AD-785 515

DETERMINATION OF CONTAINED FUNCTIONS
IN THE MODIFIED-PLANE-WAVE METHOD OF
BAND STRUCTURE CALCULATION

D. M. Gray

Watervliet Arsenal
Watervliet, New York

July 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




X 2

o

o Dt s S 3

bl i L

S

g

»

A

S i Bre

o

|

DISPOSITION 4 . $ i

B

Destroy this report when it is no longer needed. Do mot return it ;

to the originator, 2 :

DISCLAIMER

The findings in this report are not to be construed as an official

Department of the Army position unless so designated by other authorized

documents.




R T BT YR e S N Aoy SRR MR TRy R R (I
3
’ u
ZECURITY CLASEISICATION OF THIS PAGE (When Data Entered)
REPORT DOCUNENTATION PAGE BEFORE COMPLETING FORM _ _|
1. REPORT NUMBER 2. 50VT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
E‘ WVT-TR-74012
3 s TITLE (and Sebtltls) S. TYPE OF REPORT & PERIOD COVERED
E DETERMINATION OF CONTAINED FUNCTIONS IN THE
E MOD IFTED-PLANE-WAVE METHOD OF BAND STRUCTURE 8. PERFORMING ORG. REPORT NUMBER
CALCULATION
: 7 AUTHOR(s) €. CONTRACT OR GRANT NUMBER(s)
) D. M. Gray
i 9.” PERFORMING ORGANIZATION NAME AND ADORESS 10. :222RlA=oEn"KESS|N'rThZ':|OsJ:E§sT' TASK
5 Benet Weapons Laboratory AMCMS No.611101.11.84400.02
] Watervliet Arsenal, Watervliet, N.Y. 12189 DA Proj.No. 1T161)01A91A
4 SARWV-RDT Pron No.Al-4-51700-01-M1-M7
: 11 CONMTROLLING OFFICE NAME AND #DDRESS 12. REPORT DATE
U.S. Army Armament Command July 1974
3 Rock Island, Illinois 61201 13. NUMBER OF PAGES
i 103
# 74 MONITORING AGENCY NAME & ADDRESS(/{ different from Controliing Office) | 15. SECURITY CLASS. (of this report)
] Unclassified
3 Sa, DECL ASSIFICATION/ DOWNCRADING
: SCHEDULE
1

6. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17, LATRIBUTICN STATEMENT (of the abstruct entered in Block 20, If a/fferent from Report)

- 18, SUPPLEMENTARY NOTES

15 KEv wORDS (Continue cn rcverse side if necessary and {dentify by block number)

Solid State Physics

Electronic Band Structure “NATIONAL TECHNICAL
- Modified Plane Wave Method INFORMATION SERV!CE
Perturbed Lattice 1} § Department of Commerce

Springfield VA 22151
Group Theory

20. ABSTRACT (Continue on revereo side if neceesary and identify by block number)

The Modified Plane Wave (MPW) method of calculating electronic band
structures is a variational procedure in which the eigenfunctions ar- 'inear
expansions of atomic-like functions (a.l.f.'s) and plane waves. In | - I we
show how omne uses character tables in conjunction with the ordinary point
group character tables to determine what types of a.l.f.'s are contained in
a particular group representation. Examples are given using the CuzAu and CsCl
structures. Particular attention is given to the ''non-central" atoms in such

__(SEE REVERSE SIDE)

DD ,i‘::‘!n 1473 EDITION OF 1 NOV 65 1S OBSOLETE

! Unclassified
SECURITY CLASSIFICATION OF TH!IS PﬁGE (When Date Entered)




LG,

Uncl.ssified
SEZURITY CLASSIFICATION OF TH!S PAGE(Whan Data Entared)

Liock No. 20 ABSTRACT (Continued)
t
structures. Determination of the contained plane waves is< also discussed. In
Part Il we introduce a perturbation involving a change in iattice symmetry.

lsing an example in which the lattice changes from face-centered cubic (fec) to

{ ~imple tetragonal, we show how to obtain the contained functions for the new
lettice.

Franples are given using the direct approach of Part I and also using the con-
tained functions of the unperturbed lattice to determine those for the perturbed
lattice.

SECURITY CLASSIFICATICN OF THIS PAGE Rhen Dota Frteeedy ~
-t il ey A




AD

WVT-TR-74012

DETERMINATION OF CONTAINED FUNCTIONS IN THE
MODIFIED-FLANE-WAVE METHOD OF BAND STRUCTURE
CALCULATION

D. M,

GRAY

BENET WEAPONS LABORATORY
WATERVLIET ARSENAL
WATERVLIET N.Y. 12189

, JULY 1974
TECHNICAL REPORT

AMCMS No. 611101.11.84400.02
A Y
DA Project No. 1T161101A91A

Pron No. A1-4-51700-01-M1-M7

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

A




PR s i o]

R b S gl e O B I o
et Rt ien: ) Tk Ao Th - >
IR S R R NS T R g TR | R I g

FREIN I ol DL

R TN

TABLE OF CONTENTS

DD Form 1473

Acknowledgcment

Intrcduction

Notation

PART I:

THE STANDARD PROCEDURE

Character Tables and D Matrices

Atomic-Like Functions

A,

Inclusion of Non-Central Atoms

The ,Q Character Tables

1.

2.

Central Atom

Non-Central Atoms

(a) Review of Operations on rFunctions

(b) R Character Tables for Non-Central Atoms

(¢) Reduction of (b) When There Is Only One
Non-Central Atom

Prediction of Contained Functions Using tho.f Characters

1.

Simple Cubic, CujAu Structure: Alz). (Interior
Point).

(a) Central Atom

(t) Non-Central Atoms

Simple Cubic, Cu3Au Structure: T. (Exterior Point),
(a) Central Atom

(b) Non-Central ~.oms

Page

iii

i1

11

12

12

16

20

21

21

21
23
23
24

24

EEASEN el R e

SR

-




N

3. Simple Cubic, CsCl Stiucture: T (Exterior Point)
(a) Centrel Atom
(b) Non-Central Atom

D. Working Out the Actual Unsymmetrized and Symmetrized
A.L.F.'s

1. Simple Cubic, CuzAu: A(2)
(a) Ceatral Atom
(b) Non-Central Atoms
2. Simple Cubic, CuzAu Structure: T.
(a) Central Atom
(b) Non-Central Atoms
3. Simple Cubic, CsCl Structure: T.
(a) Central Atom
(h) Non-Central Aton
Determination of the Contained Plane Waves
A, Formation and Ordering: Simple Cubic, FCC and BCC
B. Examples
1. Simple Cubic, FCC, BCC: [,
2. Simple ‘ubic, FCC, BCC: A,
PART 1I: REDUCED LATTICE SCHEME FOR
PERTURBAT1J'V PROBMEMS
Introduction to Part 1T

The '"Reduced Group' Character Tables. FCC to Simple
Tetragonal Case

Determination cf Atomic-Like Functions: Direct
Procedure of Part I

Page,
25
25
25
26

28
28
29
30
30
30
31
31
31
32
32
37
37

37
40

40

43

43




3 > _. B L5 | L e
N S o Vreanth

Page
: A. R Charscter Tables 44
;j 1. Central Atom 44
f% ) 2. Non-Central Atom 44
gg { B. Prediction of Contained Functions Using the y ] 44
% Characters
% 1. [ Point. (Center of Brilloin Zone). 44
% (a) Central Atom 46
; (k) Non-Central Atom 4¢
: 2. A(X) Point. (Interior Point). 46
k
(a) Central Atom 47
¢ (t) Non-Central Atom 47 |
3. R Point. (Exterior Point). 47 %
(a) Central Atom 48 |
(b) Non-Central Atom 48 f
C. Working Out the Actual Unsymmetrized and Symmetrized 49 |
A.L.F.'s
- 1. [ Point 49 .
2. A(X) Point 50 !
3. R Point ' 50 '
(a) Central Atom 50
(b) Nou-Central Atom 51

- . ]

Determinavion .f Atomic-Like Functions: Indirect Procedure 51

A. Mathematics 51
2. Working in the Tetragonal Axes (x’y’z’) 54 '
t. ' Point 55

(a) Using Tables I and II 55




e Rl e o i n e

Page
(b) An Easier Method for this Example 56

2. AW 57

3. R Point 57

C. Werking in the Original fcc Axes (xyz) 58
1. P Point 58

2. A - 59

3. R Point )
Determination of Plane Waves: Direct Procedure 60
Determination of Plane Waves: Indirect Procedure 61
A. Labeling in Terms of the Tetragonal Axes 61
1. P Foint 61

2. A 61

3. R Point 62

B. Labeling in Terms of the fcc Axes N
1. T Point 62

- 2. A" 63
3. R Point 63

Use of Compatibility to Match Energy Levels 63
A. The Concept of Folding 63
B. Examples Using Tetragonal Labeling 64
1. [ Point ' 64

2. A Axis 65

C. Examples Using the fcc Axes in all Labeling 65
1. A Axis 65

iv

s




s : SRFR
. e R e 3
R R s Ty s bt rtin b o s P e a el e M S ey ot i

2

N

Bt

W B

3

Y

2,

3

A (x!)

R Point

Comments on Pressure Perturbation

References

Appendix A.

Appendix

Appendix
Appendix
Appendix
Appendix

Appendix

B.

c.

"Triads" for Cubic Group Operators
Selected Character Tables for the Cubic System

Celected £ Character Tables for the Cubic
System

Alternative Derivation of the Parallel Axis
Theorem

Selected Character Tables, '"Reduced" Simple
Tetragonal

Selected R Character Tables, "Reduced" Simple
Tetragonal

Selected Compatibility Tables, Cubic System

FIGURES
Part 1

1. A Unit Cell in Real Space for the Cu_Au Structure

3

2. A Unit "ell in Real Space for the CsCl Structure

3. The First Brillouin Zone for the Simple Cubic Lattice

+. Rotatioun of a Function

Part II

5. Change in Primitive Cell from bcc to Simple Cubiz Due
to a Phonon Perturbation

6. Change in Primitive Cell from fcc to Simple Tetragonal
Due to a Phonon Perturbation

7. The First Brillouin Zone for a Simple Tetragonal Lattice

8. Axes for the Cubic Rotations

c-1

D-1

G-1




ica D i e e i

i bt o s i st

II.

ITI.

IV.

VI.

VII.

B'II.

B-I1I
B-1IV.
B-V.

B-VI.

B-VII

AT 143 s b i . e ot BT R Pl A A SO TIAs TIER 3 s i mimms s

TABLES
Part 11
Operator CorreSpondence, fcc - Reduced Simple Tetragonal
Function Correspondence, fcc-Tetragonal Axes
Compatibility, fcc A(z) - Simple Tetragonal A

Compatibility, fcc Z - Reduced Simple Tetragonal
(RST) A(x")

Allowed X types, Reduced Simple Tetragonal
Compatibility, fcc P - Simple Tetragonal A

Compatibility, fcc X(z) - Simple Tetragonal A

. Compatibility, fcc =, S - RST A(x’)

Compatibility, fcc P - RST R
Compatibility, fcc L - RST R

Triads for the Cubic Group Operators
Character Table, Cubic [

Basis Functions (Cubic Harmonics) for 1=0,1,2
for the Cubic System

Character Table, Cubic A (and Simple Cubic T)
D Matrices for A&S (and TS) of Table B-III
Chs.cter Table, Cubic &

Contained A.L.F.'s for the Irreducible Representations
of Cubic £ for fcc Cu

Character Table, Simple Qubic and fcc Z

B-VIII Contained A.L.F.'s for the Irreducible Representations

B-IX.

B-X,

of Cubic Z for fcc Cu
Character Table, fcc L

v .aracter Table, Cubic X

vi

Page

54
55
55

57

60
64
65
66
67
67

A-1




citlan /g il S

S N N T Ol

e
R

s

Cc-1.
C-I1I,
C-11I.

C-1v.

C-v,
C-VI.

C-VII.

F-1.

F-1I1.

F-III.
G-I.
G-II.
G-III.

G-1V.

R Character Table, Cubic System, for Central Atom,
A1l R Points

£ Character Table, CusAu, for the Non-Central Atoms,
All Interior K Points

QA Character Table for the Non-Central Atcms,
T Point of Cu3Au
Phase Factors in the Construction of Table C-III

Phase Factors for Function Symmetrization,
T Point of CuzAu

& Character Table for the Non-Central Atom,
T Point of CsCl

-Phase Factors in the Construction of Table C-VI
Character Table, " Point of RST

D Matrices for A, of RST

Basis Functions for f=0,1,2 for RST

Character Table, RST A(x’)

Character Table, RST R Point

L Character Table, RST, Central Atom, all 3

£ Character Table for the Non-Central Atom, R Point
of "Reduced" Simplz Tetragonal (AB Type)

Phase Factors in the Construction of Table F-II
(‘A Compatibility; Simple Cubic, fcc and bec

P-X Compatibility; Simple Cubic and fcc

&-X Compatibility; Simpld Cubic and fcc

M'-L Compatibility; fcc

Page

C-1

c-2

c-2

C-3

c-4

Cc-5
E-1

E-2

E-3
E-3
F-1

F-2

F-3
G-1

G-2

G-2




L PR ¥ L R s

ACKNOWLEDSEMENT

The author is pleased to acknowledge the significant contributions
to this report made by Professor E. Brown. Fruitful discussions have
been held with Mr. George Capsimalis, Dr. Alma Gray, and
br. L.V, Meisel. I am particularly indebted to Mr. George Yaworsky of
Rensselaer Polytechnic Institute for bringing the percurbation

r-oblem of Parc¢ II to my attention and for a number of discussicns

concerning this topis.

viii



INTRODUCTION

The reader is expected to be generally familiar with the
aﬂplication of group theory to electronic band structure, including
representation theory, symmetrization, and compatibility. We cutline
a standard procedure for determining the ''contained" trial expansion
functions (the QL ) used in a Modified-Plane Wave (MPW) Mothodl"‘

band structure calculation. The MPW method is a variational method in

which the eigenfunctions are represented as

. '}1;‘3‘[ F) = zxciu'"&v["‘j ()

In eqn (1), X labels & symmetry point in reciprocal space (f—spuce),

s
P T

}\ labels the irreducible representation, the 4‘: are atomic-like

functions (a.l1.f.'s) or plane waves, and the coefficients £; are

determined by the Variational Procedure. The @: are symmetrized

i o
} according to the k)\ representation. The "contained" Q's for a
1 particular representation are those a.l.f.'s or plane waves which
symmetrize to non-zero values for that representation.
H
%
1. E. Brown and J.A. Kruahansl, Phys. Rev. 109, 30 (1958).
) 2. D. Gray and E. Brown, Phys.'Rev. 160, 567 (1967).
' 3. D. Gray, Watervliet Arsenal Technical Report WVT-7005 (1970). In
- comparing the present report with ref. 3, statements in ref. 3 such
& as "Pp takes 8y to 3," should be replaced with "Pp takes a function
centered at &, into a similar function centered at !,".
§ 4, D, Gray, Watervliet Arsenal Technical Report WVT-7163 (1971).

Eqn (22) of ref. 4 should be R~} Su = ?y + 2.

i L ' - - — -



In Part I we outline both how one determines, a priori, what
types of a's will be contained in a particular representation and
hcw one QArks out the explicit functions. Examples are given
utilizing the simple cubic system (CuzAu and CsCl structures).

In Part II a perturbation application is involved in which the

5 perturbed lattice has a different symmetry from the original lattice.
Using an fcc to simple tetragonal change &s an example, we show how
the contained functions for the perturbed lattice may be readily
obtained from those of the original lattice.

Throughout this report the discussion is restricted to symmorphic

groups.

NOTATION

Thé labeling of all group operators follows Bouckaert,
Smoluchowski, and Wigner5 (BSW). For the cubic system, the symmetry
points and irreducible representations are labeled as per BSW, In the
"reduced scheme'" used in Part II the representation labels are quite
arbitrary; we have tried to follow Koster's6 labeling system as far as
possible. Throughout th{s report, the number of members in a group is

given by g and the dimensionality of an irreducible representation by h.

5. L.P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58
(1936).

6. G.F. Koster in "Solid State Physics, Vol 5" (Academic Press, 1957);
page 173, )
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Atomic sites are labeled by vectors from the origin of the chosen
coordinate system to the center of the atomic "sphere" in question.

Two atomic sites, ?: and 's“, are "equivalent" if they are separated

by a primitive lattice vector, i.e., if 3, = § ¢ z




PART 1: THE STANDARD PROCEDURE
CHARACTER TABLES AND D MATRICES.

It is first necessary to set up (or obtain from standard
referencess'g) the pertinent character tables. For representations of
dimension higher tiian one it is necessary to obtain the actual D
matrices as well; this may also be doqe by recourse to references or
by working out the individual cases. If the latter procedure is used,
one generally uses a trial and error method to first determine 'basis

functions'", i.e., functions which satisfy

l) )
PP“: g
A function F: is said to belong to the xth row of the irreducible

representauon Dd) (R) if there exist "partner" functions ‘\ ‘1),

q, Iif }

such that all the
000 x-', ‘+')9" Pf
sat1sfy (2). 1t should be noted that (2) implies (for a 2-dimensional

representation)

(3)

RRY o /D B (r)
PR‘: kuz n
as a matrix equation, i.e., that

E} ""32 @)

7. "Group Theory", E. Wigner (Academic Press, 1959).

8. "Group Theory and Quantum Mechanics", M. Tinkhan (McGraw-Hill,
1964).

9. "Quantum Theory of Molecules and Solids, Vol, 2 - Symmetry and
Energy Baads in Crystals'", J.C. Slater (McGraw-Hill, 1965).




Note that the matrix in (4) is D-transpose (35 and not D itself.

This trial and error procedure must give D's which satisfy

il % ({1
Z-RD [RZ“VD/(R ;pl' %

&J’ J:asu' py’
(s)
where g is the order of the group and h is the dimensionality of the

representation; i and j label irreducible representations. The D

matrices must also satisfy

DGS)DCT) = D(ST) ©

(The éet of D's which satisfies eq. (2) will automatically satisfy
eq. (6); see pgs 108-9 of ref. 7.)

The operation '"triads' for the cubic system are given in Table
A-1 of Appendix A. Character tables for selected symmetry points of

the simple cubic i-space zone are given in Appendix B.

ATOMIC-LIKE FUNCTICNS

A. Inclusion of Non-Central Atoms, i.e., More Than One Atom per
Primitive Cell.

In real space we indicate the location of all non-central atoms
in the primitive cell by 5 vectors. The CuzAu crystal, for example,
has a simple cubic lattice with Au atoms at the cube corners and Cu

atoms at the face centers as shown in Fig. 1. One may take the

A 2 M A v
origin at an Au atom, use the cubic axes to define i, J,'ﬁ directions,

and define

i
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Cu atoms

O Au atoms

L Y
Figure 1. A unit cell in real space for the
CuzAu structure. The numbering
of atomic sites in the primitive
cell is consistent with eqs. (7a)
and (7b) of the text.
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s, = (a/2) (110)
S

&

3 = (a/2) (101) (70)

-l

S

to describe the location of thethree Cu atoms in the primitive cell,

N

= (a/2) (vil)

For cubic systems, the unsymmetrized atomic-like functions

(a.1.f.'s) used in a band structure calculation may conveniently be

5, = (a/2) (000) (7a)
for the central (fu) atom, and
%
i

taken to be of the form
[y (V0 1X g (P70)

where l‘hﬁ is the ordinary radial atomic function and Xq is chosen

from the set of cubic harmonics given in Table B-II of Appendix B.
These functions will be centered on particular atomic sites; i.e., for

an a.1.f. centered on site 2, for example, "}3 = ?-?2.

- As a second example consider a simple cubic lattice with two
atoms per primitive cell, A type atoms at the cube corners and B type
atoms at the cube center (eg, CsCl). Taking the origin at an A type
atom and using the cubic axes to define'?, ?, ?, one has

5, = (a/2) (000) (8a)
for the central (A type) atom, and

. s, = (a/2) (111) (8b)

for the non-central (B type) atom. The real space uuit cell for the

CsCl type lattice is shown in Fig. 2. The simple cubic reciprocal
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Figure 2.

Cs (A type atoms)

CR (B type atoms)

A Y

A unit cell in real space for the CsCl
structure. The numbering of atomic

sites in the primitive cell is consistent
with eqs. (8a) and (8b) of the text.




R R e

o 0 R TR R T A TS I N

v )

space (.l:-‘,' ace) Brillouin zone is shown in Fig. 3; this is the first
Brillouin zone for any simple cubic lattice and is thus valid for both
CuzAu and CsCl type structures.

For the non-central atoms the rotation of one site into another
must be considered in determining symmetrized functions. The basic

symmetrization formuia (see ref. 7) is

Ap ; ANt
~b ¢ 5
0,7 (F) = by ZgDgp (R) By 2 (F)

(9
where’ 4{ is the "symmetrized" function generated from the
"unsymmetrized" function ﬁ" ; A labels the irreducible represcntation.

Consider, - .: example, a functinn defined on a particular site,

k(45 .
Pfi-‘) = Zj e (/ ")_f[p‘-'vi}-s}) (10)
with the lattice translation vectors ? running over all the

primitive cells of the crystal and

$E)=0 for 024 a1
with d equal to the radius of an "atomic sphere" at site S}, . When
P(f) of eq. (10) is substituted into the symmetrization formula (9)
one must consider the rotation of T from one site to another. (1t
should be understood that PR‘.S{P--'?‘.;‘;)., S(R.|F-?‘j-§; ) ,
i.e., the operator Pp affects only T and not 'i} or 5:, ; this point
is discussed in detail below.) For the CsCl structure every group

operation takes the non-central site into itself or into an
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X

- P et v )
3 7

1 7

3 =

% u-L--———-———j>1E)‘i. —t

Figure 3. The first Brillouin zone for the
simple cubic lattice. Valid for
both the CuAu and CsCl structures.

Sclected syﬁmetry points are labeled
in the BSW notation.

10
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"equivalent" site, i.e., a site reachable by a f vector f.om the

original site; this makes symmetrization simpler than in tne CuzAu
case where there are three non-equivalent non-central sites.
Prediction and construction of the contained functions for both cases

are discussed below,

B. 1 Character Tables.
The { character tables may be used to determine n} . i.e,, how
many times functions of a given R value will "show up" in a given

irrecccible representation. The pertinent equation is

h'AQ = (./Q)ZR XA (.K) X.ICR)“ (12)
where XA(R) is the character for operator R in the A th
representation and X‘Q(R) is taken from the ,Q character table,

Eq. (12) follows from the orthogonalit_:y equation (eq. (5), above) and

-
the fact that, for the various k points, the ,‘, representations are,

in general, reducible. (See sections 3-2 through 3-6 of ref. 8.)

1. For the central atom, a single 1 character table suffices

for all symmetry points. X‘Q (R) may be obtained from

Xe(RoFm«qle B) = | + 20088 + cos20+ 00 +2c0sL0  (13)
(See pg 155 of ref. 7; in particular, eq. (15.7) and the associated
discussion.) For even ,Q , XR(JR), where J is the inversion
operator, has the same sign as x,e(R); for odd Q , X‘Q(JR) = —X'e(R).

In this way one obtains the .Q character tables C-I (cubic system)

e G R AN
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and F-I ("reduced" simple tetiagonal) given in Appendices C and F
respectively., For L 0 these characters can be "broken down" into

the appropriat. "' representations as irndicated in Tables C-I and

F-1.

2. For the non-cen.ral atoms, obtaining the L character tables is

somewhat more involved.
(v. Review of manipulations involved in operating on a

function: Following ref, 7,

Py £ = £ (14)

means that the function Ppf has the same value at 7 as f has at T
with

?': ﬁ? . (15)
Suppose we have a function f represented by the contour lines in
Fig. 4a. Consider an R such that PRf is the function shown in Fig. 4b.
Suppose that f(?) in Fig, 4a has the value 6 when x= a, y= b, z = 0;
then we want PRf (T/) in Fig. 4b to have the value 6 when x’= b,

y’=s -a, 2= 0. Thus

= ©c 1 ©
R=17 o0 ae)
o o 1/,

12

R

R
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{a) The function f .

(b) The rotated function PRf

Figure 4. Rotation cf a function.
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so that eq. (15) becomes

b 01 o\/a
| = (7T o0 |l b
0 0 0 | 0

and in Fig. 4b, ¥/ = Rt and 3'= %2

Let us see what this means in terms of our ''triad" system, i.e.,
Pp associated with (x{ yJ 2/) = (F/ x! 2/), say. (A list of the
cubic triads is given in Appendix A.) For this triad, to find PRf , We
keep the same functional form f, but replace x/ with -y’/, y’with x’/,

and z/ with z/ . To be consis*ent with eqs. (14) and (15)

x =Ry’ + Ray 14")- Ra 2’
,g = R\g'l' + Rnﬂl + Rgz i’

(15a)
2=Rpe + Ra344’ + Ry 2’

= B_tay s
(From (15), r = R™'T", and, since the R's are real, orthogonal
matrices, Rl=R transpose.) To be consis.sat with the triad
chosen, x w -y/, y=x’, z = z’; we must have R21 = -1, R12 = 1, R3z=1
so that the R obtained here i identical to the X in (16); thus the
triad (F/, x’, z/) is associated with the PR used in Fig. 4.
Further, let f(x=a, yxb, z=0) = 6 as before; then, using the

triad notation, and the triad (¥/, x’/, z’/) as above;

14
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PRf(x', y!', 2') = £, x’, "),
so that
PRf(b, 34, 0) = f(a, b, 0) = 6,
as desired,
We now consider
L
PE® - %)
with 8/a fixed vector. The matrix ﬁ transforms T/ not 7. '5'; this is
equivalent to the statement thac, for proper rotations, PR represents
a rotation about an axis through T’w= 0, not through ¥- 3/=0. We

now show that

P b(r=2) = PF(Rp-3) an
ond nex. P(E'P-30)>
Define k(*) = f (?-3)
Then  Pp £(F~2) = Fh(®)

=h(R.'F') using (14) and (15),
= f([Rre )
Referring to Fig. 4, if £(T - $) = 12, say, at T = ¥, we want
PEE/ - %) =122t = R = RE; using (17),
PRE@’ - ) = £R™ R8)2) = £(0) = 12, as desired.
We now consider writing ; rotation (about T= 0) of a function
a

centered at $ of Fig. 4a as a rotation about an axis through T= 3

followed by a translation,




-

e o L.

;
3
K

Let

@) = £R-'D) = @), (18)
i.e., g represents the rotated function (rotated about an axis through

o

P = 0). Using (17) and (18)

RAF-2)=F(RE-2) « RR(-R)) =q(7-R2), o)
All our functions are Bloch functions, so we may write

g(F-Reat) = e %y (2 Re).

Substituting this into eq. (19) we have

L (-2) = 8 (P-Ras3)eih? =

where % is any primitive translation in real space.
Nov let

ftats, (21)
i.e., for a given S we allow only those X which satisfy (21); thus if
S is a vector defining a non-central atomic site, %2 is a vector to an

equivalent site. Substituting (21) into (20)

(22)

Pr F(r-3)= %(r.-g) e-.&ko(i?—?)'

Referring to eq. (18), g T - ?) represents the function f after

rotation about an axis through T= ?; thus, for Bloch functions, a

rotation about ¥ = 0 is equal to a rotation about T = ¥, times a
factor exp [ - ike RS - ] \with the restriction on R implied by
(21).. An alternative derivation of this '"parallel axis'" theorem is
given in Appendix D.

(b) It is now easy to see how to extend the predictive

16




equation (eq. (12)) to the non-central atoms: Centering a given f{-
type function at ? = ? and rotating about ® = 0 is equivalent to
rotation of this function about ¥ = 2 (represented by g(? - '?) in (22))

multiplied by a phase factor. If X‘%(R) is the trace for the central

atom, then we will have this same trace associated with g - 3).

Thus

ct(R) xl ()€ 'Lk (Rs‘- )]

Using 'ﬁ"'F =X+ l( and the fact that T{'s' -%is a % vector, we may

(23)

write. (23) as

&
A
[ 4
i

? M:S

XQ (R)Q"t (R'3-3)

(<3a)

Thus, combining eqs. (12) and (23),

5 i(non -central) w(g /3)2 X (R)XI(R) Z Ik {R?v V) 24)

or, using (23a),

h)t (non-central) = (\/ﬁ)z x R)le)z lk [ﬁ i;? (24a)

We sum ¢n » since we must consider functions on all the non-central
sites; the prime on the ¥ sum in (24) and (24a) indicates that, for
a given ﬁ, only those ?v are‘allowed for which 'ﬁs; = "s; +f’ . For a

given ¥ we may perform the Y sum for each R and write

n}) (non-central) = (‘/3) ZRXA(R) XR E(R) (25)

17
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with

"t(ﬂ) XI (R) Z (k- (R5-5) (26)
=X¢ (26 k('5-3) (268)
= Xf (sz; ci(k. Rk). & (26b)

Consider CusAu as an example. The primitive cell may be taken as
in Figure 1 with the three Cu sites labeled 2, 3, 4 and &, given by
(7b).. We now illustrate how to find x%lck (R) for A= 1 for the T
pcint located at Xk = (2w /a) (i& b), 0<£ b<& in Pigure 3, Under
the identity operation E all three non-central sites go into themselves
so RS, - &, = 0 for all three S, ; thus all three phase factors in
eq. (26) are 41 and 2';- +3; then, sinee eq. (13) gives
'X,"',:" (E) = 3, we Lave 'X’I'I (E) = 3x3= 9, The operation C:'(z),
i,e,, 180® about the z axis, takes all three Cu sites to corresponding
equivalent sites., Using eq. (26b), L-Rk = (2% /a) (110). This gives
2y when dot multiplied with §‘2, W when dot multiplied with ?3 or $;
%’ is then 1-1-1 w -1 and, since eq. (13) gives Xé (180°) = -1, we
have

x.{{ (C:'(z)) a-1x-]l=1,
For the C4(z) operation (90° about z) represented by the R of eq. (16)
(i.e., operation number 5 in our triad list of App. A) only site 2 goes

into an equivalent site. For this R, k - Rk = (2% /a) (010); this

18
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gives ;- when dot multiplied with 3'2 SO 2‘,’ s -1, Eq. (13) gives

X, (90°) = 1 s0
x":'(c4(05)) = 1x-1m-1,

In similar fashion one finds x": (Jc:‘ (x)) = -1 and

X"T (JC, (#35)) = 1. (JC:' (x) takes all three s'»;, into equivalent
sites, JCZ(#SS) takes only .?2 into an equivalent site. Both C:' and
C, are 18'.~operations; eq. (13) gives x:: (180‘) = -1 but, since £
is odd, Xg@C}) and YL(IC,) = -1x X (180%) = -1x-1=1.) Since
it is only necessary to work out one operator in each class, we have
thus obtained the =1 trace table for the T point for the non-central

atoms of CusAu type structures,

2 2
class E  C4(2) 2C4 2JCy 2JC,

x“c(ll.) 9 1 -1 =51 1

(The number in front of the BSW class label simply gives the number of
members in the class.) In Appendix C we give Z; for all eight
operators of T (Table C-IV) and the complete (R#0,1,2) character table
(Table C-II1).

N ;
For interior k points eq. (26b) reduces to

7(1 i.{(R Xl(kff d (Rﬁ. -5- t) (interior-K) (27)

since, for interior ?, Rk =% for all R in the point group of X so that
one need only ascertain how many sites go to equivalent sites under
each operation R. Since, for a given R, the delta function in (27) is
independent of 'l:, the same Q-character table will suffice for all

o
interior-k points for the non-central atoms (for a given crystal




structure). More precisely, one may make a single '"master tabic"
listing X‘&(R) for each R of the full point group, then immediately
write down the R-character table for a given interior<% point by
simply selecting those R belonging to the point group of % A
intorior-'l‘c master table for Cuz.ln type structures is given in Appendix
C (Table C-II).

For points on the zone boundary the '"master table" idea above is
not of much use and a different 1 character table is (in general)
required for each X point for the non-central atoms. Table C-III of
Appendix C (T point of simple cubic CujAu structure) is an example of
such a table. The phase factors used in constructing Table C-I1II are
given in Table C-IV, Because of these phase factors, the entries in
Table C-III are not (in general) equal to the entries for corresponding
R, R in Table C-II (interior-k points).

(c) Systems with only one non-central site. In such a system
this non-central site must go into itself (or equivalent) under every
cperation of the group. The CsCl structure with two atoms per
primitive cell, an A type atom at the corners and a B type atom at the
body-center position (see Fig. 2) is an example of such a 3ystem.

For the interior-k points of such a system, eq. (26) reduces to

%
X“’E CR)* = x: (}0 = (one non-central atom; interior-i) (28)
For these cases eq. (25) reduces to eq. (12) so that the central atom
£ character table also suffices for the non-central atom. (See Table

C-I, Appendix C.)

20




For X points on the zone boundary different L character tabies
will (in general) be needed for each X point and the factor
o (Ko (REG-§)
must be evaluated for each X, each R. For CsCl type structures ?2 is
given by eq. (8b). As an example, the R character tuble for the
symmetry point T of the 7:Cl structure is given as Table C-VI (App. C);

phase factors used in constructing Table C-VI are given in Table C-VII.

C. Using the R character tables to predict the pattern of contained

functions: We give three examples; an intericr point of CuzAu, an

exterior point of CuzAu, and an exterior point of CsCl.
1. Simple cubic CugAu; A(z) i.e., an interior point on the 2z

axis. k = (2mw/a) (00b), 0< b <% .

R B S O M e L e i TP LY ‘

(a) Central atom: Using the A character table (B-III), the

appropriate R character table (C-1), and eq. (12) one finds that:

Tt

A contains fR= 0
- 2=1
L=2(N,)

A, contains R=2 (M)
Ay contains no a.l.f.'s
2! contains P=2 Mie?)

Ay contains 2=

R=2 (Pgs’)

21
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Ouce all the irreducible representations for a given symmetry
point have been listed as above, there is an important consistency

check that may be used:

p3) nfé \nA = p(20+1) -

where the sum is over all the irreducible representations of the
symmetry point, nﬁ is the number of times an a.l.f. function of
type l shows up on representat:lon/\ » and hy is the dimensionality
of the A representation. (p is the number of atoms involved; for
the central atom case p = 1.) Eq. (29) simply reflects the fact
that, when a reducible 2 representation is decomposed into the
irreducible representations of a giver. symmetry point, the to‘.al
dimensionality of the decomposition must equal the original
dimensionality. In the case above we see that this sum is:

1x]1 = 1 for f=o0;

Ixl + 1x2 = 3 for ,Q:l;

Ix1 + 1x1 + 1x1 + 1x2 = 5 for fQ=2;
all agreeing with eq. (29). ( Ag is 2-dimensional; the other A
representations are l-dimensional.) Eq. (29) can be extended to check
the individual """ breakdown as expressed here by [ja and [3¢/
The right hand side of (29) is just the dimensionality of the
representation for £ ; thus, when ﬂ. is decomposed into different (1)

representations,

ZA R.:(Fa);u = p(dimensionality of 1( M )) (30)

22
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Checking this for the cas: above:

Ix1 + 1x1 = 2 for J=2, Ma type;

1x1 + 1x2 = 3 for fR=2, Mg’ type;
both agreeing with eq. (30). ( [jg is 2-dimensional; N/ is
3-dimensional,)

(b) Non-central atoms: Since A is an intersor -X point we use
the CuSAu interior-'l: "master table' (C-II) and the A character table
(B-III) with eq. (25). We find:

A, contains = 0 (twice) ]
L =1 (twice) |

=2 PR) (three times)

A, contains 1: 0
£=1

9-‘-2 (PIJ.) (three times)
A\’ contains =32 ﬂs’)
A, contains R=2 ( st.l) (twice)

AS contains 2=1 (three times)

=2 ( M2s') (three tines)

We see that both (29) and (30) are satisfied (p = 3 here).

2. Simple cubic CuzAu; T point at

k= (2m/a)(44 b), 0< b<L . This is an exterior point (see

Fig. 3). The character table for T is identi al to that for A . For

T as chosen ere, the 8 operations are identical to those for 4 at

23
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(2yr/a) (00b), 3L b<§. « T as chosen has equivalent points (Y'n Y+‘l?)
at (2w/a)(kk ), @m/a) (4D, and (2wre) G L.

(a) Central atom: Since the same chsracter table (B-III) and
the same R character table (C-I) will be used here as in example 1
above (the same operations will be selected out of table C-1 as for
A), we obtain the same pattern of contained a.l.f.'s as for the A
point central atom, above.

(b) Non-central atoms: Eq. (25) must be used here with
X ‘?"c‘t (R) determined by using eq. (26). The resultant ¢Q character
table is given in Appendix C. Table C-III gives X‘s\’f(R) constructed
as per eq. (26); the exp [ito(ﬁg-gi,)] factors are given in Table
C-IV. One finds that:

T, contains {=1

Q=2 (M) (twice)

T2 contains ,Q:l

=2 (en

T,/ contains R=1
L=2 )
R=2 (Ren

T,# contains f=0
=1 (twice)
Q=2 (Pa)
R=2 ([en

24
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Ts contains Q-O

A=1 (twice)
A=2 (Ma) (twice)
=2 ([ien (twice)

We see that eqs. (29) and (30) are satisfied here (p=3).

3. Simple cubic CsCl; T point at k= (2w/a) ({i- b), 0<b<-‘!‘- .
This is an exterior point (see Fig. 3).
(a) Central atom: The comments in example 2,(a) above, apply.
(b) Non-central atom: Since there is only one non-central
atom in CsCl as opposed to three for CuzAu, we need a new L character
table. This is given in Appendix C as Table C-VI. (The phase factors
used in the construction of this table are given in Table C-VII.)

Using eq. (25), Table B-III, and Table C-VI, we find:

T1 contains Q=2 (l}sl)

T2 contains no a.l.f.'s

Ty contains L=2 (fly)

T,/ contains A=0
1:1
Q=2 ()

T_. contains l:l

X=2 ("

5
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We see that eqs. (29) and (30) are satisfied here (p = 1). )

D. Working out the actual unsymmetrized and symmetrized a.l.f.'s.
once the £ character tables have been used as in the preceding
section to determine what ,Q-types are contained in the various
representations, it is still necessary to determine which particular
furction is involved and to symmetrize this function. For simple
cubic, eg., this means that once we know ,Qzl is contained in 4
for instance, do we use x or y or z as the unsymmetrized function.
This is determined by trial and error; in many cases the proper choice
will be readily apparent. The basic symmetrization recipe, eq. (9) is
used.
Before proceeding with specific examples we need to review the
general symmetrization of an a.l.f. Using eqn (15) of ref. 3, a

symmetrized a.l.f. may be written as

1A ARKS \
0= (LI We™ G [R5

where the prime on the R sum indicates that, for each g;’, only those
R which satisfy R 's;‘ = s'; +’-£‘ are allowed if we started with the
unsymmetrized function on the §; atomic site. (The x on Dll(R) has
been dropped as these elements are all real for CujAu.) e rewrite

the exponential factor as

lt's-‘ Y "‘ o
e ACAK@ Su

o - -
with Rk = k + K(R). Thus (31) becomes

Qg(p)za/,);é"@z_,; WOrS W’s‘k‘,j K~
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We note that the exp(i‘l:-;‘ ) factor in eq. (32) does not

depend on R; thus, in finding the explicit a.1.f.'s we may treat
this factor as a constant for each site (for a given .l:). In
the MPW method the symmetrized &.1.f.'s will ultimately be used
to form matrix elements such as f(a.l.f.): (a.l.f.)jdt’,
-[(a.l.f.)i'H(plar-e-wave)jdt', etc. For non-overlapping a.l.f.'s,
the function g’j ER-' (F- f;..)] is non-zero only for T
vectors in the 5;,., "sphere'". For the a.l.Y. - a.l.f, matrix
eleuents, then, only the '"s, part" of (a.l.f.): will combine
with the "su part" of (a.1.£.); and the exp(ikegy ) of (@

in eq. (32) will be canceled by the exp(-ikesh ) of (0% .
For the a.l.f. - plane-wave cases, the exp(ifos;:“) term may be
kept simply as a constant factor. We will, therefore, ignore
this factor of eq. (32) in working out the explicit symmetriz.d

an 14 B st

The exp [i'l(.(R)o s;‘,] factors of eq. (32) can not, in general, be
factored out of the sum on R for each y (For the CusAu and CsCl
structures ?(R)0§;‘, will always be nW, where n is an integer; thus,

for these structures, exp Eif'(R)-s;‘] will always be real and equal to

¥ 1. For more complicatec crystal structures this factor can be complex.)
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For symmetry points on the zone boundary these factors must be
included in the symmetrization; for in,teriof-'l: points Y(R) is zero so
this factor is always +1 for such points. From the discussion
associated with eq. (18) we see that the expression

S¢‘ ﬁt" (-3 )} in eq. (32) may be considered as a rotation about
an axis through the point defined by s}«, If the original §‘{ is
centered on 5 and has an angular part ﬁx/f, say, then for the R
associated with the triad (yXz), the angular part of l‘t y m‘ (r-s")]
is just ﬂ(g/ﬁ with ppsr-sy and ﬂ,a= r"% Changing
language slightly, one says that x on site ) has become y on sitela. or

Xy 'goes to" y, . We now provide a few specific examples.

1. Simple cubic, CusAu structure; A(z) point. i= (21r/a) (00b),
0<b<i . Character Table B-III is used. The predicted types of
functions are given in sections C.1.(a) and C.1.(b), above. The actual
functions (angular parts) are to be chosen from the cubic harmonics
given in Table B-II.

ta) Central atom:
A,: From section C.1.(a) we see that only A= 2 (of the
r",. type) is allowed. This means we must try both 22%x*.y* and
x*y™ . Using eq. (9) and the & ,(R) for A, from Table B-III we
find that Zz‘-xa-ya symmetrizes to zero whereas x“"'-)"'L symmetrizes to

itself. Proceeding similarly with the other A representations we

find:
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A =0 1-1
(the arrow mezns "symmetrizes to")

.ltl 2 => 2z
2

R=2 (M)  222xPy2p 2274252
A, =2 (M) x%y2 - x2y7
A|' no a.l.f.'s
B h=2(Tg) xydxy
AS (Du) Qz 1 X=» X
=2 (l‘asi) Xz =) xz
(b) Non-central atoms: (We work out Aa’ only.) From section
C.1.(b), abo e, we know that L= 2 (M,g?) is contained twice (more
precisely; there will be two linearly independent A4’/ functions of
the st’ type). Let us try all three [4’ functions from Table B-II.

We first try thesc thr-e functions on sitel(see Fig. 1). Site 2 goes

into itself under all eight operations of the A (z) group. We have

E Cl) & ¢, Jc4’~(x) )ty I, i,

Xyz Xyz  yxz yxz Xyz Xyz YXz yxz
yz -=» yz -yz @ Xz -y2 yz -Xxz2 xz = 0
XZ -» XZ -X2 yz -yz X2z -X2 -yz yz = 0
Xy =» Xy Xy Xy Xy xy xy Xy Xxy = 8xy

The entries under the individual operations represent individual
Du(R)pr(?) terms in the summation of eq. \9). To obtain the
circled entry, eq., one starts with the function yz, replaces :his by

xz as dictated by the triad (yxz), then multiplies by D;,(C,) in the

29
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Ay’ representation (-1). The expression at the far right is the
summation of eq, (9) before multiplying by h/g. (As discussed above,
we concern ourselves here with the angular part of f (?) only.) Since
h= 1 and g = 8 for Ay, we obtain xy on site 2 as both unsymmetrized
and symmetrized function. For site 3, operatinons E, C:‘(z) and the
two JC4" take site 3 to site 3; under the two C4 and the two JC2
operations site 3 goes to site 4. From the patterns above for site 2,
one readily sees that yz and xz on site 3 symmetrize to zero whereas
Xy on site 3 symmetrizes to (}3) C(xy)s + (xy)4] . For site 4 we
will simply reproduce this last function; thus we see that there are

two independent A, functions as predicted.

2. simple cubic, CugAu; T point at k = (2/a) (§ & b), 0<b<f .

(a) Central atom: This will go exactly like a A point on the
z axis, given above in section D.l.(a).

(b) Non-central atoms: (We consider only Ty? here.) Because
of the phase factors discussed above (see eq. (32)), the non-central-
atom contained a.l.f.'s for Ty will not be identical to those for
A{. The predicted types of functions are given in section C.2,(b)
above. Site rotations will go as in the 4 example above since the
same eight operat.: - .- involved. Character Table B-III is used.
The exp E iT(‘(R)u,;J 1avoors of eqn. (32) are given in Table C-V. For
the unsymmetrized functions on site 3 we must use the exp ﬁ?(R)o?,]
factors for the four -nerati ns which take site 3 into itself
(E, C4','(z), 2JC£') and use the exp [if(R)"stJ factors for the four

operations which take site 3 to site 4 (2C,, 2JC,).
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We f.nd:
R=0 ), = ),
Re1 (), = (22,
W3 = ) [15 + ®,]
be2 (Pa) @2y, » @222y,
M) 23> (Va) [y, + x2),]

3. Simple cubic, CsCl; T point at k = (21/a) (k§ b), 0<b<L .
(See Fig. 3.)
(a) Central atom: This will go exactly like a A point on the
z axis, given in example 1.(a), above.
(b) Non-central atom: For the CsCl structure (Fig. 2) there
is only one non-central site so that eq. (32) becomes
(K3,
0{O=bigZga} e Vg K]
and all R take this site into itself or equivalent. (We again ignnre
the exp Eif';] factor as discussed in connection with eq. (32).)
Thus, the exp [i'l(‘(R)o:?J factor is identical with the phase factor for
R used in forming )(fi(R) and may be taken directly from Table
C-VII. We work out T, only heve.
From section C.3.(b), above, we expect an 280 function, an
f =1 function, and an L =2 function of type f'u, . Using the Du(R)
from Table B-III and the phase factors from Table C-VII with eq. (33)

we obtain:




o

A=0 1-1

A=l z - :

fu2 223t o 22yt
We note that the product of the Tzl D;; elements and the phase factors
give "effective" D11 elements identical to Tys it is thus no

coincidence that the functions obtained above are identical to those

for A} for the central atom of CusAu (example 1.(a), above)

DETERMINATION OF THE CONTAINED PLANE WAVES .

The plane wave expansion functions are considerably simpler than
the a.1.f.'s since the plane waves are easily expressed in terms of
one origin in contrast to the a.l.f.'s which are centered on different
sites. Each plane wave extends throughout the entire crystal.

A. Formation and ordering: simple cubic, fcc, and bcc.
A plane wave is written
fx(?') = exp i('l?d?)o?]. (34)

Putting this into the symmetrization recipe, eq. (9), gives

A A e AR (R4 R)F
- A + r ‘ .
B (®) = (hfa)ZaD) R)e )
In general,
- wh ) -
K= 27r(c1b1 + °2b2 + c3bs) (36)
w
where the bi are primitive translation vectors in the reciprocal
space lattice and the c; are integers. Although we will confine
ourselves here to the cubic system, the procedure can readily be

generalized to other crystal systems.
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For the simple cubic lattice,
X = (2%/a) (bed)
where b,c,d are any integer; positive, negative, or zero. Using AQaf
as an example, we illustrate how one symmetrizes the plane waves and
determines the allowed types. For f‘labeled by A(z), i.e.,
k = (2r/a)(00t), 0<t <4 , we have
k) = (2m/a) (bet) (37)
where £ & t+d so that f is not an integer.
In symmetrizing the plane waves there can easily be confusion
between R ani R™1. In eqs. (14) to (16) we defined our triads so that

if PR is associated with the triad (yxz), then R is given by eq. (16)

and

" 6 Teo\/x ”
R'P=[100 ‘}:3:
0 0l 2 -

For the same triad,
0O 1 O0\/b £
R(R!-R)‘-" Toolel =10
o 01/\F ¢

In symmetrizing any function of a dot product,

A = 3p D (RF(R-R)

33
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A = Zg Dy (R) F(R2-7) e
= 3o D (T R(T5.5)
with T} = R. Since the sum is over an entire group,
A =20 00 (T)HE1308).
Dy (T = 5o, (1)
= D (7)
Since the D's are unitary. Then, replacing T by R,

A= Zg D R) f(r'27) (39)

Comparing eqs (38) and (39), we see that, for real D's, and when

We may write

symmetrization is with a diagonal element of D, we may use either

12 or R2. In the following we will use R™* (K+).

R
For PR associated with the triad (yxz), the corresponding term
in the sum on R of eq. (35) becomes (using R"l(l?fi) as above)
D;; R)exp i (2m/a) (@bf)oT])
for (f+f) given by eq. (37). To shorten the notation we write the

square bracket above as (cbf). Under the A (z) operations we have:

8
E C () € C, Jrx X g, I

4 74 2
triad xyz Xyz yxz yXz Xyz Xyz YXz  yxz
(bcf) bef bef  cbf cbf  bef bef Thf  cbf
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Using Table B-III for the D's, the complete symmetrization (except for

the h/g factor) of (bcf) under A,.’ becomes

ebef) | (Bef) - (cbf)  (cBE) _ (bef)_ JbEE) , (cbf) , (cbf)
Since this does not add to zero, the ('k.flz) represented by (bcf) is
allowed under A,/ (with neither b or ¢ equal to zero). From the
above, one readil; sees that (b0f) and (Ocf) would each symmetrize to

zerc and are thus not allowed under A,.' . In a similar manner, one

determines that K types (bbd) and (bcd) are allowed under Az’ and that

4 type (000) is not allowed. (Since ve are dealing here with A (z),

there is no need to try both (000) and (00d) for ‘K., for example, as

Sobedninin i G ania . ki
-

4 there will always be some non-zero value in the z "slot" due to T(..)

g One also soon sees that (bbd) '"covers'" (in the sense that no new
independent functions are created) (bl.>d), (T)bd), and (Bgd), and that
F f bed covers (bcd), (I'ch), (cbd), etc. For any combination, however, d

as well as d is needed in the z slot.

= To now form a ‘list" of f's, one finds the square magnitude of
the various (?4?) vectors 2nd cuts the list off at some magnitude.

A simple bookkeeping r.ethod is illustrated below. We take

, '1': = (21r/a) (OO{;). Ignoring the (2/a) factor and multiplying by 4

in order to work with integers we have:
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4 4K ) 16 (R+R)2

(110) (440) (441) 33
(111) (443) (443) 41
(111) (444) (445) 57
(112) (448) (447) 81
(112) (448) (449) 113

| (120) (480) (481) 81
12D (482) (483) 89
(121) (484) (485) 105

‘ (122) (488) (487) 129

' (220) (880) (881) 129
(221) (88%) (883) 137
etc.

These would order as: (110)
(111)
(111)
(112)
(120)
(121)
(121)
(112)

etc .

o
For fcc and bec lattices, K may also be written as

E = (21 /a)(bcd) but now there are restrictions on the values of b,
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¢, and d. For fcc the integers b,c,d must either be all odd or all

even; for bcc the sum b+c+d must be even. These restrictionsl® come

from the fact that ¥ must be an integer sum of the three primitive

reciprocal space translation vectors as expressed by eq. (36).

oh
B. Examples of allowed types of K's. For all lists given here b,c,

and d are positive only.

1. Simple cubic, fcc, and be:. Ppoint, k = (000).

M (000

(00b)

(obb)
(Obc)
(bbb)
(bce)
(bed)

(06
(bcd)

(As x,y, and z are equivalent, this
"covers" (b00) and (0b0).)

(Covers (bOb) and (bb0).)

{Covers (Ocb), (blOc), etc.)

(Covers (cbc), etc; (cbb) must also be used.)

(Covers (cbd), (dcb), etc.)

2. Simple cubic, fcc, and becc. A poirt. X = (21 /a)(00t):

for simple cubic O<t<i ; for fcc and bcc 0€t< 1. Because z never

mixes with x or y we will simply write n in the z slot; for (Obn),

e.g., n can be 0,b,b,c,¢.

10. C. Kittel, "Introduction to Solid State Physics" {John Wiley and
Sons, 2nd ed., 1956). See Chapter 12,
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A (oo
(Obn)
(bbn)
(ben)

A-‘l. (Obn) Ag’ (bbn)

(bcn) (bcn)

415.(using D), of Table B-IV)
(bon)
(bbn)
(ben)
} linearly independent
(cbn)
For t = 1/4, the simple cubic (sc), fcc, and bee lists for A&(z)

would order as follows:

sc fec bee
010 020 011
011 022 011
011 022 020
020 131 121
012 131 121
021 040 022
120 133 013
021 024 022
121 042 031
etc. etc, etc.
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The differences between the lists are due to the restrictions in the
fcc and bec cases discussed in Section A.

Note added in proof: Eq. (12) may also be used to predict
allowed plane wave types (pwt) by replacing XR(R) with 'Xp"t(R).
As an example, the type (b00) contains six vectors (b00, 300, 0bo,
etc.) and may be considered as a 636 array., Under the identity

operation all six vectors go into themselves and the trace is 6;

under C42(z) only the vectors 00b, 00b go into themselves and the

trace is 2; traces for C4, C,, C_, J, JC,2, IC Jc,, and JCg will

N R A R T oon e, 1) ik

3 4’

g be 2, 0, 0, 0, 4, 0, 2, and O respectively. For F,, eq.(12) thus
g ; gives
] i
4 : n = (1/48) (6+3x2+6x2+0+0+0+3x4+0+6x2+0) = 1 3

i

i and for P s

g n = (1/48) (6+3x2-6x2+0+0+0+3x4+0-6x2+0) = C ,

Thus, the type (b00) is allowed once for [} and not at all for 0}

as per B.1.
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PART II: REDUCED LATTICE SCHEME

FOR PERTURBATION PROBLEMS

INTRODUCTION TO PART II

As a specific example consider a bcc lattice with one atom per
primitive cell. Suppose we now apply a phonon perturbation in which
half the atoms (corner atoms) move along the z axis with one phase,
and the other half (body-center atoms) also move along the z axis but
with a different phase (see Fig. 5), the perturbed lattice will be
simple cubic with two atoms per primitive cell. One may find it
convenient to use a "reduced" group so that the full Hamiltonian,
including the perturbation term, is invariant under this "reduced" or
"new full group". Thus, in a perturbatic: such as the bcc to simple
cubic case above, one might wish to use the cubic A group (8 members)
as the reduced group instead of using the full cubic (48 member) group.
This was the approach used by Bloom in his Ph.D. Thesisll.

For an fcc crystal one would go from fcc to simple tetragonal for
a phonon perturbation with half the atoms moving with one phase and
half with another but both motions being along the z axis. {8ee Fig.
6). The reduced group for this case would be the simple tetragonal
/\ group (8 members). (The full tetragonal group has 16 members.)
All eight members of the simple tetragonal A group preserve +z. For

the remainder of Part II we shall consider only the fcc to simple

11. F.K. Bloom, Ph.D. Thesis, RPI, 1966 (unpublished).
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FFigure 5.

Change in primitive cell from bcc to simple cubic due to a
phonon perturbation. For the unperturbed case the bcc pri-
mitive cell with one atom is valid. When the perturbation
is applied the lattice becomes simple cubic with two atoms
per primitive cell; one at (000), the other at (a/2) (111).
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Figure 6.

C= O/ k= afle

Change in primitive cell from fcc to simple tetragonal due
to a phonon perturbation. (Some of the face-centered atoms
have been omitted for clarity.) For the unperturbed case

the fcc primitive cell with one atom is valid. When the
perturbation is applied the lattice becomes simple tetragonul
with two atoms per primitive cell; one at (000), the other
at (ttc) in the tetragonal (x' y' z') axes. The numbering
of the atomic sites is consistent with eqs. (40a) and (40b)
of the text.
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tetragonal case and shall take the tetragonal A group as the reduced

or '"new full group" for the crystal.

The 'REDUCED GROUP' CHARACTER TABLES: FCC TO SIMPLE TETRAGONAL CASE
For the "' point group for the simple tetragonal lattice (with
the added restriction that +z be preserved) one may usec the tetragonal
A point group character table, Table E-I of Appendix E. One must
keep in mind thLat tte x’and y’axes of Tables E-I through E-V refer to

the simple tetragoral x’ and y’/axes (perpendicular to the tetragonal

faces); when the simple tetragonal is used in conjunction with a 1

iparent' fcc lattice, the x/y’axes of the tetragonal system are

rotated 45° from the x, y axes of the fcc system.

To make eneryy band calculations in the 'new'" or 'perturbed"
lattice one needs to determine the contained a.l.f.'s for the various
irreducible representations of the symmetry points of this new
lattice; in determining these contained a.l.f.'s there are two
distinct procedures that may be followed:

1. Determine the contained functions directly as in Part I.

2. Utilize the fcc functions from the "parent' lattice
(assuming these have been previously obtained).

We discuss both procedures below.

DETERMINATION OF ATOMIC-LIKE FUNCTIONS: DIRECT PROCEDURE OF PART I
The procedure is exactly as given in Part I; we work out a few

examples for comparison with the indirect procedure.
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A, R Cha;'acter Tables.

1. Central atom: We take the '"body-center' atom at site 1 of
Fig. 6 to be the central atom.

5, = (000) (40a)
For the central atom one X character table suffices for all
symmetry points; this is given in Appendix F as Table F-I.

2. Non-central atom: We take the 'corner" atom at site 2 of
Fig. 6 as the non-cen'tral atom in the two-atom basis.

3, = (ttc) (40b)
in the x’y'z'axes (tetragonal axes). Since ?1 = 0 we will simply
write s for 3%.

As explained in Part I, the central-atom f character table will
suffice for the non-central atom for all interior-X symmetry points;
different & character tables will be needed, in general, for each of
the X points on the Brillouin zone boundary. In Appendix F we give

the R point £ character table as an example (Table F-II); the phase

factors used in constructing this table are given in Table F-III.

B. Prediction of Contained Functions Using the f Characters.

We give three examples for the AB type simple tetragonal lattice
using the tetragonal A group as the "reduced" or '"new full group".

1. P point (center of the Brillouin zone). -l:= mr/2)(0/t,0/t,0/c).
See Fig. 7. Since we are using the reduced symmetry the tetragonal
A group applies. Table E-I of Appendix E may be used as the character

table.
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Figure 7.

B N . o

R 5 P A R S itk s S AT s i

The first Brillouin zone for the simple tetragonal lattice.
The first zone of the simple tetragonal resulting from a
phonon peturbation of an fcc lattice is shown imbedded in
the first Brillouin zone (the truncated octahedron) of the
parent fcc lattice. The symmetry labels refer to the simple
tetragonal Brillouin zone. The notation is that of Koster
(ref. 6).
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() Central atom: Using Table F-I (App. F), the tetragonal
A character table (Table E-I), and eq. (12) one finds that:

Ay contains f= 0
=1 (A)
Q=2 (A)

Az contains no a.l.f.'s

AS contains A=2 (Ag)
A‘f contains ,Q: 2 (Aq.)

AS‘ contains =1 (Ag)
=2 Ap)

The label in parentheses refers to the "A breakdown" of Table F-I.
The arrangement above satisfies eqs. (29) and (30). (As. is 2-
dimensional; the other /\ representations are l-dimensional.) Since
we have defined our a.l.f.'s in terms of A labels (see Table E-III)
the ari‘angement above was to be expected.

(b) Non-central atom: Since we are dealing with an interior-k
point and since there is only one non-central atom, the same 1
character table suffices for both central and non-central atoms (see
Part I). The arrangement of contained a.l.f.'s for th:e non-central

atom must, therefore, be identical to that above.

[ -
2. A (x) point (interior point). k = (W/2)(b/t,0/t,0/¢c),

0 £ b 1l. See Fig. 7. For the reduced symmetry scheme the group of
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i for A(x’) consists of that subgroup of the tetragonal A group for
which the operators preserve +x; this is the two-member group E (x'y'z')
and JC?()’) (x'§'z'). The character table is given in Appendix E as
Table E- IV.

(@) Central atom: Using the character table E-IV and the

appropriate parts of the f character tuble F-I, with eq. (12) one

finds:

A (x’)1 contains R= 0 (Ay)

=1 (A|)
2=1 (s)
Q=2 (A))

2=2 (Ap
-2= 2 (As)

A(x’)2 contains = 1 (Ag)
R=2 (/\4)
A=2 (Ag)

It is readily seen that this satisfies eqs. (29) and (30).
(b) Non-central atom: As [\(ia is an interior point the non-
centrai atom will have the identical pattern of contained a.l.f.'s as

the central atom.

-

3. R point (exterior point). k = (W/2)(1/t,0/t,1/c). See Fig.

2 G W A ki Al - ; e erreni e R T TR



(a) Central atom: Using the R character table (Table E-V)
! and the appropriate parts of the L character table (Table F-I) with

eq. (12), we obtain:

R, contains =0 (y)

f‘. =1 (A)
g=2 (A
| R=2 (Ay)

2 R, contains =2 (A.',)

Rz contains f= 1 (Ag)
Q=2 (Ag)

Ry contains Q= 1 (As)
,Q= 2 (As)

This arrangement satisfies eqs. (29) and (30).

(b) Non-central atom: Since R is on the zone boundary, phase

factors must be considered. The ﬂ character table for X for the non-
central atom is given in Table F-II. (The phase factors used in
constructing this table are given in Table F-III.) Using the R

character table (Table E-V) and Table F-II with eq. (25) we obtain:

R, contains f=1 (Ag)

1
L= 2 (As)
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R, contains jf=1 (A:)

13'- 2 (Ag)
R3 contains f= 0 (A,)
.Q' 1 (A' )
=2 ()

L=2 Uy

R, contains =2 (Ay)

This arrangement satisfies eqs. (29) and (30). From the phase factors
given in Table F-III one sees that in symmetrizing the a.l.f.'s (see
eq. (33) and accompanying discussion) the product of the reduced
symmetry R point character table (Table E-V) and the phase factors
gives an "effective" R character table for the non-central atom in

which R, is now like the original Rz, R2 like R,, Ry like Ry, and

4°
R4 like R2 so that one would expect to get the arrangement above.

C. Working Out the Actual Unsymmetrized and Symmetrized A.L.F.'s.
In this section we list the explicit a.l.f.'s for the three
reduced-symmetry, simple tetragonal examples of the previous section.
1. ' point. X = (w/2)(0/t,0/t,0/c). The central atom and the
non-central atom have the identical pattern of contained a.l.f.'s.
A' =0 1=1
(the arrow means ''symmetrizes to'')
‘Q =" 1 z'—; 2’

D=2 20-04* N> = 2H*- (- (N2
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é A& no a.l.f.'s

A3 2=2 WR-0/ 1P -
Ay L=2 xtyrxtys

Ny £=1 ®,,) x—x’

= ¢,/ ’.4
1 2 (Dl.l) x‘z7» x’z

2. A’) point. ¥ = qW2)(b/t,0/t,0/c), 0<b<1. Central

. and non-central atoms will have identical lists.

Aj _ Ax)y; A=0 (Ap 11

R=1 (A) 2'—2/

r ' Q=1 (Ag) x/—>x’

£=2 (A) 20 R-/R-(/R 22092 ' R-(y 2
=2 (A &P xR-/R

=i (Ap  xP—x’a! :

Ax, Q-1 (As) y'—y! |
Q=2 (Ap)  xty'—xtys

E Q=2 (Ag) y'2'—wy'as

3. Rpoint. k= (0/2)(1/t,0/t,1/c).
(a) Central atom: .
le=o (Ay) 1—1 }
=1 (A 2o ,

-2 (A 2RI R 2R IR IR ?

Q=2 A3y &P-(y/R— 'R-(y)2 |
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R, R=2 (A &' xf

Rz =1 (Ag) x>

=2 g &> &/

R, =1 (Ag) vy’
Rez Ag) y&'—y2’

(b) Non-central atom: As noted in B.3.(b) above, R1 for the
non-central atom will be like R3 of the central atom, R, like R4,

R3 like Rys and R4 like R,.

DETERMINATION OF ATOM1C-L1KE FUNCTIONS: INDIRECT PROCEDURE

Assuming the contained a.1.f.'s for the various representations
in the unperturbed-lattice system to have been previously obtained,
one can utilize compatibility relations to obtain the a.l.f.'s for the
perturbed-lattice system; in some cases this may be easier than
obtaining the perturbed-lattice a.l.f.,'s directly. We will first
develop the underlying mathematics and then apply the procedure to the
three fcc to simple tetragonal examples of the previous section.
A. Mathematics.
f(J')

Consider a set of functions P (?) which transform by ("belong

to'") the ‘;iih row of the jEE irreducible representation of a group
as per eq. (2). Suppose we now form new functions E“(?) as linear

combinations of the original g}f)(?):
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iR = 2 090 «, w

where hj is the dimensionality of the J-Eh representation.

The coefficients 0(% form a matrix which we take to be unitary;

thus

() hi %
B = 5 J' oAy E (1), 2
Applying Pp to Fy (F):

l‘- ’
PRFAL (.r.) = Z Ja‘y,u PR F{J)(C‘.)

Z— N wl;%)]) R . using @;

N¢L

“’ Ry () Z‘J e W Ry,
Za’ By (F) [ﬂ('! D‘ﬁ{ﬂ) 74 )x,u S

lk) , using (42);

P FA ™

Comparing eqs. (2) and (43) we see that the Fu G‘) belong to the ,u.ﬂ

row of the representation given by the matrices 6x:‘D(j)(R)ao.

If the D(j)(R) form an irreducible representation for_ﬂfi, the
point group for a given'f of the unperturbed lattice, then they also
form a representation (possibly reducible) for that same k point in
the perturbed lattice for those cases in which Gg, the point group of
X in the perturbed-lattice system, is a subgroup of,zf‘. Eqs. (41)

and (43) then imply that if of brings oDU)(R)K to the
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appropriate block form for all R in G», and if the ff,”(‘r‘) are the
symmetrized a.l.f.'s for D(j), then the E‘L(f) given by (41) will be
the symmetrized a.l.f.'s for the various irreducible representations of
Gf contained in D(3),

For l-dimensional p{) eq. (41) tells us that each symmetrized
a.1.£. of DU3) will be a symmetrized a.l.f. of p(@) if p(3) is the
perturbed-lattice representation compatible with D(j)(R). For multi-
dimensional D{J) which are already diagonal for those R of‘*ﬁ: which

are members of Ga, the o matrix will be =1‘ and the a.l.f.'s for p(a)

T
in Gk will be just those a.l.f.'s belonging to the row of p(3)
compatible with D(a). If a multi-dimensional D(3) does not satisfy
this diagonal condition it is necessary to determine the '(NV‘ to use
with eq. (41); in such cases it may be easier to determine the
contained a.l.f.'s for D(a) directly.

In applying the indirect procedure to the fcc to simple tetragonal
case one first notes from Figs. 6 and 7 that a choice between two
ccordinate systems must be made; one may wish to write all operators
and functions in terms of the tetragonal x’y’/z’/ axes or to do the
entire problem in terms of the original fcc xyz axes. We illustrate
both methods using the three examples previously work:d out via the

direct procedure. In section B, below, we work in the tetragonal axes;

in section C we work in the fcc axes.
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B. Working in the Tetragonal Axes (x%y?, 2!) - Correspondence
Between fcc and Simple Tetragonal.

We first nte that our point group for the "[" point of the
perturbed lattice (labeled A in the "reduced" symmetry) is essentially
the A (z) group of fcc; thus, we should be able to obtain the
: contained a.1.f.'s for the various A representations from the a.l.f.'s
for the various [&(z).fcc representations (for A (z), an fcc
crystal with one atom per primitive cell will have the same contained
a.l.f.'s as the central atom of simple cubic CusAu so we may utilize
the A (z) example of D.1.(a) of Part I.). Because the tetragonal
x’, y/ axes are rotated 45° from the x,y axes of fcc (see Figs. 6 and
7) we must be particularly careful with the JC 2 and JC2 operations;

4

taking the +x’/ axis of the tetragonal system as lyirg between the +x

and +y fcc axes as per Fig. 6 we have the correspondence given in

Table I. The correspondence between functions in the two systems is

Table I
Operator Correspondence, fcc - "Reduced" Simple Tetragonal
fce 3C, (%) 3c, ) JC,(F%z)  JC,(yxz)

tetrag. JCZ(y’x’z’) JCZ(Y'f’z’) JC4a(X’) chz(yl)

given in Table II.
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Table II

Function Correspondence, fcc Axes - Tetragonsl Axes

fec tetragonal
1 1
x (A/NZ ) (x/-y?)
y (1/V3 ) (x/+y")
z zl
228 -x*-y? 2(2')"- /Y- (! R
» Ay -2x'y’
yz (WNZ )z’ (x/+y!)
xz (1/¥3 )z’ (x’-y”)
xy W/2)[")2- ']

1. [ point. X = (1r/2)(0/t,0/t,0/c).
(a) Using Tables I and II, above: The fcc A(z) character
table is given by Table B-III; the simple tetragonal A character table
by Table E-I. Using Table I the compatibility relations are given by

Table III. To find the list of contained symmetrized a.l.f.'s for A_,

Table III
Compatibility, fcec A(z) - Simple Tetragonal A

(Using the operator correspondence of Table I)

fce A, A-‘L Al’ Aa’ AS’
tetrag. /\. /\.‘, /\1 A3 Ag
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eg., we no.. from D.1.{a) of Part I that the A&' a.l.f. for fcc (or
central-atom, simple cubic) is xy; from 7ablc II this will be
(x’)""-(y’ )2’ in the tetragonal axes system. (We ignore the mult’plying

factor.) Proceeding similarly we may rapidly write down the A., /11,

and A.,. a.l.f.'s. /\5 is 2-dimensional and is slightly more involved;

comparing Tables B-IV and E-II and keeping the correspondence of Table
I in mind, we see that the A; D's are not identical to those of Ag

for all R. The & matrix to transform the AgD's into the Ag D's

igf";(:.:.). (44)

From D.1.(a) of Part I, the D;; a.l.f.'s of AS' are x and xz. (The

via o("'Do( is

DZZ a.l.f.'s are y and yz.) Substituting into eq. (41) gives
R 4

for one of the D11 As- a.l.£.'s and (1/43 )z(x+y) for the other.
Putting these into the x’y’z/ system via Table II gives x’/ and z’x’
respectively. (The 022 AS‘ a.l.f.'s will be y’ and z’y’.) Thus we
obtain the same contained a.l.f. pattern as via the direct procedure
(Section C.1., above).

(b) An easier method for this example: From Tables B-III, IV

and E-I, II we see that A (z) of fcc has the same relationship to the

fcc xyz axes as A of simple tetragonal has to the x’y’z’ axes; thus
A, "'corresponds" to A,. AJ. to Ay, A3 to 4, , Aqto 4,/, and

/15. to A5 (with D11 of AS‘ corresponding exactly to D11 of A‘).
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Then, since the A,_ a.l.f. eg., is x"—y" (see Section D.1.(a) of Part
I), the a.1.f. for Ag will be (x/)*-(y' . Again, this will be seen
to agree with section C.1. of the direct procedure. This method avoids
finding an o¢ matrix for As and does not require the function
transformation of Table II.

2. A’) point. k = (W/2)(b/t,0/t,0/c) (x’y’z’ axes) 0&b<1.
This is a X point of fcc (see Fig. 7). Using Table I, above, the E
and JC 4" (y') operators of A (x’) for the reduced simple tetragonal
correspond respectively to E and JC,{yxz) of fcc. Using this operator
correspondence and the appropriate character tables (Tables B-V and
E-IV) we obtain the compatibility given in Table IV, We may obtain the

list of contained symmetrized atomic-like functions for Ax’) 1’

Table IV
Compatibility, fcc Z - Reduced Simple Tetragonal A(x’)

(Using the operator correspondence of Table I)

fce Z, z a Z 2 Z-q.
tetrag. A(l')' A(x')& A(,(t)' A(x‘)&

eg., from the symmetrized Z. and Z, fcc lists by changing the xyz
functions of 2, and 2-, to x/, y’, z/ functions as per Table II; this
will give the same a.1.f.°:z as obtained in section C.2., above, using
thq direct procedure (the 2 fcc a.1.f.'s are given in Table B-VI of
Appendix B.)

3. R point. X = (rr/2)(1/t,0/t,1/c) (x’y’z’ axes). This is an

L point of fcc (see Fig. 7). Comparision of the R point character
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table (Table E-V, App. E) with the fcc L point character table (Table
B-1X, App. B} shows that the R point group is not a subgroup of the L
point group; thus the D{J) of eq. (43) do not form a representation
for the R point. For such cases it is generaily easier tc obtain the
contained a.l.f.'s via the direct procedure; for the example chosen,
however, the R point of the reduced simple tetragonal has the same
relationship to the tetragonal x’yfz/axes as the Z point of fcc (at
X = (2m/a) (10b) in the xyz axes) has to the xyz axes of fcc. Since
the two point groups are identical (compare Tables B-VII and E-V) we
may take the central-atom R; a.l.f.'s from the Z; fcc a.l.f.'s of

, and R, from Z . This agrees with

3 4 4
the a.l.f. pattern obtained in section C.35.(a), above, using the

Table B-VIII, R2 from 22’ R3 from Z

direct procedure. Once the central-atom R-point a.l.f.'s have been
cbtained, the non-central a.l.f.'s may be obtained from them just as in
the direct procedure (assuming that the phase factors of Table F-III

are known).

C. Working in the Original fcc xyz Axes.

If one has already set up the E® calculation in terms of the fcc
axes, it is probably most suitable to define the simple tetragonal in
terms of the fcc axes. In the perturbation one is, after all,
interested mainly in how the various fcc levels shift; it is not
particularly important how one labels the tetragonal (perturbed-
lattice) representations as long as one is consistent. We illustrate
this procedure with the same three examples previously used.

1. P point: One may simply label the reduced simple tetragonal
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I"-point representations as A. . Az , etc. of fcc. From Section D.l.(a)
of Part I the Az' a.l.f., eg., is xy; then xy is to be used with the
"Aa’" representation of the [M-point with the group operators all defined

in terms of the original fcc axes. From the fcc LA compatibility

table (Table G-I, App. G) one sees that A| will give the n 5 rl‘& , and
P‘S‘ levels, Ay will give the l';,, Fn’ , and l.;sl levels, etc.
This method requires no ¢ matrices, no transforming of x,y,z functions
to x/y/, 2/ functions, and no relabeling of the group operators.

2. AW&’'): In the x/y’z’ system k = (1/2) (b/t,0/t,0/c), 0&b< 1;
in the xyz system = (2m/a) (b/2,b/2,0). The A(x’) operators of
Table E-1V, App. E, will now be labeled E ar.ld JCz(yxz) using the fcc
axes. The two representations may conveniently be labeled as za,)
and Z@ . Comparing Table E-IV with Table B-V, App. B, we see that
the Z&) a.l.f.'s may be taken directly from Z, and 2'3 of fcc (see
Table B-VI) and the Zc.) a.l.f.'s from Z'a and z*; no x,y,z to
x’,y/,z/ transformation is needed.

3. R point: In the x/y’/z’ systemt = (m/2(1/t,0/t,1/c); in the
Xyz system ? = (27r/a) (é,i,&). To work in terms of the fcc axes the
most straightforward procedure would be to label the four operators
of the R point (Table E-V) in terms of the fcc axes (they would then
be E, C42(z), Jc, (yxz), «ad JCz(yxz) respectively) and proceed as in
Part I. To use the indirect procedure is quite tedious; for this
particular case, one could obtain the contained functions from fcc Z
as in B,3, and then transform these functions to the fcc axes using

Table II. The R, central-atom a.l.f., eg., would be xz-yz.
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DETERMINATION OF PLANE WAVES: DIRECT PROCEDURE
One proceeds exactly as in Part I. For “he simple tetragonal
lattice the allowed 155 are given by
K= w(b/t,d/t,£/c) (45)
in the tetragonal axes system with b,d,f any integers. At the
" point, the allowed'? types for the '"reduced" simple tetragonal
representations (defined as per Table E-I, II) are given in Table V.

(The notation of Part I is used.) For the reduced simple tetragonal

Table V
Allowed K Types, Reduced Simple Tetragonal

(Components given in the tetragonal axes system)

Ay A, A Ay As (011)

00f bdf Obf bbf bOf

Obf bdf bdf bbf

bhf bdf both must
be

bdf dbf included

Table V is valid for any'? value on the /\ axis (see Fig. 7), 1i.e.,

-l: = (mw/2)(0/t,0/t,h/c), 0€hg1l. Since the z! "slot" is an invariant
for the A group the combination bdf, eg., implies that bd0, bdb, bdb,
bdd, bdd, bd?, bdf are all allowed. For the l-dimensional represent-
ations the combinations bdf, Bdf, dbf, etc. will all symmetrize to %
the same function so only one of these should be included. In
ordering these plane waves it must be remembered that the z’/ slot has

a different magnitude than x/ or y’/. For the reduced-symmetry simple
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tetragonal whose "parent'" fcc laviice has cube side equal to a,
t=a/(2V71 ), c=a/2, (46)
so that eq. (45) may be written (still in x’y’z/ axes)
oy
K= (2w/a)( Wb, Yad,f) (47)
b
As an example, we list the first few K's for AS (in x’y’2’ axes;
the b,d,f values are given).

010, 01T, o011, 012, 012, 020, 02I, 021, 120, etc.

DETERMINATION OF PLANE WAVES: INDIRECT PROCEDURE
A. Labeling in Terms of the Tetragonal Axes.

1. ' point: Since A(z) of fcc has the same relationship to the
fcc xyz axes as A of the reduced-symmetry simple tetragonal has to the
tetragonal x'y' 2/ axes, we may utilize the correspondence between A
and A given in section B.1.(b), above, for the a.l.f.'s; the A,
plane waves are then obtained from the 4, list, A, from 4y/, Ag from
Al, etc. Since the fcc K's are restricted to all-odd or all-even
components, wherea: the simple tetragonal 'l'(.'s have no such restriction,
one must supplement the fcc lists. (If simple cubic A(R) lists are
available no such supplementing is necessary.) This procedure must,
of course, lead to the same ?‘s as given by the direct procedure, above,
(Compare the Ag list of the previous section with the simple cubic
A.?. list given in Part I; except for changes in ordering these are
identical.)

2. A (x’): Using the operator correspondence of Table I and the
associated Z fcc (or simple cubic) -A(x’) compatibility (Table IV)

one may generate the A(x’'), plane waves from the 2, and 2'3 simple
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cubic lists and the A(x’)2 plane waves from the z‘and Zq. lists

using the x,y to x/,y’/ transformations of Table II. Comparing the

expression for allowed simple cubic R's (i.e., ('k = (27r/a) @mn)
(xyz axes) with f,m,n any integers) with eq. (47) and using Table

IT we see that 2

bx itm, d= m-4 )

a
so that only those simple cubic T('s with ,m both even or both odd may

be used. This is a ouite tedious process and it is probably easier to
generate the A(x’) plane wave lists directly.

3. R point: X = (%/2)(1/t,0/t,1/c) (x’y’z’/ axes). Since this
R point of the simple te:ragonal has the same relationship to the
tetragonal x'y'z' axes as the simple cubic Z point (at X = (Zﬂ'/a)(l‘Oh)
with h = 1/2) has to the cubic xyz axes, we may take the R, plane wave

b,d,f values directly from the simple cubic Z., list, R2 from Zz, R3

1
from 23, and R4 from 24. The allowed f types for Rz, eg., are Obf,

bbf, bdf, dbf with f equal to 0,b,b,d,d,f,f (These are the b,d,f of

eq. (4%) or (47).)

B. Labeling in Terms of the fcc Axes.

The idea here is the same as that expressed in Section C of the
indirect a,l,f, procedure, above; namely, we define the tetragonal
lattice in terms of the original fcc xyz axes.

1. P point: The l&, fcc plane wave list may be used as is for
A, , the A, list for Aj, etc. These lists will be valid for
any point on the simple tetragonal N\ axis, i.e., for t = (21r/a) (00b)

in the xyz system, 0 £ b £ 1/2.
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2. A(x’) point: In the tetragonal axes,
%= (r/2) (b/t,0/t,0/t),0<b<1; in the xyz system, k= (27r/a) (b/2,b/2,0).
Working in the fcc axes we may construct the Z@, plane wave list from
the fcc Z; and zslists; the Z(.,list from I, and f.'of fec.

3. R point: As in determining the contained a.l.f.'s the most
straight forward procedure is to write the four R-point operators in

terms of the fcc axes and work out the contained plane waves directly.

USE OF COMPATIBILITY TO MATCH UNPERTURBED-LATTICE AND PERTURBED-LATTICE
ENERGY LEVELS

In many cases one is interested in comparing the unperturbed energy
levels determined by using the reduced symmetry scheme with the corresponding
levels of the parent lattice. In almost all cases one is interested in
matching the energy shifts to the proper unperturbed level. The key to
this matching is compatibility.

A. THE CCNCEPT OF FOLDING.

In real space the simple ietragonal primitivecell is twice as large
as the parent fcc primitive cell (since the new lattice has two atoms
per primitive cell whereas the original fcc lattice has only one atom
per primitive cell). This implies that the simple tetragonal reciprocal
space Brillouin zone has only one-half the volume of the parent fcc
Brillouin zone. Some of the k points of the simple tetragonal Brillouin

h
zone will then correspond to more than one % point of the original fcc

(see Fig. 7). For example, ['-point levels of simple tetragonal (labeled

N in the "reduced" scheme) correspond to both P and X(z) levels of fcc.
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A X point on the A axis of simple tetragonal at, say, k = (/2)(00;)
corresponds to both k= (2m/a) (00'%) and X = (2mr/a) (00"‘-) of fec!

i.e., the Pto X(z) axis of fcc is "folded" in half.

B. EXAMPLES USING TETRAGONAL LABELING.

1. ' point. Compatibility is used to determine which A representation
of the reduced simple tetragonal corresponds to which " and which X(z)
representations of fcc. Since the A group of reduced simple tetragonal
is a subgroup of [? fcc and of X(z) fcc, the procedure is quite straight.
forward. Using the A simple tetragonal to A fcc compatibility (Table IIT)

and the fcc A-P compatibility (Table G-I, App. G) we construct Table VI.

(A is defined by Table E-I, [! by Table B-I1.)

TABLE VI

Compatibiiity, fcc I’ - Simple Tetragonal A
(Using the operator correspondence of Tabie I)

fcc levels show up
—for __on

r‘I A!

Fia Avo Ay

PIS /\| ) AS
FiS' A3,As
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Using Table III with the fcc A-X compatibility (Table G-III, App. G)

we construct Table VII. (X is defined by Table B-X.)

it d S e ]
R e IR TR T 0 Le T i ia

TABLE VII

Compatibility, fcc X(z) - Simple Tetragonal A
(Using the operator correspondence of Table I)

R o

fcc levels show up
for on
X1 Ay
X Ay
X3 A3

2. A\ point of simple tetragonal at k= (rm/2)(0/t,0/t,b/c)
(x'y’z’axes), 0<b<{1. This corresponds to both - (2mr/a) (0,0,b/2)
and k = (21 /a) (0,0,1-b/2) of fcc (xyz axes). The A 1levels of fcc will

show up on the A representations as per Table III.

C. EXAMPLES USING THE FCC AXES IN ALL LABELING.

1. A axis of simple tetragonal: (See section C.1. of the indirect
procedure for deter.ining the a.1.f.'s.) When the reduced simple tetragonal
""" group is labeled by the A representations o€ fcc, the fcc M- A
compatibility (Table G-I, App. G) suffices to determine which A representations
will give which fcc I" levels; the fcc X-A compatibility (Table G-III,

App. G) suffices for the fcc X levels. The A-A correspondence is

trivial.
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Z, A(x’) of the reduced simple tetragonal: (See section C.2. of

the indirect a.l.f. procedure.) The A(x’) point at X = (m/2)(b/t,0/¢,0/c)

-
(x'y’2’ axes) is k = (277/a) (b/2,b/2,0) in the fcc xyz axes. For 0<b <£1/2,

the A (x’) point of reduced simple tetragonal corresponds to fcc 2

and fcc S (k = (277/a)(b/2,b/2,1) running from X(z) to U). For

%ﬁb‘l’ the A(x’) point corresponds both to fcc Z at (2w/a)(b/2,b/2,0)

and to fcc X at (27/a)(1-b/2,1-b/2,0); i.e., the fcc & axis from
(1/4,1/4,0) to K at (3/4,3/4,0) is "folded" onto the A(x’) axis from
1/2{b<{1. Compatibility is given in Table VIII.

TABLE VIII

COMPATIBILITY, fzc Z,S - REDUCED SIMPLE TETRAGONAL A(x’)
(All labeling in terms of the original fcc axes)

fcc levels show up
for on
Z),51 EEGH
;usz 2
345
2 "3 Zw
‘f} S4 Z(..)

3. R point of simple tetragonal at X = (wr/2)(1/t,0/t,1/c).
This is an L point of fcc. Neither group is a subgroup of the other
so we pzoceed somewhat differently from the previous examples. The
most straightforward procedure is to utilize the space groups
associated with the R point of the reduced simple tetragonal (rst)
and with the L point of fcc. One may also use the [*(fcc)-R(rst)
compatibility (Table IX) with the I*-L compatibility (Table G-IV).
The resultant correspondence is given in Table X.
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TABLE IX
§? Compatibility, P (fc¢ - R(red. simple tet.)
] f P(fcc) R(red. simple tet.)
N R
g Y Ry
i Nis’ R,,Rz,R,
; Mg’ Ry,Ry,Ry
r'.’ R2
"y K,
' 12 R,,R,
r Pis Ry, Ry, R,
Tas R,y,R4,R,
1

TABLE X
Compatibility, fcc L - Reduced Simple Tetragonal R

fcc levels show up
on

Ry» Ry
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COMMENTS ON PRESSURE PERTURBATION

There is a fundemental difference in the type of lattice-symmetry
change due to a phonon perturbation as discussed in this report and the
symmetry change due to a pressure perturbation. In a phonon perturbation
the difference in motion of the atoms causes a change in the number of
atoms per primitive cell; for many pressure perturbations the new
symmetry will still have the same number of atoms per primitive cell as
in the parent lattice.

For the phonon perturbation discussed in this report, fcc to
tetragonal, we go from foc with one atom per primitive cell to simple
tetrzgonal with two atoms per primitive cell (See Fig. 6). This causes
the Brillouin zone (B.Z.) of the new symmetry to be one-half the volume
of the original B.Z. (see Fig. 7) resulting in the 'folding" as discussed
above. (For the bcc lattice of Fig. 5 one would go from bcc to simple
cubic, again introducing folding.)

As an example of a pressure perturbation, consider fcc under a
tetragonal strain. The new lattice would be tetragonal as per Fig. 6 but
now both '"center" atom and '"corner" atoms are still identical so that

the new lattice would be body-centered tetragonal with one atom per

primitive cell. The B. Z. of this bct (before the perturbation is applied)
will be identical with the fcc B. Z. Under small strain the perturbed B.Z.
will depart only slightly from the criginal trumcated-octahedron B.Z.; there

would be no "folding".
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APPENDIX A

"TRIADS" FOR THE CUBIC GROUP OPERATORS

In Table A-I we list the cubic group triads. These triads are
consistent with Table II of ref. 4. These triads are also valid for

the tetragonal and trigonal systems (for the appropriate operators).

The triad (Y,x,z) associated with R implies that PRE(x?,y’,2/) =
£(v',x!,2’) and that x==y’, y=x’, z=z’ in Ppf(x’,y’,z’) = f(x,y,~) vith
R
Xy = szkixl:’ i.e., T=R-1¥/. See the discussion in the main text

associated with eqs. (14) - (16).

Table A-I
Triads for the Cubic Group Operators

The 24 triads for the proper rotations of the full
cubic group are given explicitly. The numbering is
such that the number for JR is n+24 where n is the
number for R. To obtain the triad for JR simply
take the negative of the triad for the corresponding
R. Thus the triad for #35 is (¥,X,z). The Cj
rotation axes are shown in Fig. 8a, those for C:

in Fig. 8b.
BSW Symbol
Number (ref. S) Triad
1 £ (x,y,2)
2 C42(2) (X,¥,2)
3 €42 (x) (x,7,2)
4 €42 (X,y,2)
5 Cy(2) (¥,%,2)
6 Cy(2) (¥,%,2)
A-1

UUSTEPS————————e,
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10

11
12
13
14
15

16

17
18
19
20
21
22
23

24

BSN Symbol
(ref. 5)

C4(x)
C4(x)
C4)
Cs)

C,(1)
C,(3)
Cy(5)
C(2)
C,(4)
C, (6)

C3()
C5()
C3(8)
C3 ()
C5(7)
C5(¥7)
C5(d)
Cs(d)

A-2

Triad
(x,Z,y)
(x,2,y)
(z,y,X)

(Z,y,x)

(y,x,%)
(2,5,x)
(x,2,y)
¥.%,7)

(z,y,x)

(X,Z,y)

(z,x,y)
(y,z,x)
(z,X,Y)
¥,z,x)
(z,X,y)
(7,2,%)
(Z,x,Y)

(v,z,%)

il
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. (a) Rotation axes for the C2 operators (see Table A-I).
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(b) Rotation axes for the C3 operators (see Table A-I),

Figure 8. Axes for the Cubic Rotations.
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APPENDIX B

SELECTED CHARACTER TABLES FOR THE CUBIC SYSTEM

The representation labels and class labels in all Tables in App. B
are those of 5SW (ref. 5). The number in front of the BSW class symbol
gives the number of members in the class.

Table B-I is valid for the [' point of simple cubic, fcc, and bee

and also for the R pcint of simple cubic and the H point of' bcc.

Table B-1
Character Table, Cubic P

Characters for the 24 proper rotations are given explicitly. For the
first five representations listed, the characters for the J operators
are identical to the corresponding non-J characters; for the last five
representations, the characters for the J operators are (-1) times the
corresponding non-J characters

2
E 3C 6C,4 6C2 8Cs

4
i 1 1 1 1 1
N1 1 -1 -1 1
Ry 2 2 0 0o -1
Ns 3 -1 | 0
N’ 3 -1 -1 1 0
v 11 1 1 1
O T | S ] 1
Na 2 2 0 0o -1
fa 5 < 1 -1 0
e 3 -1 -} 1 0

SN

—
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] 3
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L
: Koster's Table XXXI for 0, (ref. 6), Tinkham's Table (pg 70 of
% ref. 8), and Slater's Table A3-20 (ref. 9), all use the representation
' -
: ¥ labeling of BSW; class and operator notatiorn differ somewhat from that
4 : used here (BSW C42 is C, in Koster or Tinkham; BSW C, is Koster's CJ).
§ . Care must be taken with the primes of Slater's Table A3-20; his
unprimed operators are those of the tetrahedral group Td (E, C42, C3,
JC4 and JC2 in BSW notation).
Table B-II i
1
Basis Functions (Cubic Har.onics) for Q= 0,1,2 for ;
the Cubic System
ﬁ _&_ Functions Transform like
%
: 0 1 P'
1 X ;
y s ;
z
202 2 £
2 2z2°-x° =y r i
x2 -Y2 R §
, |
e yz :
xz Fa.s' !
xy
i
Table B-1I1I 3

Character Table, Cubic A (and Simple Cubic T)

pi pi
E C4 2C4 2JC4 2JC2

A 1 1 1 1 1

bt N R R
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For A (z) the operators are E,Cyt(z), 2Cy(z), JCy2(x), JCy*(y), and
JCy about axes in the xy plane. In the numbering system of Table A-I

1 these are 1,2,5,6,27,28,35, and 38. K = (21 /a)(00b); for simple cubic,
1 : 0<b<% ; for fcc and becc, o&b< 1. For simple cubic T, K = (2gr/a)

] (44 b), o<b<y.

] Koster's Table XI1 for C4y (ref. 6) and Slater's Table A3-21
(ref. 9) use the BSW representation labeling. The class labels C42,

JC42, JC, of Table B-111 are C,, Oy ,02 respectively, in Koster's

2

notation.

TABLE B-1V

D Matrices for 15, (and Tg) of Table B-1II

it 2 o P At

f ' 1 0 T 0 0 1 0 1
3 5
1 2
% E l ¢ | o g, |
é o 1 o1 T o 1 0 ’
! 1 2 5 6
‘ [T' 0 I 1 o0 @ 1 0 1
5 , 2 .
Je, x, Jc, ac,
- 0 1 0o 1 1 9 i1 o0
27 28 % 38

By cyclic permutation the A. D matrices in Slater's Table A3-21 are
identical to these. (Slater's Apoint is on the x axis).

Table B-V
Character Table, Cubic Z

E C

Jc,? JC
4

2




For & located as in Fig. 3, the four operators are numbers 1, 11, 26,
38 (see Table A-I). % = (21/a) (bb0): For simple cubic and bec,

0(b<& ; for fcc, OKb<¥p. The representation labeling is the same
as Slater's Table A3-23 (ref. 9) and Koster's Table V for C,_ (ref. 6)
if we interpret Koster's class labelsQ’Q’as Jc, , J(‘:represpectively.

Table ;B-VI

Contained A.L.F.'s for the Irreducible
Representations of Cubic Z for fcc Cu

the arrow means ''symmetrizes to'.

Z] 1—>1
x—p (1/2) (x+y)

Zzz-xz-yz -—> Zzz-xz-y2

Xy —y Xy
22 yz —» (1/2) (yz-xz)
3, A

yz —» (1/2) (yz+xz)

Zq y —» (1/2) (y-x)

w2y B b

Table B-VII

Character Table, Simple Cubic and fcc Z

E 62 I, 1%
2 1 1 1 1
22 1 1 -1 -1
23 1 -1 -1 1
% 1 -1 1 -1

ERTS
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Fer Z located as in Fig. 3, the four operators are numbers 1, 2, 27, 28
{see Table A-I). For simple cubic, k = (27/a) (& Ob), 04b<Vy; for fec,
= (2qr/a)(10b), 0<b<V3. The representation labeling is the same as
in Slater's Table A3-27 (ref. 9); consistent with his location of 2

(see his Fig. A3-2, pg 369), his Ry is JC,2, his Ry is JCyiyy.

Table B-VIII

Contained A.L.F.'s for the Irreducible
Representations of Cubic Z for fcc Cu

the arrow means ''symmetrizes to''.

| Zl 1—.

7 —Z
222_x2_y2 —_— 222-x2-y2
],(2_'v . x2-y2
JA Xy —» Xy

i
S 3 e 1

(3]

F Z3 X —a X

XZ —» X2

Z4 Y—Y

yz —>»yz

Table B-IX

Character Table, fcc L

2 o
E 3C2 LC3 J 3JC2 ‘.JC3
1 )]

Ll 1 5 1 1 ) 1
L2 1 -1 1 1 -1 1
L3 & 0 -1 2 0 -1
Lll 1 i 1 -1 -1 -1
LZI 1 -1 1 -1 -1
e 2 0 -1 -2 0 1




L points are located at the centers of the hexagonal faces of the
trunc%ted octahedron reciprocil space unit cell for fcc lattices. For
L at k = (2w/a)(k 4 €), the 12 operators are 1, 14, 15, 16, 17, 18
(non-J) and 25, 38, 39, 40, 41, 42 (J) in the numbering system of
Table A-I. Slater's Table A3-26 (ref. 9) has the same representation
labeling except that his Ly is our Lg’ . Koster's Table XIX for

(ref. 6) has the BSW representation labeling except that Koster's

Ly , Ly are the BSW L/, Ly’ respectively. Koster's class labels

€' s 1, @5 5 56 are the BSW C,, J, JCZ’ JC3 respectively.

Table B-X
Character Table, Cubic X

Characters for the eight proper rotations are given explicitly. For
the Jirst five representations listed, the characters for the J
operators are identical to the corresponding non-J characters; for the
last five representations, the characters for the J operators are (-1)
times the corresponding non-J characters.

2 2
E C4002C 2C, 2C

a4 -2
X 1 1 1 1 1
X, 1 1 1 -1 -l
X 1 1 -1 -l 1
X, 1 1 -1 1 -l
X, 2 -2 0 0 0
Xy 11 1 1 1
Xy 11 1 -1 -l
Xgp 11 -1 -1 1
Xy 11 -1 1 -1
Xy 2 -2 0 0 0

B-6
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APPENDIX C
SELECTED R CHARACTER TABLES FOR THE CUBIC SYSTEM

For explanation and use of these tables see Part I of the main
text. The representation labels and class labels in all tables in .
App. C are those of BSW (ref. 5). The number in front of the class

labels in Tables C-III and C-VI gives the number of members in the

class. No such number is given in Tables C-I and C-II as this number
will depend on the t point being considered. In Tables C-IV, C-V, and

C-VII the individual operators are listed.

Table C-1I 1
jl Character Table, Cubic System, for Central Atom, Ail i Points
For the central atom, these characters (including the =2,3 breakdowns)

may be used for MR (R) in eq. (12) of the Epin text for all E'points.
The appropriate operators for the group of k are to be selected.

ERNCY ¢, ¢ ¢ 4 I, 3, I
=0 1 1 1 1 L 1 1 1 (M)
£=1 I ) 0 -3 1 -1 1 o (D)
R=2 5 1 -1 1 -1 5 1 2 B U |
L-3 7 -1 -1 -1 1 -7 1 1 1 -1

The L:0 and RL-1 representationsare irreducible for the cubic r
point (they are equivalent to Iy, and ¢ respectively. The R=2 and
R =3 representations are reducible; their breakdown into irreducible
representations is given below.

2 2

G, € € ¢ J I I,

2 0 0 3 2 2 0 0 -1 (Ma)
-1o-1 1 o 3 -1 -1 1 o (R

C-1
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2 2
E C C ¢ Cg J G I, I, I,
"1 1 -1 -1 1 -1 -l 1 1 -1 ()
=343 -1 1 1 0o -3 1 -1 1 o (R
3 -1 -1 1 0 -3 1 1 -1 0 (g
Table C-II

£ Character Table, CuqAu, for the Non-Central Atoms,
All Interior X Points

By confining oneself to the operators appropriate to the k point in
question these characters may be used for W Re(R) in eq. (25) of the
main text for all interior X points. (For X points on the zone boundary,
phase factors are involved.)

2

E g C C €3 J I I, IC, IC,
£- 3 3 1 1 o 3 3 1 1 0 (M)
Q=1 9 -3 1 -1 0 -9 3 -1 oo (M)
2= 15 30-1 1 0 15 3 -1 10

The decomposed 12=2 characters are as follows:

9 { 6 6 0 0 0 6 6 o 0o o (R
=2
9 -3 -1 1 0o 9 -3 11 0 (M)

Note: Table C-II is not just 3x (Table C-I) because not all non-central
sites go into themsslves (or equivalent sites) under every operation.
The uperators E, C,“, J, and JC42 take all three non-central sites of
the CugAu structure into themselves; Cy , Cq , JCy , and JC3 each take

only ofle non-central site into itself; C3 and JC, take no non-central
site into itself.

Table C-III

A Character Table for the Non-central Atoms,
T Point of CusAu.
For the Cu,Au structure, these characters are to be used for 7(%AI(R)
in eq. (2535 of the main text. For T at k = (2mw/ax 4 & b), 0€b< Va»
in Fig. 3, the eight operators are 1, 2, 5, 6, 27, 28, 35, 38 in the
numbering system of Table A-I.

c-2
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2 2

E o ¢, 2, 2,
Q=0 3 -1 -1 -1 1 (™)
P19 1 -1 -1 1 (Ms)

6 -2 0 -2 0 (M)
=2

9 1 1 1 1 (Pas?)

Table C-IV

Phase Factors in the Construction of Table C-III

The factors listed under each operator R for each site sy, (at left)

are exp [ifo(R!} -5y )] of eq. (26) of the main text for the k of

Table C-III. Site locations are given in Fig. 1. A zero entry indicates
that RS}, is not an equivalent site to &, . The bottom row gives the
summation involved in eq. (26).

2 2
E Ci) €, €, I I I, I

4 2
1> 2 5 6 27 28 35 38
52 1 1 -1 -1 -1 -1 1 1
S3 1 -1 0 0 -1 1 0 0
S, 1 -1 0 0 1 -1 0 0
sum 3 -1 -1 -1 -1 -1 ) 1

* Operators are numbered as per Table A-I.

Phase factors for function symmetrization; T point of Table C-III
as example: All eight operations of T take site 2 into itself or
equivalent (see Fig. 1). Thus, starting with an unsymmetrized
function on site 2, eq. {(32) of the maindfext becomes

. -

@3 () = (g e®a 3 D)0 K& 30, [K'(F- 2],
The exp [:if(R)Oga] are li;;ed in the first row of Table C-V. Site 3
goes into itself or equivalent under E, C42(z), and the two JC42 but

into site 4 under the two C4 and the two JC2. For site 3, then, eq.

C-3
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E
E
3
:
E (32) b =
ecomes *
- Id
f A w (Re§y s/p A \K(R)'Ssg Y ]
| Q;(%) = (hlg)je ™" 2, (R)e g K (#-&)
-l
'. ‘ ‘ "-A [} A :R‘R "* - s ]
,Z, - + QR “'Z‘ D“ (R)C ) rﬁ' ER (F"SQ)
: & ) ' , "
1 E with the 2 over the first set of operators and 2 over the second set.
. The exp [iK(R)‘;s] are listed in the first s; row of Table C-V; the
; exp il'(.(R)o 5'4] are listed in the second S5 TOW. The arrangement for
2 ; site 4 is similar to that for site 3.
Table C-V
v Phase Factors for Function Symmetrization, T Point
E. of CuSAu
For explanation of this table see text above. T is located as per '
Table C-III. ;
’ E c2(z)C, €, JC° Fey) |
1 ] ,4(2) 4 Gy 4(x) JC4(y) C2 JC2 %
1* 2 5 6 27 28 35 38 ‘
site 2 exp[iK(R)¢ 3] 1 1 =1 -1 -1 -1 1 1 ;
site 3 exp [ik(R)» ;] 1 - 1
— a3 -
exp [if(R) # 3, ] S SUN
| site 4 exp [iK(R) . 5:"] 1 -1 | -1
ey -
exp [1K(R) '53] 1 -1 -1 1 ]
* Operators are numbered as per Table A-I. i
i |
1 Table C-VI
E 2 Character Table for the Non-Central Atom, T Point of CsCl
! For T at X = (2%/s) (4% b), 0«b<¥in Fig. 3, the eight operators are

1, 2, 5, 6, 27, 28, 35, and 38 in the numbering system of Table A-I,
For the CsCl structure these characters are to be used for X‘JI(R)
in eq. (25) of the main text.
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E Cia) 2c, 23¢ 21,
Q-0 1 1 -1 -1 1 (fy)
L=1 3 -1 -1 =1 1 (ys)
2 2 0 -2 0 (M)
N '{j 3 -1 1 1 1 (Pagt)
Table C-VII

Phase Factors in the Construction of Table C-VI
. e -
The factors listed under each operator R are exp [}kO(Rs1-§;)] for eq.
(26) of the main text for the X of Table C-VI. Since there is only
one non-central site (see Fig. 2), these factors are also Z; of eq. (26).

2 2 2
E Cg(z) € C, JCq(0) IO I Jc

4 2 2
1* 2 5 6 27 28 35 38
factor 1 i -1 -1 -1 -1 1 1

* Operators are numbered as per Table A-I,
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APPENDIX D

ALTERNATIVE DERIVATION OF THE PARALLE.L AXIS THEOREM

This is an alternative derivation of the substance of eq. (22) of
the ain text.

From eqn (17) of the main text, we know that for rotation about T =0,

PE(E-3) = £R7E-3) (D-1)
From eqns (14) and {15) of the main text, for rotation about ¥ = 5,
P ECD) - £R°I3-) (D-2)
= fR71E3+ 3
if ge2-rls . (D-3)

For Bloch functions,
fR12-248) = £R71E-Dexp [ikA]
so that

ld-l

_ i A
FR732) = FRTI-2 B )exp [-ike(3-RT ).

Then, from (D-1) and (D-2),
P_f(T-
kG )

(about ?‘=0) (about %=3)

&> & A -la
PRf(r-s)exp [—1k-(s-R s)]. ‘D-4)

Since Rk = K + R.R for any R in the group of X, we may write

-ikeG-RTE) =-iRRe(RE-3) = -iRo(RE-D)-iR e RE-Y).
since 3-R°1% is a # vector, RS-% is also so that exp [-i.lzl{(R's?-‘E)]al,
and

PEE-2) = Pof(T-Dexp [-ik.(R3-$)] . (D-5)
(about ¥=0) (about *=3%)

This is exactly what is expressed by eq. (22) of the main text.




APPENDIX E

SELECTED CHARACTER TABLES, "REDUCED" SIMPLE TETRAGONAL

"Reduced" simply means we restrict our group operators to those that
preserve +z. Thus, the full tetragonal group of 16 members is reduced to .
an 8-member group. Thi~ is equivalent to using the standard A subgroup
of simple tetragonal as the "reduced" full crystal group. For the [?
point of the reduced simple tetragonal we will label the representations
i with A labels. In this appendix the representation labels follow Koster
i (ref. 6) as far as possible. The class and operator labels are those of
BSW (ref. 5). In Table E-I the numbers in front of the class labels give
the number of members in the class. The individual operators are identi-

fied by their effect on the x’y’z’/ triad (tetragonal axes).

Table E-1 i
Character Table, [ Point of '"Reduced" Simple Tetragonal i
1 E C4 (z") 2C4(2 ) ZJC4 ZJCZ !
x'y'zt ®'§l §iX 2 y'e Ry Xyl 2! 7'x 2y x" 2
A1 1 1 1 1

A, 1 1 1

-1 -1




A 40 et o7 s o R TP P, RS, £

Table E-II
D Matrices for Ag of "Reduced" Simple Tetragonal

E - C2(z")  C,(z')  C4lz’) IC,2(x") c2(y')  Ic, Jc,

b b B et Ol

i = ) =
x'y'z?  X'§'.f "2ty ®ly X'F' gl yixtd

0 T I Y A T M G I G O

pak e

1 i Table E-III
& £ Basis Functions for 1 =0,1,2 for the "Reduced"Simple Tetragonal
g Functions Representation
f 0 1 Ay
E ” 1 b Ad A'
&;:
3 xl
22/2-x' 2_yl2 A.
x’ z-yl 2 A3
xly? /\4
x?/z/
y'z! As

E-2
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Table E-1V

Character Table, "Reduced” Simple Tetragonal, A (x')

A (x’;l
A(x')z

K = (W/2) ®/t, 0/t, 0/c)

E
x'y'z!

1

1

2¢uf
JC4 ")
xlylzl

1

-1

Table E-V

Character Table, "Reduced" Simple Tetragonal, R

K= (m/2) ase, ore, 1/2)

C42(2"}

- -‘
252

)

JC42(x')
ilylzl
1

-1

E-3

Jc,2(y")
xXy'z!
1

-1
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APPENDIX F

SELECTED R CHARACTER TABLES, "REDUCED" SIMPLE TETRAGONAL
For explanation and use of these tables see the maii text.

Table F-I

_R Character Table,."Reduced“ Simple Tetragonal, for the Central
Atom, All . Points

The £ =1,2 representationsare reducible to the tetragonal
representations as indicated.

For the central atom, in the reduced simple tetragonal (AB type),
these characters may be used for X®Z(R) in eq. (12) of the main
text for gll_f points,

: E £42(2") 2,(z") 23c,2 25c,
: Xy’ R §x Ly 'R Ry §IR e Ly
R=0 1 1 1 1 1 A
Q=1 3 =1 1 1 1
1 1 1 1 1 A,
2 -2 0 0 0 Ag
R=2 5 1 -1 1 1
1 1 1 )| 1 A
' 1 1 -1 1 -1 A
1 1 -1 -1 1 My
2 -2 0 0 o As

T T T e PP PR S APREE e

P A A A0

ek
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Non-central atom: By selecting the appropriate operators for
the k point in question, the characters listed in Table F-I may be
; | used for ?(1&F(R) in eq. (25) of the main text for all interior-k
ﬂ points. For I points on the zone boundary a differen: R character

{ table must, in general, be used for each % point; an example of such

a table is given in Table F-II.

Table F-I1I

R Character Table for the Non-Central Atom, R Point of 'Reduced"
Simple Tetragonal (AB Type)

K= (1M /2) Q/t, 0/t, 1/c)

E C42(2') JC42(x") JC42(y")
x'y’z' 2’?’2’ K’y'z' X'?'z'
Q=0 1 -1 -1 1 A

f=1 3 1 -1 1
1 -1 -1 1 Ay
2 2 0 0 As
Q=2 s -1 ~1 1
1 -1 -1 1 A
1 -1 -1 1 A;

F-2
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(Table F-II, continued)
1 -1 1 -1 Ay

2 2 0 0 Ag

Table F-II1

Phase Factors in the Construction of Table F-II

The factors listed under each operator R are exp [ ik o (Rs%y -$%)]

¢ for ea. (26) of the main text. For the simple tetragonal of type
: F AB there is only one non-central atom site with S5 = (ttc), see
: ¢ Fig. 6. Thus, the factors listed are also X} of eq. (26).

4 4 E Ca2(2') JC,2(x’) JC42(y")

% Factor 1 -1 -1 1

% g

3 g

¥ .

: ’

F-3




APPENDIX G
SELECTED COMPATIBILITY TABLES, CUBIC SYSTEM

The representation labels are those of BSW (Ref. 5) and are

consistent with Tables B-I, B-III, B-IX, #nd B-X of Appendix B.

Table G-I
M-A Compstibility; Simple Cubic, fcc, and bec
N e Mg B i Qv Ry N Ns
Ay Ay [MAy ApPDs AyAs Ay 4oy AjgAy Ajbg A)As

Table G-II

P-X Compatibility, Simple Cubic and fcc

L) N O | Y Pls’ fs N Ty M’ Nis Nag

X} Xz XjX; X5 XgXg X/ Xy XpXpt  Xg/Xgl  XgfXgs

G-1

gl
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Table G-II11

et 3 AL d i Sy o

A-X Compatibility, Simple Cubic and fcc

i L xl x2 x3 x4 XS Xl; le Xsl X4f Xsl
Table G-1V

P-L Compatibility, fcc

it Lot Lt R i s e S Gl

M P Ry Ng Tge T Ty P ps N

i o ol

Ly L.s Lg¢ LZ'L3’ LllL

31
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