
I*JIII I..«II. «IIII iHiin ^iWMIpiW«! lam ■ iliwii -^HM^WWIVV»' ' ' '•"

r

AD-785 ^17

ALPHARD: TOWARD A LANGUAGE TO SUPPORT STRUCTURED

PROGRAMS

CARNEGIE-MELLON UNIVERSITY

PREPARED FOR

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

ADVANCED RESEARCH PROJECTS AGENCY

30 APRIL 197^

DISTRIBUTED BY:

Kn]
National Technical Information Senrico
U. S. DEPARTMENT OF COMMERCE

■MM^M — - -^^^—i

ALPHARD

ALPHARD:
Toward « Languag« to Support Structured Program««

William A. Wulf
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pa.
April 30, 1974

Abstract

This report discusses the programming language tools needed to support the
expression of 'well-structured' programs. In particular it deals with the tools needed
to express abstractions and their realizations; to this end it introduces the concept of
a 'form' to subsume the notions of type (mode), macro, procedure, generator, and
coercion. An extended example is given together with the sketch of a proof of the
example. The proof is included to support the contention that formal verification is
substantially simplified when the abstractions and their realization are retained in the
program text.

>JD r

«This research was stpported by the Advanced Research Projects Age'.^y of he
Office of the Secretary o< Defense (F44620-7,-C-O074) and is monitored by the Air
Force Office of Scientific Research

HI

IMMM^L.

————————

ALPHARD

Introduction

In this paper I would like fo present some ideas concerning the nature of the
programming language facilities needed to support the construction of 'well-structured'
programs. These ideas will be presented in the context of specific linguistic proposals
for ALPHARD, a language being designed at Carnegie-Mellon University. A cautionary
note is, necessary however; ALPHARD is in its earliest stages of development, ard the
particular syntax used in the presentation is intended merely to be suggestive. Before
beginning the presentation some introductory remarks on the language milieu are in
order.

(1) Methodologies: 'Structured programming' and other methodological
approaches to improving programs seem premature. While many of us
might judge a particular program to be qualitatively 'better' than another,
and might even be convinced that the difference has something to do with
their respective 'structure', we do not yet have good characterizations of
what we mean by 'structure' or what constitutes 'good' structure. Thus,
for the moment at least, I would prefer to concentrate on programs rather
than on the process of generating them. In particular I have chosen to
focus on programming language issues as a vehicle for dealing with
programs genencally. That is, I view the development of tools, in this
case a language, as a way of making the investigation of generic structural
issues concrete and responsive to real-world issues. With that in mind,
the following discussion of ALPHARD should be interpreted more as a view
of what constitutes a well structured program than as a language
proposal.

(2) Abstractions and Abstraction Tools: As Dijkstra has noted, abstraction
is among our most powerful tools for reducing complexity. It shouldn't be
surprising that program structure has something to do with abstraction, or
that a proposal for language features to support structured programs
snould lean heavily on abstraction mechanisms. It should be noted,
however, that abstractions come in two flavors: implicit and explicit, öy
implicit abstractions we mean those which are 'built in' and irrevocable -
predefined data structures (array, set,...), storage allocation strategies
(stacked, heap, static, controlled,...), and control relations {[QL, proc) are all
examples of implicit abstractions. Explicit abstractions are those
introduced by the programmer; a language supports such abstractions at
the meta level in the sense that it provides mechanisms for defining the
abstraction - prucedu es, macros, and (some) data structure and type
(mode) definitions are *.ie most common forms of these meta mechanisms.

It is this author's opinion that current languages contain far too many
implicit abstractions, and far too few (or, at least, insufficiently general)
mechanisms for defining explicit abstractions. The danger in implicit
abstractions is twofold; in most current languages the implicit abstractions
form an artificial lower barrier below which the programmer cannot
descend, and m terms of which all 'higher level' abstractions must be
expressed. This is both conceptually and technically inefficient. One need

 • ^m^m*m*^^m*mmm > i it^mmm^mmmmmmmmrmmmmmm

ALPHARD

only scan the literature on APL 'one-liners' to observe the consequen.es
of a large number of impltcit abstractions. We shall consider the nature of
abstraction tools in greater detail below.

(3) Efficiency: I consider only one criterion for the efficiency of a
higher-level language program to be acceptable: the code produced by
the compHer for that language must be better than that produced by a
competent assembly language programmer! To accept any less strmgest
requirement is to subjugate quality (reliability) to (usually invalid)
efficiency considerations, and ultimately leads to poorly structured
programs. The burden of meeting this requirement is shared by both the
language design and the comp.ler. In particular, as far as the language
design is concerned, it is crucial to avoid implicit abstractions which, either
alone or especially interacting with other implicit abstractions, involve a
distributed overhead fcr state maintenance.

(4) Proofs: I'm afraid that the current approach to proving the
correctness of programs, e.g. the 'inductive assertion' method, is doomed
to failure; yet the need for rigorously venfied programs is paramount
Current methods essentially proceed from first principles for each
program, and worse, re-prove the mathematics on which an algorithm is
based in the process of proving a program which purports to implement
he algorithm. We must, ratier, devise methods which factor a proof along

the same cleavage lines as the abstractions in a program. Moreover, we
must be willing to accept the validity of programs whose relation to
Known, valid algorithms is transparent so long as the abstractions on
which those programs are based are shown to be correct. In short, we
must build a base of lemmas and theorems about existing abstraction
realizations in terms of which programs utilizing those realizations can be
ventied relatively simply.* I will try to illustrate these remarks below.

(5) Data Structures and Sequencing Abstractions. In this section I would
like to deal with two related issues - abstraction mechanisms for data
structures and abstraction mechanisms for sequencing. In many ways the
weakest aspect of dbsh action mechanisms in current languages relates to
data structures and their manipulation. With the exception of Simula [1]
most languages provide only the ability to specify the (static) format of 1
structure; correlated manipulation of the structure and/or its elements is
physically and conceptually separated from the structure definition. This
point may be illustrated in many ways, but we shall focus on one -
sequencing.

Most sequencing m a program is related to the data structures on which
that program operates. Consider, for example, the following simple Algol
50 program:

»I believe it was Hamming who said something to the effect that computer
scientists must learn to stand on each other's shoulders rather than on
each other's toes.

mH«

r i^i^mmimmimmHm^

ALPHARD

baein
array A[0:N]; cfidl S; mlfttfli i;

S :-0;
foe i :■ 1 slfifi 1 UOiil N da S :■ S • A[i];

find;

Clearly in such a case the fai clause is intimately related to the array A
— its intent is to step through A performing the statement 'S :- S ♦ Afj]'
once, and only once, for each element of the index set. What we intended,
but had no way to say in Algol, was:

ifluli a < A da S :> $*•;

Our inability to express ourselves this way in Algol ^as several
unfortunate consequences:

- We were forced to say too much. For example, the order of the
evaluation had to be specified when, in fact, it was immaterial.

- Changes are difficult. Any change in the -epresentation of the
conceptual entity denoted by A would require locating and altering
the control used to sequence through A.

- Proofs are difficult. Although conceptually trivial, the formal
proof of this simple loop using the inductive assertion method is
not. At least in part the reason for this lies in the fact that the
proof involves the 'dummy' control variable "i"; in part the
difficulties arise because 'extraneous detail', e.g. the sequencing
order, is explicit.

Some ALPHARD IHP^

In this section I would like to introduce some of the ideas in ALPHARD - at least
as I cuirently perceive them. I do not intend to present the er tire language, and I will
rely heavily on suggestive examples and the reader's experience and good sense.

The only aspect of the language with which we shall deal in any detail is its
abstraction n,echanism(s). The goal is to explicate those aspects of the mechanisms
which we feel are inadequately handled by existing language mechanisms. However, it
should not be inferred that the mechanisms presented below are to be simply added to
those of existing languages. Rather, we have attempted to define a single mechanism
which subsumes the function of existing mechanisms. The extent to which this has
been achieved is still unclear; however, if the attempt is found wanting, we would
prefer to generalize it, or even replace it by a more suitable mechanism, than to
accumulate related but disjoint mechanisms.

(1) Forms

" - ■■■■ ■ ■■ " ■ ■

ALPHARD

^J>hTll'TZZ*'Ta Th^" :,,r0duce is """'' tem. A to m,y be

Forms m,y b, ^^^Är^jr^ 6enera'or'and/or cMrc'on-
ffl£m A(n,x) » {...);

to the?,;;'; SJÄSUrss '^;ame A" *• ■,ame",he M"itui- ••"•
formal pVamelers Te bXd ^J ! ree.names '" ,he X»". "«P' those of the

.. . , ' bou"d a' lhe tleclara ion site. Third the hrar.t ■! 1- „i

spewed be,ow, certain names derre^n^norJ^'^rd'o-^r ,0 ^

reqUisit,ruary
Par:mSftiä7li'h,by„m

0:t
n,io',,'T ■,5 name ,o8e,to •"h a^

illustrated by the following ' m0S, COmmC,, uses '" ^"«•«01. is

ffiun complex ■ (ditl r:real,i:rcal;..)i

dfitl)(:complex;

^^^rÄ.^rrrrrite,ti.ras a -Tte

- The symbol V shou-d Qfii be mterprefed as an mcdental part of
the declaration syntax. It is, rather, a general bmdmg operator

which is useful in other than declarative contexts.

- The name 'real' is a form name, nfil a predefined type In the
stnct interpretation .^re are no types in the language. However

defined by a standard prelude.

to an .nstlnb'tiorotT",^ ''•■c0:»le«:-""""ces the name . and binds this name

d^JssirorSt-tlOW m<>r* COmP,e'e' '^ ""^ "O""'1™ "-' """^
(2) Names

thev a0^^ raM " may S '•****•* <">" an instantiated form in the sense that

p > !■ ina^vwvianPi ■

AVLPHARD

{Qrm complex « idfiii r:raal.i:real: :export r,!};

dflil x:complex;

then the names 'x.r' and 'x.i' are valid - and, in this case, name the real variables
representing the real and imaginary parts of x.

We have no particular prejudice about the syntax of qualification and therefore
consioer all the following to be equivalent, subject to the constraint that the style of
qualification be uniform for each <name, qualification> pair*

x.i ■ i(x) ■ x(i) « i[x] ■ x[i]

We shall use one or another of these forms to i'jggest various intuitive meanings, and
assume the programmer will do likewise.

In addition to thr names which may be explicitly exported, certain names are
implicitly exported from every form. These names correspond to actions vhich are
implicitly triggered (called) because of the context in which the form is instanti «ved. It
is difficult to expand this point until more has been said on other aspects of the
language; be forewarned, however, that such names exist.

(3) Projection

We define each exported name of a form to be an 'access right' to instantiations
of the form. Thus, in the example above, the use of the qualified name 'x.i' is viewed
as an exercise of the right (privilege) to access the imaginary part of x.

In order to make the notion of an access right useful one must be able to
specify permitted and/or required rights to an instantiated form. Although we must
jump ahead of our story a bit to do so, consider:

faun A > {... ufifld a.b.c};
tfin F(x:A<a,b» ■ <body>;

dfiii z:A;

[1] F(2<8»;
[2] F(2<a,c»;
[3] F(2<a,b»;
[4] F{2);

The intended interpretation is that the function F has a single parameter of 'type' A
and that it LfiflUHfii 'a' and V rights to that parameter — that is, that it either uses
the accesses 'x.a' and Vb', or that it calls some other function which, in turn, exercises
these rights. At the call sites, lines [l]-[4]; the actual parameters are qualified by the
nghts which the caller will allow the called routine to exercise; thus the calls at lires

»We also consider a(b)(c) • a(b,c), thus x.i(z) ■ x(i,z), etc.

^^■■^^^«^^»•' ■ ■■^^^■^w^»^^" ii w \^^mm^^i^mm^^mii i^ww^n^

ALPHARD

[1] and [2] will not be allowed while that at [3] will be. If no rights qualification is
specified, as in line [4], the allowed rights are defaulted to 'everything' available to the
caller, thus the call at line [4] is also valid.

Rights qualification may also be attached to exported names. Thus a form may
grant access to some of its internal variables but resi.ict the nature of such access. In
the following example of the form complex only read access to the real and imaginary
parts is granted.

fflim complex ■ (dfifii r:real.i:.-aal: export r<read>,i<read>};

(4) Extent

In many languages we refer to the 'extent' or 'lifetime' of a variable; in ALPHARD
the term is g.ven a somewhat more explicit meaning. However, in the initial part of the
following discussion we would like to rely on the user's intuitive understanding of the
term.

We shall allow declarations to specify an extent attribute, e.g.

dfl£i own a:X;

The only extent attributes ultimately available are own and local, and if the extent
attribute is omitted, local is defaulted. Within a form, however, two other extent
attributes are permitted - common and unique.

The attribute uniflua implies: (1) that the declaration is unique to each
instantiation of the form, and (2) that the extent of the declaration is identical to that
of the instantiation. The attribute common implies: (1) that the declaration is common
to all instantiations of the form, that is, shared between them, and (2) that the extent
of the declaration 'covers' that of all instantiations of the form.

In those cases where a form is being used as a type, the quantities declared
uniflUfi are those which are private to each variable of the specified type, those
declared common are shared between all variables of the type. Thus, for example, one
might implement the concept of a 'set' using linked lists as follows:

lam set ■ idflil tommon p:pool, umaua h:lh«ad;...};

bs&m dfi£i Iflul s 1 :s«t;

hfigin tkii QMn. s2:set;

and;

and;

In such a case the pool, >', is shared between all instantiations while there is a
private Ihead, 'h', for each of the instantiations. Since 'p' is shared between all

■ - " ■

ALPHARD '

instantiations its extent must 'cover' them all - in this case it must be mn because of
the declaration of s2. The uillflUfi variables, on the other hand, have extents identical
to the instantiations - Ifital in the case of the 'h' associated with si and QMI In the
case of the 'h' associated with s2.

Let us now return to a more precise characterization of the meaning of 'extent'.
As noted in an earlier section some names are automatically exported from a tflnru four
of these ar oiitt imlu, Üüfll^ and imalu- As with other automatically exported names,
the semantics of ALPHARD specifies that the accesses ('operative' might be a more
suggestive term in this context) represented by these names are automatically invoked
in defined contexts. In this particular case the intent is that the operations defined by
these names will perform initialization and finalization ('clean-up') actions on common

and unique variables respectively.

The (only) meaning of the term 'extent' is the semantic rule governing the
invocation of these operations! Although we shall not attempt a precise statement of
this rule here, the intuition to be conveyed is that the invocation of the mit and final
actions of variables with BKD extent is to precede and follow the user-defined
program actions, while these actions are invoked as part of block entry/ext for

variables with Ifltal extent.

Strictly speaking, the concept of 'extent' has nothing to do with storage
management. Storage management, rather, is explicit through an executable 'alloc'
function. However, the (prelude) definition of such common forms as mt, real, etc., is
such that the conventional (Algol) correspondence between extent and storage
alloca'ion/deallocation is preserved.

(5) More on Forms

Earlier we introduced the notion of e fann- It will be noted that subsequently
we have used the notion almost synonymously with the conventional use of type or
mode Th's was in part due to an attempt to exploit the readers' intuitions, and in part
due to an incomplete description of the notion. We would row like to expand the
concept slightly. Consider an extension of our first example- -

form A(n:int,x:int): y[z] » {dflii u:y,v:2;...; flSSfl£ uMh

dad r[s]: A(3,4);

The ':', as noted earlier, is a general binding operator. In this particular case the

declaration is intended to:
- introduce two names, V and V
- V and 's' are to be of type 'y' and 'z' respectively
- the names V and V are to be associated with, or bound to,

the variables V and V declared within the instantiated form.
The aiSflt within the form establishes the association
between the names to the left of the binding operator,
and those inside the form.

■ I

mpimmm^i^iWTmmimmmmmm^^'\ Mm\mmmmmmumMmmii <nmmmmmmfimmmmmm^<mm^^i^mnmttmin

ALPHARD

The type declarations of most languages, and the uses of forms which precede
this example, introduce new conceptual entities, e.g. sets where none existed before.
That is not the intent here at all. Rather, in this case, the form is being used to
associate independent, existing entities (in this case a 'y' and a 'z') - and perhaps to
introduce some additional operations. Thus, when instantiated, such forms do not
create a single entity of a new type, and the combination of the assoc inside the form
and the specification (e.g. ^[z]') outside the form allow the user to bind names to each
of these entities. The need for both the assoc and the specification may be seen in
the following example.

form A(x:int):int ■ li&ü uülflUfi v:vtc(int,x),n:int;...ASSfi£ v[n]};
form B(x:mt):vec[int] ■ {dad umaufl u:v«c{int,x),m:int;...a£Sfl£ u[m]};

dad a:A(5),b[c]:B(5);

Note that 'a' is associated with an element of V, V is the vector V, and V is the
integer 'm'.

The use of square brackets in this example is pure syntactic sugar. Within the
constraints imposed by possible ambiguity we wish to allow anything to the left of the
':', and to bind names tc the left of the colon positionally to the entities from the asSQC
in the instantiation of the form to the right of the colon. The previous examples of
forms, e.g.

form A(n:intlx:int) ■ {...}

may be considered default instances

form A(n:int,x:int): A ■ {...}

This apparently trivial extension of the form syntax allows us to subsume the notion of
literals, coercion (in the type-transfer sense), generators, and several other things.
These are discussed briefly below.

(5.1) Literals

We view a literal as a variable with two special properties: its value does not
change, and its value is suggested by its print (external) name. Given suitable
definitions, all the following might be literals:

9 nine
IX nine
4:15 quarter past four o'clock
blue the color
NaCI salt
Tuesday the day

We view literals as being defined by forms. In some cases (Tut:day, blue) the
definition may be simply a named form. In other cases the form thot de'ines the literal

1 ' ' ■ ■ "'-

ALPHARD

will provide a calculation that operates on the print name to produce the appropriate
internal value.

(5.2) Type Conversion

We simply note in passing that type conversion requires either the ability to
treat a single storage cell as being of more than one type or the application of a
function to convert the representation. The assoc permits the former, the latter
requires an explicit (named) function in Alphard.

(5.3) Access Functions

One of the major uses of forms will be to describe a conceptual data structure,
its associated literals, operations, and accesses to its component pieces. A careful
treatment of the access to elements of a conceptual data structure raises some deep
issues concerning references and assignment which 1 prefer to avoid in a discussion at
this level. However, 1 would like to note here that assoc is executable. Thus the
general binding mechanism can be used to define access and sub-structuring
operations (e.g. slicing).

(5.4) Generators

Earlier I discussed the need to relate control and data structures; now we have
enough mechanism to illustrate the point. First let's consider a simple example:

form upto(f:intlt:int,b:int):int =
{dec! unique x:int;
ioiiu:: ii (xH) gk I thfin signal;
next::if (x«-x*b) gh. t ibflü signal;
assoc x(read>

};

(fiuilhupio (1,10,1) da S;

This example is intended to capture the simple stepping form of iteration control.
Several things should be noted:

- The name 'next' is, like 'initu', one of those automatically exported
nsmes.

- Only read access has been granted to i in the statement S.

- forall. like decl, is a syntactic trigger to invoke one of these
names. The forall construct, 'forall x:D dfi S', may be thought of as

begin
dec! x:D;
until signal da (S; x.next);
and;

Maa^a. Il«l I 11 llll I» I I I MM

ALPHARD 10

Note that the init function of D is invoked at instantiation, i.e. at the declaration of x.
Thus the laui: construct first initalizes the control variable, then alternately executes
S and the 'next' function until termination is signaled.

This simple example doesn't illustrate the relation between data and control;
however, consider t^e following representation of a set of integers in a vector:

form s«Usz:ink) ■
lcLad uniqua vrv«€(int,f)z), uQUUift n:int;
initu;:n«-0;

farm mset:mt ■
(decl iiiiaufl x:int;
mitu::if (x*-l / (k n IhfiQ signal;
naxt-tif (x»-x*l) jtt n than signal*
assoc v[x]

};

export inset

};

Then, if the declaration 'd£ii S:set(100)' has been oade, the statement

Larali v:in8«t(S) da v«-v»l

will increment each element of the set.

There are (wo especially useful forms which we shall ucc oelow

forall D fiU£hihfll B da S

and

axists D suchthat B then 1.1 ftlifl S.2

The first of these is the obvious extension to aller a test and is equivalent to

forall D da il B than S.

The second form will execute S.l (precisely once) for the first case for which B is true
and will execute S.2 only in the case that termination s signaled by D without B ever
having been satisfied.

I consider this facility to be extremely important; for the first time I feel some
confidence that all of the represent&tional issues associated with a conceptual data
structure may b*» isolated - thus making both changes and proofs incremental.

An Lxample

■MMHMBHMMMMiaMMaMHMHMHMBBMMMB

ALPHARD
U

Although 1 have not dealt w.th all tre language issues m ALPHARD. 1 hope th 1
have touched on I ough of them that the reader's mtu.hons will carry h^m through the
folio J.rg example The example » taKen from the .ect^n on Data Structuring ,n [2] by
CA^ ^are The „. oblem te that of generat.np, pnme numbers usmg the s.eve of

Erctosthenesi Hoare states the problem as follow;.

Problem: Write a program to construct a set

primes:pow«rset 2 N;

containing all pnme numbers in .ts base type. Use the
method of Eratosthenes' s.eve to avo.d all multiplications and

divisions.

The method of Eratosthenes is first to put all numbers in the
"sieve" and repeat the following until the sieve is empty:

Select and remove the smallest number remaining in the sieve
(necessarily a prime), and then step through the s.eve.

removing all multiples of that number.

After wr.tmv' a mcely structured abstract version of the program Hoare
cons^he consUnt thaMhe program be 'eff.cent' and in p. icular. .s not u e

multiplications o. div s.ons (except durmg imtial.zation). The difficulty, of course, .s

Tha 'mce the sets are represented essentially as bit vectors ^ ^J^^

dlv.s.on to determine the word and bit position corresponding o a *^» "*£
instead he must use a pair of indices ('n.b' and W below) to Keep track of the word
and b.t positions. After some analysis he p.esents the followmg program.

primes. sievo:aaÄX 0 W Q! BflWfllSfll 0. wordiength-l;

^agin primef.nder;
n, n«xt:(w,b:integer);
fflt t:0 W dfl bfiilü primes [t] :• { };

sieve [t] := range (Owordlength-l)

and;
si«va[0]:' {0,1};
next w :» 0;
while true dfl

baein y/h.la sieve[next.w] » { } dfl
^ejin next.w :« nextw^l;
d next w > W Uian «All primefinder

Bud;
next b := min(sieve[next.w]);
primes[next w] := {next b};

n :» next;
yi^hila n w< W dfl

begin sieve[nw] :» {n.b};
n b := n.b ♦ next.b;
n.w :« n.w ♦ next.w;
Ü n.b > wordlength Ibfcfl

_^^^

ALPHARD J2

hfi£Ul n.w :> n.w * 1;
n.b :« n.b - wordUngth
and

ar.d
and

and primafindar

While in some sense this program is 'well structured', it's a real shame tl.at the
abstractions leading to it have been lost. Moreover, because the realization of the
abstractions aren't localized, but distributed throughout the text, any change in those
realizations will require massive changes. 1 also claim that the proof of this program
will be more difficult than m some sense it should be.

(Lest the reader think I'm criticizing this program, I'm not. I believe it
represents one of the better examples of what can be done with existing abstraction
tools. My criticism is of the lack of proper abstraction tools which, in turn, forces one
to write this program in this way.)

Below I havn written a (hopefully) equivalent version m ALPHARD. In writing
this example I havf written definitions 'top-down' - the implementation may, of course,
require the most primitive things first. I have also hampered myself a bit so as not to
go too far beyond the ALPHARD ideas presented earlier. For the same reason, the
example is less efficient than it might be.

This implementation assumes the form 'word', a bit vector of convenient length
for a particular underlying machine, has been predefined (e.g. in a 'standard prelude').
Specifically we assume that assignment to a word and access to individual bits is
defined within this form.

bsgin

dfltl siava:iset(2,N,l), prima:isat(l,N,0);
whila QQI ampty(siava) dfl

(includa(prima,min(tiava)); ramovamultsUieva.minUiava)));

ioun isat(lb,ub,kv) ■
{dfifii umoufi b:powersat(lb,ub,kv);

kn includa(x:b.inx) ■ b[xj«-l;
fen removamults(x:b.inx) ■

laiili i:b mults(x) da b[i] «- 0;
ffiü mintb.inx « b.min();
tin empty:bool = b.ampty();
export include,r«mo.emulfs,min,empty

};

form powarset(lb,ub,iv} ■
{dflil UQlOUfi p:vactor(word,(ub-lb)/wordsiza*l)lmax:pair(ub-lb);

inilu:: (louli x:invac!p) da
if iv ■ 0 Ihfln x«-0 alaft K*—1-,

il iv>l ihfln tfllill x:upto(max.b*l,wordsiza-l,1) dfi

ALPHARD 13

I;

p[mix.w][x]«-0);
access:: [x:pair] = p[x w][x.b];
i'ürm inx:pair » {};
ttü enipt/:Doei ■ tXl&i& x:invec(p) suchthat

x / 0 than falsa tlSA iLUft;
icn min:pair =

bogin decl m:pairlO);
whila p[m w] » 0 dfl HUH *" m.w»l;
while p[m w][rri b] ■ 0 da m.b *■ m.b*l;

return ^
Mai

i^rm mults(x:pair):pair ■
(decl unique t:pair(lb);

mitu:: 4«-x;
nexlr. « •- *(t,x); d >(t,max) then signal);
assoc t

It
ßÄßaii empty,mm.mults,in«

form pair (iv) ■
(decl uüivUlfi w,b:int;

initu:: (w •■ iv/wordsiz«*l;u *■ iv mod wordsiza);
ttn *(a,b:pair):pair =

begin
dfiil c:pair(0);
c.w «- a.w»b.w-l; c.b «- a.b*b.b;
ll cb > wordsiza then (c.w *• c.w*l;

c.b «- c.b - wordsiza);
returnc

end;
<cn >(a,b:pair):bool ■

begin
il aw > b.w then true else
li aw < b.w then false else ab > b b

end;
flAßflil ^(b,»,)

};

and

The reader will immediately recognize that the ALPHARD example is somewhat
larger than Hoare's. The difference, however, arises because of the realization of
abstractions (of powerset, for example) is explicit in the ALPHARD version. The
explicit realization of these abstractions has a cost (size), but it also has advantages,
e.g.:

- the realization may be changed
- proofs may be ba^ed on visible structure rather than implicit

semantics (assumptions) of the language

ALPHARD in

In addition, one may assume that in practical environments a collection of useful
realizations will accumulate - much like a subroutine library - eliminating the need for
redundant definitions. Also, in a simple example such as this one the abstractions are
sparsely used; in 'real' programs one expects to buy mere notational 'leverage' from
such definitions.

Proof

In this section I would like tc sketch a prouf of the previous program - the
intent is not to present ine proof in detail, but rather to provide sufficient detail so
that it is convincing and credible. Inductive assertions are not included, but can be
easily constru:ted by the interested reader. This proof is derived from one by
London* for an earlier version of the same program.

First we assert that the top-level algorithm does not need verification - it is a
simple transliteration of an algorithm whose valdity has been known fo:- many years.
Thus it only remains to show that the operations defined by the three major forms in
fact accomplish the intended algorithm. The proof consists of a series of lemmas
proceeding in bottom-up order (i.e., first with respect to 'pair', then 'powerset', and
finally 'iset').

(1) Pair

Let A - AUWS+A2 and B - BUWS+B2, where 0 < A2,B2<\A/S - wordsize. The
pair init operation defines Pair[A] - (A1 + 1,A2) and Pair[B] - (B1 + 1,B2). Lemmas 1 and
2 show that arithmetic on pairs corresponds to ordinary arithmetic. These lemmas are
used in verifying the powerset operations in Lemmas 5 and 6.

LfimmA 1: Pair additon, denoted P+, preserves ordinary additon, i.e., Pair[A] P+
Pair[B] - Pair[A+B].

Proof: P«ir[A] P* Pair[B] - (A1 + 1,A2) P+ (B1 + 1,B2)
-(Al+Bl+2-l,A2+B2)
- (AUBU1,A2+B2) where if A2+B2 i WS,

then WS is subtracted from A2*B2 and
1 is added to AUB1. (Note:
A2+B2<2*WS)

- Pair[(Al+Bl)»WS+(A2+B2)]
- Pair[A+B]

Lemma 2: The pair operation, 'greater than', denoted P>, agrees with ordinary >,
i.e. A > B iff Pair[A] P>Pair[B].

Proof: It suffices to consider three cases:
case 1, Al > Bl (then Al > Bl + 1)

The P> operation returns true in this case, so we
must show A > B.

»private communication

ALPHARD 15

A - A1*WS+A2 > A1«\A/S i (B1 + 1)*WS - BUWS+WS >
BUW5+B2 - B

case 2, Al - Bl

A ^ B iff AUWS+A2 > B1«WS*B2 iff A? > B2

case 3, Al < Bl

This is verified by symmetry with the Al > Bl case.

Note: Wordsize, WS, must be > 0; in particular it may be - 1.

(2) Powerset

Lemma 3: Assume ub-lb > 0. The operation powerset initu initializes the
poverset to all zeros or all ones according as iv ■ 0 or not.

Proof: Definition of initu, and assuming two's complement representation of 1.
If iv - 1 it may be necessary to exclude part of the last element of the
vector (non-empty because ub-lb > 0. The second forall does this. Also
observe that if the powerset fits exactly into the last element, then
max.b+1 - WS > WS-1 and the second forall is executed zero times as
required. It is assumed in the above that either iv-0 or iv-1 holds.

Lfimma 4: The powerset predicate empty returns false iff the vector P contains
a non-zero element.

Proof: Definition of empty.

Lfimma 5: The form 'mults' defined in powerset, when used in the context of a
forall, will produce valid pairs (indices into a spec fic instantiation of
powerset) equivalent to an Algol-like

Ifll i :■ n.i iisji n.2 until siza-of-powerset da

in whch addition and comparison are the relevant pair operations.

Proof: Defimton of forall, and Lemmas 1 and 2.

Lfimma 6: Assume not empty(P). The operation mm sets the pair M, which is
locally declared in mm to be (1,0) initially, to the pair

minimum ((W,B) such that (W,B) P^ (1,0) and P[(W,B)] * 0)

Proof: The first while statement finds

X - minimum (W such that W ^ 1 and P[M.W] t 0)

and sets M.W to X. The second while find

mm

ALPhARD 16

Y - minimum (B such that P[X][M.a] - P[M.W][M.B] i 0)

and sets M.B to Y. Hence M is set to the pair (X,Y) as required.

The assumption not empty(P) assures that X and Y both exist. I.e., both
while statements terminate "in bounds". The bounds are 1 < X < (UB-
LB)/WS+1 andO < Y < WS-1.

(3) Iset

To include an element in an iset B at index N means B[N] :- 1. Similarly,
removing an element means B[N] :» 0. Removemu'tsdM) removes the elements at
indexes N, 2N, 3N,..., size-of-powerset in view of Lemma 5. The mm operation of iset
uses min of powerset to return the minimum index of B with non-zero value (Lemma 6).
Similarly empty of iset uses empty of powerset.

It remains to dispose of a detail of min in powerset (see Lemma 6). To discharge
the assumption of Lemma 6, note that mm is used only when "not empty(sieve)" holds
in the top level while. Also note that the assumption is Lemma 3 (that iv of powerset
is either 0 or 1) is satisfied iff kv-0 or 1.

As required, the initialization of prime (in the range 1 to N) is to the "empty" set
(kv=0); the initialization of sieve (in the *ange 2 to N) is to the elements all being
present (Kv-1). N 2 2 discharges the assumptions of Lemma 3 for both prime and
sieve.

Conclusion

The intent of this paper has been to explore the nature of the language tools
which seem to be needed m order to retain the abstractions and their realiz'tion in
the text of a program. The notion of a form was introduced to do this along with
explicit binding, extent, and protection control. We then attempted to show how forms
may be used to define conceptual types, literals, access functions, coercion, and
generators. We consider the concept of generators, which allow one to tie together
data and control structures, to be especially important.

An example program for the sieve of Eratosthenes was presented to illustrate
the mechanisms. A proof of this program was then sketched to illustrate how much
proofs may model the program directly if the abstractions are retained in the program
text. It seems especially significant that changes to the realization of one of the
abstractions will impact only the proof of that realizaton!

Acknowlegments

Many people have contributed to the ideas reported here. My special thanks go
to Ralph London, Mary Shaw, Dave Jefferson, Paul Hilfmger, Steve Hobbs, Gideon
Ariely, Karla Martin, and Anita Jones. I am especially indebted to Ralph London for his
original version of the proof, and for his corrections and amplifications to the current
version.

ALPHARD 17

References

[1] Dahl, Myhrhaug, Nygaard, "The Simula 67 Common Base .anguage,"
Norwegian Computing Centre, Oslo, 1968.

[2] Hoare, CAR., "Notes on Data Structuring," in Structured Programming. 0. J.
Dahl, E. W. Dijkstra, and C.A.R. Hoare (eds.). Academic Press, 1972, 127-138.

\

ka^

