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A large number of the Army's present and fLture optical svstems
have as their primary task the liatage formation of a diEtant object.
In virtuall-, all of these systims, atmospheric turbulence plays a role
in limiting the image quality. This is so because the atmospheric
medium is inhomogeneous in temperature and, hence, in refractive
index. Thus, virtually all military optical systems must operate in
media that vary randomly in space and time. Even nanimage-forming
optical devices such as laser rangefinders(I) are affectea by the
grosser manifestations of turbulence which take the form of evergy
redistr bution( 2 ) witiin the optical beam and raudio poinrlng o: tiie
beam. 3) Howeser, for dcvice ' such as telercc-pes th.t !re used t-
form an image, the random modulation of the oetical phase as light
traverses the medium acts in a more subtle way to lower the reso.v.tng
ability of at. instrument below ite r. vacuo (diffra tior-limi ed) Pir-
forman-:e level.

Because of the deleterious effect of turbulence on the perform-
ance of image-forming instruments, we have reexamined the techniques
of image formation in terms of a new app-oach to a proLlem that has
a'flicted astronomers for over tso centuries. We will review the
basic mathematical relationships central to classical optical imagery
along with the constraints intrinsic to the detection of radiation at
optical wavelengths. It will be shown that the only parameter ecces-
sible to measure is the intensity (mean square of the electric field)
and that this parameter corresponds to a second-or4er correlation of
the electric field.

having developed the basis of Ulassical imagery, we will intro-
duce the notion of higher-order correlttions of optical fields (fourth,
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sixth, etc.) aid discuss the ways in which these measures relate to
standard image formation with which we are familiar. Specifically, by
some manipulation of the far-field intensity distribution of a source,
we wish to infer the intensity distribution over the source itself.
We will discuss some of the constraints of higher-order correlation
techniques, the potential they hold for reducing the effects of trans-
mission in the atmosphere, and a basic experiment that illustrates the
mathematical relationships.

In this paper we intend to present a mathematical framework
upon which we can hang physical and intuitive arguments. Although
extensive mathematical treatment will be avoided, annotation has been
provided for those who might wish to explore these topics in detail.

1. THE HUYGENS-FRESNEL EQUATION

We begin our discussion of optical imaging by examining the
coordinate planes of Fij. 1. The object to be imaged here is found in
the &-n plane at the lelt-hand portion of the figure and is bounded by
the aperture denoted Z. In the general case, the object ma) be a
primary sourc._ of light 'r a secondary surface from which light is
scattered. The object is described by a two-dimensional source, since
an extension along the axis of propagation can be accounted for, here,
by an equivalent field at the pl3ne of radiation. It is our interest
to describe the nature of the electric field as it propagates from the
ý-n to the x-y plane, a distance, Ro, away. For the moment, we are
concernei only with the form of the electric field V(x,y) as it relates
to the field at the object, V(E,n). The particular length between
specific points in the two planes is indicated by the path R(&,n,x,y).

Upon realizing that each point in the aperture radiates a
spherical wave to the right, we can write the Huygens-Fresnel
principle( 4 ) for paraxial waves for which

V(x,y;t) fJV(,n;t) expR[ikR(;,r,;xy)1 (1)ffiAR(&,n;x,y) dd,(I

where k = 2r/A, and ý equals the wavelength of the radiation. Equa-
tion (1) states tha. the electric field V(x,y;t) is formed of a super-
Position (linear summation) of waves emanating from each point within
the aperture, properly phase-shifted according to the exponential term
and diluted by the 1/R expression. Now

R(&,n;x,y) - [R 0
2 + (x-_) 2 + (yn)2]½ (2a)
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R '1 + + , (2b )

o0 2\RID 2 R 1(b

when approximated by the first two terms of the binomial(5) (the Fres-
nel approximation) expansion. Using Eq. (2b) in Eq. (1) and making
the far-field (Fraunhofer) approximation [Ro >> k('12+ n 2 )max /2], we
c-n write

i =.it exp[ik(R0 + (x 2 +y 2 )/2R0 )]Sl• V(x,y;t) =

m•mx f V(ý,n;t) exp[-i k (x&+Yri) d~dr.. (3)

Apart from the coefficients before the integral, Eq. (3) shows that
the electric fields in an aperture and the far field are related by a
spatial Fourier transform operation. This property is basic to the
ensuing work involving intensity correlations with quasimonochromatic
light. We note that Eq. (3) is linear; that is, the two'-dimensional
"integral operator on V(ý,n;t) is linear. Therefore, if either
--V(,;t) or V(xy;t) is known, the other is specified throug.i a linear
(and hence, invertible) transformation.

2. THE VAN CITTERT- ZERNIKE THEOREM

Although Eq. (3) holds for radiation of general frequencies,
the relationship it expresses is somewhat acadt ic here from the stand-
point that it describes electric-field quantities that are unmeasurable
at optical wavelengths. No known detector can follow oscillations at
frequencies of lO hz. At optical frequencies, the parameter acces-
sible to measurement is the Intensity, the mean square of the electric
field averaged over many oscillations. It is this constraint that has
prompted many investigators to couch optical theory in the form of
correlations of field quantities. The best known of these correla-
tions is called the mutual coherence function, [rl,2X 2 ,i), where

T

r(xl,x 2 ,T) -lim 2T I (4a)

2T-

SV(.Xl, + T)V*(xt), (4b)

and T is the time delay between the instantaneous product of the elec-

tric fields at the points x, and x2 (and 2 = xi,Yi). A special case
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ot the mutual coherence function results when tie time delay is set to
zero or

QL(19,2 ,1T)1 =0 Jd(_XlOx2), (5)

where J(x,,x,) is called the mutual intensity function.

We wish to calculate the mutual intensity in the far field of a
spatially incoherent source. Using Eqs. (5), (4b), and (3), we write

V(X 1,Yj;,t)V*(x ,y,;t) J(x 1 ,Y1 ;x 2 ,Y2) (6a)

exp L:- -(x x, R I Y2
_ . V (f. 9T1, l; t)V*(C2, •,2 ;t)

, exp[.i ~ (X1 r -X + y - Y:i 2)" dF 1 d 2ddn~dr 2 , (6b)

where the proctsses of temporal averaging and spatial integration have
been interchanged and the radiation assumed quasimonochromatic
(rmit, "'max - min) so that the wavelength dependence can be approxi-

mnatci by the mean wavelength. Since the source is spatially incoherent
the mltual intensity takes the form(6)

V(r 1 ,r,;t)V*(Q,,,r,2 ;t) = J(,nr 'ý 2 ,r 2 ), (7a)

= l()~C - 2)~(~ - ).(7b)

Physically', Eq. (7b) implies that the time fluctuations of the elec-
tric ii Ids at two non.-identical points in the source plane are com-
pletely unccirelated;* equivalently, the total power measuLed at a
point in tihe far field is simply the sum of the squared electric
fields from each differential element of the source, taken with the
propcr pi.sc delyiv and attenuation.

If Eq. (7h) is used in £o. (6), the mutual intensity collapses
to a singl,: azea integral, giving

The overbar of Eq. (7a) by the definition of Eq. (4) indicates a time
average. Although spatial incoherence is usually defined by a time-
averaging process, it can also be defined in terms of a spatial
average in the source plane.
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exp iR (x Y +y-Y]

J(x 1 ,y 1 ;x2,Y 2 ) 0_o__ (ARo) 2

0 2

Jf(f ri Rx~- t- I -x2)~ + (y 1 -: 2)n.~ T (q)
0

Although usually presented in a normalized form,(7) Eq. (8) is a state-
ment of the van Cittert- 7±rnike theorea which, aside from the accom-
panying coefficient, shows that the mutual intensity in the far field
of a spatially incoherent source is given by the Fourier transform of
the intensity across that source.

The mutual intensity function of Eq. (C) is directly acces.sible
through measurement using o technique known as Young's double pinhole
experiment. Figure 1 shows an opaque surface ere,.ted in the x-y plane.
Two pinholes are made in the surface. A distarice behind the surface a
fringe pattern caii be observed or the u-v plane. The fringe contrast
relates to the amplitude of J(x1,y 1 ;x 2 ,y 2), and the frixnge shift cor-
responds to the relative phase between the radiation on the pinholes.
if this measurement is made for all pinhole spaLings and orient itions
in the x-y plane, J(xl,yl;x2,y:.) is completely specified and can be
Fourier transformed to derive I(•,rO, the intensity #n the object.
This theorem is basic to most o': cal imaging, since lenses effect the
inverse transformation of Eq. ,) to give a scaled distribution of the
object I-radiance. Referring :,;aln to Fig. 1, we note that a lens has
been placed its own focal lentvý from both the x-y and u-v planes. We
assert without proof (see P4. 4, n. 83) that in this configuration
there is a Fourier transform rt'aation h-etwe.:n these two planes due to
the operation of the lens on the radi,-_,a from the x-y surface simi-
lar to the relationship between the '.-n and x--y planes located a great
distance apart. Thus, under the assumpteonz given in the mathematIcal
treatment above, the electric field V(u,v) is i scaled distribution of
the fie~d V(&,r.). The inveysion of the u-v axes is a mwthematical con-
venience (see Ref. 4, p. 167).

By the scaling property from one domain to another intrinsic to

the Fourier transform operation, large detail in the source -s given
by small separations in the far field and vice versa. Thus, imag•.ng
with a finite aperture implies a finite limit to the high-frequency
detail resolvable on the source. This justifies the well-known de-
scription of lenses as low-pass filters, Also, cince there are many
more pairs 3f points within an aperture corresponding to small separa-
tions than to large, --here is a built-in re,,undancv weighted in favor
of low-frequency resolution.
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Equation (8), although a statement of second-order corralation,
is basic also to fourth-order correlation, as we shall see later,

3. PHl, eFFECTS OF COHERENCE

At thvs point in the development, it is important- that we con-
cern ourseLves with the coherence properties of 3ptic.i, sources.(8'9)
W. again reter to Fig. 1. Let us imagine that there is a single point
scatterer at the object (ý-r) plane illuminated by an optical source.
The field at the x-y plane (plane of observation) will be, of course,
a spherical wave. If we begin to insert arbitrarily other point sLat-
tercrs at the object plane, the electric field at the x-y plaae will
be the sum of all the jndfvidual contributors as determined by geometry
per Eq. (3). At a particular instaat of time, the contributions from
the VaLioUS scatterers will add constructively at some points on the
x-y plane, while at other points they ma) not. But, as indicated
earlier, the electric field is not accessible to ra!asurement; the
intensity (mean square of the electric field) must be averageJ over
many :yc2es of field osciilaticn. It the opticil bandwldz' of the
light ill,:'.n.nting the scatterer', is su;ficie•ity ar•o that the, rta-
tive phase across the wavefront r-maina;-. ýops%,,unt dur~ria the -s•-'1d -f
observation, then the intrnsity ,pactero, that wou'd be obse'rved ,turing
just a few temporal cycles of os isll.o-, 4iUl rezain fix-.. outin,-
total period of observati-n. *.iii, pattert is cLiued 3 spckle patet;n
If, on the other hand, the baftdwidth of the source Is broadened, theua
the speckle patterrn begins to change with time and gradualsy wssnes
out unless the peritd cf ormervetion i. shortened accorJingly.

Fluctuations of Litv -.pec-klv patterrn in the time domain relate
to the temperal cohetence -rupertfez of ,t'. source, Fluctvaclou'. cf
the speckle ýt-at.tcrn in EPiý.ce ýacross tb1 x-v piano) relate tc the
source s'ze a-A ace termad spatdAl cohereane effectb. i? is thste
latter coherence pzoperti'ýs that ar. embodied in the mutual intensity
function. E~q, (-S) aný" relate directly to tt:e parameter of Interest,

,),th i on..ty djsttihut,:,i over .e source plane. But the
a"'ili'y t:, rv;ord the spe.kle pattern uithout its being washed out
depends Or ho sourc.'t an~i%'toih -nd detection tiine In the x-y plane.

Speckle patternrs are c.silv c.serve- b;y eye when laser radiation
is .ca:te-te,; from ,a rough su.facs. Howe-ier, with thermal sources
gtea_ coc', ntust> be taken tv utilize evteu a fraction of the speckle sig-

1 that-. la usually time-varianr with extremely short tLmt constants
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4. A THEOREM CONCERNING THE FOURTH-ORDER GAUSSIAN RANDOM PROCESS

We have seen in Eq. (7) the way in which a time average can be
used to impose a condition on the correlation of an electric-field
pair. No particular assumption was made about the statistics of the
field variables. However, it is well known that classical thermal
sources exhibit stttiitical fluctuations (temporally) that are gaussian
in nature. Hodara1O) has asserted that lasers with but a few axial
modes are, to a good approximation, gaussian as well. However,
Troup(ll) has argued that gaussian statistics are achieved only in the
limit of a large number of axial modes.

The argument for gaussian statistics can be extended to the spa-
a.al domain as well. It has been argued that( 1 2 ) the received field

at any point in the far zone (as described above in Section 3) consists
of a s-r of randcm-amplitude, random-phase, complex phasors ot tributed
ty th,. elementarN scatterers. If the size of the scattering area is
large enough to include many point scatterers (or there are enodigh
elementary coherence areas coa~poslng The source), the Central Limit
Theorem may be used to co'nclude that the electric field in tl'e detec-
tion plane is a gaussian random proce5s in a spatial sense.

A well-know. property of gaussian statistics is that all hi her-
order momerts are representable in terms of the first and second.(13)

In particular, the fiAurth-order correlation of elect ic fields (second-
order correlatior of intensities) can he shown to be(14)

Ii•2 : II 12'+ iF i(9)

where the defining relation of Eq. (4a) has been used. Equation (9)
cherefore describes the relationship between intensity correlations
and field correlations for a process that is gaussian in the time
domain., We note that, in general, the field correlation is a complex
qusntlity, o th.I only the relationship between the intensity corre-
lation and the modulus of the field correlation iu implied. It reveals
the underlying priaciple by which intensity correlations in the far
field may be used to infer the accompanying field correlstions and
hence, through Eq. (8), to gain knowledge of the intensity distribution
at the source.

5. ASSLUPTIONS BASIC TO STATISTICAL AVERAGING

We are now in a position to examine the nature of the averaging
processes fundamental to a number of ortical processing schemes.
Figure 2 represents an ensemble of similar experiments. As in Section 3,
we consider the intensity distribution in the x-plane to be made over

2P'?
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an observation time short compared with any temporal fluctuations in
intensity. The amplitude distribution over the source plane is identi-

cal from one sample to the next. The paiL of receiver points in the
detection plane also remains constant. However, each source plane ex-
hibits a statistically similar, but independent phase mapping across
its extent. This insures that the speckle (intersity) patterns observed

at the receiver (x) planes rkmain statistically identical as well. In
the language of probability theory, each pair of measurements in the
x-plane represents one particular sample in the outcome space of the

experiment.

We now turn our attention to the classic relation ot imaging,
Eq. (8). It must be recognized that there are two fundamental assump-

tions basic to its development which were not explicitly mentioned.
First, the mutual coherence function of Eq. (4) is fundamentally defined

in terms of an ensemble average. This is the average that would be

calculated if the total outcome space for a given e,,periment were known
for a given space-time set of boundary conditions. In practice, the

ensemble average is nevei measurable because of a lack of access to an
unlimited number of experimental configurations operat.ng under identi-

caJ circunstances. Instead, the ergodic hypothesis is invoked: that

is, if one parLik'ilar experimer? is performed under ,.nchan,,ing condi-
tions (stationarity), then the average that is taken in the domain of

stationary conditions is aLzeezned equivalent to the ensemble (true)
average. The working definition of Eq. (4) necessarily assumes that
the enserble average can be replaced by a time average because of a
condition of stationarity in the time domain, the domain in which the

averaging is made. Equation (8) is then a time average over many

instantaneous products of electric field. For this situation, Fig. 2

can represent a time series of field pairs (i,j,... n) which are sam-
pled, multiplied, and averaged.

b. FOURT$-ORDER CORRELATIONS IN THE TIME DOMAIN

Until about two de:ades ago, essentially all imaging was accom-

plished by means of second-order ccrrelat ions taken over a time -average

long compared with the coherence time of the radiation. About that

rime, two astrorovers, Hanbury Brown and Twiss,(15 16) were searching
for a techniqu, to infer the diameter of stars which would not have the
sensitivity to atmospheric turbulence and instrument vibration ch-rac--

teristic of the stellar interferometry of Michelson and Pease.(17, To
that end, they were first to suggest the use of fourth-order field cor-

relations. The key to this approach is embodied in Eq. (9).

Although Hanbury Brown and Twiss did not explicitly use the

saussian theorem of Eq. (9), it is, in fact, intrinsic to their

224
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mathematical development. Their result shows, nevertheless, that the
time-averaged, two-point correlation of intensities in the fer field

ot a spatially incoherent source is proportioncl to the square of the

Fourier transform of tb,- su," ce intensity distribution. We note as

before that P12 is, :n general, a complex function which, in fact,
represents the amplitude spectrum of the source intensity distribution.

Since in Eq. (9) ^ne mutual coherence function is squared, this method

yields the power spectrum of the source intensity distribution. Also,

since, the relative magnitudes of the real and imaginary components of

the amplitude spectrum are unknown, no linear transformation is pos-

sible to infer the intensity distribution of the source itself.

"lurning again to Fig. 2, the htanbury brown- Twiss experiment can

be understood by letting each member of the ensemble represent a pair
of intensity measurements made in a time less than the coherence time

of the radi.ation. As many intensity products are averaged in time, the

function approaches the ensemble average.

Although this method of imagery yields information only about

the object intensity power spectrum, it has proved useful in the meas-

urement of star diameters,(1) for which only the first zero crossing

of the Fourier transform need be known. Since the optical phase is

discarded immediately upon detection, the instrumentation is not only

insensitive to mechanical vibrations but to turbulence-induced phase

fluctuations as well. The primary limitation to the method is the low

level of radiation that is detected. AF a result, 'this approach is

limited to relatively intense stars to overcome the severe signa~;•-

noise problem. Analyses of this problem have been given by Gamo

and Twiss.(
2 1 )

7. INTENSITY CORRELATION IN THE SPATIAL DOMAIN

With the uti'ization of the laser, the experimental con traints

are quite different, The signal-to-noise ratio can be increased typi-

cally by six orders of magnitude.( 2 2) With a view to exploiLing this

property, Deitz and Carlson( 2 3 ) have' ri.untly investigated the pLLen-

":ial for intensity correlation in terrestrial imagery. In many situ-

atiors of interest to the krmy, the availability of laser illumination

g'eat'i reduces the constraints due to nis( limitations. In addition,

since ground-to-ground imagery suffers froit the greatest deterioration

in image quality because of turbulence, it offers the greatest poten-

tial for improvement.

Although the details of this work call be found elsewhere,(2
3 )

we will again turn to Fig. 2 for the basis of this recent approach. in

the case of spatial intensity interferometrv, the signal in the A-plane
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is detected over a large area, rather thar at just two points. Con-
ceptually, a large piece of film is placed in the x-plane. The signal
is recorded spatially over a time short compared with the coherence
time of the radiation and is then autocorrelated. This operation cor-
responds to an average taken in the space domain. Here, through the
assumption of spatial stationarity (and a sufficiently large area of
spatial averaging), the spatial average is assumed equivalent to the
ensemble average.

Although the method of sirtnal processing is very different from
the Hanbury Brown-Twiss experimenL the final mathematical relations
are similar. The principal esult(23) shows that the spatial intensity
correlation in the far fie'd of a source can be written

(I(A] ,T)I(x 2 'T)> 1 f sinc(pT)H(o)dp (10a)
(c r)* 0 0J

0 0 0

ffr CX1 - 22) "

ff C(f) I ( + 2

rk (11 -) A2 2r[ -.1 -~2)] 2 (lb

The angle brackets indicate a spatial average, c is the vacuum velocity
cf light, r is the average distance between object and detection planes,
and w is the angular frequency of radiation. The parameter P is the
difference frequency between modes in the incident radiation, the H
function is defined in Ref. 23 and relates to the temporal spectrum of
the carrier, and k is the wave number of light (2Qw/). Equation (10)
shows that the spatial intensity correlation is proportional to two
functions. The first is the square of the Fourier transform of the
source intensity distribution qs related in Eq. (9) by a .emporal aver-
aging process. The second term, C(f), is a normalized phase corre-
lation function( 1 2 ) describing the coherence interval over a rough
surface. In order to describe a spatially incoherent surface, C(f)
(which is defined by a spatial average) is often allowed to assume the
role of a delta function. In that idealized limit, its transform
becomes a constant and does not band limit the detectable spatial fre-
quency spectrum of the object. 23)

S. AN EXPERIMENT IN SPATIAL INTENSITY INTERFEROMETRY

To illustrate the results of Eq. (10), a pair of crossed Ronchi
rulings, shown in Fig. 3, were used as the object in the following

226
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experiment. First, in order to demonstrate the Fourier transform
relation of the Huygens-Fresnel equation [Eq. (3)], the object of
Fig. 3 was transilluminated. In the far field, the intensity distri-
bution was recorded and is shown in Fig. 4. This signal corresponds
to the square of electric field represented by Eq. (3); equivalently,
the signal of Fig. 4 is the power spectrum of the electric field Jis-
tribution ovzr the object of Fig. 3.

To illustrate the results of intensity correlation, a sp,.tion
of ground glass was inserted (to gain spatial incoherence) adjacent to
the object of Fig. 3 and again illuminated by a laser. The far-field
speckle pattern that resulted is shown in Fig. 5. The pattern appears
random. The mathematical effect of the ground glass has been to multi-
ply the object field, V(r,n), inside the integral of Eq. (3) by a random
phase function.

Next, the speckle pattern of Fig. 5 was used to make an identi-
cal pair of optical transparencies. These were then used in an optical
autocorrelator to record the result shown in Fig. 6. As described by
the relation of Eq. (10), Fig. 6 gives the power spectral density of
the intensity distribution over the object. Since the electric field
amplitude and the intensity over the object of Fig. 3 are related by a
squaring process, the results of Figs. 4 and 6 are similar in the man-
ner indicated by Eqs. (3) and (10).

9. THE INVERSION OF THE POWER SPECTRUM

As we have shown in the previous sections, Intensity correla-
tions lead only to the power spectral density of the source intensity
or, equivalently, the modulus of the Fourier transform. Depending upon
the application, the power spectral density or its Fourier transform,
the correlation function, may be the parameter sought for system
use.( 2 4 ) This is often the case in a target-guidance or recognition
problem. However, without the phase information, the Fourier inversion
cannot be taken to derive the source distribution itself.

In the experiments of Hanbury Brown and Twiss, the loss of phase
is not a serious limitation since their objective is simply the meas-
urement of star diameters. If a circular disk is used as a model for
a star, the object is known, a priori, to be symmetrical. Thus the
spatial transform of the (real) intensity is pure real. For this situ-
ation, the phase of the transform is zero or r for all spatial wave
numbers, and the square root of the power spectrum can be takeu (with
a sign ambiguity) to derive the spatial transform itself.

*The author is indebted to N. A. Peppers, Stanford Research Institute,

for a number of helpful suggestions in this experiment.
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In the application of intensity interferometric techniques to
terrestrial imaging systems, though, the loss of phase is a serious
lImitatior to the mechod. A number of authors have addressed them-
selves to the problem of phase recovery.(25) t general solution to
this problem, however, has never been found.

Deitz and Carlson have recently proposed a scheme(26) whereby
the incoming electric field is preprocessed before intensity detection
and autocorrelatior By this method, the source is effectively syumvc-
trized in its intensity distribution. If a function is real and ex-
hibits even sywmetry,( 7) its Fourier transform must be pure real.
Thus, even though the power spectrum is finally derived by the measure-
ment method, its accompanying amplitude spectrum is known (by virtue
of the preprocessing) to be pure real. Thus, the square root of the
power spectrum can be taken to infer the amplitude spectrum. TheL? is
a critical choice of signs, however, to be made in the square root pro-
cess. The utility of the method appears to rest with the degree to
which system oise can be precluded from interferring witi, those
decisions.(26)

10. CONCLUSIONS

.here are a ntmber of special benefits from detecting images by
the technique of intensity corzelation. (1) The method is relatively
insensitive to the effects of atmospheric scintillaticn.(19) (2) Be-
cause the signal is detected in the spatial-transform domain, high-
frequency detail abcut the scattering surface translates to large
spatial lags in the far field. This result could be particularly
important at frequencies where detector resolution is not well devel-
oped. (3) A special advantage to intensity interferometry in the
spatial domain is the utilization of gaussian statistics in the spatial
(not temporal) kiense. By this method, sources with non-gaussian time
statistics (such as single-axial-mode lasers) can be utilized.
(40 Still another advantage of spatial detection is that images of
moving surfaces can be forwed using brief exposures.

Against these benefits must be weighed the limitations of inten-
sity Interferometry. The primary factor in this respect rests upon the
greatly diluted energy density at the plane of detection. Because the
signals are oi such relatively low intensity, they tend to be masked by
noise. The limitation can result from quantum noise in the carrier,
detector noise, or stray signals from unwanted background. It remains
to be seen whether these limitations can be successfully overcome so
that the potential benefits of intensity correlation can ultimately be
realized.
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Fig. 1. Coordinate axes for the object (Q-n) and primary
detection (x-y) planes. In addition, a lens is placed itsfocal length behind the x-y plane. Finally, a focal length
behitid the lens is the u-v plane.
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Fig. 2. An ensemble of similar experiments. Source
amplitude and receiver points are identical. Random
phase variations over each source plane are statistically
independent.
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Fig. 3. optical Transparency Fig. 4. Spatial Power Spectral
Used as Object Density of the Electric Field

Distribution of Fig. 3

Fig. 5. Far-Field Speckle Pattern Fig. 6. Spatial Power Spectral
of Transparency in Fig. 3 When Density of the Intensity Dis-
Used with R~andom Phase Screen tribution of Fig. s
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