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INTRODUCTION

The problem of characterizing shock wave properties in solid materials

necessitates a knowledge of the solid equation of states at high pressures,

The pressures attainable in strong shock waves can exceed considerably
the pressures attainable by experimental, static techniques. Static pressures
which have been attained experimentally are about in the hundred kilobar range,
whereas dynamically, pressures of about five megabars have been attained.
Thus, it has been necessary to use dynamic techniques to determine equations

of state for use in shock wave calculations.

One common technique to obtain an equation of state at high pressure is
to calibrate an assumed equation of state, i.e., the Mie-Gruneisen equation of
state, 'in terms of a shock Hugoniot. The Mie-Griuneisen equation of state is

=Y (-
P-P, =+v (E-E

0 0)

where 7 is the Griineisen parameter. For the state of a material after shock

passage, one can write

Combining the above two equations and assuming that the Grineisen
parameter is a function of volume only gives

- Y-
P-Py = (E-E)

The above equation represents an equation of state for small excursions

from the calibrating Hugoniot, Its validity depends on the assumptions that
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the comprea‘cion at 11’H is the samc as would be produced by a hydrostatic
pressure of the same magnitude; the Hugoniot state after shock passage is
an equilibrium state;and that the Griineisen parameter -does not vary with
tomperature_l_mt is a function of volume only.

-Recently. shock work with foams and measurements of the sound
velocity behind shock waves have raised the question as to whether ? is indeed

independent of temperature.

Also a problem in calculating the shock properties of foamed and dis-
tended materials is how to formulate equations of state in the lower pressure
regions. At lower pressures, the assumption of these materials attaining
states of "true' thermodynamic equilibrium may no longer be tenable. (The
term true is put in quotes hecause, as is discussed in Section 6B, the defini-

tions of various equilibria are rather confused.)

In trying to evaluate the possible temperature dependency of ¥, it was
soon found that the topic of the Griineisen parameter is treated in the litera-
ture in a limited, fragmentary way. Nowhere does there exist a systematic,
overall treatment. Also, there appears to be a confusion about possible
definitions of the Griineisen parameter. Thus; the task objective, as pre-

sented in Experimental Memo PR961, set for the present study was:

#Contribute to better understanding ci the Grineisen parameter;-
its theoretical basis, experimental determination, and usage in present

hydrodynamic response code.”

The tasks set for this study were:

Task 1| - Compile systematic, overall treatment of theoretical

, aspects of the Griineisen paramelcr (starting with original
Grineisen work, circa 1912). Include complete bibliography
and pertinent excerpt from source documents.

Task 2 - Review all experimental techniques (past and present):
used to derive experimental values of Griincisen parameter.
Compare data for sclected materials (choose materials relatively
insensitive to labrication variables and anisotropic effects).

w~ b
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Suggest most useful approaches for typical spectrum of reentry
vehicles materials, i.e., organic composites, epoxy adhcsives
and light metale. Include complete biblingraphy and pertinent
excerpts from source documents. Decscribe experimental setups
in detail. B 2

Task 3 - Calculate Griineisen parameter for aluminum, beryllium,

. tungsten, tantalum,tungsten carbide and silicon carbide as function
of pressure to 30 kilobars and temperature up to melt. Do same for
nylon phenolic and rcfrasil phenolic to 50 kilobars pressure and
temperatures of 500°F.

During the last three months of the study work was concentrated on the

following task, as presented in the Task Memo TP 7087:

"Continue the Griineisen parameter study in the area of porous, |
foamed and distended materials. Review all te'chniques used for deriving
the Griineisen parameter for such materials and present any pertinent data.
Make recommendations for the incorporation of this parameter into our

present computer code."

The preceding tasks are covered in this report in the following manner.
Furdamental thermodynamic and physical definitions are covered in Section 1,
The theoretical bases of equations of state and the Mie-Griineisen Equation
of State are discussed in Sections 2 and 3. The experimental techniques of
determining the various Griineisen parameters for solid materials are
reviewed in Section 4, and actual calculations of the various Grineisen
parameters for the materials of the study are presented in Section 5. The
tﬁermodynamics of foamed and distended materials are considered in

Section 6.
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FORFEWORD

The study, performed at L.ockheed's Huntsville Research
& Engineering Center during the period 28 September 1966 to
27 October 1967, is in accordance with the task objectives and
task statements presented in the Lockheed/Sunnyvale Experi-
mental Memos PR961 and TP7087. Technical direction was
furnished by Mr, D. Fenton (Dept. 8!-23) and Mr. E. I.. Esch
(Dept. 31-73). Their support and encouragement are gratefully

acknowledged.
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Mr. Ivan Landis contributed significantly to the study by

performing the mathematical analysis reported in Section 5C and
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conducting the study phase reported in Sections 5D and SE.
1 Mr. Ernest Raper performed the calculations presented in
‘ Section 5E.
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SUMMARY

The theoretical bhasis of the Mi  Griineisen equation of state was con-
sidered and systematized. The most important experimental techniques for
determining the several Griineisen parameters were reviewed. Several
Griineisen parameters [or some of the materials of the study were calculeted
by methods presented in the literature and hy an original method developed
in the course of the study. Also, the prohlems involved in characterizing the
states of foamed materials hefore and after irreversihle changes were

reviewed.

The most important facts drawn from the study of the theoretical basis
of the Mie-Griineisen equation of state are (a) the Mie-Grineisen equation is
necessarily valid if ‘)’Z. not 73, in a certain temperature range is independent
of temperature and (b) the Mie-Griineisen equation is necessarily valid if )’3
is temperature independent throughont the temperature range from 0"K

upwards.

Although our calculations of y, at low pressures for the metals of the
study do not show much temperature variation from room temperature up,
values of )’3 4t very low temperatures found in the literature for aluminum do
vary considerably as apparently do the 7, values, which we have calculated by
the method of Beecroft and Swenson and our own method. Thus, it would
appear that the use of the Mie-Griineisen equation nf state for metals at low

temperatures is not valid,

At moderate pressures our calculations of )'2 for sodium and aluminum
indicate that the variation of '}'2 with temperature is ahout the same as
ohserved at low pressures with perhaps very unusual hehavior in the very
high pressure regions. However, time limitations did not permit a check of
the sensitivity of the calculation to the approximations made, so the resuits
cannot be considered conclusive.

iii
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The conclusions derived from a review of the thermodynamics of
foamed and distended materials are that considerable confusion exists ahout
basic definitions of various types of equilibrium and, therefore, about calcu-
lation of thermodynamic state functions for materials which have undergone
changes involving hysteresis of one sort or another. However, a classical
thermodynamic approach to '"totally" irreversible processes promises to
yield much information once the discussions of various authors are clarified
and correlated. The preceding state of affairs is really pertinent to the cal-
culations of a Griineisen parameter in the low pressure region. The high
pressure region where the foam is assumed completely crushed and annealed

can he handled straightforwardly.

Time limitations did not permit the full exploration of the effects of
material anisotropy, material rigidity, melting. or material porosity and
inhomogeneity. Because the problems associated with the last two factors
have not yet been resolved. Griineisen parameters for the plastics of the

study were not calculated.
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GLOSSARY

A Gibb's free energy (=H - TS), also used as constant in various
equations, see pp. 4-16, 5-2, 5-23, and 5-30

functions in Slater's formulation of hydrostatic data, see p. 4-1

functions in Bridgman's formulation of hydrostatic data, see p. 4-1

isothermal bulk modulus <— V(OP) )
T

v
’ (-a_B.)
op T

w
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C speed of sound, also us=d as constant, see p. 4-16
C0 speed of sound at T = 0°K, also used as constant, see p.4-17
Cy Cp heat capacities

E total internal energy

Eo total internal energy at T = 0°K

EOO internal energy at P= 0, T = 0°K

EC cohesive energy

Es static energy

ET thermal energy

EV vibrational energy

E:’, zero-degree vibrationai energy
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1
! , F Helmholtz free energy (= E - TS)
£ I Fp thermal free energy
I Fy vibrational free energy
g constant, see p. 6-2
I enthalpy (= E+ PV)
Plank's constant, also see p. 6-2
I ) index of mode of oscillation
I K internal kinetic energy, also constant, see p. 5-23
KV vibrational kinetic energy
i I L length
1 length
I .
} constants, see p. 4-4
1 n
» P pressure (a pressure of 1 atm. is considered as essentially
equal to z. . 0)
I Po pressure at T = 0°K
1 PA pressure along an adiabat
PH pressure after shock passage
I POH pressure before shock passage
T PT thermal pressure
- PS static pressure
7 i
b p functions in equation representing experimental hydrostatic
1 data, see p.4-2
L.
v R function, see p. 2-6
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entropy, also constant, see p, 4-17
temperature

internal potential energy
vibrational potential energy

volume

< <€ Cc a A4 «n

(=3
(=]

volume at P=0, T = 0°K
volume at P=0, T=T

volume at P=P, T= OOK
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Vpo

vPT volume at P=P, T=T

VOH volume before shock passage

VH volume after shock passage

Vf volume of foam before shock passage

Vf' volume of foam after shock passage

VS shock velocity

Vp particle velocity

Vm molar volume

Greek

a coefficient of thermal expansion <= Vl (%Y) ), also internal dis-
I order parameter, see p. 6-16 &
14

} ﬂT isothermal compressibility (: - —‘l, (-gl) >
> T
e B isentropic compressibility = .d (-‘?—
i S P vV \3P/
a
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see p.2-4
see p.2-5
see p.2-7
see p. 3-2
see p. 4-8
see p, 6-4
see p. 6-4
Griineisen parameter in material before shock passage
function, see p. 3-1, also Debye temperature
P/py - 1
frequency
density
density of material hefore shock passage
Poisson's ratio, also = p/po
stress

function, see p. 3-1
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INTRODUCTION

The problem of characterizing shock wave properties in solid materials

necessitates A knowledge of the solid equation of states at high pressures.

The pressures attainable in strong shock waves can exceed considerably
the pressures attainable by experimental, static techniques. Static pressures
which have been attained experimentally are about in the hundred kilobar range,
whereas dynamically, pressures of about five megabars have been attained.
Thus, it has been necessary to use dynamic techniques to determine equations

of state for use in shock wave calculations.

One common technique to obtain an equation of state at high pressure is
to calibrate an assumed equation of state, i.e., the Mie-Gruneisen equation of

state, in terms of a shock Hugoniot. The Mie-Griineisen equation of state is

=X (R -
where 7 is the Grineisen parameter. For the state of a material after shock
passage, one can write

P,-P, =

Y e .
- Po = v (Eg-E

H 0)

Combining the above two equations and assuming that the Grineisen

parameter is a function of volume only gives

) - Y E-
P-Py = F(E-Ey

The above equation represents an equation of state for small excursions

from the calibrating Hugoniot. Its validity depends on the assumptions that

xiv
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the compression at PH is the same as would be produced by a hydrostatic
pressure of the same magnitude; the Hugoniot state after shock passage is
an equilibrium state;and that the Griineisen parameter does not vary with

temperature but is a function of volume only.

Recently, shock work with foams and mieasurements of the sound
velocity behind shock waves have raised the question as to whether ¥ is indeed

independent of temperature.

Also a problem in calculating the shock properties of foamed and dis-
tended materials is how to formulate equations of state in the lower pressure
regions. At lower pressures, the assumption of these materials attaining
states of "true' thermodynamic equilibrium may no longer be tenahle. (The
term true is put in quotes hecause, as is discussed in Section 6B, the defini-

tions of varinus equilibria are rather confused.)

In trying to evaluate the possible temperature dependency of ¥, it was
soon found that the topic of the Griineisen parameter is treated in the litera-
ture in a limited, fragmentary way. Nowhere does there exist a systematic,
overall treatment. Also, there appears to be a confusion about possible
definitions of the Griineisen parameter. Thus, the task objective, as pre-

sented in Experimental Memo PR961, set for the present study was:

"Contribute to better understanding of the Grineisen parameter;
its theoretical basis, experimental determination, and usage in present

hydrodynamic response code."

The tasks set for this study were:

Task 1 - Compile systematic, overall treatment of theoretical
aspects of the Griineisen parameter (starting with original
Grineisen work, circa 1912). Include complete bibliography
and pertinent excerpt from source documents.

Task 2 - Review all experimental techniques (past and present)
used to derive experimental values of Griineisen parameter.
Compare data for selected materials (choose materials relatively
insensitive to fabrication variables and anisotropic effects).

Xv
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Suggest most useful approaches for typical spectrum of reentry
vehicles materials, i.e.,, organic compusites, epoxy adhesives
and light metals. Include complete biblisgraphy and pertinent
excerpts from source deccuments. Deascribe experimental setups

in detail.

Task 3 - Calculate Griinecisen parameter for aluminum, beryllium,
tungsten, tantalum,tungsten carbide and silicon carbide as function
of pressure to 30 kilobars and temperature up to melt. Do same for
nylon phenolic and rcfrasil phenolic to 50 kilobars pressure and
temperatures of 500°F.

During the last three months of the study work was concentrated on the

following task, as presented in the Task Memo TP 7087:

""Continue the Griineisen parameter study in the area of porous,
foamed and distended materials. Recview all techniques used for deriving
the Grineisen parameter for such materials and present any pertinent data,
Make recommendations for the incorporation of this parameter into our

present computer code."

The preceding tasks are covered in this report in the following manner.
Fundamental thermodynamic and physical definitions are covered in Section 1.
The theoretical bases of equations of state and the Mie-Griineisen Equation
of State are discussed in Sections 2 and 3. The experimental techniques of
determining the various Griineisen paramecters for solid materials are
reviewed in Section 4, and actual calculations of the various Grineisen
parameters for the materials of the study are presented in Section 5. The
thermodynamics of foamed and distended materials are considered in

Section 6,

xvi
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Section 1
ELEMENTARY PHYSICS AND THERMODYNAMICS OF SOLIDS

The total internal energy of any isolated system is made up of a kinetic

part and a potential part.

E = K+U (1)

The potential energy of a solid has its origin in the attractive and re-
pulsive forces between the atoms, molecules, or ions, In an ideal gas it is
assumed that the forces between the molecules are so small that the average
potential energy is negligible compared to the average kinetic energy. Ina

solid, on the other hand, the potential energy plays a very important role.

The internal energy of a solid is often represented as (Fumi and Tosi, 1962)

E(V,T) = ES(V) + EV(V. T) (2)

where ES(V) represents purely volume-dependent static energy of the solid,
or lattice energy, and EV(V, T) represents the vibrational energy. The term
Es
mal vibrations were all zero. Fletcher (1957) points out that in general ES

can be further defined as the potential energy if the amplitude of the ther-

is not a function of volume only. However, it is a fair approximation where
electronic effects are negligible. Thus, we will not concern ourselves

further with the possible temperature dependence of ES.

Another equivalent way of representing the energy is
E(V,T) = EO(V) + ET(V, T) (3)

where EO(V) is the energy of the solid at absolute zero, and ET(V, T) repre-

sents the thermal energy.

1-1
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At zero degrees absolute, the term ET(V, T) becomes zero, but Ev(V, T)
does not. The term EV(V. T), at absolute zero, is designated as the zero-

and E_ can be written

point vibrational energy. Thus, the relation between EO S

[o]
E (V) = Eg(V) + Eg(V) (4)

where E3 is a function of volume only and represents the zero-point vibrational

energy. In statistical mechanics E:,) is given as (Slater, 1939, p. 216)

3N
E\? -z; l/Z(hvj) (5)
J'.'

where vj is the frequency of the j mode of oscillation.

In materials where the interatomic forces and the atomic masses are
great, the zero-point energy is small and can usuaily be neglected. However,
in a substance like helium, the zero-point energy is very significant, (Zemansky,
1957, p. 378)

The general variation of E, as a function of volume is shown in Figure 1-1.

0

Figure 1-1 - Energy and Pressure as a Function of Volume at Zero Degrees

Absolute (after Zel'dovich, Ya. B, and Yu. P. Rayzer, 1965, p. 843)

1-2
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As Figure l-1 shows, E | is a minimum at VOO' the volume at zero

0
degrees absolute and zero pressure. (NOTE: The energy at this point EOO
is arbitrarily assigned the value of zero). The pressure, PO, at absolute

zero is sometimes called the elastic pressure and is given by:

d E0
Po = " —av. &)
The term Eo for volumes not too far removed from Voo' can be ex-

panded to (Mott and Jones, 1958, p. 16)

<d Eo) ,(don> 2
E (V) = (E)) + V-V )ti{——= (V-v_ )" +... (7)
0 o), av), 00’ \ T2 00

00 00 v

The second term on the right vanishes because d EO/dV at ' v is zero.

00
The term ES can be similarly expanded, but the volume at which

dES/dV is zero is slightly different from VOO (Huang, 1951, p. 205). In

this case the volume should be the static equilibrium volume., This dis-

tinction appears to be generally ignored or confused in the literature.

Using the first or vibrational formulation the energies can be further

broken down to
E(V,T) = KV(V. T) + UV(V. T) + ES(V) (8)

The terms K.v and UV represent the kinetic and potential parts of the vib-
rational energy. In statistical mechanics equation 8 is written (Slater, 197,

p.217)
3N

B = ES(V) +j=21 nJh yj (9)

1-3
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where "j represents the quantum number of the j vibration mode. The term

3N
Z njh vj includes KV and UV' that is, the vibrational contributions to the

=1

internal energy.
A frequently made approximation is (Fumi and Tosi, 1962)
E = ES(V) + Ev(T) (10)
and

E = EO(V) + ET(T) (11)

This division of total internal energy in a volume-dependent term and a

temperature-dependent term is called Hildebrand's approximation,

In this report the contribution of electrons to the internal energy will
be largely ignored. It should be mentioned, however, that for metals at low
temperatures, electron heat capacities predominate over the lattice heat
capacities (Gopal, 1966, p. 62).

For a solid the Helmholtz free energy function (Fumi and Tosi, 1962)
F =E-TS
may be written

F = E0+ET-TS

and FT' the thermal free energy, defined as

Fon = E. - TS (12)

1-4
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Thus, the pressure at any given temperature becomes
-dE oF
P - (%) -V (‘WT
1 T

P(V,T) = Py(V) + P.o(V, T) o (13)

or

where PT may be defined as the thermal pressure which becomes zero at

absolute zero. Equation 12 may be written in terms of vibrational energies,

i.e,,
F = ES + Ev - TS
F = ES+Fv
and
o . _dES ) (ar-‘v>
dVv oV T
or
dES
P = --ﬁ + pv(V,T) (14)

where PV may be defined as vibrational pressure. Pv does not become
zero at absolute zero. The term -d Es/d V, which it would seem reasonable
to designate as some sort of pressure, does not appear to have a name in

the literature. We will call it the static pressure.

A few more of the features of the zero degree isotherm should be
pointed out: The term E in Figure 1-1 represents the energy that would be
required, at absolute zero, to separate the atoms of the solid to infinity.
It is called cohesive energy and is approximately equal to the heat of evapor-
atit_m at absolute zero, (Zel'dovich and Rayzer, 1965, p. 843). It should be noted

1-5



i
|
|
I
I
I
I

e

30 2

SR

LMSC/HREC A784868

that the term cohesive energy also is used in the literature for EO' In this

report, however, cohesive energy will be reserved for EC.

The cohesive energy can be given by
00

V/ PydV = -E.

00
The fundamental equation of thermodynamics which is applicable to
any reversible process, or irreversible process providing that the states
considered are equilibrinm states, is

dE = TdS - PdV (15)

At zero degrees absolute T, dS and TdS are equal to zero, so that
dE = -PdV (16)

and

(ap/&V)S = (ap/aV)T (17
Hence, the zero degree isotherm is also an adiabat for which dS = 0.

The compressibility at zero pressure and ordinary temperatures is
approximately equal to the compressibility at zero pressure and absolute

zero (Zel'dovich and Rayzer, 1965, p.845), i.e.,

1 (ﬂ) oL <.61>
Voo °F/r=0 Vor \®P/r=T

Thus, the speed of sound, considered as a purely thermodynamic quantity,

<)

]
is determined by the slope of the PV zero degree isothern.

1-6
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The purpose of the preceding discussion is to bring together in one
place the various definitions and formulations of thermodynamic terms
pertaining to solids found scattered in the literature as an aid for quick

reference.
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Section 2
THERMODYNAMICS OF EQUATION OF STATE

A thermodynamic state is specified in terms of the independent vari-
ables of the system. The number of independent variables necessary to specify
the state, however, must be decided by the experimenter (Reiss, p.5,1965).

For example, usually only two state variables are necessary to specify the
state of a solid, but if the surface area hecomes appreciable,as in a powder,
another state variable is needed.

A system is completely defined thermodynamically if the entropy is
known as a function of the extensive parameters. For a closed system in which

the amount of single-phase matter remains constant and which can be specified

as a function of two extensive parameters, the entropy can he written as

S = S(E,V) . (1)
Equation | may be written in the alternate form,
E = E(S,V) (2)
The differential form of Equation (2) determines changes of state:
dE = (9E/8S),dS + (OE/8V) dV (3)
The partial derivatives in the above equation have the following meanings:
(OE/8S)y, = T and (9E/éV)g = -P
The above partials were derived from

dE = TdS-PdV . (4)

2-1
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which is called the fundamental equation. Equivalent expressions of Equation

(4) are:

dH = VdP + TdS (5)
dF = -PdV - SdT (6)
dA = VdP - SdT (7)

Because Equations (1) and (2) contain all the information nccessary to
complelely define a system thermodynamically, they are called fundamental
relationships or complete equations of state. Other complete equations of

state, corresponding to Equationa (5) through (7) are

H H(S, P)

F(V,T)

A

n

AP, T)

As is cvident in the above discussion, knowledge or specification of
two independent variables, S and V, or E and V, depending on whether
Equations (1) or (2) are used, complctely defines the system, providing,
of course, that E or S, the dependent variables, are known as a function of
E and V or Sand V. The quantitiecs S and E, however, are not measurable
experimentally. Variables that can be measured experimentally are P, V,
and T. Because P and T are functions of S and V, specification of any two

of the variables P, V, or T also completely determines the thermodynamic

state of the l)}otem.

Experimentally, the functional relationships that are usually determined

are:;

P P(V, T)

and
E

E(V,T)

Neither one of the above two equations, however, supply all the informa-
tion nccessary to completely define the system thermodynamically. To do so,
both equations must be used. In other words, although specification of V and T

compietely determine the system, more than one equation is necessary to obtain

2-2
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all the thermodyramic information about it.

Because thermal, P=P(V, T), and caloric, E= E(V,T), equations of
state do not supply by themselves all the necessary information, they are

called incomplete,

The preceeding discussion of equations of states is based on similar
discussions in Anderson, Doran, and Fabrenbruch, 1965, pp. 3-5, and Callen,
1960, p. 25 and pp. 33-34.

The following discussion concerns itself with the derivation of some

incomplete equations of state.
An equation of state may be derived from the free energy because
P(V,T) = -(3F/8V), (8)

Using the vibrational form of free encrgy, Equation (8) becomes

dEL(V) F
s v
‘P = —5v +(dV)T (9)

OF
Performing the following manipulations on the term (—sv\-,) , it can be
T

easily shown that Equation (9) reduces to an equation similar to the

Mie -Griineisen equation of state.

9 Fy
The manipulations °f(W are:

2-3
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%

9 F,) i B(FV/T
oV -

]
L}
-

d ES(V) ) 14

1
v (10)

1
l
(@]

P+

The thermal formulation of free energy leads to

dE (V) 7,
P+ N = 7 ET (11)
or
f)
P-Py(V) =  Eqp

The terms 71 and YZ are generalized Griineisen parameters equzl to

(Fumi and Tosi, 1962)
F
3 (_X)

T

% = % (33) y\"V [
1 = " T\8V T T F
Fy/T a(")

5
3T

(12)
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I
; ] and
| 3 (FT)

" 8

T

i | . --Y_(QI) _lil_ (13)

v - 8 B

i 2 T \dVv Fo/T T L CT‘I)

4 - 9T

Let us now see what sort of an equation results from manipulation of

the following equatidn:

| (?_v) = -P(5,V) (14)

. S

. The manipulatio;u are:

i dE0+<8ET> Cp

dv aV S
i 9E
T
P-P, = -|l—+
i . (8V>s
Ho
P-p ) —<—83-E—'I‘.> <8v>
| 0 T S 3TS
Yy BET B
: P-Py = v T\ 0T /g aid
1 i where
(59
L] 5 _X(BT) _ v ¥V
! 3 TWS T~ T 98
i '5_Tv

3 g
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] ET
The term (—5_'1")

g can be expanded further to

(a ET) _ (a ET) ) (a ET> =
8T ST )y "\ V) 7T
So Equation (15) becomes (Fowles, 1964, p. 51)

Q) BET BET
P-PolV) = ¥ T<—ar—v ) (’Tv".r L

Other equivalent ways of writing KEquation (16) are:

14
o S
P-P, = V-[E Eo]+X(V.T) (17)
where
a0 = o (2) - (560
\' \'4
and
73
P = v E+ R(V,T) (18)
where dEO 73(\,’0)
R(V,0) = - 5% -—¥
and

@), - %),

Equations (16),(17), and (18) are general Mie-Griineisen equations of
state. In these general Mie-Griineisen equations )‘3 is a function of two

state variables, usually given as V and T.

2-6
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It can also be expressed in the following ways: (Anderson, Doran, and
Fabrenbruch, 1965, p. 6)

ap) (ap/a"r)v v(ds/8 V)p \‘m

73(X,Y) = V(é‘z Noe V E E/8T), = TOS/8T), - B Cy

The terms X and Y in the above expression stand for the variables )'3 is a

function of. For example,

e - V()

To sum up the discussion concerning the derivation of incomplete

equations of statc, Equations (10) and (11) which involve )’] and 72 are

equations of isotherms while Equations (16), {(17) and (18) which involve '73

are equations of isentropes.
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Section 3

A. THE MIE-GRUNEISEN EQUATION OF STATE AND THE GRUNEISEN
CONSTANT

The assumption that 73 is a function of volume only restricts the
fundamental dependencies of T, S, and E, and makes possible the derivation
of a useful equation of state. The following discussion should make obvious

these points.

If 7, is a function of volume only, then integrationof ¥, = - Yz yields
3 3 T BVS

dv
InT = -/ 73-‘—,—+ln¢(8)

dv
'/73 v

35 =% = (V)
T(S, V) = &(S) (V)

or

v
H]

e

The form of E is obtained by integration of

T (g%)v = $(5)6(V)
or S
E - E4(V) = 6(V) / 8(s) ds (1)
0
3-1
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Now E _
6,

so differentiation of Equation (1) leads to

dE, do(v) j
P+'d—v—= gV ¢(S)ds
0
or
el ; (2)
P-Py(V) = —— 6(V) | &(5)ds
0
where )'G is Gruneisen's constant and is defined by
oy - .4 mV)
%W 2 Gmv (3)
Equation (2) finally can be reduced to
75(V)
P -PyV) = —— (E - Ei(V)) (4)
or yG(V)
P - PO(V) = —"-,—' ET (5)
Utilizing the vibrational formulation of energy,
E = ES(V) + EV(V. T)
leads to
dE Ye(V)
S _ ‘G -
P+ v C v (E ES) (6)
dE Y(V)
S _ 'G
Ptav = v Ey (7)
Equations (4) and (5) or (6)and (7) are the Mie-Griineisen equations
of state.

The preceding discussion was taken mainly from Anderson, Doran, and
Fabrenbruch, 1965, pp. 5-6, and Fowles, 1964, pp. 49-53.

3-2
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The preceding derivation of the Mie-Grilineisen equation is not the
original derivation of Griineisen. Originally, Griineisen derived Equation (7)
from force-field theory (Partington, 1957, p. 346). Various other derivations
from Debye's theory and from entropy have also been presented. It would not
be worthwhile, for the purposes of this report, to go into the details of these
derivations. However, a point of definition of G which appears in these

derivations is important.

In statisticai mechanics the isothermal equation of state may he repre-
sented as (Slater, 1939, p. 217)

1 hv,
P-PO’;VE:Yj hv,
J RT !
e
where vj represents the vibrational frequency of the j normal mode and
oinv,
- o)
J oinVv T

Grineisen assumed that all of the 'yj were equal to each other and to

a constant y (Slater, 1939, p.219). Under this assumption

dinv, dinv,
LF = '(am"l'v),r S "dmv ~ Y3 T 7g

According to the Dcbye theory, the limiting frequency AN defines the
frequency spectrum. The frequencies of all the oscillations change in the

same ratio as the change in b (Slater, 1939, p. 238)

Thus dnv
max

Y TTmV

3-3
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In practical applications of the Mie-Gruneisen equation, the Gruneisen
parameter Y3 has been used rather indiscriminately., Fumi and Tosi, 1962,
have noted the conditions under which its use is valid. The following is a

discussion, taken from their paper, of the use of Y3 in equations of state.

Because 7’3 is usually the easiest to determine experimentally, it has
often been substituted for 71 and )’Z. Such a substitution, however, is valid
only if Yl or 72 do not change with temperature, as seen from the following

equations which relate 73 with Yl and 72:

E. (987
\' 1
Y, -7 =—(——) (8)
37N Cy 3T/,
)
B-%-= '?;1(5?) 9
\' \'

It does not follow that because )‘3 does not change with temperature

that 71 and 7, also do not. It can be shown, however, that if, in a tempera-

2

ture range from 0°K upwards,
as would be the case if 73 were a function of volume only, then 73 = 72 in the

same temperature range. This equality also applies if, from 0°K upwards,
= LN
CyV.T) = C, (o(V))
and the entropy at 0°K is a constant.

In other words, to summarize the preceding discussion, if )’l or 72 are

functions of volume only, then

Wo=oh s v
or
‘)’Z = )'3 = )'G
3-4
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Because 3 is a function of volume only in a certain range of temperature
does not mean, however, that Equations (4) and (5) or (6) and (7) are necessarily
valid. Equations (4) and (5) are valid if 7’3 is a function of volume only in the

temperature range from zero degrees absolute upwards, or if
CylV. T) = Cylaks (0°K upwards)
vkl v\e(v) P

in the same temperature range and the entropy at zero degrees absolute

is constant.

If the energy can be expressed according to Hildebrand's approximation:

E

)

EO(V) + ET(T)

or

™
n

ES(V) k EV(T)

then the relationship between the various ¥s are

EV YI(V,T) TCV )'3(V,T) (10)

and

ET YZ(V,T) TCv 73(V,T) (11)
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Section 4

EXPERIMENTAL DETERMINATION OF GRUNEISEN PARAMETERS

A.

UNDER HYDROSTATIC CONDITIONS

a. Form of Experimental Data

Before discussing the experimental determination of the various y's,

it will be well to review the form in which experimental data is presented.

ways.

and

Experimental, hydrostatic data are usually presented in one of two
In Slater's notation (Slater, 1939, p. 200)

2
VvV = Voo(l + ao(T) - al(T)P + az(T)P +...) (1)
Thus, at zero pressure

a-= (1/vo.r)(av/a'r)p=0 = (1/1+ao)dao/d'r~dao/dr (2)

Br = -(1/Vopd@V/oP)p g = 3/l +agma, (3)

Bridgman, on the other hand, presents his data in the form

V-V

Vot

0T . .p - bp? (4)

When VOT is the volume at zero pressure and temperature T. Thus,

Bp = ~(/VorNaV/oP)y g = & ()

4-1
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To convert Bridgman's data to Staler's notation (Overton, 1962, p. 118):

Vor = Vooll *2¢)
a = al/l+a0
b = a2/1+a0

Equation (1) can be rewritten in the following form
=2 . vy -
P = Py(T) + P (T) [‘voo V)/Voo] + P,(T) [(vo0 V), voo] evr (6)

*
where PO(T) becomes zero at absolute zero. In terms of Equation (6) the

heat capacity at constant volume is (see Slater, 1939, p. 204)

_ A0 2. 2 2 2 2
Cy = Cy -VgoT [d Px/dT [(Voo'v’/voo]* 1/24d Pl/dT [(voo-V)/vo(J
2 2 3
+1/3d Pz/dT. [‘Voo'v)/voo] ] (7

where Cvo is the heat capacity at volume VOO'
b. Grineisen Parameter Y3

As mentioned previously, the Gruneisen parameter,y,, is usually

determined experimentally from the relationship

v4(V.T) = av/B_.Cy (8)

L 3
This PO(T) is not the same as PO(V) used previously. The latter represents

the elastic pressure on the zero-degree isotherm while the former is the
pressure required to reduce the volume to Voo‘ To avoid confusion Po(T)
will be called Px(T) in this paper.

4-2
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Pmey ey

»
b

or alternatively
v4(V.T) = av/BsC, (9)

where ﬂs is the adiabatic compressibility

( = -(1/V)(av/ap)s. BsCp = B.rcv)

2y

el

Like any other state variable, the Gruneisen parameter is a function
of two independent variables. If one independent variable is set, then the
parameter becomes a function of the other. Because the independent variables
most convenient to work with are pressure and temperature, Equation (8) could

just as well be written in terms of P and T. Such an equation can be written

. o(P,T) V(P, T)
V3P T) = BF T C, (P, T)

(10)

If P is set at zero, Equation (10) becomes a function of temperature alone.
Equation (10) thus gives us the temperature dependency of Y, along an isobar.

Because the volume expansion of a solid at zero pressure is relatively slight -

P

aluminum increases its volume by only some 5% from 20°C to 600°C - Equation

(10) is only slightly volume -dependent.

I
- In principle, the volume dependency of Y3 could be checked by holding
i temperature constant and letting volume or pressure vary. This procedure
would require thermal expansion, heat capacity, and compressibility data at
T various pressures. Unfortunately, such data is not generally available.
Barron, Leadbetter, and Morrison, 1964, p. 75, have made a rough esti-
i mate of the volume dependency of Yy from Equation (8) for NaCl arnd KCIl.

Their thermodynamic equation, derived from Equation (8), for this depend-

aln'y3 %[B(BTV)] g [aap'rrallp . __1_(38%5_) ; (11)
ﬂr P ﬁs T

ency is
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At T ~ 300°K they found (pressure presumably zero)

aln'y3

(W)T ~ 0.3 (NaCl)

~ 1.9 (KCl)

It is pointed out, however, that the accuracy of the above results may
be in error by + 100%, or more, for NaCl and +50% for KCI.

Making various approximations and interpolations of experimental data,
Ku (1967) used Equation (10) to calculate 73 values at different temperatures
and pressures for a number of different plastica. His results are given in

Tables 4-1 through 4-4.

c. Determination of Griineisen Parameter from Thermal Expansion and
Heat Capacity Data

Although heat capacity and thermal expansion data at zero pressure are
readily available for most elements and compounds, compressibility data
over extensive temperature ranges is very limited. Thus, Equation (10)
cannot be used in most cases to test the temperature dependence of Y3
Another equation, however, was derived by Grineisen which does not require
compressibility data over an extended temperature range. The derivation of
this equation is based on the expansion of the term V dES/dV in the Mie-

Grineisen equation, At zero pressure (Partington, 1962, p. 351)

dEg
-VIv T Y Ev

and after expansion of V dES/dV in powers of (V- V)

Vor " Voo [1 _ltn+m)/s | Yor Voo | . v E (12)
T Bg ) Voo GEv
4-4
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Table 4-1
GRUNEISEN PARAMETER 73 OF SOME COMMON PLASTICS (Ku, 1967)
Plastics Griincisen Pressure Temp
k Parameter atm °c
t Polyethylene - low density 1.213 10,000 20
¥ Polyethylene - high density 0.812 2,000 20
Teflon 0.941 10,000 20
§ Nylon 0.796 1 20
Kel-F 0.305 10,000 20
5 PMMA 0.285 3 1,000 2i.1
o Polyester (Sectron 5003)° 1.04 10,000 20
- Polystyrene 1.44 1 —
ﬁ. 0.995 1,910 29
- Polypropylene 1.80 618 23
i Cellulose acetate Butyrate 0.595 1,910 181
Ethyl Cellulose 0.480 1,910 196
; Polyvinyl -
- Chloride - Pure 0.646 1,000 0
= 0.865 1,000 20
i - 10% Plasticizer 0.819 1,000 0
E i 0.866 1,000 20
i - 20% Plasticizer 1.32 1,000 0
0.910 1,000 20
}' - 30% Plasticizer 1.16 1,000 0
) 0.913 1,000 20

e &
. ]
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OF TEFLON (Ku, 1967)

Temperature °c

Pressure, atm 20 40 60 80
1 .935 .768 .374 .290
1,000 .651 .698 411 .355
2,000 .591 611 .469 417
3,000 .547 577 .505 .459
4,000 .568 520 .538 .505
5,000 .598 557 .561 .533
6,000 .615 .576 577 .556
7,000 .656 627 611 .581
8,000 .724 .680 .645 611
9,000 .819 174 .720 657
10,000 .941 .866 .808 741
Table 4-3

GRUNEISEN PARAMETER 73 OF POLYETHYLENE (Ku, 1967)

Temperature %G

Pressure, atm 20 40 60 80
1 1.177 .815 .539 918
1,000 1.990 1.431 1.041 1.585
2,000 1.664 1.164 .885 1.147
3,000 1.657 1.172 927 1.047
4,000 1.654 1.226 977 1.172
5,000 1.559 1.198 .959 1.074
6,000 1.597 1.254 1.015 1.271
7,000 1.398 1.121 .920 1.330
8,000 1.332 1.088 .896 1.269
9,000 1.216 1.019 .840 1.393
10,000 1.213 1.026 .846 776
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g Table 4-4
: GRUNEISEN PARAMETER )‘3 OF KEL-F (Ku, 1967)
B Temperature °E
Pressurc, atm 20 40 60 80
1 857 693 .730 .604
1,000 710 620 .588 .545
2,000 .645 .594 554 .535
3,000 623 .586 534 .510
4,000 617 579 .500 .515
5,000 614 .580 .538 .502
My 6,000 -599 .557 .507 .482
= 7,000 .565 516 473 | 447
£ 8,000 .502 455 416 .398
i' 9,000 416 374 .346 .324
o 10,000 .305 271 251 .235

4-7
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where n and m are constants associated with the repulsive and attractive
forces. Equation (12), after some simplifying assumptions, can be written
(Grineisen, 1926, p. 46)

Vor ~ Voo v
. =

2
00 Q, - (rgt3) By

E

(13)

v
00
where Q =
°©  Yghy

Differentiation of Equation (13) with respect to temperature, assuming

aEv L] (E-) ives

aT p at /, g
(&) - Y (14)
Voo '9T/p-g

. E
2, "V
Qo["(vc+3‘d-]z
‘ (o)
E

As pointed out by Hume-Rothery, 1945, p. 210, the term ('yG+ %—) Q_V_ becomes
o

increasingly important at high temperatures.

To a first approximation Equation (14) can be written

VOO a

Y =
G 8y Cy

(15)

The assumed temperature independence of Yg can thus be tested by

using @ and CV values at various temperatures and zero pressure.
d. Slater and Dugdale-MacDonald Relations
Because the volume dependencies of TG and Y, are of great interest,

and the data for their calculation from thermodynamic equations are in short

supply, great use has been made of the Slater rclationship (Slater, 1939, p. 239):

v5(V) = -2/3 - 1/2 V (0°P/aV?)_foP/oV)y (16)

4-8
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This equation was derived by assuming that
rg(V) = -d Vioax/d YV

where AT is Debye's limiting frequency. It is also assumed that the

Poisson ratio is independent of volume.

The Gruneisen parameter determined by Equation (16) is labeled Ys
because, as Collins, 1962, p. 323, points out, Yg can be identified with TG
obtained from thermal expansion only if Poisson's ratio is independent of

volume. Usually this is not the case,

At absolute zero and zero pressure, the volume is VOO and Equation
(16) takes the form

vg (17)

"
]
win
-+
'Ul't‘
- Qi{tN O

where P(; and Pg represents the temperature dependent parameters at T = 0°K.
Because to a good approximation P(l) and P(Z) can be taken as equal to Pl and
P, at room temperature (Kachhava and Saxena, 1965, p. 986) and thermal
volume expansion is assumed negligible (Slater, 1940, p. 745), Slater's relation

can be written

2 2
Ys=T3tE; (18)
or, in Bridgman's notation
_ b 2
Ys <7273 (9

for room temperature and zero pressure.

Gillvarry, 1957, p. 1258, using a generalized isothermal equation of
state, showed that even though Ys is temperature dependent, this dependency
is not manifest at zero pressure. At zero pressure Ts is strictly constant
at any temperature. Thus, Slater's relation apparently cannot be used to test

the temperature dependency of Ts at zero pressure,

4-9
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If the preceding assumptions are granted, Equation (16) can be used to
determine the volume dependence of Yg In Bridgman's notation, Equation
(16) becomes

v/v00

l 142 ;‘35 (1= V/Voo)|

_ 2., b
vglV) = "3t 3 (20)

To the best of our knowledge the above equation has not appeared as

such in the literature nor has a critical evaluation of its validity.

There appears in the literature another equation for Slater's relation.

This is
2

@
o

<
N

0
S (21)

s

Although no discussion has been found in the literature about the condi-

L B
rstVi= -3-3

—
Q)IQ‘
<y

tions under which Equations (16) or (21) should be used, some pertinent points

have been found:

Slater's derivation of Equation (16) is based on the relationship (Slater,
1939, p. 238)

v ofan_1 \7 (22)
max [4m V 1 +_2

3773

M

where vy and v, are the velocities of the longitudinal and transverse waves.

The wave velocities are related to compressibility by the following equations.

Y TR _ J3(-2¢
Vi = VBaT- -'o'))' and v, = _(—Zﬂp(l +a)7

where ¢ is Poisson's ratio.
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Dugdale and MacDonald, 1953, p. 834, state that the propagation of a sound
wave (presumably under zero applied pressure) at low temperatusres will be
isothermal, while at higher temperatures, including room temperature, the
process will be practically adiabatic. Gilvarry, 1956, p. 333, on the other
hand, points out that at low pressure the adiabatic or isothermal compres-

sibilities are for practical purposes, identical.

It is apparent that more study of this matter is required to resolve

the confusion. Of course, at zero degrees absolute, no ambiguity exists

because, at T = OOK,
(&)
ov S

Dugdale and MacDonald (1953) objected to Slater's relation because
they claimed that the zffect of finite strain was neglected. They proposed

the following relationship instead

L vi/A) v 1
PV z73)/av 3

y = -7 (23)

Their reasoning was shown to be in error by Gilvarry (1956) and Barron (1957).
However, Equation (23) has shown good agreement for zero pressure tests
(Rice, McQueen, and Walsh, 1958, p. 44). Generally, there is no firm basis
for preferring Equation (23) over Equation (16) (Doran, 1960, p. 29).

e. Gruneisen Parameter Y,

If a means is available for obtaining PT(V, T), then 'yz(V, T) can be

determined from
7,(V, T)

Pr = —% Er

can be easily obtained if the P-V zero degree isotherm
is obtained by

The term PT

and P-V isotherms are available. From such data, PT

4-11
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P'I‘ =P - Po. Unfortunately, compressibility data is in short supply, so

some other expedient for obtaining PT is desirable.

Beecroft and Swenson (1961) found that if the isothermal compressibi-
lity of a substance is linear with volume and independent of temperature, the
determination of P., is greatly facilitated. The following will briefly review

T
the approach of Beecroft and Swenson.

If the compressibility is a function of volume alone and independent of

temperature, then PT becomes a function of temperature alone. This becomes

obvious if one integrates the expression for compressibility, i.e.,

1pVy _
'v-ﬁ)T = V)

/dP -ff(V) ‘13’- + g(T)

P PO(V) + PT(T) (24)

Thus, if the compressibility is a function of volume alone, PO(V) and PT(T)

can be evaluated,

Furthermore, if P’I‘ is a function of temperature alone then

P\ _a _ %P1
oT)y ~ B = 4T

so that a/B is a function of temperature alone. Thus a/f found at P=0 can

be considered as a constant for a given temperature.

The expression for E, is found by integrating

T

aE) _ (ap)
<] = 17(&) -P
(av - 9T )y

(- 737

or
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Thus, E(VPT, T) VPT vPT
E s ¢ 2 dv - PdV (25)
B
Vop: T) Vor Vor
and

E, Vpo
Bl=ls P dV (26)
Epo Voo

Subtracting Equations (25) and (26) gives

E; = E(V,T) - Ey(V) = E(V - E

Q
T 00t TgVpr-Vor

VeT Vo
= P dv + PdV 27)
Vor Voo

E(Vop: T) - E

OT' T)

The terms
00

can be replaced by H at P=0and T. This follows from

(@) - (Z) +»()
oT P oT P oT P
atP=0

(.a_li) = (a—E) = C

6T P oT P P
and T

H(P=0,T) = E(P=0,T) =/ CP dT
.0
4-13
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The term E00 is arbitrarily set equal to zero. The last two integrals

of Equation (27) can be evaluated from experimental, compressibility data.

Beecroft and Swenson found for sodium, that the compressibility could
be assumed, to a first approximation, as independent of temperature and a

linear function of volume. Their experimental data is shown in Figure 4-1,

Least squares fit of the points shown
to a straight line

—
@®

_ I T T T I v | E I N

; . -
= Isothermal Compressibility vs

g 1.6 — Molar Volume for Sodium n
I3 R 4
L.

L4 - 1osﬂT=-3.09+.msv 0
mQ - v )

= «3.0%le ==

S 3.090- 15757 ]
H

: T
T 1.0 o &
S a 20K .
$o.8 X 204°K il
% o 2979k i
n

° 0.6 e All other -
' 1 L ] 1 1 \ 1 1 1 ]
19 20 21 22 23 24

Molar Volume, cm

Figure 4-1 - The Isothermal Compressibility of Sodium as a Function of Molar
Volume

From this data and heat capacity data at zero pressure the temperature
and volume dependence of Y, was calculated. The results are shown in

Figure 4-2,
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Variation of the Griineisen Constant

with Molar Volume for Sodium
300 =
P-V Isotherm (Slater)
T /_ P-V Isotherm
Dugdale-MacDonald
~2.0f
-
Thermal
1.0 3
) 200°K = 0 - y,,P=0
+ 100°K Thermal - v,
oL i I 1 1 4 L

19 20 21 22 23 24

Molar Volume, cm3

Figure 4-2 - The Volume Variation of the Griineisen Constant as Given
by Various Definitions '

B. UNDER DYNAMIC CONDITIONS
a. Method of Rice, Walsh, and McQueen

In the shock wave determination of the Grineisen constant, tiie form

of the Mie-Gruneisen equation of state usually assumed is the thermal

formulation
P-Py = (vg/VIE - Ey) (28)
Equation (28) combined with the shock Hugoniot,
Ey -Eqy = (P/20Vg - V) (29)

where EOH and VOH

pressure behind the shock, gives

are conditions ahead of the advancing shock and PH the

4-15
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v = V(P - PO)/[(PH/Z)(VOH - V) +Eg, - Eo] (30)

14
where Eo= -[ Po dv (E00 the energy at zero degrees absolute and zero

00

pressure is arbitrarily assumed zero). The term E .. is found by integrating

OH
the Debye specific heat curve from zero degrees absolute to the temperature

at the initial shock conditions.

It is further assumed that

2/3

vg = - 1/2 [(d(POV )/dVZ)(d(POVZ/3)/dV)] -1/3 (31)

This latter equation is the Dugdale -MacDonald modification of Slater's

formula assumed to be valid along the zero degree isotherm. Thus,
-v/2 [(d(P0V2/3)/dvz)/(dP0V2/3/dV)] 1/3
= V(P -P)/ [(PH/Z)(VOH- V) +Egy - Eo] (32)

Knowing the initial conditions of specific volume, compressibility at

zero degrees absolute and zero pressure, and specific internal energy EOH

(relative to Eoo). Equation (32) can be integrated. The result is the zero
degree isotherm. From this zero degree isotherm, TG is evaluated using

Equation (31).

The preceding discussion was taken mainly from Rice, McQueen, and
Walsh, 1958, and Deal, 1962.

Rice, et al, 1958, p.57, present their calculations of TG in the form
2 3
'yG(V) = YoytAHU+ BH" + CH (33)

where | = P/pOH -1, A,B,andC are constants, and 70H is the value of YGat gero

4-16
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pressure. The values of Yoy Were choosen to correspond to those obtained,

at zsero pressure, from the equation
va
Y = —— (34)
BCy

To check the consistency of the preceding method, the Dugdale-

MacDonald y is found at zero pressure from the relationship

y = 25-1 (35)

where S is the constant in the linear relationship between shock velocity and
particle velocity, i.e.,

Vs = C0 + SVp
Equation (35) represents the Dugdale-MacDonald parameter at zero pressure
as derived entirely from shock data. The derivation of Equation (35), which
is not discussed here, is straightforward (see Deal, 1962, p. 206). The param-
eter determined from Equation (35) may now be compared to that determined
by Equation (34). Such a comparison shc we that the two y's agree fairly well
for many elements (McQueen, 1964, p. 68).

. b. (aE/ap)v Assumed Constant

If the assumption is made that (cBE:/c';’P)V is independent of pressure and
volume in the vicinity of the Hugoniot, and Y3 is a function of volume only,
then TG can be determined from the equation (Deal, 1962, p. 206, and McQueen
and Marsh, 1960, p. 1267):

. OE
rg(V) = vAﬁv (36)

4-17
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i' The term (:-—E—) is determined from zero .ressure, thermodynamic
d v
ata by
L o)
.. (Qg) _ Ty Sy bp
1 oP (GP) a
' v 3T
9T/,
3. Deal, 1962, p. 206, states that the above procedure is justified because

it reproduces well equations of state obtained by more complex procedures.
i A comparison of the results obtained by this method with other methods,

however, has not been found.
C. TG from Speed of Sound Mecasurements behind Shock Waves

o An adiabatic equation of state may be written in terms of the Hugoniot,

.- just as an isotherm was in Section 4 B.a. Consider Figure 4-3,

Hugoniot

/—- Adiabat

|
|
vy _‘;l v

& omncine §

Figure 4-3 - P vg V Curve to Illustrate Relationship Between Sound Speed
Behind a Shock Wave and Intersection Between Adiabats and
Hugoniots
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At volume Vl the pressure on the Hugoniot can be given by

YG
PH-PO = VI(EH'EO)
while that on the isentropc by
TG
Pp-Py = v_l(EA‘Eo’
Thus,
G
Pp-Py = v_l‘EA'EH)
Or, generally
TG
Py - Py = 7 (Ep -Ep

Differentiation of the above equation gives (Deal, 1962, p. 205)

P .-.-iE_H.-q.(p -p).d_!.,..!d_pﬂ-ﬂ (37)
A av H™ "Adv]y] v]| dv dv

At volume Vz where the Hugoniot and adiabat intersect, Equation (37)

becomes
b op - 2By v[iPu 9P,
H A av_ 'y | av av
or [de _dpA v
av av
Yy = TE (38)
Pt —m
H dav

dE
To find Wli » the equation of the Hugoniot is differentiated, i.e.,

Py
Ey-Eou = 3 Vo~ V)

—
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dE dP P

H_1__H .
v - 2 av Vog- V)

i
2

So that Equation (38) becomes, at volume Vz (McQueen, 1964, p. 70)

l"_‘fﬁ "_51] 2y
dVv dVv

V) =

vG( )

aP,
Put v Yoy

(39)
V)

The speed of sound, it may be recalled, is given by

= (:3\'?
S

Thus, if the speeds of sound along a Hugoniot can be measured and the
slopes of the Hugoniot as functions of volume known, yG(V) can be calculated

with the aid of Equation (39).

The preceding discussion, taken from McQueen, 1964, p. 70, and Deal,
1962, p.205 represents the general basis of the method. The actual deter-
mination of ¥y from sound speeds bchind shock waves, however, (Al'tshuler,
Kormer, Brazhnik, Vladimirov, Speranskaya, and Funtikov, 1960; see also,
Anderson, 1965)was approached in a slightly different manner apparently,
because Hugoniot slopes obtained from dynamic measurements are inaccurate.

In the experimental paper (Al'tshuler et al, 1960), it is reasoned that since

P, = P, +P

H 0 T
and
oP
T
(W); 0
then
oV S oV S
or
2 2
CH >C0
4-20
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where CH is the isentropic sound speed along the Hugoniot and C0 the sound

speed at absolute zero. The sound speed C0 may be written

dP

2, . 1%

where Po is the density of the initial Hugoniot state and 0 = P/Po. If expression(40)

is integrated using Cf{ instead of C(Z), i.e.,

ag
P,(9) <! Py cf{ do = I(0) - Loy, = (0,0,
00

where 000 = p/poo. pOO being the density at T = 0°K and P = 0, then the function

I{o, 000) provides an upper limit to the zero degree isotherm.

The Grineisen parameter is then determined by using a Mie-Griineisen
equation for P
substituted.

Hwhich includes electronic contributions. For P,, I(O0, 000) is

The Griineisen parameters obtained in this manner are 20 to 25% lower
that those obtained by the method of Rice, Walsh and McQueen in which the

electronic contributiones are taken into account,

d. Other Methods

Other methods of determining the Grineisen parameter which are

mentioned in the literature include varying the initial E_ .. state before

OH
shocking by heating or by the method of reflected shocks. However, very
little work appears to have been done in this area. These methods have not

been investigated thoroughly,
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