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AN APPROXIMATE FAST FOURIER TRANSFORM TECHNIQUE 
FOR VERNIER SPECTRAL ANALYSIS 

INTRODUCTION 

To detect the presence of very narrowband weak signals in noise, and to 
measure their center frequencies accurately, it is necessary to Fourier trans- 
form a long time segment of the available process. When the center frequencies 
of the signal components are unknown and the total search bandwidth of interest 
is large, this procedure demands storage and computation of many degrees of 
freedom, that is, search of a large time-bandwidth product space. It would be 
advantageous if a quick, coarse search for narrowband components could be 
conducted, followed by a finer vernier analysis over a limited band where the 
presence of narrowband components has been indicated. Such an adaptive pro- 
cedure would be less time-consuming and require less storage. Also, if the 
procedure did not need to be exact, but yielded an approximation with accept- 
able sidelobes, the required storage and computation might be reduced further. 

This report presents just such a technique, which 

1. accepts the input process in smaller time segments as they are available, 

2. performs a reasonable-size weighted fast Fourier transform (FFT) on 
each overlapped segment, 

3. stores only that frequency portion (at each segment) where narrowband 
components are indicated to be present, and 

4. performs a small-size weighted FFT over the total data record available, 
for each frequency bin stored. 

Steps 1 and 2 permit smaller-size FFTs than would be required if the total data 
record were spectrally analyzed in one operation. Steps 3 and 4 constitute the 
adaptive feature of this technique. The last transform over time (delay) in step 4, 
for each frequency bin, is a vernier frequency analysis, measured from the 
center of each bin; the degree of approximation of this technique is the subject 
of this report. 
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Some past work onperforming large-size FFTs by means of several smaller 
FFTs is reported in references 1 and 2. The methods reported there are exact, 
but they consume more time and require more storage than the method to be 
presented here. In particular, the two methods of reference 1 require too many 
small-size FFTs, and the method of reference 2 requires additional multiplica- 
tions by complex exponentials and a fair amount of storage. The approximate 
technique of reference 3 is similar to the one outlined above, up to step 4, with 
the notable exception of overlapped weighting; at that point the technique of ref- 
erence 3 requires transformation back to the time domain followed by another 
transform to the desired frequency domain. Additional transforms are required 
in this last technique, and it produces greater sidelobes than the new technique, 
especially when the temporal weighting is judiciously selected. 

FUNDAMENTAL SPECTRAL RELATIONSHIPS 

LARGE-SIZE FFT APPROACH 

Before embarking on the approximate technique, we review the standard 
large-size FFT approach to spectral analysis. Suppose a data waveform x(t) 
is sampled at time instants nA, n integer. Then the voltage density spectrum 
that can be computed is* 

V(f) s   f dt exp (-i2irft)   x(t) u(t)  A 8A(t) 
(i) 

= A J2 exp (-i2irfnA) x(nA) u(nA) , 
n 

where u(t) is a temporal weighting deliberately imposed to control spectral 
sidelobes, as will be discussed shortly; see figure 1A. The finite duration of 
u(t) terminates the integral and sum in equation (1) at finite limits. The im- 
pulse-train function in (1) is defined as fhe infinite sum 

*A(t)s     £ «(t-nA) (2) 

The integral representation in (1) allows us to expresst 

V(i) = X(f)  • U(f)   •    $fc(f) (3) 

*A11 integrals are over the range of nonzero integrand. 
^The Fourier transform of the lower-case time function x(t)  is the upper- 

case frequency function X(f); this notation is used throughout. 
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where  •  denotes convolution, rod, in keeping with (2), 

m 
(4) 

Thus, the observed spectrum V(f) is the convolution of X(f) with the set of 
windows* U(f) • 8y4(f),   which is depicted in figure IB. 

Figure 1A. Temporal Weighting 

U!f)»8t(f) 

Figure IB. Spectral Windows 

Figure 1. Time and Frequency Relationships 

Because the ideal spectral window is a single impulse at f = 0, the aliased 
mainlobes at m/A,   m 4 0, are undesired. Also, the window U(f) is desired 
to be narrow, with very small sidelobes. Since the weighting u(t) is of limited 
duration, the mainlobe width of U(f) is not zero, but is inversely proportional 
to the time duration. 

Now, if the voltage density spectrum V(f) is computed at multiples of 
(LA)-1,   where  LA is the time duration of u(t),   we obtain 

—)= A Y\ exp (-12 imp/L) x(nA) u(nA) ,   p integer . 
LA/ n 

(5) 

*In the time domain,   u(t)   is called a weighting; the corresponding Fourier 
transform in the frequency domain,   U(f),   is called a window. This nomencla- 
ture is used throughout. 

^ 
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Since V(f) is periodic of period l/A  (see (1)), (5) need be computed at  L 
different points; thus it can be realized as an L-point FFT of sequence 
jx(nA) u(nA)}.   For fine frequency analysis (that is, large  LA) the size L of 
the FFT may be toolarge to compute easily, under storage and time limitations. 
The values in (5) are samples of tne convolution of figure IB with voltage density 
spectrum X(f). 

APPROXIMATE FFT TECHNIQUE 

Just as we started above with an integral definition of a spectrum, then 
showed that samples of this spectrum were attainable with an FFT, we begin 
with the spectral-delay function,   a,   defined as 

a(f, r) = f dt exp (-i2#ft) x(t) w(t - r) && (t) 
(6) 

= A £ exP H2»fnA) x(nA) w(nA - r) . 
n 

The temporal weighting w is now delayed by  r seconds; if the duration of w 
is  Lw seconds, the function w(t - r) picks out a delayed portion of data x 
of length  Lyy,   and subjects it to the same transform as in (1). This operation 
is depicted in figure 2A, where the temporal weighting can be located at aa, 
bb,..., cc.   This figure is drawn for 50 percent overlap of the temporal weight- 
ings; however, other overlaps are possible and recommended in some cases. 

The next step, consistent with step 4 in the Introduction, is to perform a 
Fourier transformation on the delay variable T, while holding frequency vari- 
able f fixed. The general definition is the vernier spectrum 

Y(f,i») s /drexp (-12» vr) a(f,r) d(r) S«s(r) 
(7) 

= S £ exp (-i2#i»kS) a(f,kS) d(kS) , 
k 

where  v is the vernier frequency,   d(r) is called the delay weighting,  and 
S is the separation increment in delay  r at which a(f, r)  must be computed; 
that is,   S is the shift between temporal weighting locations (see figure 2A). 
Since the separation S in delays can be taken to be smaller than the temporal 
weighting duration 1^, (7) allows for overlapped weighted transformation of 
the available data (see (6)). 
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The operation described by (7) is depicted in figure 2B. When the Fourier 
transform (6) on weighted time segment aa is completed, the set of frequency 
components denoted by the vertical line of Xs at the end of segment aa are 
available. Similarly, frequency component values at the ends of segments bb,..., 
cc are indicated in figure 2B; these components correspond to delayed locations 
of the temporal weighting w.   Now, for a fixed frequency, say fj,  the array 
of (delayed) frequency components indicated in a horizontal box in figure 2B is 
subjected to a delay weighting and is Fourier transformed according to (7), 
thereby yielding vernier spectrum Y(fi, »). Similar outputs are available for 
other (adjacent) frequencies of interest, such as f2 or f3 . 

temporal weighting w 

i - Time 

Figure 2A. Overlapped Temporal Weightings 

Frequency 

Ytf,.IM 

»• Time 

Figure 2B. Adjacent Delay Weightings 

Figure 2. Temporal and Delay Weightings 



TR 4767 

Samples of the vernier spectrum in y at multiples of (MS)"1,   where MS 
is the duration of delay weighting d(r),   are given by 

Y (f, —) = S £ exp (-i2»mk/M) a(£,kS) d(kS),   m integer,      (8) 
\   MS/ fc 

whl A can be realized as an M-point FFT of the sequence  |a(f, kS) d(kS)}   of 
length M.   The periodicity of Y(f, ») in  »,   of period l/S (see (7)), means 
that (8) need be computed only at M different values of m. 

Finally, samples of vernier spectrum Y in frequency f at multiples of 
(NA)"1 are given by (using (8)) 

/P      m\       M-l /P\ 
rl , 1 = S 2J    exp (-i2»mk/M) a(— , kSl d(kS) , 
\Nu    MS/        k=0 \NA        / 

p = 0,1,..., N - 1;  m = 0,1,..., M - 1 , 

where delay weighting d(r) has been selected so that samples   jd(kS)}   are 
nonzero only for k = 0,1,..., M-l. The values of a needed in (9) are (using 
(6)) given by 

A— , kS)  = A  X 
\NA        / n 

Y, exp (-i2#pn/N) x (nA) w(nA   - kS) .     (10) 

In order to put (10) directly in the form of a standard FFT, we assume that the 
delay separation S is taken as an integer multiple of the sampling increment A: 

S = ISA . (11) 

Then, if temporal weighting w has nonzero samples |w(nA)} only for 0<n < N-l, 
(10) becomes 

/P \ N-l 
al— , kS I = exp(-i2»pkIg/N) A  V    exp (-i2tpm/N) x(mA + klg A) w(mA), 

\NA        / m=0 

(12) 

0 < p < N - 1,   0<k<M-l  . 
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The exponential phase factor preceding the sum (FFT) in (12) takes on particu- 
larly simple forms for two special cases of delay separation S:  For Is = N/2, 
delay S is equal to half the temporal weighting duration Lw and is termed 
SO percent overlap; for I   - N/4,  delay S is one-quarter of 1^ and is termed 
75 percent overlap. For these two cases, 

50 percent overlap, Is ■ N/2, phase factor = (-1)** ; (13A) 

75 percent overlap, Ig ■ N/4, phase factor = (-i)1* . (13B) 

By proper branching in a computer program, no storage or complex multiplica- 
tions are necessary to incorporate these phase factors in (12), prior to its 
usage in (9). (An alternative approach that completely circumvents the phase 
factor in (12) is described in appendix A.) 

Equations (12) and (9) are the essential results of interest. We now inter- 
pret them by means of simple examples that will enable us to make good choices 
of temporal weighting w,   delay weighting d,   and separation (overlap) S. 

INTERPRETATION OF THE VERNIER SPECTRUM 

In appendix B, the vernier spectrum is shown to be given in terms of X by 

Y(f,r) = I W(-r)   £ X\f + * - ~}J • D(,) • fy(r) , (14) 

where all the convolutions are on »,   with f held fixed.   D(i») is the delay 
window corresponding to the delay weighting d(r). 

The linearity jf the two Fourier transforms, (6) and (7), on tbe data x(t) 
indicates that we can investigate the behavior for data components separately 
and merely add the results. The fundamental component is 

x(t) = exp (i2»f0t),   X(f) = 5(f - fo) (15) 

At this point, we shal) make a series of reasonable assumptions and require- 
ment , and deduce desirable prope "ties about the weightings and separations» 
The first assumptions are 

(a) excitation frequency fQ < (2A)-1, 

(b) coarse analysis frequency f < (2A)   , 

(c) ly, » A . 
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Assumption (a) av   ds aliasing, (b) restricts analysis to the fundamental range, 
and (c) requires the temporal weighting to cover many samples of the process 
x(t).   Furthermore, if 

(d) temporal window W has low sidelobes, 

the only term in the sum in (14), after substituting (15), that has substantial 
value is that for m = 0, and it yields 

Y(f, r) 3 [w(f - f«) D(» + f - f j# ty„)  . (16) 

A plot of this equation versus vernier frequency v is given in figure 3, where 
Lj is the length (duration) of delay weighting d(r). The narrow lobe at ■» = fQ - f 
is the desired component; this component to displaced from the coarse analysis 
frequency f (corresponding to » = 0) by fg - f Hz,  which places it at absolute 
frequency f + (fg - f) = fQ,   as desired. The shape of this lobe is governed by 
tiie delay window D; thus, if 

(e) Itf » S , 

(f) delay window D has low sidelobes, 

the large lobes separated by l/S Hz in figure 3 will not overlap significantly, 
and potentially good spectral estimation is possible. The necessity of delay 
weighting is made obvious by these observations. 

Y(f.t/) 

W<f-f0)DlO) 
W(f-f0)D(|/+f-f0) 

Figure 3. Vernier Spectrum 
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There are a few additional points worth noting about figure 3. The peak height 
of the lobes, W(f - fQ) D (0), is a function of the exact location of the excitation 
frequency fo and the coarse analysis frequency f.  This undesirable picket- 
fence effect* (which was not present in figure 1) can be minimized: 

(g) choose analysis frequencies |fk| closely spaced (see figure 2B). 

Then life- fol is small for some value of k. Also, since the width of the lobes 
in figure 3 is l/ly, where Lg is the delay weighting duration and will betaken 
of the order of the fcafcal record length available or utilized, very fine resolution 
in p is possible. Hence, narrowband components closer than 1/Lw» tne resolu- 
tion capability of a single time segment, can be resolved by using this technique. 

FFT CONSIDERATIONS 

Samples of the vernier spectrum Y(f, i>) were given in (9). The locations 
of the samples aret 

(17) 

The range covered by the vernier frequency v is S"1, and will be greater than 
the increment in fE  which is (NA)~1, if overlapped temporal weighting is used. 
And since the full range,  S~*, would encompass a spurious lobe for values of 
| fg. - f | near (2S)~* (see figure 3), overlapping is necessary. 

The approach adopted here is to utilize all the samples in f at separations 
of (NA)"1, and use only samples in v which cover a range of (NA)"1; that is, 
we use the central portion of Y cente ed around v = 0, including negative fre- 
quencies. In terms of figure 2B, adja« ent delay weightings at fj_, f2, fß will be 
employed. The alternative time-saving procedure of attempting to utilize all of 
the M samples in v, and using only enough samples in f to fill in the frequency 
axis, can lead to a very bad picket-fence effect, in addition to large spurious 
lobes at undesired frequency locations. These conclusions follow upon piecing 
together several vernier spectra like figure 3 for appropriate values of f and 
excitation frequency fQ. 

f*   °t 
i 2 N-l 

NA '   NA* 
•.., ■--- ■ 

NA 

1 2 M-l 
y:   0, 

MS* MS* 
..,          • 

MS 

♦See reference 4, page 47. 
tThe upper half of the array of numbers in (17) corresponds to negative fre- 

quencies. Thus the last samples in each array correspond to f =-(NA)_1 and 
9 = -(MS)"1, respectively. 
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EXAMPLES 

The general guidelines furnished in the previous section do not yec enable 
us to make quantitative selection of good weightings for different degrees of 
overlap. To make this selection, several examples are considered and compared. 
The numerical examples utilize 

1 1       1 
A = • seconds, N = 1024,   — = — Hz, 

1024 MS      8 
(18) 

^ = 256 1—) 256-i Hz . 
* W 2 

(A sample program utilizing (9), (10), (11), (18), and the method of appendix A 
is given in appendix C for 75 percent overlap.) 

50 PERCENT OVERLAP 

At 50 percent overlap of the temporal weighting, * several possibilities wore 
tried. They included 

cosine lobe :  w(t) = cos (irt/Lw) 
cosine   lobe (Hanning) ; w(t) = cos2 (irt/Lw) 

Dolph-Chebyshev (Reference b)t 

A complete list of cases is presented in table 1. 

|t| < Lw/2 .       (19) 

In figures 4A through 41, $ decibel plots of the magnitude of tin estimated 
spectrum are given for cosine temporal weighting and for (cosine)2 delay 
weighting. All plots are normalized with respect to a maximum of 0 dB, which 
occurs for fo = f = 256 Hz,   v = o Hz. Figure 4A, for example,  demonstrates 
the behavior predicted by figure 3, ~amely, the presence of spurious sidelobes 
every S~l = (.5xl s)~l = 2 Hz.  The largest spurious lobe in figure 4A is 
-23.5 dB at 258 Hz. The slow rate of decay of the peaks at 256 + 2n Hz is due to 
the discontinuity of slope of w(t) at + Lw/2 for this example.  The desirable 
feature of a narrow mainlobe is attained, as indicated in figure 4. The succes- 
sion of plots in figure 4 shows that the extent of the picket fence varies greatly 

*When these weightings are employed in the FFT, they arc delayed by 1^/2 
seconds, thereby being nonzero in the Interval (0, L^). 

•A quick and accurate method of generating the Dolph-Chebyshev weights by 
means of efficient use of an FFT is presented in reference 6. 

* Figures 4 through 14 follow the text, beginning on page 16. 

10 
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Table 1. Examples of Temporal and Delay Weightings 

Figure Temporal 
Weighting 

Delay Weighting Overlap Number of Tones 

4 cosine cosine2 50 

5 cosine" cosine2 50 

6 Dolph-Chebyshev cosine2 50 

7 cosine2 cosine2 75 

8 cosine** cosine2 75 

3 
4 

cosine cosine2 75 

10 cosine5 cosine* 75 

11 Dolph-Chebyshev cosine2 75 

12 cosine2 flat 75 

13 cosine2 cosine 75 2 

14 cosine2 flat 75 2 

with excitation frequency, reaching a maximum of -3.20 dB in figure 4H for 
fo = 256 7/16 Hz. (The figures for f, > 256 1/2 Hz repeat the behavior shown.) 
The worstsidelobe of -23.0 dBoccursfor f<, = 256 1/8 Hz, as shown in figure 4C. 

It should be noted that if sidelobes were to be measured with respect to the 
peak on that same plot, figure 4C would yield a sidelobeof -23.0+C. l3 = -22.9db. 
Thus, the convention adopted here must be kept in mind in the following discussion. 

Instead of applying the weighting directly in the tima domain by means of 
multiplication on the data x, the effect of cosine weighting can be accomplished 
in the frequency domain by means of convolution of the spectrum with the se- 
quence (i/2) {l, -l}; however, the resultant must be interpreted as the spectral 
value between the two quantities convolved at each frequency step. * More gen- 
erally, (cosine)11 time weighting can be accomplished alternatively by means of 
convolution of the (unweighted) spectrum with the sequence 

"k-lW.-W (-I)"! (20) © MS--Q <-l,ni 
♦This possibility and its interpretation were pointed out by Dr. N. L. 

Owsley. 

11 
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of length n + 1,   and then interpreted as the spectral value at the center of the 
region convolved, for each frequency step; see appendix O. The convolutional 
sequences in (20) are given in table 2 for n = 1 through 5. 

Table 2. Convolution .Sequences 

n Convolution Sequence 

1 i 1/2 j 1, -l\ 

2 1/4 (-I, 2, -l( 

3 i 1/8 {-I, 3, -3, if 

4 1/16| 1, -4, 6, -4, 1| 

5 1 1/32 4 1, -5, 10, -10,5, -if 

Since the effect of (cosine)2 temporal weighting is very easy to incorporate 
in the frequency domain by means of convolution, it must be considered as a 
candidate for weighting. The results in figures 5A and 5B show that although 
the picket fence is reduced to -2.70 dB, the peak sidelobe increases to -15.4 dB. 
(For brevity, we are now presenting only selected cases of worst excitation 
frequencies« I Th? ronson for the increased cidclobcc for this temnor9l wp>i<rht- 
ing is that 50 percent overlap is not yet great enough to realize the deeper first 
sidelobe level of -31.5 dB; that is, we are still sampling, according to figure 3, 
on the skirts of the mainlobe for some excitation frequencies.  Generally,  for 
50 percent overlap, the peak sidelobe will occur approximately at the excitation 
frequency such that the worst sidelobe (or mainlobe) of the temporal window 
beyond f = 1.5/1^ is encountered; this may be seen by considering figure 3 
and recalling that we plot only the central portion of Y(f, •»)• Thus the (cosine)n 

weightings in tables 1 and 2 for n > 2 are not acceptable for 50 percent overlap, 
since sampling of the mainlobe is encountered. 

The realization of minimum sidelobe level for a specified beamwidth(tothe 
first null) is exactly the problem addressed by Dolph, reference 5. Accordingly, 
this weighting is of considerable importance in spectral estimation. In figures 6A- 
6C, the effects of Bolph-Chebyshev time weighting are presented. The worst 
sidelobe of -33.2 dB occurs for f0 = 256 1/8 Hz (figure 6C). These results are 
noticeably better than in figures 4 and 5. 

When triangular temporal weighting was tried, it had a peak sidelobe of 
-20.2 dB; again, we are samplingthe skirts of the mainlobe. Thus, if 50 percent 
overlap is all that can be utilized for some applications, due perhaps to limited 
computation time, the cosine-lobe temporal weighting is the best of the simply 
applied windows (that is, by means of frequency domain convolution), but the 
Dolph-Chebyshev time weighting is 10 dB better than the cosine lobe weighting. 

12 
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75 PERCENT OVERLAP 

At 75 percf at overlap of the temporal weightings the following examples 
were utilized: 

cosine2 lobe (Hanning) : w(t) = cos2 (irt/Lw) 
cosine3 lobe : w(t) = cos3 (st/L^f ...    T   /9 /91. 
cosine4 lobe : w(t) = cos4 (,t/Lw)'m < ^ {   ' 
cosine5 lobe : w(t) = cos5 (tt/Lw) 
Dolph-Chebyshev   

The results for the Hanning weighting are given in figure 7. The peak sidelobe 
is -41.8 dB at fo = 256 1/2 Hz in figure 7C, and the picket fence is -2.60 dB 
at fo = 256 7/16 Hz in figure 7B. Thus, a much improved sidelobe level is 
realized relative to 50 percent overlap, at the expense of increased computa- 
tion effort, that is, increased overlap and number of FFTs. 

In an effort to further improve performance, the (cosine)3 weighting, which 
has a higher degree of continuous derivatives at + Lw/2, was tried.  The re- 
sults in figure 8 show a maximum sidelobe of -51.2 dB and a picket fence of 
-2.34 dB. 

Continuation of this effort to smoother weightings such as (cosine)4, figure 9, 
shows a peak sidelobe of -48.1 dB and a picket fence of -2.18 dB.  The peak 
sidelobe has increased over that for (cosine)3 weighting because, for 75 percent 
overlap, the peak sidelobe (or main lobe) of the temporal windowbeyond approxi- 
mately f = 3.5/Lw IS encountered. It so happens that the worst case in this 
region is larger for (cosine)4 than for (cosine)3 temporal weighting. 

For (cosine)5 temporal weighting, the peak sidelobe is reduced further to 
-54.1 dB. Also, the picket fence is improved to -2.07 dB; see figure 10. This 
weighting is easily accomplished via frequency domain manipulations; see table 2. 
An alternative temporal weighting of virtually equal quality to (cosine)5 is cubic, 
that is, sections of cubic curves that have continuous derivatives of as high 
order as possible. The temporal window is proportional to 

4 
[sin(irLwf/4)| 

and has a worst sidelobe of -53.1 dB. (The picket fence was not computed.) 
However, a cubic temporal weighting is not easily accomplished in the frequency 
domain. 

13 
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When (cosine)6 temporal weighting is considered, it is found that 75 per- 
cent overlap forces us to sample the temporal window on the skirts of its main- 
lobe. This is an unacceptable weighting because the peak side!obe in the vernier 
spectrum increases significantly. 

The possibilities of Dolph-Chebyshev weighting are indicated in figure 11. 
The worst sidelobe is -86 dB in figure 11B for fn = 256 1/4 Hz, and the picket 
fence is -2.29 dB in figure 11C for fb = 256 7/16 Hz. This is a 32-dBimprove- 
ment in sidelobe level compared with (cosine) 5 weighting. The picket fence is 
degraded by 0.22 dB. 

To determine the effect of not using delay weighting, figure 12 was computed 
for (cosine)2 temporal weighting and flat delay weighting. For certain excitation 
frequencies, a very narrow mainlobe is realized; see figure 12A. However, for 
other excitation frequencies, the lack of delay weighting creates broad "shoulders" 
of significant level; see figure 12B. Also, the sampling in f and », inherent 
in the FFT, produces a picket fence of -5.0 dB.  Thus, although a low peak 
sidelobe is attained, lack of delay weighting is very detrimental to performance, 
as will be further demonstrated below. Notice from figure 7 that (cosine)2 delay 
weighting also yields a peak sidelobe of -41.8 dB, but has no broad shoulders 
and has a picket fence of only -2.60 dB. 

The detrimental effects of no delay weighting are best illustrated by a com- 
parison of figures 13 and 14, which have two tones separated by 1/2 Hz, one 
15 dB stronger than the other. It is seen that these two tones are resolved, even 
though they are closer than the resolution capability of the individual time seg- 
ments, that is, closer than 1 Hz. In figure 13, (cosine)2 delay weighting is 
employed; in figure 14, none is employed. A comparison of part A of these 
figures reveals that, for excitation frequencies 256 and 256 1/2 Hz, the flat 
delay weighting is better.  However,  for excitation frequencies 256 1/16 and 
256 9/16 Hz, the presence of the weaker tone is clearly evident in figure 13B, 
but hardly discernible in figure 14B (no delay weighting). The presence of noise 
would obscure the weaker peak. Thus, although the peak sidelobe may be very 
small, the presence of high-level broad shoulders must also be eliminated by 
use of delay weighting. 

CONCLUSIONS 

An approximate and quick FFT technique for vernier spectral analysis is 
possible by employing overlapped temporal weighting and delay weighting. For 
50 percent overlap and Hanning delay weighting, the best simply-applied tem- 
poral weighting discovered was a single cosine lobe, realizing a peak sidelobe 

14 
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of -23 dB. However, Dolph-Chebyshev temporal weighting achieves -33 dB side- 
lobes. For 75 percent overlap and Hanning delay weighting, the best simply ap- 
plied temporal weighting discovered was (cosine)5, which realized apeak sidelobe 
of -54 dB. However, Dolph-Chebyshev temporal wcffht*ag is capable of -86 dB 
sidelobes. Which overlap and weighting to employ depends on the limitations on 
computation time and storage, and on the relative strength and location of inter- 
fering tones. 

The overlap is not limited to the above choices, It could, for example, be 
67 percent. The best weightings were not investigated in this case, because it 
was felt that the above overlaps were easier to implement in most cases of 
practical interest However, Dolph-Chebyshev weighting is always a strong 
candidate and is quickly and accurately generated (reference 6). 

[ 
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Appendix A 

no+N-1 
TWO METHODS OF COMPUTING     V*      exp (-i2»pn/N) qn 

n = n_ 

Define 

no+N-1 
Qp=     V*     exp(-i2»pn/N)qn, 0<p<N-l , 

nsno 

where OQ > 0.   If we let m = n - i^, (A-l) becomes 

N-l 
Qp = exp (-12wpn0/N)  \?   exp (-i2»pm/N) qm+tto 

m = 0 
,    ,no+N-1 

The sum in (A-2) is an FFT of the sequence  \qn\« 

(A-l) 

(A-2) 

For an alternative method, consider the general term qn in (A-l). Then, 
if 

(a) n = 0, N, 2N,..., qn gets weight exp (-10); 

(b) n = 1, N+1, 2N+1,..., qn gets weight exp (-i2»p/N) ; (A-3) 

(c) n = N-1, 2N-1, 3N-1,.... qn gets weight exp (-i2»p(N- 1)/N) . 

So, if we define n = n mod N, then case 

(a) corresponds to n = 0 ; 

(b) corresponds to n" = 1 ; (A-4) 

Therefore, let 

(c) corresponds to n = N - 1. 

VR = V no<n<no+N-1 (A-5) 

A-l 
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in which case 

N-l 
Q   = J*    exp (-i2»pn/N) v~ , 0 < p < N - 1 (A-6) 

,N-1 
this is simply an FFT of  |vR |Q    , with no phase factor necessary. Equation 
(A-5) corresponds to filling up the v^ array, from the given quantities qn, 
starting from the nonzero position,   HQ mod N, and cycling around to position 0. 

To apply these results to (10), suppose weight w is nonzero for t > 0 . 
Then if t^ is the smallest integer such that UQ > k S/A, (10) canbe expressed as 

a I—, kS] - A      >        exp(-i2»pn/N) x(nA) w(nA - kS) . (A-7) 

This is of the form of (A-l) if we identify 

qn = x(nA) w(nA - kS) . (A-8) 

A-2 
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Appendix B 

DERIVATION OF VERNIER SPECTRUM 

From the first line of (7) in the main text, there fallows immediately 

Y(f, P) = A(f, v) • DW • S^p) , (B-l) 

where all convolutions are on i>,   for f fixed. Then using (6), we obtain 

A(*» mfdt exp (-i2*»T) a(f,r) 

= /dr exp (-i2*i»T) /"dt exp (-i2*ft) x(t) w(t - r) af(t) 

= W(-»)fdt exp (-12 »(f + v) t) x(t) A^(t) 

= w(-,)x;x(f+,-^. 

(B-2) 

Substituting (B-2) in (B-l), we have 

Y(f,*) = =    W(-»)£x£+»-   J\mD(P)9tiJ8(p). (B-3) 

B-l/B-2 
REVERSE BLANK 
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Appendix C 

SAMPLE PROGRAM 

The program furnished below is illustrative of the vernier technique. It 
has been written for 

1 1 
A (DEL) = seconds, N = 1024, M = 32, S =—sec 

1024 
(C-l) 

f (F0) = 256(1/16) 256- , 

but could be ??sily changed to other cases. The input data are furnishedby inter- 
nal functions XREAL and XIMAG; currently, two tones of relative strength 
-15 dB and separation 1/2 Hz are incorporated. Loop 1 in the main program 
accomplishes Manning temporal weighting, while loop 2 accomplishes Hanning 
delay weighting. The subroutines MKLFFT and QTRCOS are detailed in refer- 
ence 7. The method in this program employed the cycling technique described 
in appendix A. 

PARAMETER NslOlu »Ms32, IWsN/i»*l, M<tsM/*»+l 
INTESEK PS 
DIMENSION ZR(N).ZI<N>.«<N)»DCM)»ARl2l,M)»Al(2l»M>»ADR<M>»ADI<M>» 

$0B(M)tCN(N<»)»CM|MH)»Z(200)>X(lbB)»Y(l6B) 
SQ=l0,**(-.75> 
TPIMS2.*9.1<U59265<»/(M+1) 
TpINst.*3«mi59265i»/N 
M1SM-1 
NlsN-i 
DELsl./N 
ISSN/1» 
SslS*DEL 
IM=INTIL0S(FLOAT(M) )«1.«»27«.5) 
CALL QTRCQS(CNtN) 
CALL OTRCOS(CMPM) 
CAUL MODESS(Z#OJ 
CALL SüaJE6(z»».»-iOO,,i65,,o.) 
CALL 0dJCTS(2»O30,»lH00.i2«»25.f2350.) 
DO 1 MssO»Nl 
N(MSUUlt-COS(TPI«*MS) 
DO 2 KSsOtMl 

C-l 
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2 D<KS*1)S1.-C0S(TPIM*(KS*1>) 
DO 13 IC=1»16B 

13   X(lC)fIC 
00 12 IF=0#B 
F0=256,+IF*.06i>5 
00 3 KSsOfMl 
N05IS*KS 
NU=N0*N1 
00 * NSsN0>NU 
NT=M00(NS»N) 
ZR(NT+1)sXREAL(NS*JEL)• tf(Ns-NO+1) 
Zl(NT*l)=XlHAS(NS*üEL)*K(NS-NO*i) 

»    CONTINUE 
CALL MKLFFT(ZR»zI,iN»10»-l) 
00 5 PSs2«»6,266 
AR(PS«2»5»KS*l)r DtL*ZR(PSU) 
AHPS-2!»5»KS*1)= DtL*ZI(PS*l) 

3 CONTINUE 
3    CONTINUE 

00 6 PSs2«*&,26b 
00 7 KSsO»Mi 
ADR(KS*1)5S*AR(pS-2»5,KS*1)*0(KS*1> 
ADl(KS+l)=S*AltpS-2«»5,KS*l)OJKS*l) 

7  CONTINUE 
CALL MKLFFT(ADR,ADI#CM#IM»-D 

lF(IF«EQ,0,AND.pS,£Q.2S6) P£AKslO.*L03lO(AOR(l)**2*AOl(l)**2) 
00 8 KSsOiMl 
AR(PS-2<»5»KS*l>sADR(KS*l) 
AI (PS-2«»5»KS+l)sADl (KSU> 

8    CONTINUE 

8 CONTINUE 
DO 9 PS:2<>6,266 
ICS(PS-2<»6)*6 
00 10 MSsOfHl 
AsAR(PS-2<>5,MSti)**2*A£(PS-2<»5,MS+l)*«2 
A»MAXtAfl.E«36> 
DB(MS*l)=10.*LOslO(AJ-PEAK 

10 CONTINUE 
PRINT 1<H PS 

II»   F0RMAT(///I10/> 
PRINT 11. DB 

11 FORMAT'/6t15.6) 
Y(IC*l;=D9(M-3) 
T(IC*2)SDB(W2) 
Y(lC*3)sDB(M-l) 
Y(ICH)sOB(M) 
V{IC*f)sOB(l) 
Y<ICH)sOB<2) 
Y{IC*7)sOB(3) 
Y(IC*8)5DBU) 

9 CONTINUE 
SIOEs-200. 
DO 17 ICsl»16Ö 
IF(IC,6E.69,ANÜ.IC.LE.109) 80 TO 17 
SIUE3«AX(SIDE»Y(IC)) 

C-2 
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17  CONTINUE 
PRINT 16» SIDE 

IS  FORMAT«/' PEAK SIDLL096 IS»,EL*.8) 
CAUL S£TSM6<Z»3O,I.) 
DO 15 lPslO,90#jO 
CAUL IINES6(Z»0, 5,f-FL0AT(IP>> 

15   CALU LINES6(Z»1,165.»-FL0AT(XP>) 
DO 16 IP=13,157.8 
CALL LINES6<Z»O,FLOATUP)»O.) 

16  CALL LINES&(Z»I.FLOAT(IP)'«IOO.) 
CALL SETSN6(Z»3O»2.) 
CALL LINESSCZ»Q.5.,-IOO.> 
CALL LINES6(Z»I,S«»O,) 
CALL LINES6(Z»I.16&.»O.) 
CALL LINES6(Z,I.I65,»-IQO.) 
CAUL LINESS(Z»I.5..-IOO.) 
CAUL LINESS(Zfi68,X»Y) 
CALL PA6EGlZ»0»3»l) 

12  CONTINUE 
CALL EXITS(Z) 
PRINT lit PEAK 
FUNCTION XREALIT) 
XREAL»C0S(2.*3.i*i59265H«F0*T) 

S    ♦CUS«2.*3tl«»159265«»«(FO*.5)*T)*S8 
RETURN 
FUNCTION XIHA8VT) 
XIMAS* SIN(2,*3. i«Ut>92C5«»*F0*T) 

S    ♦SIN(2.*3.i<»lb9265<»*<F0*.!>)*T>*S8 
RETURN 
END 

C-3/C-4 
REVERSE BLANK 
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Appendix D 

EFFECT OF (COSINE)n TIME WEIGHTING 

Let us define the spectrum of unweighted data x as 
N-l 

Z(f) = J*dt exp (-12» ft) x(t) A«A(t) = A £   exp (-i2trkAf) x(kA),     (D-l) 
k=0 

and that corresponding to weighting w as 

Zw(f) = Jdt exp (-12*£t) x(t) w(t) A8A(t) = Z(f) • W(f) 

N-l 
= A  V   exp (-i2wkAf) x(kA) w(kA) . 

k=0 

(D-2) 

(D-3) 

Now for (cosine)11 time weighting, we have* 

w(kA) = sin11 (kir/N),   0 < k < N - 1. 

Substituting (D-3) in (D-2), there follows 

N-i /i\nr ln 

Zw(f) = A £   exp (-12»kAf) x(kA) f—)    exp (ikir/N) - exp (-ikw/N) I 

N-I »nn   n       / \    I" k*      1 
= A £   exp(-i2irkAf)x(kA)U-j     £ (-ljjTjexp  i--to-2j) 

the last step via use of (D-l). This result yields (20). 

♦See the first footnote to equation (19) of the main text for the explanation 
of sinn in (D-3). 

(D-4) 

D-l 

■ '■ ■'   ■ ■ ' 
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For tile special case of n = 1,   (D-4) becomes 

Z, !w(f) =i 1/2 |z(f - — J - zff + -Ml, 
L \    2NA/        \     2NA/J 

(D-5) 

and in particular, 

*;• 

"W \NA +    2NA/~ [   W"      V NA /J (D-6) 

The right-hand side of (D-6) involves two adjacent spectral values as afforded 
by the standard N-point FFT in (D-l). The left-hand side of (D-6) is the spec- 
tral value of Zw at the frequency halfway between the above two spectral loca- 
tions. Thus, under this interpretation of the right-hand side of (D-6), the desir- 
able sidelobe control predicted by the convolution in (D-2) can be attained.   A 
similar interpretation is possible for (D-4) for general n. 

■H■HH■'""■■■S^■<■i■■,■, — 
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