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ABSTRACT

A variety of bargaining models have been recently used to analyze
solution concepts for n-person games. In this paper, the cooperative
negotiation pricess in a side-pavment game is modelled as a multi-stage
game, in which each stage consists of an objection raised by some coali-
tion to a proposal under consideration, and a response made to that
objection by the remaining players. A bargaining solution to the negoti-
ations is a collection of objection and response strategies for the
players, from which no player is motivated to deviate. Associated with
each bargaining solution is a set of stationary proposals, to which no
objections will be raised. Thus each stationary proposal corresponds to
a stable agreement between the players, in which every threat to the
agreement is balanced by a counter-threat which dissuades the threatening
coalition from action.

The first part of the paper lays the foundations of the bargaining
theory. Motivating our approach from earlier theories, we present first
the essential background definitions, and then define a bargaining game
in extensive form based on a given characteristic functior. game. Coopera-
tive equilibria for this geme are discussed, and basic notational
simplifications are derived,

The remainder of the paner applies this theory to several well-known
classes of games. All stationary sets are determined for three-person
games. For several types of games with stable cores, it is shown that
their cores are also stationary sets. Two games, pathological in their
behavior with respect to the classical von Neumann-Morgenstern theory, are

1l
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shown to be amenable to our approach. Finally, it is shown that our
bargaining theory is only partially successful in treating voting games.
buggestions are made concerning possible changes in our approach to cover

these games, and other possible directions of future research are dis-

cussed.
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CHAPTER 1

DEVELOPMENT OF A THEORY OF BARGAINING SOLUTIONS

1. Introduction

For thirty years, the von Neumann-Morgenstern theory of stable sets
has been studied as a fruitful approach to the understanding cf the resolu-
tion of conflict in cooperative situations. More recently, attempts have
been made to cast the original theory in a new light, by associating stable
sets in some natural manner with solutions to formalized bargaining games.
In this paper we formulate and investigate a model of bargaining which has
some of the features of the von Neumann-Morgenstern theory, yet allows con-
sideration of some of the dynamics of the bargaining process. A major
feature of our model is that it explicitly treats not only objections which
various coalitions may make to proposals, but also responses which other
coalitions make to such objections.

In the first part of this paper, we discuss at length the formulation
of a bargaining theory. The discussion is partly rigorous and partly
heuristic, and is intended to provide a general context for the investiga-
tion of various bargaining models. The formal definition of the theory
we derive appears in Section 10, and is dependent only upon a few defini-
tions from other sections. The remaining sections are devoted to motivating
this theory from more general principles. Since much of the notation
necessary to these sections is unfamiliar and cumbersome, formal definitions

have been replaced or supplemented with more expansive ones wherever possi-

ble.
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Section 2 presents two classical approaches to the 'solution" of n-
parson games. After briefly discussing the work of von Neumann-Morgenstern
and of Vickrey, we raise certain issues which the theory of this paper is
meant to resolve in part. Section 3 gives an overview of the approach to
be taken, and Sections 4 and 5 present definitions which this section
shows to be necessary for an analysis of bargaining problems.

Section 6 presents several formal models of bargaining games, and
specifies the game with which we shall work. In Section 7, individual
strategies are defined for situations in which bargaining games arise.
Section 8 gives a set of criteria used to characterize collections of
strategies with certain stability properties, and Section 9 uses this
characterization to somewhat simplify the model, and to justify the
specific formal notation used to present the theory formally in Section
10. The summary in Section 11 completes the first part of the paper.

The second part applies our bargaining theory to several classes of
games. A separate introduction to that part of the paper appears as Sec-

tion 12.

2. The Classical Theory, and Some Observations

* [ »
Games in characteristic function form were first considered in 1944

by von Neumann and Morgenstern (vNM) [17]). Their theory of behavior in

cooperative situations is predicated on two assumptions. First, it is
assumed that each coalition S of players can assure itself of a parti-

cular amount v(S) of resource, independently of what the remaining

All terms not defined in this text appear in the appendix.
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players do. Second, it is assumed that any coalition may divide what it

receives among its players in a completely arbitrary manner (in other

words, there is no restriction on side payments between players). 1
VNM also proposed the concept of '"stable sets" as solutions to a game.

The basic feature of this solution concept is the idea of dominance. Each

imputation represents an allocation of available resources among the n

o ot ket

players. An allocation x dominates another allocation y if there is

some coalition S for which every player of S receives nmore in x than
in y, and if furthermore the players in S have the ability to guarantee
themselves their amounts in x. In terms of this dominance relation, VNM
defined a stable set of a game to be a collection K of imputations with
the complementing properties of internal stability (no imputation in K
dominates another imputation in K) and external stability (every imputa-
tion not in K is dominated by at least one imputation in K). The
partly-dynamic rationale for requiring these properties lies in the follow-
ing arguments, which in turn are based on the assumption that the players
of the game are convinced that the imputations in a particular solution
K are "sound" while the remaining imputations are "unsound". First, no
coalition can use a sound imputation to discredit another sound imputation
(internal stability). Also, any unsound imputation can be discredited by
a sound imputation (external stability). Further, vNM note ([17; pp. 265-
265] that any unsound imputation which might be usel to discredit a sound
imputation is itself subject to discrediting by another sound imputation.
This last argument will be discussed in more detail later in this section.
The vNM theory received much attention in the years following its

introduction - attention well-deserved since it was the first thecry which




attempted to analyze rational multi-person social behavior in cooperative
situations. However, as study of stable sets progressed, it became
apparent that on strictly mathematical grounds the theory contained some
unpleasant results. A bewildering multiplicity of solutions existed for
many games, yet the general question of whether every game had a solution
was not settled. Then, in a series of results, Shapley [20,22] and Lucas
(11,12,13]) exh‘bited a number of games with particularly pathological
stable set solutions, and finally Lucas [14] gave an example of a game
with no stable sets,

These difficulties alone should not have lessened interest in the
vNM theory, for it may be quite reasonable to believe that some social
situations are inherently pathological. However, a number of philosophi-
cal objections also arose. Several of these objections are presented

below.

(1) An argument presented earlier was that if vy, an unsound
imputation, dominates a sound imputation x with respect to a coalition
S, then there is a sound imputation 2z which in turn dominates, and
hence discredits, y. The implication was that S therefore has nothing
to gain by trying to pet the players of the game to consider y rather
than x. However, if S can use y to shi.t attention from x to =z,
it is possible for all players of S to gain by this shift, and thus S

gains by forcing consideration of the unsound imputation vy.

Example 2.1: Consider the 4-person symmetric constant-sum game, with
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then =z dom12q y dom12 x, and the situation described above holds with

S = (1,2}

action (a shift to a sound imputation) will occur when an unsound imputa-
tion is proposed. It seems quite possible that attenticn might shift
through a sequence of unsound imputations before a sound imputation is

reached.

(3) The vNM theory allows any imputation vy, through domination with

respect to a coalition S, to be used to discredit another imputation x.
However, this implies that the pl¢rers of S control the allocaticn of
resources not only among themselves, but also among the players of the
complementary coalition N-S. It seems unrealistic that this should be
so. Rather, it is more natural to assume that S can force a shift of

c c ; : S S
attention from x to some imputation 2z with z° = x, but that

L_f_—_—___________‘

(2) A related objection is to the assumption that immediate 'corrective"

aaleante codmall i ik




determination of the components of 2z corresponding to the players in

i
N-S is made by these latter players. !
{

Example 2.1 (continued): It may be observed that an essential feature of

this example is that players 1 and 2, when presenting the imputation vy,

force an unequal division of resources between the remaining plavers.

o 2sinan

Subsequently, player 3's tenporary riches in y prove to be an embarrass-

ment when 2z arises, leaving him with nothing.

(4) As vNM admit [17; pp. 44-45], their theory is essentially static. i

It makes no pretense of considering either the dynamics of coalition forma-

tion or the effects of indirect action of the type suggested in (2), in
wtich several successive stages may occur in the bargaining between
players. Because of this static nature, the theory must consider all
imputations which dominate a particular imputation to be equally credible, i
and thus degree or strength of dominance cannot be considered.

In an approach to the first of our objections, Vickrey [26] proposed
the concept of '"self-policing" sets of imputations, and investigated the
existence of VNM solutions with the self-policing property. Since we 1
retain some of the flavor of Vickrey's theory in our own approach, a brief
outline of Vickrey's work is given here.

Let K be a set of imputations, and x an imputation in K. A
heresy to x by the coalition S is any imputatior. y not in K for

which vy domS X. A policing action to such a heresy is any imputation

z in K which dominates y. If there is some player i in S for
whom 2, < % in every policing action 2z to the heresy y, then the

heresy is suicidal for i. Finally, if every heresy to each x in K

A\
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is suicidal fo* some member of the heretical coalition them x is strons
in K, and if all imputations in K are strong then K is a self-
policing set.

Since with no further restrictions both the empty set and the set of
all imputations are self-pclicing sets, Vickrey directed his attention to
self-policing sets which are also stable sevs. He found all seif-policing
solutions for three-person games, and characterized the constant-sum simple
games for which self-policing solutions exist, showing in the latter case
that when such a solution exists it is unique. Vickrey also found a num-
ber of games for which self-policing solutions do not exist, and commented
that his approach seemed fruitful primarily for constant-sum gamnes.

We note that Vickrey's theory fails to fully respond to our objec-
tions (2), (3), and (4), and also that it has a slightly ad hoc flavor
imparted by the act of resiricting its application solely to vNM solu-
tions. In the next section we discuss an alternative approach which deals

with all four of our previously-stated objections.

3. Bargaining Models

In view of the comments in the preceding section, it seems natural
to attempt to formulate a model which gives full play to the possibilities

of indirect action by a coalition in its hope of attaining an eventual

~>al. In dealing with indirect action, only two approaches seem reasonable.

The first is, like Vickrey, to deal with all possible results of a parti-
cular action as equally likely and plausible; the second is to consider
the strategic likelihood of particular results occurring. In this paper

we take the second approach.




In 1950, Nash [15] proposed a general approach to solution concepts
for cooperative n-person games,

"A...type of application is to the study of cocperative games...

One proceeds by constructing a model of the pre-play negotia-

tions so that the steps of nepgotiation become moves in a larger

ncn-cooperative game describing the total situation...thus the

problem of analyzing a cooperative game becomes the problem.of
obtaining a suitable, and convincing, ...model for the negotia-

tion." [16]

The solutions of the game are then described by collections of strategies
which are "in equilibrium" for the players in this larger game; that is,
collections of strategies for which nc player or group of players can gain
by unilaterally changing their strategies in the collection. This approach
has been used by both Harsanyi [7,8,9] and Selten [19] to define solutions
for several forms of games.

In the particular problem to be treated here, we shall formalize the
underlying bargaining procedure of a game as a multi-stage process. At
the beginning of a stage, an imputation x is given to represent the pro-
posal for final allocation which is presently under consideration. All
coalitions which wish to amend this proposal by making an objection to x
declare the action they wish to take. In this model, a permissible action
for a coalition S is the suggestion of an allocation yS among the
players of S of a total amount not exceeding v(S), where this alloca-
tion is strictly preferred by all members of S to their present shares
in x. We assume that social factors in some manner determine which of
the (possibly more than one) objecting coalitions is actually "given the

floor" to make its suggestion, Next, the players in the complementary

coalition N-S respond to the action of S by agreeing on an allocation

T S g vy



N-S N
z of the remaining resources v(N) - yS(S) among themselves. Thus

a new proposed allocation yS + 2 is constructed, and the next stage
of the bargaining process commences with this new proposal replacing x.
When no coalition opposes a proposal at some stage, it is considered to be
accepted by all players, and the final division of resources among the
players occurs accordingly.

Several comments are in order. It should be realized that the
particular final agreed-upon outcome may depend upon the initial imputa-
tion from which the first stage begins. Thus the collection of all
possible final outcomes forms a set which is, in a sense, stable and which
corresponds in principle to the vNM solution concept as a "standard of
behavior" to which the players will conform. Also, a formal model will
be needed to describe the social choice mechanism which selects at each
stage a particular objecting coalition to be "yielded the floor". Finally,
since players will be called upon to 1ict in the face of uncertainty with
regard to other players' actions, it will be necessary to discuss the
preferences of the players over outcomes of a probabilistic nature. These

last two points are treated in detail in the next sections.

4. Hierarchies

When the players of a game consider a proposed allocation of resources
among themselves, it is possible that several coalitions will wish to raise
objections to this proposal. If several coalitions do indeed wish to act,
there must be some mechanism of society that decides which coalition is

given the floor to state its objection - else the formal proceedings of

the game will degenerate into an interminable shouting match. In the

T g R i P
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2c2l world, this selection may be governed by a rumber of factors: random
choice, the size of the coalitions, the seniority of players in the coali-
tions, the relative strengt.. of objections being raised, and so on.

For the purposes of this paper, we make one general assumption con-
cerning the mechanism of social choice. This assumption is that the
mechanism depends solely on the proposal being considered and on the
collection of objecting coalitions, and therefore the mechanism is inde-
pendent of time, history, and experience. The mechanism may be of a
probabilistic nature, and may include the possibility that no objecting
coalition is given the floor (as in, for example, a legislative body with
a parliamentarian who is empowered to invoke cloture).

Specifically, we define a coalitional hierarchy H to be a function
which assigns to every collection S = {S,T,...} of coalitions a '"sub-
probability distribution" over S. That is, to each S in S, H(S)

assigns a probability P (s), so that }

SeS

[H(S)(S) < 1. The proba-

H(S)
bility that the hierarchy selects no coalition from the collection of

objecting coalitions S is HO(S) =1 - (S)

sgs PHS)

Example 4.1: A hierarchy H on the two-player set N = {1,2} can be

described by:




L—-s____—

11

(%]

S = 1 2 12

{1} c
{2}
{12}

(1,12}

(2,12}

{1,2}

{1,2,12}

where the dots in each row represent non-negative numbers, and each row-
sum is less than or equal to one.

A hierarchical structure for a game is a mapping H which associates

a hierarchy Hx to each imputation x in the imputation space X. Hence
a hierarchical structure represents the social choice mechanism which
chooses betseen objecting coalitions at any proposal which arises in the
course of a bargaining game, and abstracts all external factors which

play a rele in such a choice mechanism.

Various forms of measurability, compactness, or continuity require-
ments may be imposed on the hierarchical structures considered. An
interesting (and often simplifying) requirement is that no hierarchy assign
positive probability to both a coalition and any of its sub-coalitions when
they occur in the same objecting collection. We shall not make any of
these requirements, but merely note the possibility.

Several types of hierarchical structures have special intuitive appeal.

One type is the uniform structure, which assigns




s
12
X 3
for all x in X and Hx in H. Another type is the excesc structure, ﬁ
‘ in which for each x in X, Hx(S) assigns equal probability to all ]
’- €
g 1 coalitions S in S which maximize v(S) - x(S) (and zerv rrchability
to all other coalitions). A third type is the linear structure, in which
a weight v, is assigned to each player i in the player set N, and T

each Hx(S) assigns equal probability to all coalitions in S of equal,
maximal, total weight,
We shall restrict ourselves in the second half of this paper to con-
E : sidering games with the uniform hierarchical structure. However, it

should be noted that solutions derived fcr a game with respect to a parti-

TR,
B

cular hierarchical structure may be subjected to a form of "_ensitivity"
analysis, in which study is made of the degree to which the hierarchical
structure may be varied without changing the solution. Preliminary
results, which shall not be given here, seem to indicate that many of
our bargaining solutions are quite insensitive to variations from the
uniform hierarchical structure - indicating that the solutions are stable

over a wide range of social patterms.,

S. Preferences

In the model of bargaining previously discussed, it was noted that
when a player acts as a member of a coalition, he lacks determinate
knowledge of what the ultimate result of this action will be. Instead,
the most that the player can do is anticipate the probable result of his

actions. Therefore, irn trying to analyze the problem of what actions a

%
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player will take, it is necessary to have some knowledge of his preferences
over probabilistic outcomes,

The anticipated result of a player's actions can be considered as a
probability distribution over the space of possible outcomes. Such a
distribution will be called finite (respectively, discrete) if the distri-
bution is concentrated on a finite (respectively, countable) number of
these outcomes. In this paper we shall be concerned only with finite or
discrete distributions. We shall assume that each player is concerned
solely with the amount he personally receives in any imputation, and there-
fore the discrete probability distributions which represent probabilistic
outcomes to a player may be described by sequences of the form (xl,pl;
x2,p2;...), where the xi are distinct real numbers, the P; are posi-
tive and sum to one, and where the meaning of such a sequence is that the
probability of the playe~ receiving x; in an outcome is Ps- Thus each
discrete distribution over the imputation space induces a discrete distri-
bution for each player (on his component of the imputaticns).

Given distributions A = (xl,pl;...) and B = (yl,ql;...), for
any 0 < t <1 we define the distribution tA + (1-t)B = (zl,rl;...) by
r, = t-FA(zi) + (l-t)-PB(zi) where (21.22,...} = {xl,x2....) u {yl,yQ,...}.

A preference ordering for a player is a (non-strict) total ordering ':'

of the space of all discrete distributions for which tl.e following three

axioms hold. Let A, B and C be any discrete distributions.

(P1) If A~ C, then forany 0<r <1 and B,
(rA + (1-r)B) ~ (rC + (1-r)B).

(P2) If A >C, then forany 0<r <1l and B,
(rA + (1-r)B) > (rC + (1-r)B).
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(P3) If x and y are real numbers and x > y, then (x,1) > (y,1).
It is easily shown that if 't' satisfies one further axiom,

(P4) If & > B > C, then there exists some 0 < r <1 such that
(rA + (1-r)C) ~ B,

then t.e player's preferences are induced by a utility function over the
space of discrete distributions. However, this last axiom seems to be of
a different order than the first three, and we shall not require it.

In the second half of this paper, we shall be particularly concerned

with one specific preference ordering. That is the expected value order-

ing '>.', for which (%, Py 5000) > (y1,9,3...) if and only if
Z P ® Z ¥;q;- It ray be verified that the expected value ordering
satisfies (P4), and :hat "expected value" may be viewed as a utility func-
tion.

Another ordering which ceems of interest is the maximin ordering
':H'. which is intended to describe the preferences of a player whose
primary concern is to avoid any possibility of a low payoff. In this

ordering, (xl.pl;...) >H (yl,ql;...) if and only if

inf{xi: either s i Y5 for all j, or x,

i %Y and p, > qj} >

inf{yj: either yj # X for all i, or ¥y = % and q, > p,}.

i 3 i
It should be noted that this extremely conservative preference ordering
does not satisfy (Pu). However, it has the property that if A and B

are two distributions concentrated on sets of real numbers which are
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well-ordered by the natural order on the reals, and if A “u B, then

A = B. Thus the maxinin ordering is a strict total ordering on the space

of finite distributions. This ordering and the associuted "maximax' order- i

ing (replacing "inf" by "sup" in the preceding definition) are interesting

because they bound, in a sense, all other preference orderings. !
When a coalition takes action which results in a distribution over

a set of imputations, the probabilistic outcome to each player in the

coalition is the distribution induced over his component of the imputa-
tions. To facilitate consideration of situations in which a coalition of
players is contemplating some action, we present some notation for coali-
tional preferences.

Assume that to each player i in a coalition S there is an
associated preference ordering ':i'. Let A (respectively, B) be a
discrete distribution over a set of imputations, and let Ai (respectively,
Bi) be the distribution induced for i. Then S prefers A to B,

written A >S B, if Ai >i B, for every player i in S. It may be

i
noted that the relation 'ts' satisfies (P1), (P2), and (P3), but is
generally not a total order.

It is possible to define more than one system of coalitional prefer-
ences. The stated definition corresponds to "strong" coalitional
preference, while "weak'" coalitional preference arises when all players
of a1 coalition non-strictly prefer (prefer or are indifferent to) one
distribution over another, and when at least one of the players strictly
prefers the first distribution. We mention this possibility because it

may appear, on the surface, that Vickrey is dealing with weak coalitional

preferences in his theory of self-policing solutions. However, in the
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following sections we present a theory, based on strong coalitional prefer-
ences, which we feel fully preserves the spirit of Vickrey's work. This
point will be further discussed in Section 11.

The possibility of analyzing soiutions with regard to their sensiti-
vity to changes in players' preferences exists here as well as with

hierarchies, and seems to be an interesting avenue for research.

6. The Bargaining Games

There are several formal models of the type of bargaining process
discussed in Section 3. We shall present two such models and mention a
third. A primary difficulty in modelling the processes we are considering
is encountered in the treatment of "stopping rules". In the real world,
ve certainly do not anticipate negotiations of infinite duration. Any of
a number of factors may contribute to the termination of a bargaining
process: an agreement may be reached which is satisfactory to all parties;
proceedings may end in irreconcilable differences, in which case some of
the players may receive "conflict" payoffs; there may be an external time
limit which forces termination of the proceedings; or the participants
may reach a point of exhaustion, at which point they concede any further
objections they may have to the proposal being considered. In this
section we shall define games with termination rules representative of
the "time limit" and "exhaustion" stopping rules. In a later section we
shall focus our attention on strategies in these games which have the
desirable property of leading to agreement between all players on a final

outcome. The bargaining games to be presented may be considered as forma-

lizations of a binding arbitration procedure. If so considered, they

N T g e
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should pe viewed as depicting the bargaining process which ensues after
the players enter into a pact governing the structure within which they
will work to resclwe their conflicts,
We f'rst define the "time limit" bargaining game. The definition is
of a recursive nature. Let (N,v) be the characteristic function game
under corsideration, and H be the hierarchical structure associated with
the imputation space X of this game. Let x be an imputation in X, and
¢ be a real n-vector (which represents conflict payoffs to the players).
The bargaining game L(N,v,H,c,x,0) is the "null" game in which
each player i in N receives the payoff X,

For T a positive integer, the bargaining game L(N,v,H,c,x,T) is

played in the following manner. Each player i in N declares, for each

coalition S containing i, a vector yl’S ¢ R™. All declarations by

all players are made simultaneously. Let

yS for all i,j e S, and yS dom, x}

%]
"
p——
w
<
|
<

(1]

be the collection of all coalitions whose players unanimously declare an
allocation which dominates the current proposal. The hierarchy Hx is
used to select a coalition from S, 1If the hierarchy fails to select a
coalition (as will always be the case if § is empty), the game ends with
final payoff vector x. On the other hand, if a coalition W in S is
selected by the hierarchy, then the response-bargaining game
f(N,v,H,c,H,yw,T) ensues,

Take N, v, H, ¢, and T as previously defined. Let W be a

ot . W :
coalition in N, and vy ¢ RH(V(W)) be a vector (in Rw, with

PO
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L) - q
y (W) < v(W)). The response-bargaining game L(N,v.H,c,w,yw,T) is played

in the following manner. Each player i in N-W declares a vector

G N-W _ oN-W 1,N-H

for which yw + z X. The declarations by all players

are made simultaneously. If for some pair of players i and i in N-W,
i,N-W j ,N-

z # 23 o8 ", then the game ends with final payoffs y: for all players

k in W and payoffs c, for all k in N-W. On the other hana, if all

k
i,N-W N-W W -W
L 2 2z ', then the bargaining game L(N,v,H,c,y +-zN ,T-1) ensues.

N
m

We next define the bargair.ng game which terminates upon "exhaustion"
of the players. The definition is again recursive. Let N, v, 4, and
¢ be as previously defined. Let & be a real number such that 0 < § <1,

and let x be an imputation in X. The bargaining game E(N,v,H,c,x,6)

is played similarly to the game L(N,v,H c,x,1), with the following
differences. With probatility & a chance event occurs before the players
make their declarations, and the game ends with fina. payoff vector «x.

L] » . 3 d . w
Otherwise, if the players in coalition W wunanimously declare vy , and

W is selected by the hierarchy Hx’ then the response-bargaining game

- W —
E(N,v,H,c,W,y ,8) ensues. This response-bargaining game is similar to

the game f(N,v,H,c,H,yw,l) except that if the players in N-W unanimously

N-W

-W
declare z » then the bargaining game E(H,v,H,c,yw +zN

,8) ensues,
Since 6 > 0 implies that the bargaining game has probability one of
terminating after a finite number of moves, we arbitrarily assipgn payoffs
of zero to all players in the (negligible) case of infinite play.

The stopping probability & represents the chance that the players
will be so exhausted after any stage ~f the game as to forego their
possible objections to the current proposal. It may be noted that ¢

can be incorporated in a natural manner into the hierarchical structure

N ... S

o

4 "
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H to yield a new structure H' which embodies the stopping rule. In this
way the game E(N,v,H,c,x,6) represents our intuitive idea of the game
L(N,v,H' ,c,x,»). Similarly, if T 4is a random variable with geometric

distribution, so that
Prob(T = k#2|T > £) = Prob(T = k) = &(1-8)%,

then the game E(N,v,H,c,x,8) represents our intuitive idea of the game
L(N,v,H,c,x,T)*.

In both types of bargaining games, the information structure is such
that each player has full knowledge of the parameters of the game, and
remembers the full history of the game as it progresses, including all
players' declarations at each previous stage. In the next section we
shall briefly consider all strategies available to the players. Having
done so, we will then restrict our considerations to strategies in which
the players use only information dependent on the parameters N, v, H, c,
and the proposal x under consideration. The reasons for this restriction
are primarily those of convenience, and we shall make the restriction in
the context of the strategies rather than the games themselves. We
simply note here that such a restriction can, if desired, be incorporated
into the information structire of the game.

A comment is in order concerning the structure of the response-
bargaining games. These games are not intended to provide accurate models

of a real-world negotiation process. Rather, each response-bargaining

Igﬁdeed, we could have taken the alternative approach of defining a game in
terms of a random stopping time T. Both the "time limit" and "exhaustion"
games would be special cases (depending on the distribution of T) of
such a game.
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game represents a 'black box" used to stand fcr the bargaining which takes
place after a valid objection is made to a proposal and before a new pro-
posal is accepted for consideration. Ideally, a response-bargaining game
should be a detailed negotiation model depicting what we (personally)
believe to be the most complex aspect of the bargaining process. Unfortu-
nately, the construction of an accurate model of such situations is very
difficult, due at least in part to the lack of empirical data regarding
behavior in such situations. Hence, we merely affirm our stance that the
"black box" approach is a feasible one for preliminary investigation.
Concerning the conflict payoffs in each bargaining game, it should be
noted that they will be used to "force" behavior along certain cooperative
lines, and are not intended to ever be attained in the play of a game.
This will become evident in the next sections.

It was mentioned earlier that a third type of bargaining game could

be defined. This type would trea: termination difficulties directly, by

not imposing a stopping rule but ~ather assigning payoffs to every infinite-

play possibility. We consider this approach to be not very fruitful due
to the difficulty in deciding upon meaningful infinite-play payoffs, and
also because real-world bargairing processes cannot, generally, continue
forever.

Finally, of the first two types of bargaining games discussed, we
shall treat only the type based on the "exhaustion' stopping rule (that
is, the games E and E). A primary reason for this specialization will
be seen in Section 9, when we derive certain simplifying results which do
not hold for the "time limit" games. In view of our eventual intention,
ithe following sections will be presented in terms of these "exhaustion"

games,

A
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7. Strategies

As a bargaining game is played, a sequence of declarations (by the

players) and chance selections (by the hierarchical structure) is generated.

Any play of the game up to a particular moment in time (at which the play
of a bargaining or response-bargaining subgame commences) may be described
by the initial parameters of the game and such a sequence. We call such

a description a history of the bargaining game.

A bargaining situation B(N,v,H,cO.Go) is the collection of all

bargaining and response-bargaining games which are defined in terms of
N, v, and H, with conflict payoff vector c satisfying (co)i <
¢y < v(i) for all i in N, and with stopping probability 6 satisfying
0<$§ :_60. Thus a bargaining situation consists of all games in a
"neighborhood" of the "game" with conflict payoffs c; = v(i) and with
stopping probability zero.

We wish to consider systems of behavior for a player which describe

how he will act in any game in a given bargaining situation. Therefore,

define a global pure strategy for a player i in a bargaining situation

as a function which maps each game in the situation, and each possible
associated history of that game, into an action by i of the type called

for in the resulting subgame (depending on this subgame, such an action

. i, N-W
i,s a declaration yl’N , or

}

is a collection of declarations {y gai°
a "null" action if the subgame is a response-bargaining game in which 1
has no move). Note that this definition requires a full plan of action

for every game in the given bargaining situation, and therefore a global

pure strategy is simply a collection of pure strategies of the usual

type.
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We shall actually work with the more general concept of a global

behavioral strategy. Such a strategy for a player in a bargaining situa-

tion maps each bargaining game and associated history into a finite
(probabilistic) sample space and a function from the sample space into the
set of actions which the player may properly take. Each sample space and
associated function correspond to a "random experiment' performed by the
player to select his action at a particular stage of the game, and for
later simplicity we assume that all such experiments are independently
repeatable. It should be noted that every global pure strategy corresponds
in an obvious way to a global beh.vioral strategy.

We require that the sample spaces be finite for reasons of both
theoretical and notational convenience. As discussed by Aumann [1], to
allow an overly-wide class of randomizing actions at each stage of a game
is to risk measure-theoretic difficulties in the outcome space. Aumann's
avoidance of these difficulties involves defining behavioral strategies
as a special class of mixed strategies in which only a single randomiza-
tion takes place, at the beginning of play. Since we wish to work with
the notationally-simpler idea of randomization at each stage, we are
forced to limit ourselves to a restricted form of randomization.

A strategy n-tuple o = (o ,cn) for a bargaining situation

10
B(N,V,H,co,éo) is a collection of global behavioral strategies, with

o5 being the strategy of player i. Any such collection of strategies
associates to every game in the bargaining situation a discrete distribu-
tion over the outcome space of the game. For example, assume

B(N,V,H,CO,GO) is a bargaining situation, E(N,v,H,c,x,8) is a specific

game in the situation, and ¢ 1is a strategy n-tuple for B(N,V,H,co.é ).
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Then after a move in E by all the players, and chance moves with respect
to § and H, either the game ends with a specific payoff vector or a
response-bargaining subgame ensues. The crucial point is that there is
only a finite number of alternatives that can arise after the first move
of the game, when the players follow their strategies in o. Similarly,
at each following stage of the game only a finite number of alternatives
can occur, because each player's strategy at that stage is a randomization
over a finite number of actions. Therefore there is only a countable num-
ber of histories that may be generated as the players use their strategies
in o, and only a countable number of distinct payofi vectors may finally
result. The game is of finite length with probability one, and therefore,
by associating to each possible payoff vector the sum of the probabilities
of all sequences of play which result in that vector, a discrete distribu-
tion results as claimed, (It should be noted that the outcome space
referred to here includes vectors of conflict payoffs; thus the outcome
space is X U {y € R": for some coalition Sis ys < v(S) and

yN-S - cN-S}).
A class of global behavioral strategies to which we will give parti-

cular attention is the class of reactive strategies. A strategy for a

player in a bargaining situation B(N,V,H,c0,60) is a reactive strategy
if it specifies the same action for the player in all bargaining and
response-bargaining games which differ only in their conflict payoffs,
stopping probabilities, and histories leading up to the games. Thus,
when playing a reactive strategy in a given situation, a player ''reacts"
only to the vector x 1in a game E(N,v,H c,x,5), and only to the vector

W . = q
y in a game E(N,v,H,c,w,yw,é) - with no regard for the circumstances
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i
which led to the play of the game, or for the values of ¢ and §&. More
specifically, a reactive strategy in a situation B(N,v,H,co,éo) associ-
ates to each imputation x in X a finite sample space and a function
from that sample space into the set of actions which the player may properly ]
take in a bargaining game commencing with the proposal x, and associates ‘
to each pair (W,yw), where W is a coalition and yH e RM(v(W), a
3 finite sample space and function from that sample space into the set of
actions which the player may take in any response-bargaining game commencing

with an objection yw made by W.

st oo de aaiedd

t The idea of reactive strategies in multi-stage bargaining games is

originally due to Harsanyi [8]. Although restricting the players of a

game to using reactive strategies eliminates the possibility of players

| making threats contingent upon the actions of others, we shall discuss in

a later section the manner in which this restriction does not affect the
stability of certain strategy n-tuples. It should be noted in contrast that
restriction to consideration only of reactive strategies is extremely 1
severe with regard to the "time limit" bargaining games of the preceding
section. It is for this reason that we have excluded such games from our
subsequent work., 1
We earlier referred to the sample spaces we use as 'independently
repeatable experiments'. The reason for this reference may now be apparent.
Since a position may occur more than once in the play of a game, a player
may have to draw upon the same sample space several times in his randomi-
zations. We wish to allow this, but require that the randomizations in
different stages of the game be independent.
There is also a specific reason for defining strategic randomization

in terms of sample spaces as "experiments'", rather than merely working in
p P Xxp
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terms of finite distributions over the spaces of available actions. This

is to emphasiz: the possibility that several players may adopt strategies

which involve use of a common sample space for their randomizations, thus

introducing a correlation into their actions. We allow only a resctricted

form of such correlation. That is, the actions of any set of players may
be correlated only with respect to declarations which they make simulta-
neously, and furthermore this correlation may only occur between declara-
tions related to a specific coalition to which all these players belong.

As an example, assume players 1 and 2 are involved in the play of a

bargaining game. Then the declarations yl’{l’2} and y2’{1’2} may be

correlated. The declarations yl’{l’2'3} and y2’{l’2’3} may also be

y3,{1:2:3} as well), but the declaration

1,{1,2,3
y »{1,2,3) must be independent of the declarations yl’{1’2) and

y2’(l’2}.

correlated (possibly with

8. Equilibria

From the collection of all strategy n-tuples in a game, it is desira-

ble to be able to single out those which exhibit some form of stability.
A general approach to this was first suggested by Nash [15]. Roughly

speaking, Nash defined an n-tuple of strategies o¢ to be in equilibrium

if no single player could gain (over his payoff when o was played) by
unilaterally changing his strategy while the remaining players played

their strategies in o. In studying solutions for cooperative games, a

common extension of this approach is more generally to require that no
coalition of players can improve all of their payoffs by changing their

strategies from o while the remaining players play their strategies in
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0. Recently, a further extension has been to consider strategies for a
collection of interrelated games, and ask that these strategies be in
equilibrium for all games in the collection. We shall use this approach
to analyze bargaining situations, making these ideas more precise in the
following paragraphs.

-.,On) be an n-tuple of (global behavioral) strategies
for the situation B(N,v,H,co,Go). As discussed in the previous section,
to any particular game G in B, o associates a discrete probability
distribution ¥(0,5) over the imputation space of the game, and this in
turn induces a collection of distributions {wi(o,G)}iCN, one for each

player over his outcome space. Let o' be a strategy for player i, and
i

let o' = (o,,....0'.... L :
( 1° 045 .On). oi is a better response than ci in o

if for some game G in B, wi(c',G) > wi(o,G), and for every G in

B, WI(O'.G) o wi(o,c). Thus a better response for a player with respect
to an n-tuple of strategies for a bargaining situation is a strategy change
which benefits him in some game of the situation, and which hurts him in

no game of the situation. An n-tuple of strategies o is an individual

equilibrium point for a bargaining situation if no player has a better

response than his strategy in o.

It should be noted that this is a relatively weak condition. It is
not difficult to show that many bargaining situations have individual
equilibrium points in which no coalition takes effective unanimous action
at any stage of any game. We therefore consider individual equilibrium
points which involve certain forms of coalitional cooperation.

Let S be a fixed coalition, and o an individual equilibrium point

for the bargaining situation B(N,V,H,co,éo). A strategy n-tuple




T= (Tl""’rn) is related to o by S if the following conditions are

satisfied. First, for every player i not in S, oy T Ty Second, for

every player i in S, T, is arbitrary with respect to all response-

bargaining subgames arising in B, but in any bargaining subgame Ch

and =

i,S S - i
y ' . That is, in the terminology of the previous section, the sample

i differ only in the specification of declarations of the form

spaces and functions {ri}_ . associated with each particular bargaining
ie

subgame are such that the induced distributions and correlations between

declarations made by the players, with respect to coalitions other than

S, remain unchanged. An individual equilibrium point o is a coalitional

equilibrium point for the bargaining situation B(N,v,H,co,éo) if there

is no coalition S and n-tuple t related to o by S for which
WS(T,G) >o WS(O,G) for some C in B, and ws(r,G) %S ws(o,G) for
all G in B,

This coalitional condition, which examines the effect of 'coalitional
strategic deviation" in which the players of a coalition only change those
of their actions which are naturally related to that coalition, is similar
to conditions used by Harsanyi [7], in which the coalitions, as "syndi-
cates", are considered to be "large players" with overlapping interests.
The requirement that a global strategy be in equilibrium with respect to
all games in a situation is related to Selten's [19] definition of a
"perfect" equilibrium,.

One further condition remains to be discussed. A primary question
of interest at any position (game and associated history) of a bargaining
situation is which coalitions will take unanimous action. It seems

reasonable to restrict investigation to those equilibria in which, at




20

every positio: .ere several coalitions take effective action, at least

ont ~€ (hese coalitions is motivated to take that action. The condition
we give here is quite unsophisticated, but suffices for the analysis in

this paper. A more involved condition, which reflects 'deeper'" motiva-

tions, would be of interest.

Let o be a reactive coalitional equilibrium point, let G be a
bargaining game (not a response-bargaining game) in the associated bargain-
ing situation, and let x be the proposal associated with G. Further,
let S be the collection of all coalitions which take effective unanimous
action (raise a valid, enforceable objection) against x. Then o is
motivated at x if for at least one coalition S in S, that coalition
prefers its result from its objection at x to the certain outcome of x.

If o 1is motivated at every x in X, o is a motivated reactive coali-

tional equilibrium point.

We restrict ourselves to the consideration of motivated equilibria
in order to avoid certain possibilities which are best described heuristi-
cally. Assume A and B are disjoint coalitions in a given game, and
that a strategy n-tuple 0 involves such behavior when an imputation x
is proposed, that the players of A and the players of R each make
effective objections to x while no other coalitions act. Further assume
that the players in A prefer their shares in x to the outcome of their
objection and prefer the outcome of their objection to the outcome of the
objection by B, and assume that the analogous statement holds for the
players in B. Then o0 may well be in coalitional equilibrium (since
either coalition loses by ceasiny its objection unilaterally), but all

players in A and B gain by ceasing both objections. It is to avoid

s RS
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such equilibria that we impose the above "motivational” condition. Further
discussion will be given to this topic in Section 17.

It should be noted briefly that, in discussing equilibria with respect
to correlated strategies, such stratevies are not to be considered binding
after randomizations. Furthermore, any players using the same sample space
for randomization are assumed to have identical information concerning all
outcomes in the space. This is to avoid consideration of complications of

the type discussed by Aumann [2].

9. Preliminary Simplifications

If we restrict our attention to n-tuples of reactive strategies which
form motivated coalitional equilibrium points, a number of notational
simplifications become possible. In this section we derive several results
which justify these simplifications.

The first result allows us to restrict our search for equilibria to
only those situations in which all coalitions always cooperate fully in

all response-bargaining games.

Theorem 9.1, If o0 1is a reactive equilibrium point, then in every response-
bargaining subpame in which the players of a coalition S are to move,

with probability one all of these plavers make the same declaration.

Proof. We first show that for any player i and imputation x with

x. > ¢, (c, is the conflict payoff to plaver i), player i prefers

i-"1 i
the result of following o, in the bargaining game beginning at x, to
the outcome of receiving c; with certainty. This follows immediately

from the observation that i can refuse to cooperate in objections to




30

x and also refuse to cooperate in all responses arising from objections

to x, and in this manner he can assure himself of at least s in all

eventualities. f
Assume that the players of S fail to cooperate in some response in

0. Then in their non-cooperative response, each player i receives <y

However, by dividing the amount available in response equally, each player

i in S receives at least v(i) immediately, and expects no less than }

5 eventually (by the preceding paragraph). Thus the cooperative response

is a better response for all players of S than their strategies in o, .

and o cannot be in equilibrium,

From the proof of the theorem, we immediately have a guarantee of [

individual rationality at all imputations to which no objections are made.

Corollary 9.2. If the hierarchical structure gives positive probability

to the recognition of some coalition whenever objections are raised, then
every imputation x, to which no objection is made, is individuelly

rational (satisfies X; 2 v(i), for all plavers 1i).

Our next result shows that each coalition, if it has positive proba-
bility of raising an effective objection to a proposal x, might as well

object to x with probability one.

Theorem 9.3. If o0 1is a reactive equilibrium point, x is an imputa-
tion, and S 1is a coalition of players who have in o0 a positive
probability of all making the same objection (as players of S) against
x, then there exists an equilibrium point in which the players of S

correlate their play so that they are unanimous in their objection with

probability one.
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Proof. Assume the players of S cooperate with probability p in
raising an objection to x. Let q be the probability that they are
selected by the hierarchy at x when they make a unanimous objection.
Since o0 is in equilibrium, we must have the event
A:  with probability p(l-q), S objects and some other coalition
is given the floor;
with probability pq, S objects and is given the floor;

with probability (l-p), S doesn't raise an objection to x,

preferred (although not necessarily strictly preferred) by each player of

S to the event
B: with certainty, S doesn't raise an objection to x.

But then, by assumption (P2) of Section S, all plavers in S prefer a
certain (p = 1) objection by S to the event A. Changing the strate-
gies of the players of S in o to conform in this manner with the
statement of the thecorem yields the required new equilibrium point.

These results permit us to consider "coalitional', rather than
individual, strategies in our formal definition of a bargaining solution.
They also justify establishing the formal model without reference to con-
flict payoffs, as long as we require that coalitional behavior conform
by definition to the results above.

There is one result we would like to give, but have been unable to
derive in a general setting. This would be a theorem similar to Lemma 6
of Harsanyi [8], stating that a player has a better reply to an n-tuple of
reactive s.rategies only if he has a better reactive reply. Such a result

would provide some justification for restricting ~ur considerations

A
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exclusively to reactive strategies. However, although the result can be
shown to hold in all specific cases with which we have worked, a general

proof has not yet beer found.

10. Bargaining Solutions |

In view of the preceding sections, we are now prepared to formally
define a theory of bargaining solutions. The definitions will be so
given as to characterize motivated coalitional equilibria in reactive
strategies.

We take as given an n-person game (N,v), a hierarchical structure

H on the imputation space X, and a system of individual preferences

{{i}. - from which coalitional preferences may be derived. For any
ie
\ coalition S, define

S n .

R® = {xeR: x. =0 forail 1i¢ S}

and

Rs(a) {x € R>: x(S) < al.
F Recall that F(A), and D(A), are repsectively the set of all finite
k probability distributions, and discrete probability distributions, on a

set A, If p is any such distribution then, for any a ¢ A, Po(a)

is the probability assigned to a by p, and

p = {ace A: Po(a) > 0},

n coalitional strategy og for a coalition S is a pair of func-

2 -
oS,oS), such that '

tions (
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oé: X + F(RS)  and og: RNS(v(n-5)) » F(RS).

For each x in X, oé(x) satisfies eit’

(a) ye oé(x) implies y dom. x,
or

(b) Oé(x) s {x°}.

For each x in RN-S(V(N-S)), og(x) satisfies

y € ug(x) implies (x+y) € X.

The strategy o;
2

og is the "response strategy'". The conditions on cé(x) are that either

is the "objection strategy'" of the coalition S, and

(a) S raises a dominating objection to x, or (b) S does not object
to x. The condition on og(x) is simply that, after an objection and
response, the resulting proposal must be an imputation.

Let o = {os} be a collection of coalitional strategies. For
SCN

each x in X, define

n(x) = (S: oé(x)#{xs}}.

Thus n(x) is the collection of coalitions which, in o0, raise objections

to x. o induces a transition map

eo: X + F(X)

o
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defined by

8 (x) = U {w: w=y+z, where vye oé(x) and z ¢ OS-S(y)}

sen(x)
Ufw: w=x, andeither n(x) =9 or (H) (n(x)) > o},
0
where for each w ¢ Go(x), either
w # x, and P (w) = ) ) P (y)-P (z)‘P (s)
eo(X) Sen(x) y+z=w o;(x) cg_s(y) Hx(n(X))
yco;(x)
2 ()
zeoy _o(y
cr
w=1x, and P (x) = 1 - Z P (w) .
eo(X) weeo(x) BO(X)
wix

The set Go(x) is the collection of all imputations which might arise in
the stage of the bargaining game immediately following the stage in which
x is proposed. The last set in the definition serves only to include
cases in which the imputation x results from itself (that is, the game
ends).

For any 0 < 6 <1, o also induces a valuation map

wo,é: X -+ D(X)

defined by
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e T K
wo,é(x) = kgo (90) (x),
where for each vy ¢ Vg 6(x),
P = 5 :
y ) = ] P (y) * 6(1-6)".

by 5(x k=0 (eo)k(x)

In this definition, (eo)k(x) is the iterated distribution over X which
arises k stages after the proposal x is made. Thus V¥

o,8

each imputation the distribution which arises after the play of a bargain-

assigns to

ing game, with stopping probability 6, in which all players follow the
strategies in o. Similarly, for each 0 < 6 <1 and each xe X, o©

induces a response-valuation map

¢ n(x) + D(X),

o,é,x:

where 00 5 x(S) is the distribution which arises after the play of a
L] 9

bargaining game, beginning at x with coalition S having the floor

(that is, having just been selected by the hierarchy Hx)'

0 1is a bargaining solution to the game (N,v), with respect to the

given hierarchical structure and system of preferences, if the following

conditions are satisfied.

(1) There exists 0 < 8, < 1 such that for every 0 < § < 6.,

ieN, S3i, ye XN-S(V(N-S)), and z € cg(y),

wo’s(y+z) Zp (v,
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(Recall that (1,v(i)) signifies the event "receiving v{i)" with proba-
bility 1.) This condition is derived from Theorem 9.1, and guarantees

that o is in equilibrium with respect to response strategier .

(2) For any i e N, let T be a collection of coalitional strate-

gies for which Té = oé for all S A i, and T; = og for all S.

Further assume that for each x € X and S containing but not equal to

i, P 1 (y) <P (y) for all y # xs. Then there isno 0 < §, <1
rs(x) os(x)

for which, for all xe¢ X and 0 < § < 60,

wr’d(x) X3 wo,é(x),

and for which, for some x ¢ X and for every 0 < 6' < § , there is a

0 0

0 <6 < 66 such that

WT‘G(X) >i wc’d(x).

This condition is merely a restatement of the requirement that ¢ be in
equilibrium, with respect to objection strategies, for each individual

i € N and all stopping probabilities "sufficiently close" to zero.

(3) For any coalition S, let 1 be a collection of coalitional

strategies for which Ty = % for all W # S. Then there is no

0 < 60 <1 for which, for all xe X and 0 < § < 60,
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and for which, for some x ¢ X and for every 0 < 66 < 6y there is a

0 <§ < 68 such that

WT,G(X) >S Wo,é(x).

This requires coalitional equilibrium in all bargaining subgames with a
sufficiently small stopping probability. Further, we require the analogous

condition in all such response-bargaining subgames.

(4) There is a 0 < 8§, < 1 for which, for every x ¢ X with

n(x) # # and every 0 < 6§ < § there exists a coalition S ¢ n(x) with

o’

S
05 5 x(S) %g (1),

This condition restates the requirement that some coalition which objects

to x be motivated in its objection.

There is a fifth condition, not yet discussed, which we shall use
throughout the second half of this paper. It is the requirement that

o be bounded.
(5) There is a positive integer B such that, for all x ¢ X,

every sequence of imputations {yk}B with Yo = % which satisfies
k=0

Vi # Yoy @4y € 8 (y, ;) forall k=1,2,...,B,

also satisfies




Restated, this simply requires that, in o, every bargaining subgame must

end, after at most B stages, with a proposal to which no coalition objects.

T I T —

An advantage of working with this reasonable-sounding r-quirement for

bargaining solutions will be seen after the next definition.

T T ——

Consider any (bounded) bargaining solution ¢ to a game. Associated
with o is the set of all imputations to which no coalition objects.

Formally, the stationary set S of o is defined by

S = {xeX: eoixi = {x}}.

Each element of S 1is a stationary imputation of o.

Two final comments are in order. First, the requirement that o be
bounded implies the existence of at least one stationary imputation. This
is because, regardless of the initial proposal, after at most B stages
of the bargaining game all objections must end. And second, a most
important observation is that the definition of 'stationary set" is what

all our work to this point has been directed towards. In the second half

of this paper, we shall show that stationary sets have a close relationship

to vi.. stable sets in many games. i

Cadbud

11. Summary

In the preceding pages, we have presented a solution theory for
n-person cooperative games. The basic approach was to embed a character-
istic function pame in a formalized bargaining context. In the process
of analyzing the bargaining game several conditions, corresponding to our

intuitive notion of which collections of strategies seem to be stable as
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"standards of behavior" for the players, were used to select certain
strategy collections as solutions to the game. The set of imputations
left stationary by any such collection of strategies was proposed as an
analogue to the classical von Neumann-Morgenstern stable set.

Several comments should be made concerning our bargaining model. A
major problem already discussed is to find a convincing representation of
response-bargaining games. An appropriate approach may involve the playing
of a rather complex subgame each time a response is called for. In such
an approach, it may be hoped that equilibria for the full bargaining game
will be a composition of solutions for the bargaining subgames with solu-
tions for each response-bargaining subgame, in which case the two types
of games could be separately treated.

Minor variation in our theory may be derived by requiring only weak
conditional preferences where we have required strong preferences. How-
ever, we would expect such a change to have little effect on our results,
due to the use we have made of stopping probabilities in a limiting sense.
The reason for such use was the appeal of Vickrey's work in which a valid
heresy does not require that all heretical players show a strict eventual
gain, but rather that all players gain, at least momentarily, when they
take heretical action. Our formulation of the bargaining process gives
a slight payoff at each such moment, reflecting the intermediate gain of
the players.

Applications of the principles of this bargaining theory to other
forms of games may be made, As an example, we apply our wo *k to a non-
side-payment pame in a later section. A most promising line seems to be

direct application of our techniques to cooperative games in normal form,

A\ o .4
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A final note may be made of the potential use of a theory such as
this in the field of multi-national relations. In an age of "detente",
the principle technique for maintaining international equilibrium is the
establishment of "credible" responses to every possible deviation (objec-
tion) of opposing forces from the equilibrium position. Naturally, the
work we present here is far from such applications. But the example gives

some indication of the importance we feel is attached to game-theoretic

models which adequately deal with response mechanisms.

TS




CHAPTER 2

EXAMPLES OF BARGAINING SOLUTIONS AND STATIONARY SETS

12. Introduction

The first chapter presented a general solutior theory for n-person
games. We now illustrate this theory by applying it to several well-
known classes of games. In treating these various classes, we sharply
restrict the generality of the preceding sections by limiting consideration
to games with a particular type of hierarchical structure and a particular
system of preferences. In previous terms, we shall work only with uniform
hierarchical structures and expected value preferences. For the sake of
completeness, we discuss here the specific bargaining model with which we
work, and consider the simplifications that our specification permits.

A bargaining solution for a game consists of two parts. The first
part is a list, for each imputation, of all coalitions which object to
that imputation and what objections (allocations among their players
which dominate the given imputation) they make. The second part is a
description, for each objection, of the response (allocation of remaining
resources which, with the objection, forms a new imputation) made by the
coalition of non-objecting players. In this way, objection and response
strategies for each coalition are specified, and this collection of strate-
gies is a barpaining solution if it is bounded (there is a uniform upper
bound on the number of objection-and-response stages that can occur before
an imputation results to which no coalition objects), and if it is in
equilibrium (no coalition of players can gain by changing its strategy
while the other coalitions hold theirs unchanged).

41




A partial description of the bargaining game will extend the vocabu-

lary with which we work. At any given imputation, all coalitions declare
their objections, if any, to that imputation as a final division of
resources. If no objections are made. *he game ends with that division.
Otherwise, a coalition is chosen (equiprobably) at random from the object-
ing coalitions. The objection by this coalition, with a respors? by the
complementary coalition, yields anew imputation, from which the game con-
tinues in the above manner.

At each stage of the game, there is a small probability & > 0 that
external pressures will force the end of the pame. Although we shall
rarely refer to a specific stopping probability in the following sections,
we will implicitly refer to it by discussing "momentary' outcomes (those
which occur as a result of this externally-induced end of the game) in
conjunction with "essential" outcomes (those which result when no coali-
tions object to the proposed imputation at some stage). We shall assume
that all players are driven solely by a desire to maximize their expected
return in the play of the barpaining game. This assumption is implicit in
discussions of preferences of coalitions of players between alternative
actions. Since our objective is to solve a "pame-situation" for all
sufficiently small &, it should be noted that, under this preference
structure, players choose between alternatives primarily in terms of their
essential expectations in these alternatives. Only in the case of equal
essential expectations do they secondarily refer to their momentary expec-
tations.

With any bargaining solution is associated a stationary set (the set

of all imputations to which ro coalition objects). The assumption that
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each bargaining solution is bounded implies that each stationary set is
nonempty. Furthermore, since the core of a game consists of those imputa-
tions to which no objection can be made, the core is a subset of every
stationary set. Also, the results of a preceding section show that every
imputation in a s*tationary set is individually rational.

Section 13 deals with three-person games. We characterize all
stationary sets which arise with respect to uniform hierarchies and
expected value preferences, and find that these stationary sets are some of
the von Neumann-Morgenstern stable sets which are self-policing. The
bargaining solutions exhibited extend over all possible allocations (both
individvally-rational and non-individually-rational imputations).

In Section 14 we treat games with vNM-stable cores. We show that the
core is a stationary set for three well-known classes of such games, and
relate the construction of response strategies to a recent characterization
of all such games. Section 15 considers two "pathological' games: a
five-person game discovered by Lucas, and a seven-person non-side-payment
game with no stable set, discovered by Stearns. It is shown that the core
is a stationary set for both of theje games.

Section 16 contains both positive and negative results. Although
the symmetric stable set of any constant-sum symmetric majority game is
shown to be stationary set of the game, it is also shown that the symmetric
stable set of th» four-person simple game, in which all three-player coali-
tions win, is not a stationary set. Section 17 discusses a negative
potentiality of our theory, and briefly presents an extension of our
approach which properly handles such a difficulty. Section 18 summarizes
the results of these sections, and concludes with several comments concern-

ing future directions of this work.
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13. Three-Person Games

A natural approach to the investigation of bargaining solutions for
three-person games is to study those sets of imputations which can be
stationary sets for solutions. This approach is quite fruitful, for we
will be able to characterize all stationary sets of each such game as
self-policing stable sets of the game. We derive this result in some
detail, omitting the most tedious arguments.

For notational convenience, we shall work with 3-person games in

(0,1)-normal form. Thus a game is defined on the player set N = {1,2,3)}

by

vii) = 0 for all i € N,
) < v(i,j) <1 for all i,j e V.

v(N) = 1,

where the indices i, j, and k will be used throughout to denote distinct
players,

An important simplification may be made when analyzing 3-person games.
In the simplex of individually-rational imputations, only 2-player coali-
tions can raise objections, and so only l-player response strategies must
be specified. Furthermore, l-player responses are trivial (that is, if
{i,j} objects with an allocation (xi.xj). then k must take
1 - X; - xj in response). Therefore, discussion of l-player responses
will be omitted from many of the arguments of this section.

Let o be a bargaining solution to a given 3-person game, and let

S be ti. stationary set of o.
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Lerma 13.1. S is internally stable.

Proof. Assume to the contrary that x,y ¢ S and x dom,, y for some
coaiition T = {i,j}. Then T gains by making the objection (xi’xj)
at y, and o cannot be in equilibrium. On the other hand, if

T = {i}, then 0 = v(i) > % >y;, and this contradicts Corollary 9.2,

that non-individualiy-rational imputations cannot be stationary.
Lemma 13.2. No imputation 2z can Jominate all imputations in S.

Proof. Since the bargaining solution o is bounded, the continuity of
"expected value" preferences implies that no 2-player coalition can be
motivated to raise an objection to z. Thus z is stationary and dominates

itself. This cannot be.

With the aid of these lemmas, we first consider the 3-person constant-
sum game, in which v(ij) = 1 for all i and j. Notice that every
imputation is dominated by some other imputation, and Lemma 13.2 there-
fore implies that no stationary set can consist of just one imputation.
Also, Lemma 13.1 and the dominance pattern of this game imply that no two
imputations x and y can both be stationary unless for some player i,

X{ 5 Y. Only three cases remain to be considered:

(1) The stationary set S consists solely of imputations x for
which X, = ¢, for a specific player i and constant 0 < ¢ < 1., With-

out loss of generality, assume i = 3.

By Lemma 13.2, S is dense in {x: x, >0, x, > 0, Xy E Gk

(Otherwise, an interval {x: a <x <b, x,=c} is disjoint from S,

1
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and the imputation

z = (%(3a+b), l-c-%(a+3b),c+%(b-a))

dominates all imputations in S). Select any imputation w, with
Wpo¥y > 0 and ¢ <w, <1, for which the expectation of player 3 in the
bargaining game beginning at w is at least ¢ (if no such w exists, a

simple argument applies in the set of imputations ({w: w, < ci). Let

(a, 1-c-a, c) be the essential expectaticns of the players, in the game

beginning at w. Either a >w, or l-c-a> w without loss of

1 20
generality assume the former. Since S is dense, there must be a

y € S for which w dom ) 53 ¥. But then {1,3} pains (3 only temporarily)

{153}

by an objection of w to y, and ¢ cannot be in equilibrium, a

contradiction. Thus no stationary set of this type can exist.

(2) The stationary set S consists of three imputations

X = (0, B' 1-0'8))
y = (a, v, l-a-y) with B8 >y, and
z = (a+B-y, v, l-a-8).

Then %(x+y+z) dominates all imputations in S, contradicting Lemma

13.2.

(3) The stationary set S consists of three imputations

X = (G) 8) 1'0‘8).
y = (a, vy, 1=a-y) with 8 <y, and
z = (atB-y, Yy, 1l-a-8).

L —
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Consider the cases a+8-y >0, B -0, l-a-y > 0; assume without

loss of generality that the first holds. Then

|

4 w = (0, y+%(a+8-¥), l-a-B+-;-(a+B-Y))

dominates all three imputations with respect to (2,3}, contradicting

Lemma 13.2. The only remaining possibility is that

3}

?

- 11 1 1 11
S = {(5,5’0),(5:015)1(0!5 2

Theorem 13.3. This set S is a stationar set (and hence the only sta-

tionary set) of the three-person constant-sum game.

Proof. Let the strategies in o be defined as follows.

(a) If x 1is an imputation and

1 L . 11
(1) X{aXs < 3 then ({i,j} objects to x with (3.5).
1l q
(2) XioK5 2 5 and x <0, then {k} objects to «x
with (0).

(b) If (a) is an objection of {k}, then {i,j} responds with

l-a 1l-a
S .

The effect of these strategies is representel in Figure 13.1, and it is
easily seen that o is in equilibrium and that S is the stationary set

of the bargaining solution o.

..




via {1,.}

| )
j via {2,3}&_/ ; via {1,3}

via {3}

Figure 13.1 A solution of the conctant-sum game.

A discussion of other bargaining solutions yielding this same stationary
set will be given at the end ¢f this section.

We now turn our attention to the 3-person simple game with one veto
player. We assume the veto player to be player 3; thus the veto game

we consider satisfies

v(i) = 0 for all i,
v(12) = 0,
] v(13) = v(23) = v(123) = 1,

Lemma 13.4., No stationary set S of this game contains two distinct

imputations

AN
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x
"

(a, y~a, 1-yv)

and

(B, y-B, 1-y), with a < 8.

<
!

Proof. Assume to the contrary that the two imputations are both in a

stationary set S of a bargaining solution o. Consider the imputation
. 1 1 1
Z = (K(3a+6), Y-'E(°+3B)’ 1- Y+‘§(8-a)).

Clearly, 2z dom Xx and 2z dom{2 3} y. Therefore, by Lemma 13.1, 2z

{1,3}
is not in S. By boundedness of o, all imputations essentially result-
ing from objections to 2z must be in S. But since any imputation w in
a chain of dominance beginning at z satisfies Wy > 24 l-y (by the
dominance pattern of the game), any stationary imputation w arising

from z must satisfy w, < a < z and w, < y-8 < z, to preserve

1 1l 2
internal stability of S. Thus neither {1,3} nor {2,3} is motivated

to object to 2z, and z must be stationary, a contradiction.

Lemma 13.5. If S is a stationary set for the veto game, then for every

0<a <1l S contains an imputation of the form (8, a-8, 1l-a), for

Proof. Let A c[0,1] be the set of all a for which no such imputation
is in S. We first show that A contains no intervals. Assume to the
contrary that I = (c¢,d) is a maximal open interval in A. Omitting

the easily-treated special cases ¢ = 0 and d =1, let A be a limit
point of S with A_=d, and n be a limit point of S with ng = ¢,

3

and consider the (non-stationary) imputation u = %(A+n). Due to the
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internal stability of S, X cannot dominate n and therefore does not
dominate wu. A further application of intermal stability (near 1) shows
that every stationary point essentially arising from u has both first
and second components less than those of u and hence no coalition is
motivated to act against u. This means that  is stationary, contra-
dictii  ne definition of A. Therefore, [0,11\d is dense in [0,1].

A sligh: modification of the preceding argument now establishes that A

is empty.

Lemmas 13.4 and 13.5, and intermal stability, imply that S is a

monotone curve from the imputation (0,0,1) to an imputation in

i X4 0}. We finally show that this curve has no chords parallel to

{x: X, 0} or to ({x: X, = 0}, and is in fact a straight line.

Lemma 13.6. Let f: [0,1] * R be defined by f(c) = a, where

(a, 1-c-a, c) is in S. Then f 1is strictly decreasing, and linear.

Proof. If f(c2) > f(cl) for Cy > Gy,
with third component <, dominates the stationary imputation with third

component ¢ with respect to the coalition (1,3}, wviolating internal

then the stationary imputation

stability. Thus to complete the proof we need only show that f is not

constant on any interval. Assume to the contrary that f(c2) = f(cl)

for some c_ > ¢

2 1° and let

1
WoE (fle))4 eyc)), -é(cl-fficz) - £(c), H3c *e,)).

Then w 1is not stationary, and some coalition must be motivated against

it. si e .
it ince w dom{l’a} (f(cl), 1 ¢, f(cl), Cl) and no one objects to

i sonad i
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(f(cl), l-cl- f(cl), cl), this coalition must be {2,3}. But every
stationary point which dominates w with respect to {2,3} has first
component f(cl), and motivation considerations imply that only such
stationary points can essentially arise from w. The impact of this is

that (1,3} gains by objecting to (f(cl), 1- -f(cl), cl) with w,

“
contradicting the assumption that this imputation is stationary. Linearity
is required to prevent each coalition from being able to randomize objec-

tions in such a manner that the resulting expectations dominate a

stationary imputation.

“heorem 13.7. Every linear curve S, strictly decreasing for both
players 1 and 2 in the sense of Lemma 13.6, is a stationary set of the

veto game.

Proof. Fix a and B so that 0 < a,B <1, and for each x ¢ S define

Ll(x,a) {(x, + tax,, (1-t)x2, X

1 +t(l-a)x2): t > 0}

3

and

L2(x,8) {((l-t)xl, x2+'t8xl, Xyt t(l-B)xl): t > 0},

Let the strategies in o be defined as follows,

{1,3}
W .

(a) If Ll(x,c) NS = {w}, then (1,3} objects to x with

2,3}

If L2(x,8) Nes={w}), then (2,3} objects to x with

(b) 1If Ll(x,u) NS =9 and L2(x,8) nNs=p, and

(1) x, <0 and x  +ax, < 0, then {1} objects to x with (0).

(2) X, < 0 and Bxl+ X, < 0, then ({2} objects to x with (0).
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(3) neither of the above conditions holds, then {3} objects to
x with (0).

(c) If (v) is an objection of {i} (i # 3), then {j,3} responds

i Y 1.
with ( s 1 2),

If (y) 1is an objection of 3 and w = (wl,wQ,O) is the (unique)
imputation in S with third component equal to zero, then {1,2}

o .Y _ Ak
responds with (wl 7 %o 2),

It is easily shown that o is indeed in equilibrium, and that S is the
stationary set of o. The effect of these strategies is represented in

Figure 13.2.

via {1} and {2}

i slope depends N ~
on B8
o~
via (1,3} (F
slope depends
w//fffr on a
-

Figure 13.2 A solution of the veto pame.
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; Having solved the constant-sum and veto games, we can now explicitly

characterize all stationary sets for every three-person game.

Theorem 13.8. If the game (N,v) has an empi, core, then every stationary 3

set for the game consists of the three imputations

(1-v(2,3), %(v(l,2)+ v(2,3)- v(i,3)), %(v(1,3)+ v(2,3) -v(1,2))), ]

(%,—(V(l,3)+v(1,3)-v(2,3)), 1-v(1,3), %(vu,a) +v(2,3)-v(1,2))), and

(Fv(1,2) +v(1,3) - v(2,3)), H¥(1,2) + v(2,3) -v(1,3)), 1-v(1,2)),

and three 1linear curves of the type in Lemma 13.6, one from each of

these imputations to the corresponding side of the imputation simplex.
If the game has a nonempty core, then every stationary set consists
of the core and three linear curves, one from each vertex of the core

to the corresponding side of the simplex.

Proof. Duplicating arguments in vNM (17; pp. 403-u419], it easily follows
that every stationary set of a 3-person game can be obtained by '"piecing
together" the core with stationary sets of '"smaller" constant-sum and
veto games. Fipures 13.3 and 13.4 represent typical bargaining solutiorns

obtained in this manner.
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i Figure 13.3 A solution of a game with empty core. !
|
- : L A 1
]

Figure 13.4 A solution of a game with nonempty core.

;
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If we think of a bargaining solution o as a "standard of behavior"
for a game, we see that much more information is available to us now than
in the classical vNM approach. Along with a set of imputations which is
"stable" or "stationary", we also have a description of the dynamic process
leading to agreement upon one of these imputations. Indeed, Theorem 13k 7
suggests that many different types of bargaining bpehavior may be associated
with the same stationary set. The constant a in the construction may be
considered as a mrasure of the "bargaining ability" of player 1 against
player 3, where values close to one indicate that 1 is the dominant
bargainer and values close to zero attribute greater bargaining ability to
3. B may be similarly interpreted. Of course, other bargaining solutions
will yield the same stationary set, and thus different standards of
behavior may be associated with the same set of stationary outcomes.

The situation is similar for the constant-sum game. For example, the

for all i} may be arbitrarily

O]

collection of imputations ({x: X, <
partitioned between the three 2-player coalitions so that only one
coalition objects to each such imputation in the manner specified in
Theorem 13.3, If all other objections and responses are kept as in
Theorem 13.3, this new collection of strategies is another bargaining
solution, w.th the same three-imputaticn stationary set. This result,
and the manner in which bargaining solutions can vary outside the simplex
of individually-rational imputations by variation of 2-player response

strategies, suggest the complexities of bargaining behavior which may

stand behind a deceptively simple-looking stationary set.

.\ Sttt
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: l4. Games with Stable Cores

f In this section, we consider games for which the core is a stationary
set, and characterize a class of such games for which the core is also the
unique vNM-stable set. Included in this class are all convex games, all
games with "large" cores (in the sense of Gillies), and all symmetric
games with vNM-stable cores. In the course of our investigation we shall

t use our results to prove the vNM-stability of the cores of the games con-

sidered, and shall explicitly construct bargaining solutions for which

only imputations in the core are stationary. An open question is whether

! the class of games with stationary cores contains all games with vNM-stable

cores.,

We will require the concept of the '"cover" of a game. Let M be any

coalition of players. A collection {VT} of non-negative numbers is
M

balanced on M if for everv i ¢ M,

Z Y. = 1.
Tai T

T

Let (N,v) be an arbitrary game. The cover v of this game is the

characteristic function on N defined for eviry coalition M CN by

v(M) = max | yTv(l).
<

whe.e the maximization is over all collections {yT} which are balanced

on M. ‘the game (N,v) is slighcly ccnvex if for every pair of coali-

tions A UB = K,

v(N) + v(&# N D) > v(A)» v(b).

i. e




M
Let M :’N be a coalition, and 0 < a < v(M). The game (Nc,va)

is the game on M® defined by

iRy = (W) -a,
and for all g # T c M,
—f
YIT) = max (v(T UW) - v(¥)).
o W
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This game may be thought of as the "residual' game which remains after the

amount a has been withdrawn from the game and promised to the players

of M. The first theorem will require a simple lemma.

Lemma 14.1. Let M be a coalition, and x € RM. If x(T) > w(T) for

all TCH, *hen x(M) > v(M).

Proof. For any collection {yT) balanced on M,

x(M)

] yTx(T) > 7 YTV(T).

Therefore

x(M)

| v

max ) yTV(T) = v(M).

The impact of our first theorem relates to any slightly convex game
(N,v) and coalition M for which (Mc,v:(M)) has a nonempty core. If
M objects to an imputation and MC responds with an allocation in the

M
core of v , then any minimal coalition which can make an objection in

the next stage of the bargaining game must te contained in M,




S

.

i

Theorem 14.2. Let x € R satisfy xM(M)iv(M), and assume v is

slightly convex. Assume that (MC, vMM

& c X (M)

M
X € cor\e(vM), and x = x" + ® . If x(3) < v(S), and x(T) > v(T)

) has a nonempty core. Take

for all TSS, then S C M.

Proof. Assume that S satisfies the concditions of the theorem, but that
c
S € M. Then xM € core(vM) implies S ¢ N°, and either

(a) S p»MS, and x(S) x(S N M) + x(c N M)

x(S N M) + (v(S) - v(S NM))

v

| v

x(S NM) + v(S) - x(S N M)

v(S),

where the second inequality follows from the precedingy lemma and the

conditions on x and S, or

(b) SOM°, and x(S) = x(5 N M) + x(4°)

v(S N M) + v(N) - v(M)

|v

v(S),

4

where the second inequality follows from slight convexity.
Either case contradicts the assumption that x(S) < v(S), and therefore
S c M, as claimed.

Corollary 14.3. If (N,v) is slightly convex, xM € RM, xM(M) = v(M)

€

and xM(T)lv(T) for all TCM, andif xb' £ com(v:(n)), then

c
M
X=X +%x ¢ core(v).
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P

Proof. By the preceding theorem, any minimal S #for which x(S) < v(S)
] is contained in M. But S €M implies x(S) > v(S). There e

x(S) > v(S) for all S CN, and x € core(v).

Corollary 14.4. Let (N,v) be slightly convex and have the property: l

for every y ¢ core(v) there is a coalition M and an xM € RH such
¥
that x’(H) = v(M), xM domM v, xM(T) > v(T) for all T CM, and

M q
core(vv(n)) is not empty. Then v has a vNM-stable core. §

Proof. For every y ¢ core(v), the previous results and the stated

b e Sty

property imply, for a specific M and xM, the existence of an x
c

for which x = xM + xM € core(v) and «x domM V.

A game (N,v) is extremely stable if, for every M C N, the core

M : . F
l of (MC, vv(M)) is nonempty, and if the game (N,v) 1is slightly
*
convex.
Theorem 14.5. If (N,v) is extremely stable, then the core of the game

is a stationary set.

& Proof. We first define objection and response strategies for all coali- {
tions. 1
(a) At each y f core(v), select a minimal coalition M for which

y(M) < v(M). Let x' be defined by

x? = oyt (v(M) -y())/|M], for all 1 € M. ,

* Iy . . . . .
In the specific garmes treated later in this section, slight convexity
is easily verified.

S
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Then M objects to y with the allocation xM, and no other coalition

3 objects to vy.

M
(b) For every coalition M and allocation yM (with y (M) < v(M)),

let the coalition M° respond to the objection yM with a

: M
y € core(v M ).
y (M)
Call the above-described collection of strategies o. We =laim that
] 0 is in equilibrium. If it is not, there is some subgame 11 :hich a

coalition S gains by a change of strategy. We examine the possibilities

by cases,

(1) S changes its objection to an imputation x. Since S 1is a

minimal coalition for which x(S) < v(S), if S changes its objection

from ys to zs with zS(S) = v(S) then by the extre~2 stability of
(N,v) and Corollary 14.3 it follows that the response of s€ in o
yields a (stationary) imputation in the core of v. Thus the players in
S share the same total amount (zS(S)) as they did in o (yS(S)), and
since zS 7 ys, some player in S loses in the change of stratepy. On
the other hand, if the new objection zS satisfies zS(S) < v(S), then

by Theorem 1l4.2 the response of s€ leaves S as the only minimal

coalition with 2z(S) < v(S). Thus no other coalition will object in o
1 in the next stage of the barpaininp game, and the players of S share
an intermediate amount less than v(S) and in no later stage share

more than v(S). Thus some player in S 1gair loses in the change of

strategy.
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(2) S initiates an objection ys to an imputation x, to which

some other coalition T objects in o. By reasoning similar to that in

(1), if S 1is a minimal coalition for which x(S) < v(S) then the

players of S expect at most v(S) from this strategy change, but
f expected at least v(S) in the (stationary) core imputation resulting
from the objection of T and response of Tc. Thus not all players in
S gain in the strategy change. If S is not minimal, then Theorem 14.2
states that only subcoalitions of S might object in the next stage, and
hence the players of some such subcoalition T share exactly v(T) in
the final outcome. Again, not all players of T and therefore not all

plavers of S gain in the strategy change.

c
(3) S changes its response to some objection x of s°. In on

S must have expected v(N) - v(Sc) in the response-bargaining game

&
beginning at xS . Any change in strategy must yield a game in which the
players of s® receive at least v(s®) (that is, a core imputation), and

therefore the players of S share no more at ti~ end of the game than they

did in o. Hence if any player in S gains, another must lose.

This completes the consideration of possible coalitional deviations

from o, and we have shown that ¢ is in equilibrium,

Having shown that e.tremely stable games have cores which are both

vNM-stable and stationary sets, we shall now show that all games of
severa) well-known tvpes are extremely stable. A pame (l,v) is convex

f if for every pair of coalitions A,B C N,

v(A UB) + v(A NB) > v(A) + v(B).

o

s S i
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Shapley has considered convex games in several papers [21,23], and has
shown that all convex games have vNM-stable cores. After a preliminary
lemma, which shows that convexity is characterized by "increasing marginal
gains'", we adapt “hapley's approach to prove that all convex games are

extremely stable.
Lemma 14.6. A game (N,v) is convex if and only if for every k € N
and coalitions S OT with k ¢ S,

v(S U {k}) - v(s) > vw(T U {k}) - v(T).

Proof. The forward implication follows directly from the definition of
convexity, taking A =S and B = T U {k}. The reverse implication is
trivial ror any pair A and B with ACB or B CA, and follows

from a simple inductive proof otherwise.

Theorem 14.7. If the game (N,v) is convex, then it is extremely stable.

M 3
Proof. Let M be any coalition. We wish to prove that core(vv(M)) is
nonempty. Relabel the players in I so that M = {1,2,...,s}, and

MC
def ne x ¢ R by

X = viM U {1,2,...,k}) - v(M U {1,2,...,k-1})

M . c
for all k € M. To see that x ¢ core(v ), consider any # ¢ T CM",

Then

x(T) = J (v(MU{1,2,...,k}) - v(1 U {1,2,...,k-1]].
keT
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Let the players of T be kl < k2 < ee. < kt' Lemma l4.6 implies that

3 for any player kr’

v(M U {1,2,...,kr}) -v(M U {1,2,...,kp-1}) B
viM U {k,,o..k }) = v(M U {Xx_,...,k_  D.
1 r 1

r-1

Thus

t
rgl v U (kpyeea k) = v U Lk, sk 4 D)

x(T)

v

= v(MUT) - v(M™)

|v

vl UT) - v(W)

for any W cM, by convexity. Since v(W) > v(W) (indeed, equality

- M
holds for convex games), this implies x(T) > max [v(W UT) - v(W)] = v (T).
WoM

We next consider games with "large' cores. Such games were first
studied by Gillies [5], who showed that any n-person game with character-

istic function satisfying

v(S) <« vﬂ?) for all SCN
] - /

has a VNM-stable core. The following theorem slightly extends this result,

Theorem 14.8. Let the game (N,v) satisfy

v(S) < wv(N)/n-1 for all S 7 N.

Then the game is extremely stable.
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. M
) is nonempty for any M, define x ¢ R

Proof. To see that core(v:(

M)
by

"

X, (v(N) - v(M))/(n-m)

for all k ¢ M, where m

IM|. For any g # T :’MC,

t

x(T) = —r (v(N) - v(M))
> L (v(N) - v(N)/n-1)
Z nm
= = (N)
* ormo-1) YV
> wv(N)/n-1, since m> 2 (or v(M) = v(i) =
Also,
VI(T) = max (v(T UW) - (W)

VM

A

max v(T U W)
WCM

A

v(N)/n-1.

Thus x(T) :_vM(T) for all TCM, and x ¢ core(vM).
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c

Finally, we treat the class of symmetric games with vNM-stable cores.

A game is symmetric if v(S) = v(T) wherever S and T are coalitions

containing the same number of players. Thus a symmetric game may be

described by the collection of numbers (vs}n , where v(S) = v for
s=1

all coalitions S containing exactly s players. Shapley [24] has
characterized the symmetric games with vNM--table cores as those games

satisfying

0).

e P
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v -V vV, -V
n k t k
v > g for all k <t <n,
where {;s}n is the collection corresponding to the cover of v.

s=1

Corollary 1u4.4 and the following theorem establish the sufficiency of this

condition.

Theorem 14,9. Let (N,v) be a symmetric game satisfying

v -V, V. -V

:_rk & k for all k <t <n.

| v

Then the game is extremely stable.

c
Proof. To see that core(v: ) is nonempty for each M, define x ¢ R
m
by
X, = (vn-vm)/(n-m) for all k ¢ M°.
For each T C Mc, we wish to show
(Vn = Vm) M —
S x(T) > v (T) = max (vt+w- vw)’
w<m
It is therefore sufficient to show
Yn " 'm Veew ~ ;w
> for all t <n-m, w<m,
n-m = t =

If w=m, the result is obvious, since v 8 ;m' If w<m, then
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immediately yields the desired inequality. Thus x ¢ core(v: ), and the
m

game is extremely stable.
Kulakovskaja [10] has recently announced a characterization of games
with vMM-stable cores. A comparison of our definicion of extreme stability

with Kulakovskaja's condition is interesting.

A3 M .
Extreme stability: For everv M, core(vv(M)) is nonempty.

Kulakovskaja's condition: For every vy ¢ core(v), there is
some M (minimal with respect to y(M) < v(M)) for which

core(vM ) i
v(M) S nonempty,

The sufficiency of Kulakovskaja's condition follows from Corollary
14.4. Furthermore, Kulakovskaja's condition implies extreme stability
for every game in which everv M can occur as the unique minimal domi-
nating coalition for some y (clearly, this in turn would imply v = v).
This apparently close relationship leads us to pose the following open

question:
Is the core a stationary set for every game with vNM-stable core?

The core can be a stationary set for pames in which it is not stable.

This is the subject of the next section,
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15, Two Classical Pathologies

In the early days of the vNM theory, a number of conjectures were
made concerr.ing the theory's 'regularity". For example, it was conjectured
that no gare had a unique stable set strictly containing the core, and that
every game had at least one stable set. These conjectures fell with most
others in the 1960's, when a number of "pathological” games were dis-
covered (11,12,13,14,20,22,25]. All of these pathologies have two common
characteristics. They are all pames with nonemptv cores of dimension less
than that of the imputation simplex, and in each of them this "small" core
dominates all except a lower-dimensional set of imputations.

In this section we consider two such pames, and show that the core is
a stationary set of each. The first example, due to Lucas [11], is a
five-person game with a unique stable set strictly larger than the core,
The second example is a seven-person non-side-payment game, discovered by
Stearns [25]), which has no stable set, The fact that we can easily show
that the core is a stationary set in each of these games encourages us in
our hope that the classical patholories can all be adequately explained
by an objection-response theory, and leads us to shakily conjecture that
the other pathologies, including Lucas' [14]) example of a 10-person side-
payment pame with no stable set, similarly have stationary cores.

The Lucas five-person example is defined by

v(123u5) = 2,
v(12) = v(34) = v(135) = v(24%) = 1,

v(S) = 0 otherwise.
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The core of this game is the line segment with vertices (1,0,0,1,0) and
(0,1,1,0,0) and the unique vNM stable set is the square with vertices
(1,0,1,0,0), (0,1,0,1,0), and the two preceding. Note that the core is
simply a diagonal of this square.

We shall now define a bargaining solution o, by first presenting

the objection stratecies in tabular form. Let x be any imputation.

Condition Objecting coalit.on Objection
- € €
1 -x(12) =¢ >0 (1,2} (xl+5, x2+2)
x(12) > 1
= € €
1-x(34) =¢>0 (3,4} (x4 43, X, +3)

x(12),x(34) > 1
- € £ €
1 - x%x(135) = ¢ >0 (1,3,5) (x1+§, Xyt 3 )

wm

x(12) ,x(34),x(135) > 1
1 - x(245) = ¢ > 0 {2,4,5} (x2+.‘3-, xu+£— 5

3’3
It should be noted th:ot no objection is made to x (and therefore
x 1is stationary) only if x 1is in the core, and also that the last two

of the four cases imply Xg = 0.

Similarly, we present the response strategies of o in tabular form,

o

[P T STy Ty
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Responding
Objection Sgglition Response
] E E-
(yl’yz) by (1,2} {3,u4,5} (yy+55 V) +5s 0)s
where ¢ = 2-2y(12) > O.
€ €
(ygsy,) by (3,4} {1,2,5) (y,+5»> ¥3+55 0),
where € = 2-2y(34) > 0.
€ €
(y,»53.¥¢) by {1,3,5} {2,4) (y,+55 ¥1+5)
where € = 2-2y(13) -yg 2 0.
€ €
(y2’yu’y5) by {2""95} {1,3} (yu+—2-, y24‘5),

where € = 2 -2y(24) “yg 2 0.

To see that o0 1is in equilibrium, first consider the objection strate-
gies. If an objection by either of the coalitions (1,2} or (3,4} is
made, the specified response yields a stationary (core) imputation, and

),

therefore the objection is motivated. On the other hand, if (xl, 1-x

Xgs l-x3, 0) 1is an imputation satisfying € = 1-x(13) > 0, an objection

by (1,3,5} with the specified response yields a non-stationary imputation
to which (12} objects. Hence, after two objections and responses, the

stationary imputation

LA
1 ¥ g €

—Zc +—7—c X —éc 0)
3t12 0 ¥ ’ 0

(x 17 1712

results. Thus players 1 and 3 gain, and player 5 gains temporarily, from
the objection by (1,3,5}, and hence this objection is also motivated.
A similar result holds for objections bv {2,4,5}.

Next, consider a typical stationary imputation (a, l-a, l1-a, a, 0),
for any 0 < a < 1. Observe that the coalitions (1,2},{3,4},{1,3} C

{1,3,5} and (2,4} € {(2,4,5} all receive exactly a+(l-a) = 1 in every

v e mmcan
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such imputation. From this it easily follows that no coalition gains by
changing its strategy in o, Indeed, it is precisely this 'balanced"
nature of the core imputations, linking the "powerless'" pairs 1 and 4, and
2 and 3, to equal payoffs, which allows us to conclude that the core is a
stationary set of the game.

One further note on this game is in order. Any attempt to "verbalize"
the characteristic function of the game involves designating player 5 as
an agent whose sole role is to empower objections involving {1,3} or
{2,4}. This role is well-reflected in the bargaining solution o, in
which 5's expectation is limited to his temporary gains when ({1,3,5} or
{2,4,5} act.

The Stearns 7-person example is a non-side-payment game. The general
definitions for a non-side-payment game may be found in [3]. For our
purpcses, we need only slightly extend the concepts with which we have

been working. Define four vectors

p, = (1,1,2,0,0,0,0),
P, * (0,0,1,1,2,0,0),
Py * (2,0,0,0,1,1,0),
and c = (2,0,2,0,2,0,1).

An imputation will be any convex combination of these vectors, and an
imputation x will be said to dominate an imputation y if x > Vs
where S is any of the coalitions {1,2,7}, {3,4,7}, {5,6,7}, or
{1,3,5}. With respect to this dominance relation the only imputation
which is undominated is c, and hence the core of the game consists of

this single imputation.




71

i

Let Li (i = 1,2,3) be the half-open line segment
{&T = upi+-(l-a):, 0 <a<1l,., Itmay be noted that c dominates
every imputation (other than itself) not on any of the Li' We define a

bargaining solution o, first specifying the objection strategies. Let

X be any imputation. i
3
Objecting
Condition coalition Objection
1
x#cyx¢L UL, UL, {1,3,5) (2,2,2) i
! x x
: 1.7 1,7
x € L {5,6,7} ) )(1,1,0) + (5+-3 )(2,0,1)
x X
1 7 1 7
x €L, {1,2,7} (5-7;N1J,0)+(5+34(L04)
X x
1 7 1 7
x € L {3,“,7} (5'—2—)(1,1,0) + ('2‘*‘2—)(2:0)1)

Next, we define the response strategies in o, keeping in mind the

requirement that every objection-and-response must yield an imputation, 1

Responding 1
Objection coalition Response ‘
l (xl,xa,xs) by ({135} (2,4,6,7} (0,0,0,1)
1
("5"‘6”‘7) by {567) {1,2,3,4) x6(2,o,o,o) + x7(2,0,2,0) +

%5
(_2—_ )(6 - ?X7)(og0'111)

| ("1”‘2"‘7) by (127) {3,4,5,6) x2(2,0,0,0) + x7(2,0,2,0) +
1 X
} (T-x?-?x,?)(o,o,l,l)
(xa,xu,x.,) by {347} {1,2,5,6) %,(2,0,0,0) + x7(2,0,2,0) + i

x !

3
(_5_-)(“- 2)(7)(0’0)1-1) !
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It is perhaps simplest to visualize the action induced by ¢ by
noting that the objection-and-response to any imputation other than c,
not in L u L, U Ly, results in the imputation c, while the objection-
and-response to x € Li results in a convex combination of ¢, pj, and
Py ({i,j,k} = {1,2,3}), which after the next objection-and-re:ponse leads
to c. Since o has a unique stationary imputation, namely c¢, it is

particularly easy to see that o is in equilibrium, and that the core of

the game is therefore a (one-element) stationary set.

16. Majority Games

Two classes of simple games* which have received much attention are

the symmetric simple games and the homogeneous pames. A symmetric simple

(n,k)-game is an n-player game, with n < 2k, in which

ro if  |s| <k

)
\1 it |s] > k.

v(S) =

Each (n,k)-game has a unique symmetric stable set, described by Bott [4].

A hcmogeneous game is an n-player game, with an associated set of posi-

tive numbers {y,}" , 1in which
i=1

*
A game is simple if for every coalition S, v(S) = 0 or 1, If
v(S) = 0, S 1is losing; if v(S) =1, S {s winning.
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v(S)

for every coalition S,

1]
—

v(s) + v(s%)

and in which

Z Y T 1 for every minimal winning coalition S.
ie$S

Each homogenecus game has a "simple" stable set, described by Gurk and

Isbell [6].

These two classes intersect in a particular type of game, the majority

game. Such a game is a (2m-1,m)-game, in which the winning coalitions are
all coalitions containing at least half of the (odd number of) players.

For a (2m-1,m)-game the symmetric and simple stable sets coincide, and

£,0,...,0) and its component permuta-

consist of the imputation (%,...,m

tions. When we refer to the symmetric stable set of a majority game, we

shall mean this (finite) collection of imputations.

Consider a specific (2m-1,m)-pame. 'We define a bargaining solution

o for this game, for which the stationary set of o is the symmetric

stable set of the game. The obiection strategies in o0 are such that

only minimal (m-player) winning coalitions ever make objections. The

=R

m-player coalition S objects to every imputation x for which Xs <

for all players in S, the objection of S being the symmetric alloca-

" 1 1
tion (E’ e ,a‘) 0

b

o

o o a

2

AAh i il




L

Response strategies must be specified for every coalition S with

c
IS| = k <m, and for every objection xS which S might face. If

c 3
c k - x(S i
1 - x(s7) < =) then S responds with the allocation (l-—%;i——l,---, ;
l-x(Sc . ]
A -_—T?—_—l)' However, if 1 - x(Sc) :_23 then S responds by selecting

any player j or S at random (with probabilitv %) and responding with

CIOR PO TS ey

the allocation xS, where

e

| o if 177 i

WP = (s I g N ST

' Any change of objection strategy by a minimal winning coalition cannot
be to the advantage of all members of the coalition, since they already
share (in their objection in 0) the entire available quantity 1. Further-
more, the response strategies in o are arranged specifically so that no
non-minimal coalition can benefit all of its members by initiating an
objection. Also, the specified response strategies maximize, for each
player in a responding coalition, his probability of belonging to the
objecting coalition which gains the floor in the next stage of the game.
These observations combine to prove that o 1is in equilibrium. Three

notes are in order. First, when the players follow the strategies in o,

each imputation is replaced by a stationary imputation after at mos. one

stage of the bargaining game, and each objection that actually occurs ;

requires only a trivial response (allocation of 0). And second, the

bargaining solution o 1is precisely the solution given for the 3-person

S U A R —

e ettt st st
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constant-sum game (the (3,2)-game) in Section 13. Finally, some careful
consideration will convince one that the more obvious types of symmetric
response strategies, such as an always-equal division among responding
players, do not yield an equilibrium collection of strategies when com-
bined with the stated objection strategies, since non-minimal winning
coalitions can then gain in some subgames by initiating objections.

A natural ques'ion is whether our result (that the symmetric, simple
stable set is a stationary set for majority games) extends in some way
either to all (n,k)-games or to all homogeneous games. Although we shall
not formally prcve these statements, it appears as if the result does not
peneralize at all to symmetric solutions of (n,k)-pames, but does genera-
lize to simple stable sets of homogeneous games, We believe that the
simple stable sets describted in [€] -an be shown to be stationary sets by
a careful construction of response strategies similar to that given above.

However, consider a non-homogeneous syrmetric simple game, sach as
the (u,3)-pame. The svrmetric stable set of this game consists of the set
of imputations {(1,a, %--n, %..a): 0 <a :_%}, and all component permu-
tations of these imputations. If ~ 1is a symmetric bargaining solution

for which this set is the stationary set, ther (1,0,0,0) is not stationary,

and vill be objected to by (2,3,4} in .. Cince all components of

ev ry imputaticn in the stationary set, other than ,=,0,0) and its

,
ST

rermutations, are pocitive, player 1 expects a pocitive essent.ial return,

say ¢, from the barpaining rare bepinning at (1,0,0,0). Thus each of i

: i _ ,
rlayers 2, 3 and 4 expects an essential return of , -5 oo Now

consider a coalitional deviation from ~ hv 2,3 ,4r in the gare

teginning a2t (1,0,0,0). With equal jrotabiliry, let the coalition cobject

N
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to (1,0,0,0) with on2 of thr three permutations of (%.“%, %--%u %).

Since response strategies are trivial on the (4,3)-game, a stationary
imputation will result from such an objection, and therefore each player

of {2,3,4} will expect an essential return of

1l r 1 € _1 €
: G- r3°2°5"%

from this coalitional deviation to 0. Hence, the indicated stable set

cannot be a stationary set of the (4,3'-game.
At the present, we have not found any bargaining solutions to the

(4,3)-game. We return to this point brieflv in Section 18,

17. An Extension of the RBargaining Model

In a bargaining game, we require that all objections in any stage be
simultaneously declared. This requirement, while simplifying much of the
notation and discussions of this paper, can be considerably weak :ned
without damaging our results.

Consider a hypotuetical situation, in which two disjoint coalitions
S and T are the only coalitions capable of objecting to a particular
imputation. Further assume that behavior of all players in the bargain-
inp pame is s~ specified apart frorm this imputation, that the ccalitional

payoffs to S and T depend on their action in the manner indicated in

Fifure 17 1.

- S




77

T
objects dgg;g;:
objects (2,2) (5,0)
S
dgg?g; (0,5) (4,4)
Figure 17.1

The return to coalition S (coalition T) is indicated by the first
(second) compone~t of each ordered pair. This situation, a form of the
"Prisoner's Dilemma" [18], is not handled well by our model, since the

only equilibrium which could exist would involve both coalitions making

(simultaneous) objections.

However, consider a modification of the rules of the bargaining game,
so that each objection-stage of the game consists of several steps. At
each step, a coalition may make ar objection to the current proposal,
having already heard all objections raised to that proposal in earlier
steps. After such a sequence of steps, the hierarchy selects an object-
iny coalition from all those which have declared ohiecticns, and the
fgare continies as before.

In ihis manner threats become credible, ard are explicitly included
in reactive stratepies. A typical combination of strategies for the two
coalitions in the example above would be for nei‘her to raise an objection
in the first step, but for each to object in the second step if the other
objects ir. the first step. The result of such strategies, involving as
they do a form of "contingency piunning", is to permit equilibria in

which neither coalition raises an objection in the viven situation.




A linai note is in order. Permitting contingent objections may allow

a more varied class of bargaining rolutions for some game:. However, every
bargaining solution arising from our original model remains a solution in
this extended model. Therefore the extension is an enrichment of our
original theory in which all positive results of tl. preceding sections

hold.

18, Summary

Having shown how the theory of bargaining solutions and stationary
sets applies to several classes of games, we make here a few comments
indicating several areas in which much work remains to be done.

With regard to three-person games, a characterization of all possible
stationary sets w ich can arise in the context of any given hierarchical
structure and system of preferences would be of interest. Preliminary
results indicate that the bargaining solutions we have given are relatively
insensitive to such changes, but that new classes of solutions can also
ar, ;e.

A major question concerning games with vNM-stable cores is whether
the core of every such game is a -tationary set. A wider problem is to
characterize a.l games with stationary cores, and particularly to determine
whether all of the classical "pathologies" are of this type.

We e'.pect that the simple solution of each simple homogeneous game
is a stationary set of the game. However, discovery of stationary sets
for non-constant-sum symmetric simple pames seers difficult. A natural
starting place is to ask whether the (4,3)-game has any stationary sets,.

If it does not, and if the non-existence seems attributable to argurents
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similar to that given in Section 16, then a modification of our theory
seems desirable. Such a modification, to invalidate arguments of the type
referred to, would be of interest since we do not find ourselves wholly
convinced that these arguments should be given much weight in determining
bargaining solutions.

It may have been noted that all stationary sets determined in the
preceding sections are self-policing, in the sense of Vickrey. This seems
reasonable for the uncomplicated games investigated here, but there is no
reason to expect the coincidence to endure in the analysis of more complex
games. Still, we find the similarity of the results of the two classical
theories and our own, at least corncerning the simplest and most-studied
pames, quite encouraging.

And finally, we repeat that the derivation of an objection-and-

response theory for cooperative normal-form pames, carried out in a manner

similar to the work done here, seems to be a natural and important direc-

tion for continuing investigation.




APPENDIX

DEFINITIONS AND NOTATION

An n-person characteristic function game is a pair (N,v), where

N=1{1,2,...,n} is the set of players. A coalition is a nonempty subset

of players. The characteristic function v associates to each coalition

S a real number v(S), and satisfies

} v(P) < v(N)
PeP

for every partition P of N. We shall generally work with O-normalized

games, which satisfy v(i) = 0 for all one-player coalitions ({(i}.
An impuration is any vector «x e R" which satisfies x(N) = v(N),
where for any x and coalition S we write x(¢) = ] x;. The set of

ieS
all irputations is

X = {x e R x(N) = v(N)}.

(At times we shall restrict our attention to individually-rational imputa-

tirns. We shall then, without fear of confusion, write

X = {xeR": x(N) = v(N) and X >0 forall ic¢ N}).

For any coalition S and any real number a,

80




RS

{x e R: x; = 0 for all i ¢ S}

and  R°(0)

{x e RS: x(S) < al,

S
and for any x € Rn, xs is the projection of x onto R

] S
On occasion we shall '"compose" vectors xs € RS and x ¢
c

the vector x ¢ R", where x = xs + xS a

»

so that

RS to yield

If x and y are imputations, then x dominates y with respect

to a coalition S, written x domS y, |if

X, >y, for all i "e 1S5
i i

and x(S) < v(S).

: . q S
Since this dominance depends only on x

If x domS y for some S, then x dominates vy, written

Civen a set K of imputations, write
Dom K = {x e X: y dom x f~r some y ¢ K}.

A von Neumann-Morgenstern stable set fo- a game [17] is a set

satisfies

: S
, we scmetimes write x domS y.

x dom .

K which
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K N Dom X

# (internal stability)

K U Dom K

X  (external stability).

The core of a game is defined by

core(v) = {x e X: x(S) > v(S) for all coalitions € C N}

To insure external stability, the core must be contained in every stable

set.

P
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