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INTRODUCTION 

The reader is expected to be generally familiar with the 

application of group theory to electronic band structure, including 

representation theory, synmetrization, and compatibility. We outline 

a standard procedure for determining the "contained" trial expansion 

functions (the ^ ) used in a Modified-Plaae Wave (MPW) Method1'4 

band structure calculation. The MPW method is a variational method in 

which the eigenfunctions are represented as 

?**[t) - \$'nQ&(?) (1) 

In eqn (1), k labels a symmetry point in reciprocal space (Tc-space), 

A labels the irreducible representation, the Of are atomic-like 

functions (a.l.f.'s) or plane waves, and the coefficients A are 

determined by the Variational Procedure. The flh  are symmetrized 

according to the k* representation. The "contained" ^'s for a 

particular representation are those a.l.f.'s or plane waves which 

symmetrize to non-zero values for that representation. 

1. E. Brown and J.A. Kruahansl, Phys. Rev 109, 30 (1958). 

2. D. Gray and E. Brown, Phys.* Rev. 160, 567 (1967). 

3. D. Gray, Watervliet Arsenal Technical Report WVT-7005 (1970). In 
comparing the present report with ref. 3, statements in ref. 3 such 
as "PR takes f, to ta" should be replaced with "Pp, takes a function 
centered at ta into a similar function centered at tf". 

4. 0. Gray, Watervliet Arsenal Technical Report WVT-7163 (1971). 
Eqn (22) of ref. 4 should be R"1 s^ * ^ * $ 0 

&,?^<|iSfcKgaW*W*Mift»*i<trvw.-* Utai 



In Part I we outline both how one determines, a priori, what 

types of Ä i  will be contained in a particular representation and 

hew one works out the explicit functions. Examples are given 

utilizing the simple cubic system (CujAu and CsCl structures). 

In Part II a perturbation application is involved in which the 

perturbed lattice has a different symmetry from the original lattice. 

Using an fee to simple tetragonal change as an example, we show how 

the contained functions for the perturbed lattice may be readily 

obtained from those of the original lattice. 

Throughout this report the discussion is restricted to symmorphic 

groups. 

NOTATION 

The labeling of all group operators follows Bouckaert, 

5 
Smoluchowski, and Wigner (BSW). For the cubic system, the symmetry 

points and irreducible representations are labeled as per BSW, In the 

"reduced scheme" used in Part II the representation labels are quite 

arbitrary; we have tried to follow Koster's labeling system as far as 

possible. Throughout this report, the number of members in a group is 

given by g and the dimensionality of an irreducible representation by h. 

5. L.P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58 
(1936). 

6. G.F. Koster in "Solid State Physics, Vol 5" (Academic Press, 1957); 
page 173. 
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I 

Atomic sites are labeled by vectors from the origin of the chosen 

coordinate system to the center of the atomic "sphere" in question. 

Two atomic sites, s^ and sj, are "equivalent" if they are separated 

by a primitive lattice vector, i.e., if s^, «  s^ f- t . 

.■■: 



PART I: THE STANDARD PROCEDURE 

CHARACTER TABLES AND D MATRICES. 

It is first necessary to set up (or obtain from standard 

5-9 
references  ) the pertinent character tables. For representations of 

dimension higher than one it is necessary to obtain the actual D 

matrices as well; this may also be done by recourse to references or 

by working out the individual cases. If the latter procedure is used, 

one generally uses a trial and error method to first determine "basis 

functions", i.e., functions which satisfy 

k 

J» 
A function  rx is said to belong to thexth row of the irreducible 

representation D^*' (R) if there exist "partner" functions  f. « A 

$,•''ff»til,)'"$■     suchthatMthe tf 
satisfy (2). It should be noted that (2) implies (for a 2-dimensional 

representation) 

(3) 

as a matrix equation, i.e., that 

U -ftp. (4) 

7. "Group Theory", E. Wigner (Academic Press, 1959). 

8. "Group Theory and Quantum Mechanics", M. Tinkhan. (McGraw-Hill, 
1964). 

9. "Quantum Theory of Molecules and Solids, Vol. 2 - Symmetry and 
Energy Bands in Crystals", J.C. Slater (.McGraw-Hill, 1965). 
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Note that the matrix in (4) is D-transpose (ti)  and not D itself. 

This trial and error procedure must give D's which satisfy 

r< \*uK#K>x W»'S»»' 
(5) 

where g is the order of the group and h is the dimensionality of the 

representation; i and j label irreducible representations. The D 

matrices must also satisfy 

DCS)KT)-X$T) (6) 

(The set of D's which satisfies eq. (2) will automatically satisfy 

eq. (6); see pgs 108-9 of ref. 7.) 

The operation "triads" for the cubic system are given in Table 

A-I of Appendix A. Character tables for selected symmetry points of 

the simple cubic k-space zone are given in Appendix 0. 

ATOMIC-LIKE FUNCTIONS 

A. Inclusion of Non-Central Atoms, i.e., More Than One Atom per 
Primitive Cell. 

In real space we indicate the location of all non-central atoms 

in the primitive cell by s vectors. The Cu^Au crystal, for example, 

has a simple cubic lattice with Au atoms at the cube corners and Cu 

atoms at the face centers as shown in Fig. 1. One may take the 

origin at an Au atom, use the cubic axes to define i, j, k directions, 

and define 

!■„■»..■<!!■■  .r^fc^--  fcWiiMtlWM'''SiWatrUt'i 
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o Au atoms 

Cu atoms 

Figure 1. A unit cell in real space for the 
CU3AU structure. The numbering 
of atomic sites in the primitive 
cell is consistent with eqs. (7a) 
and (7b) of the text. 
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I 
sx = (a/2) (000) 

for the central (Au) atom, and 

t2 s (a/2) (110) 

(7a) 

(7b) s3 a (a/2) (101) 

f4 a (a/2) (Cil) 

to describe the location of the three Cu atoms in the primitive cell. 

For cubic systems, the unsymmetrized atomic-like functions 

(a.l.f.'s) used in a band structure calculation may conveniently be 

taken to be of the form 

0VWA3X.^) 
where jUkO   is tne ordinary radial atomic function and X is chosen 

from the set of cubic harmonics given in Table B-II of Appendix B. 

These functions will be centered on particular atomic sites; i.e., for 

an a.l.f. centered on site 2, for example, A m  r-Sj. 

As a second example consider a simple cubic lattice with two 

atoms per primitive cell, A type atoms at the cube corners and B type 

atoms at the cube center (eg, CsCl). Taking the origin at an A type 

atom and using the cubic axes to define I, j, k, one has 

(8a) si = (a/2) (000) 

for the central (A type) atom, and 

t2  s (a/2) (111) (8b) 

for the non-central (B type) atom. The real space uuit cell for the 

CsCl type lattice is shown in fig.  2. The simple cubic reciprocal 

■i&.iU&tfjX4>#3-°--r :----<^*s<--^ '•■ :  - ■■"■" ■■"''° "' ■■'■■*■'■*■" '•--" . ^%«**W^i»-i^i^ ^masmasKi 



o (A type atoms) 
C& (B type atoms) 

. 

Figure 2. A unit cell in real space for the CsCl 
structure. The numbering of atomic 
sites in the primitive cell is consistent 
with eqs. (8a) and (8b) of the text. 
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space (k-<: ace) Brillouin zone is shown in Fig. 3; this is the first 

Brillouin zone for any simple cubic lattice and is thus valid for both 

Cu3Au and CsCl type structures. 

For the non-central atoms the rotation of one site into another 

must be considered in determining symmetrized functions. The basic 

symmetrization formula (see ref. 7) is 

(9) 

where fy is the "symmetrized" function generated from the 

"unsymmetrized" function £' ; A labels the irreducible representation. 

Consider, r r example, a function defined on a particular site, 

-4 
with the lattice translation vector* £" running over all the 

primitive cells of the crystal and 

J7/tf = o  t» fi% k (ID 

with d equal to the radius of an "atomic sphere" at site "s^ . When 

\ (£) of eq. (10) is substituted into the symmetrization formula (9) 

one must consider the rotation of r from one site to another. (It 

should be understood that Pf^-TpiJ)« iflC'P-£(-.# ) ) 

i.e., the operator PR affects only r and not 'h or ^ ; this point 

is discussed in detail below.) For the CsCl structure every group 

operation takes the non-central site into itself or into an 

-■;-:.  A .'•..■;-:,'■'.*!..-.,  ■> »::■'; .-<.',..:• i ■■■' ■»■■-■■■.'. <■'...■■..■.. -:-,v:-.'..'i;v.j ■ iV.:j,v-s*;-i. .■.4'.'v.i*./-n*^»B.:«^.*-'".- .iW«d -;'=■.■=•_» 



Figure 3. The first Brillouin zone for the 
simple cubic lattice. Valid for 
both the Cu_Au and CsCl structures. 
Selected symmetry points are labeled 
in the BSW notation. 

10 



"equivalent" site, i.e., a site reachable by a £ vector f'.om the 

original site; this makes symmetrization simpler than in the Cu3Au 

case wheie there are three non-equivalent non-central sites. 

Prediction and construction of the contained functions for both cases 

are discussed below, 

:■■' 

-■', 

B. X    Character Tables. 

The X  character tables may be used to determine n« . i.e., how 

many times functions of a given X  value will "show up" in a given 

irreducible representation. The pertinent equation is 

*)=('/£)2RxV)XW (12) 
where X (R^ *s the character for operator R in ehe A th 

representation and X (R) *s taken from the X character table. 

Eq. (12) follows from the orthogonality equation (eq. (5), above) and 

the fact that, for the various k points, the X representations are, 

in general, reducible.  (See sections 3-2 through 3-6 of ref. 8.) 

1. For the central atom, a single Jt character table suffices 

for aU symmetry points.  X (R) "»ay be obtained from 

X*(fMAu<jle &) = I + 3cos4 + Äcwae + • ' • + ItotH     (13) 
(See pg 155 of ref. 7; in particular, eq. (15.7) and the associated 

discussion.) For even X  >   X k*R)» wnere J is the inversion 

operator, has the same sign as X (R)J for odd X » X(JR) s ~X (R) • 

In this way one obtains the Jt character tables C-I (cubic system) 

11 

•■i&Kmmmmtm 



and F-I ("reduced" simple tetiagonal) given in Appendices C and F 

respectively. For X > 0 these characters can be "broken down" into 

the appropriate "p" representations as indicated in Tables C-I and 

F-I. 

2. For the non-cen'.ral atoms, obtaining the S.  character tables is 

somewhat more involved. 

(u. Review of manipulations involved in operating on a 

function: Following ref. 7, 

PR f(?') a f(?) (14) 

means that the function PRf has the same value at ?' as f has at r 

with 

f* Rr. (15) 

Suppose we have a function f represented by the contour lines in 

Fig. 4a. Consider an R such that P f is the function shown in Fig. 4b. 
K 

suppose that f(r) in Fig. 4a has the value 6 when x a a, y » b, z a 0; 

then we want Pf(r') in Fig. 4b to have the value 6 when x'* b, 
K 

y'* -a, z's 0. Thus 

«< a   7   »  A (16) 

12 



(a) The function f    *     (b) The rotated function P f 
K 

Figure 4. Rotation cf a function. 

13 



so that eq, (15) becomes 

I 

and in Fig. 4b, r*' » Rr and s'» Rs*. 

Let us see what this means in terms of our "triad" system, i.e., 

PR associated with (xf, y\ zf) -* (yf xf z'), say. (A list of the 

cubic triads is given in Appendix A.) For this triad, to find P_f, we 

keep the same functional form f, but replace x' with -y7, y with x/', 

and z'with z' .  To be consistent with eqs. (14) and (15) 

9C = 

2 s Rl3x' + R^' 4- R»*' 
(15a) 

(From (15), r a R""' r', and, since the R's are real, orthogonal 

matrices, R""' u  R transpose.) To be consisvoAt with the triad 

chosen, x « -y', y » x', z a z'j we must have R-, * -1, Rj? « 1» R33* 1 

so that the R obtained here is identical to the R in (16); thus the 

triad (y', x', z') is associated with the PR used in Fig. 4. 

Further, let f(x«a, y«b, zsO}« 6 as before; then, using the 

triad notation, and the triad (y', x', z') as above; 
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y(x', y't z')  « f(y", x', z'), 

so that 

PRf(b, I, 0) « f (a, b, 0) « 6, 

as desired. 

We now consider 

PRf (*'- n 

with Va. fixed vector. The matrix I transforms r' not r'- s^ this is 

equivalent to the statement thac, for proper rotations, PR represents 

a rotation about an axis through r'«. 0, not through #- tf» 0. We 

now show that 

pR «*'-*/>» p(rV'-S') (17) 

(and not   P^'-Su)): 
Define \($<) s $($'-?) 

^ PRf (*'-*')   =PRfcM 

using (14) and (15), -lifrV) 
-P(*V-r) 

Referring to Fig. 4, if f (r - s) * 12, say, at r ■ s\ we want 

PRf(r' - t) s 12 at t'sR?« ft; using (17), 

PRf (?' - t) « f(R-» $£)4) a f(0) m 12, as desired. 

We now consider writing a rotation (about r ■ 0) of a function 

centered at "t of Fig. 4a as a rotation about an axis through ras 

followed by a translation. 

IS 
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Let 

PRfCp)» fcR-'t) • g(p). (18) 

i.e., g represents the rotated function (rotated about an axis through 

t 0).    Using (17) and (18) 

pRFM- f (H-i) - f (R-'lM*]) = j(M0.    a« 
All our functions are Bloch functions, so we may write 

Substituting this into eq. (19) we have 

where £ is any primitive translation in real space. 

Now let 

It » f + € , (21) 

i,e., for a given ? we allow only those IF which satisfy (21); thus if 

s is a vector defining a non-central atomic site, Rs is a vector to an 

equivalent site. Substituting (21) into (20) 

PRW-*)- jN)e*(fe"t]
( (22) 

Referring to eq. (18), g (r - s) represents the function f after 

rotation about an axis through r m's; thus, for Bloch functions, a 

rotation about ?s0 is equal to a rotation about r at s\ times a 

factor exp £ — ik» (Rs - *§)"] with the restriction on R implied by 

(21).. An alternative derivation of this "parallel axis" theorem is 

given in Appendix D. 

(b) It is now easy to see how to extend the predictive 
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equation (eq. (12)) to the non-central atoms: Centering a given X" 

type function atf »t and rotating about "f • 0 is equivalent to 

rotation of this function about t m t  (represented by g(r - s*) in (22)) 

multiplied by a phase factor. If Xfc(R) is tfte trace for the central 

atom, then we will have this same trace associated with g(r - %). 

Thus 

Xi«(«)-*i 00 e^'<**"*> 
Using It? s £ 4- K and the fact that Rs - "§ is a t vector, we may 

write. (23) as 

Xt,W- XjOO**'^ nCjSv'v       "C^V (23a) 

Thus, combining eqs. (12) and (23), 

*\<.~«>» ^Qi/mi^X^'® (24) 

or, using (23a), 

»A (no„-centra1, = 0/|)IRX
A(R)X^|,2;e"'lt'^-^  (24a, 

We sum on V   since we must consider functions on all the non-central 

sites; the prime on the V sum in (24) and (24a) indicates that, for 

a given R, only those "sv   are *al lowed for which Rs^ » s^ -ft  • For a 

given Tc we may perform the V sum for each R and write 

nX (non-central) « (l/j)ZRX
X(R) ^[fCf (25) 
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with 

(26) 

(26a) 

(26b) 

Consider Cu Au as an example. The primitive cell may be taken as 

in Figure 1 with the three Cu sites labeled 2, 3, 4 and 5^ given by 

(7b). We now illustrate how to find  yC?'Jr W *o* i.» 1 *°* the T 
nC 

pcint located at 1c ■ (2ir/a) (j^ b), 0 < b<Jf in Figure 3. Under 

the identity operation E all three non-central sites go into themselves 

so Rs^ - §, » 0 for all three s^, ; thus all three phase factors in 

eq. (26) are +1 and 2y»+*3; then, sinee eq. (13) gives 

Xt"' (E) • 3, we I.«ve )('JT(E) « 3x3* 9. The operation cj(z), 

i.e., 180° about the z axis, takes all three Cu sites to corresponding 

equivalent sites. Using eq. (26b), £ - Rk* » (2r/a)(110). This gives 

2JT when dot multiplied with s^, IT when dot multiplied with s3 or s^; 

SL   is then 1-1-1'm -1 and, since eq. (13) gives %%  (180*) m  -1, we 

have 

XjJCCjCO)- -1X-1 « 1. 

For the C4(z) operation (90° about z) represented by the R of eq. (16) 

(i.e., operation number 5 in our triad list of App. A) only site 2 goes 

into an equivalent site. For this R, k - Rk • (2f/a) (010); this 
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gives ir when dot multiplied with t2  so ^« -1. Eq. (13) gives 

*<! (90*) « 1 so 

X'ffl^C«)) * 1 x -1--1. 

In similar fashion one finds   X''** (JC^00) * _1 and 

X'iT (JC2C#35)) x 1. (JC* (x) takes all three s^ into equivalent 

sites, JC_(#35) takes only s^ into an equivalent site. Both C?" and 

C2 are 18. "* operations; eq. (13) gives }£L (18(T) * -1 but, since JL 

is odd,  %[(JC**) and X^O^) « -lx Xj. (180*)* -lx-1 «1.) Since 

it is only necessary to work out one operator in each class, we have 

thus obtained the Jl»l trace table for the T point for the non-central 

atoms of Cu,Au type structures. 

class E cf(z) 2C4 2JCJ 2JC2 

xncft-0 9 1 "1 -1 1 

(The number in front of the BSW class label simply gives the number of 
I / 

members in the class.) In Appendix C we give 2Ty for all eight 

operators of T (Table C-IV) and the complete (JL* 0,1,2) character table 

I (Table C-III). 

For interior k points eq. (26b) reduces to 
I 

I fc^fcf- XW&H-Z-t), (interior^)   (27) 

since, for interior k, Rk *"k for all R in the point group of k so that 

one need only ascertain how many sites go to equivalent sites under 

each operation R. Since, for a given R, the delta function in (27) is 

independent of k, the same J^-character table will suffice for all 

interior-k points for the non-central atoms (for a given crystal 
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structure). More precisely, one may sake a single 'tester table" 

listing xi 00 for •*cl» R o* the füll point group, then immediately 

write down the Jt-character table for a given intorior-t pojnt by 

simply selecting those R belonging to the point group oft. An 

interior-k master table for CuTAu type structures is given in Appendix 

C (Table C-II). 

For points on the zone boundary the "master table" idea above is 

not of much use and a different JL character table is (in general) 

required for each k point for the non-central atoms. Table C-III of 

Appendix C (T point of simple cubic Cu3Au structure) is an example of 

such a table. The phase factors used in constructing Table C-III are 

given in Table C-IV. Because of these phase factors, the entries in 

Table C-III are not (in general) equal to the entries for corresponding 

R.JL in Table C-II (interior-k points). 

(c) Systems with only one non-central site. In such a system 

this non-central site must go into itself (or equivalent) under every 

operation of the group. The CsCl structure with two atoms per 

primitive cell, an A type atom at the corners and a B type atom at the 

body-center position (see Fig. 2) is an example of such a system. 

For the interior-k points of such a system, eq. (26) reduces to 

X^Y(R) « X* 00 .     (°ne non-central atom; interior-k) (28) 

For these cases eq. (25) reduces to eq. (12) so that the central atom 

Ä character table also suffices for the non-central atom. (See Table 

C-I, Appendix C.) 
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For k points on the zone boundary different Jl character tables 

will (in general) be needed for each 1c point and the factor 

must be evaluated for each k, each R. For CsCl type structures t2  is 

given by eq. (8b). As an example, the A character table for the 

symmetry point T of the C'Cl structure is given as Table C-VI (App. C); 

phase factors used in constructing Table C-VI are given in Table C-VII. 

C. Using the JL  character tables to predict the pattern of contained 

functions: We give three examples; an interior point of Cu3Au, an 

exterior point of CujAu, and an exterior point of CsCl. 

1. Simple cubic Cu^Au; A(z) i.e., an interior point on the z 

axis, k =• (2TT/a) (00b), 0 < b <£ . 

(a) Central atom: Using the A character table (B-III), the 

appropriate Jc character table (C-I), and eq. (12) one finds that: 

Aj contains Jfc.« 0 

JL~ 2 (rla) 

A^ contains Si = 2 ( P^ ) 

AJ  contains no a. 1. f.' s 

/^ contains  i* 2 ( P^') 

A- contains X s 1 

i = 2 ( ?zsl  ) 
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Once all the irreducible representations for a given symmetry 

point have been listed as above, there is an important consistency 

check that may be used: 

2\*4.\ = fbM) (29) 

where the sum is over all the irreducible representations of the 

symmetry point, fl» is the number of times an a.l.f, function of 

type X  shows up on representation A ,  and h^ is the dimensionality 

of the A representation, (p is the number of atoms involved; for 

the central atom case p s 1.) Eq. (29) simply reflects the fact 

that, when a reducible jL  representation is decomposed into the 

irreducible representations of a giver, symmetry point, the to'.al 

dimensionality of the decomposition must equal the original 

dimensionality. In the case above we see that this sum is: 

lxl «= 1 for jß«0; 

lxl + 1x2 m  3 for JUl; 

lxl + lxl + lxl + 1x2 s 5 for jfc»2; 

all agreeing with eq. (29). ( &$■ is 2-dimensional; the other /X 

representations are 1-dimensional.) Eq. (29) can be extended to check 

the individual "f>" breakdown as expressed here by P|j^ and P%£*    . 

The right hand side of (29) is just the dimensionality of the 

representation for JL ;  thus, when JL  is decomposed into different (p ) 

representations, 

A*»/P "V^A S P(dimensionality of J?( pA )) (30) 
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Checking this for the cas* above: 

lxl + lxl as 2 for jf «2, PiX type; 

lxl + 1x2 * 3 for JG*2, Pay'type; 

borh agreeing with eq. (30). ( fj4 is 2-dimensional; t*ff/ is 

3-dimensional.) 

(b) Non-central atoms: Since A  is an interior—k point we use 

the Cu Au interior-k "master table" (C-II) and the A character table 

(B-III) with eq. (25). We find: 

A| contains J[s0 (twice) 

Si s 1 (twice) 

J5 * 2 ( PÄ) (three times) 

Aj_ contains X = 0 

jf«2 (pa) (three times) 

A/ contains  .£= 2 ( f]^/) 

A^ contains  **2 ( [lc-0 (twice) 

As contains  Jfs 1 (three times) 

X s 2 ( f^') (three times) 

We see that both (29) and (30) are satisfied (ps 3 here). 

2. Simple cubic CU3AU; T point at 

k ä (2ir/a)(£.A b), 0 < b <^ . This is an exterior point (see 

Fig. 3). The character table for T is identi al to that for A . For 

T as chosen iere, the 8 operations are identical to those for A at 
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C2fT/a)(00b), 0<b<i . T as chosen has equivalent points (£'* f+t) 

at (2ir/a)(iib), (2ir/a)(|4b). and (27r/a)(I|b). 

(a) Central atom: Since the same character table (B-III) and 

the same JL  character table (C-X) will be used here as in example 1 

above (the same operations will be selected out of table C-I as for 

A), we obtain the same pattern of contained a.l.f.'s as for the A 

point central atom, above. 

(b) Non-central atoms: Eq. (25) must be used here with 

A Jr    (R) determined by using eq. (26). The resultant x  character I1C 
table is given in Appendix C. Table C-III gives %  ' (R) constructed •*,*, 

as per eq. (26); the exp (~ ik»(As^-Syj] factors are given in Table 

C-IV. One finds that: 

T. contains J^s 1 

Ä*2 (Pa?/) (twice) 

T2   contains   Jfcs 1 

JU 2 (Pay#) 

T,/ contains   ^s 1 

i* 2 (fjx) 

T / contains   X 

X- 1 (twice) 

4-2 (p(J>) 

-t-2(fc/) 
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T5   contains     £• 0 

Jl*l (twice) 

i*2 (Pu)   (twice) 

■i*2 CPa5/)   (twice) 

We see that eqs. (29) and (30) are satisfied here (pa3). 

3. Simple cubic CsCl; T point at ks (27T/a)(^ b), 0<b<l . 

This is an exterior point (see Fig. 3). 

(a) Central atom: The comments in example 2.(a) above, apply. 

(b) Non-central atom: Since there is only one non-central 

atom in CsCl as opposed to three for Cu^Au, we need a new Jc character 

table. This is given in Appendix C as Table C-VI.  (The phase factors 

used in the construction of this table are given in Table C-VII.) 

Using eq. (25), Table B-III, and Table C-VI, we find: 

T  contains js2 (H^') 

T. contains no a.l.f.'s 

Tj/ contains i=2 (Pa) 

T2
/ contains J£* 0 

!«1 

!«2 (fu) 

T  contains jfc= 1 

x*2 (iy) 
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We see that eqs. (29) and (30) are satisfied here (p m  1). 

D. Working out the actual unsymmetrized and symmetrized a.l.f.'s. 

Once the X character tables have been used as in the preceding 

section to determine what X-types are contained in the various 

representations, it is still necessary to determine which particular 

function is involved and to symmetrize this function. For simple 

cubic, eg., this means that once we know Jßsl is contained in A| 

for instance, do we use x or y or z as the unsymmetrized function. 

This is determined by trial and srror; in many cases the proper choice 

will be readily apparent. The basic symmetrization recipe, eq, (9) is 

used. 

Before proceeding with specific examples we need to review the 

general symmetrization of an a.l.f. Using eqn (15) of ref. 3, a 

symmetrized a.l.f. may be written as 

X 
•s-l. 

./^A,,. iK'«r$, 
«f« - ft/j)Z„ ?R0» «We      %0C^J] (31) 

where the prime on the R sum indicates that, for each s^ , only those 

R which satisfy R" ^ » s£ +f are allowed if we started with the 

unsymmetrized function on the 5^ atomic site. (The # on D11(R) has 

been dropped as these elements are all real for CujAu.) We rewrite 

the exponential factor as 

with Rk « k + K(R). Thus (31) becomes 
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We note that the exp(ik»§^ ) factor in eq. (32) does not 

depend on R; thus, in finding the explicit a.l.f.'s we may treat 

this factor as a constant for each site (for a given k). In 

the MPW method the symmetrized a.l.f.'s will ultimately be used 

to form matrix elements such as /(a.l.f.). (a.l.f.).df, 
J 

j (a.l.f.). H(piare-wave).dtr, etc. For non-overlapping a.l.f.'s, 

the function £*./L*~ Cr"  i>i)j  is non-zero only f or r* 

vectors in the s^,  "sphere". For the a.l.f. - a.l.f. matrix 

elements, then, only the "s^ part' of (a.l.f.). will combine 

with the "s^. part" of (a.l.f.). and the exp(ik»§^ ) of fl}j 

in eq. (32) will be canceled by the exp(-ik»s/t,) of Qj^  . 

For the a.l.f. - plane-wave cases, the exptik»^,) term may be 

kept simply as a constant factor. We will, therefore, ignore 

this factor of eq. (32) in working out the explicit symmetrized 

a.l.f.'s. 

The exp riK(R>s^,J factors of eq. (32) can not, in general, be 

factored out of the sum on R for each J*. . (For the Cu-Au and CsCl 

structures K(R)»s^t will always be nil", whert n is an integer; thus; 

for these structures, exp [ik"(R)»^J will always be real and equal to 

± 1. For more complicated crystal structures this factor can be complex.) 
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For symmetry points on the zone boundary these factors must be 

included in the symmetrization; for irterior-k points K(R) is zero so 

this factor is always +1 for such points. From the discussion 

associated with eq. (18) we see that the expression 

5ff' C*  (*~s>*)3 *n ecl' C32) may Be considered as a rotation about 

an axis through the point defined by s^. If the original >#y is 

centered on s^ and has an angular part fat/ty   say» tnen ^0T tne R 

associated with the triad (yxz), the angular part of Xfj D^"1 (r_sJi)3 

is just flui/ßiK   with pv * r-s^ and ffa * *~^k • Changing 

language slightly, one says that x on site V has become y on siteit or 

Xy "goes to" y„  . We now provide a few specific examples. 

1. Simple cubic, Cu.Au structure; A(z) point, k* (2If/a) (00b), 

0<b<£ . Character Table B-III is used. The predicted types of 

functions are given m sections C.l.(a) and C.l.(b), above. The actual 

functions (angular parts) are to be chosen from the cubic harmonics 

given in Table B-II. 

(.a) Central atom: 

&2:    From section C.l.(a) we see that only Xs2 (of the 

PM type) is allowed. This means we must try both 2z -x -y* and 

xx-y** . Using eq. (9) and the Cxl(R) for Ax  from Table B-III we 

find that 2z -x -y symmetrizes to zero whereas x -y symmetrizes to 

itself. Proceeding similarly with the other A representations we 

find: 
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Ax   4«o 1-* 1 

(the arrow means "symmetrizes to") 

-|»1  z -► z 

4*2 (r|4)      2z2-x
2-y2-* 2z2-x2-y2 

^    i«2( PlJL)      x
2-y2 -* x

2-y* 

/^' no a.l.f.'s 

A.'i« 2 (HtfO      xy-*xy 

^5(Dn)     Jfc*l        X-»X 

4*2 (P,c/)       xz-» A* xz 

(b) Non-central atoms: (We work out A^ only.) From section 

C.l.(b), abo e, we know that Jt« 2 (P^O is contained twice (more 

precisely; there will be two linearly independent AjJ  functions of 

the PXft  type). Let us try all three l^y' functions from Table B-II. 

We first try these throe functions on site£(see Fig. 1). Site 2 goes 

into itself under all eight operations of the A(z) group. We have 

E  C4*(z)  C4  C4  JC*(x) JC4
a(y) JC2 JC2 

xyz  xyz   yxz yxz   xyz   xyz   yxz yxz 

yz -► yz   -yz  rxV xz   ~Yl yz   "xz  xz s 0 

xz -► xz -xz yz -yz xz -xz -yz yz c 0 

xy -» xy xy xy xy xy xy xy xy s 8xy 

The entries under the individual operations represent individual 

0 (R)PRf(r) terms in the summation of eq. i9). To obtain the 

circled entry, eq., one starts with the function yz, replaces vhis by 

xz as dictated by the triad (yxz), then multiplies by D,.(C ) in the 
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A^  representation (-1). The expression at the far right is the 

summation of eq, (9) before multiplying by h/g. (As discussed above, 

we concern ourselves here with the angular part of f(r) only.) Since 

h » 1 and gs8 for Atf ,  we obtain xy or« site 2 as both unsymmetrized 

and symmetrized function. For site 3, operations E, C4*(z) and the 

x 
two JC4 take site 3 to site 3; under the two C. and the two JC. 

operations site 3 goes to site 4. From the patterns above for site 7, 

one readily sees that yz and xz on site 3 symmetrize to zero whereas 

xy on site 3 symmetrizes to ('/a) £(xy)3 + (xy)4l . For site 4 we 

will simply reproduce this last function; thus we see that there are 

two independent A^  functions as predicted. 

2. Simple cubic, CujAu; T point at k * (2lT/a)(£^b), 0<<b<£ . 

(a) Central atom: This will go exactly like a A point on the 

z axis, given above in section D.I.(a). 

(b) Non-central atoms: (We consider only T2' here.) Because 

of the phase factors discussed above (see eq. (32)), the non-central- 

atom contained a.l.f.'s for T~' will not be identical to those for 

/W. The predicted types of functions are given in section C.2.(b) 

above. Site rotations will go as in the A example above since the 

same eight operate   *•-< involved. Character Table B-III is used. 

The exp £ iK(R)*>»3 uwi^rs of eqn. (32) are given in Table C-V. For 

the unsymmetrized functions on site 3 we must use the exp p.K(R)»Sj3 

factors for the four aerations which take site 3 into itself 

(E, C4 (z), 2JC*) and use the exp LiK(R)»s"43 factors fnr the four 

operations which take site 3 to site 4 (2C4, 2JC2). 
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We f:nd: 

X»0  (1)2 -► (1)2 

4»1  (z)2 -* U)2 

(y)3 -» (Vk)[(y)3 + (x)4] 

A»2 (Pu)  (2z*-x V")2-► (2z*-x*-y*)2 

(P„*)  (yz)3-* (»/*) [(y*)3 + (xz)43 

3. Simple cubic, CsCl; T point at k » (2ir/a)(^b), 0<b<l . 

(See Fig. 3.) 

(a) Central atom: This will go exactly like a A point on the 

z axis, given in example l.(a), above. 

(b) Non-central atom: For the CsCl structure (Fig. 2) there 

is only one non-central site so that eq. (32) becomes 

^«-ty)rR*J no tl*m\ MM)] 
(33) 

and all R take this site into itself or equivalent. (We again ignore 

the exp Q'A'S J factor as discussed in connection with eq. (32).) 

Thus, the exp LiK(R)»sJ factor is identical with the phase factor for 

R used in forming Xjfc(
R) an<* may he taken directly from Table 

C-VII. We work out T2' only here. 

From section C.3.(b), above, we expect an x«0 function, an 

|B1 function, and an J2>*2 function of type V\x . Using the D,.(R) 

from Table B-III and the phase factors from Table C-VII with eq. (33) 

we obtain: 
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j£»0  1 -» 1 

JZ»1  z -fr z 

JB»2  2z*-x*-y*-* 2zx-x*-y* 

We note that the product of the T./ D^ elements and the phase factors 

give "effective" Dj. elements identical to Tj; it is thus no 

coincidence that the functions obtained above are identical to those 

for A| for the central atom of Cu.Au (example l.(a), above) 

DETERMINATION OF THE CONTAINED PLANE WAVES 

The plane wave expansion functions are considerably simpler than 

the a.l.f.'s since the plane waves are easily expressed in terms of 

one origin in contrast to the a.l.f.'s which are centered on different 

sites. Each plane wave extends throughout the entire crystal. 

A. Formation and ordering: simple cubic, fee, and bcc. 

A plane wave is written 

fK(r) a. exp[i(k+fc)#r]. (34) 

Putting this into the symmetrization recipe, eq. (9), gives 

^Mk^Z^Me**0^ "35) 

In general, 

K « 2ir (Cjb^ + c^ + c3b^) (36) 

where the b. are primitive translation vectors in the reciprocal 

space lattice and the c^ are integers. Although we will confine 

ourselves here to the cubic system, the procedure can readily be 

generalized to other crystal systems. 

32 



For the simple cubic lattice, 

K » (2!T/a)(bcd) 

where b,c,d are any integer; positive, negative, or zero. Using AA' 

as an example, we illustrate how one symmetrizes the plane waves and 

determines the allowed types. For k labeled by £(z), i.e., 

k s (2ir/a)(00t), 0<t<^, we have 

(t*f) m   (2if/a)(bcf) (37) 

where f * t+d so that f is not an integer. 

In symmetrizing the plane waves there can easily be confusion 

between R ani R"1. In eqs. (14) to (16) we defined our triads so that 

if P is associated with the triad (yxz), then R is given by eq. (16) 

and 

rt-(i:i)M 
For the same triad, 

RM-/T 

In symmetrizing any function of a dot product, 

A s SXflvPf»-""?) 

33 

i^-^**^'*i.T*-'-'-^-*W,£*r\','i-< ,i.fv^i-i ■<;■'-..,- ;-. i) -:*w .;.-r.^inri''.«--r^.'-™vM''.>»''i-<*i"*—•""' 



A-ZRl£,flqffilM») 

r-l_ with T  s R. Since the sun is over an entire group. 

A*1r)JL(Tn(r*i.t). 
We may write 

(38) 

Since the D's are unitary. Then, replacing T by R, 

A«ZnVWttrt.p) (39) 
Comparing eqs (38) and (39), we see that, for real D's, and when 

symmetrization is with a diagonal element of D, we may use either 

R" s or Rf. In the following we will use R"1(£+£). 

For P_ associated with the triad (yxz), the corresponding term 

in the sum on R of eq. (35) becomes (using R"*(k+K) as above) 

Du(R)exp[i(2ir/a)(cbf).r] 

for (K+K) given by eq. (37). To shorten the notation we write the 

square bracket above as (cbf). Under the A(z) operations we have: 

E  C4 (z)  C4  C4 JC4*(x) JC4*(y) 

triad  xyz  xyz   yxz yxz  xyz    xyz 

(bcf)  bcf  bcf  cbf cbf  bcf    bcf 

JC JC„ 2     -2 

yxz     yxz 

cBf     cbf 
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Using Table B-III for the D's, the complete symnetrization (except for 

the h/g factor) of (bcf) under A«^ becomes 

e(bcf) + e(bcf) _ e(cbf) _ e(c£f) _ e(bcf)^bcf) + e(cbf) + e(cbf) 0 

Since this does not add to zero, the (k+K) represented by (bcf) is 

allowed under &j{ (with neither b or c equal to zero). From the 

above, one readil> sees that (bOf) and (Ocf) would each symmetrize to 

zero and are thus not allowed under A^' . In a similar manner, one 

determines that K types (bbd) and (bed) are allowed under A^f  and that 

K type (000) is not allowed. (Since we are dealing here with A(z), 

there is no need to try both (000) and (OOd) for K, for example, as 

there will always be some non-zero value in the z "slot" due to k.) 

One also soon sees that (bbd) "covers" (in the sense that no new 

independent functions are created) (bbd), (bbd), and (bbd), and that 

bed covers (bed), (.bed), (cbd), etc. For any combination, however, d 

as well as d is needed in the z slot. 

To now form a 'list" of K's, one finds the square magnitude of 

the various (k*T) vectors ind cuts the list off at some magnitude. 

A simple bookkeeping r.ethod is illustrated below. We take 

k * (2;r/a)(00+). Ignoring the (2TT/a) factor and multiplying by 4 

in order to work with integers we have: 
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(HO) 

(111) 

(111) 

(11?) 

(112) 

(120) 

(12l) 

(121) 

(122) 

(220) 

(221) 

etc. 

« 4(k+K) 

(440) (441) 

(444) (443) 

(444) (445) 

(448) (447) 

(448) (449) 

(480) (481) 

(484) (483) 

(484) (485) 

(488) (487) 

(880) (881) 

(884) (883) 

16&&2 

33 

41 

57 

81 

113 

81 

89 

105 

129 

129 

137 

These would order as:     (110) 

(111) 

(HI) 

(112) 

(120) 

(121) 

(121) 

(112) 

etc. 

•4 
For fee and bee lattices, K may also be written as 

K « (2ir/a)(bcd) but now there are restrictions on the values of b, 
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c, and d. For fee the integers b,c,d must either be all odd or all 

even; for bee the sum b+c+d must be even. These restrictions*0 come 

from the fact that k must, be an integer sum of the three primitive 

reciprocal space translation vectors as expressed by eq. (36). 

B. Examples of allowed types of K's. For all lists given here b,c, 

and d are positive only. 

1. Simple cubic, fee, and be-, "point, k * (000). 

P|   (000) 

(00b)  (As x,y, and z are equivalent, this 
"covers" (bOO) and (0b0).) 

(Obb) (Covers (bOb) and (bbO).) 

(Obc) (Covers (Ocb), (bOc), etc.) 

(bbb) 

(bec) (Covers (cbc), etc; (ebb) must also be used.) 

(bed) (Covers (cbd), (deb), etc.) 

Pa.  (Obc) 

(bed) 

2. Simple cubic, fee, and bee. A point, k s (2ir/a)(00t): 

for simple cubic 0<t<£ ; for fee and bee 0<t<l. Because z never 

mixes with x or y we will simply write n in the z slot; for (Obn), 

e.g., n can be 0,b,b,c,c. 

10. C. Kittel, "Introduction to Solid State Physics" (John Wiley and 
Sons, 2nd ed., 1956). See Chapter 12. 
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At  (OOn) 

(Obn) 

(bbn) 

(ben) 

4* (Obn) 

(ben) 
A*' (bbn) 

(ben) 

4$- ("sing Du of Table B-IV) 

(bOn) 

(bbn) 

(ben) 
? linearly independent 

For t « 1/4, the simple cubic (sc), fee, and bec list« for 4^(z) 

would order as follows: 

sc fee bee 

010 020 Oil 
mm 

Oil 022 Oil 

Oil 022 020 

020 131 121 

012 131 121 

021 040 022 

120 133 013 

021 024 022 

121 042 03l 
etc. etc. 
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The differences between the lists are due to the restrictions in the 

fee and bec cases discussed in Section A. 

Note added in proof: Eq. (12) may also be used to predict 

allowed plane wave types (pwt) by replacing X*(R) with %pwt(R). 

As an example, the type (bOO) contains six vectors (bOO, bOO, ObO, 

etc.) and may be considered as a 6>;6 array. Under the identity 

operation all six vectors go into themselves and the trace is 6; 

under C (z) only the vectors 00b, 00b go into themselves and the 

trace is 2; traces for C4, C2, C , J, JC4
2, JC , JC-, and JC3 will 

be 2, 0, 0, 0, 4, 0, 2, and 0 respectively. For P, , eq,(12) thus 

gives 

n =  (1/48)(6+3x2+6x2+0+0+0+3x4+0+6x2*0)  = 1  ; 

and for   Vx> 

n = (1/48)(6+3x2-6x2+0+0+0+3x4+0-6x2+0) = 0 , 

Thus, the type (bOO) is allowed once for P| and not at all for f^ 

as per B.l. 
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PART II: REDUCED LATTICE SCHEME 

FOR PERTURBATION PROBLEMS 

INTRODUCTION TO PART II 

As a specific example consider a bcc lattice with one atom per 

primitive cell. Suppose we now apply a phonon perturbation in which 

half the atoms (corner atoms) move along the z axis with one phase, 

and the other half (body-center atoms) also move along the z axis but 

with a different phase (see Fig. 5), the perturbed lattice will be 

simple cubic with two atoms per primitive cell. One may find it 

convenient to use a "reduced" group so that the full Hamiltonian, 

including the perturbation term, is invariant under this "reduced" or 

"new full group". Thus, in a perturbation such as the bcc to simple 

cubic case above, one might wish to use the cubic A group (8 members) 

as the reduced group instead of using the full cubic (48 member) group. 

This was the approach used by Bloom in his Ph.D. Thesis . 

For an fee crystal one would go from fee to simple tetragonal for 

a phonon perturbation with half the atoms moving with one phase and 

half with another but both motions being along the z axis. (See Fig. 

6). The reduced group for this case would be the simple tetragonal 

/\ group (8 members). (The full tetragonal group has 16 members.) 

All eight members of the simple tetragonal A group preserve +z. For 

the remainder of Part II we shall consider only the fee to simple 

11. F.K. Bloom, Ph.D. Thesis, RPI, 1966 (unpublished) 
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f 

2 

Figure 5. Change in primitive cell from bcc to simple cubic due to a 
phonon perturbation. For the unperturbed case the bei: pri- 
mitive cell with one atom is valid. When the perturbation 
is applied the lattice becomes simple cubic with two atoms 
per primitive cell; one at (000), the other at (a/2) (111). 

4.1 

im-teaim*«- -<-••'■■■ -<• ****** 
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C=a/-        Ä*= aA* 

Figure 6. Change in primitive cell from fee to simple tetragonal due 
to a phonon perturbation.  (Some of the face-centered atoms 
have been omitted for clarity.) For the unperturbed case 
the fee primitive cell with one atom is valid. When the 
perturbation is applied the lattice becomes simple tetragonal 
with two atoms per primitive cell; one at (000), the other 
at (ttc) in the tetragonal (x' y* z*) axes. The numbering 
of the atomic sites is consistent with eqs. (40a) and (^0b) 
of the text. 
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tetragonal case and shall take the tetragonal A group as the reduced 

or "new full group" for the crystal. 

THt 'REDUCED GROUP" CHARACTER TABLES: FCC TO SIMPLE TETRAGONAL CASE 

For the "p" point group for the simple tetragonal lattice (with 

the added restriction that +z be preserved) one may use the tetragonal 

A point group character table, Table E-I of Appendix E. One must 

keep in mind that tie x'and y'axes of Tables E-I through E-V refer to 

the simple tetragor*! /and y'axes (perpendicular to the tetragonal 

faces); when the simple tetragonal is used in conjunction with a 

"parent" fee lattice, the xfy'axes of the tetragonal system are 

rotated 45° from ehe x, y axes of the fee system. 
I 

To make energy band calculations in the "new" or "perturbed" 

lattice one needs to determine the contained a.l.f.'s for the various 

irreducible representations of the symmetry points of this new 

I 
lattice; in determining these contained a.l.f.'s there are two 

| 
distinct procedures that may be followed: 

{ 
1. Determine the contained functions directly as in Part I. 

2. Utilize the fee functions from the "parent" lattice 

I 
(assuming these have been previously obtained). 

We discuss both procedures below. 

DETERMINATION OF ATOMIC-LIKE FUNCTIONS: DIRECT PROCEDURE OF PART I 
p 

The procedure is exactly as given in Part I; we work out a few 

examples for comparison with the indirect procedure. 
I 

43 



I - 

A. J£ Character Tables. 

1. Central atom: We take the "body-center" atom at site 1 of 

Fig. 6 to be the central atom. 

s^ = (000) (40a) 

For the central atom one X character table suffices for all 

symmetry points; this is given in Appendix F as Table F-I. 

2. Non-central atom: We take the "corner" atom at site 2 of 

Fig. 6 as the non-central atom in the two-atom basis. 

s2 = (ttc) (40b) 

in the xyz'axes (tetragonal axes). Since s, = 0 we will simply 

write s for s^. 

As explained in Part I, the central-atom JL character table will 

suffice for the non-central atom for all interior-k symmetry points; 

different X  character tables will be needed, in general, for each of 

the k points on the Brillouin zone boundary. In Appendix F we give 

the R point SL  character table as an example (Table F-II); the phase 

factors used in constructing this table are given in Table F-III. 

B. Prediction of Contained Functions Using the Jfc Characters. 

We give three examples for the AB type simple tetragonal lattice 

using the tetragonal A group as the "reduced" or "new full group". 

1. F point (center of the Brillouin zone), ks (ir/2)(0/t,0/t,0/c). 

See Fig. 7. Since we are using the reduced symmetry the tetragonal 

A group applies. Table E-I of Appendix E may be used as the character 

table. 
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Figure 7. The first Brillouin zone for the simple tetragonal lattice. 
The first zone of the simple tetragonal resulting from a 
phonon peturbation of an fee lattice is shown imbedded in 
the first Brillouin zone (the truncated octahedron) of the 
parent fee lattice. The symmetry labels refer to the simple 
tetragonal Brillouin zone. The notation is that of Koster 
(ref. 6). 
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(a) Central atom; Using Table F-I (App. f),   the tetragonal 

A character table (Table E-I), and eq. (12) one finds that: 

A| contains X-  0 

4= i (A,) 
4*2 (A,) 

/L contains no a.l.f.'s 

A3 contains   J£» 2 (A3) 

A^. contains  Jj|= 2 (A<f) 

Ay contains   Jje 1 (Aj) 

4*2 (^) 

The label in parentheses refers to the "A breakdown" of Table F-I. 

The arrangement above satisfies eqs. (29) and (30). C Ay is 2- 

dimensional; the other A representations are 1-dimensional.) Since 

we have defined our a.l.f.'s in terms of A labels (see Table E-III) 

the arrangement above was to be expected. 

(b) Non-central atom: Since we are dealing with an interior-k 

point and since there is only one non-central atom, the same Jc 

character table suffices for both central and non-central atoms (see 

Part I). The arrangement of contained a.l.f.'s for the non-central 

atom must, therefore, be identical to that above. 

2. A to point (interior point), k s (7T/2)(b/t,0/t,0/c), 

0 < b < 1. See Fig. 7. For the reduced symmetry scheme the group of 
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k for A tö consists of that subgroup of the tetragonal A group for 

which the operators preserve +x' this is the two-member group E (xyz} 

and JC4(y) (xyz). The character table is given in Appendix E as 

Table E- IV. 

(a} Central atom: Using the character table E-IV and the 

appropriate parts of the j£ character table F-I, with eq. (12) one 

finds: 

A(*)i contains A= 0 (A|) 

A* 1 (A, ) 

JU2 (A,) 
i= 2 (/\3) 

i=2 (A5) 

A(x^2 contains j£* 1 (A$0 

i= 2 C/\y) 

i=2 (Aj) 

It is readily seen that this satisfies eqs. (29) and (30). 

(b) Non-central atom: As A00 is an interior point the non- 

central atom will have the identical pattern of contained a.l.f.'s as 

the central atom. 

3. R point (exterior point), k = (TT/2)(l/t,0/t,l/c). See Fig. 
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(a) Central atom: Using the R character table (Table E-V) 

and the appropriate parts of the Jl character table (Table F-I) with 

eq. (12), we obtain: 

Rj contains Jl a 0 ( / \. ) 

J2 = i (A,) 

Jl'2  c/\,) 
J{-2 C/\3) 

R2 contains .$ = 2 (/|u) 

R3 contain? Jls 1 (^y) 

S = 2 (Af) 

R4 contains ft a 1 (Ay) 

A = 2 M5) 

This arrangement satisfies eqs. (29) and (30). 

(b) Non-central atom: Since R is on the zone boundary, phase 

factors must be considered. The £ character table for It for the non- 

central atom is given in Table F-II.  (The phase factors used in 

constructing this table are given in Table F-III.) Using the R 

character table (Table E-V) and Table F-II with eq. (25) we obtain: 

R. contains  .£ a 1 (As ) 

i= 2 (Ay) 
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R2 contains  ^81 (Ar) 

4*2 (Aj-) 

R contains  JJ» 0 (Aj ) 

.A« l (A,) 

4* 2 (^,) 

R contains  A« 2 (Aif) 

This arrangement satisfies eqs. (29) and (30). From the phase factors 

given in Table F-III one sees that in symmetrizing the a.l.f.'s (see 

eq. (33) and accompanying discussion) the product of the reduced 

symmetry R point character table (Table E- V) and the phase factors 

gives an "effective" R character table for the non-central atom in 

which R, is now like the original R-, R2 like R., R3 like R,, and 

R. like R~ so that one would expect to get the arrangement above. 

C. Working Out the Actual Unsymmetrized and Symmetrized A.L.F.'s. 

In this section we list the explicit a.l.f.'s for the three 

reduced-symmetry, simple tetragonal examples of the previous section. 

1. P point, k K. (TT/2)(0/t,0/t,0/c). The central atom and the 

non-central atom have the identical pattern of contained a.l.f.'s. 

A, ! * 0    l -* 1 

(the arrow means "symmetrizes to") 

4=1      *'-> z' 
4=2      2(/)*-(x^- (/)* -► 2,(z*)x-(x>- (/)* 

M 
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A^ no a.l.f.'s 

A3 je-2    (x')*-(y')*_Kx')*-(y')A 

Ayi J? = 2   xV->x'y/ 

^5" J * 1      (Dn)    x'-+.x' 

/,/ (Dn)    x'z *,t x'z 

2.   ilfx') point.   t* ejr/2)(b/t,0/t,0/c), 0<b<l.   Central 

and non-central atoms will have identical lists. 

A(x')j    X' 0    (A,)     1 -* 1 

4 = 1    (4,)     z'-*z' 

i=i   Ur)    x'^x' 
i-2    (A/)      2(z')*-(x/)*-(y/)*-»'2(z/)*-Cx')*-(y')a 

(x')a-(y')*•-* (x'f-(y')* i=2    (^) 

xV-nV 

A(x') 2   1= i   (Ay)    y'->y' 

i= 2    (Ap)     xV^xV 

J!a 2   (Ar)     y'z'-*y'z/ 

R point,    k = Crr/2)(l/t,0/t,l/c). 

(a)    Central atom: 

Rji'O    (A,)  i-*i 

£ = 1      (A,)    z'-^z/ 

i« 2      (A;)    2(z')*"-(x')A.(y')*-*2(z')a-(x/)*-(y')a 

J?= 2      (Aj>    (x'^-ty/)*-* (x')*-(y')* 

L 
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R2  1*2 (At) x'y'-^x'y' 

R3  isl (Ay) x'-»x' 

i=2 (Ar) x'z'-»x'z' 

R
4 is * (A5) y^*y' 

JJ*2 (Ay) y*W«' 

(b) Non-central atom: As noted in B.3.(b) above, R. for the 

non-central atom will be like R_ of the central atom, R2 like R4, 

R3 like Rj, and R4 like R2. 

DETERMINATION OF ATOMIC-LIKE FUNCTIONS:  INDIRECT PROCEDURE 

Assuming the contained a.l.f.'s for the various representations 

in the unperturbed-lattice system to have been previously obtained, 

one can utilize compatibility relations to obtain the a.l.f.'s for the 

perturbed-lattice system; in some cases this may be easier than 

obtaining the perturbed-lattice a.l.f.'s directly. We will first 

develop the underlying mathematics and then apply the procedure to the 

three fee to simple tetragonal examples of the previous section. 

A. Mathematics. 

Consider a set of functions fjj. (r) which transform by ("belong 

to") the „A—1 row of the j— irreducible representation of a group 

as per eq. (2). Suppose we now form new functions ^(r) as linear 

combinations of the original f^-'(r): 
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£w - A fr v        (41) 

where h. is the dimensionality of the j—representation. 

The coefficients OCu^ form a matrix which we take to be unitary; 

thus 

ffw«iJJ*vUw. 

>„■>(*- z;'*„p.^fl 

Applying PR to F^. (?) 

V**-2>,W^J)%<k C43) 

Comparing eqs. (2) and (43) we see that the Fu (r) belong to the ytt— 

row of the representation given by the matrices #cC D"'(R)0C). 

If the DU'(R) form an irreducible representation for Jm* , the 

point group for a given K of the unperturbed lattice, then they also 

form a representation (possibly reducible) for that same k point in 

the perturbed lattice for those cases in which Gj», the point group of 

t in the perturbed-lattice system, is a subgroup of Jjt . Eqs. (41) 

and (43) then imply that if o< brings  o(. D^(R)< to the 
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appropriate block form for all R in &s and if the f£"(r) are the 

symmetrized a.l,f.'s for D^), then the F^Cr) given by (41) will be 

the symmetrized a.l.f.'s for the various irreducible representations of 

G* contained in D 0). 

For 1-dimensional D^ eq. (41) tells us that each symmetrized 

a.l.f. of DÜ) will be a symmetrized a.l.f. of DC<0 if DC«) is the 

perturbed-lattice representation compatible with Du)(R). For multi- 

dimensional D") which are already diagonal for those R of-JjT which 

are members of G*, the •< matrix will be 1 and the a.l.f.'s for D^*' 

in G will be just those a.l.f.'s belonging to the row of D^J) 

compatible with Dl . If a multi-dimensional D^J does not satisfy 

this diagonal condition it is necessary to determine the »(»„ to use 

with eq. (41); in such cases it may be easier to determine the 

contained a.l.f.'s for D^ directly. 

In applying the indirect procedure to the fee to simple tetragonal 

case one first notes from Figs. 6 and 7 that a choice between two 

coordinate systems must be made; one may wish to write all operators 

and functions in terms of the tetragonal x'y'z' axes or to do the 

entire problem in terms of the original fee xyz axes. We illustrate 

both methods using the three examples previously work-id out via the 

direct procedure. In section B, below, we work in the tetragonal axes; 

in section C we work in the fee axes. 
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B. Working in the Tetragonal Axes (x',y', z') - Correspondence 

Between fee and Simple Tetragonal. 

We first n< te that our point group for the "p" point of the 

perturbed lattice (labeled A in the "reduced" symmetry) is essentially 

the A(z) group of fee; thus, we should be able to obtain, the 

contained a.l.f.'s for the various A representations from the a.l.f.'s 

for the various A(z) fee representations (for A(z)» an fee 

crystal with one atom per primitive cell will have the same contained 

a.l.f.'s as the central atom of simple cubic Cu,Au so we may utilize 

the A(z) example of D.I. (a) of Part I.). Because the tetragonal 

x ', y'  axes are rotated 45° from the x,y axes of fee (see Figs. 6 and 

7) we must be particularly careful with the JC.* and JC2 operations; 

taking the +x' axis of the tetragonal system as lying between the +x 

and +y fee axes as per Fig. 6 we have the correspondence given in 

Table I. The correspondence between functions in the two systems is 

Table I 

Operator Correspondence, fee - "Reduced" Simple Tetragonal 

fee       JC4*(x)      JC4
a(y)   JC2(yxz)  JC2(yxz) 

tetrag.   JC2(yVz')   JC^y'x'z')  JC4*(x')  JC4
A(y') 

given in Table II. 
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Table II 

Function Correspondence, fee Axes - Tetragonal Axes 

fee 

1 

x 

y 

tetragonal 

1 

U/VSHx'+y') 

2z*-xa-ya 

>:*_y3. 

yz 

xz 

xy 

2Cz'f-Cx'f-(y')* 

-2x/y/ 

(l/yi)z'(xV) 

U/tf2)z'(x'-y') 

(i/2)[(x')*-(y')*] 

1.. P point, £ = (lT/2)(0/t,0/t,0/c). 

(a) Using Tables I and II, above: The fee 2\(z) character 

table is given by Table B-III; the simple tetragonal A character table 

by Table E-I. Using Table I the compatibility relations are given by 

Table III. To find the list of contained symmetrized a.l.f.'s for /\ , 

Table III 

Compatibility, fee A(z) - Simple Tetragonal A 

(Using the operator correspondence of Table I) 

fee 

tetrag. 

A • / A9' 

Ax 
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eg., we no. from D.I.(a) of Part I that the A^  a.l.f. for fee (or 

central-atom, simple cubic) is xy; from lablc  II this will be 

{xtf'-(y,f~ in the tetragonal axes system. (We ignore the mult'plying 

factor.) Proceeding similarly we may rapidly write down the A|. Ax) 

and Af   a.l.f.'s. As  is 2-dimensional and is slightly more involved; 

comparing Tables B-IV and E-II and keeping the correspondence of Table 

I in mind, we see that the As  D's are not identical to those of As 

for all R. The oC matrix to transform the Aj-D's into the Ay D's 

via oC" D oC is 

From D.I. (a) of Part I, the DJJ a.l.f.'s of Ay are x and xz. (The 

D- a.l.f.'s are y and yz.) Substituting into eq. (41) gives 

for one of the D  Aj- a.l.f.'s and (l/f£)z(x+y) ^or tne other. 

Putting these into the x'y'z' system via Table II gives x/ and z'x' 

respectively. (The D  Ay a.l.f.'s will be y* and z'y7.) Thus we 

obtain the same contained a.l.f. pattern as via the direct procedure 

(Section C.I., above). 

(b) An easier method for this example: From Tables B-III, IV 

and E-I, II we see that A (z) of fee has the same relationship to the 

fee xyz axes as A of simple tetragonal has to the x/y/z/ axes; thus 

A, "corresponds" to A\ , AA to A,',  A3 to Ax  ,   /t^to A^', and 

/]_ to Ay (with Dj of As  corresponding exactly to D  of Af). 
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Then, since the A.*, a.l.f. «8«. is xz-ya (see Section D.I.(a) of Part 

I), the a.l.f. for A9 will be (x')x-(y'f'.   Again, this will be seen 

to agree with section C.l. of the direct procedure. This method avoids 

finding an eC matrix for Ag and does not require the function 

transformation of Table II. 

2. A(x') point, k- (1T/2)(b/t,0/t,0/c) (x'yV axes) 0<b<l. 

This is a X point of fee (see Fig. 7). Using Table I, above, the E 

and JC A(y') operators of A(x') for the reduced simple tetragonal 
I 4 

correspond respectively to E and JC2(yxz) of fee. Using this operator 

correspondence and the appropriate character tables (Tables B-V and 

E-IV) we obtain the compatibility given in Table IV. We may obtain the 

I list of contained symmetrized atomic-like functions for A(x') , 

I 

Table IV 
I 

i Compatibility, fee Z. -  Reduced Simple Tetragonal A(x') 

(Using the operator correspondence of Table I) 

fee   Z|  ZJL Tt     Ttf. 

tetraj. AM, A6«')4 Af«
1), M»% 

eg., from the symmetrized ?, and 2j fee lists by changing the xyz 

functions of 2j and 2*3 to x', y', z' functions as per Table II; this 

will give the same a.l.f.'z  as obtained in section C.2., above, using 

the direct procedure (the Z fee a.l.f.'s are given in Table B-VI of 

Appendix B.) 

3. R point, k = (TT/2)(l/t,0/t,l/c) (x'y'*' axes). This is an 

L point of fee (see Fig. 7). Comparision of the R point character 
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table (Table E-V, App. E) with the fee L point character table (Table 

B-IXj App. B) shows that the R point group is not a subgroup of the L 

point group; thus the DU) of eq. (43) do not form a representation 

for the R point. For such cases it is generally easier tc obtain the 

contained a.l.f.'s via the direct procedure; for the example chosen, 

however, the R point of the reduced simple tetragonal has the same 

relationship to the tetragonal x'y'z'axes as the Z point of fee (at 

k = (2/r/a)(10b) in the xyz axes) has to the xyz axes of fee. Since 

the two point groups are identical (compare Tables B-VII and E-V) we 

may take the central-atom R, a.l.f.'s from the Zj fee a.l.f.'s of 

Table B-VIII, R„ from Z-, R, from Z,,  and R from Z . This agrees with 

the a.l.f. pattern obtained in section C.3.(a), above, using the 

direct procedure. Once the central-atom R-point a.l.f.'s have been 

obtained^ the non-central a.l.f.'s may be obtained from them just as in 

the direct procedure (assuming that the phase factors of Table F-III 

are known). 

C. Working in the Original fee xyz Axes. 

If one iias already set up the E° calculation in terms of the fee 

axes, it is probably most suitable to define the simple tetragonal in 

terms of the fee axes. In the perturbation one is, after all, 

interested mainly in how the various fee levels shift; it is not 

particularly important how one labels the tetragonal (perturbed- 

lattice) representations as long as one is consistent. We illustrate 

this procedure with the same three examples previously used. 

1. P point: One may simply label the reduced simple tetragonal 
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P-point representations as A( , A^ , etc. of fee. From Section 0.1.(a) 

of Part I the A^'a-l-f.. e8-» is xy; then xy is to be used with the 

"AJ1 representation of the P-point with the group operators all defined 

in terms of the original fee axes. From the fee P-A compatibility 

table (Table G-I, App. G) one sees that A| will give the FJ , JL » and 

P.«. levels, A^will give the P./, Pj^z , and PL/ levels, etc. 

This method requires no e( matrices, no transforming of x,y,z functions 

to x',y', z' functions, and no relabeling of the group operators. 

2. £(x'): In the x'yV system t = (7F/2)(b/t,0/t,0/c), 0<b<l; 

in the xyz system k = (27T/a) (b/2,b/2,0). The A(x') operators of 

Table E-IV, App. E, will now be labeled E and JC-(yxz) using the fee 

axes. The two representations may conveniently be labeled as £/*+) 

and Xgj . Comparing Table E-IV with Table B-V, App. B, we see that 

the 5gL) a.l.f.'s may be taken directly from X| and Z*  of fee (see 

Table B-VI) and the Xfö   a.l.f.'s from 2^ andi^,; no x,y,z to 

x',y',z' transformation is needed. 

3. R point: In the x'y'z' system"t = (7T/2(l/t,0/t,l/c); in the 

xyz system k -  (27T/a) (£>^.^) • To work in terms of the fee axes the 

most straightforward procedure would be to label the four operators 

of the R point (Table B-V) in terms of the fee axes (they would then 

be E, C 2(z), JC2(yxz), *ad JC (yxz) respectively) and proceed as in 

Part I. To use the indirect procedure is quite tedious; for this 

particular case, one could obtain the contained functions from fee Z 

as in B#3, and then transform these functions to the fee axes using 

Table II. The R2 central-atom a.l.f., eg., would be x
2-y2. 
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DETERMINATION OF PLANE WAVES: DIRECT PROCEDURE 

One proceeds exactly as in Part I. For me simple tetragonal 

lattice the allowed K's are given by 

£= TT(b/t,d/t,f/c) (45) 

in the tetragonal axes system with b,d,f any integers. At the 

P point, the allowed K types for the "reduced" simple tetragonal 

representations (defined as per Table E-I, II) are given in Table V. 

(The notation of Part I is used.) For the reduced simple tetragonal 

Table V 

Allowed K Types, Reduced Simple Tetragonal 

(Components given in the tetragonal axes system) 

A A*o>n) 
OOf 

Obf 

bbf 

bdf 

bdf Obf 

bdf 

bbf 

bdf 

bOf 

bbf 

bdf 

dbf K both must be 
included 

Table V is valid for any k value on the A axis (see Fig. 7), i.e., 

k -  (TT/2)(0/t,0/t,h/c), O^h^l. Since the z' "slot" is an invariant 

for the A grouP the combination bdf, eg., implies that bdO, bdb, bdb, 

bdd, bdd, bdf, bdf are all allowed. For the 1-dimensional represent- 

ations the combinations bdf, bdf, dbf, etc. will all symmetrize to ± 

the same function so only one of these should be included. In 

ordering these plane waves it must be remembered that the z' slot has 

a different magnitude than x7 or y'. For the reduced-symmetry simple 
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f 
tetragonal whose "parent" fee lattice has cube side equal to a, 

t - a/(2VJ ),     c - a/2, (46) 

so that eq. (45) may be written (still in x'y'z' axes) 

K » (2r/a)(\ffb,Y5d,f) (47) 

As an example, we list the first few K's for Aj (in x'y'z' axes; 

the b,d,f values are given). 

010, OlT, Oil, 01?, 012» 020, 02l, 021, 120, etc. 

DETERMINATION OF PLANE WAVES: INDIRECT PROCEDURE 

A. Labeling in Terms of the Tetragonal Axes. 

1. P point: Since A(z) of fee has the same relationship to the 

fee xyz axes as A of the reduced-symmetry simple tetragonal has to the 

tetragonal x'y'z' axes, we may utilize the correspondence between A 

and A given in section B.l.(b), above, for the a.l.f.'s; the Aj 

plane waves are then obtained from the A| list, A^ from At', A} from 

A* » etc. Since the fee K's are restricted to all-odd or all-even 

components, wherear the simple tetragonal K's have no such restriction, 

one must supplement the fee lists. (If simple cubic A(*) lists are 

available no such supplementing is necessary.) This procedure must, 

of course, lead to the same K's as given by the direct procedure, above. 

(Compare the A) list of the previous section with the simple cubic 

A, list given in Part I; except for changes in ordering these are 

identical.) 

2. A(x'): Using the operator correspondence of Table I and the 

associated Z fee (or simple cubic) -A(x') compatibility (Table IV) 

one may generate the A(x'). plane waves from the Tt and £*, simple 
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cubic lists and the A(x')2 plane waves from the 2^and Zy,lists 

using the x,y to x',y' transformations of Table II. Comparing the 

expression for allowed simple cubic K's (i.e., (K ■ (277"/a)Qjmn) 

(xyz axes) with J?,m,n any integers) with eq. (47) and using Table 

II we see that 

b. 11«,      a* iiji (48) 

so that only those simple cubic K's with A,m both even or both odd may 

be used. This is a quite tedious process and it is probably easier to 

generate the A(x') plane wave lists directly. 

3. R point: k = (17/2) (l/t,0/t,l/c) (x'yV axes). Since this 

R point of the simple tetragonal has the same relationship to the 

tetragonal x'y'z' axes as the simple cubic Z point (at k = (2TT/a)(L0h) 

with h = 1/2) has to the cubic xyz axes, we may take the Rj plane wave 

b,d,f values directly from the simple cubic Z list, R2 from Z2, R-j 

from Z3, and R4 from Z4. The allowed K types for R2, eg., are Obf, 

bbf, bdf, dbf with f equal to 0,b,b,d,d,f,f  (These are the b,d,f of 

eq. (45) or (47).) 

B. Labeling in Terms of the fee Axes. 

The idea here is the same as that expressed in Section C of the 

indirect a,l,f, procedure, above; namely, we define the tetragonal 

lattice in terms of the original fee xyz axes. 

1. P point: The Aj fee plane wave list may be used as is for 

A1 »the AA list for AA, etc. These lists will be valid for 

any point on the simple tetragonal A axis, i.e., for k = (2fr/a)(00b) 

in the xyz system, 0 4 b ^ 1/2. 
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2-  ACX' ) point: In the tetragonal axes, 

k = (IT/2) (b/t,0/t,0/t),0<b<l; in the xyz system, tc - (2ir/a) (b/2,b/2,0). 

Working in the fee axes we may construct the 2^) plane wave list from 

the fee ?, and 2^lists; the Z4.1list from Ttand 2uof fee. 

3. R point: As in determining the contained a.l.f.'s the most 

straight forward procedure is to write the four R-point operators in 

terms of the fee axes and work out the contained plane waves directly. 

USE OF COMPATIBILITY TO MATCH UNPERTURBED-LATTICE AND PERTURBED-LATTICE 

ENERGY LEVELS 

In many cases one is interested in comparing the unperturbed energy 

levels determined by using the reduced symmetry scheme with the corresponding 

levels of the parent lattice. In almost all cases one is interested in 

matching the energy shifts to the proper unperturbed level. The key to 

this matching is compatibility. 

A. THE CONCEPT OF FOLDING. 

In real space the simple tetragonal primitive cell is twice as large 

as the parent fee primitive cell (since the new lattice has two atoms 

per primitive cell whereas the original fee lattice has only one atom 

per primitive cell). This implies that the simple tetragonal reciprocal 

space Brillouin zone has only one-half the volume of the parent fee 

Brillouin zone. Some of the k points of the simple tetragonal Brillouin 

zone will then correspond to more than one k point of the original fee 

(see Fig. 7). For example, P-point levels of simple tetragonal (labeled 

A in the "reduced" scheme) correspond to both P and X(z) levels of fee. 
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A k point on the A axis of simple tetragonal at, say, k « (7T/2)(00 ^c) 

corresponds to both k «= (2TT/a)(00X) and £ » (2ir/a)(00*) of fee} 

i.e., thePto X(z) axis of fee is "folded" in half. 

B. EXAMPLES USING TETRAGONAL LABELING. 

1. P point. Compatibility is used to determine which A representation 

of the reduced simple tetragonal corresponds to which P and which X(z) 

representations of fee. Since the A group of reduced simple tetragonal 

is a subgroup of f fee and of X(z) fee, the procedure is quite straight, 

forward. Using the A simple tetragonal to A fee compatibility (Table III) 

and the fee A-V  compatibility (Table G-I, App. G) we construct Table VI. 

(A is defined by Table E-I, P by TabJe B-I.) 

TABLE VI 

Compatibility, fee P - Simple Tetragonal A 
(Using the operator correspondence of Table I) 

fee levels 
for 

P, 

ia 

'is- 

Is' 

show up 
on 

A, 

AI,AI* 

A»,AS 

A3,Ac. 
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Using Table III with the fee A-X compatibility (Table G-III, App. G) 

we construct Table VII. (X is defined by Table B-X.) 

TABLE VII 

Compatibility, fee X(z) - Simple Tetragonal A 
(Using the operator correspondence of Table I) 

fee levels show up 
for on 

h A, 
X2 Alf 

X3 A3 

V A i 
x5 Ar 

V A* 

2. A roint of simple tetragonal at k = (7T/2)(0/t,0/t,b/c) 

(x'y'z'axe.O, 0<b<l. This corresponds to both t = (21T/a) (0,0,b/2) 

and k = (2IT/a)(0,0,l-b/2) of fee (xyz axes). The A levels of fee will 

show up on the A representations as per Table III. 

C. EXAMPLES USING THE FCC AXES IN ALL LABELING. 

1. A axis of simple tetragonal: (See section C.l. of the indirect 

procedure for detei..,ining the a.l.f.'s.) When the reduced simple tetragonal 

"p" group is labeled by the A representations 0* fee, the fee I"1-A 

compatibility (Table G-I, App. G) suffices to determine which A representations 

will give which fee V  levels; the fee X-A compatibility (Table G-III, 

App. G) suffices for the fee X levels. The A-/1 correspondence is 

trivial. 
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2. A(xj of the reduced simple tetragonal: (See section C.2. of 

the indirect a.l.f. procedure.) The AC* ') point at It ■ (IT/2) (b/t,0/t,0/c) 

(x'y'z'axes) is k = (2fr/a)(b/2,b/2,0) in the fee xyz axes. For 0<b$l/2, 

the A(x') point of reduced simple tetragonal corresponds to fee X 

and fee S (k » (2ir/a)(b/2,b/2,l) running from X(z) to U). For 

i^b^l, the A(x') point corresponds both to fee 2.  at (2^/8)^/2,^2,0) 

and to fee Z at (2ir/a)(l-b/2,l-b/2,0); i.e., the fee £ axis from 

(1/4,1/4,0) to K at (3/4,3/4,0) is "folded" onto the 4(x') axis from 

l/2<b<l. Compatibility is given in Table VIII. 

TABLE VIII 
COMPATIBILITY, fee Z,S - REDUCED SIMPLE TETRAGONAL 4(x') 

(All labeling in terms of the original fee axes) 

fee levels        show up 
for on 

V4 2M 

C4-) 

-) 

3. R point of simple tetragonal at k » (jr/2)(l/t,0/t,l/c). 

This is an L point of fee. Neither group is a subgroup of the other 

so we proceed somewhat differently from the previous examples. The 

most straightforward procedure is to utilize the space groups 

associated with the R point of the reduced simple tetragonal (rst) 

and with the L point of fee. One may also use the p(fcc)-R(rst) 

compatibility (Table IX) with the ?-h compatibility (Table G-IV). 

The resultant correspondence is given in Table X. 
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TABLE IX 

Compatibility,  P(fc  - R(red. simple tet.) 

f(fcc) R(red . simple tet.) 

<; Rl 

"V R2 

«u Rj,R2 

nS' R2»R3'R4 

V R1'R3'R4 

rv Ro 

I"» 

R2»R, 

R1»R3'R4 

R2'R3,R4 

TABLE X 

Compatibility, fee L - Reduced Simple Tetragonal R 

fee levels 
for 

show up 
on 

Ll 
Rl» R3 

L2 »2'R4 

Ll' VR4 
L2/ Rl'R3 

L3 all R 

V all R 
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COMMENTS ON PRESSURE PERTURBATION 

There is a fundamental difference in the type of lattice-symmetry 

change due to a phonon perturbation as discussed in this report and the 

symmetry change due to a pressure perturbation. In a phonon perturbation 

the difference in motion of the atoms causes a change in the number of 

atoms per primitive cell; for many pressure perturbations the new 

symmetry will still have the same number of atoms per primitive cell as 

in the parent lattice. 

For the phonon perturbation discussed in this report, fee to 

tetragonal, we go from fee with one atom per primitive cell to simple 

tetragonal with two atoms per primitive cell (See Fig. 6). This causes 

the Brillouin zone (B.Z.) of the new symmetry to be one-half the volume 

of the original B.Z. (see Fig. 7) resulting in the "folding" as discussed 

above.  (For the bee lattice of Fig. 5 one would go from bec to simple 

cubic, again introducing folding.) 

As an example of a pressure perturbation, consider fee under a 

tetragonal strain. The new lattice would be tetragonal as per Fig. 6 but 

now both "center" atom and "corner" atoms are still identical so that 

the new lattice would be body-centered tetragonal with one atom per 

primitive cell. The B. Z. of this bet (before the perturbation is applied) 

will be identical with the fee B. Z. Under small strain the perturbed B.Z. 

will depart only slightly from the original truncated-octahedron B.Z.; there 

would be no "folding". 
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APPENDIX A 

"TRIADS" FOR THE CUBIC GROUP OPERATORS 

In Table A-I we list the cubic group triads. These triads are 

consistent with Table II of ref. 4. These triads are also valid for 

the tetragonal and trigonal systems (for the appropriate operators). 

The triad (y,x,z) associated with R implies that PRffa'.y'.z'j = 

f(y',x',z') and that x=-y', y=x', z=z' in PRf(x',y',z') = f(x,y,-,) with 

xi =  k"*kixk' *,e*» rsR"1?'. See the discussion in the main text 

associated with eqs. (14) - (16). 

Table A-I 

Triads for the Cubic Group Operators 

The 24 triads for the proper rotations of the full 
cubic group are given explicitly. The numbering is 
such that the number for JR is n+24 where n is the 
number for R. To obtain the triad for JR simply 
take the negative of the triad for the corresponding 
R. Thus the triad for #35 is (y,x,z). The C2 
rotation axes are shown in Fig. 8a, those for C3 
in Fig. 8b. 

Number 
BSW Symbol 
(ref. 5) Triad 

(x,y,z) 

2 

S 

4 

C4
2(z) 

C4
2(x) 

c4
2(y) 

(x,y,z) 

(x,y,z) 

(x,y,z) 

5 

6 

C4M (y>x,z) 

(y.x.z) 
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Number 
BSN Symbol 

7 C4(x) 

Triad 

(x.z.y) 
8 C4Cx) (x.z.y) 
9 c4(y) (z.y.x) 

10 c4(y) (z.y.x) 

11 c2(D (y.x.z) 
12 c2(3) (z.y.x) 
13 C2(5) d.z.y) 
14 C2(2) (y.x.z) 
15 C2(4) (z.y.x) 
16 C2(6) (x,z,y) 

17 c3(*) (z,x,y) 
18 C3(oC) (y,z,x) 
19 C3(/3) (z,x,y) 
20 

C3<*) (y.z.x) 
21 c3cr) (z.x.y) 
22 c3cn (y,z,x) 
23 C3(<f) Cz.x.y) 
24 c3c«n (y.z.x) 
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(a) Rotation axes for the C- operators (see Table A-I) 

* 

(b) Rotation axes for the C operators (see Table A-I). 

Figure 8. Axes for the Cubic Rotations. 
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APPENDIX B 

SELECTED CHARACTER TABLES FOR THE CUBIC SYSTEM 

The representation labels and class labels in all Tables in App. B 

are those of SSW (ref. 5). The number in front of the BSW class symbol 

gives the number of members in the class. 

Table B-I is valid for the P point of simple cubic, fee, and bec 

and also for the R pcint of simple cubic and the H point of bec. 

Table B-I 

Character Table, Cubic P 

Characters for the 24 proper rotations are given explicitly. For the 
first five representations listed, the characters for the J operators 
are identical to the corresponding non-J characters; for the last five 
representations, the characters for the J operators are (-1) times the 
corresponding non-J characters 

4 6C4 6C2 8C 

P. 1            1 1 1 1 

IV 1            1 -1 -1 1 

p» 2          2 0 0 -1 

n,' 3        -1 1 -1 0 

p«' 3        -1 -1 1 0 

p,' 1           1 1 1 1 

p/ 1           1 -1 -1 1 

rv 2          2 0 0 -1 

P.» 3        -1 1 -1 0 

r„ 3        -1 -1 1 0 
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Koster's Table XXXI for (>h (ref. 6), Tinkham's Table (pg 70 of 

ref. 8), and Slater's Table A3-20 (ref. 9), all use the representation 

labeling of BSW; class and operator notation differ somewhat from that 

used here (BSW C4
2 is C2 in Koster or Tinkham; BSW C2 is Koster's CJ). 

Care must be taken with the primes of Slater's Table A3-20; his 

2 
unprimed operators are those of the tetrahedral group T. (E, C. , C_, 

JC4 and JC. in BSW notation). 

Table B-II 

Basis Functions (Cubic Har^ionics) for j^-  0,1,2 for 
the Cubic System 

0 

Functions Transform like 

r, 

X 

y 
z 

2z2-x2 - 
x2-y2 

y2 

yz 
xz 
xy 

Table B- •in 

rv 

«V 

Character Table, Cubic A (and Simple Cubic T) 

A, 

A 
A' 
A' 

2C, 2JC, 2JC. 

1 1 1 

1 1 -1 

1 -i -1 

1 -1 1 

0 0 0 
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For A(z) the operators are E,CH
x(z),  2C^(z), JCH*(x), 3C^(y),  and 

JCX about axes in the xy plane. In the numbering system of Table A-I 
these are 1,2,5,6,27,28,35, and 38. K* = (2TT/a)(00b); for simple cubic, 
0<b<4 ; for fee and bec, o<b<l. For simple cubic T, t = (2|f/a) X 
(|4 b), o<b<j. 

Koster's Table XII for C4v (ref. 6) and Slater's Table A3-21 

2 
(ref. 9) use the BSW representation labeling. The class labels C. , 

JC.-, JC2 of Table B-III are C2, 0^ ,<Tj respectively, in Koster's 

notation. 

TABLE B-IV 

D Matrices for A;  (and T5) of Table B-III 

r " 
~4 

f'l 

[o 

0' 

C4 

'0 r 
C4 

0 1 

T T 0 1 0 
4 

JC4- JC, 

1 0 

JC2 

f 

0 T' 

JC2 

f 
0 1 

0 T > 
I o • 1 0 

J 

27 35 38 

By cyclic permutation the Ac D matrices in Slater's Table A3-21 are 
identical to these. (Slater's A point is on the x axis). 

Table B-V 

Character Table, Cubic Z 

z,    i  i 

2u 1   -1 

JC,2 
4 

1 

-1 

-1 

1 

JC. 

1 

-1 

1 

-1 
B-3 
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For Z located as in Fig. 3, the four operators are numbers 1, 11, 26, 
38 (see Table A-I). k * (2fl-/a)(bbO): For simple cubic and bcc, 
0<b<^ ; for fee, (Xb<%- The representation labeling is the same 
as Slater's Table A3-23 (ref. 9) and Koster's Table V for C2v (ref. 6) 
if we interpret Koster's class labels4y.(^'as JC,, jpfreprespectively. 

* 

Table i B-VI 

Contained A.L.F.'s for the Irreducible 
Representations of Cubic 2,   for fee Cu 

the arrow means "symmetrizes to". 

1 -¥   1 
x-> (1/2) (x+y) 

2z2-x2-y2 2z2-x2-y2 

xy —f  xy 

r* yz—* (l/2)(yz-xz) 

2, z —t z 

yz —* (l/2)(yz+xz) 

2f y—y (1/2)(y-x) 

2    2      «^2    2 x -y* —* x -y* 

Table B-VII 

Character Table, Simple Cubic and fee Z 

E 

1 

1 

1 

1 

4 •% JL4W 

1 1 1 

1 -1 -1 

1 -1 1 

1 1 -1 

i 

B-4 



For 2 located as in Fig. 3, the four operators are numbers 1, 2, 27, 28 
(see Table A-I). For simple cubic, £ * (2TT/a) (i Ob), 0«b<Vj ; for fee, 
k = (2/T/a)(10b), 0<b<VJi. The representation labeling is the same as 
in Slater's Table A3-27 (ref. 9); consistent with his location of Z 
(see his Fig. A3-2, pg 369), his R^ is JC^*, his R^'is JCt^jj. 

Table B-VIII 

Contained A.L.F.'s for the Irreducible 
Representations of Cubic Z for fee Cu 

the arrow means "symmetrizes to". 

2z2-x2-y2 

xV- 
xy 

•2z2-x2-y2 

2 2 x -y 

xy 

xz—*xz 

4' 

y —*■ y 

yz —>yz 

Table B-IX 

Character Table, fee L 

3C2 2C tL3 
J 

* 1 1 

-1 1 1 

0 -1 2 

1 1 -1 

-1 1 -1 

0 -1 -2 

3JC 
2 

1 

-1 

0 

-1 

1 

0 

2JC. 
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L points are located at the centers of the hexagonal faces of the 
truncated octahedron reciprocal space unit cell for fee lattices. For 
L at k = (2ir/a) (£-fc f), the 12 operators are 1, 14, 15, 16, 17, 18 
(non-J) and 25, 38, 39, 40, 41, 42 (J) in the numbering system of 
Table A-I. Slater's Table A3-26 (ref. 9) has the same representation 
labeling except that his Lq. is our L§' . Koster's Table XIX for Dj^ 
(ref. 6) has the BSW representation labeling except that Koster's 

V 
c 

L»'are the BSW lx- W respectively. Koster's class labels 

a*> It *V > s6 are tne BSW c2» J>  JC2» JC3 resPectively- 

Table B-X 

Character Table, Cubic X 

Characters for the eight proper rotations are given explicitly. For 
the Jirst five representations listed, the characters for the J 
operators are identical to the corresponding non-J characters; for the 
last five representations, the characters for the J operators are (-1) 
times the corresponding non-J characters. 

V 

V 
V 
V 

E C,2,.., 2C2,.. 2C. 
(1)  4 '4(11) 

1 

1 

1 

1 

•2 

1 

1 

1 

1 

-2 

1 

-1 

-1 

1 

0 

1 

-1 

-1 

1 

0 

2C, 
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APPENDIX C 

SELECTED A. CHARACTER TABLES FOR THE CUBIC SYSTEM 

For explanation and use of these tables see Part I of the main 

text. The representation labels and class labels in all tables in 

App. C are those of BSW (ref. 5). The number in front of the class 

labels in Tables C-III and C-VI gives the number of members in the 

class. No such number is given in Tables C-I and C-II as this number 

will depend on the k point being considered. In Tables C-IV, C-V, and 

C-VII the individual operators are listed. 

Table C-I 

Jl Character Table, Cubic System, for Central Atom, Ail k Points 

For the central atom, these characters (including the ^=2,3 breakdowns) 
may be used for X.** (R) in eq. (12) of the main text for all K points. 
The appropriate operators for the group of ic are to be selected. 

E       C4       C C2       C J       JC*       JC4 JC2   JC 

i=o     1     1    1     1      111      111   (r\) 

i=l 3-11-1 0-3 1 -110      (J'IS) 

Jl=2 5 1-1 1 -15 1 -11-1 

£-3 7-1-1-1 1-7 1 11-1 

The Ji=0 and ji=l representations are irreducible for the cubic T 
point (they are equivalent to P| , and P/f respectively. The 4=2 and 
SL =3 representations are reducible; their breakdown into irreducible 
representations is given below. 

4=2 { 
E 

2 
C4 

C4 C2 C3 
J JC4 4      2         3 

2 2 0 0 -1 2 2 0      0    -1     (Pu) 

3 -1 -1 1 0 3 -1 -1     10    (?isi) 

C-l 
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E ci C4 
C2 c3 J JCJ JC JC2 JC3 

v 1 -1 -1 1  -1 -1 i   i -i   (px,) 

J>=3 3 
-1 1 -1 0  -3 1 -1   1   °   Crlf) 

t * -1 -1 1 0  -3 1 1 -1   °   C\g) 

Table C-II 

0   Character Table, Cu_Au, for the Non-Central Atoms, 

All Interior k Points 

By confining oneself to the operators appropriate to the k point in 
question these characters may be used for XJ»C(

R) *n ecl'  (25) °^ t*xe 

main text for all interior 1c points. (For tc points on the zone boundary, 
base factors are involvec I.) 

E C24  C4 C2 c3 J JC4 JC4 JC2 JC3 

*-o 3 3   1 1 0   3 3 1  1 0 (P,) 
JC=I 9 •3   1 -1 0  -9 3 -1  1 0 OW) 
X-2 15 3  -1 1 0  15 3 -1  1 0 

The decomposed A=2 characters are as follows: 

tt-2 
re 6   0 0 0   6 6 0  0 0 K) 
1.9 -3  -1 1 0   9 -3 -1  1 0 Oit«) 

Note: Table C-II is not just 3x (Table C-I) because not all non-central 
sites go into themselves (or equivalent sites) under every operation. 
The operators E, C.  ,  J, and JC42 take all three non-central sites of 
the Cu_Au structure into themselves; C^ , C^ , JCi^ , and JC* each take 
only one non-central site into itself; Cj and JCj take no non-central 
site into itself. 

Table C-III 

X  Character Table for the Non-central Atoms, 
T Point of Cu Au. 

For the Cu3Au structure, these characters are to be used for X H'c (R) 
in eq. (25) of the main text. For T at k* = (2|f/aXÜb), 0Xb<y4, 
in Fig. 3, the eight operators are 1, 2, 5, 6, 27, 28, 35, 38 in the 
numbering system of Table A-I. 

C-2 
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E ci 2C4 2JC, 
4 

2JC2 

1=0        3 -l -1 -1 i Cr.) 

A'l        9 l -1 -1 i CPi?) 

SL-2 V 
t 9 

-2 

1 

0 

1 

-2 

1 

o    (na) 
i    OW') 

The 
are 

Table C-IV 

Phase Factors in the Construction of Table C-III 

factors listed under each operator R for each site sv (at left) 
exp Cilc»(Rsy -s*^ )3 of eq. (26) of the main text for the K of 

Table C-III. Site locations are given in Fig. 1. A zero entry indicates 
that R£y is not an equivalent site to s^, . The bottom row gives the 
summation involved in eq. (26). 

E Cj(z) C4 C4 JC^(x) JC^(y) JC2 JC 

1* 2 5 6 27 28 35 38 

S2 1 1 -1 -1 -1 -1 1 1 

s 
3 

1 -1 0 0 -1 1 0 0 

S4 1 -1 0 0 1 -1 0 0 

sum 3 -1 -1 -1 -1 -1 1 1 

* Operators are numbered as per Table A-I. 

Phase factors for function symmetrization; T point of Table C-III 

as example: All eight operations of T take site 2 into itself or 

equivalent (see Fig. 1). Thus, starting with an unsymmetrized 

function on site 2, eq. (32) of the main text becomes 

The exp £iK(R)»s^7 are listed in the first row of Table C-V. Site 3 

2 2 
goes into itself or equivalent under E, C. (z), and the two JC. but 

into site 4 under the two C.  and the two .K^. For site 3, then, eq. 

C-3 



(32) becomes 

with the 2 over the first set of operators and 2 over the second set. 

The exp ^iKCR)«^"] are listed in the first s3 row of Table C-V; the 

exp uLK(R)» s.J are listed in the second s3 row. The arrangement for 

site 4 is similar to that for site 3. 

Table C-V 

Phase Factors for Function Symmetrization, T Point 
of Cu,Au 

For explanation of this table see text above. T is located as per 
Table C-III. 

E    Cfo c
4 

c
4      JClw JC^(y) JC2 JC, 

1* 2 5 6 27 28 35 38 

site 2 exp £iK(R) • s ] 1 1 -1 -1 -1 -1 1  1 

site 3 exp £iK(R) • sA   1 -1 -1 1 

exp [iK(R) 's*4] -1 1 -1  1 

site 4 exp fiK(R) * §* "] 1 -1 1 -1 

exp [iK(R) • s* ] 1 -1 -1  1 

* Operators are numbered as per Table A-I. 

Table C-VI 

JL Character Table for the Non-Central Atom, T Point of CsCl 

For T at k = (2ir/*0(^J[ b), 0<b<i£in Fig. 3, the eight operators are 
1, 2, 5, 6, 27, 28, 35, and 38 in the numbering system of Table A-I. 
For the CsCl structure these characters are to be used for X^TOO 
in eq. (25) of the main text. 

C-4 
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l-o 

1=1 

1=2 { 

C[U) 2C4 
2JC4 2JC2 

1 -1 1 1 civ 
-1 -1 -1 1 crv 

2 0 -2 0 (tv 
-1 1 1 1 MV> 

Table C-VII 

Phase Factors in the Construction of Table C-VI 

The factors listed under each operator R are exp Qk»(Rs\-s^)] for eq. 
(26) of the main text for the R of Table C-VI. Since there is only 
one non-central site (see Fig. 2), these factors are also 2F' of eq.(26) 

E  cj(z)   C4   C4  JcJ(x)  JC^(y)   JC2 

1* 

factor 1 

5 

-1 

6 

-1 

27 

-1 

28 

-1 

35 

1 

JC 2 

38 

Operators are numbered as per Table A-I. 
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APPENDIX D 

ALTERNATIVE DERIVATION OF THE PARALLEL AXIS THEOREM 

This is an alternative derivation of the substance of eq. (22) of 

the ain text. > 

From eqn (17) of the main text, we know that for rotation about r - 0, 

PRf(r-s) = f(R_1r-s) (D-l) 

From eqns (14) and (15) of the main text, for rotation about r - 's, 

?Rf(f-f) = f(R_1 (*-$))        (D-2) 

= f(R-1r-f+£) 

if IT « 3 - R'1? . (D-3) 

For Bloch functions, 

f(R~1r-s+^) = f(R_1r-s)expQiiiH?l 

so that 

f(R_1r-s) = f(R-1r-s+*)exp[-ik.(s-R~ sfl. 

—f Then, from (D-l) and (D-2), 

Pf(r-t)    = P f^1)exp[-iK,.(s'-R"1s)].   (D-4) 
i * 

(about r=0)  (about f=s) 

Since R£ = k + t   for any R in the group of k\ we may write 

-ik«(sR s) =-iR^.(Rs-s) = -ik%(Rs-s)-iKR-(Rs-S). 

-1* k JT 
Since t-R" s is a £ vector, Rs-t is also so that expQ-iKR«(Rs-t)] = .l, 

and 

| PRf(*-t) * PRf(r-?)exp[-ik.(R?-f)] .    (D-5) 

(about t=0)    (about r=s) 

This is exactly what is expressed by eq. (22) of the main text. 
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APPENDIX E 

SELECTED CHARACTER TABLES, "REDUCED" SIMPLE TETRAGONAL 

"Reduced" simply means we restrict our group operators to those that 

preserve + z. Thus, the full tetragonal group of 16 members is reduced to 

an 8-member group. Thi" is equivalent to using the standard A subgroup 

of simple tetragonal as the "reduced" full crystal group. For the P 

point of the reduced simple tetragonal we will label the representations 

with A labels. In this appendix the representation labels follow Koster 

(ref. 6) as far as possible. The class and operator labels are those of 

BSW (ref. 5). In Table E-I the numbers in front of the class labels give 

the number of members in the class. The individual operators are identi- 

fied by their effect on the x'y'z'triad (tetragonal axes). 

Table E-I 

Character Table, P Point of "Reduced" Simple Tetragonal 

E V(z') 2C4(z') 2J<y 2JC2 

x'y'z' x'yV r V z',y'*'z' 2 V 'z'.x' y'z' y'x< ' '   t  * / z,y x z 

A,      i 1 1 1 1 

A,    i 1 1 -1 -1 

A3   l 1 -1 1 -1 

Ay   l 1 -1 -1 1 

A*   2 -2 0 0 0 

E-l 



Table E-II 

D Matrices for Aj» of "Reduced" Simple Tetragonal 

E C42(2')      c4(z')      C4(z') JC42(x') ,IC4
2(y')      JC 

x'y'z' x'yV y'x'z'      y'3fV    x'yV 

I   0- 

x'yV 

2 

y-'srV 

JC. 

y'x'z' 

«   oj   ,  .     p  1}   jo  ,j (T  9)     ,   0}   (0  1}   (o  ^ 
\0    1/     V0    1'     \\    0'     M    0'    V0    1'    V0    l'    Vl    o'     M    0' 

Table E-III 

Basis Functions for   £«0,1,2 for the "Reduced"Simple Tetragonal 

X. Functions Representation 

o i At 

l 

y 

2z'2-x'2-y/2 

X/2.V/2 

x'y' 

x'z' 
y'z' 

A, 

A* 

A, 

A| 

A* 

As 
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Table E-IV 

Character Table, "Reduced" Simple Tetragonal, A(x') 

£■ (T/2) (b/t, 0/t, 0/c) 

E JC4
2(y') 

x'7'z' 

1 1 

1 -1 A(x')2 

x'y'z' 

Table E-V 

Character Table, "Reduced" Simple Tetragonal, R 

$*  (IT/2) (1/t, 0/t, 1/c) 

x'yV 

1 

1 

1 

i 

c4
2U') 

x'yV 

1 

-1 

-1 

JC42(x') 

xVz' 

1 

-1 

-1 

1 

JC42(y') 

x'yV 

1 

-1 

1 

-1 

E-3 
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APPENDIX F 

SELECTED Jfc CHARACTER TABLES, "REDUCED" SIMPLE TETRAGONAL 

For explanation and use of these tables see the mail. text. 

Table F-I 

jl Character Table, "Reduced" Simple Tetragonal, for the Central 
Atom, All A Points 

The Jt«l,2 representations are reducible to the tetragonal 
representations as indicated. 
For the central atom, in the reduced simple tetragonal (AB type), 
these characters may be used for X*(R) in eq. (12) of the main 
text for all $ points. 

JH  1 

2JC4
2 2JC. E     C42(z»)    2C4(z')       ~.4        ~w2 

x'yV   *'?'*'  y'x'z'.y'x'z' x'yV.x'yV y'xV.yVi' 

1 *l 

Ü =1  3 

1 

2 

1 

1 

0 

1 

1 

0 

A, 

je-2 5 1 -1 1 1 

1 1 1 1 1 4 
1 1 -1 1 -1 A3 

1 1 -1 -1 1 A* 

2 -2 0 0 0 Ar 

F-l 



Non-central atom: By selecting the appropriate operators for 

the k point in question, the characters listed in Table F-I may be 

used for X*£*(R) in eq. (25) of the main text for all interior-t 

points. For >. points on the zone boundary a different X  character 

table must, in general, be used for each 1c point; an example of such 

a table is given in Table F-II. 

Table F-II 

ft Character Table for the Non-Central Atom, R Point of "Reduced" 
Simple Tetragonal (AB Type) 

t *  (TT/2) (1/t, 0/t, 1/c) 

E     C42(Z')      JC4
2(x')      JC42(y') 

X'7'z' x'y'z' x'yV x'yV 

1*0  1 -1 -1 

i-1 3 1 

1 -1 

2 2 

Jl-2 5 -1 

1 -1 

1 -1 

-1 

•1 

0 

-1 

-1 

-1 

1 A, 

0 *s 

1 

1 A, 

1 A* 
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(Table P-II, continued) 

1 -1                   1 -1 ^ 

2 2                    0 0 *S 

Table F-III 

Phase Factors in the Construction of Table F-II 

The factors listed under each operator R are exp Cik » (Rs\ -S\ )1 
for eo. (26) of the main text. For the simple tetragonal of type 
AB there is only one non-central atom site with s\ * (ttc), see 
Fig. 6. Thus, the factors listed are also 2£ of eq. (26). 

Factor 

E 

1 

c4
2U#) 

-i 

JC42(x')      JC42(y') 

-1 1 

F-3 
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APPENDIX G 

SELECTED COMPATIBILITY TABLES, CUBIC SYSTEM 

The representation labels are those of BSW (Ref. S) and are 

consistent with Tables B-I, B-III, B-IX, and B-X of Appendix B. 

Table G-I 

r-A Comp»tibility; Simple Cubic, fee, and bec 

Aj     Aa   A,A4    A,'Ay    A4'Ay     A,'   A*'   A,'**'   AIA*    AiAf 

fit 

Table G-II 

P-X Compatibility, Simple Cubic and fee 

r»    1    ru    IV Pit' »V   IV    IV      *V      rar 
Xl  X2  X1X2  X4X5  X3X5  Xl'  x

2'  tyty  W  W 

G-l 



1 

A, 

Table G-III 

A-X Compatibility, Simple Cubic and fee 

A2 

V 
x4  x5  xx/ 

A,'  Ay  A|' 

X>/ 

A»' 
V V V 

s 
I 

Table G-IV 

P-L Compatibility, fee 

p»   \ \  rw   raf,  rv fV na/   p,r    r, as 
Ll  L2  L3  L2L3  L1L3  Ll/  V  V  W  Ll'V 

G-2 
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