat et 59

interest to consider the simplified expressions for
the functions which appear in that equation when
interactions between sound propagation and the mean
flow field are ignored. This is a necessary
exercise in any case; for we need to calculate the
radiation in the direction normal to the jet flow,
which is unaffected by flow effects (in isothermal
jets), in order to compare this theory with experi-

%
Plxw) = L-z:: px,w) p(x,0)
2T
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For simplicity we will assume that the source dis-
tribution is confined to a narrow annular region




such that its r dependence can be represented
approximately by a delta function; then the inte-
gratiors with respect to ¢' and r* can be discarded

to give

P(x,0/r') -;%é‘;;'{' fEffexp[jkcosé(Xi-X’l‘)]
v -0

0 Y explin/a(m=n) Mg (kr'sin?) 3, (kr'sing)

n.,m
x exp jéim-n) expj(n¢'-m$")) exp-jut]
x V(KT X090, T) dotdXidu dgdXy. 5.10

Yo carry out the ¢ and X? integrations we make the
usual assumption that vg can be expressed in the
form

Ve = VS, (X)) S,(r) S3087) SIX{PXYL o'-h) 5.1

but in the present analysis we make the realistic
assumption that the V§ is independent of o' for
2ero separation $'-¢", that is Sa(Q") = 1, With
the transformations

Xi - X? =4, dXi = dAl
¢| - Q" = A3 d¢' = dAS
m -n =2

equation 5.10 becomes

S2KUVYS. (F') i
Px,ufr') & 2 f Kb cosB
(x,0/r") e ﬁf_ [!‘Uexphkt\lcme]

x exp{-jut] { Z exp | jer/2]) Jn(kr'sinﬁ)
n,2
x Jn”(kr'sine) exp{jte] .
x cxp[jnA3] expi-jLo" ] s, (xy) S(A,.a.x)
x dAldAadT d¢"dX? 5.12

The integration with respect to 4" is non-zero only
when £ = 0 so that P(i.u/r') is independent of ¢ and

2K8S (1) an )
P(x,u/r') = _2-——:-2—-——- I fﬂ‘exp[jkA cos8)
- 8r R2 oy !

x exp[-jurt] :E: Jﬁ(kr'siné) expljna,}
n

s(2,,a,7) d8,dhydt 5.13

where

+a
hH = ISI(X';) dxy
-0

which can be calculated, aumerically if necessary,
independently of the other integrals.

To perform the remaining three integrations, we
again make the usual assumption for the form of S
and the functionral dependence on Ai’ A:' T

S(ay,83,7) = expi-83/x2 - uirz] 54(84) 5.1k

where 8, = &; - aghcY and where S,(8,) will be
?peciflcd later. Equation 5.13 “is then of the
orm

oo

Plxale) = Fy - B [ [ exploct (2 +u2/a))]

-

. expi~jut(l +2jVC6‘/wi{)} expljkaycosiididyy  5.15

where
Dgk"v"sz(r')

= l
— "
8aR

F, 5.16

-

2n
F, = EE J%(kr'siné) J Sy(a3)explinas] day 5.17

n o
The integration with respect to 1 is of the form
= 2
warl =} [ 1Y
J. e e vt yr = (2—)’ e b*/ka 5.18

-
2 12192
where a s wy + \Clll
= § %2
b ol + ZchAl/t.f,l)
so that

2

]
n -,
)! ¢ 18

Plxyufr') = F . F, 1 X
e 2lee 2 272
we + vc“’l ’4('.)3 +Vc/ll)

A w
I exp [~ -7 (——
e "l w? ‘VE/\l
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v w/ed
4 1

exp [ jo, (=
w? + V2732
] ¢l

) - keosh)) da, 5.19

which again is of the same form as equation 5.18 and
after some manipulation we get

- <]

5 -® -,
Px,/rt) = F‘ . F2 :)‘:1‘ cxpfm i(l-Mccosﬂ)‘ +

! o

. 1, C0S0
o .

+ (--{r--q ] 5.20
(o]

New consider the integral in equation 5.17 with

$.5) = exp =200

If the correlation length » is sufficiently small
(-<27), then to a good approximation the upper limit
can be extended to infinity

2

I expl=i /sy ] expljnn 1 a2,
(8]

i J.expf-i;/ii]exp(jnt‘l d3,

. .
exp{-24/17]
=, f expljnt .

M,
) Vo

and in the limit i -0 the integral is simply v~13/2
for all values of n. Thus, equation 5.17 becomes

/,

Y - (283
R > i lketsing) = - 5.21

n

that is, it is independent of source position, kr',
and angle of observation v,

The final expression for P(x,u/r') is
uék"V"S?(r’)ll T

P{x,u/r') = - i
BHR;

o2 - w llcosa N
x exp|Tx ((I-Hccoso)2 + ¢
o

o]

5.22
aO

Although we will not be concerned with the intensi-
ty, 1{x/r'), where

woaol(gg/r') = f P(é,w/r') do 5.23

o

in the present work, for completeness we note that
the integration can be carried out without recourse
to numerical methods (in the ahsence of sound-mean
flow interactions); the integral is of the form

3

)
J'Nchuu do =

L

e (A I () 5.24

where D, is the parabolic cylinder function. With
ne2, 5_{0) = 3 and

' - )UllCOS';; 1
1 e 5 1=K cosn)” + ( 3 ) ¥
. o

we get
M -4
R TR 3
- J'IAlCOS’:‘ . <tz
‘1M _cos )< + (———)")
[4 a
[+]
so that

Y (x/r') = £l sle)iy (#ged) B Ve _nao-_;
B 4R . . 08 o o,
T (1=K _cosnle + (— ) ) )

< a

5.25

This expression for the Intensity is identical in
form to the expression first obtained by Ffowcs
Williams (19}, but it should be emphasized we have
not employed a moving source analysis. As Lilley
has pointed out, provided the same source space-
time covariance function, S(4), *;, 1) is used,
the present stationary source analysis and any
correctly performed moving source analysis must give
the same result.

The spoctral density result forms the basis for
the presentation of experimental data in the form of
difference spectra. With

- unllcosa 2y
w, = ot {1-M cosu)? + (———) }
s (3 a,

equation 5.22 becomes

Zub 1 32
olv Sz(r )Il (n 4,

P N [] = 1]
el e B
ro
we® wgl
2 . expl ) 5.26
[+

w L R
((I-Hccosu)2 + (2L cosd)2)?

%

o




——

- -

To allow for the fact that experimental spectrum
measurements are in bandwidths proportionatl to fre-
quency, we consider the quantity, mP(i,u/r') where

1

wP(x,0/r') = 5,27

w L
{(I-Mccose)2 + ( Z L cosd)2}5/2
o

and where we have retained only the ) dependent
form. This is the predicted directivity factor
provided wg is held constant. In the rear arc

(8 < 90°) this means referring to increasing ob-
served frequencies with decreasing 8, The differ-
ence spectra are defined as the difference between
the measured sound pressure levels and the levels
predicted by equation 5.27.

We now repeat the analysis (given above) with at
least some sound-mean flow interactions included.
In the present study we neglect flow effects in the
function ¥ which, in the absence of fiow, is

d =
B Oov

- TR

and is otherwise given by equation 5.5. We then
have

P W “fw Al et 0)
p(x,w/r') 8 = ————— k* fffovz (X!, rt, 8"
LLL i 'R !

exp{-jut'] d¢'dxidt' 5.3a

where

o2 vy [} ] ] =
OJR-DJR(XPr,o.tW ¢

is assumed to be independent of sound-mean flow
interaction effects and, it will be assumed, has the
same space-time covariance. The function Q is de-
fined in equation 5.4; it has the same form as in
the zero flow case,but with the Bessel function
Jn(kr'sing) replaced by a function C,(r') which is
only known numerically and is a function of fre-
quency and the jet mean flow parameters as well as
the point source position r' and n. The dependence
of @ on X! and &' is otherwise the same as before
up to the point where the relation

[--]
Z 92(kr'sing) = 1

nE=-w
is used. 1In the present case the expression

2 C(r') € A(r!)

n=m=c

cannot be further simplified and must be evaluated
numerically. The final expression for the frequency
weighted spectral density is thus

- 372
U AL T T 0 | IR M S
wP(x,u/r')= p 2 ! LA
- §r2R2 4 “ 2,
r ‘o

L‘Ss
- R .2 8/2
{(I-Hccose)2 + g l cosd) }
0
w 2 =
x explgr} 2 C(r) CE(r) 526

[o]

ns-o

We now present some results which show how the co-
efficient C,h(r') depends on the Helmholtz number
kro. the radial position of the source r'/ro, the
mode number n, the jet exit Mach number Mg = Vj/ag
and the mean velocity profile, represented by the
distance from the nozzle where such a profile is
found in a real diverging jet. Temperature effects
are excluded and mean velocity profiles are confined
to those which would be found in the mixing region,
that is up to approximately four diameters from the
jet nozzle. Finally, with some further assumptions
we will calculate the sum

N

> calet) CpE(rt)

n=0
and compare this with the difference spectra ob-
tained from experimental results.

In the following results we evaluate 10 log,,
(CaCn*) = SPLy at five selected Helmholtz numbers
denoted by f;, i = 1.5, where

kro fd/aq
fy .09426 .03
£, L31k2 N
f, .9k26 -3
£, 3.142 1.0
s 9.426 3.0

These span the frequencies of interest in our model
jet experiments. In Figures 12-18 we keep the ob-
server angle to the jet axis constant at 22.5% and
show results for the (n=0) axisymmetric mode;
Figures 19-25 are at the same conditicns but for
(n=1) the first circumferential mode. Al{ these
figures are plots of SPLp versus the radial position
of the source, r'/r, at the five selected Helmholtz
numbers. Figure 12 is for the trivial case of no
flow, showing that,except at the two highest fre-
quencies, the radiation level (which is proportional
to SPLp) is independent of the radial position of
the source. In Figure 13 the conditions are the
same except the Mach number is 0.32 with a titop-hat"
or "plug" profile (that is, corresponding approxi-
mately to the profile at the jet nozzle). At low
frequencies radiation due to sources anywhere inside
the jet are increased whereas at high frequencies




particularly for sources near the axis there is a
substantial reduction or attenuation in radiation
levels. The discontinuity in level when the source
is on the "lip-line", r' = ro is due to the dis-
continuity in the mean velocity profile at the same
point: the source is either inside or outside the
mean flow. When we use a velocity profile like that
at the end of the mixing region, that is a continu-
ous mean velocity profile, the solutions to Lilley's
equation for SPLp, are well behaved, as shown, in
Figure 14; the "low frequency lift* and the high
frequency attenuation characteristics of the "plug"
flow solutions remain although quantitatively there
are large differences between the two solutions.
Figures 13 and 14 illustrate one of the many ad-
vantages offered by Lilley's equation; the tadiation
can be calculated in a realistic way for source
distributions within the jet shear layer. Tne use
of "nlug" flow models inevitably leads to an un-
realistic discontinuity in radiation levels unless
the source distribution is arbitrarily confined to
regions either inside or outside the jet. At higher
Mach numbers Figures 15 and 16 (MR = 0.71) and
Figures 17 and 18 (Mg = 1.0) show that the "low
frequency 1ift'" and the high frequency attenuation
levels continue to diverge unless the source is
located in the outer regions of the jet where re~
sulting radiation levels are relatively insencitive
to frequency.

In Figures 19-25 the results are repeated for the
n=1 mode; the "low frequency lift" is far less
apparent but the high frequency attesuation effect
is clearly visible and is very simiiar to the n=0
mode's bebavior at the highest frequency.
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Fig. 12 Variation of $PL, with Radial Position of
Source: Mg = 0.0, n =0
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s2fina the followi-> results ~ith wxperi~ental
Trerdn, wé Canadl e>pect agreerent at lan fre-
wengivy., In figure 26 SPlg is shown as a4 function
5t troguenty for five observer angles. Since the
vt is located of f the jet axis, the * low fre-
Jeoze It is not oo large — up to 12 ¢B8 at the
»allest argie. At high frequencics the radiation
st all angles is retuced bot this trend is rodified
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=3 orders.  In Figures 27-29 SPLy for rode
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Howevar, 12 §% worth cooparing our results with
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Fiq. 26 .ariation of SPL with Freduent,: n =

sion fur spectral density given by equation 5.26a.
i This exgressior is ideaticsl to that given by
T TS TS T T T e equation 5.26. wiere sound nean flow interactions

:-;"'/‘«\\\‘ | have been igrared, except for the factor

4 T T e— - "
= ~. 1 3 et g le)

e - o
. R e —— nx-
o e - 1
1‘( -~ Al -
¢ /,/ ’ - N This infinite sum, over a1} mode numbers, is equal
+ L o - = \\ to l.mit‘, for zero aean flow but when the Cn coef-
» ’ 1 ‘ - N ficientsy ore aumericatl solutions to Lilley's
: it - - i equation, + .an only evaluate this sum numerically
» . - \ and inclus: 3w many terms as are necessary for con-
’ , - . - ' vergence. The table bilow shons the highest value
R - . - * of a regaired 1o obtain cenvergence in the zern
| + - - flow case for each angle/freguency combination.
v > * e Thase numbers appear te be a good indication of .
those required to evaluate the sum at finite MHach

aumbers.

hro/~  82.5 67.5 2.5 37.5 22.5

0.09426 0 0 0 0 0
0.3142 1 1 1 1 0
0.9426 2 2 1 1 1
3.142 4 4 3 2 1
9.426 11 10 9 7 5

We associate the sum

o + \.
SPLy = 10 log,, « M . (et) 0 (')

n

with the non-zero difference spectra; that 1s, the
modei which ignores interactions between sound pro-
pagation and the mezn flow gives an expression
(equation 5.26) which predicts a cetrtain dependence
on the observer angle ». This dependence is

Fig. 2?8 Variation of SPL with Ficqueney: o = 2 assumed to be correct and is subtracted from the




eeasured directivity to yield the so-called dif-
ference spectra. If the zodel was correct. the
difference spectra levels would collapse on the 0 @8
line. An cxaople of their actual tehavior for My =3
taken from reference (21) is shown in Figure 30.
Gur evaiuation of the sound-mean flow interacticn
effects for direct tomparison witk Figure 30 are
shown in Figura 31 (with r* = rg, that is a point
saurce radial distribution centered on the lip-line).
The agreenent ¥s ot good 3t low frequencies. as we
might have erpected: at high frequancies and smafl
sngies the predicted trends are correct while at
larger angles the calculated spectrem lavels are too
high. Revertheizzs, we feel that this compsrisca 15
fairly encourzging when we refiest upon the nunber
of assu=stions used to cbtdin these theoretical
differenze spectra. Both the gencral iow fregquency
behavior ang the high frequency~-large angle discrep~
ancies cmay o2 radically isproved once (i) effects of
the diverging jet flow are core aceguatsly rodelled,
(ii) other prodbles 3reas =2ntioned are satisface

' torily resolved ang {iil) a sorc accurate source
function distritution is used.
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E~%.¢ Conclusions and Fut.re sork

1. The boacgenwws form of Lilley's eguaticn is
recognized 1o be the sa7e as the oquatiun which is
usé to investigate the stabilit, of taviscid, coo-

pressible sheared flows. Tnus, two types of solu- .

tion can be obtained: the "acoustic solution' and

the “unstable solaticn'. Unstuble solutions are .

being siudied in our theecretical progra= to provide 1
H

information for a3 model cf ethe source funutivn in
Lilley's equatina and are described eluentiere. The
Yacoustic solution® is the subject of his report.

2. Acoustic solutions to Lilley's cquativa can
be constructed from an appropriate specificaticn of
the source function ard point source or Sreen's
function solutions.

3. The iufiucnce of sound-near flow interaction
effeces on the radiation levei and directivity of
point scurce solutiocns has been evalustesd in so=e
detail for subsonic parallel jet flowe with real-
istic mean vclocity profiles.

. The directivity of mcdificd point solutions
are only in qualitative acreesent with measuresent
and while questions remain concerning represenia-
tion of the experiment2l source and the type of
soluytion utilized here. consideration of theoreti-
cal results, obiained elsewhere, strongly ruggests
that a =ore realistic »ean fluw modael Is required.

5. A coaplete solution to Lilley’s equation
for 3 sioplifisd version of the standard type of
source function is cvaluated in the form of dif-
ference spectra which are found to be in good
qualticative agreement with oedsurement.

future work will concuntrate on the role of un-
stable solutions froom the acoustic viewpoint, the
developeent of 3 sore realistic mean flow rodel
and the avaluation of solutions to Lilley*s equa-
tion for source functions based on a combinition of
turbulence measurements and the thearetiical model
curreatly under development.
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List of Symbols=

a(r), ao speed of sound ‘aside and outside
jet
b,c constants in analytic representa-

tion of mean velocity profile

Cn nunerical solution to Lilley's
equation

*Some of the infrequently used sy als defined in the text have been onitted.
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A&

Mz = Vylag

To

R =rlrg

Sp» Sc

v'i. i=1,2,3

;1 = ;,(r)

-

" = G!(r)/ao

dispersion relationshipg in 'plug"
flow model

Green's functions
Helmholtz nuaber

gessel function of the third kind
or Hankel function

Hernite polynomial

sound intensity

-1

Bessel function of zha first kind
free space wavenusmber

axial wavenumher

radial (r) wavenumber inside and
ocutside jet

source function correlation
tengths in 3, 4;coordinates

partial differential operator of
Lilley's eguation

circunferential mode number
mean axia. Mach nusber

mean axial Hach aumber a* jet
nozzle and in potential cere

cddy convection Mach number
circunferential mode number
fluctuating pressure

mean pressure - assumed constant
spectral density of p

coefficient in Lilley's trans-
formed equation

jet nozzle radius

nondinensionalized radial
coordinate

radial position of critical point
Lighthill's source function in
cartesian and cylindrical
coordinates

time

fluctuating velocity components in
cartesian coordinate directions
Xi, i = !,2,3

mean axial velocity

mean axial velocity at jet nozzle
and in potential core

YR
x = (x).%2,%3)
x = (xy,r,2)

x= (RrranQ)

»”

n

Cal

™

by

a(s), oo

Wo

fluctuating velocity in direction
of observer

position vecter in cartesian
cooréinates

positis vector in cylindrical
coordinates

position vector in spherical
coordinates

8essel function of the secend kind

polar ccordinate angle in complex
R plane

admittance paraseter

ratio of specific heats - assu=ed
consiant

separation coordinates in xy, ¢
directions

Dirac delta funciion
probe radius

separation ccordinate in x)
direction in moving frame

£o=1¢,=2,n>0
Lilley transform variable

similarity variable in mean
velocity profile functions

source function in Lilley's
equation

displacement parameter in r
direction

displacement in r direction

mean density inside and outside
jet

polar coordinate radius in complex
R plane

time separation variable

variable used in mean velocity
profile functions

radian frequency

probe excitation frequency in
section 4. b

frequency constant of source
function in section 1-4.5
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APPENDIX 1-4A

Plug Flow Kedel

The Green's functions in region 1 (see Figure 2)
rust satisfy the eguation

d“G,. 1d6.. 2. _ 5(r)

-d—r-z-l# -r- dr“‘ RQG" I' S. A.l
where

K = k? - ki A.2

S = ~ expi-jut'] explikxj}

The Green's function in region 2 must satisfy the
equation

d%G_, 1 d6.

——— — 2 =
-d?-/ rdr'+ Kzﬁ;, 0 A3
where
K = {k ~ Ky#;)? - &3 AL

The Green's function in region 3 must satisfy the
cquation

42 1dg.. .2
dr W rar’ k3 9,7 0 A.5
where
k3 = k2 - k2 A.6

The required solution to equation A.1 in region 1
is

Gy = Apolkor) + 8. %1 Ho(?)(kpr) A7




The regquirced solution to equation A.3 in ragion 2
is

Gy = Azdo(kar) + 83 Yo(k:r) A.8

The required solution to equation A.5 in region 3
is

93 A;Ho‘z) (xar) A9

The unknown coefficients A, By (r = 1, 2, 3) are
deternined by the conditions of continuity of pres-
surc and particle displatenent across the vortex
sheets at their mean positions r =8 and r = 1,

The continuity of pressure at r = &, r, gives
. 2
Apdolks8) vi_giuo‘ o

= Aydo(K,8) + 8, Yo(Ky8) A0

AydolKorg) + By Yolkaro) = Ao (korg) AT

and the continuity of particle displacement at
F =3, ry gives

H ~\t
ky 1Aydo’ (ky8) +J—§-‘-H°(‘)(k2s)1

= (1= kM /K2R, {AydG (Ky8)

+ B,y (Ka8) ) A.12

{0 = /WY K 1A00 (Karo) + ByYy (Kyro)d

= koA Ho 7 (iyrp) A3
From equations A.10 - A.13 the solution for Ay is,
in the limit ké -+ 0,
A3 s 9’2 A-lll
where
. )
Eq = Vkorg Hoy (koro) JolKyrp)

« Kyro Jg' (Korg) Ho®) (kyro) A.15

v o= (1 - kM, /K)2. A.16

The required Green's function is then obtained
by performing the two Fourier inversions (the
latter being trivial as n = 0):

g9;(xy,r,n,0/x},0,0,t'}) =

4o
2 o
= f A; 1B kyr) expl-jkyxy 1 ok, A7

Bg(xl.r.é.ulx'.ﬂ,o,:') -

%; g3lxy,ron,u/xi, 0,0,t'). A8

and from Appendix I-4B the far-field approxinations.
kR.-+w, to equation A.18 for the acoustic component
of 93 is

93(Rr|6l¢:UIXitooopt') -

-

exp{~jkR 1 (-25/3) |
~E exp[-jut'] ———~3% A.12
r Eo

where
RE = (xy ~ x;)2 4+ r2
¥ = {3 - Mycoss}?
- - - 1 - -
E =% kyry Ho‘z) (kzro)Jo(Kzro)
- - (2)-
- Kzrodo'(Kzro)Ho (kzro)
Ezr

o
E%roz = (kr )2 ({1 ~ Mycosd)? - cos?e}.

s kr sind
)

in principle the Green's function g4 (t/t') may be
obtained from equation A.19 with

+o
g3(t/t*) = %; }. gq(w/t') expljut'] du A.20

-0

«
but this is not actually evaluated since we only
require the far-field pressure. p(t), due to the
source time dependence, f(t) = exp[jwot], rather
than 8(t-t'), and with

o

plt) = J. g5(t/t") f(¢') ot

we obtain, formaliy,

expl-jk R ]

P(R.,0,4,t) = —m—il expijuo:]f—'—zﬁ- v A.21
r Eo(koro)

or, as to be expected, the function E_ is to be
evaluated with krp = kgrg where kg = “wy/a,.  For
¢ = 90° that function takes the value -2j/n and
¥ = 1 so that

p{9) ~2j/n -

9(900) Eo(koro) )

¥ h.22




APPENDIX 1-4B

Fourier lnversion by
the Hethod of Steepest Descents

The inversion integral is of the form:

+=
e g [ aiki D ion el taexiie 8.1
23 is 0 2 P1~iXyiXy~xy 1 .

where  (kpr )2 = (kr )2 (1 = (k/%)2} B.2

This integral can be evaluatad approximately in the
limit KRy + +o where

Rﬁ =r2 + (xy - x})? 8.3

It will also be assumed h=re that the argument
of the Hankel function kyr is sufficiently large
such that the function can be replaced by its
asymptotic representation:

Hﬂm(z):x \/g; expf-j(z - %’i - 7_" oY 8.4

This appreximation is made to simplify the analysis;
however, a more detailed analysis {see for example,
Horetti and Slutsky(10)], does not require this
approximstion and there is no restriction on the
value of k,r, except, indirectly, as stated abtove,
tMtkh++w.

With equation B.4, equation B.! becomes

+w -——
i = %; 'f alky) \f;ESF exp{=jkor = jky{x; = x})]
expli G2+ )] ek 8.5

By using spherical coordinates, (R, 8, &), (see
Figure B.1),

Xy = %] = Recosd

r = Resind

iwhere 8 is the observer angle to the jet axis)
equation 8.5 is obtained in the required form:

.‘m .
L 2 oA
=5 ’ az(ky) mexp[kkr( J g coso
kz
- § ¢ sing)] exp(j(-g1+ P dk 8.6
that is
Ve | exp [KReF(Ky)) Flky) dk) 8.7
[~

*2

x
Jet Axis

fig. 8.1 Spherical Ccordinate System

where

£(i)) = ~3{kyrk)eose - ;{%,/k)sing

1 2 NI, ®
— alk.), —— e jl—— 4 =
Flk;) = T a'k‘)\,zkzﬂrsine . exp[Jiz + z)]

Equation B.6 is in a standard form which can be
evaluated approximately in the limit kRp»w [see
for example, Brekhovskikh(22), g. 2453:

I & exp{R, f (E,)]\‘;;—; {24 ’*‘1‘*.— M el B.8

where E, is a solution to the equation

f

0.

aT‘- =0 8.5
and
v 22y (k) B.10
f"(kl)

The required soluticn to equation 8.9 is

ky = kecos8 8.11

and
(i) = Ifi'im 8.12
flky) = -j

so that equation B.8 becomes

i

. 7 -2k2sin%,}
= el [ (S

3 F(ky = kcoso)

or

-2nk?sin20 2 .}
JkRe kRpsin<0’

! = exp[-jkR.} {

a{kcoso)
2n

cxp(j(g-’i + {';H

T

P




or
1 = expl-jkR,] &~ . alkeos) exolj %1] 8.13
“Re
A uceful check for equation B.13 is the simple case
of a peint source located at r' =<0 in free space:

then
a3 = - %-exp(-jwt‘l: nso0
and
expi=jkR ]
! =-—‘E~R—r——— exp{-jot'] .

APPENDIX 1-4C

Lilley's Equations: Method of Solution

1-4€.1  Lilley's Equation for the Circular Jet:
Method of Solution of Fourier Transiormed
Equation
The Fourier transform of Lilley's cquation in
cylindrical coordinates for the Green's functicn, G,
is

- 2y /k d
1d (46 d o0 (32 ! L) ds
rar rad t G "°9e(sg)’ TR @) &

a -
+6 12167 (kg /k)? - (a/k)*) - 25

. 5lr-r')
= C.1.1
' vhere G i G(ky,r,n,u/x},r',$',t') and where the
’ source strength factor 5§ = - exp[-jut + jkyx{ +

jn&'] for simplicity has been suppressed. The jet
and its surrounding medium are divided into three
basic regions (see Figure C.1).

" c Region
4
e e rtm. s m e m————— r:rA -----
Point Source 3)
. e~ —— rer! me——a
3 vi= aOM, 2
———————— — - rsa------
aJ VJ"aOHR re i

Fig. C.1  Cylindrical Jet Regions: (1) Uniform
Flow, (2) Sheared Flow (and 'Selow"
Point Source , (3) 'Above" Point
Source ), (4) No Mean Flow
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Region 4 (r, < r< =): A homoganeous fluid at
rest (speed of 'scund a,} containing no sources or
boundaries.

Regicn 3 {r; < ¢ < ry): A fluid with a mean ve-
locity, agH;, and speed of sound, 3 , which vary
with r and which may contain a point source at
r = ' {that is, the jet mixing region}.

Kegion 1 (0 < r < rp): A homogeneous fluid with
a uniform mean velocity, V,, and a uniform speed of
sound, aj, which may contain a source at r = r'
(that is, the potential core).

In region 4 equation C.1.1 reduces to (3 = a,
Hy = dH/dr = 0

d?g, dg 2

H A 2
et (k3 -%) g, =0 c.1.2
where

2 2 . k2
K o= k2 - kg

{and where the rotation g is used €or the Green's
function in region 4). The soluton to equation
C.1.2 is of the form

gy = Al, Hn(z)(kzl") + By Hn(1)(kzl’)

but By must be zero to satisfy the radiation
condition, so

g = Aq Hn(z)(kzr) €.1.3

where A, is yet to be determined.
In region 1 equation C.1.1 reduces to (da/dr =
dMy/dr = 0).

d%g, d6, 2 .2
1 2 =
T tra (K2 - 77 }6, = 0 C.1.4

the right hand side being zero because we have
chosen the source position r = r' to lie in region
2. (The necessary modifications to the present
analysis for the case when the source does lie in-
side region 1 are given at the end of this section.)
The solution to equation C.1.k is of the form

6y = Ay J,(Kor) + ByY (Kpr )
where
a
K = k2 {ED2 (1 - Hk/k? - (ki /k)?)

but By must be zero as G; must be finite on the
axis tr = 0), so

6) = A Jn(Kzr) €.1.5
in region 2, the Green's function, Gp, must satisfy

equation C.1.1 which, in general, can be only solved
numerically.




We now consider how the solutions in the three
regions are matched tcgether to provide numerical
values of the coefficients A, and Ay; the co-
efficient A, will determine the required Green's
function in the far-field, after one of the Fourier
inversions has been performed.

The first step is to introduce a variable, &,
which is proportional to the particle displacement,
Sqr where

d6 i dé 1
Earg 3 =res B c.1.6

gghz {1-Kyky /K) 2

a
P = (‘32)2 (- Hl‘(]/k)z

and

£=g krlogal)

From the "plug" flow models it is known that, &4,
the particle displacement wiil be nearly constant
through thin shear layers, as will the pressure, G,
and therefore these are probably the most suitable
dependent variables for the type of numcrical inte-
gration scheme described below. At present, however,
we find it more convenient to use the variable £
rather than £4; its variation through thin shear
laycrs will clearly be very similar as the varia-
tions in kr will be small,

With equation C.1.6, equation C.1.1 reduces to

--=G[Q!+6(”) €.1.7
and rewriting equation C.1.6
48 . ik c.1.8

ar r

where
r 2 2 71,2 nz
Q= -5 (k3P - K/2) - )

we obtain a pair of coupled first order differential
equations, C.1.7 and C.1.8, in the dependent vari-
ables G and £. These are the equations which are
actually solved numerically, as described in section
1-4C.4, but one further step is required in order to
illustrate the principle by which solutions in each
region are matched. An admittance parameter, B, is
introduced, where

=&
6=%
and equations €.1.7 and C.1.8 are combined to give

a Riccati equationt

[ *{r-rt)
a T r ot Ut T €13 p
a first order, non-lincar differential equation. We t

now divide reqion 2 into regions 2 and 3 where

reqgion 3 is r' + < r < ry and rcgnon 2 is )
rm<rsrt-g, that is neitner region now contains J
the | ponnt source which is assumed to exist in the t
region rf = ¢ <r < r' + ¢ such that J

rite
| a(e=rt) £(r) or = £(r") €.1.10

ri-c

Consider now region 3 {r* + 2 < r < r.) and the
solution 23(r) to equation C.1.9: —an initial value
of 84 at r = r, would, with numerical integration of
equation €.1.9, yield a {unique) vaiue of g3 at
r=r¢'+e. Similarly an initial vslve of &, at

r = r> would yield a value of s at r = ¢! - ¢,
Analytic integration of equation C.1.9 across the
source position gives, in the limit 3as ¢ »0, the
condition that

(') = 52(r') * STy

or

. 1
R e a7 ) D G R

!where G(r') = G3(r') = 63(r')].

The values of 85{(ry) and £2(r2) are obtained from
equations C.1.3 and C.1.5. For r > ry:

B dgy @) ,r)
BaaBI‘:G—,‘-arF——z(zr)__T_T__kr T)

or

(2) (karn)
8y (ry) = (kzru) _-7——)—— €.1.12

fas P(r) = 1, r > ry, by definition] and for r < r,

£ d6, 3 Ker)
82=ﬁ1=ET=r (er)——(T(-—r)-T-)-
or
J', (Kar) )
82("2) = (Kzrz) J (Kzl‘) a2 . C.1.13
(]
(a) (1-Hoky /K)

In principle the coupled equations may be integrated
numerically outward from r = r' to r = ry and from
r=r'tor=r,with the starting value G(r') given
by equation C.1.11 and with

Tthis equation was derived independaontly of a similar equation obtained by Miles{23) for
the simpler case of two-dimensional incompressible flows.
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£3(r') = 83(r') G(r") C.1.14
and the “outward' iutegration and

Ex(r') = gy(r'y 6{r*) c.1.15

for the “inward" integration. Thus, absolute values
of G and £ would be obtained at r » ry, and r = 1,
which immediately determines the unknown coeffi-
cients Ay and Ay; in particular:

gy (ry) 6(ry)

= c.1.16
1 @) 1 B k)

A[.‘

In practice we do not solve the Riccati cquation
€.1.9 but instead integrate the coupled equations
€.1.7, €.1.8 with G(r,) and 5(r,) set equal to unity
to obtain 'guessed' values G,{r*} and G,(r') and true
values B3(r'), B85(r’). Equation C.1.11 is then used
to caleulate the true value of G(r') and the ampli-
tude A, is then still given by equation C.1.16 but
with

G(r')

G{r,) = .0
K}

C.1.17

Detailted aspects of the numerical integration of
cquations C.1.7 and €.1.8 are given in section C.h.

We now consider the case when the source is
located inside region 1 which, since r, may be as-
signed an arbitrarily small value, amounts to the
case when the source is on the jet axis. From the
jet noise radiation point of view this special case
may not be particularly relevant when considering
the potential core region since the noise sources on
the jet axis are presumably insignificant, if not
non-existent. However, we will eventually consider
other regions of the jet flow and, perhaps of more
importance, we wish to model experiments where a
controlled source of sound is placed inside the jet
flow on the center-line, in order to compare the
measured far-field acoustic radiation from the con-
trolled source with solutions to Lilley's equation.

The modifications to the above equations for this
special casc are as follows. The Green's function
in region 1, Gy, does not have to be finiteat r =0
and is zero for n # 0, so that 81 # 0 and it can be
shown that G, is of the form

6y = Ay (Kpr) + 42 uo(z)(xzr) €.1.5
or as Kyr + 0.
n
G] 4 -2' . YO(K;.I")

Equations C.1.6 - €.1.8 still apply, as does the
radiation boundary condition given by equation
C.1.12; also the first integration pass from r = ry
tor =ry is carried out to obtain G3(r,). But now
we simply need to match G3(r,) with Gy, defined
atove, and hence

Gy (ra)

G(ry) = 2y €.1.17a

which with equation C.1.16 (and n = 0) gives the
required value of A,.

1-4C.2 Fourier Inversions of the Solution Outside
the Jet and Source Region (Region 4)

As described in the previous section, the solu-
tion in region 4 (outside the jet flow and source
region) can be obtained from the solutions to the
Lilley equation inside the jet flow and source
regions,and the radiation condition, and is of the
form

<)
g =A H(n(kzr) r>r, c.2.1

where the coefficient A is a function of the source
position, frequency, jet flow parameters (all these
parameters are suitably normalized in section C.1.4)
wavenumber, n, and the normalized axial wavenumber
ky/k. To obtain g as a function of the space coor-
dinates (x;,¢) the Fourier inversions must be
performed:

oo
g(xlyrnn'h’/xiyr')°|pt') = '%‘"" l g exp(‘jklx,l dkl

-~

+o
= [ A(k,.n)Hn(z)(kfr) expl-jkyxy ) dkyC.2.3

glxy,r,é,0/xi,r' 0", t")

= %; jl vy 90, e ane/x], et et ) cos alemet)
n=0

where v =1 ¢ =2,n>0 c.2.4
o n

The coefficient A is determined .with a source
function

§{r-r")
v

that is, the source strength, S, is suppressed but
can now be re-introduced so that

glxy,ryn,0/x],r' e, t") = %; expl-jut' + jna'l

Foss
x| Atk 1 3 ort) expl-iky Gmai) ) die.2.5

-

It is the following step which is the center of any
significant criticism of the present work, for, as
in the "plug" firw models (discussed in the main
text) the integrand in equation C.2.5 has one or
more poles which represent the unstable jet modes.
In principle there arc two components which result




from this Fourier inversion and these will be simply
referred to here as the acoustic solution and the
unstable solution. The acoustic solution is ob-
tained from the method of stecpest descents, as
described in Appendix I-48, whereas the unstable
solution results from the residue evaluation of the
integral along the contour enclosing one or nore
poles in the complex k; plane. In the present work
the unstable solution is deliberately suppressed

for the reasons discussed in the main text.

Thus, the acoustic solution,is, from Appendix B

9(R.,8, me/x',r'¢',t") = = exp{-jut® + jny']
i exp[-jkR_] ;%— A(kcos8,n) exp[jna/2])
r

and
exp[-JkR ]

—r— expl-jut']
r

g(Rrve’¢rm/xivr‘ ', t) =

en(-Zj % (kcose,n)ej""/z} cosn(o=6').

b3
(e

2
1]
o

It can be seen that, for this acoustic solution, the
coefficient A is only required for a specific value
of 'ky'(= kcos8); that is, when the equations with
appropriate boundary conditions are solved numeri-
cally, 'ky' need only take the above value in those
equations. In addition 'n' need only take positive
values. The equations with this specific value of
'k, are given in section I-4C.h.

1~4C.3 Alternative Form of Lilley's Equation:
'q' Coefficient Definitions

In reference (1) Lilley transformed his equation
into the form

d’L,

m—-’f q1§1= hl C.3.|

as a first step toward obtaining approximate analyt-
/ ic solutions and to aid interpretation of the be-

havior of the solution both inside and outside the

| jet. The alternative form is given here again
because a minor simplification can be made to the
one given in reference (1) and because we wish to
compare it with another alternative form which may
be preferable or even necessary in the present
coordinate system. Lilley transformed equation
C.1.1 with (in the present notation)

!

b = G=2¢0G €.3.2
(f)(l-k,n,/k)

into the form shown above (C.3.1) with
d

q = kz{(gﬂ)z(a-n,k,/k)? - (k) /k)2}
A c

TS 33

and

ho= S(r-r')

1 C.3.4 i

y @
3, 0
r (-‘__)—)(I'klﬂxlk) 1

2 kyMy/k

M _ ’.!. 3 ,
- iy + m) {[logc(-‘%ﬂ] !

K My /K o KpMY/N

1
*oma! t Gt gmay) T 635

Fisher(24) has pointed out that the coefficient, qp,
definad by equation C 3.3, must inevitably be nega-
tive cn and near the axis due to the terms

-(n% + 1/4)/r%. When all the other terms add up to
a positive quantity in this region a zero or tran-
sition point will exist near the jet axis. It is
suggested here that a zero or transition point of
q), due to this feature of qy, may not have any
mathematical or physical significance becauvse the
transformed equation should be in a form appropriate
to the coordinate system on which it is based. Such
an equation can be obtained by using the transfor-

mation
Lo = a—_G—— C.3.6
(39') (1-k My /K)
to give
&7y 2 & (r-r'
R R L
() (1=ky#y 7k)
a
where
-~ ao
g = k-'-{(a—)2 (1=K My /K)? = (ky/k)?)
2k MY /K - k{Mi/k
s S ((leg B)2) 4 e } ’
r T kA 7K) %e'a, 1=k 1y 7K)
o KMk
- {5—- + m). C.3.8

Note that the 1/r term is multiplied by gradients
of mean velocity and temperature which must vanish
as r+0 (at least in the context of axisymmetric
mean flows).

Numerical Solution of Lilley's Equation:
Computational Details

1-4C. 4

We solve Lilley's differential equation

dty

1d d6, 1d a’ 2c0s0 4G
RaR P @ W “°"e(ag‘)’ * {1-F,cos0) dR ldR

a ,
+ 6[(kr )7 (=2 (1-Hjcos8)? -cos7o}-ﬂ-,-|=o C.hi
[ a R¢




in the form of two coupled, first order, ordinary
differential equations (see section 1-4C.1 for
derivation)

98 = (ol + igh C.b.2
& = (a6 + folz C.h3

where
R =r¢/ry C.u.4
PR} = -(R) 2 (1-My (R)cosn)’ €.4.5
2(R) = - 5ray (Rlkro)? [PIR)- cos?0] - 81 C.4.6

Hote that although the mean velocity gradient
aodnl/dR and the temperature gradient, d/dR{loge
(3%/a0%)), appear in the original Lilley equation,
these are absent in the coefficients of the coupled
first order equations and one only has to specify M,
and 3 as a function of R. This i> a rather useful
feature cspecially when neasureu values for My(R) and
3(R) are to be used, for, while these can usually be
measured fairly accurately, estimated values of
their gradients and higher derivatives almost in-
evitably contain relatively large errors. 0f course,
this does not mean that soluticns for the dependent
variables are necessarily independent of flow
gradients (although in the limit of vanishing shear
layer thickness they in fact are): in general the
solution must depend on the variation of the coef-
ficient P and Q with R and hence the flow gradients
and higher derivatives.

Equations C.4.2 and C.4.3 are integrated aumeri-
callv from the outer boundary at R = Ry

b @ (e k)
6=1.05 &= (kyrgRy) '—U—_ c.b.7
(k r R:.

where hor = krosind to the point R = Ry (sce Figure
C.1). This upper bound of the aumerical integra-
tion, R = Ry appears to be unnecessary as the method
of solution outlined in section C.1 requires the
upper bound to be R = R', that is the source loca-
tion. However, we will require the source location
to be varied in the range Ry <R' <Ry, and hence we
include all possible locations by choosing this
upper bound. The results from this first integra-
tion pass are stored and the same equations are
integrated again, starting at R = Ry with

(KaroRa) 4% (KaroRz)
G=10;¢= - c.4.8
3, (RoroRe) P(Ry)

up to the point R = Ry, (instead of R = R', again for
the same reason). We note that

P(R2) = (ag/a;)? (1-Mgcoso)? C.4.9
and
Kor, = (kro)2 ((%9-)2 (I-MRcose)2 - cos20}  C.h.10
) ]

as, for convenience, R, is chosen to be virtually on
the jet axis so that 3 = ay, M) = Mg. (This is only
true, of course, for the potential core region, to
which the present analysis is restricted.}

We now consider a particular source position and,
if necessary witn elementary interpoiation, obtain
from the stored values of G and £ the value G (R')
and the values 8;(R'), 83(R') (8 = £/6).

Then G(R') is calculated from

1
9 =
SR EN (0 N R ) .41
on' the required coofficient A from
—G®RD
A, = —2 ' C.4.12

6. (R") Hn(z) (%7 Ru)

As an aid to the interpretation of solution te-
havior the coefficient q. is computed in the form:

a
Q:ry = (krg)” 1(39) (1-#,c058)° = cos’e}

2Micosm M'cosg

___? t
* T Hc050) tllog, (3 ) '+ TRessoy’

5 Mycoso

- lg— +m} C.ll.l3

The numerical “integration is performed by an 1BM
routine, HPCL, which utilizes the Hamming's modified
predictor=-corrector method and which chooses and
changes the integration step size based on an esti-
mate of the local truncation error. In its original
form the local truncation error was calculated as an
absolute value so thot the variables had to be care-
fully scaled; now the routine has been modified so
that the error is calculated on a relative basis and
no scaling is necessary. This type of routine is
particularly useful in detecting regions where
unusually small step sizes are required due to rapid
variations in the dependent variable. Conversely it
will use large step sizes where the variation is
small, for example, at low frequencies.

As long as the factor (i-M;cos6) remains posi-
tive, the computational procedure described above is
straightforward; but when there exists a point, R,
along the integration path such that

1 - My (Relcosd = 0 C.h.14

the step size chosen by the integration routine
decreases indefinitely as this point is approached.
This behavior is caused by the appearance of a
singularity in the differential equations: the
above factor appears in the denominator of the co-
efficient Q, raised to the second power. This
singularity at the so-called critical point, Rc, is
well known in stability analysis (8) and it is now
well established that the correct Creatment of this
problem is to deform the path of integration into
the complex R plare so that is passes around the
critical point and hence the coefficients and the
solution remain finite and well behaved. The inte-
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Fig. C.2 Integration Contour in the Complex R
Plane

gration path chosen is shown in Figure C.2; in the
present notation the integration path must pass
below the critical point (8), that is, a must vary
between 0 and -=. The contour is chosen to be a
semi-circle of radius ¢. On this contour the com-
plex coordinate R is related to a by

a c.bas

_ i
R = Rc + ae
2nd the differential operators are related by

c.4.16

3o
:
8l

so that equations C.4.2 and C.4.3 are transformed to

d6 . ia p
— = [0]6 + [ive —] £ c.b.17
da (R + ae'®)
9 2 (iae’®Q)6 + [0 ¢ ¢.h.18
where
P(o,a) = -—39——}2 (1-M; (0,a)cos8)? c.b.19
(0,a) = 56.0 1 (o,a)cos e

Qlesa) = - gy (R + ae'®) (kr)?

2
x {P(o,a) - cos?8] - -——Jl———ﬁ;) Cc.4.20
RC + ae

The Mach number, M;{o,a), and speed of sound, & arc
expressed in the complex plane as a Taylor series
expansion about the point R = Rg:

(R-R.)
B (R) = Hy{o,a) = K(R) + MR —7—

+ MY(R.) fﬁ;ﬁﬁlz +

or
, (oe'®)
Mi(o,a) = H(R) + Hi(R) =7
+ MR ) igsrilz + c.u2
1! 721 e o

andg

- in - ity

a a id e a (e ) .
Ry ¢ (R (L + (ST rub2s
a, A, < g (B a, 2!

The critical point R is determined by solvina by
iteration the equation

1 - H (R )coss = 0 €.4.23

the velocity and speed of sound profiles used in
these equations are described in the following
section.

I-4C.5 Meon Velocity Profiles

The velocity profile used in reference (1),

V) (R)
T S oxp tT 1) €.5.1
J
where
= "1+ ¢
X b
and
R N |

b =0.145 c = 0.104

had to be discarded because its second derivative
is non-zero at y = 0 where the shear layer merges
~ith the potential core. This causes the second
derivative of ¥ and hence the 'q coefficient' (see
section I-4€.3) to be discontinuous at this point
and often resulted in excessive step size sub-
division in numerical integration; it would also
probably cause difficulties in the representation
of M (and 3) in the complex plane (see section
1-4C.4). The expressions for the first and
second derivatives are:

= 22X ol - 42
v bxi/’o expl = x°1. c.5.2

W® e )
Yy (bx*/r )*

expl - x?] €.5.3

The magnitude of the discontinuity at x = 0 is

-2
bx} o 2

and is inversely proportional to the square of the
normalized distance from the nozzle.

Other velocity profiles, such as the hyperbolic
tongent profile, werc used in the early stages of
this work but eventually the error function profile
given by Schlicting(25) was adopted. This is of
the form




vi{R) 1
VJ =5 {1 - erf [x]} C.5.4
where
2 Ntc
X7 7p
R-1

w= (xi/ros

and {from Schlicting (25)]

b= 1/13.5.

The gonstant ¢ defines the point at which

<I 1
—
n
o
wn

J
in recent calculations the value of ¢ used was

c ==~ M6

but work is in hand to provide values of b and ¢
which will give improved agreement with measured
velocity profiles. Currently comparisons with
measured profiles such as those shown in Figures
C.3a and b indicate that b = 1/13.5 should remain
the same but a better value of ¢ is

¢ = - ,022

which is the value used to obtain the results pre-
sented in this paper.

The erf function is evaluated using a rational
approximation [(26), p. 299)

erf(X) =

1
Y ayx + agx + asx’ + 3y

X:‘]“ +.(y C.5.5

Je(x}| < 5 x 1074 £.5.5
where
ay = .278393 a, = .230389
ay = .000972 ay, = .078108

Derivatives of v, for integration in the complex
R plare (sce section 1-4C.%), are evaluated using
the exact expression

d =1 1, - 2
GROV v, )= 3 (bx{/ro' =N (' 1)
x K (x) expl-x"} (n - 0). €.5.6

where Hn is the Hermite polynomial of order n.
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Fig. €.3a Comparison of Measured Mean Velocity
Profiles with £rf Profile Used for
Lilley Equation Solutions: At 2
Diameters

Fig. €C.3b Comparison of Measured Mean Velocity
Profiles with Erf Profile Used for
Lilley Equation Solutions: At 4
Diameters
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Abstract or most highly amplifying mode. All the features of .

A mode! for the organized turbulent structure of
a jet which describ.s the acoustic sour.es is pre-
sented. The noise radiation may be calculated
using Lilley's equation with the source terms pro-
vided by the turbulence model. The organized
turbulent structure is described as the sum of the
least stable fluctuations of cach azimuthal mode
number at any axial location. These mode: are ob-
tained using techniques analogous to those of
stability theory. Non-linearity teading to ampli-
tude limiting of the modes is described. The
effect of the background turbulence is accounted for
by a turbulent eddy viscosity. The downstream
behavicr of single frequency organized motions is
described. Results are presented for an axisym-
metric jet.

! 1-5.1

u The aim of this paper is to describe the large-
scale noise-producing turbulent structure of an
axisymmetric jet. The work represents the continua-
tion and expansion of ecarlier ideas on the structure
of turbulence in a two-dimensional shear layer{l),

Introduction

The existence and importance of a large-scale
organized structure in turbulent flows has only
recently been justified by experimental results(2),
(3). This is mainly due to the degree of sophisti-
cation in the experimental techniques that are
required. However, the postulation of such a struc-
ture is not new. The early work of Townsend

+ predicted a large-scale equilibrium structure for

the turbulence. The relationship between this

~ structure and the organized motion detected by Crow
and Champagne(2) and Lau, Fuchs and Fisher(3) is not
yet clear.

Evidence that a large-scale organized motion is
, important in the noise generated by turbulence has
also been obtained. The work of Mollo-Christensen

5) indicated that turbulence 'may be more regular
than we think it is'. Laufer, Kaplan and Chu%6)
also concluded that ‘the large~scale structures are
the primary sources of noise'. Bishop, Ffowcs
Williams and Smith(7) were drawn to similar conclu-
sions and proposed a model for the large sound-
producing eddy structure which in many ways
parallels the model to be presented here.

Considerable attention has also been paid
recently to the similarity between the large-scale
ordered motions in a high Reynolds number turbulent
flow and the instabilities of a laminar flow. The
transition from laminar to turbulent flow is domi-
nated by certain wave-like modes which grow very
rapidly before reaching a limiting amplitude and de-

caying., T' e appearance of harmonics of these
dominant waves also occurs. Occasional small explo-
\ sions or ‘bursts' of turbulent fluid are detected.

All these phenomena have been determined analyti-
cally or numerically by various theories of hydro-

h dynamic stability. The results indicate that the
transition process is dominated by the most unstable

this transition process have their equivalents in
turtulent flow. The existence of a large-scale
wave-like motion has been observed and 'bursting' of
turbulence is readily visible in jet flows. This is
to be expected since there is a close correspondence
between the stability equations and the disturbance
equations for the turbulent flow.

The work by Tam(s-ll) on the noise from super-
sonic jets has made use of these ideas. Tam chose
to only consider a single frequency for the large-
scale noise producing structure. This model is
essentially different from the work to be presented
here which is not so restrictive.

The paper first describes the model for the tur-
bulence in general terms. Secondly, the equations
for the model are derived and their solutions
given. A few comparisons between the results for
the turbulence model and experimentally obtained
data will be made. A more complete comparison will
be left until later when results are available from
an experimental program paralleling this work. A
method by which the noise radiated by the large-
scale structure can be calculated has been covered
by Lilley, Morris and Tester(12), and this work will
not be repeated here. Further discussion of this
aspect of the work will be given by Tester(13),

1-5.2  The Turbulence Model

In this section a model for the large-scale,
noise producing, structure of an axisymmetric incom-
pressible jet will be presented. The corresponding
mathematical formulation will be given later.

The velocity and pressure in the jet are sepa-
rated into three partsil The first being the
time averaged component, the sccond a time dependent ’
organized fluctuation and the third representing the
background disorganized turbulence. This background
turbulence is accounted for by the use of a turbu~
lent eddy viscosity. This has the effect of
reducing the effective Reynolds number of the flow
which has a stabilizing effect on the organized
motion. Crow(15) has considered how a body of fine-
scale turbulence may be regarded as a continuous
viscoelastic medium. The relationship between the
time averaged disorganized turbulence shear stresses
and the rate of strain of the mean motion is also .
represented in terms of an eddy viscosity.

If the equations for the organized motion are
Fourier decomposed and linearized and the mean flow
is assumed to be locally parallel,the fluctuations are
seen to satisfy the homogeneous stability equations.
Hente, the structure of the organized motion is seen
to be dominated by the spatially unstable modes
which are eigensolutions to the stability equations.
It was noted carlier that in the transition from
laminar to turbulent flow the motion was dominated
by that solution of the stability equations which
receives the highest amplification. The iaclusion
of an eddy viscosity has meant that the organized
fluctuations exist within an equivalent low
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R:ynolds number flow. Thus, it is a plausible
~usuzption of the turbulence model thet the struc-
ture of the jet at any axial location is dominated
by the most preferred mode or the most highly
armplifying fluctuation at that location. 1t i. thi.
mode which extracts energy at the fastest rate fron
the mean motion.

The amplification rates observed in free shear
flows are very large and the organized fluctuation
quickly reaches a level where the assumptions of
linear theory are no longer valid. Under these cir-
cumstances it is the divergence and changing char-
acter of the mean flow and a self amplitude limiting
process which prevents the continued growth of the
fluctuation amplitude. The dowastream arplitude of
the organized motion and its cffect on the m=an flow
is delcrmlned by the solutions to a set of integral
equations(16),(17), which are non-linear in the
fluctuations. Thes; products of turbulent veloci-
ties and pressures are approximated by the products
of the eigensolutions to the stability equations
assuming that the flow is locally paralle!. In this
manner account :.ay be taken of the effects of flow
divergen7c in the integral equations. Ling and
Reynolds{18) | however, have shown that a non-
parallel flou correction to the amplification factor
for a two-dimensional jet is only required for a
Reynolds nunber of less than 20.

However., any Fourier component of the organized
motion will propagate downstream and pass through
regions where it is amplifying, neutral and decay-
ing. It is only at that location where it is most
amplifying that it dominates the flow structure. it
is clear that at any location the turbulent struc-
ture is not dominated by the compenent having the
greatest magnitude but rather by the mode having
the greatest amplification. For example, a
frequency component of the organized motion which
is most amplifying at the end of the potential core
will not reach its maximum amplitude until further
downstream. The local amplitude of any frequency
component may be obtained by considering the local
growth rate, given by solution of the stability
equations assuming locally parallel flow, as a
function of downstream distance, noting that the
mean flow structure has been pre-determined by con-~
sidering its interaction with the most amplifying
mode at any axial location,

The model may now be summarized. It is hypothe~
sized that the large-scale organized motions within
the shear flow dominate the flow structure. The
large scale motions are given by the locally most
amplifying disturbances in the flow. The disorga-
nized background turbuience is of smaller scale and
may be ccanected with a turbulent eddy viscosity
which reduces the effective Reynolds number of the
flow. The downstream growth of the organized large
scale motion is distorted and damped by non-linear
interactions and flow divergence effects. The
axial variation in amplitude of any single frequency
component is given by the local amplification or
decay rate from linear theory. It is the axial
variation in amplitude which enables a particular
frequency component, whose phase velocity given by
linear theory may be subsonic, to radiate acousti-
cally. Associated with the typical streamwise
behavior of growth and decay of a disturbance will
be a wave number spectrum. This spectrum will
contain components with supersonic phase speeds, so
that non-linear vortical modes cause acoustic
radiation.

In the next section the integral cquations
joverning the downstream development of the jet are
derived.

1-5.3 Integrai Equations

The downstrean developrent of the mean flow and
the large-scale fluctuations is governed by a set of
integral equations. The mean momentum, mean mechan~
ical energy and fluctuation energy integral equa-
ticas are derived in Appendix 1-5A

In order to sirplify the anzlysis and make inter-
pretation of the integral equations easier, certain
assumptions may be made. It is assumed that terms
invoiving differences of squares of _turbulent
velocity components, such as {(0¢ - v¢) are small.
Further, the turbulence production i assuzed to be
doninated by the integral ternm,

=

r dr 34

-'llt':l

These assumptions are valid if the axial rate of
change of the mean flov width is small but are not
valid for very lo~ wave number fluctuations.

With these two experimentally justifiable assump~
tions the three intearal eguations reduce to,

x

d J'.? _ ,
_Xn rdr =0 3~£

0

k)
3 [t
d—fﬁ rdr=2J W -—=rdr
0 i

- 2( viy ) J.( =) r dr 3.3

g 16{T7 V7 W2)+TS+Tv+anc+20p)r dr
o

0

= =2 IOV — r dr =2{(v#V )0'[ dr 3.4

where ¢ represents the viscous dissipation terms
defined in Appendix I-5A.

Equation 3.2 which states that the momentum flux
across the jet is constant at any downstream station
is directly integrable and leads to,

o]
J.Dzr dr = 42 r? 3.5
—L—-O-
0 2
where ro is the jet exit radius. Nondimension~

alizing equations 3.5, 3.3 and 3.4 with respect to
the jet exit velocity and radius gives:

o
fﬁ*z rt drx = _I. 3.6
0 2

- s
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where
u.r _ ur a.r
Rs= _1_2 R, = _LQ R, = _LO 3-9
¥ T ‘)T ] ‘.T

and nondimensional quantities are denoted by stars.

Inspection of equations 3.7 and 3.8 reveals how
the mechanical energy of the mean flow is balanced
by the production of turbulence and effective
viscous dissipation while the fluctuation gains
energy from the mean flow and is dissipated by vis~
cosity and the viscous action of the background
turbvlence.

1-5.4 Shape Assumption for the Mean Flow
and Fluctuations

Ko ¢t al{17) demonstrated that the unknowns that
exist in the integra) equations may be approximated
by a few shape parameters. The same approach will
be adopted here.

A sketch of the <oordinate system used to charac-

terize tbe mean ve.ocity is the same as that used
by Tam{11) and is sketched in figure 1.
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Fig. 1 Sketch of Coordinate System for Jet

It is convenient to divide the jet into two
regions: the first being the annular mixing region
which exists from the jet exit to the end of the
potential core and the second being the developed
jet region downstream of the potential core. The
nean velocity takes the form,

ufi, = §- = 1 r<h < % :
G =y () r>h x < x 4.1

/5 = L > 'i

afu, g (%) x 2 x, .

[
v - -

where r, = r=h/b, h is the radius of the potential
core, xc is the length of the potential core and b
is the womentum thichness of the jet defined by, .

b= fﬁ.'-(x - u”) dr 4.2

= = r/b and Uc is the center-line velocity of the /
jet. The mean velocity shape function is shown in

figure 2. It has been compared with the results of

a jet rean flow prediction program which is acci-ate

for the subsonic, unheated jet. Also shown for .
reference is the mean velocity shape function used

by Tam(11) for a supersonic jet. The use of these i
coordinate systems for describing the mean flow is '
very convenient, however, close to the jet exit

deviations from measured velocity profiles are dis-

cernable.
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Mean Velocity Profiles and Mean Velocity
Shape Function

fig. 2

Changing the independent variables in equations
3.6, 3.7 and 3.8 to x, n and £ leads to

i) in the annular mixing region,

{h32-1) + 2h*b3B, + 2b%28, = 0 4.3
4. (h%2 + hib*g, + b%2g,)
o (h® \b*B 3 "By,
= 2b%ly, - 2{ LI {)( %{,265 +8¢} L.k
R ®
T
S (b42(1y + 1% 214)}
dxxt”” 1 2 3
L.s

=zt = 2 (2 L 0g + 1g)
R RT




and (i the developed jet region,
G _=iba2y, = 1 4.6
c 2772 :
== (G %3542y, }
= 26 761, - 2 ey g sty 4.7
R R, ©
T
:x m RSO B P P 213
_ P | 1. - .-
= =25 Ay, - 2{ =+ ) u Al b, + 1] 4.8
c R c
T

where the ='s and 1's are integral functions of the
mean flow and the 1's are integral functions of the
fluctuations.

These are defined in Appendix 1-5C. In

these definitions the independent variables n and £,

defined above, are both used for convenience. All
velocities in the integrands are referred to the
local center-line velocity.

Once the fluctuation integral terms in these
equations have been defined, they present a simul-
taneous systen of d:ffcrent:al equations which may
be solved for b¥ and h* or uc* as functions of X%,

The organized turbulent fluctuations are de-
scribed in terms of the cigensolutions of the
Fourier transformed fluctuation continuity and mo~
mentum equations. The Fourier transform of any
velocity or pressure fluctuation is defined such
that

e'™q(r3k,n,0)

l',(’ f J' F(tkx) «g(r; 4,4, t)dxdt 4.9

-~

The continuity and momentum equations for the
Fourier transforms of the organized motion are,

ika + v +.‘.’.+%;,‘,0 .10
ik(@ - c)d + UV + ikp
= (i) o +'—‘(k7+—z)u} b1
ik(d - c)v +p'”
IS hl .
= (v+§T}{v" + %— - (k2 (n? +|)) 2|n o 412

N

———

= (v*vT)(Q" * ?f-(kz + ("r;'))' + 53 } 4.13 ;
¥
The boundary conditions are: \
1 1
v{0) = w(0) = 0 0¥l }
v(0) = -iu(0) n=l
u(0) and p(0) Finite n=0 L.k

a(0) = p(0) =0 nf0

ulr), v(r), wi(r), plr) 0 as r -0 )

where k is the wave number, u the real frequency,

¢ = w/k and 31 is the turbulent eddy viscosity re-
lating the time dependent random shear stresses with
the rate of strain of the organized disturbance.

in the annular mixing region of the jet the
equations are nondimensionalized with respect to the
jet exit velocity and the local momentum thickness.
Downstream of the potential core the reference
velocily used is the jet center-line velocity.

The eigensolutions are found using the method of
solution described in Appendix 1-53

The assumptions that led to the mean momentum
integral equation being written in the form of
equation 3.6 have enabled the potential core radius
h% and the jet center-line velocity uc* to be di-
rectly related to the local momentum thickness b*.
Thus, the integrals of the fluctuations may be
written

= lAlﬁki(bz)

i= 1,2,...6. 4.15

The turbulent diffusion integral 1, involves triple
products of the fluctuations and thus becomes zero.

The integrals are normalized ‘'such that
Ky + 2ky = 1, 4.16

so that

A = Of (G T ) + T e . b7

The total fluctuation mechanical energy flux,
Eg, is given by

EF=ﬁf(a(a_+T+a_2)+zﬂP-)rdr 4.18
2 4 o
Then, in the annular mixing region,
1 W= 3
€ =3 |A|2b«2ujs , 4.19
and in the developed jet region,
a . 0=
Ee =5 iAlzb*zuc&aujq . k.20




In terms of Ep the mean mechanical energy and fluc-
tuation energy equations may be written,

X byt db*
Fhe,be) S
_LE Ly Ly mtae bt.)
-‘lsgk:."Z(—"’:H s +b®8g 4.21
R: Ry
2—;%% 2 -2k, - 2 i: }*)( ks + ki) h.22

Ri

in the annular mixing region, where

f(h*,b*) =
b2 (24-51) + 2habA(24-2,) + 2b%2(6q6,,5253) i 4.23
(h% + b:':gl) !
and
db
Ty m=-8'2%f:kb+2{l+é("_ .24
c R* R
T
L i I I LR R VS UL
EF dx= . = 4 -
R% Rzx
T
in the developed jet region, where,
R# = " and R% = P X < X,
ac Gcb 4,26
A

Equations 4.21, 4.22, 4.2k and 4,25 may be
solved to determine the axial variation of b*, Ef
and h* or Tg*. These results are given in the
next section.

1-5.5 Results and .(scussion

Before calculations can be made the values of
the eddy viscosities VT and 97 need to be specified.
Tam(11) has argued that since the effects of vis-
cosity on the organized motion are confined to a
thin critical layer whose dimension is much smaller
than b¥*, the value of U7 will be an order of magni-
tude smaller than 7. However, the thickness of
the critical layer is a function of the viscosity,
increasing with decreasing viscosity. Also, as will
be seen below, the wave length of the most ampli-
fying mode is only of the order of four times the
Yocal physical width of the jet. Thus, the eddy
viscosity coefficients are chosen to be equal.

The same hypothesis was used by Reynolds and
Hussain(‘hy. In physical terms it states that,

since the large scale and the mean flow structure
of the jet are of a similar scale, then the action
of the background shear stresses in the form of a
viscosity will be of the same order of magnitude on
each. The notation vy is used to represent both
coefficients of eddy viscosity and in the two jet

regions they are

7 =Kb uj r- x < xc

5.1

“ G e . >
= Kb u.- e uJ X2 x

The value of K is taken to be .02. This corre-
spords to the value used by Tam{11) and is approxi-
nately equal to the values given in Schlichting(
for the two dimensional and axisymetric je:. It
can then be seen that the local turbulent Reynolds
number, Ry*, defined in equation 4.26, is constant
throughout the jet.

With this definition of eddy viscosity the
solutions to equations 4.10 to %.13 with boundary
conditions 4.14 may be found. The viscous solu-
tions for all values of n have not been obtained
but a qualitative comparison between their ampli-
fication factors may be obtained by considering
the inviscid solutions. The amplification factor
-a. as a function of frequency is shown in figure
3. Clearly, the order of modes from rost unstable
to more stable is n =1, 0, 2. This is in agree-
ment with the re ul}s for axisymmetric pipe flow by
Garg and Rouleau I , who also continued this
sequence to higher mode numbers. The results of
Batchelor and Gil1(21) for linear temporal stabil-
ity shou that for a plug flow the amplification for
all modes is equal at high wave numbers and for a
bell-shaped profile, characteristic of the devel-
oped jet, only the n = 1 mocde is amplifying in the
inviscid limit. These results are confirmed by the
present viscous analysis. The amplification factor
as a function of frequency for the n = 0 mode is
shown in figure % and for the n = 1 mode in figure
5. As the jet width increases, the n = 1 mode be-~
comes increasingly more amplifying relative to the
n = 0 mode. However, for small jet widths the n=0
mode and n = 1 mode have similar maximum amplifica-
tion rates. This is shown in figure 6. The
detailed radial variation of the mean velocity pro-
file governs the relacive magnitudes of the modes.
The phase velocities defined by ¢ = w/ar, where ar
is the real part of the wave number, are shown in
€igure 7 for both n = 0 and 1 modes for two jet
momentum thicknesses. The value of b% = 4128
corresponds to the momentum thickness at the end of
the potential core, since 8o = 2.93408. The phase
velocity of the n = | mode increases with increas-
ing frequency. This relationship is characteristic
of the fully dcvclope? ayisymmetric jet [e.q.
Wygnanski and Fiedler'22)], It is in the fully
developed region of the jet that only the n = 1
mode is amplifying. The n = 0 mode has a phase
velocity which decreases with increasing frequency.
It is interesting to note that the results of Crow
and Champagne(z) indicate a different phase-
velocity/frequency relationship for the axisymmet-
ric mode. However, their results were for a plug
flow jet velocity profile and inviscid flow whereas
the n = 0 mode was growing in a jet flow whose mean
flow characteristics were becoming more smooth as a
function of axial distance. The inclusion of vis-
cous effects would have reduced their overestimate
of the amplification rate and the use of realistic
velocity profiles would have improved the phase
velocity agreement for spatial amplification. Thus,
their conclusion that temporal instability theory
is more valid by comparison with experimental
results is open to question.
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In order to determine the axial behavior of the
organized motion as well as the growth of the jet,
it is necessary to specify which eigenfunctions are
appropriate at each axial location. In the work of
o et at{17) the problem of transition in an incom-
pressible wake considering finite amplitude
disturbances was studied. In this case it was
appropriate to look at the development of a mode
with a frequency corresponding to the measured fre-
quency of the fundamental mode. Tam(11) also chose
to look at a single freguency to represent the
noise-producing, large-scale, turbulent structure of
a supersonic jet. MHowever, the spectrum of turbu-
Ience does not consist of a single frequency but a
continuous spectrum whose peak varies with axial
location.

{t has already been noted that in stability
theory the mode which dominates is that receiving
the highest amplification. [t has also been argued
that the mode within the turbulence which locally
dominates the flow structure is that which is
locally most amplifying as it is this mode which
extracts energy at the greatest rate from the mean
flow. Thus, it is clear that at each axial loca-
tion the integrals to be used to determine the
dowinstream behavior of the turbulent energy and the
growth of the mean flow, are those given by the
eigenfunctions of the most amplifying mode. However
in the axisymmetric jet there is a most amplifying
or least damped solution corresponding to each azi-
muthal mode number. The amplification factor for
all these modes is of a similar magnitude close to
the jet exit. 1t is only away from the jet exit
that the n = 1 mode is the only amplifying mode.

The overall organized structure can only be fully
accounted for by considering all these modes. |If
only the n = { mode is used, the rate at which
energy is transferred from the mean flow to the
organized motion will be too great. Although the
other modes huve gained energy from the mean flow in
the region near the jet exit they will be losing
this energy back to the mean flow and by viscous
dissipation as they propagate downstraam.

The mean mechanical and fluctuation energy
equations are written,

db
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The fluctuation energy equation 5.3 and 5.5 take
an identical form in the annular mixing region and
the developed region of the jet. However, the
reference velocity used in the evaluation of the
integral terms is the jet exit velocity in the
annular mixing region and the jet center-line
velocity in the developed jet.

It will be assumed that the growth of each mode
satisfies equation 5.3 and 5.5 independently.

The fluctuation energy equation must give the

same amplification factor as the eigenvalue solu-~
tion, that is,

b =— E, = - 2 q¥ 5.6

For example with Rf = 50., R* = 2.15332 x 105 at
b = 2, 4b* = 174533 for n = 1

ky, = .05402
ke = 1.144
ke = .08733,

equation 5.3 then gives b* dEp/dxx = ,058716,
which agrees closely with the eigenvalue a* =
.2771248 - .0293371i.

Having established the validity of the solutions,
equations 5.2 to 5.4 will be solved. The calcula~
tions are made for only the n = 0 and n = 1 modes.
This is expected to increase the rate at which the
jet center-line velocity decays and the jet spreads.

The frequency for maximum amplification as a
function of “the jet momentum thickness b* is shown
in figure 12 for the n = 0 and n = | modes. Near
the end of the potential core the least damped (n =
0) mode is at zero frequency, however, the frequency
used in the calculations was chosen to coincide with
the peak in the amplification curves in the damped
region. The Strouhal number at the end of the po-
tential core, that is b* = 4128, is .385 for the
n = 0 mode and .35 for the n = 1 mode. Figure 13
shows the amplification factor as a function of jet
momentum thickness for the n = 0 and n = 1 modes.
The n = 0 mode is seen to be damped for b* > ,29
whereas the n = 1 mode is always amplifying.

The downstream growth of EFi for the n = 0 and 1
modes are shown in figures 14 and 15 respectively
for various equal initial amplitudes of the two
modes. Examination of equation 5.3 and 6.5 reveals
that the value of EFi tends to a constant as b% be-
comes very large. The corresponding center-line
velocity profiies are shown in figure 16. The best
agreement is seen to be obtained with initia)l
values of EF and EF) equal to [ x 105, As noted




B e ot e &

earlier, by considering only the first two azimuth-
al mode numbers, the rate at which energy is lost
by the mean flow, which is reflected in the center-
line velocity decay, is too high. This is shown in
figure 17 where the decay of uc* is calculated,
assuming only the n = 0 mode or the n = 1 mode is
present. The n = 0 mode does not cause sufficient
energy loss by the mean flow whereas the n = 1 mode
alone causes too great a loss of mean flow energy.

4.0

2.0

la

.08 A .2 X .4 5 5.0 70

Most Amplifying Frequencies for n = 0 and
1 Modes as a Function of Momentum
Thickness

Fig. 12
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>
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Amplification Rate for the Least Stable
n=0and n = 1 Modes

Fig. 13

The effect of the initial ratio of Efj to Ef, is
shown in figure 18. Increasing the n = 0 mode
initial value decreases the center-line velocity
decay but moves the end of the potential core down-
stream. The following calculations will be made
with initial values of Eg  and EF) equal to 1 x107%,
Their relative amplitudes are shown in figure 13.
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Examination of equation 5.4 reveals that for

db*/dx* to asymptotically approach 1 constant in the

developed

jet region,

n
2. ey ki

i=0

must be proportional to uc* or else be zero. If

only the n = 1 mode is considered, then Ef, tends to

a constant since the mode's amplification is
approaching zero as the jet momentum thickness in-

creases.

be determined by the sum of several azimuthal modes,

However, i

length motions the transfer of energy from the mean

Thus, the asymptotic behavior of Ep must

t is also probable that for long wave-

flow to the fluctuation does not obey a simple

linear rel
monics of
amplitude

ationship and the sub-harmonics and har-
the fluctuation contribute to further
limitation of the mode.

Ko et al(‘7) have correctly noted that a more

realistic indication of the amplitude of the turbu-

lent fluct
rather tha

&

this gives

The magnitude of E1, and Ety for initial values of

Ef of 1 x

modes are seen to peak at approximately 2} diameters

vations is given by an energy density
n a total energy calculation. Defining

s £
2.4
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u
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1075 are plotted in figure 20. Both

downstream of the jet exit.

r o Rn Ao oS
J @6 w2 )+ 28y gde 5.7




vt Sy v

Fig. 20 Energy Density as a Function of Axial
Location

With this information on the relative magnitudes
of the turbulent fluctuations the mean square tur-
bulent velocity distributions in the jet may be
obtained. The radial distributions of mean square,
axial velocity fluctuations, Ju*[2, radial velocity
fluctuations, [v¥]2, azimuthal velocity fluctua-
tions, Tw%|2, and u®v% at x/d = 2.75 are shkown in
figures 21, 22, 23 and 24, respectively. The same
distributions downstream of the potential core at
x/d = 8 are shown in figures 25, 26, 27, and 28.
The distributions are ail normalized such that
vi(0) = unity for the n = 0 mode. In the annular
mixing region the axial velocity fluctuation is
dominated by the n = 0 mode in the potential core
region. However, it is to be remembered that no
account has been made of the intermittent character
of the real turbulent flow. In the model the or-
ganized motion is assumed to be evolving continu-
ously and uniformly along the mixing region of the
jet. The n = 0 mode need not possess an azimuthal
velocity fluctuation, since this fluctuation satis-
fies a completely independent differential equa~
tion. The wtvX distribution, which for incompres-
sible flow, is proportional to the Reynolds stress
exhibits similar characteristics for the n = 0 and
n = | modes in the annular mixing region and is
dominated by the n = 1 mode in the developed region
of the jet.

Fig. 22 Radial Distribution of Mean Square Radial
Velocity Fluctuation; x/d = 2.75
1 T T
o5 .
~ et
% o 7% 3.0
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Fig. 23 Radial Distribution of Mean Square Azi-
muthal Velocity Fluctuations; x/d = 2.75
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fig. 21 Radial Distributions of Mean Square Axia!l

Velocity Fluctuations, x/d = 2.75
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The axial growth and decay of single real fre-
quency velocity fluctuations may be determined by

solution o

f equations 5.3 and 5.5 or equation 5.6,

#ith the axial dependence of b* already determined

by the mos

t amplifying modes. The value of aj for

several frequencies as a function of axial position

is shown in figure 29.

The downstream behavior of

a number of different frequency components for the

n = 1 mode
1 x 1078,

, for a given equal initial amplitude of
is shown in figure 30. The higher fre-

quency components grow very rapidly to a peak
before decaying at a similar rate, whereas the
lewer frequency components peak further downstream.
The downstream distance at which a particular fre=-
quency component peaks is given in the table below.
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The relative magnitude of these frequency compo-
nents may be determined since the magnitude of each
} is known at the axial location where that frequency

co~ inent was most amplifying. The relative magni-
tudes of the frequency components computed in this
manner for the n = 1 mode are shown in figure 31.

Since the magnitude of Ef; tends to a constant
far downstream in the developed region of the jet,
the peak amplitudes of lower frequency components
will eventually decrease with decreasing frequency.

1-5.6  Summary

A model has been presented for the organized
large scale structure of an axisymmetric incompres-
sible jet. The structure is described locally by a
sum of the least stable modes for each azimuthal
mode number. The downstream arowth of the mean flow
\ dimensions, jet center-line velocity decay and tur-

bulent energy are found by solution of the integral
forms of the momentum and chergy equations for the
h mean flow and the fluctuations. The mean velocity
' profile is characterized by a shape function and a
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Fig. 31 Relative Amplitudes of Integrated

Fluctuation Energy Flux for Single
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coordinate system depending on the*jet momentum
thickness and the potential core width in the annu-
lar mixing region of the jet, and the jet center-
line velocity in the developed region of the jet.
The integrated energy flux associated with the
first helicei azimuthal mede, n = 1, is shown to
increase at a gradually decreasing rate with axial
distance whereas the energy flux of all other modes
decreases with axial distance. The amplitude of
the organized fluctuations, which is characterized
in terms of an energy density, is shown to reach a
peak in the annular mixing region of the jet before
decaying. The downstream growth and decay of
single frequency components is found by determining ’
the local amplification rate as a function of
downstream distance with the scale of the mean flow
predetermined by the most amplifying mode analysis.
The relative magnitudes of the single frequency
componen*s are calculated using the amplitudes of
the components when they are most amplifying, which
are calculated in the determination of the overall
structure. The location of the peak magnitude of
high frequency components occurs close to the jet
exit and increasingly lower frequency components
have their peaks further downstream.

Future work includes:

(1) extensive comparison with measurements
currently being obtained using a laser velocimeter,

(2) calculation of radiated noise using both an
extension of Lighthill's theory of aerodynamic
noise, Lilley et aZf12), and solutions of Lilley's
equation with the source wavenumber /frequency
spectrum determined from the present work,

(3) extension of the work to include compres-
sible flow. Results are already being analyzed for
a two-dimensional compressible shear layer, and
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(4) examination of the role of harmonics of the
fundamental mode in the distribution of energy from
the mean flow to the organized metion.
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Notation
b jet momentum thickness
cr phase velocity
d jet diameter
Ep integrated fluctuation energy flux
Er integrated fluctuation energy density flux
h radius of potential core

integral functions of fluctuations
k wave number
n azimuthal mode number

P, p pressure

r radial coordinate

R Reynolds number

Ry turbulent Reynolds number
o jet radius

U, u axial velocity

u; jet exit velocity

ue jet center-line velocity
v, v radial velocity

2, W azimuthal velocity

S axial coordinate
o non-dimensional wave number
8; integrals of mean flow profile in annular

mixing region

¥Y; integrals of mean flow profile in
developed jet region

n diverging coordinate in annular mixing
region

v kinematic viscosity
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vy kinematic eddy viscosity
radian frequency

4 diveraing coordinate in developed jet region
bar denotes a time averaged quantity

tilde denotes a fluctuation associated with the
organized motion

prime denotes a fluctuation associated with random
motion

asterisk denotes a non-dimensional quantity
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* APPENDIX [-5A

INTEGRAL EQUATIONS FOR AN AXISYMMETRIC JET

Making use of the equation of continuity, the
equations of motion in cylindrical coordinates may
be written

UW 13P

3U | aU? 1 3W.r, 123 2
—_— ¢ - —— . e .
at + X + roar + r 3¢ = p X w2lul, A

;.Y.+.‘i,l_“”"r PRI (L A LA W
ot x r oo [ IR H [ & Ar
T N I
LA “}] Fz— -r—z-':;-g A.2
kY IVW.r a
and __f_l_+___3U"+l W +l_..:" +E=
t Ix r o ar r 8 r
-1 3P o2y oW 2 3V
aras + w{?{W] Sl ?,;). A.3

where U, V and W are the velocity components in
the x, r and & directions respectively and
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The velocity and pressure are separated into
threc parts:

(i) the mean value denoted by an overbar,

(ii) the component associated with the
organized motion denoted by a tilde and

(iii) the component associated with the dis-
organized, random moticn denoted by a prime.

On substituting into the equations of motion,
phase averaging, averaging over time and intro-
ducing an cddy viscosity to describe the influence
of the background random motion on the mean flow
we obtain:
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where vy is defined by
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This relates the time averaged components of the
background shear stresses with the rate of strain of
the mean motinn. Phase averaging is denoted by < »
and time averaging by an overbar. Fuller distribu-
tion of the definition of phase and time averaging
and their corresponding properties are given by
Reynolds and Hussain (14). In the light of the
results of Reynolds and Hussain, the eddy viscosity
has been assumed to be independent of radial
position

Use of the boundary layer approximations for an
axisymmetric mean flow allows the pressure to be
eliminated from equations A.4 and A.5, yielding,
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Integration of equation A.7 across the jet with the
assumption of no fluctuations at the edge of the
jet gives finally,
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dy} dr = 0 A

The integral equation for the mean mechanical
energy is obtained by multiplying equation A.7
throughout by Gr and integrating across the
jet, giving,
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The organized disturbance kinetic energy equation
mey be obtained by multiplying the x, r and &
organized disturbance momentum equations by @, V
and w respectively adding. The resulting dif-
ferential equation when multiplied thrcughout by r
and integrated across the jet is,
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where the integrand in the dissipation term is
given by,
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and the eddy viscosity vr relates the time depen-
dent part of the random gackground shear stresses
to the rate of strain of the organized motion, such
that,
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In the derivation of equation A.10 the value of
has been assumed to be constant across the jet.
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APPENDIX 1-58

THE SOLUTION OF THE STABILITY EQUATIONS IN CYLINDRICAL
COORDINATES FOR ARBITRARY OISTURBANCE MODE NUMBER

The study of the stability of axisymmetric flows
has not been as extensive as that in problems where
the flow is described in a rectangular coordinate
system. Michalke and Schade(24) have considered the
problem of the inviscid stability of various para-
bolic piecewise mean velocity profiles to axisym-
metric disturbances. Batchelor and Gill{21)
analyzed the stability of axisymmetric jets and ob-
tained general results for the inviscid case. The
viscous stability of bounded axisymmetric flows as
pipe flow has been investigated. Recently, Garg and
Rouleau(19) looked at the linear spatial stability
of Poiseuille flow using a numerical technique and
achieved good agreement with the analytic work of
Gi11(25),

The analysis below presents a method for the
solution of the viscous stability of unbounded axi-
symmetric flows, such as round jets, to disturbances
of arbitrary mode number.

Let us define the Fourier transform of any
velocity or pressure fluctuation such that

in2

nea
e rq(ria,n,u) =
;0 N0

1 i{wt - ax)
o | e

-C0w00

.a(r;x,é,t)dx dt 8.1

Then the linearized continuity and momentum
equations in terms of the transformed fluctuations
are,
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where D £ d/dr, ¢ = w/a the phase velocity and the
equations have been non-dimensionalized with re-

spect to an appropriate velocity, length and
density such that

Ug L
R=-2"¢
v

For the case where n = 0 the terms involving w
are decoupled from the equations leaving a fourth
order system of differential cquations. The
analysis below is for the case of n # 0 since this
requires a more complicated technique. A similar
method may te used to solve the n = 0 case.

The solution to equations B.2 to B.5 may be
found for small r using a series expansion for the
dependent variables. The same result is obtained
as that by Garg(20). The dependent variables are
found to have the series form,

P a+l 2 o, oo. 2(;-1)
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where F(r) = v + iw
and g(r) = v - iw

The recurrence for F;, G , U, and P, are given
by
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and

1
Forl = ir+'+li RP -2 Fna8il 8.5

where B, = - aé - iaR(C1 -¢)

and 8i = - 3aRCi

and the mean velocity U ts written in a series such
that

G=C +C 2+ ¢, 4 e2(m-1)

Inspection of these recurrence relationships
reveals that the solutions may be written in terms
of three coefficients, for example P,. Ul and Gl'

The solutions to che equations in the region
outside the jet where the mean velocity is constant
may be obtained in analytic form and are found to
be:

uir) = B, Hn(l)(iur) + By Hn(l)(iﬂr)

ey = -8, L& Wiar)y -
ST (i)mr) } q_n n(:)(isr)-
w(r) = B, -'} Efl—)r(i;r)" 8, éﬁ "nnm“sr) *
8.10
;3 & Migry

p(r) = 8,(c - Ga) Hn(')(iar)

where Uy is the constant mean velocity around the
jet and 8 = [a? + iaR(G, ~ c)J3. Hankel functions
of either the first or second kind are used in
equation B.10 so as to satisfy the boundary condi-
tion in the outer region,

U,V,w,p>C as r o,

Equations B.2 to B.5 may be written as six first
order dlfferentual equatlons'un the dependent
variables 4, V, W, P, ¥ and ¥, where

i = g% and @ ) .

These six equations are integrated numerically
outward from the jet axis using the starting con-
ditions provided by the series solution. In order
to maintain the linear independence of the three
soluticns with coefficients U;, P, and Gy a nor-

P

malization and orthogonalization procedure is per- .
formed at cach step of the numerical integration. !
[See Bellman and Kalaba (26) and Betchov and
Criminale (27).

The numerical solution at some radial position
in the uniform flow outside the jet will.be in the
form, .

G(a) = P, G,(a) + U, §,(a) + G, G,(a), etc.  B.M

The six coefficients in equations B.10 and B.11 may
be found by elimination of the «ix dependent
variables which leads to

Fla,w,R)x = 0 B8.12

where F(a,w,R) is a 6 x 6 matrix whose coefficients
may be easily found from equations B.10 and B.11.

The cigenvalues are determined by satisfying the
condition

det. F = 0. £.13

The eigenvalues may be located using the method
proposed by Garg (20) which was found to work well
for this problem.

As an example of the solution, the resuits for
an axisymmetric jet profile at x/d = 2.29 is given
in figure 32, The results are for the n = 1 mode
and the first five eigenvalues have been located. .

A more complete derivation of the above equa-
tions and a study of the viscous spatial stability
of several axisymmetric jet profiles will be pre~
sented later.
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Fig. 32 Location of Eigenvalues for n = | Mode
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1-6.1 Introduction

The aim of t?lg work is to extend the model pro-
posed by Horris{l), for the large-scale noise-
producing structure of an axisymmetric jet, to
include the effects of compressibility. In view of
the simplicity afforded by a rectangular coordinate
system the first look at compressible flow has been
chosen to be a two-dimensional compressible free
shcar’layer.

The basic philosophy behind this model for the
turbulence has been discussed in Section i-5 and
further elaboration is not felt to be necessary
here. However, in order to properly account for
changes in the turbulent structure as, for example,
the temperature of the flow increases or the Mach
number changes, it is essential to consider the full
compressible problem. If the turbulence, as a
source of noise, is taken as incompressible, crow(2)
has shown that this so-calied 'Liepmann approxima-
tion' leads to errors in calculation of the radiated
noise.

The first stage in the extension of the model to
include compressibility is to demorstrate the abili-
ty to formulate and solve the relevant differential
and integral problems analogous to those of Section
1-5. This has been done and the results are
wresented below. This exercise has been formulated
only to demonstrate the ability to solve compres-
sible flow problems and is the stepping-stone to
the problem of the axisymmetric compressible jet
flow problem. In view of this, only a limited
amount of calculations have been performed and a
detailed model of the large-scale structure has not
been obtained.

in this study the mean flow is two-dimensional
and is assumed to be compressible as well as
viscous. Both of these considerations add a deyree
of complexity to the formulation of the mathematical
model. The dependent variables in the probiem are
the fluctuating components of the velocity, the den-
sity, pressure and temperature. To sclve these, the
internal energy equation and the equation of state
have to be considered as well as the momentum equa-
tions and the equation of continuity. The viscosity
is assumed to be a function of the varying
temperature.

In order to determine the structure of the finite
amplitude organized disturbances, all flow quanti-
ties are separated into three components; a time-
averaged component, an organized fluctuation compo-
nent and a disorganized random component. The
effect of this disorganized motion has been repre-
sented in this study of organized turbulence through
the use of an eddy viscosity and an eddy thermal
conductivity. The dounstream growth of the shear
layer thickness and the amplitude can be described,
through an integral formulation of the equations of
continuity, momentum and energy in terms of local
transverse distribution of fluctuation quantities.
This is described in Section 1-6.2. By assuming
the flow to be locally parallel, the local trans-
verse distribution of fluctuations can be determined

1-6 A MODEL FOR THE ORDERLY STRUCTURE OF TURBULENCE [N A TWO-DIHENSIONAL SHEAR LAYER

S. S. Kapur and P. J. Morris
Lockheed-Georgia Company
Marietta, Georgia

through an eigenvalue analysis of spatially unstable
modes described in 1~6.3. A discussion of numerical
results is included in Section 1-6.4.

In the following, the starred quantities refer to
dimensional variables whereas non-starred quantities
will refer to ncn-dimensional variables.

j-6.2 Finite Amplitude Effects on
Shear Layer Growth

The interaction between mean flow and the finite
amplitude disturbances is discussed here, in terms
of an intz2aral formulation, where products of the
organized fluctuations twve been retained. An
integral forrmulation of the type to be described has
been used to consider the finite amplitude eff c;s
in a laminar compressible w?kf by Liu and Lees?3
and by Ko, Kubota, and Lees %) for an incompressible
wake. The formulation below for a two-dimensional
compressible flow is more general for two reasons.
First, the effects of viscosity varying with tem-
perature have not been ignored. Secondly, following
Reynolds and Hussain{(5), the total flow quantities
have been separated into three parts; viz, mean,
organized disturbance and disorganized random dis-
turbance. The effect of the random disturbance has
been taken into account by the introduction of an
eddy viscosity.

Denoting a flow quantity by q, we define
q=a+4q+q’, (2.1)

where bar, tilde and prime refer to the mean, the
organized disturbance and random disturbance com-
ponents of the flow. Averaging over a long time
interval determines q. Then, the phase average <q>,
i.e. the average over a large ensemble of points
having the same phase, is

<q>=q+q

That is, it is assumed that the phase average of the
random motion for a large cnsemble is zero. From
these definitions, several properties can be easily
deduced, for example,

=

=T et = 0

For each of the continuity, momentum and energy
equations the flow quantities q can be replaced by
the form given in equation (2.1). The Lime average
of the equations then provides the corresponding
equation for the mean flow. Subtraction of the
mean flow equations from the phase averaged equation
provides the equation for the organized disturbance.

In order to simplify the model to be presented
here, it will be aswumed that the temperature of the
two streams is equal. It will also be assumed that
the mean flow profile may be defined in terms of a
shape function whose derivative in the transverse
direction is symmetric about the x-axis. It will be
seen that the development of the shear layer and the
organized fluctuations can be determined by the use
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of two integral equations. These are the mean
mechanical energy equation and the disturbance
kinetic energy equation.

The mean kinetic energy equation is derived by
eliminating the pressure term from the mean momen=-
tum equations and multiplying the resulting
momentum equation by u. After application of the
appropriate boundary-layer approximations and after
non-dimensionalization, we obtain:

-1 - .- -~ T = (~vy =~
LB u@ -1 + 5@ - + 5GR-5v0))

' - - - ==
+ 3 ip % v({@2-1) +phuv +Upav - © T2}
—_ — — —— (2.2)
-5 @E-30) + 52 - pvr)
axX
- T  T=T s 30
- [P uv + aav ~ Ty, i ]
where Ty, is given by,
1,36, 1 du z.0u ., av, .
Ty = Ba—y &2y S0 (T LA
12 (Ro RT) 3y * Ry aT T(.)y ay) v2.3)

Ro = Pg °°° (2.4)

Ry = == (2.5)

where the coefficient of eddy viscosity £1 is given
by

LR u:':j' = - ET FI: (2.6)

with t%;, the rate of strain tensor given by

2 5
th, =2¢%, +% (-2 - PR
ij 5 Y3 GET D e

and

1
%, =« (dut /3x% + Sud /axk ).
TR (aul /3xJ auJ /axI )

13 is the second coefficient of viscosity and its
ratio to p* is assumed constant. The eddy viscosity
€7 in (2.5) describes the effect of background turbu-
lence on the mean flow. Noting the results of
Reynolds and Hussain(5). its value is taken to be

equation can be shown to be,

L (6+5) @+8) 32 +v2)]

+ 2 ((G+5) (@+9) 3@ +32))

+ [p (@2 - ) + 602 - 532 g—:

— ——

+[oav+puv1%"yi='o-‘ s+ 538, (2.9

P o=u 2 T
iax, ij
J
x = % b E
Tij (= + E7) ths (2.10)
Silcut! utt> - ut! g - B th..
2 Bui uj> u¥ uj) = CT[ij (2.11)

€1 in (2.9) is an equivalent definition of eddy
viscosity describing the effect of background turbu-
lence on the organized disturbance. For the reasons
discussed in Section |-5 the values of €7 and &y are
taken to be equal.

The integral form of equation (2.2) and (2.9)
can be obtained by elimirating y through integra-
tion from the lower edge of the shear layer to the
upper edge. The range of integration can, however,
be extended from - to +» by noting that the inte-
grands vanish outside the disturbed region.

1-6.3  Shape Assumptions for the
Organized Motion

In order to evaluate the integrals involving
fluctsations in equations (2.2) and (2.9), it is
necessary to describe the transverse distributions
of the fluctuations.

Following Liu and Lees(3), we introduce local
'stretched' coordinates x' and y' given by

x' = x/b

[ o

Y

(3.1)

y' =

o=

The fluctuations are assumed to take the form

Alx) f(y') exp(~iv't') + conjugate

independent of the transverse coordinate y as a u=
first approximation. v = A(x) a'ély') exp(-in't’) + conjugate

The time-averaged organized disturbance kinetic - ' “ie't') + .
energy equation is derived by multiplying the x and b =AM rly') expl-iw't') + conjugate (3.2)
y disturbance momentum equations by u and v respec~ ~ 1 “iett') + :
tively and adding. Using the normal boundary layer p=Ald  u(y') exp(-iu't') + conjugate
approximations, the non-dimensionalized form of the F= A(X)  £{y') exp(-iw't') + conjugate

108




where A(x) is the amplitude of the disturbance. The
primes have been used to indicate that the quantity
has been non-dimensionalized with respect to thc
local thickness b. It is assumed that the local
derivative of A with resgect to X' is ia'A +
o{|Al%}.

Substituting these relations io equation (Z.2)
and (2.9), one can ecasily obtain

g—x[hl,-rbmz 1] =

- AL G2 1a g+ ta) (3.3)

ar 3

d
ax [blAl? 1g + bJal2 15] =

JAJZ @2 054 0y - g+ 1+ 1) (3.4)

where g are integrals involving the mean velocity
and the shape parameters, given in Appendix I-6A.
These integrals can be evaluated at any downstream
distance x, by determining the transverse distri-
butions of the eigenfunctions from the locally
parallel flox theory. Thus, after specifying the
initial values of the unknown quantities b and |A]%
their downstream growth can be determined by inte-
grating the differential eguations (3.3) and (3.4).

The solutions of the equations for the fluctua-
tions are given in the next section.

1-6.4  Eigenvalue Analysis for a
Two-Dimensional, Compressible,
Turbulent Free-Mixing Laye

The eigenvalue analysis for unstable modes in an
incompressible, two-dimensional free-mi?igg layer
nas previously been performed by Lessen 6) and
Morris(7) among others. The extension of this work
to compressible, viscous flows has now been carried
out. Apart from the mathematical complexities
introduced by the compressible and viscous nature
of the problem, the major difference between the
two analyses is that the single fourth order dif-
ferential equation for the fluctuating viscous
stream function in the incompressible analysis, is
replaced for the present problem by three second
order ordinary differential equations for the
fluctuating axial velocity, pressure and tempera<
ture. Using the fact that a three parameter
analytic solution can be found on either side of
the disturbed region, the eigenvalue problem con-
sists of finding a single parametric family of
solutions which will integrate from the solution on
‘the upper side to a solution on the lower side.
Again, the effect of the background turbulence on
the organized motion has been described using an
eddy viscosity and an eddy thermal conductivity
coefficient.

ihe problem to be considered is that of finding
eigenvalues for spatially growing two-dimensional
modes in a compressible, turbulent free-mixing
layer sketched in Figure 1, The equations which
describe the fluctuations are the organized dis-
turbance equations for contintity, x, y-momentum

L,,L___Jﬁ.a-_. BN SUSINSK ¥ v
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Fig. 1 Coordinate System for Two-Dimensional
Shear Layer

equations, internal energy and equation of state.
As bafore, the disturbance equations are derived

by subtracting the time-averaged mean equation from
the phase averaged equation. The mean flow has
been defined in terms of the shape function; i.e.,
mean velocity is known as a function of position,
and the coefficients of viscosity, thermal conduc-
tivity and specific heat are described as functions
of mean temperature.

The disturbance equations are linearized by
assuming that the product of fluctuation quantities
is small. Further simplification is introduced by
assuming that the mean flow is locally parallel
which allows one to ignore the transverse mean
velocity components as well as the derivatives,
with respect to x, of the mean flow quantities. The
fluctuations 1% and k* in the viscosity and thermal
conductivity are approximated as follows,

o= SR g
dT*

E* =-q%i ?*.
dr=

The eddy viscosity coefficient is introduced as in
(2.9). The eddy thermal conductivity coefficient
is defined as follows

o R
PE (cuk! TA'> - url Tx') = - kg e
The eddy coefficient ¢ and kT are related to each
other by using a turbulent Prandtl number, Py, de~
fined by
[
pp= P

T kT

The ‘stretched coordinate' introduced in Section
1-6.3 will be used, that is, the independent vari-
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ables x,y are transformed into x',y' by using equa-
tion (3.1). The equations are non-dimensionalized
with respect to the local shear layer width b.

By introducing the Fourier transforms r, f, a4,
= and £ of the disturbance quantities ¢, U, Vv, p
and T respectively, we can reduce the partial dif-
ferential equations of the fluctuations to a set of
ordinary differential equations. These equations
are given in Appendix 1-6B. introducing the vector
Z of unknowns, as defined below, one can obtain a
tinear, homogeneous, system of six differential
equations
2'=A2 (L)

where

l: [fi f', &, :/YIHIZ, £, C']T

1>

= [aij], i,j = 1,6

Here, prime denotes differentiation with respect to
y's Yy is the ratio of specific heats of the high
speed stream, and My is the Mach number of the high
speed stream. The coefficients, ajj» are complex
expressions involving a single unknown, the parame-
ter ¢, which is the ratio of real frequency to the
complex wave number.

To describe the boundary conditions necessary to
solve for Z, equation (4.1) is examined at either
side of the shear layer. Since steady state condi-
tions prevail on either side, the matrix A reduces
to a constant function of the parameter c. Thus,
if A; are the eigenvalues of A, the most general
solution of (4.1) in the far region is of the form

Aiy!
where Z; = w; e Y y w. being the eigenvector
corresponding to the eigenvalue Aj. a; are arbi-
trary constants. However, it can be easily deter-
mined that the eigenvalues occur as *X; pairs.
Thys, depending on the sign of the real part, three
of the solutions which do not satisfy the boundary
conditions but increase with distance from the
shear layer must be discarded. Only three solu-
tions satisfy the boundary conditions on either
side. Let )%, Zo*, Z3% and 2,7, 257, Z3~ be the
solutions above and below the mixing layer,
respectively.

Because of the homogeneous, linear nature of the
differential equation (4.1), it is clear that if
21, Z5, 13 are integrated solutions corresponding
to initial values Z)*, Z,%, Z3%, then ay2) + ayZy +
2323 is also a solution corresponding to initial
condition ay2)* + az2,% + ajZy*. Thus, in order to
match the boundary conditions at the lower edge,
one must have

ajZ) + a2y + a3Zy = byl + bpZy + byZs.

In other words, this homogeneous linear 6 x 6 system
must have a non~trivial solution. The values of
the parameter ¢, for which this condition of non-
triviality can be met, are the eigenvalues of the
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problem. An iterative procedure can now be set up
to find the eigenvalues.

1-6.5  Results snd Discussion

Before considering the solutions to the integral
equations for the development of the shear layer
and the growth of the organized fluctuations, we
will Jook at some solutions of the stability equa-
tions derived in Section 1-6.4.

The axial behavior of an infinitesimal distur-
bance in a parallel shear flow is governed by its
compiex wavenumber, a. For a fluctuation component
of frequency w the change in amplitude as a func-
tion of axial distance depends on the imaginary
part of its wavenumber. We will consider the pro-
tlem of a two-dimensional parallel shear layer
where the mean velocity profile can be represented
by,

u(y) = .5 {1 - tanh(y)] (5.1)

and the mean temperature profile takes a similar
form. The amplification factor -a; is shown as 2
function of frequency for several flow conditions
in Figure 2. The inviscid, isothermal incompres=
sible curve gives the greatest amplification.
Increasing the Mach number to 1 reduces the maximum
amplification rate by 30 per cent. Increasing the
high speed stream temperature to 2.54 times that of
the ambient air for the same Mach number does not
decrease the amplification rate further but shifts
the frequency at which maximum amplification is
reached to a lower valuec. It also stabilizes the
higher frequencies.

Amasicalitn (700
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Fig. 2 Curves of Amplification Rate Against Fre-
quency for Compressible 2-D Shear Layer

Let us now look at the results for the finite
amplitude organized disturbances. The Mach number
of the moving stream is taken to be 0.50883 and both
the moving stream and the ambient air have the same
temperature. The turbulent Reynolds number defined
in the same manner as in Section -5 is a constant
throughout the flow of value 50. The mean velecity
profile is given by

uly') =.5 [1 - tanh(y")] (5.2)

where y'is defined in equation (3.1). The local
amplification factor -a;' is shown as a function of

[S—




the local frequency o' in Figure 3. The maximum

amplification occurs for a local frequency of .176

and the neutral mode occurs at a local frequency of
388. Since the local frequency w' is given by

w' = ub (5.3)

a frequency component of fixed frequency w will pass
through growing, neutral and decaying stages as b
increases.
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Fig. 3 Local Amplification Rate -aj, as a
Function of Local Frequency

In the same manner as for the incompressible
problem, the organized motion is considered to be
locally dominated by the most highly amplified mode.
The transverse distributions of the mean square
axial and radial velocity fluctuations and the sheaor

- stress parameter uv for the most amplifying mode are
shown in Figure 4. The phase velocity as a function
of frequency is shown in Figure 5. The phase ve-
locity of both the most amplifying mode and the
neutral mode is .5.

Fig. & TaJ?, 19]¢, & Dpistributions for
Most Amplifying Mode
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Fig. 5 Phase Velocity as a Function
of Frequen