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AN APPROXIMATE FAST FOURIER TRANSFORM TECHNIQUE
FOR VERNIER SPECTRAL ANALYSIS

INTRODUCTION

To detect the presence of very narrowband weak signals in noise, and to
measure their center frequencies accurately, it is necessary ‘o Fourier trans-
form a long time segment of the available process. When the center frequencies
of the signal components are unknown and the total search bandwicth of interest
is large, this procedure demands storage and computation of many degrees of
freedom, that is, search of a large time-bandwidth product space. It would be
advantageous if a quick, coarse search for narrowband components could be
conducted, followed by a finer vernier analysis over a limited hand where the
presence of narrowband components has been indicated. Such an adaptive pro-
cedure would be less time-consuming and require less storage. Also, if the
procedure did not need to be exact, but yielded an approximation with accept-
able sidelobes, the required storage and computation might be reduced further.

This report presents just such a technique, which
1. accepts the input process in smaller time segments as they are available,

2. performs a reasonable-size weighted fast Fourier transform (FFT) on
each overlapped segment,

3. stores only that frequency portion (at each segment) where narrowband
components are indicated to be present, and

4, performs a small-size weighted FFT over the total data record available,
for each frequency bin stored.

Steps 1 and 2 permit smaller-size FFTs than would be requ'red if the total data
record were spectrally analyzed in one operation. Steps 3 and 4 constitute the
adaptive feature of this technique. The last transformover time (delay) instep4,
for each frequency bin, is a vernier frequency analysis, measured from the
center of each bin; the degree of approximation of this technique is the subject
of this repout.

]
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Some past work onperforming large-size FFTs by means of several smaller
FFTs is reported in references 1 and 2. The methods repoited there are exact,
but they consume iore time aud require more storage than the method to be
presented here. In particular, the two methods of reference 1 require tco many
small-size FFTs, and the method of reierence 2 requires additional multiplica-
tioas by complex exponentials and a fair amount of storage. The approximate
technique of reference 3 is similar to the one outlined above, up to step 4, with
the notable exception of overlapped weighting; at that point the technique of ref-
erence 3 requires transformation back to the time domain followed by another
transform to the desired frequency domain. Additional transfcrms are required
in this last technique, and it produces greate: sidelobes than thc new technique,
especially when the temporal weighting is judiciously selected.

FUNDAMENTAL SPECTRA L RE LATIONSHIPS

LARGE-SIZE FIFT APPROACH

Before embarkiig on the approximate technique, we review the standard
large-size FFT approach to spectral analysis. Suppose a data waveform x(t)

is sampled at time instants nA, n integer. Then the voltage density spectrum
that can be computed is*

Vi) = [ dt exp (-i2wft) x(t) ut) A 5,

@)

A exp (-i2wfnd) x(na) u(na),

n
where u(t) is a temporal weighting deliberately imposed to control spectral
sidelobes, as will be discussed shortly; see figure 1A. The finite duration of

u(t) terminates the integral and sum in equation (1) at finite limits. The im-
pulse-train function in (1) is defined as *he infinite sum

sot)= 2 8(t-na). (2)
n
The integral rcpresentation in (1) allows us to expresst

Vi) =X e uiH) @ Sy‘(f) , (3)

*All integrals are over the range of nonzero integrand.
The Fourier transform of the lower-case time functior x(t) is the upper-
case frequency function X(f); this notation is used throughout.
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i

where @ denotes convolution, and, in keeping with (2),

0= T 8¢5 ). @

Thus, the observed spectrum V(f) is the convolution of X(f) with the set of
windows* U(f) @ 8,(f), which is depicted in figure 1B.

u(t)

Figure 1A. Temporal Weighting

}

U\f)oai(f)

- f

[
Figure 1B. Spectral Windows
Figure 1. Time and Frequency Relationships

G
Bl =g

Because the ideal speciral window is a single impulse at f = 0, the aliased
mainlobes at m/A, m # 0, are undesired. Also, the window U(f) is desired
to be narrow, with very small sidelobes. Since the weighting u(t) is of limited
duration, the mainlobe width of U(f) is not zero, but is inversely proportional
to the time duration.

Now, if the voltage density spectrum V(f) is computed at multiples of
(La)-1, where LA is the time duration of u(t), we obtain

P
\' (ﬁ)= A Y exp (-i2wnp/L) x(na) u(na) , p integer . (5)
n

*In the time domain, u(t) is called a weighting; the corresponding Fourier
transform in the frequency domain, U(f), is called a window. This nomencla-
ture is used throughout.




s

ik daaban 4

et e o oo iaii

b aiabi i e e i B )

Chaint e oy i

TR 4767

Since V(f) is periodic of period 1/A (see (1)), (5) need be computed at L
differont points; thus it can be realized as an L-point FFT of sequence
{x(nA) u(nA)} . For fine frequency analysis (that is, large LA) the size L of
the FFT may be toolarge to compute easily, under storage and time limitations.
The values in (5) are samples of tae convolutionof figure 1B with voltage density
spectrum X(f).

APPROXIMATE FFT TECHNIQUE

Just as we started above with an integral definition of a spectrum, then
showed that samples of this spectrum were attainable with an FFT, we begin
with the spectral-delay function, a, defined as

a(f,r) = f dtexp (-i2xft) x(t) w(t - 1) As,(t)
(6)
=4 E exp (-i2xfn4) x(nd) w(nd - r).
n

The temporal weighting w is now delayed by r seconds; if the duration of w
is Ly seconds, the function w(t - r) picks out a delayed portion of data x
of length L,,, and subjects it to the same transform as in (1). This operation
is depicted in figure 2A, where the temporal weighting can be located at aa,
bb,..., cc. Thisfigure is drawn for 50 perceut overlap of the temporal weight-
ings; however, other overlaps are possible and recommended in some cases.

The next step, consistent with step 4 in the Introduction, is to perform a
Fourier transformation on the delay variable r, while holding frequency vari-
able f fixed. The general definition is the vernier spectrum

Y(f,v) = [drexp (-i2nv7) a(f, 1) d(r) Sbg(r)
(7
=8 ) exp (-i2#vkS) a(f, kS) d(kS) ,
K

where » is the vernier frequency, d(r) is called the dzlay weighting, and

S is the separation increment in delay r at which a(f,r) must be computed;
that is, S is the shift between temporal weighting locations (see figure 2A).
Since the separation S in delays can be taken to be smaller than the temporal
weighting duration L, (7) allows for overlapped weighted transformation of
the available data (see (6)).
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The operation described by (7) is depicted in figure 2B. When the Fourier
transform (6) on weighted time segment aa is completed, the set of frequency
components denoted by the vertical line of Xs aithe end of segment aa are
availeble. Similarly, frequency component values at the ends of segments bb,...,
cc are indicated in figure 2B; these components correspoud to delayed locations
of the temporal weighting w. Now, for a fixed frequency, say f;, the array
of (delayed) frequency components indicated in a horizontal box in figure 2B is
subjected to a delay weighting and is Fourier transformed according to (7),
thereby yielding vernier spectrum Y(f, »). Similar outputs are available for
other (adjacent) frequencies of interest, such as f, or fg .

temporal weighting w

1 1 - Time

(V)

“‘J ‘

delay
weighting d

X
X
|
|
|
|
b

O o e ——— . —
ﬂn——-——*—

i T'i 0

Figure 2B. Adjacent Delay Weightings

Figure 2. Temporal and Delay Weightings
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Sampies of the vernier spectrum in » at multiples of (MS)'I, where MS
is the duration oI delay weighting d(r), are given by

Y (f, flg) =S ) exp (-12smk/M) a(f,kS) d(kS), m integer, (8)
3 k

whi :h can be realized as an M-point FFT of the sequence {a(f,ks) dkS)} of
length M. The periodicity of Y(f,») in », of period 1/S (see (7)), means
that (8) need be computed only at M different values of m.

Finally, samples of vernier spectrum Y in frequency f at multiples of
(NA)'1 are given by (using (8))

P m M-1 P
Y(——-, —) =8 E exp (-i2#mk/M) a{ — , ks} d(ks),
Na MS k=0 NA ©)

p=0,1,..., N"l: m=o,1’oo., M-l,

where delay weighting d(r) has been selected so that samples {d(ks)} are
nonzero only for k=0,1,..., M - 1. The values of a needed in (9) are (using

(6)) given by

p
a(— ’ ks) = A E exp (-i29pn/N) x (n4) wna -kS). (10)
NA n

In order to put (10) directly in the form of a standard FFT, we assume that the
delay separation S is taken as an integer multiple of the sampling increment A:

Ss=I;a. (11)
Then, if temporal weighting w has nonzero samples {w(na)} onlyfor0<n< N-1,
(1V) becomee

P N-1
a(— " ks) = exp(-i2epkl/N) A Y exp (-i2#pm/N) x(mA + kI &) w(ma),
NA m=0

(12)

0<p<N-1, 0<k<M-1.
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The exponential phase factor preceding the sum (FFT) in (12) takes on particu-
larly simple forms for two special cases of delay separation 8: For Ig= N/2,
delay 8 is equal to half the temporal weighting duration L., and is termed

50 percent overlap; for I, = N/4, delay S is one-quarter of L,, andistermed
75 percent overlap. For tiwse two cases,

50 percent overlap, Ig = N/2, phase factor = (—l)pk . (13A)
75 percent overlap, I = N/4, phase factor = (-1)PE , (13B)

By proper branching in a computer program, no storage or complex multiplica-
tions are necessary to incorporate these phase factors in (12), prior to its
usage in (9). (An alternative approach that completely circumvents the phase
factor in (12) is described in appendix A.)

Equations (12) and (9) are the essential results of interest. We now inter-
pret them by means of simple examples that will enable us to make good choices
of temporal weighting w, delay weighting d, and separation (overlap) S.

INTERPRETATION OF THE VERNIER SPECTRUM

In appendix B, the vernier spectrum is shown to be given in terms of X by
m
Y, ») = [W("') 2 X(f+ v - T)] ® D(») ® b(v) (14)
: m

where all the convolutions are cn », with f held fixed. D(») is the delay
window corresponding to the delay weighting d(r).

The linearity »f the two Fourier transforms, (6) and (7), on the data x(t)
indicates that we can investigate the behavior for data components separately
and merely add the results. The fundamental component is

x(t) = exp (12#ft), X(f) = 8(f - fo) . (15)

At this point, we shal! make a series of reasonable assumptions and require-
men. ., and deduce desirable prope ties about the weightings and separations.
The Arst assumptions are

(a) excitation frequency f, < (2A)'1.
(b) coarse analysis frequency f < (24)71,
(c) Ly>> aA.
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Assumption (2) av( ‘ds aliasing, (b) restricts analysis fo the fundamental range,
and (c) requires th. iemporal weighting to cover many samples of the process
x(t) . Furthermore, if

(d) temporal window W has low sidelobes,

the only term in the sum in (14), after substituting (15), that has substantial
value is that for m = 0, and it ylelds

Y, ») = [W(f- £,) D(» + f - foi" 87 - (16)

A plot of this equation versus vernier frequency » is given in figure 3, where
Ld {s the length (duration) of delay weighting d(r). The narrow lobe at »={ -
is the desired component; this component iz displaced from the coarse analysis
frequency f (corresponding to »=0) by f, - £ Hz, which places it at absolute
frequency f+ (f, - f) = f, as desired. The ghape of this lobe is governed by
the delay window D; thus, if

(e) Ly>>8,
(f) delay window D has low sidelobes,

the large lobes separated by 1/S Hz in figure 3 will not overlap significantly,
and potentially good spectral estimation is possible. The necessity of delay
weighting is made obvious by these observations.

A YitY)

W(t- 1) DI+ f-1g)
Wif-£5)D(0) 4— — =

iy

-~ U

) 0
'°'f'§ fo-f +%

Figure 3. Vernier Spectrum
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There are afew additional points worth noting about figure 3. The peak height
of the lobes, W(f - f,) D(0), is a functio: of the exact location of the excitation
frequency fo and the coarse analysis frequency f. This undesirable picket-
fence effect* (which was not present in figure 1) can be minimized:

(g) choose analysis frequencies {fi} closely spaced (see figure 2B).

Then |[f;-1f,| is small for some value of k. Also, since the width of the lobes
in figure 3 is 1/L;, where Lgis the delay weighting duration and will betaken
of the order of the {otal record length available or utilized, very fine resolution
in » is possible. Hence, narrowband components closer than 1/L., the resolu-
tion cavability of a single time segment, can be resolved by using this technique.

FFT CONSIDERATIONS

Samples of the vernier spectrum Y(f, ») were given in (9). The locations
of the samples aref

1 2 N-1
f 0’ e 1) S 9 LN | ] e — ;
NA ~ Na NA
a7
1 2 M-1

y: 0, —, — _—

Ms' Ms' ' MS

The range covered by the vernier frequency » is S~1, and will be greater than
the increment in f, whichis (NA)~1, if overlapped temporal weighting is used.
And since the full range, s~1, would encompass a spurious lobe for values of
Iy - £l near (28)'1 (see figure 3), overlapping is necessary.

The approach adopted here is to utilize all the samples in { at separations
of (NA)‘l, and use only samples in » which cover a range of (NA)‘l; that is,
we use the gcentral portion of Y cente 'ed around » = 0, including negative fre-
quencies. In terms of figure 2B, adja: ent delay weightings at f;, fz, f3 will be
employed. The alternative time-savin procedure of attempting to utilize ail of
the M samples in », and using only enough samples in f to fill in the frequency
axis, can lead to a very bad picket-fence effect, in addition to large spurious
lobes at undesired frequency locations. These conclusions follow upon piecing
together several vernier spectra like figure 3 for appropriate values of f and
excitation frequency f,.

*See reference 4, page 47.

TThe upper half of the array of nwubers in (17) corresponds to negative fre-
quencies. Thus thelast samples in eacharray correspond to f =-(NA)~1 and
v= -(MS)'l, respectively.

xR

g R

SRS
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EXAMPLES

The general guidelines furnished in the previous section do not yec enable
us to make quantitative selection of good weightings for different degrees of
overlap. To make this selection, several examples are considered and compared.
The numerical examples utilize

1 1 1
A= —— geconds, N =1024, — = — Hz,
1024 MS 8
(18)
f, = 256 (i) 256 = Hz. .
16 2

(A sample program utilizing (9), (10), (11), (1), and the method of appendix A
is given in appendix C for 75 percent overlap.)

50 PERCENT OVERLAP

At 50 percent overlap of the temporal weighting, * several possibilities were
tried. They included

cosine lobe : w(t) = cos (¥t/Ly)
cosine? lobe (Hanning) ; w(t) = cos2 (st/Ly)) It| < Ly/2. (19)
Dolph-Chebyshev (Reference b)T)

A complete list of cases is presented in table 1.

In figures 4A through 41,} decibel piots of the magnitude of th~ estimated
spectrum are given for cosine temporal weighting and for (cosine};2 delay
weighting. All plots are normalized with respect to a maximum of 0 dB, which
occurs for fy =f= 256 Hz, ¥ =0 Hz. Figure 4A, for example, demonstrates
the behavior predicted by figure 3, ..amely, the presence of spurious sidelobes
every S-1=(.5x18)"1=2Hz, The largest spurious lobe in figure 4A is
-23.5 dB at 258 Hz. The slow rate of decay of the peaks at 256 + 2n Hz isdue to
the discontinuity of slope of w(t) at+ Lw/2 for this example. The desirable
feature of a narrow mainlobe is attained, as indicated in figure 4. The succes-
sion of plots in figure 4 shows that the extent of the picket fence varies greatly

*When these weightings are employed in the FFT, they are delayed by Ly/2
seconds, thereby being nonzero in the interval (0, Lu).

Ta quick and accurate method of generating the Dolph-Chebyshev weights by
means of efficient use of an FFT is presented in reference 6.

IFigures 4 through 14 follow the text, beginning on page 16.

10
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Table 1. Examples of Temporal and Delay Weightings

Temporal Cverlap
Figure Weighti Delay Weighting @) Number of Tones

|

cosine cosine? 50
cosine® cosine? 50
Dolph-Chebyshev cosine? 50
cosine? cosine® 75
cosined

cosine4

e

cosine? 75
cosine2 75
10 cosine® cosine® 75
11 Dolph-Chebyshev cosine2 75
12 cosine2 flat 75
13 cosine? cosine® 75
14 cosine? flat 75

W 0 2 O ¢

I T S Y R R S . . T

with excitation frequency, reaching a maximum of -3.20 dB in figure 4H for
fo = 256 7/16 Hz. (The figures for f, > 256 1/2 Hz repeat the behavior shown.)
The worst sidelobe of ~23. 0 dB occurs for f, = 256 1/8 Hz, as shownin figure4C. 3

It should be noted that if sidelobes were to be measured with respect to the
peakonthat sameplot, figure 4C wouldyield a sidelobe of -23. 0 + . 13=-22, 9 dh.
Thus, the convention adopted here must be kept in mindin the following discussion, :

Instead of applying the weighting directly in the timz domain by means of
multiplication on the data x, the effect of cosine weighting can be accomplished
in the frequency domain by means of convolution of the spectrum with the se-
quence (i/ 2){1, -1}; however, the resultant must be interpreted as the spectral
value betwaen the two quantities convolved at each frequency step. * More gen-
erally, (cosine)? time weighting can be accomplished alternatively by means of
convolution of the (unweighted) spectrum with the sequence

@ Qe

*Th.s possibility and its interpretation were pointed out by Dr. N. L.
Owsley.

BEEIICTES AP
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of length n+ 1, and then interpreted as the spectral value at the ceunter of the
region convolved, for each frequency step; see appendix D. The convobhitional
sequences in (20) are given in table 2 for n = 1 through 5.

Table 2. Convolution Sequences

Convolution Sequence
i1/2{1, -1}
1/4{-1, 2, -1}
i1/8{-1, 3, -3, 1}
1/16{1, -4, 6, -4, 1}
i1/32{1, -5, 10, -10, 5, -1}

A W =B

Since the effect of (cosine)2 temporal weighting'is very easy to incorporate
in the frequency domain by means of convolution, it must be considered as a
candidate for weighting. The results in figures 5A and 5B show that although
the picket fenceis reduced to -2. 70 dB, thepeak sidelobe increases to -15. 4 dB.
(For brevity, we are now presenting only selected cases of worst excitation
frequencies.) The reagon for the increased cidelcbes for this temporal weight-
ing is that 50 percent overlap is not yet great encugh to realize the deeper first
sidelobe level of -31. 5 dB; that is, we are still sampling, according to figure 3,
on the skirts of the mainlobe for some excitation frequencies. Generally, for
50 percent overlap, the peak sidelcbe will occur approximately at the excitation
frequency such that the worst sidelobe (or mainlobe) of the temporal window
beyond f=1.5/Ly is encountered; this may be seen by considering figure 3
and recalling that we plot only the central portion of Y(f, »). Thus the (cosine)?
weightings in tables 1 and 2 for n > 2 are net acceptable for 50 percent overlap,
since sampling of the mainiobe is encountered.

The realization of minimum sidelobelevel for a specified beamwidth (to the
first null) is exactly the problem addressed by Dolph, reference 5. Accordingly,
this weighting is of considerable importance in spectral estimation. In figures 6A-
6C, the effects of Dolph-Chebyshev time weighting are presented. The worst
sidelobe of -33. 2 dB occurs for f, = 256 1/8 Hz (figure 6C). These results are
noticeably better than in figures 4 and 5.

When triangular temporal weighiing was tried, it had a peak sidelobe of
-20. 2 dB; again, we are samplingthe skirts of the mainlobe. Thus, if 50 percent
overlap is all that can be utilized for some applications, due perhaps to limited
computation time, the cosine-lobe temporal weighting is the best of the simply
applied windows (that is, by means of frequency domain convolution), but the
Dolph-Chebyshev time weighting is 10 dB better than the cosine lobe weighting.

12
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75 PERCENT OVERLAP

At 75 perceat overlap of the temporal weightings the following exainples
were utilized:

cosine2 lobe (Hanning) : w(t) = cos2 (wt/Ly)

cosine3 lcbe : w(t) = cos3 (xt/Ly)
cosine? lcbe : w(t) = cos? (v t/ I.wv) It < Ly/2. @D
cosine® lobe : w(t) = cos® (rt/Ly)

Dolph~Chebyshev -——

The results for the Hanning weighting are given in figure 7. The peak sidelobe
is -41.8 dB at fo = 256 1/2 Hz in figure 7C, and the picket fence is ~2. 60 dB
at fo = 256 7/16 Hz in figure 7B. Thus, a much improved sidelobe level is
realized relative to 50 percent overlap, at the expense of increased computa-
tion effort, that is, increased overlap and rumber of FFTs.

In an effort to further improve performance, the (cosine)3 weighting, which
has a higher degree of continuous derivatives at + Lw/2, was tried. The re-
sults in figure 8 show a maximum sidelobe of -51.2 dB and a picket fence of
-20 34 dBo

Contiauation of this effort to smocther weightings suchas (cosine)4, figure9,
shows a peak sidelobe of -48.1 dB and a picket fence of -2.18 dB. The peak
sidelobe has increased over that for (cosine)3 weighting because, for 75 percent
overlap, the peak sidelobe (or main lobe) of thetemporal windowbeyond approxi~
mately f=3.5/Ly is encountered. It so happens that the worst case in this
reglon is larger for (cosine)4 than for (cosine)3 temporal weighting.

For (cosine)® temporal weighting, the peak sidelobe is reduced further to
-54.1 dB. Also, the picket fence is improved to -2. 07 dB; see figure 10. This
weighting is easily accomplished via frequency domain manipulations; seetable 2.
An alternative temporal weighting of virtually equalquality to (cosine)® is cubic,
that is, sections of cubic curves that have continuous derivatives of as high
order as possible. The temporal window is proportional to

4
sin (# Ly, £/4)
AT 22
rL,, /4 (22)

and has a worst sidelobe of ~53.1 dB. (The picket fence was not computed. )
However, a cubic temporal weighting is not easily accomplished in the frequency

domain.

13
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When (cosine)® temporal weighting is considered, it is found that 75 per-
cent overlap forces us to sample thetemporal window on the skirts of its main-
lobe. This is an unacceptable weighting because thepeaksidelobein the vernier
spectrum increases significantly.

The possibilities of Dolph-Chebyshev weighting are indicated in figure 11.
The worst sidelobe is -86 dB in figure 11B for fo = 256 1/4 Hz, and the picket
fence is -2. 29 dB in figure 11C for f, = 256 7/16 Hz. This is a 32-dBimprove-
ment in sidelobe level compared with (cosine)® weighting. The picket fence is
degraded by 0. 22 dB.

To determine the effect of not using delay weighting, figure 12 was computed
for (cosine)2 temporal weighting and flat delay weighting. For certainexcitation
frequencies, a very narrow mainlobe is realized; see figure 12A. However, for
other excitation frequencies, the lack of delay weighting createsbroad ""shoulders"
of significant level; see figure 12B. Also, the sampling in f and », inherent
in the FFT, produces a picket fence of -5.0 dB. Thus, although a low peak
sidelobe is attained, lack of delay weightingis very detrimental to performance,
as will be further demonstrated below. Notice from figure 7 that (cosine)2 delay
weighting also yields a peak sidelobe of -41.8 dB, but has no broad shoulders
and has a picket fence of only -2. 60 dB.

The detrimental effects of no delay weighting are best illustrated by a com-
parison of figures 13 and 14, which have two tones separated by 1/2 Hz, one
15 dB stronger than the other. It is seen that thesetwo tones are resolved, even
though they are closer than the resolution capability of the individual time seg-
ments, that is, closer than 1 Hz. In figure 13, (cosine)? delay weighting is
employed; in figure 14, none is employed. A comparison of part A of these
figures reveals that, for excitation frequencies 256 and 256 1/2 Hz, the flat
delay weighting is better. However, for excitation frequencies 256 1/16 and
256 9/16 Hz, the presence of the weaker tone is clearly evident in figure 13B,
but hardly discernible in figure 14B (no delay weighting). The presence of noise
would obscure the weaker peak. Thus, although the peak sidelobe may be very
small, the presence of high-level broad shoulders must also be eliminated by
use of delay weighting.

CONCLUSIONS

An approximate and quick FFT technique for vernier spectral analysis is
possible by employing overlapped temporal weighting and delay weighting. For
50 percent overlap and Hanning delay weighting, the best simply-applied tem-
poral weighting discovered was a single cosine lobe, realizing a peuk siGelobe

14
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of -23 dB. However, Dolph-Chebyshev terporal weighting achieves -33 db side-
lobes. For 75 percent overlap and Hanning delay weighting, the best simply ap-
plied temporal weighting discovered was (cosine)d, which realized a peak sidelobe
of -54 dB. However, Dolph-Chebyshev temporal we!shttug is capable of -86 dB
sidelobes. Which overlap and weighting to employ depends on the limitations on
computation time and storage, and on the relative strengthand location of inter-
fering tones.

The over (ap is not limited to the above choices. It could, for example, be
67 percent. The best weightings were not investigated in this case, because it
was felt that the above overlaps were easier to implement in most cases of
practical interest. However, Dolph-Chebyshev weighting is always a strong
candidate and is quickly and accurately generated (reference 6).

15
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Appendix A
no+ N-1
TWO METHODS OF COMPUTING exp (-i2xpn/N) qn
n=n
Define

n,+ N-1
Q, = Z exp (-i2¢pn/N)qp, 0<p<N-1, (A-1)
n=n,
where n, > 0. If welet m =n - n,, (A-1) becomes

N-1
Qp = exp (-inpno/N) Z exp (-i2¢pm/N) Im+ng * (A-2)
m=0

' np+N-1
The sum in (A-2) is an FFT of the sequence {qn}no .

For an alternative method, consider the general term qp in (A-1). Then,
if

(8.) n= 0, N, 2N, se ey qn gets Weight Gm (-iO) ’
(®)n=1, N+1, 2N+1,..., g, gets weight exp (-i2¢p/N) ;

(A-3)
(c)n=N-1, 2N-1, 3N-1,..., q, gets weight exp (-i2sp(N-1)/N) .
So, if we define T =n riod N, then case
(a) corresponds to T =10
(b) correspondsto =1 (A-4)

(c) corresponds to T=N-1.

Therefore, let

vﬁ=qn,n°5n§n°+N-1, (A-5)
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in which case

N-1
Qp=; exp (-i2#pn/N) Ve, 0SPSN-1; (A-6)
=0

this is simply an FFT of {v“ }ON-I , with no phase factor necessary. Equation

(A-5) corresponds to filling up the vy array, from the given quantities qp,
starting from the nonzero position, n, mod N, andcyclingaround toposition 0.

To apply these results tc (10), suppose weight w is nonzero for t>0.
Then if n, is the smallest integer such that n, > k S/A, (10) canbe expressedas

ng+ N-1
P :
a.(——, kS) =4 Z exp (-i2#pn/N) x(n4) w(nA - kS) . (A-7)
NA n=ng

This is of the form of (A-1) if we identify

dp = X(nd) wnA -KkS). (A-8)
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Appendix B

DERIVATION OF VERNIER SPECTRUM

From the first line of (7) in the main text, there follows immediately
Y(f,v) = A(f,v) @ D) @ 8*(") ’ (B-1)
where all convolutions are on v, for f fixed. Then using (6), we obtain

A(f,v) = [dr exp (-127v7) a(f,7)
= [dr exp (-12xv 1) [dt exp (-i2nft) x(t) w(t - 7) a5 ®-2)
= W(-») [ dt exp (-12x(f + v) t) x(t) A§(H)

= W(-v) Zx(ﬁ v - %) .
m
Substituting (B-2) in (B-1), we have

m
Y(f,v) = [W(-v)zx(f+ vy - A)]‘D(P) ® 8./,(9) . (B-3)
m

B-1/B-2
REVERSE BLANK
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Appendix C
SAMPLE PROGRAM

The program furnished below is illustrative of the vernier technique. It
has been written for

1
seconds, N = 1024, M =32, S=—secC

A (DEL) = T

1024 =

1
£ (F0) = 256(1/16) 256; ’

but could be ~osily changed to other cases. The input data are furnishedby inter-
nal functions XREAL and XIMAG; currently, two tones of relative strength
-15 dB and separation 1/2 Hz are incorporated. Loop 1 in the main program
accomplishes Hanning temporal weighting, while loop 2 accomplishes Hanning
delay weighting. The subroutines MKLFFT and QTRCOS are detailed in refer-
ence 7. The method in this program employed the cycling technique described
in appendix A.

PARAMETER N=102usMs32,N4SN/hel sMUs=M/44)
INTEGER PS

DIMENSION ZR(N),ZI(N)ow(N) oO(M)oAR(21,M) e AI(219M) ¢ ADR(M) rADI(M)»
$OB (M) gCN(NU) o CM (M) 0 Z(200) e X(158) Y (168)
SQ=10,%%(=,75)
TPIMS2,53,141592654¢/(Ms1)
TPINSR,#3,141592654/N

Mi=M=}

NiSN=}

DEL=1,/N

IS=N/4

Sz1S*DEL
IMSINT(LOG(FLOAT(M) ) %1 ,4427+,5)

Cabl. RTRCOS(CNeN)

CALL QOTRCOS(CMew)

CaLl MODESG(2,0)

CALL SUBJEG(Zoo»,r=100,,165,00,)

CakL 0BJCTH(Z,800,01400,¢2025,,2350,)
RO 1 M3=0¢N}

W(MS+1)31,=COS(TPINEMS)

Do 2 KS=0eMy
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e D(KSfl)=1.*COS(7PIM¢(KS¢1))
00 13 1C=1,168
13 X¢icisic
00 12 IF=0.8
F0=256,+1F%,0625
00 3 KS=0,M2
NOSISeKS
NU=NO+N1
D0 % NS=NO/NU
NT=MOD (NS N)
ZRINT+1)SXREAL (NSSUEL ) aW (NSeNO#1)
ZI(NT41)SXIMAG (NS*LEL ) aW (NS=NO+1)
4 CONTINUE
CALL MKLFFT(ZReZI9(Ne10,=1)
D0 5 P5=246,266
AR(PS®245¢KS¢1)= DEL*ZR(PS+1)
AT (PS=245+KS+1)= DilL*ZI(PS+})
5 CONTINUE
3 CONTINUE
DD & PS=280,260
00 7 KSs0.M}
ADR(KS+1)=5¢AR(pS=24Z,KS+1)sD(KS+1)
ADI(KS+1)=SeAl (pS=245,KS+1)sD(KS+1)
7 CONTINUE
CaLL MKLFFT(ADR,ADL+CMoIMe=1)
IF(IFqEQs0sANDPS,EQe256) PEAK=S10,#L0G10(AOR(1) «s24ADI (1) %82)
D0 8 KS=0oM1
AR(PS=245,:KS+1) =ADR(KS+1)
Al (PS=2459KS+1)=ADI(KSe1)
8 CONTINUE

6 CONTINUE
Do 9 PS=246,266
1c=(PS=246) 8
D0 10 MS=0,M1
ASAR(PS=245,MS+1 )} s224¢A] (PS=245,)MS¢1) 2
AzMAX{A01,E=36)
DB(MS+1)=10,sL0G10(A)=PEAK

10 CONTINUE

! PRINT 14» PS

4 14 FORMAT(///110/)

% PRINT 11+ 0B

' 11 FORMAT//6C15,6)

: Y(1C+4,=08(M=3)

; Y(1C+2)20B(M=2)

4 Y(1C+3)=0B(M=1)

Y(IC+4)=0B(Mm)

Y(IC+5)=DB(1)

Y(1C+6)=0B(2)

] Y(IC+7)=0B(3)

] Y(4C+8)=0B(y)

] 9 CONTINUE
S10ES=200,
Do 17 1C=1.168 .
1F(1C,GE,69,AND, 1C.LE,109) 60 TO 17
SIVESMAX(SIDE,Y (1))

Foy g ek ac s i S
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17 CONTINUE
PRINT 18+ SIDE
i FORMAT(/' PEAK SIDELOBE IS'/)E14.8)
CaLL SETSMG(Ze3001,)
D0 15 IP=210,90,30
CALL LINES6(Z00, 5.¢/=FLOAT(IP))
15 CALL LINESG(Zs1,165,¢=FLOAT(IP))
D0 16 1IP=13,157,8
CaLL LINESG(Z+Q,FLOAT(IP)0,)
16 CALL LINESG(Z,1,FLOAT(IP)=100,)
CalL SETSM6(Z03n02,)
CaklL LINESG(2+0,5.0-100,)
Cabl LINESG(Z91,54904)
Cabl LINESG(Z2+1,165400,)
CALL LINESG(Z2+1,165,¢=1004)
Call LINESG(Z+1,540=100,)
CAkL LINESG(Zs268¢X0Y)
CALL PAGEG(Z2+003s1)
12 CONTINUE
CablL EXITS(2)
PRINT 110 PEAK
FUNCTION XREAL(YT)
XREALBCOS(2,#341415926545F0sT)
] ¢CUS(2,83,14159265u%(F0+.5)sT)eSQ
RETURN
FUNCTION XIMAG(T)
XIMAGEBSIN(2,8341415922548F 0% T)
] *SIN(2,53.141592654%(F0+,5)eT)eSQ
RETURN
END

Cc-3/C-4
REVERSE BLANK
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Appendix D
EFFECT OF (COSIN‘:EI)u TIME WEIGHTING

Let us define the spectrum of unweighted data x as
N-1

2() = [ &t exp (-127f) X(t) A55(t) =8 Y exp (-i2rkad) x(ka), (D-1)
K=
and that corresponding to weighting w as

Zy(d = [ & exp (-12x8t) x(t) W(t) A8, = Z(D) @ W(D
N-1 (D-2)
=a ), exp (-12vkaf) x(ka) wika) .
k=0
Now for (cosine)? time weighting, we have*
w(ka) = sin” (k#/N), 0<k<N-1. (D-3)

Substituting (D-3) in (D-2), there follows
n

N-1 1\

zZ,(0H=4 Z exp (-127kaf) x(kA) (—1-2-) [exp (ik x/N) - exp (-ik=/ N)]
k=0
N

-1 1\ & 2 kn
=A Z exp (-12xkaf) x(k4) (—-—) (-l)i (j) exp[i— (n- 2j)]
k=0 i2/ j=0 N

=4 (-1 ( ) x(ka) exp [—izukA(f - )]
1\ n n n - 2j .
@) B ) =6 ) -

the last step via use of (D-1). This result yields (20).

*See the first footnote to equation (19) of the main text for the explanation
of sinn in (D-3).

D-1
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For the special case of n=1, (D-4) becomes

1 1
Zy(h =11/2 [z(-—)-z(f+——)], (D-5)
2NA 2NA
and in particular,

n 1 n n+1
Zy (__. + __)=1 1/2 [z (_A)- z ( )] : (D-6)
NA  2NA N NaA

The right-hand side of (D-6) involves two adjacent spectral values as afforded
by the standard N-point FFT in (D-1). The left-hand side of (D-6) is the spec-
tral value of Z,, at the frequency halfway betweep the above two spectral loca-
tions. Thus, under this interpretation of the right-hand side of (D-6), the desir-
able sidelobe control predicted by the convolution in (D-2) can be attained. A
similar interpretation is possible for (D-4) for general n.

D-2
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