AD-785 522

ADDITIONAL TWO-DIMENSIONAL WAKE AND JET-LIKE FLOWS

James E. Danberg, et al

Ballistic Research Laboratories

Prepared for:

Army Materiel Command

July 1974

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

	BEFORE COMPLETING FORM
REPORT NUMBER 2. JOVT ACCESSION N	0. 3. RECIPIENT'S CATALOG NUMBER
BRL Report No. 1727	AD-785 52.21
TITLE (and Substitio)	5. TYPE OF REPORT & PERIOD COVERE
	Final
ADDITIONAL INO-DIMENSIONAL WAKE AND JET-LIKE	
I LONS	6. PERFORMING ORG. REPORT NUMBER
AUTHOR()	8. CONTRACT OR GRANT NUMBER(*)
James E. Danderg	
kevin 5. Fansier	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
USA Ballistic Research Laboratories	AREA & WORK UNIT NUMBERS
Aberdeen Proving Ground, Maryland 21005	RDT&E 1T161102A33D
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Sun Fisenhower Avenue	JULY 1974
Alexandria. Virginia 22304	13. NUMBER OF PAGES
······································	-
14. MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office) 18. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office,) 18. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office,) 18. SECURITY CLASS. (of this report) UNCLASSIFIED
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office, 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unli	 18. SECURITY CLASS. (of this report) UNCLASSIFIED 18. DECLASSIFICATION/DOWNGRADING SCHEDULE
 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different 	18. SECURITY CLASS. (of this report) UNCLASSIFIED 18. DECLASSIFICATION/DOWNGRADING SCHEDULE mited. from Report)
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office, 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unli 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different	18. SECURITY CLASS. (of this report) UNCLASSIFIED 18. DECLASSIFICATION/DOWNGRADING SCHEDULE mited. from Report)
 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different SUPPLEMENTARY NOTES 	18. SECURITY CLASS. (of this report) UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADING SCHEDULE mited. from Report)
 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different SUPPLEMENTARY NOTES 	18. SECURITY CLASS. (of this report) UNCLASS IF IED 18. DECLASSIFICATION/DOWNGRADING SCHEDULE mited.
 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES 	18. SECURITY CLASS. (of this report) UNCLASS IF IED 18. DECLASSIFICATION/DOWNGRADING SCHEDULE mited. from Report)
 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES 	<pre>p) 18. SECURITY CLASS. (of this report) UNCLASSIFIED 18e. DECLASSIFICATION/DOWNGRADING SCHEDULE mited. from Report) pr)</pre>
 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side II necessary and identify by block numb TWO-dimensional, incompressible laminar flow 	II. SECURITY CLASS. (of this report) UNCLASS IF IED II. DECLASSIFICATION/DOWNGRADING SCHEDULE mited. from Report) r/ Reproduced by NATIONAL TECHNICAL
 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office, 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office, 15. DISTRIBUTION STATEMENT (of the Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side II necessary and Identify by block numb TWO-dimensional, incompressible laminar flow Boundary layer similarity solutions Webe and Loo 11 the solutions 	PIS. SECURITY CLASS. (of this report) UNCLASSIFIED IS. DECLASSIFICATION/DOWNGRADING SCHEDULE mited. from Report) Pr) Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE
 14. MONITORING AGENCY NAME & ADDRESS(<i>il different from Controlling Office</i>, 16. DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unli 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side II necessary and Identify by block numb Two-dimensional, incompressible laminar flow Boundary layer similarity solutions Wake and Jet -like flows 	II. SECURITY CLASS. (of this report) UNCLASS IF IED II. DECLASSIFICATION/DOWNGRADING SCHEDULE mited. from Report) Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U S Department of Commerce U S Department of Commerce

TABLE OF CONTENTS

Page

	LIST OF	ILLU	STF	TAS	10	NS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
Ι.	INTRODUC	TION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
II.	EQUATION	NS.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
III.	DISCUSS	ION	• •	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
	REFEREN	CES.	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	LIST OF	SYMB	OLS	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
	DISTRIB	UTION	LI	ST	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17

٠

Preceding page blank

LIST OF ILLUSTRATIONS

alleger with the a

,

Fig	ure																	2	age	
1.	B-6	Мар	of	Wake	and	Jet-Like	Solutions	•	•	•	•	•	•	•	•	•	•	•	12	/

Preceding page blank

I. INTRODUCTION

A number of authors¹⁻⁴ have described wake and jet-like similarity solutions to the steady laminar, incompressible boundary layer equations. The purpose of this note is to extend these solutions into several new areas.

II. EQUATIONS

Solutions are sought to the two-dimensional incompressible boundary layer equations:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = u_e \frac{du_e}{dx} + v \frac{\partial^2 u}{\partial y^2}$$
, (2)

with the general boundary conditions

$$y = 0: u = u_w(x), v = 0,$$

 $y \rightarrow \infty: u \rightarrow u_w(x).$

A convenient form of the similarity equations may be obtained by assuming that

$$G'(\eta) = (u - u_e) / (u_w - u_e), \eta = y/h(x),$$
 (3)

so that (1) and (2) become

$$G''' + A [(G + Bn) G'' - \beta (G'^2 + 2 BG')] = 0$$

$$G(0) = G'(\infty) = 0, G'(0) = 1,$$
(4)

where

$$A = \pm 1$$

$$B = u_e / (u_w - u_e)$$

- 1. Stewartson, K., "Further Solutions of the Falkner-Skan Equation," Proc. Cambridge Phil. Soc. <u>50</u>, pp. 454-465 (1954).
- 2. Kennedy, E.D., "Wake-Like Solutions of the Laminar Boundary Layer Equations," AIAA Journal 2, pp. 225-231 (1964).
- 3. Steiger, M.H. and Chen, K., "Further Similarity Solutions of Two-Dimensional Wakes and Jets," <u>AIAA Journal</u> <u>3</u>, pp. 520-528 (1965).
- 4. Schlickting, H., "Laminare Strahlausbreitung," <u>S. angew. Math.</u> Mech. 13, pp. 260-263 (1933).

Preceding page blank

$$u_{e} \sim u_{w} \sim x^{\beta/(2-\beta)}$$
$$h(x) = \sqrt{(2-\beta) ABv x/u_{e}}$$

Wake and jet-like solutions to (4) have the added restriction that G''(0) = 0. The present work is intended to consider those values of A, B, and β for which such solutions can be found.

The parameter B essentially defines the wall to edge velocity ratio, and β is the usual velocity gradient parameter. The constant A is a more complicated parameter because it takes on the values of ± 1 depending on both B and β . If the solutions are to be real then h must be real and (2- β) ABx/u ≥ 0 . Furthermore, by considering the asymptotic behavior of (4) at large n, one may show that the outer boundary condition is approached through an exponential decrease (decay) of G' for the case when AB > 0 and $\beta \leq 2$. There are two other cases: first for $\beta > 2$, AB > 0 the outer boundary condition is again approached with exponential decay of G' but this is a so called "backward boundary layer"⁵ in which x/u ≈ 0 . The second case is where AB < 0 with $\beta < -1/2$ and x/u ≈ 0 and thus this is also a backward boundary layer but with asymptotic algebraic decay of G'. The latter case is not the usual kind of boundary layer although they have been discussed elsewhere⁵, 6 in some detail.

III. DISCUSSION

Stewartson's¹ original work and the more recent paper by Kennedy² concerning the wake-like flows in the region B < 0 is shown in Figure 1. Note that B = -1 and $\beta = -.1988$ specifies the Falkner-Skan separation profile, and at B = -1 and $\beta = 0$ the solution corresponds to Chapman's free shear layer solution². Steiger and Chen³ have extended these results to B > 0 which are jet-like solutions (u may be considered

positive without loss of generality; thus $B \ge 0$ corresponds to $u_{\mu} \le u_{\mu}$

- 5. Goldstein, S., "On Backward Boundary Layers and Flow in Converging Passages," Journal of Fluid Mechanics 21, Part 1, pp. 33-45 (1965).
- Brown, S.N. and Stewartson, K., "Similarity Solutions of Boundary-Layer Equations with Algebraic Decay," <u>Journal of Fluid Mechanics</u> 23, pp. 673-687 (1965).
- Danberg, J.E. and Fansler, K.S., "Similarity Solutions of the Boundary Layer Equations for Flow Over a Moving Wall," BRL Report No. 1714, U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland (1973).

and these flows may be designated as jets). They did not point out, however, that the limiting case of u = 0 (i.e., B = 0) corresponds to Schlichting's⁴ two-dimensional jet into a quiescent fluid. Steiger and Chen also reported the counterflow jet solutions where $-1/2 \le B \ge -1/3$ and $\beta \ge 1$ but no solutions were found in the $0 < \beta < 1$ range. In a recent investigation⁷, no solutions with G"(0) = 0 were found in the $0 < \beta < 1$ range which confirms Steiger and Chen's observation.

Limit $\beta \rightarrow \pm \infty$

Steiger and Chen³ reported that when $\beta = \infty$, $u_w/u_e = -2$ (i.e.,

B = -1/3), based on numerical integration of the similarity equations. A closed form solution can be obtained if (4) is treated as a singular perturbation problem where the limiting form of the equation is obtained through the use of the following transformations:

$$\overline{G} = \sqrt{|\beta|} \quad G \text{ and } \overline{\eta} = \sqrt{|\beta|} \eta$$

Dividing the resulting equation by β and taking the limit for large β gives

$$\bar{G}^{11} - A\sigma (\bar{G}^{12} + 2B\bar{G}^{1}) = 0$$

where $\sigma = \beta / |\beta|$. This equation can be integrated twice in closed form using the boundary conditions that as $\bar{\eta} + \infty$, $\bar{G}' \rightarrow 0$, $\bar{G}'' \rightarrow 0$ and $\bar{\eta} = 0$, $\bar{G}' = 1$ to give (note that $AB\sigma = |B|$):

$$\bar{G}' = 3B \left\{ tanh^2 \left[\sqrt{|B|} / 2 \bar{n} + tanh^{-1} \sqrt{1/3B + 1} \right] - 1 \right\}$$
 (5)

where $B \leq -1/3$ and $\bar{G}' > 0$. Equation (5) is a generalization of the converging channel flow problem⁸ (B = -1) to include the moving wall situation. The B = -1/3 limit agrees with the results of Steiger and Chen and has the following velocity distribution

$$\vec{G}' = 1 - \tanh^2(n/\sqrt{6}).$$

Algebraic Decay Solutions

The limiting cases at B = -1/3, $\beta = -\infty$ and B = 0, $\beta = -1$ are connected by a set of solutions involving asymptotic algebraic decay of G' with \bar{n} . The asymptotic form of G' at large n with AB < 0 and $\beta < 0$ can be written as (following techniques discussed in reference 9):

$$G'(n) \sim [\sqrt{|AB|} (n - \delta^*/B)]^{2B}$$
.

Although no wake-like solutions exist for $\beta > -1$, the displacement thickness becomes infinite as $\beta \rightarrow -1/2$ for solutions with nonzero G" (0). In general the algebraic-decay solutions are more difficult to compute since any error in the solutions grows exponentially with n for large values of n.

^{8.} Pohlhausen, D., "Zur naherungsweisen Integration der Differentlialgleichung der Grenzschicht," ZAMM 1, pp. 252 (1921).

^{9.} Laminar Boundary Layers, L. Rosenhead (Ed.), Oxford University Press, Oxford (1963).

Solutions were obtained at $\beta = -1.1$, -1.5 and -2.0 over a range of B and were used to determine the value of B for G''(0) = 0 by interpolation; the results are shown in Figure 1.

The fact that the wake-like solutions (B < -1) or the jet-like solutions (B > 0) have a limiting point at $B = \pm \infty$ and $\beta = -1/2$ has been recognized by other investigators. At that point $u_w = u_{\Theta}$ and thus $u \equiv u_{\Theta}$ throughout the boundary layer so long as G' is finite. As shown here, other limiting solutions can also be found. Although the velocity distributions are degenerate, the limiting case is considered as a singular perturbation problem where the singularity is removed by the transformations:

$$G(n) = F(n_1) / \sqrt{|AB|}$$
 and $n = n_1 / \sqrt{|AB|}$

one finds that the equation for $F(n_1)$ is identical to the large n_1 approximation, i.e.,

$$F''' + \eta_1 F'' - 2 \beta F' = 0, F'(\eta_1) \equiv \frac{dF}{d\eta_1} .$$
 (6)

A series solution of the following form can be assumed:

$$F' = K \eta_1^{\gamma} \exp(m\eta_1^2) \sum_{n=1}^{\infty} p_n/\eta_1^n.$$

The result, which has been derived in reference 7, has special properties at certain values of β given by

$$\beta_n = -(2n - 1)/2, n = 1, 2, 3, ...$$

The series then reduces to a finite number of terms and can be made to satisfy the inner as well as outer boundary conditions. Some of these solutions are:

n —	β <u>n</u>	F' (n ₁)
1	-1/2	$exp(-n_1^2/2)$
2	-3/2	$(1 - n_1^2) \exp(-n_1^2/2)$
3	-5/2	$(1 - 2 \eta_1^2 + \eta_1^4/3) \exp(-\eta_1^2/2)$
é	•	٠

The n = 2 case corresponds to the limiting case for a Libby-Liu¹⁰ family

10. Libby, P.A. and Liu, T.M., "Further Solutions of the Falkner-Skan Equations," <u>AIAA Journal</u> 5, pp. 1040-1042 (1967).

of solutions with boundary layer velocity overshoot. The G''(0) = 0solutions for this family are indicated as a dashed line in Figure 1 because the B = -1 point is the only other value currently available. Higher n's correspond to the larger negative β families whose existence was noted by Libby-Liu¹⁰. Solutions to (6) may be obtained for any β by numerical integration; however, G''(0) is infinite for all β (except at β_n) because G''(0) = $\sqrt{AB_1}$ F''(0). These results for the limiting case may be used to determine the large B approximations in a perturbation series approach similar to that used by Mirels¹¹ for $\beta = 0$; one has

$$G(n,B) = (1/\sqrt{|B|}) F(\sqrt{|B|} n) + 0 (1/|B|).$$

^{11.} Mirels, H., "Laminar Boundary Layer Behind Shock Advancing into Stationary Fluid," NACA TN 3401, March 1955.

ALC: NO.

12

REFERENCES

- 1. Stewartson, K., "Further Solutions of the Falkner-Skan Equation," Proc. Cambridge Phil. Soc. 50, pp. 454-465 (1954).
- 2. Kennedy, E.D., "Wake-Like Solutions of the Laminar Boundary Layer Equations," AIAA Journal 2, pp. 225-231 (1964).
- 3. Steiger, M. H. and Chen, K., "Further Similarity Solutions of Two-Dimensional Wakes and Jets," AIAA Journal 3, pp. 520-528 (1965).
- Schlichting, H., "Laminare Strahlausbreitung," <u>Z. angew. Math. Mech.</u> 13, pp. 260-263 (1933).
- 5. Goldstein, S., "On Backward Boundary Layers and Flow in Converging Passages," Journal of Fluid Mechanics 21, Part 1, pp. 33-45 (1965).
- 6. Brown, S. N. and Stewartson, K., "Similarity Solution of Boundary-Layer Equations with Algebraic Decay," Journal of Fluid Mechanics 23, pp. 673-687 (1965).
- Danberg, J. E. and Fansler, K. S., "Similarity Solutions of the Boundary Layer Equations for Flow Over a Moving Wall," BRL Report 1714, U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland (1973).
- 8. Pohlhausen, D., "Zur naherungsweisen Integration der Differentlialgleichung der Grenzschicht," ZAMM 1, p. 252 (1921).
- 9. Laminar Boundary Layers, L. Rosenhead (Ed.), Oxford University Press, Oxford, p. 247 (1963).
- 10. Libby, P. A. and Liu, T. M., "Further Solutions of the Falkner-Skan Equations," AIAA Journal 5, pp. 1040-1042 (1967).
- 11. Mirels, H., "Laminar Boundary Layer Behind Shock Advancing into Stationary Fluid," NACA TN 3401, March 1955.

*

LIST OF SYMBOLS

.

A	constant = ± 1
В	wall and edge velocity parameter, $u_e / (u_w - u_e)$
F	transformed streamfunction, $\sqrt{ AB }$ G
G	nondimensional similarity streamfunction
h	function of x in similarity variable, $\eta = y/h(x)$
K	constant
m	constant
n	index :
p _n	constants
u	local velocity in x direction
^u e	boundary layer edge velocity
u _w	wall velocity
v	local velocity in y direction
x	coordinate along the surface
у	coordinate normal to the surface
β	pressure gradient parameter $u = v = v = \frac{1}{2} v = $
δ*	displacement thickness
Y	constant
ν	kinematic viscosity
η	similarity variable, $n = y/h(x)$
^ח 1	transformed similarity variable, $\eta_1 = \sqrt{ AB } \eta$