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1, INTRODUCTION

The Magnuy force, as shown in Figure 1, is a side force
thet occurs on a spinning projectile in flight at angle of attack.
This force and its associsted moment are usually small (typically
1/100 to 1/10 of the normal force)., However, the effect of Magnus
on a projectile's aerodynamic behavior is important because it
exerts an undamping force over the entire flight of the projectile.
It is well known that the Magnus force can cause a prcjectile to
become aerodynamicslly unstable in flight.

Recent Army interest in increasing the effective range of
conventional artillery has led to the design of prcjectile shapes
that have long slender forebodies, short cylindrical pcrtions, and
boattailed afterbodies. These design characteristics have resulted
in decreased aerodynamic drag, hence a greater range capability;
however, these shapes are aerodynamically less stable than con-
ventional shapes. The decreased serodynamic stability of these new
shapes results in a greater sensitivity to a Magnus induced
instability.

Although Magnus is an important consideration in the
design of artillery projectiles, no procedure exists for accurately
estimating Magnus effects that is sufficiently general in applica-
tion to be useful to the artillery projectile design engineer.
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The Magnus effect has been modeled theoretically(l)’(z)’(3)

as being caused by spin induced distortion of the boundary-layer,
{ This yields an effective projectile body shape thet is asymmetric
1 with respect to the plane of the angle of attack as shown in Figure
2, This results in an asyumetric pressure distribution about the
projectile that yields a net side force. Other mechanisms that
: contribute to the Magnus effect are asymmetry in the pressure

distribution through the boundary-layer and asymmetry in the

distribution of wall shear stress on the ogive portic. of

projectiles(h). When boundary-layer transition occurs on a
projectile, spin acts to distort the location of boundary-layer
transiticn as well as the subsequent turbulent boundary-layer

development., Jacobson(B)’(h) has suggested that this case would be

of critical importance in affecting the aerodynamic behavior of
projectiles.
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This paper describes some results from a series of
experimental studies of the viscous boundary-layer on spiuning
bodies of revolution. The objectives of these studies are:

(1) provide data which will help guide the development of a useful
procedure for computing Magnus effects on serodynamic shapes of
interest in artillery projectile design; (2) verify the signifi-
: cance of the boundary-layer configuration--laminar, tran-itionel, H
i turbulent--on the resulting Magnus force; and (3) develop a better
understanding of the physics of the three-~dimersional boundary-
layer on-spinning bodies of revolution at angle of attack.

3

2, EXPERIMENTAL PROCEDURE

Tests have been conducied using two mcdels--a 10° half

angl: cone(s) with a base diameter of 7.78 cm and a six celiber ;
. ! tangent-ogive-cylinder model with a one caliber ogive and 5.08 cm

4 \ base diameter, The experiment ccusisted of two phases: (1) an

3 optical study of the boundary-layer on the spinning models using |
] spark shadowgraphs and; (2) direct messurement of the normal and

side forces on the spinning models using the strain gage btalance %
technique.

2.1 Optical Study

The boundary-layer on & model viewed in a wind tunnel is - :
by visible at two positionz~~the rpper and the lower surface. By

mounting the model on an offset strut and then rotating the model
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in increments about the axis of the strut, the boundery-layer can be
viewed over the entire surface of the model, This technique has been
used to obtein spark shadowgraphs showing the boundaiy-layer develop-
ment completely about the circumference of the two models. Spark
shadowgraphs were taken of these models for spin retes up to 30,000
RPM, for a = 2° and 4°, and M = 2, 3, and 4. For these tests, the
tunnel total pressure was adjusted to a high value so that the bound-
ary-layer underwent natural transition from laminar to turbulent com-
pletely sbout the circumference of the model before reaching the base.
Examples of the spark shadowgrephs are shown in Figures 3 and L.
Figure 5 shows the coordinate system and the sign convention used for
azimuthal angle.

2.2 Strain-Gage Balance Measurements

The Magnus and normal forces on the models were measured
using the strain-gage balance technique. The Magnus force measure-
ments were made while holding the model at & fixed angle of attack
with data being recorded on msgnetic tape as the models coasted down
from a spin rate of 35,000 RPM. The spin down time for the cone model
was three minutes and that for the tangent-ogive-cylinder model was
six minutes., Normal force measurements were recorded with the Magnus
force measurements and also while pitching the models slowly through
an angle of attack range from +10° to -6°.

Magnus force measurements were obtained for three signifi-
cantly different boundary-layer configurations: (1) low tunnel P, ==
predominately laminar boundury-layer; (2) high tunnel Py natural

transition to turbulent completely about the model; and (3) high
tunnel P, —- boundary-layer tripped to turbulent using a band of ¥80

grit placed one inch from the model leading edge. These measurements
were made for M = 2, 3, and 4,

3. EXPERIMENTAL RESULTS
3.1 Optical Study

The location of boundary-lsyer transition was determined
from the spark shadowgraphs as that position where a ropiness or
turbulent structure was completely established in the boundary-layer.
No effort has been made to relate this criteria for the location of
boundary-layer transition to conventional criteria such as wall heat
transfer, wall shear stress, or wall pressure fluctuation intensity.
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Examples of the data showing the profile of the location of
4 boundsry-layer transition for both models are shown in Figures 6 and
T. For the cone model, the distance from the center of the circle to
the data point represents the distance from the tip of the cone,
along a ray of the cone, to the location of boundary-layer transition.
; For the tangent-ogive-cylinder model, each data point represents the
1 distance from the base of the model along & ray of the cylinder to

the location of boundary-layer transition. The data clearly show

’ that surface spin distorts the profile of boundary-layer transition
with respect to the plane of angle of attack from symmetric for zero
spin to increasingly asymmetric for increasing spin rates. The
trends indicated by these data are: (1) transition is delayed where
the cross flow velocity adds to the spin velocity; and (2) transition

oceurs earlier where the cross flow velocity opposes the spin
velocity.

The apparent thickness of the boundary-layer at the base of
the cone model was also determined from the spark shadowgraphs. A
sarple of these data showing the spin induced distortion of the pro-
file of boundary-layer thickness is given in Figure 8, The profile
for zero spin is symmetric with respect to the plane of angle of

attack (¢ = 180°); but the profile becomes increasingly asymmetric as i
the spin velocity is increased, ;

3 3.2 Strain-Gage Balance Measurements

Representative examples of the Magnus force measurements
are shown in Figures 9 and 10. The data are plotted as Magnus force
coefficient versus nondimensional spin rate comparing results for
different boundary-layer configurstions. For the cone model, there
is a substantial change in the magnitude of the Magnus force for the
different boundary-layer configurationsj however, the Magnus force
for the tangent-ogive-cylinder model is only moderately influenced. ;
Of particular interest, see Figure 9, is the decreased magnitude and
increased linearity with spin rate of the Magnus force for the trip-
red turbulent boundary-lsyer compared to that for the predominately
laminar boundary-layer. Increased linearity of the Magnus force with
spin rate is also indicated in Figure 10 for the tripped turbulent ;
bouné¢ ry-layer deta. In comparing the results for the two models, . k
it is apparent that the Magnus force on a projectile shepe with a
long, slender ogive section could be strongly influenced by the
location of boundary-layer transition., These data also suggest that
13 the influence of boundary-layer transition on the Magnus character-

istics of low-drag projectiles could be reduced by tripping the
] boundary-layer., ’
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k., CONCLUDING REMARKS

The objective in obtaining the experimental data described
here has been to establish the behavior of the boundary-layer on a
spinning body in supersonic flow both quantitatively and qualitative-
ly so that a valid theoretical procedure can be developed for calcu-
lating Magnus effects which will be useful in the design of artillery
projectiles, Magnus date previously accumulated without knowledge of
the boundary-layer configuration on the test model are of question-
able value in attempting to evaluate a theoretical analysis of the
Magnus effect., The ‘data shown here represent the first detailed
effort to correlste the boundery layer development over the entire
surface of a spinning model in supersonic flow with direct measure-
ments of the Magnus force, The trends indicated in sections 3.1 and
3.2 are trends that a proposed calculation scheme must te capable of
predicting before that scheme can be considered a valid theoreticsl
approach, The data shown here are only representative samples—-
complete, detailed tabulations of the experimental data have been
published in reference 5 for the cone model; and the data for the
tangent-ogive-cylinder model will be published as a BRL report in the
near future.
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NOMENCLATURE

CN normal force coefficient, EN/qS

CY Magnus (side) force coefficient, FY/qS

D diameter of model base, D = T.78 um for cone )

D = 5,08 em for tangent-ogive~cylinder
model

FN normal force

FY side force

L model length, £ = 22,05 em for cone

£ = 30.48 cm for tangent-ogive-cylinder model

M Mach number

P, tunnel total pressure, measured in the supply header

P spin rate, radians pexr second

q dynamic pressure, pV2/2

Re,  Reynolds number, pVD/u

Re Reynolds number, pVe/u

S reference ares, base of model,'nDa/h

v free streanm velocity

] angle of atteck

H molecular vigcosity of air
P free stream density

¢ azimuthal angle, see Figure Y4

w spin rete, RPM
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Figure 1. Magnus and Normel Forces on a Spinning Body
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Figure 2. Cross-Sectional View of an Axisymmetric Body
Illustrating Spin Induced Boundary-Layer Distortion
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Spark Shadowgraph of Flow Over the Cone Model, M = 2,

Figure L,
Re, = h.75 x 106, a=2° ¢ =-60°, w= 18,000 RPM
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Figure 5. Coordinate System for Cone and
Tangent-0Ogive-Cylinder Models
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