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Abstract
4
!
# Through the use of the principle of minimum discrimination ‘e
information estimation, leading to exponential families or

T\ multiplicative models or log-linear models it is shown, using

illustrative examples exhibiting different aspects of (

contingency table analysis, that:

(1) Estimates of the cell entries under various hypotheses [

or models can be obtained; ;

(2) The adequacy or fit of the model, or the null
hypothesis, can be tested;

(3) Main effect and interaction parameters can be

i estimated;

(4) The structure of the table can be studied in detail

in terms of the various interrelationships among the

classificatory variables;

(5) The procedures can be applied to test hypotheses - !
f// about particular parameters and linear combinatiorns "}
of parameters that are of special interest;
b (6) The procedures provide indication of outlier cells;

(7) Since the procedures and concepts are based on a

general principle a unified treatment of multi-

dimensional contingency tables is possible;




(8) The procedure provides estimates based on an

(9)

(10)

(11)

observed or sample table, which satisfy certain
external hypotheses as to underlying probability
relations in the population table. These estimates
also preserve the inherent properties of the observed
data not affected by the hypothesis;

In general, the m.d.i. estimate are best asymptotic-
ally normal;

The minimum discrimination information test
statistics are asymptotically distributed as
chi-squared with appropriate degrees of freedom;
Convergent iterative computer algorithms are

available for the analyses.

B

|
|
|
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1, Introduction i

Data which result from experiments in the physical sciences and 3
engineering are usually outcomes of controlled experiments, and expressible Y \
in quantitative terms. In many other fields however, the data are seldom
results of controlled experiments. In addition, the observations usually
can be expressed only in.qualitative or catepgorical terms, a yes - no, \
alive - dead, agree - disagree, class A - class B - class C, etc. type of i
response.

For example, an individual may be classified by sex, by race, by
profession, by smoling habit, by age, by incidence of coronary heart {

disease. T1f we take observations over a sample of many such individuals,

the result will be a multidimensional contingency table with as many
dimensions as there are classifications. Contingency tables are cross-
classifications.of vectors of discrete random variables shcwing the number
of subjects belonging to distinct categories of each of several qualitative
or categorical classifications. The number of counts of individuals in a e
cell of this table represents that portion of the sample having the
specific attributes within each of the classifications. A problem of
interest, for example, might be to determine the factors that are associated
with the presence or absence of coronary heart disease.

Data from many fields are often presented in this manner, that is,
in a cross-tabulated form. Statistical analyses of these types of data has
had a long history, as may be seen from the hibliography, but were mainly

concerned with the simple kind, the two-way table. Analyses of

1




multidimenaional contingency tables have been investigated intensively

only during the last decade or so.

Conclusions drawn from contingency tahles may be only exploratory in
nature. One of the difficulties can be the availability of meaningful and
reliable data. The first problem one faces in the analysis of cross-
classified data is the decision on the number of classifications to be
included and the categories within each classification. Typical among the
problems in the analysis is how-to segregate the effect on the response of
some of the background variables, individually or jointly, from that of
the others that are of particular interest. The data analytic attitude is
empirical rather than theoretical. A more empirical attitude is natural
when detailed theoretical understanding is unavailable. Estimation of
parameters in models should be considered less as attempts to discover
underlying truths and more as data calibrating devices which make it easier
to conceive of noisy data in terms of smooth distributions and tela%}ona.
With a given data set, a variety of models may be tried on, and one
selected on the ground of looks and f£it. (See Dempster (1971).)

Consider, for example, an experiment performed to compare the
effectiveness of safety release devices for refrigerators in relation to
children's safety. Children between two to five years of age are induced
to cravl into refrigerators equippel with six different types of release
devices. If a child can open the door of the refrigerator, from inside,
within a certain time periocd, the response is classified as a success,
otherwise a failure. The background variables studied included age, sex,
weight, socio-economic status of parents., The experimental variable was

one of six devices. (A partial analysis of this data may be found in




Fullback et al. 1962h, p. %81) Some balancing of the background variables
was achieved.

In other instances none of the factors are subject to experimental
control, and whatever available data could be collected is reported. The
analysis of this type of data, though it may only be secking preliminary
information can be important in fields of health and safety. The
uncontrolled experimental data arc som~times the only realistic data
available vhen these data deal with life, death, health, and safety, and
some of these factors and responses are only expressibhle in qualitative
terms, in the present state of art.

It is expected that the number of problems calling for the techniques
of the analysis of multidimensional contingency tables will increase,
Experience at the George Washington Universitv with such a growing demand
confirms this. The examination and interpretation of data from social
phenomena, housing, psychology, education, environmental problems, health,
safety, manpower, business, experimental testing of devices. military
research and development, etc., are potential source areas.

Critics of methods for contingency table analysis have maintained
that most of the procedures used, at least in the past, were only of a
global chi-squared test nature. llowever, for a recent example of this
see Patil (1974). Through the use of the principle of minimum discrimination
information (m.d.i.) cstimation, leading to exponential families or multi-
plicative models or log-linear models we shall show, using illustrative
examples exhibiting different.aspects, that:

(1) Estinates of the cell entries under various hypotheses or

models can be obtained;




(2) The adequacy or fit of the model, or the null hypothesis, can
. be tested:
(3) Main effect and interaction parameters can be estimated;
(4) The structure of the teble can be studied in detail in teérms of

the various interrelationships among the classificatory

variables: L

B (5) The procedures can be applied to test hypotheses about particular
| parameters and linear combinations of parameters that are of ‘
’ special interest: |
} (6) The procedures provide indication of outlier cells. These may 2
| cause a model not to fit overall, yet fit the other cells ’
Eu’-_//> excluding the outliers; i
i

(7) Since the procedures and concepts are based on a general principle
a unified treatment of multidimensional contingency tables is !
’ possitle. Sequences of generalizations step by step to higher
order dimensional contingency tables are not necessary as has
been the case with other ad hoc procedures (see for example,
Patil (1974), Sugiura and Otake (1974));
' ' (8) The procedure provides estimates based on an observed or sample ~ )
ff table, which satisfy certain external hypotheses as to under-
[ lying probability relations in the population table. These
B estimates also preserve the inherent properties of the observed
‘ data not affected by the hypothesis:
| (9) In general, the m.d.i. estimates are best asymptotically normal
(BAN) and in the many applications of fitting models to a table
based on observed sets of marginal values the m.d.i. estimates

in particular are maximum-likelihood estimates;

4




(19)

(11)

e

The test statistics are minimum discrimination information
(m.d.1.) statistics which are asymptotically distributed as
chi-squared with appropriate degrees of freedom, In the case
of fitting models to a table based on observed sets of marginal
values the m.d.{. statistics are log-likelihood ratio statistics.
The m.d.1. stacistics are additive, as are the associated derrees
of freedom, so that the total under an hypothesis can be analyzed
into components each under a sub-hypothesis, The analysis is
analogous to analysis of variance and regression analysis
techniques, using a design matrix, a set of regression parameters,
and explanatory variables.

In models fitting estimates to an observed tahle based on sets of
observed marginal values as explanatory variables, some estimates
can be 28sed explicitly as products of marginal values.
Howeve. this is not generally true, and expected cell frequencies
(functions of marginal values), can he computed by an iterative
propcrtional fitting procedure (Ku et al. (1971)), ard the use

c’' a computer to perform the iterations becomes necessary. For
the foregoing cases which we shall term internal, and problems
involving tests of external hypotheses on underlying populations
a number of iterative computer programs are available. They
provide as output, design matrices, the observed cell entries
aad the cell estimates as well as thelr logarithms, parameter
estimates, outlier values, m.d.i. statistics and their
corresponding significance levels, and covariance matrices of

parameter estimates, to assist in and simplify the numerical

aspects of the inference. In this respect it is of interest to

e
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- cite the following quotation from a book review by D. J. Finney

in Journal Royal Statistical Society, Series A (General) Vol.

136 (1973), Part 3, p. 461, "No mention is made of the extent

to which computers have destroyed the need to assess statistical
methods in terms of arithmetical simplicity: indeed the
emphasis on avoiding lengthy, but easily programmed, iterative
calculation« is remarkable."”

Classical problems in the historical development of the analysis of
contiugency tables concerned themselves primarily with such questions as the
independence or conditional independence of the classificatory variables,
or homogeneity or conditional homogeneity of the clasasificatory variables
over time or space, for example, similar to such tests in multivariate
analysis as independence, multiple correlation, partial correlation,
canonical correlation, etc. Such classical problems turn out to be special
cases of the techniques we shall discuss. (See for example Kullback et al.
1962a, 1962b.) These techniques result in analyses which are essentially

regression type analyses. As such they enable us to determine the relation

ship of one or more 'dependent' qualitative or categorical variables of
interest on a set of 'independent" classificatory variables, as well as the
relative effects of changes in the "independent’ variables on the
"dependent variables.' The object of the analyses is the study of the
interaction between and among the classificaiions. The term interaction is
used here in a general sense to cover hoth dependence and association (see
for example, Bartlett (1935), Simpson (1951), Roy and Kastenbaum (1956),

Ku et al. (1971)). It may be noted here that in a seminar on a study of
the historical development of the concept of interaction in the analysis

of multidimensional contingency tables, the following series of papers,

6
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ameng the many that could be selected, was found to he very instructive:
Bartlett (1935), Lancaster (1951), Simpson (1951), Roy and iastenbaum
(1956), Darroch (1962), Lewis (1962), Plackett (1962, 1969), Birch (1963,
1964, 1965), Goodman (1963b, 1970, 1971), Good (1963), Kastenbaum (1955),
Mantel 71966), Berkson (1968, 1972), Bhapkar and Koch (1968a, 1968b), Ku

and Vullback (1968), Dempster (1971), Ku, Varner and Kullback (1971). It
was pointed out by Darroch (1962), "That 'interaction' in contingency tables
enjoys only a few of the fortuitously simple propertics of interactions in
the analysis of variance.”’ (See Kullback, 1973.)

Foilowing this general introduction we shall consider further aspects
of contingency tables in greater expository detail. We then present an
introduction to m.nimum discrimination information estimation, the log-
linear representation, associated design matrices and parameters, without
detailed mathematical proofs. This will enable the reader then to study
the many illustrative examples that follow and present various aspects of
the possible analyses. The mathematical statistical proofs etc. are to be

found at the end of the presentation,




1.

2. Contingency Tables

Description

There are two ways in which statistical data are
collected, In one form, actual measurements are re-
corded for each individual in the sample; in the other,
the individuals are classified as belonging to different
categories. on many occasions classifications are
used to reduce original data on direct measurements. A
well-known example is that of "frequency-distributions"”.
Data collected in the form of measurements may later Le
grouped and presented as a frequency distribution.
An important advantage of grouping is that it results
in a considerable reduction of data. On the other hand,
it is not usually possible to convert grouped or
classified data back into the original form.

A contingency table is a form of presentation of
grouped data. In the simplest case, a group of N
items may be classified into just two groups, according
to, say, presence or absence of a certain characteristic.
For a fixed (given) characteristic the different groups
of classification are called categories. For example,
a group of N individuals may be classified according
to hair-color (characteristic), the categories being
black, brown, blonde and "other". The categories may
be qualitative as above, or may be quantitative, as

for example in the classification by weight in pounds




consisting of fiye categories: 40-80, 80-120, 120-160,
160-200, 200-240. When there is only one characteristic
according to which data are classified we get a one-way-
table. If there are two ways of classification, say
according to Rows and Columns, the Row-classification
having r categories and the Column-classification having

¢ categories, the talle is called a two-way table or a

r x ¢ table. The latter notation gives the number of

categories in each classification. Carrying this

notation further, a r x ¢ x d table will have three

characteristics of classification, the first having

r categories, the second having ¢ and the third d.
Examples:

Example 1: The following is a one-way table with one
classification-characteristic (Geographic Area) and
four categories. It gives the distribution of students

by Geographic Area.

East North West South Total
4201 4552 2840 5130 16723

Example 2: Consider the distribution of 20 balls

in six cells

Cell

Occupancy




It may be recalled at this point that in many

situations such a distribution of N balls in k cells

is adequately described by the multinomial distribution.
We may therefore expect that the multinomial distri-
bution wil) have an important role to play in the analysis

of contingency tables.

Example 3: The distribution of students by Geographic

area (as in Ex. L) and sex gives rise to the follow-

ing 2 x 4 contingency table.

Sex Geographic Area Totals
East North West South

Male 2201 2350 1400 3100 | 9051

Female 2000 2202 1440 2030 7672

Totals 4201 4552 2840 5130 16723

Note that this is called a 2 x 4 table since the

Row-classification (sex) has 2 categories. 1If the

geographic areas were written in rows and the sex
were to correspond to columns we would get a 4 x 2
table. We will follow this convention throughout.

Observe that for a two-way table there are two

sets of marginal totals. In the above table the totals

on the right can be looked upon as a one-way table with
sex as a characteristic and two categories, male and
female. At the bottom of the above table, we 3ee the

one-way table of Ex. 1. This shows that any two-

10
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way table is associated with two one-way tables given
by the marginal totals of each characteristic.

Example 4.: The data below are octane determinations
on independent samples of gasoline obtained in two
regions of the northeastern United States in the summer
of 1953. (Brownlee, Statistical Theory and Methodology,
J. Wiley, 1965, p. 306).

Region A: 84.0 83.5 84.0 85.0 83.1 83.5 8l.7
85.4 84.1 83.0 85.8 84.0 84.2 82.2
83.6 84.9

Region D: 80.2 82.9 84.6 384.2 82.8 83.0 82.9
83.4 83.1 83.5 83.6 86.7 82.€ 82.4
83.4 82.7 82.9 83.7 8l1l.5 81.9 8l1.7
82.5

The problem of interest was whether the variability

in the octane numbers could be regarded as the same

for the two regions. Since the number of sample-
values for region A and D are small (16 and 22 respec-
tively) the data can be conveniently analyzed in the
given form. For the sake of illustration, suppose that
we classify the octane readings into three categories;
below 83.5 as "poor", between 83.5 and 84.5 as "normal"
and above 84.5 as "better", we will get the following

2 x 3 table:
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Region Gasoline quality Totals
Poor Normal Better
A 4 8 4 16
D l6 5 1 22
Totals 20 13 5 38

This illustrates how to prepare contingency tables
from actual measurement-data. But the example brings
out another important point. The contingency table,
in fact, represents two frequency distributions, one
from Region A and the other for Region D laid side
by side. This table is different from the ones we
came across earlier in that we did not start the classi-
fication with a total of 38 values, to be clasgiried
according to Region and Quality; rather we had a priori
a set of 16 values for Region A and 22 values for
Region D. (Further the gampling for the two regions was
done independently). In other words, the set of mar-
ginal totals (on the one-way table) for Region was
fixed before the experiments. Later gn we will have
ample opportunities to see the effecf*of such restric-

tions on the analyses. At present, it is enough to

know that tables as above may be regarded as contingency

tables with fixed (restricted) marginal totals.

3. Problems associated with contingency tables

e i e g T
e, o e
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In the analysis of contingenci tables we are

usually interested in the relationship between one
classification and one or more of the other classi-
fications. Thus in the example 4.on comparison of
octane ratings we would like to compare the variabil-
ity cf the values for classifications given by Regions
A and D. As another example, consider a three-way

r i ¢ x d contingency table in which the row-classi-
fication represents the response of an experiment

on animals, the column classification types of treat-
ment and the depth classification sex. AThe following
hypotheses may be of interest.

1. Response is independent of treatment irre-
spective of sex.

2. Response is independent of the different
combinations of treatment and sex (as against the
possibility that a particular treatment is more
"effective" in terms of the response, for a particular
sex) .

3. Given sex, response is independent of treat-
ment.

We shall see in subsequent chapters how these

hypotheses can be formulated mathematically. Of course,

not all contingency tables can be interpreted in such

a straightforxrward marner. In some instances, all
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three classifications can be considered as responses;

then we may be interested in the independence or
association among these responses. In other cases,

a classification may be controlled, experimentally

or naturally, like three specified levels of fertilizer
applied or sex, in which case the classification is
termed as a factor. For convenience, we shall group

all the concepts of association, dependence, etc.

under the general term of interaction. No interaction
between treatment and sex appears to be a more accept-
able phrase than independence between treatment and sex,
since the term independence is usually reserved to
express the relationship between random variables.

We may also say that the interaction between response
and treatment does not interact with sex, meaning the
degree of association between response and treatment

is the same for both sexes. This concept gives

rise to the idea of seconci~-order interaction. There
are a number .of different approaches to the mathematical
formulation and interpretation of the concept of "no
interaction”. One such approach, through the concept
of "generalized independence" is powerful and general
enough to include all hypotheses of "no interaction"
(formulated in a specific manner) and many other

hypotheses about homogeneity, symmetry, etc. that




we come across in analyzing coitingency tables.

Before this concept is introduced, we shall need the

necessary symbolism and notation.

4, Notation and preliminaries:

We have seen that the entries in the "cells" of a
contingency table are frequencies of occurence. We will
denote these frequencies generically by the letter x,
with or without subscripts. These frequencies are a
result of classification of a fixed number of individuals
according to a certain probability distribution. Hence
the observed frequencies x can be looked upon as realiz-
ations of a random variable X.

The cell of a contingency table and the observed
frequency in that cell are symbolically associated in
the following manner. 1In the example l, we have a one-~
way table representing the distribution of 16723 students
by geographic area. We denote the occurrence in the

table by x(i) with the notation

Characteristic Index 1 2 3 4

Geographic area [ i East North West South

Thus x(3), for example, equals 2840. The total 16723 of
all x(i) for i=1,2,3 and 4, will be denoted by x(.).




That is, X:=l

table of Ex 3, we denote the frequencies in the table

x(i) = x(.) = 16723. For the two-way

by x(ij) with the notation !

Characteristic |Index | 1 2 3 4 \
1
Sex : 1 Male Female \

Geographic area 3 East North West South

Then x(2,3) = 1440, x(1,4) = 3100 and so on. To denote

marginal totals we wiil use the dot notation as before. .

The row marginals are

P —

I3-1 %(13) = x(1.) = 9051, J{_; x(23) = x(2.) = 7672

The column marginals are

2
Iy x(11) = x(.1) = 4201,...., [ ) x(i4) = x(.4) = 5130
The grand total is denoted by x(..) so that x(1l.) + x(2.) =
x(..) = x(.1) + x(.2) + x(.3) + x(.4) = 16723 = N
Now consider the following three-way table:

Propagation of plum root stocks from root-cuttings ~

At once Spring _
Response Totals
(Mortality) [Long Short] Long Short
Alive 156 107 84 31 378
Dead 84 133 156 209 582
Totals 240 240 240 240 960
16
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The frequencies in the cells are denoted by x(ijk) ,

with the notation

Characteristic Index 1 2

Mortality i Alive Dead
Time of planting j At once Spring
Length of cutting k Long Short

The marginals are as follows:

One-way marginals: ijk x(ijk) = x(i..), i=1,2

Iily x(ijk)
Lily x(ijk) = x(..k), k=1,2

x(.j.), j=1,2

Two-way marginals: Zi'x(ijk) = x(.jk), j=1,2, k=1,2
Zj x(ijk) = x(i.k), i=1],2 k=1,2

I, x(ijk) = x(ij.), i=1,2 j=1,2

Note that zi x(ij.) = x(.j.), Zj x(ij.) = x(i..),

zi x(i..) = x(...) etc.

For the above table, x(l..) = 378, x(2..) = 582 and - J

x(...) = 960. It should be observed that x(.jk) = 240

for all the four combinations of j and k. This restriction

is imrosed by the method of experimentation; for each
combination of the planting time and cutting length
exactly 240 root-stocks were used and their mortality

observed. This is another case of fixed marginals,
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similar to the one encountered in Ex. 4.

The notation for cell frequencies and for marginal
totals can be extended in an obvious manner to four-
way, five-way and higher order takles.

Let us now recall that in a contingency table a
number of individuals are classified into cells. 1In
other words for a given cell, an individual is classified
in the cell with a certain probability. In a four-way
table, for example, each cell will be denoted by (i,j,k,%)
for some values of the indices i, j, k and &. The
probability that an individual will be classified in this
cell will be denoted by p(ijk&). Just as we defined the
marginal totals for the cell frequencies x(ijki) we may

define marginal totals for probabilities. For example,

p(i...) = zj{kzz p(ijka)
p(.3.2) = I, I, p(ijks)
etc.

For a two-way table the cell probabilities will be
denoted by p(ij), for a three-way table by p(ijk) and so
on. But we would like to develop the theory of all
contingency tables in a unified manner. For this purpose
it is necessary to use a .:.ymbol, w, say, which will
generically denote cells like (ij) in a two-way table,
(ijk2) in a four-way table and so on. For example,

in a 2x3x5 table, the symbol x(w) will replace x(ijk),

18




being one of the 2x3x5 = 30 cells. The symbol W here

corresponds to the triplet (ijk) and takes "values"
(L,1,r), (1,1,2)...(2,1,5), (1,2,1).....(2,3,5).

Let us now go back to some problems associated with
the analysis of contingency tables discussed in 3%
and see how we can formulate them symbolically, with the
help of the notation developed. We considered a rxcx2
table in which the row-classification represents response
in an experiment on anim;ls, the column classification
represents types of treatment and the depth classification
represents sex. The cell probabiliities are p(ijk).

l. Response is independent of treatment irrespective
of sex.

Since the sex of the animal is immaterial in the
statement of the hypothesis, we consider marginal totals
of probabilities of the form p(ij.). Now, since the
response is postulated to be independent of treatment

we further have

p(ij.) = p(i..) p(.j.) 1i=1,...,r, j3=1,...c.
2. Response is independent of the different combin-
ations of treatment and sex.
The probability corresponding to a particular combin-
ation of treatment and sex is given by the (marginal)

total p(.jk).The hypothesis is formulated, therefore,
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p(ijk) = p(i..) p(.3k) i=l...r

J=1.. . &€
k=l’2
3. Given sex, response is independent of treatment.

Let the conditional probability of being classified in
the cell (ijk), given that the individual is classified
in the k-th depth classification (sex), be denoted by
p(ij|k). &lso, the marginal conditional probability

of classification in the i-th category irrespective

of the column classification is p(i.k)/p(..k) and a similar
marginak probability for the j-th category of the column
classification, given k, is p(.jk)/p(..k). The hypothesis
then states that

p(ijlk) = —zT—k)ksl, 2, i=1l...r, j=1...c.
p LR ]

But p(ij|k) = p(ijk)/p(..k), so that the above relations

can be restated as

pli.k)p(.3

pusi) = Sosrir Kle1,2, §=1...r, j=l...c.

Observe that Zizj p(ijlk) = 1, since given that an
individual fell into the k-th category, it must be classi-

fied in one of the (i,j) cells corresponding to the fixed k.

g P

i 3 ——
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This imposes the restriction that

Il pijlo=1 = 1, BEARL k= 1,2 {

Il plijk) = p(..k),k=1,2.

Note that the second hypothesis (of independence)
led us to the formulation p(ijk) = p(i..) p(.jk) and {
the third hypothesis (of conditional independence) led
to p(ijk) = p(i.k)p(.jk)/p(..k). The cell-probabilities in |
each case are expressed as products of marginal probabil-
kfr—//> ities. From another point of view, we can say that the !
& trivariate function p(ijk) is expressed as a product
of (simpler) univariate and bivariate functions, of the

form p(.jk) and p(i..), for example. When the cell

probabilities are thus expressible as products of functions
of a smaller subset of arguments, we say that the probabil-

ities obey generalized independence. By generalized

independence is meant that the cell probability of a multi-
dimensional contingency table may be expressed as the product
of factors which are functions of various marginals (Ireland

and Kullback, 1968; Ku and Kullback, 1968; Ku et al., 1971).

The common notions of independence, conditional independence,

homogeneity, or conditional homogeneity in contingency tables

are all special cases of generalized independence. This is a

consequence of the fact that in accordance with the minimum




K
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discrimination information theorem, the m.d.i. estimates are
formulated as members of an exponential family, which may

also be expressed as a multiplicative model or a logarithmic
linear additive model (Kullback, 1959; Ireland and Kullback,

1968; Ku et al., 1971). Note that we do not assume such a

model to start with, as others have, but derive this model by

the principle of minimum discrimination information estimation

(Birch, 1963; Bishop, 1967, 1969; Goodman, 1970; Mantel,
1966) .

5. Estimates

We shall denote estimates of the cell entries under
various hypotheses or models by x;(w), where values of the
subscript a will range over the hypotheses or models.

For two-way 2x2 tables the primary question of interest
is whether the row and column variables are independent. An

example of such a table is shown in Table 1.

Table 1.
x(ij)

j=1

i=1 x(11)
i=2 x(21)

x(*1)

- g
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To answer this question one estimates the cell entries

under the hypothesis of independence as a product of the

*
marginals, that is, denoting the estimate by x (ij) one uses

x*(ij) = x(i*)x(*j)/n. Some appropriate measure of the

*®
deviation between x(ij) and x (ij) is then used to determine

whether the differences are "larger" than one would reasonably

expect under the hypothesis of independence.

The estimated two-way table under the hypothesis or model

of independence is given in Table 2.

Table 2.
ESTIMATE UNDER INDEPENDENCE
r x*(ij)
[ 3= j =2
i=1 xX(le)x(*1)/n x(l*)x(*2)/n x(1l°)
i=2 x(2°)x(*1)/n x(2°)x(*2)/n x(2°)
x(e1) X (+2) n

Note that the estimated table has the same marginals as the

obgserved table x(ij).
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A common statistical wmeasure of the association, or interaction
between the variables of a two-way 2x2 contingency table is the crose~
product ratio, or its logarithm. The cross-product ratio is defined by

x(11)x(22)
x(12)x(2}) °

though we shall be more concerned with its logarithm

in x(11)x(22)
x(12)x(21) °

We -shall use natural logarithms, that is, logarifhms to the base e ,
rather than common logarithms to the base 10, because of the nature of the
underlying mathematical statistical theory. Note that with tlhe estimate
for independence, or no association, the'logarichm of the cross-product
ratio is zero.
x(1°)x(*1) x(2-)x(°2)
n
x(°1)
1

i EALx(22)

n
x*(12)x" (21) T2 x(2) =4n 1=0.
n .

The logarithm of the cross-product raéio is positive if the odds satisfy.
the inequalities

x(11) . x(12) x(11) . x(21)
x(21) > x(22) °F X(12) ~ x(22) ’

since tlien we get for the log-odds

x(11)x(22) - ln-xgll) - 2&n x(12 > 0

%(12)x(21) x(21) " x(22)
tn X(11) _ £n x21) >0 .
x(12) x(22)

The logarithm of the cross-product ratio is negative if the odds satlsfy :
the incqualities

x(1117< x(12) . x(11) <_x(Zl)
x(21) © x(22) °F x@2) © %(22) °®

since then we get for the log-odds

24.




in x(1x(22) _ 4Ln x(11) _ £n x(12) .
x(12)x(21) x(21) x(22)

product ratio thus varies from -® to +®.

The logarithm of the cross-—
significance of the

rocedures for assessiung tue

Later we shall consider p
duct ratio from zero, the value

hm of the cross—pro

deviation of the logarit
interaction."

corresponding to mo association or no

gimilar procedures apply to the case of a two-way TIXC contingency

table, that is, one with r rows and ¢ columns.

TABLE 3a
TWO-WAY Trxc CONTINGENCY TABLE
<3l 5 | ‘
x(11) | =(12) | - x(1lc) x{ltl_
x(21) | =(22) | - x(2c) | x(2*)
T x(rl) | x(r2) . x(re) | x(zr*)
x(*1) | x(*2) x("c) n

Under a hyﬁothesis or model of independence of row and column categories

*

x (11) = x(i*)x(*3)/n . Even i
h respect to some character
still the same for determining

f the row categories, say, are not randomly

observed but gselected wit istic, say time or

the mathematical procedures are
ategories are homogeneous ove
In the latter case we may ¢

space,
whether the column C

r the row categories,

time or space for instence. onsider the two-

25




way table as a set of one-way tables.

Terms which cover both the case of

independence and homogeneity are "association" or "interaction," that is,

we question whether there is association or interaction among the variables.

The estimated two-way
or model of independence is given in Table

TABLE

ESTIMATE UNDER INDEPENDENCE

x*(ij)

rxc contingency table under the hypothesis
3bl

i 1l 2 c
x(1*)x(*1)/n | x(1*)x(*2)/n x(1°)x(*c)/n | x(1°)
x(2°)x(*1)/n | x(2°)x(*2)/n x(2¢)x(°c)/n | x(2°)

r x(r*)x(*1)/n

x(r*)x(*2)/n

x(r*)x(°c)/n

x(r*)

x(*1)

x(*2)

x(°c)

Note that the estimated table has the same marginals as the observed

Table 3a.

A three-way contingency table arises when each observation has three
classifications with different possible numbers of categories for each
clagsification. The simplest three-way contingency table is 2x2x2, that

is, with two categories for each classification. -




In the general notation we have Table 4,

TABLE 4
)
i=1 i=2
j=1 =2 j=1 j=2
k=1 | x(111) x(121) | x(211) x’(221) x(*°1)
k=2 x(112) x(122) | x(212) | x(222) | x(**2)
x(11°) | x(12°) | x(21°) | x(22°) n
FJ—) The two-way marginals are
- x(11+) = x(111) + x(112),
x(12°) = x(121) + x(122),
; x(21+) = x(211) + x(212),
x(22¢) = x(221) + x(222),
x(1°1) = x(111) + x(121),
x(1-2) = x(112) + x(122),
x(2+1) = x(211) + x(221),
x(22) = x(212) + x(222),
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The one-way marginals are ,
«

21

x(+11) = x(111) + x(211) ,
x(*12) = x(112) + x(212) , ' _
x(+21) = x(121) + x(221) , )
x(+22) = x(122) + x(222) . |

x(11°) + x(12°), .
x(21°*) + x(22°), '
x(11°) + x(21°),
x(12°) + x(22°), '
x(1°1) + x(2°1), !
x(1°2) + x(2°2). \

x(l**) = x(111) + x(112) + x(121) + x(122)
x(2++) = x(211) + x(212) + x(221) + x(222)
x(*1le) = x(111) + x(112) + x(211) + x(212)
x(°2+) = x(121) + x(122) + x(221) + x(222)
x(*°1) = x(111) + x(121) + x(211) + x(221)
x(*+2) = x(112) + x(122) + x(212) + x(222)

The cutries x(ijk) in Table &4 may also be considered as three-way

marginals.

With more variables there are more possible questions of interest.

One may be interested in whether any pair of the variables are independent

or show no interaction or association. One may be interested in condi-

tional independence, that is, whether ¢ pair of variables are independent
One may be interested in whether the three

given the third variable.
variables are mutually independent or whether one of the variables is

independent of the pair of the other variables. These questions of inde-
pendence, no interaction or association are all answered by considering
estimates which are explicitly represented in terms of products of

various marginals. We list some of these estimates.

Mutual independence of i, j, and k xI(ijk) - x(i")x('J')x("k)/nZ,

Independence of 1 and (jk) jointly x:(ijk) w x(ie*)x(*jk)/n ,

Conditional independence of 1 and j given k x;(ijk) w x(i°k)x(*jk)/x(**k)-

As might be expected, these estimates also apply in the general three-way

rxsxt contingency table.

We note that the estimate under mutual independence of i, j ,
and k has the same one-way marginals as the observed table x(ijk) ,




* 2 {
xl(lll) = x(Llee)x(*1*)x(**1)/n",

x*(112) = x(1+*)x(1)x(+2)/n?

x*(121) = x(1e+)x (22 )x(-*1)/n®, .
xF(122) = x(1+*)x(-2)x(+2)/n’

xH(211) = x(20+)x(-1)x(D/n’ X

x*(212) = x(2°)x(:1)x(-+2)/n?, g
x¥(221) = x(2:*)x(-2)x(* D/n?, &
[ x¥(222) = x(2°+)x(*2°)x(**2)/n?, i

xI(l") = x;(lll) + xI(llZ) + xI(lZl) + xI(lZZ)
= x(lee)x(e1)/n + x(1**)x(*2°)/n

= x(l-o),

‘ul""/) xf(20+) = x}21) + x§(212) + x}(221) + x](222)
2

= x(2°°)x(°1l*)/n + x(2**)x(*2*)/n
- x(2") ’

* ] e = * * * ¥
xl( 1) xl(lll) + x1(112) + x1(211) + x1(212)

= x(1°*)x(*1*)/n + x(2**)x(*1*)/n

= x(*1*),

Xriney o o* * * *
xl( 2°) xl(121) + x1(122) + x1(221) + x1(222)

= x(°2°*),

y / x)(++1) = x7(111) + x](121) + x](211) + x}(221) s
= x(*°1),

5 xI(”Z) - x;(llz) + x;(lzz) + xI(ZlZ) + xI(222)
- X('.Z).

However, the two-way marginals of the estimate under mutual independence

} of 1,3, and k differ from the two-way marginals of the observed

table x(ijk) . Thus, for example ,
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* * *
xl(ll ) = xl(lll) + x1(112)

- x(loo)x(olo)x(ool)/nz + x(loo)x(olo)x(u -2)/.“2
= x(1**)x(*1*)/n ,
and the latter value is not necessarily equal to x(11°*) .
The estimate under the hypothesis or model of independence of {

and (jk) jointly has the same one-way marginals and the same two-way
jk-marginal as the observed table x(ijk) ,

X2(111) = x(1+*)x(-11)/n ,
x2(112) = x(1°+)x(*12)/n ,
x3(121) = x(1++)x(-21)/n ,
' ‘ x¥(122) = x(1+*)x(-22)/n ,
ty"'//) x2(211) = x(2:*)x(*11)/n ,
x!(212) = x(2+*)x(-12)/n ,
x3(221) = x(2°*)x(-21)/n ,
s x1(222) = x(2°*)x(-22)/n ,
x8(Lee) = x2(11) + x) (112) + S (120) + x}(122)

T = x(1°°)x(°11)/n + x(1°°)x(°12)/n + x(1**)x(*2L)/n + x(1°*)x(*22)/n

x(1e)[x(°11) + x(*12) + x(*21) + x(*22)]/n

e
L]

= x{1**) .
v/ ,
Similar results follow for the other one-way marginals.

) <A (+11) = x, (111) + x, (211)

= x(lee)x(+11)/n + x(2++)x(11)/n

= x(-11) ,

x2(+12) = x}(112) + x}(212)
= x(le*)x(*12)/n + x(2¢)x(*12)/n
= x(°12) ’
30
J
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* * *
xa('Zl) = xa(121) + xa(221)

= x(1°*)x(*21)/n + x(2°*)x(*21)/n i
- x(-21), '

x:('22) = x:(122) + x:(222) 1

= x(1°°)x(*22)/n + x(2°*)x(*22)/n *

= x(°22).

However, for the other two-way marginals, for example,

* * *
xa(ll ) - xa(lll) + xa(112)

= x(1°*)x(*11 /n + x(1°*)x(*12)/n

[ = x(1°*)[x(°11) + x(*12)]/n

‘m’——’/) = x(1**)x(*1*)/n ,

[ and the latter value is not necessarily equal to x(11l°) .

g = s =

x:(l'l) - x:(lll) + x:(121)

= x(l**)x(*11)/n + x(l“)x('Zl)/n
= x(1°°)[x(°11) + x(*21)])/n
) = x(1°*)x(**1)/n ,

r and the latter value is not necessarily equal to x(l-1) .

The estizate under the hypothesis or model of conditional inde-

f/ pendence of 1 and j given k has the same one-way marginals and the
t same two-way ik- and jk-marginals as the observed table x(ijk) ,
} x;(lll) = x(1°1)x(+11)/x(+-1) ,

X (112) = x(1+2)x(+12)/x(++2) ,
x:(121) = x(le1)x(+21)/x(s-1) ,
? X (122) = x(1-2)x(-22)/x(++2) ,
i x*(211) = x(2*Dx(-11)/x(++1) ,

it 31
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x:(212) - x(2°2)x(*12)/x(**2) ,
x;(zzl) - x(2°1)x(*21)/x(**1) ,
x;(zzz) - x(2°2)x(*22)/x(**2) ,
*

a4
~
-
®

[ ]
~
[}

x;(lll) + x;(11z) + x;(lzl) + x:(122)

x(1°1)x(°11)/x(**1) + x(1°2)x(*12)/x(**2)
+ x(1°1)x(*21)/x("*1) + x(1°2)x(*22)/x(**2)
= x(1°1l) + x(1°2) = x(1+°) .

Simiiar results follow for the other one-way marginals.

x;(l'l) - x;(lll) + x(121)

x(1°1)x(°11)/x(**1) + x(1°1)x(*21)/x(**1)

x(1-1),

X (1+2) = x)(112) + x*(122)

x(1°2)x(*12)/x(*<2) + x(1°2)x(*22)/x(**2)

x(1°2) ,

and in a similar manner we have
x:(2°1) = x(2:1) , x(2°2) = x(2°2),
X (+11) = x5 (111) + xp(211)

x(1°1)x(*11)/x(*°1) + x(2°1)x(°11)/x("*1)

x(-11),

Xt (+12) = x3(112) + xp(212)

x(1°2)x(*12)/x(**2) + x(2°2)x(*12)/x(**2)
= x(°12) ,
and in a similar manner we have
x;(-21) - x(°21) , x;('22) - x(°22) .

However, for the other two-way marginals

32
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x;(ll') = x:(lll) + x:(llZ)

= x(1°1)x(°11)/x(°*1) + x(1°2)x(*12)/x(*+2) ,
and the latter value is not necessarily equal to x(1l°¢) .

We remark that one of the constraints in the determination of the

estimates was that they have certain marginals the same as the observed
table.

For the three-way 2x2x2 contingency table in addition to the
classic types of independence, interaction or association, there
arises an additional one, important historically and practically.
This is known as no three-factor

or no second~order interaction. No three-factor or no second-orde
interaction implies that the logarithm of the association measured iy the

cross-product ratio for any two of the variables is the same for all the

"values of the third variable, that is, there is no second-order iInteraction

if
: x(111)x(221) _ ,  x(112)x(222)
| o DD - " x(122)x(212) * 1 3>
: x(111)%(212) x(121)x(222)
1) o ST (2iL) P a5k

x(122)x(221) *

x(111)%(122) %(211)x(222)
In G2 = ™ x@ixz) ' S0 k-

One is concernad with the possible hypothesis or model of no
sccond-order interaction wien none of the other types of independence are
found. Wowesver, in this case, the corresponding estimate cannot be ex-
prassed explicitly in terms of observad marginals although the estimate
is constrzined to have "he same two-way marginals as the observed table.
Straightforwvard iter-~vive procedures exist to determine the estimata
under the hypothas * o -~idel of no second-ordar interaction. For the
gencral turee-way .:iu contingency table there are of course many more
relatio:ns among the iog cross-product ratios like (1) which rwust be

satisfied, but the iturative procedures to determine the estimate extend

to the genaral case with no difficulty,

33
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We may be concerned with a set of two-way tables for which it 1is
of interest to determine whether they are homogeneous with respect to a
third factor, say space or time. Such problems may also be treated as
three-way contingency tables using the space or time factor as the third

classification (Kullback, 1959).

For four-way and higher order contingency tables the problem of
{

| presentation of the data increases, as do the variety and number of
questions about relationships of possible interest and varieties of

interaction. The basic ideas, concepts, notation and terminology we have

discussed for the two- and three-way contingency cables extend to the more

k’_) general cases as we consider the methodology (Ku et al., 1971).

St g
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3. Log-linear Representation

1. Minimum Discrimination Iuformation Estimation

To make the presentation more specific, and with no essential
restriction on the generality, we discuss it in terms of the analysis
of four-way contingency tables. Let us consider the collection of
four-way contingency tables RxSxTxU of dimension rxsxtxu. For
convenience let us denote the aggregate of all cell identifications, as
well as their number, by @ with individual cells identified by w, so that
the genevic variable is w = (1,3j,k,2), i=1,...,r, J=1,...,8, ke=l,...,t,
f=1,...,u. In this case we also identify § as rstu. Suppose there are
two probability distributions or cortingency tables (we shall use these
terms interchangeably) defined over the aggregate or spacz I, say p(w),
m(w), 3 p(w) = 1, 31!((0) » ). The discrimination information is defined

by

(1)
1) = L p@ ta ,}’“&3' :

FPor the various applications we shall consider the w-distributionm,
v(w), according to the problem of interest, may either be specified, may
be an estimated distribution, or may bs an observed distribution. The
p-distribution, p(w), ranges t‘nor or iz a member of a family P of
distributions of interest satisfying certain restraints.

Of the various properties of I(p:7) we mention in particular the

fact that I(p:%) > 0 and = 0 if, and only 1if, p(w) = w(w) (Kullback, 1959).
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Many problems in the analysis of contingency tables may be
characterized as estimating a distribution or contingency table subject ,
to certain restraints and then comparing the estimated table with an
observed table to determine whether the observed table satisfies a null {
hypothesis or model implied by the restraints. In accordance with the "
principle of minimum discrimination information estimation, we determine i
that member of the collection or family P of distributions, vhich minimizes \

the discrimination information I(p:7). We denote the minimum discrimination

. :
information estimate by p (w) so that {1

.
I(p*:w) =L p‘(w) fa P:_;'(ﬁ}- min I(p:7), p, P € P

Unless othervise stated, the summation is over Q which will be omitted.

It may be shown that if p(w) is any member of the family P of

l
distributions, then f
* *
(1) I(p:x) = I(p :x) + I(p:p).

The pythagorean type property (1) plays an important role in the analysis
of information tables.

In a wide class of problems which can be characterized as "smoothing"”,
or fitting a model to an observed contingency table the restraiants specify
that the estimated distribution or contingency table have soms set of
marginals, or more gmuny' linear functions of observed cell entries,
equal to those values for the observed contingency table. In such cases
n(w) is taken to be either the umiform distribution ¥(ijkL) = 1/rstu, or
a distribution already estimated subject to restraints contained in and
implied by the restraints under examination. The latter case includes
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the classical hypotheses of independence, conditionii\l independence,

homogeneity, conditional homogenelty and interaction, all of which can
be considered as instances of generalized independence.

To test whether an observed contingency table is consistent with
the null hypothesis, or model, as represented by thc minimum discrimination
information estimate, we compute a measure of the deviation between the
observed distribution and the appropriate estimate by the u:lni.-n:
discrimination information statistic. Por not;.it:lonal and computational
convenience, let us denote the estimated contingency table in terms of
occurrences by x*(m) - np*(w) vhere n is the total number of occurrences.
For the "swmoothing'" or fitting class of problems, thac is, with the
restraints implied by a set of observed marginals (those of a generalized
independence hypothesis), or more generally,linear functions of observed

all entries, the minimum discrimination information (m.d.i.) statistic is

(2) 21(x:x") = 2 x(w) to =2,
x (w)
vhich is asymptotically distributed as a chi-squared variate with
sppropriate degrees of freedom under the null hypothesis.
The statistic in (2) is also minus twice the logarithm of the
classic likelihood ratio statistic but this is not necessarily true for

other kinds of applications of the general theory (Berkson, 1972).

2. Computational Procedures

An "experiment" has been designed and observations made resulting
in a multidimensional contingency table with the desired classifications
and categories. All the information the analyst hopes to obtain from the

"sxperiment" is contained in the contingency table. In the process of

37
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analysis, tha aim is to fit the observed :able with a minimal or

parsimonious number of parameters dependirg on some of the observed
sarginals, and/or some general linear combimations of observed cell
entries, that is, essentially, to find out how much of this total
information is contained in a summary consisting of sets of marginals,
and/or some linear combinstions of observed cell entries.

Indeed, the relationship between the concept of independence or
association and interaction iu contingency tables and the role the
marginals play is evidenced in the historical developments in the
extensive literature on the analysis of contingency tables.

Let us denote by x the fix1 matrix of entries x(w) of the obiserved
contingency table arranged in lexicographic order, and denote by '5 an
{ix(wtl) design matrix of rank mtl < {I. We denote the columns of T by
'l'i(u), l1<w<Q 0<1i<mu. The condition that the estimate x‘(w) have
some set of marginale, and/or some general linear combination of cell
entries, equal to the corresponding values of the observed contingency

table is written in matrix notation as

&) Y =Tz,

Those columns of '5 vhich imply a marginal restraint are the indicator
functions of the marginals, that is, the corresponding 'ri(w) will be one
or zero for any cell w, according as the cell w does or does 20t, enter
into the marginal in question. We usually take 'ro(u) = 1, for all w, so
that Ix (w) = I x(w) » n. In accordance with the minimum diszrimination
information theorem (Kullback, 1959), the m.d.i. estimate is the

exponential family

(%) x () = oxp (1T, (W4T, T, ()4, 41T (0))am(w) .
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If we denote the {x1 matrix whose entries are zn(x*(w)/nw(w)). in
lexicographic order on w by %n (x*/nw), then we have from (4) the log-

linear regression (Gokhale, 1971, 1972; Ku et al. 1974)
*
(5) fa(x /om) = T T

where T is the (m+l)xl matrix of the parameters ‘to,'rl.'rz....,‘r.. Ve set
the normalizing parameter to-L and 11,...,1. are main effects and
interactions. The paramesters in (4) are to be determined so that x*(w)
satisfies the condition (3). There are convergent iterative computer
algorithms of proportional fitting (among others), which yield the
estimate x*(w) satisfying (3), and then the parameters are determined

from (5). The iteration may be described as successively cycling through
adjustments of the marginals of interest starting with the w(w) distribution
until a desired accuracy of agreement between the set of observed marginals
of interest and the computed marginals has been attained. See Ku et al.
(1971). Note that although nm(w) is here a constant and could be absorbed
into T OF L, we prefer to express it explicitly because there are cases
in vhich nw(w) is not a constant and the expression in (4) or (5) still
applies (Ireland and Kullback, 1968a, b; Gokhale, 1971; Darroch and
Ratcliff, 1972).

3. Analysis of Information

The analysis of information is based on the fundamentsl relation
(1) for the minimum discrimination information statistics. Specifically
if np:(w) - x:(w) is the minimum discrimination information estimate
corresponding to a set ll. of given marginalr., and z;(w) is the minimum

discrimination information estimate correspinding to a set B‘b of given
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marginals, vhers ll. is explicitly or implicitly contained in “b’ then the
basic relations are

*
2I(x:n%) = 21(3.:“) + ZI(x:x.) y

21(x:om) = 2(x;:am) + 20(xixy)
(6) '
21(x; :ow) = 21(x:0%) + 20(x, :x)) \

ZI(x:x:) - 21(:::::) + 2I(x:x;)

wvith a corresponding additive relation for the associated degrees of ' {

freedom.
In terms of the representation in (4) or (5), as an exponential

family, the tvo extreme cases are the uniform distribution for which all

T's except L are zero, and the observed contingency table or distribution,
the complete model, for which all Q-1 = rstu - 1 T's in addition to L are
needed.

Msasures of the form 2I(x:x:). that is, the comparison of an
observed contingency table with an estimated contingency table, are
called measures of interaction or goodness-of-fit. Msasures cf the form
21(:;:::). comparing two estimated contingency tables, are called measurss )
of effect, that is the effect of the marginals in the set H.b but not in
the set H_, or the taus in x; but not in x:. Ve note that 21(::::) tests
a null hypothesis that the valuss of the T parameters in the representation
of the observed contingency table x(w) but not in the representation of
the estimated table x:(u) are zero and the nuaber of these taus is the number
of degrees of freedom. Similarly 21(:: :x:) tests a null hypothesis that
the values of the set of T parameters in the representation of the estimated
table x;(u) but not in the representation of the estimated table x:(u) are

40




r/

zerc, and the number of these taus is the number of degress of freedom.
See section 5, The 2x2x2x2 Table.

We summarize the additive relationships of the m.d.i. statistics

and the associated degrees of freedom in the Analysis of Information Table 1.

TABLE 1

ANALYSIS OF INFORMATION TABLE

Component due to Information D.F.
%
B.: Interaction ZI(x:x.) N.
: Eff A(x ix N -N
Hb. ect 11,.:.) s~ N
*
Interaction ZI(x:xb) Nb

*
Since messures of the form 21(::::‘) may also be interpreted as measures
®
of the "variation unexplained" by the estimate L the additive relationship

leads to the interpretation of thes ratio

zx(x:xj:l - 21(::1:) ) ZI(x;m:)

¢))

21 ('x:x:) 21(::::)

as the percentage of the unexplained variation due to x: accounied for by
the additional constraints defining x: The ratio (7) is thus similar to
the squaxed correlation coefficients associated with normal distributions
(Goodman, 1970).

We remark that the marginals, explicit and implicit, of the estimated
table x:(u). which form the set of restraints H used to generate x:(m) are
the same as the corresponding marginals of the cbserved x(w) table and all
lower order implied marginals. It may be shown that 21(::::) is approxi-

mately a quadratic in the differences between the remaining marginals of
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the x(w) table and the corresponding ones as calculated from x:(w).
Similarly, 21(:;:::) is also approximately a quadratic in the '
differances between those additional marginal restraints in B‘b but not in
H. and the corresponding marginal valuess as computed from the x:(w) table. v
The 1's are determined from the log-linear regression equations (5)

as suns and differences of values of n x*(m) or as linear combinations

thereof. A variety of statistics have been presented in the literature for
the analysis of contingency tables, wvhich are quadratics in differences of :
marginal values or quadratics in the T's or the linear combinations of
logarithms of the observed or estimated valucs. The principl: of minimum
discrimination information estimation and its procedures thus provides a i
unifying relationship since such statistics may be seen as quadratic

approximations of the minimum discrimination information statistic. We i

remark that the corresponding approximate xz'- are not generally additive
(Berkson, 1972).

We mention the approximations in terms of quadratic forms in the
marginals, or the T's, as a possible bridge to relate the familiar
procedures of classical regression analysis and the procedures proposed .
here. This may assist in understanding and interpreting the analysis of .
information tables (Kullback, 1959). The covariance matrix of the T(w)
functions or the taus can be obtained for either the observed table or
any of the estimated tables, as well as the inverse matrices, as part of

the output of the gensral computer program.

4. The 2x2 Table

It may be useful to reexamine the 2x2 table from the point of view

of the preceding discussion. The algebraic details are simple in this
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case and exhibit the unification of the imformation theoretic development.
Suppose we have the observed 2x2 table in Figure 1 g

1) Figure 1

e ——

If we obtain the m.d.i. estimate fitting the one-way marginals, the
generalised independsnce hypothesis is the classical independence
hypothasis and the minimm discrimination information estimate is the

F,) usual x*(:l.j) = x(1.)x(.J)/n. -By the iterative scaling fitting procedure,
Fh' we begin with !(0) (13) = n/4 in each cell and adjust the ’(O) (1)) values

- o

by the ratios of the observed row marginals to those of ‘(0) (1)), that is,

N
i 2D (13) = 2@ (19) 3%72- - x(1.)2 .
{ Then we adjust x“t:l.j) by the ratio of observed column marginals to the
! marginals of :(1) (13),
r/ ‘(2)(13) - :(1)(‘J) 3&.!2 P !z‘i_.l. x‘Soilz
3 = x(1.)x(.9)/n = x" (13).

Since the row and column marginals of z‘(i.j) are now the same as the

} observed values, no further iterative adjustment is necessary. For fitting
a 2x2 table to externally specified marginals see Ireland and Xullback,

l 1968b or Fisher's 2x2 table in the examples.

The representation of the log-linear regression for the complete

model is given in Figure 2. The entries in the columns Tye Typ T
43
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|

1 ||y T Ty l

1 111 1 |a )

\

1 231]1 (\

2 111 1 \t
2 211 ’u;
Figure 2 ':

\ are, respectively, the values of the functions 'rl(ij), Tz(ij), ’1'3(13)

associated with the marginals x(1.), x(.1), x(11), and the column headed

L corresponds to the normalising factor.

S — —

We note the interpretation of Figure 2 as the lcg-linear relations

L’—) x(11 -
.. ln-—L—)-“ L+T, +T,+7,

Lnlgy--l.-i-r

® .
¥ x(21) _
r; ’an Jnﬂ_l L+ Tz

x(22

r La —é-;)- =L .
/

From (8) we find
f;',’ L = 2 (x(22)/n/4), |
. - fa (x(12)/x(22)),
& T, - ta (x(21)/x(22)),

Ty = 2o (x(11'x(22)/x(12)x(21),

or




-11 - {

He fa x(12) - fa x(22),
9) T, fa x(21) - fn x(22),

Ty fn x(11) + &n x(22) - fn x(12) - n x(21).

The design matrix T is the matrix of Figure 2, that is,

1 1 1 1
1 1 o0 0
1-
1 0 1 o0
1 0 0 0 .

Define the diagonal matrix D with main diagonal the elements x(1ij),

in lexicographic order, that is, |

x(11) 0 0 0
0 x(12) 0 0
D- |
0 0 x(21) 0
0 0 0 !(22) ’

then the estimate of the covariance matrix of x(1.), x(.1), x(11), for the

observed contingency table is §22 1’ vhere s

51 &

S5 3y

Y
S22.1 " 832 = 837 837 8y, »

is 1 x 3. It 1is found that

and S.. 1s 1 x1, S

51 S,,1s 3 x 3,

Sn " 5,
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(1.)x(2.) x(11) - x(1.)x(.1) x(11)x(2.)
n )

s . ol xay - X1IECD  xCDx(.2)  x(ADx(.2)
n n n

22.1
2
xgnz:g.n x(11) = x n‘llz

and the inverse matrix is
1 + 1 1 - 1_ 1
x(12) T x(22) x(22 x(12) ~ x(22)
s-l - 1 1 o 1 Sl = 1
22.1 xizzS x(21) 1122) xzzl) x(22)

1 1 1 1 1,1 .1 .1
\f 1Y) " x(22) T xD Cx(2)  x(D =12 =(21) 'x(22)].

The matrix s;i 1 is the covariance matrix of ths T's in (9).

Similar results hold in general and for estimated tables (Kullback, 1959).

Note that the value of the logarithm of the cross-product ratio, a
measure of association or interaction, appears in the course 6f the analysis
as the value of T, for the observed values x(ij). For x.(ij). the estimate
under the hypothesis of independence, the representation as in Figure 2
does not involve the last column, since x.(ij) is obtained by fitting the
one-way marginals, and 1'3-0.

The log-linear relations for the estimate x*(ij) are

*
x (11) _
fa ~ L+1’1+‘rz

'
35122_
fa — L+‘tl

(10) R
wEQ .,

2

*
hzniz L,




vhere the numerical values of L, T T in (10) must of course depend on

* :
x and differ from the values in (b,. .

The minimum discrimination information statistic to test the null !

hypothesis or model of independence is ZI(x:x*) with one degree of freedom. 4

In this case the quadratic approximation is o

2 \
(11) 21 (x:x") (x(u)-s&)%s'_ll)(*l O U U | ) _
x (11) x (12) x (21) x (22)/°

Remembering that x*(ij) = x(1.)x(.j)/n, the right-hand side of (11) may

also be shown to be

S

(12) X = I (x(11) - x(1)x(.3)/m)?) HiZLD |

the classical Xz-tut for independence with one degree of freedom. Another

test vhich has been proposed for the null hypothesis of no association or

e I

no interaction in the 232 table is

-1

vhich may be shown to be a quadratic approximation for 21(:::‘) in terms of

Ty with the covariance matrix estimated using the observed values and not

the estimated values. We rewark that if the observed values are used to

estimate the covariance matrix then instead of the classical xz-tnt in

(12) there is derived the Neyman modified chi-square

xi - I (x(13) - x(1.)xC.) /W /x(1).
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S. The 2x2x2x2 Table

A useful graphic representation of the log-linear regression (5)
is given in Figure 3 for a 2:2:2;_2 coutingency table. This is the analogue
of the design matrix in normal regression theory. The blank spaces in
Figure 3 represent zero values. The (ijkl)-colummns are the cell identifi-
cations in the same lexicographic order as the cell entries for the
estimates in the computer output. Column 1 corresponds to L vhich is the
normalizing factor. Each of the columns 2 to 16 represents the corresponding
valuss of the T(w) functions, columns 2 to 5 those for the one-way marginals,
columns 6 to 11 those for the two-way mirginals, columns 12 to 15 those for
the three-way marginals, and column 16 that for the four-way marginal.
The tau parameter associated with the T(w) function is given at the head
of the column. The superscripts are useful identifications. The complete
representation with all the columns of Figure 3 gensrates the observed

values. Thus the rows represent

ta X :’"’ L4+ ri-ri(uu) $oout rﬁrﬂ(qu)

13k, 44k 19K0_19%L
oot T gney o B e

vhere *(1jkL) in the 2x2x2x2 case is 1/2x2x2x2 and the numerical values
of L and the taus depend on the observed values x(1jkt). The design
matrix correspording to an estimate uses only those columns associated
with the marginals explicit and implied in the fitting process. This is
a reflection of the fact that higher order marginals imply certain lower
order marginals, for example, the two-way marginal x(ij..) iusplies, by
summation over i and j, the one-way marginals x(.j..), x(1...), and the
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1 4 k |43 4k 42 3k 3¢ k| 49k _130 1kt _jke|_1ks
1 kML 1 T 91T ™ T11.1 7'11 1"111 "1 i i {fan
111 1|11 1 1)1 1 1 11 1 1 1|1
111 2[1j1 1 1
112 11|11 1|1 1 1 1
112 2{1|1 1 1
1 21 111 1 1 1 1 1
1 21 211 1
1 2 2 111 1 1
1 2 2 2|11
2 1111 1 1 1 1 1
2 11 2|1 1 1
212 11 1 1 1 !
2 12 2|1 1 !
2 21 11 1 1
2 21 21 |
2 2 2 11 1 !
2 2 2 2|1 l l 1

Figure 3. Graphic representation

total n*x(....). The representation for the uniform distribution
corresponds to column 1 only. The estimate x;(ijk!.) based on fitting
the one-way marginals vill use only columns 1-5. The values of L and
the taus for this estimate will be different from those for x(i1jkL) and

*
depend on the estimate xl(ijk!.). The rapresentation in Figure 3 implies

for xI (13k2)

_ gt




e

S8 =

[ ]
x, (1111) |
5 hECER o I S :
fn — L+1'1+'rl+‘tl+1'1 ;
. ,
X (1112) |
1 i 3j k
fn ~— -L+11+rl+tl ;
. : - {
[} . ® l‘
x, (2222) i
Ln T -], \

The estimate x;(:ljkl) based on fitting the two-way marginals will use
columns 1-11 since the two-way marginals also imply the one-way marginals.
The values of L and the taus for this estimate will be different from :
those for the observed values or other estimates and depend on the vailues %
of the estimate x;(ijkl). For the estimate fitting the two-way marginals

the representation in Figure 3 iwplies ’

*
x,(1111)
2 - i 3j k L 13 ik 12 k 2 ki
n — L+rl+rl+tl+tl+tu+ru+tn+1’il+ru+tn
x (1112)
2 a i 3 k 13 ik ik
zn——“ l.+1'1+tl+1'1+ru+ru+rn
x;(2222)
!,n —————— L o .u c
a%

The estimate x;(iju) based on fitting th= three-way marginals will
use colums 1-15 since the three-way marginals also imply the two-way and
one-way marginals.

Note that in the graphic representation in figure 3 we set all taus
with subscript i=2 and/or j»2 and/or k=2 and/or =2 equal to sero, by

convention, to insure linear independence.

50




-17 -

The analysis of information table corresponding to the hierarchical
* "
fitting of x;(ijk!.). xz(ijkz), 83(1:":1) is shown in table 2.

TABLE 2 |
!
ANALYSIS OF INFORMATION ‘5
Component due to Information D.F. \
*
) All one-wvay marginals 21 (x:xl) 11 ;
{
A % ;
# All two-wvay marginals 21(:2:::1) 6 3
21 (x:x;) S
® &
All three-way marginals ZI(xazxz) 4
*
21 (33*3) 1

21(:::;) tests the null hypothesis that the eleven taus of

columns 6-16 are equal to zero.

ZI(x;:x;) tests the null hypothesis that the six taus of colummns
6-11 are equal to zero.

21(:::;) tests the null hypothesis that the five taus of columns
12-16 are zero.

21(:;::;) tests the null hypothesis that the four taus of columns
12-15 are zero.

ZI(x:x;) tests the null hypothesis that the tau of column 16 1is
zero,

In the examples we shall see other tests on the interaction

parameters (Kullback, 1974). We now consider a number of examples to

illustrate more specifically various aspects of the analysis.
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6. Algorithms to calculate quadratic approximations.

We now present algorichms to calculate quadratic

approximations to ZI(x:x;), ZI(xgzx;), 2I (x*:x).

ZI(x:x;).

a) Compute x*.

a

b) Using the T design matrix corresponding to x(including

c)

d)

e)

the L column), compute the matrix S = T'DT, where D} is
a diagonal matrix whose entries are the values of x; in

the same order as for the rows of the T-matrix.

STRY
Let S = » Wwhere S, is a lxl matrix,

) S

=21 =22

-1
then 82,1 ™ 822 ~ 551 &) Bya-
-1

Compute S,5 ; -
Consider the marginals which do not enter into the

specification of x}, and let d' be a one row matrix whose
entries are the differences between the set of marginals

just considered, in the x and x; tables.




/
&

e i

£)

g)

h)

i)

Let B be that submatrix of §;;.1 whose rows and columns
correspond to the 1 columns of the design matrix associated
with the set of marginals in step e).
Compute d'Bd.
This is the "marginals" approximation to ZI(x:x;).
Compu=tie the set of 1's associated with the marginals
considered in e) for the x distribution, and call the one
row matrix of these 1's 1'.

Compute T'B 1, where B™l is the inverse of the

matrix B in f).

1Bt

T is the "tau" approximation to ZI(x:x;).

The "marginals" approximation is also equal to

(x - x*)?

X®
a




ZI(xg:x;)

a)

n)

c)

d)

e)

* *
Compute Xpe xz-

Using the T design matrix corresponding to xg (including
the L column), compute the matrix S = T'DXT, where DI

is a diagonal matrix whose entries are the values of x;

in the same order as for the rovs of the T-matrix.

5;1 S;2

s

Let § =
871 S22

» where S,, is a lxl matrix, then

. ~ -1
S22.1 " 522 82 &) &,

Compute §5% 1
Consider the marginals which enter into the specification
of x*

b
entries are the differences between the set of marginals

but not in X3 and let 4' be a one row matrix whose

just considered in the xg and x; tables.




21

f) Let B be that submatrix of §;%.1 whose rows and columns |
correspond to the T columns of the design matrix associated J
with the set of marginals in step e).

g) Compute d'Bd

This is the "marginals” approximation to 2I(x£:x;). i

h) Compute the set of 1's associated with the marginals

L,m—f/> Compute r'gfll where g'l is the inverse of the matrix

[ B in £).

Y —g——

considered in e) for the xg distribution and call the

one row matrix of these t's t'.

'8™11 is the "tau" approximation to 21 (xf:x3) . |

i) The "marginals” approximation is also equal to

,
(x* - x*)°
z b a

*
xa




3. 2I(x*:x).

a) Using “he T design matrix corresponding to x* (including

b)

c)

d)

the L column), compute the matrix § = T'D T, where D_ is | \
a diagonal matrix whose entries are the values of x in

the same order as for the rows of the T-matrix. i

812 52 |

Let § = . Where S is a 1xl matrix, then t
= S (] =11

=21 =22
S,0 1 = 5,, = 8 sT1 s
=22.1 =22 =21 =11 =12°

-1

Compute §22.1 .

Let d' be a one row matrix whose entries are the differ-

ences between the ] T(w)x*(w) and | T(w)x(w). In the
0 w

case when x*(w) is specified by conditions external to

the observed values, the value of | T(w)x*(w) is specified
w

without having to compute x*(w).




B

e)

£)

AT eV AR A s T o e

23

L]
Compute 4 §22_1Q.

This is the approximation to 2I(x*:x).

this can be obtained without computing x*.

The approximation

2
(x*-x)
]

requires the prior computation of x*.

Note that




4. Applications ‘(
|

In this chapter we consider eight examples illustrating various . A
aspects of the model fitting methodology by the analysis of real data. \
i i

Example 1. Classification of multivariate dichotomous populations. : f

This example illustrates the analysis of a five-way
2x2x2x2x2 contingercy table. It introduces the use of
log-odds or logit representation, and the multiplicative
vonlion of the odds as a product of factors. It also
illustrates the interpretation of ths parameters, and the

effect of interaction on the numerical value of the

association between classifications. It considers several

N A T T . T R T A R e T R DI R A TR

models with respect to ths marginals fitted, the design

e

matrices, and the detailed hicrarchical analysis of

information.




An Example of

Multiwey Contingency Table Analysis Applied to the Classification

¢f Multivariate Dichotomous Populations .

Introduction

Multiway contingency tables, or cross-classifications of vectors of (
discrete randor variables, providc a useful approach to the analysis of
multivariate discrete data. In the particular application we counsider,
the individual variates are dichotomous or binary. !Ilote however that the
procedures and analysis are not restricted to dichotomous or binary data
but are also applicable to polychotomous variates, ‘

For background on the study and problem leading to the data we
consider see Solomon (1960). In Ku et al., (1969) minimum discrimination
information procedurcs were applied to problems of multivariate binary
data in information systems, such as communication, pattern recognition,
and learning systems. In Cox (1972) there is a review of methods and
models for the analysis of multivariate binary data and Solomon's data is '
given as a typical example. Martin and Bradley (1972) developed a model
based on a set of orthogonal polynomials and applied it to Solomon's data.
‘e remark that our procedure based on the principle of minimum discrimina-
tion information estimation applied to the analysis of multiway contingency

tables yields a result practically equivalent to that of Martin and Bradley

(1972). Goodman (1973) discusses Solomon's data in relation to methods for

‘ selecting models for contingency tables.




Solomon's Data

A total of 2982 high-school seniors were given an attitude question-

naire to asscss their attitude towards science. The students were also
classified on the basis of an IQ test into high 1Q, the upper half, and
low IQ, the lower half. The sixteen possible response vectors to each of
four agrec-disagree responses were tabulated. The problem of interest was
to determine whether the response vectors could be used as a basis for
classifying the students into one of two classes and evaluate possible

classification procedures.

Contingency Table Analysis

We shall treat the data given in Table 1 as a five way 2x2x2x2x2

contingency table, denoting the original observations by x(hijki), where

Characteristic Index 1 2
IQ h low IQ high IQ
Response 1 i disagreer agree
Response 2 3 disagree agree
Responge 3 k disagree agree
Response & 2 disagree agree

As a first overview of the data to determine the marginals and
their related interaction parameters which may furnish significant values
in the log-linear representation of the exponential family of the estimates
obtained by iterative scaling fitting, we list in Table 2a, Analysis of
Information, a sequential hierarchical study of interaction and effect type

measures Kullback (1970), Ku et al. (1971).
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The first cstimate we start with is

x:(hijkﬂ) = x(heee)x(*I1jkf)/n

since the minimum discrimination information statistic (interaction type

measure)

x(jiuki)n
X(heeeo)x(ijkl)

2I(x;x;) = 2LLXZT x(hijk2)&n

tests a null hypothesis that the IQ groupings are homogeneous over the
sixteen response vectors kullback (1959, Chap. 8). This null hypothesis

is rejected and the subsequent study of effect and interaction type
measures is an attempt to find a good fit to the data and account for the
total variation as measured by ZI(x:x;). Although the association between
IQ) and the response to the first statement as measure<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>