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The Army has in recent years refined its methods of procur- 
ing aircraft. Until recently the Army had only procured aircraft 
which were more or less off-the-shelf items. That is, the aircraft 
were either developed for other military services or for civilian use 
and were adapted to meet Army needs. As a result, the Army was not 
significantly involved in the writing of specifications which affected 
the overall design of the vehicle. Operational experience has indi- 
cated, however, the need for specifications which reflect the particu- 
lar requirements of Army aviation. This paper is concerned with 
requirements which have been imposed in the area of helicopter mechan- 
ical instability, or ground resonance as this phenomenon is commonly 
known, and the impact which these requirements have on the analyst. 

The ground resonance problem has been with rotary wing air- 
craft since their inception, but the phenomenon was not well under- 
stood until many years after its first occurrence on the early auto- 
gyros. The instability was originally thought to be aeromechanical in 
nature, however, later analysis confirmed that the instability could 
be predicted based solely on mechanical considerations. The report by 
Coleman and Feingold (l) has become the classical reference on this 
problem. This classical treatment of the problem was expanded by 
Brooks (2) and Bielawa (3) to include additional degrees of freedom 
and to experimentally verify the analysis. 

All these analyses showed that the ground resonance insta- 
bility involved a mechanical coupling of the inplane degrees of free- 
dom of the rotor blades with the rigid body degrees of freedom of the 
helicopter on its undercarriage. The analytical results also indi- 
cted that the instability could be eliminated within the operating 
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HAM40ND L 
rotor speed range of any particular helicopter by properly selecting 
(i) the damping and stifiness characteristics of the undercarriage 
and (ii) the inplane damping of the blades. 

Because of operational considerations, the Army has imposed * 
requirements that the helicopter not only be shown free from mechani- 
cal instability under normal operating conditions but freedom from 
instability must also be shown for a variety of abnormal conditions. 
Some of these abnormal conditions are: operation on ice, flat tire 
and flat strut on one side, operation from a 12° slope on any heading, 
and operation with one blade damper inoperative. All but the last of 
these requirements can be handled by appropriate modifications of the 
basic parameters in the classical analysis of Reference 1. As will be 
shown later, the requirement for stability with one blade damper 
inoperative causes one of the basic assumptions in the classical 
analysis to be violated and thus a new analysis method must be 
developed. 

The investigation of the ground resonance problem when one 
blade damper is inoperative is the subject of this paper. A method 
will be presented for handling the problem and comparison will be made 
with two methods which have previously been used in attempting to 
satisfy the Army requirement. Instabilities which arise when one 
blade damper is inoperative will be examined and, finally, means for 
eliminating these instabilities will be discussed. 

SYMBOLS 

s 

k. 

y 

Lag damping rate 

Effective hub damping in x-direction (longitudinal) 

Effective hub damping in y-direction (lateral) 

Lag hinge offset 

Second mass moment of blade about lag hinge 

Lag spring rate 

Effective hub stiffness in x-direction (longitudinal) 

Effective hub stiffness in y-direction (lateral) 

Blade mass 
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Effective hub mass in x-direction 

Effective aub mass in y-direction 

Number of blades in rotor 

First mass moment of blade about lag hinge 

Time 

Coordinates of hub in fixed reference frame 
XL 

Lag deflection of i— blade 

Defined by Equations (2) 

Defined by Equations (2) 

Azimuthal location of i— blade 

Rotor speed 

Defined by Equations (2) 

MATHEMATICAL FORMULATION 

A complete derivation of the equations of motion for the 
ground resonance problem is presented in Reference h.    This develop- 
ment will not be repeated here, but the equations together with the 
underlying assumptions will be give'n in order to discuss the implica- 
tions of the one-blade-damper-inoperative requirement. 

It is assumed, as is done in Reference 1, that the helicop- 
ter on its landing gear can be represented by effective parameters 
applied at the rotor hub. It is further assumed that only inplane 
motions of the hub and blades are important in determining the ground 
resonance characteristics of the helicopter. Thus the degrees of 
freedom to be considered consist of two inplane hub degrees of freedom 
and one lead-lag degree of freedom for each blade in the rotor. The 
mathematical model to be used in the analysis is shown in Figure 1. 
Note that in the figure orly a typical blade is shown. The analysis 
is formulated for a rotor having N blades, and each blade is assumed 
to have a rotational spring and damper which act about the lag hinge. 
Further, it is assumed that each of the blades may have different lag 
spring and lag damper characteristics. This last assumption is 
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necessary in order to be able to treat the one-blade-damper- 
inoperative situation and represents a major departure from the 
classical analysis. In References 1, 2, and 3 each blade was assumed 
to have identical properties and, as will be indicated later, this 
assumption leads to considerable simplification of the equations of 
motion. With respect to the hub degrees of freedom, it is assumed 
that, in the absence of the rotor, the longitudinal and lateral 
motions of the hub are uncoupled. This is an approximation, but it is 
an assumption made in Reference 1 and one generally used in mechanical 
stability analyses. 

Based on the above assumptions, the equations of motion for 
the rotor-hub system may be written as 

Wti ♦ (^ ♦ *SK - (#•) [ 

m   + \ * Vh + Vh - "b 
i=l 

+ 2üL cos ♦. ] 
(my ♦ mj y*h ♦ Cyyh + k/h = -^   }Ji± - 0%) cos ^ 
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and small displacement assumptions have been made on Ci» Xh> an<* yh 
in order to linearize the equations. The parameter i±   describes the 
azimuthal position of the i™ blade at time t and is given by 

♦i" Qt + 2«(i - 1)/N (3) 

The equations of motion for the system thus consist of 
(N + 2) coupled second-order differential equations in which the 
coupling terms have periodic coefficients. The periodic coefficients 
arise because the blade equations, the first N of Equations (l), are 
written in a rotating reference system whereas the hub equations, the 
last two of Equations (1), are written in a fixed system. 

In order to eliminate the periodic coefficients in Equa- 
tions (l) Coleman and Feingold (l) transformed the blade equations 
into the fixed reference system. This transformation, which greatly 
simplifies the equations of motion, is only possible if the rotor is 
isotropic with three or more blades. An alternate procedure is pre- 
sented by Hammond (k)  for eliminating the periodic coefficients if the 
rotor is nonisotropic, as is the case for one blade damper inopera- 
tive, but the hub is isotropic. This procedure involves transforming 
the hub equations of motion into the rotating frame of reference and 

)    requires that the rotor have two or more blades. Since the hubs of 
most, if not all, currently operational helicopters are nonisctropic 
this last procedure is only useful for determining the genera], nature 
of instabilities which occur when one blade damper is inoperative. 

Thus for the general case of a nonisotropic rotor coupled 
with a nonisotropic hub one is faced with the problem of determining 
the stability of a system which is described by a set of second-order 
differential equations having periodic coefficients. It has been 
shown by Hammond (1+) that the Floquet Transition Matrix method 
described by Peters and Hohenemser (5) and Hohenemser and Yin (6) 
provides an effective mears for determining the stability character- 
istics of the system described by Equations (l). This method is 
essentially an eigenvalue method which is based on the Floquet- 
Liapunov thorem (7) for systems having periodic coefficients. Thus 
the stability characteristics of the system are direct outputs of the 
method. 

Two methods used in the past for treating the one-blade- 
damper- inoperative ground resonance problem are (i) numerical inte- 
gration of the equations of motion, and (ii) a smearing technique 
which involves a redistribution of damping over all the blades after 
one damper is considered imoperative. The reasoning for the second 
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approach is as follows: If the rotor has N blades then the total 
damping available in the rotor is NCJ_ where c^ is the damping on 
one blade. If one damper is removed, the total damping becomes 
(N - l)Ci. Thus, using the smearing approach, each blade in the rotor 
would be treated as if it had a lag damper rate equal to c^(N - 1)/N. 
It is thus seen that this second approach analyzes a system which is 
quite different from the actual situation. The motivation behind this 
approach is to be able to use the standard Coleman and Feingold analy- 
sis for an isotropic rotor. In the results which follow, each of 
these techniques will be applied to a specific configuration and the 
ground resonance problem with one blade damper inoperative will be 
discussed in detail. 

RESULTS 

In order to illustrate the implications of one blade damper 
inoperative on the ground resonance characteristics of a single rotor 
helicopter, a set of parameters was chosen. These parameters were 
chosen so as to be in the general range of interest for single rotor 
helicopters and were such that the system was stable with all dampers 
functioning up to a rotor speed of ^00 rpm. The parameters used in 
obtaining the results which follow are shown in Table 1. 

Results for the system described by the parameters of 
Table 1 with all ble.de dampers operational are indicated in Figure 2. 
These results were obtained using the standard Coleman and Feingold 
approach. This approach results in only two equations which describe 
the rotor degrees of freedom regardless of the number of blades. Thus 
there are only four modes which result from the eigenvalue analysis. 
As can be seen from the upper portion of the figure, where the real 
parts of the eigenvalues are plotted as a function of rotor speed, the 
system is stable over the entire rotor speed range. The labeling on 
the various modes is intended for identification purposes only and is 
not meant to imply anything with respect to the character of the 
modes. In the lower portion of the figure is plotted the frequencies 
of the various modes as a function of rotor speed. The horizontal 
dashed lines represent the uncoupled hub modes and the slanted dashed 
lines represent the uncoupled blade modes. As can be seen, at the 
lower and higher rotcr speeds the modes are essentially uncoupled, 
whereas for the intermediate rotor speeds a considerable amount of 
coupling is apparent. 

When one blade damper is removed the results shown in Fig- 
ure 3 are obtained. These results were calculated using the Floquet 
transition matrix method and indicate an instability for rotor speeds 
between 210 and 305 rpm. The nature of this instability can be 
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determined from an examination of the frequency plot in Figure 3. At 
the lower rotor speeds the frequencies for the ».odes labeled 3 and 6 
correspond to the uncoupled blade frequency (in the fixed system) for 
the blade which has no damper. As the rotor speed is increased the 
frequency plot for mode 3 indicates coupling with the other modes, and 
at the higher rotor speeds the mode 3 curve has deviated from the 
uncoupled curve. At the higher rotor speeds the mode 5 curve is 
nearer the uncoupled blade frequency curve. This behavior indicates 
that there is a significant amount of coupling between the unstable 
mode 3 and the mode labeled 2 which is predominantly a hub mode. The 
conclusion here is that the indicated instability has the same char- 
acter as a classical ground resonance instability, and that the insta- 
bility involves a considerable amount of blade motion. 

J 

Figure k presents the results of a numerical integration of 
the equations of motion for a rotor speed of 255 rpm. This rotor 
speed corresponds to the point of maximum instability in Figure 3« As 
can be seen from the time histories in Figure U, blade 1 which has no 
lag damper is experiencing large excursion?. It should also be noted 
from this figure that determination of whether the system is stable or 
unstable requires considerable judgment on the part of the analyst. 
The blade 1 trace appears to be stable, whereas it is impossible to 
make a definite conclusion relative to the hub traces. This serves to 
illustrate the fact that time history solutions are less desirable 
than eigenvalue methods for determining the dynamic stability of sys- 
tems. The problem with the time history solutions is that one can 
never be sure that the equations have been integrated over a suffi- 
ciently long period for the initial conditions chosen. If the initial 
conditions are not chosen so as to excite the mode of instability, an 
extremely long period of integration may be necessary. A further 
drawback of the numerical integration method is that, in general, it 
requires much more computing time than does the eigenvalue approach. 

Results obtained using the smearing approach are illustrated 
in Figure 5. Note that although the mode labeled 3 becomes lightly 
damped, the system remains stable throughout the rotor speed range 
considered. The smearing technique is thus not recommended for treat- 
ing the one-blade-damper-inoperative situation since it leads to 
unconservative results. 

Suppose, however, that a designer were using the smearing 
technique and obtained the results shown in Figure 5. The logical 
approach to making the system more stable would be to add additional 
blade lag damping since this parameter is known to be quite effective 
in eliminating the classical ground resonance. The effect would be 
that the smearing technique would then indicate a sufficient stability 
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margin since it is simply an application of the classical analysis. 
Note, on the other hand, what the correct results, as obtained from 
the Floquet analysis and shown in Figure 6, would indicate. As can be 
seen from this figure, the increase of blade lag damping has no effect 
on the region of instability when one blade damper is inoperative. 
This result is not too surprising since it was observed from the time 
history traces of Figure k that the blade with no damper is responding 
more or less independently of the other blades. These results further 
strengthen the conclusion that the smearing technique should not be 
used for examining the one-blade-damper-inoperative ground resonance 
problem. 

From the results of Figure 6 it might appear that the Army 
had imposed an impossible requirement on the helicopter designer. As 
will be shown, however, it is possible to eliminate the instability 
through proper selection of the parameters available to the designer. 
Since it has been shown that increasing the lag damping has no effect 
on the region of instability wich one blade damper inoperative, the 
only other blade parameter which the designer can vary is the lag 
spring rate. Coleman and Feingold (l) have shown that, in the absence 
of lag damping, ground resonance is impossible if the blade lag fre- 
quency is greater than the rotor speed. This requirement is extremely 
conservative, however, if blade lag dampers are present. 

Figure 7 illustrates the effect of lag spring rate on the 
region of instability when one blade damper is inoperative. The 
assumption was made here that the lag spring and lag damper were 
independent so that failure of the lag damper did not result in simul- 
taneous failure of the lag spring. Thus the results of Figure 7 were 
obtained for a rotor in which each of the blades had the same spring 
rate, but one blade damper was inoperative. As can be seen, if the 
lag spring rate is made high enough the region of instability can be 
eliminated. The spring rate required is, on the other hand, much 
lower than the spring rate necessary to make the blade lag frequency 
equal to the rotor speed. It is felt, however, that the lag spring 
rate required is unrealistic and, further, the higher the spring rate 
the larger will be the vibratory loads transferred to the fuselage. 
Thus the lag spring does not appear to be the optimum parameter to use 
in eliminating the instability. 

L 

i . 

The other parameters available to the designer are the hub 
parameters. The hub stiffness and damping in the lateral and longitu- 
dinal directions may be changed by altering the landing-gear geometry 
and oleo characteristics. Further, the oleo stiffness and damping are 
usually adjustable in service so that these are potentially powerful 
parameters for the designer. Figure 8 shows the effect of lateral hub 
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damping on the region of instability. This figure illustrates that 
huh damping can he used effectively in eliminating the instability. 
This can be attributed to the fact that the only means for the blade 
with no damper to experience any damping is through the hub coupling 
terms in the equations of motion. Thus the addition of hub damping 
tends to stabilize any unstable hub motions while providing damping 
for the large blade excursions. 

The effect of variation of the lateral hub spring rate is 
shown in Figure 9. These results indicate that, if the stiffness of 
the hub is reduced, the instability can be eliminated. Again the 
indication is that the coupling between the rotor and hub is the key 
to eliminating the instability. Here the lower stiffness hub is 
allowed to respond more than the higher stiffness hub and thus a 
greater amount of hub damping can be transferred to the blade through 
the coupling terms. 

As a final result, it was thought to be of interest to 
determine how much damping could be removed from one blade before 
encountering an unstable region. The results of these calculations 
are shown in Figure 10. From Table 1 it may be noted that each blade 
originally had a blade damper whose rate was 3000 ft-lb-sec/rad, and 
from the figure it is seen that an unstable region appears when the 
damping on one blade is reduced to approximately 1000 ft-lb-sec/rad. 
Thus, for this particular example, approximately two-thirds of the 
damping may be removed from one blade before an instability results. 

CONCHJSIONS 

Three main conclusions may be drawn from the results pre- 
sented. First, the analyst must be qareful to examine new user 
requirements to ascertain that the assumptions of existing analytical 
tools are not violated. If these assumptions are violated, modifica- 
tions to the analysis must be made ox* new analyses must be formulated 
to handle the new requirements. Modifying the physical problem so 
that it fits existing analytical methods can lead to erroneous conclu- 
sions as evidenced by the smearing technique results. 

The most effective means of eliminating the mechanical 
instabilities which occur with one blade damper inoperative appears to 
be through appropriate adjustment of the hub effective stiffness and 
damping characteristics. The approach seems to be to either reduce 
the hub stiffness to allow more hub response or increase the hub damp- 
ing. A combination of reduced hub stiffness and increased hub damping 
will probably provide the most nearly optimum solution. 

( ) 
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Finally, the Floquet transition matrix method is an effec- 
tive analytical tool for dealing with the one-blade-damper-inoperative 
ground resonance problem. The method provides the stability bounda- 
ries directly and thus eliminates the uncertainties associated with 
time history solutions. 
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TABLE 1.    PARAMETERS USED IN THE SAMPLE CALCULATIONS 

Number of blades 

Blade mass,   m. 

Blade nass moment, S. 

Blade mass moment of inertia, L 

Lag binge offset, e 

Lag spring, k^ 

Lag damper, c. 

Hub mass, m 

Hub mass, m 

Hub spring, k 

Hub spring, k 

Hub damper, c 

Hub damper, c 

6.5 slugs (9^.9 kg) 

65.O slug-ft (289.1 kg-m) 

800.0 slug-ft2 (IO8U.7 kg-m2) 

1.0 ft (O.30W m) 

0.0 ft-lb/rad (0.0 m-N/rad) 

3OOO.O ft-lb-sec/rad (1*067-5 m-N-s/rt-d) 

55O.O slugs (8026.6 kg) 

225.0 slugs (3285.6 kg) 

85OOO.O lb/ft (I2l»0l+8l.8 N/m) 

850OO.O lb/ft (1240W1.8 N/m) 

3500.0 lb-s'.c/ft (51078.7 N-s/m) 

1750.O .\b-sec/ft (25539.3 N-s/m) 

**X 

Figure 1. Mathematical representation of the rotor and hub. 
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Figure 8. Effect of lateral hub 
damping on region of instabil- 
ity with one blade damper 
inoptrative. 
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Figure 9. Effect of lateral hub 
spring rate on region of insta- 
bility with one blade damper 
inoperative. 
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Figure 10.    Region of instability resulting fiom reduced lag damping 
on one blade. 

I    ) 
\ 
\ 

1H3 


