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INTRODUCTION 

The problem of characterizing shock wave properties in solid materials 

necessitates a knowledge of the solid equation of states at high pressures. 

The pressures attainable in strong shock waves can exceed considerably 

the pressures attainable by experimental,  static techniques.   Static pressures 

which have been attained experimentally are about in the hundred kilobar range, 

whereas dynamically, pressures of about five megabars have been attained. 

Thus,  it has been necessary to use dynamic techniques to determine equations 

of state for use in shock wave calculations. 

One common technique to obtain an equation of state at high pressure is 

to calibrate an assumed equation of state, i.e., the Mie-Gruneisen equation of 

state,  in terms of a shock Hugoniot.    The Mie-Grüneisen equation of state is 

P - P0   = ^ (E - E0) 

where Y is the Grüneisen parameter.    For the state of a material after shock 

passage,  one can write 

PH " P0   =   V  (EH ' E0) 

Combining the above two equations and assuming that the Grüneisen 

parameter is-a function of volume only gives 

P - PH   -  -£ (E - EJJ) 

The above equation roproRcntK an equation of state for small excursions 

from the calibrating Hugoniot.    Its validity depends on the assumptions that 
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the compression at P    is. the same as would be produced by a hydrostatic 

pressure of the same magnitude; the Hugoniot state after shock passage is 

an equilibrium stattfand that the Grüneisen parameter does not vary with 

temperature but is a function of volume only. 

Recently,  shock work with foams and measurements of the sound 

velocity behind shock waves have raised the question as to whether Y is indeed 

independent of temperature. 

Also a problem in calculating the shock properties of foamed and dis- 

tended materials is how to formulate equations of state in the lower pressure 

regions.   At lower pressures, the assumption of these materials attaining 

states of "true" thermodynamic equilibrium may no longer be tenable.  (The 

term true is put in quotes because, as is discussed in Section 6B, the defini- 

tions of various equilibria are rather confused.) 

In trying to evaluate the possible temperature dependency of y, it was 

soon found that the topic of the Grüneisen parameter is treated in the litera- 

ture in a limited, fragmentary way.    Nowhere floes there exist a systematic, 

overall treatment.   Also, there appears to be a confusion about possible 

definitions of the Gruneisen parameter.   Thus/ the task objective, as pre- 

sented in Experimental Memo PR961,   set for the present study was? 

"Contribute to better understanding cf the Grüneisen parameter j •' 

its theoretical basis, experimental determination, and usage in present 

hydrodynamic response code.1* 

The tasks set for this study were: 

Task 1 - Compile systematic,  overall treatment of theoretical 
aspects of the Gruneisen parameter (starting with original 
Grflneisen work, circa 1912).    Include complete bibliography 
and pertinent excerpt from source documents. 

Task 2 - Review ajl experimental lorhmques (past and present)- 
used to derive experimental values of Gruneisen paraineter. 
Compare fi.ila for selected mnfcriala (choose materials relatively 
insensitive to labncalion variables and anisotropic effects). 
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Suggest most useful approaches for typical spectrum of reentry 
vehicles materials, i.e.,   organic composites,  epoxy adhesives 
and light metals.    Include complete bibliography and pertinent 
excerpts from source documents.    Describe experimental setups 
in detail. 

Task 3 - Calculate Grüneisen parameter for alun\inum, beryllium, 
.   tungsten,  tantalum, tungsten carbide and silicon carbide as function 

of pressure to 30 kilobars and temperature up to melt.  Do same for 
nylon phenolic and rcfrasil phenolic to 50 kilobars pressure and 
temperatures of 500oF. 

During the last three months of the study work was concentrated on the 

following task,  as presented in the Task Memo TP7087: 

"Continue the Grüneisen parameter study in the area of porous, 

foamed and distended materials.    Review all techniques used for deriving 

the Grüneisen parameter for such materials and present any pertinent data. 

Make recommendations for the incorporation of this parameter into our 

present computer code." 

The preceding tasks are covered in this report in the following manner. 

Fundamental thermodynamic and physical definitions are covered in Section 1. 

The theoretical bases of equations of state and the Mie-Grüneisen Equation 

of State are discussed in Sections 2 and 3.    The experimental techniques of 

determining the various Grüneisen parameters for solid materials are 

reviewed in Section 4, and actual calculations of the various Grüneisen 

parameters for the materials of the study are presented in Section 5.  The 

thermodynamics of foamed and distended materials are considered in 

Section 6. 

C 
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FOREWORD 

The study,  prrfnrmrrl at  Lockhrpd's Huntsville Research 

Jr Engineering Center during the period Z8 September  1966 to 

27 October  1967,  is in accordance with the task objectives and 

task statements presented in thr Lockheed/Sunnyvale Experi- 

mental Memos PR961 and TP70R7.    Technical direction was 

furnished by Mr, D. Fenton   (Hept. 8! -2^1 and Mr. E. L. Esch 

(Dept. 31-73).    Their support and encoiiragement are gratefully 

acknowledged. 

Mr.   Ivan Landis contributed significantly to the study by 

performing the mathematical analysis reported in Section SC and 

conducting the study phase reported in Sections 5D and SE. 

Mr. Ernest Raper performed the calculations presented in 

Section 5E. 
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SUMMARY 

The theoretical hasis of ihr Mi     Griineisrn equation of state was con- 

sidered and systematized.    The most important experimental techniques for 

determining the several Griineisen paramrters were reviewed.    Sovrral 

Gruneiscn parameters for some of the materials of the study were calcukted 

hy methods presented in flip literature and hy an original method developed 

in the course of the study.    Also,   the problems involved in characterising the 

states of foamed materials before and after irreversible changes were 

reviewed. 

The most important facts drawn from the study of the theoretical basis 

of the Mie-Griineisen equation of state are (a) the Mie-Griineisen equation is 

necessarily valid if y?.  not  y      in a certain temperature range is independent 

of temperature and (b) the Mie-Gn'ineisen equation is necessarily valid if V, 

is temperature independfnt throughout the temperature range from 0   K 

upwards. 

Although our calculations of y, at low pressures for the metals of the 

study do not show much temperature variation from room temperature up. 

values of y.   it very low temperatures found in the literature for aluminum do 

vary considerably as apparently do the y- values,  which we have calculated by 

the method of Reecroft and Swenson and our own method.    Thus,   it would 

appear that the use of the Mie-Gn'ineisen equation of state for metals at low 

temperatures is not valid. 

I 
At moderate pressures our calculations of f^ for sodium and aluminum 

indicate that the variation of y_ with temperature is about the same as 

observed at low pressures with perhaps very unusual behavior in the very 

high pressure regions.    However,  time limitations did not permit a check of 

the sensitivity of the calculation to the approximations made,   so the results 

cannot be considered conclusive. 

iii 
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The conclusions derived from a review of the thermodynamics of 

foamed and distended materials are that considerable confusion exists about 

basic definitions of various types of equilibrium and,  therefore,  about calcu- 

lation of thermodynamic stato functions for materials which have undergone 

changos involving hysteresis of one sort or another.    However,   a classical 

thermodynamic approach to "totally" irreversible processes promises to 

yield much information once the discussions of various authors are clarified 

and correlated.    The preceding slat«1 of affairs is  really pertinent to the cal- 

culations of a Grüncisen paramolrr in the low  |irrssure region.    The high 

pressure region where the foam is assumed completely crushed and annealed 

can be handled straightforwardly. 

Time limitations did not permit the full exploration of the effects of 

material anisotropy,   material rigidity,  melting,   or material porosity and 

inhomogeneity.    Because the problems associated with the last two factors 

have not yet been resolved. Grüneisen parameters for the plastics of the 

study were not calculated. 

iv 
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INTRODUCTION 

The problem of characterizing shock wave properties in solid materials 

necessitates a knowledge of the solid pquation of states at high pressures. 

The pressures attainable in strong shock waves can exceed considerably 

the pressures attainable by experimental,   static techniques.    Static pressures 

which have been attained experimentally are  about in the hundred kilobar range, 

whereas dynamically,  pressures of about five megabars have been attained. 

Thus,   it has been necessary to use dynamic techniques to determine equations 

of state for use in shock wave calculations. 

One common technique to obtain an equation of state at high pressure is 

to calibrate an assumed equation of state, i.e., the Mie-Gruneisen equation of 

state,  in terms of a shock Hugoniot.    The Mie-Grüneisen equation of state is 

P - F0   = | (E - E0) 

where f is the Grüneisen parameter.    For the state of a material after shock 

passage,   one can write 

T PH " P0   =   V <EH * E0) 

Combining the above two equations and assuming that the Grüneisen 

parameter is a function of volume only gives 

P-PH   =   £(E-EH) 

The above equation represents an equation of state for small excursions 

from the calibrating Hugoniot.    Its validity depends on the assumptions that 

xiv 
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the compression at P    is the same as would be produced by a hydrostatic 

pressure of the same magnitude;  the Hugoniot state after shock passage is 
ft 

an equilibrium state; and that the Grüneisen parameter does not vary with 

i. 

l 
H 

l L 

r 
i. 

[ 

temperature but is a function of volume only. 

Recently,   shock work with foams and measurements of the sound 

velocity behind shock waves have raised the question as to whether Y is indeed 

independent of temperature. 

T Also a problem in calculating the shock properties of foamed and dis- 

*» tended materials is how to formulate equations of state in the lower pressure 

regions.    At lower pressures,   Ihc assumption of these materials attaining 

J^ states of "true" thermodynamic equilibrium may no longer be tenable.   (The 

term true is put in quotes because,   as is discussed in Section 6B,  the defini- 
r J tions of various equilibria are rather confused.) 

Ein trying to evaluate the possible temperature dependency of y,  if. was 

soon found that the topic of the Grüneisen parameter is treated in the litera- 

_ ture in a limited, fragmentary way.    Nowhere does there exist a systematic, 

4, overall treatment.   Also,  there appears to be a confusion about possible 

definitions of the Grüneisen parameter.    Thus,  the task objective,  as pre- 
fix 

sented in Experimental Memo PR961,   set for the present study was: 

"Contribute to better understanding of the Grüneisen parameter j" 

its theoretical basis, experimental determination, and usage in present 

hydrodynamic response code." 

The tasks set for this study were: 

Task 1  ■• Compile systematic,   overall treatment of theoretical 
,  aspects of the Grüneisen parameter (starting with original 

Grüneisen work,  circa 1912).    Include complete bibliography 
and pertinent excerpt from source documents. 

Task 2     Review all experimental techniques (past and present) 
used to derive experimental values of Grüneisen parameter. 
Compare data for selected materials (choose materials relatively 
insensitive to fabrication variables and anisotropic effects). 

xv 



g 

i 
r LMSC/HREC A764868 i. 

[ 

- 

? 
.. 

Suggest most useful approaches for typical spectrum of reentry 
vehicles materials, i.e.,   organic composites,  epoxy adhesives 
and light metals.    Include complrfe bibl'.;graphy and pertinent 
excerpts from source drcuments.     Describe experimental setups 
in detail. 

Task 3 - Calculate Griinciscn parameter for aluminum, beryllium, 
Tungsten,   tantalum, tungsten carbide and silicon carbide as function 
of pressure to 30 kilobars and temperature up to melt.   Do same for 
nylon phenolic and rcfrasil phenolic to SO kilobars prensure and 
temperatures of 500oF. 

During the last three months of the study work was concentrated on the 

following task,   as presented in the Task Memo TP7087; 

"Continue the Grüneisen parameter study in the area of porous, 

foamed and distended materials.     Review all techniques used for deriving 

the Grüneisen parameter for such materials and present any pertinent data. 

Make recommendations for the incorporation of this parameter into our 

present computer code." 

The preceding tasks are covered in this report in the following manner. 

Fundamental thermodynamic and physical definitions are covered in Section 1. 

The theoretical bases of equations of state and the Mie-Grüneisen Equation 

of State are discussed in Sections 2 and 3.    The experimental techniques of 

determining the various Grüneisen parameters for solid materials are 

reviewed in Section 4, and actual calculations of the various Grüneisen 

parameters for the materials of the study are presented in Section 5.  The 

thermodynamics of foamed and distended materials are considered in 

Section 6. 

xvi 
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Section 1 

ELEMENTARY PHYSICS AND THERMODYNAMICS OF SOLIDS 

The total internal energy of any isolated system is made up of a kinetic 

part and a potential part. 

E   =   K  +  U (1) 

The potential energy of a solid has its origin in the attractive and re- 

pulsive forces between the atoms, molecules, or ions.    In an ideal gas it is 

assumed that the forces between the molecules are so small that the average 

potential energy is negligible compared to the average kinetic energy.    In a 

solid, on the other hand, the potential energy plays a very important role. 

The internal energy of a solid is often represented as (Fumi and Tosi,  1962) 

E(V. T)   =   £S(V)  +   EV(V, T) (2) 

where  E^CV)  represents purely volume-dependent static energy of the solid, 

or lattice energy,  and EV(V, T) represents the vibrational energy.     The term 

E- can be further defined as the potential energy if the amplitude of the ther- 

mal vibrations were all zero.    Fletcher (1957) points out that in general E„ 

is not a function of volume only.    However, it is a fair approximation where 

electronic effects are negligible.    Thus, we will not concern ourselves 

further with the possible temperature dependence of E„. 

Another equivalent way of representing the energy is 

E{V. T)   =   E0(V) +  ET(V, T) (3) 

where  EQ(V) is the energy of the solid at absolute zero, and ET(V, T) repre- 

sents the thermal energy. 

1-1 
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At zero degrees absolute,  the term ET(V, T) becomes zero,  but EV(V, T) 

does not.    The term E..(V,T),  at absolute zero,  is designated as the zero- 

point vibrational energy.    Thus,  the relation between E. and E« can be written 

-. E0(V)   =   ES(V) + E^(V) (4) 

where E-.  is a function of volume only and represents the zero-point vibrational 

energy.    In statistical mechanics   E..   is givpn as (Slater, 1939, p. 216) 

> 

3N 
F.°    J2   l/2(hy.y (5) 

where  V.  is the frequency of the j mode of oscillation. 
»I 

a« 
In materials where the interatomic forces and the atomic masses are 

great, the zero-point energy is small and can usually be neglected.    However, 

in a substance like helium, the zero-point energy is very significant.     (Zemansky, 

1957, p. 378) 

The general variation of En as a function of volume is shown in Figure 1-1. 

Figure 1-1 - Energy and Pressure as a Function of Volume at Zero Degrees 
Absolute (after Zel'dovich,  Ya. B,  and Yu. P. Rayzer,  1965,  p. 843) 

1-2 
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As Figure 1-1 shows, E» is a minimum atV--, the volume at zero 

degrees absolute and zero pressure.    (NOTE: The energy at this point Enn 

is arbitrarily assigned the value of zero).    The pressure,    P  ,    at absolute 

zero is sometimes called the elastic pressure and is given by: 

dE0 po = - -d>r <6> 

The term  En for volumes not too far removed from Von,   can be ex- 

panded to (Mott and Jones, 1958, p. 16) 

E0(V)   =   (E0) +QL)     (V.V00) + l(lA)        (V-V0/ + ...       (7) 
I voo    x    /voo Vdv 'v^ 

i The second term on the right vanishes because   d E_/d V at V--  is zero. 

The term  Ec  can be similarly expanded,  but the volume at which 

dEg/dV    is zero is slightly diffetent from  V   _ (Huang,   1951,  p.   205).    In 

this case the volume should be tne static equilibrium volume.    This dis- 

tinction appears to be generally ignored or confused in the literature. 

*» Using the first or vibrational formulation the energies can be further 

^ broken down to 

i 
E(V,T)   =   KV(V, T) + UV{V,T) + ES(V) (8) 

The terms   K». and Uv   represent the kinetic and potential parts of the vib- 

rational energy.    In statistical mechanics equation 8 is written (Slater, 193 9, 

p. 217) 

=   E (V)+^  nh« 
j=l     J       J 

3N 

(9) 
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where n.  represents the quantum number of the j vibration mode.    The term 
J 

3N 
Zn.h v. includes Kv and Uv, that is,  the vibrational contributions to the 

I and 

E   r-.    E0(V) + ET(T) (11) 

This division of total internal energy in a volume-dependent term and a 

temperature-dependent term is called Hildebrand* s approximation. 

internal energy. 

A frequently made approximation is (Fumi and Tosi, 1962) 

| E   =   ES{V) + EV(T) (10) 

I 
I 

i i 
f r li In this report the contribution of electrons to the internal energy will 

be largely ignored.    It should be mentioned,  however,  that for metals at low 

I temperatures, electron heat capacities predominate over the lattice heat 
capacities (Gopal, 1966, p. 62). 

For a solid the Heimholt?, free energy function (Fumi and Tosi, 1962) 

F   =   E - TS 

may be written 

F   =   E0+ ET - TS 

and F—, the thermal free energy, defined as 

FT   =   ET - TS (12) 

[ 1-4 
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Thus, the pressure at any given temperature becomes 

(öF\        ^fp        /aFT\ 
WT      dV    '    \dV/' 

or 

P(V,T)   =   P0(V) + PT(V.T) (13) 

where P™ may be defined as the thermal pressure which becomes zero at 

absolute zero.    Equation 1Z may be written in terms of vibrational energies, 

i.e.. 

F   =   Eg + Ev - TS 

F   =   Es + Fv 

and 

m 
or 

dES p =  ' Tv" 

dE- 

P   =   ""dV   +  Pv(V'T) {14) 

where Pv may be defined as vibrational pressure.   P.,  does not become 

zero at absolute zero.    The term -dE-ZdV, which it would seem reasonable 

to designate as some sort of pressure, does not appear to have a name in 

the literature.    We will call it the static pressure. 

A few more of the features of the zero degree isotherm should be 

pointed out:   The term Ec in Figure 1-1 represents the energy that would be 

required, at absolute zero, to separate the atoms of the solid to infinity. 

It is called cohesive energy and is approximately equal to the heat of evapor- 

ation at absolute zero,    (Zel'dovich and Rayzer, 1965, p. 843).    It should be noted 
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that the term cohesive energy also is used in the literature for En. In this 

report, however,  cohesive energy will be reserved for En» 

The cohesive energy can be given by 

00 

/ 

P0dV=-E( 

00 

The fundamental equation of thermodynamics which is applicable to 

any reversible process, or irreversible process providing that the states 

considered are equilibrium states,  is 

dE   =   TdS - PdV (15) 

T At zero degrees absolute T, dS and TdS are equal to zero,  so that 

I 
dE  =   -PdV (16) 

and 

(dP/6V)s = (ap/dV)T (17) 

Hence, the zero degree isotherm is also an adiabat for which dS = 0. 

I The compressibility at zero pressure and ordinary temperatures is 

approximately equal to the compressibility at zero pressure and absolute 

I zero (Zel'dovich and Rayzer,  1965, p. 845), i.e., 

I "^ FLO"   "^r P)T=T 

Thus, the speed of sound, considered as a purely thermodynamic quantity, 

C   =   V 

is determined by the slope of the PV zero degree isotherm. 
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The purpose of the preceding discussion is to bring together in one 

place the various definitions and formulations of thermodynamic terms 

pertaining to solids found scattered in the literature as an aid for quick 

reference. 
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Section 2 

THERMODYNAMICS OF EQUATION OF STATE 

A thermodynamic state is specified   in  terms  of the  independent vari- 

ables of the system.  The number of independent variables necessary to specify 

the state,however, must be decided by the exprrimenter (Reiss, p. 5, 1965). 

For example, usually only two state variables are necessary to specify the 

state of a solid, but if  the surface area becomes appreciable, as in a powder. 

i another state variable is needed 

A system is completely defined thermodynamically if the entropy is 

known as a function of the extensive parameters.   For a closed system in which 

•r the amount of single-phase matter remains constant and which can be specified 

'   lb as a function of two extensive parameters,  the entropy can be written as 

(U I   * S   =   S(E,V) 

T Equation 1 may be written in the alternate form, 

E   =   E(S. V) (2) 

The differential form of Equation (2) determines changes of state: 

dE   =   (dE/dS)vdS + (dE/dV)sdV (3) 

The partial-derivatives in the above equation have the following meanings: 

{dE/dS)y   =   T    and    (aE/dV)s   «   -P 

The above partials were derived from 

dE   =   TdS-PdV (4) 

Z-l 
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which is called the fundamental equation.  Equivalrnt expressions of Equation 
(4) are: 

dH   =   VdP + TdS (5) 

dF   =    -PdV - SdT (6) 

dA   =   VdP - SdT (7) 

Because Equations (1) and (2) contain all the information necessary to 

completely define a system thermodynamirally, they are called fundamental 

relationships or complete equal inns of Btalc. Other complete equations of 

• täte, corresponding to Equationn (S) through (7) are 

H = n(S. P) 

F = F(V,T) 

A   -   A(P,T) 

A» is evident in the above discussion,   knowledge or specification of 

two independent variables,  S and V,   or E and V,  depending on whether 

Equations (I) or (2) are used,   completely defines the system,  providing, 

of course, that E or S,   the dependent variables, are known as a function of 

E and V or S and V.    The quantities S and E,  however,  are not measurable 

experimentally.    Variables that can be mcastired experimentally are P,  V, 
I 
I. and T.    Because P and T are functions of S and V,   specification of any two 

of the variables P,  V,   or T also completely determines the thermodynamic 

|a state of the system. 

Experimentally,  the functional relationships that are usually determined 

• re: 

P   =   P(V,T) 

•nd 

E   =   E(V, T) 

Neither one of the above two equations,  however,   supply all the informa- 

tion necessary to completely define the system thermodynamically.    To do so, 

both equations must be used.    In other words, although specification of V and T 

completely determine the system,  more than one equation is necessary to obtain 
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«ill the thermodynamic information about it. 

Because thermal, P=P(V,T), and caloric, E=E(V,T), equations of 

state do not supply by themselves all the necessary information, they are 

called incomplete. 

The preceeding discussion of equations of states is based on similar 

discussions in Anderson, Doran, and Fabrenbruch, 1965, pp. 3-5,  and Callen, 

1960. p. 25 and pp. 33-34. 

The following discussion conrorns ifself with the derivation of some 

incomplete equations of state. 

An equation of state may be derived from the free energy because 

P(V.T)   =    -(aF/8V)_ (8) 

Using the vibratinnal form of free energy,   Equation (8) becomes 

-P   = 
dEs(V)      /dFv 

dV m (9) 

Performing the following manipulations on the term R. ■• can be 

easily shown that Equation  (9)   reduces to an equation similar to the 

Mie-Grüneisen equation of state. 

The manipulat ions »ihrjj. are: 
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I 

=   -T /8T\        V     T/a<VT)\ 

T2 /8(FV/T)^ 
= 7i v \ 8T yv 

dE.m      y. 

The thermal formulation of free energy leads to 

d Eo<v'      h 
i. 

V 
a. 

I   I P-P0(V)   =   ^E 

P+-d^-   =   f ET (U) 

^ 
V      T 

The terms Y. and Y? are generaliaed Grüneisen parameters equrl to 

(Fumi and Tosi, 1962) 

i: m 
I. ' THFv/T        T/8(Iv)\ 

^ 
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and 

8 ' 

*. y2 T \ 

m 
9V    / 8T\ V_  

8WF   /T  "   T Ä  /F FT/T       '  /, ^ 
(13) 

Let us now see what sort of an equation results from manipulation of 

the following equation: 
-- 

i. m.. P(S.V) (14) 

The manipulations are: 

dE0 + 

dV PI- 
P - P 

/s 

^E 
p-po = -[TT. 

p-po = TT^^^ m 

where 

v ±lor] V\8V/' 
73   "    " T \5v/0 T 

11*1)        v 
q       T TSsT 
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expanded further to 

/8ET\       /8ET\     /8ET\ 
[TTI - ^-FTL ■ [-ryj. T    31 

So Equation (15) becomes (Fowles, 19^4, p. 51) 

P - po<v> = y- T(^r)v ■ (^ 

Other equivalent ways of writing Equation (16) nr< 

P - P. [E      EJ + X(Vf T) 

where 

and 

where 

*™ - *■ mv • (ppl 
P   =   -^ E + R(V,T) 

^V.O)   = 
dE0      Y3{V,0) 

Tv        v 
and 

V5T)V  
=   " V \^T^ 

(16) 

(17) 

(18) 

Equations (16), (17),  and (18) arc general Mie-Grüneisen equations of 

state.   In these general Mie-Grüneisen equations X, is a function of two 

state variables, usually given as V and T. 
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It can also be expressed in the following ways: (Anderson, Doran, and 

Fabrenbruch,   1965, p. 6) 

y3(x.Y) = v(||^ =   V 
(ap/aT)v      v(8s/8v)1 

(8E/8T)V   =   T(8S/8TK 
va 

The terms X and Y in the above expression stand for the variables   )*   is a 

function of.    For example, 

VE-V> - v(5i)v 

To sum up the discussion concerning the derivation of incomplete 

equations of state,  Equations (10) and (11) which involve V. and  y? are 

equations of isotherms while Equations (16), (17) and (18) which involve  X, 

are equations of isentrnpes. 
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T biT   =   -      Y^^ + In MS) 
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Section 3 

A.       THE MIE-GRUNEISEN EQUATION OF STATE AND THE GRUNEISEN 
CONSTANT 

The assumption that   y. is a function of volume only restricts the 

fundamental dependencies of T,   S,  and E,   and makes possible the derivation 

of a useful equation of state.      The following discussion should make obvious 

these points. 

If r3 la a 

IV 

TiS. V)   =  0{S) (9(V) 

or 

S   =   S 

The form of E is obtained by integration of 

^ T   =(^)v   -*™*W 

E -E0(V)   =  0(V)      <HS)dS (1) 

[ o 

r 3.1 
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Now /aE\ = p 
s 

so differentiation of Equation (1) leads to 

or 
.S 

i 
yr(v) / (2) 

P -Pn(v) = -^— «(v) / 0(s)ds V 
/ 

where  X^ is Grüneisen's constant and is defined by 

7GKn d In V ,J; 

Equation (2) finally can be reduced to 

7 yr(v) 
I, P - P0(V)   =   -H^— (E - E0(V))                                       (4) 

i or                                         y^v) 
I P - P0(V)   =   -Xf- ET                                              (5) 

Utilising the vibrational formulation of energy, 

leads to 

E   =   ES(V) + EV(V. T) 

dE-       yr(V) 

dE y   (V) 

Equations (4) and (5) or (6)and(7) are  the Mie-Grüneisen equations 

of state. 

The preceding discussion was taken mainly from Anderson, Doran, and 

Fabrenbruch, 1965, pp. 5-6, and Fowles, 1964, pp. 49-53. 
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The preceding derivation of the Mie-Grüneisen equation is not the 

original derivation of Grüneisen.    Originally,  Grüneisen derived Equation (7) 

from force-field theory (Partington, 1957, p. 346).    Various other derivations 

from Debye's theory and from entropy have also been presented.    It would not 

be worthwhile,  for the purposes of this report,  to go into the details of these 

derivations.    However,  a point of definition of y^, which appears in these 

derivations is important. 

In statistical mechanics the isothermal equation of state may be repre- 

sented as (Slater, 1939, p. 217) 

p-po = 42^-^7 

where v. represents the vibrational frequency of the  j normal mode and 

/dinv.v 

'j   '    "  VätoV/, 

Grüneisen assumed that all of the y . were equal to each other and to 

a constant y (Slater, 1939, p. 219).    Under this assumption 

■• /din v. \ d in v /oxnv. v 

[dtnV ), r2   "        \dtnV lT   =    " dfnV   =   y3   =   rG 

According to the Dcbye theory,  the limiting frequency v defines the 

frequency spectrum.    The frequencies of all the oscillations change in the 

same ratio as the change in v        . (Slater, 1939, p. 238) 

Thus d In v  max 
dinV 
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lm In practical applications of the Mie-Gruneisen equation,  the Grüneisen 

parameter y, has been used rather indiscriminately.  Fumi and Tosi,   1962, 

have noted the conditions under which its use is valid.    The following is a 

discussion, taken from their paper,  of the use of y- in equations of state. 

Because 7- is usually the easiest to determine experimentally, it has 

often been substituted for Y. and Vy. Such a substitution, however, is valid 

only if X or y, do not change with temperature, as seen from the following 

equations which relate  Y. with Y, and y.: 

„       Ev /8 yi\ 
V! = C^ hfl <8i 

ET /8 rz\ 

U It does not follow that because X, does not change with temperature 

that y, and y. also do not.    It can be shown,  however,  that if,  in a tempera- 

r ture range from 0 K upwards, 

L s =s^)) 

" as would be the case if y, were a function of volume only, then y, = Yy in the 

t- same temperature range.    This equality also applies if,   from 0 K upwards, 

L 
I  r 

cv<v'T) = cv {em) 
• I. 

and the entropy at 0 K is a constant. 

L 
In other words,   to summarize the preceding discussion,  if y. or f- are 

f* 12 
functions of volume only,  then 

r yi   =   y3  =   ^G 

or 
y2   =    ^   =    yG 
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I 
|l 
I Because y^ is a function of volume only in a certain range of temperature 

I    4 do«i not mean,  however,   that Equations (4) and (5) or (6) and (7) are necessarily 

[ 

I 
I 
I 
I 
I 
I 

valid. Equations (4) and (5) are valid if 7, is a function of volume only in the 

temperature range from zero degrees absolute upwards,   or if 

'V^(V)j CV(V.T)   =   Cv(ä^) (0OK upwards) 

in the same temperature range     and the entropy at zero degrees absolute 

is constant. 

If the energy can be expressed according to Hildebrand's approximation: 

or 

E   =   E0(V) + ET(T) 

E   =   ES(V) + EV(T) 

then the relationship between the various Vs are 

Ev  ^(V.T)   =   TCV VjiV.T) (10) 

and 

ET y2(V.T)   =   TCV  y3(V,T) (11) 
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Section 4 

EXPERIMENTAL DETERMINATION OF GRÜNEISEN PARAMETERS 

A.       UNDER HYDROSTATIC CONDITIONS 

a.       Form of Experimental Data 

Before discussing the experimental determination of the various y's, 

it will be well to review the form in which experimental data is presented. 

Experimental, hydrostatic data are usually presented in one of two 

ways.   In Slater's notation (Slater, 1939, p. 200) 

V   =   V00(l +a0(T) -a1(T)P + a2(T)P6 + ...) (1) 

Thus, at zero pressure 

0=   (l/VOT)(aV/dT)p=0   =   (l/l+an)dan/dT«daft/dT 0T' •0/ --Q/ 

and 

ßj  =   -(l/V0T)(öV/aP)T p=0  =   aj/1+aQttaj 

Bridgman,   on the other hand, presents his data in the form 

V-V, 

(2) 

(3) 

.°I   =   aP-bP2 

0T 
(4) 

When V0T is the volume at zero pressure^ and temperature T.    Thus, 0T 

ßT « .(i/v0T)(dv/dP)TjPs0 (5) 
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b   =   a2/l+a0 

To convert Bridgman's data to Staler's notation (Overton, 1962, p. 118): 

I V0T   =   V00<1+V 

T a   =   al/1+a0 

I 
I 
I 
I 

Equation (1) can be rewritten in the following form 

P   =   P0(T) + P^T) ^V00 - V)/V00j + P2(T) [(V00 - V)/V00]2 
...       (6) 

where P0(T) becomes zero at absolute zero.    In terms of Equation (6) the 

heat capacity at constant volume is (see Slater, 1939. p. 204) 

cv ' cv0-vooT [d2Px/dT2 [(V00-V)/V00j+ 1/2 d^/dT2 [(V00-V)/V00]2 

+ l/3d2P2/dT2[ivoo-V)/V00j3...j (7) 

where Cv   is the heat capacity at volume V-Q. 

b.       Grüneisen Parameter y. 

As mentioned previously,   the Grüneisen parameter,y_, is usually 
determined experimentally from the relationship 

y3(V.T)   =   aV/ßTCv (8) 

This PA(T) is not the same as PQ(V) used previously.   The latter represents 
the elastic pressure on the zero-degree isotherm while the former is the 
pressure required to reduce the volume to V00. To avoid confusion P0(T) 
will be called PX(T) in this paper. 
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or alternatively 

y3(V.T)  = flfV/^scp (9) 

where Äe is the adiabatic compressibility 

(  = -(l/V)(dV/dP)s. /?scp  =   Äfcv) 

Like any other state variable,  the Grüneisen parameter is a function 

of two independent variables.    If one independent variable is set, then the 

parameter becomes a function of the other.    Because the independent variables 

moat convenient to work with arc pressure and temperature, Equation (8) could 

just as well be written in terms of P and T.    Such an equation can be written 

(10) 

i If P is set at zero.  Equation (10) becomes a function of temperature alone. 

Equation (10) thus gives us the temperature dependency of y, along an isobar. 

Because the volume expansion of a solid at zero pressure is relatively slight - 

aluminum increases its volume by only 

(10) is only slightly volume-dependent. 

aluminum increases its volume by only some 5% from 20 C to 600 C - Equation 

In principle, the volume dependency of y, could be checked by holding 

temperature constant and letting volume or pressure vary.    This procedure 

would require thermal expansion,   heat capacity,  and compressibility data at 

various pressures.    Unfortunately,   such data is not generally available. 

Barren, Leadbetter,   and Morrison, 1964, p. 75,  have made a rough esti- 

** mate of the volume dependency of y    from Equation (8) for NaCl and KC1. 

Their thermodynamic equation,  derived from Equation (8), for this depend- 

ency is 
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1. 

At T **• 300 K they found (pressure presumably zero) 

idbiy /»my, v 

(rsnr-L ~0-3 'NaC" 'T 

- 1.9 (KCl) 

It is pointed out,   however,  that the accuracy of the above results may 

be in error by + 100%, or more, for NaCl and +50% for KCl. 

Making various approximations and interpolations of experimental data, 

Ku (1967) used Equation (10) to calculate y.. value« at different temperatures 

and pressures for a number of different plastics.    His results are given in 

Tables 4-1 through 4-4. 

[ 
I 
I 
I 
I 

c.       Determination of Grüneisen Parameter from Thermal Expansion and 
T Heat Capacity Data 

Although heat capacity and thermal expansion data at zero pressure are 

readily available for most elements and compounds,   compressibility data 

over extensive temperature ranges is very limited.    Thus,  Equation (10) 

cannot be used in most cases to test the temperature dependence of y.. 

Another equation,  however,   was derived by Grüneisen which does not require 

compressibility data over an extended temperature range.    The derivation of 

this equation is based on the expansion of the term V dE_/dV in the Mie- 

Grüneisen equation.   At zero pressure (Partington, 1962, p. 351) 

dE„ 
Vr-.E, dV 'G^V 

and after expansion of V dE^/dV in powers of (V - VQQ) 

V      - V V0T    v00 
/?, 00 

[,      l-Kn + np/S      V0T" V00 1 „ ..,. 
1 ' Z    " V^- J yGEV (12) 

4-4 



i 
I 
I 
I 
I 

i 

I 

LMSC/HREC A784868 

GRÜNEISEN PARAMETER 

Table 4-1 

V- OF SOME COMMON PLASTICS (Ku, 1967) 

Plastics Griincisen 
Parameter 

Pressure 
atm 

Temp 
0c 

Polyethylene - low density 1.213 10.000 20 

Polyethylene - high density 0.812 2,000 20 

Teflon 0.941 10,000 20 

Nylon 0.796 1 20 

Kel-F 0.305 10,000 20 

PMMA 0.285 1,000 21.1 

Polyester (Sectron 5003)° 1.04 10,000 20 

Polystyrene 1.44 1 — 

0.995 1.910 29 

Polypropylene 1.80 618 23 

Cellulose acetate Butyrate 0.595 1,910 181 

Ethyl Cellulose 0.480 1,910 196 

Polyvinyl 
Chloride - Pure 0.646 1,000 0 

0.865 1,000 20 

- 10% Plasticizer 0.819 1,000 0 

0.866 1,000 20 

- 20% Plasticizer 1.32 1,000 0 

0.910 1,000 20 

- 30% Plasticizer 1.16 1,000 0 

* 
0.913 1.000 20 

; ( 
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Table 4-2 
GRUNEISEN PARAMETER Y^ OF TEFLON (Ku,  1967) 

Pressure, atm 
Temperature    C 

20 40 60 80 

1 .935 .768 .374 .290 

1,000 .651 .698 .411 .355 

2,000 .591 .611 .469 .417 

3,000 .547 .577 .505 .459 

4.000 .568 .520 .538 .505 

5,000 .598 .557 .561 .533 

6,000 .615 .576 .577 .556 

7.000 .656 .627 .611 .581 

8.000 .724 .680 .645 .611 

9.000 .819 .774 .720 .657 

10.000 .941 .866 .808 .741 

Table 4-3 

GRUNEISEN PARAMETER   ^ OF POLYETHYLENE (Ku, 1967) 

Pressure, atm 
Temperature    C 

20 40 60 80 

1 1.177 .815 .539 .918 

1.000 1.990 1.431 1.041 1.585 

2,000 1.664 1.164 .885 1.147 

3.000 1.657 1.172 .927 1.047 

4.000 1.654 1.226 .977 1.172 

5,000 1.559 1.198 .959 1.074 

6,000 1.597 1.254 1.015 1.271 

7,000 1.398 1.121 .920 1.330 

8.000 1.332 1.088 .896 1.269 

9,000 1.216 1.019 .840 1.393 

10.000 1.213 1.026 .846 .776 
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Table 4-4 

GRUNEISEN PARAMETER V. OF KEL .-F (Ku,  1967) 

1   Pressure, atm 
Temperature    C 

20 40                60 80 

|                     1 .857 .693 .730 .604 

1,000 .710 .620 .588 .545 

2,000 .645 .594 .554 .535         | 

j             3,000 .623 .586 .534 .510 

4,000 .617 .579 .500 .515 

5,000 .614 .580 .538 .502 

6,000 .599 .557 .507 .482 

7,000 .565 .516 .473 .447          1 

8,000 .502 .455 .416 .398         1 

1             9,000 .416 .374 .346 .324         ! 

10,000 .305 .271 .251 .235 

.. 

1. 
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where  n and  m are constants associated with the repulsive and attractive 

force«.    Equation (12), after some simplifying assumptions,  can be written 

(Gruneisen, 1926, p. 46) 

V0T-V00 E^_ {n) 
voo Q0-(yG + |)Ev 

v 
where Q    =   —j=- 

0        ' r. Pi COO 

Differentiation of Equation (13) with respect to temperature,  assuming 

gives |    [ («^«fe^' 
^Z \"5TI  "' (I4) 

00    ' w ' 'P= 

«of-^T'T-iJ 
2> EV : r 

I 
I 
mm 

The assumed temperature independence of y^ can thus be tested by 

using Of and Cv values at various temperatures and zero pressure. 

A« pointed out by Hume-Rothery, 1945, p. 210, the term (y_ + •%) -^r— becomes 

increasingly important at high temperatures. 

To a first approximation Equation (14) can be written 

vooa 

G       *oo cv 

d.       Slater and Dugdale-MacDonald Relations 

Because the volume dependencies of yc and y. are of great interest, 

and the data for their calculation from thermodynamic equations are in short 

supply,  great use has been made of the Slater relationship (Slater, 1939, p. 239): 

ys(V)  =   - 2/3 - 1/2 V (a2P/dV2)tr/taP/dV)T (16) 
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This equation was derived by assuming that 

VS{V)   = d In v-       /d to V max' 

where v- is Debye's limiting frequency.    It is also assumed that the 

Poisson ratio is independent of volume. 

i. 

The Grüneisen parameter determined by Equation (16) is labeled yc 

because,  as Collins, 1962, p. 323,  points out,   y_ can be identified with y_ 

obtained from thermal expansion only if Poisson's ratio is independent of 

volume.    Usually this is not the case. 

At absolute zero and zero pressure,   the volume is V00 and Equation 

(16) takes the form 

o 

3   -1 
(17) 

where P. and P2 represents the temperature dependent parameters at T = 0 K. 

Because to a good approximation P. and P2 can be taken as equal to P,  and 

P. at room temperature (Kachhava and Saxena, 1965, p. 986) and thermal 

volume expansion is assumed negligible (Slater, 1940, p. 745),  Slater's relation 

can be written 
P. 

(18) 2*2 
yS = "3  +P7 

or,   in Bridgman's notation 

_b 

a 
yS   =      2 " 3 (19) 

for room temperature and zero pressure. 

Gillvarry, 1957, p. 1258,  using a generalized isothermal equation of 

state,  showed that even though y. is temperature dependent,  this dependency 

is not manifest at zero pressure.    At zero pressure yc is strictly constant 

at any temperature.   Thus,  Slater's relation apparently cannot be used to test 

the temperature dependency of y. at zero pressure. 
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If the preceding assumptions are granted, Equation (16) can be used to 

determine the volume dependence of y..    In Bridgman's notation,  Equation 

(16) becomes 

?s(v) = "T + -Tr b 5 3     aZ     1 + 24 

V/V 
00 

<1 ■ v/voo)l 
(20) 

To the best of our knowledge the above equation has not appeared as 

such in the literature nor has a critical evaluation of its validity. 

There appears in the literature another equation for Slater's relation. 

This is ,     v 

2     v\aV/s 

Ms 

Although no discussion has been found in the literature about the condi- 

tions under which Equations (16) or (21) should be used,   some pertinent points 

have been found: 

Slater's derivation of Equation (16) is based on the relationship (Slater, 

1939, p. 238) 

v max 
9 N    i  y/3 

4n V    1   7 2 
-I + -3 

(22) 

vl      vt 

where v. and v   are the velocities of the longitudinal and transverse waves. 

The wave velocities are related to compressibility by the following equations. 

ri        lf/8P(l - 
and   v,. = V 3(1 - 2<T) 

where o is Poisson's ratio. 
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Dugdale and MacDonald, 1953, p. 834,   state that the propagation of a sound 

wave (presumably under zero applied pressure) at low temperatures will be 

isothermal,   while at higher temperatures,  including room temperature,  the 

process will be practically adiabatic.    Gilvarry, 1956, p. 333,   on the other 

hand, points out that at low pressure the adiabatic or isothermal compres- 

sibilities are for practical purposes,   identical. 

It is apparent that more study of this matter is required to resolve 

the confusion. Of course, at zero degrees absolute, no ambiguity exists 

because,  at T = 0 K, 

(l-vl  =  (fl 

Dugdale and MacDonald (1953) objected to Slater's relation because 

they claimed that the effect of finite strain was neglected.    They proposed 

the following relationship instead 

.V/(PV2/W.. 

1. 2   8(PV2/Vav 
• - 

Their reasoning was shown to be in error by Gilvarry (1956) and Barren (1957). 

However,  Equation (23) has shown good agreement for zero pressure tests 

(Rice,  McQueen,   and Walsh,   1958, p. 44).    Generally, there is no firm basis 

for preferring Equation (23) over Equation (16) (Doran, I960, p. 29). 

r 
»• e.       Grüneisen Parameter y. 

* 

1. If a means is available for obtaining PT(V, T), then VjfV» T) can be 

determined from 
y2(v. T) 

1. P      =   —=   E T V T 
• - 

The term P— can be easily obtained if the P-V zero degree isotherm 

and P-V isotherms are available.    From such data, P_ is obtained by 
T 
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P— = P - P  .    Unfortunately, compressibility data is in short supply,  so 

some other expedient for obtaining P-, is desirable. 

n 
Bee croft and Swenson (1961) found that if the isothermal compressibi- 

lity of a substance is linear with volume and independent of temperature,   the 

determination of P_ is greatly facilitated.    The following will briefly review 

the approach of Beecroft and Swenson. 

If the compressibility is a function of volume alone and independent of 

temperature,  then P-, becomes a function of temperature alone.    This becomes 

obvious if one integrates the expression for compressibility, i.e., 

=   f(V) vySp), 

fdP   =   .f{{y)^. + g(T) 

P   =   Po(V) + PT(T) (24) 

Thus,  if the compressibility is a function of volume alone, P (V) and PrT,(T) 
I. oi 

can be evaluated. 

Furthermore,  if P_, is a function of temperature alone then 

dP,, 

\öT/v       ß dT 

so that a/ß is a function of temperature alone.    Thus a/ß found at P = 0 can 

_. be considered as a constant for a given temperature. 

The expression for E— is found by integrating 

r    „ ^ - Ta -p 
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Thu., /.E(VpT.T) yVpT /-,pT /•VPT       ryi 

and 

E =   T  ^    /    dV   - |     PdV (25) 
P 

OTT) VOT VOT 

•E« /-Vpo 

/•-/ 

E   =   -    /    P dV (26) 

I Eoo EArt V, 00 

Subtracting Equations (25) and (26) gives 

I ET   =   E(V, T) - E0(V)  =   E(V0T. T) - E00 + T | (VpT-V0T) 

•v,,^ ^vpo yp;dvt| 
VOT" VOO 

PdV (27) 

The terms 

E'V0T' T) " E00 

can be replaced by H at P = 0 and T.    This follows from 

(f)p = (i)p-(a 
»tp=o 

(i)p - (i)p = CP 
and 

H(P = 0.T)   =   E(P = 0. T)   =/      CpdT 

0 
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The term E00 is arbitrarily set equal to zero.    The last two integrals 

of Equation (27) can be evaluated from experimental,  compressibility data. 

Beecroft and Swenson found for sodium,  that the compressibility could 

be assumed,  to a first approximation, as independent of temperature and a 

linear function of volume.    Their experimental data is shown in Figure 4-1. 

Least sq uaros fit of the pn ints shown 

1.8 

1 

to a straight  1 ine 
1         '         1         '         1 1         1 -1          | —T— 1 

? 1.6 
£ 
(* «^ 
H1.4 

2 1.2 

— 
Isothermal Compr.ssi 
Molar Volume for Sod 

bility 
urn 

V8 

• ^ 

s _ 
— 105^T= -3.09 + .198V 

--'•0,a-15V61' 
«4 ̂  

^ 

^ 
— 

ii 

^ 1.0 
> 

- 

^ 

A 20OK 
— 

| 0.8 
X 

ID 

2 0.6 

mm s* X 204 0K ^m 

li < 
o 

• 

297ÜK 

All other 

- 

1 
1     •     1    1 .  i i         1 1 1 1   I 

19 20 21 22 23 24 

Molar Volume,   rm 3 

Figure 4-1 - The Isothermal Compressibility of Sodium as a Function of Molar 
Volume 

From this data and heat capacity data at zero pressure the temperature 

and volume dependence of y, was calculated.    The results are shown in 

Figure 4-2. 
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3.0 

2.0 

1.0 

Variation of the Gruneisen Constant 
with Molar Volume for Sodium 

P-V Isotherm (Slater) 

P-V Isotherm 
Du gda 1 e - Ma c Dona Id 

Thermal 

100oK 

o - y3,P=0 

Thermal - y. 

X X X 
19        20       21       22        23       24 

3 
Molar Volume, cm 

Figure 4-2 - The Volume Variation of the Grüneisen Constant as Given 
by Various Definitions 

B.       UNDER DYNAMIC CONDITIONS 

a.       Method of Rice,  Walsh, and McQueen 

In the shock wave determination of the Gruneisen constant, tue form 

of the Mie-Gruneisen equation of state usually assumed is the thermal 

formulation 

P - P0   =   (yG/V)(E - E0) (28) 

Equation (28) combined with the shock Hugoniot, 

EH ■ E0H   =   <V2><V0H " V> (29) 

where Enu and Vnu are conditions ahead of the advancing shock and P    the 
'OH OH H 

pressure behind the shock, gives 
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^G   =   V<PH - P0>/[(PH/2)(V0H " V> + E0H " Eo] <30> 

rv 
I     P0 dV (E00 the energy at zero degrees absolute and sero 

pressure is arbitrarily assumed zero).    The term E0H is found by integrating 
the Debye specific heat curve from zero degrees absolute to the temperature 
at the initial shock conditions. 

It is further assumed that 

yG   =   - 1/2  [(d(P0V2/3)/dV2)(d(P0V2/3)/dV)] - 1/3 (31) 

This latter equation is the Dugdale-MacDonald modification of Slater's 
formula assumed to be valid along the zero degree isotherm.    Thus, 

- V/2 [(d(P0V2/3)/dV2)/(dP0V2/3/dV)] -1/3 

= V(PH.P0)/[(PH/2)(V0H-V) + E0H-E0] (32) 

Knowing the initial conditions of specific volume,  compressibility at 
zero degrees absolute and zero pressure,  and specific internal energy EnH 

(relative to EQ0),  Equation (32) can be integrated.    The result is the zero 
degree isotherm.    From this zero degree isotherm,   y _ is evaluated using 
Equation (31). 

The preceding discussion was taken mainly from Rice,   McQueen, and 
Walsh,  1958, and Deal,   1962. 

Rice, et al,   1958, p. 57,  present their calculations of y- in the form 

(33) rG(v)   =   ynu+A^+B^2 + C^3 r0H 

where ß * P/ftnu ' l' ^ B' a,ldC *" constants, and ynu is the value of y^at «ero OH OH 
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pressure. The values of >0H were choosen to correnpond to those obtained, 

at aero pressure, from the equation 

va 

To check the  consistency of the preceding method,  the Ougdale- 

MacOonald y is found at aero pressure from the relationship 

y   =   2S- I 

(34) 

(35) 

where S is the constant in the linear relationship between shock velocity and 

particle velocity, i.e., 

VS   =   C0 + SVP 

Equation (35) represents the Du gd ale-Mac Dona Id parameter at aero pressure 

as derived entirely from shock data.    The derivation of Equation (35),   which 

is not discussed here,  is straightforward (see Deal, 1962, p. 206).    The param- 

eter determined from Equation (35) may now be compared to that determined 

by Equation (34).    Such a comparison shews that the two y's agree fairly well 

for many elements (McQueen,   1964, p. 68). 

L 

b.       (dE/dP)v Assumed Constant 

If the assumption is made that (dE/dP)v is independent of pressure and 

volume in the vicinity of the Hugoniot, and y . is a function of volume only, 

then yr can be determined from the equation (Deal, 1962, p. 206, and McQueen 

and Marsh, I960, p. 1267): 

TV(V) vfe (36) 
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data by 

The term O^l    is determined from Bero    ressure.  thermodynamic 
V 

faE\ (11 cvßi 

Deal, 1962, p. 206,   states that the above procedure is justified because 

it reproduces well equations of state obtained by more complex procedures. 

A comparison of the results obtained by this method with other methods, 

however, has not been found. 

c.       yG from Speed of Sound Measurements behind Shock Waves 

An adiabatic equation of state may be written in terms of the Hugoniot, 

just as an isotherm was in Section 4 B. a.     Consider Figure 4-3. 

Hugoniot 

Adiabat 

Figure 4-3 - P vs V Curve to Illustrate Relationship Between Sound Speed 
Behind a Shock Wave and Intersection Between Adiabats and 
Hugoniots 

4-18 



ü 
0 
1. 
i. 

Hi 
i; 

i: 
L 

.. 

-. 

i. 

LMSC/HREC A784868 

At volume V. the pressure on the Hugoniot can be given by 

PH ' P0   =    Vj (EH " E0) 

while that on the isentropc by 

Thus, 

Or,  generally 

P
A-

P
O = 7;<

E
A-

E
O) 

PA-PH  =   Vr^A^H1 

PA ' PH   =   T (EA " EH) 

Differentiation of the above equation gives (Deal, 1962, p. 205) 

lfHt(p .p .-.m.vfi^H.lfA] 
dV     + ^H     ^A'dvLyJ+ y [ dV dV  J (37) 

At volume V. where the Hugoniot and adiabat intersect.  Equation (37) 

becomes 

P      s   p 
*H A 

dE 

"d 
fH+vf^H     dPAl 
V       y [ dV    "   dV   , 

or 

LdV     '   dV . 
dE 

P    +     P ^HT      dV 

(38) 

dE H To find ■ ...    ,  the equation of the Hugoniot is differentiated,  i.e.. 

EH - E0H   =   -T <V0H - V> 
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dE .   dP 

dV 2    dV    y   OH       ' 
H 

So that Equation (38) becomes,  at volume V, (McQueen, 1964, p. 70) 

VG(V)   = 

dP H 
dV 

til 
dV 2V 

dP 
PH + 

H (39) 

dV    <V0H-V) 

The speed of sound,  it may be recalled,  is given by 

v2(ia 
Thus,   if the speeds of sound along a Hugoniot can be measured and the 

slopes of the Hugoniot as functions of volume known,   y _(V) can be calculated 

with the aid of Equation (39). 

The preceding discussion,  taken from McQueen,   1964,  p. 70,  and Deal, 

1962,  p. 205 represents the general basis of the method.    The actual deter- 

mination of y from sound speeds behind shock waves,  however, (Al'tshuler, 

Kormer, Brazhnik, Vladimirov, Speranskaya, and Funtikov, 1960; see also, 

Anderson, 1965) was approached in a slightly different manner apparently, 

because Hugoniot slopes obtained from dynamic measurements are inaccurate. 

In the experimental paper (Al'tshuler et al, 1960),  it is reasoned that since 

and 

then 

H 

,ap 

P0 + PT 

R > 0 

ap 

or 

m >Q) 
CH>C0 
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where CH is the isentropic sound speed along the Hugoniot and CQ the sound 

■peed at absolute aero.    The sound speed C» may be written 

2 1   dP0 

m where  fL is the density of the initial Hugoniot state and 9= P/Pn'    If expression(40) 
u 2 2 

T is integrated using C„ instead of C-, i.e., 

T P0<a) <   rp0 CH da   =   I(a) - I(a00) = 1(0' 'OO* 

g, where 0QQ = P/p00i  P00 being the density at T = 0 K and P = 0, then the function 

1(9, OtfJ provides an upper limit to the zero degree isotherm. 

I 
The Gruneisen parameter is then determined by using a Mie-Grüneisen 

equation for PH which includes electronic contributions. For P0,  1(9, 0L.) is 

substituted. 

The Grüneisen parameters obtained in this manner are 20 to 25% lower 

that those obtained by the method of Rice,  Walsh and McQueen in which the 

^ electronic contributions are taken into account. 

d.       Other Methods 

Other methods of determining the Grüneisen parameter which are 

mentioned in the literature include varying the initial E0H state before 

— shocking by heating or by the method of reflected shocks.  However, very 

little work appears to have been done in this area. These methods have not 

been investigated thoroughly. 
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Section 5 

CALCULATIONS OF VARIOUS GRÜNEISEN PARAMETERS FOR 
MATERIALS OF STUDY 

A.       GRUNEISEN'S PARAMETER y, FROM HYDROSTATIC DATA AT 
ZERO PRESSURE 

a.       Calculations 

As discussed in Sertion 4A.b. ,  the relationship 

^^•^       =      0TCV       =       ^gC^ 

is usually used to test the constancy,  at zero pressure,  of y, with tempera- 

ture (the slight volume dependency of y, because of thermal expansion is 

usually ignored). 

To use the above formula,  thermal expansion,  compressibility,  and heat 

capacity data at various temperatures are required.    Although thermal expan- 

sion and heat capacity data at zero pressure are readily available,   compres- 

sibility data is scarce.    For the materials of this study, compressibility data 

over an extended temperature range was found only for aluminum.    For the 

other materials, with the exception of the plastics, enough data was found to 

enable calculations of y, at room temperature. 

r 
|, Because the plastics of the study are composite materials that have 

varying compositions and porosities, they presented special problems which, 

unfortunately, have not yet been resolved. 

In this section the references are numbered. 

: i: 
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The results of the calculations of y- from hydrostatic data at sero 

pressure are presented in Table 5-1. 

b.       Discussion of Results 

Because of the approximations made in the calculations and uncertainties 

in some of the experimental data,   it is hard to state with certainty the errors 

associated with the calculated values.    Gschneider (Reference 12, p. 416) states 

that most of the Gruneisen parameter data agree with each other only to about 

10%. 

What would be desirable to increase the precision of the above y~ calcu- 

lations are more precise coefficients of thermal volume expansion. 

Some of the other uncertainties which influence the accuracy of the 

above calculation are: 

1. The data on thermal expansions and heat capacities of metals 
have been evaluated for accuracy.    In Reference 8 the data of 
various investigators is reduced to curves through "most 
probable values."   No such evaluation exists, as far as we 
know, for compressibility data.     The data available on com- 
pressibility is limited and as yet has not been critically 
evaluated in a comprehensive way.    A brief discussion of the 
errors involved in compressibility data is given by Gschneider 
(Reference 12, pp. 298-305). 

2. Although accurate data exist on heat capacities at constant 
pressure of metals over a wind temperature range, uncer- 
tainties creep in when this data is converted to heat capacity 
at constant volume. 

The Nernst-Lindemann relationship below is used for the 
conversion 

Cp   -  CV   =   A T CP 

For copper, A varies only by about 8% over a 1200oK tempera- 
ture range (Reference 25, p. 264);  its variation for other materials 
would need to be looked into in further detail. 

5-2 
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3.    Possible errors arising from crystal »nisotropy were not 
investigated.     It is assumed that the data used to calculate 
y-y  are representative of isotropir polycrystalline material. 

From Table 5-1, it can be seen that  y*   for aluminum shows no consistent 

variation with temperature from room temperature to 77 3* K. 

- • 

|, Although the present aluminum values of y   are higher than thope given 

by Moelwyn-Hughes (Reference 17),  very little variation of y  with tempera- 

ture is indicated in both sets of values.     The reason for our  y  values being 

higher than those of Moelwyn-Hughes lies in different values of the thermo- 

dynamic functions.     However, our value at 293   K,   2.25,   compares well with 

the value,   2.17,   given by Grüneisen in his paper "The State of a Solid Body" 

(Reference 11). 
«» 

Discussion of the temperature variation of y   found in the literature 

indicates that the variation is greatest at temperatures below the Debye 

temperature.     Bijl and Puilan present the figure (Figure 5-1) on the follow- 

ing page for the  y   variation at low temperatures (Reference 3). 

In contrast to the results of Bijl and Puilan,   the experimental results 

of Figins,   James,   and Riley (Reference 6) indicate that  y-i   increases at very 

low temperatures.    Apparently,  the variation of  y^  with temperature is still 
• ■ 

an open question. 

Alder (Reference  1)   makes  the   slalement  that   y-,   might be  expected 

to decrease   from  about  two   to   its   classical   perfect-gas   value  of 2/3, 

if the temperature   is   raised   holding  the  density   constant.     On  the   other 

hand,   Cy and,  hence,   y   might be  nearly  independent   of temperature. 
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389   K for aluminum 

Figure 5-1 - Variation of Gruncisen Parameter at Low Temperatures 
for Aluminum (Reference 3) 
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The calculated y, values for the rest of the metals, with the exception 

of tungsten, agree fairly well with those given in the literature.    For tungsten, 

our lower y, value undoubtedly arises from our value of a which is lower than 

that ususally found in the literature.    Our a value was calculated from very 

recent data.    However,  the accuracy of this data needs to be evaluated. 

B.        y., FROM THERMAL EXPANSION DATA AT ZERO PRESSURE 

a.       Calculations 

As discussed in Section 4. A.c., the constancy of y- with temperature 

may be tested by the relationship 

V    a V00 
ßnn C\r "        "00 

In this study the calculation of yr by the above formula was accomplished 

by calculating the ratio Vnn/ßnn at room temperature using the values of y., 

Cy,   and 0 from Table 5-1.  Whether this procedure is strictly valid needs fur- 

ther investigation.    The values of a and Cv at temperatures other than room 

were calculated in the same manner as inTahleS-I.   The results of these cal- 

culations are presented in Table 5-2. 

b.       Discussion of Results 

The accuracy of the preceding results suffer,   as did the results of the 

calculation of y,,   from a lack of knowledge of precise values of coefficients 

of thermal expansion.     However,   it would appear that,   for the metals,   y. 

tends to increase with increase of temperature while,   for the carbides,   y_ 

tends to decrease. 

The increase in y „ with temperature is probably not real because,   as 

discussed in Section 4. A.c,   the formula yr = ^0^/^00'-'v '" va^ only ai 

an approximation,   especially at higher temperatures. 

: 
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t i 

. Table 5-2 

y^ FROM THERMAL EXPANSION DATA AT ZERO PRESSURE 

i. 

Material T°r a x 10+5 CV 
cal             . 

(gm-atm   K) 

V00//?00      , 
cal (gm.atm)"1 

yG 

Al 273 7.01 5.496 1.73xl05 2.20 

293 7.01 5.606 2.17 

296 7.01 5.603 2.17 

298 7.01 5,602 2.17 

303 7.48 5.623 2.31 

373 7.48 5.837 2.22 

436 8.47 5.997 2.44 

573 8.47 6.252 2.34 

708 9.92 6.385 2.69 

773 9.92 6.491 2.64 

Be 303 3.35 3.88 l.46xl05 1.26 

373 3.35 4.45 1.10 

573 4.91 4.97 1.44 

673 4.82 5.42 1.30 

873 5.59 5.78 1.41 

1073 5.99 6.03 1.45 

1273 6.46 6.28 1.50 

W 298 11.23 5.89 7.08xl05 1.35 

400 11.76 5.96 
• 

1.40 

500 12.28 6.04 1.44 

600 12.80 6.11 1.48 

700 13.32 6.18 1.53 

800 13.85 6.26 1.57 

900 14.37 6.33 1.61 

5-10 
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Table 5-2 (continued) 

Material Temp 
0K 

axio+5 

cal 

(gm-atm   K) 

V00^00 
cal(gm.atm)"* 

yG 

1000 14.89 6.40 1.65 

1200 15.93 6.54 1.72 

1400 16.98 6.67 1.80 

1600 18.02 6.81 1.87 

1800 19.07 6.93 1.95 

2000 20.11 7.07 2.01 

Ta 298 1.80 6.018 5.68xl05 1.70 

400 1.80 6.198 1.65 

700 1.94 6.388 
f 

1.74 

1200 2.24 6.516 1.95 

1600 2.67 6.658 2.28 

2000 2.66 6.893 2.19 

2400 3.10 7.288 2.42 

3000 3.66 8.998 2.31 

WC 298 1.35 9.816 9.82 xlO5 1.35 

400 1.35 11.324 1.17 

600 1.50 12.582 1.17 

800 1.35 13.231 1.00 

1000 1.50 13.698 1.08 

1200 1.49 14.088 1.04 

1400 1.94 14.436 1.32 

1-00 1.64 14.757 1.09 

5-11 
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Table 5-2 (concluded) 

: 

Material Temp 
0K 

axl0+5 
CV 

cal 

(gm-atm 0K)"1 

^0^00 

cal (gm. atm) 
yG 

SiC 298 1.20 6.389 6.65xl05 1.24 

300 1.20 6.443 1.24 

500 1.50 9.321 1.07 

700 1.50 10.321 .97 

900 1.64 10.898 1.00 

1200 1.64 11.505 .95 

1400 1.79 11.836 1.01 

1600 1.94 12.135 1.06 

1800 1.64 12.411 
i                ■      i     i         i 

.88 
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The tendency for Y„ to decrease with increasing temperature in the 

case of the ca-hides, however,   is difficult to explain. 

It is reported (Reference 18, p. 351) that,  for beryllium,   >»„, calculated 

using a variation of the Grüneisen formula used here,  gives an indication of 

becoming negative at very low temperatures. 

C.        y2 FOR ALUMINUM AND TUNGSTEN BY THE METHOD OF BEECROFT 

AND SWENSON (Reference 2) 

a.       Calculations 

The method of calculating Yy from 

y2 P> -     —Z.   XT 
T    ~   W       T 

was discussed in Section 4.A.e.    The method has been applied to both 

aluminum and tungsten in this study. 

The validity of this method rests on the temperature independence and 

linear volume dependence of compressibility.    For aluminum the tempera- 

ture and volume dependency of compressibility was checked by plotting 

compressibilities at different temperatures vs volume    (Figure ?-2).    As 

can be seen from the figure,   compressibility may be iaken to a first approxi- 

mation,  in the pressure range from 1 atm to about 30 kb and in the tempera- 

ture range 20 C - 435  C,  as independent of temperature and a linear 

function of volume. 

Tungsten compressibility data,  which was available at room tempera- 

ture only,  was found to be rather unusual in that it increased with decreasing 

volume (Figure 5-3).    This behavior certainly would not be expected for a 

metal,  and it would be interesting to examine this behavior further. 

The results of the calculations for aluminum are shown in Figures 5-4 

through 5-8    and for tungsten in Figure S-9. 
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r 
I, b.       Ditcusaion of Results 

In Figure 5-4 is shown the calculated zero-degree isotherm.    It can 

he seen that the calculated curve agrees excellently with the aero-degree 

values generated from shock data (Reference 24,  p. 214). 

In Figures 5-5 and 5-6 are shown the calculated tj   values for alumi- 

num at different temperatures as a function of volume.    In Figure 5-6 the 

scale expanded to show more detail.    The greatest change in y? occurs 

below 300oK.    The X, curve at 100oK is very interesting.    The V, values at 

this temperature are surprisingly high.    In an attempt to obtain more 

reasonable values at 100  K,  the integration interval was decreased in the 

computation of energy from the specific heat curve.    However, the diffi- 

culty persisted,  causing us to examine more closely the applicability of   he 

basic assumptions of the method to metals less compressible than sodium. 

These assumptions are that the compressibility is a linear function of 

volume and independent of temperature.    For aluminum, these conditions 

are only approximately fulfilled as shown in Figure 5-2.    We may conclude 

then that the method of Beecnft and Swenson is very sensitive to the slope 

of the compressibility vs volume curve, and the accuracy of y, values calculated 

by it is doubtful in cases where the linear volume dependence and tempera- 

ture independence of compressibility does not rigorously hold.    Thus, the 

fj values given in Figures 5-5,   5-6 and 5-9 for aluminum and tungsten 

probably are not very accurate, especially those for tungsten.    For tungsten 

compressibility data were found for only one temperature,   so that the 

assumption of volume linearity and temperature independence of compres- 

sibility is rather far fetched. 

Figures 5-7 and 5-8 show the variation of the thermal energy and the 

total ^recsare with volume and temperature.    They are included in this 

report for general information purposes. 
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D.       GRUNEISEN'S PARAMETER FOR ALUMINUM.  BERYLUUM, AND 
TUNGSTEN FROM SHOCK DATA 

A comparison has been made of the GrOneisen parameter as computed 

by several different methods from experimental P-V data.    These results 

have been plotted as a function of volume ratio in Figures 5-10,   5-11 and 

5-12 for aluminum,   beryllium and tungsten,   respectively.    All of the 

curves were plotted from data presented in Reference 15 with the exception 

of the curve labeled "Walsh,  et al" which was computed from the polynomial 

least square    curve    fit data presented in Table III of Reference 24. 

In the  Beers report (Reference 15) the experimental shock Hugoniot 

data (or tht isothermal P-V data in the case of Bridgeman's data) were fitted 

to two difftrent mathematical models which will be referred to a« the 

Murnaghan equation and the linear equation.    The MurnagKan equation ha* 

the form 

W 
K 

- 1 (1) 

For each material,  valuea of A and K were chosen to minimise the error 

between the mathematical expression and the experimental data. 

The linear model assumes a linear relationship between the shock 

velocity and particle velocity leading to an equation of the form 

U,   « Co+ S Up (2) 

Again,  for each material, values "f C0 and S were chosen to minimise the 

error between the linear model and the experimental data.    By combining 

Equation 2 and the Rankine-Hugoniot relations the following equation it 

formed. rZ iv   -v» 
P  .      C° (V»H V) „, 

Equations 1 and 3 represent two different analytical expressions for 

the same experimental P-V data. 
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In the Beers report,   the Slater formula and the Dugdale-MacDonald 

formula were applied directly to Equations 1 and 3 to obtain values of the Grüneiaen 

parameter.    The application of the Slater and Dugdale-MacOonald formulas 

to Rankine-Hugoniot and to non-zero   isothermal data is not theoretically 

correct,  since the derivations of both formulas were based on isentropic 

P-V relationships.   However,  for very small compressions the slope and 

curvature of the Rankine-Hugoniot curve approach that of an isentrope, which 

suggests that the Beers approximation of the Grüneisen parameter may be 

fairly good for small compressions. 

The Grüneisen parameter computed by Walsh, ct al,  (Reference 24) 

was obtained by generating a sero-degree isotherm using experimental shock 

data and commonly available material properties.    The Slater formula was 

then applied to the aero-degree isotherm to obtain the Grüneisen parameter. 

Since the aero-degree isotherm is also an isentrope this method is compatible 

with the assumptions inherent in the Slater formula. 

The Los Alamos equation is based on the linear equation and the 

Dugdale-MacDonald formula.    Using Equation 3 and the Dugdale-MacDonald 

formula, the Grüneisen parameter and the slope of the Grüneisen parameter 

with respect to volume  are   computed for aero compression.    The Grüneisen 

parameter at other volumes is then computed by the following equation 

OH   ' OH 
V) m P « 0 

The following two expressions were obtained from Reference 13. 

y0H= 2s-i 

($p.«-tf-W) 

(4) 

(5) 

(6) 

Substitution of Equations 5 and 6 into Equation 4 leads to Equation 7 which 

is called the Los Alamos equation in the Beers report. 

'•(4-')(s'-HH"-') (7) 
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;. 

.. 

The only experimenUl data required to compute the Grunieten parameter 

by this equation are the «hock and particle velocities which makes it 

attractive for materials for which limited information is available. 

1. 

Equation S has been verified by independent derivation.    However, an 

attempt to derive Equation 6 resulted in the following expression; 

im 
\dV/p=0 'OH kl s2+|s + I) (8) 

Until the discrepancy between Equation 6 and Equation 8   is   resolved,  the 

validity of Equation 7 is in doubt. 

Y2 USING MURNACHAN'S EQUATION 

One of the methods investigated as a means of evaluating the 

Grüneisen parameter involves the use of the Murnaghan equation to repre- 

sent P-V-T behavior.    The basic assumption inherent in the Murnaghan 

equation is that the isothermal bulk modulus of a material is a linear 

function of pressure (see Reference 26).    From this basic assumption the 

following P-V relationship along an isothermal can be derived. 

B: 

P = OT 

OT m OT 
- I (9) 

in which 

P = pressure 

V = volume 

B = hulk modulus 

B = rate of change of hulk modulus with pressure 

and the subscript OT indicates that the value of the variable should be taken 

at 0 pressure and the temperature of the isothermal.    Thus, a complete 

P-V-T relationship exists for a substance when B, B   and V are known as 

a function of temperature. 
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The objective of this investigation was to evaluate the Grüneisen 

parameter,   fj,  as a function of volume,  V,  and temperature,  T.    The basic 

equation used in this evaluation is 

h   - 
V(P-P0) 

E.Ert 
(10) 

in which E is energy at the specified volume «ad temperature, and E^ and Pg 

are the energy and pressure at zero degrees absolute.  At a given temperature 

the numerator of Equation (10) can be expressed in terms of V and T  by use 

of Equation (9).    It remains to express (E - E.) in terms of V and T. 

The path followed (1-2-3-4) in evaluating(E-E0)and the subscripts used 
in the following equations are illustrated in Figure 5-13.    The energy 

difference between 0 and 00 is 

Eoo-Eo 
■/• 

P(V) dV (ID 

00 

From 00 to 0T  the change in energy is 

E0T"E00 
■/' 

C    (T)dT 
P 

(12) 

and from 0T  to  PT 

EPT " E0T 

PT PT 
P(V) dV 

0T 0T 

But 

(a - ° B 

in which 

Of = coefficient of thermal expansion 

B = isothermal bulk modulus 
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If the assumption is made thataB is a function of temperature only (Refer* 

ence 2) 

=   a0T B0T 

and ^y 

EPT-E0T   =   T a0T B0T ^PT-VOT)    / ^  P(V) dV ^ 

V0T 

The sum of Equations (11),  (12) and (13) is the energy difference E - E0 in 

Equation (10).    P(V) along the two isothermals in Figure 5-13 can be 

expressed in terms of Equation (9) when the appropriate subscripts are used. 

These equations were programmed and K was computed for sodium 

and aluminum.    Input data for these computations are presented in Table 

5-3 and Figures 5-14 through 5-18. 

Volume expansivity data are given in Table 5-3 for a number of 

materials.    The numbers appearing in Table 5-3 are coefficients deter- 

mined by least squares techniques for the following polynomial: 

V-V 

in which 

Vstd 

V = volume 

—   =   0.01 (A + BT + CT2+ DT3) (14) 

V     . = volume at 2930K std 

T = temperature,     K 

The data front which the coefficients were determined   were  obtained 

from Reference 2 for sodium and from References 8 - 10 for the other materials. 

In the computation of ?, a value of 23.66 cm /mole was used for the 

standard volume of sodium, and a value of 9.998 cm /mole was used for 

aluminum. 
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, 

Volume 

Figure 5-13 - Path Followed in Evaluating Energy Difference 
Term in Equation (10) 
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Figure 5-14 - Specific Heat of Sodium (From Reference 14) 
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Figure 5-15 - Specific Heat of Aluminum (From Reference 14) 
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Figure 5-16 - Isothermal Bulk Modulus of Sodium (From Reference 2) 
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Figure 5-17 - Isothermal Bulk Modulus of Aluminum (From Reference 28) 
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Figure 3-18 - Pressure Derivative of Isothermal Bulk Modulus of 
Sodium (from Reference 28) 
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Table 5-3 

VOLUME EXPANSIVITY DATA 

Material A B x 103 C x 108 D x 1011 

^K)-1 (0K)-2 (0K)-3 

I       Na 
-4.14 -1.88 8660 -10700          j 

!      Ai -1.36 2.53 797 297          | 

1       Be -1.40 4.59 -1.25 92.7 

1       W -0.404 1.28 2.11 4.69    | 

1       Ta -0.593 2.04 -2.17 7.67    1 
wc -0.424 1.43 -13.1 11.4 

SiC -0.384 1.32 -15.4 -0.13 

The pressure derivative of isothern-jal bulk modulus for aluminum 

used in the computations has a constant value of 5.55.    This value was 

obtained from Reference 29.    Both the isothermal bulk modulus and the 

pressure derivative of isothermal bulk modulus for aluminum were derived 

by ultrasonic techniques. 

The computed values of f^ for sodium and aluminum are plotted in 

Figures 5-19 and 5-20,   respectively.    For small compressions the results 

are similar to the results obtained by the Beecroft and Swenson method. 

Again,  the y. curve for aluminum at 100 K is unrealistically high.    Of 

greater interest are the negative values obtained for V-, at high compressions, 

Although Pautamo in Reference 27 refers to negative values of the Grüneisen 

parameter,  it seems more likely in this case that the negative values are 

due to assumptions inherent in the method and in limitations of the input data. 

Pressure curves corresponding to the y? curves are shown in Figures 

5-21 and 5-22. 
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Figure 5-19 -  ^ as a Function of Volume and Temperature for Sodium 
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MOktl   VOLUM)  CU CH/MOk 

Figure 5-20 - y, as a Function of Volume and Temperature for Aluminum 
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Figure 5-22 - Pressure as a Function of Volume and Temperature for 
Aluminum 
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1. 
7 

I. 
Section ^ 

FOAMED AND DISTENDED MATERIAL. 

A. HIGH PRESSURE REGION 

A shock adiabat of a foam suitable for discussion in the high pressure 

region is shown by the dotted line in Figure 6-1. The solid line represents 

the shock adiabat of solid,  compacted material. 

The volume V, is the volume of the foam and V... the volume of non- 

contains the same amount of mass as porous material.    The volume V0H 

rer, 

or original volume V, is crushed to volume V_H at P essentially equal to 

volume V,; the densities, however, are different.    In other words,  a foam 

zero. 

Hugoniot of Solid 

yy— Hugoniot of Foam 

Y   /-Zero Degree Isotherm 

V0H Vf 

Figure 6-1  - P vs V Curve to Illustrate Relationship between Shock 
Compression of Compacted Solid and of Foam 
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The different shock adiabats follow from the fact that a shock compres- 

sion of a foam is a more irreversible process than the corresponding 

compression of a compacted solid. 

At volume VC,  the shocked compacted solid and the shocked foam have 

the Sr.me static energy.    This is given by the zero degree isotherm at volume 

V~.    The difference in internal energy,  therefore,   is caused by a greater 

thermal energy in the shock foam, i.e., 

E„ - E/ = AE4. . H        f thermal 

Similarly,  the difference in pressure at volume V? is the result of a 

difference in thermal pressure: 

Pu - P' = AP,, . H        f thermal 

The Grüneisen parameter y. therefore can be determined from 

/AP, 

^3 ^ v;(S 
v; 

>   The preceding discussion was taken mainly from Krupnikov,  Brazhnik, 

and Krupuikova, 1962; Zel'dovich and Rayzer, 1965,   p. 874; and Morgan, 

Rockowitz, and Atkinson,   1965. 

The experimental data for tungsten foams and for aluminum foams 

(Morgan,  Rockowitz,  and Atkinson, 1965, p. 95),   can be represented to a first 

approximation by the equation 

ET   =   g(VPT)+h(VPT)2 
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where  g and h are constants.    The Gruneisen parameter,  therefore,  can be 

represented as 

/ÖE. 
LI    .  __L_ /aET\  1_ 

v3  "  V
\öPT)    

= g + 2hV: 

Because £_ is a function of VP    only, y- is a function of E_ only. 

The Grüneisen parameter y^ determined in this fashion for aluminum 

foams shows a dependence on the thermal energy.   This is shown in Figure 6-2. 

It should be pointed out that the reproducibility and validity of shocked 

foam data is still questionable.    (See Morgan,  Rockowitz and Atkinson,   1965, 

p. 107,  and McQueen,   1964,  p. 69.) 

3.0 

2.5 
u 
o 

2.0 

c 
<i 
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a. 
c 
o 
in 

■wH 

o 
.3     1.5 
u 
O 

1.0 
1000 2000 3000 4000 5000 6000 7000 

E , ,   Thermal Energy, Joules/gm 

Figure 6-2 - Grüneisen Parameter as a Function of Thermal Internal 
Energy for Aluminum (From Morgan, Rockowitz, and 
Atkinson, 1965, p. 104) 
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Russian workers (see Al'tshuler, 1965) have expanded the 

Mie-Gruneisen equation of state to take into account electronic contributions 

at high temperatures and pressures.    Their equation is essentially 

P0   = 

ya Ve 
~WET  +irET a e 

where the subscripts  a and e  refer to atomic and electronic contributions. 

The y   parameter apparently varies rather slowly with density,   going from 

1/3 for an isolated atom at zero pressure to the limit 2/3 for an ideal 

Fermi-Dirac gas (Brush, 1967). 

In connection with the equation of state in foams,  Bjork, et. al., (1967) 

modified existing equations of state to agree with experiments conducted by 

the Russians on porous samples and to fit other available data.    In this 

treatment the electronic thermal contribution to pressure and energy are 

included.   The equation was incorporated into a hydrodynamic code by 

constructing a table consisting of a matrix of pressure elements P.., where 

i and j correspond to certain values of 17 and E.    The hydrodynamic code 

could then compute the pressures it needed by two-way interpolation in the 

table.    It appears that no allowance for the variation of y   with temperature 

has been made. 

Figure 6-3 shows a comparison of PV curves generated by this 

treatment with experimental data. 
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0.25 0.30 0.40 

Specific Volume - cm  /gm 

Figure 6-3 - Comparison of Aluminum Hugoniots with Experimental 
Data (Bjork,  et al.,   1967) 
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B.        COMPLICATIONS CAUSED BY STRESS ANISOTROPY AND HYSTERESIS 
EFFECTS 

a. Introduction 

r - 

[. 

The preceding discussion concerned situations where the pressure 

could be considered to be the same as a hydrostatic pressure and the states 

of the materials before and after shock or hydrostatic compression to be 

those of thermodynamic equilibrium.    Actually,  one or the other of these 

two assumptions often break down in practice and may lead to unpredictable 

shock behavior patterns.    For example, in foams and solid ductile materials, 

shock compression at low pressures may exhibit a shock front which splits 

into two fronts (Dudley, 1966;  Rempel, 1963) — the first front known as the 

elastic precursor and the second as a plastic shock wave.    Experimental 

confirmation of various mathematical models for such behavior has been 

good in some cases and not so good in others. 

Attention was focused, in reviewing these mathematical models, on how 

the equations of state were formulated for foams in the low pressure regions, 

especially for the BCD part of the shock compression P-V curve which is 

well approximated as shown in Figure 6-4. 

It became apparent almost immediately that no clear,  systematic 

treatment of the basic thermodynamics and physics of hysteresis effects 

exists.     The formulation in the literature of equations of state for materials 

displaying hysteresis effects are extremely difficult to understand and evaluate 

because most of these formulations are "couched in terms of elasticity theory 

and dislocation concepts" (passage in quotes taken from Fitzgerald, who is 

quoted again in the next paragraph).    The same criticism may be made of 

many current explanations of mechanical behavior.    Fitzgerald (1966) neatly 

sums up the confusion: 
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Figure 6-4 - Assumed P-V Diagram in Phasetransition Procedure 
(Linde and Schmidt,   1:66) 
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"Current explanations o£ mechanical properties of solids are 
generally couched in terms of elasticity theory and dislocation 
concepts.     The latter are employed chiefly in attempts to ex- 
plain obvious nonelastic behavior such as plastic deformation, 
but even in this case elastic ideas prevail to a surprising ex- 
tent.     That is,   calculations of the forces or interactions between 
dislocations and/or other crystal lattice defects are often made 
in terms of linear, elastic continuum surrounding the imperfec- 
tions.     Thus a clearly nonelastic phenomenon like plastic slip 
is treated in terms of linear elastic concepts and constants. 
After thirty years, this approach has led to no numerical calcu- 
lations in agreement with measured values of any nonelastic 
quantity,  except through .he arbitrary assignment of values to 
one or more constants,  and even qualitative provisions for the 
existence of certain well-known classes of mechanical behavior 
are missing." 

Fitzgerald goes on to develop a treatment of mechanical properties in 

terms of wave mechanics,  which leads directly to 

"predictions of nonelastic audiofrequency resonances in vibration 
experiments and to anticipation of acoustic emission,   simple and 
quantitative explanations of hypervelocity impact phenomena, 
stress-strain relations for poly and single crystals,   sliding 
friction and the formation of crystal mosaics.    Also obtained is 
the correct form of the stress-strain law for cubic metals and its 
variation with single-crystal orientation, temperature, parity, 
sample size and various kinds of sample pretest treatment." 

If the above claims are really true, Fitzgerald's approach is a great 

advance.     Fitzgerald's work certainly appears very promising and should 

be explored in more detail.    However, a great need still exists for a clari- 

fication of irreversible processes in terms of classical thermodynamics and 

basic physics.    Bridgman's work (1950) in this direction indicates that such 

an approach can yield much insight and information simply and directly. 

At the very least, such an approach would enable explorations of the 

limits of applicability of classical thermodynamics and basic physics and, 

thus, provide a firm basis for decisions on approximations in practical 

calculations and the need in certain cases for more complicated theories, 

such as Fitzgerald's or irreversible thermodynamics. Regardless of the 

light such an approach can throw on irreversible processes,  a clarification 
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!. of the various definitions of "state" is imperative if equations of state are to 

be formulated at all. 

i. 

j 

In this report only a beginning of a  clarification of irreversible 

processes and definitions of "state" in terms of classical thermodynamics 

and physics can be attempted because of time limitations.    However, from 

the following discussion,   it will be obvious that the classical approach is 

far from exhausted or completely understood. 

b. Classification of Mechanical Processes and Stresses 

.. 

.. 

First of all, it is necessary to clearly p°parate elastic, reversible 

behavior from irreversible, hysteresis type behavior and internal stresses 

from external stresses.     Elastic or reversible displacements are those in 

which  no work is dissipated as heat.     In an elastic displacement,   the dis- 

placing force can be reversed at any point in the displacement and the 

material brought back to the original state.    All irreversible displace- 

ments involved work dissipation,  and reversal of the displacement force 

may or may not bring the material back to its original state.    Also, a con- 

sideration in classifying hysteresis behavior is whether the process approaches 

reversibility if done slowly enough.     We believe that mechanical hysteresis 

behavior probably can be classified according to one of xive or six general 

classes or combination thereof,  according to how the original state can be 

restored and whether time is a factor or not.    However, in the short time 

that was available, we are not sure that we have completely covered every 

possibility or that each of the five types is indeed unique. 

1. 

The type of hysteresis most pertinent to the case of a foam collapsing, 

either by fracture or flow, is one in which the initial cannot be restored by 

reversal of displacement force,  and no matter how slowly the force is 

increased the collapse can never be reversible. 
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,, In this respect the collapse of a solid foam has much in common with 

the crystallization of a subcooled liquid.    A subcooled liquid like a foam is 

a metastable equilibrium state.    If the subcooled liquid is catalyzed or suddenly 

jarred,   the solid phase appears and increases irreversibly until equilibrium 

is established.    If a subcooled liquid is cooled slowly, a critical temperature, 
I» 

called the temperature of maxin^um subcooling,  is reached, and the solid 

phase suddenly precipitates and continues to grow until equilibrium is estab- 

lished.    Although nothing has been found in the literature about what would 

happen to a subcooled liquid if the pressure were gradually increased at 
ä 
4. constant temperature,  it is most probable that a critical pressure exists, 

for as Bridgman notes (1935, p. 9) an increase of pressure is equivalent to 

a decrease in temperature in some respects. 

«. 

.. 

The analogy of a subcooled liquid and a solid foam is further strengthened 

by the fact that a metal powder sinters slowly at moderate temperatures but 

increases with a rise in temperature.    At the Tammann temperature (near 

•' 0.5 T    ) the sintering rate accelerates markedly (Gregg, 1961, p. 155). 

i. The thermodynamic characterization of metastable states will be dis- 

cussed later.    We now turn our attention to stress as a state variable. 

i. 
If a hydrostatic pressure  P is applied to an elastic solid,  say a cube 

of material is immersed in oil which is in turn compressed by a piston, the 

work done on the solid will be given by   -PdV, where dV is the change in 

volume of the solid.    The work will be   -PdV,   even if the cube deforms 

anisotropically as long as the deformation is elastic.    In other words the 

compression may be more in one direction than in the others, and the cube 

». may be deformed say to a rectangular block.    Since the process is reversible, 

the internal  P will be the same as the external applied P.   If we further 

assume that the temperature is constant,  the state of the solid material may be 

characterized by two independent state variables P and T. 
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Let us now consider the same cube as above, but to one face a tension 

stress  T is applied as in Figure 6-5 below (Reiss, 1965). 

(Phase 2) 

d/ 

f//////////////////////////A 
I 

Phase (1) 

'//////////////////////////// 
dL 

z Direction 

T       \ 

Figure 6-5 - Deformable Isotropie Solid Solution, Phase (1) 
Surrounded by a Fluid Solution,  Phase (2) 

The actual stress in the z direction will be 

T.   =   T -  P 

The work done as a result of reversible application of tension is 

W   =   (T- P) r dL + 2PLidi 

or 

W =   PdV^-ri2 dL 

where the superscript (1) refers to the volume change of the solid cube. 
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The chauge in internal energy of the material as the result of the applied 
it 

stress 

*• dE   =   TdS  -  PdV1   -   rlZ dL 

i. Thus the energy is now a function of three independent state variables. 

The above system discussion illustrates Reiss' clarification of the differences 

between stable thermodynamic equilibrium and metastable equilibrium. 

According to Reiss,  a system is in equilibrium if no discernable changes 

pccur during the time span in which we are interested.    However, every 

state of equilibrium is subject to constraints and the number of constraints 

on a system determine the number of state variables which must be specified 

"* in order to characterize the equilibrium.     Furthermore,  the ways in which 

a system can do work is determined by the number of constraints.     Thus, in 

«s the above example,  we have three constraints — the thermostat holding the 

temperature at  T,  the piston holding the pressure at P, and the applied 

tensile stress.    Release of any one of these constraints,  holding the other 

two constant,   enables the system to do a unique kind of work. 

According to Reiss,  the only difference between metastable equilibrium 

and stable equilibrium is the number of state variables involved.    This view 

greatly simplifies the understanding of metastable and stable equilibria. 

However, a corresponding clarification of unstable and neutral equilibria 

still remains for the future. 

| A further shortcoming of Reiss' work is that he fails to clarify internal 

and external constraints.    In an externally constrained system at equilibrium, 

such as discussed previously,  the internal and external intensive parameters 

are the same.    Thus the pressure is the same in the system and its surround- 

ings, as are temperature and stress. 

Internal constraints arise from activation energy barriers.    Edelglass 

* (1966, p. 226) presents a discussion of activation energies and their   relation- 

ship to reversible and irreversible processes, which is very instructive.    A 

J[ brief summary of his discussion is presented in the next paragraph. 

I 



LMSC/HREC A784868 

a. 

h: 
■ 

ä 

4» 

Graphically, the free energies of the various states may be repre- 

sented as shown in Figure 6-6. 
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Figure 6-6 -Free Energy_vs Configuration Paths for 
Irreversible "Reactions" 

The states A, B, and C are the metastable, activated and stable 

equilibria states.   The activated state  B is a state of "unstable" equilibria. 

The term "unstable" is put in quotes because it is not clear whether the 

activated unstable state ("Theactivated complex is stable for atomic dis- 

placements in all directions but one." — Glasstone, et al., p. 185)  is the 

same as unstable equilibrium usually referred to in thermodynamic texts. 

The term AF is the free energy change for the transformations A-^-C 

or C—^A,  while  AF-   is the free energy of activation for   A—♦B   and 

AFQ for   C—^B.    Thus, once A has passed over B and fallen into state 

C, there is little chance it will cross the barrier B to go back to A, and 
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the resultant reaction will be  A-^ C,  or an irreversible change at a rate 

which is determined by the frequency of passage over the barrier  B. 

Contrast this behavior to a reversible change,  whose free energy vs. 

configuration path may be represented as shown in Figure 6-7. 
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Figure 6-7 -    Free Energy vs_ Configuration Paths for 
Rsversible "Reactions" 

Here, the change of  A -^C   is just as great as   C-^-A. 

Under stress the above figure assumes the form of the preceding one, 

so that there is a net flow in the direction of the force.    This will result in 

a strain that is rate controlled, and the rate will have an exponential tempera- 

ture dependence.    If the stress is sufficient to overcome the barrier, the 

strain deformation will no longer be temperature dependent (Edelglass, 

p. 228). 
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More discussion of the above type processes would point out many more 

interesting aspects of rate controlled phenomena in solid behavior. 

In connection with metastable equilibria,  the question arises as to 

which equilibria — stable or metastable — will be more stable under certain 

conditions.    This question arises because apparently there are temperatures 

where a solid powder,  which we would classify as a metastable equilibria, 

is more stable than a solid crystal,  a stable equilibrium case.    Huettig 

(Kingston and Huettig,   1951) suggests that above   T = 8930K powdered gold 

is more stable than solid crystal gold (mp.  1337  K).    If it is really the case, 

interesting ramifications may result in real situations such as an X-ray 

burst powdering a missile casing.    The above situation is perhaps analogous 

to the case of rapid cooling of liquids.    If certain liquids such as glycerol 

are cooled rapidly, they may be taken down to temperature far below (even 

below their temperature of maximum subcooling) the melting point of their 

solid phases and remain in their metastable states at that temperature 

indefinitely (Walton,   1966). 

The above brief discussion should be sufficient to illustrate how a 

unified approach to hysteresis and rate controlled processes in terms of 

classical thermodynamics and basic physics is evolving.    We will now turn 

our attention to explicit thermodynamic approaches to the problem. 

c. Unified Thermodynamic Approaches to Mechanical Hysteresis 

In a very remarkable paper, Bridgman (1950) examines some extensions 

of the methods and definitions of classical thermodynamics to two cases of 

irreversible mechanical phenomena.    In future work we hope to go more fully 

into his reasoning and deductions.    Here only a brief summary is presented 

of his conclusions about plastic deformation and processes which generate 

internal disorder. 
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Consider the deformation of an ideal plastic as shown in Figure 6-8 

(Bridgman, 1950). 

Stress Heat Out 

Heat Out 

Figure 6-8 - The Stress-Strain Relations in the "Ideal" Plastic Body 

In the above figure, the inclined lines correspond to elastic deformation 

and the horizontal lines to plastic deformation.     For a body at point or "state" 

D, the entropy is the same as point A.    In other words, the entropy in the 

body arising from plastic deformation is zero. 

For bodies which can change their internal order,  like binary alloys, 

Bridgman introduces a parameter a, which specifies the degree of internal 

disorder.    He then writes the entropy of the system as 

S   =   S(P, T) + S(a) 

More study of Bridgman1 s work should reveal how the parameter a 

can be experimentally determined and how the equation of state for a body at 

point D in the plastic deformation case can be formulated from experimental 

stress-strain curves. 
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In a group of papers (Everett, et al.,   1952 and 1953) a unified general 

approach to hysteresis is also approached.    However,  only one type of 

hysteresis is dealt with.    This is the kind where a stress cycle returns the 

material to its original state,  but the paths in the forward and reverse 

directions cannot be made to coincide no matter how slowly the process is 

carried out.    This type of hysteresis is a common phenomena in many fields, 

such as magnetization of ferromagnetics,   solid transitions in crystals and 

alloys, application of stress to solids, adsorption of gases by solids,  etc. 

Everett and Smith advance a domain theory to explain this type of hysteresis. 

In this theory the static macroscopic state of a system exhibiting hysteresis is 

defined at any instant when an internal variable ^   is specified,  in addition to 

the usual external independent variables.    The variable ^   represents the 

fraction of molecules of the system in State II; presumably State II is a 

metastable state, the rest of the system being in State I.    Everett and 

Smith's treatment will need to be studied in more detail.    Their definition 

of metastable equilibrium is confusing. 

Incidentally,  it may be worth mentioning two notes of caution appearing 

in the literature concerning the application of Onsager's irreversible thermo- 

dynamics.    Bridgman (1950, p. 63) states: 

"As far as I know,  however, all the examples treated by the 
Belgian school are such that some reversible method exists for 
getting from any state of the system to another,   so that the 
entropy is defined and may be evaluated by conventional methods. 
The extension of the entropy concept to situations in which the 
entropy may not be so defined does not appear to have been 
considered." 

Tisza (1966, p.  33) states,   "This note is merely a warning that the very 

simple consideration of irreversibility should not be thoughtlessly applied 

to situations which in fact involve the question of retrieval."  ' 
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d. Approximate Calculation of an Equation of State for a Partially 
Collapsed Foam 

A calculation of a  7 parameter for foams based on a rigorous applica- 

tion of thermodynamics would obviously involve much more time than is 

available in the present study.     The preceding discussions,  however, do suggest 

that the problem can perhaps lend itself to some approximations.    For example, 

consider the collapsing part of the P-V curve for a foam 

; ( 

t. 

where V   and V, represent the volumes of a given mass of compacted solid 

and of foamed solid (P = 0,   T = initial).    State 3 represents the equilibrium 

end-point state after application of a pressure P   .    If P    is released 

slowly and adiabatically state 3 would relax isentropically to state 4 (assump- 

tion).    Let us assume that state 3 represents a state containing (V5-V)/(V£-V) 

parts foamed solid and the rest compacted solid.    Let us further assume that 

state 3, on cooling to room temperature at constant volume,  follows the 

reversible path 3-5.    A / parameter may then be given by 
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so that 

P 

E3   -   E5   =   V 

c 

or assuming y is independent of pressure 

E3   "  E5   =  7 Pc 

If it is further assumed,  as the Russians did (Krupnikov, et al.,   1962), that 

the energy of a foam at initial conditions is little different from that of the 

compacted solid, then £_   can be taken as the energy of compacted solid at 

the initial conditions. 

If E, can be determined, and it probably can be approximated if heat 

capacity data on the compacted solid and foam are available, then f can be 

calculated. 
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Section 7 

CONCLUSIONS AND RECOMMENDATIONS 

Examination of the theoretical bases of the Mie-Gruneisen equation of 

state and the results of calculations of the various Grüneisen parameters 

have shown that its validity cannot be assumed lightly under all conditions. 

The study has also shown that a knowledge of the temperature and 

volume dependence of y, would not only provide a firm basis on which to 

judge the validity of the Mie-Grüneisen state equation but also would permit 

direct use of the Mie-Grüneisen type equation of state 

y2{v.T) 
P-PQ = -V- (E-Eo^ 

in shock wave calculations. 

Thus,  it would be most desirable that methods of obtaining y, from 

experimental data, both under hydrostatic and shock conditions, be fully 

explored.     In particular, it is suggested that the accuracy of the method 

of calculating y, originated in this study be evaluated and that y- param- 

eters be calculated for a variety of materials. 

It is also recommended that the physical and thermodynamic bases of 

formulating equations of state be examined more fully.    Such an examination 

should lead to a theoretically sound approach to formulating equations of 

state for materials characterized by more than two state variables,   such as 

foams and distended materials. 

Other desirable, work indicated by the study is   (a)   obtaining more pre- 

cise values of coefficients of thermal expansion from percent thermal data 

in the literature,  (b) a concentrated examination of the factors involved in 

obtaining reliable y  values for plastics,   (c) a fuller understanding of directional 

Grüneisen parameters,   (d)  a fuller understanding of the role of the Grüneisen 

parameter in phase-change (melting) phenomena,  and (3) a fuller consideration 

of the role of electrons in the thermodynamics of solids. 
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