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1.0 INTROCUCTION

Congress, on 3 April 1970, enacted the Water Quality Improvement Act.
This Act directed the Coast Guard to prescribe methods and procedures for
the removal and prevention of discharge of oil "into or upon the navigable
waters of the United States, adjoining shorelines, or into or upon the waters
of the contiguous zone." A method of predicting the movement of an oil spill
could enhance substantially the Coast Guard's ability to carry out its duties
as directed by the Water Quality Control Improvement Act. Used in a harbor,
a reliable prodictive method would enable the Captain of the Port to forecast,
under any weather conditions, the movement of an oil spill. The forecast would
enable COTP to direct the proper placement of booms and deploy cleanup teams
as rapidly as possible.

To obtain experimental data local oceanographic and meteorologic factors
were measured in Upper New York Bay during the period 20 March to 25 April 1973.
The experiments were designed to determine the advection of surface water in
the Bay. When good correlation between oceanographic and meteorologic factors
and surface advection can be found, a guide for predicting the movement of oil
spills can be developed.

This report will indicate the experimental procedures, instrumentation and
results of the experiments in Upper New York Bay. The feasibility of preparing
a predictive guide for the movement of oil spills based on the experimental
data will be discussed.

In addition, this report presents an analysis of oil spills occurring in
Upper New York Bay and Kill Van Kull based upon data for calendar years 1971
and 1972, Regional priorities are established based on o0il spill frequency
withi~ the Upper Bay. The names and locations of oil and petrochemical
handling facilities are indicated. The priorities assigned to the regions
show the approximate order in which monitoring devices should be deployed if
surveillance systems to detect oil spills are made available.

2.0 NEW YORK HARBOR EXPERIMENTS

2.1 Instrumentation

Specially constructed, anchored surface current probes were used
to collect surface current speed and direction data. These probes, which
may be air dropped or boat launched, are tubular in shape and house an
anchor which 1is attached to the probe by 150 feet of line. Upon contact
with the water a special vinyl cover is dissolved releasing a free~floating
cap and the anchor. After a short period of time, the current will cause the
cap to drift away from the anchored float. By measuring the distance the cap
has drifted from the float and the elapsed time of the drift, the speed of
the surface current is easily computed. The direction of drift is obtained
vy taking bearings on a known landmark, in this case the Statue of Ljberty.
The same procedure is used when the probes are air deployed from helicopters.
Both the cap and anchored float release dye for visual location from the
btoat or aircrait. Also, aerial photographs can be taken, and from these the
speed and direction of drift can be determined.

1
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Other instrumentation included hand-held anemometers for obtaining
wind speed and direction data; water temperature and salinity monitoring
systems; flowmeter-speedometers to obtain the speed of the boat. Accuracies
of all measurements were acceptable, except for salinity values. The salinity
sensor was found to be out of calibration, and therefore salinity values can
be considered as relative values only.

2.2 Methods

Using two fast boats with two or three scientist/technicians
aboard each boat, ten stations (Figure 1) were occupied frequently during the
period 20 March to 25 April 1973. A summary of these operations is given in
Table 1. Near synoptic measurements of surface currents, wind speed and
direction, water temperature, and salinity were made at each station. One
boat collected the data at the five northern stations (N1-N5) and the other
boat collected the data at the five southern stations (S1-S55). Measurements
were made at approximately the same time of day at each station. This timing
interval provided measurements for many differing tides and winds.

Upon arrival at the first station, a surface current probe was
released. As soon as the cap began its separation from the anchored float,
timing of the drift commenced. After a period of time, when the cap had
drifted some distance awav from the anchored probe, the boat began a run from
the fixed float tc¢ the cap. Upon arrival at the cap, the time of drift of the
cap from initial release was recorded, as well as the elapsed time of the boat
run between fixed float and cap. For every station the boat was run at about
1200 rpm while towing flowmeter-speedometers. These flowmeter-speedometers
measured the speed of the boat run between anchored float and cap. The speed
of the boat was then multiplied by the time of the boat run to compute the
distance the cap had drifted from the probe. This distance was then divided
by the total cap drift time to yield surface current speed. The direction of
drift, as well as the salinity, water temperature and wind speed data were
recorded. The boat then proceeded to occupy the next station.

2.3 Special Observations

On 22 March surface advection observations were conducted at four
stations on Newtown Creek, from Greenpoint, Brooklyn, to Lenden Hill, Brooklyn,
at the request of the COTP. This shore area is a proposed site for liquid
natural gas facilities. Advection patterns in the surface layer would be
useful if a spill from these proposed facilities ever occurred. Although no
detailed description of the advection patterns can be determined from one
day's data, the surface movement was downwind for stations within the creek.
One station at the mouth of the creek appeared to be controlled by tidal flow.
Further data would be necessary, however, to describe accurately the surface
advection in the creek for all wind and tide conditioas.

On 28 March a helicopter was used to measure surface current speed
and direction for two stations in the outer bay and stations S4 and N4.
These measurements of surface advection are given in Table 2. The starting
time of each helicopter run between anchnred probe and drifting cap is also

2
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Table 1. Number of Stations witn Usable Data.

DATE NORTH SOUTH
20 March 73 3 4
21 March 73 5 5
22 March 73 Newtown Creek 4
23 March 73 Secured - High Winds
26 March 73 None - No Boat 5
27 March 73 4 5
28 March 73 5 5 (Plus 4 from helicopter)
29 March 73 5 5
30 March 73 5 5
2 April 73 5 5
3 April 73 5 5 (No salinities)
4 April 73 5 5
5 April 73 Secured - High Winds
6 April 73 5 5
9 April 73 5 5
10 April 73 5 5
11 April 73 Secured - High Winds
12 April 73 5 5
13 April 73 5 5
16 April 73 5 5
17 April 73 5 5
18 April 73 5 5
19 Aprii 73 5 5
20 April 73 5 5
23 April 73 5 5 (No salinities)
24 April 73 No boats available
25 April 73 5 5
26 April 73 Secured - High Winds
] 27 April 73 Secured - High Winds

Table 2. Helicopter Stations.

Date: 28 March 1973

GONG

BUOY BUOY

IINIHIAII #3

OUTER OUTER

BAY BAY S4 N4
TIME 0950 1010 1030 1035
SURFACE CURRENT SPEED (Kts) 0.47 0.77 0.89 1.21
PREDICTED TIDAL CURRENT SPEED (Kts) Weak 0.2 0.85 1.10
SURFACE CURRENT DIRECTION (°T) 098 049 200 179
PREDICTED SURFACE CURRENT DIRECTION (°T) o 030 199 190
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shown 1n Table 2. This time was used to determine the predicted tidal current
speed and direction from the Tidal Current Charts of New York Harbor and the
Tide Tables - East Coast of North and South America (1973).

A comparison of results of boat versus helicopter measurements may
be made for station S4 because the measurements were made at approximately
the same time. Agreement 1s excellent; the computed boat values for current
speed and direction were 0.89 kts and 200° T, while the computed helicopter
values were 0.85 kts and 199° T.

2.4 Data Presentation and Preliminary Analysis

Tables 17 through 26 (Appendix B) summarize oceanographic and
meteorological observations for stations 51-S5 and N1-N5. Preliminary
analysis of the data at station N1 indicates that a predictive scheme for
surface advection cannot be formulated from tidal predictions alone. Winds
and fresh water flcw must be taken into account.

By use of the Tidal Charts (New York Harbor) and the Tide Tables
(East Coast of North and South America (1973)), the daily tidal speed and
direction for station N1 were predicted from the time of the field measurements
of surface current speed and direction. The absolute value of the difference
between measured surface current speed and direction and predicted tidal
current speed and direction was determined for each day of observatioms.
These daily values were added and the sum was divided by the number of days
of observations to calculate the average absolute value of daily difference
between predicted tidal speed and measured surface speed. This value was 0.86 kts.
The average absolute value of daily difference between predicted tidal current
direction and measured current direction was 46.0°.

Thus, on any given day the tidal prediction values should vary from
the actual conditions in the bay bv an average of 0.86 kts and 46.0°. Because
the measured speed at station N1 varied between 0 and 2 kts during the period
of observations, the use of tidal information alone would lead to substantial
errors in predicting the advection of surface water in New York Bay.

Because tidal predictions alone do not give viable results, a com-
parison between measured values and combined tidal, wind and fresh water
values was attempted. A simple vectorial addition of tidal current, wind drift
and fresh water run-off was used. The most difficult vector to measure is that
due to fresi. water flow emanating from the Hudson River.

The wind drift vector was computed by multiplying the wind speed
times 0.035, a commonly used factor. This gives the speed of the wind-
induced surface current. This value of 0.035 is tentative pending further
research. However, it is expected that the actual value used will be this value
or one very close to it. The direction of the wind drift vector was downwind
of the measured wind for observations at station N1. For station N1 there
were 11 days when it appeared that a fresh water vector factor should be
applied.
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A new predicted current speed and direction for each day cf observa-
tions was found using the resultant vector from the combined tidal current,
wind drift and fresh water vectors. The new predicted current speed and
direction were compared with the measured values in the same manner as when
the tidal values alone were compared. Thec average absolute value of daily
difference between predicted speed and measured speed is 0.53 kts compared
with the previous value of 0.86 kts. The average absolute value of daily
difference between predicted direction and measured direction is 31.0°
compared with the previous value of 46.0°. Thus, it is evident that wind-
induced current and fresh water flow must be used in any predictive scheme
formulated. Using these tentative results. it also appears that a first
order predictive scheme will be possible by using tide, wind and fresh water
data.

2.5 Data Correction

Surface current speed values (Tables 17-26) had been incorrectly
computed because the time interval used was the total time from initial release
of the probe to the time the boat passed the drifting cap. The time that should
have been used was the time from initia’ release of the probe to the time the
boat passed the anchored float. The method used to compute the correccted speed
values is presented in Appendix A.

For all southern stations surface current speeds given in Tables 22-26
after 26 March must be increased by 0.25 kts. All northern stations given in
Tables 17-21 after 21 March must be increased by 0.24 kts.

3.0 FACTORS DETERMINING THE MOVEMENT OF OIL SPILLS

3.1 Data Analysis

The experiment which measured the advection of surface water in
Upper New York Bay is presented in Section 1.0 of this report. The measured
values of surface advection observed in this experiment in New York are.
compared with the predicted values caused by tide alone and predicted values
caused by tide, wind and fresh water flow combined (Table 3). The correlation
between tidal prediction of surface current and measured surface current is
poor in every case. However, when wind and fresh water flow are included
in predicting surface movement, the correlation between predicted and measured
surface current is significantly improved. Thus, for any predictive technique
all three components must be considered.

Exact correlation between observed and predicted movement would have
been ideal, but there are several reasons why this was not the case. First,
the wind speed measured during the experiment was not an average hourly value;
rather, it was an instantaneous value observed during the movement of the
floating cap. Average hourly values of wind speed will give better results
for the component of movement due to the wind. Second, the movement of surface
water in New York was observed for each station for a period of several minutes.
It is very difficult to predict the tidal component of surface flow at any
given instant in time from tidal charts. The values given in the tidal charts
are average hourly values, not instantaneous values, Finally, there are

6
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certain unpredictable phenomena, such as eddies and shear zones, which may have
affected the observed surface movement in New York Harbor. Eddy motion

effects seem to be particularly evident at the inshore stations. These
stations show the worst correlation between predicted movement and actual
movement.

In spite of the possible errors noted above, ccrrelation between
predicted movement and observed surface movement is sufficient to indicate
that a predictive movement technique can be formulated using the three major
components involved in surface advection. This can be seen from a statistical
analysis of the data listed in Tables 17-26. Of the 210 observations of
surface movement made, 57 percent of the predicted speeds ware within 0.4 knots
of the measured speeds, and 73 percent of the predicted directions were within
40 degrees of the measured directions.

3.2 Wind and Wave Effects

Au vmpirical value for wind drift was not obtainable from the data
collected in New York. However, previous research by various investigators
indicates that slicks will drift at 3_to 5 percent of the local wind speed.

A value of 3.5 percent is recommended! for a predictive technique for New
York Harbor. This value can be refined, if necessary, from future observations
of the movement of o0il spills within New York Harbor.

The relationship between wind peed and wave~induced drift is quite
complex. Researchers, as yet, have not quantified this effect. However, it
appears this effect will be quite small in comparison to the three major
components. Also, wave formation in New York Harbor is generally not signifi-
cant. Therefore, it is recommended that wave-induced surface movement be
ignored for the present time.

3.3 Fresh Water Flow Effects - Empirical Observations

The fresh water discharge of the Hudson River has a significant
effect on surface current velocities in Upper New York Bay. Two different
approaches are presented in order to quantify this parameter. The first is
an empirical approach based on the data ocbtained in New York. The second 1is
a theoretical approach which is used to verify the results obtained empirically.

The United States Geological Survey maintains a continuous recording
gauge ¢t Green Island, N.Y., upstream from the Troy Lock and Dam. The varia-
tion in river height, and hence river flow, should propagate downstream at the
speed of a long grzvity wave. Therefore, the flow at any given time at
Green Island should affect surface velocity in New York withia 24 hours of
that time. Observed surface velocities in New York Bay verify this assuz=picion.
On 6 April, tor example, the predicted tidal flow for station N1 was 1.40 knots
flooding. The observed condition was 0.21 knots ebbing. This large variation
between predicted and observed surface current could only be accounted for
by a large fresh water discharge occurring on 5 April at Green Island. Table &
gives the average daily flow rates for Green Island for the period 15 March 1972
to 25 April 1273. It can be seen from Table 4 that the average daily flow for
5 April was an extremely high value of 82,000 cfs. This effect of fresh water
flow on surface velocity is observed at the other stations taken on 6 April.

8



In addition, this same phenomenon is observed again on 4 April and 20 and

21 March following high water discharges at Green Island on the preceding

days. Thus, for a predictive technique for oil spill movement, the average
daily flow at Green Island for any given day will affect surface current speeds
and directions in Uppe~ New York Bay on the following day.

In order to obtain empirically the magnitude of the surface velocity
caur=? “v fresh water flow, it 1s assumed that the cdifference between the
obse . velocity and the predicted velocity from tide and wind considerations
is causcd by fresh water flow. Ten different average daily flow rates at
Green Island were selected ranging in value between 20,000 cfs and 80,000 cfs
(Table 5). For the day following these selected flow rates the difference
between observed surface velocity and predicted surface velocity from tide
and wind factors was found at stations N1, N3, N4, S1, S2, S3 and S4. These
stations were selected because they are near the center of the bay and should
receive the full velocity effects of the fresh water flow. Fcr each day after
a particular fiow rate at Green Island, an average surface speed difference
was found using the individual values of the stations indicated previously
(Table 5). The data in Table 5 is shown graphically (Figure 2) as a line
labelled "empirical.”" From this graph surface speed due to fresh water flow
can be obtained from flow rate at Green Island. It must be remembered that
to get a speed for any day the previous day's flow rate at Green Island must
be used.

3.4 Fresh Water Flow Effects - Theoretical Considerations

The length of a salt wedge (Lo), as shown in Figure 3, can be
determined theoretically2 from the equation

H = 6.0 v VA ’ (1)

where Lo/H is the ratio of the length of the salt wedge to the depth of the river
at the river mouth, v is the kinematic viscosity of the liquid, V_ is the speed
of the river at the initial point of the salt wedge, and V, is de?ined as

VA = Ap
pp8H

Here, Ap 1is the density difference between the salt water and the fresh water,
pm 1s the average density of the fresh and salt water, and g is the acceleration
| of gravity.

If the lengths of the salt wedges for the Hudson River are known for
various flow rates at Green Island, then the speed of the river (Vr) can be
computed from equation (1). The characteristics of the river3 used for the
calculations of river speed are given in Table 6. These values, once calcu-
lated, can be used to compute the speed of the surface layer (V;) at the
mouth of the Hudson River. This computation uses the equation of continuity

Vy (H-hg)) = VH.
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Table

4. Daily Average Flow kates at Green Island
for the Period 15 March 1972 to 25 April 1972.

DATE Q (cfs) DATE Q (cfs) DATE Q (cfs)
15 March 31,000 28 March 23,000 11 April 36,000
16 March 30,000 29 March 21,000 12 April 32,000
17 March 35,000 30 March 19,000 13 April 29,000
18 March 65,000 31 March 18,000 14 April 25,000
19 March 60,000 1 April 19,000 15 April 22,500
20 March 45,000 2 April 46,000 16 April 21,000
21 March 35,000 3 April 70,000 17 April 19,000
22 March 25,000 4 April 60,000 18 April 19,500
23 March 21,000 5 April 82,000 19 April 20,000
24 March 21,000 6 April 63,000 20 April 21,000
25 March 20,000 7 April 51,000 1 April 21,000
26 March 22,000 8 April 42,000 22 April 19,000
27 March 25,000 9 April 34,000 23 April 17,000
10 April 32,000 24 April 18,500

25 April 18,500

Table 5. Surface Speed in New York

Caused by Flow Rate at Green Island

y — Flow Rate (cfs)

Surface Speed

20,000 0.41
25,000 0.47
32,000 0.50
34,000 0.61
36,000 0.62
45,000 0.81
46,000 0.83
60,000 1.16
70,000 1.22
82,000 1.36
Table 6. Water Characteristics Used

for Calculating River Speed.

Q - Green Island Lo Va v H
(cfs) (miles) (m/sec) (m2/sec) (m)
6,000 18 0.538 15.5x10~7  13.72
12,000 22 0.538 15.5x10"7  13.72
28,000 30 0.538 15.5x10~7  13.72
36,000 40 0.538 15.5x1077  13.72
10
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The computed values of surface speed (V]) are shown graphically in Figure 2

as the '"theoretical" line. The theoretical results compare favorably with the
empirical results. Thus, the empirical cbservations are usable to predict
surface speed in Upper New York Bay due to fresh water flow.

3.5 Boundaries Within Which 01l Slick Will Move

The boundaries within which an oii glick moves can be obtained from
theoretical spreading rates for oil spills., ® Should a release of oil occur,
Figure 4 can be used to compute spill size. As the slick begins to move, the
radial size of the slick perpendicular to the direction of movement will
outline the boundaries within which the slick will move. The radial size of
the slick for future positions can then be predictec in the same manner
(Figure 5).

3.6 Verification of Predictive Technique

During the period 17-21 September 1973 surface current drifters
were tracked in New York Harbor for periods uvf time ranging from 10 minutes
to more than one hour. The location and movement of the drifters is shown in
Figures 6-14. These drifters were made of cardboard one foot square. When
soaked with water they became pliant and adhered to the contours of the water
surface.

The data collected are shown in Table 7. Using the components of
wind, tide and fresh water flov, predicted movements were computed for each
drift and compared with the observed movements of the cardboard (Table 8).
The correlation between observed and predicted movement is excellent. Of
the 17 runs made, only one predicted direction varied more than twenty
degreec from the observed direction. 1In 12 of the 17 rums, the predicted
directions were within ten degrees of the observed directions.

The predicted distance travelled compared favorably to the observed
distance travelled. The average percent difference between predicted and
observed distance travelled is 25 percent. This appears to be too high a
value for accurate predictions. However, a closer look at the data indicates
that the 25 percent figure is misleading. Breaking the runs down on a time
bacsis of 0-30 minutes, 50-60 minutes and runs greater than one hour gives a
better perspective of predictive accuracy. For runs between O and 30 minutes

B

the average percent difference between observed and predicted distance travelled

is 31.8 percent; for runs between 30 and 60 minutes this difference is
18.8 percent; and for runs greater than 60 minutes the difference is
10 percent.

This same analysis can be done using distance travelled instead of
time interval of the run. The average percent difference between observed
and predicted distance travelled for drifts shorter tuan 500 yards is
36 percent; for drifts between 500 and 1000 yards this difference is 15.9 per-
cent; and for drifts greater than 1000 yards the difference is 10 percent.
Thus, for a predictive technique with a half-hourly or hourly time step,
predictive movement should be within 15 percent of observed movement.

13
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On 10 December 1973, one additional tracking test was conducted.
The purpose of this test was to determine whether or not accurate predictions
of the movement of an oil spill could be made for periods in excess of two
hours. The results of this test, shown in Figure 15, demonstrate that the
movement of an oil spill :an be predicted accurately for periods of several
hours, in this case 3-1/2 | ~urs.

This tracking test also verified the need for using river runoff
and wind drift for predicting the movement of an oil spill in estuaries.
The river flow increased the speed of the ebb current by 0.28 knots. Had
this factor not been included, the predicted southerly movement of the oil
spill would have been far short of the observed movement. In addition,
the wind factor played an important part in the prediction. When the tide
turned, the observed movement was to the north. The tidal current charts
indicate that the movement should have been into Kill Van Kull. It was the
wind which prevented this movement into the Kill. By adding the wind factor
the prediction compared favorably with the observed movement.

The circles on the track line of Figure 15 indicate the successive
sizes of a 1000-barrel oil spill with respect to time of the initial spill.
The boundaries within which a spill of this magnitude will move can be obtained
as outlined in Section 3.5 of this report. If this is done, it can be seen
that the predicted track line usually was contained within this boundary.

4.0 POTENTIAL OIL POLLUTION SITES - UPPER NEW YORK BAY
4.1 Data

0il spill records have been accumulated for several years by the
Dangerous Cargo Section of the Third U.S. Coast District. From these records
lists of the reported petroleum spills in the Kill Van Kull and Upper New
York Bay areas for 1971 and 1972 have been prepared (Tables 9-12). The causes
and amounts of these spills are given in Table 13. The locations of these
spills have been plotted for each of the two years (Figures 16 and 17).
Numbers entered on Figures 16 and 17 indicate the number of spills in that
particular area.

The United States Coast Guard has issued a report entitled, "Multi-
Agency 0il and Hazardous Materials Pollution Contingency Plan for the New York
Coastal Region." Extracted from the supplement to this report is a list of
0il and petrochemical handling facilities in Upper New York Bay (Table 14)
and a map showing the location of these facilities (Figure 18).

Other information presented includes an analysis of reasons for
spillage and amount of spills (Tables 15 and 16).

4.2 Regional Priorities Based on Spill Records

It must be emphasized that the data presented are based on reported
spills and therefore are probably biased because a region may have been
designated with a lower priority as a result of unreported spills rather than
a lack of them. On the other hand, areas of frequently reported oil spills
(such as the Kill Van Kull area) show a high priority.
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TABLE 9
REPORTED PETROLEUM SPILLS IN UPPER NEW YORK BAY - 1971
Facility or Vessel Date Cause 1 Cause 2 Amount
Eldorado Term.,Bayonne,N.J. 3 July 71 12 1 1
Esso 01l Co.,Edgewater,N.J. 8 Mar. 71 - 7 1
Kraft Containers Co.,Bayonne 22 June 71 10 5 1
Metropolitan Petro.Co.,Brooklyn 19 Jan. 71 1 5 8
Mobil 011 Terminal,42nd St.Brooklyn 28 Jan, 71 1 5 2
USNS Towle,MOT,Bayonne,N.J. 14 July 71 12 5 8
Royal Patrol,New Jersey 8 Feb. 71 10 1 1
Wellen 0il, Jersey City,N.J. Jan. 71 - - 1
Wellen 0il, Jersey City,N.J. Feb., 71 9 1 -
Wellen 0il, Jersey City, N.J. April 71 9 1 -
Wellen 0il, Jersey City, N.J. June 71 11 5 1
Mobil 0il Term.,Staten Island,N.Y. i2 Sept. 71 2 1 2
Paragon 0il, Brooklyn,N.Y. 15 Jan. 71 2 2 1
Texaco, Brooklyn, N. Y. 1 April 71 9 - 1
Gulfport, Staten Island, N. Y. S Aug., 71 1,3 1 1
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TABLE 10

REPORTED PETROLEUM SPILLS IN KILL VAN KULL - 1971

Facility or Vessel Date Cause 1 Cause 2 Amount
Bayonne Ind.,Bayonne,N.lJ. 29 Jan.71 9 1 1
Bayonne Ind.,Bayonne,N.J. Feb.71 9 - -
Bayonne Ind.,Bayonne,N.J. Feb.71 - - &
Bayonne Ind.,Bayonne,N.J. 17 Apr.71 7 1 1
Bayonne Ind.,Bayonne,N.J. Sept.71 11 - -
Bayonne Ind.,Bayonne,N.J. 21 Oct.71 - - -
Bayonne Ind.,Bayonne,N.J. 9 Nov.71 9,11 - 2
Bayonne Ind.,Bayonne,N.J. 18 Nov.71 7,11 - 1
Bayonne Ind.,Bayonne,N.J. 21 Nov.71 13 - 1
Bayonne Ind.,Bayonne,N.J. 30 Nov.71 7 - 1
Bayonne Ind.,Bayonne,N.J. 10 Dec.71 13 - 1
Bayonne Ind.,Bayonne,N.J. 15 Dec.71 9,13 = 1
Bayonne Ind.,Bayonne,N.J. 30 Nov.71 9,11 - 1
Enjay Chem.Corp.,Bayonne,N.J. 31 Mar.71 7 2 1
Humble 0il, Bayonne,N.J. 3 Sept.71 1 1 1
Humble 0il, Bayonne,N.J. 22 Jan.71 2 1 3
Humble 0il, Bayonne,N.J. 23 Nov.71 7 1 1
Humble 0il, Bayonne,N.J. 30 July 71 1 1 2
Humble 011, Bayonne,N.J. 12 Aug.71 2 1 4
Hess 0il Co.,Bayonne,N.J. 30 July 71 1 1 1
Howard Fuel Co.,Bayonne,N.J. 16 Nov.71 1 1 1
Howard Fuel Co.,Bayonne,N.J. 10 Dec.71 7 1 4
Rollins Terminal,Bayonne,N.J. 14 June 71 12 - 1
Rollins Terminal,Bayonne,N.J. 29 June 71 12 - 1
Rollins Terminal,Bayonne,N.J. 15 Sept.71 7 - 1

L Rollins Terminal,Bayonne,N.J. 15 Oct.71 12 5 1
Rollins Terminal,Bayonne,N.J. 19 Oct.71 12 - 1
Rollins Terminal,Bayonne,N.J. 21 Oct.71 12 - 1
Rolling Terminal,Bayonne,N.J. 22 Nov.71 5 - 1
Texaco,Bayonne,N.J. 18 Nov.71 5 5 1

_ Texaco,Bayonne,N.J. 25 Apr.71 2 - 4

i Texaco,Bayonne,N.J. 2 Dec.71 13 1 1
A.Gross,Inc.,Linden,N.J. 11 Feb.71 1 1 1
Mobil 011 Terminal,Staten Island 12 Sept.71 2 1 2
Port Mobile,Staten Island 5 Jan.71 9 - 2
Port Mobile,Staten Island 8 Feb.71 12 - 1
Port Mobile,Staten Island 10 Apr.71 7 - 1l
Port Mobile,Staten Island 21 Apr.71 2 - 3
Port Mobile,Staten Irland 4 Aug.71 7 - 2
Port Mobile,Staten Island 14 June 71 9 - 1
Port Mobile,Staten I.land 20 July 71 9 - 1
Porc Mobile,Staten Island 17 Sept.71 9 - 1
Port Mobile,Staten Island 7 Dec.71 13 - 1
Port Mobile,Staten Island 7 Dec.71 9 - 1
Port Mobile,Staten Island 7 Dec.71 9 - 1
Port Mobile,Staten Island 8 Dec.71 1 5 1
Shell 0il1 Co.,Seawarren,N.J. 17 June 71 1 5 1
Shell 01l Co.,Seawarren,N.J. 23 Dec.71 12 5 1
Shell 01l Co.,Seawarren,N.J. 30 Dec.71 7 - 1
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TABLE 11

REPORTED PETROLEUM SPILLS IN UPPER NEW YORK BAY - 1972

FACILITY OR VESSEL DATE CAUSE 1 CAUSE 2 AMOUNT
Con. Edison,27 St.,Brooklyn,N.Y. 8 Mar.72 7 - 1
Esso,Constable Hook,N.J. 25 Mar.72 7 - 1
Esso,Constable Hook,N.J. 26 June 72 9 - 1
Esso,Freeman St.,Brooklyn,N.Y. 6 Apr.72 10 7 1
Mobile 0il Co., Brooklyn,N.Y. 31 Jan.72 1 - 1
Wellen 0Oil,Jersey City, N.J. 13 Jan.72 9 5 1
Wellen 0il, Jersey City,N.J, 7 Feb.72 9 5 1
Wellen 0il, Jersey City,N.J. 14 Feb.72 9 - 1
Wellen 0il, Jersey City,N.J. 13 Apr.72 9 - 1
Wellen 0il, Jersey City,N.J. 9 May 72 9 - 1
Wellen 011, Jersey City,N.J. 20 Apr.72 9 - 1
Con.Edison,Gowanus Bay 15 Nov.72 - - 5
Mystery, Upper Bay 17 Nov. 72 - - -
Datchogue 0il, Gowanus Canal 21 Nov.72 - - 1
Governors Island, Yankee Pier 4 Dec.72 - - 1
Governors Island, Yankee Pier 5 Dec.72 - - 1
Mary Merry, Upper Bay 5 Dec.72 - - -
USS Huntington,MOT Bayonne 11 Dec.72 - - 1
Unknown, Soyos West Bay Ridge 11 Dec.72 - - -
Con.Edison,59 St. Brooklyn 13 Dec.72 - - 1
DD 781, MOT Bayonne, N.J. 14 Dec.72 - - 1
Visllva Syoti,Pier 8, Brooklyn 20 Dec.72 - - 1
Esso Bayonne,Constable Hook 29 Dec.72 - - 1
Esso Bayonne,Constable Hook 29 Dec.72 - - 1
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TABLE 12

REPORTED PETROLEUM SPILLS IN K LL VAN KULL - 1972

FACILITY OR VESSEL DATE CAUSE 1 CAUSE 2 AMOUNT
Bayonne Ind.,Bayonne, N.J. 11 Feb.7/2 8 5 1
Bayonne Ind.,Bayonne, N. J. 11 Feb.72 8 - 1
Bayonne Ind.,Bayonne, N.J. 5 Apr.72 8 - 1
Bayonne Ind., Bayunne, N. J. 15 June 72 12 - 3
Bayonne Ind., Bayonne, N. J. 24 July 72 9 - 1
Bayonne Ind., Bayonne, N. J. 6 Aug. 72 9 - 1
Bayonne Ind., Bayonne, N. J. 12 Sept. 72 9 = 1
Humble 0il, Bayonne, N. J. 20 Aug. 72 7 1 1
Howard Fuel Co., Bayonne, N. J. 10 Apr.72 1 5 2
A. Gross, Inc. 10 Jan.72 7 - 1
A. Gross, Inc. 27 Jan.72 7 5 1
Port Mobile, Staten Island 27 Jan.72 9 - 1
Port Mobile, Staten Island 20 Feb.72 13 - 2
Port Mobile, Staten Island 9 Aug. 72 7 5 1
Port Mobile, Staten Island 7 Aug. 72 7 5 1
Port Mobile, Staten Island 7 Aug. 72 7 5 2
Port Mobile, Staten Island 9 Aug. 72 12 5 8
Port Mobile, Staten Island 30 Nov. 72 - 1 1
Standard Tank, Bayonne, N. J. 13 Nov. 72 - 1 -
Unknown, Kill Van Kull 21 Nov. 72 - - -
Bayonne Ind., Bayonne, N. J. 23 Nov. 72 -— 1 2
Bayonne Ind., Bayonne, N. J. 29 Nov. 72 - 1 -
: Bayonne Ind., Bayonne, N, J. 11 Dec. 72 13 1 1
i Humble 0il, Bayonne, N. J. 12 Dec. 72 - - 1
Unknown, Kill Van Kull 12 Dec. 72 -- - -
Diana Moran, Texaco Bayonne 15 Dec. 72 - - -

YN Mt~ i
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TABLE 13

CAUSES AND AMOUNTS OF OIL SPILLS

Cause 1 Cause 2 Amount

1. Tank overflow 1. Facility 1. 1-5 bbls

2. Hose rupture 2. Vessel 2. 5-10 bbls

3. Grounding 3. Lack of communication 3. 10-50 bbls

4. Bilge pumping 4. Unqualified personnel 4. 50-100 bbls

5. Structural fault 5. Negligence 5. 100-200 bbls

6. Collision 6. Unplugged scuppers 6. 200-300 bbdls

7. Broken equipment 7. 300-500 bbls

8. Missing drip pan 8. 500-1000 bbls

9. Seepage 9, Greater than 1000 bbls

10. Deliberate

11. Boom leaking

12. Over board Discharge
13. Pipeline rupture

TABLE 1.

POTENTIAL POLLUTERS-UPPER NEW YORK BAY

0il Handling Petrochemical

. Hess 0il and Chemical Corp. 1. Eldorado Terminals Corp.
. Humble 0il and Refining Co.

. Constable Hookworks

. Bayonne Terminal

. Tankport Terminals Inc.

. Tankport Terminals Inc.

. McConnell Fuel 01l Co.

. Harborside Terminal Co., Inc.

1
2
3
4
5
6
7
8
9. Whale 0il1l Co., Inc.
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TABLE 15

REASONS FOR SPILLAGE

1971 1972
Reason Number z Number r4
Tank Overflow 10 15.6 2 4.0
Hose Rupture 6 9.3 - -
Grounding 1 1.6 - -—
Bilge Pumping - 0.0 - -
Structural Fault 2 3.1 - -
Collision - 0.0 - -
Broken Equipment 9 14.1 8 16.0
Seepage 11 17.2 11 22.0
Boom Leak 5 7.8 - —_—
Overboard Discharge 9 14.1 2 4.0
Pipeline Rupture 5 7.8 2 4.0
Other or Unknown 6 9.3 25 50.0
TOTALS: 64 50
TABLE 16
AMOUNT OF SPILLS
1971 1972
Amount Number 2 Number b4
1-5 bbls 44 68.8 37 74.0
5-10 bbls 7 10.9 3 6.0
10-50 bbls 2 3.1 1 2.0
50-100 bbls 3 4,5 - -
100-200 bbls - -— 1 2,0
200-300 bbls - -— - -
300-500 bbls - -— - -—
500-1000 bbls 2 3.1 1 2.0
Greater Than
1000 bbls - -— - -—
Unknown 3 9.4 e 14.0
TOTALS: 64 50
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On the basis of the data presented in Tables 9-14 and Figures 16-18,
five regions can be defined (Figure 19). Region 1 has been given Priority I
for several reasons: First, the majority of oil spills (74%) occur within
this region. Second, five of the ten listed oil handling facilities are
located in this region. Finally, the potential for large volume spills is
greatest in this region. Of the three reported spills of over 500 barrels,
two occurred within Region 1.

Regions 2 and 3 are given Priority II. These regions cover the
areas of lesser spill frequency in comparison to Region 1. Region 2 has two
major oil handling facilities, and Region 3 has one. Within these two regions
16 percent of the reported spills occurred.

Regions 4 and 5 are given Priority III, the lowest priority.
These two areas have the lowest percentage of spills in both numbers and
volumes.

There are factors which can change the priorities given. Additional
areas of oil and petrochemical handling facilities may be established. As
noted before, only reported spills have been analyzed. Many unreported spills
from ships occur in anchorage areas such as the one located in Region 4 off
Staten Island. Finally, the entire bay is subject to large spills due to
vessel collisions. This 1is particularly true of Region &4 in the Narrows
area where tidal currents have the greatest velocity and maneuvering room is
restricted. Because of the factors noted above, the priority assignments
should be reviewed periodically and changed when necessary.

5.0 CONCLUSION

01l slick trajectories in New York Harbor result mainly from the
influence of tidal currents, wind-generated currents, and fresh water flow
from the Hudson River. Experimental results indicate that a simple vector
addition of these three components will yleld reasonably accurate predic-
tions of oil spill movement.

Tidal currents can be predicted from published information. This
paper quantifies the components of movement caused by fresh water flow and
wind through the use of empirical and theorwtical considerations. In addi-
tion, a method of predicting the boundarics within which the slick will move
is presented. This information can be used to prepare a predictive guide
for the movement of o0il spills in New York Harbor.
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Current data for several stations were incorrectly computed because the
time interval used was measured to the boat's passage by the floating probe
rather than to the moored probe. Several stations were taken where the elapsed
ti .e from initial release of the probe to boat passage past the anchored float,
as well as past the floating cap, was recorded. These stations were used to
correct those stations where the elapsed time between boat passage past the
anchored float to the drifting cap was not recorded.

Boat speed can be computed by dividing the distance travelled by the
time interval of the boat run from anchored float to drifting cap. This was
done for those stations where the time interval was known. After computing
the individual boat speeds an average boat speed was calculated from the
individual station values. This average boat speed divided into the distance
the cap moved gives the time of the boat run between anchored probe and drifting
cap for those stations with missing data. This time was subtracted from the
total time of cap drift from initial release to boat passage past the drifting
cap to get a corrected time. This corrected time value was then used to com-
pute the surface current speed. For each station the surface current speed
computed using the average boat speed was compared to the known surface current
speed using the actual speed of the boat. For the southern stations the average
difference between these two speeds was 0.9 cm/sec. Since these values are
relatively small, the computed average boat speed can be used for correcting
surface current speeds.

Correcting surface current speeds for those stations where the time of
the boat run between anchored float and drifting cap is not know. was done by
computing the times using the average boat speed. After the time values were
found they were subtracted from the total time of cap drift from initial release
to boat passage past the cap to get corrected time. This corrected time was
then used to compute the surface current speed for each station. For each
station the difference between this new speed and the incorrect speed previously
computed was found. The average of these differences was then found and used as
the factor for correcting surface current sreeds.
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