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If a steel rod is hung by a thread and struck at the lower
end, an audible metallic "ring" is produced whose fundamental fre-
quency depends on the velocity of sound in steel and on the length
of the rod. At the very point of impact on the rod, a compressional
wave is started which emenates outward and returns from free surfaces
as rarefaction waves. Most of the waves cancel out except those
whose wavelength are multiples of the rod dimensions. The initial
energy imparted to the rod is ultimately dissipated as heat but only
after a relatively long period of time. A small amount of the energy
is transferred to the air as a sound _' (this is the portion we

hear). The waves we have induced in the rod are actually identical
to the very long wavelength phonons (or normal modes) already present
in the rod as part of the norual thermal spectrum of phonons. When

the rod is struck, this portion of the phonon spectrum is considerably
enhanced, but only after many seconds does this energy redistribute
itself so that thermal equilibrium is re-established. On the other
hand if an X-ray beam strikes the rod, it will produce phonons whose
frequency is n3012-1013 hertz, at least 109 times greater than the
audible frequencies created by mechanical striking. Furthermore,
rather than taking seconds to reach thermal equilibrium, the time
required is only l0-12 seconds for these high frequency phonons.
The reason for this difference in behavior between the low frequency
phonons and the high frequency phonons is well understood in terms
of anharmonicity.

The electrons binding atoms together in a solid can (in
a crude first approximation) be considered to be replaced by springs

,,-.ng ncaret and next nearest neighbors. For small atomic displace-
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ments the forces created by these springs are harmonic (nuadratic
potential energy). Within this approximation, the atoms and springs
become a system of coupled harmonic oscillators and this gives rise
to the normal modet_ (or phonons) which are excited according to

the usual exponential Boltzman partition function depending on the
temperature of the system and tIe freqUency of the phonon. 'lowever,

in reality, a system in which the forces between atoms are truly
harmonic can never reach thermal equilibrium since the p1tonons have
no means for exchangig energy with each other. The introduction
of anharmonlcity, i.e. higher energy cubic and quartic terms in
the potential energy of the compressed or elongated springs, provides

a mechanism for coupling the phonons together. Such higher order
terms are generally small but they alone are responsible for such
physical properties as thermal expansion, the approach to thermal
equilibrium, and thermal conductivity. The influence of the cubic
and quartic terms in the potential energy depends on the amplitude
of the displacements being almrst negligible for small displacements.
This basically is why the sound waves produced in the steel bar
ring for so long a period of time and travel virtually unattenuated
at the speed of sound over the length of the bar. Associated with
these sound waves are atomic displacements less than 10 of the
distance between atoms. On the other hand the amnlitude of vibration
for thermal waves are at least 106 orders of magnitude greater so
that anharmonicity quickly couples the phonons together. This effect-
ively scatters these waves so that the transfer of heat energy pro-
ceeds slowly via a diffusion peocess.

If our steel rod is replaced by a TiNi alloy called Nitinol
and struck at about 100°F a similar metallic "ring" is heard but
by lowering the temperature to about 80°F the rod can no longer
be caused to "ring". The effect over such a small temperature range
is quite dramatic and in fact even at very high stress levels the

compressional waves are quickly damped and converted into heat.
The prospects of employing this high damping capacity to absorb
vibrations in mechanical systems appear promising.

The reason for the very effective damping in NiTi at room
temperature is related to the crystallographic (martensitic) phase
change that occurs. As a precursor to this transition we find a so-
called soft mode building up in the phonon spectrum i.e. certain
shear waves develop a very weak spring constant associated with the
forces returning them to their equilibrium position after displace-
ment. These correspond to the very directions the atoms will move
when they undergo the crystal structure change. At the transition

temperattre the atomic positions are at the same energy so that

even a relatively weak compressional or shear wave can unbalance
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this energy difference and cause large displacements of the atoms.
When the displacements are large, anharmonicity becomes effective
and this in effect enables the long wave length acoustical waves
to be quickly damped out and converted into heat. From the point
of view of damping materials, the conversion of vibrations into
heat is very desirable vice the energy of a phonon is proportional
to its frequency so that one thermal phonon (1013 hertz) can absorb
1010 acoustical phonons e1 03 hertz). The conversion of relatively
large quantities of vibrational energy produces very small temperature
rises.

Any theoretical tzeatm-mt of anharmonicity and "soft
modes" in real crystals is prodigious so we consider it useful to
examine a very simple system just to see how anharmonicity couples
normal modes together and affects certain physical properties.

The system we have chosen is that of the one-dimensional
coupled oscillators each of identical mass M coupled between two
rigid (or non-rigid) walls by three identical springs. The potential
energy of each spring is represented by a quadratic term (harmonic)
and two anharmonic terms, one cubic (stronger in compression) and
one quartic so that the total potential energy of the coupled oscilla-
tors becomes (rigid walls)

V = j Kx12-b312xl3 +g
2x 14 + + Kx22 b3/2x 2 3 +g2x24 + + K(xI-X2) 2

+b3/2(Xl - x2 ) 3 + g2(x1 - x2)
4  (1)

where K, b and g represent the spring constants respectively of the
quadratic, cubic and quartic terms. Since we wish to examine the
effect of the anharmonic terms on the normal modes which exist in
the absence of the cubic and quartic terms of equation (1) we trans-
form to the system of normal coordiantes and n given by

S+(XI + X2)

n -t(xl - x2) (2)

so that the potential is now

V - K(E2 + 3n2) - 6b3/2n(g2 - n2) + 2g2 (&2 + 3n2)2. (3)
quadratic cubic quartic

The second and third terms on the right-hand side of equation (3)
representing the cubic and quartic terms will be considered small
relative to the quadratic tu so that we car usca perturbt on
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treatment.

in the absence of the perturbation, the Schr6dinger

equation is soluble exactly, leadiug to a wave function which is
a simple product of wave functions, one for each mode,

M(O 2maI /2Hma exp( - + a2 &2)
2 Mi ~r I(4)

n nri ( 3a J 12H1 (3114an) exp( - j- 3azn2)
2nV

a f21(Mic)1/21/2

where H (y) is the Hermite polynomial. The eigenvalues of the system
are

E (m + +)hv + (n + ±)/3hv
I (5)

V-27r V)M

harmonic approximation

where the quantum numbers m and n assume integral values including
zero, and refer respectively to the & and n normal modes. The
normal mode represents simple harmonic motion in a system in which
the observer is always positicned at one-half the algebraic sum
of the the real disrlacements x, and x2, while the r, normal mode
is the same for the averaga of the difference of the displacements.
The natural frequei.cy of the n normal mode is /3 times the natural
frequency v of the & normal mode, equation (5).

When we apply the perturbations of equation (3) we find
the cubic term vanishes in first order. We have, therefore, calcu-
lated the cubic term to second order and the quartic term to first
order. The new set of eigenvalues becomes

E=(m + +)hv+(n + +)/3hv--- -(74m3m2+27mn+3.2+15n2+25,4n)

quadratic term cubic term

_+-(6"5m + 3m2 + 6"9mn + 7'7 + 9n2 +(6)

quartic term
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New terme now appear in the eigenvalues which are products of the
quantum numbers m and n and which are associated respectively with
the C and q 'normal modes'. Thus one rerult of anharmonicity is that
the excitatiun of one of the 'normal modes' affects the energy levels
of the other. (The words 'normal modes' are now in quotation marks
since they strictly refer to the harmonic solutions).

We can select values of b and g to be approximately those
obtained from an expansion of the Morse potential since this
potential provides a good fit to diatomic molecules

- D Gyp f 2x /2} -2 exp (-x (K)1/2)] (7)

M.'rse potential

where D is the depth of the potential well and K the spring constant.
Expanding around the minimum one obtains

1 2 K 3/2 X3 K:2x4"
V _ -[ (2D)x z + 24D

which by a term-by-term comparison with equation (1) gives

b3/2 -K/ (8D)
(8)

g 2 71K_2

48D

so that for hv/D=10-2 t equation (6) becomes

E = hv[(m t- )+/3(n + +)+ 10- 2 (0'02m + 0"81m2 - 1-58mn

+ 0"69 - 0'57n 2 - 0'57n)] (9)

energy levels for a Morse potential.

t In a typical case hv is of order kG (where 6 is the Debye tempera-
ture) and D is of the order of the cohesive energy, so that a value
of 10-2 for hv/D a reasonable.
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While the levels of low quantu numbers are only slightly altered, the
higher levels are altered significantly owing to anharmonicity, and
in some cases levels even cross. It is clear from equation (9) that
the energy levels in the anharmonic treatment can not be simply re-
presented by a modified harmonic spectrum, i.e. one in which the two
natural frequencies v and /3v are modified with increasin6 tempera-
ture so as to preserve the simple form of equation (5). This must
be considered an artifice that avoids the basic aspect of anharmon-
icity (i.e. a change in the spectrum of eigenvalues).

We may now employ thermodynamics to evaluate the high

temperature specific heat for the coupled oscillators, equati-n
(6). Setting

b3/a6 (hv)2 = c 4 1 (cubic)

(10)
g2/a4 (hv) = q 4 1 (quartic)

and recalling that

O-mX - I + e-x
e

o (1 - e - x ) 3

we obtain the partition function f at high temperatures, i.e.
kT * hv (neglecting zero point terms which do not contribute to
the specific heat):

f= 1 [+ 22c - 13'7q + 4c- (l)

x - hv/kT

so that the specific heat becomes at constant length

C2 kkTCL =kT -- (T in f)-2k + (14c - 10q) (12)

Thus in agreement with the classical treatment the leading term in
the departure of the specific heat from the Dulong-Petit value
of 2k is linear in T either positive or negative depending on the
magnitude of the cubic and quartic terms in the potential. For
a Morse type potential (c/q =6/7) the term is positive.

If we allow the walls to move so that the length of each
sprinr is charged by 6(6positive for compression), new terms appear
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in the potential which are added to those in equation (3). The
leading new terms are

K62 + (66b3/2 + l2g 262)( 2 + 3n2) (13)

so thac by replacing K4K + 66b 3/2 + 12g 262 for the and n modes and
adding -x62 to equation (6) we have the new set of eigenvalues as a
function of 6. If we evaluate the high temperature free energy for
this set of eigenvalues and minimize the free energy relative to 6,
we obtain in the high temperature region

2b3/ 2kT
6 --KZ - (14)

showing that the system expands with temperature. The two frequencies
of the system v an:, are now temperature dependent and become

V 6b32kT6b3 / 2 k T  mo el

(155

V *. + 3v (1 -6b3/2kT n mode}(5- K2 n m o

For a soft mode to be effective the cubic and quartic terms
must become proportionately greater than the quadratic term.
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