AD-786 509

SMALL ARMS GUN BARREL THERMAL EXPERI-MENTAL CORRELATION STUDIES

James N. Blecker

Rock Island Arsenal Rock Island, Illinois

June 1974

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

Best Available Copy

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

graan in te	· · · · · · · · · · · · · · · · · · ·		
(113 -		-	Ê.
0		1	1
gerals 1	•		
F. Cite Marine	1		-
		:	Ŧ
г ^у .			Ì
1.521231	a second of	3° 3 (
· · ·	a	.•1	Ì.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.

REPORT DOCUMENTATIO	N PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER	2. GOVY ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
R-TR-74-034		AN 786 509
A TITLE (and Subtitie)	_ <u></u>	5. TYPE OF REPORT & PERIOD COVERED
	T CICINIT	
SMALL ARMS GUN BARREL THERM	AL EXPERI-	Interim (Sep 72-Sep 73
MENTAL CORRELATION STUDIES		6. PERFORMING ORG, REPORT NUMBER
	· · · · · · · · · · · · · · · · · · ·	
7. AUTHOR(=)		8. CONTRACT OR GRANT NUMBER(*)
James N. Blecker		
PERFORMING ORGANIZATION NAME AND ADDRE	S\$	10. PROGRAM ELEMENT, PROJECT, TASK
Research Directorate, SARRI		AREA & WORK UNIT NUMBERS AMS Code 662604.11.H970
GEN Thomas J. Rodman Labora		02
Rock Island Arsenal, Rock I	sland, 1L 61201	DA Proj No. 1J662504AHS
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Research Directorate, SARRI-		June 1974
GEN Thomas J. Rodman Labora		13. NUMBER OF PAGES
Rock Island Arsenal. Rock I.	sland. IL 61201	
- HUNISUNING AGENCY NAME & ADDRESS(11 dille	reat from Controlling (11169)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15. DECLASSIFICATION DOWNGRADING
		SCHEDULE
2 DISTRIBUTION STATEMENT (of the characteria	et in Plack 20. If different for	- Percet
7. DISTRIBUTION STATEMENT (of the abstract enter	ed in Block 20, 11 different fro	m Report)
7. DISTRIBUTION STATEMENT (of the ebstrect enfor	ed in Block 20, if different fro	m Report)
7. DISTRIBUTION STATEMENT (of the ebetrect enter 8. SUPPLEMENTARY NOTES	ed in Block 20, if different fro	m Report)
8. SUPPLEMENTARY NOTES		
B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse side if necessary 1. Thermal	and identify by block number) 5. Small	
S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary 1. Thermal 2. Experimental Reprint	and identify by block number; 5. Small	
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Thermal Experimental Reprinental Reprinental Notes Heat Transfer Notes 	and identify by block number) 5. Small sourced by ATIONAL TECHNICAL	
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Thermal Experimental Report Heat Transfer N 	end identify by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce	
8. SUPPLEMENTARY NOTES 6. KEY WORDS (Continue on reverse side if necessary 1. Thermal 2. Experimental Report 3. Heat Transfer N 4. Temperature U	end identify by block number) 5. Small sourced by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151	
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary) Thermal Experimental Roport Heat Transfer IN Heat Transfer IN Temperature U 	and identity by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 and identity by block number)	Arms Automatic Weapon
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Thermal Experimental Report Heat Transfer IN Temperature U ABSTRACT (Continue on reverse side if necessary Results presented in this 	end identity by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 and identity by Nock number) S report repres	Arms Automatic Weapon ent a portion of the ef-
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Thermal Experimental Reprint Heat Transfer N Temperature U ABSTRACT (Continue on reverse side if necessary Results presented in this fort under a task entitled 	and identify by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 and identify by Nock number) S report repres "Gun Barrel The	Arms Automatic Weapon ent a portion of the ef- rmal Analysis and Exper:
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Thermal Experimental Reprint Reprint Reprint Reprint IN Temperature ABSTRACT (Continue on reverse side if necessary	and identify by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 and identify by Nock number) S report repres Gun Barrel The . The objectiv	Arms Automatic Weapon ent a portion of the ef- rmal Analysis and Exper: e of this effort is to
SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Thermal Thermal Experimental Repr N ABSTRACT (Continue on reverse side if necessary Results presented in this fort under a task entitled mental Correlation Studies" measure' transient barrel ter	and identify by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Controrce Springfield VA 22151 and identify by block number) S report repres Gun Barrel The . The objectiv Mperatures for	Arms Automatic Weapon ent a portion of the ef- rmal Analysis and Exper- e of this effort is to small arms guns as a
 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary 1. Thermal. 2. Experimental Reprint 3. Heat Transfer N 4. Temperature U ABSTRACT (Continue on reverse side if necessary Results presented in this fort under a task entitled mental Correlation Studies" measure transient barrel temperature correlation to analytically establish a correlation betw	and identify by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 and identify by block number) S report repres "Gun Barrel The The objectiv nperatures for predicted data	Arms Automatic Weapon ent a portion of the ef- rmal Analysis and Exper- e of this effort is to small arms guns as a and as an attempt to
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary Thermal Experimental Reprint and the second se	and identify by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 and identify by block number) S report repres "Gun Barrel The The objectiv nperatures for predicted data	Arms Automatic Weapon ent a portion of the ef- rmal Analysis and Exper- e of this effort is to small arms guns as a and as an attempt to sults and metallurgical
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary) Thermal Experimental Reprint Heat Transfer IN Heat Transfer IN Temperature U ABSTRACT (Continue on reverse side if necessary) Results presented in this fort under a task entitled fort u	and identify by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 and identify by block number) S report repres "Gun Barrel The The objectiv nperatures for predicted data	Arms Automatic Weapon ent a portion of the ef- rmal Analysis and Exper- e of this effort is to small arms guns as a and as an attempt to
KEY WORDS (Continue on reverse elde il neccesary L. Thermal 2. Experimental 3. Heat Transfer 4. Temperature Continue en reverse elde il neccesary Results presented in this fort under a task entitled nental Correlation Studies" neasure transient barrel temperature correlation to analytically establish a correlation between leterminations.	end identity by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 and identity by block number) S report repres "Gun Barrel The . The objectiv mperatures for predicted data ween thermal re	Arms Automatic Weapon ent a portion of the ef- rmal Analysis and Exper- e of this effort is to small arms guns as a and as an attempt to sults and metallurgical (continued)
KEY WORDS (Continue on reverse side if necessary KEY WORDS (Continue on reverse side if necessary 1. Thermal 2. Experimental 3. Heat Transfer 4. Temperature 4. Temperature Results presented in this fort under a task entitled nental Correlation Studies" neasure transient barrel temperature correlation to analytically establish a correlation between leterminations.	end identify by block number) 5. Small dured by ATIONAL TECHNICAL FORMATION SERVICE S Department of Commerce Springfield VA 22151 End identify by Nock number) S report repres "Gun Barrel The . The objectiv mperatures for predicted data ween thermal re	Arms Automatic Weapon ent a portion of the ef rmal Analysis and Exper e of this effort is to small arms guns as a and as an attempt to sults and metallurgical

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

A description is given of the experimental methodologies including barrel instrumentation, firing procedure and data acquisition. Results are given comparing various barrel materials and geometries for both sporadic and continuous automatic weapon fire. These results are discussed relative to barrel life and thermal performance. (1) It was determined that barrel geometry is a salient parameter governing both transient barrel temperatures and barrel erosion. It can be concluded based on these experimental results that there is a continuing need for optimum barrel design to obtain maximum barrel life consistent with performance requirements and minimum weight.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ii.

ERRATA SHEET FOR R-TR-74-074

Caption for Figure 9, pg 15, should read "Temperature vs Time at Various Axial Positions for Barrel B4 Firing at <u>333</u> rds/min"

Caption for Figure 10, pg 15, should read "Temperature vs Time at Various Axial Positions for Barrel B6 Firing at <u>333</u> rds/min"

Caption for Figure 16, pg 20, should read "Muzzel End and End View of Barrels <u>B6</u> and B7"

Figure 23, pg 24, the abscissa is "Time (sec)"

Figures 24 and 25, pg 25, inadvertently interchanged: captions for Figures 24 and 25 are correct

TABLE OF CONTENTS

																												PAGE
DD	Fo	rm	14	7:	3	٠			,	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	i
TA	BLE	0F	C	01	NT	ΕN	T	S		٠	•	•	•	•		•	•	•	•	•	•	v	•	•	•	•	•	iii
LI	ST	0F	TA	BI	LE	S	•		,	•	•	•	•			•	•	•	•	•	•	•	٠	•	•	•	•	iv
LI	ST	0F	IL	Ll	US	TR	A.	T I	0	N S	5	•	•	•		•	•	•	•	•	•	•	٠	•	•	٠	•	v
IN.	rrc	DUC	TI	01	N	•	•	•	•	•	•	•	٠	•		•	•	•	•	٠	•	٠	•	•	٠	•	•	1
DE	SCR	IPT	10	N	0	F	T	HE	ER	MA	L	TE	S	T	Ρ	RO	GR	AM	1	•	•	•	•	•	•	٠	•	2
		Α.	B	a١	rr	e 1	ĺ	Li	f	е	ar	b	T	en	1p	er	at	ur	'e	as	6	1	Fun	ict	ic	n	of	
			8	a١	rr	e 1	(Ge	90	ii1e	etr	Ъ	•	•		•	•	•	•	•	•	•	•		•	•	•	2
		8.	8	a١	rr	e 1	•	Γe	e Mi	pε	era	itu	r	е	a	S	a	Fυ	Inc	ti	on) (Df	Ra	te) (of	
			F	11	re		٠	•	•	•	•	•	•	•		•	•	•	•	٠	•	•	•	٠	•	•	•	5
		C.	B	a١	rr	e 1	•	Τe	em	p€	era	ltu	r	e	a	S	a	Fu	inc	ti	or		Df	Ma	te	eri	iaī	5
EX	PER	IME	NT	AI		ME	T	HC)D	OL	.00	GIE	S	•	,	•	•	•	•	٠	•	•	٠	•	•	•	•	7
RE	SUL	.TS	AN	D	Ç	ON		Ll	JS	IC) N S	5	•	•		•	•	٠	•	•	٠	•	•	•	٠	•	•	11
AP	PEN	IDIX	A		•	•	•		,	•	٠	•	•			•	•	•	•	•	•	•	•	٠	•	•	•	42

19 20

- 38. A. 10

LIST OF TABLES

TABLE		PAGE
1	FIRING SCHEDULES	6
2	TEST BARRELS	6
3	ROUNDS FIRED PER EACH SCHEDULE	39
4	THERMAL PROPERTIES OF BARREL MATERIALS	41
5	GUNS FIRED	42
6	BARREL DIAMETER AT THERMOCOUPLE LOCATIONS .	43
7	LENGTH OF BURSTS (SEC)	43

LIST OF ILLUSTRUATIONS

ALC: NOT

12

FIGURE	CAPTION	PAGE
1	Browning 1919 Machine Gun Barrels	3
2	Cross Section Views and Thermocouple Locations of Browning 1919 Barrels	4
3	Thermocouple Instrumentation Schematic	8
4	Instrumented Browning 1919A Machine Gun	8
5	Test Setup	10
6	Geometry Effect on Barrel Life	12
7	Temperature vs Axial Distance After 250, 500, and 750 Rounds a) Barrel 1, b) Barrel 4, c) Barrel 6	13
8	Temperature vs Time at Various Axial Positions	14
9	Temperature vs Time at Various Axial Positions for Barrel B4 Firing at 750 rds/min	15
10	Temperature vs Time at Various Axial Positions for Barrel B6 Firing at 750 rds/min	15
11	Temperature vs Axial Distance After 250, 500, and 750 Rounds	16
12	Strength vs Temperature Cr-Moly-Van Steel	16
13	Bore Surface Replicas - Breech End (1" - 8")	17
14	Bore Surface Replicas - Mid Section (9" - 16")	18
15	Bore Surface Replicas - Muzzle End (17" - 24")	19
16	Muzzle End and End View of Barrels B6 and B7	20
17	Bore Surface Replicas of B6 and B7	21
18	Temperature vs Rounds Fired for Various Firing Rates of Barrel M2, Measured at 9 in	22
19	Temperature vs Rounds Fired for Various Firing Rates of Barrel M2, Measured at 21 in	22
20	Temperature vs Time for Various Firing Rates	23
21	Temperature vs Time for Various Firing Rates	23
22	Temperature vs Time at Various Axial Positions for Barrel M2 Firing at 75 rds/min	24
23	Temperature vs Time at Various Axial Positions for Barrel Ml Firing at 150 rds/min	24
24	Temperature vs Time at Various Axial Positions for Barrel M2 Firing at 300 rds/min	25

V

LIST OF ILLUSTRATIONS (cont'd)

CAPTION

PAGE

FIGURE	CAPTION	PAGE
25	Temperature vs Time at Various Axial Positions for Barrel M2 Firing at 600 rds/min	25
26	Temperature vs Rounds Fired for Various Rates of Barrel B2, Measured at 9 in	26
27	Temperature vs Rounds Fired for Various Firing Rates of Barrel B2, Measured at 21 in	25
28	Temperature vs Time for Various Firing Rates of Barrel B2, Measured at 9 in	27
29	Temperature vs Time for Various Firing Rates of Barrel B2, Measured at 21 in	27
30	Temperature vs Time at Various Axial Positions of Barrel B2, Firing at 75 rds/min	28
31	Temperature vs Time at Various Axial Positions for Barrel B2, Firing at 150 rds/min	28
32	Temperature vs Time at Various Axial Positions for Barrel B2 Fired at 300 rds/min	29
33	Temperature vs Time at Various Axial Positions for Barrel B2, Fired at 600 rds/min	29
34	Cross Section View and Thermocouple Locations for M60 Gun Barrels M1 through M9	30
35	Specific Heat and Thermal Conductivity vs Temperature .	31
36	Temperature vs Time for Five Barrel Materials	32
37	Temperature vs Time at Various Axial Positions	33
38	Temperature vs Time at Various Axial Positions	34
39	Temperature vs Time at Various Axial Positions	35
40	Temperature vs Time at Various Axial Positions	36
41	Temperature vs Time at Various Axial Positions	37

INTRODUCTION

In these times of rapid digital computers and sophisticated analytical techniques the need for meaningful experimental correlations is often ignored. Reports typically present a comparison of numerical solution versus "closed-form" solutions. Little significance is placed on predicted results versus hardware performance. Parodoxically, designers continue to express lack of confidence in analytical predictions and demand a stronger emphasis on experimental evaluation. This situation is further complicated by the decrease in documented test results. Hence it is virtually impossible to obtain accurate experimental thermal data for small arms guns from the current literature.

It is interesting to note that any useful theoretical analysis depends on at least semi-empirically determined boundary conditions. Yet it is most difficult to obtain measured barrel temperatures, bore heat fluxes, or propellant gas temperature and convection coefficient data in the literature. Therefore, it is the purpose of this report to document some recently measured gun barrel thermal data, and to describe the test procedure involved in obtaining these data. It is hoped that these data can be applied as a tool in the design and analysis of future small arms gun barrels. Further, it is hoped that the publication of these results may encourage others involved in the experimental evaluation of gun systems to record and document these much needed thermal data.

Results from these experimental efforts are being applied in the verification of calculated data for past and curient analytical efforts. Also, such boundary condition data as bore heat flux, propellant gas convection

coefficients, and temperatures are determined by use of mathematical inverse schemes utilizing these temperature data. In addition these data, as described in this report, afford some initial insight into the strong relationship between barrel temperature and barrel erosion.

DESCRIPTION OF THERMAL TEST PROGRAM

The general philosophy of this test program was that of evaluating representative small arms machine guns that were economical to fire, readily available, and easy to instrument. On that basis the Browning 1919-A4 and A6, and the M60 machine guns were selected as the most suitable test vehicles. The three tasks of this test program involved the measurement of barrel life and temperature as a function of geometry, barrel temperature as a function of rate of fire, and barrel temperature as a function of barrel material. A general description of these three tasks follows:

A. Barrel Life and Temperature as a Function of Barrel Geometry

This experiment involved firing six barrels: two with constant diameter, two with a moderate axial taper, and two with large tapers. These barrels which can be seen in Figure 1 were fired to failure based on repetitions of a 750 rd firing schedule consisting of six 125 rd bursts with 10 seconds cooling between bursts. After each 750 rd schedule the barrels were allowed to cool to ambient temperature prior to initiating the next schedule. Failure determination was based on accuracy and yaw measurements. Targeting, consisting of a 10 rd burst, was taken after every 1500 rds.

Gun barrel geometries are shown in Figure 2. Barrels B1 and B3 had a constant outer diameter of 1.220 inches with a wall ratio and wall thickness of 4.07 and 0.460 inches respectively. Moderate taper barrels B4 and B5 measured 1.211 inches at the breech end and tapered down to 0.769 inch yielding a muzzle end wall ratio of 2.56 where the wall thickness

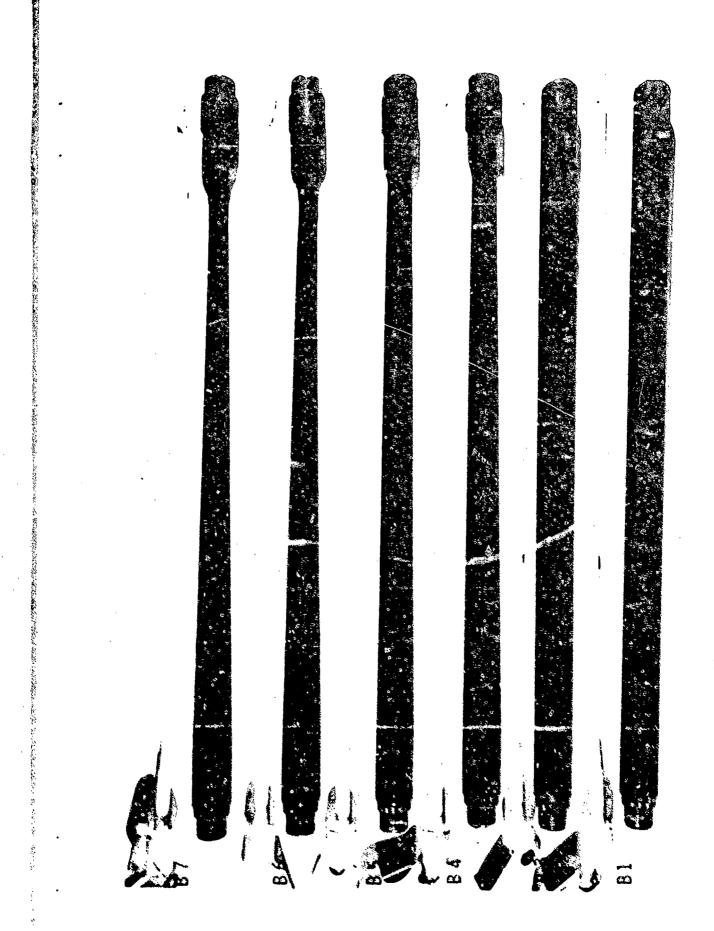
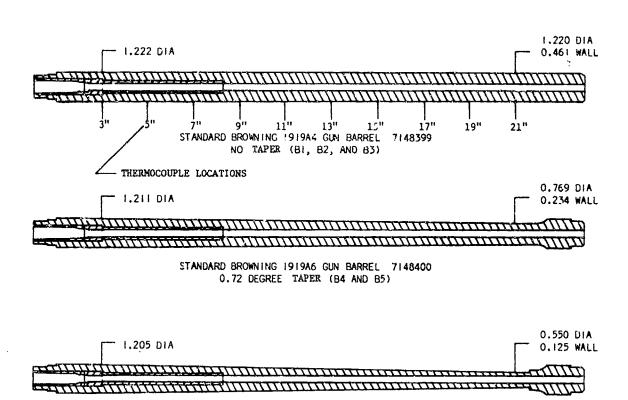



Figure 1 Browning 1919 Machine Gun Bairels

MODIFIED BROWNING 1919A6 GUN BARREL 1.07 DEGREE TAPER (B6 AND B7)

Figure 2 Cross Section Views and Thermocouple Locations

was 0.238 inch. The large taper barrels B6 and B7 had breech end cuter diameters of 1.205 inches and tapered down to 0.550 inch where the muzzle end wall ratio was 1.83 and the wall thickness was 0.125 inch.

Gun barrel temperature measurements for the barrel life test were recorded every second at two inch intervals along the barrel length. Physical location of thermocouples is shown in Figure [^]. A detailed description of instrumentation and recording techniques is given in the experimental methodologies section of this report.

B. Barrel Temperature as a Function of Rate of Fire

The second task of this effort was that of investigating the relationship between barrel temperature and rate of fire. Firing rates selected for these tests as presented in Table 1 were 75, 150, 300, and 600 rds per minute. Because the machine guns fired at a fixed rate of 600 rds per minute, sporadic schedules involving short bursts were fired to achieve the other desired effective rates of fire. An effective rate of 75 rds per minute was obtained by firing 15 rd bursts every 12 seconds for a total of 600 rds in eight minutes. The effective rate of 150 rds per minute was accomplished by firing 15 rd bursts every six seconds giving a total of 795 rds fired in 318 seconds. The 300 rd per minute rate was obtained by firing 25 rd bursts every 5 seconds for a total of 1000 rds in 200 seconds. For the 600 rd per minute rate, following every 200 rds the time was checked to determine if firing was on schedule, and any required correction was made. Barrels MI and M2, Table 2, were fired in the M60 machine gun and constant diameter barrel 82 was fired in the Browning 1919-A4 machine gun. As in the previous test, external temperature measurements were taken every two inches along the length of the barrels.

C. Barrel Temperature as a Function of Material

The last task was that of determining the influence of barrel material on temperature. For these tests. five materials were used: Chrome-Moly-Van Steel (chrome plated), Chrome-Moly-Van-Steel (chrome plated with a stellite liner), Crucible CG27, Inconel 718, and Pyromet X-15. The barrels were fired in the M60 machine gun at a schedule consisting of six 125 rd bursts with a 10-second dwell between bursts for a total of 750 rds (referred to as the 750 rd firing schedule). These barrels, which were instrumented similar to barrels of the previous tests, were fired sufficient repetitions of the above schedule to give a statistical representation of the data.

TABLE 1 FIRING SCHEDULES

Barral life vs coonstry

760 RD5 schedule (333 rds/min) 125 rds - 10 sec cool - 125 rds···750 rds/125 sec (A 125 rd burst 1s fired every 22.5 sec) Test accuracy every 1500 rds.

Temperature vs rate of fire

15 rds - 10.5 sec cool - 15...600 rds/8 min (75 rds/min) (A 15 rd burst is fired every 12 sec) 15 rds - 4.5 sec cool - 15...795 rds/5.3 min (150 rds/min) (A 15 rd burst is fired every 5 sec) 25 rds - 2.5 sec cool - 25...1000 rds/3.3 min (300 rds/min) (A 25 rd burst is fired every 5 sec) 200 rds - 200 rds - 200...1400 rds/2.3 min (600 rds/min) (A 200 rd burst is fired every 20 sec)

<u>Material vs temperature</u>

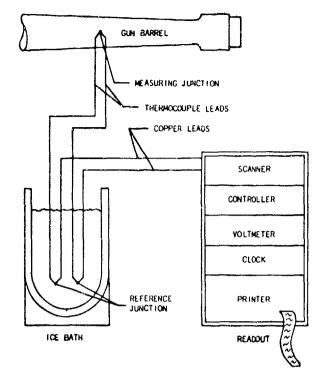
750 rds schedule (333 rds/min) 125 rds - 10 sec cool - 125 rds...750 rds/125sec (A 125 rd burst is fired every 22.5 sec)

TABLE 2 TEST BARRELS

		BROWNING	MACHINE GUN		-
81	STANDARD 1919A4	7148399	CH.MOLY.VAN.	STELLITE LINE	₹ C.P.
B2	STANDARD 1919A4	7148399	CH.MOLY.VAN.	STELLITE LINE	R C.P.
B 3	STANDARD 1919A4	7148399	CH.MOLY.VAN.	STELLITE LINE	R C.P.
B4	STANDARD 1919A6	7148400	CH. MOLY.VAN.	STELLITE LINE	R C.P.
85	STANDARD 1919A6	7148400	CH.MOLY.VAN.	STELLITE LINE	R C.P.
86	NODIFIED 1919A6		CH. MOLY. VAN.	STELLITE LINE	R C.P.
87	MODIFIED 1919A6		CH.MOLY.VAN.	STELLITE LINE	R C.P.
		M50 M	CHINE GUN		
MI	STANDARD M60 72690	28 CH.MOLI	.VAN. STELLITI	E LINER C.P.	
H2	STANDARD M60 72690	28 CH.MOL	.VAN STELLIT	E LINER C.P.	
M3	STANDARD M60 72690	28 CH.MOL	.VAN STELLIT	E LINER C.P.	
M4	HOMOGENEOUS M60	CH.MOL	.VAN C.P.		
M5	PYROMET X-15 M60	HOMOGENEOU	5		
NG	INCONEL 718	HOMOGENEOU	5		
M7	INCOMEL 718	HOMOGENEOU	5		
NB	CRUCIBLE CG27	HOMOGENEOUS	5		
M9	CRUCIBLE CG27	HOMOGENEOU			

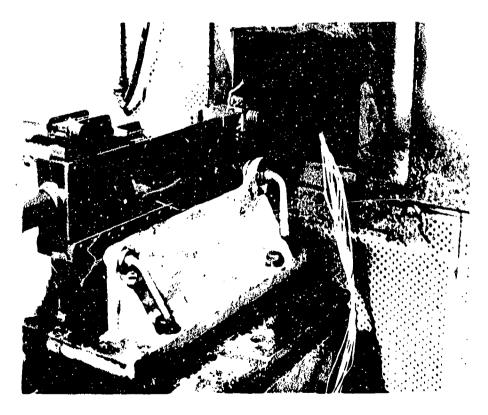
NOTE: All guns fire at a rate of approximately 600 rds/min

EXPERIMENTAL METHODOLOGIES


Instrumentation procedures and data acquisition techniques applied in this program have evolved as a consequence of performing similar testing on a large number of past projects. The overall instrumentation schematic is given in Figure 3.

Type K. 30 gauge chromel-alumel thermocouple wire was selected because of its temperature range, low error, good weldability, and excellent corrcsion properties. This wire, which has a stated accuracy of .375 percent, was shielded with a glass-wrap copper braid as supplied by the Claude Sordon Co.* Intrinsic type thermocouples were used where the junction was formed by fusing a one-eighth inch length of chromel-alumel wire to the barrel with a capacitive discharge welder. Barrel preparation involved grinding a one-"ourth inch diameter pad, removing only the barrel surface finish and oxidation. At a location one fourth of an inch from the junction a stainless steel strap was positioned across the wire shield and welded to the barrel. This strap served a twofold purpose. First, it functioned as a support for the wire thereby removing any dynamic loading from the thermocouple junction during firing. Secondly, by heating the wire leading to the junction, heat transfer from the thermocouple was reduced resulting in a lower thermocouple error. Wire routing from the thermocouple wire into the extension lead, and ultimately to the data acquisition system is shown in Figure 4.

The dig tal data acquisition system utilized in this investigation consisted of the following Vidar*components:


- 1. 10 channel digital 5401-2 unit
- 2. 641-02 controller
- 3. 624 digital clock
- 4. 604 scanner
- 5. 502 integrating digital voltmeter
- 6. 661 printer

*This does not constitute an official endorsement

A DESCRIPTION OF THE REPORT OF THE REPORT

Figure 3 Thermocouple Instrumentation Schematic

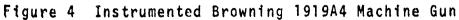


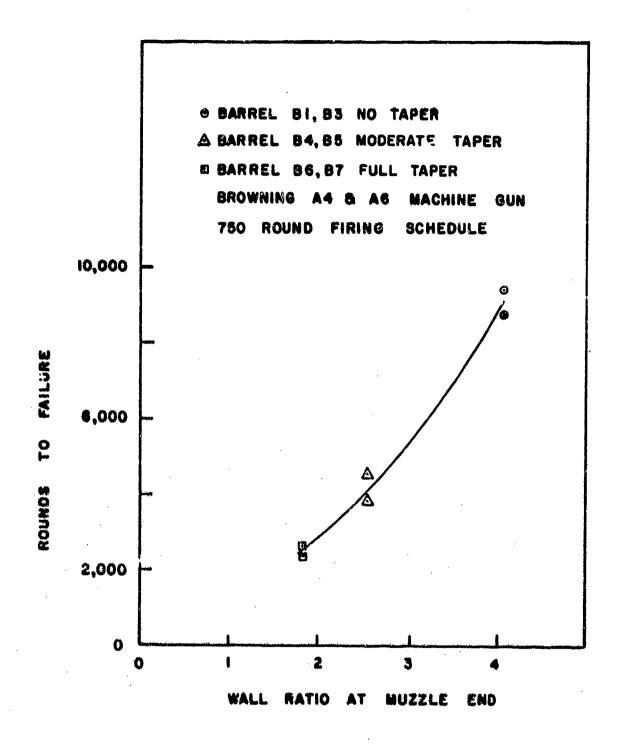
Figure 5 shows the mounting fixture and the digital data acquisition system. For these tests, the ten channels were scanned at a rate of one cycle per second for the first thirty seconds followed by a scan rate of one cycle every two seconds for the remainder of the firing. Temperature data in the form of millivolt readings were printed out and subsequently reduced to temperatures. System calibration was accomplished by the RIA calibration lab prior to the start of testing and at prescribed time intervals during the test.

A conscientious effort was undertaken to minimize overall measurement error. Stepstaken, some of which have been previously discussed, included:

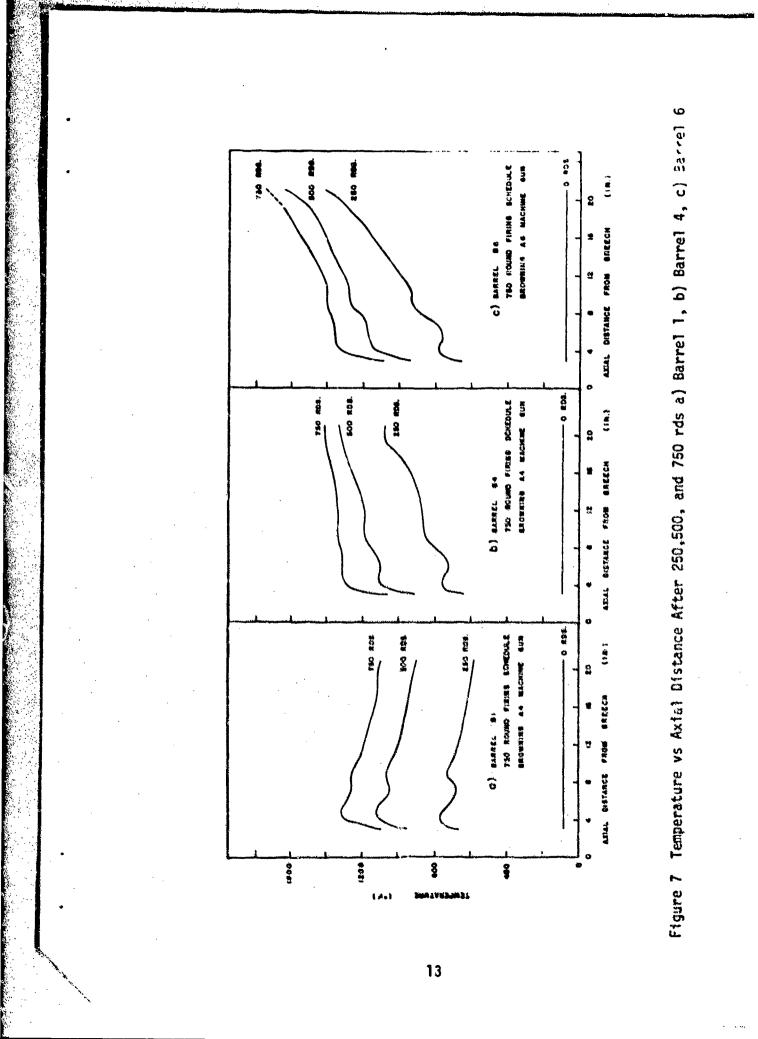
- 1. Judicious routing and attachment of thermocouples.
- Using highly accurate thermocouple (rated error of 0.375 percent) wire.
- 3. Periodic system calibration.
- 4. Firing based on accurate round count and digital timing.
- 5. Water-ice thermocouple reference bath.

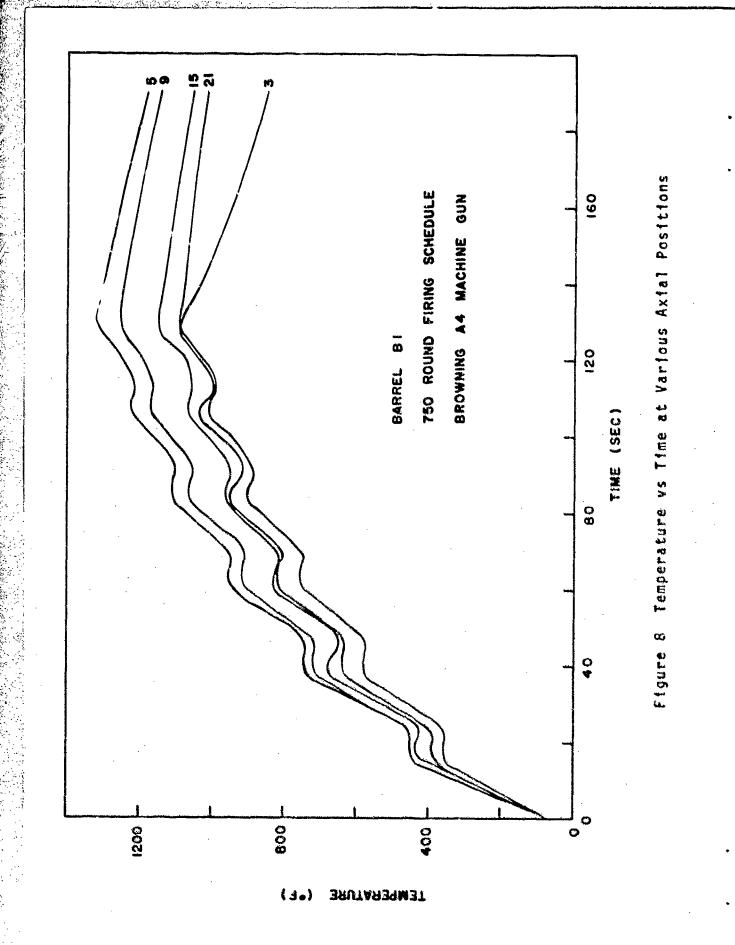
One factor not corrected for was wind velocities across the barrel which typically varied from 10 mph at the breech end to 20 mph at the muzzle end. Simplified calculations have shown that the influence of these winds was not significant relative to the large gun barrel heat dissipation.

÷


RESULTS AND CONCLUSIONS

Temperature data for these tests are shown in Figures 6 through 41. The influence of barrel geometry and likewise barrel temperature on barrel life can be seen in Figures 6 through 10 and bore surface replica photographs 13 through 15.


It can be seen that for a given firing schedule, barrel imperature is a function of barrel geometry, and barrel life is dependent on temperature. As the wall ratio decreases there is less material to absorb the heat and less surface area to transfer the heat, resulting in higher material temperatures. As the barrel temperature increases, Figure 12 shows that material strength severely decreases. It is believed that this plus melting accounts for the accelerated bore erosion at elevated temperatures, as indicated in Figures 6, 7c, and 17.


At the completion of firing tests when a barrel failed accuracy requirements, bore surface replicas, shown in Figures 13, 14, and 15, were made. These silicone rubber castings of the gun tube bore give a visual indication of land wear, which, together with temperature histories of the barrels, illustrate the relationship between barrel temperature and erosion. Results show that land wear increases dramatically with temperature until an upper material limit is reached and catastropic failure occurs. Figures 7, (a, b, c) show temperature distribution along the three barrel geometries and Figure 2 shows the three barrel cross sections.

Replicas from the constant diameter barrels Bl and B3 show that the rifling is completely eroded for the first four inches with notable wear in the remaining two inches of the liner. Rifling is again completely ablated at eight inches but improves a little toward the muzzle end due to the lower temperatures.

¢

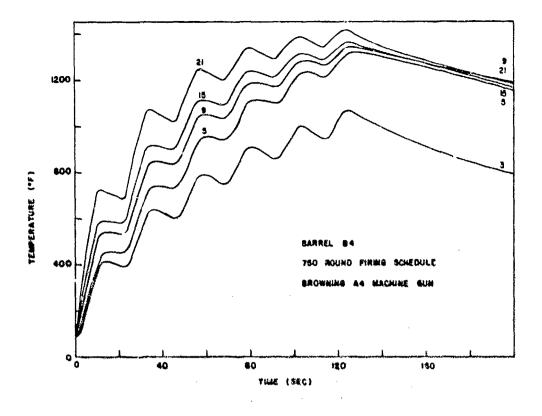


Figure 9 Temperature vs Time at Various Axial Positions for Barrel B4 Firing at 750 rds/min

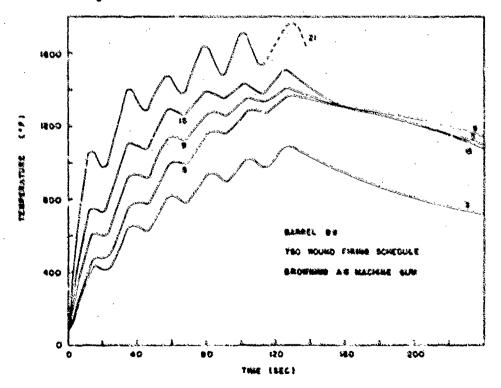


Figure 10 Temperature vs Time at Various Axial Positions for Barrel B6 Firing at 750 rds/min

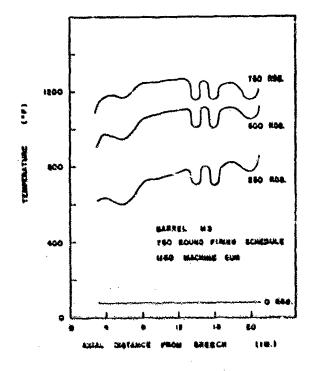


Figure 11 Temperature vs Axial Distance After 250,500 & 750 Rounds (Barrel N3)

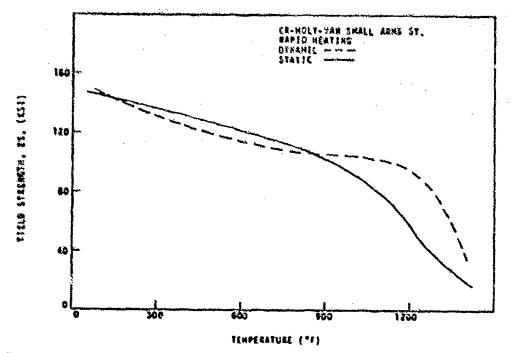


Figure 12 Strength vs Temperature Cr-Holy-Van Steel

BARREL BI

Accesso and a second second

3"

BARREL B3

Allowed and a second second

BARREL 84

BARREL B5

BARREL B6

BARREL B7

Figure 13 Bore Surface Replicas - Breech End (1" - 8")

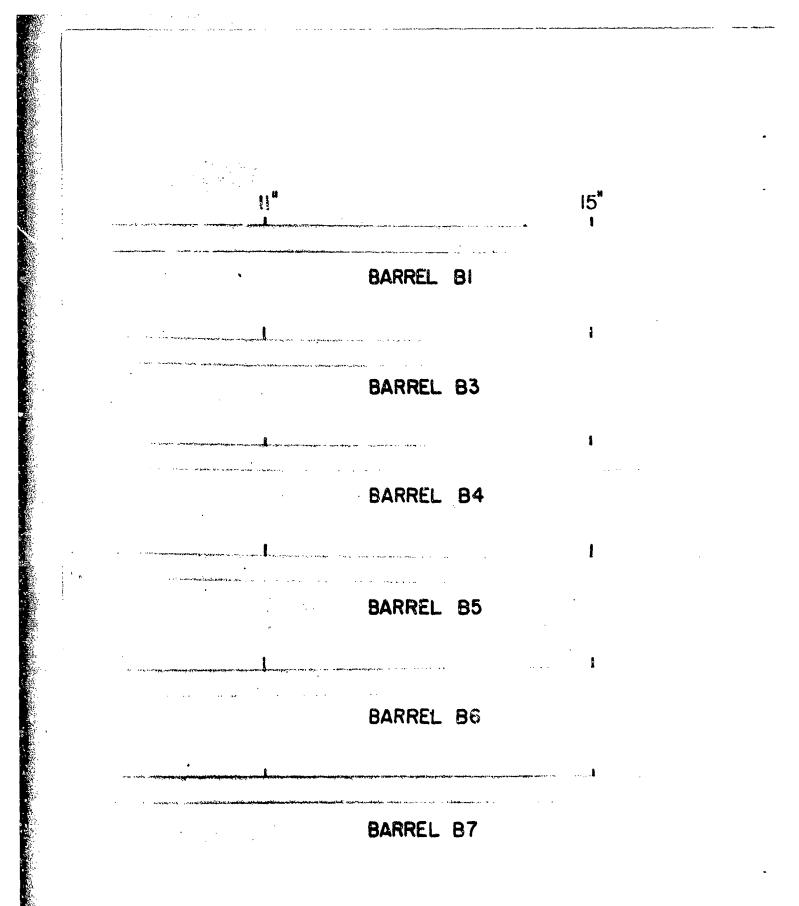
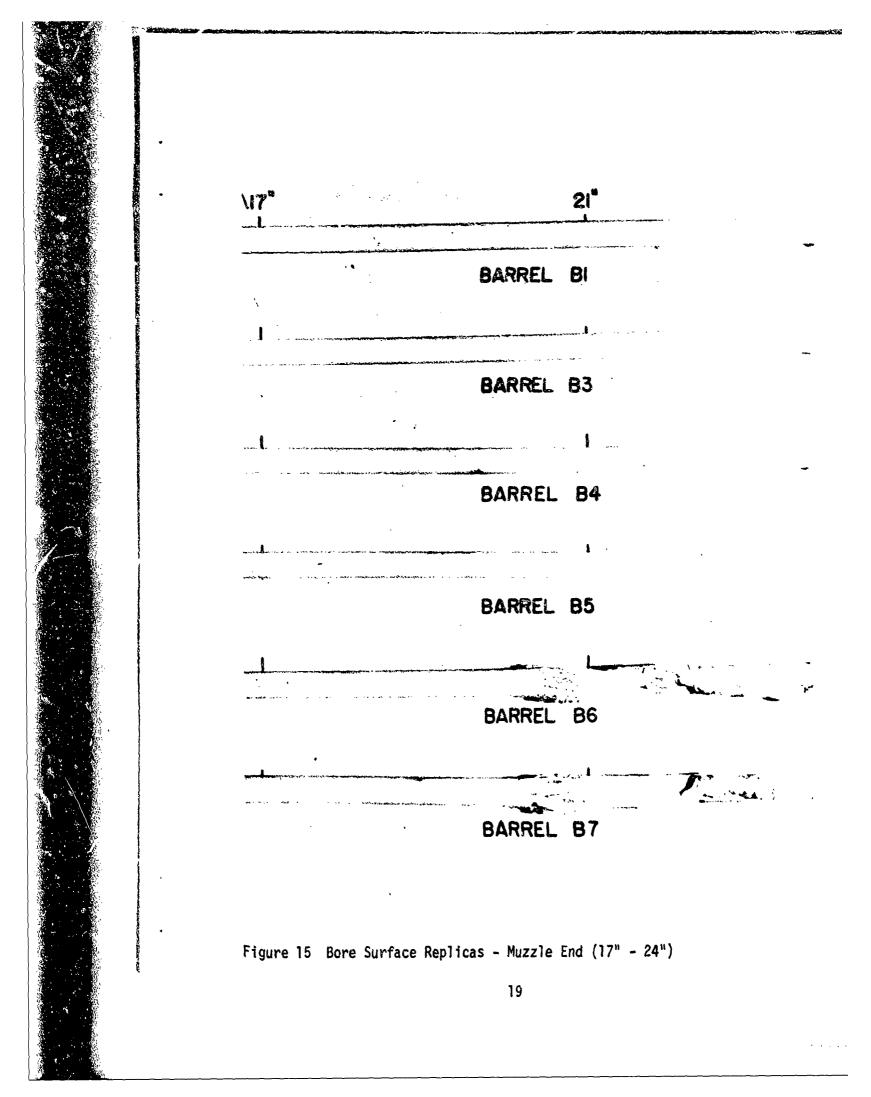
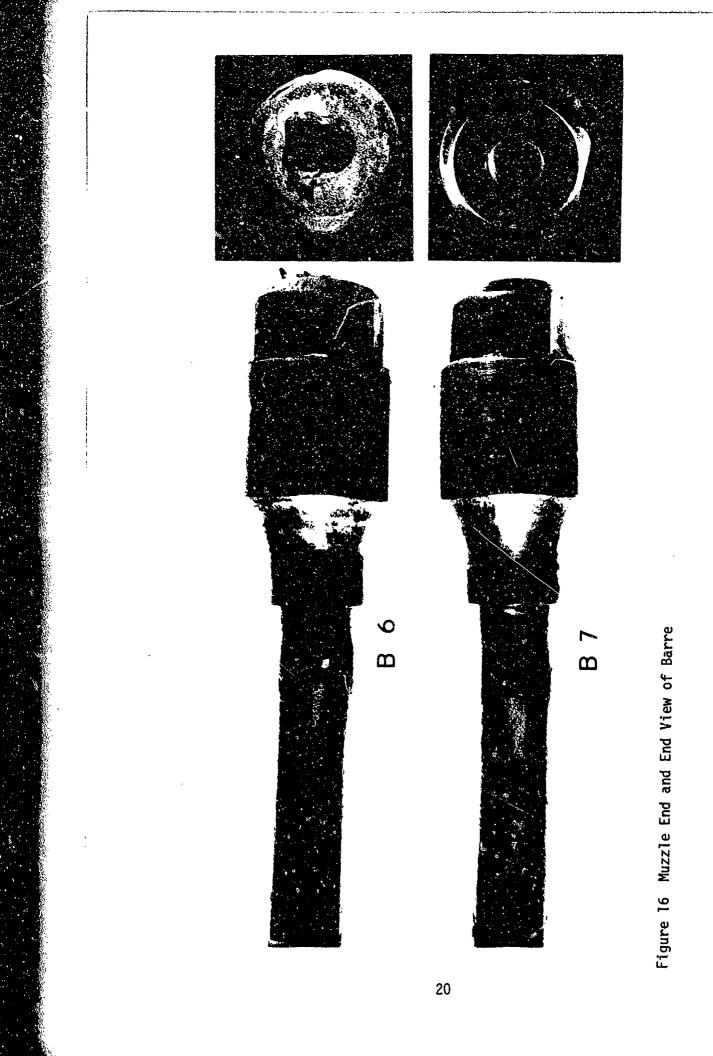
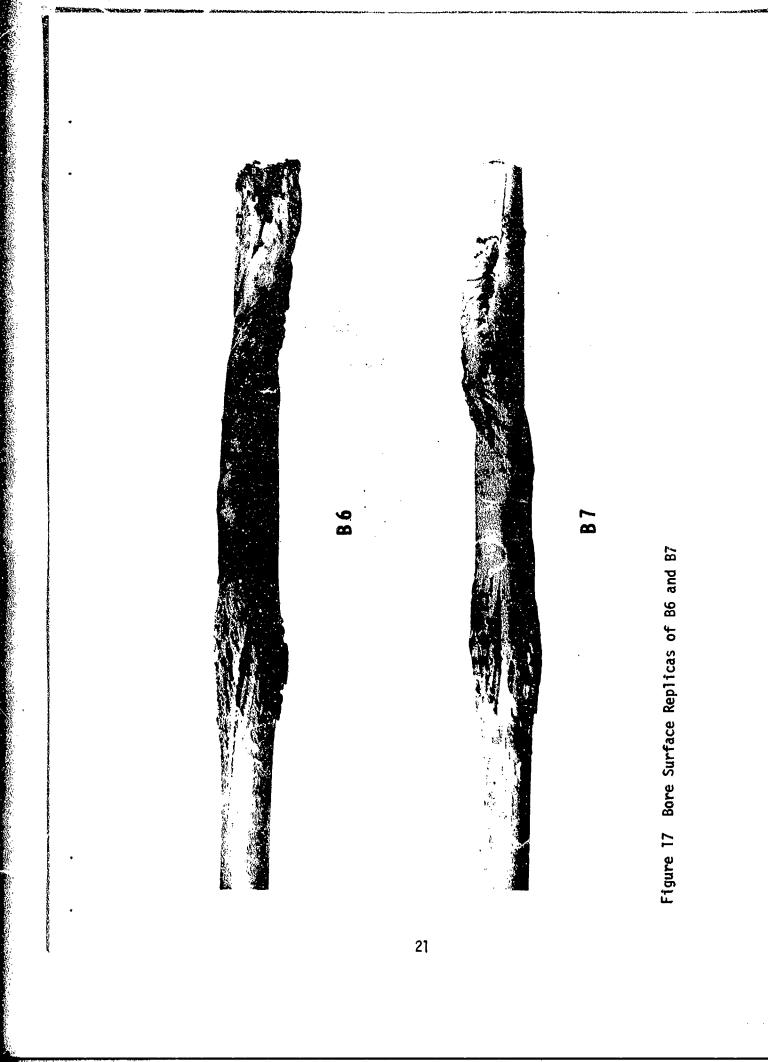





Figure 14 Bore Surface Replicas - Mid Section (9" - 16")

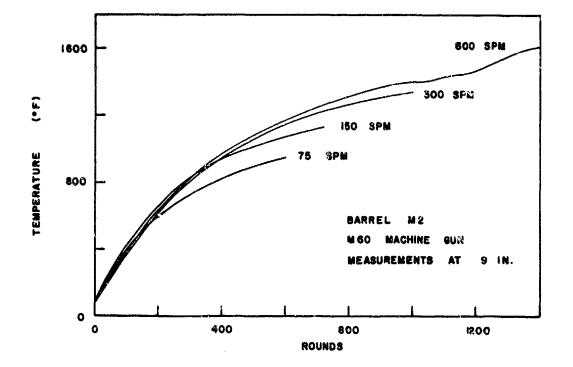


Figure 18 Temperature vs Rounds Fired for Various Firing Rates of Barrel M2, Measured at 9 in.

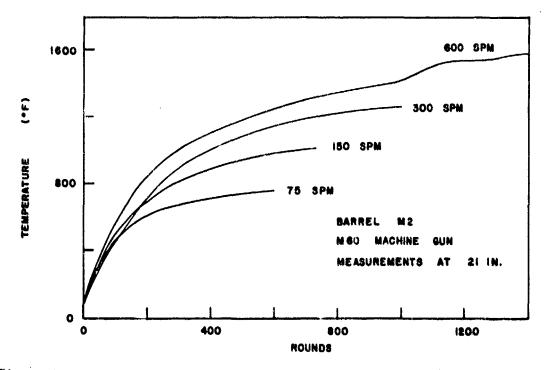


Figure 19 Temperature vs Rounds Fired for Various Firing Rates of Barrel M2, Measured at 21 in.

などの時間にないため、

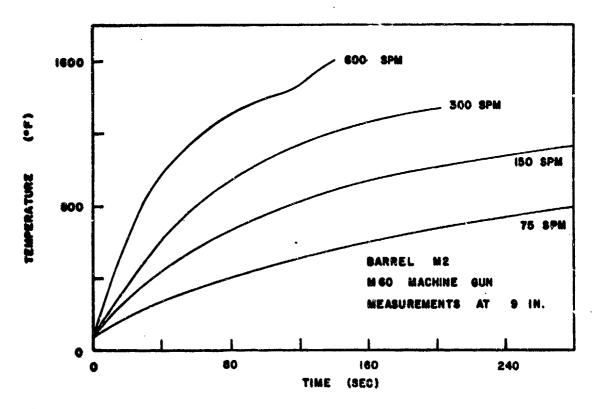
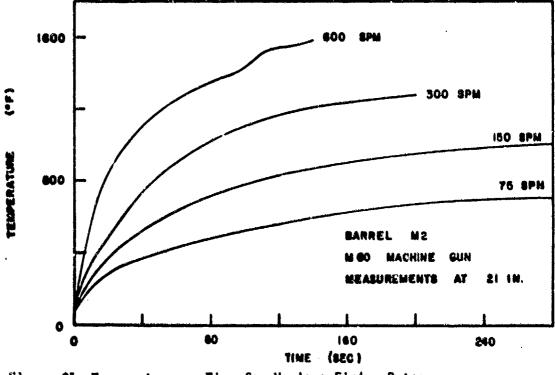



Figure 20 Temperature vs Time for Various Firing Rates

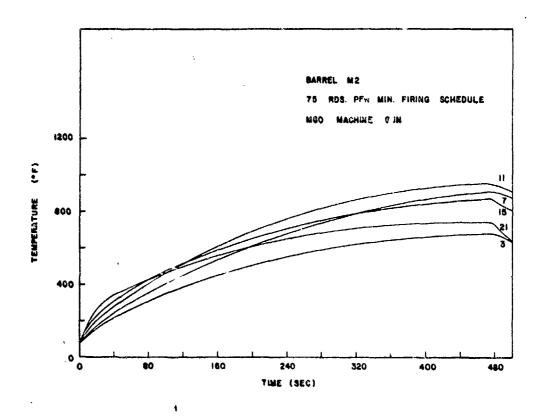


Figure 22 Temperature vs Time at Various Axial Positions for Barrel M2 Firing at 75 rds/min

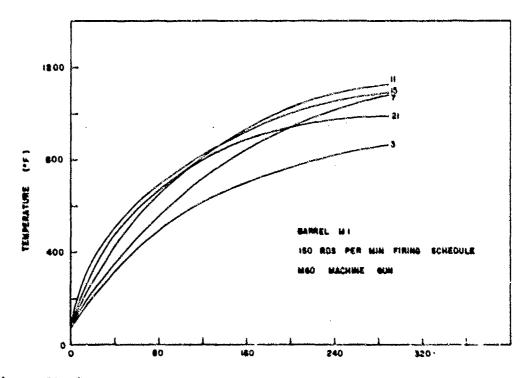


Figure 23 Temperature vs Time at Various Axial Positions for Barrel N1 Firing at 150 rds/min

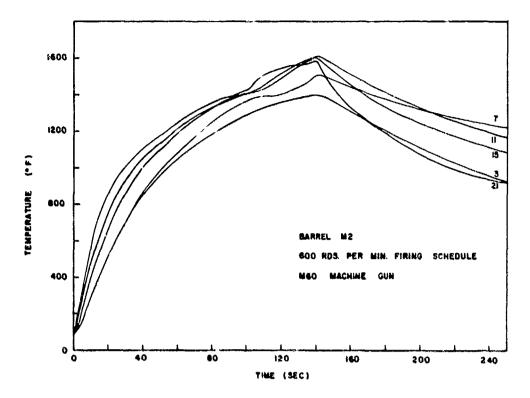


Figure 24 Temperature vs Time at Various Axial Positions for Barrel N2 Firing at 300 rds/min

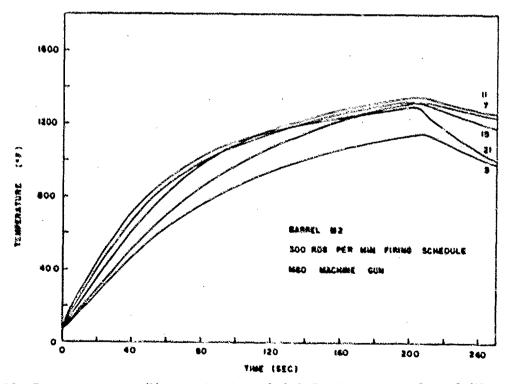


Figure 25 Temperature vs Time at Various Axial Positions for Barrel M2 Firing at 600 rds/min

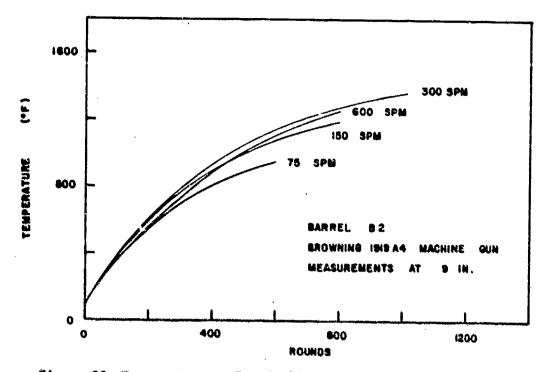


Figure 26 Temperature vs Rounds Fired for Various Firing Rates of Barrel B2, Measured at 9 in.

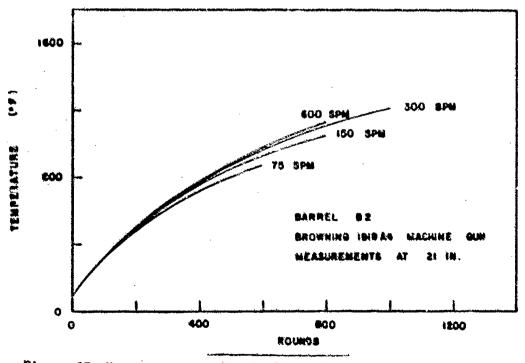


Figure 27 Temperature vs Rounds Fired for Various Firing Rates of Barrel 82, Neasured at 21 in.

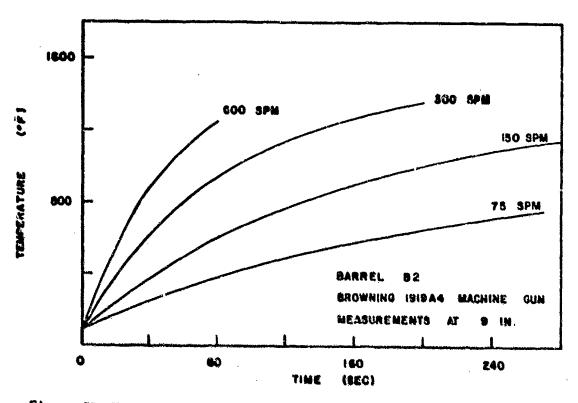


Figure 28 Temperature vs Time for Various Firing Rates of Barrel B2 Keasured at 9 in.

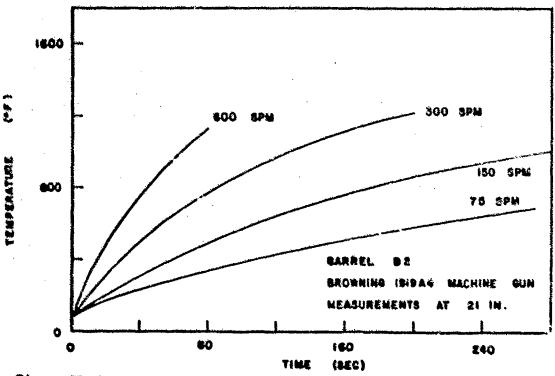


Figure 29 Temperature vs Time for Various Firing Rates of Barrol 82 Neasured at 21 in.

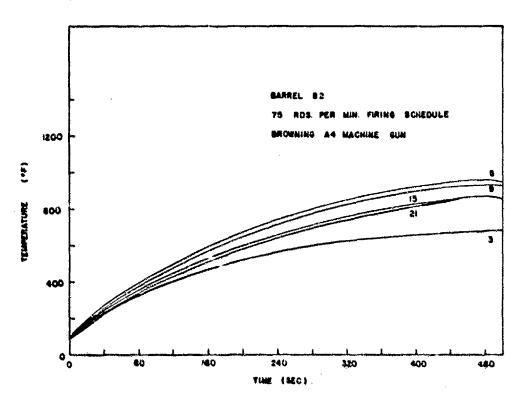
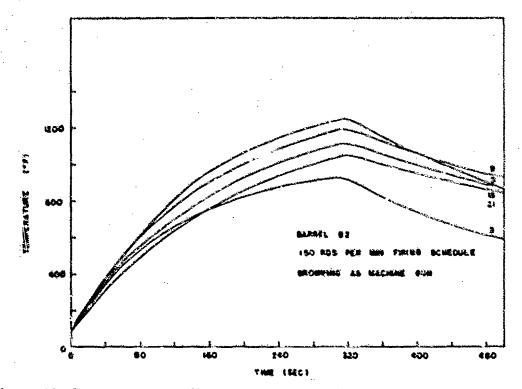
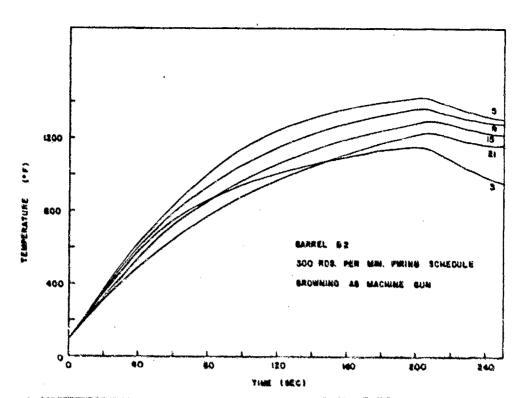
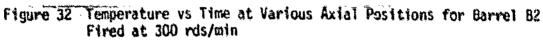
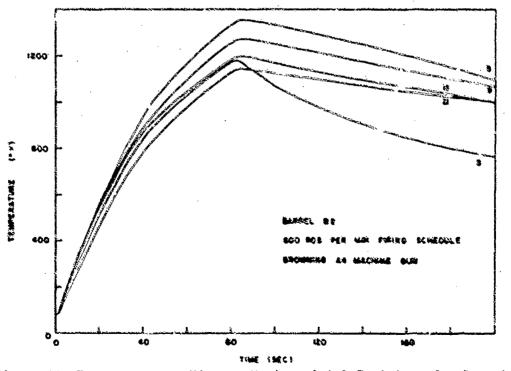
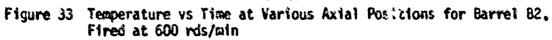
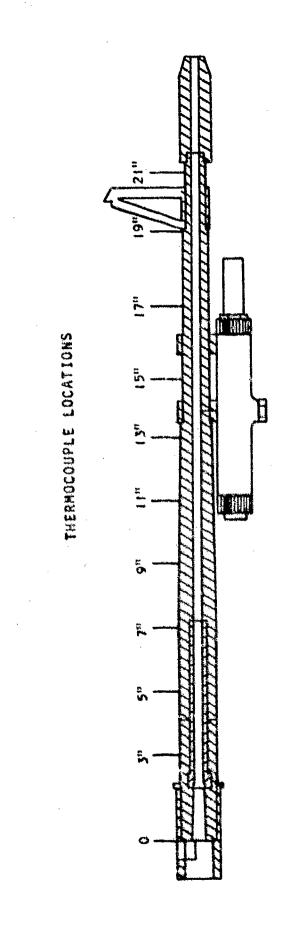
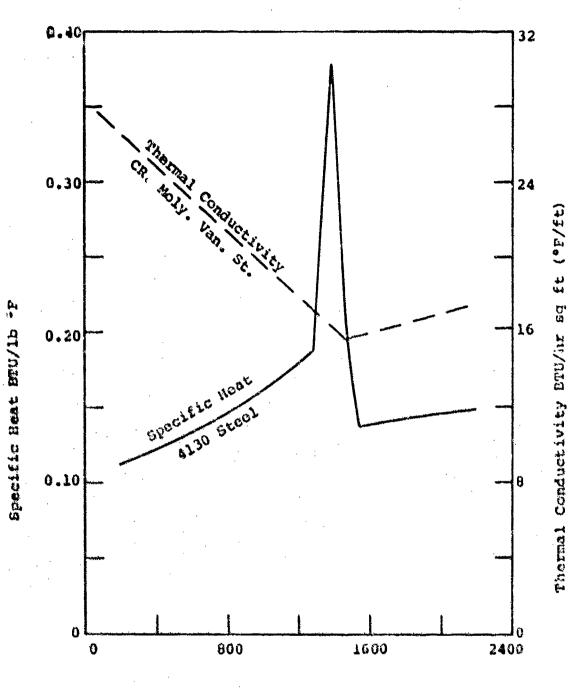


Figure 30 resperature vs Time at Various Axial Positions of Barrel B2, Firing at 75 rds/min


Figure 31 Temperature vs Time at Various Axial Positions for Barrel B2. Firing at 150 rds/min



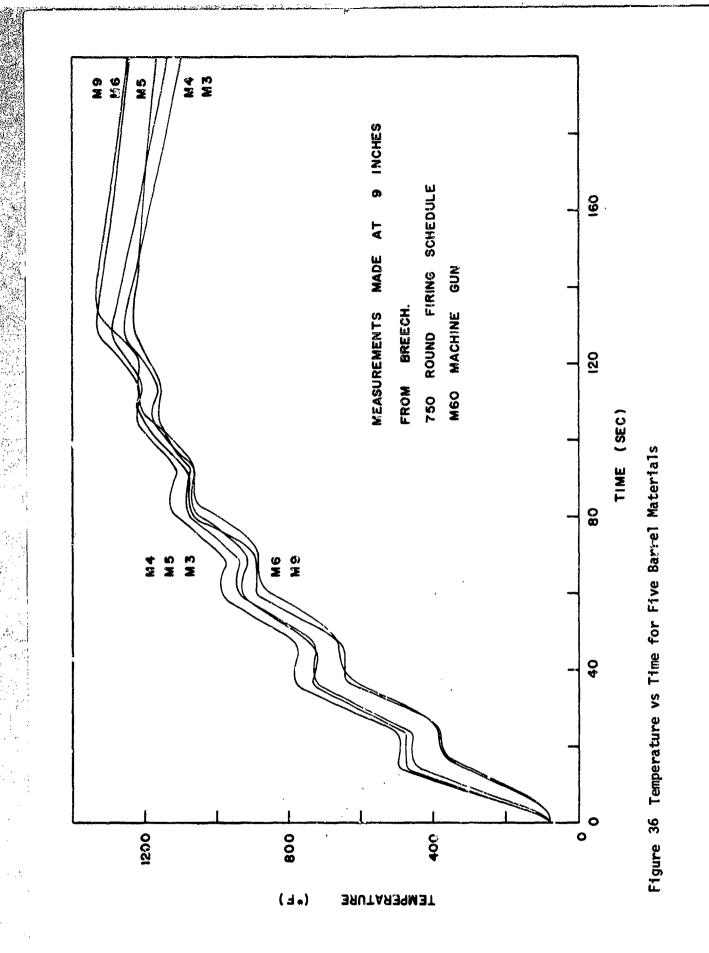
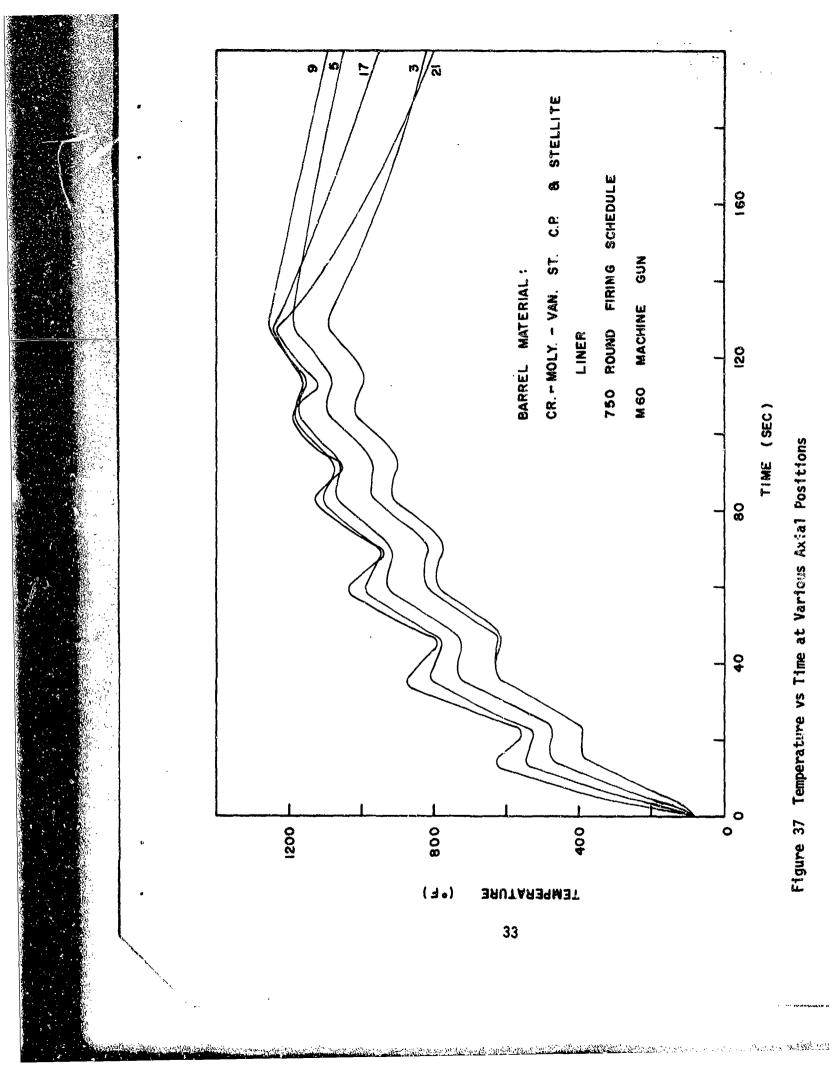
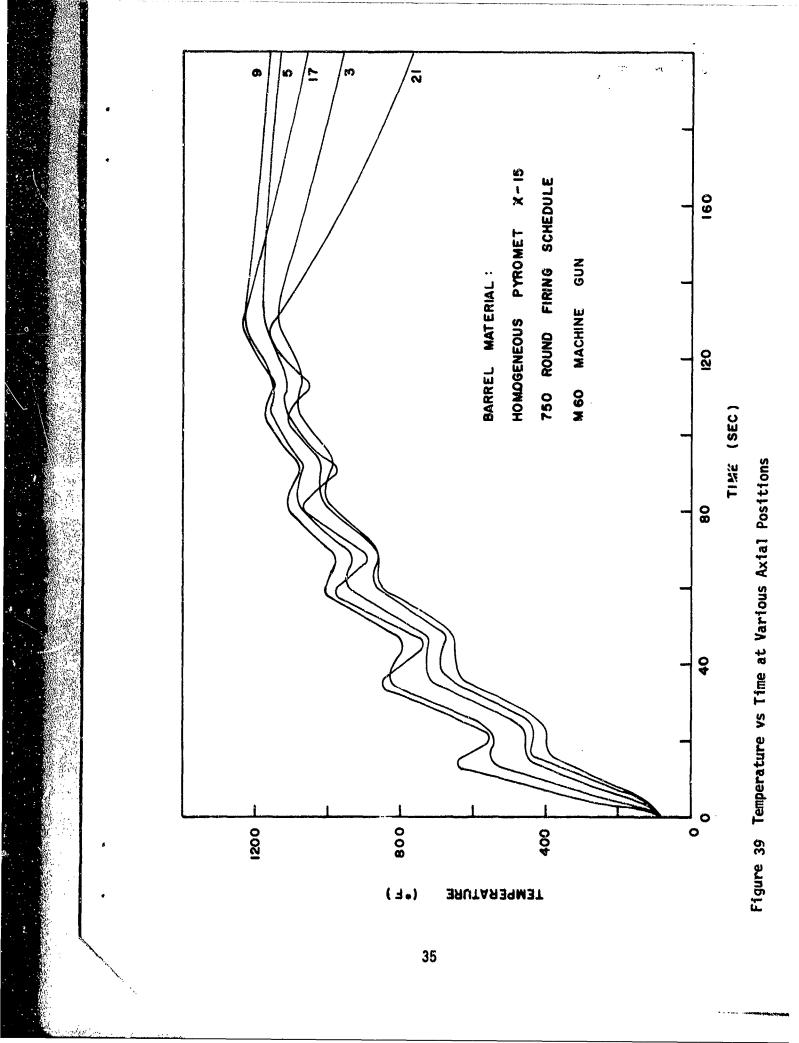

ì

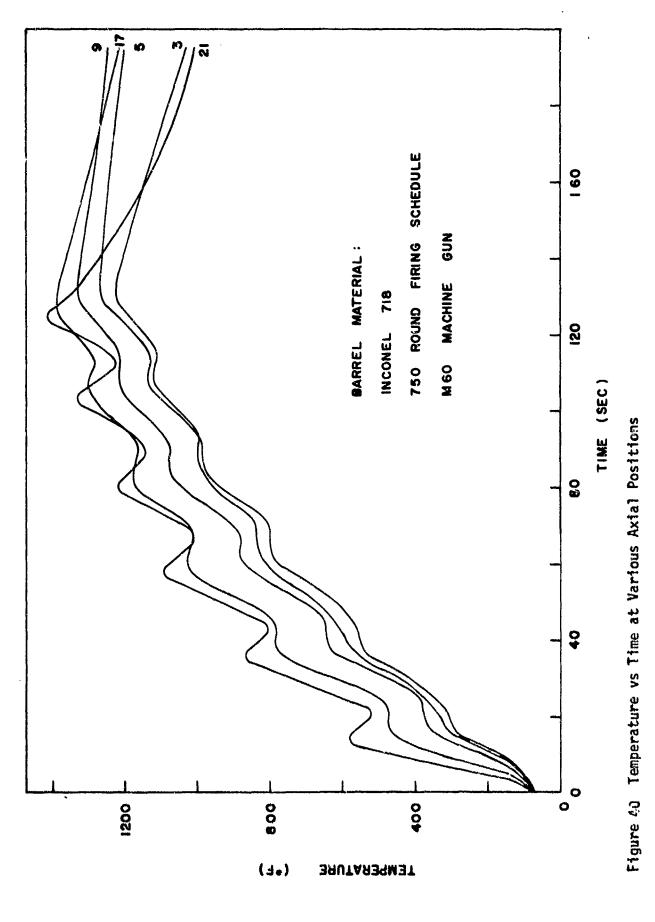
Figure 34 Cross Section View and Thermocouple Locations for M60 Gun Barrels M1 through M9

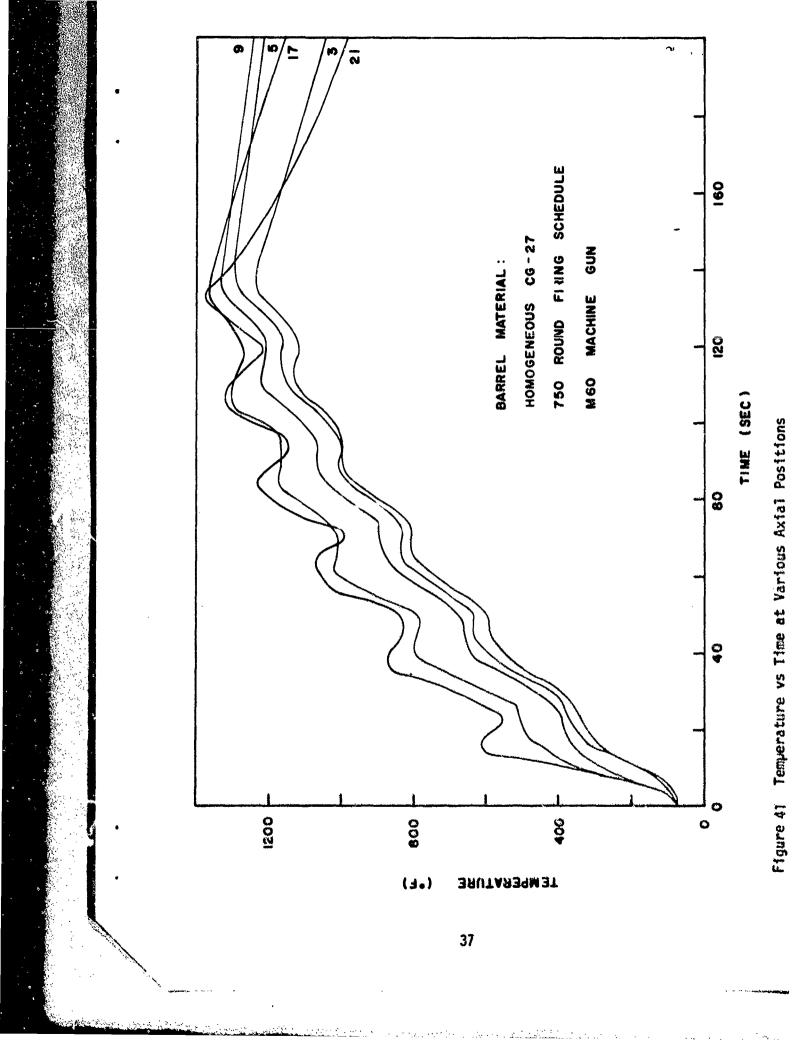
TEMPERATURE *F



A


l


32



36

Sec. 31 8

A stellite liner is now used in the 30 cal. Browning Machine Gun to give improved breech end wear. Test results show, as mentioned above, that at the liner-barrel interface the rifling is in significantly better condition in the stellite, indicating desirable results. Proceeding from breech to muzzle end, Figure 7a, there is an almost linear temperature drop for the constant diameter barrels. Test results show that land wear decreases along the barrel, lending support to the relationship between temperature and erosion.

Tapered barrels B4 and B5 were fired 3818 and 4523 rounds respectively. Bore surface replicas reveal that the stellite liners have slightly better rifling, but the lands are absent along the remaining barrel length. The B4 bore replica, with 15 percent fewer rounds than 35, shows a trace of rifling. The muzzle end of these barrels were 300°F hotter than B1 and B3 at the end of a 750 round schedule, further illustrating the relationship between barrel temperature and erosion, Barrels B1 and B3 had a life of over twice that of B4 and B5.

Full tapered barrels B6 and B7 failed at 2628 and 2399 rounds respectively. Bore surface replicas show that the liner rifling is in relatively good condition with the remainder of the barrel containing a trace of rifling. Nuzzle end external tamperatures reached 1760°F causing catastrophic failure with increased barrel diameter, bending, and loss of bore muterial, as can be seen in Figures 16 and 17. These light barrels caused many gun malfunctions by not prosiding sufficient momentum to recycle. Failure to complete the schedule no doubt prolonged barrel life, since the barrel temperature stayed below the critical temperature limit until complete 750 round schedules were achieved. Table 3 shows the history of these barrels.

Historically, barrels failed from severe breech end erosion; however, this problem has been improved with the use of liners made of high strength, high temperature

TABLE 3 ROUNDS FIRED PER EACH SCHEDULE

¢

MARREL	B1	63	B4	85	86	B7
	121	12 1	121	750	121	121
	537*	130	22	124	456	317
	10+20	100	750	320	63	58*
	198	20	260	417	16	750
	628	750	750	750	80	750
	18	640	500	750	130	121
	307	750	121	124	750	500°
	627	250	750	750°	359	2399
	602	121	750	¥50	121	
	375	750	12'	<u>12'</u>	750*	
	13	750	3818	4523	2628	
	65	121				
	170	750				
	185	750				
	135	121				
	315	750				
	750*	750				
	191	121				
	750	125				
	12	625				
	750	750				
	750	121				
	12 •	750				
	750	12+				
	50+700	9474				
	121				•	
	9772					

NOTES:

1. Target, two rds fired for placement and ten rds for

accuracy. Burst lengths less than 750 rds are the result of a gun z.

3. New Gun

4. Browning 1919A6 for remainder of test. 5. Damaged barrel.

39

materials. On many tapered barrels the problem is now erosion at the muzzle end due to high temperature and projectile velocities. Tapered barrels are clearly desirable due to the weight savings, but Figures 6 and 7 show that adding a taper adversely affects barrel life and temperature distribution. An ideal barrel design would distribute material for optimum external axial temperature distribution, thereby yielding maxiumum life.

The temperature as a function of rate of fire tests shows that on a round-for-round basis the firing rate has minimal effect on barrel temperatures, as can be seen in Figures 18, 19, 26, and 27. For an equal number of rounds, approximately equal barrel temperatures are achieved. Each time the firing schedule (Table 1, Temperature vs Rate of Fire) is doubled (75 to 150 to 300 to 600 spm), one might expect the barrel temperature to double, on a time basis. However, results show a temperature increase of only approximately 80%. It is believed that on a time basis, the temperature does not double along with the firing schedule since the hotter average bore temperature with the faster schedule yields a lower effective bore heat transfer coefficient. There is a relatively small amount of heat given off during a firing schedule (verified by cooling curves) which accounts for slightly lower temperatures on a round-for-round basis for a slower firing schedule.

The muzzle end of the M60 barrel, Figures 34 and 19, does not follow this consistent temperature level for a given number of rounds. It is believed this temperature spread is due to the fact that the thin high temperature barrel wali has a significant level of radiant cooling and because of conduction to the more massive, lower temperature flash suppressor and sight.

40

The last task was determining the influence of barrel material on temperature. The five materials investigated were in a rather narrow temperature envelope indicating that the material choice has little effect on resulting temperature levels. Material structural properties at these elevated temperatures are more significant parameters in the selection of barrel materials.

Table 4, which lists thermal properties of these materials, shows that the thermal conductivity increases with an increase in temperature for Crucible CG27 and Inconel 718 while the reverse is true for Cr-Moly-Van and Pyromet X 15. Figure 36 demonstrates the effect of this where the temperature of barrels M6 and M9 initially lagged and then surpassed the temperatures of the other barrels.

	SPECIFIC MELTING PT		DENSITY	THEMAL CONDUCTIVITY			
MATERIAL	stu/1897	53,1003 .1		10	1000	1200	1600
Cr-Moly-tea	.102	₹540	0.283	\$7.8	15.7	18.0	16.0
Crucible C627	.11	2412	0.290	5.4	11.5	12.8	15.3
lucesel 218	, 11	2500	0.297	12.0	13.6	13,9	14.5
Pyromet # 15		2642	0.34	14.2		16.4	
Stallite	.10	2445	0.300			12.0	

TABLE 4 THERNAL PROPERTIES OF BARREL MATERIALS

APPENDIX A

TABLE 5 GUNS FIRED

ľ

ARM	NITION:		
		in Lot TN18527-59 7.62 NATO NBO ine Gun Lot LC L39293 Cal 30 BALL M2	
GUNS	:		
	Browning 1919A	14 SH 757072 Saginaw General Notors Steering Gear Division	8
	Browning 1919A	14 SH 796328 Saginav General Notors Steering Gear Division	n i
	Browning 1919A	A SN 436311 - Saginaw General Notors Steering Gear Division	a i
	Browning 1919A	16 SH 966512 Rock Island Arsenal	
	NGO SH 67562	Saco Lowell Shops Haremont Corp	
	N60 SN 95089	Saco Lovell Shops Haremont Corp	

ANDIENT CONDITIONS: Indoor ranges approximately 80°F, exhaust fans on

TABLE 6 BARREL DIAMETER AT THERMOCOUPLE LOCATIONS

				Manan Manana A ng			
81	82	<u> </u>	<u>B.4</u>	85	86	<u>B7</u>	
1.226	1.222	1.222	1.211	1.203	1.200	1.205	
1.221	1.220	1.226	1,165	1.154	1.126	1.132	
1,219	ĭ.221	1.212	1,116	1.099	1.052	1.160	
1.220	1.220	1.216	1.066	1.070	0.981	0.988	
1.224	1.221	1.218	1.020	1.028	6.909	0.913	
1.218	1.216	1.218	0.977	0.993	0.838	6.840	
1.219	1.214	1.220	0, 928	0.943	0,765	0.767	
1.218	1.215	1.221	0.871	0.882	0.693	0.703	
1.216	1.220	1.217	0.827	0.827	0.618	0.623	
1.218	1.219	1.220	0.769	0.768	0.548	0.550	
BARREL							
H)	Hž.	H3	H4	<u>N5</u>	紙	NG	
1,190	1.192	1.195	1.192	1.190	1.196	1.194	
1.190	1.192	1.195	1,195	1.190	1.197	1,195	
1.108	1.118	1.108	1.108	1.098		1.122	
1.059	1.065	1.053	1,060	1.649	1.062	1.680	
1.909	1.012	1.007	1.609	1.005		1.043	
0.962	0.999	0.955	0.959	0.355	0.958	0.960	
0.854	0.857	0.636	0.854	0.663		0.562	
0.632	0.631	0.036	0.832	0.815	0.840	n_8 1	
0.836	0.830	0.834	0.634	0.628		0.339	
	1.221 1.219 1.220 1.224 1.218 1.219 1.218 1.216 1.216 1.218 H1 1.190 1.190 1.190 1.190 1.053 1.909 0.962 0.654 0.832	1.226 1.222 1.211 1.220 1.219 1.221 1.220 1.220 1.220 1.220 1.224 1.221 1.218 1.216 1.219 1.214 1.218 1.215 1.216 1.220 1.218 1.215 1.216 1.220 1.218 1.219 HI HE 1.190 1.192 1.190 1.192 1.081 1.118 1.053 1.065 1.902 1.012 0.962 0.999 0.654 0.657 0.632 0.631	1.226 1.222 1.222 1.21 1.220 1.226 1.219 1.221 1.212 1.220 1.220 1.216 1.224 1.221 1.216 1.218 1.216 1.218 1.219 1.214 1.220 1.218 1.215 1.221 1.219 1.215 1.221 1.218 1.215 1.221 1.216 1.220 1.217 1.218 1.219 1.220 1.1216 1.220 1.217 1.218 1.219 1.220 1.190 1.192 1.195 1.190 1.192 1.195 1.190 1.192 1.195 1.08 1.118 1.008 1.053 1.065 1.053 1.909 1.012 1.007 0.962 0.939 0.955 0.634 0.657 0.636 0.632 0.631 0.336	1.226 1.222 1.222 1.211 1.221 1.220 1.226 1.165 1.219 1.221 1.212 1.116 1.220 1.220 1.216 1.066 1.224 1.221 1.218 1.020 1.218 1.216 1.218 0.977 1.219 1.216 1.218 0.977 1.219 1.214 1.220 0.925 1.218 1.215 1.221 0.871 1.218 1.215 1.221 0.871 1.216 1.220 1.217 0.827 1.218 1.219 1.220 0.769 BARREL H1 HE M3 H4 1.190 1.192 1.195 1.192 1.190 1.192 1.195 1.192 1.190 1.192 1.195 1.192 1.190 1.192 1.195 1.192 1.190 1.192 1.195 1.192 1.053 1.065 1.053 1.060 1.053	B1 B2 B3 B4 B5 1.226 1.222 1.221 1.222 1.211 1.203 1.221 1.220 1.226 1.165 1.154 1.219 1.221 1.212 1.116 1.099 1.220 1.220 1.216 1.066 1.070 1.224 1.221 1.216 1.066 1.070 1.224 1.221 1.218 1.020 1.028 1.218 1.216 1.218 0.977 0.933 1.219 1.214 1.220 0.928 0.943 1.218 1.215 1.221 0.871 0.882 1.218 1.215 1.221 0.871 0.882 1.218 1.219 1.220 0.769 0.768 BARREL M1 M2 M3 M4 M5 1.190 1.192 1.195 1.192 1.190 1.190 1.192 1.195 1.192 1.190 </td <td>B1 B2 B3 B4 B5 B6 1.226 1.222 1.211 1.203 1.260 1.221 1.220 1.226 1.165 1.154 1.126 1.219 1.221 1.212 1.116 1.099 1.052 1.220 1.221 1.212 1.116 1.099 1.052 1.220 1.220 1.216 1.0666 1.070 0.981 1.224 1.221 1.218 1.020 1.028 6.909 1.218 1.216 1.218 0.977 0.993 0.633 1.219 1.214 1.220 0.925 0.943 0.765 1.218 1.215 1.221 0.871 0.882 0.693 1.216 1.220 1.217 0.827 0.827 0.618 1.218 1.219 1.220 0.769 0.768 0.548 1.190 1.192 1.195 1.192 1.190 1.196 1.190 <td< td=""></td<></td>	B1 B2 B3 B4 B5 B6 1.226 1.222 1.211 1.203 1.260 1.221 1.220 1.226 1.165 1.154 1.126 1.219 1.221 1.212 1.116 1.099 1.052 1.220 1.221 1.212 1.116 1.099 1.052 1.220 1.220 1.216 1.0666 1.070 0.981 1.224 1.221 1.218 1.020 1.028 6.909 1.218 1.216 1.218 0.977 0.993 0.633 1.219 1.214 1.220 0.925 0.943 0.765 1.218 1.215 1.221 0.871 0.882 0.693 1.216 1.220 1.217 0.827 0.827 0.618 1.218 1.219 1.220 0.769 0.768 0.548 1.190 1.192 1.195 1.192 1.190 1.196 1.190 <td< td=""></td<>	

TABLE 7 LENGTH OF BURSTS (SEC.)

		84	BARREL		
NURST	<u></u> 83	<u>R4</u>	84		<u>NŞ</u>
1	13.4	10,9	12.2	12-1	12.3
2	13.4	10,0	12.2	i2.1	12.1
3	13.2	9,4	12+0	17.1	12.1
•	13.2	9.6	12.0	12,1	12.1
5	12.2	1.5	11.6	12.1	12.1
	12.2	9,6	12.0	12.1	12.1