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ABSTRACT 

A variety of bargaining models have been recently used to analyze 

solution concepts for n-person games.     In this paper, the cooperative 

negotiation process  in a side-payment game is modelled as a multi-stage 

game,  in which each stag*» consists of an objection raised by some coali- 

tion to a proposal under consideration, and a response made to that 

objection by the remaining players.    A bargaining solution to the negoti- 

ations is a collection of objection and response strategies for the 

players, from which no player is motivated to deviate.    Associated with 

each bargaining solution is a set of stationary proposals, to which no 

objections will be  raised.    Thus each stationary proposal corresponds to 

a stable agreement between the players, in which every threat to the 

agreement is balanced by a counter-threat which dissuades the threatening 

coalition from action. 

The first part of the paper lays the foundations of the bargaining 

theory.    Motivating our approach from earlier theories, we present first 

the essential background definitions, and then define a bargaining game 

in extensive form based on a given characteristic function game.    Coopera- 

tive equilibria for this game are discussed, and basic notational 

simplifications are derived. 

The remainder of the paper applies this theory to several well-known 

classes of games.     All stationary sets are determined for three-person 

games.     For several  types of games with  stable  cores,  it  is shown that 

their cores are also stationary sets.    Two games, pathological  in their 

behavior with respect to the classical von Neumann-Morgenstem theory, are 

I I 
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1 
shovm to be amenable to our approach. Finally, it is shown that our 

bargaining theory is only partially successful in treating voting games, 

suggestions are made concerning possible changes in our approach to cover 

these games, and other possible directions of future research are dis- 

cussed. 

Ml 
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CHAPTER 1 

DEVELOPMENT OF A THEORY OF BARGAINING SOLUTIONS 

1.    Introduction 

For thirty years, the von Neumann-Morgenstem theory of stable sets 

has been studied as a fruitful approach to the understanding of the resolu- 

tion of conflict in cooperative situations.    More recently, attempts have 

been made to cast the original theory in a new light, by associating stable 

sets in some natural manner with solutions to formalized bargaining games. 

In this paper we formulate and investigate a model of bargaining which has 

some of the features of the von Neumann-Morgenstem theory, yet allows con- 

sideration of some of the  dynamics of the bargaining process.    A major 

feature of our model is that it explicitly treats not only objections which 

various coalitions may make to proposals, but also responses which other 

coalitions make to such objections. 

In the first part of this paper, we discuss at length the formulation 

of a bargaining theory.    The discussion is partly rigorous and partly 

heuristic, and is  intended to provide a general context  for the  investiga- 

tion of various bargaining models.    The formal definition of the theory 

we derive appears in Section 10, and is dependent only upon a few defini- 

tions from other sections.     The remaining sections are devoted to motivating 

this theory from more general principles.    Since much of the notation 

necessary to these sections  is unfamiliar and cumbersome,  formal definitions 

have been replaced or supplemented with more expansive ones wherever possi- 

ble. 



Section 2 presents two classical approaches to the "solution" of n- 

p.^rson games. After briefly discussing the work of von Neumann-Morgenstern 

and of Vickrey, we raise certain issues which the theory of this paper is 

meant to resolve in part. Section 3 gives an overview of the approach to 

be taken, and Sections U and 5 present definitions which this section 

shows to be necessary for an analysis of bargaining problems. 

Section 6 presents several formal models of bargaining games, and 

specifies the game with which we shall work. In Section 7, individual 

strategies are defined for situations in which bargaining games arise. 

Section 8 gives a set of criteria used to characterize collections of 

strategies with certain stability properties, and Section 9 uses this 

characterization to somewhat simplify the model, and to justify the 

specific formal notation used to present the theory formally in Section 

10. The summary in Section 11 completes the first part of the paper. 

The second part applies our bargaining theory to several classes of 

games. A separate Introduction to that part of the paper appears as Sec- 

tion 12. 

2. The Classical Theory, and Some Observations 

Games in characteristic function form were first considered in 194»+ 

by von Neumann and Morgenstern (vNM) [17]. Their thsory of behavior in 

cooperative situations is predicated on two assumptions.  First, it is 

assumed that each coalition S of players can assure itself of a parti- 

cular amount v(S) of resource, independently of what the remaining 

1  
All terms not defined in this text appear in the appendix, 
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players do. Second, it is assumed that any coalition may divide what it 

receives among its players in a completely arbitrary manner (in other 

words, there is no restriction on side payments between players). 

vNM also proposed the concept of "stable sets" as solutions to a game. 

The basic feature of this solution concept is the idea of dominance. Each 

imputation represents an allocation of available resources among the n 

players. An allocation x dominates another allocation y if there is 

some coalition S for which every player of S receives more in x than 

in y, and if furthermore the players in S have the ability to guarantee 

themselves their amounts in x. In terms of this dominance relation, vNM 

defined a stable set of a game to be a collection K of imputations with 

the complementing properties of internal stability (no imputation in K 

dominates another imputation in K) and external stability (every imputa- 

tion not in K is dominated by at least one imputation in K). The 

partly-dynamic rationale for requiring these properties lies in the follow- 

ing arguments, which in turn are based on the assumption that the players 

of the game are convinced that the imputations in a particular solution 

K are "sound" while the remaining imputations are "unsound". First, no 

coalition can use a sound imputation to discredit another sound imputation 

(internal stability). Also, any unsound imputation can be discredited by 

a sound imputation (external stability). Further, vNM note [17; pp. 265- 

266] that any unsound imputation which might be useJ to discredit a sound 

imputation is itself subject to discrediting by another sound imputation. 

This last argument will be discussed in more detail later in this section. 

The vNM theory received much attention in the years following its 

introduction - attention well-deserved sinc9 it was the first theory which 
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attempted to analyze rational multi-person social behavior in cooperative 

situations.  However, as study of stable sets progressed, it became 

apparent that on strictly mathematical grounds the theory contained some 

unpleasant results. A bewildering multiplicity of solutions existed for 

many games, yet the general question of whether every game had a solution 

was not settled. Then, in a series of results, Shapley [20,22] and Lucas 

[11,12,13] exhibited a number of games with particularly pathological 

stable set solutions, and finally Lucas [1U] Rave an example of a game 

with no stable sets. 

These difficulties alone should not have lessened interest in the 

vNM theory, for it may be quite reasonable to believe that some social 

situations are inherently pathological.  However, a number of philosophi- 

cal objections also arose.  Several of these obiections are presented 

below. 

(1) An argument presented earlier was that if v, an unsound 

imputation, dominates a sound imputation x with respect to a coalition 

S, then there is a sound imputation z which in turn dominates, and 

hence discredits, y. The implication was that S therefore has nothing 

to gain by trying to p,et the players of the pame to consider y rather 

than x.  However, if S can use y to shi.t attention from x to z, 

it is possible for all players of £ to gain by this shift, and thus S 

gains by forcing consideration of the unsound imputation y. 

Example 2.1:  Consider the u-person symmetric constant-sum game, with 
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0      if      |S|  = 1 
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I    1       if       |S|   =  3,4  . 
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then z dom . y dorn  x, and the situation described above holds with 

S = {1,2} 

(2) A related objection is to the assumption that immediate "corrective" 

action (a shift to a sound imputation) will occur when an unsound imputa- 

tion is proposed. It seems quite possible that attention might shift 

through a sequence of unsound imputations before a sound imputation is 

reached. 

(3) The vNM theory allows any imputation y, through domination with 

respect to a coalition S, to be used to discredit another imputation x. 

However, this implies that the plf-ers of S control the allocation of 

resources not only amonp themselves, but also among the players of the 

complementary coalition N-S. It seems unrealistic that this should be 

so.  Rather, it is more natural to assume that S can force a shift of 

S   S 
attention from x to some imputation z with z = x , but that 
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determination of the components of z corresponding to the players in 

N-S is made by these latter players. 

Example 2.1 (continued): It may be observed that an essential feature of 

this example is that players 1 and 2, when presenting the imputation y, 

force an unequal division of resources between the remaining players. 

Subsequently, player 3*5 tet..porary riches in y prove to be an embarrass- 

ment when z arises, leaving him with nothing. 

(1) As vNM admit [17; pp. UU-US], their theory is essentially static, 

It makes no pretense of considering either the dynamics of coalition forma- 

tion or the effects of indirect action of the type suggested in (2), in 

wUch several successive stages may occur in the bargaining between 

players. Because of this static nature, the theory must consider all 

imputations which dominate a particular imputation to be equally credible, 

and thus degree or strength of dominance cannot be considered. 

In an approach to the first of our objections, Vickrey [26] proposed 

the concept of "self-policing" sets of imputations, and investigated the 

existence of vNM solutions with the self-policing property.  Since we 

retain some of the flavor of Vickrey's theory in our own approach, a brief 

outline of Vickrey's work is given here. 

Let K be a set of imputations, and x an imputation in K.  A 

heresy to x by the coalition S is any imputation y not in K for 

which y dom x. A policing action to such a heresy is any imputation 

z in K which dominates y.  If there is some player i  in S for 

whom z. < x.  in every policing action z to the heresy y, then the 

heresy is suicidal for i.  Finally, if every heresy to each x in K 
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is suicidal fo-' some member of the heretical coalition then x is strong 

:    \ 
in    K,    and if all imputations in    K    are strong then    K    is a self- 

policing set. 

Since with no further i-estrictions both the empty set and the set of 

all imputations are self-pclicing sets, Vickrey directed his attention to 

self-policing sets which are also stable sets.    He found all self-policing 

solutions for three-person games, and characterized the constant-sum simple 

games for which self-policing solutions exist, showing in the latter case 

that when such a solution exists it is unique.    Vickrey also found a num- 

ber of games for which self-policing solutions do not exist, and commented 

that his approach seemed fruitful primarily for constant-sum gaiTies. 

We note that Vickrey's theory fails to fully respond to our objec- 

tions (2),  (3), and (4), and also that it has a slightly ad hoc flavor 

imparted by the act of restricting its application solely to vNM solu- 

tions.    In the next section we discuss an alternative approach which deals 

with all four of our previously-stated objections. 

3.     Bargaining Models 

In view of the comments in the preceding section,  it seems natural 

to attempt to formulate a model which gives full play to the possibilities 

of indirect action by a coalition in its hope of attaining an eventual 

'•jal.     In dealing with indirect action, only two approaches seem reasonable. 

The first  is, like Vickrey, to deal with all possible results of a parti- 

cular action as equally likely and plausible; the second is to consider 

the  strategic likelihood of particular results occurring.    In this paper 

we take the second approach. 
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In 1950, Nash [15] proposed a general approach to solution concepts 

for cooperative n-person games. 

"A...type of application is to the study of cooperative games... 
One proceeds by constructing a model of the pre-play negotia- 
tions so that the steps of negotiation become moves in a larger 
non-cooperative game describing the total situation...thus the 
problem of analyzing a cooperative game becomes the problem of 
obtaining a suitable, and convincing, ..model for the negotia- 
tion." [16] 

The solutions of the game are thsn described by collections of strategies 

which are "in equilibrium" for the players in this larger gamt; that is, 

collections of strategies for which nc player or group of players can gain 

by unilaterally changing their strategies in the collection. This approach 

has been used by both Harsanyi [7,8,9] and Selten [19] to define solutions 

for several forms of games. 

In the particular problem to be treated here, we shall formalize the 

underlying bargaining procedure of a game as a multi-stage process. At 

the beginning of a stage, an imputation x is given to represent the pro- 

posal for final allocation which is presently under consideration. All 

coalitions which wish to amend this proposal by making an objection to x 

declare the action they wish to take. In this model, a permissible action 

for a coalition S is the suggestion of an allocation y  among the 

players of S of a total amount not exceeding v(S), where this alloca- 

tion is strictly preferred by all members of S to their present shares 

in x. We assume that social factors in some manner determine which of 

the (possibly more than one) objecting coalitions is actually "gwen the 

floor" to make its suggestion. Next, the players in the complementary 

coalition N-S respond to the action of S by agreeing on an allocation 
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zN"S    of the remaining resources    v(N) - yS(S)    among themselves.    Thus 

c N   ^ 
a new proposed allocation y + z "  is constructed, and the next stage 

of the bargaining process commences with this new proposal replacing x. 

When no coalition opposes a proposal at some stage, it is considered to be 

accepted by all players, and the final division of resources among the 

players occurs accordingly. 

Several comments are in order.  It should be realized that the 

particular final agreed-upon outcome may depend upon the initial imputa- 

tion from which the first stage begins. Thus the collection of all 

possible final outcomes forms a set which is, in a sense, stable and which 

corresponds in principle to the vNM solution concept as a "standard of 

behavior" to which the players will conform.  Also, a formal model will 

be needed to describe the social choice mechanism which selects at each 

stage a particular objecting coalition to be "yielded the floor". Finally, 

since players will be called upon to ict in the face of uncertainty with 

regard to other players' actions, it will be necessary to discuss the 

preferences of the players over outcomes of a probabilistic nature. These 

last two points are treated in detail in the next sections. 

4. Hierarchies 

When the players of a game consider a proposed allocation of resources 

among themselves, it is possible that several coalitions will wish to raise 

objections to this proposal.  If several coalitions do indeed wish to act, 

there must be some mechanism of society that decides which coalition is 

given the floor to state its objection - else the formal proceedings of 

the game will degenerate into an interminable shoutinp match.  In the 
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-•^al world, this selection may be governed by a number of factors: random 

choice, the size of the coalitions, the seniority of players in the coali- 

tions, the relative strengtn of objections being raised, and so on. 

For the purposes of this paper, we make one general assumption con- 

cerning the mechanism of social choice.    This assumption is that the 

mechanism depends solely on the proposal being considered and on the 

collection of objecting coalitions, and therefore the mechanism is inde- 

pendent of time, history, and experience.    The mechanism may be of a 

probabilistic nature, and may include the possibility that no objecting 

coalition is given the floor (as in, for example, a legislative body with 

a parliamentarian who is empowered to invoke cloture). 

Specifically, we define a coalitional hierarchy    H    to be a function 

which assigns to every collection    S =  {S,T,...}    of coalitions a "sub- 

probability distribution" over   S.    That is, to each    S    in   S,    H(S) 

assigns a probability    pH/e\(s)i    so that      I    fHfSV^ - 1'    The P170153" 

bility that the hierarchy selects no coalition from the collection of 

objecting coalitions    S    is    H (S) = 1 -    £    ^(S)^* 
ScS 

Example W.l:     A hierarchy    H    on the two-player set    N =  {1,2}    can be 

described by: 



''" ^ -•■ ■ p«-«« » ■ " 

11 

PH(S)(S) 

S =  1 12 

{1} 

{2} 

{12} 

{1,12} 

{2,12} 

{1,2} 

{1,2.12} 

where the dots in each row represent non-negative numbers, and each row- 

sum is less than or equal to one. 

A hierarchical structure for a game is a mapping H which associates 

a hierarchy H  to each imputation x in the imputation space X.  Hence 

a hierarchical structure represents the social choice mechanism which 

chooses between objecting coalitions at any proposal which arises in the 

course of a bargaining game, and abstracts all external factors which 

play a role in such a choice mechanism. 

Various forms of measurability, compactness, or continuity require- 

ments may be imposed on the hierarchical structures considered. An 

interesting (and often simplifying) requirement is that no hierarchy assign 

positive probability to both a coalition and any of its sub-coalitions when 

they occur in the same objecting collection. We shall not make any of 

these requirements, but merely note the possibility. 

Several types of hierarchical structures have special intuitive appeal. 

One type is the uniform structure, which assigns 
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PH (S)(S)   s   J5J 

for fill    x    in    X    and    H      in    H.    Another type is the excesr structure, 
x J*   

in which for each    x    in    X,    W (S)    assigns equal probability to all 

coalitions    S    in    S    which maximize    v(S) - x(S)    (and zero rrcbability 

to all other coalitions).     A third type is the linear structure,  in which 

a weight    w.    is assigned to each player    i    in the player set    N,    and 

each    H (S)    assigns equal probability to all coalitions in    S   of equal, 

maximal, total weight. 

We shall restrict ourselves in the second half of this paper to con- 

sidering games with the uniform hierarchical structure.    However, it 

should be noted that solutions derived for a game with respect to a parti- 

cular hierarchical structure may be subjected to a form of "_ensitivity" 

analysis, in which study  is made of the degree to which the hierarchical 

structure may be varied without changing the solution.     Preliminary 

results, which shall not be given here, seem to indicate that many of 

our bargaining solutions are quite  insensitive to variations from the 

uniform hierarchical structure -  indicating that the  solutions are stable 

over a wide range of social patterns. 

5.    Preferences 

In the model of bargaining previously discussed,  it was noted that 

when a player acts as a member of a coalition, he lacks determinate 

knowledge of what the ultimate result of this action will be.     Instead, 

the most that the player can do is anticipate the probable result of his 

actions.    Therefore,  ir. trying to analyze the problem of what actions a 
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player will take, it is necessary to have some knowledge of his preferences 

over probabilistic outcomes. 

The anticipated result of a player's actions can be considered as a 

probability distribution over the space of possible outcomes.    Such a 

distribution will be called finite (respectively, discrete) if the distri- 

bution is concentrated on a finite (respectively, countable) number of 

these outcomes.     In this paper we shall be concerned only with finite or 

discrete distributions.    We shall assume that each player is concerned 

solely with the amount he personally receives in any  imputation, and there- 

fore the discrete probability distributions which represent probabilistic 

outcomes to a player may be described by sequences of the form    (x  ,p   ; 

x2,p   ;...),    where the    x.     are distinct real numbers, the    p.    are posi- 

tive and sum to one, and where the meaning of such a sequence is that the 

probability of the playe- receiving    x.     in an outcome  is    p..    Thus each 

discrete distribution over the imputation space  induces  a discrete distri- 

bution for each player (on his component of the  imputations). 

Given distributions    A =  (x. ,p. ;...)    and    B =  (y^q. ;...),    for 

any    0 ^ t ^ 1    we define the distribution    tA +  (l-t)B =  (z .r.;...)    by 

ri = t-FA(zi)  +  (l-t)-PB(zi)    where    (z  ,z2,...}  =  {x-.Xj,...)  U (y^yj,...) 

A preference ordering for a player is a (non-strict) total ordering '>' 

of the space of all discrete distributions for which tue following three 

axioms hold.     Let    A,  B    and    C    be any discrete  distributions. 

(PI)    If    A -v C,    then for any    0 ^ r «^ 1    and    B, 

(rA ♦  (l-r)B) -v (rC ♦  (l-r)B). 

(P2)    If    A > C,    then for any    0 < r ^ 1    and    B, 

(rA ♦   (l-r)B) > (rC +  (l-r)B). 
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(P3) If x and y are real numbers and x > y, then (x,l) > (y,l). 

It is easily shown that if •>• satisfies one further axiom, 

(P1*) If *' ^ B > C, then there exists some 0 ^ r ^ 1 such that 

(rA + (l-r)C) -v B, 

then t.e player's preferences are induced by a utility function over the 

space of discrete distributions.    However, this last axiom seems to be of 

a different order than the first three, and we shall not require it. 

In the second half of this paper, we shall be particularly concerned 

with one specific preference ordering.    That is the expected value ordei^ 

ing     ,>E
,,    for which    (x,^;...) >E  (y^;...)     if and only if 

I xi^i * I y^i'    It "'«»y b« verified  that the expected value ordering 

satisfies (PU), and  :hat  "expected value" may be viewed as a utility func- 

tion. 

Another ordering which  seems of interest  is the maximin ordering 

'^M*'    which is intended to describe the preferences of a player whose 

primary concern is to avoid any possibility of a low payoff.     In this 

ordering,    (x^p^...) >M (y^q^...)    if and only  if 

inffx^    either    x,   ^ y      for all    j,    or    x.   =  y      and    p.  > q.) > 

inf{y^:    either    y    / xi    for all    i,    or    y    =  x.    and    q.  > p.}. 

It should be noted that this extremely conservative preference ordering 

does not satisfy (PU). However, it has the property that if A and B 

are two distributions concentrated on sets of real numbers which are 
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well-ordered by the natural order on the reals, and if    A ^    B,    then 

A = B.    Thus the maxi:nin ordering is a strict total ordering on the space 

of finite distributions.    This ordering and the associated "maximax'   order- 

ing  (replacing "inf" by "sup" in the preceding definition) are interesting 

because they bound,  in a sense, all other preference orderings. 

When a coalition takes action which results in a distribution over 

a set of imputations, the probabilistic outcome to each player in the 

coalition is the distribution induced over his component of the imputa- 

tions.    To facilitate consideration of situations in which a coalition of 

players is contemplating some action, we present some notation for coali- 

tional preferences. 

Assume that to each player    i    in a coalition    S    there is an 

associated preference ordering     l>.,.    Let    A    (respectively,    8)    be a -vi 

discrete distribution over a set of imputations, and let    A.     (respectively, 

B.)    be the distribution induced for    i.    Then    S    prefers    A    to    B, 

written    A >   8,    if    A. >.   B      for every player    i     in    S.    It may be 

noted that the relation     '>  '    satisfies  (PI),  (P2),  and (P3), but is 

generally not a total order. 

It is possible to define more than one system of coalitional prefer- 

ences.    The stated definition corresponds to "strong" coalitional 

preference, while  "weak" coalitional preference arises when all  players 

of  i coalition non-strictly prefer (prefer or are  indifferent to) one 

distribution over another, and when at least one of the players strictly 

prefers the first distribution.    We mention this possibility because it 

may appear, on the surface, that Vickrey is dealing with weak coalitional 

preferences  in his theory of self-policing solutions.     However,   in the 
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following sections we present a theory, Dc.sed on strong coalitional prefer- 

ences, which we feel fully preserves the spirit of Vickrey's work.    This 

point will be further discussed in Section 11. 

The possibility of analyzing soiuilons with regard to their sensiti- 

vity to changes in players'  preferences exists here as well as with 

hierarchies, and seems to be an interesting avenue for research. 

6.    ""he Bargaining Games 

There are several formal models of the type of bargaining process 

discussed in Section 3.    We shall present two such models and mention a 

third.    A primary difficulty in modelling the processes we are considering 

is encountered in the treatment of "stopping rules".     In the real world, 

we certainly do not anticipate negotiations of infinite duration.    Any of 

a number of factors may contribute to the termination of a bargaining 

process:    an agreement may be reached which is satisfactory to all parties; 

proceedings may end in irreconcilable differences,  in which case some of 

the players may receive  "conflict" payoffs; there may be  an external time 

limit which forces termination of the proceedings; or the participants 

may reach a point of exhaustion, at which point they concede any further 

objections they may have to the proposal being considered.     In this 

section we shall define games vith termination rules representative of 

the "time limit" and "exhaustion" stopping rules.     In a later section we 

shall  focus our attention on  strategies  in these games which have the 

desirable property of leading  to agreement between all players on a final 

outcome.     The bargaining games  to be presented may be considered as  foma- 

lizations of a binding arbitration procedure.     If so considered, they 
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should De viewed as depicting the bargaining process which ensues after 

the players enter into a pact governing the structure within which th^y 

will work to resolve their conflicts. 

We f'rst define the "time limit" bargaining game.    The definition is 

of a recursive nature.    Let    (N,v)    be the characteristic function game 

under corsideration, and   H   be the hierarchical structure associated with 

the imputation space    X    of this £ame.    Let    x    be an imputation in    X,    and 

c      be    a real n-vector (which represents conflict payoffs to the players). 

The bargaining game    L(N,v,H,c,x,0)    is the  "null" game in which 

each player    i    in    N    receives the payoff    x.. 

For    T    a positive integer, the bargaining game    L(N,v,H,c,x,T)    is 

played in the following manner.    Each player    i    in    N    declares, for each 

iS        S 
coalition    S    containing    i,    a vector   y   '    E R  .    All declarations by 

all players are made simultaneously.    Let 

S =  {S:    y1'5 = y^,S H yS    for all    i,j  c S,    and    yS dorn    x} 

be the collection of all coalitions whose players unanimously declare an 

allocation which dominates the current proposal.    The hierarchy    H      is 

used to select a coalition from    S.     If the hierarchy fails to select a 

coalition (as will always be the case if    S    is empty),  the game ends with 

final payoff vector    x.    On the other hand, if a coalition    W    in    S    is 

selected by the hierarchy, then the response-bargaining game 
  y 
L(N,v, H,c,W,y   ,T)    ensues. 

Take N, v, H, c, and T as previously defined.  Let W be a 

W   W W 
coalition in N, and y e R (v(W)) be a vector (in R , with 
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W — U 
y (W) < v(W)).    The response-bargaining game    L(N,v,H,c,W,y   ,T)     is played 

in the following manner.    Each player    i    in    N-W    declares a vector 

i   N-W N-W U 1   N W 
z   *        e R for which    y    +  z   '        e X.    The declarations by all players 

are made simultaneously.    If for some pair of players    i    and    i     in    N-W, 

i ,N-W        j N-W W 
z t z ,    then the game ends with final payoffs    y.     for all players 

k    in    W    and payoffs    c      for all    k    in    N-W.    On the other hand,  if all 

i  N-W N-W W      N-W 
z   * = z      ,    then the bargaining game    L(N,v,^,c,y   +z       ,T-1)    ensues. 

We next define the bargaining game which terminates upon  "exhaustion" 

of the players.    The definition  is again recursive.    Let    N, v,  H,    and 

c    be as previously defined.    Let     6    be a real number such that    0 <  6^1, 

and let    x    be an imputation in    X.    The bargaining game    E(N,v,H,c,x,6) 

is played similarly to the game     L(N,v,H,c,x,l),    with the folloväng 

differences.    With probability    6     a chance event occurs before  the players 

make their declarations, and the game ends with fina.  payoff vector    x. 

W 
Otherwise,  if the players in coalition    W    unanimously declare    y   ,    and 

W    is selected by the hierarchy    H  ,    then the response-bargaining game 

— w 
E(N,v,H,c,W,y  ,6)    ensues.    This response-bargaininp fame is similar to 

_ w 
the  game    L(N,v,H,c,W,y   ,1)    except that  if the players  in    N-W    unanimously 

N-W W      N-W 
declare    z       ,    then the bargaining game    E(N,v,ff,c,y   +z       ,M     ensues. 

Since    6  >  0    implies that the bargaining game has probability one of 

terminating after a finite number of moves, we arbitrarily assign payoffs 

of zero to all players  in the  (negligible) case of  infinite play. 

The  stopping probability     6     represents the  chance that  the players 

will  be  so exhausted after any  stage cf the game as  to forego  their 

possible objections to the current  proposal.     It may be noted  that     6 

can be incorporated in a natural manner into the hierarchical   structure 
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H    to yield a new structure H'    which embodies the stopping rule.     In this 

way the game    E(N,v,H,c,x,6) represents our intuitive idea of the game 

KN.v.H» .ex,»).    Similarly, if    T    is a random variable with geometric 

distribution, so that 

Prob(T = k+fcjT > O    =    PixsMT = k)    =    6(l-6)k, 

then the game    E(N,v,H,c,x,6)    represents our intuitive idea of the game 

L(N,v,H,c,x,T)*. 

In both types of bargaining games, the  information structure is such 

that each player has full knowledge of the parameters of the game, and 

remembers the full history of the game as it progresses, including all 

players1  declarations at each previous stage.    In the next section we 

shall briefly consider all strategies available to the players.    Having 

done so, we will then restrict our considerations to strategies in which 

the players use only information dependent on the parameters    N, v, H, c, 

and the proposal    x    under consideration.    The reasons for this restriction 

are primarily those of convenience,  and we shall make the restriction in 

the context of the strategies rather than the games themselves.    We 

simply note here that such a restriction can, if desired, be incorporated 

into the  information structrre of the game. 

A comment  is in order concerning the structure of the response- 

bargaining games.    These games are not intended to provide accurate models 

of a real-world negotiation process.    Rather, each response-bargaining 

Indeed, we could have taken the alternative approach of defining a game in 
term? of a random stopping time    T.     Both the "time limit" and "exhaustion" 
games would be special cases (depending on the distribution of    T)    of 
such a pame. 
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game represents a "black box" used to stand fcr the bargaining which takes 

place after a valid objection is made to a proposal and before a new pro- 

posal is accepted for consideration.     Ideally, a response-bargaining game 

should be a detailed negotiation model depicting what we  (personally) 

believe to be the most complex aspect of the bargaining process.    Unfortu- 

nately, the construction of an accurate model of such situations is very 

difficult, due at least in part to the lack of empirical data regarding 

behavior in such situations.    Hence, we merely affirm our stance that the 

"black box" approach is a feasible one for preliminary investigation. 

Concerning the conflict payoffs in each bargaining game, it should be 

noted that they will be used to "force" behavior along certain cooperative 

lines, and are not intended to ever be attained in the play of a game. 

This will become evident in the next sections. 

It was mentioned earlier that a third type of bargaining game could 

be defined. This type would trea: termination difficulties directly, by 

not imposing a stopping rule but rather assigning payoffs to every infinite- 

play possibility. We consider this approach to be not very fruitful due 

to the difficulty in deciding upon meaningful infinite-play payoffs, and 

also because real-world bargaining processes cannot, generally, continue 

forever. 

Finally, of the first two types of bargaining games discussed, we 

shall treat only the type based on the  "exhaustion" stopping rule   (that 

is, the games    E    and    E).    A primary reason for this specialization will 

be seen  in Section 9, when we derive  certain  simplifying results which do 

not hold for the  "time limit" games.     In view of our eventual intention, 

xhe following sections will be presented in terms of these "exhaustion" 

games. 
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7.  Strategies 

As a bargaining game is played, a sequence of declarations (by the 

players) and chance selections (by the hierarchical structure) is generated. 

Any play of the game up to a particular moment in time (at which the play 

of a bargaining or response-bargaining subgame conmences) may be described 

by the initial parameters of the game and such a sequence. We call such 

a description a history of the bargaining game. 

A bargaining situation B(N,v,H,c0,60) is the collection of all 

bargaining and response-bargaining games which are defined in terms of 

N, v, and H, with conflict payoff vector c satisfying (c ) <_ 

c. < v(i) for all i in N, and with stopping probability ö satisfying 

0 < 6 1 of,«  Thus a bargaining situation consists of all games in a 

"neighborhood" of the "game" with conflict payoffs c^ =  v(i) and with 

stopping probability zero. 

We wish to consider systems of behavior for a player which describe 

how he will act in any game in a given bargaining situation. Therefore, 

define a globed pure strategy for a player i in a bargaining situation 

as a function which maps each game in the situation, and each possible 

associated history of that game, into an action by 1 of the type called 

for in the resulting subgame (depending on this subgame, such an action 

or 
•   p t   N-W 

is a collection of declarations    {y   *   )S3i.    a declaration    y   *       , 

a "null" action if the subgame is a response-bargaining game  in which    i 

has no move).    Note that this definition requires a full plan of action 

for every game in the given bargaining situation, and therefore a global 

pure strategy is simply a collection of pure strategies of the usual 

type. 
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We shall actually work with the more general concept of a global 

behavioral strategy. Such a strategy for a playt r in a bargaining situa- 

tion maps each bargaining game and associated history into a finite 

(probabilistic) sample space and a function from the sample space into the 

set of actions which the player may properly take.  Each sample space and 

associated function correspond to a "random experiment" performed by the 

player to select his action at a particular stage of the game, and for 

later simplicity we assume that all such experiments are independently 

repeatable.  It should be noted that every global pure strategy corresponds 

in an obvious way to a global beh. vioral strategy. 

We require that the sample spaces be finite for reasons of both 

theoretical and notational convenience.  As discussed by Aumann [1], to 

allow an overly-wide class of randomizing actions at each stage of a game 

is to risk measure-theoretic difficulties in the outcome space. Aumann*s 

avoidance of these difficulties involves defining behavioral strategies 

as a special class of mixed strategies in which only a single randomiza- 

tion takes place, at the beginning of play.  Since we wish to work with 

the notationally-simpler idea of randomization at each stage, we are 

forced to limit ourselves to a restricted form of randomization. 

A strategy n-tuple a  = (a.,...,a   ) for a bargaining situation 

B(N,v,H,c ,6 ) is a collection of global behavioral strategies, with 

o.  being the strategy of player i. Any such collection of strategies 

associates to every game in th« bargaining situation a discrete distribu- 

tion over the outcome space of the game.  For example, assume 

B(N,v,H,c ,6 ) is a bargaining situation, E(N,v,H,c,x,6) is a specific 

game in the situation, and o is a strategy n-tuple for B(N,v,H,c ,6 ). 
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Then after a move in E by all the players, and chance moves with respect 

to 6 and H, either the game ends with a specific payoff vector or a 

response-bargaining subgame ensues. The crucial point is that there is 

only a finite number of alternatives that can arise after the first move 

of the game, when the players follow their strategies in a. Similarly, 

at each following stage of the game only a finite number of alternatives 

can occur, because each player's strategy at that stage is a randomization 

over a finite number of actions. Therefore there is only a countable num- 

ber of histories that may be generated as the players use their strategies 

in o, and only a countable number of distinct payofl vectors may finally 

result. The game is of finite length with probability one, and therefore, 

by associating to each possible payoff vector the sum of the probabilities 

of all sequences of play which result in that vector, a discrete distribu- 

tion results as claimed.  (It should be noted that the outcome space 

referred to here includes vectors of conflict payoffs; thus the outcome 

space is X U (y e Rn:  for some coalition S, y <^ v(S) and 

N-S   N-S,, 
y   = c   }), 

A class of global behavioral strategies to which we will give parti- 

cular attention is the class of reactive strategies.    A strategy for a 

player in a bargaining situation    B(N,v,H,c   ,6   )    is a reactive strategy 

if it specifies the same action for the player in all bargaining and 

response-bargaining games which differ only in their conflict payoffs, 

stopping probabilities, and histories leading up to the games.    Thus, 

when playing a reactive strategy in a given situation, a player "reacts" 

only to the vector    x    in a game    E(N,v,H,c,x,<1'),    and only to the vector 

y      in a game    E(N,v,H,c,W,y  ,6) - with no regard for the circumstances 
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which led to the play of the game, or for the values of    c    and    6.    More 

specifically, a reactive strategy in a situation    B(N,v,H,c ,60)    associ- 

ates to each imputation    x    in    X    a finite sample space and a function 

from that sample space into the set of actions which the player may properly 

take in a bargaining game commencing with the proposal    x,    and associates 

w w      w to each pair    (W.y  ),    where    W    is a coalition and   y    e R (v(W)),    a 

finite sample space and function from that sample space into the set of 

actions which the player may take in any response-bargaining game commencing 

W with an objection    y      made by    W. 

The idea of reactive strategies in multi-stage bargaining games is 

originally due to Harsanyi [fl].    Although restricting the players of a 

game to using reactive strategies eliminates the possibility of players 

making threats contingent upon the actions of others, we shall discuss in 

a later section the manner in which this restriction does not affect the 

stability of certain strategy n-tuples.    It should be noted in contrast that 

restriction to consideration only of reactive strategies is extremely 

severe with regard to the "time limit" bargaining games of the preceding 

section.    It is for this reason that we have excluded such games from our 

subsequent work. 

We earlier referred to the sample spaces we use as "independently 

repeatable experimentF".    The reason for this  reference may now be apparent. 

Since a position may occur more than once in the play of a game, a player 

may have to draw upon the same sample space several times in his randomi- 

zations.    We wish to allow this, but require that the randomizations in 

different  stages of the game be independent. 

There  is also a specific reason for defining strategic randomization 

in terms of sample spaces as "experiments", rather than merely working in 
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terms of finite distributions over the spaces of available actions. This 

is to emphasiz3 the possibility that several players may adopt strategies 

which involve use of a common sample space for their randomizations, thus 

introducing a correlation into their actions. We allow only a rertricted 

form of such correlation. That is, the actions of any set of players may 

be correlated only with respect to declarations which they make simulta- 

neously, and furthermore this correlation may only occur between declara- 

tions related to a specific coalition to which all these players belong. 

As an example, assume players 1 and 2 are involved in the play of a 

1 {1 2}       2 {1 2} 
bargaining game. Then the declarations y *  *   and y * *   may be 

correlated. The declarations y1^1»2'3^ and y
2»{1'2»3} may also be 

correlated (possibly with y3^1»2»3^ as well), but the declaration 

1 {1 2 3} 1 (1 2} 
y * ' *   must be independent of the declarations y *  *   and 

2.(1,2} 

8. Equilibria 

From the collection of all strategy n-tuples in a game, it is desira- 

ble to be able to single out those which exhibit some form of stability. 

A general approach to this was first suggested by Nash CIS]. Roughly 

speaking, Nash defined an n-tuple of strategies o    to be in equilibrium 

if no single player could gain (over his payoff when o was played) by 

unilaterally changing his strategy while the remaining players played 

their strategies in o. In studying solutions for cooperative games, a 

common extension of this approach is more generally to require that no 

coalition of players can improve all of their payoffs by changing their 

strategies from o while the remaining players play their strategies in 
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a.    Recently, a further extension has been to consider strategies for a 

collection of interrelated games, and ask that these strategies be in 

equilibrium for all games in the collection.    We shall use this approach 

to analyze bargaining situations, making these ideas more precise in the 

following paragraphs. 

Let    o = (o  ,...,o  )    be an n-tuple of (global behavioral) strategies 

for the situation    B(N,v,H,c  ,6  ).    As discussed in the previous section, 

to any particular game    G    in    B,    o    associates a discrete probability 

distribution    iKo.G)    over the imputation space of the game, and this in 

turn induces a collection of distributions    {iMo,G)}       ,    one for each 
1     ieN 

player over his outcome space. Let a]    be a  strategy for player i, and 

let o' = (c^,... ,o^,... ,a ). o! is a better response than c^ in o 

if for some game G in B, iMo',G) >. iMo.G), and for every G in 

B, 1^(0',G) > iMo,G).  Thus a better response for a player with respect 

to an n-tuple of strategies for a bargaining situation is a strategy change 

which benefits him in some game of the situation, and which hurts him in 

no game of the situation. An n-tuple of strategies 0 is an individual 

equilibrium point for a bargaining situation if no player has a better 

response than his strategy in 0. 

It should be noted that this is a relatively weak condition. It is 

not difficult to show that many bargaining situations have individual 

equilibrium points in which no coalition takes effective unanimous action 

at any stage of any game. We therefore consider individual equilibrium 

points which involve certain forms of coalitional cooperation. 

Let S be a fixed coalition, and 0 an individual equilibrium point 

for the bargaining situation B(N,v,H,c 6 ). A strategy n-tuple 
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T = (Tlt... ,Tn)    is related to    o   by    S    if the following conditions are 

satisfied.    First, for every player    i    not in    S,    o.  = T..    Second, for 

every player    i    in    S,    T.    is arbitrary vdth respect to all response- 

bargaining subgames arising in    B,    but in any bargaining subgame    oi 

and    T.    differ only in the specification of declarations of the fonn 

i S 
y  *  .    That is, in the tenninology of the previous section, the sample 

spaces and functions    {x.} associated with each particular bargaining 
1 ieS 

subgame are such that the induced distributions and correlations between 

declarations made by the players, with respect to coalitions other than 

S,    remain unchanged.    An individual equilibrium point    o    is a coalitional 

equilibrium point for the bargaining situation    B(N,v,H,c  ,6  )    if there 

is no coalition    S    and n-tuple    T    related to    a    by    S    for which 

*S(T,G) >S U;S(O,G)    for some    G    in    B,    and    ^S(T,G) >S ^(0,0    for 

all    G    in    B. 

This coalitional condition, which examines the effect of "coalitional 

strategic deviation" in which the players of a coalition only change those 

of their actions which are naturally related to that coalition, is similar 

to conditions used by Harsanyi [7], in which the coalitions, as "syndi- 

cates", are considered to be "large players" with overlapping interests. 

The requirement that a global strategy be in equilibrium with respect to 

all games in a situation is related to Selten's [19] definition of a 

"perfect" equilibrium. 

One further condition remains to be discussed.    A primary question 

of interest at any position (game and associated history) of a bargaining 

situation is which coalitions will take unanimous action.    It seems 

reasonable to restrict investigation to those equilibria in which, at 
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every positioi      .ere several coalitions take effective action, at least 

on<   r>f these coalitions is motivated to take that action.    The condition 

we give here is quite unsophisticated, but suffices for the analysis in 

this paper.    A more involved condition, which reflects  "deeper" motiva- 

tions, would be of interest. 

Let    a    be a reactive coalitional equilibrium point, let    G    be a 

bargaining game (not a response-bargaining game) in the associated bargain- 

ing situation, and let    x    be the proposal associated with    G.     Further, 

let    S    be the collection of all coalitions which take effective unanimous 

action (raise a valid, enforceable objection) against    x.    Then    o    is 

motivated at    x    if for at least one coalition    S    in    S,    that coalition 

prefers its result from its objection at    x    to the certain outcome of    x. 

If    o    is motivated at every    x    in    X,    o    is a motivated reactive coali- 

tional equilibrium point. 

We restrict ourselves to the consideration of motivated equilibria 

in order to avoid certain possibilities which are best described heuristi- 

cally.    Assume    A    and    B    are disjoint coalitions in a given game, and 

that a strategy n-tuple    o    involves such behavior when an imputation    x 

is proposed, that the players of    A    and the players of    P    each make 

effective objections to    x    while no other coalitions act.    Further assume 

that the players in    A    prefer their shares in    x    to the outcome of their 

objection and prefer the outcome of their objection to the outcome of the 

objection by    B,    and assume that the analogous statement holds for the 

players in    B.    Then    o    may well be in coalitional equilibrium (since 

either coalition loses by ceasinp its objection unilaterally), but all 

players in    A    and    B    gain by ceasing both objections.     It is to avoid 



tmmmmmmmmmmmmm m i       ■" ■•■■'■' -■>     ^'"   ■«■ 

29 

such equilibria that we impose the above "motivational" condition. Further 

discussion will be given to this topic in Section 17. 

It should be noted briefly that, in discussing equilibria with respect 

to correlated strategies, such strategies are not to be considered binding 

after randomizations.  Furthermore, any players using the same sample space 

for randomization are assumed to have identical information concerning all 

outcomes in the space. This is to avoid consideration of complications of 

the type discussed by Avanann [2]. 

9. Preliminary Simplifications 

If we restrict our attention to n-tuples of reactive strategies which 

form motivated coalitlonal equilibrium points, a number of notational 

simplifications become possible.  In this section we derive several results 

which justify these simplifications. 

The first result allows us to restrict our search for equilibria to 

only those situations in which all coalitions always cooperate fully in 

all response-bargaining games. 

Theorem 9.1. If o  is a reactive equilibrium point, then in every response- 

bargaining subpame in which the players of a coalition S are to move, 

with probability one all of these players make the same declaration. 

Proof. We first show that for any player i and imputation x with 

x. ^ c.  (c.  is the conflict payoff to player i), player i prefers 

the result of following o,  in the bargaining game beginning at x, to 

the outcome of receiving c.  with certainty. This follows immediately 

from the observation that i  can refuse to cooperate in objections to 
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x and also refuse to cooperate in all responses arising from objections 

to x, and in this manner he can assure himself of at least c. in all 

eventualities. 

Assume that the players of S fail to cooperate in some response in 

o. Then in their non-cooperative response, each player i receives c.. 

However, by dividing the amount available in response equally, each player 

i in S receives at least v(i) immediately, and expects no less than 

c. eventually (by the preceding paragraph). Thus the cooperative response 

is a better response for all players of S than their strategies in o, 

and a cannot be in equilibrium. 

From the proof of the theorem, we immediately have a guarantee of 

individual rationality at all imputations to which no objections are made. 

Corollary 9.2.  If the hierarchical structure gives positive probability 

to the recognition of some coalition whenever objections are raised, then 

every imputation x, to which no objection is made, is individually 

rational (satisfies x. ^v(i), for all players i). 

Our next result shows that each coalition, if it has positive proba- 

bility of raising an effective objection to a proposal x, might as well 

object to x with probability one. 

Theorem 9.3.  If o is a reactive equilibrium point, x is an imputa- 

tion, and S is a coalition of players who have in o a positive 

probability of all making the same objection (as players of S) against 

x, then there exists an equilibrium point in which the players of S 

correlate their play so that they are unanimous in their objection with 

probability one. 
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Proof« Assume the players of S cooperate with probability p in 

raising an objection to x.  Let q be the probability that they are 

selected by the hierarchy at x when they make a unanimous objection. 

Since o is in equilibrium, we must have the event 

A:  with probability p(l-q), S objects and some other coalition 
is given the floor; 

with probability pq, S objects and is given the floor; 

with probability (1-p), S doesn't raise an objection to x, 

preferred (although not necessarily strictly preferred) by each player of 

S to the event 

B:  with certainty, S doesn't raise an objection to x. 

But then, by assumption (P2) of Section 5, all players in S prefer a 

certain  (p = 1) objection by S to the event A.  Changing the strate- 

gies of the players of S in o to conform in this manner with the 

statfcment of the theorem yields the required new equilibrium point. 

These results permit us to consider "coalitional", rather than 

individual, strategies in our formal definition of a bargaining solution. 

They also justify establishing the formal model without reference to con- 

flict payoffs, as long as we require that coalitional behavior conform 

by definition to the results above. 

There is one result we would like to give, but have been unable to 

derive in a general setting.  This would be a theorem similar to Lemma 6 

of Harsanyi [8], stating that a player has a better reply to an n-tuple of 

reactive strategies only if he has a better reactive reply.  Such a result 

would provide some justification for restricting rur considerations 
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exclusively to reactive strategies. However, although the result can be 

shown to hold in all specific cases with which we have worked, a general 

proof has not yet been found. 

10.    Bargaining Solutions 

In view of the preceding sections, we are now prepared to formally 

define a theory of bargaining solutions.    The definitions will be so 

given as to characterize motivated coalitional equilibria in reactive 

strategies. 

We take as given an n-person game    (N,v),    a hierarchical structure 

H    on the imputation space    X,    and a system of individual preferences 

{>.} from which coalitional preferences may be derived.     For any 
^ ieN 

coalition    S,    define 

and 

RS    =     {x e  Rn:     x.   =  0      for a^l     i i S} 

RS(a)    =     (x E  RS:     x(S)   <  a). 

Recall that F(A), and P(A), are repsectivelv the set of all finite 

probability distributions, and discrete probability distributions, on a 

set A.  If D  is any such distribution then, for any a c A,  P (a) 

is the probability assigned to a by p, and 

p  =  {a e A:  P (a) > 0), 

ii coalitional strategy o  for a coalition S is a pair of func- 
o 

1 2 
tions  (o-.o ), such that 
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Og:     X - F(RS)      and      o^:     RN"S(v(N-S)) - F(RS). 

For each    x    in    X,    a^(x)    satisfies eit' 

(a)    y E OpCx)    implies    y domq x. 

or 

(b)    o^(x) =  {xS} 

For each x in RN"S(v(N-S)), Og(x)  satisfies 

2 
y e o (x)  implies  (x+y) E X. 

The strategy o  is the "objection strategy" of the coalition S, and 

2 1 
o  is the "response strategy". The conditions on o (x) are that either 

(a) S raises a dominating objection to x, or (b) S does not object 

2 
to x.  The condition on o (x) is simply that, after an objection and 

response, the resulting proposal must be an imputation. 

| Let o = (o }    be a collection of coalitional strategies.  For 
bSCN 

each    x    in    X,    define 

n(x)    =     {S:    o^(x) X {xS}}. 

Thus    n(x)    is the collection of coalitions which, in    o,    raise objections 

to    x.     o    induces a transition map 

6   :     X -► F(X) 
o 

m—m 
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defined by 

9o(x) 1 2 
U      {w:    w = y+z,      where      y E O  (X)      and      z e 0

N_s^y^ 
Sen(x) 

U (w:    w = x,    and either    n(x) = 0    or    (H ) (n(x)) >  0}, 
x 0 

where for each wee (x), either 

w i< x, and Pe (x)(w) *      ^    P lr ,(y)'P 2 (  /
Z)-PH (n(x))(S) 

Ser)(x) y«-z=w     CVX'    aN-S y      X 

yeo (x) 

ZeoN-S(y) 

cr 

w = x, and Pe   (x) = 1 -  JPe (x)(w) ' 
o we9 (x)  o 

o 
w/x 

The set  e0(x) is the collection of all imputations which might arise in 

the stage of the bargaining game inmediately followinp the stage in which 

x is proposed.  The last set in the definition serves only to include 

cases in which the imputation x results from itself (that is, the game 

ends). 

For any 0 < 6 < 1, o also induces a valuation map 

*  ■  X - P(X) 
o ,o 

defined by 

HMflM 
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kk, 
^.6(X) = k=

U
0
<9or(x)' 

where for each y e i^ A*), 

%      (x)(y) =  ^ P   k  (>r) * 6(1-6)k- %XX) k=o (eo)
k(x) 

In this definition, (6 ) (x) is the iterated distribution over X which 

arises k stages after the proposal x is made.  Thus ty    .    assigns to 

each imputation the distribution which arises after the play of a bargain- 

ing game, with stopping probability 6, in which all players follow the 

strategies in o. Similarly, for each 0 < 6 <^ 1 and each x e X, o 

induces a response-valuation map 

*a,6,x: n(x)-P(X). 

where    4»    .     (S)    is the distribution which arises after the play of a 

bargaining game, beginning at    x    with coalition    S    having the floor 

(that is, having just been selected by the hierarchy    H ). 

o    is a bargaining solution to the game    (N,v),    with respect to the 

given hierarchical structure and system of preferences, if the following 

conditions are satisfied. 

(1)    There exists    0 * ^ 1 1    such that for every    0 <  6 <  6 

i  e  N,    S  3  i,     y c XN"S(v(N-S)),    and    z  e   t^(y). 

*o.6(y+z) £i  (1.v(i))- 
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(RecaU that (l,v(i)) signifies the event "receiving v(i)" with proba- 

bility 1 .)  This condition is derived from Theorem 9.1, and guarantees 

that o is in equilibrium with respect to response Strategie? . 

(2) For any i e N, let x be a collection of coalitional strate- 

gies for which T^ = o^ for all S ^ i, and T^ = c^ for all S. 

Further assume that for each x E X and S containing but not equal to 

i,    P l       (y)  < P  ,       (y)    for all    y i x".     Then there  is no    0 <  6    <  1 
T;(X) a;(x) 

for which, for all    x e X    and    0 < 6 <  6   , 

*T.6(xUi *a.6(x)' 

and for which, for some x e X and for every 0 < ^ < ^ there is a 

0 < 6 < 6^ such that 

T,ö    i  0,6 

This condition is merely a restatement of the requirement that    o    be in 

equilibrium, with respect to objection strategies, for each individual 

i E N    and all stopping probabilities "sufficiently close" to zero. 

(3)    For any coalition    S,    let    T    be a collection of coalitional 

strategies for which    x    = o      for all    W ^ S.    Then there is no 

0 <  «5« 1 1    for which, for all    x e X    and    0 <  6  <  5   , 

^   Jt
(x) ^c ^  ^x>. x , 6        ^S    o,6 
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and for which, for some x e X and for every 0 * *n * *n' "t^ere ^s a 

0 < 6 < 6'0    such that 

*T.6(X)>S^,6(X)- 

This requires coalitional equilibrium in all bargaining subgames with a 

sufficiently small stopping probability. Further, we require the analogous 

condition in all such response-bargaining subgames. 

(4) There is a 0 < 6 < 1 for which, for every x e X with 

n(x) / 0 and every 0 < 6 < 6 , there exists a coalition S t  n(x) with 

Ws) 's <1-'iS) 

This condition restates the requirement that some coalition which objects 

to    x    be motivated in its objection. 

There is a fifth condition, not yet discussed, which we shall use 

throughout the second half of this paper.     It  is the requirement that 

a    be bounded. 

(5)    There  is a positive integer    B    such that, for all    x e  X, 
D 

every sequence of imputations {y. }    with y = x, which satisfies 
k k=0       0 

yk ^ yk-l  and  yk e eo(yk-l) for a11 k = 1»2'---»B» 

also satisfies 

yB = yB.r 
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Restated, this simply requires that, in o, every bargaining subgame must 

end, after at most B stages, with a proposal to which no coalition objects. 

An advantage of working with this reasonable-sounding r"quirenient for 

bargaining solutions will be seen after the next definition. 

Consider any (bounded) bargaining solution o to a game. Associated 

with o is the set of all imputations to which no coalition objects. 

Formally, the stationary set S of o is defined by 

S =  {x e X:  6 (x) = (xH 
o 

Each element of S is a stationary imputation of o. 

Two final comments are in order.  First, the requirement that o be 

bounded implies the existence of at least one stationary imputation.  This 

is because, regardless of the initial proposal, after at most B stages 

of the bargaining game all objections must end.  And second, a most 

important observation is that the definition of "stationary set" is what 

all our work to this point has been directed towards.  In the second half 

of this paper, we shall show that stationary sets have a close relationship 

to v;..i stable sets in many games. 

11. Summary 

In the preceding pages, we have presented a solution theory for 

n-person cooperative games. The basic approach was to embed a character- 

istic function game in a formalized bargaining context.  In the process 

of analyzing the bargaining game several conditions, corresponding to our 

intuitive notion of which collections of strategies seem to be stable as 
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"standards of behavior" for the players, were used to select certain 

strategy collections as solutions to the game.  The set of imputations 

left stationary by any such collection of strategies was proposed as an 

analogue to the classical von Neumann-Morgenstem stable set. 

Several comments should be made concerning our bargaining model. A 

major problem already discussed is to find a convincing representation of 

response-bargaining games. An appropriate approach may involve the playing 

of a rather complex subgame each time a response is called for.  In such 

an approach, it may be hoped that equilibria for the full bargaining game 

will be a composition of solutions for the bargaining subgames with solu- 

tions for each response-bargaining subgame, in which case the two types 

of games could be separately treated. 

Minor variation in our theory may be derived by requiring only weak 

conditional preferences where we have required strong preferences.  How- 

ever, we would expect such a change to have little effect on our results, 

due to the use we have made of stopping probabilities in a limiting sense. 

The reason for such use was the appeal of Vickrey's work in which a valid 

heresy does not require that all heretical players show a strict eventual 

gain, but rather that all players gain, at least momentarily, when they 

take heretical action. Our formulation of the bargaining process gives 

a slight payoff at each such moment, reflecting the intermediate gain of 

the players. 

Applications of the principles of this bargaining theory to other 

forms of games may be made. As an example, we apply our wo ^k to a non- 

side-payment game in a later section.  A irost promising line seems to be 

direct application of our techniques to cooperative games in normal form. 
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A final note may be made of the potential use of a theory such as 

this in the field of multi-national relations. In an age of "detente", 

the principle technique for maintaining international equilibrium is the 

establishment of "credible" responses to every possible deviation (objec- 

tion) of opposing forces from the equilibrium position. Naturally, the 

work we present here is far from such applications. But the example gives 

some indication of the importance we feel is attached to game-theoretic 

models which adequately deal with response mechanisms. 
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CHAPTER 2 

EXAMPLES OF BARGAINING SOLUTIONS AND STATIONARY SETS 

12. Introduction 

The first chapter presented a general solutior theory for n-person 

games. We now illustrate this theory by applying it to several well- 

known classes of games.  In treating these various classes, we sharply 

restrict the generality of the preceding sections by limiting consideration 

to games with a particular type of hierarchical structure and a particular 

system of preferences.  In previous terms, we shall work only with uniform 

hierarchical structures and expected value preferences. For the sake of 

completeness, we discuss here the specific bargaining model with which we 

work, and consider the simplifications that our specification permits. 

A bargaining solution for a game consists of two parts.  The first 

part is a list, for each imputation, of all coalitions which object to 

that imputation and what objections (allocations among their players 

which dominate the given imputation) they make.  The second part is a 

description, for each objection, of the response (allocation of remaining 

resources which, with the objection, forms a new imputation) made by the 

coalition of non-objecting players.  In this way, objection and response 

strategies for each coalition are specified, and this collection of strate- 

gies is a bargaining solution if it is bounded (there is a uniform upper 

bound on the number of objection-and-response stages that can occur before 

an imputation results to which no coalition objects), and if it is in 

equilibrium (no coalition of players can gain by changing its strategy 

while the other coalitions hold theirs unchanged). 

ui 
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A partial description of the bargaining game will extend the vocabu- 

lary with which we work.  At any given imputation, all coalitions declare 

their objections, if any, to that imputation as a final division of 

resources. If no objections are made- *he game ends with that division. 

Otherwise, a coalition is chosen (equiprobably) at random from the object- 

ing coalitions. The objection by this coalition, with a response by the 

complementary coalition, yields anew imputation, from which the game con- 

tinues in the above manner. 

At each stage of the game, there is a small probability 6 > 0 that 

external pressures will force the end of the game.  Although we shall 

rarely refer to a specific stopping probability in the following sections, 

we will implicitly refer to it by discussing "momentary" outcomes (those 

which occur as a result of this externally-induced end of the game) in 

conjunction with "essential" outcomes (those which result when no coali- 

tions object to the proposed imputation at some stage).  We shall assume 

that all players are driven solely by a desire to maximize their expected 

return in the play of the bargaining game.  This assumption is implicit in 

discussions of preferences of coalitions of players between alternative 

actions. Since our objective is to solve a "pame-situation" for all 

sufficiently small 6 ,  it should be noted that, under this preference 

structure, players choose between alternatives primarily in terms of their 

essential expectations in these alternatives. Only in the case of equal 

essential expectations do they secondarily refer to their momentary expec- 

tations. 

With any bargaining solution is associated a stationär-/ set (the set 

of all imputations to which no coalition objects).  The assumption that 
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each bargaining solution is bounded implies that each stationary set is 

nonempty. Furthermore, since the core of a game consists of those imputa- 

tions to which no objection can be made, the core is a subset of every 

stationary set. Also, the results of a preceding section show that every 

imputation in a stationary set is individually rational. 

Section 13 deals with three-person games.  We characterize all 

stationary sets which arise with respect to uniform hierarchies and 

expected value preferences, and find that these stationary sets are some of 

the von Neumann-Morgenstem stable sets which are self-policing. The 

bargaining solutions exhibited extend over all possible allocations (both 

individually-rational and non-individually-rational imputations). 

In Section lU we treat games with vNM-stable cores. We show that the 

core is a stationary set for three well-known classes of such games, and 

relate the construction of response strategies to a recent characterization 

of all such games.  Section 15 considers two "pathological" games: a 

five-person game discovered by Lucas, and a seven-person non-si de-payment 

game with no stable set, discovered by Steams,  It is shown that the core 

is a stationary set for both of theje games. 

Section 16 contains both positive and negative results.  Although 

the symmetric stable set of any constant-sum syrrmetric majority game is 

shown to be stationary set of the game, it is also shown that the symmetric 

stable set of th-^ four-person simple game, in which all three-player coali- 

tions win, is not a stationary set. Section 17 discusses a negative 

potentiality of our theory, and briefly presents an extension of our 

approach which properly handles such a difficulty.  Section 18 summarizes 

the results of these sections, and concludes with several comments concern- 

ing future directions of this work. 
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13. Three-Person Games 

A natural approach to the investigation of bargaining solutions for 

three-person games is to study those sets of imputations which can be 

stationary sets for solutions. This approach is quite fruitful, for we 

will be able to characterize all stationary sets of each such game as 

self-policing stable sets of the game. We derive this result in some 

detail, omitting the most tedious arguments. 

For notational convenience, we shall work with 3-person games in 

(0,l)-normal form. Thus a game is defined on the player set N = {1,2,3} 

by 

v(i) = 0      for all  i E N, 

') < v(i,j ) < 1   for all  i ,i e N . 

v(N) = 1, 

where the indices  i, j, and k will be used throughout to denote distinct 

players. 

An important simplification may be made when analyzing 3-person games. 

In the simplex of individually-rational imputations, only 2-player coali- 

tions can raise objections, and so only l-player response strategies must 

be specified. Furthermore, l-player responses are trivial (that is, if 

{i,j) objects with an allocation (x.,x.), th^n k must take 

1 - x. - x.  in response).  Therefore, discussion of l-player responses 

will be omitted from nany of the arguments of this section. 

Let o be a bargaining solution to a given 3-person pame, and let 

S be tl.e stationary set of o. 
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lemma 13.1.    S    is internally stable. 

Proof.    Assume to the contrary that    x,y E S    and   x donu y    for some 

coalition    T = {i,j}.    Then    T    gains by making the objection    (x^x^) 

at    y,    and    o    cannot be in equilibrium.    On the other hand, if 

T =  H},    then    0 = v(i)  >  x.  > y.,    and this  contradicts Corollary 9.2, 

that non-individually-rational imputations cannot be stationary. 

Lemma 13.2.    No imputation    z    can  dominate all imputations in    S. 

Proof.    Since the bargaining solution    o    is bounded,  the continuity of 

"expected value" preferences  implies that no 2-player coalition can be 

motivated to raise an objection to    z.    Thus    z    is stationary and dominates 

itself.    This cannot be. 

With the aid of these lemmas, we first consider the  3-person constant- 

sum game, in which    v(ij)  =  1    for all    i    and    j.    Notice that every 

imputation is dominated by some other imputation, and  Lemma 13.2 there- 

fore implies that no stationary set can consist of just one imputation. 

Also,  Lemma 13.1 and the dominance pattern of this game  imply that no two 

imputations    x    and    y    can both be stationary unless for some player    i, 

x,  = y..    Only three cases  remain to be considered: 

(1)    The stationary set    S    consists solely of imputations    x    for 

which    x.  = c,    for a specific player    i    and constant     0 <^ c <  1.    With- 

out loss of generality, assume    i =  3. 

By Lemma 13.2,    S    is dense in    {x:    x    >  0,    x    >   0,    x    » c}. 
1 — 2 — 3 

(Otherwise, an interval     (x:     a <  x    <  b,    x    =  c}    is  disjoint from    S, 
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and the imputation 

z    = (i<3a+b), l-c-i<a*3b). c+i(b-a)) 

Kb 

dominates all imputations in S). Select any imputation w, with 

w1.w2 > 0 and c < w3 < 1, for which the expectation of player 3 in the 

bargaining game beginning at w is at least c (if no such v exists, a 

simple argument applies in the set of imputations {w: w < c}). Let 

(a, l-c-o, c) be the essential expectations of the players, in the game 

beginning at w. Either a > v^ or 1-c-a > w ; without loss of 

generality assume the former. Since S is dense, there must be a 

ycS for which w dom{l 3} y.  But then {1,3} gains (3 only temporarily) 

by an objection of w  *   to y, and c cannot be in equilibrium, a 

contradiction. Thus no stationary set of this type can exist. 

(2) The stationary set S consists of three imputations 

x = (a, ß, 1-a-ß), 

y =  (a, Y, 1-a-Y)  with  S > Y, and 

z =  (a+ß-Y, Y, 1-a-ß). 

Then    ^(x+y+z)    dominates all imputations in    S,    contradicting Lemma 

13.2. 

(3) The stationary set     S    consists of three  imputations 

1 

I 

x    =    (a,  ß,  1-a-ß), 

y    =     (a, Yt 1-a-Y)      with      ß <  YI    and 

z    -     (a+ß-Y,   Y.   l-a-8). 
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Consider the cases    a + ß-Y>0,    6      0,    l-a-y > 0;    assume without 

loss of generality that the first holds.    Then 

w    =     (0,   Y+|(a+ß-Y),  l-a-ß+i(a+ß-Y)) 

dominates all three imputations with respect to    {2,3},    contradicting 

Lemma 13.2.    The only remaining possibility is that 

S    =     {(j.y.O).(i.oi),(0.±|)}, 

Theorem 13.3.    This set    S     is a stationär"   set  (and hence the only sta- 

tionary set) of the three-person constant-sum game. 

Proof.    Let the strategies  in    o    be defined as follows. 

(a) If   x    is an imputation and 

(1) Xj.x.  <  j,    then    {i,j}    objects to    x    with     ^'l^' 

(2) x. ,x.  >_ ■=•    and    x.   <  0,    then    {k}    objects to    x 

with    (0). 

(b) If    (a)    is an objection of    (k),    then    (i.j)     responds with 

The effect of these strategies  is represented in Figure 13.1, and it is 

easily seen that    o    is in equilibrium and that    S    is the stationary set 

of the bargaining solution    o. 
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via {1,^} 

via {2} via {1} 

via {2,3} via {1,3} 

via {3} 

Fipure 13.1  A solution of the conrtant-^um game, 
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A discussion of other bargaining solutions yielding this same stationary 

set will be given at the end of this section. 

We now turn our attention to the  3-person simple game with one veto 

player.    We assume the veto player to be player 3; thus the veto game 

we consider satisfies 

v(i) = 0      for all    i, 

v(12) = 0, 

v(l3) = v(23) = v(123) = 1. 

Lemma 13.U.    No stationary set    S    of this game contains two distinct 

imputations 
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x = (a, Y-a, 1-y) 

and 

y = (ß, Y-6. 1-Y),  with  a < 6. 

Proof.  Assume to the contrary that the two imputations are both in a 

stationary set S of a bargaining solution o. Consider the imputation 

z = (i(3a+6), Y-^(a+36), 1- Y+j<ß-a)). 

Clearly,    z dorn,       .  x    and    z dorn,       , y.    Therefore, by Lemma 13.1,    z 

is not  in    S.     By boundedness of    o,    all  imputations essentially result- 

ing from objections to    z    must be  in    S.     But since any imputation    w    in 

a chain of dominance beginning at    z    satisfies   w    > z    > 1-Y     (by the 

dominance pattern of the game), any stationary imputation    w    arising 

from    z    must satisfy    w    < a < z      and    w    <_ Y-6 < z      to preserve 

internal stability of    S.    Thus neither    {1,3}    nor    {2,3}    is motivated 

to object to    z,    and    z    must be  stationary, a contradiction. 

Lemma 13.5.     If    S    is a stationary set for the veto game, then  for every 

0 <^ a <^ 1    S    contains an imputation of the form    (ß, a-ß, 1-a),    for 

some     0 <  6  <  a. 

Proof.     Let    A c [0,1]    be the set of all    a    for which no such  imputation 

is in    S.    We first show that    A    contains no intervals.    Assume to the 

contrary that    I = (c,d)    is a maximal open interval in    A.    Omitting 

the easily-treated special cases    c = 0    and    d = 1,    let    X    be a limit 

point of    S    with    X    = d,    and    n    be a limit point of    S    with    n- =  c, 

and consider the (non-stationary)   imputation    y = ^(X + n).    Due to the 
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internal stability of S, A cannot dominate n and therefore does not 

dominate y. A further application of internal stability (near X) shows 

that every stationary point essentially arising from y has both first 

and second components less than those of p and hence no coalition is 

motivated to act against p. This means that u is stationary, contra- 

dictii   ne definition of A. Therefore, [0,1 ]\A is dense in [0,1]. 

A slight modification of the preceding argument now establishes that A 

is empty. 

Lemmas 13.U and 13.5, and internal stability, imply that S is a 

monotone curve from the imputation (0,0,1) to an imputation in 

(x: x = 0). We finally show that this curve has no chords parallel to 

{x: x = 0} or to {x: x = 0}, and is in fact a straight line. 

Lemma 13.6. Let f: [0,1] -► R be defined by f(c) = a, where 

(a, 1-c-a, c) is in S. Then f is strictly decreasing, and linear. 

Proof. If f(c ) > f(c ) for c > c , then the stationary imputation 

with third component c dominates the stationary imputation with third 

component c. with respect to the coalition (1,3}, violating internal 

stability. Thus to complete the proof we need only show that f is not 

constant on any interval. Assume to the contrary that f(c ) = f(c ) 

for some  c > c. , and let 

w = (fCc^+i^-c^, l.i^Sc^-f^). JOc^Cj)). 

Then w is not stationary, and some coalition must be motivated against 

it.  Since w dorn.   , (He.), 1-c -f(c1), c ) and no one objects to 
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(f(c  ), l-c.-fCc.), c.),    this coalition must be    {2,3}.    But every 

stationary point which dominates    w    with respect to    {2,3}    has first 

component    f(c..),    and motivation considerations imply that only such 

stationary points can essentially arise from    w.    The impact of this is 

that    {1,3}    gains by objecting to    (f(c.), 1 - c. -f(c  ),  c.)    with    w, 

contradicting the assumption that this imputation is stationary.    Linearity 

is required to prevent each coalition from being able to randomize objec- 

tions in such a manner that the resulting expectations dominate a 

stationary imputation. 

' heorem 13.7.    Every   linear    curve    S,    strictly decreasing for both 

players 1 and 2 in the sense of Lemma 13.6,  is a stationary set of the 

veto game. 

Proof.    Fix    a    and    ß    so that    0 < a,e < 1,    and for each    x ^ S    define 

L^x.a)    =    {(x1 + tax2,   (l-t)x2,  x3 + t(l-a)x2):     t >  0} 

and 

L2(x,ß)    =    {((l-t)x1, x2 + tßx1, x3+t(l-6)x1):     t>0}, 

Let the strategies in    o    be defined as follows. 

{1,3} 

{2,3} 

(a)     If    L  (x,a)  OS =  {w},    then    {1,3}    objects to    x    with    w 

If L  (x,ß) PIS  =  M,    then    {2,3}    objects to    x    with wl 

(b)    If L (x,a) D S = 0    and    L (x,ß) H S = 0,    and 

(1) x < 0 and x + ax < 0, then  {1} objects to x with  (0), 

(2) x < 0 and ßx ♦ x <_  0, then {2} objects to x with (0), 
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(3)    neither of the above conditions  holds, then    {3}    objects to 
x    with    (0). 

(c)    If    (Y)     is an objection of    {i}     (i  ^  3),    then    {j,3}    responds 

with    (- I, 1 - I). 

If (Y) is an objection of 3 and w = (w ,w 0) is the (unique) 

imputation in S with third component equal to zero, then {1,2} 

responds with ^ " J. w2 " 2 ^ • 

It is easily shown that 0 is indeed in equilibrium, and that S is the 

stationary set of 0, The effect of these strategies is represented in 

Figure 13.2. 

via {!) and {2} 

\ 

via {2} 
via {1} 

/ 

slope depends 
on  6 

slope depends 
on n 

\ 

Figure 13.2  A solution of the veto pame, 
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Having solved the constant-sum and  veto games, we can now explicitly 

characterize all  stationary sets for every three-person game. 

Theorem 13.8.  If the game (N,v) has an empty core, then every stationary 

set for the game consists of the three imputations 

(l-v(2,3), y{v(l,2)+v(2,3)-v{1.3)), |(v(l .3) + v(2 ,3) - v(l ,2) )), 

(i<v(l,3) + v(l,3)-v(2,3)), 1-v(l,3), |(v(l,3) + v(2 ,3) - v(l,2) )),  and 

(|<v(l,2) +v(l,3) -v(2,3)), |<v(1.2) +v(2,3) -v(1.3)). 1-v{l,2)). 

and three linear  curves of the type in Lemma 13.6, one from each of 

these imputations to the corresponding side of the imputation simplex. 

If the game has a nonempty core, then every stationary set consists 

of the core and three linear curves, one from each vertex of the core 

to the corresponding side of the simplex. 

Proof.  Duplicating arguments in vNM [17; pp. UOS-Uig], it easily follows 

that every stationary set of a 3-person game can be obtained by "piecing 

together" the rore with stationary sets of "smaller" constant-sum and 

veto games.  Figures 13.3 and 13.U represent typical bargaining solutions 

obtained in this manner. 
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Figure 13.3  A solution of a game with empty core. 

Figure 13.U  A solution of a game with nonempty core. 
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If we think of a ba.-gaining solution    o    as a "standard of behavior" 

for a game, we see that much more information is available to us now than 

in the classical vNM approach.    Along with a set of imputations which is 

"stable" or "stationary", we also have a description of the dynamic process 

leading to agreement upon one of these imputations.     Indeed, Theorem 13.7 

suggests that many different types of bargaining behavior may be associated 

with the same stationary set.    The constant    a    in the construction may be 

considered as a mf.asure of the "bargaining ability" of player 1 against 

player 3, where values close to one indicate that 1 is the dominant 

bargainer and values close to zero attribute greater bargaining ability to 

3.    ß    may be similarly interpreted.    Of course, other bargaining solutions 

will yield the same stationary set, and thus different standards of 

behavior may be associated with the same set of stationary outcomes. 

The situation is similar for the constant-sum game.    For example, the 

collection of imputations    (x:    x.  < —    for all    i)    may be arbitrarily 

partitioned between the three 2-player coalitions so that only one 

coalition objects to each such imputation in the manner specified in 

Theorem 13.3.     If all other objections and responses are kept as in 

Theorem 13.3, this new collection of strategies is another bargaining 

solution, w^th the same three-imputation stationary set.    This result, 

and the manner in which bargaining solutions can vary outside the simplex 

of individually-rational imputations by variation of 2-player response 

strategies, suggest  the complexities of bargaining behavior which may 

stand behind a deceptively simple-lookinp stationary set. 
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l1*. Games with Stable Cores 

In this section, we consider games for which the core is a stationary 

set, and characterize a class of such games for which the core is also the 

unique vNM-stable set. Included in this class are all convex games, all 

games with "large" cores (in the sense of Gillies), and all symmetric 

games with vNM-stable cores.  In the course of our investigation we shall 

use our results to prove the vNM-stability of the cores cf the games con- 

sidered, and shall explicitly construct bargaining solutions for which 

only imputations in the core are stationary.  An open question is whether 

the class of games with stationary cores contains all games with vNM-stable 

cores. 

We will require the concept of the "cover" of a game.  Let M be any 

coalition of players.  A collection {v }    of non-negative numbers is 
TCM 

balanced on M if for everv i e M, 

T3i 

Let    (N,v)    be an arbitrary game.    The cover    v    of this game is the 

characteristic function on    N    defined for every coalition    M CN    by 

v(M)     =    max    )"    y-v(1) t 
TO: 

wht.e the maximization is over all collections  {>„) which are balanced 

on M.  The'game  (N,v)  is slighcly convex if for every pair ol coali- 

tions A U B = N, 

v(N) + v(A 0 D)  >  v(A; ► v(M 
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c N 
Let M c N be a coalition, and 0 < a < v(M).  The game (M ,v ) 

jt -  - a 

is the game on M  defined by 

v"(MC) = v(N)-a, 

and for all 0 / T c Mc, 

vM(T) = max (v{T U W) - v(W)) 
WCM 

This game may be thought of as the "residual" game which remains after the 

amount a has been withdrawn from the game and promised to the players 

of M. The first theorem will require a simple lemma. 

M 
Lemma 1U.1. Let M be a coalition, and x c R .  If x(T) > v(T) for 

all T C M, ^*»n x(M) > v(M), 

Proof.    For any collection     {y-}    balanced on    M, 

t(M)     =    I YTX(T)    >    I YTV(T) 

Therefore 

c(M)     >_    max [ YTV(T)    =    v(M), 

The  impact of our first  theorem relates to ar.y slightly convex game 

c    M (M,v)    and coalition    M    for which    (M  ,v  ,   .)    has a nonempty core.    If 
i 

H objects to an imputation and M  responds with an allocation in the 

M 
core of v , then any minimal coalition which can make an objection in 

the next stage of the bargaining game must be contained in M. 
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Theorem 1^2.  Let xM e RM satisfy xM(M)<^v(M), and assume v is 

slightly convex. Assume that (MC, vM   ) has a nonempty core. Take 
c „ x (M) 

M       / M, M   MC 
x  e core(v ), and  x = x + x  .  If x(S) < v(S),  and x(T) > v(T) 

for all T c S, then S C M. 

Proof,    Assume that    S    satisfies the conditions of the theorem, but that 
M M 

S ^ M.    Then    x      e core(v  )     implies     S £ MC,    and either 

(a)    SJOMC,    and    x(S)    =    x(S fl M) + x(C 0 MC) 

>_    x(S 0 M) +  (v(S)  -  v(S  n M)) 

>   x(s n M) + v(s) - x(s n M) 

=    v(S). 

where the second inequality follows from the preceding lemma and the 

conditions on x and S, or 

(b) S=)MC, and x(S) = x(S H M) + x(MC) 

>_ v(S n M) + v(N) - v(M) 

> v(S), 

where the second inequality follows from slight convexity. 

Either case contradicts the assumption that x(S) < v(S), and therefore 

S c M, as claimed. 

M     M     M 
Corollary 1U.3.  If (N,v)  is slightly convex, x e R , x (M) = v(K) 

M MM 
and x (T) >_ v(T) for all T C M, and if x  c core(v /„v), then 

M   Mc      , , 
x = x + x  e core{v). 
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Proof. By the preceding theorem, any minimal S for which x(S) < v(S) 

is contained in M.  But S CM implies x(S) ^ v(S).  Thert --e 

x(S) > v(S) for all S c N, and x e cor€(v). 

Corollary m.U.  Let (N.v) be slightly convex and have the property: 

M    M 
for every y t  core(v) there is a coalition H and an x e R  such 

that xM(M) = v(M), xM doit^ y, xM(T) > v(T) for all T c M, and 

M 
core(v . .) is not empty.  Then v has a vNM-stable core. 

Proof.  For every y ^ core(v), the previous results and the stated 

M MC 
property imply, for a specific M and x , the existence of an x 

M   MC 
for which x = x + x  t core(v) and x dorn y. 

A game (N,v) is extremely stable if, for every M c N, the core 

C  M 
of (M , v / \) is nonempty, and if the pane (N,v)  is sliphtly 

* 
convex. 

Theorem 1*4.5.  If (N,v) is extremely stable, then the core of the game 

is a stationary set. 

Proof.  We first define objection and response strategies for all coali- 

tions. 

(a) At each y < core(v), select a minimal coalition M for which 

M 
y(M) < v(M).  Let x  be defined by 

x" = yj ♦ (v(M)-y(!1))/|M| ,  for all  IcM. 

In the specific förer, treated later in this  section, slirht convexity 
is easily verified. 
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Then M objects to y with the allocation x , and no other coalition 

objects to y. 

(b) For every coalition M and allocation y  (with y CM) ^ v(M)), 

C M 
let the coalition M  respond to the objection y  with a 

Mc     , M   , 
y  e core(v   ). 

y (M) 

Call the above-described collection of strategies o. We claim that 

o is in equilibrium.  If it is not, there is some subgame n. ..hich a 

coalition S gains by a change of strategy. We examine the possibilities 

by cases. 

(1) S changes its objection to an imputation x.  Since S is a 

minimal coalition for which x(S) < v(S), if S changes its objection 

S      c        c 
from y  to z" with z (S) = v(S) then by the extrc-o stability of 

(N,v) and Corollary 1U.3 it follows that the response of S  in o 

yields a (stationary) imputation in the core of v. Thus the players in 

S S 
S share the same total amount  (z (S)) as they did in a    (y (S)), and 

since z / y , some player in S loses in the change of strategy. On 

S S 
the other hand, if the new objection z  satisfies z (S) < v(S), then 

by Theorem 1U.2 the response of S  leaves S as the only minimal 

coalition with z(S) < v(S).  Thus no other coalitior. will object in a 

in the next stage of the bargaining game, and the players of S share 

an intermediate amount less than v(S) and in no later stage share 

more than v(S).  Thus some player in S igair. loses in the cnange of 

strategy. 
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S 
(2) S initiates an objection y  to an imputation x, to which 

some other coalition T objects in o.  By reasoning similar to that in 

(1), if S is a minimal coalition for which x(S) < v(S) then the 

players of S expect at most v(S) from this stratepy change, but 

expected at least v(S) in the (stationary) core imputation resulting 

from the objection of T and response of TC. Thus not all players in 

S gain in the strategy change.  If S is not minimal, then Theorem 14.2 

states that only subcoalitions of S might object in the next stage, and 

hence the players of some such subcoalition T share exactly v(T)  in 

the final outcome.  Again, not all players of T and therefore not all 

players of S gain in the strategy change. 

Sc c 
(3) S    changes its response to some objection    x        of    S  .     In    o, 

S    must have expected    v(N) -  v(Sc)    in the response-bargaining game 

Sc 

beginning at    x    .    Any change in strategy must yield a game  in which the 

players of    S      receive at least    v(S   )     (that  is, a core  imputation), and 

therefore the players of    S    share no more at ti n end of the game than they 

did in    o.     Hence  if any player in    S    gains, another must  lose. 

This completes the consideration of possible coalitional deviations 

from    o,    and we have shown that    o is  in equilibrium. 

Having shown that e, tremely stable games have cores which are both 

vNM-stable and stationary sets, we shall now show that all games of 

several   wfll-known tvpes are  extremely  stable.     A fame  (N,v)  is convex 

if  for every pair of  coalitions    A,B c N, 

v(A   U B)   +   v(A  n B)      >     v(A)   ••■   v(B). 
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Shapley has considered convex games in several papers [21,23], and has 

shown that all convex games have vNM-stable cores. After a preliminary 

lemma, which shows that convexity is characterized by "increasing marginal 

gains", we adapt 'Jhapley's approach to prove that all convex games are 

extremely stable. 

Lemma 1U.6. A game (N,v) is convex if and only if for every k e N 

and coalitions S 3 T with k ^ S, 

v(S U {k}) - v(S)  >_ v(T U {k}) - v(T). 

Proof.  The forward implication follows directly from the definition of 

convexity, taking A = S and B = T U {k}.  The reverse implication is 

trivial for any pair A and B with A c B or B c A, and follows 

from a simple inductive proof otherwise. 

Theorem 1U.7.  If the game  (N,v)  is convex, then it is extremely stable. 

Proof.  Let M be any coalition.  We wish to prove that core(vv(M)) is 

nonempty.  Relabel the players in N so that M = (1,2,....si,  and 

Mc 
def ne  x c R   by 

xk = v(M U {1,2 k}) - v(M U {1.2,...,k-l}) 

for all k c MC.  To see that  x e coreCv' ),  consider any 0 / T C M". 

Then 

x(T) =  I    [v(M U (1,2 k}) - v(M U {l,2,...,k-l})], 
ktT 
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Let the players of    T    be    k    < k    <   ••• < k  .    Lemma 1U.6 implies that 

for any player    k   , 

v(M U {1,2,...,k  }) - v(M U {l,2....,kr-l})    >_ 

v(M U {^ kr}) - v(K U {k1,...,kr_1}). 

Thus 

t 
x(T)    >_      I    [v(M U {k     ... ,k   })  - v(M U {k1,...,kr_1})] 

r=l r 

=     v(M U T) -  v(M) 

>     v(W U T)  -  v(W) 

for any  W cM, by convexity. Since v(W) > v(W)  (indeed, equality 

M. 
holds for convex games), this  implies    x{T) >^ max [v(W U T) - v(W)] = v (T), 

WcM 

We next consider games with "large" cores.    Such games were  first 

studied by Gillies [5], who showed that any n-person game with character- 

istic function satisfying 

v(S)    <    ^^      for all       S c N 

has a VMM-stable  core.     The  following  theorem slightly extends this result, 

Theorem lU.e.     Let the game     (N,v)     satisfy 

v(S)    <    v(N)/n-l       for all      S C N. 

Then the game is extremely stable, 
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M MC 
Proof. To see that core(v /u,) is nonempty for any M, define x e R 

by 

= (v(N) - v(M))/(n-m) 

for all k e MC, where m = | M | . For any 0 ^ T c M , 

x(T) = -i- (v(N) - v(M)) 
n-m 

> -=- (v(N) - v(N)/n-l) 
— n-m 

n-2 
(n-m)(n-l) 

v(N) 

Also, 

> v(N)/n-l, since m > 2 (or v(M) = v(i) = 0), 

vM(T) = max (v(T U W) - v(W)) 
VZH 

< max v(T U W) 
WCM 

< v(N)/n-l. 

M M 
Thus x(T) > v (T) for all T c M, and x e core(v ), 

Finally, we treat the class of syrrmetric fames  with vNM-stable cores, 

A game is symmetric if v(S) = v(T) wherever S and T are coalitions 

containing the same number of players.  Thus a syrnnetric game may be 

described by the collection of numbers  {v }   , where v(S) = v  for 
s   ' s 

s=l 

all coalitions S containing exactly s players. Shapley [2U] has 

characterized the symmetric games with vNM-^table cores as those games 

satisfying 
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V     -  v. v^  -  V, n        k            t        k      _        ,,      , 
 r— >    -r—;      for all      k < t < n, 
n-k -     t-k ' 

where    {v } is the collection corresponding to the cover of    v. 
S s=l 

Corollary 1U.U and the following theorem establish the sufficiency of this 

condition. 

Theorem 14.9.    Let    (N,v)    be a symmetric game satisfying 

n    . >      *■■ . for all      k < t < n. n - k       —     t - k 

Then the game is extremely stable. 

c 

Proof. To see that core(v ) is nonempty for each M, define x E R 
m 

by 

x,  = (v -v )/(n-m)  for all  k e M , 
K     n m 

c 
For each T C M , we wish to show 

(Vn-Vm
) M 

t •   = x(T) > v (T)  = max (v  - v ), 
n - m — t*w  w 

w<m 

It  is therefore sufficient to show 

v   - v v       - v 
n      m ^      t-f w      w      , 
  >       for all      t < n-m, w < m. 
n-m — t *     — 

If w = m, the result is obvious, since v < v . If w < m, then 
m — m 

^l 
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v-v     v-v v-v     v-v 
nw    mw.,. nm    nw 
  >     implies   > — , n-w —  m-w     r n-m —  n-w 

and this result combined with 

V-V V - V n      w t^-w      w 
n-w     — t 

M 
immediately yields the desired inequality.     Thus    x e core(vv  ),    and the 

m 
game  is extremely stable. 

Kulakovskaja [10] has recently announced a characterization of games 

with vMM-stable cores.    A comparison of our definicion of extreme stability 

with Kulakovskaja's condition is interesting. 

M 
Extreme stability:    For every    M,    core(v   .   .)    is nonempty. 

Kulakovskaja's condition:    For every    y t  core(v),    there is 

some    M    (minimal   with  respect to    y(M)  < v(M))    for which 

/   M        x     , 
core(v /„.)    is nonempty. 

VVH ) 

The sufficiency of Kulakovskaja's condition follows from Corollary 

14.U. Furthermore, Kulakovskaja's condition implies extreme stability 

for every game in which every M can occur as the unique minimal domi- 

nating coalition for some y (clearly, this in turn would imply v = v). 

This apparently close relationship leads us to pose the following open 

question: 

Is the core a stationary set for every pane with vNM-stable core? 

The core can be a stationary set for games in which it is not stable. 

This is the subject of the next section. 
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15. Two Classical Pathologies 

In the early days of the vNM theory, a number of conjectures were 

made concerr.ing the theory's "regularity". For example, it was conjectured 

that no gare had a unique stable set strictly containing the core, and that 

every game had at least one stable set. These conjectures fell with most 

others in the 1960's, when a number of "pathological" games were dis- 

covered [11,12,13,1U,20,22,25]. All of these patholopies have two common 

characteristics. They are all pames with nonemptv cores of dimension less 

than that of the imputation simplex, and in each of them this "small" core 

dominates all except a lower-dimensional set of imputations. 

In this section we consider two such games, and show that the core is 

a stationary set of each. The first example, due to Lucas [11], is a 

five-person game with a unique stable set strictly larger than the core. 

The second example is a seven-person non-side-payment game, discovered by 

Steams [25], which has no stable set. The fact that we can easily show 

that the core is a stationary set in each of these games encourages us in 

our hope that the classical patholories can all be adequately explained 

by an objection-response theory, and leads us to shakily conjecture that 

the other pathologies, includinp Lucas1 [14] example of a 10-person side- 

payment eame with no stable set, similarlv have stationary cores. 

The Lucas five-person example is defined by 

v(123U5) = 2, 

v(12) = vOU) = v(135) = v(2U5) = 1, 

v(S) = 0  otherwise. 
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The core of this game is the line segment with vertices (1,0,0,1,0) and 

(0,1,1,0,0) and the unique vNM stable set is the square with vertices 

(1,0,1,0,0), (0,1,0,1,0), and the two preceding.  Note that the core is 

simply a diagonal of this square. 

We shall now define a bargaining solution c, by first presenting 

the objection strategies in tabular form.  Let x be any imputation. 

Condition 

1 - x(12)  = E  >  0 

x(12^  > 1 

1 - x(3«0 = e >  0 

x(12),x(3U) > 1 

1 - x(135)  =  E   >   0 

x(12),x(3U),x(135)  >  1 

1 - x(2U5:  =  E   >  0 

Objecting coalition 

{1,2} 

O.U} 

{1,3,5} 

{2.4.5} 

Objection 

(x1+i, x2+f) 

(Vy' V^ 

(xl + 3' Vl' ^ 

1 x2 + 3 * \    3 ' 3 

It should be noted thjt no objection is made to x (and therefore 

x is stationary) only if x is in the core, and also that the last two 

of the four cases imply x = 0. 

Similarly, we present the response strategies of o in tabular form. 
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Responding 
Objection       coalition 

(y1,y2) by {1,2}     {3,U,5} 

<y3.yu) by {3,U} {1,2,5} 

(yl,y3'y5) by {1»3»5}    {2.u} 

(y2.yu.y5) by {2,U,5}    {1,3} 

Response 

e    . e 
(y2 + 2' yl + 2, 0)' 
where e = 2- 2y(12) >_ 0. 

(yu+f, Vg + f' 0)' 
where e = 2 - 2y(3'+) > 0, 

(y3 + l' ^^^ 
where  e = 2 - 2y(13) - y. i 0, 

where  e = 2 -2y(24) - y5 >_ 0. 

To see that o  is in equilibrium, first consider the objection strate- 

gies. If an objection by either of the coalitions {1,2} or {S,1*} is 

made, the specified response yields a stationary (core) imputation, and 

therefore the objection is motivated. On the other hand, if (x , l-x.), 

x3, l-x , 0) is an imputation satisfying e = 1 - x(13) > 0, an objection 

by {1,3,5} with the specified response yields a non-stationary imputation 

to which {12} objects. Hence, after two objections and responses, the 

stationary imputation 

(x1+I|c. x3 + TIE, x3 + I|c, x1 + I|c, 0) 

results.    Thus players 1 and 3 pain, and player 5 gains temporarily, from 

the objection by    {1,3,5},    and hence this objection is also motivated. 

A similar result  holds for objections bv    {2,U,5}. 

Next, consider a typical stationary imputation    (a, 1-a, 1-a, a, 0), 

for any    0 ^ a < 1.    Observe that the coalitions    {1,2} ,{3,U} ,{1,3} c 

{1,3,5}    and    {2,4} C {2,U,5}    all receive exactly    a+(l-a) = 1    in every 
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such imputation. From this it easily follows that no coalition gains by 

changing its strategy in a. Indeed, it is precisely this "balanced" 

nature of the core imputations, linking the "powerless" pairs 1 and U, and 

2 and 3, to equal payoffs, which allows us to conclude that the core is a 

stationary set of the game. 

One further note on this game is in order . Any attempt to "verbalize" 

the characteristic function of the game involves designating player 5 as 

an agent whose sole role is to empower objections involving {1,3} or 

{2,4}. This role is well-reflected in the bargaining solution o, in 

which 5's expectation is limited to his temporary gains when {1,3,5} or 

{2,U,5} act. 

The Steams 7-person example is a non-side-payment game. The general 

definitions for a non-side-payment game may be found in [3]. For our 

purposes, we need only slightly extend the concepts with which we have 

been working. Define four vectors 

pl = (1,1,2,0,0,0.0), 

p2 = (0,0,1,1,2,0,0), 

p3 = (2,0,0,0,1,1,0), 

and       c = (2,0,2,0,2,0,1). 

An imputation will be any convex combination of these vectors, and an 

imputation x will be said to dominate an imputation y if x > y, 

where S is any of the coalitions {1,2,7}, {3,U,7}, {5,6,7}, or 

{1,3,5}. With respect to this dominance relation the only imputation 

which is undominated is c, and hence the core of the game consists of 

this single imputation. 
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Let    L.     (i=   L,2,3)    be the half-open line segment 

{x:    x = ap. + (l-a)c,    0 <  a <^ 1  .    It may be noted that    c    dominates 

every imputation (other than itself) not on any of the    L..    We define a 

bargaining solution    o,    first specifying the objection strategies.    Let 

x    be any imputation. 

Objecting 
Condition coalition Objection 

x /  c, x ^ L1 U L2 U L3 {1,3,5} (2,2,2) 

X X 

x e  L1 {5,6,7} (|--^)(1,1,0)  +  (j+-^)(2,0,1) 

X X 

x e  L2 {1,2,7} (|.-2)(l,l,0)  +  (i + -y)(2,0.1) 

X x 
x E  L3 {3,U,7} (|.-l)(l.l,0)  +  (i+-^)(2,0,l) 

Next, we define the response strategies in o, keeping in mind the 

requirement that every objection-and-response must yield an imputation. 

Responding 
Objection        coalition Response 

(x1,x3,x5) by {135}    {2,U,6,7} (0,0,0,1) 

(x5,x6,x7) by {567}    {1,2,3,4}    x6(2>0,0,P) + x7(2,0,2,0) + 

X5 (T"V 2't7><
0.0.1.1) 

(x1,x2,x7) by {127}    {3,4,5,6}    XjU.O.O.O) + x7(2,0,2,0) + 

Xl (-~-x2- 2x7)(0,0,1,1) 

(x3,xu,x7) by {347}    {1,2,5,6}    x||(2,0,0.0) + x7(2,0,2,0) ♦ 

X3 
(-^-xu- 2x7)(0,0,1.1) 
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It is perhaps simplest to visualize the action induced by o by 

noting that the objection-and-response to any imputation other than c, 

not in 1^ U L2 U L , results in the imputation c, while the objection- 

and-response to x e L. results in a convex combination of c, p., and 

Pk ({i,j,k} = {1,2,3}), which after the next objection-and-rerponse leads 

to c. Since o has a unique stationary imputation, namely c, it is 

particularly easy to see that o is in equilibrium, and that the core of 

the game is therefore a (one-element) stationary set, 

16. Majority Games 

Two classes of simple pames which have received much attention are 

the symmetric simple games and the homogeneous parres. A symmetric simple 

(n,k)-pame is an n-player game, with n < 2k, in which 

JO  if  |S| < k 
v(S) - ' 

\l  if  |S| > k, 

Each (n,k)-game has a unique symmetric stable set, described by Bott [4], 

A homogeneous game  is an n-player game, with an associated set of posi- 

n 
tive numbers {y,}   ,  in which 

1 1=1 

A game is simple if for every coalition S, v(S) = 0 or 1. If 
v(S) =0, S is losing; if v(S) =1, S is winning. 
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v(S) 

z' 
o   if    y Y. < i 

ieS 

L 1   if   I  Y. 11, 
ieS 

v(S) + v(S ) = 1  for every coalition S, 

ancl in which 

I    Y. = 1  for every minimal winning coalition S. 
US,    1 

Each homogeneous game has a "simple" stable set, described by Gurk and 

IsbeU [6]. 

These two classes intersect in a particular type of game, the majority 

game. Such a game is a (2m-l,m)-game, in which the winning coalitions are 

all coalitions containing at least half of the (odd number of) players. 

For a (2m-l,m)-game the symmetric and simple stable sets coincide, and 

consist of the imputation (-,... ,-,0,...,0) and its component permuta- 
m    m 

tions. When we refer to the symmetric stable set of a majority game, we 

shall mean this (finite) collection of imputations. 

Consider a specific (2m-l ,m)-pame. We define a bargaining solution 

o for this game, for which the stationary set of o  is the symmetric 

stable set of the game. The obiection strategies in o are such that 

only minimal (m-player) winning coalitions ever make objections. The 

m-player coalition S objects to every imputation x for which x; * Z 

for all players in S, the objection of S being the symmetric alloca- 

/l    ^ tion (-,...,-). 
m   m 
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Response strategies must be specified for every coalition    S   with 

SC 

S|  = k < m,    and for every objection    x        which    S    might face.    If 

1 - x(SC) < -,    then    S    responds with the allocation    ( g ,•••. 

1"^(S  )).    However, if    1  - x(SC) > -,    then    S    responds  by selecting 

any player    j    or    S    at random (with probabilitv    j-)    and responding with 

the allocation    x  ,    where 

|    0 if      i M 
S 

x. 
i 

1 c 
^ 1  -  x(SC)       if 

Any change of objection strategy by a minimal winning coalition cannot 

be to the advantage of all members of the coalition, since they already 

share (in their objection in o) the entire available quantity 1. Further- 

more, the response strategies in a are arranged specifically so that no 

non-minimal coalition can benefit all of its members by initiating an 

objection. Also, the specified response strategies maximize, for each 

player in a responding coalition, his probability of belonging to the 

objecting coalition which gains the floor in the next stage of the game. 

These observations combine to prove that o is in equilibrium. Three 

notes are in order. First, when the players follow the strategies in o, 

each imputation is replaced by a stationary imputation after at rros one 

stage of the bargaininp; game, and each objection that actually occurs 

requires only a trivial response (allocation of 0). And second, the 

bargaining solution o is precisely the solution piven for the 3-person 
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constant-sum pane (the (3,2)-ganie) in Section 13. Finally, some careful 

consideration will convince one that the more obvious types of symmetric 

response strategies, such as an always-equal division among responding 

players, do not yield an equilibrium collection of strategies when com- 

bined with the stated objection strategies, since nnn-minimal winning 

coalitions can then gain in some subgames by initiating objections. 

A natural question is whether our result (that the symmetric, simple 

stable set is a stationary set for majority games) extends in some way 

either to all (n,k)-games or to all homogeneous games. Although we shall 

not formally prove these statements, it appears as if the result does not 

generalize at all to symmetric solutions of (n,k)-games, hut does genera- 

lize to simple stable sets of homogeneous games. We believe that the 

simple stable sets described in [6] :an be shown to be stationarv sets by 

a caref'ü construction of response strategies similar to that given above. 

However, consider a non-homogeneous symmetric sirrp.'.e game, sich as 

the (u,3)-game. The symmetric stable set of this rame consists of the set 

of imputations ((a ,a i-n , i - a):  0 < a ^} , and all component permu- 

tations of these inputations.  If o  is a symmetric bargaining solution 

for which this set is the stationary set, then (1,n,n.o) is not stationary, 

and will be objected to by  '2,3,u)  in c.     Since all rrmponents of 

ev ry imputation in the stationarv set, other than  ' ,,y,0,0)  and itr. 

permutations, are positive, player 1 expects a positive essential return, 

say c,  fron the bargaining game beginning at  (l.O^'.O).  Thus each of 

•.layers 2, 3 and a expects an essential return of  3-3  ir  ^ •  Now 

consider a coalitional deviation from 3     bv  (2,3,M  ir. the gare 

bei inning at (1,0,0,0).  with equal probability, let the coalition object 
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to    (1,0,0,0)    with or-? of th'   three permutations of    {?"?■> o""?» ö"^* 

Since response strategies are trivial or. the ('♦,3)-game, a stationary 

imputation will result from each an objection, and therefore each player 

of    {2,3,U}    will expect an essential return of 

,1     r 1      £ , 1     £ 
S " ^  +  3   '   2 "  3 ~ 6 

from this  coalitional deviation  to    o.     Hence, the  indicated  stable  set 

cannot be  a stationary set of the   (U ,3"*-game. 

At the present, we have not  found any bargaining solutions to the 

(U,3)-game.     We return to this point briefly in Section 18. 

17.     An Extension of the  Bargaining Model 

In a bargaining game, wo  require  that  all objections  in  any stage be 

simultaneously declared.    This  requirement, while  simplifying  much of the 

notation and discussions of this  paper,  can be considerably weakened 

without damaging our results. 

Consider a hypotnetical  situation,   in which two disjoint   coalitions 

S    and    T    are the only coalitions capable of objecting to a particular 

imputation.     Further assume  that  behavior of all players  in the bargain- 

ing,  pane  is  ^o specified apart  fror, this   imputation,  that  the  coalitional 

payoffs to     S    and    T    depend on  their action  in  the manner  indicated  in 

Firure  17  1. 
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The  return to coalition    S    (coalition    T) is indicated by the first 

(second)  cotnpone^.t of each ordered pair.     This situation,  a  form of the 

"Prisoner's Dilemma"  [18],  is not  handled well by our model,   since the 

only equilibrium which could exist would  involve both coalitions making 

(simultaneous) objections. 

However,  consider a modification of the rules of the bargaining game, 

so  that each object^on-stape of the parre  consists of  several  steps.     At 

each  step,  a coalition may make  ar. objection to the  current proposal, 

having already heard all objections raised to that proposal  in earJier 

steps.     After such a sequence  of  steps,  the hierarchy selects  an object- 

ing   coalition  fron all  those which  have  declared ohiections,  and  the 

(Tare  contimes as before. 

In  mis manner threats  become   credible,  and are  explicitly   included 

in  reactive  strategies.     A typical   combination of ^tratefies  for the  two 

coalitions   in the example above  would be  for  nei'^er to raise  an objection 

in   the  first   step, but   for each  to  obiect   in the  second  step   if the  other 

objects   ir.  the  first   step.     The  result   of  such strategies,   involvinp  as 

they  do a  form of  "contingency pioT.r.ing",   is  to peimit  equilibria   in 

which neither coalition raises  an objection  in the  ,iven situation. 
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A lxna±  note is in order. Permitting contingent objections may allow 

a more varied class of bargaining rolutions for some garner. However, every 

bargaining solution arising from our original model remains d solution in 

this extended model. Therefore the extension is an enrichment of our 

original theory in which all positive results of tl - preceding sections 

hold. 

18. Summary 

Having  shown how the theory of bargaining solutions  and stationary 

sets applies  to several classes of games , we make here a few comments 

indicating several areas in which much work remains to be done. 

With regard to three-person games,  a characterization of all possible 

stationary sets w ich can arise in the  context of any given hierarchical 

structure and system of preferences would be of interest.     Preliminary 

results  indicate that the bargaining  solutions we have given are  relatively 

insensitive  to such changes,  but  that  new classes of solutions  can  also 

arj ;e. 

A major question concerning  games  with vNM-stable  cores  is whether 

the  core of  every such game  is a  stationary  set.    A wider problem  is  to 

characterize  a..! games with stationary  cores,  and particularly  to determine 

whether all  of  the classical   "pathologies" are of this  tvpe. 

We  e-.pect  that the  simple solution of each simple  homogeneous game 

is  a stationary  set of the game.     However,  discovery of  stationary sets 

for non-constant-sum syrrmetric simple  games  seems difficult.     A natural 

starting place   is  to ask whether the   (u,3)-game has any  stationary  sets. 

If  it  does  not,  and if the non-existence  seems  attributable  to  arguments 
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similar to that given in Section 16, then a modification of our theory 

seems desirable.    Such a modification, to invalidate arguments of the type 

referred to, would be of interest  since we do not find ourselves wholly 

convinced that these arguments should be given much weight  in determining 

bargaining solutions. 

It may have been noted that all stationary sets determined in the 

preceding sections are self-policing,   in the  sense of Vickrey.     This  seems 

reasonable for the uncomplicated games   investigated here, but there  is no 

reason to expect the coincidence to endure  in the analysis of more complex 

games.    Still, we find the similarity of the results of the two classical 

theories and our own, at least concerning the simplest and most-studied 

games, quite encouraging. 

And finally, we repeat that the derivation of an objection-and- 

response theory for cooperative normal-form games, carried out  in a manner 

similar to the work done here, seems to be a natural and  important direc- 

tion for continuing investigation. 



1   * '^^^^mmm^m^^m^^mimmH 

APPENDIX 

DEFINITIONS AND NOTATION 

An n-person characteristic function game is a pair (N,v), where 

N = {1,2,... ,n}  is the set of players. A coalition is a nonempty subset 

of players.  The characteristic function v associates to each coalition 

S a real number v(S), and satisfies 

I    v(P) < v(N) 
PcP 

for every partition    P   of    N.    We shall generally work with O-normalized 

games, which satisfy    v(i) =  0    for all one-player coalitions    {i}. 

An  imputation  is any vector    x t   R       which satisfies    x(N)  =  v(N), 

where for any    x    and coalition    S    we write    x(?) =    [    x..    The set of 
icS    1 

all  imputations  is 

X     =     (x  e   Rn:     x(N)   =   v(N)}. 

(At  times we shall restrict our attention to individually-rational  imputa- 

tions.    We shall then, without fear of  confusion, write 

X    =     (x e  Rn:     x(N) =  v(N)       and       Xj  i 0      for all       i  c  N)). 

For any coalition S and any real number a. 

80 
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RS = {x e Rn:  xi = 0  for all  i ^ S} 

and   RS(a) = {x e RS: x(S) < a}. 

and for any x c R , x  is the projection of x onto R , so that 

I   x.       if      i  c 

S    .    } 

L 
0 if       i  ^  S, 

s      s sc      sc 

On occasion we shall "compose" vectors    x    c  R      and    x      c  R        to yield 

n S        Sc 

the vector    x e  R   ,    where    x -  x    + x 

If    x    and    y    are imputations, then    x    dominates    y    with respect 

to a coalition    S,    written    x don    y,    if 

x. > v.  for all  i c S, 
i  - i 

and x(S) < v(S) 

s s 
Since this dominance depends only on x" , we scmetimes write x dorn y, 

If x dorn y for some 5, then x dominates y, written x dorn '. 

Hiven a set K of imputations, write 

Dom K  =  {x c X:  y don x   for some  y c K). 

A von Neumann-Morgenstern stable set fo "' a game [17] is a set K which 

satisfies 
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K fl Dom K = ^  (internal stability) 

K U Dom K = X  (external stability). 

The core of a game is defined by 

core(v) =  {x e X: x(S) > v(S)  for all coalitions  £ C N} 

To insure external stability, the core must he contained in every stable 

set. 
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