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SECTION 1

INTRODUCTION

Conceptually, a barrier weapon system consisting of a

warhead that could deliver a large number of projectiles at

ve:y high velocities would be an extremely effective method of

defeating armored vehicles such as tanks and personnel carriers.

Assuming that the projectiles could be adequately dispersed, the

principal advantage of such a warhead would be the larger

target area that could be covered with one warhead. Since the

energy required to launch projectiles to a given velocity is a

direct function of the projectile mass, twenty times as many

5-gram projectiles could be launched to a specific velocity as

... a single 100-gram projectile. Thus, for a given launcher weight

and volume, a much larger area could be controlled by the use

of a number of smaller projectiles. Furthermore, the hyper-

velocity projectiles would not be required to penetrate the

armored vehicles since the lethality of the fragments spalled

from the rear surface of the armor would be expected to

neutralize the soft components inside the vehicle. For example,

projectiles of 1 to 5 grams with velocities in the neighborhood

of 10 km/sec would cause spallation on 1-inch armor plate

- currently in use. Of course, one of the most critical items in

such a weapon is a launcher that is sufficiently portable and

compact that it may be delivered ballistically and that is also

adequate to launch a number of small projectiles to the high

velocities that would be required. Most launching systems ae

capable of accelerating integral projectiles to y0 km/sec are

too massive to be weaponized. However, an explosively-driven

19
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launcher (References 1-7) capable of launching multiple 1- to

5-gram projectiles to 10 km/sec showed promise of weaponization.

The objectives of the six-month program reported here were:

(1) to demonstrate the ability of an explosive driver to

launch a projectile to 9 to 10 km/sec within a total length of

1 meter and, (2) to determine the feasibility of launching

multiple projectiles using the above launcher.

The first objective was accomplished by launching approxi-

mately 25 ;-ojectiles to greater than 9 km/sec. Although the

launching of intact multiple projectiles was not achieved, such

a goal is believed achievable.
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SECTION 2

BACKGROUND

The program performed was a feasibility study to evaluate

the possibility of developing an explosive driver hypervelocity

launcher capable of launching simultaneously many small pro-

jectiles to velocities of 10 km/sec. Any feasible launcher

developed must be capable of being incorporated into a weapon

system. To design a .launcher system effectively, its ultimate

A usage must be kept in mind: generation of rear surface spall on

armored vehicle tarqets. The following subsections present

background information concerning the constraints placed on the

launcher, rear surface spall phenomena, and the explosive

driver concept.

2.1 CONCEPTUAL SYSTEM CONSTRAINTS

The parameters shown in Table 1 define goals for a con-

ceptual system (Reference 8). Note that the restrictions

placed upon the feasibility study parameters are, in most

cases, signifi.cantly relaxed from the conceptual system

constraints.
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TABLE I

HYPERVELOCITY LAUNCHER PERFORMANCE PARAMETERS

Conceptual Feasibility
Item System Parameters Program Parameters

Impeller mass 2-50 kgm Less than 10 kgm

Total warhead length
(include acceleration
portion) Less than 1 meter No restriction

Impeller diameter Less than 40 cm No restriction

Environment Ground level Atm. No restriction

Projectile flight

distance 10-100 meters No restriction

No. projectiles per
warhead 20-1000 1-10
Mass of individual
projectile 0.5-5 gm 1gm

Density of individual
projectile 0.7-20 gm/cm To be deternined

Projectile aerodynamic

drag coefficient Less than 0.2 No restriction

Projectile ejection
I velocity 6-10 km/sec 9-10 km/sec

Impact velocity 5-8 km/sec No restriction

*Ejection half angle
(with respect to
warhead axis) 150-40 150-20 °

Prime target! steel
armor 1.5-6 cm thick No restriction

4I



Explosive drivers have been used in the past to launch

single projectiles of different shapes to velocities of up to

r 12 km/sec. However, these launcher systems were considerably
Vlonger than the 1-meter length required for the conceptual

system given in Table 1. These launcher systems were neces-
sarily long to have sufficient launcher gas mass without I
correspondingly high reservoir pressures. Therefore, once a I
required system volume, length, and diameter are set and the
areal density of the projectile is given, the minimum required

reservoir or initial projectile base pressure is fixed. Any
relaxation of the warhead length for a feasibility study would
represent a reduction in the reservoir pressure and, therefore, I
failure to establish operational feasibility at the required

system pressure.

The launcher system to be developed would therefore have
the following restrictions: length--l meter; diameter--

less than 40 cm; muzzle velocity--9 to 10 km/qec. All of the

tests would be conducted at range pressures of 1 atmosphere and
in air. By adhering to these constraints, the feasibility of

developing a weaponizable system for launching multiple hyper-
velocity projectiles could best be evaluated.

The final gas pressure in the reservoir is proportional to the
initial gas density and the square of the explosive detonation
velocity. °

5



2.2 MECHANICS OF REAR SURFACE SPALL INDUCED BY PROJECTILE
IMPACT

The impact of a high velocity projectile upon a slab of

material results in a compressive stress pulse in the target
that propagates away from the point of impact. This stress

pulse contains most of the momentum carried by the projectile

prior to the impact. When this compressive pulse encounters a
free surface, it reflects and produces tet.aion near the surface;
if the cohesive strength of the material is exceeded, fracture
occurs, and some or all of the momentum of the stress pulse is

carried off in the resulting fragments of the material. This
process of dynamic fracture by reflection of a compressive
stress pulse at a free boundary is termed "spall."

The character and depth of the spall are greatly influenced

by the amplitude, shape, and spatial width of the compressive

stress pulse. These factors are, in turn, dependent upon the
size, velocity, and composition of the projectile, and the

material properties of the target.

To illustrate how the nature of the compressive pulse
influences the characteristics of spall, let us consider two
simple cases. First assume a rectangular elastic pulse, as in

6



Figure 1, with amplitude ao, moving toward a free surface at

x For this discussion stress will be treated as f.,ositive in

compression. The material contaired within the pulse is moving

toward x with a velocity vo = 0o/pc, where p and c are the

density and sound speed of the mate-ial (Figure 1). Elsewhere,

the -aterial is at rest. When the loading portion of the

,ulsc, mke. *e free rear surface, it reflects and becomes an

u-').di-q wave, relieving the stress in the material ahead of

it .a ztrfss-free state, but in the process increasing its

*f velocity by a factor of two (Figire 2). As the right-going and

f".-going unloading waves cross, they each enter unstressed

ti .rial. Each wave reduces the magnitude of the stress in

tl~e naterial ahead of it by an amount o, so a tensile stress of

-"o is producfd as in Figure 3.

i' .-e magnitude of the tensile scress at this point is

su)ft-ient to produce fracture, spall will occur, and the

mater:al to the right of the failure location will move off

with velocity somewhat less than 2vo, leaving the material

behind at rest, and with both portions stress free (or nearly so).

'A,,

0I V

xo Xo

(a) Stress versus distance (b) Particle velocity versus distance

Figure 1 Rectangular stress pulse prior to interactioh with
free surface at x0 .o0
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0
(a) Stress versus distance (b) Particle velocity versus distance

Figure 2 Rectangular stress pulse reflecting from a free
surface prior to the onset of tension.

U v

2 v0

0 
0

-x x
04~i~ 0

(a) Stress versus distance (b) Particle velocity versus distance

Figure 3 Onset of tension for a reflected rectangular stress
pulse.
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4 ,Note that the initial tension (and hence failure' develops at a
distance from the free surface equal to half the spatial width
of the incident compressive stress pulse. If no fracture
occurs, the right-going unloading wave reflects from the free
surface and becomes a left-going loading wave that increases the
negative stress (tension) to an unstressed level (Figure 4).

Next, consider a triangular compressive stress pulse, as inFigure 5. The development of the tension is somewhat easier to
visualize in this case by construction of a virtual reflected

4 pulse that becomes real as it enters the material. The stress
at each instant is then the superposition of the portions of the
two pulees that lie within the material. The stress state at a
later time--when the reflected pulse enters the material--is

shown in Figure 6. Note that the largest tension at eachi ,"instant results from the superposition of the peak of the left-
going wave with successive portions of the right-going wave.
Since the right-going wave is compressive, it always acts to
reduce the tension. Once the left-going wave passes tht last

7VV

0-0
~v

x
x x0

00

(a) Stress versus distance (b) Particle velocity versus distance
Figure 4 Stress pulse after complete reflection by a free

surface at x0 .
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w0

0

0

0

-o --.

-0 . Reflected pulse (virtual)

Figure 5 Triangular stress pulse prior to interaction with free
surface at xo.

0

00- Real pulses -*-Virtual pulses

Resultant 0O  1 "

~~~stress .0

Figure 6 Onset of tension for a reflected triangular stress
pulse.
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portion of the right-going wave, no further increase in tension

occurs. Since both waves are moving with the same speed (or nearly

30, even when non-linear materials are encountered) in the

absence of spall, the peak tension is again developed at a

distance from the free surface equal to half the spatial width
of the incident stress pulse.

Now let us consider how the spall process develops when the

nca"* stress for a triangular pulse is large compared to the

p'' strength of the material. If, for instance, a spall plane

suddenly formed at the point of peak tension at the time

illustrated in Figure 6, a new free surface would be created

there; no tension would remain in the material, but the

remaining material would still contain a right-going compressive
pulse that would reflect from the new free surface and hence

levelop additional tension (Figure 7). The process of the

buildup of tension and spall then occurs repeatedly until the

leading edge of the reflected pulse passes the trailing edge of
the incident pulse, and no further tensile stress increases

occur.

Real pulses .4 4Virtual pulses

a r__Unreflected incident
pulse remaining after

~spall

-. I xo

l}ew virtual reflected stress pulse

0- \ew free surtace

Figure 7 Stress pulse (real and virtual) for remaining material
after spall has occurred.
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A few generalizatons can be made from these simplified

analyses. The maximum depth of spall will not exceed half of

the spatial width of the incident stress pulse. For a

triangular pulse with a peak that greatly exceeds the spall

strength, multiple spalls will occur and will probably produce a

spray of very fine fragments. A more rectangular (flat-topped)

stress pulse will produce fewer spall layers and will lead to
comparatively large spall iragments. (For an introduction to

stress wave effects, see References 9 to 11. More advanced

treatments are found in References 12 and 13.)

The impact conditions (i.e., projectile size, geometric

configuration and velocity) will establish the initial amplitude

and duration (and hence spatial width) of the compressive

stress pulse. The material properties of the target will-

affect the form of the pulse as it propagates toward the free

rear surface, especially if the pulse must travel a large

distance compared to its width. For many materials impacted to

high stress levels, the decrease in compressibility with

increasing pressure causes the stress pulse to become roughly

triangular after propagation. However, the jressure-induced

phase transition that occurs in iron and mild carbon steels at

around 150 kbar leads to rarefaction shock upon unloading,
which, in turn, causes a nearly flat-topped stress pulse to

develop. Consequently, the character of the spall fragments in
_these materials may be quite different than that in materials in

which no phase changes are produced.

Typicel armors used in combat vehicles (iron base

armors) undergo this phase transition around 150 kbar. The
unloading shock caused by this phenomenon, when subjected to

projectile impact, leads to the creation of rear surface
spall fragments. The goal of the program being conducted is

to study the feasibility of a launcher capable of accelerating

multiple projectiles to hypervelocities that, when impacting
armored vehicles, would utilize this rear surface spall

mechanism to neutralize "soft components" within the vehicle.

12



2.3 THEORY AND OPERATION OF THE LINEAR EXPLOSIVE DRIVER

The linear explosive driver represents a technique whereby

a substantial portion of the chemical energy of an explosive is

converted in a controlled manner to the kinetic and internal

energy of a gas. Basically, the energy densities in the gas are

produced by a strong shock generated by the progressive collapse

of a tube. The collapse of the tube is such that it may hi

represented as a piston propagating into a gas. The model used

to describe the ideal operation of the driver is quite similar
to that used to explain the basic discontinuous motion produced

U by a piston in one-dimensional gasdynamics.

The operational characteristics of the linear explosive

driver are shown in Figure 8. A thin-walled metal tube (the
pressure tube) containing the driver gas is surrounded by a

chemical explosive. After a detonation is initiated in the

.... 7. explosive, a detonation wave propagates in the explosive along

the outside of the metal tube. The pressure behind the detona-

tion wave accelerates the tube wall in toward the axis, sealing

the tube and forming a conical-shaped piston (Figure 8b). The

velocity of the piston is equal to the detonation velocity of

the explosive (D). The motion of this piston generates a strong

shock wave in the stationary column of the driver gas. If the

gas behaves ideally (i.e., the ratio of the specific heats, y,

of the gas is constant), then the velocity of the shock wave, S,

is (y + 1) D/2. The position-time histories of the piston and

shock wave are shown in Figure 8c for an ideal driver gas

(y = 5/3). These trajectories are presented in the dimension-

less coordinates:

x a = Dt

t3 d

13



Explosive

DetnaorPressur& tube Driver gas

(y 5/3)

I. (a)
Time t= 0, before initiation of the explosive

Detonation waveCollapsed
presure ubeShocked driver gas

D Shock wave

Time t(b)
Time -ti after initiation of the explosive

0 ~Detonation wave :.:.
(ideal piston)

o 60

tl

Fiqure ~Ideal shock wave

Poito-tm hSoyof shoer gansdtntin v
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where x and t are the distance and time after the shock wave I
begins to move ahead of the detonation wave, d is the internal

diameter of the pressure tube, and D is the detonation velocity

of the explosive. The use of these coordinates fac:.litateo the

comparison of drivers having pressure tubes of different dimen-

sions or utilizing explosives with different detonation veloci-

ties. It should be noted that in this coordinate system all

slopes are normalized with respect to the detonation velocity of

the explosive. For example, in Figure 8c the trajectory of the

detonation wave has a slope of unity, while that of the shock

wave has a slope of four-thirds:

D= 2 ' 'Y

(D 2
The thermodynamic state of the shocked gas (subscripts 1)

is described"by the following relations:

Pressure: P1 = p (--- D2  (1)

Temperature: T (2)

Density: Pl = ( - ',)o€

Sound speed: a1 = D (4)

where p0 ' P0 and To are the initial density, pressure, and

temperature of the unshocked gas. These relations assume that

2 15
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the initial pressure in the unshocked gas is quite small com-

pared to the corresponding quantities in the shocked gas. It is

noted that, for a given ideal gas, the magnitude of each of

these properties, except density, is a function of the piston

velocity (detonation velocity).

Using the ideal theory for reflection of a strong shock

from a rigid wall, the gasdynamic condi.tions in the reservoir

may be calculated. The pressure, temperature, and sound speed,

for example, are found from the relations:

P2 1 2 D2 (5)"

3y 1 O3 T D (6 )

= (3y 1)(
a2  2

The performance of linear explosive drivers has been demon-
strated over a wide range of experimental parameters. Internal

I diameters of pressure tubes made of copper, steel, lead, and

aluminum have ranged from 1/4 inch to 16 inches; high-explosive

weight has ranged from 27 grams to 9200 pounds; the explosive-

to-pressure tube mass ratio has been varied from 0.5 to 10;

driver gases have included helium, air, argon, and hydrogen; the

initial pressure of the driver has been varied from 1,5 to 2450

psi; and the detonation velocities of the explosives used

(liquid and solid) have ranged tetween 5.5 km/sec and 8.6
km/sec. While some of these tests have been one of a kind, the
majority were essential to comprehensive experimental studies of
a particular explosive driver e esign.

4 16
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Although the performance of many of the drivers adheres

closely to the ideal predictions, certain departures may occur.
Four phenomena have been incorporated in a model of explosive

driver operation to account for observed departures from the
ideal driver performance described above. They are (1) radial

expansion of the pressure tube behind the shock wave, (2) decom-

position or predetonation of the driver explosive during the

period of pressure tube expansion, (3) the effect of boundary-

layer growth behind the shock wave, and (4) formation of a

metal, gas, or metal-gas jet by the collapsing pressure tube.
These phenomena are inter-related through the kinetics produced

by the imploding pressure tube. Their interdependence is such

that changes in driver behavior resulting from certain experi-

- - mental parameter changes cannot be attributed solely to a

particular phenomenon. However, the ability of the model to

explain, predict, and control the behavior of explosive

drivers justifies the categorization of these phenomena. A
detailed discussion of these four phenomena is presented in

References 1 through 4 and 14.

In a typical gun design the explosive driver is coupled to

the barrel of the gun by a massive steel reservoir section.

Materials used to form the reservoir section during the

course of launcher development included lead, steel, concrete,

and explosive. Guns have been operated in both the chambraged

and urichambraged mode. When the strong shock generated by the

explosive driver reaches the chambrage plane (or projectile

location in an unchambraged gun), it reflects and forms a

reservoir of very high enthalpy gas. The reservoir of gas is

then expanded to accelerate the projectile, as illustrated in

the example of a chambraged gun in Figure 9.

.17
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DHigh explosive
\ Helium

Detonator drive gas Poetl

Tamped linear explosive driver

a. Initial ccnfiguration

Detonation wave Shock ave

Constant-velocity

Shocked helium

b. Linear driver operation

Projectile accelerates and
driver gas expands

Reflected shock and\

detonation about to meet Reflected shock pressure
causes reservoir to expand

c. Projectile accelerates
Sabot separates from
projectile

Reservoir begins to break up'

d. Projectile launched

Figure 9 Operation of a single-stage explosively-driven
launcher.
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For launcher applications the length of shocked gas

generated by the explosive driver is usually limited to less

than 10 tube diameters to preclude t.e major effects of boundaky-

layer growth or pressure tube expansion. The jetting of the col-

lapsing pressure tube that forms the piston is usually neg-

ligible in launcher applications because of the high gas

pressures.
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SECTION 3

EXPERIMENTAL PROGRAM

The program, as oceived, was essentially an experimental

r iprogram designed to provide sufficient information to evaluate
the feasibility of the successful development of a multiple pro-F jectile hypervelocity launcher utilizing explosive drivers. In
this role the program was structured as a "cut-and-try" evolu-
tion of poss.ble launcher designs. Successful features . launchers
were iticorporated into subsequent designs,and features deemed to

f be disadvantageous were replaced with more probablet de.signs.
Throughout the program the design of the launcher system w3s

aided by computational ana.ysi . This computational effort
yielded insight into the design of the very high pressure
explosive driver system, and, after the successful eevelopment

of this driver, aided .in attempts to evolve a launch cycle
capable of accelerating intact projectiles to the required

10 km/sec.F In tsie following section the rationale for tle original

design parameters of the launcher system will be developed.
The results of the testing program on actual launcher hardware

-- will then be presented.

3.1 INITIAL DESIGN OF LAUNCHER SYSTEM

Past attempts to launch individual projectiles to

hypervelocities have been more successful with projectiles
constructed of an alloy of magnesium and lithium, or

21
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Maglith. This metal has a density of 1.39 gm/cm3 and a yield

strength of about 20,000 PSI. It was decided in the initial
conceptualization of the launcher that Maglith projectiles

would be used for this feasibility study also.

A 1-gram sphere of Maglith has a diameter of 1.11 cia.

Allowing for an additional 0.15 cm thickness of Maglith for
a sabot, the areal density of the launch package would be

22.0 gm/cm . The areal density was thus fixed for the program.
Even if projectile materials were changed, the overall areal

density of the projectile/sabot package would have to remain

the same. If the areal density were to increase, a longer
barrel would be needed to accelerate the assembly to a given
velocity with the same pressure on the base of the projectile.

Figure 10 is an example of a projectile/sabot assembly suitable

for launching multiple projectiles from one barrel while main-

taining a relatively low areal density.

Before one can launch a projectile/sabot assembly such as

illustrated in Figure 10, one must first be able to launch a flat
plate of areal density equal to 2.0 gm/cm2 . To reach the final
velocity for which a launcher system is designed, the projectile

must be intact throughout the launch cycle. If the projectile,

or a projectile/sabot assembly, breaks up during the launch
cycle, then the velocity would be less than that achieved by

an intact projectile. It is obvious that if the projectile/

sabot assembly were to break up in the barrel, the integrity
and velocity of the individual projectiles would be questionable

at best.

An overall length of about 1 meter was selected as the

basic requirement for the driver and barrel system. Basic physi-
cal principles show that very high pressures would be required

22
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Split sabot
Spherical projectile

Hoop stress
is compressive Hopstress

- is tensile

Figure 10 Possible projectile-sabot assemrbly and launch sequence.
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to launch p::ojectiles to 10 km/suc in such short lengths. Since
t:ie I meter length included both the explosive driver section

atnd the barrel length required to reach 10 km/sec, the necessity

of high chamber pressure i. even more clear.

Experience with the explosive driver has shown that the

most effective method of creating and containing very high

pressure gases is through the use of a linear explosive driver.

Alternate explosive driver techniques, such as an inverted

driver system, were considered but were rejected on the basis

of the very high base pressures that must be generated and

contained.

For design purposes it was assumed that the launch cycle

could be approximated by the launch cycle calculated in "The

Theory of High Speed Guns," by A. Siegel (Reference 15). Past

experience with explosive driver guns has shown this approxima-
.E, ton to be relatively accurate; some inherent system losses are

XIE, overcome by the collapse of the reservoir from external, high

explosive tamping.

In the design calculations, the configuration of the

launcher is assumed to be that of Figure 11. A closed

breech was assumed which contained a static gas of mass (G),

an initial pressure of (P2), and an initial sound speed of (a2).

As the gas expands, it accelerates a piston of mass (M) and

area (A), The assumption made in the gas dynamics cycle is 3

that the pressure (P) of any element of gas during the expansion
can be given by

P P 2 (V 2/VP'
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Figure 11 Ballistics of projectile acceleration.
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where

V2 is the initial ,olume of that gas element

V is the expanded volume of that gas element

y is the ratio ol: specific heats for the gas and is

assumed to be constant (for helium, y = 5/3).

Figure 11 shows the curves (from Reference 15) which relate

the projectile velocity (U ) and the required barrel length
p

(Xp) when the above parameters atc known. Perusal of these
p

curves indicates that high projectile velocities are facilitated

by having as high a sound speed as possible in the gas. This
sound speed is proportional to the detonation velocity of the
explosive in the driver (see Equation 7, Section 2.3). For the

* system design, therefore, it was assumed that toe explosive used

would be similar to an HMX-based plastic bonded explosive (PBX)
of the type developed and used by the Atomic Energy Commission.

A typical detonation velocity of these explosives is 8.5 km/sec

with a density of 1.87 gm/cc.

In the geometry of Figure 9, it is assumed that the gas
from the driver stagnates when the shock impacts and reflects
from the projectile/sabot assembly. Under this assumption, the
conditions of the gas can be calculated to a close approxima-

tion. After trial and error it was decided that a 25-kbar driver
should be used; i.e., the gas behind the initial shock wave is at a
pressure of (P1 ) of 25 kbar. The stagnated pressure (P2) would
be (from Equation 5):

P 6PI 150 kbar

26

4

- -- 'tI)



The sound speed in the stagnated helium would be (from

Equation 7)

a2 =9.8 km/sec

As previously stated M/A was fixed at 2.0 gm/cm2. Reference to
Figure 11 shows that a projectile velocity of 9 km/sec (i.e.,

Up/a2 = 0.92) can be achieved with G/M ratio of 1. Then from
Figure 11, the barrel length was determined to be

Xp = 1.7 -2 = 22 cm

The initial gas density required in the pressure tube (po)

of a 25 kbar driver can be obtained from the Equation 1:

2P1

PO (= 1) = 0.026 gm/cc

The required areal density of the gas (6 g) for a given gas mass
to projectile mass ratio is

6g 6 (1.0)(2.0) = 2.0 gm/cm

The initial length of driver gas (Z ) is then
g

6
9. = =77 cm
9 PO

The combined length of barrel and driver is then 99 cm,
which is just within the specification of 1 meter overall

length. The length could have been shortened by using a higher

2

1
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pressure driver. It was felt, however, that the launching pres-

sures should be kept as low as possible to insure the integrity

of the projectiles during the launch cycle. Additionally, a

pressure of 2100 PSI is required to obtain 0.026 gm/cm 3 helium

density. This pressure is almost the limit that can be obtained

from conventional gas bottles.

A word is in order concerning the temperature of the helium

gas and the assumption of a known and constant y. Figure 12
k ! shows the calculated temperature and the degree of ionization at

various pressures for helium gas which is first shocked in an

explosive driver and then stagnated. This calculation comes

from the Saha equation (Reference 16). Temperatures are

shown assuming both nitromethane and PBX to be the driver

explosive. At these temperatures ablation and radiation effects

*upon the projectile can probably be neglected. Many projectiles

of plastic and metal have been launched at Physics International

by helium at this temperature. Flash radiographs of the pro-

jectiles have shown no detectable ablation of the projectile due

to the launchin~g gas.

Fro.., these calculations, the basic driver and launcher

parameters were defined and shown to be feasible. An explosive
driver that generated a 25-kbar incident shock in helium gas was

required to launch a projectile with a: areal density of 2.0

gm/cm 2 . To achieve these pressures, an explosive with a detona-

tion velocity of 8.5 cm/psec would be used, with the helium gas

at an initial pressure of 2100 psi. The length of driver

required to yield a G/M = 1 would be 77 cm, and the barrel for
accelerating the projectile would be 22 cm in length.
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With these basic parameters and requirements in mind, the

experimental program was begun. Since a 25 kbar driver had

* never been built before, this was a totally new regime in which

to experiment. neference was made to previous drivers which had

achieved 15-kbar incident shocks, and from the results obtained

in these tests, inferences were made about the necessary

features of a 25-kbar driver.

3.2 LAUNCHER DEVELOPMENT AND TESTING

I Eight experiments ,aere conducted in this program over a

period of six months. Three of these experiments were attempts
to launch multiple projectiles. The other shots were attempts

to launch intact flat-plate projectiles to hypervelocities.

These flat plate projectiles simulated possible projectile/sabot

assemblies that would launch multiple projectiles from a single

barrel. Each of these shots will be discussed in the following

section. Table 2 is a summary of the shots conducte-I and the

results of the experiment.
ri

The first test conducted in the program was designed to be

a checkout of the explosive driver configuration to be used in

the later phases of the program. An aluminum disk, 4.14 cm in

diameter and 0.74 cm thick, was used to simulate a seven-pro-

jectile sabot assembly to be utilized in later experiments. The
thickness of the disk was adjusted to yield an areal density

equivalent to the anticipated projectile/sabot assembly.

Since working with a liquid explosive is simpler than hanad
packing a plastic explosive, nitromethane was chosen for the
driver explosive in the first shot. The detonation velocity
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TABLE II SUMMARY A

Exelosive Oriver Characteristics

eoi Y O UrVecy -- PresueDtvr PesuePi cieOResultant

Observed Observed Incident
Detonation Shock Shock Initial NumberSiith Explosive (cm/psec)Pressure 

Driver Pressure Projectile of
Sho t _ Ex los v. ( m/P ec ( c./ ec___ . _) k -bar) Gar. (atw) - Mater-ial P o e t l s ;

Blunderbuss Nitromethane 0.73 0.78 11.8 Helium
-1 150 Aluminum

Blunderbuss Composition 0.917 1.055 19.8 Helium 143 Aluminum-2 C-4

Blunderbuss Composition 0.926 1.10 21.5 Helium 143 Alumin1

-3 C-4

Blunderbuss Composition 0.92 1.01 18.1 Helium 143 Nylon-4 C-4 
2

Aluminum 3I2
Blunderbuss Composition 0.921 1.042 19.3 Helium 141 S ta:,1th

-5 C-4

t Blunderbuss Nitromethane 0.675 Data Not Helium 64 Maglith 4-6 
inconclusive retrievable

Designed to Aluminum 4
be 6.45

Blunderbuss Composition 0.916 1.11 21.9 Helium 143 Nalith

-7 C-4

Blunderbuss Composition 0.907 1.01 11.2 Helium 143 . glith

-8 C-414 alt7
Sabot also
of Maglith

0
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;UMMARY OF EXPERIMENTAL RESULTS

Projectile Characteristics Target Characteristics

Projectile Observed
Barrel Number Launch Projectile

of Diem Tickress Length of Velocity Condition
Projectiles (cm) (cm) (gm) (cm) Barrels (cm/usec) Down-Range Target Da age

4.14 0.74 26.9 20.0 1 0.65 Edge of projectile None N/A

sheared off.
Projectile warped in
flash X-rays

3.84 0.74 23.1 20.1 1 Fragments Broken up severely 1 inch thick Punched

0.848 around edges armor plate 5 cm dia hole
Main body X-rays do not clearly through plate

0.71 show main body of with severe
projectile rear surface spell

3.94 0.74 24.4 20.0 1 Fastest Completely broken up 1 inch thick Virtuelly
Fragment into many small armor plate no damage
G.91 fragments and some
Large larger fragments

F~egmente
0.31

23 1.44 1.75 3.25 18.2 2 Fastest All projectiles broke 1 inch thick Virtually

2 1.44 0.74 3.25 18.3 3 Fragment up armor plate no damage
1.44 0.2S7 3.26 18.3 2 0.6

3.73 1.43 21.9 25.4 1 0.909 Relatively intact 1 inch thick Severe damage
edges appcar to have armor plate 5 cm die hole
been broken with much

rear surface
spall

1.27 1.43 2.S4 100 4 0.979 Intact 1 inch thick Al & 1g-Li-cratered
4 max armor plate plate about

1.27 0.74 2.53 103 4 0.390 1.3" die u 0,25" deep
4 max nylon did very

1.27 1.76 2.54 100 4 0.492 little damage
max no spell fro=

any impact

3.66 1.43 21.1 25.4 cm 1 0.953 Badly broken up into 2 one-inch Severe damage

plus 12.7 two large pieces and thick armor to first plate,
cm slotted many smaller plates with large spell
barrel separated by fragment thrown
extension one inch off. Wc damage

to second plate

1.09 1.24 1.62 25.4 cm 1 0.849 Totally broken up. 1 inch thick Virtuilly
Sabot Sabot each plus 12.7 Fragments burned up armor plate no damage
diam thickness Total cm unslotted in atmosphere as they
3.73 1.43 21.9 barrel progressed down range

extension
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required to yield a 25 kbar driver with a reasonable (2100 psi)

initial gas loading pressure is 0.85 cm/psec, however, nitro-

methane has a detonation velocity of only 0.625 cm/psec. To

overcome this low detonation velocity, the phenomenon ofipredetonation of nitromethane was to be used to increase the

detonation velocity. Reference 14 discusses the mechanism of

predetonation in nitromethane.

As shown in Figure 13, a heavy steel tamper was placed

around the nitromethane. As the shock wave in the helium

"breaks out" in front of the detonation of the nitromethane, it

sends a shock wave through the undetonated nitromethane. When

this shock reflects off the massive tamper, very high pressures

are generated. These would hopefully predetonate the nitro-

methane. Past experiments conducted at PI had shown such an

effect with drivers designed to yield 4 kbar shocked gas,

although the induction time for this effect to occur was

rather long. It was felt that since the experiment would

yield at least a 15 kbar shock (based on the 0.625 cm/psec

detonation velocity of nitromethane), the induction time

required for the predetonation of the explosive would be

considerably reduced.

velocity of the nitromethane did, in fact, begin to accelerate;

however, adverse effects from gas loss caused by incomplete

closure of the pressure tube prevented the e:qplosive pre-

initiation from accelerating to the detonation velocity

required. Figure 14 is a plot of the detonation and helium gas

shock x-t history. Ion pins and cap pins were used in the

Preceding page blank 33< 3 A
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Figure 14 Blunderbuss-I x-t plot.
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diagnostics to observe the detonation and helium shock

trajectories. Ion pins are simple .;oaxial conductors with a

solid sheath that shorts out when the conductive ionized

detonation wave passes over them. Cap pins, on the other hand,

are basically the same as ion pins with the addition of a

metal cap over the end of the conductor which is sensitive to

pressure and shorts out the coaxial conductor with the applica-
tion of pressure. A simple resistor-capacitor discharge circuit
operating at '0 volts :-ssures high signal levels from the pin

to the oscilloscope. Both ion and cap pins were located every

5 cm along the length of the pressure tnbe. Cap pins are

passed through the tamper and explosive and are in direct

physical contact with the pressure tube. Ion pins are passed

through the tamper and are in contact with the explosive (see

Figure 15). Since the shock wave does not precede the detona-
tion wave until breakout, both pins react to the detonation wave

up to that point. The shock velocity achieved in this

experiment was 0.78 cm/psec, which yielded a 12-kbar driver.

The flat disk projectile was launched relatively intact to a
velocity of 0.62 cm/psec. This velocity is close to the

ideal velocity that would be achieved for a 12 kbar reservoir

pressure, based on Seigel's work. The fact that the projectile

Cwas launched almost intact (a thin rim section of the disk was

sheared and was launched to slightly higher velocities) under a

12-kbar reservoir pressure was encouraging and pointed out that

the stresses generated by the launch cycle were not excessive in

terms of launching an intact but severely distorted projectile.

Figure 16 is a flash radiograph showing the projectile inp }flight.
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Blunderbuss-i was unsuccessful, partially because the
predetonation phenomenon was not as pronounced as was hoped, and

partially because the collapse of the explosive driver pressure

tube was incomplete. Design review of the driver indicated that

the pressure tube-to-explosive mass ratio was on the borderline
of full collapse, and, from the results of the test, clearly on

the wrong side of the line. To aid in the further design of

the explosive driver, numerous hydrodynamic computer code

calculations were conducted. the results of these calculations

will be discussed i.n Section 4. The most important reason for

conducting these calculations was to aid in the predic.ion of

the pressure tube-to-explosive mass ratio that would insure

' complete collapse of the driver pressure tube.

Since it appeared that even under very high pressures, the

predetonation of the nitromethane explosive would not increase

the detonation velocity sufficiently to yield a 25-kbar
driver, it was decided that an explosive of a higher detonation

velocity should be utilized. Various explosives were con-

sidered, and Composition C-4 was selected as the candidate

explosive.

j The second shot of the program was again a driver checkout
shot. Figure 17 is a drawing of the shot configuration. The

driver was designed to yield a 25-kbar incident shock in the

helium gas. The internal pressure of the helium prior to the

shot was 2100 psi, which, when coupled with a detonation

velocity of 0.85 cm/Psec, would yield a 25 khar shock in the

gas. As in the first shot, the projectile to be launched was

an aluminum disk 0.74 cm thick by 3.84 cm in diameter.
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in the first shot the edge of the projectile sheared off,IL leading to partial breakup of the disk-like projectile, even

though the reservoir pressures obtained were significantly less
than the pressures required to achieve 10 km/sec muzzle

velocity. To eliminate this edge-shearing phenomenon in the

second shot, the disk-like projectile was designed as a

truncated cone, with the edges tapered at an 8 degree angle.

This taper would seat against a similar taper in the barrel

liner and would hold against the initial pressure of 2100 psi..

k: Previous experience using Composition C-4 in explosive

V ; idriver systems has shown a tendency for the detonation
velocity of the C-4 to increase. This effect occurs due to

precompression of the explosive by the shock in the helium gas
x. that out-runs the detonation in the explosive. Thus, while the

standard detonation velocity of C-4 is 0.804 cm/psec, it was

arfelt that the increase in detonation velocity due to precom-
. pression would approach tCie 0.8.5 cm/psec required to achieve a

25 kbar driver. To insure that the pressure tube would

collapse, efficiencies and C/M ratios typical of previously

tested high pressure drivers were used in this new driver

system. Additionally, the configuration of the driver system

was checked out on the 1-1/2 D ELK code that was assembled to

assist in the design of the drivers for this program. The

results of this calculation showed that the driver pressure tube

would indeed collapse completely.

Examination of the results of this shot show some very

interesting phenomena. Initially, the detonation velocity of

the C-4 explosive was the expected 0.804 cm/'sec. However,
after breakout of the helium shock ahead of the detonation
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front, the detonation velocity of the C-4 increased to 0.914

cm/Psec due to the precompression of the high explosive. Fig-

ure 18 is an x-t plot of the driver for this shot. This increase

in detonation velocity was far above the expected increase and

added to the efficiency of the driver system. However, gas

losses due to bubble entrapment at the closure point of the collap-

sing pressure tube led to a final shock velocity of 1.055 cm/psec,

or an incident shock pressure of 19.8 kbar. Figure 19 shows the

collapsed pressure tube, partially sectioned, releasing areas of

gas bubble entrapment in the collapsed tube. The bubble entrap-
ment is a manifestation of the growth of boundary layer gases

in the pressure tube.

The projectile was launched to a velocity of approximately

7 kin/sec; however, it was not an intact projectile. Examination
of the flash radiographs showed that the edge of the projectile

had broken off into significant pieces and that various small
fragments of the broken pieces were accelerated to a velocity of

8.5 km/sec. In the radiographs the projectile appeared to be
tumbling; however, a target plate of 1-inch-thick armor plate

showed a very neat 1.5-inch-diameter hole punched through the
center, indicating that the projectile impacted the plate normal

to its line of flight (Figure 20).

From the results of this shot it was concluded that aI workable 20- to 25-kbar driver had been designed and that this

design would be utilized in future experiments. Although the

ultimate incident shock obtained by the driver tested achieved

ta shock of only 20 kbar, the effort required to eliminate

the gas bubble entrapment and increase the pressure to
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,,Figure 19 Collapsed pressure tube from shot Blunderbuss--2.
: Note entrapped gas bubbles in sectional portions of
~collapsed tube and "olow-out" holes from bubbles
; to outside.;i 4
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Figure 20a Front view of 1 inch thick armior target after impact.

Figure 20b Rear view of 1 inch thick armor target after impact.
* Note large spall area compared to penetration hole.
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25 kbar was not deemed necessary. If required, a small

extension of the barrel length would compensate for the loss

in reservoir pressure.

Evidenze from the previous shot indicated that the edge

of the projectile was breaking up from shear stre induced

when the projectile began acceleration. In the previous shot

the projectile was held in place by a taper designed to fail
only in shear. It was felt that a new design that allowed the

projectile to feel very little shear forces at the beginning of

the acceleration would increase the probability of launching an

intact projectile.

The third shot of the experimental series utilized the

same explosive driver as that developed for the second shot,

Blunderbuss-2. The design of the projectile was modified so

that a thin, cylindrical section of the rear of the projectile

would fail in tension rather than allowing the edge of the

projectile, through its support, to fail in shear. Figure 21

is a drawing of the shot configuration. In this configuration

the edges of the projectile would not see shear forces induced

by the breaking up of the projectile support. It was hoped that

this design would yield an intact projectile at the required

velocity.

The explosive driver of Blunderbuss-3 performed con-

sistently with the previous driver performance, yielding an

incident shock of 21.5 kbar. However, the aluminum disk-like

projectile was completely broken up. Very small fragments of

the projectile were accelerdted to a velocity of 9.05 km/sec.
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Immediately following Blunderbuss-3, Blunderbuss-4 was
fired which was designed to launch seven projectiles to

10 km/sec. This shot utilized projectiles of aluminum,
nylon, and steel. The configuration of these projectiles was

the same as that in the previous shot, i.e., they were
designed to fail in tension along a cylindrical parting

plane behind the projectile itself (Figure 22). This shot

utilized seven individual barrels to launch the projectiles,

each projectile being approximately 0.5 inch in diameter

(Figure 23). To insure equal acceleration characteristics, the

areal density of all seven projectiles was maintained at

2.0 gm/cm
2

Diagnostics on this shot showed that the driver again

performed as expected. Once more the incident pressure jump

across the shock wave in the helium gas was approximiately
20 kbar. Flash radiographs on this shot failed to operate

correctly, so that no usable data was gathered from these

diagnostics. A target of I-inch-thick armor plate was used as

a witness plate for the shot, however, and it showed that all
seven projactiles had broken up before impacting the plate.
Velocity achieved by the projectile fragments was a maximum of

6.05 km/sec.

Following the unsuccessful Blunderbuss-4, an in-house

review of the technical status of the program was conducted.
Experimental evidence had shown that the explosive driver

portion of the launcher system was working adequately and

would satisfy the requirements of the program. However, no shot
was completely successful in launching an intact projectile to

*the required velocities. In closely examining the conditions of
projectile launch, a theory that explains the projectile breakup

in the early stages of launch was developed.
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dia. 0.567 in. dia. nominal*

~ *Fit to individual barrell

Material A 13 C Numiber required

Nylon 0.689 0.130 0.491 2

Figue 22 Blurbs-4-rojecie eqgn. . .
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When the shock wave in the helium gas generated by the

explosive driver stagnates against the rear of the projectile,

it experiences a six-fold increase in pressure (see Section 2.3,

Equation 5). Thus, with an explosive driver that yields an

incident shock of 20 kbar, the reflected (or stagnation) pres-

sure would be on the order of 320 kbar. At early stages of the

launch cycle, therefore, the projectile is subjected to a com-
pressive stress of approximately 120 kbar. This is well above

the threshold for plastic flow, and the projectile would attempt

to expand radially to relieve the axial compressive stresses.

In a tight fitting barrel, which all of the shots up to this

point had had, the edges of the projectile would be expected to

push outward against the barrel. In hydrodynamic flow condi-

tions, the difference between radial and axial stress i.e., the

deviatoric stress) would be expected to be on the order of

10 kbar or less (for aluminum). Thus, the projectile would be
subjected to 120 kbar of axial compressive stress attempting to
accelerate the projectile and approxinitely 110 kbar of

radial stress resulting in very large drag forces at the

periphery of the projectile. The shear stresses that result
from interaction of these forces is extreme, resulting in

breakup of the projectile. To confirm or modify this theory, a

two-dimensional computer analysis of the launch cycle conditions

was begun. The results of this analysis are discussed in

Section 4.

The fifth shot of the expevimental program, Blunderbuss-5,

was desiqned to prevent the induced drag forces and subsequent

shear stresses from affecting the initial launch conditions of

the projectile. To accomplish this the projectile diameter was

made undersize with respect to the bore of the barrel, and a

5.



layer (approximately 0.015 inch) of Dow-Corning silicone grease

was introduced betweeii the projectile and the barrel. This

layer of silicone grease would place a strengthless, low-

frictionr material between the projectile and the barrel which

hopefully would prevent the large induced shear forces from

occurring.

Additional changes in the configuration of the launcher

were as follows. Almost all previous experience with explosive

driver accelerators has been in launching projectiles of magne-1k' sium/lithium alloy. Since very little experimental data has been

developed in launching aluminum projectiles with explosive driver

technology, it was decided that a return to Maglith was in order.

Also, the thickness of the barrel was increased to the point that

there would be very little chance that premature barrel failure

would result in the lowering of the launch velocity through

abnormal gas losses. Figure 15 is a drawing of the configuration
- • of Blunderbuss-5. Figure 24 is a Polaroid photograph of the shot
~just prior to firing.

This fifth shot was judged to be quite successful. The ex-

plosive driver worked as expected and yielded an incident shock

of 19.3 kbar. Projectile launch velocity was increased to

9.1 km/sec, Figure 25 is a flash radiograph ol the projectile

in flight at the velocity of 9.1 km/sec. It is obvious that the
" pro'-ectile is somewhat broken up; however, the thickness of the

launched projectile is equivalent to the original thickness of

the projectile. Since the velocity achieved by the pr, ,octile

is qu-tc high, it Is unlikely that the projectile broke up during! the launch cycle.
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Figure 25 Projectile from Blunderbuss-S in flight.
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It was theorized that since the projectile could not have

broken up in the barrel and still have achieved the high

velocity at launch, breakup must have occurred after the pro-

jectile exited the barrel. Since the pressure on the rear of
the projectile is not completely relieved by the time launch

occurs, compressive stresses on the projectile could be severe

enough to cause projectile breakup through the sudden release of

the radial constrainment of the projectile. Since the flash

radiograph of Blunderbuss-5 shows that the thickness of the pro-

jectile corresponds to the original thickness of the projectile,

yet the diameter of the projectile is reduced and non-symmetric,

it appears that radial spall was the probable mechanism of pro-

jectile breakup after launch.

In a further attempt to launch an intact projectile, the

sixth shot of the series (Blunderbuss-7) utilized a barrel

extension to relieve the gas pressure behind the projectile,

yet maintain radial constraint on the projectile itself.

Figure 26 is a drawing of the barrel extension that was inset

and welded to the basic launcher configuration of Blunderbuss-5.

For this shot the silicone grease of Blunderbuss-5 was replaced

by a Teflon sleeve around the Maglith projectile. Figure 27 is

a drawing of the projectile assembly.

This shot attained marginal success. Driver performaico

was once more consistent with previous tests. The addition L
the barrel exten-ion and the Teflon sleeve did increase the

launch velocity of the projectile to 9.6 km/sec. However, the

original disk-like projectile was broken into three smaller
fragments, and, from the report of the flash radiographs

(Figure 28), the sum of the parts did not equal the original

whole.

55
~55

Io

$)



-'~---'; 1 T

4~14

-.-- - -- -- -- -- -

t Slot four (4) places along
, length of barrel extension,~3/8 in. wide

} 2.50 in.
0.a ..,dia. o v .

I A

L II

0.25 in.

5.0 in.

4A

Ma'ch to diameter of launcher barrel

**Machine surface -A- to fit aqainst launcher barrel

Figure 26 Blunderbuss-7--barrel extendnr.

56"

4' .4- -'

- 4 4'-f
4'. 'Z~ ',.



, Tl1-1/2 in.-12 thread:/:; Teflon liner

{ Barrel section

____... .. ___......_

~Reservoir section

I.!}

1.440 in.i.500 in.2.000 in.2. 100 in.
_,_ proeMg/ie dia. dia. dia. dia.

____ -- projectile

3.,

/Explosive driver,. /pressure tube

" 1/32 in.

neoprene gasket

0.•250 in.-

0. 562 in.-

C 1.50 in.

riqure 27 Blunderbuss-7 detail.

57
A

4-.
b



-7 P

wwI

Figure 28 Flash radiograph of projectile from b1underbuss-7
Ln in flight.
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Some calculational effort was expended at this point to

characterize the launch process and to examine the collapse of
the reservoir. These calculations matched with observed experi-

mental results. Indications from these computations were that
E the projectile is still under pressures of about 35 kbar at the

time that it exits the barrel. It appears that the high pres-

sures on the rear of the projectile were great enough to cause

the projectile to extrude into the slots cut into the barrel

extension to vent the gases. When the now cross-shaped pro-

jectile comes to the end of the barrel extension slots, with

part of the projectile extruded into the slots, the resulting

impact forces cause the destruction of the projectile.

One other experiment was performed during this time frame.jAn attempt was made to launch twelve projectiles of three dif-Sferent materials to 10 kmscfrom a6 kbar epoiedriver

launcher system. Unfortunately, the explosive driver section of
the launcher failed to collapse completely, and thus, the pres-Isures required to reach 10 km/sec were not obtained. The

average velocity of the projectiles was on the order of
4.5 km/sec. From the review of the shot data it appears that

the charge-to-mass ratio of the high explosive to the driver
pressure tube was '-slow the minimum required to fully collapse
the tube against :h,. 6 kbar shock in the helium. (Note that

- this was a totally different driver and launcher design than the

now standard 1 meter, Composition C-4 launcher.) The design of
the shot had been checked by the use of the 1-1/2 dimension

* computer code and had been predicted to close the pressure tube.

The closure predicted, however, was marginal. In future designs
it is apparent that a greater margin of collapse energy must be

used.
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Blunderbuss-8, the final shot of the experimental program,

was aa attempt to launch seven individual projectiles contained

in a single sabot utilizing a single barrel launcher. This shot

was designed to show that multiple projectiles could be launched

intact from a 20 kbar driver system. The sabot, as shown in

Figure 29, was designed to take advantage of the possible radial

breakup of the projectile as it exits the barrel. If the

mechanism of projectile breakup in the two previous shots was

radial spall caused by the sudden unloading of the projectile as

it left the barrel, this same mechanism would cause the sabot
to break up, yet it might leave the individual projectiles

intact. Additionally, since the breakup was expected to occur

radially, this would aid ir. the dispersion of the projectiles.

Figure 30 is a drawing of the shot configuration. A barrel

extension was added to increase the length of the barrel by

10 cm, and the projectile was surrounded by a layer of silicone

grease, as in Blunderbuss-5. There were no slots in the barrel

extension for this shot, its function being to increase the

muzzle velocity of the projectile. The projectile/sabot

assembly was similar to the previous shots in that it was a

disk-like package containing seven individual projectiles.

Figure 31 illustrates the sabot and projectile configuration.

This experimeital shot was essentially a calculated risk.

It was felt that the causes leading to projectile breakup were

known. Only one shot remained in which to launch multiple pro-
jectiles and exhibit total proof of concept, and it was decided

that a multiple projectile launch should be attempted. The

shot, however, did not meet expectations. The explo-

sive driver system worked as expected; however, the projectile/
sabot package was totally broken up, and a velocity of only

8.4 km/sec was obtained. Projectile and sabot fragments shown

in the flash radiographs were tenuous at best and are not shown

4in this repqrt due to the limited definition obtainable in half-

tone reproductions.
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rigure 29 Sabot for Blunderbuss-R.
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SECTION 4

COMPUTATIONAL SUPPORT

'1 4.1 I1NTRODUCTION

The computational effort associated with the program was
directed towards two basic objectives. The first objective was
to provide data to assist in designing and analyzing the per-

,K I formance of the explosive driver used as the energy source for
launching the projectiles. This objective was achieved by per-
forming a seri1:f one and one-half dimensional (one-
dimensional Moving Wall Flume, see Appendix B for a description

of the flume option) calculations. The second objective of the

computational effort was to perform a calculation of the inter-
-,- actions at the driver/barrel, barrel/projectile, and driver/

projectile interfaces, and the response of the projectile to
the induced stresses. A two-dimensional calculation of the
early stages of the launch cycle was performed to obtain this

information.

4.2 MATERIAL MODELS AND EQUATIONS OF STATE

* -- The yield models a.ad equations of state used to describe

the helium driver gas, the C-4 explosive, and the steel of the pres-
sure tube, tamper, and barrel were identical for all the calcula-
ticns. The two-dimensional launch cycle calculdtion also con-
tained a magnesium-lithium (Maqli.th) projectile. The equation-
of-state models used for these materials in the computational

analyses are summawized in Table III.
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4.3 EXPLOSIVE DRIVER CALCULATION

In general the principal information to be obtained from an

explcsive driver calculation is whether or not the liner col-

lapses, the velocity of the point of collapse, the peak pressure

at the shock front in the driver gas, and the velocity of this

*shock front. This information may be computed most efficiently

*using a one-dimensional, explicit, finite-difference continuum

mechanics code with a Moving Wall Flume (variable area duct)

capability. Until recently, Pi's explosive driver calculations

of this type were performed using a one-dimensional Lagrangian

code. Experience proved this technique useful but indicated tnat
a more preci3e solution of the state of the driver gas could be

achieved if the gas were described as an Eulerian fluid

retaining the Lagrangian description of the pressure tube,

explosive, etc. A one-dimensional Eulerian code, PISCES lDE,

was available (Appendix A), and the PISCES IDE and PISCES IDL

(Appendix B) codes were dynamically coupled in a manner similar

to that employed in Physics International's two-dimensional,
coupled Eulerian-Lagrangian code, ELK. The code resulting from

the coupling of the PISCES IDE and lDL codes was used to perform

the driver calculations for this program. In these calcula-

tions the driver gas is treated in an Eulerian frame of
reference while the pressure tube, explosive, and tamper are

treated using the conservation equations in their Lagrangian

form.

Ficure 32 shows the computational grid for the final

Composition C-4 explosive driver configuration at a time of
10 psec after explosive initiation. Also show. are vector

velocities of the tamper, explosive, pressure tube, and helium
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at this early time. Figure 33 shows a portion of the grid ahid
vector velocities for this computation at a time of 80 usec. As
can be seen, the pressure tube is collapsing on axis as
required and by a time of 80 psec. The helium shock has
broken out and is leading the explosive detonation front. The

calculational results show the velocity of the intersection
point of the axis and pressure tube to be 0.75 cm/psec. The
velocity of the helium shock is 1.20 cm/usec. The peak pres-
sure of the shocked helium s 25 kbar.

This calculation and the corresponding experiments verified

the design of the 25-kbar explosive driver.j

4.4 TWO-DIMENSIONAL LAUNCH-CYCLE CALCULATION

A critical aspect of any gun designed to launch projectiles
at very high velocities is to insure that the dynamic loading of

the projectile does not result in projectile breakup. A two-

dimensional calculation aided by complimentary one-dimensional
calculations was performed to examine the loading of the pro-
jectile for the launch system designed in thic program.

A complete two-dimensional calculation, including the

explosive driver startup and complete collapse, is a very complex
and lengthy computation and was beyond the scope of this pro-
gram. Therefore, 2 one-dimensional Moving Wall Flume calcula-
tions were performed to provide a reasonable approximation for
the time.-history of the pressure tube collapse as well as the
final shocked gas volume and a velocity versus time function

describing the helium gas. Both of these calculations were
identical to the previously described explosive driver calcula-
tion except that the full tamper and barrel of the final
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launcher design were included. The initial finite-difference

grid for these calculations is shown in Figure 34. The differ-

ences between these two calculations was solely in the treatment

1: of the right boundary condition for the helium gas (Eulerian
fluid). In one calculation the right boundary was a simple flow-

through condition, i.e., zero velocity gradient at the boundary.

In the second calculation, the right boundary was fixed, i.e.,
zero velocity at the boundary. These cases bound the real

*problem of an accelerating projectile in the barrel. The

results of the two calculations were used to obtain approximate

descriptions of:

* The time-history of the pressure tube collapse

* The time-dependent volume and velocity field
associated with the helium just prior to interaction
with tho projectile I

These results were used as initial and boundary conditions for

the two-dimensional calculation of the response of the pro-

jectile during the first 10 Psec of the launch cycle.

Figure 35 shows the initial zoning for the two-dimensional

launch cycle calculation. The non-shaded region represents the
helium gas. This region is bounded radially by a fixed boundary

and on the left by a moving piston. The prescription for the

moving piston was based on the results of the 2 one-dimensional
calculations described above and models the collapse of the
pressure tube. The zones for the helium gas had initial veloci-

ties approximating the conditions of the gas behind the helium

shock front as determined from the one-dimensional calculations.

The initial volume of helium gas was also based on the one-

dimensional results. The shock front in the helium was at the
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base of the projectile at time t = 0. he zones representinq

the magnesium-lithium (Maglith) projectLile are those shaded
zones to the right of the helium. The Maglith zones were
initially at rest, simulating the state just prior to the pro-
jectile interacting with the driver gas. The zones immediately
above the helium and projectile represent the steel barrel. The

equations of state and yield models used in the two-dimensionalcalculation were identical to those previously described in

Table Ill.

Figure 36 shows the computational grid at the final time of
10 usec. As can be seen, by this time the projectile has

separated from the barrel and is beginning to deform. Figure 37
shows the state of stress in the projectile at times of 2, 4, 6,

8, and 10 psec. Until the time of about 6 Usec, the gradient of
stress in the radial direction (away from axis of symmetry) is
very small. However, beyond a time of about 6 Isec the reflec-

tion of the stress wave from the free surface and interaction of

the projectile with the barrel result in severe radial stress
gradients being established in the projectile. Between a time

of 8 and 10 usec, the projectile and barrel separate.

Due to programmatic restrictions, the zoning used in the
two-dimensional launch cycle calculation was coarse, esw.cially

with respect to the steel barrel in the reiion near the pro-
jectile. This had the effect that a single zone in the barrel

dominated the response of the projectile. This, in turn, results
in a somewhat imprecise determination of the stress field in the

projectile. A much more finely zoned computation would be required
to determine the details of the time-dependent stress fHeld in the
projectile, Thereforo, the results of the launch cycle
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r calculation muust be interpreted with caution. However, on the

basis of the calcujlati4on performed it is considered likely that
V the l'xsling conditions that were modeled would have resulted in

projectile breakup. This tentative con',lusion is consistent
with experiment.al results and the subsequent introduction of a
qap between the periphery of Cie projectile and the barrel.
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SECTION 5

ANALYSIS AND CONCLUSIONS

Significant accomplishments have been made during this

six month program towards the goal of developing a multiple pro-

jectile hypervelocity launcher. Although the actual launch of

* intact multiple projectiles from a single barreled gun was not

accomplished, the experimental results and the computitional
analysis completed during this program give added confidence

in the ultimate feagibility of utilizing an explosive driver

in a weapons system to launch multiple projectiles.

5.1 ANALYSIS

5.1.1 25-kbr Explosive Driver. Section 3.1 described the

requirements in performance of an explosive driver that could be

used to launch projectiles to 10 km/sec in a 20 cm barrel length.
From the experiments conducted, it is evident that the explosive

driver developed in this program is sufficient to accomplish the

task.

Examination cf the performance characteristics of the 25-

kbar explos.ve driver yields some interesting insight into the

operation or very high pressure explosive dr.vers. Referring

back to Figure 18, the x-t diagram from shot Blunderbuss-2, it
can be se-fn that neither the detonation velocity nor the shock
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A
1  velocity are constant. Up until the time of breakout, that

point at which the helium shock begins to lead the detonation in i i
A the explosive, the ion pins and cap pins report at the same

time. From Figure 18, it can be seen that the detonation velocity

of the C-4 explosive is 0.8 cm/psec, the detonation velocity

observed in detonation velocity tests.

After breakout of the helium shock in front of the detona--
tion wave occurs, there is a marked acceleration of the detona-

tion velocity of the C-4 to a velocity of 0.914 cm/sec. This
is an increase of 14 percent over the conventional detonation
velocity. The mechanism whereby this increase in detonation

velocity occurs is a precompression of the C-4 by the shock in

the helium. As the shock in the helium moves out in front of
the detonation wave, it transmits a shock through the metal

pressure tube into the explosive. For the driver designed here,

the pressure transmitted to the explosive would be on the order

of 25 kbar. This precompression of the explosive increases its
density, and the detonation velocity is increased. While this

phenomenon increajes the energy density of the explos4 ve, the
volume of the exr' osive is decreased due to the precompression,

and, as would be expected, total energy is conserved.

As the detonation vel(i*ity increases, the shock velocity in
the helium gas also i-creases to a relatively stable velocity of
1.147 cm/usec. This shock velocity corresponds to an incident
shock pressure of 25 kbar. However, as the detonation proceeds
down the explosive driver, losses begin to occur that degrade

the performance of the driver. The most significant losses
arise from the e.trapment of bubbles of high pressure gases at
the collapse point of the pressure tube and the radial expansion

of the pressure tube behind the shock front due to the extremely

high pressures. This loss of gas behind the shock front sends

80I
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rarefactions towards the shock, and results in a net lowering
of the incident shock velocity and a corresponding lowering of
the lr.cidcat pressure.

Again from Figure 18, the final shock velocity is about
1.055 cm/PJsec. This equates to a shock pressure of 19.8 kbar.
A reduction in shock pressure from 25 to 19.8 kbar has taken

place due to driver losses.

The first task required in this program was the development

of an explosive driver capable of producing pressures on the
order of 25 kbar in order to ?.unch disk-like projectiles to

velocities of 10 km/sec. An explosive dri.ver was developed that
was designed to yield a 25-kbar inrident shock in helium, and
which actually yields an incident shock on the order of 20 kbar.
Experimental evidence in launching projectiles obtaine4 during

this program indicates that the driver developed is sufficient

for the program requirements.

5.1.2 Hypervelocity Launcher System. This program was

designed to study the basic feasibility of a method that would
be able to launch multiple projectiles to velocities of
> 9 km/sec. As such, the goals of the program were not to design
operational or prototype systems for field use, but rather to
examine the basic explosive driver launcher techniques to
determine the feasibility of developing a launcher within the

parameters of the conceptual system requirements.

The approach to the problem was as follows: Two capabilities

must be developed to be able to launch multiple projectiles to
hypervelocities within an overall length approximating one meter.
(1) An explosive driver must be developed that will yield reservoir
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conditions capab)e of launching a projectile package of 2 gm/cm2

areal density, ard (2) a projectile-sabot assembly must be de-

signed to launch multiple individual projectiles from a single

barrel. In order to maintain a 2 gm/cm2 areal density, this

projectile-sabot assembly will be in the form of a flat disk.

Therefore, to prove feasibility of the concept, ; met!hod of

launching this disk-like projectile to hyperveJo- ties must

first be developed.

This initial feasibility study concentrated on the ability

to launch intact disk-like plates. For this reason, all shots

(with the exception of three) dealt with the development of a

launch cycle capable of accelerating a flat disk-like projectile

to velocities of 9 km/sec (30,000 ft/sec)

In the first design (Figure 13), the edges of the plate

(projectile) broke up rather early in the acceleration process.

Several other methods of support were tried (Figures 17 and 21)

without success. Intuition (later confirmed by a two-dimensional

calculation) ineicated that the interface between the steel
harrel and the outer periphery of the low-density metal plate

was the source of the problem. At least two problems stem from

this interface. When stresses of the order of 100 kbar are
applie, to the two metals, the stress across the interface must

also be of this magnitude. Th'e shear stress as the plate tries

to slide down the barrel will be in the tens of kilobars. The

edge drag caused by these stresses can result in the edges

lagging the rest of the plate. -This would obviously lead to

breakage of the edges. The second problem comes from the severe

impedance mismatch between the two metals. This mismatch results
ultimately in a stress gradient across the interface which

causes an inward radial motion of the periphery of the plate.
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With axial shock waves of approximately 100 kbar, the radial

motions caused by such phenomena can be large enough to cause

break-up of the plate.

It was for the above reasons that the design of the plate

was changed to that shown in Figure 15. The space between the

edge of the plate and the steel barrel was filled on one shot

with silicone grease and in another with Teflon. It was hoped

that this geometry would improve the impedance mismatch problems

and eliminate the edge drag. The change was quite effective--

the plate must have held together until the plate emerged from

the barrel in order to achieve the observed velocity. Our analysis

indicates, however, that at this time the plate was still subjected

to approximately 35 kbar of axial pressure. The edge rarefactions

resulting from the sudden release of such a high pressure would

also cause a plate to break-up. In the final shot, PI took the

chance that these rarefactions would lead to the expansion and

breakup of the sabot but not of the 1 gram particles embedded
in the sabot. Unfortunately,both the sabot and the particles

broke up.

5.2 CONCLUSIONS

The objectives of this six-month program were: (1) to demon-

-. strate the ability of an explosive driver to launch a projectile

to 9 to 10 km/sec within a total length of 1 meter and, (2) to

determine the feasibility of launching multiple projectiles using

the above launcher. During this program the following specific

tasks were accomplished:

* An explosive driver capable of producing an incident shock
in helium gas of 20 kbar has been produced and has been
shown to work reliably and repeatedly.

83



P A series of one-dimensional and one and one-half dimen-
sional computer calculations was performed to understanddriver performance and to aid in the two-dimensional cal-

culation of the initial stages of projectile launch.

" Experimental shots were conducted with a l-meter-long
launcher that were successful in launching 25-gram pro-
jectiles to a velocity of 9.6 km/sec. The projectiles
were only partially intact at distances of 2 feet down
range. It is felt that the cause of projectile breakup
is interaction between the projectile and the barrel
during the launch cycle.

" A two-dimensional Lagranglan computer calculation was
performed to analyze the initial launch cycle characteristics
of the hypervelocity launcher. This calculation showed
that the most likely cause of projectile breakup is in-
duced inward radial velocities in the projectile due to
the passage of the shock wave in the steel barrel over
the projectile.

With the results of the computer calculation and a careful

review of the test results, it is felt that the cause of projectile

breakup can be isolated and corrected. If this deficiency is
corrected, then it appears feasible that a launcher can be pro-
duced using the techniques developed in this program to launch

intact multiple projectiles.
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LIST OF SYMBOLS

[ r,x space variable

t time vAriabie

p mass density

u material velocity

A cross-sectional area of duct in flume tyn:netry (dak)

radial stress -p
r

tangential stress = -p *s

e specific internal energy

p pressure

-Po

V relative volume - PolP

E intarnal energy x p0e

o reference density

al

a
2

equation of state coefficients

b

si first stress deviator

s 2 second stress deviator

s 3 third stress deviator

11 shear imodulus

Y yield strength
0
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m momentun density Pu

E: total energy density = p(e+u;/2)

S first stress deviator density ps

T second stress deviator density = ps.,

U material state vector

G vector quantities

C artificial viscosity coefficientq

c sonic velocity

f time step "safety factor"

fac time step accuracy factor

A Jacobian matrix F/V

B Jacobian matrtx ,6/6U

C aA -PLiB

TA truncation error

U Fourier amplitude vector

k wave number

W angular frequency

taplification matrix

c€ eigenvalue of the matrix C

Y ratio of specific heats

K bulk modulus

I unit matrix
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~SEC rl0N I

, INTROD)UCTION

What follows is a description of a numerical method for the solution

of the time-dependent equations of continuum mechanics expressed in an
Eulerian framework. The method ip general in that a wide range of mate-

rial models may be incorporated into it. the differential equations

solved are the Eulerian counterpart of the Lagrangian equations formulated

by Wilkins (Reference 1). The difference method used is essentially that

made popular by MacCormack (Reference 2). It is shown to be of second-

order accuracy in both space and time and stabilit) criteria are derived.

The results of several s,,ple problems using this Piethod are presented

and compared to .olutf1ns obtained using the PISCES IDL coniputer code.

IA

tI
!I

I
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L SECTIONq 2

THE DIFFEReNtIAL EQIJATIO1iS

The partial differential equations listed below are L1oeC sOlVwd by

the copute: code. For flow in one space variable (r) and ti, (t), the

equations for plane (d 1), cylindrical td-2), slgieric.al j1 3 ) ani
f flume (d 4 ) geometries are (References 1. 3,4) :

- ustion of continuity

S ( ) + (d - l)P 0 d- 12.3
orr

I

(PA) + (A) 0 d4

Equation of motion i
0 a (,u;,,(d-1)

ji(pJ) +~(~~T T- r Zr - ru =0 d.2,3

~t r or

Energy equation

+• j z{u2'-z . (dEl(e4 1 u'Ir) 0 da 1,2,3

jAi(U2_+e)] + +,A .eo+ + p 0 dS'

2 b at
.... g P9 MW

-* -. -~-it
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IAn equation of state must be provided to determine the pressure, p,
as a function of the relative volume, V= p/p, and the internal energy,

E- poe . For example, a typical equation of state might be

I ~p = a, (71 - ) 4 a2( n 01 + a301- 1)+ n

where a.,a,, ai, and b are constants and -n= 1/V = p/p.

For flume symmetry (d=4) the area A(r,t) must be supplied (along

with initial and boundary conditions) to complete the specification of

the problem. This area function may be either pre-specified or it may

*be determined dynamically during the course of the calculation.

For the other geometries (d- 1,2,3) we need additional relations to

determine Er(d= 1,2,3) and Eo(d= 2,3) as these are not, in general, deter-
mined completely by the pressure, p. These relations are

E r = -p+si~r

(E 0 = -p+ s

• - where the stress deviators s, and s2 are determined from the following

relations.

The first stress deviator equation:

-)+ (Pus 1 ) - (- s+ 'l) = 0 (d 1,2,3)

The second stress deviator equation:

( s. + (Pu 2) + I'P pNu - 2p U + (d-1) su + p) 0 (d =2,3)

2- (d 1)

- 2
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Tile Ahird Sttress dgviator equation:

s. [ + s] (dn 1.,2,3))

where p is the shear modulus.

The stress deviators as determined above are then modified by a yield

condition. For example,

Sv~+~ 30 0

wherc Y is the material strength.

Next, we rewrite the above equations Ln vector form, introducing the
wvariables

I pU
c p(e + u /2)

IS PSI
T : ps

The equations assume the compact form

+ 2 P C

where

p5
S

4'4

4 " " -,*, 54 4 ~ ~ ~ dA~.
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m
m--1:

P
F- U

-s

p

}0

0

0

2m
3p

0

R 10 d=I

10
0

(d- 1) r
r r rE

-(d-1)m

r r

Ru r . - Lc€-Er d-2,3
p 3

S(d- )! 1

6)
- I

i'---?~ sI-1 ~__i~ ~ t-
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I dA I idA
p A dt

4~~ idArn- d

kR Aar p d

0--~p =
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+ SEC'I'IOK 3

THE DIFFERENCE EQUATIONS

The two-step difference method used to approximate the solution to
E~q. (1) is defined by

2€ j. U +-+) A+ (j -j + P PoJ11++ -1 ,+ AR+ (2b)

where the subscripts refer to a spatial mesh of points xj with spacing

!vc and the superscripts refer to the times

n

where ALL is the time increment that the solution is advanced during
n -n -n n -.

cycle~ ~ i As, G and R equal U) ( n

ii

D is the artificial viscosity operator given by the expression

At ,n ,,.,,n- n1n -n)

where u; is the matecial velocity at position x and at time tn and

C Is a constant of order unity. A value of C different from zero is
q

snt ntieded for .Lability in calculations for which the linear stability

Preceding page blank '

ft.

++++ + -+- ,+ + m \, ++ ++ ++'+ ++ y + Y+ ;' " ++++ Y+ +++!'+ '+ ++ 
++  

. "+ + + .+.. .-'A , - - - -. 5. - - + , , - +'+ " -

A + - + + . '., r ,Z . .. .
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analysis applies, but may be needed to preserve stability when computing a~strong shock, motion near the axis of cylindrical or spherical symmetries,

or other violent or nonlinear phenomena. For these calculations, a value

of Cq of 2.0 should suffice to preserve numerical stability.

The finite-difference method of Eq. (2) first obtains the approximate

value Uj at each point by Eq. (2a) which uses forward differences to ap-

proximate the spatial derivatives. The approximate solution is then used
to calculate F , G , and ' which are used with backward differences in

i'n-l
Eq. (2b) to obtain the new value of the solution U

J

{.i The specification of the solution is complete if, in addition to the

prescription (2) for advancing the solution in time, we provide initial

conditions Uj ; , 1, .. j. , and bundary conditions tn ;

n = 0, I, n • ax.ima

The accuracy and stability of the difference method (2) is analyz.d
the Appendix. It is shown there that the method is of second order accu-

racy and that the linearized stability criterion is given by the well

known Courant Friedricks Lewy (CFL) condition L (uI+ c 5 1 where
u is the local fluid velocity and c is the local sonic velocity. The

linearized stability criterion is a necessary but not sufficient condition
to insu.e stability of the actual difference equations which are nonlinear.

Thus, to apply the CFL criterion, we introduce a time step "safey factor"

I (where 0 < f 1) and determine the stable time step from the con-
Ls fts

dition

3 AX"
t s f (3)

* ts Iut+c

The CFL stability criterion is obtained by ignoring the effect of the
vector R. It is easily seen that the inclusion of R does not significantly

10

V'

:Il
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l' affect the linearized stabiluty criterion quoted above as the change in
the cigenvalues oi the associated amplification matrix is only the order
of At. Also, R is included in the two-step difference scheme in such
a mar,ner that the method retains its second-order accuracy. Although the
method is strictly accurate to second order, the vector R may be of such
a magnitude that the third-order inaccuracy in R dominates the other error
terms, resulting in ani effective loss of accuracy in the spatial deriva-
tive terms.

To insure that this is not the case, we subject the time step A
to the additional constraint

L (f()

where 1 and R a-e the first components of the vectors V and R and
(f ac ) is an "accuraty factor" which satisfies 0 f fac < 1. A recom-
mended value for f is 0.2.

ac

The actual time step At used in each cycle of the calculation is
the maximum value of At which satisfies the two cr'terLa of Zqs. (3)

- and (4) at each lonation in the mesh.
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SECTION 4
SAMPLE CALCULATIONS

II:
The results of several simple calculations are presented in graphical

form in this sectgon for the purpose of illustrating the computational

capability of the wimerical method presented. Each problem was run both

with the lISCES 1E code and..with the PISCES IDL code to facilitate

comparisons betwrten the accuracy and the efficiency of the two codes in

solving avide 'class of one-dimensional continuum mechanics problems.

In each case, the two codbf used the same number of zones (or mesh points)

and were run for the same- aount of problem time. The number of compu-

tatLonal, cycles and the computer time needed to run differed between the

two codes because of different time-step stability criteria for LArangLan

and Euleian codes. Timing tests have shoen the zone cycle time (the

time ci ccmpute one zone for one cycle) to be virtually identical in

PISCES IDL and PISCES 1D1.

Test Problem 1: Elastic-Plastic Plane Plate IMact

At time t- 0, a steel plate of thickness 25 ox lO0 zones) moving at

a velocity of .004 cm/Iaec impacted a stationary steel pate of thickness

25 cm. The steel was modeled with p- 7.85, Xu 1.69, Ca .822, and a

von Mises yield strength of Y w .003.

The results of the Eulerian and the LagranSian calculation are sum-

marized. in Figures la and lb, .here a series of stress profiles at dif.

ferent times are superimposed. No artificial viscosity was used in either

calculation. PISCES 1DE required 102 cycles to run this problem to 35 ec
while PISCES lDL required 129 cycles.

Precli llg Pogo Mill 13
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Test Problem 2: Flume Test A

At time t 0, there exists a gas with p- .(:01, y- 5/3 in a straight

flume of length 40 cm (100 zones). A center section of 4 cm initially

has an energy density of I0" (hot gas) while the remainder of the .gas

has an initial energy desity of l.5.x10 "  (cold gas).

Figures 2a and 2b show the pressure distributions in the pipe at

three successive times. The ',DL problem uesd 'qudratic artificialI vis-

cosity-coefficient of 2.0 and a linaareirtfficial viscosity coefficient

of 0.1. The DE problem used CQu 2.0. PISCES IDE required 115 cycles

to run this problem to 250 iec, while PISCES IL took 354 cycles.

Test Probier 3: Flume Test A

This problem is identical to Test Problem 2 except for the shape of

U:e .flume. in Test Problem 2, the flume was straight. In this problem,

the flume has a straight section in the center section of 4 cm and ;n

diverges outward from the center each way with a slope of 1/8.

The results of this problem are illustrated in Figure 3. PISCES IDE

--- required 116 cycles and PISCES IDL requireo 330 cycles to run this problem

fto 250 psec.
Test Problem 4: Cylindrical Implosion--Paynes Problem

This is a problem whose solution by other methods appears in the

literature (References 6 and 7). The initial conditions in cylindrical

coordinates (r,0) are: p- 1.67, p -l, m- 0 for r 9 1; p=6.67, p-4,

nm 0 for r > I. The gas is ideal wi:h y- 513. The material was divided

into equally spnced zones of width .02 cm.

14
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-E

R Figures 4a and 4b summarize the results of the calculations using

PISCES IDE and PI!CKS lDL. The Lagrange calculation used a quadratic

A artificial viscosity coefficient of 2.0 and no linear artificial vis-
cosity. The Euler calculation used a coefficient of 2.0 for artificial

viscosity. The problem required 258 cycles in iDE and 492 cycles in IDL t
to run out to time 1.4.

Test Problem 5: Elastic-Plsstic Cylindrical Plate Impact

At time t 0 a steel spherical shell of thickness 37.5 (150 zones)

moving invard vith a radial velocity of .004 impacts a steel sphere of

radius 12.5 (50 zones).

Stress profiles from the lDE and the lDL calculation are illustrated

in Figures 5a and 5b. PISCES LDL used 2.0 for a quadratic viscosity coef-

ficient and 0.0 for linear viscosity. PISCES IDE used a coefficient of

viscosity of 2.0. It took 198 cycles for 1DE to run out to time ta 60

r and 198 cycles for IDL.

Test Problem 6: Spherical ImPlosion

If ( This problem is identical to Test Problem 4 except that the symmetry

Wis spherical rather than cylindrical. The results are illustrated in

Figures 6a and 6b. A
Test Problem 7: Elastic-Plastic Spherical Plate ILpact,

This problem is identical to Test Problem 5 except that the symmetry

is spherical rather than cylindrical. The results are illustrated in

Figures 7a and 7b.

15~
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TEST PMOOLEM I EULERIAN ELITIC PILISTIC PLOIE PLATE IPACT

-.005

0.0 Z O.O 140.O

SJGk VS R AT TIME = 5.21
SJGR VS R AT TIME = 20.2
.SIGR VS R AT TIME = 35.1

Figure I&

16

:fA



TCAM 73-14

TEST PRfO.El I LRGMIE ELASTIC P.:TIC PLW4E P?:7E ]I f"T

11
II '05

iI I,
iI

o.I. 0 M.0 WO.0
S J4. v"S R AT TIME = 5.17

SlGI VS k AT TJWt=40.
SJIW VC R T TIME = 35.2

Figure lb

t-A
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Fl t-F LKRNE -FLLRE TEST A - ER

A L+1 a 64 tf A a a a 44"

, t6. cJ F_-6!

- 4'.U E-6

t 0.0 7

P V.S PT TIM1E= 1.29
P VS R AT TIME z 126.
P VS R AT TIME = 251.

Figurel 2a

IsI
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EIt.&ER LFPG - FLUME TEST A - LAGRANGE

6.0 E-G

0.0
0.05 L. o

P VS R AT TIME : 1.29
to P VS RAT TIME = 125.

P VS R 0T TI. = 50.

Figure 2b

FRI
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EULE', t.RGRSNGE F'LUME TEST 86 - -ELLER

4.;0 E-6

2. 0 E-6

0.0 r fIi -Liv
0.0 20.0 460.0

p VS ~RAT 71lE z 1.29
P VS R AT 71- z 32
p vs R PfT TflE= 253.

Figure 3s

20
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EULER LGMGE - FLUI TEST B - LRGANGE

-4. 41 I A a1141 A A4 . A

6.0 E-6j

4. E -6

4A E-A

0.0 2.0 .-6

P VS k AT TIM. = 125.P P R FAT T71ME = 12m.

IVigure 3b

21
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"T"lIN0RICRL I4PLOSION -- PRTNES PO iE(L EULER

10.0

----5.0

1"T1

0.0 1.0 2.0

P VS R AT TIMl = Zm
P vS P AT TIE = .1400
Pvs R AT TIME = .60O
p VS R AT T1f4E .O
P VS R AT T]IME 1.0O
pV vs RAT TIME= 1.20
PV5 v P AT TIME 1.40

Figr e 4a

2 2 /
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CTL~oit4~cR IMLOSION - PRYWES PM36E LAGQWGE

I4.

VIA 1.0 2.0

P VS R AT TIME z .0
p V5 RT TIM4E= .1400
P VS ~RATTIME = .601[
p s ~RATTIME z .82

p vs R ATTIME 1.00
P VS RAT TIME= 1.20
p vs RAT TIME: 1.40

F~igure 4b
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LERIAN ELASTIC PLASTIC CTILDMI~CAL PLATE IHPRCT

10.

GIR V k A TME 5.0

SI V A IM J.

4'24
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LRGM4GE ELASTIC PLASTIC CYLINORZCAL PLATE IMPACT

-. 02

SWGRVS k A1T T1E: 5.05
SIGR VS t AT TU'CE 15.1
SIR VS tRATTI4E = 25.1

54A VS t ATTIME~ z 45.1
SIR VS FtAT TIME = 55.1

Figure 5b
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,,

SPWIOLcA Itf l4k- EBLERlAN

20.0

0 .0 1.0 2.0

PVS R A! TII'I .=00

P VS R R7 114 .0
P VS AT TIE= .2
P VS R AT TIME = .O
P VS R AT TIM = 1.20
P VS R AT TIM4E= 1.40

Figure 6a

26
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SPHERICAL 1VUPLOS1ON -- LRRNGE,

20.0

p s ~RAT7114E = .201
p vs ;Z91 1PT4E = .601
P VS R AT TIME= .60

P VS R AT 7 ItE = 1.110

Figure 6b

,27
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CULERIFIN ELAI:6C PLASTIC SPWE 'IUL PLRTE IP::T

0.0

-. 02

4J

2!

-. 06
0.0 10.0

SJGk VS R~ AT T ItlE z .o5
SIR~ VS R AT TIMlE= Is. iS1 , VS R AT T .= 25.3SICyS R AT TIW = 5.1
SIR vs R AlTIE m 11SIGR VS R PT TZ'. (. 55.1

iure 7a

28
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LAGaRCE ELASTIC PLAST[C SPFICR-. PLATE IMPt

-.0

-.0

5.0 10.0 15.0

S[IR VS R AT TIM'E = 5.05
SIR VS R AT TIME = 15.1
SIRI VS P. A1T TIME = 25.1
SECGtVS e AtTIME~ = 5.0
SCGR vs R QAt[ E 5.3
SIGR VS R Ar TIME = 55.

Figure 7b
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SECTION 5
CONCLUDING REMAkKS

1. The PISCES IDE and the PISCES 1DL codes have been shown to be

[I of comparable accuracy when each uses the sane number of zones. However,

since for many problems over twice as ,iany cycles are used by PISCES IDL

to run to the same problem time, uc, ; PISCFS lDE is often such more cost

effective than using PISCES 1DL.

2. The PISCES IDE code could and .ould be extended in the near

lb - future to accurately handle more than one material in a given problem.

A The material interface must be treated in a second-order manner consistent

with the accuracy of the rest of the calculation. Once this is accomplished,

the PISCES DE code will have virtually all of the capabilities of the

.4.4 4PISCES lDL code and may be used to solve a wide class of problems that

have traditionally been considered to be strictly Lagrangian in nature.

3. Once the material interface problm has been solved for one

dimension, serious thought should be given toward extending this compu-

tational method to two and three dimensions. The accuracy of the elastic-

-. plastic calculation combined with the inherent ability of an Eulerian

code to handle problems involving large deformations should make this

Imethod an extremely useful computational tool for multi-dimensional calcu-

lations. It should be a ble to accurately compute phenomena which have

heretofore been amenable only to a coupled Eulerian-Lagrangian computer

code.

,31
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APPENDIX A

ACCURACY AND STABILITY OF THE DIFFERENCE EQUATIONS

The accuracy and stability of finite-difference methods such as those

previously described cannot be completely analyzed in the general non-

, 1_;linear form. The method of analysis we will use is to first linearize the

set of differential equations (1) (with the vector R absent) and then to

study the amplification of Fourier components of the solution by the dif-

ference method applied to the linearized set.

The set of equations we will analyze is

... U + ArU P.B(A-1)

$ where A and B are the Jacobh.3n matrices of F and G with respect to

U and are considered to be constant.

0 1 0 0

- m 2  ,S 2++k a 0
;p + -u abp

A k +-+p+2 +p +m k]
L p P] P P m P 3

-M S S -0 0

m T p
-F P

* A.,

+ "+ + + T . ++ ;
+

U - ,++
' ,+ + ++ + +. . . + + \ , + + + , . + + + ' + ' ' - 0' ' + = ', ' '+ + , . : +' + : ++ U .': .. . + + ; + + .+ + .. . .+ -+ , + + .. . ° .. ++ " + v . ,J . + +
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0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

4 m 4 10 0a 3 0 0 0

2 m 2 1 0 0

p' : 3 p

Applcation of the difference method to the set (A-) 8es

j+I A'
-.n+ 1 r1-, i' -<=r- .*-u+.

.- , ^[u .. P I --- . . _ _

Uj + U + P Blj U+J

1 2 j I ::: 1 Il

SNext, rewrite, letting C -A A-p pB

-:+ .--.n L t C*1 Uj -1~j U i k- + I -

~~and convert to a one-step difference method by substitution,,

2I
n + I n c [ J n n / A t\ +- 2 c V j -n++ ( A- 2)

At 2 U
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Truncation error

The truncation error of the difference approximation (A-2) to the

equation (A-1) is readily obtained from Taylor's series expansions. Thus,

letting

n+l n au2

j j + t 2 6,

n -n S !ULb1
U .1. I U j + Lx + 2 &2JC+

and using the differential equation

8U ~
N

to eliminate highei order time derivatives in favor of spatial derivatives,

the difference equation (A-2) can be shown to be equivalent to the equation

t-+ ax =TA

where the leading terms of the truncation error T A are

2~4 42( ] ap C!t '2(At ?] a 4 U

it is interesting to note that this method would be exact (i.e., zero

truvcation error) if C = I where I is the identity matrix. The

leading term in the truncation error is seen to be responsible for dis-

persion while the second term causes dissipation.

MAM
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Stability

We investigate the effect of the difference equation (A-2) on a single

Fourier component of the solution by making the substitution

Un ._ r n eij (A-3)

where V is the amplitude vector of this Fourier component, i = r- ,

k is the wave number, and rn.e i w n At is the growth factor. The stability

criterion will be that Ir 1. 1. If this condition is satified, no har-

monic is amplified at all, whereas if it is violated, there is some har-

monic that is amplified without limit as n increases.

Making the substitution (A-3) into (A-2) yields, after simplification,

rg = I- I Csin(k6x) + & Cos(k~x) - li

or, upon defining the "amplification matrix" Z by

t (cos (k~x)-1

-l -

we have

A unique solution will exist only if the determinant of the matrix in

brackets vanishes, i.e.,

det(r - - 0 (A-4)

,!,1
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V This is equivalent to the statement that r must equal one of the eigen-

values of the matrix Z. The eigenvolues of the matrix Z may be expres-

sed in term of the eigenvalues of the matrix C by making use of the

Spectral Mapping Theorem which states that if Z = (C) is a rational

function of the matrix C and X€ are the eigenvalues of C, then J( )
are the eigenvalues of Z. Thus,

At s1n(k~x) + t on (k) -11

taking the square of the absolute magnitude and imposing the condition

Irl ! 1 gives the requirement

r + Xct 6Xj 2
Ax ) [cos(kx) -1 + sin(kx) 1

This is seen to trace out an ellipse in the complex plane as (kbx) varies

from 0 to 2n.

- ,Unit circle

r

:s-
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The stability requirement can now be seen to be that the unit circle
encompasses this ellipse. This is equivalent to the condition

X At
c (A-5)

This relation musst hold for each of the eigenvalues of C.

To complete our analysis we mast next find the elgenvalues of the

matrix C. These are given by the equation

det C - X 0

or,

-Xc  1 0 0

m 2 S 2m+pp 1

M i~mk+ C+ p V j(l+) X a~ 0 0o• p P) P b , be "0

m_4mS 4 m

-m 2m T+2 _. 0

(A-6)
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It is easiest to evaluate this determinant by going back to the

primitive variables p, u-m/p, e=(c/p)-u 2 /2, and sas/p. Making

use of the relations

Ve ap~ e Wre, a

Equation (A-6) can be factored to give

Thus three of the eigenvalues of the matrix C are degenerate and are

equal to the particle velocity u. The other two are obtained by solving

the above quadratic. This gives

u

u
X- u+

U-C

where

C k + -LA(p-s) + 4 (A-8)

The quantity c is seen to be the sonic velocity for a general equation
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of state p-p(p,e). To verify this, we look at two example equations

of state.

Example 1: Ideal Gas

2In this case, p= (y- 1)pe, p=0, s,=0, and the expression for c

reduces to the well known formula

C2

pP

Example 2: Linear Elastic

The equation of state for linear elasticity is p- K(. , where

K is the bulk modulus. Substitution of this into Eq. (A-8) gives

a po +3p

which is the formula for the propagation velocity of a lt.,gitadinal wave

in an elastic medium.

We are now in a position to state the complete llhearized stability

criterion. Substituting each of the eigenvalues in Eq. (A-7) into (A-5)

and selecting the most restrictive gives the stability criterion

t Ju -

where c is given by Eq. (A-8). This is seen to be Just the (CLF) sta-

bility criterion (Reference 5).

.t
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APPENDIX B

* INPUT

The PISCES IDE code is input exactly the sme as the PISCES 1DL code

with the following exceptions and/or restrictions.F 1. A single TYPE 57 card must be input vith the number 1.0 in

the first field. This tells the code to do an Eulerian
rather than a Lasrangisn calculation.

2. Only one material type is allowed in a problem and it mst

have material number 1.

3. The Boundary Options card (TYPE 41) must be included in the

input but it is ignored by the code. Standard boundary con-

ditions, unless otherwise supplied are:

LEFT BOUNDARY: Kept at initial conditions for plane
and flubs symmetries, symuetry axis
for cylindrical and spherical sym-
metries.

RIGHT BOUNDARY: Zero gradients at grid point (JMAX - 1)

4. Yield models based on the distortional energy may not be used

as the distortional enrgy is not explicitly calculated by the

code.

5. The shear modulus is assumed to be constant and to be equal

to GO.

6. The input parameter DISL must always be included, but it is
, ignored for cylindrical or spherical symmetry problems.
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Instead, DISL is computed by the code so that the first two

grid points are centered about the symietry point. The

values at the first grid point are then not to be interpreted

as being physical, but are chosen to provide a "symmetry"

boundary condition.

7. The code has perhaps its greatest usefulness in calculating

"moving wall flume" (NSWD - 5) problem. In these calcula-

tions, Subroutine HOVWAL Is not called as it is in PISCES

DL. Instead, the user must supply a Subroutine AREE(AT,AX,

AI,DH) which is called twice for each zone for each cycle.

The variables Al and DH are not presently used by the code.

(These should be set to 1.0 in the subroutine.) The variable

AT must return the derivative of the area at zone J with res-

pect to the time, divided by the arep. Similarly, the vari-

able AX must return the derivative of the area at zone J with

respect to r, divided by the area. For the method to by ful-

ly second order, these derivatives must be evaluated at time

n on the first call and time n+ I on the second call.
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GENERAL DESCRIPTION

U'QUATIONS 01; MOriON

7" PISCES I DL is a unc-dimensional. time-dependent li||itc-difference LagaingC code
which is .cd to calculate the dynamic motion of contint,:i including clastic-plastic andL4'-hydrodynamic media. The differential equations that govern the motions of these media
are approximated by difference equations applied to a network of zone% that dcribe
the physical space occupied by the media. Groups of contiguous zones of the same material

, are described by constitutive equations which are coupled to the equations of motion.
time is a:so discretized and its formulation insures stable difference equations. The

Lagrangian formulation of the differential equations re(uires that each zone contain a
constant mass element of material that moves and distort% in space and time, the motion
for all the zones approximating the continuum motion. In a one-dimensional formulation
only one space variable exists, symmetry considerations account for the other two. There
are three possible symmetries plane. cylindrical, and spherial. In plane symmetry. zone.
are infinite slabs and the thickness of a slab is the Tone ,ite. In cylindrical symmetry.
zones are concentric hollow cylinders of infinite length. Spherically symmetric zones are
concentric hollow spheres. In both of these latter geometries. zonal width,% are radial

tlhicknesses of the cylinders and spheres. respectively. Tile partial dilfrential equations
that govern the motions in PISCES IDL are shown on the following page%.

~Mftentum Elluaions

IAfl lWUL18!il

Plane symmetry

.. r

Cylindrical symmetry
e~

QiEr + r C

Spherical symmetry

ar Er

Continuity Equations

Plane symmetry

rV r

V; . ,' ! 7:, -: ", 4 -,. ,r I ..
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p hydrostatic pressure

q artificial viscosity
P0

V relative volume - Po reference density

E E internal energy per original volume, M heat flow.

In the equations of motion the position and velocity of a particular zone arc defined
at the zone corners (grid points that define the zonal boundary) while other variahles
such as pre sure, stress, energy, etc., are defined as averages over the zonal ilterior. "lheh
differential equations are approximated by the finite-differeince equation. developtd by
Wilkins (Reference I).

CONSTITUTIVE EQUATIONS

Besides the equatioau of motion it is necessary to have constitutive equations that
describe the media. These material description equations are the equations of state,
stress-strain models and transport property descriptions. In general, these functional
relationships may take any form-discontinuous functionis as well as tables are used to
describe phase changes, hysteresis, cracking, etc.

The equations of state calculate pressure from the density and the total internal
energy density of a zone in a two-step iteration. The interim internal energy density is
evaluated from the old internal energy density, the new ikeat flux, the old pressure, and
the new change of volume in the zone. This first approximation of the internal energy
density is then used in the equation of state to get a first approximation of the new
pressure. A revised estimate of the internal energy density comes from tnis firsit
approximation of the new pressure and the new distortional energy density. Finally, the
new pressure in a zone is determined from the second approximation to the internal energy
density. In this way a simultaneous solution of the constitutive relations and the second
law of thermodynamics is effected independently of the form of the equation of state.

An exampl of an available stress-strain model is the so-called elastic-plastic yield
stress model. A yield stress model is a law that regulates the stress deviators. In a calculation.
the stresses are decomposed into a hydrostatic component and a deviatoric component.
The -tress deviator describes the resistance of the material to shear distortion and is
calculated in terms of an incremental stress resulting from an incremental strain. The
deviators are limited by the yield stress according to some rule that describes thc

jV elastic-plastic behavior of the material. In this model, the deviatoric behavior of materials
is determined by the shear modulus and the yield stress. (For a fluid, both are zero.)
A temperature-dependent shecr modulus is available and should be chosen to be consistent
with the bulk modulus and Poisson's ratio for the material. The yield stress is defined
as the stress at the yielding point in a uniaxial stress test and may be dependent on
thermodynamiic variables. For example, the code has available work-hardeniiig models in
which yield sties is a function of' distortional energy. Mohr-('oulomb nmodel if which

. 4 -'- '- - - 4 ~ ._ 3
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yield stress is a lnction of pressure. von Mises models in which yield stress is a colnstant.
.tr;'., relaxation Inodel% hased on dislocation motion. and teenllerature-dependent nodels

in which yield st.iss . s a function of internal energy.

I liiergy Ir:iil%p( ivhi I oiirier'. law of heat coilhuctill is avilahl . Sitcih hi'.l ;and

contduciivi(y may e flnctliosS of' temperature.

BOUNDARY AND INITIAL CONDITIONS

Time-dependent pressure profiles as well as time-dependent velocity profiles (pistons)
can be automatically applied to either boundary. Fixed and free boundary conditions are
merely sub-cases of the above capabilities. Energy boundary conditions are specified by
applying tempurature and heat flux histories at the appropriate boundaries. Internal or
kinetic energy can be deposited into any region as an initial condition. Time- and
space-dependerit energy deposition and a zone-by-zone detonation descriptioin |nay le
included in the solution of a problem as required. The code logic siiulales a
Chapinan-Jouguet detonation.

Once th, geometry, inaterialproperfles initial condiilio'v. and hmnindarr
conldithtmls ar'e sp 'iJ'd. the caktlatin oJ the prhe,nt is readyoi trocevi

I fiIt rst lite %lei that tile problem takes niti-i be ,pecified, hut IrIm that
poi ti on. tile code t, tnoniatically calculates tihe shubsequen time %lt ps accord-
Ing to .,hability ertet ia inposed by tme lI inile-dilference equalionis. Physically,
te restriclion iinlitosed on the calulation is thai no sign~il illy cross a Zone
ill olle liac step so thai a zone reacs lily to activity being Ira tmnnilled I'rom
a neighboriig ione.

The accurac 'r )J" th' sohltiol! in a Lgratigian codeh dh'pends on the
density of zones. With coarse zoning, gross te7aturcs of the solution such as
total energy and momentum in a region may be realistic, but the actual values
of a variable at a point are apt to be in error. The resolution in both space and
time is proportional to the zone size. A strong shock is handled by tile finite-
ditlerence equations by using Von Neumann's artificial quadratic viscosity
(Reference 2). which is introduced to spread any shock front over a distance
of about three zones. Zone-to-zone noise may be smoothed by an artificial
linear viscosity logic.



PISCES I DL contains several options that are worth special mention. Among these
are the void, remnap. flume. %tatic, extending rezonc. microzone, heat lkow. restairt. and
data display opitions. These car-abilitie% are described as follows:

VOID OPTION

Between any two mass regions it is possible to define a void of finite tickness.
Motion in thesei regions can expand or shrink ihe void. Howevur, once III-: void is Closed.

punched onto computer cards, written onto tape or disk, or stored by any computer re-
source on its media. This output call he hormated in such a way as to be input to another
code.

FLUME OPTION

The flume. option turns the code into a one-& nd-one-half-d imensional code by defining
a variable area duct as a boundary condition along the direeiion of flow. The duet may
be fixed or free to respond to the flow pressures. In the latter case motion at' thle duct
walls may be programmed to have some pre-do-scribed resistance or motion. A real strength
wall model is available upon request. For material moving in a direction parallel to a
fixed or slowly moving boundary, the flume option may obviate thle need for a more
-xpensive two-dimensional calculation. Flume materials must always be fluisds while wall
materials may be solid.

STATIC OPTION

Nondynamic, equiliturium stress distributions may be computed using PISCES I DL.
An input switch changes the time variable to an iteration variable :onverting~ 2le code
to a stre.,s diffusion equation solver rather than a s'tress wave equation code. Thi% option

iselatively new but very powerful.

EXTENDING REZONE OPTIO

The rezoner ui',.iws a user to extend automatically thle spatial domain included if)

a calculation whihL a problem is in progress. For explosion% entanating fromi a point. line.
or plane. the spaial length of the problem is doubled wheig activity near% thc outside
boundary. The total nuimber of zones with which the problem starts ii hel fixed %o
that the tffect of this rezone procedure is that all Lone% are :ipproximately doubled in

size. There is no limit to the number of rezonirngs that, may be allowed in .a problem.
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but -dnce the accuracy o1" a solution depends on the zone i/e. resolution can hecome
poor il,,:r several rezonings. Generally. for one-dimenional exploto:'w. tlu pr)cedirc has
the atdvan~tage o,}f having (lie f'inest zoningj when ilt, i% , nitt..c,;ry

MICROZONE OPTION

The micro/.oner is used when fine zoning requirements at a shock front Ire
economically too stringent for the entire grid. This option allows fine zoning to he initially
specified only where it is necessary. while coarse zoning is defined elsewhere. Then the
code automatically moves the microzoned (finely zoned) region to follow the activily
that needs the fine zoning. A single pulse in a slab where the entire pulse i,, %mall compared
to the width of the slab is an example of a problem that may need the inicro/oning
option.

HEAT FLOW OPTION

)iffusion logic i, available Io handle heat con dtictii pro blclm I ,it- ici ' law is
coupled to the differene e(luations of material motion under tlie assimp lI, lh.i Ihe
heiat condliction need no( he time centered in the energy equition when ,n'ivnlitini villecls
control the time ,iep.

*RESTART OPTION

The restart option allows the user to complete a problem in sequential steps. Edits.
rezones. boundary conditions. and material parameters may all be redefined at restart time.

DATA DISPLAY OPTION

Automatic piot display is available in PISCES I DL through the PI-PLO'r I P lotting~System. The plotting capability allows parametric plots, of any variable as a function or

arly variable at a point in Lagrange space with time a a parameter or at a particular

time with laboratory coordinate as a parameter. These plots may be plotted automatically
on a Cal Comp incremental or zip-mode plotter, an SC-4020 CRT plotter, or on the printer.
In addition, shock front plots (values of a variable at the shock front as a functfon of
distance and time) are availdble and are plotted on a log-log %cale for convenience. Peak
value printouts and plots are also available.

Automatic print edits are available a% a function of' problem time. cycle number
and activity front

TMa mcmurA t,1 I'h'.%/ hr (limial C anti

f)
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L FINITE-DIFFERENCE EQUATIONS

The differential equations solved in PIS(iiS IDL have been summarized in the general
dewription. The first order explicit finite-difference equations that have been used to
approximate the diflfrential equations are discussed below.

For the following discussion there are a few definitions and conventions which must
be addressed. First, PISCES I DL is a one-dimensional Lagrange code. The space variahle
is divided into /.ones of fixed mas%. Grid points bound each zone. An interior grid point
is bounded by a zone on either side while a boundary grid point has one of tit zones
replaced by a boundary condition. A left boundary grid point has a zone only on its
right: a right boundary grid point has a /one only on its left. Indexing of grid points
is generally denoted by j and increaes from left to right. Indexing of zones is done by
associating a zone witb its right side grid point index. Thus, the leftmost boundary grid
point (or the lowest index number) has no zone associated with it.

The calculations are divided into two types--grid point and zone. Associated with
each interior grid point is a Lagrange position, velocity, acceleration, half of the mass
of each of the neighboring zones, and a heat flow area. Associated with each zone is
the fixed zone mas3. relative volume, density, compression, pressure, artificial viscosity.
stref, deviators, yield stress, internal energy density, distortional energy density, sound
speed. and temperature.

Two basic conservation equations are solved- one for each of Ihe two types of calcula-
tions. The Lagrange equation of motion, derived from conservation of momentum and
con.ervation of mass. is used to update grid point -variables. The iagrange thermal energy
equation. derived from conservation of energy and continuity, is uted to update /one
variables.*

Updating of grid point variables is done in subroutine MOTION. First the equation

4 of motion is used to calculate grid point accelerations of the previous cycle from stresses
ca!culated in the previous cycle.

For NSWD I (plane symmetry)

P ~n 6r

For NSWD = 2 (cylindrical symmetry)

'erivation of' basi' equations is avaolahle upon request.

7-

A:,
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For NSWD = 3 (spherical symmetry)

."A 1 r 2"
n Fr n r %

For NSWD = 4.5 (fhuc shymmetry)*

*.n ir
r nr

A general form of' these equations may he written in the following way:

1 r 1 )
n ar [ +Zr

0 o0

where d NSWD and For NSWD > 3.. et d I. Thi% equation may be rewritten in
terms of the relative volume, vn  .po where po is a ret'erence density ustially set
equal to the initial density

*n V rr =- -- + (d 1)

0 0L

"rhie finitv dil'Terice a nailo- of the coll'icient of b kn i the iecciprocal of' the grid poitit

areal d ensity. The areal d.ii ,,ity to tel It-It m' the grid poill j and the areal dii ,,ty
to tile right of the grid point j are. reicelively.

= Po r." rj.)iv

n Pn n/nm 0 j z - r j J + .
%ji d

& '-e Appendix A J'o1 derivation.
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The xtress difference in brackets is calculated from an average of the stress d~ifference ill tile
zones to the left and right of the grid point. These are. respectively.

r It 2)iU J POJ

Thus, for an interior grid point. i.e.. a non-boundary grid point, the finite difference formula
for the equation of motion is

(d- M282

When calculating a free left boundary, on n s zero and ee is.zero. For a pressure
fimec history applied to the left boundary, mi still1 zero but 4i. takes oil the values
of file prescribed pressure. For a fixed boundary, the above equation is suiperfluous and

ri is set to zero. Similarly, a velocity condition oin the boundary (piston) is

automatically set equal to in+ Right boundaries arc handled in a simila-r way, hut
m2and ? are adjusted. unly one difference exists. e- takes on values of mninus82 . 0 2the pressure time history when a pressure profile is used.

Void boundaries are calculated as free boundaries. A left void boundary is a right
free boundary of the solid region on the left. A right void boundary is a left free boundary

of the solid region on tht% right. Void closure results in the two boundary points becoming
one interior point. The velocity of closure is computed to give exact closure while
conscrving momentum. This will result in an induced energy error. To see this, consider
the formulas for closure velocity derived from conservation of momentum

rave M Ma + m

arnd from conservation of energy

[ j2

ave E a+ %
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When ma  mb m the Iormulais become

Furthermore, if and [ then

a nd a
aveH 2ave E .1/2

The diftrences afe clear.I11
When liquatiol, (I) is used to gel acceleration. rJ, subsequent calculations for new

velocity. jn+ .and new position. rn+ '. are computed from the following time-centered
equations:oi

jr.* jn-s + inttn (2)

rl r + (3)

In cases where avelocity boundary condition is used. cnly Equation (3) applies. Then rj
and are the velocity and position from the previous cycle (or initial conditions): ftn and
Ltn y come from stability considerations baied on the previou% cycle (or an initial value).

Once the positions and velocitie% of' grid points forming a ione have been updated
in subroutine MOTION (and/or VOII)j. pre%%ure. volume. energy. etc.. can be calculated
tfr the zone. These and other zone interior variable% are computed in subroutine ZONI-.

It The irl ,ne interior variable calculalcd in subrouitiric ZON i% the rclativ' volume.~~~If should he obvious (hait Olnci new coordinates :are availa.', one c.,n compute¢ a new

volume.

For NSWD I (plane symmetry)

TRUE VOLUME 1 - r - rJ.•

.1 1 .-

101

va. .



For NSWD =2 Icylindrical symmetry)

TRUE VOLUME~ 1 -n~t1 -y (rn#

1< For NSWD z3 (spherical symmetry)

n+ l 4 1 ) a+ ( l3V
TRUE VOLUME I ~T (rnj+) r

*For NSWD 4 Ilixed wall flume)*

4r

TRUE VOLUME~ n = futm defined byR

ri

where R. are wall points between rj2and r

For NSWD 5 (Moving wall flume)*

tn -

TRUE VOLUME7~ (frustums defived by R 1

n1n+1 nIwhere R1  arc will points% between ri and rn

To compute relative volume. V. formn the expression

re (TRUEVOLUHEi' 1)REFERENCE DENSITY 1

MASS

*Set Appendix A for a picture of a typical flume section.

£2.k i
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and Irorm hlis. [lie ciaang in rclative volumet' (neded its cotrn|pu cha.nge of .n rgy) would

(VTRUE VOLUME4~ TRUE VOUM

Expanding, the ch.nge of relativc vohlum equation yields (e.g.. plane symiilry)

LNvW [(r~t rn) (r rn )I iff -1 .]-rj j-z M

Rearranging.

P 0-
AV i r - r n + I - rj~

rhis fortu of lhc itheqtion rveals possible ininric.;d difficui ks when ilhe ciange it .
- coordinatL is smaller,' ali I tilulbtr of* sigifiicant digits availiblv in :, spwci c conLputer.

If chalgc of* relative volumw were calculatcd gils way. it is posible to ch h dlpt 11 Iitalce
between zones a ma!l amount without getting a Correbpondingly -,mall ciang in relative
volume. For this reason PISCES IDL does not calculate change of relative volume from
coordinates as shown above. Instead. clantge of relative volume is computed directly from 4
velocities in the following way.

For plane symmetry

Vn+1 rI
__M.

dt M d -

j rn j j - r

A~V n+ 10 ... i[jn+. '1 n+ t
M" rj-r A
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Coiptuing new relktive olune. V ro"" -t cL vhan.m' tl1 rclalic volume. &W -.

1.uld also introduce round-ofl crror i! , ... 
n  In Iencr.l. V n+1  is near 1.0

.arod LV ' fl4  is very small. To chmia! ie po:;sibility ol this kind or round-olt. a
translormlaion of varia)les is made. 'he variable .ompresion. C. is defined as follow.:*

C 1.-V j
= t (. - V) -AV. (4)

Compression and change in compression are generally boh numbers of the same order
of magnitude. The equation

%j4 C c + AC

therefore, does not introduce a round-off error. New relative volume comes dircctly froim.
jn+ I

n+2 n+2 
:

FtV -1.C

The formula for change in compression in plane symmetry is

What we have here is a formula for the change of relative volume that depends on velocities.
not position. If the velocities yield no change in relative volume, then one is guaranteed
that the distance between zones actually is unchanged since new positions are computed
from new velocities.

To use this formula, one must be sure that it agrees with the development based
$ on coordinates. This must be a requirement since the TRUE VOLUME formulas are exact

for large displacements. Again, looking at the plane symmetry case. we .4ce

n+1l4 11

which reduces to the result obtained pIvviously,
rPo

*See Appendix B for relations btween volume. relaie volume, dikation and compr;':.ion.

-13
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For cylindril sympoelry. chinjtt ofrenlative volume frckm tordntes i%

AV~~ - r i (r J (jrnjl 2

P 2 2  2
r!+' r n n (r n

From veiies (~)I i

dt tr

n~~~h~ rn+k n+h n p~ +1 m4 1 J- J

a .Ln.1.n) rE n..+I i'~ l ni
3 jL At* bt

n+ I~r njr4 ni )n

AV n* k - I U r n+li' (r n I- n+ (r2 r n

14
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iinlly. in spherical geometry the change of relative volume front coordinate'. i%

0. J-

I~ 4( r(flj

AV nJk(PT) rr I(r~ -) (rjf ,-I.

From velocities

dt rn dt

P0  2

AV - 4 T j.k (rni) n+. &r+ t

11 I' tIIL formula is expanded, it will not agree with the formula derived directly from
¢worlin;ates. There is ;mi error reflecting the lick of scond-order accuracy in taking the; derivative. IVh fornila in terms of velocities bccomc.

n+.~r~ 1 2 2.

where

2 rt h ,, + .,+ 3
12 r j-,2

itwhena t1 error i% l ceounted for. The change In co1npre.ion i%

n ~ jn& -t+ j+ j)C. + 3 -r j.(r n.h) + (4.3) "-

-1 J-
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1: where again

12 1 A

31New relative voluniv is nlow computed from new comprexiion.

Change in rlaiv volume is of course the negativec of the change in coprsson

AVn+ (7)

The rite or change of rekitive volume can be computed directly.

Once the wrltv ouehsbe dtrined.I:atal vsosty presre. energy.

Artificial viscosity, q"*h. is computed in thk: following wy(pedx0

The artificial viscosity is Ili: sun or an ;artiliciaml quadratic visco-41y.q ~ . d aarinil

himWar viscot"tY, q L

P~ enko+
-~~~~ VL V2 n~\.....~. 9qQ 2

-jA C
V V m .I+



where o = rel'rence density, V = relative volume. L.r is distace ,;cjoss the /one.
and C = coefficient of quadratic viscosity.

where CL = coefficient of linear viscosity and c = sound speed.

The computation if pressure and energy cannot be done in a straightforward manner
becau,,e one depends on the other. Ther,:lore. an iterative approach* is required. First,
a preliminary calculation is made, estimating the new energy from new change in, relative
volume, new artificial viscosity, and old pressure. Distortional energy change is ignored
since new stress deviators have not yet been calculated. This first estimate ol the new
energy is called , n+1.

-n+ I n , [(n + PJ)+n n
E EA (10)

If energy is deposited ftrm outside, the grid. it is added into En prior to the first
approximation to the energy, e.g.,

where E' is the total energy to be deposited in a ione.

Now using the energy estimate, E subroutine STATE is called to get an estimate
of pressure. p

n+l I f (,g.+.I n. I

Returning to subroutine ZONE. stress deviators are computed by first calculating
the "elastic" deviators at plus time from strain rates at half* time. The elastic
one-dimensional deviators are computed from

b n-.'1 fln 2 .. + ,tn+5~,j (12)Srj =rj " 3 n+2 2

*Alppendix D.

V 17
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-+ n + n

where 26 equals two time. the shear modultius. G. A Iad At have een

previously defined. and

.nlk r j .l _ rl4.j (13)

In PISCES IDL only the radial deviator is independent. The tangential deviator and
the deviator normal to the radial and tangential deviators are alculated from symmetry
co|nsiderat ions.*

For NSWD I (plane symmetry)"
n+k .n+

t Ntj = 3N

n+i n+i 1 n+1
st - N 2 r •

For NSWD 2 (cylindrical symmetry)**

j V j+ r N

n+1t n h nhn11 nl+ n+)
t It + ?t ~ +j3Vn+ 4  

N r14

For NSWD 3 (spherical symmetry)**

inE4~in+

n+1 n+, n+2
st SN U 2 Sr

These elastic deviators may now be reduced in subroutine YIELD so that they do not
exceed I von Miscs yield surlce. The clahc yield -,tre%% .mltared is delinkd by

-;;*l P/.CI' 2DI. I/Mr,' thr thre' independe'n d('rilthr

" *,',' Appendix E ftir rrh'liwn.% htwc','n het , 1i al C

)l
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= [s4' + + (s 21+]. (14)

This quantity is compared with the computed allowable yield stress suared. YJ

(.- / n_+1
jY u p , E , vj, Zn, t n /i

+ n+,n+ 'n+
(Notice that and are really p and Ej .

The Lomparison is made in the following way:

n+12 n4-1\

If AYr '  is negative, the deviators are correct already. everything is elastic. If AYJ
i% ositive. the deviators are adjusted by the ratio of allowable to elastic yield stre.

n+1 n+1 n+1

*. J 0

n+ I n1 n+1 +41 "+11 +18r Y* 5r S t Yj 8t 1 16)

(If Y O. , then r 3  = 0. exactly. This is the condition for

hydrodynamic flow.)

From the new stress deviators one can calculate the change in distortional cnLPjy.

- j i + = V n k ,t i # + ( d -1 ) s t ' n k( 1 7/ )

Where

n+tl n + 1) s+ i/r,,i+ n
4 r 2 5 r + r+ t t

J j j j J '

.f(J
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Now (the en:rgy is recalculated.

where Hj is the energy transfer due to conduction (Reference 3). Thi, value of energy is
used to compute the linai value of pressure.

r l f En + 1 v + 1 (\9Pi = f(E , 1). (19)

Stresses are calcul.ited from pressure and the deviator tenlsor

£1'+1 = S.r1i  / 1 +l f
n +

r - p +' /

(20)

E + nSt " nPj + q  ).
t t

The sound speed vuared is calculated in %uhroutine SSPI)

(1+ 1)2 n+ 1 vn 1) (21)

and upon the return to ZONE. a time step squar;d based on [h just calculated sound

speed and the zone width is computed.

Se ppendix P:for¢ definiki:, iijdahi .uml ,d eleI u'nn. .,f dilic're'n dU'.il" larI.

pneler. for dass'ie.p/axi' nanc'l..

20

FL

.. ...................... .............. . . . . . . .. . . . . . . . . . . . . . . . . -..



II)I..A

REFERENCES

. "('alculation of' Elastic-Pla,.tic Flow." Mark L. Wilkins. U('RL-7322, Rev. I,
January 24. 19W 9. Lawrence Radiation Laboratory, Livermore. (ulifornia.

2. "A Method for the Numerical Calculation of Hydrodynamic Shocks." J. Von
Nwuimann and R. D. Richtmyer. J. Appl. Phys.. 21. March 1950. pp. 232-237.

3. "Heat Conduction in tie PISCES I DL Code," S. Jardin. TCAM 72-3. 1972.

?if

{-

V[

N •



APPEND)IX A

D)ERIVATION OF: EQUATION OF MOTION IN FLUME SYMMETRY

sin wher r)~~r

r+

F L=rdr -Er~ [R~r)

F RE~r+ d) i[(rdr) 32~~+ r

E(r*)TER(r) + R(r+ dr) ]ER(r+ dr) - R(r) IC A
Pre~ding1119 blnkrru~uuiii pIY



j ~New1I.toj(IIolI laiw lajkes [lie form

fPrrR(r*) ]2dr j~-E(r)ry[R(r))32 + E(r+ dr)n[R(r+ dr) ]2

-E(r*)Ti[R(r) + R(r+ dr) )[R(r+ dr) - R(r)]

R(r +dr) =R(r) +dr. , etc. gives

flRdr~ dr LER 2 2drErR A + 2drER

24
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APPENDIX B

RELA'IONS BETWEEN MEASURES OF VOLUME CHANGE

"i Notatlionl:

V = i ul volume

Vr relative volume = V -

V V- V0
A = hic l dilation = v - I V

0 o

c ~com~presini=- V a V I
r V 0 V

10 V

= C r V

- Vo PO

-A

+- -A L+A

C ___ C~ 1C -

p 00
Po ~~p  P" O PP

1- V - - -

Vr V -I V Vr r Vr r

V -V V -V V -v
0 V 0 V

I.o 25
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APPENDIX C

THE q STABILITY CRITERION

The derivation of the q stability criterion may be found in the references listed
at the end of this appendix. When reading these references, it will help to know the
corresponding notation. PISCES IDL CQ is c in Von Neumann and Richtrnyer's article
and a in Richtmyer's book, The R in Rtchtmyer's book is CQ time% the zone size ahead
of the shock. Richtmyer's V is specific volume, and his E is internal energy per unit

mass. Richtmyer's R is the same as PISCES IDL r. but for the distance across a zone
he often uses the more complicated expression,

Po It

where r is the original coordinate and o. is 1. 2. or 3 for plane, cylindrical, or spherical
symmetry, respectively.

A simplified derivat;on of the quadratic qQ stability criterion will be given here.
The same method may be used to derive the linear qL criterion. The differential equations
in plane symmetry are

V Tqq- C

where U is velocity and he is the zone size. We want to examine the case where pressure
is negligible compared to qQ. Set p equal to zero in the first equation. Eliminate relative
volume from the last two equations.

Thc. equations may be combined into one:

4,8
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In order to make this equation look like the diffusion equation, we want to take the
density out from inside the derivative on the right. Say that the variation of density iv
small compared to the other derivatives (Von Neumann and Richtmye, make the .ine
gruss assumption),

Rearranging.

Again following Von Neumann and Richamyer..,ay that the first derivative of velocity

varies slowly compared to the secoad derivative. Then the last equation is the diffusion
equation

au au

with the diffusion coefficient

a 2~Ix j.2.I.J

In Chapters I and 8 of Richtmyer's book, you will find that all explicit finite difference
approximations for the diffusion equation must sais', the stability criterion

t < Q/

Applied to the present case. the diffusion stability criterion is

ft < I.

4C 'a V

'1 hi% rcsult may be found in Von Neumann and Richtmyer'- article at Equation 65 with
the dil'"iu%itm cfficewn defin'd at Equation 45. In flh, (irt e'dition of Richtn , cr'% himik.
thi. result is Equation 10.32 anid in the second edition it is Equ3tion 12.48.

4.a
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Von Neumann and Richtmyer did not stop their derivation with this resslt, which
applies in general. but went on to relate this criterion to the sound speed behind the
shock front for the case of a steady uniform shock ire a gamma-law gas. "'hcir final result
depends on the shock strength, on the equation of %late. and on the assumption that
the state is uniform behind the shock. The lesson to he learned here is that even tile
greate-t mathematicians sometimes do not know when to stop an analytic derivation of
a relation to be used in a general purpose finite difference code. The simplest, most general
relation should be used. If one works toward a more specific analytic result to put into
a code. the code will he mome complicated, less flexible. and les, general.
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I. J. Von Neumann and R. D. Richtmyer. J. Appl. Phys., 21. pp. 232-237 (0950).
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__ j Publishers. Inc.. New York (1957). First Edition, pp. 218-222 or Second Edition.
__ pp. 320-324.

3. G. E. Forsythe and W. R. Wasow. Finite-Difference Methods for Partial Differential
Equations, John Wiley & Sons, Inc.. New York (190). pp. 78-82.
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APPENDIX D

ACCURACY OF THE PRESSURE-ENERGY ITERATION

Consider two simultaneous equations ;n two unknowns

X-g(y).

A pr')cedure is to be devised to solve the equations when the functional form of f or
g is not known a priori. An iteration may be defined by

X,-glf(x 0)J

Xi1-glf(x 1 ))

where x 0~ isa xist1 ))m n x,.is the i th approximation. The iteration converges if the

derivative of the combined function gf is less than one in absolute value.

- gfI< 1.0

(See Courant, Differential slid Integral calculus, Vol. I *p. 358.) If the derivative is greater
than 1, an iteration using the inverse of the two functions will converge.

If ht is lte error of the L th approximation, the error of the next approximation

b-~ f 2 x

In PISCES I DL and 2l)L the updated pressure and internal energy density are related
by a pair of simultaneous equations.

E n~i f(pn.1) -1 1n+1 + P )AVr+ + i

n+1
p -g(V",E'

9' where the superscript is thr cycle number and ais the equation of state. Following the
notation above.

Preceding pge ln
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wdI" p = v i, ii (;runcLisn ratio. Then Ihi o'vrgncc I.Ia Ior for IMe it.raliomIv g~l .rAV

The Gruneisen ratio is usually near 2 or smaller. Therefore. the error after one it ,tion
k about -AV/V times the error of the first guess and the error after two iturtions is
about (AV/V) times the error of the first guess.

frss
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APPENDIX' E

RELATION BETWEEN Cr et AND COMPRESSION
IN PLANE. CYLINDRICAL AND SPHERICAL GEOMETRY

Notation:

NR = undeformed coordinate of material point

r(R) = coordinate of material point in strained state

u(R) r(R)-R = displacement of material point

C = du/dr= radial strain

C compre-sion

Pt = tangeitial strain

Plane Symmetry

R+dR r(RtdR)

ust ained 51tained

V - [final volue [initcial volume)

a £C(R+dR) - r(R)3 - £(1+dR) - R]

- r(R) + r'(R)dR - r(R) - dR

- r'(R) - iKdR

a u '(R)dR

c- t 'V" ca..RueR () - -

£ 0.

"33



I Cylindrical SY11uinct.Iy

R r( R)

R~dR r(R) t dRI

2+ 2

r Er(R)+ 2rr'(R)dR-r2(R)1 - ER + 2RdR - Rp]

= [2(u(R) R)(u'() 1). - 2R~dR

= [2u(R)u'(R) +2u(R) + 2Ru' (R) +2R- 2R]dR

C AV 2uul + 2m 2Rul

11r + ur1 
(Za)

t RE; (2b)

C -C- c 
(20)

34I
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Spherical Syinnhetry

misrai t-sed

LV [ finaL volume] [iEnitial volume)

. [r
3 (R + dRt - r3 (R)) E(R +dR? )

r3 (R+ dR) - Cr(R) +r'(R)dR?' - ?3 (R) + 3r2(R)r'(R)dR

(R + dR? - R3+3R2JR

Ua Cr' (R) + 3r 2 (R)r '(R)dR - r 3 (R)) 3 R + 3112 dR i 33

- 3r2(R)r'(R)dR - 3RadR

3 [Eu(R) + R12 (u'(R) +i1 dR - 3R dR

= 3u(Ru'IR)+6u(R)RuI(R)+3R au (R) + 3U2(R) +6u (R) It + 3R--3R2 1dR

6~V = - LJUI + 6uRul + 3R2 u I + 3u 2 + 6uRjdR
-. '- V 3R 2dR

U/ + +~u 2uu' + ,+2

Iu *--+ R r+

r Rl

2u r + I r ON*
+ 2 RR2

C + 2  
00

r t
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APPENDIX F

FORMULAS FOR SOUND SPEED IN ELASTIC-PLASTIC MATERIAL

v tpeccific volume = /.

vo = initial specific volume I 1/po

V = v/vo w relative volume
p1 - (vo - v) /v

0

C - (vo-V)/Vo

Po - initial density

P - true density

The definition for the iongitudinal adiabatic sound speed is

V -v

--0}v 00

Poov
0 N, v 0 0 V

. ~ ~ P 0EC~ VE 10 1

. Thus,

.~ B,. (BC av( 2).( )

0. WoV '7 0a

Ths
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