LWL CR-02E73

TECHNICAL REPORT NO. LWL-CR-02E73

MULTISHOT THERMAL BATTERY

by

Alan A. Schneider; Supervising Chemist Stephen E. Long; Supervising Engineer George C. Bowser; Supervising Engineer

June 1974

Final Report

Contract No. DAAD05-73-C-0555

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

U.S. ARMY LAND WARFARE LABORATORY

Aberdeen Proving Ground, Maryland 21005

LWL CR-02E73 c. l

DISCLAIMER

*

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

0

REPORT DOCUMENTATION F	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
MULTISHOT THERMAL BATTERY		
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		LWL-CR-02E73 8. CONTRACT OR GRANT NUMBER(*)
		DAAD05-73-C-0555
9. PERFORMING ORGANIZATION NAME AND ADDRESS Catalyst Research Corporation		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1421 Clarkview Road		
Baltimore, Maryland 21209		LWL Task 02-E-73
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
US Army Land Warfare Laboratory Aberdeen Proving Ground, Maryland	21005	June 1974
not deen they may alound, hary tand	21000	is Homber of Pades
14. MONITORING AGENCY NAME & ADDRESS(if different	from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
APPROVED FOR PUBLIC RELEASE; DISTR		
17. DISTRIBUTION STATEMENT (of the abstract entered in		TECHNICAL LIBRARY BLDG. 305 BURDEEN PROVING GROUND, MD.
18. SUPPLEMENTARY NOTES		STEAP-TI.
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)	
Electrical Power Sources		Power Sources (Elect.)
Chemical Power Sources Batteries (Elect.)	Tactical P	ower Sources (Elect.)
Thermal Batteries (Elect.)		
A summary of the development of a r battery is designed to power the Al cycles.	multishot therma	
cyc1c3.		

20. ABSTRACT CON'T

and a set of operating instructions has been written (Appendix B, this report).

A brief description of some of the tests which led to the choice of cell chemistry is included. A chronological description of design improvements is given, from the first working prototype which was capable of four cycles to the final version which is capable of at least five reliable cycles.

AD-785584

TABLE OF CONTENTS

	Page
REPORT DOCUMENTATION PAGE (DD FORM 1473)	iii
INTRODUCTION	1
PHASE I	2
Cell Development Fuel Evaluation	2 3
PHASE II	4
First Working Prototype Final Design Mechanical Design Environmental Tests	4 7 7 10
PHASE III	16
CONCLUSIONS	17
RECOMMENDATIONS	18
APPENDICES:	
A. Drawings	A-1
B. Operating Instructions	B-1
DISTRIBUTION LIST	19

INTRODUCTION

The object of this study was the design and development of an externally heated multishot thermal battery which would power the AN/PRC-77 radio. The battery was to operate the radio for at least four cycles, each cycle consisting of five minutes of transmission followed by five minutes of reception. The battery was to be heated by a readily available military fuel such as trioxane.

Such a battery has been developed. When heated by trioxane, it is capable of operating the radio for as many as ten cycles. Activation times for the battery range from five minutes for the first few cycles to eight minutes for the final cycles.

The development of the battery was divided into three phases. Phase I involved the investigation of cell components such as anode, cathode and electrolyte. This phase also included investigation of the heat source and design of a battery case which would allow the cells to be heated quickly and efficiently. The culmination of Phase I was a proposed prototype design.

Phase II efforts centered on modification of the prototype design so that the battery would perform satisfactorily from an electrical and an operational standpoint. Burner height was increased to insure complete combustion of the fuel, cell spacing was adjusted for even heating of all cells, and design changes were incorporated which would make the system easier to use. Batteries were then subjected to environmental preconditioning and testing.

Based on these environmental test results, some minor changes were effected resulting in the final battery design. Phase III efforts centered on the production of twenty-five units of this design.

RESEARCH AND DEVELOPMENT PROGRAM

Phase I

Cell Development

The following materials were studied during the investigation of cell components:

- 1. Mg and Ca anodes.
- 2. LiCl-KCl and LiI-KI electrolytes.
- 3. CaCrO₄, FeS₂ and CuO depolarizers.

The cell of choice used a Ca anode, LiCl-KCl electrolyte and a CaCrO_{Λ}

cathode (depolarizer). The choice was based primarily on electrical performance and secondarily on prior experience with the system. Tests show that both the Mg anode and FeS₂ cathode would also prove acceptable.

Based on initial test data and some thermal calculations, it was determined that, to achieve rapid activation, each individual cell would have to be exposed to the hot combustion gases of the burning fuel. This meant hermetically sealing each cell in a separate case. Conventional battery construction wherein all cells are sealed in a single case could not be used because activation times would be extremely long.

Several cell configurations were investigated to arrive at a reliable, complete cell. Major problems which were overcome were: (1) swelling due to moisture and gaseous reaction products and (2) formation of Li-Ca alloy at a rate which caused internal shorting of the cell. The swelling problems were eliminated by vacuum drying all components and by heating each cell to its operational temperature before final sealing. The shorting problems were overcome when a "Fiberfrax" gasket was included in the cell to absorb any excess Li-Ca alloy.

The resulting cell, shown in drawing 405756 proved to be very reliable. No failures have been encountered in the testing of more than 100 such cells. The cell is capable of delivering one ampere at 510°C for more than one hour, equivalent to twelve five-minute transmit cycles.

The final cell uses two calcium bimetal anodes and two depolarizer pellets made from a homogeneous mixture of LiCl-KCl electrolyte, $CaCrO_4$ depolarizer, and "Cab-O-Sil" binder. A screen is included in the depolarizer to provide better electrical contact with the pellet. These components are assembled and inspected according to Flow Chart 405756. For more detail concerning the components and assembly techniques, the full drawing package should be consulted (Appendix A).

Fuel Evaluation

Both the standard trioxane tablet and the US Army Land Warfare Laboratory (USALWL) Delrin tablet were examined as fuels. The former was the fuel of choice because of its even burning characteristics and ease of ignition. However, Delrin tablets could be used as an alternate heat source.

Although the heat contents of trioxane and Delrin are very nearly the same (3980 cal/g and 4300 cal/g respectively), the Delrin is a denser fuel. Thus, with Delrin, more heat can be packaged per unit volume. However, the denser Delrin is also more difficult to light, and its burning rate is uneven and dependent on physical configuration of the tablets. It is these unfavorable characteristics which prompted the choice of trioxane as the primary fuel.

First Working Prototype

Initial Phase II efforts centered on the modification of the Phase I prototype design to meet the performance goals, and the testing of this modified design. Burner height was increased to allow the fuel to burn completely. Modifications were made to the spacing between cells and to the end cell geometry so that the hot combustion gases would heat each cell evenly and at the same rate. A sketch of this modified design is given in Figure 1. It was this design which was first able to meet the electrical specifications for the battery.

One of the first successful tests using this design is shown in Figure 2. The lower graph shows the performance of the full six-cell battery during the first cycle while the upper graphs give the performance of two individual cells.

One and two-thirds bars of trioxane were ignited at time zero and the battery voltage was allowed to rise under no load. At 3 minutes (point A), a 100 ma constant current load was applied which drove the battery voltage negative. By 4 minutes the battery was able to sustain the 100 ma load showing a voltage greater than 15 volts. At four minutes (point B) a one ampere load was applied, slightly depressing the cell output. Not until the temperature of the top of the cell cases reached about 350° C was the battery able to deliver 10.8 volts at one ampere (1.8 volts/cell). This occurred at 4 1/2 minutes (point C) and was considered activation time for the battery. Cell voltage rose to 15 volts during the next five minutes under one ampere load. During this period the trioxane flame turned yellow (point D) and the cap was placed on the assembly when the flame went out entirely (point E). At 9 1/2 minutes the load was diminished to 100 ma (point F) and the battery was allowed to run an additional five minutes. At 14 1/2 minutes (point G), the one ampere load was reapplied for 30 seconds to determine whether transmission was possible at the end of a ten minute cycle. This was indeed the case; although battery voltage began to fall, the voltage at the end of the 30 second period was above 13 volts. At 15 minutes (point H), the 100 ma load was reapplied while the battery cooled and the electrolyte froze.

Since peak temperatures were not excessive during cycle 1, it was decided that two full bars of trioxane could be used in the following three cycles. Graphs of battery output for cycles 2, 3, and 4 are shown in Figure 3. As the number of cycles increased, the activation time increased. The time necessary to reach 10.8 volts under a one ampere load are as follows:

Cycle	1	4	1/2	min.
Cycle	2	5	1/4	min.
Cycle	3	5	1/4	min.
Cycle	4	6	1/4	min.

Reaction products accumulate as current is drawn from the cell, requiring higher and higher temperatures to maintain the load. Peak voltages under

FIGURE 1. Sketch of six-cell battery with modified burner.

•:

6

load also decrease as the number of cycles increases.

Thermal data for cycles 2, 3, and 4 are not given in Figure 3. These data are shown in Table 1 along with cycle 1 values.

The battery was able to supply the required one ampere for four 5-minute cycles at voltages above 11.5 volts. The total time the battery was loaded at one ampere was 25.75 minutes. Total time under the 100 ma load was at least 30 minutes. It was this design (Fig. 1) which was used as the basis for the development of the final design with more uniform heating and improved ruggedness.

Final Design

During the last report period, March 1 to June, 1974, the following was accomplished:

- 1. The mechanical design of the assembly was finalized and engineering drawings were completed.
- Complete assemblies were tested under various environmental conditions and a fuel loading table was generated.
- 3. Twenty-five assemblies were completed for shipment.

Mechanical Design

Previous work had yielded a general configuration for the cell array and battery assembly. In order to make the assembly more rugged and capable of being handled repeatedly, it was necessary to make several design modifications. The major modifications were:

- A. Change from .015" to .032" steel outer case.
- B. Addition of a .032" steel reinforcing ring to the top of the outer case at the point of cell array attachment.

G GROUND, MD.

- C. Change from .060" to .020" outer case "Fiberfrax" insulator lining.
- D. Addition of a .005" nickel sleeve covering "Fiberfrax" liner in outer case to eliminate tearing of Fiberfrax when the inner and outer cases are collapsed.
- E. Reconfiguration of air vent holes in fuel can to eliminate catching on edge of outer can when collapsed and to make case more rigid.
- F. Installation of "Fiberfrax" insulating pads on array frame to help prevent shorting in the event of cell shifting.
- G. Adjustment of inter-cell spacing for more uniform heating.

After several mock-up assemblies were built to determine usableness, changes A thru F were incorporated and assembly FD-1 was tested (FD indicates final

•

6.2

6.3

8

TABLE 1	
---------	--

Cycle	1 - 1 2		s trio	xane	Cycle :	3 - 2	the second se	trioxa	ne
Time	Temp	. (°c)			Time	T	emp. (°c)	
(min)	End Ce	11	Cente	statistical design of the local division of	(min)	Contraction of the local division of the	Cell	Cente	r Cell
	Up	Low	Up	Low		Up	Low	Up	Low
1	65	144	80	173	1	56	135	86	148
2	139	239	166	269	2	120	242	144	248
3	235	328	246	338	3	221	329	232	317
4	318	398	328	385	4	308	405	302	378
5	362	464	361	449	5	350	472	351	439
6	424	519	400	505	6	428	529	408	497
7	467	533	449	512	7	496	590	462	558
8	484	511	472	494	8	511	574	491	550
9	478	486	475	479	9	517	543	505	528
10	465	464	466	467	10	503	512	504	508
11	447 429	443	457	455 444	11 12	485	487	495	493 478
12	429	424 406	445 433	444	13	443	464 444	483 466	478
14	396	390	421	420	14	429	425	451	449
15	382	376	410	408	15	411	407	436	434
16	368	363	398	397	16	395	391	423	421
17	354	350	387	385	17	380	376	409	408
18	346	344	376	375					
19	341	338	365	365					
20	335	331	356	355					
21	329	321	347	347	. ·				
22	315	310	340	341					
Cycl	.e 2 - 2	2 bars	trioxa	ne	Сус	le 4	- 2 ba	rs tri	oxane
1	63	120	95	162	1	58	133	74	163
2	119	194	166	254	2	97	240	135	264
3	198	275	250	332	3	224	329	234	339
4	277	349	324	396	4	308	393	306	395
5	340 392	420	391 425	451 511	5	352	452 523	358 426	443 513
7	452	558	425	570	7	474	582	463	582
8	513	603	511	605	8	518	577	509	577
9	534	578	537	588	9	521	550	522	546
10	531	550	549	570	10	511	520	520	524
11	521	527	543	554	11	494	495	509	507
12	504	503	535	539	12	476	473	493	491
13	485	481	523	525	13	456	452	478	475
14	468	462	510	511	14	437	433	462	459
15	450	444	495	495	15	420	415	445	444
16	434	428	481	482	16	403	398	431	429
					17	389	384	418	417

Temperature Profiles For Six-Cell Array

design). The results of this test and others are reported in Table 2. In this table are listed the start times along with battery voltages and cell temperatures. Start time is defined as time to reach minimum battery voltage under the transmit load (See point C in Fig. 2 as an example). Battery voltages are given at the ends of the 5-minute transmit and 5-minute receive modes (See points F and G in Fig. 2 as examples).

It was evident from the results of FD-1 (long start and low temperature peak in center cell) that the cell separation needed adjustment. Unit FD-2 was constructed using the final, cell-separation configuration (modification G above). The test results indicate the assembly is very well balanced thermally. Ten cycles were obtained from this unit, the first five being shown in Table 2. Engineering drawings were prepared reflecting the final design. Drawings 405782 and 405785 have been included in this report to show the configuration of the final assembly. For more detail, the complete drawing package should be consulted (Appendix A).

Environmental Tests

The following tests were performed to determine the ruggedness and operability of the final design. In all tests involving operation, the assemblies were stabilized at the stated temperature prior to the start of each cycle. Experimental data for the environmental testing are given in Table 3.

A. Drop Test - Drop tests in accordance with Contract No. DAAD05-73-C-0555, section F, para. 5 were performed on a final design mock-up model. Shifting of cells and subsequent shorting to array frame resulted. The frame of the array was insulated with "Fiberfrax". Subsequent drop tests on unit FD-1 indicate the assembly will survive a drop of 2 1/2 ft. without causing excessive cell shift or shorting.

B. Cold Condition - Assembly ET-1 (Engineering Test Sample Number 1) was placed in a temperature chamber and allowed to stabilize at -65°F for two hours. The assembly was operated while it was in the temperature chamber. The assembly was cycled five times. The voltage on the third cycle was low due to insufficient fuel loading, all other cycles performed satisfactorily.

C. Hot Condition - Assembly ET-2 was placed in a temperature chamber and stabilized at +110°F. The assembly was operated while it was in the chamber. Four cycles were completed satisfactorily.

D. Wind - Assembly ET-3 was placed in a tube with a chimney for hot gases (see Fig. 4). Air was forced through the tube by means of a variable speed fan. Velocity was measured with a flowmeter. Three cycles were completed. The first was underheated but the second and third were satisfactory. It was then noted that the chimney was providing favorable air current for the assembly. The fourth cycle was tested on the bench with air blowing directly on the assembly. Almost no operational life was achieved. The flame came out the vent holes in the burner can. The assembly was shielded from the air flow and a fifth cycle completed successfully.

•

TABLE 2 Engineering Tests of Finel Design

Peak Cell Temp. (^o C) End Cell Center Cell	380	489	515	481	414	513	556	552	577
Peak Cell End Cell	453	546	574	546	479	557	584	578	5 95
Volts at end of 5 min. receive	12.8	14.2	13.7	13.3	15.7	16.3	16.6	13.0	15.4
Volts at end of 5 min. transmit	10.4	12.7	11.3	11.0	12.6	14.6	14.1	13.0	14.1
Start Time (Sec.)	385	400	435	480	335	335	376	400	.430
Bars of Trioxane	1 1/2	Q	2 1/3	2 1/2	1 1/2	$1 \ 2/3$	ୟ	Q	2 1/2
Initial Temp.	25°C (77°F)	=	=	=	25°C (77°F)	-	=	=	=
Conditions	Static	E	=	=	Static	=	Ŧ	Ŧ	=
Cycle	1	22	3	4	Т	~	3	4	บ
3/N	FD1				FD2			11	

•

<u>l Temp. (^oC)</u> <u>Center Cell</u>		505	I	ı	ı	1		491	494	569	585		515	594	507	411	545
Peak Cell End Cell		554	ı.	ı.	ı	I		545	538	620	622		487	538	484	373	536
Volts at end of 5 min. receive		16.2	15.5	12.5	15.0	13.6		16.0	13.8	14.3	15.8		*2.50	*4.25	*3.75	*0.50	*4.50
Volts at end of 5 min. transmit	Tests	14.6	14.1	*4.5	13.8	13.0	0 Tests	14.4	13.2	14.2	14.1		*1.75	14.1	¥4.4	0.0	*4.75
Start Time (Sec.)	Low Temperature Tests	300	350	400	450	460	Temperature	305	315	385	350	Wind Test	210	150	210	*	310
Bars of Trioxane	Low T	1 2/3	1 2/3	1 2/3	2 1/3	2 1/2	High	1 1/3	1 1/2	2	02		1 1/3	1 2/3	Q	Q	Q
Initial Temp.		-54°C (-65°F)	=	z	=	=		-41°G (+105°F)	z	z	=		25°C (77°F)	=	=	=	=
Conditions		Static	÷	=	=	=		z	÷	=	H		Wind 880 ft/min.	=	=	=	E
Cyole		l	୍ୟ	3	4	5		Ч	02	3	4		Т	2	Ю	4	5
S/N		ET1						ET2		12			ET3				

TABLE 3

Environmental Tests

•

TABLE 3 (cont.)

,

•

Environmentel Tests

Peak Cell Temp. (^O C) End Cell Center Cell		,	,	•	, , ,	•			,				
Volts at end of 5 min. receive		14.6	*4.0	*3.4	*2.0	0**			15.6	12.3	12.0	11.8	
Volts at end of 5 min. transmit	14	13.4	*4.0	*4.0	*1.5	*2.5	+		14.3	11.5	11.4	*4.5	
Start Time (Seo.)	Field Test	330	360	420	420	480	Wibuction Toot	TINTADIAT	320	365	430	450	
Bars of Trioxane		1 1/2	1 2/3	Q	2 1/2	2 1/2	Λ	-1	1 1/3	1 2/3	രു	2 1/3	
Initial Temp.		25 ⁰ C (77 ⁰ F)		=	=	=		c	25 CC (77 °F)	=	=	=	
Conditions		S.West Wind	=	=	=	=		Dna	Vibration	:	=	=	
Cycle		ı	~	3	4	5		1	J	2	3	4	
S/N		ET4							ET5	1	3		

* Represents minutes of running time, end voltage was less than 11.25.

** Did not reach minimum voltage.

.*

\$

FIG 4

12

WIND TEST SETUP

E. Field Test - Assembly ET-4 was tested outdoors with wind conditions of 5 - 15 mph. The assembly was shielded on three sides. Four cycles were completed. Life was marginal.

<u>F.</u> Vibration - Assembly ET-5 was vibrated one hour on each of three perpendicular axis. The frequency was swept from 10 to 55 Hz and back to 10 Hz, once every minute of testing. The assembly was subsequently tested for four cycles of electrical operation.

The results of the environmental tests show the unit is capable of being operated over the temperature range of $-65^{\circ}F$ to $+110^{\circ}F$. The assembly will survive transportation vibration and repeated drops of 2 1/2 ft. or less onto a 2" fir plank. The assembly, however, must be completely shielded from air currents. This may be due in part to the fact that the trioxane fuel must be shielded from wind.

A table of correct fuel loading, Table I, Appendix B, was evolved using the results of the development and environmental tests.

Phase III

Following the completion of the design and environmental tests, twenty-five production units were assembled incorporating all modifications. Minor cosmetic modifications were made at this point, modifications such as addition of locator marks to aid in opening and closing the array.

A set of operating instructions was prepared and is included as Appendix B.

CONCLUSIONS

The feasibility of a multishot thermal battery has been demonstrated. Although the unit does not meet all the specifications of the original program, the major design objectives have been accomplished.

The following is a list of the more important accomplishments of the project:

- 1. Electrical requirements have been met without exceeding the desired size and weight limitations. (3" diam x 3" high; 1 1/2 lb.)
- 2. A highly reliable cell design has been generated. More than one hundred and fifty cells have been tested without failure.
- A battery package has been developed which demonstrates the practicality of the multishot concept.
- 4. The battery is capable of operating over the full military temperature range ($-65^{\circ}F$ to $+165^{\circ}F$), and will withstand moderate vibration and shock.
- 5. The fuel of choice (trioxane) is a standard military item.
- 6. No special skills are required to operate the battery.
- 7. No problems were encountered in interfacing the battery with the AN/PRC-77 radio.

RECOMMENDATIONS

Some of the areas which might be considered to improve the present design are:

- 1. Improved ruggedness.
- 2. Less sensitivity to wind.
- 3. Ability to operate continuously for periods greater than ten minutes.

...

.

APPENDIX A

DRAWINGS

		FINISH		7-9161	USED ON
10,000)	(27) (2017 (2017)	2	: 32 CV		
1.660	1025	5	VILESS OTHERMISE SPECIFIED: SURFACE REVGHANESS AS RELLED OR DRAWN. PUNCHES, CUT, FORMED OR SHEARED JURFACES TO HAVE 125	WISE CRECIFIED: DUGHNESS 40 R DRAWN. CUT, FDRWED DR CUT, FDRWED DR	REVISIONS
				·	
1.600		L	1,20N 600 564	CALCIUM GOOE7G ALUMINUM 500277	
			STOCK MA: NOT 73 244	2220	
	20	030041005	1 WORECT DER	1-8-02	
ORATION		SCALE	DR. USF 10-UF 20 DWG. CH'K'D SIZE	ELECTR	2005
BALTMORE, MARYLAND 21209 U.S.A. (UNI INTERPRET DIMENSIONS AND SYMBOLS IN DEC ACCORDANCE WITH USASI-Y 14.5 AND	(UNLESS OTHERWISE SPECIFIED) DECIMALS <u>±</u> .005 FRACTIONS <u>±</u> 1/64 ANGLES <u>±</u> 1/2°	DO NOT SCALE DRAWING		PART 200	205657

USED ON	REVISIONS		08 767
		030041023	INJULAT RECTANC NO. 203
			UGF J-20-74 DWG.
FINISH			CH'K'D APP'D APP'D APP'D
1	•		CHES SCALE
FRAX CHEET	×	J. J	DIMENSIONS IN INCHES (UNLESS OTHERWISE SPECIFIED) TOLERANCES (UNLESS OTHERWISE SPECIFIED) (BALLES OTHERWISE SPECIFIED) DECIMALS ± 1/64 ANGLES ± 1/20
DEP GOUSSI		The second secon	CATALYST RESEARCH CORPORATION BALTIMORE, MARYLAND 21209 U.S.A. INTERPRET DIMENSIONS AND SYMBOLS IN ACCORDANCE WITH USASI-Y 14.5
MATERIAL			CATALYST R BALTIMORE INTERPRET DI ACCORDANCE

-

-

MATERIAL			FINISH				USED ON
		PART NO.	- O	DESCRIPTION		REQ'D.	
		40 5748	BCELL	CUP		/	
		400 XC3		COMPRESSION PLATE	5	/	
		22573	3 FLUX			75	
•	- A 010 7074	26570	230,056	5P 01/1/20		AR	
		627008	BJEAL	TERNIN 4L		/	
			-				REVISIONS
			NOTE /	ET	~ 7020	3	
	*	n N	7	> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1		
		*3					
		EACH CORNER					
		<u>_</u> ια					
	*	0					
9		•	405628	-28			
				405753			
1				1-627033	033		
				200	53		
- Jane B				TON)	(1)		
				1,50 250		030041011	
CATALYST	CATALYST RESEARCH CORPORATION		SCALE	DR. UGF 5-6-74	DWG.	CASE 435'Y	50%
BALTING		RANCES	DO NOT	Q.44V			
INTERPRET	MITERPRET DIMENSIONS AND SYMBOLS IN ACCORDANCE WITH USASI-Y 14.5	DECIMALS ± .005 FRACTIONS ± 1/64	SCALE	0.44¥	NO.	400	5732
	1						

ſ

MATERIAL		FINISH			USED ON
	PART NO.		DESCRIPTION	REQ'D.	111
	400649	COVER C	כבדר		
5.5.05 -	405/20	COMPRE	ELLIN PLATE		
- 400649	620				
					REVISIONS
	03 * (1) ERCH CORNER = A 010 70742				
-	-			030041012	
CATALYST RESEARCH CORPORATION BALTHHORE, MARYLAND 21209 U.S.A. INTERPRET DIMENSIONS AND SYMBOLS IN ACCORDANCE WITH USASI-Y 14.5	UNITABLY IN THE PERCENTER SCALE (MILLIA OTNERVASE RECEIPLES TOLERANCES (UNLER OTNERVASE RECEIPLES DECEMALS $\pm 1/2^{\circ}$ DR ANGLES $\pm 1/2^{\circ}$ DR ANGLES $\pm 1/2^{\circ}$	DO NOT APPTD SCALE APPTD DRAWING APPTD	DWG	COVERASS No. 40575	133 /2

MATERIAL OBO THICK FIBERFEAX CHEE	FINISH		USED ON
			REVISIONS
CATALYST RESEARCH CORPORATION MARIENS OTHERWISE STATES BALTINORE, MARYLAND 21209 U.S.A. WALENS OTHERWISE SPECIFIED UNLENS OTHERWISE SPECIFIED UNLENS OTHERWISE SPECIFIED UNLENS OTHERWISE SPECIFIED UNLENS OTHERWISE SPECIFIED UNLENS OTHERWISE SPECIFIED UNLENS OTHERWISE SPECIFIED DECIMALS ANGLES 1/2° DRA	NOT APP'D MING APP'D	030041033 030041003 03004100 030040 030040 030040 030040 030040 0300 030040 0300 0000 0000 0300 00000 0000 00000 000000	3 470E VGLE 5778

	USED ON	REVISIO	しざんん	0123	しょう
			DVER C	C.V.	NO. 200
		OWAE JO GULAE JO JEANN T FJANES REAJES	DWG.	2	2
			131 10-3-75		
	Н		CH'K'D	O.44V	Q.44V
	C: C FINISH		SCALE	DO NOT	DRAWING
	11 21 - 11 - 10 - 10 - 10 - 10 - 10 - 10		UNIMENSIONS IN INCHES (UNLESS OTHERWISE SPECIFIED) TOLERANCES (UNLESS OTHERWISE SPECIFIED)	DECIMALS ± .005 FRACTIONS + 1/A4	
The solution	いたい	-51/5	CATALYST RESEARCH CORPORATION BALTIMORE, MARTLAND 21209 U.S.A.	BOLS IN	ACCORDANCE WITH USASI-Y 14.5
	MATERIAL		CATALYST F BALTIMORI	INTERPRET DI	ACCORDANCE

USED ON	REVISIONS				. CUP 05648
	CE ROUGHNESE JAECIFIED: CE ROUGHNEDE AS EC DE DRAMIN 4ED, CUT, FORMED 1EARED JURFACES			<u>W A-4</u>	D PART 2000
V.C.A, FINISH	NOTE: 1 UNLEUS C 2URFACH PUNCHE PUNCHE D HAVE	020 6		262 2603 0250711	DO NOT APP'D CAP'C
EEL CORPOSO 17 (1/455304, CC 20-5-766	1558	2.187 KEF.	0 005014		DIMENSIONS IN INCHES (UMLESS OTHERWISE SPECIFIED) TOLERANCES (UNLESS OTHERWISE SPECIFIED) DECIMALS ± 0.005 FRACTIONS ± 1/64 ANGLES ± 1/2°
MATERIAL RECYGTING CHEE FINISH 28 DER C	1.262			2000 50. 10075105 0111	CATALYST RESEARCH CORPORATION BALTIMORE. MARYLAND 21209 U.S.A. INTERPRET DIMENSIONS AND SYMBOLS IN ACCORDANCE WITH USASI-Y 14.5

FINISH NOTEC NOTEC NOLOUNCHINN CASE CASE SCALE PR. DR. WE GIT-RE COLOUNCHINNE CAS	33 ADTEC	USED ON 405769		REVISIONS	030041021	D PART 205765
	Diministration of the second s	FINISH	TEU UDLO DEAINNI CANE		S. 2000 ± 2000	SCALE DR. USE US-17-32 CH'K'D CH'K'D DO NOT APP'D SCALE APP'D SCALE

C T C C T T C C T T C C C C T T C C C C T T C C C C T C	MATERIAL OGO THICK FIREPERAX SHEE, T PER SOOT77	FINISH		USED ON
DINERSIONS IN INCRES DINERSIONS INTRINS DINERSIONS IN INCRES DINERSIONS IN INCRES DINERSIONS IN INCRES DINERSIONS IN INCRES DINERSIONS INTRINS DINERSIONS INTRIBUES DINE				
The second secon				
The second secon				REVISIONS
CCALE ± 000 SCALE APP'D PA. CCALE APP'D PC. PA. CC				
11 - 15 12 - 15 13 - 15 14 14 15 15 15 15 15 15 15 15 15 15			0 10	
DIMENSIONS IN INCHES CURLESS OTHERWISE PECIFIED UNLESS OTHERWISE PECIFIED UNLESS OTHERWISE PECIFIED UNLESS OTHERWISE PECIFIED DO NOT DECIMALS ± .005 SCALE PP. USE C-JC-Z DWG CHWED SIZE PP. DMG PA. DMG PA. DMG PA. DMG PA. DMG PA. DMG PA. DMG PA. DMG PA. DMG PA. DMG				
DIMENSIONS IN INCHES (UNLESS OTHERWISE SPECIFIED) (UNLESS OTHERWISE SPECIFIED) (UNLESS OTHERWISE SPECIFIED) DO NOT DECIMALS ± .005 SCALE PP. VGF C-K-R DWG. PMG. PA	ų) į	Å		
DIMENSIONS IN INCHES SCALE DR. UGF J-G-R DWG. (UNLESS OTHERWISE SPECIFIED) CHWD CHWD SIZE DWG. (UNLESS OTHERWISE SPECIFIED) DO NOT APP'D SIZE CHE APP'D DC MGT AP			03(0041016
SCALE APP'D	DIMENSIONS IN INCHES (UNLESS OTHERWISE SPECIFIED) TOLERANCES (UNLESS OTHERWISE SPECIFIED)		105 5-15-70 DWG.	SULATOR CITANGLE
ANGLES ± 1/2° DRAWING APP'D	FRACTIONS ± 1/64 ANGLES ± 1/2°		Ω	405759

..

.

4

MATERIAL .OOUTH/CK N/1.V-K	1-K OHEET	FINISH	_		LOG 7 PI
					10/004
,					
					REVISIONS
				04103	
CATALYST RESEARCH CORPORATION (UN CORPORATION CON CONTINUES BALTIMORE, MARYLAND 21209 U.S.A.	DIMENSIONS IN INCHES (UNLESS OTHERWISE SPECIFIED) TOLERANCES (UNLESS OTHERWISE SPECIFIED)	PO NOT	DR. VOF GE 22-74 DWG. CH'K'D SIZE	RECTANG	NOR
INTERPRET DIMENSIONS AND SYMBOLS IN PE ACCORDANCE WITH USASI-Y 14.5	PRACTIONS ± 1/64 PRACTIONS ± 1/64 ANGLES + 1/20	SCALE		PART 203	1777
	-1				

USED ON 40278 REVISION 40578, CELL JACK INJERT INSULATION BETWEEN PING & JTACK: PRESS CELLS TGHT AGAINST INSULATION: NOW WELD TOP PING IN PLACE, INDULATE 030041035 4074CENT NEGATIVE LEADS APPEN. 45 OHDWIN (NOTE OPIENTATION OF CELLS) REQ'D. 0 PRESSURE PLATES ARE FLUSH WITH (SHORT) PIN ENDS, WELD 40 2 00 2 4 I SPOTWELD POSITIVE LEADS TO 2 COMPRESS 435Y, UNTIL END PART NO. CELL 435'Y W/LEAD 400773 PRECOURE PLATE 405778 WOULATOR RECT WILLIATOR RECT 205779 INJULATOR RECU SIZE C DESCRIPTION TOOL NO. OF AND 450 IN PLACE 0.44V 0.44V Q.44V O.44V Sild VIA NE 5. 20-74 405176 NOTES: 400772 125730 425777 PART NO. 3 CECTION A-A CH.K.D O.44V 0.444 DR. O.dev 405778 NUTES DO NOT SCALE DRAWING D SCALE P ¢. 2015 2 NOTE 2 * 50 NJTCN DIMENSIONS IN INCHES (UNLESS OTHERWIGE SPECIFIED) TOLERANCES (UNLESS OTHERWIGE SPECIFIED) D ± .005 ± 1/64 ± 1/2° BUTIVE CNNOST 30 4540 DECIMALS FRACTIONS ANGLES 622507--405-772 INTERPRET DIMENSIONS AND SYMBOLS IN ACCORDANCE WITH USASI-Y 14.5 CATALYST RESEARCH CORPORATION FINISH A NECKES BALTIMORE MARYLAND 21209 U.S.A. -APPROV EQUALLY SPACED EDTH ENION 5 1 A. - J - CNė ÷ E ŧ -Ŧ 122000 115-0 405772 (9/17) 205776 405773 (7) P O 0 MATERIAL 0 0

A-32

USED ON	REVISIONS				A and			22
	хсто хсто 200	1-12 817 81-7587 2018. 1 340 8174 81107 25	· ·				OZUIVOVEO	C No. 205785
TO	PART NO DESCRIPTIO 400776404/EULO ACCY 4007783 CAP 40077843 CAP	NOTED - 1 40051 645 040 400051 9727 0 040400				117		DR. ノゾンデ ビーマンズ APPD CHYO CHYO CHYO APPD APPD APPD APPD APPD APPD APPD APPD APPD
H						PACKAGED UN		ON DIMENSIONS IN INCHES (NALESS CHERTONIC STATE (NALESS CHERTONIC STATE (NALESS CHERTONIC STATE (NALESS SCALE ANOLES 2 1/64 DRAWING
FINISH		-425732		701007			-205735	CATALYST RESEARCH CORPORATION BALTHORE MARYLARD 21209 USA INTERPRET DIMENSIONS AND SYMBOLS IN ACCORDANCE WITH USASI-Y 14.5
MATERIAL								

-

USED ON			T					REVISIONS	Ι									1200	alaat too too aa						-90	2
2 4	REG'D.	-	-	40	00	HK	AR	1 2				1,2	175F	-	6140	-	8%		MIK-0-1000	÷			 	SECIECTED	BATTERY SU	05782
	TION	CAJE 433'Y	12,00		0 21	OLLEK						PIND OF STACK 433'Y	CHEU, (CE E) AND NEA		J PIN KEN		NUN) LEAL		ANCE WITH					NEO.	1718 BAT7	C PART &
TOOL NO.	DESCRIPTION	TERY	CELL JACK 430'Y	05	010	UOLUEK OK	FLUX					PINJ OF	INTO CAJE NOTCHEU, (CENTER JACK WITH CAJE) 4ND WELD IN DI JAF		REVIDIE EXCESS PIN LENGTHS FLUCH WITH CLOE 3.0.		N CLE (PUST ENNUT) LEADT 2007 - 2012CENT TERMINALT, BRATE IN PLACE		CRAZE IN ACCORDANCE WITH MR-0-1000						Q.dal¥ Q.dal¥	APPA DePA DePA
	PART NO.	400771 BAT	205781 CE.			-	22573 FL			~ 10 TC 4.	.)~/.	1. JEAT	1/10 () 0/2/2/2/		2. REWO		8. N. C. Z. D. 2. E. J. B. C. Z. C.		4 CKAZE						100 000-74	
											-														SCALE	DO NOT APPTO SCALE APPTO DRAWING APPTO
																									DIALENSIONS IN INCHES (INLESS OTHERWIGE SPECIFIES) TOLERANCES	URLERS OTRAVERS SPECIFIED DECIMALS <u>1005</u> FRACTIONS <u>11/64</u> AMGLES <u>11/20</u>
FINISH						00 10	5073	したもう												-40573/		-405771			CORPORATION	MENSIONS AND SYMBOLS IN WITH USASI-Y 14.5
						1	T		AT .			1									 				CATALYST RESEARCH	ACCORDANCE
																					I I I I					
				1		L							Pur Just	1						 	 				. 6	
MATERIAL													N C V	2												

.

.

~ 1

APPENDIX B

OPERATING INSTRUCTIONS

OPERATING INSTRUCTIONS

This device is a reusable power supply intended to power the AN/PRC-77 radio for a period of 10 minutes.

The major parts of the supply are shown in Figure 1.

TO OPERATE

A. Preparation:

- (1) Remove sealing tape from around end caps (save for resealing).
- (2) Remove and save end caps.
- (3) With a slow, steady, straight motion separate the burner can from the battery can by pulling on the pull ring on the bottom of the burner can.
- (4) Load trioxane fuel into the burner can. Break each bar into 2 or 3 pieces as required. The amount of fuel to be used varies with the temperature and the number of times the device has been used. Table 1 provides the correct fuel loadings.

Two Delrin tablets (interlocked in an X configuration) may be used as an alternate fuel supply when trioxane is not available.

- (5) Gently, insert the burner can with fuel into the battery can so that the triangular position indicator mark on the burner can aligns with the triangular mark on the battery can. (See Fig. 2). The lower end of the cell stack end plates will now rest on the cell stack support pads.
 - NOTE: Do not exert force on assembly as damage will result. Make certain support pads contact the cell stack support bracket and not the cells.
- (6) Plug leads into proper connector. The multipin jack (Power receptable J4) is inserted in the radio. The minature banana plug on the red wire is inserted in (+) terminal of the battery. The plug on the black wire is inserted in the (-) terminal of the battery.

NOTE: Improper connection of jacks may damage radio.

- (7) Place the power supply assembly on a level surface.
- (8) Completely shield assembly from wind.

NOTE: Do not overload fuel as this will result in serious damage to the power supply.

B. Operation:

- (1) Ignite fuel through burner can vent window.
- (2) After ignition of fuel the radio operator should listen for receiving noise. Receiving noise should be heard approx. three minutes after fuel ignition. The noise indicates the supply is beginning to supply power (power is not sufficient to transmit). Two minutes after receiver noise is acquired the power supply will be able to supply transmission power.
 - <u>CAUTION</u>: Power supply parts become extremely hot after fuel ignition. Parts remain too hot to touch for 40 minutes.
- (3) When fuel is first ignited it will burn with a clear or blue flame. After several minutes the flame will turn yellow and go out. Immediately after the yellow flame goes out the top end cap must be placed over the battery can to prevent excessive heat loss.
 - <u>NOTE</u>: Position top end cap so the connector notches align with connectors. Make sure cap does not touch connector pins as a short circuit will result.

C. Storage:

(1) After use, the top end cap should be removed to allow power supply to cool down faster.

<u>CAUTION</u>: Cap is extremely hot.

- (2) No attempt should be made to handle assembly for a period of 40 minutes following ignition of fuel. After 40 minutes the assembly should be sufficiently cooled for closing. No attempt to add fuel should be made while the unit is hot. If unit is to be reused while still warm to the touch, column 3 of the fuel loading chart must be used.
- (3) To close assembly pull out burner can and align the triangle with the circular position mark on the battery can. (See Fig. 3.) Gently push cans together. Replace end caps and re-tape. Top end cap should be rotated so the connector notches do not align with connectors.

TABLE 1

Fuel Loading (Trioxane)

.

Number of Times Previously Used	Bars at Temp. Less Than O ^O F	Bars at Temp. O'F to 90°F	Bars at Temp. Greater Than 90 ⁰ F
0	1-2/3	1-1/2	1-1/3
1	1-2/3	1-2/3	1-1/2
2	2	2	2
3	2-1/3	2-1/3	2
4	2-1/2	2-1/2	2-1/3
5	2-2/3	2-2/3	2-1/2

OPERATING POSITION FIG 2

B-6

DISTRIBUTION LIST

	Copies
Commander US Army Materiel Command	1
ATTN: AMCDL	
5001 Eisenhower Avenue Alexandria, VA 22333	
Commander US Army Materiel Command ATTN: AMCRD	3
5001 Eisenhower Avenue Alexandria, VA 22333	•
Commander US Army Materiel Command	1
ATTN: AMCRD-P 5001 Eisenhower Avenue Alexandria, VA 22333	
Director of Defense, Research & Engineering Department of Defense WASH DC 20301	1
Director Defense Advanced Research Projects Agency WASH DC 20301	3
HQDA (ODCSRDA) WASH DC 20310	2
HQDA (DAMO-PLW) WASH DC 20310	1
Commander US Army Training & Doctrine Command ATTN: ATCD	1
Fort Monroe, VA 23651	

19

Commander 1 US Army Combined Arms Combat Developments Activity Fort Leavenworth, KS 66027 Commander 1 US Army Logistics Center Fort Lee, VA 23801 TRADOC Liaison Office 1. HQS USATECOM Aberdeen Proving Ground, MD 21005 Commander 1 US Army Test and Evaluation Command Aberdeen Proving Ground, MD 21005 Commander 1 US Army John F. Kennedy Center for Military Assistance Fort Bragg, NC 28307 Commander-In-Chief 1 US Army Pacific ATTN: GPOP-FD APO San Francisco 96558 Commander 1 Eighth US Army ATTN: EAGO-P APO San Francisco 96301 Commander 1 Eighth US Army ATTN: G-3 O&T Division APO San Francisco 96301 Commander-In-Chief 4 US Army Europe ATTN: AEAGC-ND APO New York 09403 Commander 1 US Army Alaska ATTN: ARACD APO Seattle 98749

Commander 1 MASSTER ATTN: Combat Service Support & Special Programs Directorate Fort Hood, TX 76544 Commander 2 US MAC-T & JUSMAG-T ATTN: MACTRD APO San Francisco 96346 Senior Standardization Representative 1 US Army Standardization Group, Australia c/o American Embassy APO San Francisco 96404 Senior Standardization Representative 1 US Army Standardization Group, UK Box 65 FPO New York 09510 Senior Standardization Representative 1 US Army Standardization Group, Canada Canadian Forces Headquarters Ottawa, Canada K1AOK2 Director 1 Air University Library ATTN: AUL3T-64-572 Maxwell Air Force Base, AL 36112 Battelle Memorial Institute 1 Tactical Technical Center Columbus Laboratories 505 King Avenue Columbus, OH 43201 Defense Documentation Center (ASTIA) 12 Cameron Station Alexandria, VA 22314 Commander 2 Aberdeen Proving Ground ATTN: STEAP-TL Aberdeen Proving Ground, MD 21005 Commander 1 US Army Edgewood Arsenal ATTN: SMUEA-TS-L Aberdeen Proving Ground, MD 21010

21

US Marine Corps Liaison Officer Aberdeen Proving Ground, MD 21005

Director Night Vision Laboratory US Army Electronics Command ATTN: AMSEL-NV-D (Mr. Goldberg) Fort Belvoir, VA 22060

Commander US Air Force Special Communications Center (USAFSS) ATTN: SUR San Antonio, TX 78243 1

1

1

1

Commander US Arny Armament Command ATTN: AMSAR-ASF Rock Island, IL 61201