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A large number of the Army's presen:t and future optical svsteuns
have as their primary task the iwage formation of a3 distant object.
In virtuallr all of rhese syst:ms, atmospheric turbulence plays a role
in limiting the image quality. This is so because the atmospheric
medium is inhomogeneous in temperature and, hence, in refractive
index. Thus, virtually all military optical systems must operate in
media that vary randomly in space and time._ Even nonimage~forming
optical devices such as laser rangefinders(l are affectea bv the
grosser manifestations nf curbulence which take the form of evergy
redisi §bution(l within th2 optical beam and raudow pointing ol fhue
beam. Howevrer, fov device ) such as telerccpes that :re uwzed 19
form an image, the random modu‘ation of the onetical phase as lighy
traverses the medium acts in a more subtle way to lower che reso.v'ng
ability of ar instrument below ite 1x vacuv (diffraction-limi ed) par-
formane level.

Because of the deleterious effect of turbulence on the perform-
ance of image-forming instruments, we have reexamined the techniques
of image formation in terms of a new app~oach to a prollem that has
aflicted astronomers for over two centuries. We will review the
basic mathematical relationships central to classical opticzl imagery
along with the constraints intrinsic to the detection of radiatiom at
optical wavelengths. It will be shown that the only parameter ecces-
sible to measure 15 the intensity {(mean square cf the electric field)
and that this parameter corresponds to a second-orier correlatien of
the electric field.

Having developed the basis of . lassical imagery, we will intro-
duce the notion of higher-order correlitions of optical fields (fourth,
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sixth, etc.) and discuss the ways in which these measures relate to
standard image formation with which we are familiar. Specifically, by
some manipulation of the far-field intensity disctribution of a source,
we wish to infer the intensity distribution over the source itself.

We will discuss some of the constraints of higher-order correlation
techniques, the potential they hold for reducing the effects of trans-
mission in the atmosphere, and a basic experiment that illustrates the
mathematical relationships.

In this paper we intend to present a mathematical framework
upon which we can hang physical and intuitive arguments. Although
extensive mathematical treatment will be avoided, annotation has been
provided for those who might wish to explore these topics in detail.

1. THE HUYGENS-FRESNEL EQUATION

We begin our discussion of optical imaging by examirning the
coordinate planes of Fig., 1. The object to be imazed here is found in
the £-n plane at the lett-hand por:tion of the figure and is bounded by
the aperture deuoted L. In the general case, the object may be a
primary sourcz of light »>r a secondary surface from whicl light is
scattered. The object is described by a two-dimensional source, since
an extension along the axis of proupagation can be accounted for, here,
by an equivalent field at the plane of radiation. It is our interest
to describe the nature of the electric field as it propagates from the
£-n to the x-~y plane, a distance, R,, away. For the moment, we are
concerned only with the form of the electric field V(x,y) as it relates
to the field at the object, V(§,n). The particular length between
specific points in the two planes is indicated by the path R{{,n,x,y).

Upon realizing that each point in the aperture radiates 13

spherical wave to the right, we can write the Huygens-Fresne!
principle(a) for paraxial waves for which

V(x,y;t) = ff V(g,n;t) SXRUKRGrixo V)] gpe (1)

1AR(E, N3 x,y)

where k = 27/4+, and A equals the wavelength of the radiation. Equa-
tion (1) states tha. the electric field V(x,y;t) is formed of a super-
position (linear summation) of waves emanating from each point within
the aperture, properly phase-shifted according to the exponential term
and diluted by the 1/R expression. Now

R(E,ni%,y) = [R2+ (x-6)2 + (y-m)?]% (2a)
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_Roll 2 RO) +-2-(Ro)§' (Zb)

when approximated by the first two terms of the binomial(s) (the Fres-
nel approximation) expansion. Using Eq. (2b) in Eg. (1) and making
the far-field (Fraunhofer) approximation [R, >> k(ﬁ24-n2)max/2], we
c¢’n write

exp [ik(R + (x2+y2)/2R°)]

iARo

x ffV(C.n;t) exp[-i ;:—‘; (x£+yr,)]d£dn. (3

Apart from the coefficients before the integral, Eq. (3) shows that
the electric fields in an aperture and the far field are related by a
spatial Fourier transform operation., This property is basic to the
ensuine work involving intensity correlations with quasimonochromatic
light. We note that Eq. (3) is linear; that is, the two-dimensional
integral operator on V(g,nj;t) is linear. Therefore, if either
V(§,n;t) or V(x,y;t) is known, the other is specified throug: a linear
(and hence, invertible) transformation.

Vix,y;t) =

2. THE VAN CITTERT - ZERNIKE THEOREM

Although Eq. (3) holds for radiation of general frequencies,
the relationship {t expresses is somewhat acade ic here from the stand-
point that it describes electric-field quantities that are unmeasurable
at optical wavelengths. No known detector can follow oscillacions at
frequencies of 10'“ hz. At optical frequencies, the parameter acces-
sible to measurement is the jntensity, the mean square of the electric
field averaged over wmany oscillations. It is this constraint that has
prompted many investigators to couch optical theory in the form of
correlations of field quantities. 71he best known of these correla-
tions is called the mutual coherence function, I(&lhiz,l), where

T
I‘(ll,gz,r) z lim% V()_(I,t'{'T)V*(}_z,t)dt, (4a)
T /..
= V(x, e+ DVE(x,,t), (4b)

and 1 is the time delay between the instantaneous product of the elec-
tric fields at the points x, and x, (and X = X{,y4). A special case
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¢t the mutual coherence function results when the time delay is set to
Zero or

‘r(f-_l 752!T)Y=0 = J(._’El,_}_(_z): (5
where J(ﬁ,,ﬁz) is called the mutual intensity function.

L 9% 30N

We wish to calculate the mutual intensity in the far field of a
spatidlly incoherent source. Using Eqs. (5), (4b), and (3), we write

V(xl,yl;t)v*(x(,yé;t) = J(x,,y,5%,,y,) (6a)
ik < z . ° x
exp| o (x;-x +y;-y3)
2R, i
= - ; / V(‘E]»'Bi;t)v*\gzor‘z;t)
(+R,) ) J
.k i
sl g (8-t 4y - yon) g aanan,, (6b)
0 4 - £

wherv the proccsses of temporal averaging and spatial integration have
been interchanged and the radiation assumed quasimonochromatic

(~ . » . - . so that the wav ¢ e approxi-
{ min nax men) b elength dependence can be approxi

matel by the eean wavelength. Since the source is spatially incoherent
the mutual intensity takes the form(6)

V(E,m VR, i 0) = 3y, my5E,,7,), (7a)
= I(gan)\:(‘;i-iz)((”]—‘"1)0 (7b)

Physically, Eq. (7b) implies that the time fliuctuations of the elec-
tric ti lds at two non-identical peints in the source plane are com-
pletely unccrrelated;® equivilently, the total power measured 2t a
peint in the far field is simply the sum of the squared electric
fields from each differential element of the source, taken with the
proper phase delay and attenuation.,

If Eq. (7b) is used in £q. (6), the mutual intensity collapses
to a single area integral, giving

*The overbar of Eq. (7a) by the definition of Eq. (4) indicates a time
average. Although spatial iacoherence is usually defined by a time-
averaging process, it can alsc be defined in terms of a spatial
average in the source plane.
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J(x1,y1i%,,y,) = — >
N (AR )
i .k ,
x J{J(I(i,n) exp{-i ﬁ; P(x; - x,)6 + (yl-rg)ﬂ]}dédn. (8)

Although usually presented in a normallzed form,(7) Eq. (8) is a state-
ment of the van Cittert- ”:runike theorex which, aside from the accom-
panying coefficient, shows that the mutual intensity in the far field
of a spatially incoherent source is given by the Fourier transform of
the intensity across that source.

The mutual intensity function of Eq. (£) is directly accessible
through measurement using & technique known as Young's double pinhele
experiment. Figure 1 shows au opague surface erected in the x-y plaue.
Two pinholes are made in the surface. A distarce behind the surface a
fringe pattern cau be observed on the u-v plane. The fringe contrast
relates to the amplitude of J(x:,y,;x;,y,), and the friuge shift cor-
responds to the relative phase hetween the rad{ation on the pinholes.
if this measurement is made for all pinhole spacings and erient itions
in the x-y plane, J(x;,y;;Xs,y;) is completely specified and can be
Fourier transformed to derive I(§,n), the intensity c¢n the object.
This theorem is basic to most or:(cal imaging, since lenses effect the
inverse transformation of Eg. %) to give a scaled distribution of the
object i-radiance. Referring again to Fig. 1, we note that a lens has
been placed its own focal lengts: from both the x-y and u-v planes. We
assert without proof (see Puf{. 4, n. 853) rthat in this configuration
there is a Fourier transform rv:aticn heiwe:n these two planes due to
the operation of the lens on the radisiina from the x-y surface simi~
lar to the relationship between the {~n and x-y planes located a great
distance apart. Thus, under the assumpticns given in the mathematical
treatment above, the electric field V{u,v) is 1 scaled disttibution of
the field V(§,r). The inversion of the u-v axes is a2 mathematical con-
venience (see Ref. 4, p. 167;.

By the scaling property from one dorain to another intrimnsic to
the Fourier transform operation, large detail in the source is given
by small separations in the far field and vice versa. Thus, imag:ng
with a finite aperture implies a finite limit to the high-frequency
detail resolvable on the source. This justifies the well-known de-
scription of lenses as low-pass filters, Also, cince there are many
more pairs of points within an aperture corvesponding to small separa-
tions than to iarge, “here is a built-in resundancv weighted in fawor :
of low-frequency resolution, z

- s
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Equation (8), although a stateament of second-order correlation,
is basic also to fourth-order correlation, as we shall see later,

3. THY C£FFECTS OF COHERENCE

At th's point in the development, it is importan: that we con-
cern oursesves with the coherence properties of sptical sources. (8
We again reter to Fig. 1. Let us imagine that there is a single point
scatterer at the object (i-n) plane illuminated by an optical source.
The field at the x-y plane (plane of observation) will be, of course,
a spherical wave. If we begin to insert arbitrarily other puint scat-
terers at the object plane, the electric fieid at the x-y plaae will
te the sum of all the individual contributors as determined by geometry
pes Eg. (3). At a particular insraat of time, the contributions froa
the various scatterers will add construciively at some points on the
x~; plane, while at other points they may not. But, as indicated
earlier, the electric field is not accessible to measurement; the
intensity (mean square of the electric {ield) must be avcraged over
many -ycles of field oscillatien. Ut the optical bandwidih of the
light illamneting the scatterers is sufficientiy parvow that the rela-
tive phase¢ across the wavefront rewaine corstunt during the period of
observation, then the inteasity pactere that weeld be observed duriag
Just a few temporal cycles of oszitlarion «ill remair fixad guring the
*otal period of observatiw. This patterr is c2iled 3 speckic pattern.
{f, on the other hand, the bandwiden cf zhe scurce is broadenced, thew
the speckle pattern begins t¢ change with trime and gradually wasnes
out unless the periad cf enscrveticn ir shortened accordingly.

Fluctuations
to the tempcrsl cche
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4. A THEOREM CONCERNING THE FOURTH-ORDER GAUSSTAN RANDOM PROCESS

We have seen in Eg. (7) the way in which a time average can be
used to impose a condition on the correlation of an electric-field
pair. No particular assumption was made about the statistics of the
field variables. ilowever, it is well known that classical thermal
sources exhiblt st?ti?tical fluctuations (temporally) that are gaussian
in nature. Hodara‘!0’ has asserted that lasers with but a few axial
modes are, to a good approximation, gaussian as well. However,

Troup 11) has argued that gaussian statistics are achieved only in the
limit of a large number of axial modes.

The argument for gaussian statistics can be extended to the spa-~
tial domain as well. It has been argued that{12) the received field
at any peint in the far zone (as described above in Section 3) consists
of a sur of randcm-amplitude, random-phase, complex phasors .ot tributed
hy tha zlementary scatterers., If the size of the scattering area is
large enough te include many point scatterers {or there are encugh
elementafy cohérence areas coxuposing ‘he source), the Central “.imit
Theorem may be used 6 c¢oncliude that the elactric field in tie detec-
tion plane is a gaussian random process in a spatial sense,

A well~known property of gaussian statistics is that all higher—
order momerts are representable in terms of the first and second.
In particular, the fiurtn~crder correlatjon of elect?ic fields (second-
order correlation of intensities) can be shown to be 14)

-~

e a—

=1 I+ qr,. 17, 9)

5~
a4

I

1
1>

2
where the defining relation of Eq. {4a) has been used. Equation (&)
cherefore 4 bes the relaticnship between intensity correlations

nd field correlations for a process that is gaussian in the time
domzin. Wwe note that, in general, the field correlation is s complex
guantity, ¢ thet only the relationship hetween the intensity corre-
lation and the wodulus of the field correlation is {mplied. It reveals
the underlying priaciple by which intensity corrvelations in the far
field may be used to infer the accompanying field correlstions and
hence, through Eq. (8), to gain knowledge of the intensity distribution
at the source.

5. ASSUMPTIONS BASIC TO STATISTICAL AVERAGING
We are now in a position to examine the naturz of the averaging
prucesses fuundamental to a number of ootical processing schemes.,

Figure 2 represents an ensemble of similar experiments. As in Section 3,
we consider the intensity distribution in the x~plane to be made over

205
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an observation time short compared with any temporal fluctuations in
intensity. The amplitude distribution over the source plane is identi-
cal from one sample to the next. The pai. of receiver points in the
detection plane also remains constant. However, each source plane ex-
hibits a statistically similar, but independent phase mapping across
its extent. This insures that the speckle (intersity) patterns observed
at the receiver (x) planes r.wmain statistically identical as well. In
the language of probability theory, each pair of measurements in the
Xx-plane represents one particular sample in the outcome space of the
experiment.

We now turn our attention to the classic relation of imaging,
£q. (8). It must be recognized that there are two fundam=ntal assump-
tions basic to its development which were not explicitly mentioned.
First, the mutual coherence function of Eq. (4) is fundamentally defined
in terms of an ensemble average. This is the average that would be
calculated if the total outcome space for a given esperiment were known
for a given space-time set of boundary conditions. In practice, the
ensemble average is nevei. measurable tecause of a lack of access to an
unlimited number of experimental configurations operat.ng under identi-
cal circumstances. Instead, the ergodic hypothesis is inveoked: that
is, if one pariicular experimer! is performed under r.nchansing condi-
tions {stationarity), then the average that is tazken in the domain of
stationary conditions is auswned equivalent to the enseumble (true)
average. The working definition of Eq. (4) necessarily assumes that
the ensexble average can be replaced by a time average because of a
cendition of stationarity in the time domain, the domain in which the
averaging is made. Equation (8) is then a time average over many
instantaneous products of electric field. For this situation, Fig. 2
can represent a time series of field pairs (i,j,...n) which are sam-
pled, multiplied, and averaged.

t., FOURTH-ORDER CORRELATIONS IN THE TIME DOMAIN

Until about two de:ades ago, essentially all imaging was accom-
plished by means of second-order ccrrelations taken over a time average
long compared with the coherence time of the ra?iation. About that
time, two astrorovrers, Hanbury Brown and Twiss, 15,16) were searching
for a techniqu~ to infer the diameter of stars which would not have the
sensitivity to atmospheric turbulence and instrument vibration chyrac»
teristic of the stellar interferometry of Michelson and Pease. To
that end, they were first to suggest the use of fourth-order field cor-
relations. The key to this approach is embodiea in Eq. (9). ‘

Although Hanbury Brown and Twiss did not explicitly use the
gaugssian thecrem of Eq. (9), it is, in fact, intrinsic to their
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mathematical development., Their result shows, nevertheless, that the
time-averaged, two-point correlation of intensities in the far field
ot a spatially incoherent source is proportioncl to the square of the
Fourier transform of the sruice intensity distribution. We note as
before that le is, <«n general, a complex function which, in fact,
represents the amplitude spectrum of the source intensity distribution.
Since in Eq. (9) "ne mutual coherence function is squared, this method
yields the power spectrum of the source intensity distribation. Also,
since the relative magnitudes of the real and imaginary components of
the amplitude spectrum are unknown, no linear transiormation is pos-
sible to iunfer the intensity distribution of the source itself.

Turning again to Iig, 2, the Hanbury Brown- Twiss experiment can
be understood by letting each member of the ensemble represent a pair
of intensity measuremsents made in a time less than the coherence time
of the rad:ation. As many intensity products are averaged in time, the
function approaches the ensemble average.

Altnough this method of imagery yields information only about
the object intensity power spectrum, it has proved useful in the meas-
urement of star dianuet;ers,(1 for which only the first zero crossing
of the Fourier transform need be known. Since the optical phase is
discarded immediately upon detection, the instrumentation is not only
insensitive to mechanical vibrations but to turbulence-induced phase
fluctuctions as well. The primary limitation to the method is the low
level of radiation that is detected. As a result, ihis approach is
limited to relatively intense stars to overcome the severe signa% 6?-
noise problem, Analyses of this problem have been given by Gamo
and Twiss,

7. INTENSITY CORRELATION IN THE SPATIAL DOMAIN

With the uti“ization of the laser, the experimental con_ traints
are quite different. The signal-to-noise ratio can be increased typi-
cally by six orders of magnltude 2 With a view to expleiiting this
property, Deitz and carlson(23) nave reeently investigated the poien-
:ial for intensity correlation in terrestriul imagerv. In many situ~
atiors of interest to the Army, the availability of laser illumination
great ' ; reduces the constraints due to neisc limitations. In additiorn,
since ground-to-ground imagery suffers from the greatest deterioration
in image quality becduse of turbulence, it offers the greatest poten-
tial for improvement.

(23)

Although the details of this work can be found elsewhere,

we will again turn to Fig. 2 for the basis of this recent approach. In
the case of spatial intensity interferometrv, the signal in the x-plane
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is detected over a large arez, rather thar at just two points. Con-
ceptually, a large piece of film is placed in the x-plane. The signal
is recorded spatially over a time short compared with the coherence
time of the radiation and is then autocorrelated. This operation cor-
responds to an average taken in the space domain. Here, through the
assumption of spatial stationarity (and a sufficiently large area of

spatial averaging), the spatial average is assumed equivalent to the
ensemble average.

Although the method of sisnal processing is very different from
the Hanbury Brown - Twiss experiment, the final mathematical relations
are similar. The principal .esult 5 ) shows that the spatial intensity
correlation in the far fie'd of a scurce can be written

(I@),T)IQZ,T)>=-—]'—7 }'/wz‘iu fsinc(pT)H(D)dp (10a)
0 -l

(er)

x/:/. I(.;.;“’) exP[-i % @.‘.1 —1‘.2) ‘S.]d.g.
7 2
S e emf[1 % @+ x - £ |

) 2
L[ @-m)|

The angle brackets indicate a spatial average, c is the vacuum velocity
cf light, r is the average distunce between object and detection planes,
and «w is the angular frequency of radiation. The parameter o ic the
difference frequency between modes in the incident radiation, the H
function is defined in Ref. 23 and relates to the temporal spectrum of
the carrier, and k is the wave number of light (2n/)). Equation (10)
shows that the spatial intensity correlation is proportional te two
functions. The first is the square of the Fourier traasform of the
source intensity distribution as related in Eq. (9) by a .emporal aver-
aging process. The second term, C(f), is a normalized phase corre-
lation function(12) describing the coherence interval over a rough
surface. In order to describe a spatially incoherent surface, C(f)
(which is defined by a spatial average) is often allowed to assume the
role of a delta function. In that idealized limit, its transform
becomes a constant and does no? band 1limit the detectable spatial fre-
quency spectrum of the object. 23)

<

- Kk 2
c [?r- (__)_(_1 +£2)] l . (10b)

8. AN EXPERIMENT IN SPATIAL INTENSITY INTERFEROMXTRY

To illustrate the results of Eq. (10), a pair of c-ossed Ronchi
rulings, shown in Fig. 3, were used as the object in the following

226
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experiment.* First, in order to demonstrate the Fourier transform
relation of the Huygens-Fresnel equation [Eq. (3)], the object of
Fig. 3 was transillumipated. In the far field, the intensity distri-
bution was recorded and is shown in Fig. 4. This signal corresponds
to the square of electric field represented by Eq. (3); equivalently,
the signal of Fig. 4 is the power spectrum of the electric field lis-
tribution over the object of Fig. 3.

To illustrate the results of intensity correlation, a seition
of ground glass was inserted (to gain spatial incoherence) adjacent to
the object of Fig. 3 and again illuminated by a laser. The far-field
speckle pattern that resulted is shown in Fig. 5. The pattern appears
random. The mathematical effect of the ground glass has been to multi-
ply the object field, V(&,n), inside the integral of Eq. (3) by a random
phase function.

Next, the speckle pattern of Fig. 5 was used to make an identi-
cal pair of optical transparencies. 7These were then used in an optical
autocorrelator to record the result shown in Fig. 6. As described by
the relation of Eq. (10), Fig. 6 gives the power spectral density of
the intensity distribution over the object. Since the electric field
amplitude and the intensity over the object of Fig. 3 are related by a
squaring process, the results of Figs. 4 and 6 are similar in the man-
ner indicated by Eqs. (3) and (10).

9. THE INVERSION OF THE POWER SPECTRUM

As we have shown in the previous sections, intensity correla-
tions lead only to the power spectral density of the source intensity
or, equivalently, the modulus of the Fourier transform. Depending upon
the application, the power spcctral density or its Fourier transform,
the correlation function, may be the parameter sought for system
use. This is often the case in a target-guidance or recognitton
problem. However, witnout the phase information, the Fourier inversion
cannot be taken to derive the source distribution itself.

In the experiments of Hanbury Brown and Twiss, the loss of phase
is not a serious limitation since their objective is simply the meas-
urement of star diameters. If a circular disk is used as a model for
a star, the object is known, a priori, to be symmetrical. Thus the
spatial transform of the (real) intensity is pure real. For this situ-
ation, the phase of the transform is zero or 7 for all spatial wave
numbers, and the square root of the power spectrum can be takeu (with
a sign ambiguity) to derive the spatial transform itself,

*The author is indebted to N. A. Peppers, Stanford Research Institute,
for a number of helpful suggestions in this experiment.
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In the application of intensity interferometric techniques to
terrestrial imaging systems, though, the loss of phase is a serious
l¢mitatior to the mechod. A number of authors have addressed them-
selves to the problem of phase tecovety.(25) # general solution to
this problem, however, has never been found.

Deitz and Carlson have recently proposed a scheme(ZG) whereby
the incoming electric field is preprocessed befcre intensity detection
and autocorrelatior By this method, the source is effectively symmn-~
trized in its intensity distribution. If a function is real and ex-
hibits even syumetry, 7) its Fourier transform must be pure real.
Thus, even though the power spectrum is finally derived by the measure-
ment method, its accompanying amplitude spectrum is known (by virtue
of the preprocessing) to be pure real. Thus, the square root of the
power spectrum can be taken to infer the amplitude spectrum. The.> is
a critical choice of signs, however, to be made in the square root pro-
cess. The utility of the method appears to rest with the degree to
which syst%m goise can be precluded from interferring witu those
decisions. (26

10. CONCLUSIONS

There are a mumber of special benefits from detecting images by
the technique of intensity corielation. (1) The method is relatively
ingsensitive to the effects of atmospheric scintillaticn. (19) (2) Be-
cause the signal is detected in the spatial-transform domain, high-~
frequency detail abcut the scattering surface translates to large
spatial lags in the far field. This result could be particularly
impertant at frequencies where detector resolution is not well devel-
oped. (3) A special advantage to intensity interferometry in the
spatial domain is the utilization of gaussian statistics in the spatial
(not temporal) uenge. By this method, sources with non-gaussian time
statistics (such as single-axial-mode lasers) can be utilized.

(4) Still another advantage of spatial detection is that images of
moving surfaces can be formed using brief exposures.

Against these benefits must be weighed the limitations of inten-
sity interferometry. The primary factor in this respect rests upon the
greatly diluted energy density at the plane of detection. Because the
signals are of such relatively low intensity, they tend to be masked by
noise. The limitation can result from quantum noise in the carrier,
detector noise, or stray signals from unwanted background. It remains
to be seen whether these limitations can be successfully overcome so
that the potential benefits of intensity correlation can ultimately be
realized.
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Fig. 1. Coordinate axes for the object (£-n) and primary
detection {x-y) planes. In addition, a lens is placed its

focal length behind the x-y plane. Finally, a focal length
behind the lens jis the u-v plane.
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Fig. 2. An ensemble of similar experiments. Source
amplitude and receiver points are identical. Random

phase variations over each source plane are statistically
independent.
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Distribution of Fig. 3

Fig. 5. Far-Field Speckle Pattern Fig. 6. Spatial Power Spectral

of Transparency in Fig. 3 When
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