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ALPHARD:
Toward a Language to Support Structured Programsx

Willham A, Wulf
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa.

April 30, 1974

Abstract

This report discusses the programming language tools needed to support the
expression of 'well-structured’ programs. In particular it deals with the tools needed
to express abstractions and their realizations; to this end it introduces the concept of
a ’form’ to subsume the notions of type (mode), macro, procedure, generator, and
coercion. An extended example is given together with the sketch of a proof of the
example. The proof is included to support the contention that formal verification is

substantially simplified when the abstractions and their realization are retained in the
program text.

*This research was supported by the Advanced Research Projects Agen~y of ‘he
Oftice of the Secretary of Detence (FMSZO-?&-C-O()W\J and 1s monitored by the Air
Force Office of Scientific Research. :
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Introduction

In this paper | would like to present some ideas concerning the nature of the
programming language facilities needed to support the construction of 'well-structured’
programs. These ideas will be presented in the context of specific linguistic proposals
for ALPHARD, a language being designed at Carnegie-Melion University. A cautionary
note 15 necessary however; ALPHARD 1s in its earliest stages of development, and the
particular syntax used in the presentation is intended merely to be suggestive. Before
beginning the presentation some introductory remarks on the language milieu are in
order.

(1) Methodologies: ‘Structured programming’ and other methodological
approaches to improving programs seem premature. While many of us
might judge a particular program to be qualitatively 'better’ than another,
and might even be convinced that the difference has something to do with
their respective 'structure’, we do not yet have good characterizations of
what we mean by ’structure’ or what constitutes 'good’ structure. Thus,
for the moment at least, | would prefer to concentrate on programs rather
than on the process of generating them. In particular | have chosen to
focus on programming language issues as a vehicle for dealing with
programs generically. That is, I view the development of tools, in this
case a language, as a way cf making the investigation of generic structural
issues concrete and responsive to real-world issues. With that in mind,
the following discussion of ALPHARD should be interpreted more as a view
of what constitutes a well structured program than as a language
proposal.

(2) Abstractions and Abstraction Tools: As Dijkstra has noted, abstraction
is among our most powertful tools for reducing complexity. It shouldn’t be
surprising that program structure has something to do with abstraction, or
that a proporal for language features to support structured programs
should lean heavily on abstraction mechanisms. It should be ncted,
however, that abstractions come in two flavors: implicit and explicit. By
implicit abstractions we mean those which are 'built in’ and irrevocable -
predefined data structures (array, set,.), storage allocation strategies
(stacked, heap, static, controlled,...), and control relations (for, proc) are all
examples of implicit abstractions. Explicit abstractions are those
introduced by the programmer; a language supports such abstractions at
the meta level in the sense that it provides mechanisms for defining the
abstraction - procedu es, macros, and (some) data structure and type
(mode) definitions are e most common forms of these meta mechanisms.

It is this author's opinion that current languages contain far too many
implicit abstractions, and far too few (or, at least, insufficiently general)
mechanisms for defining explicit abstractions. The danger in implicit
abstractions 1s twofold; in most current languages the implicit abstractions
torm an artificial lower barrier below which the programmer cannot
descend, and in terms of which all higher level’ abstractions must be
expressed. This is both conceptually and technically inefficient. One need
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only scan the literature on APL *one-liners’ to ubserve the consequen.es
of a large number of implicit abstractions. We shall consider the nature of
abstraction tools in greater detail below.

(3) Efficiency: I consider only one criterion for the efficiency of a
higher-level language program to be acceptable: the code produced by
the compiler for that language must be better than that produced by a
competent assembly language programmer! To accept any less stringest
requirement is to subjugate quality (reliability) to (usually invalid)
efficiency considerations, and ultimately leads to poorly structured
programs. The burden of meeting this requirement is shared by both the
language design and the compiler. In particular, as far as the language
design is concerned, it is crucial to avoid implicit abstractions which, either
alone or especially interacting with other implicit abstractions, involve a
distributed overhead fcr state maintenance.

(4) Proofs: I'm afraid that the current approach to proving the
correctness of programs, e.g. the ’inductive assertion’ method, is doomed
to failure; yet the need for rigorously verified programs is paramount,
Current methods essentially proceed from first principles for each
program, and worse, re-prove the mathematics on which an algorithm s
based in the process of proving a program which purports to implement
the algorithm. We must, rather, devise methods which factor a proof along
the same cleavage lines as the abstractions in a program. Moreover, we
must be willing to accept the validity of programs whose relation to
known, valid algorithms is transparent so long as the abstractions on
which those programs are based are shown to be correct. In short, we
must build a base of lemmas and theorems about existing abstraction
realizations in terms of which programs utilizing those realizations can be
verified reiatively simply.x [ will try to illustrate these remarks below.

(5) Data Structures and Sequencing Abstractions. In this section | would
like to deal with two related issues - abstraction mechanisms for data
structures and abstraction mechanisms for sequencing. In many ways the
weakest aspect of abstraction mechanisms in current languages relates to
data structures and their manipulation. With the excepticn of Simula (1],
most languages provide only the ability to specify the (static) format of a
structure; correlated manipulation of the structure and/or its elements is
physically and conceptually separated from the structure definition. This
point may be illustrated in many ways, but we shall focus on one -
sequencing.

Most sequencing in a program is related to the data structures on which
that program uperates. Consider, for example, the following simple Algol
60 program:

*] believe it was Hamming who said something to the effect that computer
scientists must learn to stand on each other’s shoulders rather than on
each other’s toes.
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begin
array A[O:N]; raal S; intagar i;

sm:-o;
fori: 1 step ) untilNdaS:=S « A[i];

and;

Clearly in such a case the for clause is intimately related to the array A
-- its intent is to step through A performing the statement ’S := S + AT
once, and only once, for each element of the index set. What we intended,
but had no way to say in Algol, was:

forall a€ Ado S :s Sea;

Our inability to express ourselves this way in Aigol has several
unfortunate consequences:

- We were forced to say too much. For example, the order of the
evaluation had to be specified when, in fact, it was immaterial.

- Changes are difficult. Any change in the representation of the
conceptual entity denoted by A would require locating and altering
the control used to sequence through A.

- Proofs are difficult. Although conceptually trivial, the formal
proof of this simple loop using the inductive assertion method is
not. At least in part the reason for this lies in the fact that the
proof involves the ’'dummy’ control varicble "i%; in part the
difficulties arise because ‘extraneous detail’, e.g. the sequencing
order, is exglicit.

: Scme ALPHARD Ideas

In this section I would like to introduce some of the ideas in ALPHARD - at least
; as [ currently perceive them. 1 do not intend to present the ertire language, and I will
rely heavily on suggestive examples and the reader’s experience and good sense.

The only aspect of the language with which we shall deal in any detail is its
abstraction niechanism(s). The goal is to explicate those aspects of the mechanisms
which we feel are inadequately handled by existing language mechanisms. However, it
should not be inferred that the mechanisms presented below are to be simply added to
those of existing languages. Rather, we have attempted to define a single mechanism
which subsumes the function of existing mechanisms. The extent to which this has
been achieved is still unclear; however, if the attempt is found wanting, we would
prefer to generalize it, or even replace it by a more suitable mechanism, than to
accumulate related but disjoint mechanisms.

(1) Forms
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The abstraction mechanism we shall introduce is called a form. A form may be
thought of as something of a hybrid between a macro and a (Simula) class.
Alternatively a form may te thought of in terms of its irtended use - which is to
subsume the concepts of type (mode), macro, procedure, generator, and/or coercion.
Forms may be introduced by declarations such as:

form A(nx) = {..};

where n and x ars formal parameters of the form. Although we shall exiend the
definition of forms below, we can make several points here.

First, this declaration introduces the name A as the name of the particular form
to the right of the equai sign. Second, all free names in the form, except those of the
formal parameters, are Hound at the declaration site. Third, the braces, {1, act
somewhat like block de'imiters (e.g. begin and end) with one major exception - certain
names defined within the form may be "exported". That is, under conditions to be
specified below, certain names declared within the form may be used outside it.

A form may be instantiated simply by mentioniing its name together with any
requisite actual parameters, One of tha most commen uses of instantiation is
illustrated by the following:

form complex = {dec| rirealicreal; ..};
dec| x:complex;

In this particular case the form ‘complex’ is being used as a type. This
apparently trivial example actually raises several deeper issues:

- The symbol * should not be interpreted as an incidental part of
the declaration syntax. It is, rather, a general binding operator
which is useful in other than declarative contexts.

- The name 'real’ is a form name, not a predefined type. In the
strict interpretation inre are no types in the language. However,
it is reasonable to expect certain forms, e.g. 'real’ and 'int’, to be
defined by a standard prelude.

Thus the declaration ‘dec| x:complex® introduces the name x and binds this name
to an instantiation of the form complex. The instantiation of complex, in turn, forces
the instantiation of two instances of the form 'real’ and binds the names °r’ and i’ to

these two respectively. A more complete, and correct, explanation must await the
discussion of ’extent’ below.

(2) Names

Certain names may be 'exported’ from an instantiated form in the sense that
they are available as qualifiers to the name of the instantiated form. Thus, for
example, if the following declarations nave been made

R Y ATy T
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form complex = {dec| r:real,izreal;..;axpert r,i};
dggl x:complex;

then the names 'x.r’ and ’x.i’ are valid - and, in this case, name the real variables
representing the real and imaginary parts of x.

We have no particular prejudice about the syntax of qualification and therefore

consioer all the following to be equivalent, subject to the constraint that the style of
qualification be uniform for each <name, qualification> pairs

x.i ®ilx) = x(i) = i{x] = x[i)

We shall use one or another of these forms to suggest various intuitive meanings, and
assume the programmer will do likewise.

In addition to thc names which may be explicitly exported, certain names are
implicitly exported from every form. These names correspond to actions vrhich are
implicitly triggered (called) because of the context in which the form is instanti»ied. It
is difficult to expand this point until more has been said on other aspects of the
language; be forewarned, however, that such names exist.

(3) Protecticn

We define each exported name of a form to be an ’access right’ to instantiations
of the form. Thus, in the example above, the use of the qualified name ’x.i’ is viewed
as an exercise of the right (privilege) to access the imaginary part of x.

In order to make the notion of an access right useful one must be able to
specify permitted and/or required rights to an instantiated form. Although we must
jump ahead of our story a bit to do so, consider:

form A = {.. export a,b,c};
fcn F(x:A<a,b>) = <body>;

dul Z:A;

[1] Flz<a);
[2] F(z<a,00);
[3] F(z<a,b>);
{4) F(z);

The intended interpretation is that the function F has a single parameter of ’type’ A
and that it requires a’ and 'b’ rights to that parameter -- that is, that it either uses
the accesses 'x.a" and ’x.b’, or that it calls some other function which, in turn, exercises
these rights. At the call sites, lines [1]-[4), the actual parameters are qualified by the
rights which the caller will allow the called routine to exercise; thus the calls at lires

sWe also consider a(b)(c) = a(b,c), thus x.i(z) = x(i,2), etc.

N g T el
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(1] and [2] will not be allowed while that at [3] wiil be. If no rights qualification is
specified, as in line [4], the allowed rights are defaulted to ‘everything’ available to the
caller, thus the call at line [4] is also valid.

Rights qualification may also be attached to exported names. Thus a form may
grant access to some of its internal variables but resiiict the nature of such access. In

the following example of the form complex only read access to the real and imaginary
parts is granted.

form complex = {dec| r:real,i:real;..axport r<read),i<read>};

(4) Extent

In many languages we refer to the "extent’ or “lifetime’ of a variable; in ALPHARD
the term is given a somewhat more explicit meaning. However, in the initial part of the

following discussion we would like to rely on the user’s intuitive understanding of the
term.

We shall allow declarations to specify an extent attribute, e.g.
decl own &:X;

The only extent attributes ultimately available are gwn and local, and if the extent
attribute is omitted, local is defaulted. Within 2 form, however, two other extent
attributes are permitted - common and unique.

The attribute unique implies: (1) that the declaration is unique to each
instantiation of the form, and (2) that the extent of the declaration is identical to that
of the instantiation. The attribute common implies: (1) that the declaration is common
to all instantiations of the form, that is, shared between them, and (2) that the extent
of the declaration *covers’ that of all instantiations of the form.

In those cases where a iorm is being used as a type, the quantities declared
unigue are those which are private to each variable of the specified type, those
declared common are shared between all variables of the type. Thus, for examp'e, one
might implement the concept of a ’set’ using linkad lists as follows:

form set = {decl common p:pool, unique h:lhead;...};
begin decl local s1:set;
begin deci own s2:set;
and;
end;

In such a case the pool, 'p’, is shared between all instantiations while there is a
private lhead, 'h’, for each of the instantiations. Since 'p’ is shared between all

T I A T ol W S Y o ————
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instantiations its extent must *cover’ them all - in this case it must be own because of
the declaration of s2. The unique variables, on the other hand, have extents identical
to the instantiations - local in the case of the *h’ associated with sl and own in the
case of the ’h’ associated with s2.

Let us now return to a more precise characterization of the meaning of ‘extent’.
As noted in an earlier section some names are automaticany exported from a form; four
of these ar: utc, inity, finalc, and fipalu. As with other automatically exported names,
the semantics of ALPHARD specifies that the accesses (operatiwins” might be a more
suggestive term in this context) represented by these names are automatically invoked
in defined contexts. In this particular case the intent is that the operations defined by
these names will perform initialization and finalization (’clean-up’) actions on common
and unique variables respectively.

The (only) meaning of the term ’extent’ is the semantic rule governing the
invocation of these operations! Although we shail not attempt a precise statement of
this rule here, the intuition to be conveyed is that the invocation of the init and final
actions of variables with own extent is to precede and follow the user-defined
program actions, while these actions are invoked as part of block entry/exit for
variables with local extent.

Strictly speaking, the concept of ‘extent” has nothing to do with storage
management. Storage management, rather, is explicit through an executable ’alloc’
function. However, the (prelude) definition of such common forms as int, real, etc., is
such that the conventional (Algol) correspondence between extent and storage
allocation/deallocation is preserved.

(5) More on Forms

Earlier we introduced the notion of 2 form. It will be noted that subsequently
we have used the notion almost synonymously with the conventional use of type or
mode. This was in part due to an attempt to exploit the readers’ intuitions, and in part
due to an incomplete description of the notion. We would row like to expand the
concept slightly. Consider an extension of our first examplz -

form A(n:int,x:int): y[z] = {dacl uzy,v:z;..; assec uv]};
decl rls): AG3,4)

The *7', as noted earlier, is a general binding operator. In this particular case the
declaration is intended to:

- introduce two names, ’r’ and s’

- and s’ are to be of type 'y’ and 'z’ respectively

- {he names ’r’ and 's’ are to be associated with, or bound to,
the variables 'u’ and v’ declared within the instantiated form.
The assoc within the form establishes the association
between the names to the left of the binding operator, “h
and those inside the form.
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The type declarations of most languages, and the uses of forms which precede
this example, introduce new conceptual entities, e.g. sets where none existed before.
That is not the intent here at all. Rather, in this case, the form is being used to
associate independent, existing entities (in this case a 'y’ and a °2’) - and perhaps to
introduce some additional operations. Thus, when instantiated, such forms do not
create a single entity of a new type, and the combination of the assoc inside the form
and the specification (e.g. :y[z]") outside the form allow the user to bind names to each
of these entities. The need for both the assoc and the specification may be seen in
the following example.

form Alx:int):int = {decl uniqua v:veclint,x),n:int;...assoc vinl};
form B(x:int):vec[int] = {dacl uniqua u:vec(int,x),m:int;..assoc u[m]};

decl a:A(5),b[c):B(5);

Note that 'a’ is associated with an element of *v’, b’ is the vector 'u’, and ’¢’ is the
integer 'm’.

The use of square brackets in this example is pure syntactic sugar. Within the
constraints imposed by possible ambiguity we wish to allow anything to the left of the
*2, and to bind names tc the left of the colon positionally to the entities from the assoc
in the instantiation of the form to the right of the colon. The previous examples of
forms, e.g.

form A(n:int,x:int) = {..}
may be considered default instances

form A(n:int,x:int): A = {..}
This apparently trivial extension of the form syntax allows us to subsume the notion of
literals, coercion (in the type-transfer sense), generators, and several other things.
These are discussed briefly below.

(5.1) Literals

We view a literal as a variable with two special properties: its value does not
change, and its value is suggested by its print (external) name. Given suitable
definitions, all the following might be literals:

9 nine

IX nine

4:15 quarter past four o’clock
blue the color

NaCl salt

Tuesday the day

We view literals as being defined by forms. In some cases (Tue:day, blue) the
definition may be simply a named form. In other cases the form that de‘ines the literal
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will provide a calculation that operates on the print name to produce the appropriate
internal value.

(5.2) Type Conversion

We simply note in passing that type conversion requires either the ability to
treat a single storage cell as being of more than one type or the application of a
function to convert the representation. The assoc permits the former, the latter
requires an explicit (named) function in Alphard.

(5.3) Access Functions

One of the major uses of forms will be to describe a conceptual data structure,
its associated literals, operations, and accesses to its component pieces. A careful
treatment of the access to elements of a conceptual data structure raises some deep
issues concerning references and assignment which | prefer to avoid in a discussion at
this level. However, | would like to note here that assoc is executable. Thus the
general binding mechanism can be used to define access and sub-structuring
operations (e.g. slicing).

(5.4) Generators

Earlier I discussed the need to relate control and data structures; now we have
enough mechanism to illustrate the point. First let’s consider a simple example:

form upto(f:int,t:int,bsint)sint =
{decl unique x:int;
inituss if (xef) gir t then signal;
next::if (x-x+b) gir t than signal;
assac x<{read>
b

forall izupto (1,10,1) da S;

This example is intended to capture the simple stepping form of iteration control.
Several things should be noted:

- The name ’next’ is, like "inity’, one of those automatically exported
nzmes.

- Only read access has been granted to i in the statement S.

- forall, like decl, is a syntactic trigger to invoke one of these
names. The forall construct, 'forall x:D do S’, may be thought of as

begin

degl x:D;

until signal do (S; x.next);
and;
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Note that the init function of D is invoked at instantiation, i.e. at the declaration of x.
Thus the fora!: construct first initalizes the control variable, then alternately executes
S and the 'next’ function until termination is signaled.

This simple example doesn™t illustrate the relation between data and control;
however, consider e following representation of a set of integers in a vector:

forin set(sz:in') =
{dacl unique v-vec(int,sz), uniqua n:int;
initu::n+0;
form inset:int =
{decl Loique x:int;
initu::if (x-1) gir n then signal;
pext::if (xex+1) gir n then signal:
;ssn& vix]

nmm inset
b

Then, if the declaration 'decl S:set(100)° has been irade, the staterment
forall v:inset(S) da vevel
will increment each element of the set.
There are two especially useful forms which we shall usc velow
forall D suchthat B do §
and
axisis D suchthat B then S.! glsa S.2
The first of these is the obvious extension to allcw a test and is equivalent to
forall D do if B then S.

The second form will execute S.1 (precisely once) for the first case for which B is true
and will execute 5.2 only in the case that termination ‘s signaled by D without B ever
having been satisfied.

1 consider this facility 1o be extremely important; for the first time I feel some
confidence that all of the representational issues associated with a conceptual data
structure may ba isolated - thus making both changes and proofs incremental.

An Example

.
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Aithough | have not dealt with all e language 1ssues In ALPHARD, | hope that I
have touched on eiaugh of them that the reader’s intuitions will carry him through the
following example. The example is taken from the section on Data Structuring in [2] by
C.AR. Hoare. The p.oblem 1s that of generating prime numbers using the sieve of
Erctosthenes; Hoare states the problem as foliows.

Problem: Write a program to construct a set
primes:powerset 2.N;

containing all prime numbers In its base type. Use the
method of Eratosthenes’ sieve to avoid all multiplications and
divisions.

The method of Eratosthenes is first to put all numbers in the
nsieve” and repeat the following until the sieve is emply:

Select and remove the smallest number remaining in the sieve
(necessarily a prime), and then step through the sieve,
removing all multiples of that number.

After writing a nicely structured abstract version of the program, Hoare
considers the constraint that the program be ‘efficient’ and, in particular, is not to use
multiplications or divisions (except during initialization). The ditficulty, of course, is
that since the sets are represented essentially as bit vectors, he now cannot use
division to determine the word and bit position corresponding to a particular integer.
Instead he must use a par of indices ('nb* and 'n.w’ below) to keep track of the word
and bit positions. After some analysis he presents the following program:

primes, sieve:array 0.W of powerset 0..wordlength-1;
bagin primefinder;
n, next:(w,b:integer);
for 1:0.W do begin primes M=tk
sieve [t] := range (0.wordlength=1)
end;
sieve[0] := {0,1};
next.w := 0;
whila true do
begin while sieve[nextw] = { } do
begin next.w := nextwel;
if nextw > W then axit primefinder

next.b := min(sieve[next.w]);
primes[next.w] := {next.b};
n = nexts
while nw$ W do
pbegin sieve[n.w] := {nb};
nb := nb ¢ nextb;
nw := nw ¢ next.w;
if n.b 2 wordlength then

S el - o b
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begin nw iz nw ¢ [;
nb := nb = wordlength
end
and
and
and primefinder

While in some sense this program is "well structured’, it’s a reai shame tl.at the
abstractions leading to it have been lost. Moreover, because the realization of the
abstractions aren’t localized, but distributed throughout the text, any change in those
realizations will require massive changes. 1 also claim that the proof of this program
will be more difficult than in some sense it should be.

(Lest the reader think I'm criticizing this program, I'm not. 1 believe it
represents one of the better examples of what can be done with existing abstraction

tools. My criticism is of the lack of proper abstraction tools which, in turn, forces one
to write this program in this way.)

Below | havi: written a (hopefully) equivalent version in ALPHARD. In writing
this example | have written definitions 'top-down’ - the implementation may, of course,
require the most primitive things first. 1 have also hampered myself a bit so as not to
go too far beyond the ALPHARD ideas presented earlier. For the same reason, the
example is less efficient than it might be.

This implementation assumes the form ‘'word’, a bit vector of convenient length
for a particular underlying machine, has been predefined (e.g. in a “standard prelude’).

Specifically we assume that assignment to a word and accass to individual bits is
defined within this form.

begin

dec| sieve:iset(2,N,1), prime:iset(1,N,0);
while not empty(sieve) da

(include(prime,min(sieve)); removemults(sieve,min(sieve)));

form iset(lb,ubkv) =

{dacl unique b:powerset(lb,ub,kv);
fen include(x:b.inx) = b[x]«1;
fcn removemults(x:b.inx) =

forall i:b.mults(x) da b[i] « 0

fen min:b.inx = b.min( );
fcn empty:bool = b.empty( );
gxport include,remo’ emults,min,empty

}s

form powerset(lb,ub,iv) =
{dacl uniqua p:vector(word,(ub-Ib)/wordsize+1 ),max:pair(ub-Ib);
initu:: (forall xsinvecip) do
if iv = 0 then x+0 glsg x+-1;
if ival then forall x:upto(max.bel wordsize-1,1) do
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p{max.w]{x]}-0);
2ccesat: [x:pair) = p[x w)ix.b];
form inx:pair = {};
fcn empty:bool = gxists x:invec(p) suchthat
x # 0 than false sise true;
fcn min:pair =
begin decl m:pair{0);
whila p[mw] = 0 dg mw « mwel;
while p(mw)[mb] = 0 do mb + m.bel;
returp m
end;
1oem mults(x:pair):pair =
{decl unique t:pair(ib);

Laifus: texs
nexi:: (t & «(t,x); if >(t,max) then signal);
assoc t
b
gxport empty,min,mults,inx
I
form pair (iv) =

{desl unique w,b:int;
initus: (w « iv/wordsize*l ;u +~ iv mod wordsize);
fen +(a,b:pair):pair =
begin
decl c:pair(0);
cw + awebw=l; c.b « abebb;
if ¢.b 2 wordsize then (c.w + c.wel;
¢b « ¢b - wordsize);
return ¢
end;
fen >(a,b:pair):bool =
begin
if aw > b.w then true else
if aw < bw then {alse else ab> b.b
end;
gxport w,b,¢>
b

end

The reader will immediately recognize that the ALPHARD example is somewhat
larger than Hoare’s. The difference, however, arises beczuse of the realization of
abstractions (of powerset, for example) is explicit in the ALPHARD version. The
explicit realization of these abstractions has a cost (size), but it also has advantages,
e.g.:

- the realization may be changed
- proofs may be based on visible structure rather than implicit
semantics (assumptions) of the language
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In addition, one may assume that in practical envirorments a collection of useful
realizations will accumulate - much like a subroutine library - eliminating the need for
redundant definitions. Also, in a simple example such as this one the abstractions are

sparsely used; in ’real’ programs one expects to buy mcre notational leverage’ from
such definitions.

Proof

In this section | would like tc sketch a prouf of the previous program - the
intent is not to present the proof in detail, but rather to provide sufficient detail so
that it is convincing and credible. Inductive assertions are not included, but can be
easily constructed by the interested reader. This proof is derived from one by
Londons for an earlier version of the same program.

First we assert that the top-level algorithm does not need verification - it is a
simple transliteration of an algorithm whose valdity has been known fo: many years.
Thus it only remains to show that the operations defined by the three major forms in
fact accomplish the intended algorithm. The proof consists of a series of lemmas

proceeding in bottom-up order (i.e., first with respect to ’pair’, then ’powerset’, and
finally ‘iset®).

(i) Pair

Let A = AlsWS+A2 and B = BI1+WS+B2, where 0 < A2,B2<WS = wordsize. The
pair init operation defines Pair[A] = (A1+1,A2) and Pair[B) = (B1+1,82). Lemmas | and
2 show that arithmetic on pairs corresponds to ordinary arithmetic. These lemmas are
used in verifying the powerset operatiors in Lemmas 5 and 6.

Lemma 1: Pair additon, denoted P+, preserves ordinary additon, i.e., Pair[A] P+
Pair[B) = Pair[A+B].

Proof: Pair[A] P+ Pair[B] = (Al+1,A2) P+ (B1+1,82)

= (A1+B1+2-1,A2+B2)

= (A1+B1+1,A2+B2) where if A2+B2 2 WS,
then WS is subtracted from A2+B82 and
1 is added to Al+B1. (Note:
A2+B2<2xWS)

= Pair[(A1+B1)sWS+(A2+B2))

= Pair[A+B]

Lemma 2: The pair operation, 'greater than’, denoted P>, agrees with ordinary >,
i.e. A > B iff Pair[A] P>Pair[B]

Proof: It suffices to consider three cases:
case 1, Al > Bl (then Al 2 Bl+])
The P> operation returns true in this case, so we
must show A > B,

sprivate communication
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A = ALsWS+A2 2 A1sWS 2 (B1+1)sWS = BIsWS+WS >
BlswS+B2 = B

case 2, Al = Bl
A > B iff AlsWS+A2 > BIsWS+B2 iff A2 > B2
case 3, Al < Bl
This is verified by symmetry with the Al > Bl case.
Note: Wordsize, WS, must be > 0; in particular it may be = 1.
(2) Powerset

Lemma 3: Assume ub-ib 2 0. The operation powerset initu initializes the
powerset to all zeios or all ones according as iv = 0 or not.

Proof: Definition of initu, and assuming two’s complement representation of 1.
If iv = ] it may be necessary to exclude part of the last element of the
vector (non-empty because ub-lb 2 0. The second forall does this. Also
observe that if the powerset fits exactly into the last element, then
max.b+l = WS > WS-1 and the second forall is executed zero times as
required. It is assumed in the above that either iv=0 or iv=] holds.

Lemma 4: The powerset predicate empty returns false iff the vector P contains
a non-zero element.

Proof: Definition of empty.

Lemma 5: The form 'mults’ defined in powerset, when used in the context of a
forall, will produce valid pairs (indices into a spec'fic instantiation of
powerset) equivalent to an Algol-like

for i := n.l glep n.2 until size-of-powerset do
in whch addition and comparison are the relevant pair operations.

Proof: Definiton of forall, and Lemmas | and 2.

Lemma 6: Assume not empty(P). The operation min sets the pair M, which is
locally declared in min to be (1,0) initially, to the pair

minimum ((W,B) such that (W,8) P2 (1,0) and P[(W,B)] # 0)

Proof: The first while statement finds

X = minimum (W such that W 2 | and P[MW] ¢ 0)

and sets MW to X. The second while find
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Y = minimum (B such that P[X][M.38) = PIMW][M.B] ¢ 0)
and sels MB to Y. Hence M is set to the pair (X,Y) as required.

The assumption not empty(P) assures that X and Y both exist. le. both
while statements terminate "in bounds". The bounds are 1 < X < (UB-
LB)/WS+]1 and 0 < Y < WS-1.

(3) Iset

To include an element in an iset B at index N means B[N] := 1. Similarly,
removing an element means B[N] := 0. kemovemu'ts(N) removes the elements at
indexes N, 2N, 3N,..., size-of-powerset in view of Lemma 5. The min operation of iset
uses min of powerset to return the minimum index of B with non-zero value (Lemma 6).
Similarly empty of iset uses empty of powerset.

It remains to dispose of a detail of min in powerset (see Lemma 6). To discharge
the assumption of Lemma 6, note that min is used only when "not empty(sieve)" holds
in the top level while. Also note that the assumption is Lemma 3 (that iv of powerset
is either 0 or 1) is satisfied iff kv=0 or 1.

As required, the initialization of prime (in the range 1 to N) is to the "empty" set
(kv=0); the initialization of sieve (in the ~ange 2 to N) is to the elements all being
present (kv=1). N 2 2 discharges the assumptions of Lemma 3 for both prime and
sieve,

Conclusion

The intent of this paper has been to explore the nature of the language tools
which seem to be needed in order to retain the abstractions and their realiztion in
the text of a program. The notion of a form was introduced to do this along with
explicit binding, extent, and protection control. We then attempted to show how forms
may be used to define conceptual types, literals, access functions, coercion, and
generators. We consider the concept of generators, which allow one to tie together
data and control structures, to be especially important.

An example program for the sieve of Eratosthenes was presented to illustrate
the mechanisms. A proof of this program was then sketched to illustrate how much
proofs may model the program directly if the abstractions are retained in the program
i text. It seems especially significant that changes to the realization of one of the
abstractions will impact only the proof of that realizaton!

_aad B

Acknowlegments

Many people have contributed to the ideas reported here. My special thanks go
to Ralph London, Mary Shaw, Dave Jefferson, Paul Hilfinger, Steve Hobbs, Gideon
Ariely, Karla Martin, and Anita Jones. | am especially incebted to Ralph London for his
original version of the proof, and for his corrections and amplifications to the current
version,




ALPHARD 17

References

(1] Dahl, Myhrhaug, Nygaard, "The Simula 67 Common Base .anguage,"
Norwegian Computing Centre, Oslo, 1968.

[2] Hoare, CAR., "Notes on Data Structuring,” in Structured Programming, O. J.
Dahl, E. W. Dijkstra, and C.A.R. Hoare (eds.), Academic Press, 1972, 127-138.

P ST —



