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b> 

C. Derman, G.J. Liebenaan, and S.M, Ross 

In the design of a new system, or the maintenance of an old system, 

allocation of resources is of prime consideration. In allocating 

resources it is often beneficial to develc, a solution that yields an 

optimal value of the system measure of desirability. In the context 

of the problems considered in this paper the resources to be allocated 

are components already produced (assembly problems) and money (allocation 

in the construction or repair of systems).  The measure of desirability 

for system assembly will usually be maximizing the expected number of 

systems that perform satisfactorily and the measure in the allocation 

context will be maximizing the system reliability. Results are presented 

for these two types of general problems in both &  sequential (when 

appropriate) and non-sequential context. 
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OPTIMAL ALLOCATION OF RESOURCES IN SYSTEMS* 

by 

C. Derma-^ G.J. Liebennan, and S.M. Ross 

1. Introduction 

In the design of a  new system, or the maintenance of an old 

system, allocation of resources Is of prime consideration. In allocating 

resources It is often beneficial to develop a solution that yields an 

optimal value of the system measure of desirability. In the context 

of the problems considered in this paper the resources to be allocated 

are components already produced (assembly problems) and money (allocation 

in the construction or repair of systems). The measure of desirability 

for system assembly will usually be maximizing the expected number of 

systems that perform satisfactorily and the measure in the allocation 

context will be maximising the system reliability, 

2. General Allocation Problem 

Let A denote a fixed amount of money to be used to build a 

single system consisting of n components.  Define P.(x.)  as the 

probability that component i will work If    x,  is allocated to its 

production. The problem is to choose x., Xp, ...   ^ x      so as to 

maximize the probability that the system works, i.e,. 

Paper presented at the Conference on Reliability and Fault Tree 
Analysis, Operations Research Center, University of California, 
Berkeley, September 3-7, 197^. 



maximize 

R[P1(JV> P2(X2^ "  > PJ*r)] 

subject to 

Z x. = A , 

where R is the probability that the system performs satisfactorily. 

A spetiil case of this problem arises when the system can be represented 

by ci    Independent modular subsystems connected in parallel and/or series; 

in such cases R has an identifiable simple form. This type of structure 

is often characteristic of a fiault tree^ where the fault tree diagram 

explicitly shows the decomposition via series and parallel modules. 

[Although in a fault tree a amall number of components may appear in 

different modules resulting in a lack of independence.] There has been 

some work done on this problem [2]^ where algorithms have been developed, 

but essentially the solution it. unknown. In order to get some insight 

into this general problem, a simpler version is considered by the 

authors in [5], [6], and [7]. This version assumes that P.(x) = P(x) 

for all components, and the system has a special structure, i.e., it 

is a k out of n system. However, another facet is added, namely 

in some of our models allocation decisions can be made sequentially. 
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3. Allocation of Money Resources 

In [6], the authors consider the following problem.  Suppose 

A denotes a fixed amount of money to build a single system consisting 

of n components^ i.e.^ the n components are to be produced rather 

than taken or purchased froir an existing stockpile.  Define P(x) 

as the probability that a component will work if amount x is allocated 

to its production (P is an increasing function and P(0) = C'.  The 

non-sequential version of the problem is to choose x., x_. ...  x 
I'  2'    '  n 

in order to maximize R(P(x1), ... , P(x )), i.e., the probability 

that the system works.  The sequential version assumes that the individua1. 

components are built sequentially in time and that knowledge as to 

whether or not a component functions is available to us before we have 

to allocate our investment in the next component.  That is, x..  is 

allocated to produce the first component. Using the information as 

to whether the first allocation produced a working or non working 

component, Xp is then allocated to produce a 2nd component. We 

proceed in this manner, making no more than n allocations.  The 

problem is to choose x,, Xp,  up to x , if necessary, sequentially 

to maximize the probability that the system will work. 

If it is assumed that an n component system will work if 

at least k of the components function, dien the following results 

.ire available: 

(i) k ^ 1 (parallel system) - sequential or non-sequential version. 

If log(1 - P(x))  is convex, then the x's are chosen so that 



xl " x2 ~ 
A 

= x = — 
n  n 

If log(1 - P(x)) is concave^ then the x's are chosen so that 

It should be noted that the Interpretation of the x's is that x. 

dollars is to be invested in component i in the non-sequential case, 

and, in the sequential case x. dollars is to be invested in the ith 

attempt if the first i-1 attempts to build a functioning component 

are unsuccessful. In this latter case, if equal investment is called 

for and the first attempt has been unsuccessful, then there is 

A = —^—"—^  dollars available to allocate to the remaining n-1 
n   n 

potential components, so that again, equal investment calls for investing 

A/n. 

(ii) General k (note k = n is series-system -- sequential or non- 

sequential version). 

If log(1 - P(x))  is (strictly) convex then if one wants to 

sequentially build k working components in at most n attempts, 

n > k, then it is (uniquely) optimal to allocate A/n at each stage 

when A is the total resource available.  Thus, it also follows that 

the same allocation is optimal for the non-sequential model. 

- -  
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(iii) Special case of P(x) = x -- sequential case. 

Since log(1-x)  Is a concave function, the results presented 

under (1) hold for k = 1, I.e., x. = A, x2 = 0, ... , x = 0. Exact 

results can also be obtained for the case of k = 2. The optimal 

policy it* can be described as follows. When the present amount 

available is y and at most n additional coipponents can be built, 

then 

a) if only one additional working component is needed, n*    allocates 

min(y,l), and 

b) if two additional working components are needed, it* allocates 

y-1 if y > r 
— n-1 

1 
n 

1£ ^ti 

For the general case (any k), the authors conjecture that the 

optimal policy jr**  is such that whan the present amount available is 

y and if k additional working components are needed with at most n 

stages to go, then n**    calls for allocating 

1 
n 

lf y <_E. (k.i) 

(k-l) if  y^-JL^.i) 



(iv) Special case of P(x) = x — non-; equential case. 

The non-sequential case with general k was considered by the 

authors in [5]. It was shown that the optimal allocation 

x* = (x,. x„ x ) is such that all of the non-zero elements of 
—   *   i'    d' ' n' 

x* are equal. It is not clear how many non-zero elements are present 

in an optimal allocation, although some indications are available for 

A near k or zero; for A near k the number of non-zero elements 

is small while for A near zero the number is large. 

k.    A Stochastic Sequential Allocetion Model 

The following model is considered in [7], and is described in 

terms of an investment problem, although several other interpretations 

are available for this model. We have D units available for investment. 

During each of N time periods an opportunity to invest will occur 

with probability p. As soon as an opportunity presents itself we 

must decide how much of our available resources to invest. If we 

invest x, then we obtain an expected profit P(x), where P is a 

ncndecreasing continuous function.  The amount x then becomes unavail- 

able for future investment. The problem is to decide how much to invest 

at each opportunity so as to maximize the total expected profit. When 

P(x) is convex, it is easily shown that the optimal policy is to 

invest everything when an opportunity presents itself. When P(x)  is 

a concave function, it is only possible to describe the structure of 

the optimal policy.  In particular, if V(n,A)  denotes the supremal 



expected additional profit attainable when there are n time periods 

to go, A dollars available, and an investment opportunity is at hand, 

and x (A) it; the optimal amount to invest at this time, then 

(i) V(r,A) is a concave function of A. 

(ii) x (A)  is a nondecreasing function of A, and 

(iii) x (>) is a nonincreasing function of n. 

This structure can be used to simplify the necessary computations, but 

does not yield a closed form expression for the optimal value to invest. 

One special caae for which the optimal policy can be completely 

specified is when P(x) = log x.-^ In this case, it turns out that when 

there are n time periods to go it is optimal to allocate a fixed 

proportion of the remaining resources available. Specifically, if 

there are n time periods to go and A dollars available then 

*JA)      A V"' _ 1 + (n-l)p ' 

In [8] Klinger and Brown considered a model for allocating 

unreliable units to a random number of demands. When a demand occurs 

a certain number of units must be allocated and if i units are 

allocated then the demand will be successfully met with probability 

1-q . They assumed that demands occur at random (Poisson) time points 

and their objective was to maximize the probability that all demands 

are successfully met in a fixed time ran^e. Letting x(t,i) denote 

the optimal number of units to allocate to a demand occurring when 

there is time t remaining and the inventory stockpile consists of 

we have also attained computational results for other specific forms 
of P(x). 

^fe: 

«F 



i units Klinget and Brown conjectured that x(t,i)  is nondecreaslng 

in i, and then proved that if this is so x(t)i)  is also nonincreasing 

in t. It was later directly proven in [10] that x(t^i) is non- 

increasing in t. Whether or not it is also nondecreasing in i remains 

an open question. 

Our model is quite similar to the above with the exception that 

we have a more general return function and have chosen to work in 

discrete time periods as opposed to continuous time. By interpreting 

investment opportunities as demands and by interpreting P(x)  as 

the probability of meeting the demard when we allocate x units then 

it follows that our problem is of a similar nature as the above but 

with the criterion of maximizing the expected number of demands met 

rather than the probability that all demands are met. 

The stochastic sequential allocation model can be interpreted 

as a target assignment problem. Suppose that there are D units of 

ammunition available^ and for each of N days the target may be under 

attack. During each of the N days enem> planes will attack with 

probability p. As soon as planes appear, we must decide how much of 

our ammunition to expend. 

Another application is concerned with allocation of research 

effort. A proposal is received and sent out for review.  From past 

history the fraction of those receiving favorable reviews are p. 

(p may be thought of as the probability of the referee recommending 

funding.) However, the review comes in as recommending approval or 
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rejection. If the review is positive how much should be allocated to 

each proposal. We have a total of D dollars available. If x is 

allocated^ then p(x)  is the return on the investment. We have it 

proposals to be sent for review and decisions must be made sequentially. 

This stochastic sequential allocation model can be thought of as 

a variation of the sequential stochastic assignment problem treated 

by the authors [3]. There it is assumed that there are n men avail- 

able to perform n jobs. The jobs arrive in sequential order with 

each job being categorized before a man is assigned to it. It is 

assumed that the category 0.    of the jth job is determined by a 

probability measure over all possible categories and that [6.] 

(j = 1, ... , n) are independent with the same probability measure. 

The ith man has a value x. (0 < x. < 1, i - 1, ... . n) associated 

with him. If the ith man is assigned to the jth job the (expected) 

return is a known function P(x., 6.). After a man is assigned to a 

job^ he is unavailable for future  isignments. The objective is to 

assign the workers sequentially to maximize total expected return. 

In the stochastic sequential allocation model the possible categories 

are two in number. The first category, which occurs with probability 

1-p, corresponds to P(xJ 0..) s 0 (no occurrence of an opportunity); 

the second, which occurs with probability p, to P(x, 0^)  -  P(x) 

(occurrence of an opportunity).  The n men each having a value 

x.  (i = 1, ... , n)  is equivalent to a predetermined division of 
n 

the total resources T,   x. = D and the problem is simply that of 
i=l 1 



assigning the predetermined values. The allocation problem requires 

Instead of a sequential assignment of values a sequential division of 

the resources. Beyond occurring or not occurring the present allocation 

model does not permit a more refined weighting of the return function 

since P(x)  is assumed to be tbe same for each occurrence. However, 

the authors are currently investigating an extension where P(x)  is 

replaced by P(x, 0)    with B    random and taking on many possible 

values. 

5, Assembly Problems 

The previous discussion was concerned with the optiral alloca- 

tion of money. Suppose now that the resources consist of a stockpile 

of components, and these components are to be arranged in some fashion 

into a set of working systems. This problem was considered by the 

authors in [h]  and [5I.  In particular we assume that a single system 

has m different types of components. Associated with each component 

is a numerical value. Let (b ), i = 1, 2, ... , m, denote this set 

of numerical values of the m components. Let R(b , b , ... , D) 

denote the probability that the system will perform satisfactorily, 

IP ITL 
i.e., R(b , b , ... , b ;  is the reliability of the system. For 

example, suppose Y,, Yp, ... , Y  is a random vector representing 

the component pressure under operating condi.tions such that the system 

performs satisfactorily if (Y.., Y-, ...,Y < b , b , ... , b ). 

12        m 
Then the reliability is just PU-, Y-, ... , Y < b , b , .. , , b }, 

10 



allowing for the possibility that the Y's may be dependent. Alternatively, 

let b  denote the probability that the ith component will work, 

component performances are Independent, and all components must work 

then the reliability Is Just R - b • b ••• b . Now suppose that 

i ,1 ."l there are n units of each component with corresponding b  b  . 

for every 1. The problem considered is to arrange tlv. nm units into 

n systems, to maximize the expected number of systems that perform 

satisfactorily, i.e., maximize E(N), where N is the number of systems 

that work. Of course this criterion is equivalent to maximizing the 

sum of the n reliabilities. 

The following results were obtained by the authors in [1|]: 

If R is a distribution function (such as arises in the 

aforementioned examples), and if b, < b„ < ••• < b  for i = i.e. m. "        1—2—   —n >   >       >   > 
1   ? m 

then the n systems represented by the partitions (b.., b  ... , b..)^ 

IP tn. 
... . (b , b b j  is the. optimal arrangement, i.e., '  n' n'    ' n' ' ' 

put the "worst" together, the second "worst" together, ... , and 

finally, the "best" together. Furthermore, if R(b , ... , b ) >-^ 

for every permutation of the units, then this same arrangement also 

minimizes the variance of the number of systems that perform satis- 

factorily. Finally, if 

„/.I ,2      , m.  .1 .2    , m 
R(b , b , ... , b ) = b b  ■•• b , 

where 

b = P{ith component works) , 

then this same arrangement maximizes 

11 



P{N > r} , 

for each r. 

The previous material presents some results for general systems 

and is specifically applicable to the case of series systems having 

independent components. What can be said for the case of assembling 

parallel systems having independent components? In this situation a 

system will be said to perform satisfactorily if at least one of its 

m components perform satisfactorily and again the problem is to 

arrange the nm units with n systems to maximize the expected number 

of systems that work, E(N).  In this case. 

m     .       m 

where 

so that 

R(b , b , ... , b") = 1 - n (l-b1) = 1 - JI a1 , 
i=l i=l 

a = P{ith component fails) ) 

n      ,n  i       n  m  . 
E(N) = Z (1 - H ah = n - Z  n a^ 

j=l     i=l J      j=l i=l J 

This formulation requires that f.ach (parallel) system contain exactly m 

components, and su< h a requirement may degredate the performance measure 

in that E(N) may be larger if we allow for the possibility that some 

systems contain less than m units while others contain more.  This more 

general parallel problem is treated by the authors in [5].  In particular, 

a set of t units is to be partitioned into n disjoint parallel systems. 

12 



After completion of a partition the number of units contained in the 

jth system (j = 1, 2, ... , n) is denoted by m  with the added 

n      1/ 
restriction that  Z m = t.-'  For a given partition the reliability 

j=l J 

of system J, R  is given by 

V 1 - II 
all i 

units in 
system j 

V 

so that 

n        n . 

E(N) = Z R. = n - Z    H    a 
j=l J     j=l  all i   J 

units in 
system j 

The solution to this problem^ i.e., the arrangement that maximizes E(N), 

attempts to make the reliabilities of each system as equal as possible. 

Indeed, it is shown that if a partition exists that makes the reliabilities 

equal, it is optimal. Unfortunately, such an arrangement may not exist, 

hence, bounds are presented so that the maximum expected number of 

systems that perform satisfactorily will be within these bounds; the 

bounds being a function of an arbitrarily chosen partition. Finally, 

an improvement algorithm is given. Essentially, this algorithm looks 

for pairwise interchanges of units which make two systems have "more 

equal" reliabilities. Incidently, all the results obtained for this 

problem carry over to the original problem where each system is required 

to contain exactly m components. 

17 A partition will allow for one or more systems to contain no units 
so long as  7  m. = t.  Ti- 

no units is taken to be zero. 

so long as  . 7  m, = t.  The reliability of a system containing 

13 



these results on assembly of systems have other applications. 

A version of the target assignment problem can be related to the general 

parallel system assembly formulation. Hanne [9] treats essentially 

the following target assignment problem. There are t weapons to 

be assigned against n targets. Let p.. be the probability that 

the ith weapon will destroy the jth target if it alone is assigned 

to it. The objective is to minimize the expected number of surviving 

targets. If x   denotes the probability that the 1th weapon is 

assigned to the jth target, then the x.  are sought that minimize 

n  t 
Z  II (1 - p  x ) , 
j=l 1=1     1J 1J 

subject to 

and 

Z xij= 1 , 1= 1, 2, ... , t , 

Xij^0- 

Manne points out that this Is a nonlinear problem and an exact 

solution is not known. However, by making some simplifying assumptions 

he presents two approximate solutions (one due to himself and one due 

to G. B. Dantzig). 

lU 



The analogous concept:'« in the assembly model version would 

assume that x.. is zero or one. The ith weapon corresponds to the 

ith unit. The jth target corresponds to the jth system. Whereas 

p   depends on both the weapon and target^ the probability of a unit 

working in the assembly context is assumed to be independent of wtiich 

system it is placed in and hence is denoted by p.. This would 

imply that the ith weapon has the same probability of destroying each 

target. Under this assumption (which is less stringent than those 

proposed by Manne) the system assembly results are relevant. 

An independent and earlier discussion of the assembly problem 

with other application can be found in Abe [1]. He uses somewhat 

different techniques, particularly in the parallel case. In the 

reliability context he always assumes independence of components, and 

his version of the parallel system problem requires each system to 

contain m units. However, for this case he obtains some sufficient 

conditions for optimality weaker than equal reliabilities. He also 

points out that the assembly model can be used in search and assignment 

contexts. 

6. Conclusions 

A large number of results have Heen presented, and one could 

question their relevance for solving the general allocation problem 

posed in Section 2. Can they be used to aid i-i the design of a new 

15 
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system or in the maintenance of an old system? Obtaining an explicit 

solution to the general allocation problem requires intimate knowledge 

of cost functions and system performance.  Similarly, this information 

also appears to be necessary for obtaining explicit solutions to the 

"simplified" models considered in this paper -- with one important 

difference — namely, most solutions lead to qualitative results. For 

example, in assembly problems for series systems, one should put the 

best components into one system, and the worst in another; whereas in 

assembly of parallel systems, one should tend to equalize the reli-. 

abilities in each system. In allocating resources to k out of n 

systems, with certain cost functions convex, then equal allocations to 

each component is the optimal way to proceed. Admittedly, the "optimal 

solution" to the general allocation problem is still open, but the 

results presented in this paper are useful In enhancing "engineering 

intuition" for the purpose of getting "good" answers to a most difficult 

problem. 

Finally, the models presented, usually In a reliability context, 

are quite broad so that they are useful In other areas, e.g., the 

assembly of parallel systems and the stochastic sequential allocation 

model are related to target assignment problems. 

16 
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