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The Army has in recent years refined its methods of procur-
ing aircraft. Until recently the Army had only procured aircraft
which were more or less off-the-shelf items. That is, the aircraft
were either developed for other military services or for civilian use
and were adapted to meet Army needs. As a result, the Army was not
significantly involved in the writing of specifications which affected
the overall design of the vehicle. Operational experience has indi-
cated, however, the need for specifications which reflect the particu-
lar requirements of Army aviation. This paper is concerned with
requirements which have been imposed in the area of helicopter mechan-
ical instability, or ground resonance as this phenomenon is commonly
knowr;, and the impact which these requirements have on the analyst.

The ground resonance problem has been with rotary wing air-
craft since their inception, but the phenomenon was not well under-
stood until many yeers after its first occurrence on the early auto-
gyros. ‘'The instability was originally thought to be aeromechanical in
nature, however, later analysis confirmed that the instability could
be predicted based solely on mechanical considerations. The report by
Coleman and Feingold (1) has become the classical reference on this
prcblem. This classical treatment of the problem was expanded by
Brooks (2) and Bielawa (3) to include additional degrees of freedom
and to experimentally verify the analysis.

All these analyses showed that the ground resonance insta-
bility involved a mechanical coupling of the inplane degrees of free-
dom of the rotor blades with the rigid tody degrees of freedom of the
helicopter on its undercarriage. The analytical results also indi-
cated that the instability could be eliminated within the operating
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HAMMOND

rotor speed range of any particular helicopter by properly selecting
(i) the damping and stifiness characteristics of the undercarriage
and (ii) the inplane damping of the blades.

Because of operational considerations, the Army has imposed i
requirements that the helicopter not only be shown free from mechani-
cal instability under normal operating conditions but freedom from our
instability must also be shown for a variety c¢f abnormal conditions.
Some of these abnormal conditions are: operation on ice, flat tire -
and flat strut on one side, vperation from a 12° slope on any heading,
and operation with one blade damper inoperative. All but the last of =~
these requirements can be handled by appropriate modifications of the .«
basic parameters in the classical analysis of Reference 1. As will be
shown later, the requirement for stability with on= blade damper
inoperative causes one of the basic assumptions in the ciassical
analysis to be violated and thus a new analysis method must be
developed.

The investigation of the ground resonance problem when one
blade damper is inoperative is the subject of this paper. A method
will be presented for handling the problem and comparison will be made
with two methods which have previously been used in attempting to
satisfy the Army requirement. 1nstabilities which arise when one
blade damper is inoperative will be examined and, finally, means for
eliminating these instabilities will be discussed.

SYMBOLS

¢y Lag damping rate

c, Effective hub damping in x-direction (longitudinal)
cy Effective hub damping in y-direction (lateral)

e Lag hinge offset

Second mass moment of blade about lag hinge

"

1 Lag spring rate

x W

Effective hub stiffness in x-directicn (longitudinal)
Effective hub stiffness in y-direction (lateral)

Blade mass

o &
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Effective hub mass in x-direction
Effective 1ub mass in y-direction

Mumber of bplades in rotor

First mass moment of blade about lag hinge
Time

Coordinates of hudb in fixed reference frame
Lag deflection of iEE~b1ade

Defined hy Equations (2)

Defined by Equations (2)

Azimithal location of iEE~b1ade

Rotor speed

Defined by Equations (2)

(o)

L

MATHEMATICAL FORMULATION

A complete derivation of the equations of motion for the
ground resonauce problem is presented in Reference 4. This develop-
ment will not be repeated here, but the equations together with the
underlying assumptions will be given in order to discuss the implica-
tions of the one-blade-damper-inoperative requirement.

It is assumed, as is done in Reference 1, that the helicop-
ter on its landing gear can be represented by effective parameters
applied at the rotor hub. It is further assumed that only inplane
motions of the hudb and blades are important in determining the ground
resonance characteristics of the helicopter. Thus the degrees of
freedom to be considered consist of two inplane hud degrees of freedom
and one lead-lag degree of freedom for each blade in the rotor. The
mathematical model to be used in the analysis is showm in Figure 1.
Note that in the figure orly a typical blade is shown. The analysis
is formulated for a rotor having N blades, and each blade is assumed
to have a rotational spring and damper which act about the lag hinge.
Further, it is assumed that each of the blades may have different lag
spring and lag damper characteristics. This last assumption is
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necessary in order to be able to treat the one-blade-damper-
inoperative situation and represents a major departure frcm the
classical analysis. In References 1, 2, and 3 each blade was assumed
to have identical properties end, as will be indicated later, this
assumption leads to considerable simplification of the equations of
motion. With respect to the hub degrees of freedom, it is assumed
that, in the absence of the rotor, the longit:dinal and lateral
motions of the hul are uncoupled. This is an approximation, but it is
an assumption made in Reference 1 and one generally used in mechanical
stability analyses.

Based on the above assumptions, the equations of motion for

the rotor-hub system may be written as
N

2 g 2 22\, [2/\[: e '
Qi + n1§1 + (a)oi +Q vo) §i = (vo/e) [xh sin *:l - ¥, cos Ji]

i=1,2,.--,N

S,D i[(;i - 02§i> sin \Vi

i=1

(m, + Mn) x, +cx +kx
+ 208, cos "1]

-S, i[(;i - sz"‘;i) cos ¥,

i=1r

-2(2.§i sin *1]
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HAMMOND

and small displacement assumptions have been inade ou Ci, Xp, and yy
in order to linearize the equations. The parameter V¥; describes the
azimuthal position of the ilh blade at time t and is given bty

V, = at + 2x(i - 1)/N (3)

i

The equations of motion for the system thus consist of
(N + 2) coupled second-order differential equations in which the
coupling terms have periodic coefficients. The periodic coefficients
arise because the blade equations, the first N of Equations (1), are
vritten in a rotating reference system whereas the hub equations, the
last two of Equations (1), are written in a fixed system.

In order to eliminate the periodic coefficients in Equa-
ions (1) Coleran and Feingold (1) transformed the blade equations
into the fixed reference system. This transformation, which greatly
simplifies the equations of motion, is only possible if the rotor is
isotropic with three or more blades. An alternate procedure is pre-
sented by Hammond (&) for eliminating the periodic coefficients if the
rotor is nonisotiopic, as is the case for one blade damper inopera-
tive, but the hub is isotropic. This procedure involves transforming
the hub equations of motion into the rotating frame of reference and
requires that the rotor have two or more blades. Since the hubs of
most, if not all, currently operational helicopters are nonisciropic
this last procedure is only useful for determining the general. nature
of instabilities which occur when one blade damper is inoperative.

Thus for the general case of a nonisotropic rotor coupled
with a nonisotropic hub one is faced with the problem of determining
the stability of a system which is described by a set of second-order
differential equations having periodic coefficients. It has been
shown by Hammond (4) that the Floquet Transition Matrix method
described by Peters and Hohenemser (5) and Hohenemser and Yin (6)
provides an effective mears for determining the s%abiiity character-
istics of the system described by Equations (1). This method is
essentially an eigenvalue method which is based on the Floquet-
Liapunov th.orem (7) for systems having periodic coefficients. Thus
the stability characteristics of the system are direct outputs of the

method.

Two methods used in the past for treating the one-blade-
damper-inoperative ground resonance problem are (i) numerical inte-
gration of the equations of motion, and (ii) a smearing techniquc
which involves a redistribution of damping over all the blades after
one damper is considered imoperative. The reasoning for the second
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approach is as follows: If the rotor has N blades then the total
damping available in the rotor is Nec;y where ¢y 1is the damping on
one blade. If ore damper is removed, the total damping becomes

(N - l)ci. Thus, using the smearing approach, each blade in the rotor
would be treated as if it had a lag damper rate equal to c¢4i(N - 1)/N.
It is thus seen that this second approach analyzes a system which is
quite different from the actual situation. The motivation behind this
approach is to be able to use the standard Coleman and Feingold analy-
sis for an isotropic rotor. In the results which follow, each of
these techniques will be applied to a specific configuration and the
ground resonance problem with one blade damper inoperative will be
discussed in detail.

RESULTS

In order to illustrate the implications of one blade damper
inoperative on the ground resonance characteristics of a single rotor
helicopter, a set of parameters was chosen. These parameters were
chosen su as to be in the general range of interest for single rotor
helicopters and were such that the system was stable with all dampers
functioning up to a rotor speed of 40O rpm. The parameters used in
obtaining the results which follow are shown in Table 1.

Results for the system described by the parameters of 2
Table 1 with all blede dampers operational are indicated in Figure 2. L
These results were obtained using the standard Coleman and Feingold
approach. This approach results in only two equations which describe
the rotor degrees of freedom regardless of the number of blades. Thus
there are only four modes which result from the eigenvalue analysis.
As can be seen from the upper portion of the figure, where the real
parts of the eigenvalues are plotted as a function of rotor speed, the
system is stable over the entire rotor speed range. The labeling on
the various modes is intended for identification purposes c¢nly and is
not meant to imply anything with respect to the character of the
modes. In the lower portion of the figure is plotted the frequencies
of the various modes as a function of rotor speed. The horizontal
dashed lines represent the uncoupled hub modes and the slanted dashed
lines represent the uncoupled blade modes. As can be seen, at the
lower and higher rotcr speeds the modes are essentially uncoupled,
whereas for the intermediate rotor speeds a considerabie amcunt of
coupling is apparent.

When one blade damper is removed the results shown in Fig-
ure 3 are obtdired. These results were calculated using the Floquet
transition matrix method and indicate an instability for rotor speeds
between 210 and 305 rpm. The nature of this instability can be
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determined from an examination of the frequency plot in Figure 3. At
the lower rotor speeds the frequencies for the nodes labeled 3 and 6
correspond to the uncoupled blade frequency (in the fixed system) for
the blade which has no damper. As the rotor speed is increased the
frequency plot for mode > indicates coupling with the other modes, and
at the higher rotor speeds the mode 3 curve has deviated from the
uncoupled curve. At the higher rotor speeds the mode 5 curve is
nearer the uncoupled blade frequency curve. This behavior indicates
that there is a significant amount of coupling between the unstable
mode 3 and the mode labeled 2 which is predominantly a hub mode. The
conclusion here is that the indicated instability has the same char-
acter as a classical ground resonance instability, and that the insta-
bility involves a considerable amount of blade motion.

Figure 4 presents ihe results of a numerical integration of
the equations of motion for a rotor speed of 255 rpm. This rotor
speed corresponds to the point of maximum instability in Figure 3. As
can be seen from the time histories in Figure 4, blade 1 which has no
lag damper is experiencing large excursioni:. It should also be noted
from this figure that determination of whether the system is stable or
unstable requires considerable Jjudgment on the part of the analyst.
The blade 1 trace appears to be stable, whereas it is impossible to
make a definite conclusion relative to the hub traces. This serves to
illustrate the fact that time history solutions are less desirable
than eigenvalue methods for determining the dynamic stability of sys-
tems. The problem with the time history solutions is that one can
never be sure that the equations have been integrated over a suffi-
ciently long period for the initial conditions chosen. If the initial
conditions are not chosen so as to excite the mode of instability, an
extremely long period of integration may be necessary. A further
drawback of the numerical integration method is that, in general, it
requires much more computing time than does the eigenvalue approach.

Results obtained using the smearing approach are illustrated
in Figure 5. Note that although the mode labeled 3 becomes lightly
damped, the system remains stable throughout the rotor speed range
considered. The smearing technique is thus not recommended for treat-
ing the one-blade-damper-inoperative situation since it leads to
unconservative results.

Suppose, however, that a designer were using the smearing
technique and cbtained the results shown in Figure 5. The logical
approach to making the system more stable would be to add additional
blade lag damping since this parameter is known to be quite effective
in eliminating the classical ground resonance. The effect would be
that the smearing technique would then indicate a sufficient stability
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margin since it is simply an application of the classical analysis.
Note, on the other hand, what the correct results, as obtained from
the Floquet analysis and shown in Figure 6, would indicate. As can be
seen from this figure, the increase of blade lag damping has no effect
on the region of instability when one blade damper is inoperative.
This result is not too surprising since it was observed from the time
history traces of Figure 4 that the blade with no damper is responding
more or less independently of the other blades. These results further
strengthen the conclusion that the smearing technique should not be
used for examining the one-blade-damper-inoperative ground resonance
problem.

From the results of Figure 6 it might appear that the Army
had imposed an impossible requirement on the helicopter designer. As
will be shown, Lowever, it is possible to eliminate the instability
through proper selection of the parameters available to the designer.
Since it has been shown that increasing the lag damping has no effect
on the region of instability with one blade damper inoperative, the
only other blade parameter which the designer can vary is the lag
spring rate. Coleman and Feingold (1) have shown that, in the absence
of lag damping, ground resonance is impossible if the blade lag fre-
quency is greater than the rotor speed. This requirement is extremely
conservative, however, if blade lag dampers are present.

Figure 7 illustrates the effect of lag spring rate on the
region of instability when one blade damper is inoperative. The
assumption was made here that the lag spring and lag damper were
independent so that failure of the lag damper did not result in simul-
taneous failure of the lag spring. Thus the results of Figure 7 were
obtained for a rotor in which each of the blades had the same spring
rate, but one blade damper was inoperative. As can be seen, if the
lag spring rate is made high enough the region of instability can be
eliminated. The spring rate required is, on the other hand, much
lower than the spring rate necessary to make the blade lag frequency
equal to the rotor speed. It is felt, however, that the lag spring
rate required is unrealistic and, further, the higher the spring rate
the larger will be the vibratory louds transferred to the fuselage.
Thus the lag spring does not appear to be the optimum parameter to use
in eliminating the instability.

The other parameters available to the designer are the hub
paraieters. The hub stiffness and damping in the lateral and longitu-
dinal directions may be changed by altering the landing-gear geometry
and oleo characteristics. Further, the oleo stiffness and damping are
usually adjustable in service so that these are potentially powerful
parameters for the designer. Figure 8 shows the effect of lateral hub
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damping on the region of instability. This figure illustrates that

hub damping can be used effectively in eliminating the instability.

This can be attributed to the fact that the only means for the blade
with no damper to experience any damping is through the hub coupling
terms in the equations of motion. Thus the addition of hub damping

tends to stabilize any unstable hub motions while providing damping

for the large blade excursiona.

The effect of variation of the lateral hub spring rate is
shown in Figure 9. These results indicate that, if the stiffness of
the hub is reduced, the instability can be eliminated. Again the
indication is that the coupling between the rotor and hub is the key
to eliminating the instability. Here the lower stiffness hub is
allowed to respond more than the higher stiffness hub and thus a
greater amount of hub danping can be transferred to the blade through
the coupling terms.

As a final result, it was thought to be of interest to
determine how much damping could be removed from one blade before
encountering an unstable region. The results of these calculations
are shown in Figure 10. From Taeble 1 il may be noted that each blade
originally had a blade damper whose rate was 3000 ft-1lb-sec/rad, and
from the figure it is seen that an unstable reogion appears when the
damping on one blade is reduced to approximately 1000 ft-lb-sec/rad.
Thus, for this particular example, approximately two-thirds of the
damping may be removed from one blade before an instability results.

CONCIUSIONS

Three main conclusions may be drawn from the results pre-
sented. First, the analyst must be gareful to examine new user
requirements to ascertain that the assumptions of existing analytical
tools are not violated. If these assumptions are violated, modifica-
tions to the analysis must be made or new analyses must be formulated
to handle the new requirements. Modifying the physical problem so
that it fits existing analytical methods can lead to erroneous conclu-
sions as evidenced by the smearing technique results.

The most effective means of eliminating the mechanical
instabilities which occur with one blade damper inoperative appears to
be through appropriate adjustment of the hub erffective stiffness and
damping characteristics. The approach seems to be to either reduce
the hub stiffness to allow more hub response or increase the hub damp-
ing. A combination of reduced hub stiffness and increased hub damping
will probably provide the most nearly optimum solution.
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Finally, the Floguet transition matrix method is an effec-
tive analytical tool for dealing with the one-blade-damper-inoperative
ground resonance prcoblem. The method provides th2 stability bounda-
ries directly and thus eliminates the uncertainties associated with
time history solutions.
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TABLE 1. PARAMETERS USED IN THE SAMPLE CALCULATIONS

Funber of blades b

Blade mass, m, 6.5 slugs (94.9 kg)

Blade mass moment, 8 65.0 slug-ft (289.1 kg-m)

Blade mass moment of inertis, I, 800.0 elug—fte (108%.7 kg-me)

Lag hinge offset, e 1.0 £t (0.3048 m)

lag spring, k, 0.0 ft-1b/rad (0.0 m-N/rad)

Lag damper, c, 3000.0 ft-lb-sec/rad (4067.5 m-N-s/red)

Hub mess, m, 550.0 slugs (8026.5 kg)

Hub mass, m 225.0 slugs (3283.6 kg)

Bub spring, k 85000.0 1b/ft (1240481.8 N/m)

Hub spring, ky 85000.0 1b/ft (1240481.8 N/m)

Hub damper, c_ 3500.0 1lb-sr.c/ft (51078.7 N-s/m)

Hub damper, ey 1750.0 1b-gec; 2t (25539.3 N-g/m)
v

— X

Figure 1. Mathematical representation of the rotor and hub.

ko9

Y L e B R St

s W s) LT D Nk M R
=5 '..,WW




SR e e A e 33t e s S

. ‘meqsAs paxyJ
ay3 ur pajjo1d sajcuenbaag -earjwIadout
Jadumep 2p8Tq QU0 ‘qny otdoajostuou JOJ

gatouanbaay pue Bujdmep TepoW ‘¢ SaINBTJ

IH '@334S WLy
a. H ] £ 4

Ll T T T

Wd¥ '033dS ¥iod

-
-

—
o

‘wwyshs Paxty

ay3 uy pajjoird satousunbagy Burliaom

saadurep apwiq TI® ‘qQny oydoxjostuou J0J
satouanbaxy puw Butdurep IBPOW °2 SINBTJ

4 "Q334< ¥OL0¥

£ 4 . | 0
T T T T T 1
Wddl '033dS ¥0.10¥

o W

¥ N

ONIdWYQD
WeOw

2 St 8 i e S

kic

b Lo e Enﬁfﬁ




*anbTuyoay

Bupaeews ay3 Buisn ‘aajjeaadout Iaduwrep

apeTq 2uo ‘quy ojdoajosjuou JOJ pPIUTEIQO
soTousnbaxy pue Supdwep TEPOW °C INBTI

ZH 'Q334S W0I0¥
¢ 9 1 £ $ 1 _90
— T T T 1 f T )
WdY 'J33dS ¥0I04d

W e w @ o

‘mdx GGz = y ‘eatjexadout
Joduep 9puTq 2uo ‘qny ojdoxjostuou

J0J SUOTYeTNOTEO AI03STY SWL]

25 ‘Wil
£

Z 1 0

T 1 L 1 L L T T L] T T

%ﬁ@%ﬁ@«@m@ﬁ

}}hdb&*{bw

) :

‘q INTTL




*aATgexadout
*gAaTyeIadout Jadurep Jodurep ope[q U0 pue quy OFdOIJOST
apBTq 2uo J0J A3TTTQEISUT JO uofdaa uo -uou ayg a03 Bupdurep FeT 9PBIQ JO UOTI
a98a Butads Bor apeIq JO 30333F ) 2anBTd -ounjy 8 se uotdaa A3ITIqelsul ‘9 2anBTJ
ZH ¢ ZH *Q33dS ¥Ol0Y
y AR e I i
(T I ] LI L

WdY "033dS ¥010¥

wd) ‘g33dS ¥OL0Y 0 02 002 .0 o
N 4 mgm WSS

Tavis\ Tavisnn Fnavis
Hoooz
o009
- 00001
VY ONINdS i NI dWVG
9v1 1avig N Ro0§ o00€r M _m‘u
Javie
oozt 00091
i . - 00061
(O X =01 | o1 X 001 R Jooost
S-Q1-
PRINI-Y PRIN-W peIPES-G-Y | 022

peajs-N-w




O

N-s/m
b-sec/ft
60 x l(l3 -
4000
3600
o7
3200
LATERAL T
HUB
DAMPING M" STABLE L ISTABLE STABLE
400
3 o0
ot 3
ROT(R SPEED, rpm
ROI(R SPEED, Hz

Figure 8. Effect of lateral hub
damping on region of instabil-
ity with one blade damper
inoperative.
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Figure 9. Effect of lateral b
spring rate on region of iusta-
bility with one blade damper
inoperative.
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Figure 10. Region of instability resulting fium reduced lag damping
on one blade.
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