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Intelligence analysis is an intellectually demanding task
requiring ýoth inductive and deductive reasoning, hypothesis genera-
tion and hyothesis testing, imagination and the ability to ottend
to meticu]lous details. The objective of intelligence analysis is to
impose a consistent, coherent (and hopefully correct) interpretation
upon apparently unrelated bits and pieces of iuformation--to transform

I information into intelligence.

Virtual'y nothing has been written on the "how" of intelligence
analysis, on the appropriate procedures to utilize in any given
situation. ý,ith the tremendous increase in the quantity of baLtle-
field informa ion collected, increased demands are placed on the
intelligence ,nalyst. The Army has recognized the potential of
comp'iters to provide needed support for the analyst and the planning
for such support has highlighted the need for a better understanding
of the process of intelligence analysis. With the introduction of
computer systems such as the Tactical Operations System, the power
of intelligence analysis will be primarily limited by the availability
of procedures which will allow maximum use of the system capabilities.
This has stimulated an examination of both the current processes used
in intelligence analysis and a search for new techniques.

Multistage inference models provide a potentially meaningful and
useful framework for the analysis of current modes of intelligence
processing as well as a basis for the development of processing aids.
This paper describes the development and evaluaZion ot a class of
multistage Bayesian inference models. The derivation and nature
of the formal models are described in the following section. In the
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.hi'-d section of the paper, the results of several experiments cou-
cerning human performance in mu.-istage inference tasks and their im-
plications are discussed. The final section provides a brief summary.

MULTISTAGE INFERENCE MODELS

!;hen there is a large logical gap between the data considered by
an inference maker and the hypothesis set of interest, the pty~ess
can often be viewed as one of multistage Bayesian inference. That
is, the inference consists of a series 3f single-stage Bayesian infer-
ences in which the output at each stage becomes the input to the next
stage and so on, until a terminal hypothesis set is reached. Infer-
ences involving a staging or cascading of simple inference tasks are
found in a wide variety of settings--oil and gas exploration; invest-
ment decisions; medical diagnosis; and intelligence analysis. An in-
telligence analyst evaluating enemy activity to diagnose enemy capa-
bilities or alternative courses of action can be viewed as a multi-
stage inference maker. He may evaluate enemy activity in the frame-
work, for example, of the enemy's striking force posture (stage 1)
and then evaluate the enemy's striking force posture in the framework
of indications (stage 2), and as a final step revise his estimate of
the relative likelihood of alternative enemy courses of action
(stage 3).

The processing or inference task performed by the intelligence
analyst is often formally analogous to a problem in statistical in-
ference; items of evidence, data, are used to determine the relative
likelihood of alternative hypotheses. An optimal strategy for
processing data in single-stage tasks is Bayes' theorem, one form of
which is:

SP(Hi/D) - P(D/Hi) P(Hi)
E4 P(D/Hi) P(Ui)

where P(Hi) is the prior probability of a particular hypothesis, Hi;
P(D/Hi) is the p obability of the occurrence of a particular item of
data, D, conditional upon the truth of Hi; P(HI/D) is the posterior
probability of Hi conditional upon the occurrence of D. Expressed
in this way, the estimation of posterior probability is seen to in-
volve two processes: first, the evaluation of the diagnostic impact
of each datum, P(D/Hi); and second, the estimation of the posterior
probability, P(Hi/D), on the basis of the observe4 data.

The traditional design philosphy for information processing
systems identifies the role of man as one of both processing the
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information and ot making inferences; machines perform only unburden-
ing functions such as display and information storage. Research com-
paring intuitive inference Derformance with Bayes' theorem has shown
that men are conservative information processors--they consistently
fail to extract from data as much information as the data contain.
Men are consevative not because they fail to properly evaluate the
diagnostic impact of each datum, but rather because they fail to
aggregate the data properly. As noted some years ago, this suggests
a novel design for probabilistic information processing systems: one
in which men evaluate/judge the data and machines perform the aggrega-
tion.

In applying this design philasophy to tactical intelligence in-
formation processing, it is clear that the evaluation of tactical
data is a more complex and difficult task than indicated by labora-
tory studies. Human evaluation of uncertain data requires an under-
standing of the probabilistic linkages between the data and the
hypotheses; requires an understanding of the ?rocesses by which the
data is generated. In the absence if this knowledge, data evaluation
becomes a complex, difficult and error-prone task. If the cognitive
complexity of data evaluation can be reduced througa the development
of structured decision procedures, then man's performance can be im-
proved.

Basic Model. Higher order systems are based on a decomposition
of the conditional relationship linking the hypothesis set and the
data set, P(D/Hi)l The customary notation of Bayes' theorem becomes
cumbersome for the purposes of decomposition and matrix notation will
be used as an operator symbolism. This notation is illustated using
the single-stage model Eq. (1). We form a column vector of the input
diagnostic assessments, and a diagonal matrix from the prior probabi-
lities for the hypothesis set H.

VPDH (2) = P()PO(a) (3)
DH -= D2M

The terms appearing in the numerator of Bayes' law are the elements
of the vector MHVDH, formed by premultiplying the vector VD H by
the matrix MH. The posterior probabilities VH,D are obtained by

yI The present discussion assumes a single item of data or a data
set whose elements are processed sequentially. Rather than introduce
an additional subscript, D is used to refer to the datum or data of
interest; the interpretation will be clear from the context.
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dividing each element of the resultant vector V D by the sum of its
elements. This normalization process way be indicated functionally
by defining an operator NC (e), which divides the column elements of
its argument by the corresponding column sum. Thus, the vector of
posterior probabilitiec for a single-stage Bayesian system may be
expressed as

VH,D u NC (MH VD,H) (4)

A third-order sybtem will be used to illustrate the decomposition
process. The relationship P(D/Hi) is decomposed by identifying inter-
mediate hypothesis sets A, and BK , each consisting of mutually ex-
clusive and exhaustive hy othesis. These intermediate hypothesis sets
can be directly incorporated into the relationship P(D/H ) by applying
probability theory to yield:

P(D/Hi) E •i Zk P(Aj/Hi) P(Bk/AiHi) P(D/BkAjHl (5)

Assime that the elements of the logic chain are pairvise independent,
viz.,

F(D/BkAjHi) - P(D/Bk) (6) P(Bk/Aj 9 Hi) - P(B /Aj) (7)

Under this assumption, Eq. (5) reduces to the following:

P(D/Hi) E j E k P(A /Hi) P(Bk/A ) P(D/Bk) (8)

In operator notation, this can be expressed as,

SD,H a HA,H MB,A VD,B (9)

where 14H= P(A /Ri) and MB,A P(Bk/Aj) . If the right side
of Eq. )is substituted into Eq. (4), the result is a thiTd-order
multistage Bayesian system,

VH,D . NC (MH MA,H MB,A VD,B ) (10)

This expression can be viewed as a logic chain, D4B-*A-*H in which
data, D, impact in turn on the hypothesis sets B,, A, and finally H.
The logic chain is analogous to a weighted linear filter in which
the weights are determined by the probabilistic links in the chain.
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The process shown in Eq. (10) can be conveniently diagrammed to illu-

strate the flout of information (Figure 1). When applied sequentially
to a data set, the posterior probabilities, VH D, at each step become

the prior probability to be revised on the basis of the impact of the
subsequent data.

Thus, in a multi :ference the evaluatiu&-. of data has oeen
simplified to a judgment . its diagnostic impact relativ. to an
hypothesis set which is logically closer to the data than in the
corresponding single stage inference. For example, an evaluation of
data relative to striking force posture, F(DB/Bk), may be used to re-
place an evaluation of that same data relative to alternative courses
of action, P(DB/Hi). However, this simplification in data evaluation
requires prior estimation of the conditional links between stages of
the inference process; that is, estimates are required in order to
fill in each of the intermediate matrices H MRA In contrast to a
single stage inference process, in multistagA infrence the decision
maker must explicitly consider the impact of his initial data evalua-
tion in terms of the diagnosticity of the intermediate stages, in order
to revise the prior probabilities over the terminal hypothesis set.

The intermediate inference stages serve to reduce the diagnostic
p impact of the data on the terminal hypothesis set. As in any logic
) chain, confidence in a conclusion cannot exceed the confidence level

of the weakest step in the logic. For example, from available infor-
mation, an anlyst may associate a high probability with one of a set
of indicators. However, if the indicator has only a weak association
with any of the potential alternative courses of action, the impact
of the information on the final estimate will be slight. What at
first appears to be highly diagnostic data may not, in fact, be very
diagnostic. The impact of data on the final inference depends on the
probabilities embedded in the logic chain.

Multilevel Data. The intent of decomposition is to construct
an explicit logic chain relating the lowest level of data to be a
terminal hypothesis set. In deriving the model of Eq. (12), it was
explicitly assumed that all data could be directly related to the
lowest level hypothesis set B and that any impact on higher level
hypotheses was mediated by the conditional links to hypothesis set
B. A more general case is one in which each data element need not
be related to hypothesis set B, but may instead be directly related
to hypothesis set A or to hypothesis set H. However, a real date
stream may be, and probably would be, of the same hierarchical
order as an appropriate multistage model.

The concept of data having differing levels of impact can be
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formally incorporated into the multistage model. Assume that the
data set D is composed of equivalence classes 4j, DA, % , where the
subscript indicates the hypothesis set which mediates the data class.
Data elements in each class are assumed to be dependent only upon the
subscripted hypothesis set and at least pairwise independent of the
remaining hypothesis sets. Under these assumptions Eq. (10) becomes

VH,D N C (MH MDHH MA,H MDAA MB,A MDBB VI) (11)

where MD H1 MDAand HD ,Bare diagonal matrices of P(DH/H), P(DA/A )
and P(D B respectivety, M and M are transition matrices
lating Rypothesis set A to H and hypotiesis set B to A as before, and
VI is a unit vector of rank K. When a data class such as D is
empty, the convention is used that P(DH/Hi) = 1. Thus, when Phe data
classes DH and DA are empty, Eq. (15) reduces to Eq. (9).

The effect of considering multilevel data in a multistage system
is that an internal symmetry is established, with each stage of the
system, becoming essentially identical to every other stage. The
result is a structured decision procedure in which data can be eval-
uated relative to the hypothesis set to which it is most directly
related; the eventual impact of the data on the terminal hypothesis
set being mediated by the relationships between any intervening
hypothesis sets.

Intermediate Level Estimates. Multistage inference may appear
to be a series of single-stage inferences in which the output at each
stage becomes the input to the next stage and so on, until the termi-
nal hypothesis set is reached. Implicit in this view is the concept
that at each stage of the inference, a revised estimate of the pro-
babilities over an intermediate hypothesis set is obtained which then
serves as the input to the next stage. However, at each intermediate
stage of the inference process, what is obtained is a revised estimate
of the diagnostic im.pact of the data. In the previous example, start-
ing with P(D/Bk), one obtains in succession, P(D/Aj) and P(D/Hi).
The final step in the process is a revision of the probabilities over
the terminal hypothesis set. Estimates of the impact of the data on
the intermediate hypothesis sets are obtained by additional calcula-
tions through a "folding back" procedure (Figure i).

The Decomposition Process. In common with other techniques of
decision analysis, the initial structuring of the problem is the
critical step. Decision analysis has not often been used in intelli-
gence and the absence of prior experience such as found in business
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applications compounds the inherent difficulties of decomposition.
Many inference tasks are intuiLively hierarchial and a few such as
collection planning have a close correspondence with formal multistage
models.( 2 ) However, for most tasks of interest in tactical intelli-
gence, the development of a formal multistage structure is both
difficult and time-consuming. There are no formal algorithms to aid
in identifying either the desired sequence of intermediate hypothesis
sets or the dimensionality of the hypothesis sets. Several quasi-
mathematical approaches exist for identifying a set of dimensions for
a psychological space (e.g., factor analysis, multidimensional scal--
ing). However, these techniques are cumbersome and time-consuming in
application and are not well suited for the problem of constructing
intermediate hypothesis sets. Thus, logical analysis requiring con-
serable time and effort is needei to develop a multistage inference
structure for specific problems. The process of decomposition itself
will aid in the improvement of intelligence by clarifying specific
problems and enhancing the analysts understanding of the elements of
the problem. Although the details of decomposition must change to
fit the situation, the problem structure will usually generalize
across situations. An analysis of indicators withia one scenario
would simplify problem analysis and improve their use in other
scenarios.

Advantages of a Multistage Model. The matrix format of the
multistage Bayesian inference model (Figure 1) inherently lends
itself to use in interactive, computerrbased systems. Additional
intermediate hypothes..s sets may be readily incorporated into an on-
line computer system by simply adding established subsystem computa-
tional modules. Moreover, the logical structure of the system imple-
mentation allcws it to be used by individuals with little sophistica-
tion in mathematics.

The model appears to proide a number of desirable characteris-
tics for solving complex decision problems. First, it facilitates
the function of relating data to a primary hypothesis set by formally
decomposing the process into a sequence of less complex steps. The
analyst is allowed to build from the specific to the general in
several gradual stages. A consequence is that information flowi with-
in the system follows a logical seque:,c in which decisions at one
level become data for the next, more general level.

Second, the system facilitates the integration of historical data
and/or expert opinions, which may be used as the prior conditional
probability assessments within any of the various intermediate esti-
mation matrices 4.n the system. In this manner, an ineyperienced user
may be formally assisted by previous information, and will be able to

79



JOHNSON & HALPIN

integrate these opinions directly into his own inference process.

Third, the system formalizes the bidirectional flow of informa-
tion in an inference system. Data is.related to the final hypothesis
set through a sequence of intermediate hypothesis sets. A feedback
loop relates the resulting system output to each intermediate hypo-
thesis set. Thus, conditional and unconditional probability estimates
reflecting the impact of data at each level of the system can be
derived.

Alternative Structures. The multistage model developed here is
only one of a family of multistage Bayesian models. The initial
decomposition is a straight-forward application of probability theory
with the specific model arrived at dependent on the set of assumptions
used to simplify the resulting decomposition. Thus, employing re-
latively simple mathematics, the result is a structured procedure
which is both potentially useful and isomorphic to inference tasks
found in intelligence analysis.

Bayesian models are not the only information processing struc-
tures which could be used-as the basis for a multistage inference
system. Any inference system is a set of decision rules and an
algorithm for applying them. Hence, a similar decomposition can be
accomplished in different ways. Any Bayesian structure can be
represented in any one of several equivalent schemes: flow charts,
decision trees, relevance trees, state-of-affairs models, etc.
Further, Bayesian structures can be represented in analogous linear
models such as regression models. All of the decomposition techniques
relevant to a specific schema are primarily techniques for mapping a
problem space into an information processing structure. The exact
mapping or structure which is most useful will depend on the inference
problem and the specific tasks to be accomplished, For eKample, flow
charts and decision trees are likely to be most useful in the initial
decomposition, whereas a Bayesian or regression model would be more
useful for the aggregation of data.

Data Reliability. In the preceeding development of multistage
inference models, data have been implicitly assumed to be accurate.
However, this is not a necessary assumption. Any procedure for
incorporating source reliability into the inference process must dif-
ferentiate between the actual occurrence of an event and the report
of its occurrence. Data reliability can be incorporated into the
multistage model by considering the links between events and reports
of events as another stage in the inference process.
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EXPERIMENTS CONCERNING MULTISTAGE INFERENCE

In the study of human inference performance, as in any study of
human behavior, a critical problem is the establishment of criteria
against which the performance can be evaluated. A useful approach to
this problem is the development of appropriate prescriptive models
which define optimal performance. The r .. istage inference model
presented above provides normative perfoamance standards and serves
as the framework as well as the focus of the experiments described
below. On the one hand, there is interest in the adequacy of the
model as a description of human inference performance. On the other
hand, the basic thrust of our research is to understand how man
processes and utilizes information in specific classes of inference
tasks and to develop techniques for improving and enhancing perfor-
mance; the model provides a convenient framework for this study.

Three experiments recently conducted at ARI will be used to
illustrate! the research approach and to provide insight into man's
information processing and utilizat~on in multistage inference tasks.
Each of the experiments explores a different aspect of human perfor-
mance and each provides information needed in the development of
techniques for improving and enhancing performance.

) Threat Diagnosis. An initial evaluation of a computer-based
multistage inference system wls provided by an experiment using a
simple threat diagnosis Lask.(3) The experiment and a pilot study
involved over 20 intelligence officers. The experiment provided for
data collection in a credible task and had three primary objectives:
first, to guide the development of the multistage model; second, to
assess the attitudes and opinions of intelligence officers toward
the use of on-line computer-based inference aids; third, co compare
aided inference performance with unaided inference performance.

The setting for the experiment was a scenario involving an
Agressor unit on fall manuevers near a friendly border. A series of
50 messages provided the player with information which he used to
estimate the probabilities that the Agressor will Attack, Defend, or
Withdraw. A simplified three-stage inference model served as an aid.
Players were briefed on the structure of the model (Striking Force
PusLure (B )--Indicators (A )--Alternative Courses of Action (Hi), the
"current sXtuation" and the type of judgment to be made in evaluating
eaeh message. Upon receiving each message, the player's task con-
sisted of updating the situation map and entering an evaluation of
the data through a CRT keyboard. Each player either evaluated the
data relative to Striking Force Posture, P(D/Bk), or evaluated the
data relative to Alternative Courses of Action, P(D/Hi). After each
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mtry, a player received either the system's current estimate of
Alternative Courses of Action or only the next message in the sequence
of play. The computer controlling the work station performed the
required calculations, recorded various performance measures and
controlled the sequence of play.

There are many alternative formats for the development of a
multistage inference model. Feedback from intelligence officers
during the pilot stages of this experiment had a strong influence on
the structure of the model presented earlier. This influence is
apparent in the reactions of players to the system used in the ex-
periment. All of these players felt they had an adequate under-
standing of the system and all provided reasonable explanations of
system processing. All of the players felt that this type of system
could significantly improve operations through more efficient utili-
zation of information, increased speed of operation and greater
acceptance of conclusions by the G3/S3. However, most of the players
felt that the system would not increase accuracy.

In estimating the posterior pro'babilities of the alternative
courses of action, players using the system tended to assign a highe.
probability to the course of action actually chosen by the agressor,
and to identify this alternative earlier in the course of play than
unaided players. Performance was better for players receiving system
feedback and for players using a multistage model rather than a single
stage model. However, since the estimates in the intermediate stages
were given to the players, further validation of these comparisons
will be required to ensure that they do not reflect experimental biases.

These results indicate that a relatively simple man-computer
dialogue and a multistage inference model could provide an acceptable
inference aid for intelligence analysis. Although the results can-
not guarantee that analysts would actually use such a system in an
operdtional setting they do imlly that such a system would be accept-
able and used.

Unit Identification. Intuitive inference performance was exam-
ined in the context of a unit identification task.(4) There were three
objectives: first, to compare intuitive inference performance with a
normative model; second, to ar.alyze the effects of the number of stages
in the inference process; and third, to determine the effects of differ-
ing levels of diagnosticity in the intermediate stages of the inference
process and in the data. Thus the focus of this experiment was on the
integration of information in maltistage inference.

A series of 24 multistage "unit identification" problems were
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presented in a test booklet to 18 enlisted men; the problems varied
in the level of data input (company, battalion and division), and in
the diagnosticity of the data and of the intervening stages. On each
problem, subjects estimated the posterior probability that the un-
identified division was of a certain type; aii, armor and mechanized.
The inference problem was decomposed into a three stage logic chain
relating the probability of each company type to each battalion type
(stage 1), the probability of each battalion type to each division
type (stage 2) and ending with the prior probability of each division 3
type (stage 3). The probabilities used in the two intermediate stages
were chosen to be realistic, while the prior probability of each type
of division was equilikely. Given information related to the type of
company, battalion or division present, it was necessary to process
this information through two, one or no intermediate inference stages,
reipectively in order to estimate the posterior probability of each
division type. Estimates of the posterior probability of each
battalion type and/or of each company type were also made on selected
problems.

The results indicated that subjects failed to appreciate the
degree to which a multistage inference is less diagnostic than its
component single stage inferences. As the information given on a
problem became logically distant from the probability of division type,

) as the number of intermediate inference stages increased, intuitive
subjective estimates became more extreme relative to the optimal
Bayesian estimates. Thus, subjects were less accurate in estimating
the divisions identity, P( /D), using information at either the com-
pany or battalion level, P(!Vik.) or P(D/A4 ), respectively, than using
information at the division level, P(D/fi. Subjects' estimates were
sensitive to the diagnosticity of the data and of the intervening
inference stages; however, they used non-optimal inference strategies
in integrating information ir#o the inference process. This sub-
optimal information integration suggests man-computer symbiosis as an
approach for improving performance in multistage inference tasks. Man
evaluates the data and the computer, using mathematical models, syn-
thesizes human judgment into the inference process.

Source Reliability. Intuitive inferences based on data reports
from sources of varying reliability were investigated in the context
of a symmetric binary decision task.( 5 ) In addition to comparing
performance with the normative model presented earlier, this experi-
ment allowed a detailed analysis of subjective inference atrategies.

Twenty-one subjects each received 60 problems consisting of all
combinations of five levels of source reliability, four levels of data
diagnosticity, and three levels of sample composition. On each pro-
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blem, the subject received a report of a sample of data of known
diagnosticity from a source of given reliability. He then indicated
the most likely of the two hypotheses and his subjective odds favor-
ing that hypothesis.

The subjects generally failed to extract as much certainty as
possible from the data reports. Subjective oddq were generally con-
servative (lower) with respect to the normative odds from the model.
However, as reliability decreased, subjective odds decreased at a

much slower rate than the normative odds (error decreased) until at
the lowest level of reliability they were generally greater than
normative odds.

Verbal protocols from the subjects and data analyses suggested
two different, non-optimal, strategies subjects may have been using:
a simple multiplicative rule and a derived multiplicative rule. To
evaluate the fit of these two heuristic rules and the normative rule
to subjects' responses a correlation analysis was performed. Product
moment correlation coefficients between each subject's odds and the
odds predicted by each rule were computed. The average coefficient
and the average percentage of variance accounted for by the rules
were (.31, 10.3%) for the normative, (.65, 44.4%) for the simple
multiplicative, and (.80, 67.0%) for the derived multiplicative.

it is clear from these results that intuitive performance is fat
from optimal aA the nature of this departure from optimality suggests
several approaches for improving performance. One might be the tra-
ditional approach of training. Second, users could be required to
consider other events which may have occurred, but which were not
reported. A third strategy might be the use of computer aids based
on the optimal multistage models.

SUMMARY

Multistage inference models provide a framework for the analysis
of current modes of intelligence processing. Within this framework,
two broad questions can be considered: "What is the man in the
system doing with the information available to him?" and "What should
he be doing with it?"

The first question raises a psychological issue which revolves
around understanding how man processes and uses information. Experi-
merts in intuitive inference in multistage tasks indicate that
man's performance in processing information is sub-optimal and results
from his use of heuristic strategies which are cognitively less
complex than the optimal strategies. Man fails to properly integrate
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the information available to him.

The second question is more practical and involves the develop-
ment of aids and methods to enable more efficient and effective
information processing. Man-computer symbiosis, in which man
evaluates the data and the computer, using mathematical models, syn-
thesizes human judgments into the inference process, is a useful
technique readily acceptable to intelligence officers for improving
performance in multistage inference tasks. The introduction of
tactical data systems such as the Tactical Operation System could
provide the on-line computer support requisite to implementation of
such aids.
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