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FOREWORD 

The work described in this report was conducted by the 

McDonnell Douglas Astronautics Company under Independent 

Research and Development Account No. 81205-202. It is pub­

lished as an Air Force technical document because the material 

represents the analytical framework that is a central part of the 

"Rocket Propulsion System Hardening Design Handbook, Vol­

ume l, Nuclear" developed by McDonnell Douglas Astronautics 

Company for the Air Force Rocket Propulsion Laboratory, under 

Contract No. F046ll-73 -C -0042. 

This report was prepared under Purchase Order No. F04 700-

75-M-2114. The Air Force Project Officer was Mr. G. Allen 

Beale. 

When U.S. Government drawings, specifications, or other data 

are used for any purpose other than a definitely related govern­

ment procurement operation, the Government thereby incurs no 

responsibility nor any obligation whatsoever, and the fact that the 

Government may have formulated, furnished, or in any way sup­

plied the said drawings, specifications or other data, is not to be 

regarded by implication or otherwise, or in any manner licensing 

the holder or any other person or corporation, or conveying any 

rights or permission to manufacture,use, or sell any patented 

invention that may in any way be related thereto. 

This test report has been reviewed and approved. 

Colonel, 
Chief, Technology Division 
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UNIT CONVERSION RELATIONS 

1 g/cm3 (units of weight density)= 1 dyne-sec 2 /cm
4 

(units of mass density) 

1 gram = 1 dyne-sec2/cm (= 980. 7 dynes at acceleration of 1 gravity) 

1 dyne = 1 gram - em/ secZ 

1 erg= 1 dyne - em= lo-7 joules 

1 calorie = 4.186 x.lo7 ergs = 4.186 x lo-5 megabar-cm3 

1 tap= 1 dyne-sec/cmZ = 1 bar-1-Lsec 

1 bar= 106 dynes/cm2 = 14.5 psi= 0. 987 atmosphere 

1 psi= 69,000 dynes/cmZ = 0. 69 x lQ-7 megabar = 70.31 g/cmZ 

1 kilo bar = 103 bars = 1 o9 dynes I cm2 

1 megabar = 103 kilobars = 10
12 

dynes/cm
2 

1 cal/goC = 1 Btu/lboF 

1ft/sec= 30.48 em/sec= 30.48 x 10-6 cm/f.Lsec 

1 kev = 10 3 electron volts= 1.603 x 10-9 ergs 

vi 



Section 1 

INTRODUCTION AND SUMMARY 

This report summarizes analytical relationships derived for estimating 

the effects of x- rays on materials. Since all major x-ray effects are treated 

in a general way, they are generally applicable to anything exposed to 

x-rays. Although the relationships were developed primarily for the designer 

and systems analyst, their quality is comparable to computer codes so they 

are also useful to the technologist. 

The effects covered include energy deposition in single and multiple 

materials, front-face mass removal, structural heating, blowoff impulse, 

stress generation by impulse loads and thermal loads, stress wave attenua­

tion in undistended and distended materials, and structural response. Opti­

mum energy spectra which maximize an effect for a given fluence are 

emphasized; however, specific spectra are also treated. 

Except for stress wave attenuation in distended materials, the relationships 

and their demonstrated general validity for effects analysis are new-

they were developed during the past year. The motivation for developing an 

analytical approach was to circumvent the difficulties associated with : 

(1) the need to provide practical understanding of individual and combined 

x-ray effects to individuals not conversant with x-ray effects, (2) the numerous 

factors involved in analyzing x-ray effects, (3) the vast number of materials 

and material combinations associated with some systems, (4) the determination 

of spectrally optimized effects, (5) the need for flexibility in accommodating 

refinements in damage or failure criteria, (6) the tedium and crudeness of 

existing analytical techniques, (7) the designer's lack of convenient access 

to computerized analytical techniques, and (8) the inherent problems of over­

dependence on computerized numerical analysis. 
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The resulting generalized analytical relationships are simple closed-form 

equations. With only three exceptions, they are all derived from basic 

theoretical concepts rather than empirical correlations; otherwise, the 

task would have been impractical. They have been compared with 

computer analyses performed with energy-deposition codes and hydro­

dynamic codes, and the comparisons have shown the equations to produce, 

over the complete practical ranges of parameters, the results of the computer 

codes to within generally 10 to 30 percent. It is not clear how much of this 

difference is due to approximations in the equations and how much is due to 

errors in the codes. In some cases, the error appears to be in the codes, 

for example, in consistent discontinuities in computer results which have 

no physical basis, and the error becomes apparent only when a parametric 

correlation is attempted. When the differences between calculations that 

involve a number of parameters are small, it takes considerable time and 

effort to determine the exact sources of the differences. There have been a 

few isolated cases when the difference between analytical results and com­

puter results has been as much as a factor of 2 (e. g., the empirical energy 

deposition relationships); however, for the same or similar cases, two corr.­

puter programs gave results that differed by greater than a factor of 2, pre­

sumably because they use different sets of x-ray mass absorption 

coefficients. 

In adopting a perspective for the accuracy of any analytical tool for 

vulnerability analysis, it is helpful to realize that, from a practical stand­

point, useful precision is limited by the accuracy of materials data, failure 

criteria, and the reality of assumptions regarding radiation environments. 

The uncertainties of all of these far exceed the uncertainty in the present 

analytical modeling approximations. 

A large number of comparisons have been made. However, because of 

the numerous relationships and ranges of paran1eters involved, it has not 

been practical to make a comprehensive study of the accuracy of the analyti­

cal relationships. It has been necessary to present the results of the com­

parisons that have been. made in somewhat general terms; documentation has 

not been possible due to the limited scope of effort. Nevertheless, 
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sufficient comparisons have been made over the full ranges of parameters 

of the individual relationships that their validity and nominal accuracy have 

been established. 

The objective has been to duplicate computer analyses as closely as possible. 

Aside from the benefits of an uncomplicated analysis, such an approach gives 

numerical results which have the same state-of-the-art limitations relating 

to material properties, failure criteria, and theoretical constructs as the 

computer programs it seeks to emulate. These same limitations on the 

application of theoretical tools make them indispensable to a rational design 

approach because of the even more severe restrictions they impose on the 

alternate approach of empiricism 
1 

In addition to presenting the derivation of equations for each phenomenon, 

the last section of the report combines these equations to obtain explicit 

expressions for fluence thresholds for various failure mechanisms and 

situations relevant to propulsion systems. Others can be similarly derived. 

An attempt has been made to maintain consistent units and symbols 

throughout. They are defined in each context. Units of calories, grams, 

centimeters, microseconds, kilobars, and kilotaps have beer used consist­

ently. A set of unit conversion relations has been included for reference. 

1 J. Watcher, Rocket Propulsion System Hardening Design Handbook. 
McDonnell Douglas Paper WD 2353. Presented at the Fourth Symposium 
on Nuclear Survivability of Propulsion and Ordnance Systems, Defense 
Nuclear Agency Report, 1974. 
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Section 2 

X-RAY ENERGY DEPOSITION 

The most fundamental quantity required for x-ray effects analysis is the 

x-ray energy deposition in a given material or laminate; the analysis of all 

effects relies upon this information. An x-ray spectrum is, for convenience, 

often characterized by a single blackbody temperature expressed in kev 
3 (10 electron volts). An x-ray environment can also be characterized by a 

range of blackbody temperatures. The objective of this section is to derive 

useful analytic relationships for energy deposition for blackbody energy 

spectra. 

2. 1 MAXIMUM DOSE FOR A RANGE OF BLACKBODY SPECTRA 

2. 1. 1 Single Material 

For a range of blackbody temperatures and for a given point within a 

material, a unique quantity is the maximum dose (i.e., energy depostion) for 

a given fluence. The exact expression for the dose in a single material is 

D(x, Z, T) = cj> lroB(E, T) exp [ -!J.(Z, E)px] !J.(Z, E) dE 

where Dis the dose in cal/g, xis the thickness variable in em, Z is the 

atomic number of the material, T is the blackbody temperature in kev, 

(I) 

cj> is the incident x-ray fluence in cal/cm2, p is the material density in g/cm3, 

fJ.(Z, E) is the x-ray mass absorption coefficient in cm2 /g, E is the x-ray 

(photon) energy in kev, and B(E, T) is the blackbody function given by 

B(E, T)dE = 
1 ~ (-?)dy 
n e-1 1 

(2) 

where y = E/T. The integral of Equation (2) from zero to infinity is one. 
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Disregarding absorption edges, it is well known that a good approximation 

for the mass absorption coefficient is 

where I-Ll is the reference value at 1 kev. For the range of energies of 

practical interest, n R:J m ::::: 3. 

n -m 
Defining the variable ~ = I-Ll Z E p x, Equation (1) becomes 

(3) 

(4) 

The objective is to maximize D by maximizing the integral. Since e- ~ d~ 

varies far more strongly withy than does the blackbody function in paren­

theses, a good assumption is to remove the blackbody function from the 

integral and maximize it, with the remainder of the integral becoming unity. 

Thus, 

4 -4 4 e (5) 

Substituting this and m = 3 into Equation (4) gives for the maximum dose for 

any fluence, in any material, 

0. 24 __!_ 
px 

Because this is an optimum, the variation of dose with all parameters is 

(6) 

weakest near D Also, the floating parameter which is optimized (i.e., y) 
m 

has the effect of obscuring the absorption edges in higher-atomic-number 

materials so that they are manifested only in terms of an average m, a 
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parameter that is a weak function of Z and a weaker function of E. This is 

verified by parametric computer calculations with a typical one- dimensional 

point-kernel (exponential attenuation) x-ray transport code using the mass 

absorption coefficients of Marotta. 
2 

Table 1 lists coefficients of Equation (6) that were determined by parametric 

computer calculations. The coefficients naturally fall into three categories: 

Group 1, Z :s 6; Group 2, 12 :S Z :S 30; and Group 3, Z 2: 40. However, the 

single coefficient of 0. 24 is within ±20 percent for all materials, and is 

sufficiently accurate for virtually all situations which do not fall outside a 

specified range ofT. (What to do when they do fall outside is discussed in 

Section 2. 2). Equation (6) is therefore applicable to any homogeneous 

material, and is independent of all physical properties except density. 

Greater accuracy is obtained by using the coefficients of Table 1, but it is 

helpful to realize that since blackbody spectra or any other idealized spectra 

represent convenience more than reality, consistency is more important than 

absolute accuracy once a practically acceptable level of accuracy is attained. 

The variation of the mass absorption coefficient is shown in Figure l for 

carbon, aluminum, iron, and tungsten. The sharp discontinuities caused by 

the various orbital- electron shells (designated K, L, M, etc.) are, in 

effect, completely smoothed out by optimizing D in terms of a dispersive 

spectrum. For energies higher than the K-shell potential, m = 3. 0 for all 

elements, and for all lower energies, m = 2. 5. Between carbon and alum­

inum, n = 3.4. Between aluminum and iron, n = 3. 3. And between iron and 

tungsten, n = 3. l. These values of n relate only to energies higher than 

the K- shell potentials. 

Figure 1 indicates several things relevant to x-ray dose. First, carbon is 

the highest -Z material of interest which has no significant absorption edge 

(i. e., for E ~ l kev); thus, other materials will behave somewhat differently 

than carbon and beryllium. Second, for a dispersive spectrum, the effect 

l2 
C. R. Marotta, Updated Master Library Tape for PHOTRAN, Air Force 
Weapons Laboratory, AFW L- T.R- 61-·ll, 1968. 



Table 1 

COMPUTER-CALCULATED COEFFICIENTS FOR 
MAXIMUM-DOSE EQUATION 

Element Atomic Number Coefficient 

Beryllium 4 0. 20 

Carbon 6 0. 20 

Aluminum 13 0. 22 

Titanium 22 0. 22 

Iron 26 0. 22 

Nickel 28 0.22 

Copper 29 0. 22 

Niobium 41 0.29 

Molybdenum 42 0.29 

Tungsten 74 0.29 

E (KI¥1 

Figure 1. X·Ray Mass Absorption Coefficients 

2-4 

CR7SI 



of absorption edges is minimal except for the average absorption coefficient 

characteristics in terms of effective values of I-ll, m, and n. Third, 

dose correlations based on the behavior of the absorption coefficient at 

energies higher than the K- shell potential are not valid for Z ~ 12 because 

of the significant influence of lower energies; the actual dependence on Z 

and E is weaker than for m ~ n::::: 3. Fourth, the effective absorption 

coefficients have similar behavior only within the three categories of atomic 

number mentioned above, and in the highest one the effective absorption 

coefficient is approximately the san1e for all materials, with the main 

difference being the individual shell potentials, while their collective effect 

is nearly identical. Finally, an important property of x-ray absorption 

coefficients is that they vary smoothly with atomic number, including shell 

potentials, and therefore integral quantities like doses for dispersive spectra 

also vary smoothly with atomic number. 

Figures 2 through 7 show dose profiles for unit fluence and for 1 to 15 kev 

blackbody spectra in beryllium, carbon, aluminum, iron, niobium, and 

tungsten. The maximum dose per fluence at a given depth is represented by 

the envelope formed by these curves (which is more evident for the higher Z 

materials). Also shown in the figures are plots of the cumulative fraction of 

fluenc<J absorbed to a given depth. These data were generated with the 

previously mentioned cornputer program. The curves can be interpolated in 

terms of the effective atomic number (see Equation (10)) and px (g/cm2} to 

handle any hornogeneous rnaterial. 

It is important to realize that these computer-generated data and any similar 

data do not represent absolute accuracy. For example, the energy deposition 

routine in the PUFF code, which uses the mass absorption coefficients of 

the National Bureau of Standards
3

, gives results that in some cases differ by 

more than a factor of 2 from the data in the figures. This is presumed to be 

due to a difference in the absorption coefficients. 

3
G" R. White, National Bnreau of Standards, Report NBS 1003, 1952. 
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2. 1. 2 Laminated Materials 

For an absorber material of atomic number Z and any intervening mater a 
(generally called shielding) of atomic number Zs' \>;chich have the .o:ame 

effective values of m and n, Equation (1) leads directly to Equation (6) 

except for modification by the factor ( Zn / Zn) to accnunt for the scaled 
a s 

absorption coefficient as defined by Equation (3}. 

That is, 

Parametric computer calculations for Z s 30 and Z .S 30, and with n = 3. a s 
compare with Equation (7) to within better than 20 percent. 

Because for Z ~ 40 the effective absorption coefficient is approximately the 

same for all materials for the energy range of interest (see Figure 1), 

parametric computer calculations show that D is independent of material 
m 

for Z 2: 40. That is, Equation (6) is also applicable for any combination of 

materials for Z 2: 40 to within better than 20 percent for the materials 

checked (ranging from niobium to tungsten). 

Many parametric computer calculations were made of nurr1eroos group 3 

materials over numerous group 1 and group 2 materials. Because the 

effective m 1s and n 1 s are different for these two categories of materials, 

energy- dependence and material-dependence are no longer separable, and 

consequently the functional dependence will be different frorn the ::~.hove 

relationships, requiring an empirical correlation. It was found that for 

Z S 30 and Z 2: 40, a simple empirical express ion for D is 
a s m 

D 0 40 <I> (zna/ Zns) 
m = · (px)3/2 

where n = 2. 8 and the correlation is within ±40 percent 
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Table 2 surnmarizes the pararneters for the general expression 

where a, b, and n are fixed for the material combinations defined in the 

table. Parameters have not been determined for Z ~ 40 and Z ::s 30. 
a s 

2. l. 3 Effective Atomic Number 

(9) 

The above discussion has been in terms of pure elernental materials. How­

ever, the relationships have been shown by computer calculations to hold 

for alloys and composite materials as well. In fact, the above expressions 

hold for any material or combination of rnaterials if Z, Z , and Z are each 
a s 

represented by an effective atomic number defined as 

z 
e 

1/3 

where w. is the mass fraction of each element, and the sum is over all 
1 

elements in either the shield or the absorber. Whether the shield is a 

(l 0) 

homogeneous n1aterial or a larninate is irrelevant. The shield is defined as 

the total mass of material (in g/cm
2

) between the incident radiation and the 

point at which the dose is evaluated (including air). The value of n = 3 in 

Equation (10) adequately represents all material combinations for the purpose 

of determining Z ; very nearly the sarne value of Z is obtained for 
e e 

2. 8 ::s n ::s 3. 3. Because z 3 
is a strong function, Z is usually dominated by 

e 
one or two elements in a r:J.aterial. 

Ji a laminated 11 shield 11 is composed of M different materials whose 

'individual effective atonlic n-:trnbers are known, a modified version of 

!Equation (1 0) is convenient for determining the effective atomic number of 

the &Lk1~, :':_ 
0:-';:,0 

/ ·:~ 

z3 ;) 
·7 + ( ...r~ . . L, 

2 
;· . 

1., . 1 
.t e I eZ '7 

L-" = e:;; I ·' 
' 2 

t 

' 
j_ i c. 

+ 
(11) + 
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Table 2 

PARAMETERS FOR MAXIMUM - DOSE EQUATION* 

Thickness 
Z Range Z Range Coefficient z Exponent Exponent 

For Shield For Absorber a n b 

z :S 30 z :S 30 0.24 3. 3 1 

z 2: 40 z 2: 40 0.24 0 1 

z 2: 40 z :S 30 0. 40 2. 8 3/2 

z :S 30 z 2: 40 ? ? ? 

Any Z z =Z 0.24 - 1 a s 

*General Equation: D = a <1> ( p x)- b ( Z: I Z:) 
m 

Figure 8 is convenient for relating the Z factor ( Zn or z:) to the atomic 

number (Z or Z ). 
e 

1,000 
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2. 2 DOSE FOR SPECIFIC SPECTRA 

lfor any specific spectrum, an effective general method of dose analysis is 

based on the above analytical approach. However, it is not completely 

analytical, but requires a number of dose-versus-depth (in g/cm2
) curves 

for the range of effective atomic numbers of interest. If specific blackbody 

spectra are of interest, the parametric curves are like those in Figures 2 

through 7, except it is more convenient if the material depth is expressed in 

g/cm
2 

instead of em. 

A conveniently small number of curves can represent the full range of Z 
e 

and T for blackbody spectra; that is, with up to 20 to 30 figures like 

Figures 2 to 7, a single homogeneous material with a particular Z can be 
e 

adequately represented by the parametric energy- deposition curves of the 

material with the closest Z , without interpolation in Z being required. It 
e e 

is important to represent one material by another in terms of g/cm
2 

and not 

in em to account for differences in density. 

For laminated materials, the same procedure is applied to determine the 

"shield dose, " D , in the homogenized representation of the shield with 
s 

effective atomic number Z The dose, D , in the absorbing material behind 
es a 

the shield is then obtained by scaling D by the ratio of Z factors: 
s 

D (zn /Zn ) 
s ea es 

(12) 

Thus, with a set of parametric energy-deposition curves for enough single 

materials, any material configuration can be easily analyzed. The appropri­

ate values of n for Equation (12) are obtained from Table 2. 

2. 3 EXPONENTIAL REPRESENTATION OF DOSE PROFILES 

2. 3. 1 Basic Exponential Function 

Most actual dose profiles, including those of blackbody spectra, exhibit 

exponential-like behavior down to a significant degree of dose attenuation. 

To the extent that an exponential function adequately represents the portion 

of the dose profile that is dominant for a given effect, closed-form analytical 

solutions can be obtained for estimating most x-ray effects. This approach 

was investigated and found to be successful. For optimized quantities 
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involving the integral of the dose (e. g., blowoff impulse), completely 

satisfactory results can be obtained even when an exponential function is a 

poor approximation of the dose profile. 

The general representation of dose profiles as an exponential function is 

D = D 
0 

where D is the surface dose and R is the characteristic dose attenuation 
0 

depth in em, or the inverse of the effective (average) linear attenuation 

coefficient ~ (i.e., R = p /~). 

( 13) 

To conserve energy, the integral of Equation (13) over all x rnust equal the 

incident fluence. This holds only for an exact exponential profile and results 

in a unique R which is related to D by 
0 

£ = <I> 
0 ~ 

0 

(14) 

However, in some cases (e. g., thermomechanical stress) the quantity to be 

approximated is not the total energy absorbed, but the initial part of the 

dose profile. In this case, £ is defined as the thickness required to reduce 
- 1 the dose to e D . 

0 

Figure 9 shows how the dose profiles for 1, 5, and 1 5 kev typically vary 

when divided by D and plotted in terms of x/£ . Also shown are the two 
0 0 

kinds of exponential representations for R and e , with the areas under the 
0 

curves indicating energy is not conserved for R~P . It is seen that 
0 

exp (-x/ £) approximates the actual profile well down to D/D = 0. 2, and 
0 

underestimates the dose by about a factor of 2 at D/D = 0. 1. Comparisons 
0 

with computer calculations indicate that this agreement to this degree of 

attenuation is adequate for predicting x-ray effects for most situations if 

conservation of energy is introduced when it is important. 
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2. 3. 2 Exponential Parameters for Blackbody Spectra 

To apply Equation (13) and relationships which are derived from it to 

specific blackbody spectra or any other spectra, D and R can be obtained 
0 

from parametric data like those shown in Figures 2 through 7. However, it 

is useful to have an analytical correlation for D and R. Parametric com-
o 

puter calculations were used to determine such expressions empirically for 

blackbody spectra. 

The surface dose is defined by Equation (l) with x = 0. This gives 

D 
0 

( 1 5) 

For Z :S 6, J.l.l is a constant, m ""'3, and the integral is a constant. However, 

for Z 2:: 12, this is no longer true (see Figure 1 ), and the integral is a function 

of Z and T which must be determined empirically. The following relation­

ships were found to correlate all computer- calculated results. 
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z :5 6 

z ~ 12 

Similarly, the correlations for 2 are 

T3 
£ = 0.015~, 

Pz 
z :5 6 

_4 T3/2 ( z \1/4 
£=4Xl0 -p-3Q) ~ 

(16a) 

(16b) 

(17a) 

z ~ 12 (17b) 

In these equations, Tis in kev, 4> in cal/cm
2

, p in g/cm3, D in cal/g, and 
0 

2 in em. 

These correlations were obtained with many claculations using the mass 

attenuation coefficients of Marotta
2

. Equations (16a) and (17a) reproduce 

the results to within a few percent. Equations (16b) and (17b) reproduce 

the results generally to within 30 percent. However, there are a few dis­

continuities in the calculated data in addition to apparently random scatter, 

which disagree with the equations by as much as a factor of 2. This is 

attributed to uncertainties in the mass absorption coefficients, or the numer­

ics of the calculation, or both, since D and 2 must both be smooth functions 
0 

of Z and E for dispersive spectra. (Several comparisons of Equations (16) 

and (17) with results obtained with a version of the PUFF computer program, 

which uses the mass absorption coefficients of the National Bureau of Stand­

ards3, indicate somewhat better agreement than with the Marotta data, but 

indicate the same general agreement. However, in a few cases the compari­

son is not as good. It is not known which computer results are best.) 

Because of the scatter in the calculated data, the approximation of Equa-

tion {17) which neglects Z- dependence has the same relative accuracy as 

when the Z-dependence is retained. 

2 
Marotta, op. cit. 

3
White, ~- cit. 
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2. 4 OPTIMUM TEMPERATURE FOR MAXIM.UM DOSE 

Because there are always practical limits to the range of blackbody tempera­

tures to be considered, it is necessary to know the optimum temperature 

corresponding to a particular D in order to determine if it is within the 
m 

range of interest. If it falls outside the range, then the dose and associated 

quantities are estimated on the basis of the appropriate limiting temperature. 

To obtain the optimum temperature T , D is derived for an exponential op m 
dose profile. This is done by equating to zero the differential of Equation (13) 

with respect to Z , using Equation (14) to relate Z and D . This results in 
0 0 0 

the optimum £ for an exact exponential profile: 
0 

2 = X 
op 

(18) 

and 

D = 
e-lcf> 

= 0. 37 _!__ 
m px px 

(19) 

It is first noted that Equation (18) results in Equation (19), which is very 

similar to Equation (6). However, it cannot be used directly by substituting 

Equation (17) for £ and solving for T , nor does it imply that D /D = e, 
op op . o m 

both of which are far from correct. Instead, Equation (18) indicates a 

general integral relationship for D ; namely, that for any exponential-like 
m 

profile, the cumulative fractional energy deposition f, to the depth at which 

D is evaluated, is f = 1 - e -I = 0. 63. This compares with computer cal-
m 

culations for blackbody spectra to within 10 percent. Iff (e -l) is approxi-

mately constant for a certain class of dose profiles, then so is the total 

energy balance approximately a constant. Consequently, integrating 

Equation (13) results in 

D £ = 
0 

D 2 
oe o 

= 
Doe cf> 

pD 
0 
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where D is the surface dose corresponding to an exponential relationship, oe 
which in this case is Equation (19), and £ is related to D by Equation (14). 

0 0 . 

Equation (20) is the general expression for equating the total energy of an. 

exponential approximation represented by D and £ to that for an exponentially 
0 

derived relationship expressed in terms of D In this case, D is given by 
oe oe 

D 
oe 

::: eD 
m 

:::_..t.. 
px 

Substituting this into Equation (20) results in 

cp2 
:::-2-

p X 

Substituting Equations (16) and (17) into Equation (22) gives 

113 T = 0. 5 Z (p x) , 
op 

z !: 6 

z ~ 12 

Equation (23) is valid for all maximum- dose relationships for which b = 1 

(21) 

(22) 

(23a) 

(23b) 

(see Table 2). The atomic number of the absorber does not influence T · 
op' 

the Z in Equation (23) refers to the effective Z of the shield material, 

i. e. , Z as defined by Equation (11 ). 
e 

For the maximum-dose relationship of Table 2 for which b = 312, a derivation 

similar to the one given above for T results in 
op 

T = 0.5z4 1 5 (px) 112, 
op 

z !: 6 (24a) 

T = 1. 2 z4 I 5 (p x)3 I 5' 
op 

z ~ 12 (24b) 

In general, the exponent of p x in Equation (23) scales linearly with b. 
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The above equations for T agree within 10 percent to 20 percent (based on 
op 

graphical data) with parametric computer analysis. 

2. 5 SU.:MMARY 

The exponential function, Equation (13), as a general operative representa­

tion of dose profiles, is presented in the context of x-ray effects analysis. 

Its relationship to blackbody spectra is described in terms of the surface 

dose defined by Equation (16), the characteristic dose attenuation depth of 

Equation (1 7), and the energy balance relationship of Equation (20). It is 

used to derive the blackbody temperature corresponding to the maximum 

dose defined by Equation (9), as expressed by Equations (23) and (24). When 

dose profiles are needed for D/D ~ 0. 2 for specific blackbody temperatures, 
0 

parametric energy-deposition data must be used to obtain reasonable 

accuracy. Dose estimates for specific spectra can generally be determined 

using parametric energy-deposition data, as described in Section 2. 2. 

Some of the equations in this and subsequent sections refer to a range of 

applicable atomic numbers. In general, the atomic number refers to the 

effective atomic number, Z . In cases where a range of Z is not covered 
e e 

(e. g. , 6 < Z < 12), the situation is undefined, but often the numerical 
e 

difference between the two equations is not large, so that a choice is not 

difficult as to whether one of the equations is adequate. If there is insuffi­

cient reference to the energy- deposition data or a conservative rationale to 

make one of the two equations acceptable, one must resort to another 

approach for these transition situations. While for T the two equations are 
op 

very similar for the two ranges of Z , so that there is usually not a problem 
e 

for 6 < Z < 12, Equations (16) and (17) are significantly different for 
e 

6 < Z < 12. Therefore, for this range of effective atomic numbers it is 
e 

usually best to resort to parametric energy-deposition data to determine 

D and R. 
0 
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Section 3 

FRONT-FACE MASS REMOVAL 

Mass removal at the front face of a material may involve vaporized, 

melted, or virgin material. The mass removal plane is always determined 

by the phenomenon of spall caused by a thermomechanical tensile wave, 

regardless of the degree of vaporization or melt, or the relative amplitudes 

of impulse-induced stress and thermomechanical stress. 

There are two kinds of criteria for front-face mass removal which are 

often used to define the spall plane, a dose criterion and a spall threshold 

criterion. The dose criterion corresponds approximately to the energy 

required to reach the melt temperature, at which little resistance to a ten­

sile stress wave remains. The spall threshold is usually assumed to be the 

dynamic strength of the unheated material. Both represent a simplification 

of the real situation, and a clear choice between the two has not been demon­

strated for all situations. Most comparisons have indicated that a dose cri­

terion correlates satisfactorily with experiment for many materials, although 

there are exceptions, notably graphite. 

The modified BBAY model (see Section 5) employs a dose criterion 

equal to the energy through melt to account for nonvapor mass removal. 

Mass removal as well as total impulse correlates reasonably well with this 

criterion for situations involving significant vaporization. Mass removal 

for metals has been shown to correlate for both x-ray and electron beam 

dose profiles, with a dose plane corresponding to between one half the melt 

temperature and the melt temperature. Composite materials like fiber glass 

have shown a similar correlation. This is not inconsistent with data which 

show that strength is relatively unaffected by temperature for very short 

times (see Section 4), at least not until the melt phase is approached. For 

most structural materials, the energy to melt and the energy through Inelt, 

relative to room temperature, differ by only a ratio of 2/3, and often by less. 
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However, graphite, which is unique in that it has no melt phase and its 

strength increases with temperature, does not correlate well with a dose 

criterion. On the basis of existing experimental evidence, a dose criterion 

is recommended, except for graphitic materials. Using a dose criterion, 

designated Dr, the maximum thickness of material removed is obtained from 

Equation (6), and is 

X r 
= 0. 24 __<L 

pD r 

where x is in em, cp in cal/ cm
2

, pin g/ cm
3

, and D in cal/g. The corre-
r r 

spending optimum blackbody temperature is given by Equation (23 ). The 

fraction of the incident fluence absorbed in the remaining thickness of a 

material is approximated by 

-1 
f = e - e 

h 
X 

r 
(26) 

where h is the original material thickness in em (see Sections 2 and 4). This 

can be used to estimate the average temperature rise of the remaining 

material in order to evaluate the strength reduction due to the combined 

effects of mass loss and temperature rise for situations where mass loss is 

the dominant effect. For the analysis of situations where temperature rise 

is the dominant effect, see Section 4. 

To determine the mass removed for a specific spectrum, the use of 

parametric energy-deposition data is recommended. 

The dose criterion Dr is equal to the energy required to raise the target 

enthalpy to a certain value. Its numerical value is therefore determined by 

the ambient temperature of the target material. 
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Section 4 

STRENGTH REDUCTION BY HEATING 

One x-ray effect is the heating of exposed load-bearing structures and 

the consequent reduction in their strength (as well as in the strength of any 

contiguous bonds). There are two major factors involved in strength loss 

caused by heating: (1) the removal of mass and the heat capacity and x-ray 

energy it contains by front-face spall, and (2) the temperature rise of the 

remaining structure caused by the residual x-ray energy. The first part of 

the problem is to determine the optimum conditions that will maximize the 

strength reduction for a given fluence. The second part is to obtain a rela­

tionship for estimating the maximum strength reduction. 

4. 1 OPTIMUM THERMAL CONDITIONS FOR STRENGTH REDUCTION 

Generally, strength reduction is a function of the temperature profile 

across the material thickness. The initial temperature profile created by 

x-rays is exponential-like, decreasing monotonically with thickness. After 

a short time (typically on the order of seconds for metals and minutes for 

composite materials), the profile becomes nearly flat due to thermal ccn­

duction. Therefore, the two extremes of temperature profile are the initial 

profile corresponding to the x-ray energy-deposition profile and the flat 

quasi-equilibrium profile. The question is what gives the greatest strength 

::educiion. 

The three classes of strength-vs. -temperature relationships that character­

ize most structural materials are shown in Figure 10, where o-r is the 

reference strength at or near room temperature, Tt is the threshold tem­

perature where significant strength reduction sets in, and T m is the melt 

temperature approximately where the strength goes to zero. 

The following generalizations can be shown mathematically for these 

classes of curves. For a convex curve (o- 11 = d2o-/dT2 < 0), the optimum 

temperature profile is flat, with the temperature equal to Tm and the thick-
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ness of the heated material corresponding to the amount of energy absorbed. 

This is approximated by the initial profile. For a concave curve (o-" > 0), 

the optimum profile is flat and extends over the entire thickness of material; 

i.e., the average or quasi-equilibrium temperature. For a linear curve 

(o-" = 0 ), the strength reduction is independent of the profile as long as the 

temperature does not exceed T m• 

Therefore, for convex strength/temperature curves, the optimum tem­

perature profile is the initial energy-deposition profile; otherwise, it is the 

flat profile corresponding to the average temperature after thermal 

e.q_uilibration. 

A more Lmnortant consideration, however, is that conventional strength/ 

ternperature curves are obtained for a heating duration of one half hour while 

the time regime for x-ray effects is much shorter, on the order of seconds. 
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Experimental data4 show that the ultimate tensile strength of 2024 aluminum, 

6AL-4 V titanium, and 301 stainless steel all drop sharply after rapid heating 

(by laser), and approach the conventional strength/temperature curve within 

several seconds. As noted above, this is also the approximate time required 

for the average temperature to equilibrate in typical structures. These data 

imply that because the short-term strength reduction with ti1ne is far: gzeater 

than the effect of the temperature profile, strength-reduction estimates for 

nuclear vulnerability should be based on: (1) conventional strength/ 

temperature curves, and (2) the average, quasi-equilibrium or bulk tempera­

ture rather than the initial temperature profile. 

Therefore, it is concluded that the optimum thermal condition for strength 

reduction corresponds to the maximum average bulk temperature rise for a 

given incident fluence. This is also the most vulnerable situ~<tion for the 

heating of a bond at the rear surface of an exposed material. 

4. 2 OPTIMUM CONDITIONS FOR HEATING AND MASS REl\10VA L 

The above conditions consider only temperature effects, given a quantity of 

absorbed energy. However, optimum conditions must also co• ,.;-ido?:r removal 

of m.ass due to the significant fraction of absorbed energy that is contains and 

which is not available for conducting into and heating the remaining material. 

While the loss of strength of a structure due to the amount of lc>ad -bearing 

material removed can be significant for thin structures, for rncst reali::tic 

situations the synergistic effects of strength reduction due to mass loss and 

strength reduction due to heating are not important. Thus, optimum mass 

r3moval and optimum heating, which occur under different O[Jtimum .-::endi­

tions (i.e., different x-ray spectra), can be considered independently, as a 

reasonable approximation for vulnerability analysis. 

Based on the above considerations, the analysis of heating effects can be 

separated into two essentially independent situations: (I) the situation in 

which the maximum mass is removed, where this is the prin1a:.:y factor and 

the accompanying temperature rise is of secondary importance; and (2) the 

4 rnteraction Study, Vol. nr - Structural Degradation by Short Time 
Heating, Air Force Weapons Laboratory, AFWL- TR-70 -157, Vol. IV. 
December 1970. 
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situation in which the maximum temperature rise is the primary factor and 

mass loss, except as it affects the temperature rise, is of secondary 

in1portance. The latter is analyzed here; the other situation is discussed in 

Section 3. 

4. 3 MAXIMUM TEMPERATURE RISE 

The specific objective is to derive a relationship that defines the maximum 

temperature rise, accounting for the energy and heat capacity lost by virtue 

of the mass removed, with the mass removal being determined by a dose 

criterion. 

The temperature rise 6T, in oc, is given by 

6T = <!> 
pC h 

p 
(27) 

where <!> (f - f ) is the energy absorbed in the remaining thickness of mate­
r 

rial (h - x ), <!>is the incident fluence in cal/cm2, f is the cumulative r 
fraction of energy absorbed to depth h, fr is the cumulative fraction of 

energy absorbed to depth xr, his the original thickness in em, Xr is the 

thickness in em of material removed, pis the density in g/cm3, and Cp is 

the specific heat in cal/g-°C. Assuming an exponential dose profile as a 

functional approximation to the actual profile, 

h 
f = 1-e-T 

X 
r 

f = 1 - e-T 
r 

and the thickness of material removed is 

X 
r 

D 
::: £ £n ___£ = 

D 
r 
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where 1 is the characteristic absorption depth in em, D is the surface dose 
0 

in cal/g, and Dr is the dose criterion in cal/g for mass removal. Combining 

Equations (29) and (30), 

pRD 
r 

fr = 1 --4>-

Substituting Equations (28), (30), and (31) into Equation (27) gives 

pC h.6T 
p = 

phD 
r -y -<1>-- ye 

y-en y- Rn(phtJ 

(31) 

(3 2) 

where y = h/R has been defined to form a dimensionless spectral parameter. 

The objective is to maximize .6T, which is done by setting the differential of 

Equation (32) with respect to y equal to zero. This gives 

(3 3) 

The optimum solution is y = l. The other solution, ye-Y = phDr/4>, defines 

the limiting conditions where x = h. r 

For y = 1, R "'h, and Equation (30) becomes for the mass removal, 

(34) 

where the range of validity is imposed so that 0 :::; xr :::; h. Substituting y = 1 

into Equation (32) gives for the maximum temperature rise .6T n1 

.6T 
m 

1 :::; ___L 
phD 

r 
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where the range of validity is taken to be the same as for Equation (34). For 

the case of no mass removal, x = f = 0 and Equation (27) becomes 
r r 

.6T 
m 

= ¢.f 
phC 

p 
= * (1-e p p 

p:Dr)' 
(3 5b) 

Equations (34) and (35) represent the solution for the maximum temperature 

rise and associated mass removal. They have been compared to parametric 

computer calculations for blackbody spectra over the full range of parameters 

and found to give the same result to within better than 10 percent (typically 

5 percent). 

It is noted that the optimum condition of R = h corresponds to the case of 

maximum dose at the rear surface (see Section 2), regardless of the amount 

of mass lost. Good agreement is obtained for .6T for blackbody spectra, 
m 

without modification of the result obtained with an exponential dose profile 

(as was required for estimating maximum dose), because of the compensa­

tion between the factors in Equation (35a) and the insensitivity of Equa­

tion (35b) to profile differences. 

Figure 11 shows a plot of Equation (35) expressed in dimensionless terms. 

A somewhat simpler empirical linear equation is found from the figure to 

represent Equation (35a): 

.6T 
m 

1 <_cl>_ 
- hD p r 

:s e (36) 

Because the optimum temperature rise corresponds to the maximum dose at 

h, the relationships defining the optimum blackbody temperature for the 

maximum temperature rise are the same as those of Equation (23) with h 

substituted for x: 

T = o. 5 z (ph) 113 
op z :s 6 (3 7a) 

T = 1. 2 z4/5 (ph)2/5 z ~ 12 (37b) 
op 
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4.4 SUMMARY 

Conditions are defined which maximize strength reduction when both mass 

removal and heating occur, but when heating is the dominant effect. (See 

Section 3 for situations when mass removal is the dominant effect.) Because 

of the importance of strength reduction after rapid heating, the maximum 

average temperature rise is the parameter that best characterizes the maxi­

mum strength reduction. It is given by Equation (35), which is displayed in 

Figure 11. The optimum blackbody temperature corresponding to the maxi­

mum temperature rise is given by Equation (37), and the mass removal is 

given by Equation (34). For specific blackbody temperatures, x and 6T can 
r 

be obtained from energy-deposition curve like those shown in Figures Z 

through 7. 
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Section 5 

BLOWOFF IMPULSE 

When sufficient radiation is rapidly absorbed at the surface of a material, 

explosive expansion of the vaporized mass creates an impulse load that lasts 

a few 10 1 s of nanoseconds and can cause damage by material response (e. g., 

stress wave effects) or structural response. Two models for predicting 

blowo££ impulse have been studied and used extensively. Perhaps still the 

mo~t popular one is the so-called BBAY model developed by H. A. Bethe et al. 

for the Air Force Special Weapons Center circa 1962. A modification of the 

BBAY model was introduced by S. L. Thompson et al. of Sandia Laboratories 

in 1968. The modified model includes contributions to the impulse from 

nonvapor phases. The BBAY and the modified BBAY (MBBAY) models are 

relatively simple relationships, and both compare well with results of PUFF­

type analyses which account for hydrodynamic details. 

Exact calculations for a general energy-deposition profile using either model 

are inconvenient because they require a computer program. This section 

presents generalized curves and explicit relationships which are convenient 

and are adequate for practical analyses. These relationships are valid for a 

large class of energy-deposition profiles, including those for blackbody 

spectra. 

5. 1 BLOWOFF MODELS 

The BBAY model is given by 

5-1 
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where I is the impulse, x the thickness of material vaporized, p is the 
s 

density, Dis the dose at x, E is the effective energy of sublimation (energy 
s 

through vaporization), and the factor 1. 2 is an average value of a weakly 

varying parameter of the BBAY theory. 

For x-rays, energy deposition is taken to be instantaneous so that thermal 

conduction is neglected. Although it is not necessary, E is usually taken to 
s 

be a constant in Equation (38). However, since it represents an enthalpy 

change caused by radiation absorption, its value is relative to the initial 

(reference) temperature of the target material. This can be significant under 

some conditions. If ionization is significant, the effective E can be greater 
s 

than the reference-temperature E ; if vapor condensation is significant, it can s 
be less. Accounting for either effect analytically is quite uncertain. There-

fore,E is taken as a constant and usually assumed to be equal either to the 
s 

theoretical reference -temperature value at 1 atmosphere pres sure, or if 

available, an experimentally determined (i.e., correlative) value. 

The MBBAY model is given by 

I/2 

(3 9) 

where E is the energy through melt and 1s used as an approximation to the m 
internal energy at the triple-point state. E is influenced by the initial m 
target material temperature in the same way as E , but the influence is 

s 
greater because less energy is involved in phase changes. 

5. 2 GENERALIZED IMPULSE RELATIONSHIPS 

The inconvenience of evaluating Equations (38) and (39) is due to the difficulty 

of handling analytically complicated energy-deposition profiles like those 

associated with blackbody x-ray spectra. However, because I is an integral 

quantity which depends primarily on the 90-percentile portion of the profile 
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regardless of the fluence level, it is insensitive to the form of the profile, 

especially for thicknesses for which. D is less than 10 percent of the surface 

dose. Consequently, Equations (38) and (39) can be evaluated by assuming 

the functional form of D to be 

(4 0) 

where D is the surface dose and Q is the characteristic absorption depth. 
0 

Substituting Equation (40) into Equation (38) and integrating gives for BBAY 

where 

and 

- 2. 3q, 
- E 1/2 

D 
oe 

1'\ = E 
s 

s 

(41) 

(42) 

(4 3) 

where D indicates th.e surface dose for an exact exponential dose profile. 
oe 

Similarly, Equation (39) gives for MBBAY 

l/2 

- ~ (1 Hn~)]- (*In~/-!(~ In~ f} (44) 
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where 

and 

11 = 

= 

D 
oe 

E 
m 

1. 6 <j> 

E 1/2 
(4 5) 

m 

(46) 

In these equations, I is in kilotaps, <j> is the fluence in cal/cm
2

, and E , E , 
s m 

and D are in cal/g. E and E are threshold doses designated generally 
oe s m 

as Et. These equations are presented here as general representations of the 

BBA Y and MBBA Y models for exponential-like dose profiles, and as being 

adequate for blowoff impulse analysis. Although the actual derivation of the 

these equations is not new, their general validity and specific relationship to 

blackbody spectra, as described in this section, is unique. 

5. 3 APPLICATION TO EXPONENTIAL-LIKE DOSE PROFILES 

Since conservation of energy is important for blowof£ impulse just as it is for 

maximum dose, application of the exponentially derived relationships to 

other similar dose profiles requires the use of the energy balance derived m 

Section 2. From an energy balance, Equation (2 0) defines D as 
oe 

D oe 

2 
p£Do 

= ---

Therefore, 11 is defined generally as 

11 = = 

5-4 
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where D and P. are parameters representing any particular dose profile, as 
0 

described in Section 2. Consequently, to apply Equations (41) and (44) to any 

exponential-like spectrum requires only a knowledge of the corresponding 

D and P. for that spectrum. 
0 

Analytical expressions for D
0 

and P. are given by Equations (16) and (17) 

for bla.ckbody spectra. They result in: 

3 
ll = 0.14~ ' z 5 6 

T
3

E t 

ll = 1.4 
z2 ~ 

z 2: 12 
T5/2E 

t 

5. 4 DISCUSSION OF EQUATIONS 

(49a) 

(49b) 

Equations {41) and (44) are plotted in Figure 12 with 11 defined by Equa­

tion (48). They are very similar except for a shift in the optimum value of 

TJ, which is 6. 00 for BBAY and 10.2 for MBBAY. The optimum value, 'l1 , 
0 

defines the optimum energy spectrum, but as shown in the figure, the optimum 

is broad and relatively insensitive to the spectrum (which may or may not be 

characterized by a blackbody temperature). 

From Equations (42) and (45) and Figure 12, it is apparent that the maximum 

impulse for a given fluence, corresponding to. the optimum spectrum, is 

easily obtained and requires a knowledge only of c1> and Et' if the optimum 

spectrum falls within the environment specifications. This is usually the 

case and represents most practical situations (except for beryllium and 

carbon). If the optimum temperature falls outside the specified spectral 

range, only the actual D and t for the limiting temperature is necessary in 
0 

addition. 

As far as contrasting the two blowoff models is concerned, one difference is 

that the optimum blackbody temperature can be as much as a factor of 
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2 greater for MBBAY than for BBAY. The flat optimum indicated in Fig­

ure 12 and its application to a range of spectra tend to make the difference 

in optimum conditions of little practical significance. The other difference 

in the two models is that the maximum impulse differs by 

1. 4 ::1: 20o/o (50) 

Parametric computer calculations for blackbody spectra indicate that Equa­

tion (50) is valid for rna st materials (i.e., all the various materials that were 

checked). Therefore, practically speaking (i.e., within 20 percent), BBAY 

and MBBAY are interchangeable except MBBAY is approximately 1. 4 times 

higher. The exceptions to this will be for materials for which E /E is s m 
greater than 6. 
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5. 5 OPTIMUM CONDITIONS FOR MAXIMIZING IMPULSE 

As noted earlier, general optimization of impulse is obtained from Figure 12 

in terms ofT] for a large class of dose profiles. This section discusses 
0 

techniques for handling blackbody spectra specifically. 

Combining Equation (49) with T] = 6 for BBAY and T] = 10.2 for MBBAY 
0 0 

results in the optimum blackbody temperature for maximum blowoff. For 

BBAY, 

(51 a) 

(51 b) 

and for MBBAY, 

(52 a) 

(52 b) 

Since for a variety of materials (Es /Em)
2 /S = 2 ± 20o/o, TOM~ 1. 5 T OB for 

Z s; 6 and TOM ""' L 7 T OB for Z 2: 12. 

For a given fluence, Equation (51) or (52) can be used to determine whether 

the optimum temperature is within the range of temperatures to be considered. 

If it is, Equation (42) or (45) is used. Otherwise, D and J. for the limiting 
0 

temperature, along with Equation (41) or (44) or Figure 12, is used to deter-

mine the maxirnum impulse under the imposed ..:..uudi.iions. In fact, for any 

specific nonoptimum temperature, the latter procedure is applicable. 
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5. 6 MAXIMUM BLOWOFF IMPULSE IN SHIELDED MATERIALS 

The maximum blowo££ impulse in a material shielded by air or by a non­

contiguous structure like a shroud can be obtained by observing in Figure 12 

that the maximum impulse corresponds to the maximum 11 up to 11 = 11
0

. 

For 'l > T) , this is still a good approximation for most realistic situations. 
0 

The maximum "1 is shown to correspond to the maximum D , as foJlows, 
0 

The maximum dose is given by Equation (7), which is set equal to D : 
0 

D = D = m o 
(53) 

where subscript s refers to the shielding material and subscript a to the 

absorber or target material. In addition to the integral relationship dis­

cussed in Section 2, Equation (18) indicates that at depth x the optimum 

effective linear attenuation coefficient is equal to x (see Figures 2 through 7). 

Using Equations (18) and (53) gives 

£ = X s 8 
- o. 24cp 
- D 

Ps o 
(54) 

The linear attenuation coefficients for the shield and target are related by 

(55) 

So that combining Equations (54) and (55) gives 

(56) 
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Substituting Equations (53) and (56) into Equation (48) gives the maximum Tl 

for a shielded target: 

b = 1 (5 7a) 

where b is the thickness exponent of Table 2, and the appropriate value of 

n = 3. 3 has been shown. A similar derivation gives 

D 
0 

ll = 0.27-E ::: 
s t 

0. 114> 
b = 3/2 (57b) 

and in general, 

where the fact that P. 
s I -l = -(dP.nD dx) = 

m 
x /b has been used. 

s 

(58) 

Thus, Equation (57) shows that the maximum Tl is directly proportional to the 

maximum D . Therefore,for a given shielding mass of p x (g/cm
2

), 
0 s s 

Equation (57) is used to obtain Tl , which is used with Figure 12 to derive 
s 

maximum impulse. For the analytical model used here, this optimization is 

exact for Tl ::: llo and is a good approximation for T) > T)o· 

In Equation (57), 4> is not the fluence incident on the target, but the fluence 

that would be incident if there were no shielding material. This formulation 

makes it possible to retain the concept of a blackbody source. The blackbody 

source temperature corresponding to Equation (57) is given by Equation (23) 

or Equation (24 ), depending on the value of b. 

5. 7 REVIEW OF COMPARISONS WITH EXPERIMENT 

Both blowoff models have been compared extensively with experimental data, 

\some published, especially by the Air Force Weapons Laboratory and 

'Sandia Laboratories, and some unpublished. The general indication is that 
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both models compare to within a factor of 2, with the MBBAY model 

appearing to be slightly better. Since the uncertainty in the experimental 

data is about a factor of 2, no clear choice is indicated. 

On the other hand, the BBAY model correlates better than the MBBAY model 

with blowoff impulse caused by high-energy pulsed lasers. 
5 

Experimental 

laser blowoff impulse data cover a larger range of 11 and characteristic 

absorption depths than do x- rays because thermal conductivity becomes an 

effective energy transport mechanism as beam pulse widths increase from 

picoseconds to milliseconds. Also. blowoff data for lasers are significantly 

more accurate and better correlated than for x- rays. The laser data correlate 

well with the BBAY model over a variety of materials and for a large range 

of fluences and beam pulse widths (the effect of beam pulse width being 

analogous to blackbody spectrum). but the BBAY model gives results that 

are consistently higher than those obtained by experiment by a factor of 

1. 5 to 2. Also, laser data indicate that the effective E is slightly greater 
s 

than the room-temperature value. while test data indicate the opposite for 

x- rays. 

The conclusion is that either model can be justifiably used, especially since 

nothing better is available. and the matter is largely one of personal pref­

erence since the results they give are quite similar. For the iv1BBAY model, 

however, E values are less ambiguous than the effective E values for the 
m s 

BBAY model, and they are available for more materials. Further, the 

MBBAY model gives more conservative estimates from a system design 

standpoint. Also, the use of E by the MBBAY model for a. thrcshcld m 
energy is more consistent with other data relating to front-face mass removal. 

5. 8 SUMMARY 

For almost any radiation source, Equations (41). (42), (44). and (45) give 

blowoff impulse estimates that are more accurate than the dernonstrated 

accuracy of the BBAY and MBBAY models, as determined by com.parison 

5R. w. Langley. "An Analytic Model for Laser Blowoff Impulse, II 
McDonnell Douglas Paper No. WD 2408, June 1974. 

5-10 



with parametric computer calculations. Equations (42) and (45) compare 

with detailed computer calculations for blackbody spectra generally to 

within 10 percent, with no rnore than 20 percent difference, for fl.uences 

to greater than 1 o3 
cal/ cm

2
. Figure 12 has been compared for non­

optimum situations only for the BBAY model. For extremely high fluences 

(l) ~ 1,000}, the comparison is better than 30 percent. For low fluences, the 

agreement is similar except where very little vaporization occurs. How­

ever, this regime is narrow, is inherently uncertain in any case, and is of 

relatively little importance from a practical standpoint. Equations (51) and 

(52) compare with computer calculations to within about 20 percent. 

The relationships given here are recommended for blowoff impulse analysis. 

The equations are depicted in Figure 12. The MBBAY model is slightly 

favored over the BBAY model because it gives slightly larger impulses and 

has a better defined energy threshold in E 
m 

The only quantities needed to define the incident radiation source are cp, D , 
0 

and J.. Methods for determining optimum conditions for maximum impulse 

are discussed in Section 5. 5. 
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Section 6 

STRESS GENERATION 

Stress waves generated by radiation fall into two categories: (l) those 

induced by blowoff impulse, and (2) thermomechanical stress waves. The 

two types always occur to some extent concurrently, but for most practical 

situations only the maximum of one or the other is of interest. Generally, 

when impulse-induced stresses are maximized for a given fluence, thermo­

mechanical stresses are negligible, and conversely when thermomechanical 

stresses are maximized, impulse-induced stresses are negligible- in fact, 

they are zero. Which of the two is dominant for a given situation is deter­

mined by the radiation spectrum. Therefore, for the optimum conditions,. 

the two types of stresses and their associated damage mechanisms are 

analyzed independently. In some situations, combined stresses may be of 

interest. Analytical techniques for estimating stress generation (i.e., 

stress conditions near the material surface exposed to radiaticd are dis­

cussed below. Attenuation of stresses as they propagate through a material 

is discussed in Section 7. 

6. 1 IMPULSE-INDUCED STRESSES 

A blowo££ impulse, I, is characterized by an average initial pressure or 

stress amplitude rr with a temporal pulse width T, so that 
0 

(J" 

0 

where rr is in kilobars, T is in microseconds, and I is in kilotaps. The 
0 

(59) 

value of T is determined either by ,the energy-deposition time or radiation 

shine time T , or by T , the time required for the vaporized gas to expand, 
s g 

whichever is greater. 
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An estimate of T g is obtained from 

3£ 
T ~c 

g g 
(60) 

where 1 is the characteristic radiation absorption depth in em and C is the 
g 

acoustic velocity of the vapor in cm/flSeC. The thickness of vaporized mass 

is approximated by 3£, which corresponds to the mass in which most of the 

energy is absorbed. The acoustic velocity is given by 

C = ('!._ fYo)l/2 (61) 
. g Pg 

where the specific heat ratio Y is 5/3 for a monoatomic gas and p is the 
g 

density of the vapor. For a pressure of fJ" , the vapor density is the same 
0 

as the solid density; i.e., Pg = p. Combining Equations (59) through (61) 

gives for T g 

T = S400p.t
2 

/I 
g (62) 

where T is in microseconds, pis in g/cm3, £ is in em, and I is in kilotaps. 
g 

The value of 1 can be obtained from an energy-deposition profile (e. g. • Fig-

ures 2 to 7) or it can be estimated for blackbody spectra from Equation (17). 

For Z ?:: 12, 

-4 T 3/2 = 4x 10 -p (63) 

where 1 is in em, T is in kev, p is in g I em 
3

, and Z is the material (effective): 

atomic number. 
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Substituting Equation (63) into Equation (62) gives, using the same units, 

T 
g 

3 
= 9 X 10-4 _'L_ 

pi 
z ?: 12 

In general, then, o- is determined from Equation (59) by using the largest 
0 

value ofT corresponding either to the shine time T or to T as given by 
s g 

Equations (62) or (64). 

For maximum blowoff impulse for the BBAY blowoff model, however, the 

corresponding optimum temperature for Z ~ 12 is given by 

(64) 

(65) 

where <P is the fluence in cal/cm
2 

and E is the effective sublimation energy 
s 

of the material in cal/g. Inserting Equation (65) into Equation (64) gives 

T for n1aximum blowoff impulse for Z?: 12; a similar derivation applies to 
g 

Z ~ 6. The results are: 

2 X l 0-4 z 12/5 

(~t5 z :?: 12 T = , 
go PI (66a) 

2 
T = 6x 10_4 _<1>_ z :$ 6 

go piE2 
s 

(66b) 

Equation {66) shows that for maximum blowoff impulse, T < 0. 02 micro-
go 

second for most practical situations, and thus T = T for these cases. For s 
example, for I> l/2 kilotap. -r < 0. 02 microsecond for <P <70 cal/cm

2
• 

go 
for all materials {<!>is lowest for tungsten). For carbon and beryllium, 

4 2 
T < 0. 02 for <P < 10 call em . 

go 

The initial spatial pulse width o , which is used in conjunction with o- as 
0 0 

initial conditions for analyzing stress wave attenuation, is given by 
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o = 2CT 
0 

(6 7) 

where C is the acoustic velocity of the solid. The factor of 2 is introduced 

in order to express the square wave represented by Equation (59) as a tri­

angular wave form, which is the equilibrium shape to which all initial pulses 

degenerate as they propagate. 

6. 2 THERMOMECHANICA.L STRESSES 

Thermomechanical stresses are caused by the forces associated with the 

chermal expansion of a material when it is rapidly heated internally by 

radiation. This section considers only situations involving no front-face 

rnass removal. Because there is no net impulse in these situations, a 

thermomechanical stress wave always consists of a compressive wave fol­

lowed by a tensile wave of equal but opposite impulse. The tensile wave 

that immediately forms near the surface of an exposed material (and can 

cause fracture, spall, or debonding) is the main difference between thermo­

mechanical stresses and compressive blowoff stresses, which can form a 

tensile stress only by reflecting at an inner boundary. 

For instantaneous energy deposition, the initial stress is compressive and 

has the s<'.rne shape as the dose profile, and the peak stress is determined 

only by the maxin1um dose at the surface. However, for a finite shine time, 

the peak stress is reduced significantly below that for an instantaneous 

exposure at the same fluence, and therefore shine-time effects rnust be 

accounted for. 

6. 2. l Stresses for Instantaneous Energy Deposition 

Linear<·elastic behavior is assumed and the dose profile is represented by 

an exponential function. Conservation of energy is not important, but an 

accurate represenatation of the initial portion of the dose profile is of concern. 

With the dose profile represented by 

D - D e 
0 

X 

£ 
(6 8) 
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Morland( 6 ) gives the compressive stress to be 

X 

cr = 0. 042 pf'D e 
co 0 

R Ct 
cosh -p_-

and the tensile stress to be 

cr 
to 

= o. 042 prD e 
0 

Ct 
p_ . h X 

sm T 

X? Ct 

X :S Ct 

(6 9) 

(70) 

where 0. 042 is the conversion factor between callcm
3 

and kilobars, D is 
0 

the ·surface dose in cal/g, X is the depth into the material in em, r is the 

dimensionless Gruneisen coefficient, tis the time after exposure in micro­

seconds, and the stresses are in kilobars. 

At t = 0, a (0) = 0 and a (O) = 0. 042 pf'D(x). Equilibrium stresses existfor 
to co 

Ct ..G 31, for which cr (ro) = 1/2 cr (0) and crt (ro) is the same shape and magni-
co co 0 

tude as cr (en}, but is oriented in the opposite direction. 
co 

The exact expression £or the positive impulse of the equilibriurn compressive 

stress wave, expressed in kilotaps, is 

I = 1/2 
c f ro cr dx == 

co c 
0 

prD 1 
o. o2 1 -c-=-=0

'- = 0.02l.u c 

where p .P_ D = <I> has been used in deriving the final expression because it 
0 

(71) 

represents conservation of energy, and is valid in this context. The negative 

impulse of the equilibrium tensile stress is also given by Equation (71), 

since the sum of both impulses is zero. 

6
L. \V. Morland, Gen.era.tion of Thermoelastic Stress Waves by Impulsive 
Electromagnetic .Radiation, AIAA Journal, Vol. 6, No. 6, pp 1063-1066, 
Jun~:c 1968. 
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Although the impulse does not change with finite shine time, the peak equilib­

rium stresses are reduced considerably for typical values of£ because the 

stress relaxes during the shine time. 

6.2.2 Shine-Time Effect 

For a constant radiation flux during a shine timeT, the compressive stress 

for t ~ T is given by convolution of Equation (70): 

(J 
c =/ 

0 

• prD 1 
(J (t' ) 2.!_ = 0. 04 2 ° co T CT 

:k 
-y . h Ct 

e sm 7 X 2: Ct (72) 

Equation (72) shows that the peak initial compressi~e stress occurs at t = T 

and x = CT, and that the reduction factor for the peak stress is 

(J 
c(T) 

(J (0) 
co 

( 
2CT) 

= 22,T 1 - e 
1 (7 3) 

Equation (73) represents the effect of shine time in reducing the peak initial 

compressive stress. This same factor also applies to the reduction of the 

peak equilibrium (i.e., Ct = x» 1, t >> T) tensile and compressive stresses 

since they are both one half the magnitude of the peak initial compressive stress. 

6. 2. 3 Maximum Peak Equilibrium Stress 

The peak equilibrium stress that exists for x ~ 31 is the main quantity of 

interest, especially the pea.c equilibrium tensile stress. When a range of 

radiation spectra is considered, the maximum peak stress for the optimum 

spectrum may be desired. Maximizing peak stress for a given fluence cor­

responds to maximizing D £, which minimizes the shine-time effect while 
0 

maximizing the surface dose, but with the constraint that front-face mass 

removal is avoided. 

The peak equilibrium tensile or compressive stress for instantaneous energy 

deposition is, from Equations (69) and (70). 

(J = o. 021 prD 
op o 

(74) 
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where Ct = x » P.. Combining Equations (73) and (74) gives the peak equilib­

rium tensile or compressive stress for finite T: 

(T 

p 
(75) 

where D is the dose at the surface of the solid material, and is equal either 
s 

to D , the surface dose of Equation (68), or to D , the mass rernoval criterion, 
o r 

whichever is smaller. That is, 

I DDor ·D = MIN 
s 

( 7 6) 

Equation (75) is the general equation for peak stress for any exponential-like 

dose profile. It compares closely with computer calculations for blackbody 

spectra. 

To obtain the maximum peak equilibrium stress, Equation (75) must be 

optimized. As already noted, for an exponential profile, the integral relation­

ship holds that p P. D = ¢. However, parametric computer calculations show 
0 

that for blackbody spectra there is a maximum value for pQD : 
0 

where k = 0. 05 for Z ~ 6 and k = 0. 6 for Z ~ 12. The maximum values are 

a function ofT and Z for Z ~ 12, with optimum T varying from 2 kev for 

aluminum to 5 kev for tungsten. (While a constant k is correct, it may be 

noted that it is somewhat inconsistent with the empirical expressions forD 
0 

and .e for Z ~ 12. ) 

Using a dose criterion D to determine mass removal, Equation (77) gives 
r 

for the optimum £ consistent with no mass removal (i.e., D = D = D ), 
s o r 

£ ... ~ 
m - pD 

r 
(78) 
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Combining Equations (75), (77), and (78) gives the maximum peak equilibrium 

tensile or compressive stress, for any fluence, for blackbody spectra: 

(J" 

pm (79) 

Equation (79) is plotted in Figure 13 in dimensionless terms. The surface 

dose always equals D . It is noted that Equation (79 ), except for k, is insen­r 
sitive to material variations since r, C, and D are approximately the same 

r 
for many materials. 

Combining Equations (17) and (78} gives for the optimum blackbody tempera­

ture corresponding to Equation (79): 

Top = l . 5 Z ( i r ) l I 3 z ~ 6 (80a) 

CR79 

1.0 
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Figure 13. Optimum Thermomechanical Stress 



Top = 1 3 0 ( ri r ) 2 I 3 z? 40 (SOb) 

As indicated,- Equation (80b) agrees well with computer results only for 

Z 2: 40. Figures 3 through 7 can easily be used to estimate T by setting 
op 

D /~ = D /~ and estimating the corresponding T by interpolation, o r 

6. 2. 4 Initial Conditions for Attenuation Analysis 

It is recommended that the attenuation of tensile stress amplitude be ignored 

for the following reasons: ( 1) there is no adequate theory to handle it, (2) 

tensile stresses are necessarily below the relatively low spall threshold and 

thus attenuate weakly with distance, (3) thermomechanical tensile stresses 

are usually of concern only for structures with relatively small material 

thicknesses in which attenuation is limited, and (4) ignoring the attenuation 

that does occur results in conservative estimates. 

The attenuation of thermomechanical compressive stresses can be analyzed 

in the same manner as impulse-induced compressive stresses, as described 

in Section 7. To do this requires that CT and 6 , the initial pe;il-~ (equilibrium) 
0 0 

compressive stress and the spatial pulse width, be properly specified. 

Section 7 defines CT and 6 , with the former defined above and the latter 
0 0 

given by 

2CI ( 81) 

Substituting Equation (71) and Equation (72) with x = CT into Equation (81) 

gives the general expression for o as 
0 

2CT 
2CT 

- 2 
1-e 

( 82) 

This equation is used in conjunction with Equation (75) (i.e., CT = 0'" ) as 
0 p 

initial conditions for determining stress wave attenuation. It compares 
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closely with PUFF-type calculations, which might be expected since the 

compressive stress is almost linear with depth for 0 ~ x :::: CT and 0 ~ t :s T 

(while the tensile stress is zero for t ~ T). 

F'or maximum peak stress, Equation (82) becomes 

6 
0 

= 2CT 

/ 
This equation is used in conjunction with Equ·ation (79). 

Equations (82) and (83) differ from Equation (67) by the denominator. 

6. 3 COMBINED STRESSES 

(83) 

As indicated in Section 5 (See Figure 12), there is a narrow transition 

between the conditions where no blowoff impulse occurs (therrnomechanical 

stress is dominant) and the conditions approaching maximum blowoff impulse 

(beyond which impulse -induced stress is dominant). Most practical situations 

are outside this transition regime. Within this regime, it is considered ade­

quate for design purposes to treat impulse-induced stresses and thermomech­

anical stresses separately, and to superimpose them. For the two types of 

concurrent stresses to be consistent, D should equal the energy threshold 
r 

of the particular blowoff impulse model used (i.e., Dr = Et). 

6.4 SUMMARY 

This section presents analytical relationships that define the initial compres­

sive stress and pulse width associated with blowoff impulse; i.e., Equations 

(58) and (67). The temporal pulse width Tis equal for most situations to the 

shine time, for <P<70 cal/crn 2• Otherwise, it is determined by the gasdynamics 

and is given by Equation (62), or for optimum conditions, by Equation (66). 

The initi.al streRs ampl.itndP is attenuated and the pulse width broadened as the 

stress wave propagates, as discussed in Section 7. 
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Equations (58) and (67) assume a square stress wave, which corresponds to 

a constant radiation flux. For the situations where the pulse width is deter­

mined by the shine time, the stress spatial and temporal profile follows the 

flux temporal profile (i.e., it has the same time-dependence). Consequently, 

if a nonconstant flux profile is known, cr can be defined accordingly by C~pply-
o 

ing Equation (72), with Equations (58) and (67) still applicable. 

This section also presents analytical relationships for the peak tensile and 

compressive thermomechanical stresses formed near the surface of an 

exposed material. Relationships are given for a fixed dose profile and for 

the optimum dose profile that maximizes the peak equilibrium stress for 

blackbody spectra. 

Tensile stress wave attenuation is disregarded. Compressive stress wave 

attenuation should be accounted for as de scribed in Section 7; the relationships 

derived here are used as initial conditions for subsequent compressive stress 

wave attenuation, 

The general relationship for peak (equilibrium) tensile or compressive stress 

is Equation (74), and the corresponding initial pulse width is Equatlon (82). 

In general, it is important to impose the condition of Equation (76). Similar 

relationships for optimum spectra are Equations (79) and (83 ), in which the 

condition of Ds = Dr is incorporated. These equations include the important 

effect of stress relaxation during a finite shine time. One result of the shine­

time effect is that peak thermomechanical stresses are weakly material­

dependent, especially for optimum conditions. 

Impulse-induced stresses and thermomechanical stresses occur, for the most 

part, exclusive of each other; that is, either one or the other is almost always 

clearly dominant. This is definitely the case for all optimum situations, If 

one wishes to treat them as concurrent but separate, as for a specific black­

body temperature, this can be done straightforwardly by setting D equal to 
r 

the energy threshold of the blowoff model used, and using the appropriate 

fluence and R for the materia.! not removed by blowoff, as determined from 

energy deposition curves. The impulse-induced stress would then be deter-­

mined as has been described. 
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Section 7 

STRESS WAVE ATTENUATION IN UNDISTENDED MATERIALS 

The attenuation of the amplitude of a compressive stress wave as it propagates 

into a structure is one of the main phenomena that must be accounted for in 

analyzing stress wave effects, Consequently, it has been the subject of con­

siderable experimental and theoretical research that has produced a large 

body of literature which is heavily oriented toward theory rather than practi­

cality. A brief discussion is provided to put the practical aspects of the 

subject in perspective, 

7. 1 BACKGROUND DISCUSSION 

There are two basic approaches to analyzing stress wave attenuation. The 

first one, the one that has received the most attention, involves the use of 

computer programs such as the PUFF code, which performs sophisticated 

calculations to account for (l) a detailed description of the equation-of-state, 

(2.) an exact numerical solution of the hydrodynamic equations, (3) time­

dependence of imposed loads, (4) temperature-dependence of material proper­

ties, (5) nonidealized wave forms, and (6) interference effects, as well as other 

factors. The second approach is more analytical and is based on the use of 

so-called weak-shock theory, which accounts for mechanical effects only. 

The essential difference between the two approaches is that the second uses 

a simplified equation-of- state involving only the Hugoniot (i.e., a nonlinear, 

nonelastic, hydrostatic stress-strain relationship). It therefore cannot 

account for the effects of thermodynamics, porosity, elastic strength, phase 

changes, strain rate, work hardening, inhomogeneties, etc. Exact solutions 

of weak- shock theory require a computer code and can therefore include most 

other aspects of the stress wave problem. However, the real advantage of the 

second approach is its application to obtain a convenient, explicit, general 

analytical solution to idealized :;tress wave problems, This approach makes 

possible the practical application of stress wave attenuation theory, and 

greatly promotes physical understanding. Neither of the two approaches can 

properly treat the attenuation of tensile stress waves. 
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Although a number of theoretical questions can be raised about the validity of 

PUFF-type calculations under certain conditions and for certain kinds of 

materials, they appear generally to agree with experiment. Most unc~rtain­

ties in results are due to uncertainties in the equation-of- slate. In any case, 

detailed PUFF-type calculations represent the only consistent basis for 

assessing simpler representations like weak-shock theory. 

A number of comparisons of weak-shock theory have been made with PUFF­

type calculations for various materials and stress levels, some published 

(e.g., early work by the developers on the BBAY blowoff model and a 1970 

study by Bertholf and Oliver 7 ) and some unpublished. General agreement is 

good for most materials and stress levels relevant to weapon systems. Gen­

erally, when the proper initial conditions are used, the results for relatively 

large thicknesses and initial stresses (i.e., thicknesses greater than approxi­

mately 100 times the initial pulse width and initial stresses greater than several 

hundred kilobars), and for all thicknesses and low initial stresses ( s 100 

kilobars) are approximately the same for the two methods of analysjs, For 

smaller thicknesses and large initial stresses, the deviation is relatively 

small, around 20 to 30 percent for most comparisons that have heen 

examined. An exception is porous materials, which involve crushing as the 

dominant attenuation mechanism; they must therefore be treated as a separate 

class of materials, and are discus sed in Section 8. 

Thus, for most undistended or fully dense materials, the weak-shock theory 

is entirely adequate for practical application to the analysis of stress wave 

effects. Problems that arise from the approximations involved are more 

often theoretical than practical. Further, a precise knowledge of stress 

waves is only as useful as the accuracy with which material damage criteria 

are known, There are virtually no definitive stress -wave damage criteria 

available for most materials because of the difficulty of measuring such data. 

Typical criteria that are used for design (not research analysis) do not even 

explicitly include pulse width as a parameter, and peak stress criteria are 

often not known to better than a factor of 2 or 3. 

-----------··-·-
7 L.D. Bertholf and M. L. Oliver, Approximate Analytic Expressions for the 

Attenuation of a Triangular Pressure Pulse with Distance, Sandia Labora­
tories, SC-RR-69-596, February 1 q70. 
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A further general indication of the validity of weak-shock theory for other 

than very high stresses where thermodynamic effects occur, can also be 

inferred from the extent to which a linear relationship holds between shock 

velocity and particle velocity, which is one representation o£ the Hugoniot. 

Departures from linearity can usually be traced to porosity, material 

strength properties associated with a high elastic yield strength, or phase 

transitions? At typical stresses, phase transitions and thermodynamic 

effects are not important in most materials. The Hugoniot elastic limit is 

seldom important because it is operative only at stresses so low that attenua­

tion is too weak to be very significant anyway, at least over typical thicknesses 

of high-strength materials (e. g., maraged steel). And porosity is treated by 

a different technique than weak-shock theory, as previously stated, Of the 

74 diverse materials included in Kohn8 , a linear relationship is valid for 

90 percent of them. 

Finally, when an attenuation theory like weak-shock theory is referenced to 

actual surface conditions at zero thickness, is asymptotically correct or 

approximately correct at large thicknesses, and has the correct fundamental 

behavior, it is difficult for it to be in serious error if used correctly. 

Therefore, weak-shock theory in general and the following general equation 

derived from it in particular can usually be used with the same confidence, 

from a practical standpoint, as PUFF-type analyses for all but a few mate­

rials. It is recommended for general use. 

7. 2 ASYMPTOTIC WEAK-SHOCK THEORY 

Weak-shock theory, as applied to x-ray effects was developed by W. L. Bade 

et al. for the Air Force Special Weapons Center circa 1962. This represen­

tation involved numerical analysis, and was not applicable to small thicknesses 

because the initial (surface loading) conditions involved only the impulse 

rather than the initial stress and pulse width being imposed independently. 

Other derivations (e.g., Bertholf and Oliver7 ) treat the initial conditions 

explicitly, but also have the disadvantage o£ requiring llutrJerlcal analysis. 

7Ibid. 

s;::-n J. Kohn, Compilation of Hugoniot Equations o£ State, Air Force 
Weapons Laboratory, AFW L-TR -69-38, April 1969. 
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The following derivation differs from that of Bertholf and Oliver 
7 

in that 

the asymptotic approximation of weak-shock theory is used here; that is, only 

first-order terms are retained in the relationship between stress and wave 

velocity. This approximation allows an explicit analytical expression to be 

obtained for stress as a function of propagation distance, and it gives gnod 

agreement with PUFF-type calculations. 

One way of visualizing stress wave attenuation is that the front of the wave, 

or the loading wave, travels at a higher velocity than the rear of the wave, or 

unloading wave. This spreads the stress wave with time or propagation 

distance. Since the area (impulse) of the stress wave must remain constant 

to conserve momentum and if the shape of the stress wave :remains constant, 

then the peak pressure will be inversely proportional to the pulse width. Any 

initial stress wave quickly degenerates into an approximately triangular pulse 

shape, with the peak stress corresponding to an almost vertical shock front 

and the stress decreasing linearly to approximately zero at the rear of the 

wave. Bertholf and Oliver 
7 

show that deviations from an idealized triangular 

stress wave have no significant effect on peak stress attenuation. 

For convenience, the S-Hugoniot mentioned earlier will be used. It has the 

form 

U = C + Su (84) 

where U is the shock velocity, C is the acoustic velocity at zero stress, Sis 

the Hugoniot slope for a given material, and u is the particle velocity. 

Relative to undisturbed material, the stress wave moves with velocity C + u, 
s 

with C given by s 

2 00" c = s ap 

where C is the acoustic velocity at finite stress CT and density p • The 
s s 

(85) 

application of the conservation of mass and momentum to Equation (84) giveb 

the stress as a function of density7 as 
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(T = Ku 
(86) 

vvhere E 1s the bulk modulus (K :::: pC
2 

:::: E I 3( 1-Zv ), with E Young 1 s modulus 

d.nd v Poisso.n 1s rai:io). and a is defined as 

a = l p (87) -p; 

where pis the density at zero stress. Using Equations (85) and (86), 

c 2 2 1 / 2. 
s = (1-a) (1-S a ) 

T -- (l-Sa)2 

Expanding Equation (88) and retaining only terms linear in a gives 

c 
s "C ~ l + ( 2S -1 )a 

Conservation of mass and momentum give for u 7, 

2 
u = <Ta/p 

From Equation (86). 

(T 

K 

so that combining Equations (90) and (91) gives 

and combining Equations (89) and (91) gives 

7 Bertholf and Oliver, op. cit. --
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c s :::: c + c ( 25-1) ~ ( 9 3) 

Equations (92) and (93) represent asymptotic weak-shock theory. 

7. 3 DERIVATION OF ATTENUATION EQUATION 

The front of the equilibrium (triangular) stress wave moves with velocity 

C + u, where C and u are defined by the peak stress. The rear of the 
s s 

stress wave moves with velocity C + u ::: C, at approximately zero stress. 
s 

Therefore, the stress wave broadens with time t and distance x as 

6.6 = (C s + u - C) t = 2ScrCt/K = 2Scrx/K (94) 

where 6 is the pulse width, 6.6 is the increase in 6 in distance x, and x = Ct. 

To conserve momentum, 

cr6 = cr 6 = 21 C 
0 0 

(95) 

where cr is the initial peak stress, 6 is the initial (triangular) pulse width, 
0 0 

and I is the impulse load. For x » 6 , 6:::: 6.6 so that Equations (94) and (95) 
0 

give 

(J" = (
cro6oK)l/2 = (rcK) 1/2 

2Sx Sx 
(96) 

for large x. Using Equation (96), an effective finite thickness x is assigned 
0 

to the surface to introduce the initial stress condition: 

6 K 
0 

xo = 2Scr 
0 

and xis replaced in Equation (96) by x + x to give 
0 
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-1/2 

(98) 

This is the stress wave attenuation relationship obtained from asymptotic 

theory. The same result is obtained with a more rigorous and longer 

derivation. 

Equation (98) is for a single material. It is easily extended to handle a 

laminated structure by following the above procedure and assigning a new x 
0 

at each material boundary. The result after algebraic simplification, is 

IJ 

(j 
0 [ 

Zu 
1 +-0 

60 
L 

i 
(99) 

where the indicated sum is over all material thicknesses from the surface to 

the depth at which the stress is evaluated, and T t is the product of the 

individual acoustic transmission factors for all intervening material 

boundaries. Tt is defined by 

and 

where T. is for the ith boundary formed by laminates i and i+l. 
1 
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The pulse width is given by Equation (95 ): 

( 1 02) 

Table 3 gives a compilation of S values or Hugoniot slopes taken from Kohn8 • 

They do not vary much with material, as is the case with the Gruneisen 

coefficient r, because theoretically r = 2S-1 (e. g., Glover 9 ), which appears 

in Equation (93). 

7. 4 COMPARISON WITH PUFF-TYPE RESULTS 

Figure 14 shows, for aluminum, a comparison between asymptotic weak­

shock theory as represented by Equation (98). full weak-shock theory. and 

a PUFF-type calculation made with the WONDY code 10 • The last two curves 

were taken from Bertholf and Oliver 
7

. The comparison is excellent 

for all thicknesses at 50 kilobars, with Equation (98) giving, in this case, the 

same result as WONDY. The comparison is good for all thicknesses at 

250 kilo bars, with Equation (98) being approximately 25 percent lower than 

the WONDY result for 2 ::s x/ 6 ::s I 00, and approaching the WONDY result for 
0 

other distance ratios. Results for 1, 000 kilobars are shown only as a matter 

of interest, since stresses this high are of practical significance only when 

large thicknesses are involved (and for which 6 is typically of the order of 
-2 0 

10 em). Even at this high initial stress level, Equation (98) is within 

25 percent of WONDY for x/ 6 z I 00, but falls to about 50 percent of WONDY 
0 

for smaller thicknesses. Even the latter comparison is comparable to 

uncertainties in failure criteria. 

7 21:?· cit. 
8o.E_. cit. 
9 J. E. Glover, Dynamic Measurements of the Gruneisen Coefficients of 
Tantalum, Uranium, and Uranium-Molybdenum Alloys, Sandia Laboratories 
SC-RR-7I-0314, August 1971. 

10 . . 
W. Herrmann and P. Holzhauser. WONDY. A Computer Program for 
Calculating Problems of Motion in One Dimension, Sandia Laboratories, 
SC-RR-66-601, February 1967. 
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Table 3 

HUGONIOT SLOPES 

Material s Material s Material s 

Aluminum 1. 33 Gold 1. 50 X-cut N/A* 

Aluminum (1060) 1. 44 Graphite N/A:' 
Crystalline 

Aluminum N/A':' commercial 
quartz 

(6061-T6) Pyrolytic 1. 73 
Phenolic refrasil 1. 01 

24ST Aluminum 1. 34 . graphite Platinum L 54 

921 T Aluminum 1. 42 Hafnium 1. 12 Plexiglas 1. 45 

Aluminum (2024) 1. 37 
Armco Iron 3. 14 Polyethylene 1. 47 

Antimony 1. 54 
Lead 1. 45 Polystyrene 1. 20 

Avcoat II 1. 68 
Lucite 1. 83 Polyurethane N/A':' 

Beryllium 1. 14 
Magnesium 1. 24 RAD 58B 0.68 

Bismuth 1. 93 
Manganin 1. 72 OTWR N/A* 

Boron nitride 2.73 
Molybdenum 1. 24 Series 124 resin 1. 89 

Brass 1. 43 
Mylar 1. 6 3 Silver 1.54 

Cadmium 1. 66 
Nickel 1. 45 Stainless Steel 1. 51 

Boron carbide 1. 81 Niobium 1. 21 
Type 304 

Silicon carbide 1. 66 
Nylon 1. 55 

Stainless Steel 1. 49 
Type 304L 

Tungsten l. 16 
Palladium 2.00 Steel, mild EN3 1.69 

carbide Paraffin l. 53 Tantalum I. 32 
Carbon phenolic N/A:' AVCO Phenolic 1. l 7 

3-D Carbon fiber glass 
Teflon 1. 97 

l. 43 
phenolic GE Phenolic 1. 05 

Thallium 1. 50 

Chromium l. 38 
fiber glass Thorium 1. 25 

Cobalt 1. 30 
Chopped nylon 1. 61 Tin 1. 52 
phenolic 

Copper 1. 49 Tape-wound 1. 32 
Titanium 1. 15 

Durite 1. 41 nylon phenolic Tungsten 1. 30 
Epoxy 1. 52 Quartz phenolic l. 03 
C-7 Epoxy 1. 44 

TWSP 1. 08 

Zinc 1. 55 3-D Quartz 0.96 
Uranium-3 wt 1. 53 

E:xon "".Go 
phPnolir pet Molybdenum 

Hi-D Glass N/A~ Zirconium 1. 02 Vanadium 1. 20 

*The linear relationship of Equation (84) does not hold. 
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Figure 14. Comparison of Stress Attenuation for Aluminum 

7. 5 SUMMARY 

r-- _,_ 
1.000 

Based on the reasons and comparison given above, and on other similar 

comparisons with theory and a few experiments, Equations (98) through (102) 

are recommended for general use. It is expected that PUFF-type analyses. 

would be required only for occasional verification and for unusual or very 

specific problems. 

The equations are applicable to compressive stresses due either to impulse 

loads or to thermomechanical stresses. The definition of the initial condi­

tions are discussed in Section 6. In all cases, the initial stress wave is 

assumed to be triangular. The actual initial stress wave will relax to the 

equilibrium triangular shape within approximate! y the time it takes for the 

differential velocity between the loading wave and the unloading wave to 

propagate a distance equal to the initial pulse width. For example, for an 

initial square wave of width & , use of Equation (94) shows that the distance 
0 

required for the pulse to become approximately triangular is x , given by 
0 

Equation ( 97). 
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Tensile stress propagation cannot be analyzed as rigorously as compressive 

stress propagation. Because tensile stresses are necessarily limited to 

amplitudes less than the fracture threshold and because the attenuation at 

these levels is therefore relatively weak, it is recommended that attenuation 

of tensile stresses be ignored for practical analysis. This will tend to give 

conservative estimates. 

The equations as they stand apply only to first-pass or single-transit stresses, 

which are dominant for most situations. However, the equations can be 

straightforwardly applied to estimate reinforcement due to stress wave 

reduction. This is relatively easy for first-order reflections, but soon 

becomes tedious for multiple reflections. 
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Section 8 

STRESS WAVE ATTENUATION IN DISTENDED MATERIALS 

One of the methods for reducing blowoff-induced stress wave damage is to 

provide a porous or foam (i.e., distended) material that attenuates the stress 

wave amplitude to a tolerable level. The dominant attenuation mechanism 

in porous materials is the spreading of the pulse width caused by their large 

compressibility, which is far more effective than the mechanical hysteresis 

mechanism of undistended materials. 

Aside from the inconvenience and cost of a PUFF-type analysis of stress 

wave attenuation, a paucity of experimental data on the equation-of-state of 

porous materials poses a difficulty. Therefore, an analytical relationship 

that does not require an explicit definition of the equation-of-state is highly 

desirable. Such a relationship is obtained using the phenomenological snow-
11 plow model (e. g., Herrmann ). 

8. 1 THE SNOWPLOW MODEL 

The snowplow model assumes that the only stress wave attenuation mechanism 

is due to the compaction of the porous material. It assumes that the porous 

material is compacted to its solid density and that no energy is absorbed by 

the crushing action, but that all energy from the imposed impuLse load goes 

into the formation of a stress wave uniformly distributed in the solid 

(compacted) material. The yield or crush strength is assumed to be negligible 

compared to the applied pressure. Thus, as the pressure pulse encompasses 

more compacted material, it broadens and the amplitude decreases. Since 

basically only the conservation of energy and momentum is involved, the 

model requires no explicit knowledge of the material equation-of-state. 

11 w. Herrmann, Constitutive Equations for the Dynamic Compaction of 
Ductile Porous Materials, J. Applied Phys., Vol. 40, No. 6., pp 2490-
2499, May 1969. 
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If the material, as it is compacted at a pressure p, is uniformly stressed 

to the same pressure, the compacted material represents a square stress 

wave with a spatial pulse width equal to the thickness of compacted material, 

and the impulse is equal to the imposed impulse load. With a uniform com­

pacting pressure equal to the stress in the compacted material, the compac­

tion energy expended is equal to the energy in the stressed solid material, 

the latter being the sum of the kinetic energy and the stored strain-energy. 

Therefore, 

pxf 
v 

p(l-f )xu2 
v = ----,2=----

2 = mu ( 10 3) 

where pis the compacting pressure acting over distance xf , with x the front 
v 

of the stress wave as measured from the original surface, and f the porosity 
v 

or void fraction. The mass of solid material which the pressure pulse 

encompasses is m = p ( 1-f ) x, where p is the density of the solid material, 
v 

u is the particle velocity, K is the bulk modulus of the solid material, and 

E is the unit strain of the solid material. The first term on the right side 

of Equation ( l 03) is the kinetic energy and the second term is the strain 

energy. The strain energy is equal to the kinetic energy for a linear-elastic 

material. Since the stress !Tis equal to the pressure and the impulse I = mu, 

Equation (103) becomes 

( 1 04) 

which gives the stress in kilobars at depth x em, for a porous material of 

porosity f and solid density p g/cm
3

, and an impulse of I kilotaps. This is 
v 

the stress as a function of I and x as given by the snowplow model. 

8. 2 STRESS WAVE ATTENUATOR SIZING 

mined by the stress amplitude transmitted into the underlying structural 

material. Rearranging Eqnation ( 104) and letting h represent the porous 

attenuator thickness in em, 
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-1/2 

h = o. 0451 
[

Cf pf (1-f) 
c v v 

(pC)s) l 
(pC) 

a 
( 1 05) 

where the units are as for Equation (104), cr is the allowable stress criterion 
c 

for the structural material, pC is the acoustic impedance, C is the acoustic 

velocity, and the subscripts a and s refer to the properties of the solid 

attenuator material and the underlying structure, respectively. Equation 

(105) includes the stress wave transmission factor Tt which relates the stress 

at the rear of the attenuator, cr a' to the stress transmitted into the adjacent 

structure, IT 
8

, where 

Cf 

= _s_ = ---;2--::::~-
IJ"a (pC)s 

1 +--= 
(pC)a 

(106) 

The most desirable void fraction is that corresponding to the least mass of 

attenuator material required to achieve a given stress reduction. Although 

no finite optimum f is indicated by the snowplow model, more detailed com-v 
puter analyses indicate that it is approximately 0. 5 for all materials. 

8. 3 SUMMARY 

The snowplow model, as represented by Equations (104) and (105), has been 

compared with experiment and with more elaborate analyses (e. g., 

Herrmann 
11 

), and shown to be qualitatively correct and reasonably accurate. 

For transmitted stresses greater than approximately 10 kilobars, it pre­

dicts for a given attenuator thickness stresses that are usually high by less 

than a factor of 2, with generally greater accuracy for higher stresses, For 

low stresses of a few kilobars, it tends to predict stresses that are high by 

approximately a factor of 2. This corresponds to predicting, for a given 

stress, thicknesses that are high by 40 percent. It is therefore somewhat 

conservative, but adequate for preliminary sizing; more detailed calculations 

are desirable for final design only if an adequate equation-of-state is 

available, 

11
Ibid •. 
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Section 9 

STRUCTURAL RESPONSE 

Structural response refers here to the dynamic circumferential motion of a 

structure responding to a rapidly applied transient load, usually resulting 

from blowoff impulse. It has potential importance only for large, relatively 

fragile structures, Thermomechanical pressure pulses due to x-ray heating 

of liquids and their containers can also cause structural response, 

Deformation associated with structural response can in principle cause 

debonding, buckling, or rupture. Solid propellant damage is not considered 

a problem because of the case-limited strain and deflection of typical high­

stiffness case materials. However, in reality it is seldom a critical damage 

mode because either the loads of interest are too small or material response 

damage modes are more critical. Material response is usually critical; 

however, liquid tanks can be damaged by shock pressures induced by 

relatively low fluences. 

Impulsive loads are those whose duration is short compared to typical struc­

tural response times (0.1 to l msecj. They are induced by blowoff impulse 

or pressure pulses induced in liquids. An equivalent impulse load can be 

caused by a thermal load due to rapid thermal expansion in the circumferen­

tial and consequently the radial directions, However, for a given fluence, 

blowoff impulse loads will usually be more critical. 

This section summarizes analytical relationships suitable for general 
12 analysis. They are not derived here, but are taken from Langley 

12R. W. Langley, Structural Response of Propulsion Systems, McDonnell 
Douglas Paper No. WD 2357. Presented at the Fourth Symposium on 
Nuclear Survivability of Propulsion and -Jrdnance Systems, April 1974. 
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9. 1 SHELL BUCKLING OR RUPTURE 

The general equation that defines the critical impulse to cause shell failure 

is 

1/2 

I = E_ F 
c C m 

[
2E J'c ~ (<) d< ] 

Est 

where I is the critical impulse in kilotaps, his the load-carrying shell 
c 

( 1 07) 

thickness in em, Cis its acoustic velocity in cm/f.J.sec, E is Young's modulus 

in kilobars, E is the dimensionless strain, E is the strain cdterion at which 
c 

failure occurs, Est is the strain corresponding to any static stress that may 

exist, and o-(E) is the (engineering) stress of the material in kilobars as a 

function of strain (i.e .• the conventional stress-strain curve). For buckling, 

E corresponds to the strain-to-yield stress and for rupture it corresponds 
c 

to the strain-to-ultimate stress. For a linear stress-strain curve, the term 

in brackets becomes ( o-c - o- st)' where the subscripts correspond to those for 

the strains in the equation. 

The factor F accounts for a multishell structure, and is givu1 by 
m 

F m + • 0 

1/2 

.) J 
( 1 08) 

where pis density, subscript l refers to the shell whose response is being 

analyzed, and the other subscripts refer to other laminates making up the 

multishell structure, Equation (108) shows that the response is greatest 

(I is smallest) when the mass of the structure is smallest. 
c 

Because a liquid cannot transmit a significant tensile stress, liquid tankage 

can be damaged by the positive half of the momentum introduced by absorbed 

x-rays, even if no net impulse is created by blowoff. In this case, the 
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critical unpu.lse i::; giveE cy Lqua.:i.on (107), but the impuise is related to the 

il ueec0 by [sec E q u.;;Jtlo ~: ( ,,. l )j 

lr ,_ r" f)] I -- o. u2lcp 1-----~ f -t _..£.. ( 1 - ( l 0 9) 
1'---' L 

c 
' L -~ '-

v.rh~re 1 iE _n :oL.>-taps, ¢is i.n c:al/cr.n
2

, l'ie the G:r·t:Eeisen coefficient, sub­

script t refers tc the l2nk material, subscript ~ refers to the liquid, and f is 

the fraction of the incident fluence absorbed by the tank wall (but does not 

contribute to front-face m<ws removal). If blowoff impulse occurs, it will 

cancel aU or p;td of the irrpulse of Equati.on ( 1 09) bec2.use the two types of 

i~l:lpulse :tn- ·-'}Jpositely directed. 

9, 2 DEBOf.JDING 

De bonding 1-:y s'ructural response is very unlikely, even for large fluences; 

materhl response damage is usually far more critic<Jl. The equation for 

estimating the critical impulse at which debonding will occur in a two­

material bonded structure is 

I 
c 

,,- G ( LJ) 
c 

. ---·----·-- ( 110) 

wherA I 1s 1n kilobp s, rr is the dynamic bond strength or de bond criterion 
c c 

in kilobars, and 6w is the beat frequency defined as 

l 
- l,/ 2j ( 111) 

with the vibrational frequency of the two structural materials, designated by 

the subscripts, given by 

c 
( 112) w= r_ 



Where w is in f.LSec-l and R is the radius of the cylindrical structure in em. 

G(w) is given by 

G(w) 

(I + a)3 /2 ( + a :::) l/Z 

= -------------,---~-----------~------

a ~ <:) ( 113) 

where a is defined as 

a = ( 114) 

The minimum of Equation ( 11 0) is 

21T 
I __ c_ (115) 
c . - ~w 

m1n 

and occurs at a = 1. This indicates that the critical impulse is smallest 

when the masses of the two materials are approximately equal, although the 

exact value of the optimum value of a depends on w
1 

/ w
2 

as indicated by 

Equation ( 113 ). 



Section 10 

DESIGN EQUATIONS 

This SPr.tion combinetJ Jenne of the relationships derived previously to obtain 

eque1-tio:n,1 i.n tt=:l·ms of L-;xplicit expressions for fltJence thresholds for specific 

failure mcchani sn1s m'ld typical structural configurations. Some equations 

for dose and peak stress are also sun<marized. Other expressions can be 

similarly obtained. All the threshold expressions are for optimum spectra, 

corresponding to mininmm fluence thresholds. The equations are all for 

normally incident radiation: Section 10. 16 explains how oblique incidence 

is handled. All Z 1 s refer to effective atornic numbers. 

If the optimum blackbody temperature for a given effect is outside the range 

of specified temperatures, then the threshold for the appropriate limiting 

blackbody temperature must be determined. For specific blackbody tempera­

tures, explicit expressions for fluence thresholds are generally not possible. 

However, the equations, figures, and explanations given in this report can 

easily be used to generate plots of fluence thresholds versus the values of 

failure criteria, and the thresholds for specific criteria and blackbody 

spectra can thus be obtained. 

The symbols and units are the same as defined for the identified constituent 

equations that are cornbined to obtain a given expression. The design equa­

tions, which are listed in the table of contents, are summarized in 

Tables 4 and 5. The units used are calories, grams, centimeters, micro­

seconds, kilobars, kilotaps, and kev; all fluence thresholds are in cal/cmz. 

10. 1 MAXIMUM DOSE IN A SUBSURFACE MATERIAL 

Equation (9) gives directly the fluence threshold for the maximum dose in a 

subsurfac'-:- material: 
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De b 
.I. =- (px) (Zn /Zn) 
'i't a · s a ( 116) 

where De is the specified dose criterion, and the parameters a, b, and n 

are given in Table 2. The quantity px is the total material areal density in 

g/cm2 up to the front face of the subsurface material being considered, and 

Zs and Za are defined by Equation (10). 

The optimum blackbody temperature is given by Equation (23) or (24), 

depending on the value of b. 

10.2 MAXIMUM FRONT-FACE MASS REMOVAL 

The ·fluence threshold for maximum mass removal is given directly by 

Equation (25 ): 

4>t = 4. 2 pD x (117) r c 

where x is the specified threshold criterion. The optimum blackbody 
c 

temperature is given by Equation (23 ). 

10.3 STRUCTURAL HEATING FOR OPTIMUM CONDITIONS 

The fluence threshold for a specified bulk temperature rise can be obtained 

from Equation (35) for optimum conditions. However, because this equation 

is transcendental in 4>, the fluence threshold can be most conveniently 

obtained from Figure 11 by a trial-and -error procedure. The optimum black­

body temperature is given by Equation (37). 

10.4 PEAK COMPRESSIVE STRESS IN A SUBSURFACE MATERIAL DUE TO 
MAXIMUM BLOWOFF IMPULSE 

The general equation for maximum blowoff impulse is, from Figure 12, 

I 
max 

= Act> 
E 1/2 

t 
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Combining Equations (59), (67), (99), and (118) gives the peak compressive 

stress in a subsurface rnaterial due to maximurn blowoff impulse: 

(J" :: 
p 

A<f>Tt 

E 1/2 
T t ~ + 

(119) 

where T t is the overall transmission coefficient defined by Equations (100) 

and (101), and includes all boundaries up to the material in which the stress 

is evaluated. The symbol ~. indicates the following summation of param-
1 

ters in Equation (99): 

~. 
1 

S.x. 
_1_~ 

K. 
1 

The summation 1s up to the point at which the stress is evaluated. 

The optimum blackbody temperature is given by Equation (51) or (52). 

depending on the blowoff model used. 

(120) 

10.5 BACK-FACE SPALL OF A SURFACE MATERIAL DUE TO MAXIMUM 
BLOWOFF IMPULSE 

Rearranging Equation (98) gives 

2 
0' 

0 

2 :: 0 0'0 - 0' (121) 

where 0' is the compressive stress at the back face of the surface material. 

Setting the reflected tensile stress o- to the spall criterion 0' , 
r s 

0' :: o-T ::: cr-
r r s ( 122) 
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where T is the reflection coefficient between the surface material and any 
r 

contiguous subsurface material, and is given by 

T 
r 

(123) 

Subscript 1 refers to the surface material, subscript 2 to the subsurface 

material, and pC is the acoustic impedance. If there is no subsurface 

material, T r = -1. If T r < 0, this indicates a reflected stress wave that 

changes from compressive to tensile, or vice versa. 

Solving Equation (121) for cr
0

, and substituting for cr from Equation {122) and 

for &
0 

from Equation (67 ), cr 
0 

is given by 

Sxcr 2 
s 

(J"' 0 = __ .;:...._-----::-2 

2CTKT r 
(

2CTKTr) 
Sx cr s 

2] 1/2 
( 124) 

Combining Equations (59), (118), and (124) giveslcl>t for causing back-face 

spall of a surface material due to maximum blowoff impulse; 

S 2E 1/2 
xcrs t 

<Pt = --=---.....:;_--:::--

2ACKT 
2 

r 
(

2CTKTr) 
Sxcr 

s 

The optimum blackbody temperature is given by Equation (51) or (5l), 

depending on the blowo££ model used. 

10.6 BACK-FACE SPALL OF A SUBSURFACE MATERIAL DUE TO 
MAXIMUM BLOWOFF IMPULSE 

Equation (99) generalizes Equation (98) by letting 
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and 

Sx 
K - ~i (127) 

where ~i is defined by Equation (120) and 'T tis the overall translation 

coefficient defined by Equations (100) and (101). Similarly, Equation (125) 

is generalized to give lf>t for causing back-face spall of a subsurface material 

due to maximum blowoff impulse: 

2E 1/2~ 
(J" s t i 

¢t = ZACT 2T 2 
t r 

1 + (128) 

where Tt includes all boundaries up to the material in which the stress is 

being evaluated; if it is the last material, T r = -1. T r is defined by 

Equation (123). !:i is summed up to the stress plane of interest. 

The optimum blackbody temperature is given by Equation (51) or (52), 

depending on the blowoff model used. 

10.7 BACK-FACE SPALL OF A SURFACE MATERIAL DUE TO 
MAXIMUM THERMOMECHANICAL STRESS 

The maximum tensile stress at the back face is equal to the sum of the 

reflected, attenuated compressive stress and the unreflected, unattenuated 

tensile stress. The former is given by Equation (98) multiplied by the 

reflection coefficient: between the surface material and any contiguous sub­

surface matetial, with the <t 
0 

of Equation (98) equal to the <rpm of 

Equation (79) and with 6
0 

defined by Equation (83 ). The latter stress is 

just equal to <r 0 or o-pm of Equation (79). Using these three equations to 

combine the tensile and reflected compressive stresses gives the maximum 

peak tensile stress at the back face: 

= 0.01kf'cpa 
(J"t CT (129) 
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where Tr is defined by Equation (123) with its sign retained, and a is 

defined by 

(- 2pk~rCT) a == 1 - exp 't' ( 130) 

The fluence threshold for spall is obtained by plotting <rt versus q, to deter­

mine the ¢ = ¢t corresponding to <rt = a-S' where ¢t is the flue nee threshold 

and <rs is the spall criterion. If there is no subsurface material, T r = -1. 

For spall to occur at the back face rather than near the front face, the 

amplitude of the tensile stress, cr 0 , must be less than <rs· If no significant 

attenuation of the compressive stress occurs and T r = -1, the upper limit 

of the amplitude of the reflected compressive stress at the back face is also 

a-0 • Therefore, Equation (129) is valid only for <Ts <crt < 2a-s and is conse­

quently of limited importance relative to back-face spall from maximum 

blowoff impulse. Nevertheless, it is presented here for the sake of 

comparison with other spall thresholds. 

The optimum blackbody temperature can be obtained from Equation (80) or 

from Figures 2 through 7, depending on the effective atomic number. 

10.8 PEAK COMPRESSIVE STRESS IN A NONCONTIGUOUS SUBSURFACE 
MATERIAL DUE TO MAXIMUM THERMOMECHANICAL STRESS 

The situation analyzed here is for a shielded (subsurface) material in which 

the thermomechanical stress is generated. The shielded material is non­

contiguous with the shielding material (e.g., a component within a shroud). 

The subsurface materials can generally form a laminated structure with the 

first material being the material in which the stress is generated. 

It is assumed that: ( 1) there is no front-face mass removed from the 

shielded material, and (2) the maximum peak stress corresponds to the 

maximwn surface dose in the shielded material. The first asswnption will 

virtually always be true for realistic conditions, and the second assumption 

is a good approximation for all realistic conditions, 
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The peak equilibrium stress is given by Equation (75). The surface dose Ds 

is, by assumption (1 ), equal to D 0 of Equation (76 ). The maximum dose Dm 

is therefore given by Equation (53) (for b of Table 2 equal to 1 ). and the 

corresponding 1 for the shielded absorber material is given by Equa-
a 

tion (56). Equation (53) can be used to verify that D < D . Combining 
o r 

Equation (75) with Equations (53), (55), and (56) gives the peak equilibrium 

(tensile or compressive) stress generated in the shielded material: 

where the appropriate value of n = 
derivation gives, for b = 3/2, 

-3 {I -exp [-= 2.7xl0 1¢ 
cr 

CT(p X )l/Z 0 

s s 

and, in general, 

cr 
0 

= _0~. ~0 -=-1 a_1_<P-'-'f3'=--~ 
b-1 bCT(p X ) 

s s 

where f3 is defined as 

[ 

2bp CT 
i3 = 1 - exp ---:::--:-:a,...--­P X 

s s 

b = 1 

3. 3 has been shown for b = 1. 

3p CT 
(za z.Yzs 2. 8) J} a 

psxs 

b = 3/2 
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A similar 

(l3lb) 

(132) 

(133) 



and the general relationship between Qs and xs has been used: 

The pulse width corresponding to the cr
0 

of Equation ( 132) is given by 

Equations (82) and (133): 

2CT 
o-o = -(3-

( 134) 

( 135) 

Substituting Equations (132) and (135) into Equation (99) gives, for a specific 

fluence, the maximum peak compressive stress in a generally laminated 

shielded structure due to the (approximately) maximum thermomechanical 

stress formed in the first shielded material, which is noncontigous with the 

shielded material: 

()"" 

m 

o. OlarTt<l>(3 

b-1 bCT(p X ) 
s s 

( 136) 

where PsXs is ~he only shielding material parameter involved, '1't is the 

overall transmission coefficient defined by Equations (100) ;md (101), and 

Zi is defined by Equation (120 ). T t and Zi include all boundaries and thick­

nesses up to the stress plane. 

The optimum blackbody temperature is given by Equation (23) or (24), 

depending on the value of b. 

10.9 DEBONDING OF A COMPOSITE/BOND/METAL STRUCTURE DUE TO 
MAXIMUM BLOWOFF IMPULSE 

The tensile stress for this damage mode is due to the compressive blowoff 

stress generated in the composite material, transmitted and attenuated 

through the composite/bond/metal structure, reflected at the free metal 
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surface as a tensile wave, and transmitted without attenuation back through 

the metal and into the bond. 

Equation ( 128) is modified to provide the de bonding threshold for a compo­

site/bond/metal configuration by setting Tr =-land Tt = T12 T23 T32• 

where T 12 is the transmission coefficient between the composite material 

and the bond, T 23 is the coefficient between the bond and the metal sub­

structure, and T32 (for the reflected tensile wave) is the coefficient between 

the metal substructure and the bond. In general, Equation (lO 1) indicates 

that 

[ 

(pC)m]-l 
T mn = 2 1 + ( p C ) n 

Thus, <l>t is given by 

<l>t = 
2E l/2L: 

() c t i 

2ACTt 
2 

where CT c is the de bonding criterion, C and Et are for the composite 

material, and ~i is, from Equation ( 120 ), 

The optimum blackbody temperature is given by Equation (51) or (52), 

depending on the blowoff model used. 

( 13 7) 

(138) 

(139) 

10. 10 DEBONDING OF A COMPOSITE/BOND/METAL STRUCTURE DUE 
TO MAXIMUM THERMOMECHANICAL STRESS GENERATED IN THE 
METAL 

The expression derived here is for a situation similar to that considered 

in Section 10. 8, since the stress is generated in the relatively higher-atomic­

number subsurface metal, and the shielding material is the comp'osite and 
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the bond. Because the materials are all contiguous, the assumption of 

Section 10.8 regarding no front-face mass removal is not relevant. 

The compressive stress generated in the metal is transmitted and attenuated 

through the metal, reflected at the free surface, and transmitted without 

attenuation back through the metal into the bond. Equation ( 136) is solved 

for 4> in terms of cr; Tt is set equal to T 32 , where T 32 (for the reflected 

tensile wave) is the transmission coefficient between the metal substructure 

and the bond. In this case, 4; i = s 3x3 /K3 and PsXs = p1x 1 + P2x2, where 

subscripts l, 2, and 3 refer to the composite, bond, and metal, respec­

tively. Thus, 4>t is given by 

X 

( 140) 

where lie is the debonding criterion, T 32 is defined by Equatic':l (137). and 13 

is defined by Equation ( 133 ). 

The optimum blackbody temperature is given by Equation (23) or (24), 

depending on the value of b. 

10. 11 DEBONDING OF A METAL/BOND/SUBSTRUCTURE DUE TO MAXIMUM 
THERMOMECHANICAL TENSILE STRESS GENERATED IN THE 
METAL 

The maximum peak tensile stress generated in the metal is given by 

Equation (79). Since tensile stress waves are assumed not to attenuate, the 

tensile stress in the bond is given by Equation (79) multiplied by the 

transmission coefficient, T 12, between the metal and the bond. Subscripts l 
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and 2 refer to the metal and bond, respectively. T 12 is defined by 

Equation (137). The fluence threshold <t>t is thus given by 

96C lT rr C [ 

4> t = k r .. T l - exp 
1 12 

( 141) 

This is a transcendental equation for 4>t which must be solved by successive 

approximation. However, the exponential term is insensitive to <f>t and the 

initial estimate of <f>t ignores it. The second approximation includes the 

numerical value of the exponential term which is evaluated using the initial 

estimate of <f>t· This process is repeated until <f>t converges, usually 

requiring only two successive approximations; i.e., an initial estimate and 

a second and final estimate. 

The optimum blackbody temperature is obtained from Equation (80) or by 

reference to energy-deposition curves. 

10. 12 DEBONDING BY STRUCTURAL RESPONSE TO MAXIMUM BLOWOFF 
IMPULSE 

Combining Equations (115) and (118) gives directly the minimum ¢t for 

causing debonding by structural response to maximum blowoff impulse: 

The optimum blackbody temperature is given by Equation (S 1) or (52), 

depending on the blowoff impulse model used. 

(142) 

10. 13 SHELL BUCKLING OR RUPTURE BY STRUCTURAL RESPONSE TO 
MAXIMUM BLOWOFF IMPULSE 

Combining Equations ( 107) and ( 118) gives directly q:,t for causing shell 

buckling or rupture due to structural response to maximum blowoff impulse: 

cj>t = 
hF E l/ 2<r 

m t e 
AC 

( 14 3) 
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where the effective stress-to-failure is 

[ 

E ] 1/2 
<T e = 2E f c <r( E )dE 

Est 

(144) 

and is equal to (<rc - <rst) for a linear stress-strain relationship, where <rst 

refers to the static stress, 

The optimum blackbody temperature is given by Equation (51) or (52), 

depending on the blowoff model used, 

10. 14 SHELL BUCKLING OR RUPTURE BY STRUCTURAL RESPONSE TO 
MAXIMUM NONBLOWOFF IMPULSE 

Combining Equations (107), (109), and (144) gives directly <~>t for causing 

shell buckling or rupture due to maximum nonblowoff impulse (i.e,, no 

front-face mass removal occurs) in liquid propellant tankage: 

- f) 
] 

-1 

( 145) 

The optimum blackbody temperature is the temperature that maximizes the 

bracketed term, with the constraint that the surface dose is less than the 

mass removal dose criterion, There is no equation for this, but usually a 

good approximation (when rt/Ct ~ r I /Cl is simply to meet the surface dose 

constraint, For this, the blackbody temperature is given either by Equa­

tion (80) or Figures 2 through 7, depending on the atomic number of the tank 

material. 

10, 15 SIZING OF STRESS WAVE ATTENUATOR FOR MAXIMUM BLOWOFF 
IMPULSE 

Combining Equations (105) and (118) gives directly the thickness of a porous 

stress wave attenuator material for maximum blowoff impulse: 
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( 146) 

where T t is given by Equation (106 ). The optimum blackbody temperature Ls 

given by Equation (51) or (52). depending on the blowoff model used. ! 

10. 16 SUMMARY 

The relationships for optimum spectra judged to be the most useful are sum­

marized in Tables 4 and 5. It is convenient in generalizing the analysis of 

x-ray effects to categorize materials as either surface or subsurface. In 

this framework, Table 4 is for surface materials, and Table 5 is for sub­

surface (shielded) materials. 

As applicable, equations are shown for determining fluence thresholds and 

for calculating the magnitude of the effect in question. For convenience, one 

blowoff model, MBBAY, has been used. The symbol Z in the equations 

refers in general to the effective atomic number Z • (See Section 2. 5 for a 
e 

discussion of situations involving 6 < Ze < 12.) 

The equations, as shown in the tables and throughout the report, are all for 

normally incident radiation. For oblique incidence, the same relationships 

hold exactly (i.e., no analytical approximation is involved), except for 

appropriate scaling with the cosine of the incidence angle. Oblique incidence 

may be a consideration for a surface whose size is large compared to 

material thicknesses. The equations are modified for oblique incidence as 

follows. 

It can be shown that for all dose relationships that involve a fixed affected 

thickness, oblique incidence is treated exactly by the relationships for 

normal incidence if the fluence is scaled as follows: 

A.. = A.. case 
'+'o ""n ( 14 7) 

where 0 is the incidence angle as measured from the normal. That is, for 

normal incidence, 0 = 0. The normally incident fluence in the equations is 
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TABLE4 

GENERALIZED DESIGN EQUATIONS FOR SURF ACE MATERIALS 
--. ·-·-· -~----------------

____ __:U_L_'-'S-'--It_;N_E_::Q[,JATION.§______ OI'TIMUM BLACKBODY 
~-i-IIRFSIIOU> ', l:I'I'EC'F .. ·· . EQUA'(IONS· 

---------- --------- r---------------'--i-----·---·--
RE~ARKS 

I. a Thr"•h11lu for a Sp.!cificd Peak 
Dose at l'ronl Surface 

2. a Tiueshold for a Specified Amount 
of Front-Face Mass Remo~al 

3. a Threshold for a Specified Peak 
Equilibrium Temperature 
Rise 
See Remarks. 

I. b Peak Dose at Front Surface for a 
Specined Flucnce 

3Z3q, 
D

0
=-

3
-,z..-; 6 

T 

D
=60Zq, 

0 T,Z;>I2 

2. b Front-Face Mass Removal for 
a Specified Fluence 

3. b Peak Equilibrium Temperature 
Rise for a Specified Fluence 

Optimum temperature is 
lowest of interest. 

T
0 

= 0.5 Z(pXr)l/3, Z..;; 6 

T
0

"' 1.2 z4/5(pXr)2i 5, z;;. 12 

T 
0 

z 1.2 z4 /5(pX)2i5, Z ;> 12 

pXDr i 
-"'-;;.(. I 

Peak dose is calculated for 
specific temperature. 
Peak surface dose in any 
surface material increases 
with decreasing 
temperature. 

Equilibrium thermal 
temperature is the average 
temperature through the 
material thickness. 
Equation is transcendental 
in 1/J, and t.T vs 1/J must be 
plotted to lind 1/J = 1/J 1• 
See Figure 4·2. 

-------------------~----------------------~-------------------t---------------

4. a Threshold for Back-Face Spall 
Due to Blowoff Impulse 

+ (2CrKT,) 2 J 1/21 
SXo, 

5. a Threshold for Shell Budding or 
Rupture by Structural Response 
to Blowoff Impulse 

XF E l/2 
mm 

<lit =0.63 C ue 

6. a Threshold for Shell Buckling dr 
Rupture by Structural Response 
to Non·Biowoff Impulse 

4. b Peak Back·Face Reflected Stress 
Due to Blowoff Impulse for a 
Specified Flue nee 

5. b Deflection is not a good general 
indica tor of damage. 

6. b Same as (5) above. 

Same as (4)above. 

See Section 10.14. 

Accounts for a bonded 
'ubsurface material via a 
stress wave reflection 
•;oefficienl Tr. Negative 
T r indicates tensile stress. 

Applicable for a single 
shell or multi-shell 
structure. Shells must be 
contiguous but not 
necessarily bonded. For 
a linear stress-strain 
relationship, "e = oc -
osl' where ost is the static 
stress. 

Applies to liquid propel· 
lant tanks only. Maximum 
non·blowoff impulse 
implies no front-face mass 
removal. For a linear stress 
strain relationship, ae = 

oc . "st· where "st is the 
static stress. 

--~-'------'-----'-------'----.-'---------------------------'-·--------------------- -------------·-
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TABLE 5 

GENERALIZED DESIGN EQUATIONS FOR SUBSURFACE MATERIALS 

2. a Th11!~hold lur U:•..:k-Facc Spall oJ ,. lk•ndcJ 
Subsurface M;~t.::rial Due tu Blowoff 
Impulse in .he Surface Matcr1al 

2. h Peak B;.~o:k-Facc Rcllec!Cd Stfe~~ 111 a Bonded 
Subsurl"ace Matenal Due to BI'J""otT Impulse 
in the Surfa..::c Matcrial1u' a Specitled 
Flue nee 

2b 
T

0
• u.z4/.'i(L/1.z;;. 12 

T =0<2z:'/l(L2i5 Z>l' 
0 .. ~ ' -

For any sutNuface moll erial shielded 
by any numlu·; of other mat~·n•l•. 

-------

lhck·f:~n· u~ed not be a free surface 
ami jg acrnuntcJ f<lr by the sire• 
rcnection cneffic~ent, Tr. Negative 
Tr indicates tensile ~1reu. 

{ .. ' ' ' r, r,) 2]1/21. 
0 s l:i 

-------------------------~- -- ---------------,-~--- -----+--
J. a Thrnhohl for a Speciried Peak Compressive 

Strcu 111 a bonded Subsurface MateJiill Uui lo 

Ulowoff ln'lpube in the Surface MaiCIJal 

Same as 2. 01 with Tr "" I. 

4. a Threshold l"ur a Spcc1ricd Prak Thermo­
mechanical Compressive Suess in a 
N1Jn-~,;ont1guous Smglc Suhsurface Matcr•a\, 
or any Part of a Uiminated Subsurface 
Slructure• 

S. 1 Threshold 1:;-;r Dehondlng of a fompo!ilc{ 
Bond/Metal Strucu.ne Due to UluwoiT 

Impulse m the Surface Comt-·•silc 
Material 

II ' 
+(~rrzl 

J. b Peak Compressive Stress in a Bonded Sub· 

surface Material Due •n Blowoff Impulse 
11l tl1c Surface Matcn:1l for~ Specified 
Hue nee 

5 b Peak Tens.tc Sucu in Hond of 1 Composite/ 
B()nd/Melal Structure Due to Ulnwoff Impulse 
in the Sml"ace CompoSite MaiNial for a 
SpeciFied fluence 

Same (21 o~huve. 

Samcu(2)above. 

Material properties are for the 11.1b· 

aurfaa m~~tertal in which the 11reu 
ia generated, which ill he first non­
contigi.Wluslhielded m~~terillt. 

Compressive streu propapletlruo 
metal, reOectaallendlt and re1um1 
to bond. Sub.c-riplt I, l..tlnd 3 refer 
to compotite, bond, and metal nib· 
structure. reapcctively. 

t, •TI2 T2J TJ2 I 

-~------+---------------- -----f------+----
6. a Thrc.tlold for Oebondilll of a Compositl!/ I 6 b Peak T e11S1IC Strr~~ iu Btmd n~ a Composite{ Same as (I) tbovc wilh 

Rond/Meu.l Structure due h> Thermo- Bond/Metal Sllucturc Due to rhermo- !
1

,. Pt XI + p 2X
2 

mechanical Snes:s Generued in the mechan1.:.al Srres~ Generated 111 the Metal 
Metal Subslruct\lre• Sub~tructurt·1or J Sfll'ltlll!t..l 1-lucnce• 

I 

I 
A•l-o.p [--2bp3c __ J' ·(z~')] I 

Ptxl +p2X2 Z~5 
-7-. -, _T_I_n_.,-h-ol-d '-fo-, _O._bo_o_d,;o-,--of-,-,."-,-',,'-1/:_Bo_:_o_d/---r--;;:~~ Ten~~~-~~::-:·;::~~~~~;~~~~-

Suh~tructure One to Thcrmomectwniml Ten:slle Substructure Due to Thermomechanical Tensile 
Stress Generated in !he SW"face Metal J Stress Generated in the Surface Metal £or a 

1 S~c1F\ed Fluencr 

8. a Threshold for Dehbnding by StruciUral 
Re1po11se ro ~iuwoff lmpube 

t,riTj 2'~ [ ( 2.a 1 o,c1.,.)J 
up'" 9oCI;- I -exp - -v-

8. b Peak TrnaUe Stress in Bond of a Composite 
Structure Due 10. Snuctural Response to 
'Biowoff lmpuhe fot a Specified Flue nee 

10-15 

See Section 6.2.3. 

Same u (2) above. 

Sub~eripll I, 2, and 3 refer to 
composite, bond, and melalaab­
structure, respectively. Shleldln1 
materilll are the composite and hnnd. 

Sub~etipll I and l refer to metal 
and bond, respectively. Thil eq'CIIiOn 
mu11 be enluated by tucceuift 
approximation. 

Not likely to be 1 critiml fail~e 
mode. · 

• 



' 

4>n• and 4>
0 

is the corresponding obliquely incident fluence. In other words, 

for a specified 4> (the Effect column of Tables 4 and 5), the quantity to be 

substituted for cl> in the equations is 4> cos Q. Conversely, for a calculated 

threshold 4>t (the Threshold column of Tables 4 and 5), the normally incident 

threshold for oblique incidence is 4>/ cos e. For T 
0

, substitute px/ cos Q for 

px and :E /cos Q for :E • In considering oblique vs. normal incidence, as a s s 
general rule the effects for oblique incidence are less, thresholds are 

greater, and optimum temperatures for other than blowof£ impulse are 

greater. Quantities that do not change with incidence angle are: (1) the 

surface dose for a surface material because thickness is not involved, and 

(2) the optimum temperature for blowoff impulse because the energy/mass 

ratio must remain the same. The fact that T for maximum blowoff impulse 
0 

does not change with Q is implied by Figure 12, which indicates that for a 

fixed Tl• 1 is proportional to 4> regardless of Q. By the same token, for a 

specific spectrum (i.e., a fixed 1 ), T] varies with cos Q according to how 4> 

varies with cos Q. 
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