
I*JIII I..«II.   «IIII    iHiin ^iWMIpiW«!  lam      ■    iliwii -^HM^WWIVV»'  '   ' '•" 

r 

AD-785 ^17 

ALPHARD: TOWARD A LANGUAGE TO SUPPORT STRUCTURED 

PROGRAMS 

CARNEGIE-MELLON UNIVERSITY 

PREPARED FOR 

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 

ADVANCED RESEARCH PROJECTS AGENCY 

30 APRIL 197^ 

DISTRIBUTED BY: 

Kn] 
National Technical Information Senrico 
U. S. DEPARTMENT OF  COMMERCE 

■MM^M — - -^^^—i 





ALPHARD 

ALPHARD: 
Toward « Languag« to Support Structured Program«« 

William A. Wulf 
Computer Science Department 

Carnegie-Mellon University 
Pittsburgh, Pa. 
April 30, 1974 

Abstract 

This report discusses the programming language tools needed to support the 
expression of 'well-structured' programs. In particular it deals with the tools needed 
to express abstractions and their realizations; to this end it introduces the concept of 
a 'form' to subsume the notions of type (mode), macro, procedure, generator, and 
coercion. An extended example is given together with the sketch of a proof of the 
example. The proof is included to support the contention that formal verification is 
substantially simplified when the abstractions and their realization are retained in the 
program text. 
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ALPHARD 

Introduction 

In this paper I would like fo present some ideas concerning the nature of the 
programming language facilities needed to support the construction of 'well-structured' 
programs. These ideas will be presented in the context of specific linguistic proposals 
for ALPHARD, a language being designed at Carnegie-Mellon University. A cautionary 
note is, necessary however; ALPHARD is in its earliest stages of development, ard the 
particular syntax used in the presentation is intended merely to be suggestive. Before 
beginning the presentation some introductory remarks on the language milieu are in 
order. 

(1) Methodologies: 'Structured programming' and other methodological 
approaches to improving programs seem premature. While many of us 
might judge a particular program to be qualitatively 'better' than another, 
and might even be convinced that the difference has something to do with 
their respective 'structure', we do not yet have good characterizations of 
what we mean by 'structure' or what constitutes 'good' structure. Thus, 
for the moment at least, I would prefer to concentrate on programs rather 
than on the process of generating them. In particular I have chosen to 
focus on programming language issues as a vehicle for dealing with 
programs genencally. That is, I view the development of tools, in this 
case a language, as a way of making the investigation of generic structural 
issues concrete and responsive to real-world issues. With that in mind, 
the following discussion of ALPHARD should be interpreted more as a view 
of what constitutes a well structured program than as a language 
proposal. 

(2) Abstractions and Abstraction Tools: As Dijkstra has noted, abstraction 
is among our most powerful tools for reducing complexity. It shouldn't be 
surprising that program structure has something to do with abstraction, or 
that a proposal for language features to support structured programs 
snould lean heavily on abstraction mechanisms. It should be noted, 
however, that abstractions come in two flavors: implicit and explicit, öy 
implicit abstractions we mean those which are 'built in' and irrevocable - 
predefined data structures (array, set,...), storage allocation strategies 
(stacked, heap, static, controlled,...), and control relations {[QL, proc) are all 
examples of implicit abstractions. Explicit abstractions are those 
introduced by the programmer; a language supports such abstractions at 
the meta level in the sense that it provides mechanisms for defining the 
abstraction - prucedu es, macros, and (some) data structure and type 
(mode) definitions are *.ie most common forms of these meta mechanisms. 

It is this author's opinion that current languages contain far too many 
implicit abstractions, and far too few (or, at least, insufficiently general) 
mechanisms for defining explicit abstractions. The danger in implicit 
abstractions is twofold; in most current languages the implicit abstractions 
form an artificial lower barrier below which the programmer cannot 
descend, and m terms of which all 'higher level' abstractions must be 
expressed.   This is both conceptually and technically inefficient.   One need 
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only scan the literature on APL 'one-liners' to observe the consequen.es 
of a large number of impltcit abstractions. We shall consider the nature of 
abstraction tools in greater detail below. 

(3) Efficiency: I consider only one criterion for the efficiency of a 
higher-level language program to be acceptable: the code produced by 
the compHer for that language must be better than that produced by a 
competent assembly language programmer! To accept any less strmgest 
requirement is to subjugate quality (reliability) to (usually invalid) 
efficiency considerations, and ultimately leads to poorly structured 
programs. The burden of meeting this requirement is shared by both the 
language design and the comp.ler. In particular, as far as the language 
design is concerned, it is crucial to avoid implicit abstractions which, either 
alone or especially interacting with other implicit abstractions, involve a 
distributed overhead fcr state maintenance. 

(4) Proofs: I'm afraid that the current approach to proving the 
correctness of programs, e.g. the 'inductive assertion' method, is doomed 
to failure; yet the need for rigorously venfied programs is paramount 
Current methods essentially proceed from first principles for each 
program, and worse, re-prove the mathematics on which an algorithm is 
based in the process of proving a program which purports to implement 
he algorithm. We must, ratier, devise methods which factor a proof along 

the same cleavage lines as the abstractions in a program. Moreover, we 
must be willing to accept the validity of programs whose relation to 
Known, valid algorithms is transparent so long as the abstractions on 
which those programs are based are shown to be correct. In short, we 
must build a base of lemmas and theorems about existing abstraction 
realizations in terms of which programs utilizing those realizations can be 
ventied relatively simply.* I will try to illustrate these remarks below. 

(5) Data Structures and Sequencing Abstractions. In this section I would 
like to deal with two related issues - abstraction mechanisms for data 
structures and abstraction mechanisms for sequencing. In many ways the 
weakest aspect of dbsh action mechanisms in current languages relates to 
data structures and their manipulation. With the exception of Simula [1] 
most languages provide only the ability to specify the (static) format of 1 
structure; correlated manipulation of the structure and/or its elements is 
physically and conceptually separated from the structure definition. This 
point may be illustrated in many ways, but we shall focus on one - 
sequencing. 

Most sequencing m a program is related to the data structures on which 
that program operates. Consider, for example, the following simple Algol 
50 program: 

»I believe it was Hamming who said something to the effect that computer 
scientists must learn to stand on each other's shoulders rather than on 
each other's toes. 

mH« 
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baein 
array A[0:N]; cfidl S; mlfttfli i; 

S :-0; 
foe i :■ 1 slfifi 1 UOiil N da S :■ S • A[i]; 

find; 

Clearly in such a case the fai clause is intimately related to the array A 
— its intent is to step through A performing the statement 'S :- S ♦ Afj]' 
once, and only once, for each element of the index set. What we intended, 
but had no way to say in Algol, was: 

ifluli a < A da S :> $*•; 

Our inability to express ourselves this way in Algol ^as several 
unfortunate consequences: 

- We were forced to say too much. For example, the order of the 
evaluation had to be specified when, in fact, it was immaterial. 

- Changes are difficult. Any change in the -epresentation of the 
conceptual entity denoted by A would require locating and altering 
the control used to sequence through A. 

- Proofs are difficult. Although conceptually trivial, the formal 
proof of this simple loop using the inductive assertion method is 
not. At least in part the reason for this lies in the fact that the 
proof involves the 'dummy' control variable "i"; in part the 
difficulties arise because 'extraneous detail', e.g. the sequencing 
order, is explicit. 

Some ALPHARD IHP^ 

In this section I would like to introduce some of the ideas in ALPHARD - at least 
as I cuirently perceive them. I do not intend to present the er tire language, and I will 
rely heavily on suggestive examples and the reader's experience and good sense. 

The only aspect of the language with which we shall deal in any detail is its 
abstraction n,echanism(s). The goal is to explicate those aspects of the mechanisms 
which we feel are inadequately handled by existing language mechanisms. However, it 
should not be inferred that the mechanisms presented below are to be simply added to 
those of existing languages. Rather, we have attempted to define a single mechanism 
which subsumes the function of existing mechanisms. The extent to which this has 
been achieved is still unclear; however, if the attempt is found wanting, we would 
prefer to generalize it, or even replace it by a more suitable mechanism, than to 
accumulate related but disjoint mechanisms. 

(1)   Forms 
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^J>hTll'TZZ*'Ta Th^" :,,r0duce is """'' tem. A to m,y be 

Forms m,y b, ^^^Är^jr^ 6enera'or'and/or cMrc'on- 
ffl£m A(n,x) » {...); 

to the?,;;'; SJÄSUrss '^;ame A" *• ■,ame",he M"itui- ••"• 
formal pVamelers Te bXd ^J !    ree.names '" ,he X»". "«P' those of the 

.. . , ' bou"d a'  lhe tleclara ion site.   Third   the  hrar.t   ■!  1-   „i 

spewed be,ow, certain names derre^n^norJ^'^rd'o-^r ,0 ^ 

reqUisit,ruary
Par:mSftiä7li'h,by„m

0:t
n,io',,'T ■,5 name ,o8e,to •"h a^ 

illustrated by the following '  m0S,   COmmC,,  uses  '"   ^"«•«01.   is 

ffiun complex ■ (ditl r:real,i:rcal;.. )i 

dfitl )(:complex; 

^^^rÄ.^rrrrrite,ti.ras a -Tte 

- The symbol V shou-d Qfii be mterprefed as an mcdental part of 
the declaration syntax. It is, rather, a general bmdmg operator 

which is useful in other than declarative contexts. 

- The name 'real' is a form name, nfil a predefined type In the 
stnct interpretation .^re are no types in the language.   However 

defined by a standard prelude. 

to an .nstlnb'tiorotT",^ ''•■c0:»le«:-""""ces the name . and binds this name 

d^JssirorSt-tlOW    m<>r*   COmP,e'e'   '^   ""^   "O""'1™   "-'    """^ 
(2)   Names 

thev   a0^^ raM " may S '•****•* <">" an instantiated form in the sense that 
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{Qrm complex « idfiii r:raal.i:real:   :export r,!}; 

dflil x:complex; 

then the  names 'x.r' and 'x.i' are valid - and, in this case, name the real variables 
representing the real and imaginary parts of x. 

We have no particular prejudice about the syntax of qualification and therefore 
consioer all the following to be equivalent, subject to the constraint that the style of 
qualification be uniform for each <name, qualification> pair* 

x.i ■ i(x) ■ x(i) « i[x] ■ x[i] 

We shall use one or another of these forms to i'jggest various intuitive meanings, and 
assume the programmer will do likewise. 

In addition to thr names which may be explicitly exported, certain names are 
implicitly exported from every form. These names correspond to actions vhich are 
implicitly triggered (called) because of the context in which the form is instanti «ved. It 
is difficult to expand this point until more has been said on other aspects of the 
language; be forewarned, however, that such names exist. 

(3)   Projection 

We define each exported name of a form to be an 'access right' to instantiations 
of the form. Thus, in the example above, the use of the qualified name 'x.i' is viewed 
as an exercise of the right (privilege) to access the imaginary part of x. 

In order to make the notion of an access right useful one must be able to 
specify permitted and/or required rights to an instantiated form. Although we must 
jump ahead of our story a bit to do so, consider: 

faun A > {... ufifld a.b.c}; 
tfin F(x:A<a,b» ■ <body>; 

dfiii z:A; 

[1] F(2<8»; 
[2] F(2<a,c»; 
[3] F(2<a,b»; 
[4] F{2); 

The intended interpretation is that the function F has a single parameter of 'type' A 
and that it LfiflUHfii 'a' and V rights to that parameter — that is, that it either uses 
the accesses 'x.a' and Vb', or that it calls some other function which, in turn, exercises 
these rights. At the call sites, lines [l]-[4]; the actual parameters are qualified by the 
nghts which the caller will allow the called routine to exercise; thus the calls at lires 

»We also consider a(b)(c) • a(b,c), thus x.i(z) ■ x(i,z), etc. 
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[1] and [2] will not be allowed while that at [3] will be. If no rights qualification is 
specified, as in line [4], the allowed rights are defaulted to 'everything' available to the 
caller, thus the call at line [4] is also valid. 

Rights qualification may also be attached to exported names. Thus a form may 
grant access to some of its internal variables but resi.ict the nature of such access. In 
the following example of the form complex only read access to the real and imaginary 
parts is granted. 

fflim complex ■ (dfifii r:real.i:.-aal:  export r<read>,i<read>}; 

(4)  Extent 

In many languages we refer to the 'extent' or 'lifetime' of a variable; in ALPHARD 
the term is g.ven a somewhat more explicit meaning. However, in the initial part of the 
following discussion we would like to rely on the user's intuitive understanding of the 
term. 

We shall allow declarations to specify an extent attribute, e.g. 

dfl£i own a:X; 

The only extent attributes ultimately available are own and local, and if the extent 
attribute is omitted, local is defaulted. Within a form, however, two other extent 
attributes are permitted - common and unique. 

The attribute uniflua implies: (1) that the declaration is unique to each 
instantiation of the form, and (2) that the extent of the declaration is identical to that 
of the instantiation. The attribute common implies: (1) that the declaration is common 
to all instantiations of the form, that is, shared between them, and (2) that the extent 
of the declaration 'covers' that of all instantiations of the form. 

In those cases where a form is being used as a type, the quantities declared 
uniflUfi are those which are private to each variable of the specified type, those 
declared common are shared between all variables of the type. Thus, for example, one 
might implement the concept of a 'set' using linked lists as follows: 

lam set ■ idflil tommon p:pool, umaua h:lh«ad;...}; 

bs&m dfi£i Iflul s 1 :s«t; 

hfigin tkii QMn. s2:set; 

and; 

and; 

In such a case the pool, >', is shared between all instantiations while there is a 
private   Ihead,  'h',  for  each of  the  instantiations.    Since  'p' is shared  between all 
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instantiations its extent must 'cover' them all - in this case it must be mn because of 
the declaration of s2. The uillflUfi variables, on the other hand, have extents identical 
to the instantiations - Ifital in the case of the 'h' associated with si and QMI In the 
case of the 'h' associated with s2. 

Let us now return to a more precise characterization of the meaning of 'extent'. 
As noted in an earlier section some names are automatically exported from a tflnru four 
of these ar oiitt imlu, Üüfll^ and imalu- As with other automatically exported names, 
the semantics of ALPHARD specifies that the accesses ('operative' might be a more 
suggestive term in this context) represented by these names are automatically invoked 
in defined contexts. In this particular case the intent is that the operations defined by 
these names will perform initialization and finalization ('clean-up') actions on common 

and unique variables respectively. 

The (only) meaning of the term 'extent' is the semantic rule governing the 
invocation of these operations! Although we shall not attempt a precise statement of 
this rule here, the intuition to be conveyed is that the invocation of the mit and final 
actions of variables with BKD extent is to precede and follow the user-defined 
program actions, while these actions are invoked as part of block entry/ext for 

variables with Ifltal extent. 

Strictly speaking, the concept of 'extent' has nothing to do with storage 
management. Storage management, rather, is explicit through an executable 'alloc' 
function. However, the (prelude) definition of such common forms as mt, real, etc., is 
such that the conventional (Algol) correspondence between extent and storage 
alloca'ion/deallocation is preserved. 

(5)   More on Forms 

Earlier we introduced the notion of e fann- It will be noted that subsequently 
we have used the notion almost synonymously with the conventional use of type or 
mode Th's was in part due to an attempt to exploit the readers' intuitions, and in part 
due to an incomplete description of the notion. We would row like to expand the 
concept slightly.   Consider an extension of our first example- - 

form A(n:int,x:int): y[z] » {dflii u:y,v:2;...; flSSfl£ uMh 

dad r[s]: A(3,4); 

The ':', as noted earlier, is a general binding operator. In this particular case the 

declaration is intended to: 
- introduce two names, V and V 
- V and 's' are to be of type 'y' and 'z' respectively 
- the names V and V are to be associated with, or bound to, 

the variables V and V declared within the instantiated form. 
The aiSflt within the form establishes the association 
between the names to the left of the binding operator, 
and those inside the form. 

■ I 
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The type declarations of most languages, and the uses of forms which precede 
this example, introduce new conceptual entities, e.g. sets where none existed before. 
That is not the intent here at all. Rather, in this case, the form is being used to 
associate independent, existing entities (in this case a 'y' and a 'z') - and perhaps to 
introduce some additional operations. Thus, when instantiated, such forms do not 
create a single entity of a new type, and the combination of the assoc inside the form 
and the specification (e.g. ^[z]') outside the form allow the user to bind names to each 
of these entities. The need for both the assoc and the specification may be seen in 
the following example. 

form A(x:int):int ■ li&ü uülflUfi v:vtc(int,x),n:int;...ASSfi£ v[n]}; 
form B(x:mt):vec[int] ■ {dad umaufl u:v«c{int,x),m:int;...a£Sfl£ u[m]}; 

dad a:A(5),b[c]:B(5); 

Note that 'a' is associated with an element of V, V is the vector V, and V is the 
integer 'm'. 

The use of square brackets in this example is pure syntactic sugar. Within the 
constraints imposed by possible ambiguity we wish to allow anything to the left of the 
':', and to bind names tc the left of the colon positionally to the entities from the asSQC 
in the instantiation of the form to the right of the colon. The previous examples of 
forms, e.g. 

form A(n:intlx:int) ■ {...} 

may be considered default instances 

form A(n:int,x:int): A ■ {...} 

This apparently trivial extension of the form syntax allows us to subsume the notion of 
literals, coercion (in the type-transfer sense), generators, and several other things. 
These are discussed briefly below. 

(5.1)   Literals 

We view a literal as a variable with two special properties: its value does not 
change, and its value is suggested by its print (external) name. Given suitable 
definitions, all the following might be literals: 

9 nine 
IX nine 
4:15 quarter past four o'clock 
blue the color 
NaCI salt 
Tuesday the day 

We   view  literals   as   being defined  by  forms.    In  some  cases  (Tut:day,  blue) the 
definition may be simply a named form.   In other cases the form thot de'ines the literal 
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will provide a calculation that operates on the print name to produce the appropriate 
internal value. 

(5.2) Type Conversion 

We simply note in passing that type conversion requires either the ability to 
treat a single storage cell as being of more than one type or the application of a 
function to convert the representation. The assoc permits the former, the latter 
requires an explicit (named) function in Alphard. 

(5.3) Access Functions 

One of the major uses of forms will be to describe a conceptual data structure, 
its associated literals, operations, and accesses to its component pieces. A careful 
treatment of the access to elements of a conceptual data structure raises some deep 
issues concerning references and assignment which 1 prefer to avoid in a discussion at 
this level. However, 1 would like to note here that assoc is executable. Thus the 
general binding mechanism can be used to define access and sub-structuring 
operations (e.g. slicing). 

(5.4) Generators 

Earlier I discussed the need to relate control and data structures; now we have 
enough mechanism to illustrate the point.   First let's consider a simple example: 

form upto(f:intlt:int,b:int):int = 
{dec! unique x:int; 
ioiiu:: ii (xH) gk I thfin signal; 
next::if (x«-x*b) gh. t ibflü signal; 
assoc x(read> 

}; 

(fiuilhupio (1,10,1) da S; 

This example is intended to capture the simple stepping form of iteration control. 
Several things should be noted: 

- The name 'next' is, like 'initu', one of those automatically exported 
nsmes. 

- Only read access has been granted to i in the statement S. 

- forall. like decl, is a syntactic trigger to invoke     one of these 
names.   The forall construct, 'forall x:D dfi S',    may be thought of as 

begin 
dec! x:D; 
until signal da (S; x.next); 
and; 

Maa^a. Il«l I   11   llll  I» I    I I MM 
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Note that the init function of D is invoked at instantiation, i.e. at the declaration of x. 
Thus the laui: construct first initalizes the control variable, then alternately executes 
S and the 'next' function until termination is signaled. 

This simple example doesn't illustrate the relation between data and control; 
however, consider t^e following representation of a set of integers in a vector: 

form s«Usz:ink) ■ 
lcLad uniqua vrv«€(int,f)z), uQUUift n:int; 
initu;:n«-0; 

farm mset:mt ■ 
(decl iiiiaufl x:int; 
mitu::if (x*-l / (k n IhfiQ signal; 
naxt-tif (x»-x*l) jtt n than signal* 
assoc v[x] 

}; 

export inset 

}; 

Then, if the declaration 'd£ii S:set(100)' has been oade, the statement 

Larali v:in8«t(S) da v«-v»l 

will increment each element of the set. 

There are (wo especially useful forms which we shall ucc oelow 

forall D fiU£hihfll B da S 

and 

axists D suchthat B then 1.1 ftlifl S.2 

The first of these is the obvious extension to aller a test and is equivalent to 

forall D da il B than S. 

The second form will execute S.l (precisely once) for the first case for which B is true 
and will execute S.2 only in the case that termination s signaled by D without B ever 
having been satisfied. 

I consider this facility to be extremely important; for the first time I feel some 
confidence that all of the represent&tional issues associated with a conceptual data 
structure may b*» isolated - thus making both changes and proofs incremental. 

An Lxample 

■MMHMBHMMMMiaMMaMHMHMHMBBMMMB 
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Although 1 have not dealt w.th all tre language issues m ALPHARD. 1 hope th 1 
have touched on I ough of them that the reader's mtu.hons will carry h^m through the 
folio J.rg example The example » taKen from the .ect^n on Data Structuring ,n [2] by 
CA^ ^are The „. oblem te that of generat.np, pnme numbers usmg the s.eve of 

Erctosthenesi Hoare states the problem as follow;. 

Problem:   Write a program to construct a set 

primes:pow«rset 2 N; 

containing all pnme numbers in .ts base type. Use the 
method of Eratosthenes' s.eve to avo.d all multiplications and 

divisions. 

The method of Eratosthenes is first to put all numbers in the 
"sieve" and repeat the following until the sieve is empty: 

Select and remove the smallest number remaining in the sieve 
(necessarily a prime), and then step through the s.eve. 

removing all multiples of that number. 

After wr.tmv' a mcely structured abstract version of the program Hoare 
cons^he consUnt thaMhe program be 'eff.cent' and in p. icular. .s not u e 

multiplications o. div s.ons (except durmg imtial.zation). The difficulty, of course, .s 

Tha 'mce the sets are represented essentially as bit vectors ^ ^J^^ 

dlv.s.on to determine the word and bit position corresponding o a *^» "*£ 
instead he must use a pair of indices ('n.b' and W below) to Keep track of the word 
and b.t positions.   After some analysis he p.esents the followmg program. 

primes. sievo:aaÄX 0 W Q! BflWfllSfll 0. wordiength-l; 

^agin primef.nder; 
n, n«xt:(w,b:integer); 
fflt t:0 W dfl bfiilü primes [t] :• { }; 

sieve [t] := range (Owordlength-l) 

and; 
si«va[0]:' {0,1}; 
next w :» 0; 
while true dfl 

baein y/h.la sieve[next.w] » { } dfl 
^ejin next.w :« nextw^l; 
d next w > W Uian «All primefinder 

Bud; 
next b := min(sieve[next.w]); 
primes[next w] := {next b}; 

n :» next; 
yi^hila n w< W dfl 

begin sieve[nw] :» {n.b}; 
n b := n.b ♦ next.b; 
n.w :« n.w ♦ next.w; 
Ü n.b > wordlength Ibfcfl 

_^^^ 
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hfi£Ul n.w :> n.w * 1; 
n.b :« n.b - wordUngth 
and 

ar.d 
and 

and primafindar 

While in some sense this program is 'well structured', it's a real shame tl.at the 
abstractions leading to it have been lost. Moreover, because the realization of the 
abstractions aren't localized, but distributed throughout the text, any change in those 
realizations will require massive changes. 1 also claim that the proof of this program 
will be more difficult than m some sense it should be. 

(Lest the reader think I'm criticizing this program, I'm not. I believe it 
represents one of the better examples of what can be done with existing abstraction 
tools. My criticism is of the lack of proper abstraction tools which, in turn, forces one 
to write this program in this way.) 

Below I havn written a (hopefully) equivalent version m ALPHARD. In writing 
this example I havf written definitions 'top-down' - the implementation may, of course, 
require the most primitive things first. I have also hampered myself a bit so as not to 
go too far beyond the ALPHARD ideas presented earlier. For the same reason, the 
example is less efficient than it might be. 

This implementation assumes the form 'word', a bit vector of convenient length 
for a particular underlying machine, has been predefined (e.g. in a 'standard prelude'). 
Specifically we assume that assignment to a word and access to individual bits is 
defined within this form. 

bsgin 

dfltl siava:iset(2,N,l), prima:isat(l,N,0); 
whila QQI ampty(siava) dfl 

(includa(prima,min(tiava)); ramovamultsUieva.minUiava))); 

ioun isat(lb,ub,kv) ■ 
{dfifii umoufi b:powersat(lb,ub,kv); 

kn includa(x:b.inx) ■ b[xj«-l; 
fen removamults(x:b.inx) ■ 

laiili i:b mults(x) da b[i] «- 0; 
ffiü mintb.inx « b.min( ); 
tin empty:bool = b.ampty( ); 
export include,r«mo.emulfs,min,empty 

}; 

form powarset(lb,ub,iv} ■ 
{dflil UQlOUfi p:vactor(word,(ub-lb)/wordsiza*l )lmax:pair(ub-lb); 

inilu:: (louli x:invac!p) da 
if iv ■ 0 Ihfln x«-0 alaft K*—1-, 

il iv>l ihfln tfllill x:upto(max.b*l,wordsiza-l,1) dfi 
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I; 

p[mix.w][x]«-0); 
access:: [x:pair] = p[x w][x.b]; 
i'ürm inx:pair » {}; 
ttü enipt/:Doei ■ tXl&i& x:invec(p) suchthat 

x / 0 than falsa tlSA iLUft; 
icn min:pair = 

bogin decl m:pairlO); 
whila p[m w] » 0 dfl HUH *" m.w»l; 
while p[m w][rri b] ■ 0 da m.b *■ m.b*l; 

return ^ 
Mai 

i^rm mults(x:pair):pair ■ 
(decl unique t:pair(lb); 

mitu:: 4«-x; 
nexlr. « •- *(t,x); d >(t,max) then signal); 
assoc t 

It 
ßÄßaii empty,mm.mults,in« 

form pair (iv) ■ 
(decl uüivUlfi w,b:int; 

initu:: (w •■ iv/wordsiz«*l;u *■ iv mod wordsiza); 
ttn *(a,b:pair):pair = 

begin 
dfiil c:pair(0); 
c.w «- a.w»b.w-l; c.b «- a.b*b.b; 
ll cb > wordsiza then (c.w *• c.w*l; 

c.b «- c.b - wordsiza); 
returnc 

end; 
<cn >(a,b:pair):bool ■ 

begin 
il aw > b.w then true else 
li aw < b.w then false else ab > b b 

end; 
flAßflil ^(b,»,) 

}; 

and 

The reader will immediately recognize that the ALPHARD example is somewhat 
larger than Hoare's. The difference, however, arises because of the realization of 
abstractions (of powerset, for example) is explicit in the ALPHARD version. The 
explicit realization of these abstractions has a cost (size), but it also has advantages, 
e.g.: 

- the realization may be changed 
- proofs may be ba^ed on visible structure rather than implicit 

semantics (assumptions) of the language 



ALPHARD in 

In addition, one may assume that in practical environments a collection of useful 
realizations will accumulate - much like a subroutine library - eliminating the need for 
redundant definitions. Also, in a simple example such as this one the abstractions are 
sparsely used; in 'real' programs one expects to buy mere notational 'leverage' from 
such definitions. 

Proof 

In this section I would like tc sketch a prouf of the previous program - the 
intent is not to present ine proof in detail, but rather to provide sufficient detail so 
that it is convincing and credible. Inductive assertions are not included, but can be 
easily constru:ted by the interested reader. This proof is derived from one by 
London* for an earlier version of the same program. 

First we assert that the top-level algorithm does not need verification - it is a 
simple transliteration of an algorithm whose valdity has been known fo:- many years. 
Thus it only remains to show that the operations defined by the three major forms in 
fact accomplish the intended algorithm. The proof consists of a series of lemmas 
proceeding in bottom-up order (i.e., first with respect to 'pair', then 'powerset', and 
finally 'iset'). 

(1)   Pair 

Let A - AUWS+A2 and B - BUWS+B2, where 0 < A2,B2<\A/S - wordsize. The 
pair init operation defines Pair[A] - (A1 + 1,A2) and Pair[B] - (B1 + 1,B2). Lemmas 1 and 
2 show that arithmetic on pairs corresponds to ordinary arithmetic. These lemmas are 
used in verifying the powerset operations in Lemmas 5 and 6. 

LfimmA 1:   Pair additon, denoted P+, preserves ordinary additon, i.e., Pair[A] P+ 
Pair[B] - Pair[A+B]. 

Proof:   P«ir[A] P* Pair[B] - (A1 + 1,A2) P+ (B1 + 1,B2) 
-(Al+Bl+2-l,A2+B2) 
- (AUBU1,A2+B2) where if A2+B2 i WS, 

then WS is subtracted from A2*B2 and 
1 is added to AUB1.  (Note: 
A2+B2<2*WS) 

- Pair[(Al+Bl)»WS+(A2+B2)] 
- Pair[A+B] 

Lemma 2:  The pair operation, 'greater than', denoted P>, agrees with ordinary >, 
i.e. A > B iff Pair[A] P>Pair[B]. 

Proof:   It suffices to consider three cases: 
case 1, Al > Bl     (then Al > Bl + 1) 

The P> operation returns true in this case, so we 
must show A > B. 

»private communication 
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A - A1*WS+A2 > A1«\A/S i (B1 + 1)*WS - BUWS+WS > 
BUW5+B2 - B 

case 2, Al - Bl 

A ^ B iff AUWS+A2 > B1«WS*B2 iff A? > B2 

case 3, Al < Bl 

This is verified by symmetry with the Al > Bl case. 

Note:  Wordsize, WS, must be > 0; in particular it may be - 1. 

(2)   Powerset 

Lemma 3: Assume ub-lb > 0. The operation powerset initu initializes the 
poverset to all zeros or all ones according as iv ■ 0 or not. 

Proof: Definition of initu, and assuming two's complement representation of 1. 
If iv - 1 it may be necessary to exclude part of the last element of the 
vector (non-empty because ub-lb > 0. The second forall does this. Also 
observe that if the powerset fits exactly into the last element, then 
max.b+1 - WS > WS-1 and the second forall is executed zero times as 
required.   It is assumed in the above that either iv-0 or iv-1 holds. 

Lfimma 4: The powerset predicate empty returns false iff the vector P contains 
a non-zero element. 

Proof:   Definition of empty. 

Lfimma 5: The form 'mults' defined in powerset, when used in the context of a 
forall, will produce valid pairs (indices into a spec fic instantiation of 
powerset) equivalent to an Algol-like 

Ifll i :■ n.i iisji n.2 until siza-of-powerset da 

in whch addition and comparison are the relevant pair operations. 

Proof:   Defimton of forall, and Lemmas 1 and 2. 

Lfimma 6: Assume not empty(P). The operation mm sets the pair M, which is 
locally declared in mm to be (1,0) initially, to the pair 

minimum ((W,B) such that (W,B) P^ (1,0) and P[(W,B)] * 0) 

Proof:  The first while statement finds 

X - minimum (W such that W ^ 1 and P[M.W] t 0) 

and sets M.W to X.   The second while find 

mm 
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Y - minimum (B such that P[X][M.a] - P[M.W][M.B] i 0) 

and sets M.B to Y.  Hence M is set to the pair (X,Y) as required. 

The assumption not empty(P) assures that X and Y both exist.   I.e., both 
while statements terminate "in bounds".   The bounds are  1   < X < (UB- 
LB)/WS+1 andO < Y < WS-1. 

(3)   Iset 

To include an element in an iset B at index N means B[N] :- 1. Similarly, 
removing an element means B[N] :» 0. Removemu'tsdM) removes the elements at 
indexes N, 2N, 3N,..., size-of-powerset in view of Lemma 5. The mm operation of iset 
uses min of powerset to return the minimum index of B with non-zero value (Lemma 6). 
Similarly empty of iset uses empty of powerset. 

It remains to dispose of a detail of min in powerset (see Lemma 6). To discharge 
the assumption of Lemma 6, note that mm is used only when "not empty(sieve)" holds 
in the top level while. Also note that the assumption is Lemma 3 (that iv of powerset 
is either 0 or 1) is satisfied iff kv-0 or 1. 

As required, the initialization of prime (in the range 1 to N) is to the "empty" set 
(kv=0); the initialization of sieve (in the *ange 2 to N) is to the elements all being 
present (Kv-1). N 2 2 discharges the assumptions of Lemma 3 for both prime and 
sieve. 

Conclusion 

The intent of this paper has been to explore the nature of the language tools 
which seem to be needed m order to retain the abstractions and their realiz'tion in 
the text of a program. The notion of a form was introduced to do this along with 
explicit binding, extent, and protection control. We then attempted to show how forms 
may be used to define conceptual types, literals, access functions, coercion, and 
generators. We consider the concept of generators, which allow one to tie together 
data and control structures, to be especially important. 

An example program for the sieve of Eratosthenes was presented to illustrate 
the mechanisms. A proof of this program was then sketched to illustrate how much 
proofs may model the program directly if the abstractions are retained in the program 
text. It seems especially significant that changes to the realization of one of the 
abstractions will impact only the proof of that realizaton! 
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